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This textbook is dedicated to the humane and compassionate treatment of animals

A man is truly ethical only when he obeys the compulsion to help all life
which he is able to assist, and shrinks from injuring anything that lives.

Albert Schweitzer

It ill becomes us to invoke in our daily prayers the blessings of God, the
compassionate, it we in turn will not practice elementary compassion
towards our fellow creatures.

Gandhi

We can judge the heart of man by his treatment of animals.

Immanuel Kant
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PREFACE

This is the second edition of a textbook that is intended for a senior or graduate-level
course in an electrical engineering (EE) curriculum on the subject of the analysis of
multiconductor transmission lines (MTLs). It will also serve as a useful reference
for industry professionals. The term MTL typically refers to a set of n + 1 parallel
conductors that serve to transmit electrical signals between two or more points, for
example, a source and a load. The dominant mode of propagation on an MTL is the
transverse electromagnetic (TEM) mode of propagation, where the electric and mag-
netic fields surrounding the conductors lie solely in the transverse plane orthogonal
to the line axis. This structure is capable of guiding waves whose frequencies range
from dc to where the line cross-sectional dimensions become a significant fraction
of a wavelength. At higher frequencies, higher order modes coexist with the TEM
mode, and other guiding structures such as waveguides and antennas are more prac-
tical structures for transmitting the signal between a source and a load. There are
many applications for this wave-guiding structure. High-voltage power transmission
lines are intended to transmit 60-Hz sinusoidal waveforms and the resulting power. In
addition to this low-frequency power signal, there may exist other higher frequency
components of the transmitted signal such as when a fault occurs on the line or a circuit
breaker opens and recloses. The waveforms on the line associated with these events
have high-frequency spectral content. Cables in modern electronic systems such as
aircraft, ships, and vehicles serve to transmit power as well as signals throughout the
system. These cables consist of a large number of individual wires that are packed into
bundles for neatness and space conservation. The electromagnetic fields surrounding
these closely spaced individual wires interact with each other and induce signals in
all the other adjacent circuits. This is unintended and is referred to as crosstalk. This
crosstalk can cause functional degradation of the circuits at the ends of the cable. The
prediction of crosstalk will be one of the major objectives in this text.

There are numerous other similar transmission-line structures. A printed circuit
board (PCB) consists of a planar dielectric board on which rectangular cross-section
conductors (lands) serve to interconnect digital devices as well as analog devices.
Crosstalk can be a significant functional problem with these PCBs as can the degra-

xvii
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dation of the intended signal transmission through attenuation, time delay, and other
effects. Signal degradation, time delay, and crosstalk can create significant functional
problems in today’s high-speed digital circuits so that it is important to understand and
predict this effect. Digital systems constitute the primary type of electronic system
today and will no doubt dominate in the future. Clock speeds and data transfer rates
are accelerating at an astounding rate. Personal computers today have clock speeds
on the order of 3GHz. The spectral content of these high-speed digital waveforms
extends well into the lower GHz frequency range. This means that crosstalk as well
as unintended radiated emissions are presenting performance problems in digital
systems that were unheard of a decade ago. This will no doubt increase in the future.
As recent as 15 years ago, many of the signal connection conductors such as wires
and PCB lands were electrically short enough at the highest significant frequency of
the digital signals that the effect of those interconnection conductors could generally
be ignored. Today, most of the PCB lands must be treated as a transmission line, and
the matching of those lines is no longer an option in the design of a digital system.
Distributed-parameter properties of these conductors can no longer be ignored.
Hence, there is a growing need for digital design engineers to be able to understand
the concepts and design principles of a transmission line. The objective of this text
is to examine various methods for solving the transmission-line equations for mul-
ticonductor lines as well as to develop an understanding of the general properties of
wave propagation on the lines.

The analysis of transmission lines consisting of two parallel conductors of uniform
cross section has traditionally been a fundamental subject in electrical engineering.
Prior to the introduction of digital computer engineering topics into the undergrad-
vate EE curricula, all EE undergraduates were required to complete a course on
two-conductor transmission lines. However, because of the introduction of computer
engineering courses into an already crowded 4-year undergraduate degree program,
the transmission-line course(s) in many EE programs has been relegated to a senior
technical elective if offered at all. Unfortunately, the increasing use of high-speed
digital technology requires that all EEs must have a working knowledge of trans-
mission lines. In addition, the use of MTLs consisting of more than two conductors
is becoming more widespread because of the increasing need for high-volume and
high-speed data and signal transmission. Signal integrity (the effect of the transmis-
sion line on the signal transmission) is becoming a critical aspect of high-speed digital
system performance. This text is intended to fill the need for a structured course on
transmission lines in an EE program.

This text is the second edition of a previous text concerning the analysis of MTLs.
The text has undergone a significant reorganization with the emphasis given toward
a university textbook for a senior/graduate textbook on transmission lines. In the first
edition the two-conductor and MTL discussions were combined into a single chapter.
In this second edition, each broad analysis topic, for example, per-unit-length param-
eters, frequency-domain analysis, time-domain analysis, and incident field excitation,
now has a chapter concerning two-conductor lines followed immediately by a chap-
ter on MTLs for that topic. This allows the instructor to choose his or her emphasis
either on two-conductor lines or on MTLs, or on both. This organization also makes
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it easier for the reader to understand the analysis of MTLs. The analysis of MTLs
is very similar to that of two-conductor lines except that the detail is considerably
increased. However, with the aid of matrix symbology and techniques, most of the
MTL topics are straightforward extensions of the corresponding two-conductor line
topics. Hence, by devoting a separate chapter to each two-conductor line topic and
then following that with a chapter on the corresponding MTL topic, the MTL material
can be more readily understood.

In addition to this significant reorganization of the material, the text now contains
important developments in analysis methods that have been developed in the inter-
vening 13 years since the first edition was published. Digital technology has virtually
taken over the field of electronics. The clock and data speeds in those digital systems
have accelerated at an astonishing rate, meaning that the spectral content of those
signals that are propagating along the interconnect lands now extends into and, in
some high-end servers, above the 20-GHz region. This has caused most of the sig-
nal interconnects in those systems, which were inconsequential from a standpoint of
transmission-line effects 13 years ago, to now become critical to the functionality of
those systems. The transmission-line behavior of those interconnects can no longer be
ignored. In addition, the number and density of those interconnects have increased dra-
matically so that the analysis of their effects is now a serious computational problem.
Hence, the current emphasis is on the development of macromodels and on “model
order reduction” or (MOR) for the time-domain analysis of these high-density in-
terconnects. Generation of macromodels that compactly describe these interconnects
from a port standpoint requires the determination of the transfer functions representing
those interconnects. Typical distributed-parameter interconnects have an enormous
number of poles such that the transfer functions are ratios of very high order polyno-
mials in the Laplace transform variable s. The current analysis methods focus on MOR
methods that seek to determine a highly reduced number of dominant poles of those
transfer functions, thereby simplifying the analysis. MOR methods such as recursive
convolution, complex frequency hopping (CFH), Pade, asymptotic waveform expan-
sion (AWE), and vector fitting (VF) as well as the synthesis of lumped-circuit models
are the current methods of choice. Chapters 8 and 9 , which cover the time-domain
analysis of two-conductor lines and MTLs, respectively, have been considerably ex-
panded to now include those topics among many others that have been developed in
the intervening years.

The second edition of this text is now divided into 13 chapters, whereas the first
edition only had eight chapters. Considerable thought has gone into the reorganization
of the text. The author is of the strong opinion that organization of subject material
into a logical and well thought-out form is perhaps the most important pedagogical
technique in a reader’s learning process. This logical organization is one of the im-
portant attributes of the text. Chapter 1 discusses the background and rationale for the
use of MTLs. The general properties of the TEM mode of propagation are discussed,
and the transmission-line equations are derived for two-conductor lines using several
methods. The various classifications of MTLs (uniform, lossless, and homogeneous
medium) are discussed along with the restrictions on the use of the TEM model. An
important addition to this chapter has been made in the second edition: the discussion
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of the time domain versus the frequency domain. This is a crucial aspect of any EE’s
ability to design electronic systems. The chapter presents a very useful method for the
time-domain analysis of a linear system such as an MTL having linear terminations
by computing the frequency-domain transfer function, decomposing the periodic or
nonperiodic input signal into its Fourier spectral components, passing those through
the system, and recombining in time at the output. This allows a straightforward
incorporation of frequency-dependent losses of the conductors and the surrounding
medium. These frequency-dependent losses complicate, as we will see, the direct
time-domain solution of the transmission-line equations.

Chapter 2 provides a derivation of the two-conductor transmission-line equations
along with the general properties of the per-unit-length parameters in those equations.
Chapter 3 discusses these topics for MTLs.

Chapter 4 discusses the derivation of the per-unit-length parameters of inductance,
capacitance, resistance, and conductance for two-conductor lines, whereas Chapter 5
repeats this for MTLs. In both chapters, numerical methods for the determination of
these important per-unit-length parameters are discussed in detail.

Chapter 6 discusses the frequency-domain solution of the transmission-line equa-
tions, and Chapter 7 repeats this for MTLs. The discussion of two-conductor transmis-
sion lines in Chapter 6 has been expanded considerably over the first edition coverage
and now constitutes a traditional undergraduate coverage.

Chapter 8 discusses the time-domain analysis of two-conductor lines, and Chapter
9 repeats this for MTLs. Again, the time-domain solution for two-conductor lines in
Chapter 8 is considerably expanded over the first edition coverage and now constitutes
a traditional undergraduate coverage. In addition, Chapter 8 now includes an extensive
discussion of methods for achieving signal integrity (SI) in high-speed digital inter-
connects. The finite-difference, time-domain (FDTD) solution method is developed
as is the time-domain to frequency-domain transformation (TDFD) method. Both of
these allow the inclusion of frequency-dependent losses. Detailed discussions of re-
cursive convolution and MOR techniques such as Pade methods are now included in
Chapter 8 . Chapter 9 on the time-domain analysis of MTLs now includes extensive
discussion of MOR methods such as the generalized method of characteristics, Pade
methods, asymptotic waveform expansion, complex frequency hopping, and vector
fitting. In addition, Chapter 9 now includes the development of the FDTD method for
dynamic terminations.

Chapter 10 gives the symbolic or literal solution of perhaps the only MTL that
admits a closed-form solution in terms of symbols: a three-conductor lossless line
in a homogeneous medium. This chapter is virtually the same as in the first edition
although it has been revised.

Chapter 11 gives the frequency-domain and time-domain solutions for two-
conductor lines with incident field illumination. Chapter 12 repeats that for MTLs.
The emphasis is on uniform plane-wave excitation as from a distant antenna or a
lightning stroke.

Finally, Chapter 13 discusses the analysis of interconnected transmission-line net-
works such as branched cables. There is not enough difference between the methods
for two-conductor lines and MTLs to warrant splitting this chapter into two chapters.
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Appendix A contains the descriptions of numerous FORTRAN computer codes
that implement all the techniques in this text. Numerous experimental results are
included in this text ranging from cables to PCBs in order to illustrate real-
world problems. These codes are used to provide the predictions for these ex-
perimental results. The codes can be downloaded from the Wiley ftp site at
ftp:\\ftp.wiley.com/public/sci_tech_med/multiconductor_transmission/.

Appendix B is new to this edition and contains a brief but thorough tutorial on the
SPICE/PSPICE circuit analysis program.

Many of the author’s colleagues have contributed substantially to the advancement
of this subject. Professors Antonio Orlandi and Frederick M. Tesche along with the
late Albert A. Smith Jr. are among those to whom the author owes a debt of gratitude
for many insightful discussions on this subject.

Clayton R. Paul
Macon, Georgia






INTRODUCTION

This text concerns the analysis of transmission-line structures that serve to guide elec-
tromagnetic (EM) waves between two or more points. The analysis of transmission
lines consisting of two parallel conductors of uniform cross section has traditionally
been a fundamental subject in electrical engineering (EE) [A.1,A.3,A.6]. Prior to the
introduction of digital computer engineering topics into the undergraduate EE curric-
ula, all EE undergraduates were required to complete a course on two-conductor trans-
mission lines. However, because of the introduction of computer engineering courses
into an already crowded 4-year undergraduate degree program, the transmission-line
course in many EE programs has been relegated to a senior technical elective if offered
at all. Unfortunately, the increasing use of high-speed digital technology requires that
all EE undergraduates must have a working knowledge of transmission lines. In ad-
dition, the use of multiconductor transmission lines (MTLs) consisting of more than
two conductors is becoming more widespread because of the increasing need for
high-volume and high-speed data and signal transmission. Signal integrity, the effect
of the transmission line on the signal transmission, is becoming a critical aspect of
high-speed digital system performance.

This text is the second edition of a previous text concerning the analysis of MTLs.
It has been reorganized with the emphasis given toward a university textbook for
a senior/graduate textbook on transmission lines. The text has been reorganized so
that each broad analysis topic, for example, per-unit-length parameters, frequency-
domain analysis, time-domain analysis, incident field excitation, and transmission-
line networks, has a chapter concerning two-conductor lines followed immediately by

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.
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a chapter on MTLs for that topic. This allows the instructors to choose their emphasis
either on two-conductor lines or on MTLs, or on both. This organization also makes
it easier for the reader to understand the analysis of MTLs. The analysis of MTLs
is very similar to that of two-conductor lines except that the detail is considerably
increased. However, with the aid of matrix symbology and techniques most of the
MTL topics are straightforward extensions of the corresponding two-conductor line
topics. Hence by devoting a separate chapter to each two-conductor line topic and
then following that with a chapter on the corresponding MTL topic, the MTL material
can be more readily understood.

The analysis of MTLs is somewhat more difficult than the analysis of two-
conductor lines, but the applications cover a broad frequency spectrum and encom-
pass a wide variety of transmission lines ranging from power transmission lines to
microwave circuits [B.4, Refs. 1-16]. However, matrix methods and notation provide
a straightforward extension of many, if not most, of the aspects of two-conductor lines
to MTLs. Many of the concepts and performance measures of two-conductor lines
require more elaborate concepts when extended to MTLs. For example, in order to
eliminate reflections at terminations on a two-conductor line, we simply terminate
it in a matched load, that is, a load resistance that equals the (real) characteristic
impedance of the line. In the case of MTLs, we must terminate the line in a charac-
teristic impedance matrix or network of resistances in order to eliminate all reflec-
tions. It is not sufficient to simply insert a resistance between each conductor and
the reference conductor; there must also be resistances between every pair of con-
ductors. In order to describe the degree of mismatch of a particular load impedance
on a two-conductor line, we compute a scalar reflection coefficient. In the case of an
MTL, we can obtain the analogous quantity, but it becomes a reflection coefficient
matrix.

On a two-conductor line there is a forward- and a backward-traveling wave each
traveling in opposite directions with velocity v. In the case of an MTL consisting of
n + 1 conductors, there exist n forward- and n backward-traveling waves each with
its own velocity. Each pair of forward- and backward-traveling waves is referred to
as a mode. If the MTL is immersed in a homogeneous medium, each mode velocity
is identical to the phase velocity of light in that medium. The mode velocities of an
MTL that is immersed in an inhomogeneous medium (such as wires with dielectric
insulations or printed circuit boards (PCBs)) will, in general, be different.

The governing transmission-line equations for a two-conductor line will be a cou-
pled set of two first-order partial differential equations for the line voltage V(z, ¢) and
line current I(z, t), where the line conductors are parallel to the z axis and time is
denoted as . In the case of an MTL consisting of n + 1 conductors parallel to the z axis,
the corresponding governing equations are a coupled set of 2 first-order matrix partial
differential equations relating the n line voltages V;(z, ) and n line currents [;(z, t) for
i=1,2,...,n. The number of conductors may be quite large, for example, n + 1 =
100, in which case efficiency of solution of the 2n MTL equations becomes an im-
portant consideration. The ease of solution of the MTL equations depends upon the
assumptions or approximations one is willing to make about the line, for example,
uniform line versus nonuniform line, lossless line versus lossy line, a homogeneous
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surrounding medium versus an inhomogeneous surrounding media, and so on, as well
as the solution technique chosen. Although it is tempting to dismiss the analysis of
MTLs as simply being a special case of two-conductor lines and thereby not requiring
scrutiny, this is not the case. In addition to a thorough discussion of two-conductor
lines, we will examine the methods for solution of MTLs. Numerous experimental
results will be compared to the predictions of the transmission-line equations, for both
two-conductor lines and MTLs, in order to show their accuracy as well as the relative
influence of the line parameters.

The analysis of an MTL for the resulting n line voltages V;(z, t) and n line currents
I;(z, t) is in general, a three-step process:

Step 1: Determine the per-unit-length parameters of inductance, capacitance, con-
ductance, and resistance for the given line. All cross-sectional information
about the particular line such as conductor cross sections, wire radii, conductor
separations, and so on that distinguishes it from some other line is contained
in these per-unit-length parameters and nowhere else. In the case of an two-
conductor line, these parameters are scalars. In the case of an MTL consisting
of n + 1 conductors, these parameters are contained in matrices that are of
dimension n x n. The MTL equations are identical in form for all lines: only
the per-unit-length parameters are different. Without the determination of the
per-unit-length parameters for the specific line, one cannot solve the resulting
MTL equations because the coefficients in those equations (the per-unit-length
parameters) will be unknown.

Step 2: Determine the general solution of the resulting MTL equations. For a two-

conductor line, the general solution consists of the sum of a forward- and a
backward-traveling wave. In the case where the sources driving the line are
general excitation waveforms, these waves are represented by two unknown
functions that are functions of position along the line z and time ¢. In the case
of sinusoidal steady-state excitation of the line, there are two complex-valued
undetermined constants. For an MTL consisting of n + 1 conductors, the general
solution consists of the sum of n forward- and n backward-traveling waves. In the
case where the sources driving the line are general excitation waveforms, these
waves are represented by 2n unknown functions that are functions of position
along the line z and time ¢. In the case of sinusoidal steady-state excitation of
the line, there are 2n complex-valued undetermined constants.
Step 3: Incorporate the terminal conditions to determine the unknown functions
or unknown coefficients in the general form of the solution. A transmission line
will have terminations at the left and right ends consisting of independent volt-
age and/or current sources and lumped elements such as resistors, capacitors,
inductors, diodes, transistors, and so on. These terminal constraints provide the
additional 2n equations (n for the left termination and »n for the right termina-
tion), which can be used to explicitly determine the 2 undetermined functions
or the 2n coefficients in the general form of the MTL equation solution that was
obtained in step 2.
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The above sequence of steps is referred to as the direct method. There are also other
methods of solution that avoid these individual steps. These are numerical methods
that seek to directly integrate the transmission-line differential equations and at the
same time include the terminal constraint relations at the two ends of the line. An
example of such a method that we will investigate is the finite-difference, time-domain
(FDTD) method.

The excitation sources for the MTL will have several forms. Independent lumped
sources within the two termination networks are one method of exciting the line. Each
source is intended to be coupled to the endpoint of the line to which it is attached.
However, the electromagnetic fields associated with the current and voltage on that
line interact with neighboring lines inducing signals at those endpoints. This coupling
is unintentional and is referred to as crosstalk. Another method of exciting a line is
with an incident electromagnetic field such as radio, radar, or TV signals, or a lightning
pulse. This form of unintended excitation produces sources that are distributed along
the line and will also induce unintentional signals at the line endpoints that may cause
interference. Lumped sources can occur at discrete points along the line as with the
direct attachment of a lightning stroke. The effect of incident fields distributed either
along the line or at discrete points can be included in the MTL equations. In order to
obtain the complete solution for the line voltages and currents via the direct solution
method, each of the above three steps must be performed and in the above order.
Throughout our discussions, this sequence of solution steps should be kept in mind.

Electromagnetic fields are, in reality, distributed throughout space. If a structure’s
largest dimension is electrically small, that is, much less than a wavelength, we can
approximately lump the EM effects into circuit elements as in lumped-circuit theory
and represent the line with a lumped equivalent circuit, thereby avoiding a direct so-
lution of the transmission-line equations. The transmission-line formulation that we
will use to analyze the line views the line as a distributed-parameter structure along
the line axis and thereby extends the lumped-circuit analysis techniques to structures
that are electrically large in this dimension. However, the cross-sectional dimensions,
for example, conductor separations, must be electrically small in order for the analysis
to yield valid results. The fundamental assumption for all transmission-line formu-
lations and analyses whether it be for a two-conductor line or an MTL is that the
electromagnetic field surrounding the conductors has a transverse electromagnetic
(TEM) structure. A TEM field structure is one in which the electric and magnetic
fields in the space surrounding the line conductors are transverse or perpendicular to
the line axis. In other words, the TEM field structure has no components of the elec-
tric or magnetic fields directed along the line axis. The electric and magnetic fields
in the space around the line conductors propagate along the line as waves and are
said to propagate in the TEM mode. One of the important consequences of the TEM
mode of propagation is to allow the unique definition of line voltages and currents.
Voltage and current are normally definable only for dc or static fields [A.1]. For the
TEM field structure, voltage between the line conductors and currents flowing on
those conductors can be uniquely defined even though the fields are varying with
time. There are certain nonideal aspects of an MTL, such as imperfect line conduc-
tors and/or an inhomogeneous surrounding medium, that, theoretically, invalidate the
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TEM mode, transmission-line equation description. However, we will include these
nonideal properties in the transmission-line equation formulation of the ideal TEM
mode on the assumption that their effects are small. This is referred to as the quasi-
TEM mode assumption. In addition to the TEM mode of propagation, there may
exist other higher order modes of propagation [17-19]. These higher order modes
generally have cutoff frequencies below which they are highly attenuated and for all
practical purposes do not propagate. The TEM mode has a cutoff frequency of dc. For
typical transmission-line structures such as cables and PCBs, the higher order modes
are cutoff (or highly attenuated) for frequencies up to the lower gigahertz frequency
range. Consequently using the TEM mode, transmission-line equation formulation to
analyze typical lines will provide an accurate analysis of the line for frequencies of
excitation well into the lower gigahertz frequency range. An important consequence
of the TEM mode, MTL equation formulation is that the sum of the line currents at
any cross section of the line is zero. In this sense we say that one of the conductors, the
reference conductor, is the return for the other n currents. Even though the line cross
section is electrically small, it may not be true that the currents sum to zero at any
cross section; there may be other currents in existence on the line conductors [20-23].
Presence of nearby conductors or other metallic structures that are not included in the
formulation may cause these additional currents [24]. Asymmetries in the physical
terminal excitation such as offset source positions (which are implicitly ignored in the
terminal representation) can also create these non-TEM currents [24]. It is important
to understand these restrictions on the applicability of the transmission-line equation
representation and the validity of the results obtained from it.

Although there is a voluminous base of references for this topic, important ones will
be referenced, where appropriate, by [x]. These are grouped into two categories—
those by the author (grouped by category) and other references. References con-
sisting of publications on this topic by the author are listed at the end of the text
and are grouped by category. Additional references will be listed at the end of each
chapter.

1.1 EXAMPLES OF MULTICONDUCTOR TRANSMISSION-LINE
STRUCTURES

There are a number of examples of wave-guiding structures that may be viewed
as “transmission lines.” Figure 1.1 shows examples of (n + 1)-conductor, wire-type
lines consisting of parallel wires. Throughout this text, we will refer to conductors
that have circular—cylindrical cross sections as wires. The conductors are parallel
to the line axis, which is the z axis of a rectangular coordinate system. One of the
conductors is designated as the 0 (zero) conductor or reference conductor. The line
voltages Vi(z, t) are defined between each of the other n conductors and this ref-
erence conductor. The currents flowing on the other n conductors, I;(z, t), “return”
along this reference conductor. The voltages and currents are functions of position
along the line, z, and time ¢. Figure 1.1(a) shows an example of n + 1 wires, where
the reference conductor is another wire. Typical examples of such lines are ribbon
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cables used to interconnect electronic systems. Figure 1.1(b) shows n wires above
an infinite, perfectly conducting ground plane (the reference conductor). Typical ex-
amples are cables that have a metallic structure as a return or high-voltage power
distribution lines. Figure 1.1(c) shows n wires within an overall cylindrical shield
(the reference conductor). Shields are often placed around groups of wires in order
to prevent or reduce the coupling of electromagnetic fields to the wires from adja-
cent wires (crosstalk) or from distant sources such as radar transmitters or radio and
television transmitters. Normally, all wires are surrounded by circular—cylindrical di-
electric insulations. However, these insulations are omitted from these figures and,
in some cases, may be ignored in the analysis of such lines. Hence the surrounding
medium is said to be homogeneous in that the permittivity & and permeability p of
the surrounding dielectric medium are constants and are independent of position.
Hence, the wire structures of Figure 1.1 are said to constitute lines in a homoge-
neous medium. For the lines in Figure 1.1(a) and (b), the only logical homogeneous
medium of infinite extent would be free space with parameters of permittivity g9 and
permeability [io. For the line within an overall shield in Figure 1.1(c), the fields are
contained within the shield that may be a homogeneous dielectric other than free
space with parameters ¢ = ;&9 and u = . The permeability of all dielectrics is
that of free space, whereas the permittivity is characterized by a relative permittivity
(relative to that of free space) of ;. Thus dielectrics affect electric fields and do not
affect magnetic fields. The wires in each of these structures are also shown as being
of uniform cross section along their length and parallel to each other (as well as the

xA €, Hg X

® ),
@ D) @ D)
@ ), Q D

0
Ground plane

(a) (b)
xA

~Y

A

Shield
£ Uy D

Y

©

FIGURE 1.1 Multiconductor lines in homogeneous media: (a) (n + 1)-wire line, (b) n wires
above a ground plane, and (c) n wires within a cylindrical shield.
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ground plane in Fig. 1.1(b) and the shield axis in Fig. 1.1(c)). Such lines are said to
be uniform lines. Nonuniform lines in which the conductors either are not of uniform
cross section along their length or are not parallel arise from either nonintentional
or intentional reasons. For example, the conductors of a high-voltage power distri-
bution line, because of their weight, sag and are not parallel to the ground. Tapered
lines are intentionally designed to give certain desirable characteristics in microwave
filters.

Figure 1.2 shows examples of lines wherein the conductors have rectangular cross
sections. Figure 1.2(a) shows a structure having n conductors of rectangular cross

Ground plane 0

{a)

Ground plane 0

(c)

FIGURE 1.2 Multiconductor lines consisting of conductors of rectangular cross section
(lands): (a) an n-conductor coupled stripline (homogeneous medium), (b) an n-conductor cou-
pled microstrip line (inhomogeneous medium), and (c) n lands on a PCB (inhomogeneous
medium).
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section (lands) imbedded in a dielectric substrate. This type of structure is referred
to as a coupled stripline. Infinite ground planes are on either side of the substrate and
constitute the reference conductor(s). This structure represents the case of innerplanes
in PCBs. Multiple layers of interconnected lands are buried in a single board and allow
for “wiring” the board without taking up a large surface area. “Vias” connect lands
on each level. Figure 1.2(b) shows n lands on one side of a dielectric substrate and an
infinite ground plane, the reference conductor, on the other side. This is referred to
in microwave literature as a coupled microstrip and is used to construct microwave
filters. This structure also represents the outer layer of a printed circuit board that has
innerplanes. Figure 1.2(c) shows n + 1 lands on one side of the dielectric substrate. One
of those lands constitutes the reference conductor to which all the other line voltages
are referenced. This type of structure is common on PCBs in low-cost electronic
circuits that do not contain innerplanes. The stripline of Figure 1.2(a) has the fields
contained between the two ground planes much like the shielded cable of Figure 1.1(c).
Hence, the dielectric is homogeneous with permittivity ¢ = .9 and permeability
w = 1. The structures of Figure 1.2(b) and (c) constitute lines in an inhomogeneous
medium in that the electric field lines will exist partly in the substrate and partly in
the surrounding air.

The structures in Figure 1.1, as well as the coupled stripline in Figure 1.2(a),
are, by implication, immersed in a homogeneous medium. Therefore, the velocity of
propagation of the waves on those lines is equal to that of the medium in which they
are immersed or v = 1/,/ute, where u is the permeability of the surrounding medium
and ¢ is the permittivity of the surrounding medium. For free space, these become
po = 4 x 1077 H/m and g9 = 1/367 x 1072 F/m. The velocity of propagation in
free space is vg = 1/,/iog0 = 2.99792458 x 108 m/s. For the structures shown in
Figure 1.2(b) and (c), which are immersed in an inhomogeneous medium (the fields
exist partly in free space and partly in the substrate), there are n waves or modes whose
velocities are, in general, different. This complicates the analysis of such structures
as we will see.

1.2 PROPERTIES OF THE TEM MODE OF PROPAGATION

As mentioned previously, the fundamental assumption in any transmission-line for-
mulation is that tjle electric field intensity vector &(x, y, z, ) and the magnetic field
intensity vector J#(x, y, z, t) satisfy the TEM field structure, that is, they lie in a plane
(the x—y plane) transverse or perpendicular to the line axis (the z axis). Therefore, it
is appropriate to examine the general properties of this TEM mode of propagation or
field structure.

Consider a rectangular coordinate system shown in Figure 1.3 illustrating a prop-
agating TEM wave in which the field vectors are assumed to lie in a plane (the x—y
plane) that is transverse to the direction of propagation (the z axis). These field vectors
are denoted with a t subscript to denote that they lie in the transverse (x—y) plane. It
is assumed that the medium is homogeneous, linear, and isotropic and is character-
ized by the scalar parameters of permittivity &, permeability w, and conductivity o.
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FIGURE 1.3 [Illustration of the electromagnetic field structure of the TEM mode of
propagation.

Maxwell’s equations in differential or point form are [A.1,A.3,A.6]:

- OH
Vx & =—p 8[‘ (1.1a)
- - 9&
V x %tzoé"t+aa—tt (1.1b)

Equation (1.1a) is Faraday’s law, and Eq. (1.1b) is Ampere’s law. The del operator
V can be broken into two components: one component, V,, in the z direction and the
other component, Vi, in the transverse plane, as in [A.1]

V=V+V, (1.2a)
where
~d 4 0

Vi = ay— — 1.2b
t axax +ayay ( )

_ 0
V,=a,— (1.2¢)

0z

and ay, ay, and d are unit vectors pointing in the appropriate directions. Applying
(1.2) to (1.1) gives

-

0A ¢
ot

(Vt—I—VZ)Xé”t:Vtxgt—l—Vzthz—/x (133.)
zdirected in the
transverse
plane
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. - - . ¥
(Ve+ Vo) X H =V x H+V, x Hy =0+ 6 — (1.3b)
zdirected in the
transverse
plane

Matching those components on both sides of (1.3) in the z direction and in the trans-
verse plane gives

a, x 38(:? = —,uaa%t (1.4a)
i Mg sajt (1.4b)
Vix & =0 (1.4¢)

Vix #Hi =0 (1.4d)

Equations (1.4a) and (1.4b) show that the electric and magnetic field intensity vectors
are orthogonal (perpendicular to each other) [A.1]. Equations (1.4c) and (1.4d) are
identical in the transverse plane to those for static fields [A.1]. This shows that the
electric and magnetic fields of a TEM field distribution satisfy a static distribution in
the transverse plane. In other words, the electric and magnetic fields in the transverse
plane are identical in structure to those for dc excitation, even though they vary with
time. This is an extremely important consequence of the TEM field structure in that
(a) voltages and currents that are ordinarily definable only for static (dc) excitation
can be uniquely defined for this problem in the transverse plane even though the fields
are time varying, and (b) we can determine important transmission-line parameters
such as per-unit-length capacitance, inductance, and conductance by using only static
field analysis methods in the transverse (x—y) plane, which greatly simplifies their
determination.

An important vector identity is that the curl of the gradient of some scalar
field f(x,y,z) is always zero: V x Vf(x, y,z) = 0 [A.1]. In the transverse plane,
this identity translates to

Vix Vi f(x,y)=0 (1.5)
where V; is the transverse del operator given in (1.2b). Because of (1.4c), (1.4d),

and this identity, we may define each of the transverse field vectors as the transverse
gradients of some auxiliary scalar fields or potential functions, ¢(x, y) and ¥(x, y),
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which lie in the transverse plane as [A.1]

&y = e(z, HVip(x, y) (1.6a)

Hy = h(z, HVp(x, ) (1.6b)

Note that the field vectors are separable into the product of functions of z and ¢
and functions of the transverse plane coordinates x and y. This is permissible in
the rectangular coordinate system [A.1]. Because the transverse electric and mag-
netic field vectors are orthogonal, according to (1.6) the gradient fields V¢(x, y) and
Vi (x, t) are also orthogonal in the transverse plane. Hence, the scalar field lines for
¢ = constant are everywhere in the transverse plane orthogonal to the scalar field
lines for ¥y = constant. Gauss’ laws in the transverse plane become [A.1]

V-6, =0 (1.72)
V.- H=0 (1.7b)
Applying (1.7) to (1.6) gives
Vi Vig(x, y) = Vig(x, y) = 0 (1.82)
Ve Vip(x, ) = Vi(x, y) = 0 (1.8b)

where

2(x, 92o(x,
Vot = DO o)

0 (1.92)

FY(x, FY(x,
VUi, y) = D 4 S

0 (1.9b)

are Laplace’s equations in the transverse plane [A.1]. Equations (1.9) show that the
auxiliary scalar potential functions satisfy Laplace’s equation in any transverse plane,
as is the case for static (dc) fields. This again shows that the electric and magnetic
field structure in the transverse plane for the TEM mode of propagation is identical
to that of a static (dc) distribution. As we will show later, there are numerous static
field methods to compute this static field distribution.
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Now suppose we take the cross product of the z-directed unit vector with (1.4a)
and (1.4b). This gives

a Q. x 96, 4. x 04 (1.10a)
a, X |a — = — a .
e X | X Ty Ha> =
I P72 .- Y
4. X |G x — | = 0(@, x &)+ ¢ |a; x — (1.10b)
0z ot
However,
I A aé,
a; x laz X th = — " (1.11a)
I B PN aH,
a; x |a; x =— (1.11b)
0z 0z

as illustrated in Figure 1.4. Therefore, Egs. (1.10) become

36, LA,
— =—U |a; x (1.12a)
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FIGURE 1.4 Tllustration of the identity a, x (@, x &) = —&.
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A - Y/
=6, x E) 46 |d x — (1.12b)
a9z ot

Taking the partial derivative of both sides of (1.12) with respect to z, taking the partial
derivative of both sides of (1.4a) and (1.4b) with respect to 7, and substituting gives
the second-order vector partial differential equations that the transverse field vectors
must satisfy:

P&, 36, P&,
2ot et 1.13
02 Mo THEGR (1.132)
A 0 + eaz’;f‘ (1.13b)
= (o} .
322 o e

Substituting (1.6) into (1.13) yields the second-order scalar partial differential equa-
tions in terms of the scalar functions e(z, t) and h(z, ) as

Pe(z,1) ez ) 8828(1, 1)
0z My TR T

(1.14a)

#h(z, 1) ah(z, 1) #h(z,1)
= uo +ue———

9z2 ot or2 (1.140)

Once (1.14) are solved for the scalar functions e(z, t) and h(z, t), we can determine
the transverse field vectors by solving for the scalar potential functions in the trans-
verse plane, Vi¢(x, y) and Vi¥(x, y), and taking the products as in (1.6). This second
problem, solving for the scalar potential functions in the transverse plane, depends
only on the cross-sectional dimensions of the transmission line.

Now let us consider the case where the medium is lossless, that is, o = 0. In this
case, Egs. (1.14) reduce to

3e(z, 1) de(z, 1)
32 = ue o (1.15a)

%h(z, 1) 3*h(z, 1)
= &
2 e

(1.15b)

The general solutions of these consist of waves traveling in the +z and —z directions
asin [A.1]

ez, f) = et (z—%) te (t—i—%) (1.162)
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h(z,1) = ht (r - 5) Fh (t ¥ 5) (1.16b)
v v
where the velocity of propagation is
! 1.17)
V= .
JUE

Observe that in these solutions, the variables z and ¢ can only appear together as
t % (z/v). The function et (¢t — (z/v)) represents a forward-traveling wave since as
t progresses, z must increase to keep the argument constant and track corresponding
points on the waveform. Similarly, the function e™ (t 4 (z/v)) represents a backward-
traveling wave traveling in the —z direction. The solutions for the electric and
magnetic field vectors may be obtained by substituting (1.16a) and (1.16b) into (1.6)
to yield

G,y )= et (r - 5) Vip(x, )+ e~ (t + 5) Vi(x, y) (1.18)
v v

-+ -

é&l éﬁ[

Fte,y.z ) =0t (1= 2 ) Voo ) +h™ (14 5) Vv, )

-+ -

H H,
1 7\ - 1 7\ (=
= — e (1= 2) [G: x Vit ] = — ¢ (14 2 ) [a:x Vi, )]
n v n v
(1.18b)
where the intrinsic impedance of the medium is
n=,/% (1.19)
&

These may be proven by direct substitution into (1.12) and recalling that
a; x [a; x Vi¢p] = —Vi¢p and a; x [d, x Vi] = —Vr. Hence we may write the
transverse fields as

%;(X, y,2,t) = g”:r(x, y,2,8) + g’;(x, v, 2, 1) (1.20a)

> - 4+ -
%t(-x’y9zvt):%t (x’y3zvt)+%t (x,)’,Z’t)

1. - 1. o
= —a, x & (y.z0)— —d x & (x,y.z.1)  (1.20b)
n n

Consequently, we may indicate the vector relation between the forward- and
backward-traveling electric and magnetic field components as

1
H, =+-G. x &, (1.21)
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with the sign depending on whether we are considering the backward- or forward-
traveling wave component.

If the time variation of the field vectors is sinusoidal, we use phasor notation
[A.2,A.5]:

Eux, v, 7,1) = Re{Et(x, 3, z)ef‘”’} (1.22a)

r?_'ft(xv Y, th):Re{Ht(xv Y, Z)ejwt} (122b)

where the phasor transverse field vectors are complex valued and denoted as £, and

H,. We will denote complex-valued quantities with a caret () over the quantity. In
terms of the scalar functions e(z, t) and h(z, t), these become

e(z, 1) = Re{e(z)e "} (1.23a)
h(z, 1) = Re{h(z)e "} (1.23b)

a
Replacing time derivatives with i jo in (1.15) gives the phasor form of the

differential equations for a lossless medium, o = 0, as

d*e
dez(ZZ) = —0’ e 2(2) (1.24a)
dzfl(z) 5 s
a2 = —w ueh(z) (1.24b)
The solutions to these equations are [A.1]
é(z) = eTe P e (1.25a)
h(z) = hTe 7P 4+ h=e i (1.25b)

where the complex undetermined constants are denoted as &+ and h*, and the phase
constant is denoted as

B=wJme (rad/m) (1.26)

The terms e* /#2 = 1/(4Bz) represent a phase shift as the single-frequency, sinusoidal
waves propagate in the z direction. Substituting (1.25) into (1.6) gives the phasor field
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vectors:
Ex,y,2) = eTVig(x, y) e I+ 27 Vig(x, y) e IF* (1.27a)
N———— N————
E E (o)

Hi(x, y,2) = i V(x, y) e 75 4 ™ Viy(x, y) e 77
N———— N—————

2+ e
H (x,y) H (x,y)

1. S .
= —o%a, x Vig(x, y)e P — — 7 a, x Vig(x, y)e/P: (1.27b)
n n

and once again

+

2 +
H =+

!

(1.28)

a; X

| =

The time-domain expressions are obtained by multiplying (1.27) by ¢/“’ and taking
the real part of the result according to (1.22) [A.1]. For example, the x component of
the transverse electric field vector and the y component of the magnetic field vector
are

Ex(x,y,2,1) = Ej,,'xcos(a)t — Bz + 0;) + E,, cos(wt + Bz +6,) (1.29a)

1 1
Hy(x,y,2,1) = —E} cos(ot — Bz + 0]) — —E,, .cos(wt + Bz +07)  (1.29b)
n n

where the x components of the undetermined complex field components are functions
of x and y and are denoted as EF(x, y) = Eif /6F. The phase velocity of the waves
is obtained by setting the argument of each cosine in (1.29) to a constant (in order
to follow a point on the waveform) and differentiating to yield wdt — fdz = 0 or
v = (dz/dt) = (w/B). Substituting (1.26) gives the wave constant phase velocity as

_ (1.30)

The phase constant 8 has the unit of rad/m and represents a phase shift as the wave
propagates through the medium. A wavelength, denoted as A, is the distance (in
meters) a single-frequency, sinusoidal wave must travel to change phase by 27 radians
or 360°. Hence, BA = 27 and therefore

(1.31)
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If we now consider adding conductive lgsses to the medium, o # 0, this adds a
transverse conductive current term, }t = 0y, to Ampere’s law given in Eq. (1.1b).
Replacing time derivatives with jw in the second-order differential equations in (1.14)
gives the corresponding phasor differential equations for the case of a lossy medium
as

d>e
d;Z) = jouo &z) + (jo)*(ue) e(2)
= jou(o + jwe)e(z)
— 372 2(2) (1.32a)
d*h . .
T’EZ) = jopo h@z) + (jo)*(ue) h(z)

= jou(o + jwe) h(z)
— )72 h(z) (1.32b)

where the propagation constant is

§ =/ jouo + joe)

=a+ jB (1.33)
The solutions to these equations are [A.1]

2(z) = ete e IPT 4 pm %P2 (1.34a)

h(z) =hte e 1P 4 b e e P (1.34b)

Hence, the phase constant is the imaginary part of the propagation constant and is no
longer w. /e, as was the case for a lossless medium, that is, 8 # w,/ue. In addition,
the real part of the propagation constant, ¢, is said to be the attenuation constant and
it represents losses in the medium as we will see later. The phasor solutions for the
phasor field vectors for this case of a lossy medium, o # 0, are

Ex,y,2) = eTVig(x, y) e % e I 4 e Vig(x, y) e*e P (1.352)
—— —
2+ 2=
E (x,y) E (x,y)

Hi(x,y,2) = i Vp(x, y) e % e P 4 hmVig(x, y) e P
SN——— ——

2+ 2
H (x,y) H (x,y)

eta, x Vig(x, y)e *e P —

> | =

(1.35b)
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where the intrinsic impedance now becomes complex as

h= Jjour
o+ jwe
= /6,
= ne 1 (1.36)
and once again
2+ 1. =
H =+4—-a,xE (1.37)
n

Again, the time-domain expressions are obtained by multiplying (1.35a) and (1.35b)
by e/*" and taking the real part of the result according to (1.22) [A.1]. For example,
the x component of the transverse electric field vector and the y component of the
magnetic field vector are

Ex(x,y,2,1) = Ef e”%cos(wt — Bz + 07F) + E,, e“cos(wt + Bz +6;) (1.38a)

1
Hy(x,y,2,1) = ;E;xe’“zcos(wt — Bz +06F -6,

1
——E,, e*cos(wt + Bz + 6, —0y) (1.38b)
n

Thus, in addition to a phase shift represented by e /5%, the waves suffer an attenuation
of their amplitudes as represented by e* 2. We will find these properties of the TEM
mode of propagation arising in various guises throughout our examination of MTLs.

1.3 THE TRANSMISSION-LINE EQUATIONS: A PREVIEW

Consider a two-conductor transmission line that has two conductors of uniform cross
section that are parallel to each other and the z axis as shown in Figure 1.5(a). The
conductors are considered to be perfect conductors (lossless, o = 00), and the sur-
rounding medium is homogeneous and lossy with parameters u = g, € = &&o, 0.
The transverse electric and magnetic fields are shown in Figure 1.5(b) in the transverse
x—y plane. In order to satisfy the boundary conditions on the surfaces of the perfect
conductors, the electric fields must be normal to the conductor surfaces and the mag-
netic fields must be tangent to the conductor surfaces [A.1]. It should be noted that
because these conductors are assumed to be perfect conductors, the boundary con-
ditions also show that the magnetic field intensity vector ## must be tangent to the
surfaces of these perfect conductors and induces a surface current to flow on these
conductors [A.1]. Since the magnetic field lies in the transverse plane, these induced
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FIGURE 1.5 Illustration of (a) the current and voltage and (b) the TEM fields for a two-
conductor line.

currents on the surfaces of the conductors are directed in the z direction [A.1]. These
are the transmission-line currents. In addition, since the conductors are assumed to be
perfect conductors, these boundary conditions show that the electric flux density vec-
tor ¥ = &¢& that is normal to the surfaces of the conductors induces a surface charge
density on these conductors from which the transverse electric field vectors emanate
[A.1]. In addition, the transverse electric and magnetic field lines are everywhere in
this transverse plane orthogonal to each other.

1.3.1 Unique Definition of Voltage and Current for the TEM
Mode of Propagation

In the previous section, it was shown that the electric and magnetic field vectors in the
transverse (x—y) plane satisfy a static distribution. In other words, the electric and mag-
netic fields in the transverse plane have distributions identical to dc fields even though
they vary with time. Hence we may uniquely define a voltage between the two con-
ductors by integrating the component of the electric field tangent to a contour c¢ in the
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FIGURE 1.6 [Illustrations of the contours and surfaces for the definitions of voltage and
current for a two-conductor line.

transverse plane between two points on each conductor as shown in Figure 1.6 [A.1]:

V(z,z)z—/%t-di
C
Py
= —/c,?[.di (1.39)

Py

This may be directly shown by substituting the relation between the transverse electric
field and the scalar potential function in (1.6a):

Py
- / e(z, DVip(x, y) - di

Py

Viz, 1)

Py
—e(z, 1) / Vip(x, y) - di

Py
= —e(z, D1 — ¢ol (1.40)

where ¢o and ¢; are the potentials on the surfaces of the two conductors in this
transverse plane [A.1 ]. Because the conductors are assumed to be perfect conductors,
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FIGURE 1.7 [Illustrations of the intuitive meaning of the per-unit-length parameters.

the potentials are the same at all points on their surfaces, and because this transverse
electric field is conservative, this integral is independent of path in the transverse
plane and is therefore unique. Similarly, we can uniquely define current as the line
integral of the transverse magnetic field around a closed path ¢’ encircling the top
conductor as shown in Figure 1.6 [A.1]:

I(z,1) = fift.df/ (1.41)
c/

Since there is no component of the electric field in the z direction, there is no displace-
ment current in the z direction and this reduces to Ampere’s law for static conditions
[A.1]. Hence, this result is independent of path taken around this conductor so long
as it encircles only this conductor.
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1.3.2 Defining the Per-Unit-Length Parameters

Figure 1.7 gives an intuitive view of the essential ingredients of the transmission-line
equations: the per-unit-length parameters of the line. Figure 1.7(a) shows the effect
of the transverse electric field &% that is directed from the top conductor to the bottom
conductor. The transverse electric field lines begin on positive charge on the surface
of the upper conductor and terminate on negative charge on the surface of the lower
conductor. This transverse electric field will cause two currents in the surrounding
dielectric in this transverse plane that are directed from the top conductor to the lower
conductor:

I(z,t) = Iy(z,t) + Lz, 1) (1.42)
——" —— N——

transverse  conduction  displacement

current current current

A transverse conduction current 7t = a%t, is induced by this transverse electric field
to flow in the lossy medium due to its conductivity o from the top conductor to the
bottom conductor in this transverse plane. This effect is represented for a section of line
of length Az by a conductance. For a uniform line, this effect is uniformly distributed
along the line. Hence if a section of line of length Az has a total conductance G, then
a per-unit-length conductance g whose units are S/m, is given by

G
g= lim = (S/m) (1.43)
Az—0

The transverse current flowing from the top conductor to the bottom conductor is
related to the voltage between the two conductors by

Iy(z, 1) = gAzV(z, 1) (1.44)

In addition, since charge is stored on the top and bottom conductors, we essentially
have a capacitance between the two conductors. If a section of line of length Az has
a total capacitance C, the charge is related to the voltage by Q = CV. For a uniform
line, this effect is uniformly distributed along the line. Hence if a section of line of
length Az has a total capacitance C, then the per-unit-length capacitance ¢ whose
units are F/m, is given by

C
¢= lim = (F/m) (1.45)
Az—0

The (displacement) current flowing in the transverse plane from the top conductor to
the bottom conductor is

I(z,1) = cAz

aV(z, t)
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Consider Figure 1.7(b). The current flowing along the top conductor and returning
along the bottom conductor will generate a magnetic field intensity in the transverse
plane, ;. The transverse magne_gic flux density is [A.1] Z = uH#'; Wb/m?2. This
produces a magnetic flux Y = [ o B¢ - ds through the surface that lies between the two
conductors. A section of line will therefore have a total inductance L. For a uniform
line, this effect is uniformly distributed along the line. Hence if a section of line of
length Az has a total inductance L, then a per-unit-length inductance | whose units
are H/m, is given by

L
[= lim = (H/m) (1.47)

This will produce a longitudinal voltage drop around the loop contained by the two
conductors of

al(z, 1)

Vi(z,t) = IA
1z, 1) s

(1.48)

Note that this inductance is a property of the loop formed by the two conductors and
as such may be placed in either the top or the bottom conductor. It cannot be uniquely
assigned to either conductor.

Adjacent to each of these figures is a lumped-circuit model of an electrically small
Az section. Figure 1.8(a) combines these into one model. The total line length is
represented as a continuum of these, as shown in Figure 1.8(b). From the per-unit-
length model of the line in Figure 1.8(a), we can obtain the transmission-line equations
by using Kirchhoff’s voltage (KVL) and current (KCL) laws [A.2,A.5]. Writing KVL
at the left and right ends of this circuit gives

dl(z, 1)

Viz+ Az, 1) = V(z,t) = —IAz o (1.49a)
and writing KCL at the top right node gives
V(z+ Azt
I(z4+ Az) — I(z,t) = —gAzV(z+ Az, t) — CAZ¥ (1.49b)

ot

Dividing (1.49) by Az and taking the limit as Az — 0 yields the transmission-line
equations:

W _ G0
0z ot

(1.50a)

0l(z, 1) V(z, 1)
= — V s 1) —
0z gVian=c ot

(1.50b)
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FIGURE 1.8 The per-unit-length equivalent circuit for a two-conductor line.

The above is an intuitive view of the per-unit-length line parameters. In order to
compute values of these parameters, we need more precise definitions of them. First,
we compute the per-unit-length inductance. We desire to compute the total magnetic
flux through a surface between the two conductors that is of differential length along
the line of Az, and the surface is uniform along the line, that is, does not vary with z.
The desired surface is shown in Figure 1.9(a) where the unit normal to the surface s
is denoted as dy. A cross section _in the transverse plane is shown in Figure 1.6. The
magnetic flux density vector is %; = u#; and the total magnetic flux through the
surface is the surface integral of this over the surface:

w:/ﬂjft'ands (1.51)
N

The total inductance is the ratio of the magnetic flux through this surface to the
current that caused it:

Y= fujft - Qpds
\)

IAz = — (1.52)

)

where / is the per-unit-length inductance desired. We have defined the closed contour
around the perimeter of this surface as c¢. The differential path length along this
contour is denoted by dI, and the normal to the surface is denoted as ay, as shown in
Figure 1.6. The definition of the direction of the desired flux through this surface is
according to the right-hand rule with respect to the current. Placing the thumb in the
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FIGURE 1.9 Contours and surfaces for the derivation of the transmission-line equations: (a)
derivation of the voltage change equation, and (b) derivation of the current change equation.

direction of the current (into the page in the +z direction for the top conductor and out
of the page in the —z direction for the bottom conductor) gives the direction of the
desired flux as clockwise when looking in the +z direction, as in Figure 1.6, which
is opposite to the direction of the normal to the surface, a,. Hence, a minus sign is
required in (1.52). For a length of the surface of Az that is considered differentially
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small, the flux through the surface does not vary with z. Hence we may remove this
dimension from the integral in (1.52). Therefore, as we shrink the length of the surface
to zero, the desired flux is obtained by simply integrating along the contour c to give

AZIM /%t . andl
.

IAz = T S (1.53a)

or

M/th-zzndl
_ C

l 1.53b
I(z,1) ( )
Substituting the definition of current given in (1.41) gives
/ H i - Gndl
L (1.54)

l=—un - -
%J/t-dl/

v

Next, consider obtaining the per-unit-length capacitance c as illustrated in Figure
1.9(b). Charge of equal magnitude but opposite sign is distributed along each con-
ductor and around their peripheries. We desire to compute the total charge contained
on the top conductor along a differential length along the line of Az. The electric
flux density vector on the surface of the perfect conductor is Z; = &' and, according
to the boundary conditions on the surface of this perfect conductor, is normal to the
surface [A.1]. In order to determine the charge on the conductor surface, we surround
it with a closed surface s’ that is just off the surface of the conductor and determine the
total electric flux through that surface. A cross section in the transverse plane is shown
in Figure 1.6, where the unit normal to the surface s’ is @,,. The total capacitance is
the ratio of this total charge to the voltage between the two conductors:

Sf\gt . Zl;ds/

N 1.55
cAz Ve (1.55)

where s’ is the closed surface and ¢ is the per-unit-length capacitance desired. We have
defined the closed contour around the perimeter of this surface as ¢’. The differential
path length along this contour is denoted by d!” and the normal to the surface is denoted
as a,,. Note that these surfaces and contours are designated with primes to distinguish
them from the surfaces and contours used to determine the inductance above. Since
the transverse electric field and electric flux density vector is from the upper conductor
to the lower conductor, it is directed out of this closed surface s’ giving the enclosed
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charge as positive. For a length of the surface of Az that is considered differentially
small, the flux through the surface does not vary with z. Hence we may remove this
dimension from the integral in (1.55). Therefore, as we shrink the length of the surface
to zero, the desired flux is obtained by simply integrating along the closed contour ¢’
to give

Aze 7{ & - aydl

cAz = < 1.56a
V(z, 1) ( )
or
£ % & -aldl
f L — (1.56b)
V(z, 1)
Substituting the definition of voltage given in (1.39) gives
]{ & -adl
c=s" (1.57)

—/%”t-df

c

In order to determine the per-unit-length conductance g, we need to determine
the transverse conduction current. The transverse conduction current is obtained by
integrating o & over the closed surface s” as

Jj{éﬂ -ads’

s 1.
V(z, 1) (1.38)

gAz =

Once again, we assume that the length of the surface along the line Az is differentially
small so that this dimension may be removed from the integral in (1.58), and the
desired transverse current is obtained by simply integrating along the contour ¢’ to give

Azo%% -apdl’

/

Az = ¢ 1.59a
8Az Ve ( )
or
o 7{ & -adl
g=—< (1.59b)
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Substituting the definition of voltage given in (1.39) gives

7{ & -d.dl

C/

g=0—F——
—/é"t-dl

c

(1.60)

In Section 1.3.4, we will show that the per-unit-length parameters satisfy the
following relations:

lc = e (1.61)

gl=ou (1.62)

Taking the ratio of (1.61) and (1.62) or the ratio of (1.60) and (1.57) gives another
relation:

(1.63)

o
c e
Hence for a homogeneous medium surrounding the conductors that is characterized
by the parameters o, €, and w, we only need to determine one of the three parameters.
For example, if we determine the per-unit-length capacitance c, then the other two

parameters are obtained in terms of ¢ as [ = (ue/c) and g = (a/¢)c.

1.3.3 Obtaining the Transmission-Line Equations from the Transverse
Electromagnetic Field Equations

In Section 1.2 we showed that, for the TEM mode, the transverse field vectors satisfy
the relations in (1.12):

36, LA, (112
— = — a, X . a
0z BT Ty
A L - Y
T = (@ x E) + 6 |d x — (1.12b)
0z ot

Integrating (1.12a) along contour c to define the line voltage as given in (1.39) gives

aV(z, 1) _

3 [ - -
™ By /(aZ x Hy) - dl (1.64)
c
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FIGURE 1.10 Illustration of the derivation of certain vector identities.

From Figure 1.10(a), we observe the identities:

@, x A -dl = —H, - (@, x di)

—H ¢ - andl (1.65)

Substituting this into (1.64), we obtain

aV(Z D _ / Ho-andl (1.66)

From the definition of the per-unit-length inductance in (1.53b), this becomes the first
transmission-line equation:

aV(z, 1) —l dl(z, 1)

= 1.67
a0z ot ( )
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Similarly, integrating (1.12b) around the closed contour ¢’ to define the line currents
as in (1.41) gives

ol t N - - R N > -
@, ):—o%(azX(o@t)~dl’—£—%(azx<5"t)-dl’ (1.68)
0z ot

C/

¢

From Figure 1.10(b), we observe the identities

@. x &) -dll = =&, - @. x dl’)

=& -aldl (1.69)
Substituting this into (1.68) yields
al(z,t - a [~ .
@)=—g%&ﬂmwﬂ—fkr¢ﬂ (1.70)
0z ot
c/ C/

Observing the definitions of the per-unit-length capacitance and conductance in
(1.56b) and (1.59b), respectively, this gives the second transmission-line equation

3l(z, 1) Wz, 1)
— V(1) —
P gV ) —e—

1.71)

1.3.4 Properties of the Per-Unit-Length Parameters

In this section, we will prove the important relations between the per-unit-length
parameters given in (1.61) and (1.62):

lc = e (1.61)

gl=ou (1.62)
which also give the relation

§_¢ (1.63)

c €

The first-order transmission-line differential equations in (1.67) and (1.71) are coupled
in that V and I appear in each equation. They can be converted to uncoupled second-
order equations by differentiating (1.67) with respect to z, differentiating (1.71) with
respect to ¢, and then substituting and reversing the process to yield

2V(z,t aV(z, 1 2V(z,t
(z ):gl (z )+lc (z,1)

3922 o o (1.723)
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021(z,t al(z, t 921z, 1
(z )=gl (z )+lc (z,1)

0z? ot 12 (1.720)

The transverse field vectors were shown to satisfy the second-order differential equa-
tions given in (1.13):

P&, 36, P&,
2ot et 1.13
02 M THER (1.132)
P A IH P A,
— 1.13b
32 Ty TR (1.135)

Integrating these according to (1.39) and (1.41) in order to write them in terms of the
line voltage and current gives

2V(z, 1) V(z, 1) ?V(z, 1)
= uo + pe——rm—

92 T a2 (1.732)

Pz, 1) () N gazzr(z, )
o2 My T T

(1.73b)

Comparing (1.73) to (1.72), we observe the important relations between the per-unit-
length parameters:

gl = o (1.74a)

lc = ne (1.74b)

Alternatively, we may obtain a direct proof of these relations between the per-unit-
length parameters in the following manner. Write the product of the per-unit-length
inductance and capacitance from their definitions in (1.54) and (1.57) as

/ Hy - andl f & -adl

c!

lce = —p-< - —¢ —
j{,}’ft-dl’ —/@@t-dl
C/

c

(1.75)

We showed in Section 1.2 that, for a lossless medium (o = 0), the forward- and
backward-traveling components of the waves are related by the intrinsic impedance
of the medium as

-

+ - - +
& = Fn@. x #y) (1.76a)
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Taking the cross product of @ with both sides and using @, x (@, x #,) = —#;
yields

- 1. -
HE =+ x &) (1.76b)
n
Substituting these into (1.75) yields

1. - . N -+
/:i:f(az X &) - tndl 7{ Fo@. x #0) ddl
n

c /
"
f%ti.dz' —/é"ti~dl
C/

c

[y
&

lc = —

(1.77)

From Figure 1.10 (replacing (?t with }f[ and vice versa) we obtain the identities
(. X &) - ndl = & - dl (1.78a)
and
G x H)-aLdl = —H - dl (1.78b)
Substituting these into (1.77) yields
j:/Z"ti-df ify?f.d?

c

lc = —pu —= €
—— e 1.79
j{yff-dz’ —/@@f-dz (179

C c

:,ug

Taking the ratio of the basic definitions of g in (1.60) and ¢ in (1.57) gives the relation
g = (o/¢)c. Substituting (1.79) into this gives the relation g/ = ou.

1.4 CLASSIFICATION OF TRANSMISSION LINES

One of the primary tasks in obtaining the complete solution for the voltage and
current of a transmission line is the general solution of the transmission-line equations
(Step 2). The type of line being considered significantly affects this solution. We are
familiar with the difficulties in the solution of various ordinary differential equations
encountered in the analysis of lumped circuits [A.2,A.5]. An example of an ordinary
differential equation encountered in lumped-circuit analysis is

? + aV(t) = bsin(wrt)
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Although the equations to be solved for lumped systems are ordinary differential
equations (there is only one independent variable, time f) and are somewhat simpler
to solve than the transmission-line equations, which are partial differential equations
(since the voltage and current are functions of two independent variables, time ¢ and
position along the line z), the type of circuit strongly affects the solution difficulty.
For example, if any of the circuit elements are functions of time (a time-varying
circuit), then the coefficients in the equation, for example, a, will be functions of the
independent variable, r. An example is

av(n .
— 4+ a(®)V(t) = bsin(wt)
dt

These equations, although linear, are said to be nonconstant coefficient ordinary dif-
ferential equations, which are considerably more difficult to solve than constant co-
efficient ones [A.4]. Suppose one or more of the circuit elements are nonlinear; that
is, the element voltage has a nonlinear relation to its current. In this case, the cir-
cuit differential equations become nonlinear ordinary differential equations, which
are equally difficult to solve [A.4]. So the class of lumped circuit being considered
drastically affects the difficulty of solution of the governing differential equations.

1.4.1 Uniform versus Nonuniform Lines

Solution of the transmission-line partial differential equations has similar parallels.
We have been implicitly assuming that the per-unit-length parameters are independent
of position along the line z and, of course, time ¢. The per-unit-length parameters
contain all the cross-sectional structural dimensions of the line. If the cross-sectional
dimensions of the line vary along the line axis, then the per-unit-length parameters will
be functions of the position variable, z, for example, g(z), c(z), and /(z). This makes the
resulting transmission-line equations very difficult to solve because the coefficients,
the per-unit-length parameters, will be functions of one of the independent variables
in the same fashion as a nonconstant coefficient ordinary differential equation:

aV(z, 1) _ al(z,t)
S0z D=

dal(z, 1) aV(z, 1)
P —g()V(z, 1) — C(Z)T

Such transmission-line structures are said to be nonuniform lines. This includes both
the cross-sectional dimensions of the line conductors and the cross-sectional dimen-
sions of any inhomogeneous surrounding medium. If the cross-sectional dimensions
of both the line conductors and the surrounding, perhaps inhomogeneous, medium
are constant along the line axis, the line is said to be a uniform line whose resulting
differential equations are simple to solve because the per-unit-length parameters /, c,
and g are constants independent of z. An example of a nonuniform (in conductor cross



34 INTRODUCTION

*A | B
! 11
[ ® |
; L I
! I
|
T
[ © |
— | | | —
” @
X4\ —
D |
-
z; ;‘
o

(b)

FIGURE 1.11 [Illustration of a nonuniform line caused by variations in the conductor cross
section.

section) line is shown in Figure 1.11. Figure 1.11(a) shows the view along the line axis,
whereas Figure 1.11(b) shows the view in cross section. Because the conductor cross
sections are different at z; and z», the per-unit-length parameters will be functions of
position z. This type of structure occurs frequently on printed circuit boards. A com-
mon way of handling this is to divide the line into three uniform sections and cascade
the representations. This is an approximation since it neglects the fringing of the fields
atthe junctions. Figure 1.12 shows a nonuniform line where the nonuniformity is intro-
duced by the inhomogeneous medium. A wire is surrounded by dielectric insulation.
Along the two end segments, the medium is inhomogeneous since in one part of the re-
gion the fields exist in the dielectric insulation, €1, (4, and in the other they exist in free
space, &g, 0. In the middle region, the dielectric insulation is also inhomogeneous
consisting of regions containing €1, Ko, &2, 1o and &g, (o. However, because of this
change in the properties of the surrounding medium from one section to the next, the
total line is a nonuniform one and the resulting per-unit-length parameters will be func-
tions of z. The resulting transmission-line equations for Figures 1.11 and 1.12 are very
difficult to solve because of the nonuniformity of the line. Again, a common way of
analyzing this type of problem is to partition the line into a cascade of uniform subsec-
tions This is, again, an approximation since it neglects the fringing of the fields at the
junctions.
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FIGURE 1.12 Illustration of a nonuniform line caused by variations in the surrounding
medium cross section.

1.4.2 Homogeneous versus Inhomogeneous Surrounding Media

Figure 1.1 shows lines in a homogeneous medium; that is, there is one dielec-
tric surrounding the conductors and hence the permittivity, conductivity, and per-
meability are independent of position in the space surrounding the conductors.
Dielectric insulations surrounding wires such as in ribbon cables are examples
of inhomogeneous media since the electric field lines will be partly in this di-
electric insulation and partly in the remaining free space. The PCB structures in
Figure 1.2(b) and (c) are also examples of lines in an inhomogeneous medium.
The electric field lines will lie partly in the dielectric substrate and partly in the
remaining free space. For structures in a homogeneous medium such as the wire-
type structures in Figure 1.1 and the coupled stripline in Figure 1.2(a), all waves
will travel at the same velocity. For lines consisting of n + 1 conductors in an in-
homogeneous medium, there will be n waves each traveling with different veloci-
ties. This complicates the solution of the transmission-line equations as we will see
later.
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There are numerous combinations of these characterizations. A line may be in a
homogeneous medium yet because of a change in the conductor cross sections along
the line, it would be classified as a nonuniform line and would be very difficult to
solve. A line may be in an inhomogeneous medium but because this inhomogeneity
as well as the conductor cross sections do not change along the line axis, it would be
classified as a uniform line. It would be relatively simple to solve. For these reasons,
we will restrict the transmission lines that we will consider in this text to be uniform
lines. They may, however, be in a homogeneous or an inhomogeneous medium. In
either case, a uniform line has (a) conductor cross sections that do not vary with z and
(b) surrounding dielectric properties that may be functions of x and y but do not vary
with z.

Technically, an inhomogeneous surrounding medium, although uniform along the
line (z) axis, invalidates the basic assumption of a TEM field structure. The rea-
son for this is that a TEM field structure must have one and only one velocity of
propagation of the waves in the medium. However, this cannot be the case for an
inhomogeneous medium. If one portion of the inhomogeneous medium is charac-
terized by €1, uo and the other is characterized by &, wo, such as for the lines in
Figure 1.2(b) and (c), the velocities of TEM waves in infinite, homogeneous regions
characterized by these parameters will be vy = 1/,/g110 and v = 1/,/e2110, which
will be different. Nevertheless, the transmission-line equations are usually solved in
spite of this observation and are assumed to adequately represent the situation so long
as these velocities are not substantially different. This is referred to as the quasi-TEM
assumption.

1.4.3 Lossless versus Lossy Lines

All of the previous derivations include losses in the medium through a per-unit-
length conductance parameter g. This loss in the surrounding (assumed homoge-
neous) medium does not invalidate the TEM field structure assumption. However, the
previous derivations also assumed perfect conductors. In other words, the conduc-
tors were assumed to be lossless and to have no resistance properties along their z
axes. Practical transmission lines are obviously constructed of imperfect conductors
that have loss. However, in order that the transmission line be a useful guided wave
structure, these conductor losses must be small. Nevertheless, how shall we include
these losses and what will be their effect on the ideal assumption of a TEM field
structure?

We may include the possibility of the line conductors being imperfect conductors
with small losses through a per-unit-length resistance parameter r. Unlike losses in the
surrounding medium, lossy conductors implicitly invalidate the TEM field structure
assumption. Figure 1.13 shows why this is the case. The line current flowing through
the imperfect line conductor generates a nonzero electric field along the conductor
surface, &,(z, t) = rl(z, t), which is directed in the z direction, thereby violating the
basic assumption of the TEM field structure in the surrounding medium. The total
electric field is the sum of the transverse component and this z-directed component.



RESTRICTIONS ON THE APPLICABILITY OF THE TRANSMISSION-LINE EQUATION 37

. ®

—A—r
&.
<_5°: ?5”:+ &:

®

FIGURE 1.13 [llustration of the effect of conductor losses in creating non-TEM fields.

However, if the conductor losses are small, this resulting field structure is almost
similar to a TEM structure. This is again referred to as the quasi-TEM assumption
and, although the transmission-line equations are no longer valid, they are nevertheless
assumed to represent the situation for small losses through the inclusion of the per-
unit-length resistance parameter r. In the derivation of the transmission-line equations
for an MTL, we will include this parameter.

In summary, the TEM field structure and mode of propagation characterization of
a transmission line is valid only for uniform lines consisting of perfect conductors
and surrounded by a homogeneous medium. Note that this medium may be lossy
and not violate the TEM assumption so long as it is homogeneous (in o, ¢, and ).
Violations of these assumptions (lossy conductors and/or an inhomogeneous medium
surrounding the conductors) are considered under the quasi-TEM assumption so long
as they are not extreme [17, 18].

1.5 RESTRICTIONS ON THE APPLICABILITY OF THE
TRANSMISSION-LINE EQUATION FORMULATION

There are some additional, implicit assumptions in the TEM transmission-line equa-
tion characterization. In the derivation of the transmission-line equations from the
distributed-parameter lumped circuit of Figure 1.8, distributing the lumped elements
along the line and allowing the section length to go to zero, lima; —, o Az, means
that line lengths that are electrically long, that is, much greater than a wavelength
A, are properly handled with this lumped-circuit characterization. However, it was
assumed that the line cross-sectional dimensions such as conductor separations were
electrically small at the frequencies of excitation of the line. Structures whose cross-
sectional dimensions are electrically large at the frequency of excitation will have,
in addition to the TEM field structure and mode of propagation, other higher order
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TE and TM field structures and modes of propagation simultaneously with the TEM
mode [A.1,17-19]. Therefore, the solution of the transmission-line equations does not
give the complete solution in the range of frequencies where these non-TEM modes
coexist on the line. A comparison of the predictions of the TEM transmission-line
equation results with the results of a numerical code (which does not presuppose
existence of only the TEM mode) for a two-wire line showed differences beginning
with frequencies where the wire separations were as small as A/40 [H.7]. Analytical
solution of Maxwell’s equations in order to consider the total effect of all modes is
usually a formidable task. There are certain structures where an analytical solution is
feasible, and we will discuss these in the next two sections.

1.5.1 Higher Order Modes

In the following two subsections, we analytically solve Maxwell’s equations for two
closed structures to obtain the complete solution and demonstrate that the TEM formu-
lation is complete up to some frequency where the conductor separations are some sig-
nificant fraction of a wavelength above which higher order modes begin to propagate.

1.5.1.1 The Infinite, Parallel-Plate Transmission Line Consider the infinite,
parallel-plate transmission line shown in Figure 1.14. The two infinite and perfectly
conducting plates lie in the y—z plane and are located at x = 0 and x = a. We will
obtain the complete solutions for the fields in the space between the two plates, which
is assumed to be homogeneous and lossless and characterized by ¢ and u. Maxwell’s
equations for sinusoidal excitation become

-

V x E=— jouH (1.80a)

V x H= jocE (1.80b)

Expanding these and noting that the plates are infinite in extent in the y direction so
that % = 0 gives [A.1]

OF,

—- = JjopHy
0z
dE, OE,

— 2 = — ] H‘
oz ax UMD
0E, .

v — jopH;
o8, | (1.81)
— = — joweEy
0z
0H, 9H,
oz ax TR
OH,
— = jwekE,

0x
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FIGURE 1.14 The infinite parallel-plate waveguide for demonstrating the effect of cross-
sectional dimensions on higher order modes.

In addition, we have the wave equations [A.1]:

V2E + w2usif =0

. N 1.82
V2H 4+ o’ueH = 0 (182)

Expanding these and recalling that the plates are infinite in the y dimension so that
9 — 0 gives [A.1]

ay
PE ®E , -
— +—— to'ucE =0
ox2 072 (1.83)
PH PH o, - '
W—F?—i—w ueH =0

Let us now look for waves propagating in the +z direction. To do so, we use the
principle of separation of variables, where we separate the dependence on x, y, and
zas

E(x,y,2) = E'(x, y)e " (1.84)
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where y is the propagation constant (to be determined). Substituting this into (1.81)
yields

)/E’y = — jouH,
OE’ .
—VE, — = = — jouH,
8EiV ] ,
T T O
, ) , (1.85)
YH, = jweE,
oOH!
—yH, — axz = jweE),
BH;
ek JoweE!,
X
and
2 7/ .
P +(* + 0 ue)E =0
e (1.86)
— +(* + o*ue)H =0
The equations in (1.85) can be manipulated to yield [A.1]
y 0H]
H =-5- =%
o h? ox
E = — l LEQ
x h? ox
g — _ Jwe 9E; (1.87)
’ h?  ox
£ Jjou 0H!
Y h?  ax

W = y? + o’pe

Observe that E’(x, y) and H'(x, y) are functions of x only since there can be no varia-
tion in the y direction due to the infinite extent of the plates in this direction and also the
z variation has been assumed. Thus the partial derivatives in (1.85)—(1.87) can be re-
placed by ordinary derivatives. We now investigate the various modes of propagation.

The Transverse Electric (TE) Mode (E, = 0) The TE mode of propagation assumes
that the electric field is confined to the transverse or x—y plane so that £, = 0. There-
fore, from (1.87) we see that E/, = H; = 0. The wave equations in (1.86) reduce to

2E/
L +h’E; =0 (1.88)

dx?
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whose general solution is
E; = Cysin(hx) + Cacos(hx) (1.89)

The boundary conditions are such that the electric field tangent to the surfaces of the
plates is zero:

Ey = 0|0 x=q (1.90)

which, when applied to (1.89), yields C; =0 and ha =m for m =0,1,2,3, ...
Thus, the solution becomes

Ey = Cysin (m—m) eV (1.91)
a
From (1.85) we obtain
1 OE
He=j— =
ou  Ox
_ Croon (m ) . (1.92)
wpna a
and
H, = jC;sin (@) eV (1.93)
oW a
Since
mi
h=— (1.94)
a
the propagation constant becomes
2
y=1\/(55) - o (1.95)
a

For the lowest order mode, m = 0, all field components vanish. The next higher
order mode is the TE{ mode for m = 1.

The Transverse Magnetic (TM) Mode (H; = 0) 'The TM mode has the magnetic field
confined to the transverse x—y plane so that H, = 0. Carrying through a development
similar to the above for this mode gives the nonzero field vectors as

nmwx\
Hy = Dscos (—) e %
a

E, = — j - Dscos (@) e (1.96)
weé a

. nmw _nmXN\
E, = j—— Dssin (—) eV
awe a
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forn =0, 1, 2, ... The propagation constant is again given by (1.95) with m replaced

by n. In contrast to the TE modes, the lowest order TM mode is the TMy mode for
n = 0. For this case, the propagation constant reduces to the familiar

y = joJne

1.97
= jp o

and the field vectors in (1.96) reduce to

Hy = Dye™ /P2

&/
=
I

— i Y Dye e
weé

(1.98)
— ﬁDze—jﬂZ
V e

E.=0

However, this is the TEM mode!
The transmission-line equations for this TEM mode can be obtained by differen-
tiating (1.98) with respect to z to yield

dEy .

& = — jouH,

dH, ' (1.99)
— = — jweE,

dz

We may write these in terms of voltage and current by integrating in the transverse
plane:

X=a
V(z) = —/E dx
@ ! (1.100a)
x=0
= —akE,
and
I(z) = —wH, (1.100b)

The result for the current in (1.100b) is due to the fact that the H field is tangent to the
upper and lower plates that are assumed to be perfect conductors and hence produces a
surface current on the plate J;; = — H), |x=a in A/m that is directed in the z direction.
In a section of width w along the y dimension, the total current is Jo;w = —Hyw A.
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Hence (1.99) becomes

X=a
dv . /
— = jou | Hydx
dz ’
x=0
o (n5,) CHw)
=—jo|u—|(—Hyw
ZW HI,_/ (1101)
dl ) w
— = —jo (5 —) Vv
dz a
——

c

and the per-unit-length inductance and capacitance are then defined as

I=u? H/m
w
¢ (1.102)
c=¢— F/m
a

Therefore, the lowest order TM mode, TMy, is equivalent to the TEM mode and the
TEp mode is nonexistent. We must then ascertain when the next higher order modes
begin to propagate, thus adding to the total picture. The propagation constant in (1.95)
must be imaginary or at least have a nonzero imaginary part. Clearly, form =n = 0,
we have the propagation constant of a plane wave: y = jw,/ue = jB. For higher
order modes to propagate, we require from (1.95) that w? e > h?, giving

1 nm
w> — (1.103)

—Jue a

The cutoff frequency for the lowest order TEM mode, TMy, is clearly dc. The cutoff
frequencies of the next higher order modes, TE; and TM, are from (1.103)

1 b4
JrE, ™, = 2 /i a (1.104)
v

2a

In terms of wavelength, A = v/f, we find that the TEM mode will be the only possible
mode so long as the plate separation a is less than one-half wavelength, that is,

- (1.105)
< — .
4=3

This illustrates that so long as the cross-sectional dimensions of the line are electrically
small, only the TEM mode can propagate! This is illustrated in Figure 1.15.

1.5.1.2 The Coaxial Transmission Line Another closed system transmission line
that is capable of supporting the TEM mode is the coaxial transmission line shown in
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FIGURE 1.15 [Illustration of the dependence of higher order modes on cross-sectional elec-
trical dimensions for the parallel-plate transmission line.

Figure 1.16. The general solution to Maxwell’s equations for the fields and modes in
the space between the inner wire and the outer shield was obtained in [1]. Clearly, this
structure can support the TEM mode with a cutoff frequency of dc. The higher order
TE and TM modes have the following cutoff properties. The lowest order TE mode
is cutoff for frequencies such that the average circumference between the conductors
is less than approximately a wavelength, that is,

(a+b)
2

2 <X (1.106)

Similarly, the lowest order TM mode is cutoff for frequencies such that the differ-
ence between the two conductor radii is less than approximately one-half wavelength,
that is,

A
@—M<§ (1.107)

These results again support the notion that the TEM mode will be the only mode of
propagation in closed systems so long as the conductor separation is electrically small.

1.5.1.3 Two-Wire Lines The previous two transmission-line structures are closed
systems. For open systems such as the two-wire line, the issue of higher order modes
is not so clear-cut. Numerical analysis of a two-wire line given in [H.7] showed
that the predictions of the transmission-line formulation for the two-wire line began

&l

FIGURE 1.16 The coaxial cable for illustrating the dependence of higher order modes on
cross-sectional electrical dimensions.
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to deviate from the complete solution when the cross-sectional dimensions such as
wire separation are no longer electrically small. This supports our intuition. The
problem was investigated in more detail in [19] where these notions are confirmed.
Also certain other modes are capable of propagating with no clearly defined cutoff
frequency. However, the TEM mode formulation and the resulting transmission-line
equation representation for two-wire lines will be reasonably adequate so long as
the wire separations are electrically small. Ordinarily, this is satisfied for practical
transmission-line structures.

1.5.2 Transmission-Line Currents versus Antenna Currents

There is one remaining restriction on the completeness of the TEM mode,
transmission-line representation that needs to be discussed. It can be shown that
under the TEM transmission-line equation formulation for a two-conductor line,
the currents so determined on the two conductors at any cross section must be
equal in magnitude and oppositely directed (see Problem 1.3). Thus, the total cur-
rent at any cross section is zero. This is the origin of the reference to the term
that one of the conductors serves as a “return” for the current on the other con-
ductor. On a transmission line, there may also be currents that do not sum to zero
at any cross section. These so-called “antenna currents” or “common-mode currents”
tend to go to zero at the line endpoints. Hence, their presence along the line does not
substantially change the predictions of the terminal voltages and currents. Therefore,
in the usual use of the transmission-line model to predict crosstalk and signal in-
tegrity on transmission lines, the TEM transmission-line equations give substantially
the complete result.

Consider the pair of parallel wires shown in Figure 1.17(a) carrying, at the same
cross section, currents /1 and /. In general, we may decompose or represent these as
a linear combination of two other currents. The so-called differential-mode currents
Ip are equal in magnitude at a cross section and are oppositely directed, as shown
in Figure 1.17(b). These correspond to the TEM mode, transmission-line currents
that will be predicted by the transmission-line model. The other currents are the so-
called common-mode currents Ic which are equal in magnitude at a cross section but
are directed in the same direction, as shown in Figure 1.17(c). These are sometimes
referred to as “antenna-mode” currents [20, 21]. This decomposition can be obtained
by writing, from Figure 1.17,

Iy =Ic+1Ip

1.108
L =1Ic—1Ip ( )

In matrix form, these can be written as

I 1 1 Ic
AR N (1109

Equation (1.109) represents a nonsingular transformation between the two sets of
currents since the transformation matrix is nonsingular. Therefore, its inverse can be
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FIGURE 1.17 Tllustration of the decomposition of total currents into differential-mode
(transmission-line mode) and common-mode (antenna mode) components.

taken and the transformation reversed to yield

It 1 I
S I : (1.110)
Ip 21 =1 |p
This gives
L+1T
I = 1+ D
2 (1.111)
I _11—12
b=

Note that I, = — I1; that is, in a normal situation, one current “returns” to its source
on the other conductor. Hence, Ic < Ip. Therefore, the common-mode currents are
much smaller in magnitude than the differential-mode currents and so do not sub-
stantially affect the results of an analysis of currents and voltages of a transmission
line. However, in the prediction of radiated emissions from this two-wire line, the
common-mode currents are significant because the radiated electric fields from the
differential-mode currents tend to subtract, but those from the common-mode cur-
rents tend to add. Thus, a “small” common-mode current can give the same order
of magnitude of radiated emission as a much larger differential-mode current. This
was confirmed for cables and PCBs in [A.3,22,23]. The significant point here is that
if one bases a prediction of the radiated emissions from a two-conductor line on the
currents obtained from a transmission-line equation analysis, the predicted emissions
will generally lie far below those of the emissions due to the common-mode currents.
On the contrary, the common-mode currents can generally be ignored in a near-field
transmission-line analysis such as in determining crosstalk.
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FIGURE 1.18 [Illustration of an asymmetry that creates common-mode currents.

There are a number of ways through which these non-TEM mode currents can be
created on a transmission line. Figure 1.18 illustrates one of these. It is important to
remember that the TEM mode, transmission-line equation formulation only charac-
terizes the line and assumes that the two (or more) conductors of the line continue
indefinitely along the z axis. The analysis does not inherently consider the field effects
of the eventual terminations for a finite-length line. This problem was investigated
in [24]. It was found that asymmetries as well as the presence of nearby metallic
structures create these “nonideal” currents. For example, consider the two-wire line
shown in Figure 1.18, which is driven by a voltage source at the left end and termi-
nated in a short circuit at the right end. This was analyzed using a numerical solution
of Maxwell’s equations, commonly referred to as a method of moments (MoM). This
analysis gives the complete solution for the currents without presupposing the exis-
tence of only the TEM mode. It was found that if the voltage source was situated and
modeled as being centered in the left segment on the centerline, then I, = —1I;; in
other words, the currents on the wires are only differential-mode currents. However,
if the voltage source was placed asymmetrically to the centerline such as shown and
the resulting currents decomposed as in (1.111), common-mode currents appeared.
This asymmetrical placement of the source, which is not explicitly considered in the
transmission-line equation formulation, was apparently the source.

The important point here is that the TEM mode, transmission-line equation formu-
lation that we will consider in this text predicts only the differential-mode currents.
If the line cross section is electrically small and one is interested only in predicting
the currents and voltages on the line for the purposes of predicting signal distortion
and crosstalk (the primary goal of this text), this prediction will be reasonably ac-
curate. On the contrary, if one is interested in predicting the radiated electric field
from this line, then the predictions of that field using only the currents predicted by
the transmission-line equation formulation will most likely be inadequate since the
contributions due to the common-mode currents typically are frequently the dominant
contributors to radiated emissions [22, 23].

1.6 THE TIME DOMAIN VERSUS THE FREQUENCY DOMAIN

The two important domains that we will use throughout this text to analyze
transmission-line structures are the time domain and the frequency domain. It is
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FIGURE 1.19 [llustration of the concept of a transfer function for a linear system.

critically important that we understand these two notions since they will form the
heart of our analyses. First, let us discuss viewing the transmission-line problem as
a single-input, single-output system as illustrated in Figure 1.19(a). This is a very
standard way of viewing a system [A.2,A.5]. An input x(¢) is applied to the system
(which we suppose here is a linear one) and produces the output y(¢). The system
may be characterized by its impulse response h(t). Analysis in the time domain refers
to applying a signal or waveform that has some general shape and dependence on
time ¢ and determining the output or solution as a general waveform y(¢). Although
not strictly required, we may obtain this solution in terms of the impulse response
h(t). The impulse response is the response when a unit impulse function is applied
at the input; that is, if x(¢) = 8(¢), then y(¢) = h(¢). The time-domain solution may be
obtained with the convolution integral [A.2,A.5]:

t

y(t) = /h(l — Dx(t)dt (1.112)

0

Analysis in the frequency domain refers to applying a single-frequency sinusoidal
waveform

x(t) = X cos(wt + Ox) (1.113)

and determining the output under the assumption that the system response has reached
steady state. For a linear system, the response will be of the same form and the same
frequency as the input signal but with a different amplitude and phase:

y(t) = Y cos(wt + Oy) (1.114)

To analyze the response of the system, we move to the frequency domain by replacing
time quantities with their complex-valued phasor equivalents [A.2,A.5]:

x(t) = X cos(wt + 0x) = X(jw) = X /0x (1.115a)
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y(1) = Y cos(wt + Oy) = ¥( jw) = Y /by (1.115b)

as illustrated in Figure 1.19(b), and we write all complex-valued quantities with a
caret (°) over them and j = +/—1. The impulse response in the frequency domain is
the familiar transfer function or frequency response that also has a magnitude and a
phase:

h(t)= H( jw) = H/0y (1.115¢)

In order to obtain this frequency response, we apply a unit amplitude, zero phase
input sinusoidal signal, sweep its frequency, and determine the response magnitude
and phase at each applied frequency:

X=1/0°=¥Y=H/oy (1.116)

Then the solution process in the frequency domain is to obtain the magnitude and
phase of the output using complex algebra as

Y/0y = H/0y x X/0x (1.117)

The result is obtained by multiplying magnitudes and adding angles in accordance
with the rules of complex arithmetic [A.2,A.5]:

¥ = (HX)/(0y + 0x) (1.118)

Having done this, we return to the fime domain by (a) multiplying the phasor result
by e/ and (b) taking the real part of the result:

y(t) = Re{¥e '}

(1.119)
= HX cos(wt + 0y + 0x)

This phasor analysis method is virtually the heart of all analyses of electrical engi-
neering systems as well as other dynamical systems.

We may represent a two-conductor transmission-line problem in the form of a
single-input, single-output system as shown in Figure 1.20. Consider a general source
and load termination of a transmission line shown in Figure 1.20(a). The source
consists of an open-circuit voltage source, Vs(7), and a source resistance, Rs. The
load represents, perhaps, the input to a device and is represented by the resistor
Rr.. We may be interested in determining, for example, the output voltage across
the load, Vou(#). In order to put this into the form of a single-input, single-output
system as illustrated in Figure 1.19(a), we consider the input to the system to be the
voltage source, x(¢) = Vs(¢), and the output to be the voltage across the load resistor,
y(t) = Vou(?). Hence we imbed the line and the termination resistors in the system as
shown in Figure 1.20(b). It is very important to observe that the “system” contains the
termination resistors. Hence, nonlinear terminations render the problem a nonlinear
one, and the phasor solution method is no longer valid. In the case of a multiconductor
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FIGURE 1.20 Characterizing a transmission line as a single-input, single-output system.

line as shown in Figure 1.20(c), the input is again x(¢) = Vs(¢) and the desired output
may be, for example, the far-end crosstalk voltage, y(r) = VFg(?).

1.6.1 The Fourier Series and Transform

The primary reason we concentrate so much emphasis on the single-frequency sinu-
soidal response of a linear system via the frequency domain is that we can decompose
any periodic time-domain waveform into its sinusoidal components via the Fourier
series [A.2,A.3]. Hence we can represent any periodic waveform having period P as
the infinite sum of sinusoids whose frequencies are multiples of the basic repetition
frequency

fo= (1.120)

1
P
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as [A.2,A.3]

o0
x() = co+ Y _2cqcos(nwot + Lcn) (1.121)

n=1

and wg = 2nfy = 27/ P. The Fourier expansion coefficients in (1.121) are obtained
from [A.2,A.3]

t+P
R 1 i
=5 /x(t)e Jnaot e

1

(1.122)

=culcy

where ¢, is a complex number, and ¢, and Zc, are the magnitude and the phase,
respectively, of it. In the frequency domain, we can determine the transfer function
at each of these harmonics as

H(jnwy) = |H(jnwo)|LH(jnwy) (1.123)

If the system (line and terminations) is linear, then we may employ superposition and
pass each sinusoidal component of the input through the system and sum them at the
output to obtain the Fourier series of the output y(¢) as illustrated in Figure 1.21:

o0
Y(#) = coH(0) + Y "2eu| H(jnewo)lcos(neot + Ley + LH(jnawp)) (1.124)

n=1

This is an incredibly powerful result. It says that we can indirectly solve for the time-
domain response of the output y(#) by decomposing the input signal, x(¢), into its
sinusoidal components with the Fourier series as in (1.121), solving for the frequency
response of the system to these harmonics of the input signal, and then summing
these individual responses in time as in (1.124). However, this will represent only
the steady-state solution part of y(#) and transients are not included. Theoretically,
the Fourier series requires an infinite number of harmonics be summed to yield the
time-domain function. In a practical sense, we only need to sum a finite number to
arrive at a reasonable approximation to the output solution y(z).

For waveforms that are not periodic, that is, consist of a single pulse, the Fourier
transform provides a similar representation [A.2,A.3]. In this case, the discrete spec-
trum consisting of harmonics is replaced by a continuous spectrum. The discrete
Fourier series coefficients are replaced by the Fourier transform, X(jw). The process
described above is essentially unchanged.
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FIGURE 1.21 Illustration of using superposition and the Fourier series to indirectly obtain
the time-domain output of a linear system.

1.6.2 Spectra and Bandwidth of Digital Waveforms

The methods and techniques for analyzing MTLs discussed in this text apply for source
waveforms in the termination networks as well as incident fields that have any general
time variation. However, because of the preponderance of digital methods and devices
today, we will concentrate our examples on digital waveforms that represent clock and
data signals. A digital clock signal is periodic and has a trapezoidal waveform shown
in Figure 1.22. The pulse width 7 is defined between the half-amplitude levels of the
pulse, and t; and ¢ denote the 0—100 % rise and fall times of the pulse, respectively.
The expansion coefficients in (1.122) were obtained in [A.3 ] and are

T
=A— 1.125
co P ( a)
x(t) A
A-
A 1 |
N Y /S

FIGURE 1.22 A periodic, trapezoidal pulse train representing a digital signal.
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A ([ sin (””’r) . sin (—"mf) . (rrm)
Ay P ) jamgP 2\ P ) — jnnt/P — jnmw
Ch=—1] € € e 7~ (1.125b)
2mn P P

In digital applications, it is usually desired to have the rise and fall times of the
pulse equal. In this case, the expansion coefficients simplify to [A.3]

T sin (—”m) sin ("7”') ()
A P P ) —
2, = R e (1.126)
P P

Observe that the dc component, cq in (1.125a), and the harmonic amplitudes involve
the ratio of the pulse width to pulse period or the pulse duty cycle:

D= (1.127)

T
P
It is also generally desired to have the duty cycle to be 50 % or D = 0.5. Bounds on
the spectral amplitudes can be developed for the case where the rise and fall times are
equal [A.3 ]. These are shown in Figure 1.23. There are two break frequencies. Up
to f=1/nt = fy/nD,theamplitudesare bounded by a 0 dB/decade slope and after
that fall off at a rate of —20 dB/decade. Above the next break frequency of f = 1/nt,,
the harmonic amplitudes fall off at a rate of —40 dB/decade. Hence the high-frequency
spectral content is primarily determined by the rise/fall times of the pulse.

This result can be derived for unequal rise/fall times if we assume a 50% duty cycle,
that is, D = t/P = 0.5. The magnitudes of the coefficients for odd » and even n are

A |sin (2ZF) N sin (252)

[Cnl = =— | —5= — , nodd (1.128a)
t

2mn e P
2cq A
. 0 dB/decade 5

x ~2p

P I dB/de

I Cag,

T 1

nT T,
_h

D

il )

FIGURE 1.23 Spectral bounds for a periodic, trapezoidal pulse train.



54 INTRODUCTION

and

rJ_ P neven (1.128Db)

Observe that for equal rise/fall times, the even harmonics are zero. However, plotting
this in asymptotic form as in Figure 1.23 cannot be done since it is not in the form

of a product of terms.

The important question of how many harmonics need be included in the sum
in (1.121) in order to reasonably reproduce the pulse waveform with that sum can
now be estimated for equal rise/fall times. Noting in Figure 1.23 that above the
second break point the harmonic amplitudes are rolling off at —40 dB/decade, we
might choose to stop the summation at some frequency above this second break
point. Since this is a somewhat loose criterion, we might choose for convenience a
frequency three times this break frequency. But this is approximately the inverse of
the pulse rise time. Hence, we might choose an estimate of the bandwidth of a digital
pulse as

BW

1

- (1.129)

Tr

Interestingly, the second (sinx)/x function involving the rise/fall time in (1.126)
goes to zero at this frequency. In order to illustrate the critical point that addition
of each harmonic in time gives a point on the total time-domain waveform and we
only need to sum harmonics up to the bandwidth of the pulse in order to obtain a
reasonable reproduction of the waveform, we show in Figure 1.24 a 5-V, 100-MHz,
1-ns rise/fall time, 50% duty cycle periodic, trapezoidal pulse train. The bandwidth
is, according to (1.129), BW = 1 GHz. Hence we should sum the first 10 harmonics.
The amplitudes and phases of these first 10 harmonics are

n Cn /c, (rad)
1 3.1310 —1.8850
2 0 0
3 —0.9108 —5.6549
4 0 0
5 0.4053 —9.4248
6 0 0
7 —0.1673 —13.1947
8 0 0
9 0.0387 —16.9646

10 0 0
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FIGURE 1.24 Reconstruction of a 5-V, 100-MHz, 1-ns rise/fall time, 50 % duty cycle trape-

zoidal pulse train (a) using the first 10 harmonics and (b) using the first five harmonics.
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Rather than including the minus signs of the third and seventh harmonics in the angle,
we have left them in the magnitude. Technically, this is not correct since a magnitude
can have no sign, but it simplifies the result. Observe that the even harmonics are
zero. This is a characteristic of a 50 % duty cycle waveform. Figure 1.24(a) shows
the result of summing the first 10 harmonics. Although there is a small error at the
corners, the overall representation is quite good. Figure 1.24(b) shows the result of
summing only the first five harmonics. This is another criterion that is often cited for
the bandwidth of a digital signal: BW = 0.5/7;. Observe that the reconstruction with
only five harmonics is not so good: there is considerable ringing on the waveform.

1.6.3 Computing the Time-Domain Response of Transmission Lines Having
Linear Terminations Using Fourier Methods and Superposition

In this section, we will show a very simple but extremely powerful method of so-
lution. It is called the time-domain to frequency-domain or TDFD transformation.
A FORTRAN program, TIMEFREQ. FOR, described in Appendix A implements
this powerful method. It may also be viewed as a “poor man’s inverse fast Fourier
transform (FFT).” The basic idea was described earlier. Decompose the input signal
into its sinusoidal harmonic components. Imbed the terminations into a single-input,
single-output “black-box” system as illustrated in Figures 1.19 and 1.20. Determine
by phasor methods the sinusoidal steady-state response of the transfer function of
this single-input, single-output system at each of the harmonics of the input signal.
Then pass each sinusoidal component through the system computing the sinusoidal
response by phasor methods and sum in time these responses as illustrated in Figure
1.21 to give the time-domain output of the system. Although this gives (within the
approximation of a finite number of Fourier components) the time-domain output
signal without having to directly solve the differential equations relating the out-
put to the input, there are two important restrictions. (1) In order for this method
to be applicable, the system must be linear because we have used the principle of
superposition. For transmission lines, this essentially means that the terminations
must be linear because the transmission lines are, in general, linear. For example,
if one line is terminated in a diode, then the entire system is nonlinear since this
nonlinear termination is imbedded in, and is therefore a part of, the system. (2) This
also assumes that the system has reached steady state; that is, the transient por-
tion of the response has decayed to essentially zero. Hence if we apply a periodic
waveform to the input as with a digital clock signal, we may have to wait several
cycles (periods) or time constants of the system before we will have reached steady
state.

As an example of this method, consider the low-pass filter in Figure 1.25(a) con-
sisting of a 1-k<2 resistor and a 5-pF capacitor. A trapezoidal digital waveform with
a frequency of 100 MHz (a period of 10 ns), 5 V amplitude, 50% duty cycle, and
1 ns rise/fall times is applied to the input. Figure 1.25(b) shows the exact output
voltage across the capacitor obtained directly in the time domain with PSPICE (see
Appendix B for a brief tutorial on the PSPICE program) using the program
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FIGURE 1.25 An electric circuit example illustrating the use of superposition to combine
the responses to harmonics of the input signal: (a) the circuit, (b) the total response computed
using PSPICE, and (c) the response by combining the responses to harmonics of the input
waveform.
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Output Voltage of Low-Pass Filter for an Input of a
100 MHZ, 5V 50% Duty Cycle, Ins Rise/Fall Time Trapezoidal Pulse Train
Computed Using the Time-Domain to Frequency-Domain Method
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FIGURE 1.25 (Continued)

EXAMPLE

VS 1 0 PULSE(O 5 0 1IN 1IN 4N 10N)
R 1 2 1K

cC 2 0 5P

.TRAN 0.1N 100N O O0.1N

. PROBE

.PRINT TRAN V(2)

.END

Observe that there is a transient time interval at the beginning lasting approximately
five time constants: SRC = 25 ns. Next, we compute the output using the TDFD
method. Since the bandwidth of this signal is on the order of BW =1/t = 1 GHz,
we need to pass frequency components up to 1 GHz through the system. Figure 1.25(c)
shows the result of passing the first 10 harmonics, 100 MHz, 200 MHz, 300 MHz,
400 MHz, 500 MHz, 600 MHz, 700 MHz, 800 MHz, 900 MHz and 1 GHz, through
the system and summing their responses in time using the TDFD method and the
FORTRAN program TIMEFREQ . FOR. Observe that this result shows no transient
interval; it presupposes that steady state has been reached. Observe also that once the
response has reached steady state, the two waveforms are virtually identical.
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The method can also be used to compute the response to a single pulse. The basic
idea is to use a periodic waveform that has the same shape over one period as the
desired single pulse but choose the period sufficiently long (inverse of the repetition
frequency that is chosen sufficiently small) so that the response to the single pulse
has essentially reached steady state before the onset of the next pulse in this periodic
waveform. For a single pulse that starts at a level of O (zero) at t = 0 and ends at a
level of O at some later time, the steady-state response is also 0. Hence we choose
a period that is sufficiently long so that the response has essentially decayed to zero
before the onset of the next pulse. For example, suppose we apply a single pulse again
having a rise/fall time of 1 ns, a pulse width of 5 ns, and a peak level of 5 V to the
low-pass filter in Figure 1.25(a). If we choose the frequency of this periodic waveform
long enough, say 100 ns or a frequency of 10 MHz, as shown in Figure 1.26(a), the
response will probably have reached steady state before the onset of the next pulse
at 100 ns because the time constant of this system is RC = 5 ns. If not, choose a
lower frequency. Note that the duty cycle of this new pulse train in Figure 1.26(a) is
no longer 50%: it is D = 0.05. This insures that there is a sufficient length of time
after the pulse “turns off” to allow the response to settle down to its steady-state value
of 0. Actually, we could choose the duty cycle to be 50% so long as the remaining
time after the pulse has turned off, one-half the period, is much longer than the time
constant of the system. The exact value of the frequency of this new waveform is
not critical; its choice only requires that the system output has reached steady state
before the onset of the next pulse in order to use this method to compute the response
to a single pulse. The exact time-domain PSPICE simulation (for a single pulse) is
obtained with

EXAMPLE

VS 1 0 PWL(0 O IN 5 5N 5 6N 0)
R 1 2 1K

cC 2 0 5P

.TRAN 0.05N 50N O 0.05N

. PROBE

.PRINT TRAN V(2)

.END

Figure 1.26(b) shows the comparison of the responses of the system to this pulse
computed by PSPICE and that computed with the TDFD method using the FORTRAN
program TIMEFREQ . FOR (for a 10-MHz pulse train having the same shape as the
desired pulse but a duty cycle of D = 0.05 or 5 %). The results are virtually identical.

An important advantage of using this method to obtain the time-domain response
of a transmission line as opposed to solving the differential equations directly is that
losses in the line (in the conductors and the surrounding medium) may be easily
incorporated into the frequency-domain transfer function solution and hence into the
final solution. The conductor losses above a certain frequency have a ./ f dependence
due to skin effect [1]. This is quite difficult to incorporate into a direct time-domain
solution, but it is simple to include in a frequency response calculation. When the
terminations are nonlinear, however, we have no choice but to obtain the solution
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FIGURE 1.26 Illustration of using a periodic waveform with a sufficiently long period to
determine the response to a single pulse: (a) the pulse train, (b) computed responses using
PSPICE and the TDFD transformation method.
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directly in the time domain by solving the differential equations. Frequency-dependent
losses then become a very difficult problem to include.

PROBLEMS

1.1 Two perfectly conducting circular plates are separated by a distance d as shown
in Figure P1.1. The plates have very large radii with respect to d (ideally
infinite) so that, in cylindrical coordinates, we may assume a “TEM-mode”
field structure, &(p, 1) = & (p, 1)a; and A (p, t) = H 4(p, t)ag. Define voltage
and current as

Az
Az
z=d
z=10
e
p
FIGURE P1.1

I(p, 1) = 2mp A y(p, 1)

Show, from Maxwell’s equations in cylindrical coordinates, that V and I satisfy
the transmission-line equations

wWip.n) _ _,olp.1)

op ot
M. ) __ V(p.1)
ap ot

where [ and c are static parameters defined by

- 2mp
2mwep
CcC =
d
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Would it be appropriate to classify this as a nonuniform line? Could the mode
of propagation to which these equations apply be classified as a “TEM mode”?

<Y

FIGURE P1.2

1.2 The infinite biconical transmission line consists of two perfectly conducting
cones of half angle 6 as shown in Figure P1.2. Solve Maxwell’s equations
in spherical coordinates for this structure assuming that &(r, 0) = &y (r, 0)ay
and A (r, 0) = A (r, 0)dg. Show that the following definitions of voltage and
current are unique:

T—6h
V(r,t) = /ﬁgrd@

O

2
I(r,t) = /.}f¢rsin(9)d¢>
0

where V and [ satisfy the following transmission-line equations:

av(r, 1) / ol(r, 1)
or ot
ol(r, 1) avV(r, 1)

c
or ot
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Show that

- 0
In (cot h)
2

Would this be classified as a uniform or nonuniform line? Would it be appro-
priate to classify the propagation mode as TEM?

Show that, assuming a TEM field structure, the currents on the two conductors
in Figure 1.5 are equal in magnitude and oppositely directed at any cross
section.

Show that, assuming a TEM field structure, the charge per unit length on one
conductor in Figure 1.5 is equal in magnitude and opposite in sign to the charge
per unit length on the other conductor at any cross section.

Consider the coaxial cable in Figure 1.1(c) consisting of an exterior shield and
an inner wire that is located on the axis of the shield. The dielectric interior
to the shield has a relative permittivity of &, = 2.3. Determine the velocity of
propagation and the one-way time delay on the line, 7p = % /v, for a line of
total length ¥ = 10 m. [50.55 ns]

=
|A] cos B4

-

- N
(@) AeB = |A||B|cos8,p

FIGURE P1.7

Consider the stripline in Figure 1.2(a) consisting of one land between two
infinite ground planes. The dielectric is glass epoxy with &, = 4.7 Determine
the velocity of propagation and the one-way time delay on the line, Tp = £ /v,
for a line of total length ¥ = 101in. [1.84 ns]

The dot product of two vectors is defined as 21 "B= |;\||§|COSGA B, Where
|A| denotes the magnitude (length) of vector A [A.1]. The dot product can
be thought of as the product of the length of one vector and the projection
of the other vector on this vector as illustrated in Figure P1.7. The dot product
gives a scalar as the result. The dot product can be mechanically computed from
A-B= AxBy + AyBy + A;B; [A.1]. For the two vectors A = 3d, + 2ay and
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(b) AeB = |A||B|sin®,; a,

FIGURE P1.8

B =2d, — 5ay, determine the dot product of the two vectors (a) directly and
(b) using the basic definition of the dot product. Repeat for A = 2a, — 3a, and
= 5ay. [—4, 10]

The cross product of two vectors is defined as A x B = |A| |Z3 [sinf4 pdn, where
|A| denotes the magnitude (length) of vector A and an is a unit vector normal or
perpendicular to the plane containing the vectors A and B[A.1]. There are two
sides to this plane, so the unit vector d;, direction is determined according to
the right-hand rule as illustrated in Fig. P1.8. The cross product gives a vector
as the result. The cross product can be mechanically computed from [A.1 ]

A x B=(AyB, — A,B))i, + (A,By — A B,)dy + (A, By — A,B,)i,

For the vectors A = a, and B= Eay, determine the cross product (a) directly
and (b) from the basic definition of the cross product. (Set up a rectangular
coordinate system and use your right hand.) Repeat this for A = dyand B =
Ed,and A = 4, — d, and B = Ea,. [Edy, —Ed,, —Ed, — Ed,]

The divergence of a vector field is given by [A.1]

- 06y 08y 08,
V-6x,y,0)0=—+—+—

(x,y,2) 8x+8y+8z
The divergence of a vector field gives the net outflow of the vector field from
a point and hence locates sources and sinks of the vector field. Determine the
divergence of & = Eoa,. Repeat for & = xd, + ya,. Interpret these results. [0,
x+y]

The curl of a vector field in rectangular coordinates is given by [A.1 ]

- & aéy\ . o0& a8\ . & 065\ -
Vx&= Lo Y)a,+ - —X)a,+ > _ = a
ay 0z 0z ox ’ ox ay
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The curl gives the net circulation of the field much like vortices or eddies in a
river. Determine the curl of & = Eoay. Repeat for é=— yayx + xa,. Interpret
these results. [0, 24,]

Demonstrate that the various components in (1.3) are in the indicated directions.
(Draw a rectangular coordinate system and use your right hand.)

Demonstrate the identity in (1.5), where the gradient is defined as [A.1]
of. of. df.
V 30 = S+ dy
f(x y Z) ax Ax ay Cly 8Z a;
Demonstrate the identity in (1.11).
Demonstrate the result in (1.13).
Show that the general solutions in (1.16) satisfy the equations in (1.15).

Power flow in an electromagnetic field is given by the Poynting vector [A.1]
as

S=6&x#

Show that the forward- and backward-traveling waves in (1.20) give the proper
direction of power flow. (Draw a rectangular coordinate system and use your
right hand.)

Show that (1.25) satisfy the phasor differential equations in (1.24).
Show that (1.34) satisfy the phasor differential equations in (1.32).
Show that the voltage definition in (1.40) reduces as shown.

Derive the transmission-line equations from each of the circuits in Figure P1.20
in the limit as Az — 0. Observe that the total inductance (capacitance) in each
structure is /Az(cAz). This shows that the structure of the per-unit-length equiv-
alent circuit is not important in obtaining the transmission-line equations from
it so long as the total per-unit-length inductance and capacitance is contained
in the structure and we let Az — 0.

Demonstrate the identities in (1.65) and (1.69).
Derive the second-order transmission-line equations in (1.72).

A coaxial cable shown in Figure P1.23 has an interior dielectric that is de-
fined in annuli as &1, o for ryw <r <a and &3, g for a<r <rg. Is this a
uniform transmission line? Is the medium homogeneous or inhomogeneous?
How would you compute the per-unit-length capacitance for this transmission
line? (Recall that capacitors in series add like resistors in parallel and capacitors
in parallel add like resistors in series.)
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FIGURE P1.20

1.24 A stripline shown in Figure P1.24 has a dielectric that is defined in planes of
thickness a and b as €1, o and &3, wg. Is this a uniform transmission line? Is
the medium homogeneous or inhomogeneous? How would you compute the
per-unit-length capacitance for this transmission line? (Recall that capacitors in
series add like resistors in parallel, and capacitors in parallel add like resistors
in series.)

1.25 Demonstrate the relations in (1.81) and (1.85).

1.26 Demonstrate the relations in (1.87).
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1.27 Demonstrate the per-unit-length parameters of the parallel-plate line in (1.102).

1.28 Determine the Fourier coefficients in (1.122) for the square-wave waveform in
Figure P1.28. [¢, = (5/3)(sin(nx/3))/(nx/3)/ — nx/3].

1.29 Determine the Fourier coefficients in (1.122) for the full-wave rectified wave-
form in Figure P1.29. [¢, = 2A/7(1 — 4n2))]
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1.30 Determine the Fourier coefficients in (1.122) for the triangular waveform in
Figure P1.30. [co = (A/2), &, = —(2A/(nm)?) nodd]

1.31 Use MATLAB or PSPICE to recombine the first 10 harmonics of the waveform
in Figure P1.28 to give an approximation to the time-domain waveform.
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FIGURE P1.34
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1.32 Use MATLAB or PSPICE to recombine the first 10 harmonics of the waveform
in Figure P1.29 to give an approximation to the time-domain waveform.

1.33 Use MATLAB or PSPICE to recombine the first 10 harmonics of the waveform
in Figure P1.30 to give an approximation to the time-domain waveform.

1.34 The square-wave current source in Figure P1.34 is applied to the associated
circuit as shown. Determine the resulting output current through the inductor,
i(1), in the form

7
i(t) = Io+ Y _Iy cos(nwot + 6,)

n=1

Use PSPICE and TIMEFREQ.FOR to determine the output current of this
linear system and compare the approximation using a finite number of
Fourier components (seven for TIMEFREQ.FOR) to the exact result (using
PSPICE). [lp =2.5,1 =0.5,0; = —80.96°, I =0, I3 = 0.0562, 63 =
—86.96°,14 = 0, Is = 0.0203, 65 = —88.17°, I = 0, I; = 0.0103, 67 =
—88.7°]
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THE TRANSMISSION-LINE EQUATIONS
FOR TWO-CONDUCTOR LINES

In this chapter, we will show the derivation of the transmission-line equations for two-
conductor lines from two points of view. First, they will be derived from the integral
form of Maxwell’s equations, and second they will be derived from the per-unit-
length distributed parameter equivalent circuit. Both methods allow the incorporation
of conductor losses. In Chapter 3, we will repeat this for a general (n + 1)-conductor
multiconductor transmission line (MTL). The process will be identical to that for
a two-conductor line, but the details will be a bit more tedious. Nevertheless, the
transmission-line equations for an MTL, written using matrix notation, will be iden-
tical in form to those for a two-conductor line.

2.1 DERIVATION OF THE TRANSMISSION-LINE EQUATIONS
FROM THE INTEGRAL FORM OF MAXWELL’S EQUATIONS

Recall Faraday’s law in integral form [A.1,A.6]:

5 o d [ -

E-dl=—pu— | #-d 2.1
j{ “d:/ s 2.1
c N

This is illustrated in Figure 2.1. The differential path length around the closed contour
c that bounds the open surface s is denoted by d!/. A differential surface area of surface

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.
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xy

Oy

Surface s

FIGURE 2.1 Illustration of the relation of the contour and surface in Faraday’s law.

s is denoted by ds = ds ay, where dj, is a unit normal to the surface. The direction of
the contour ¢ and the normal to the open surface it surrounds are related in Faraday’s
law by the right-hand rule [A.1,A.6]. In other words, if we place the fingers of our
right hand in the direction of ¢, the thumb will point in the direction of a,, which
gives the direction “out of this open surface.”

Figure 2.2(a) shows a general two-conductor line. We have shown an open surface
s between the two conductors that is uniform in cross section along the longitudinal
or z direction, which is the axis of the line. (The surface is considered to be flat for
simplicity as illustrated in Figure 2.2(b), although any open surface will yield the
same result so long as its cross section in the z or longitudinal direction is uniform,
that is, independent of z.) The surface is bounded by the closed contour c¢. Writing
Faraday’s law around this contour yields

da b b a

o - - - - - . - d -
/gt~dl+/£1-dl+/£t~dl+/£’1-dlzua/%t-ands 2.2)
a a b b s

where ;ﬂ denotes the transverse electric field (in the x—y cross-sectional plane) and
&) denotes the longitudinal or z-directed electric field (along the surfaces of the
conductors). Observe that in Figure 2.2 the unit normal to this surface, a,, is opposite
the direction for Faraday’s law since the contour c is defined in the clockwise direction,
and hence the minus sign on the right-hand side of (2.1) is absent here. Here, we are
including losses of the conductors as an approximation in that this longitudinal electric
field produced along the conductor surfaces by the imperfect conductors is assumed
not to significantly perturb the field structure from a transverse electromagnetic (TEM)
one. As discussed in Chapter 1, the assumption of a TEM field structure allows us
to uniquely define a voltage between the top conductor and the bottom conductor
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7

Surface s

(b)

FIGURE 2.2 Definition of the contour ¢ and associated surface s for derivation of the first
transmission-line equation: (a) longitudinal view (along the z line axis) and (b) in the transverse
x—y plane looking in the direction of increasing z.

(positive at the top conductor) as

/
a

V(z,t) = _/%t()ﬁ v, z,0) - dl (2.32)
a
Y

V(z+ Az, t) = —/%t(x, v, 2+ Az, 1) -dl (2.3b)
b

To allow for imperfect conductors, we define the per-unit-length conductor resistance
of each conductor as r; /m and rg 2/m. Thus,

q

-

dl = —ry Az I(z, 1) (2.4a)

- / &1-dl = —rg AzI1(z, 1) (2.4b)
b
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FIGURE 2.3 Illustration of the definitions of the contour ¢ and surface s for determining
the first transmission-line equation from Faraday’s law, and the definitions of the contour ¢’
and surface s’ for determining the second transmission-line equation from the equation of
conservation of charge.

where, along the conductors, (g‘)l =&, a, and dl = dz a. As discussed in Chapter
1, the current is uniquely defined for a TEM field structure as

I(z,1) = f{ Hy-dl 2.5)

and contour ¢’ is a contour just off the surface of and encircling the top conductor in
the transverse plane as shown in Figure 2.3. Hence, (2.2) becomes

d [ -
Vi, ) +r Az Iz, )+ V(z+ Az, t) +roAz 1(z, 1) = o / H'i - an ds
s (2.6)
Dividing both sides by Az and rearranging gives

Vz+Az,0= V(0
Az -

1 d -
—rll(z,r)—rouz,z)wA—Za/yft.ands 2.7
S
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As shown in Chapter 1, the magnetic flux penetrating the surface per unit of line
length is, as shown in Figure 2.3,

Y =—p lim /%”t G ds

Az%O AZ

I 1(z,1) (2.8)

where / is the per-unit-length inductance. Observe that a minus sign is required here
because of the relative directions of #; and the normal to the surface, a,, as shown in
Figure 2.3. Taking the limit of (2.7) as Az — 0 and substituting (2.8) yields the first
transmission-line equation:

AL 0l
9. = rl(z,t) li&t (2.9)

The total per-unit-length resistance of a Az section of the line is the sum of the per-
unit-length resistances of each conductor, r; and ry, and we denote this total resistance
asr =ry +ro.

In order to derive the second transmission-line equation, consider placing a
closed surface s” around the top conductor and just off that conductor as shown in
Figure 2.4. This is the same surface used to define current in (2.5). The portion
of the surface over the end caps is denoted as s, whereas the portion over the
sides is denoted as s}. Recall the continuity equation or equation of conservation of
charge [A.1]:

- - d
#j.d/:_dtgenc (2.10)
S/
Over the end caps, we have
// Jds =1z + Az, 1) — 1(z, 1) 2.11)

/
Se

Over the sides of the surface, there are two_currents_penetrating it: a conduction
current S, = o &y and a displacement current 93 = £(96/dt), where the surrounding
homogeneous medium is characterized by conductivity o and permittivity . These
notions can be extended to an inhomogeneous medium surrounding the conductors in
a similar but approximate manner. This is an approximation since an inhomogeneous
medium, uniform along the line or not, invalidates the TEM field structure assumption,
which requires that all waves propagate with the same velocity. A portion of the left-
hand side of (2.10) contains the transverse conduction current flowing between the
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Viz, 1) @ V(z+ Az 1)

)

FIGURE 2.4 Definition of the contour ¢’ and surface s" for derivation of the second MTL
equation: (a) longitudinal view (along the z line axis) and (b) in the transverse x—y plane looking
in the direction of increasing z.

//,}fc-d§=o//%t~d? (2.12)

7 ’
Ss Ss

conductors:

This can again be considered by defining a per-unit-length conductance, g S/m, be-
tween the two conductors as the ratio of conduction current flowing between the two
conductors in the transverse plane to the voltage between the two conductors (see
Figure 2.4(b)). Therefore,

1 - -

Vz,) =0 lim — & - ds' 2.13

gViz, 1) UAZH_I)IOAZ//tS (2.13)
5§
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Similarly, the charge enclosed by the surface (residing on the conductor surface) is,

by Gauss’ law,
Oenc = 5// & - ds' (2.14)
5§

The charge per unit of line length can be defined in terms of the per-unit-length
capacitance c between the conductors as

cViz,t)y=z¢ llm //é”} ds (2.15)

Substituting (2.11), (2.12), and (2.14) into (2.10) and dividing both sides by Az gives

I Az, t)— I(z,t 1 2 7
(z+ Az, 1) (z )+a—//£t~ds/ _Eif//g’t ds’ (2.16)
Az Az Az dt
5

Taking the limit as Az — 0 and substituting (2.13) and (2.15) yields the second
transmission-line equation:

al(z, 1) V@) —c aV(z,t)

= 2.17
0z ot ( )

2.2 DERIVATION OF THE TRANSMISSION-LINE EQUATIONS
FROM THE PER-UNIT-LENGTH EQUIVALENT CIRCUIT

The per-unit-length equivalent circuit for a section of line of length Az is shown in
Figure 2.5. Writing Kirchhoff’s voltage law (KVL) around the loop gives

ol (z, 1)

V(iz+ Az,t) = V(z,t) = —rAzI(z,t) — Az ”

(2.18)

Dividing both sides by Az and taking the limit as Az — 0 yields the first transmission-
line equation:

v (z, 1) ol (z, 1)
=—-rl(z,t)—1 2.19
oz rien =iy (19
Writing Kirchhoff’s current law (KCL) at the upper node gives
WV (z+ Az, t
I(z+ Az, 1) —I(z,1) = —gAzV (z+ Az, 1) — cAz ¥ (2.20)

ot
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FIGURE 2.5 The per-unit-length equivalent circuit for derivation of the transmission-line
equations.

Dividing both sides by Az and taking the limit as Az — 0 yields the second
transmission-line equation:

Az, 1) Wz 1)
— —gV(z 1) —
oz gV ) —e—y

221

2.3 PROPERTIES OF THE PER-UNIT-LENGTH PARAMETERS

The per-unit-length parameters of inductance, /, capacitance, ¢, and conductance, g,
were obtained in Chapter 1 under the assumptions of (1) perfect line conductors and
(2) a homogeneous surrounding medium. The per-unit-length inductance is the ratio
of the magnetic flux per unit of line length penetrating the loop between the two wires,
Y, and the current on the wires as

= (2.222)

4
I
The per-unit-length capacitance is the ratio of the per-unit-length charge distribution
on the conductors, ¢, and the voltage between the two conductors as

q
c== 2.22b
v ( )
The per-unit-length conductance is the ratio of the current through the surrounding
dielectric and flowing from one conductor to the other in the transverse plane, J;, and
the voltage between the two conductors as

Ji
\%

8= (2.22¢)
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These parameters are related, for a homogeneous medium, as shown in Chapter 1,
as

lc = ue (2.23a)

gl=opun (2.23b)
§_2 (2.23¢)
c ¢

It was assumed that the parameters of the surrounding homogeneous medium, per-
meability w, permittivity &, and conductivity o, are constants. Numerical methods
for obtaining the per-unit-length parameters of /, ¢, and g for an inhomogeneous
surrounding medium will be obtained in Chapter 5.

2.4 INCORPORATING FREQUENCY-DEPENDENT LOSSES

As will be discussed in more detail in Chapter 4, these per-unit-length parameters
will, in general, be frequency dependent and will depend to varying degrees on the
frequency of excitation of the line, ® = 2xf, which are denoted as I (»), ¢ (w), g (w),
and r(w). For perfect conductors, the line currents will reside on the surfaces of
those conductors and therefore » = 0. For imperfect conductors, the currents will
be uniformly distributed over the conductor cross sections at low frequencies, but
at higher frequencies will, because of skin effect, migrate toward the surfaces of
the conductors lying in a thickness on the order of a skin depth, § = 1/4/7fuoe,
where ;& = g is the permeability of the conductor material and o is its conductivity.
This results in the per-unit-length resistances being a function of frequency, r(w).
As the frequency of excitation of the line increases, the resistance will increase at a
rate of /. Similarly, some of the magnetic flux will lie internal to the conductors
giving a per-unit-length internal inductance that is also frequency dependent, /; (w).
As the frequency of excitation increases and the currents migrate to the conductor
surfaces, this internal inductance due to magnetic flux internal to the conductors will
decrease at a rate of 4/ f eventually going to zero as the frequency increases without
bound. Hence, the total per-unit-length inductance will be the sum of this frequency-
dependent internal inductance and the external inductance due to the magnetic flux
external to the conductors, /e, as [ =l + /i (w). The per-unit-length inductance /
discussed in Chapter 1 and given in (2.22a) is essentially this external inductance /.,
which is obtained as f — oo, that is, for perfect line conductors. We will henceforth
denote /. simply as I.

Similarly, the medium surrounding the conductors has an effective conductivity
that is primarily due to bound charge in the dielectric and is frequency dependent,
oeff (w). Hence, the per-unit-length conductance will be frequency dependent, g (w).
The relative permittivity of many dielectrics, & (f), is not constant but is (mildly)
a function of frequency decreasing with increasing frequency. Hence, the per-unit-
length capacitance will be a (mild) function of frequency, ¢ (w).
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It is much easier to include these frequency-dependent per-unit-length parameters
when the transmission-line equations are written in phasor form in the frequency
domain. Transforming the time-domain transmission-line equations with the Fourier
transform yields the frequency-domain transmission-line equations. These may be

obtained by simply replacing % — jow to give

%ZZ"") = —[r@+ joli@] 1 o)~ jollE w)
 wice (2.24a)
dl(d;z’w) = —g@V(z 0 - joc@ V()

= -3 () V(z, 0) (2.24b)
where the per-unit-length impedance and admittance, respectively, are

2(w) = [r) + joli ()] + jo (2.25a)

Zi

() =g+ jo c() (2.25b)

and 2; () = [r(w) + jol (w)] is the per-unit-length internal impedance of the con-
ductors. The fact that the per-unit-length parameters are generally functions of fre-
quency presents no problems in the solution of these frequency-domain versions of the
transmission-line equations. These equations are solvable at each frequency by evalu-
ating the per-unit-length parameters at that frequency and including them as constants
at that frequency. In the time domain, Eqs. (2.24) become convolutions [A.2,A.5]:

av;j’ D il
t
= —/z () 1(z,t—1)dt (2.26a)
0
81;2’ D eV
t
= —/y () V(z,t —1)dr (2.26b)
0

where * denotes convolution, and z (t) and y (¢) are the time-domain inverse Fourier
transforms of Z (w) and y(w):

Z(@) &z () (2.27a)
V() & y(@) (2.27b)
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Hence, frequency-dependent per-unit-length parameters can be easily included in the
frequency-domain transmission-line equations, but their inclusion in the time-domain
transmission-line equations presents significant computational problems because of
the requirement to (1) obtain the time-domain per-unit-length parameters from the
frequency-domain parameters and (2) perform the required convolution.

2.4.1 Properties of the Frequency-Domain Per-Unit-Length Impedance 2Z(w)
and Admittance y(w)

The frequency-domain per-unit-length impedance parameter Z (w) and admittance
parameter ) (w) cannot be specified arbitrarily. To show this, we first investigate
the general properties of the Fourier transform (integral). The Fourier transform
relates the frequency-domain function to the corresponding time-domain function
as [1, 2]

F(w)= / f(t) e I ar (2.28)

Substituting Euler’s identity

e’ = cos () + jsin(9) (2.29)
into (2.28) yields
F(o) = / £ () cos (wr) dt — j / f (0) sin (wt) dt (2.30)

Hence, the Fourier transform can be written as the sum of a real part Fr () and an
imaginary part F1 (@) as

F(w) = Fr (@) + jFi(0) (2.31)

where FRr (w) and Fj () are real functions of w = 2xf and f'is the cyclic frequency,
and the real and imaginary parts are given by

R (w) = / f(@cos(wt)dt (2.32a)

and

Fi(w) = — / £ @)sin (w?)dt (2.32b)
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If f(¢) is a real-valued function of ¢, then the Fourier transform must satisfy
F(~w) = F* (w) (2.33)

where the * superscript denotes the complex conjugate. To prove this, substitute
= — winto (2.30) and use the trigonometric properties cos (—w t) = cos (wt) and
sin (—wt) = —sin (wt). Hence, for f (¢) that are real-time functions, the real and imag-
inary parts of the Fourier transform are related as

Fr () = FR () (2.342)
and

F(0) = —F(-w) (2.34b)
so that for real f(¢) the real part of the Fourier transform must be an even function of

w and the imaginary part must be an odd function of w. The inverse Fourier transform
is [1, 2]

f@) = RS / F(w) e’ dw (2.35)
2
If F(—w) = F* (w), then
V. 17 »
f@= —/F(w)e-"‘”da)—i— — /F(—a))e IO dgy
2 2
0 0

%/[FR (w)cos(wt) — F1 (w)sin (wt)] dw
0

o
1 R .
= fRe/F () e’ dw (2.36)
i
0

and we have used the complex algebra property that C + C* = 2Re[C]. Therefore,
the necessary and sufficient condition for f(¢) to be a real function of ¢ is that the
Fourier transform satisfy (2.33) and therefore (2.34). Hence, the Fourier transforms
of the per-unit-length impedance and admittance parameters must satisfy

5 (—w) = 5* (w) (2.37a)

y (o) = 3" (w) (2.37b)



INCORPORATING FREQUENCY-DEPENDENT LOSSES 83

or, equivalently,

7R (@) = zr (—w) (2.38a)

71 (w) = —z1 (—w) (2.38b)
and

YR (@) = YR (—w) (2.39a)

(@) ==y (—w) (2.39b)

Hence, the real parts of Z (w) and y (w) must be even functions of w and the imaginary
parts must be odd functions of w.

These general properties of the Fourier transform can also be used to show that the
real and imaginary parts of the Fourier transform of the per-unit-length parameters
in (2.25) cannot be specified independently but are related [1-3]. First, consider the
general single-input, single-output linear system characterized by its time-domain
impulse response, 4(f). The input is denoted by x (), and the output is denoted by
v (¢). The output may be obtained in the time domain with the convolution integral as

y (@) =h(0)*x(1)

t

= /h(t—r)x(r)dr
0

t

- / h(t)x(t — 1) de (2.40)

0

These forms of the convolution integral are valid for x (f) = 0 forr <Oand 2 (1) =0
for t < 0. The impulse response # () is the response for a unit impulse input x (¢) =
8 (¢) as y (t) = h (t). We assume that the system is causal, that is,

h(t)y=0, t<0 (2.41)

which means that we cannot have an output response before the input is applied.
Causality is obviously a general requirement for all physical systems and also applies
to z(¢) and y(¢) in (2.26) and (2.27). It can be shown that for a causal h(t), the real
and imaginary parts of its transform are Hilbert transform pairs and must be related
as [1-3]

17 OH (o
Hi (@) = — (wl_(a;})da)’ (2.422)

—0o0
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and
o0
1 HR (o
Hi (o) = — — He (@) (2.42b)
T (w— )
—00
where the Fourier transform of A(¢) is
H(w) = Hr (0) + j H () (2.43)

and HR (w) and Hi (w) are real valued. Hence, we conclude that, in order to satisfy
causality, the real and imaginary parts of the per-unit-length impedance and admit-
tance parameters in (2.25) must be related as in (2.42). Similar relations exist between
the magnitude and phase of H (w) = H(w) L0 (w):

o0
1L [o() |
In|H (w)| = — — dw (2.44a)
T w—w
—0Q
o0
1 In |H (a)/)’ ,
0 (@=—— | — gy (2.44b)
T w—w
—0Q

17 H (o) 1T H (o)
HR(a))zf/ /dw’+f/ - do’
1) w—w T w—w
0 —00
o o0
= l/HI (a)/? do 1 /HI (—a)/) do
T w—w T w+ o
0 0
o
/H /
_ % / ‘:)2 1(32) de (2.452)
0
and
17 He (o) L' H (o)
Hi(w)=—— /dw’—f/ = do
1) w—w s w—w
—00

2w / H (o) (2.45b)
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where we have made the assumption that (¢) is a real-valued function of ¢ and have
therefore substituted the relations in (2.34):

Hg (0) = HRr (—o) (2.46a)

and
Hi(w) = —Hj (—w) (2.46b)

The results in (2.42) and (2.45) assume that 4 (¢) contains no impulses at t = 0 and
hence assumes that H (w) — 0 as w — oo. If the real part approaches a finite, nonzero

constant as w — 00, Hg (00), then (2.45) can be written
o

2 [ o H (w’) ,
H () = Hg (00) + = / LAY do (2.47a)
T a)z J— (,()/

0

and

Hi(w) = — — 0 do’ (2.47b)

w

20 7 [Hy (') — Hg (00)]

w
0

These important relations in (2.47) between the real and imaginary parts of the
Fourier transform of a real and causal time function A (¢) are also known as the
Kronig—Kramers relations [3]. These will be useful in relating the real and imaginary
parts of the complex permittivity of a lossy dielectric in Chapter 4.

PROBLEMS

2.1 Demonstrate the result in (2.6).
2.2 Demonstrate the result in (2.16).

2.3 Derive the transmission-line equations from each of the circuits in Figure P2.3
in the limit as Az — 0. Observe that the total inductance (capacitance) in each
structure is /Az(cAz). This shows that the structure of the per-unit-length equiv-
alent circuit is not important in obtaining the transmission-line equations from
it so long as the total per-unit-length inductance and capacitance are contained
in the structure and we let Az — 0.

2.4 Evaluate the convolution integral

t=4s
/ f@I(z,t —1)dr
0

for the functions in Figure P2.4. [(5/3) x 1073 V]
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I(z,1) rAz Az I(z+ Az, 1)
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+
V(Z, ) V(Z+ Az, t)
- Az »>
(@
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+
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Evaluate the convolution integral

t=1ns

f@It—1)dr

for the functions in Figure P2.5. [3.8 1 V]

FON Y I(z,1) A

2A

» »

t(ns) YV(S )

FIGURE P2.5

Demonstrate the result in (2.33).

Demonstrate the result in (2.36).

Demonstrate the result in (2.44).

Show that if a transform F(w) contains w only as the product with j = /—1,
that is, j w, then the transform represents a real-valued time function f ().
Show that if a transform ¥ (w) contains w only as \/w (1 + j), then the transform
represents a real-valued time function f (¢). [Hint: Use the complex-variable
identity v/jo = (Vo/v2)(1+ j).]

Show that F (w) = M A/ jw represents a causal time function f(¢). [Hint: Use the
complex-variable identity /jo = (ﬂ/ ﬁ) (1 + ), the results of Problem
2.10, and Eq. (2.45b).]

Suppose that the real part of A (w) is a unit impulse (in frequency) centered at the
origin, w = 0, defined by Hg(w) = 6(w). Determine and sketch the imaginary
part of H(w) in order that the time-domain function A(?) is causal. [H;(w) =
—1/(rw)]

Suppose that the real part of H(w) is defined by Hg(w) = 1 for =W < w < W,
and is zero elsewhere, i.e., Hg(w) = 0 for < —W for w > W. Determine and
sketch the imaginary part of H(w) in order that the time-domain function /()
is causal. [Hi(w) = (1/7) In [(w—W)/(w + W)]]
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3

THE TRANSMISSION-LINE EQUATIONS
FOR MULTICONDUCTOR LINES

In Chapter 1, we discussed the general properties of all transmission-line equation
characterizations. The transverse electromagnetic (TEM) field structure and associ-
ated mode of propagation is the fundamental, underlying assumption in the repre-
sentation of a transmission-line structure with the transmission-line equations. These
were developed in the previous chapter for two-conductor lines. In this chapter, we
will extend those notions to multiconductor transmission lines (MTLs) consisting of
n + 1 conductors.

The development and derivation of the MTL equations parallel the developments
for two-conductor lines considered in the previous chapter. In fact, the developed MTL
equations have, using matrix notation, a form identical to those equations. There are
some new concepts concerning the important per-unit-length parameters that contain
the cross-sectional dimensions of the particular line.

3.1 DERIVATION OF THE MULTICONDUCTOR TRANSMISSION-LINE
EQUATIONS FROM THE INTEGRAL FORM OF MAXWELL’S
EQUATIONS

Figure 3.1 shows the general (n + 1)-conductor line to be considered. It consists of n
conductors and a reference conductor (denoted as the zeroth conductor) to which the n
line voltages will be referenced. This choice of the reference conductor is not unique.
Applying Faraday’s law to the contour ¢; that encloses surface s; shown between the

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.
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= 6>
(=
-

ds
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s

a n b
-—Y ]
Reference conductor

N o———
N

+_
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N

y

FIGURE 3.1 [Illustration of the contour ¢; and associated surface s; for the derivation of the
first transmission-line equation for the ith circuit.

reference conductor and the ith conductor gives

da b b a

> > - N - N - N d -
/gt-d1+/@@1-d1+/§t.d1+/@ﬂ.dl=ME/%t.ands 3.1)
a a b b Si

wher_g:, again, & ¢ denotes the transverse electric field (in the x—y cross-sectional plane)
and & denotes the longitudinal or z-directed electric field (along the surfaces of the
conductors). Observe, once again, that because of the choice of the direction of the
contour, the direction of @, (out of the page), and the right-hand rule, the minus sign
on the right-hand side of Faraday’s law is absent in (3.1). Once again, because of the
assumption of a TEM field structure, we may uniquely define a voltage between the
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ith conductor and the reference conductor (positive on the ith conductor) as

/
a

Viz, 1) = —/%t(x, y,z,1)-dl (3.22)
a
Y

Vi + Azt = / i,y 2+ Az n) - di (3.2b)
b

We again define the per-unit-length conductor resistances as r; £2/m, and the per-unit-
length resistance of the reference conductor is denoted as rg €2/m. Thus,

Y
—/%“1 cdl = —riAzli(z, 1) (3.32)
’
a n
—/;@1 cdl = —roAZZIk(z, 7) (3.3b)
b k=1

The current of the ith conductor is

Ii(z, 1) = 7{}'/, dTl (3.4)
G

where the contour ¢; surrounds the ith conductor just off its surface. For the TEM
field structure assumption it can be shown, as was the case for two-conductor lines,
that the sum of the currents on all n 4 1 conductors in the z direction at any cross
section is zero. This is the basis for saying that the currents of the n conductors return
through the reference conductor. Substituting into (1) yields

Vi1 ATl )+ Vile Az D)+ roAe o) = 1 & [ s
k=1

’ (35)
Dividing both sides by Az and rearranging gives

Vilz+ Az, t) — Vi(z, t)
Az

—roly —rola — -+ —(ro+r)li — -+ —roly

+MA7%/W1 ands (36)

Before taking the limit as Az — 0, let us make some observations similar to the
case of two-conductor lines. Clearly, the total magnetic flux penetrating the surface
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In
@1 O

A

L
y

FIGURE 3.2 Cross-sectional illustration of the contour ¢; and associated surface s; for the
derivation of the first transmission-line equation for the ith circuit.

s; in Figure 3.1 will be a linear combination of the fluxes due to the currents on all
the conductors. Consider a cross-sectional view of the line looking in the direction
of increasing z shown in Figure 3.2. The currents of the n conductors are implicitly
defined in the positive z direction according to (3.4) since the contour ¢; surrounding
the ith conductor is defined in the clockwise direction. Therefore, the magnetic fluxes
due to the currents of the n conductors will also be in the clockwise direction looking
in the direction of increasing z. The per-unit-length magnetic flux y; penetrating the
surface s; between the reference conductor and the ith conductor is therefore defined
to be in this clockwise direction when looking in the direction of increasing z as shown
in Figure 3.2. Therefore, this per-unit-length magnetic flux penetrating surface si can
be written as

Y = —p lim /th dnds

Az—0 AZ
=lhlh+lph+ -+l + - + 11, 3.7

Observe that a minus sign is again required in this flux expression. This is because
the direction of the required flux, v;, and the defined unit normal to the surface, dp,
are in opposite directions. The /;; term is the per-unit-length self-inductance of the ith
circuit or loop, and the /;; terms are the per-unit-length mutual inductances between
this ith circuit and the jth circuit. Taking the limit of (3.6) as Az — 0 and substituting
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(3.7) yields

aVi(z, t
% = —roli(z, ) —rola(z, 1) — -+ = (ro +ri)li(z, 1) — -
(z,1)  Bh(z, 1) iz, 1)
—roln(z, ) =l —— = —lp == = =l
0ln(z, 1)
I "at (3.8)

This first MTL equation can be written in a compact form using matrix notation
as

d a
P V(z,t) = —RI(z,t) — L P I(z, 1) (3.9)

where the n x 1 voltage and current vectors are defined as

[ Vi(z, 1)
V(z, t) = Vi(%, 1) (3.10a)

_Vn(%, 1)

rli(z, 1)

10 = | Iz (3.10b)

L In(%, 1)
The per-unit-length inductance matrix is defined from (3.7) as

v =LI (3.11a)
where W is an n X 1 vector containing the total magnetic fluxes per unit length, ¥;,

penetrating the ith circuit, which is the surface defined between the ith conductor and
the reference conductor:

Y1
v |y (3.11b)

U
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The flux through the circuit (loop), ¥, is directed in the clockwise direction when
looking in the 4z direction (see Figure 3.2). The per-unit-length inductance matrix
L contains the individual per-unit-length self-inductances, /;;, of the circuits and the
per-unit-length mutual inductances between the circuits, /;;. In Section 3.5, L will be
shown to be a symmetric matrix as

h ha - g
oy o - Dy

L=|. 7 . (3.11¢)
lln lZn lnn

Similarly, from (3.8) we define the per-unit-length resistance matrix as

[(r1 +ro) ro )
ro (ro+ro) - ro
R = . . . .
L 1o ) I (T V)]
rrp 0 --- 0 ro ro -+ 1o
O r ... 0 ro 1o Ce 1o
= | . . . R I o . . . 3.12)
Lo 0 - 7 ro 1o - ro

Observe that this first transmission-line equation given in (3.9) is identical in form to
the scalar first transmission-line equation for a two-conductor line given in (2.9) and
(2.19) of Chapter 2.

This per-unit-length resistance matrix in (3.12) has a nice form but is restricted
to reference conductors that are finite-sized conductors such as wires. In the case
of a reference conductor being a large ground plane, each current returning in the
ground plane will be concentrated beneath the “going down” conductor as illustrated
in Figure 3.3. These currents spread out in the ground plane and cause the per-unit-

FIGURE 3.3 [Illustration of “current spreading” in a ground plane and the principle that the
return currents will concentrate beneath the associated “going-down” conductor.



DERIVATION OF THE MULTICONDUCTOR TRANSMISSION-LINE 95

length resistance matrix to be of the form

=
0

0

ri2

I'ln
0
mn

0

r(r1 +r11) 2

(r2 +122)
2n
0 r
O r2
+
'n I'ln

(rn

r12
22

2n

'in
2n
+ Fun)
I'ln
r
" (3.13)
Tnn

where r;; are due to the resistance of the ground plane and are generally not equal.
In order to derive the second MTL equation, we place a closed surface s” around

the ith conductor as shown in Figure 3.4. The portion of the surface over the end

caps is denoted as s., whereas the portion over the sides is denoted as s. Recall the

)

surface s’

C
=

Vi(z, )

&

-~
|

e
Wy : (@S

Vi(z + Az, 1)

C

Reference conductor

O]

|
|
)
r4

z+ Az

FIGURE 3.4 TIllustration of the contour c; and associated surface s; for the derivation of the
second transmission-line equation for the ith conductor.
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continuity equation or equation of conservation of charge:

1

- d
# /ds' = — ar Oenc (3.14)

s/

Over the end caps, we have

/ / T di = e+ Az, 1) — Lz, 1) (3.15)

Se

Over the sides of the surface, there are again two currents: a conduction current 5, =
o

- ) - 08y .
o0&y, and displacement current Sq = ¢ R where the surrounding homogeneous

medium is characterized by conductivity o and permittivity €. Again, these notions
can be extended to an inhomogeneous medium surrounding the conductors in a similar
manner. A portion of the left-hand side of (3.14) contains the transverse conduction
current flowing between the conductors:

//3C~d§’=a//<?t-d§’ (3.16)

/
st s

This can again be considered by defining per-unit-length conductances g;;j S/m
between each pair of conductors as the ratio of conduction current flowing between
the two conductors in the transverse plane to the voltage between the two conductors.
Therefore, as illustrated in Figure 3.5(a),

e
o dim o [ [ 6y = gn V=V Vi g (V= V)
Az—0 Az

J

n
= —guVi(z. ) — gaVa@. ) — -+ + > _gaVi(z. 1)
k=1
— —8&inVu(z, 1) 3.17)

Similarly, the charge enclosed by the surface (residing on the conductor surface) is,

by Gauss’ law,
Qenc zs// &, - ds (3.18)
s

The charge per unit of line length can be defined in terms of the per-unit-length
capacitances c;j between each pair of conductors. Therefore, as illustrated in
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@
@
VY

(b)

FIGURE 3.5 Cross-sectional illustration of (a) the contour c; and associated surface s; for the
derivation of the second transmission-line equation for the ith conductor and (b) the equivalent
per-unit-length conductances and capacitances.
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Figure 3.5(a),

¢ lim —//c?t ds’ =cii(Vi—=VD+ - +ciiVi+ - +cin(Vi = V)
Az—0 A

5

=—cyVi(z, 1) —cpValz, ) — -+ + Zcik\/i(z, 1)

k=1
— o —cinVu(z, 0 (3.19)

These concepts are illustrated in cross section in Figure 3.5(b). Substituting (3.15),
(3.16), and (3.18) into (3.14) and dividing both sides by Az gives
li(z+ Az, 1) — Ii(z, 1)

i 1 2 -
~ | Eds=——2L [ [ .a5 (320
Az +0Az//t $EF zdt//t G2
g

Taking the limit as Az — 0 and substituting (3.17) and (3.19) ylelds

ali(z, 1)
0z

n
= guViz. )+ -

k=1

=guViz, )+ gnVolz, ) + - -

0 0
+8inVa(z, ) +cit % Vi(z, ) +ciz % Va(z, ) + - -

d
—chk Vi D)+ - Cin - Valz) (3.21)

Equations (3.21) can be placed in compact form with matrix notation giving

3 Iz, 1) = -GV(z,1) — C 3 V(z,1) (3.22)
0z ot

where V and I are defined by (3.10). The per-unit-length conductance matrix G rep-
resents the conduction current flowing between the conductors in the transverse plane
and is defined from (3.17) as

- n -
Zglk —812 -+ —8ln
k=1
n
—812 Z&k —82n
G = =l (3.23)
n :
—8ln —82n Zgnk
- k=1
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The per-unit-length capacitance matrix,C, represents the displacement current flow-
ing between the conductors in the transverse plane and is defined from (3.19) as

- n
dew —en o —cn
k=1

n
—C12 C2k te —C2
C= ,; " (3.24)

n

—Cln —C2n T chk
L =1 A
As will be shown in Section 3.5, both G and C are symmetric. Again observe that
(3.22) is the matrix counterpart to the scalar second transmission-line equation for
two-conductor lines given in (2.17) and (2.21) in Chapter 2. If we denote the total
charge on the ith conductor per unit of line length as ¢g;, then the fundamental definition
of Cis

Q=CYV (3.25a)
where Q is the n x 1 vector of the total per-unit-length charges
q1
Q=14 (3.25b)
qn
and V is given by (3.10a). Similarly, the fundamental definition of G is Iy = GV,
where I; is the n x 1 vector containing the transverse conduction currents between
the conductors per unit of line length.
The above per-unit-length parameter matrices once again contain all the

cross-sectional dimension information that distinguishes one MTL structure from
another.

3.2 DERIVATION OF THE MULTICONDUCTOR TRANSMISSION-LINE
EQUATIONS FROM THE PER-UNIT-LENGTH EQUIVALENT CIRCUIT

As an alternative method, we derive the MTL equations from the per-unit-length
equivalent circuit shown in Figure 3.6. Writing Kirchhoff’s voltage law around the
ith circuit consisting of the ith conductor and the reference conductor yields
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1”(2,1‘) rnAz lnnAz [n(Z+ AZ,I)
»-0
Ij(z+ Azt)
: 4 . 2 >0
+
Vj(z+ Az t)
I{z+ Az 1)
nY n Y >
D > >
Viz+ Az 1)
gilz § c;;Az == g./f/'AZ§ = ¢;Az
roAz
e—AAN 3 ’ . ® — <o
n
n
S 1) S Lz+ Azt
P B k=1

FIGURE 3.6 The per-unit-length equivalent circuit for derivation of the transmission-line
equations.

n
al(z, t
—Vilz, t) + rilAzli(z, 1) + Vi(z + Az, t) + V()AZZ[k(Z, 1) = —Ilj1 Az 1z )
k=1
ol (z,t dali(z,t ol,(z,t
—lpAz 22(# ) _ - = liiAz l;t ) _ v —lipAz Iz, 1) (3.26a)

Dividing both sides by Az and taking the limit as Az — 0 once again yields the first
transmission-line equation given in (3.8) with the collection for all i given in matrix
form in (3.9).

Similarly, the second MTL equation can be obtained by applying Kirchhoff’s
current law to the ith conductor in the per-unit-length equivalent circuit in Figure 3.6
to yield

Li(z+ Az, t) = Ii(z,t) = —gn Az (V; = V1) — -+ — giiAzV; — - --
d 0
_ginAZ(Vi_Vn)_CilAZ&(Vi_Vl)_ _CiiAZ&Vi_

0]
—cCinAz &(‘/I — V) (3.26b)
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Dividing both sides by Az, taking the limit as Az — 0, and collecting terms once
again yields the second transmission-line equation given in (3.21) with the collection
for all i given in matrix form in (3.22).

3.3 SUMMARY OF THE MTL EQUATIONS

In summary, the MTL equations are given by the collection

0 0
—V(z,t) = —RI(z,1) =L —I(z, 1) (3.27a)
0z ot

ad d
—I(z,) = -G V(z,)) —C = V(z,1) (3.27b)
0z ot

The structures of the per-unit-length resistance matrix Rin (3.12) or (3.13), inductance
matrix Lin (3.11c¢), conductance matrix G in (3.23), and capacitance matrix Cin (3.24)
are very important as are the definitions of the per-unit-length entries in those matrices.
The precise definitions of these elements are rather intuitive and lead to many ways
of computing them for a particular MTL type. These computational methods will be
considered in detail in Chapters 4 and 5. The important properties of the per-unit-
length parameter matrices will be obtained in Section 3.5. Again, these bear striking
parallels to their scalar counterparts for the two-conductor line.

The MTL equations in (3.27) are a set of 2n, coupled, first-order, partial differential
equations. They may be put in a more compact form as

O [Ven]l_ [0 R|[V@En] [0 L|d [V (3.28)

oz | Iz, 0) | G 0 I(z, 1) C 0o | Iz, ’
We will find this first-order form to be especially helpful when we set out to solve
them in later chapters. If the conductors are perfect conductors, then R = 0, whereas
if the surrounding medium is lossless (o = 0), then G = 0. The line is said to be

lossless if both the conductors and the medium are lossless in which case the MTL
equations simplify to

Gl V(z, 1) _ 0 L E V(z, 1)
a2 {I(z,t)] B {C 0} o {I(Z,,)] (3.29)

The first-order, coupled forms in (3.27) can be placed in the form of second-order,
uncoupled equations by differentiating (3.27a) with respect to z and differentiating
(3.27b) with respect to ¢ to yield

2 2

d d d
— V(iz, ) =—-R —I(z,t) - L —I(z, ¢ 3.30
0z? 0 9z 0 0zt @9 (3-302)
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? 9 9
%20t (z,t) = -G % V(z,1)-C Pl V(z, 1) (3.30b)
In taking the derivatives with respect to z, we assume that the line is uniform; that
is, the per-unit-length parameter matrices are independent of z. Substituting (3.30b)
and (3.27b) into (3.30a) and reversing the process yields the uncoupled, second-order
equations:

92 9 92
— V(z, 1) = [RG] V(z, 1) + [RC + LG] —~ V(z, 1) + LC = V(z,7)  (3.31a)
0z ot ot

92 9 92
— Iz, ) = [GR]I(z, ) + [CR + GL] —~ I(z, 1) + CL > I(z, 1) (3.31b)
0z ot ot

Observe that the various matrix products in (3.31) do not generally commute so that
the proper order of multiplication must be observed.

3.4 INCORPORATING FREQUENCY-DEPENDENT LOSSES

We have so far neglected the important fact that, like the two-conductor case, the
per-unit-length parameters in R, L, G, and C are generally frequency dependent,
that is, R (w), L (), G (w), and C (w). For perfect conductors, the currents reside
on the surfaces of the conductors and R = 0. For imperfect conductors, the currents,
because of skin effect, will migrate toward the conductor surfaces as frequency is
increased, and at high frequencies will be concentrated near the conductor surfaces in
annuli of thickness equal to a skin depth: § = 1/+/7fou. In addition, closely spaced
conductors will cause the current distribution over the conductors to be nonuniformly
distributed over the cross sections. The currents internal to the conductors will cause
a per-unit-length internal inductance matrix L; (w) that is also frequency dependent.
This is due to the magnetic flux internal to the conductors. As frequency increases,
this internal flux decreases as a rate of / f eventually decreasing to zero. This internal
inductance matrix can be included in the total inductance as the sum with the external
inductance matrix that is due to the magnetic flux external to the conductors, L, which
is substantially frequency independent. Similarly, the per-unit-length conductance
matrix will be frequency dependent. This is because the dielectric will have a loss due
to the incomplete alignment of the bound charges in it as frequency increases giving
an effective conductivity that is frequency dependent, G (w). Similarly, the relative
permittivity of the surrounding dielectric is (mildly) dependent on frequency giving
a (mildly) frequency-dependent per-unit-length capacitance matrix C (w).

These frequency-dependent parameters can more readily be incorporated by writ-
ing the above MTL equations in the frequency domain by replacing % — jwin (3.27)
to give

d

— V(@ 0 =-2wIi( w) (3.32a)
dz
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4 [z o) =-YV(Eo (3.32b)
dz

where Z (w) and Y (w) are the per-unit-length impedance and admittance matrices,
respectively, and are given by

7(w) = R(0) + joL;i (0) + joL (3.33a)

Y (@) =G (w) + joC(w) (3.33b)

The second-order uncoupled equations are

2
d—ZV(z, w) =2 )Y )V (z,0) (3.34a)
dz

d? . A

— 1z 0) =Y Zik o) (3.34b)
dz

Again, the matrices do not generally commute and the proper order of multiplication
must be preserved.
In the time domain, the frequency-domain MTL equations in (3.32) become

EV(Z, H=-7Z@®*I(z,1)
0z

t

= _/z 01z, t —1)dr (3.352)

0
3 I(z,t) = -Y @)%V (z,1)
9z

t
= —/Y(r)V(z, t—1)dt (3.35b)
0

where * denotes convolution and the inverse Fourier transforms are denoted as

Z(t) & Z(o) (3.36a)

Y1) &Y (w) (3.36b)

3.5 PROPERTIES OF THE PER-UNIT-LENGTH PARAMETER
MATRICESL, C, G

In Chapter 1 we showed that, for a two-conductor line immersed in a homogeneous
medium characterized by permeability u, conductivity o, and permittivity &, the per-
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unit-length inductance I, conductance g, and capacitance c¢ are related by Ic = ue
and lg = po. For the case of an MTL consisting of n + 1 conductors immersed
in a homogeneous medium characterized by permeability p, conductivity o, and
permittivity &, the per-unit-length parameter matrices are similarly related by

LC=CL =ypue 1, (3.37a)
LG=GL =uo 1, (3.37b)

where the n x n identity matrix is defined as having unity entries on the main diagonal
and zeros elsewhere:

10 00
0 1 00

L= - (3.38)
00 -~ 10
00 -~ 01

Other important properties such as our logical assumption that these per-unit-length
matrices are symmetric will also be shown.

Recall from Chapter 1 that the transverse electric and magnetic fields of the TEM
field structure in a homogeneous medium characterized by ¢, u, and o satisfy the
following differential equations (see Eqgs. (1.13) of Chapter 1):

32, 36, P&,
o e 2t 3.39
62 MO TR (3.3%)
P A IH P
— 3.39b
322 T THE TR (3.39b)

Define voltage and current in the usual fashion as integrals in the transverse plane
(see Fig. 2.3) as

Viz,f) = — / &y -dl (3.402)
Ci
iz, 1) = 7§ Hoy-dl (3.40b)
c;
Applying (3.40) to (3.39) yields

2 2

9 9 9

72 Vi(z, 1) = po % Vi(z, 1) + e pwl Vi(z, ) (3.41a)
92 9 92

@Ii(z,t) = ;wali(z,t)ﬂwﬁ Ii(z, 1) (3.41b)

Collecting Eqs. (3.41) for all conductors in matrix form yields
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2 2
72 — V@ D= ua — V(Z 1+ /w 9 V(Z t) (3.42a)

9 8
) I(z, 1) = a — I(z 1+ /w I(z 1) (3.42b)

Comparing (3.42) to (3.31) with R = 0 gives the identities in (3.37). Because of
the identities in (3.37), which are valid only for a homogeneous medium, we need
to determine only one of the per-unit-length parameter matrices since (3.37) can be
written, for example, as

L=ps C! (3.43a)
¢=2c
&

— po L (3.43b)

C=pe L7! (3.43¢)

The previous relations in (3.37) and (3.43) are valid only for a homogeneous sur-
rounding medium. In the remainder of this chapter, we will address the general case
where the dielectric medium surrounding the n + 1 conductors may be inhomoge-
neous. Throughout this text, we will assume that any medium surrounding the line
conductors (homogeneous or inhomogeneous) is not ferromagnetic and therefore has
a permeability of free space, u = . Designate the capacitance matrix with the sur-
rounding medium (homogeneous or inhomogeneous) removed and replaced by free
space having permeability ¢y and permeability wo as Cp. Since inductance depends
on the permeability of the surrounding medium and does not depend on the permit-
tivity of the medium, and the permeability of dielectrics is that of free space, 1o, the
inductance matrix L can be obtained from Cy using the relations for a homogeneous
medium (in this case, free space) given in (3.43a) as

L= uoaocgl (3.44)

Therefore, for an inhomogeneous medium, we may determine these per-unit-length
parameter matrices by (1) computing the capacitance matrix with the inhomogeneous
medium present, C, (2) computing the per-unit-length capacitance matrix with the
inhomogeneous medium removed and replaced with free space, Cp, and then (3)
computing L from (3.44). It turns out that we will also develop in Chapters 4 and 5 a
method for computing G for an inhomogeneous medium from a modified capacitance
calculation. Hence, we will only have to construct a capacitance solver in order to
determine the per-unit-length parameter matrices of L, C, and G for the general case
of an inhomogeneous medium. In Chapter 5, we will examine numerical methods
for computing the entries in these per-unit-length matrices for an inhomogeneous
medium surrounding the conductors.
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The identities in (3.37) and (3.43) are valid only for a homogeneous surrounding
medium as is the assumption of a TEM field structure and the resulting MTL equations.
We will often extend the MTL equation representation, in an approximate manner,
to include inhomogeneous media as well as imperfect conductors under the quasi-
TEM assumption. In the case of a surrounding medium that is either homogeneous
or inhomogeneous, the per-unit-length parameter matrices L, C, and G have several
important properties. The primary ones are that they are symmetric and positive-
definite matrices. As anillustration, we will prove that C is symmetric. The proof that C
is a symmetric matrix (regardless of whether the surrounding medium is homogeneous
or inhomogeneous) can be accomplished from energy considerations [A.1,1]. The
basic relation for C is given in (3.25). Suppose we invert this relation to give

V=PQ (3.45a)
where P = C~! or, in expanded form,

i = Pugr+ -+ Pipdn
: (3.45b)

Voo = pma1+ -+ Punn

If we can prove that p;; = pj;, then it follows that ¢;; = c;;. Suppose all conductors

except the ith and jth are connected to the reference conductor (grounded) and all

conductors are initially uncharged. Suppose we start charging the ith conductor to a

final per-unit-length charge of ¢;. Charging the ith conductor to an incremental charge

q results in a voltage of the conductor, from (3.45b), of V; = p;iq. The incremental

energy required to do this is dW = V;dq. The total energy required to place the
qi

charge g; on the ith conductor is W = / Piiq dg = ( pil-qiz /2). Now if we charge

0
the jth conductor to an incremental charge of ¢ in the presence of the charged ith
conductor, the voltage of the jth conductoris V; = pj;g; + p;;q and the incremental
energy required is dW = (p;;qi + p;;q)dq. The total energy required to charge the
4qj

Jjth.conductor to a charge of ¢ ; becomes W = /deq = pjiqiqj + (pjjq‘%/Z). Thus,
0
the total energy required to charge conductor i to g; and conductor j to g; is

2
Ppiid? | Piidj
2 2

Wiotal = P;iqidj +

If we reverse this process charging conductor j to g; and then charging conductor i to
gi, we obtain

2
Piid; | piid?

Wiowal = Pijqjq: + > )
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Since the total energies must be the same regardless of the sequence in which the
conductors are charged, we see, by comparing these two energy expressions, that

Pij = Pji
Therefore, it follows that

Cij = Cji

and therefore the capacitance matrix C is symmetric.

Recall that this proof of symmetry relied on energy considerations and therefore
is valid for inhomogeneous media. Because of the relation in (3.44), L = pogoCy !
it is clear that the per-unit-length inductance matrix is also symmetric. The proof
that C, L, and G are symmetric matrices (regardless of whether the surrounding
medium is homogeneous or inhomogeneous) can also be obtained from a more general
relation called Green’s reciprocity theorem [2]. This relation relies on the important
assumption that the surrounding medium is isotropic. This means that the parameters
of permittivity, permeability, and conductivity are scalars. An anisoptropic medium is
one in which these parameters are matrices relating the three components of the vectors
E, D, B, H, and J;, where J; is the vector of transverse currents flowing through the
surrounding medium [A.1]. We also, of course, assume that the surrounding medium
is linear.

We next set out to prove that L, C, and G are positive definite. The energy stored
in the electric field per unit of line length is [2]

1 n
We = 5 kz_:IQka

_1 t
=5 QV (3.46)

where the transpose of a matrix M is denoted by M'. The vector Q contains the
per-unit-length charges on the conductors and is given in (3.25b). Substituting the
relation for C in (3.25a), Q = CV, into (3.46) gives

1
We = VICV >0 (3.47)

where we have used the matrix property that Q' = [CV]' = V'C' along with the
previously proven property that C is symmetric, that is, C' = C. This total energy
stored in the electric field must be positive and nonzero for all nonzero choices of the
voltages (positive or negative). Thus, we say that C is positive definite if

VICV >0 (3.48)

for all possible nonzero values of the entries in V. It turns out that this implies that
all of the eigenvalues of C must be positive and nonzero, a property we will find very
useful in our later developments [3].
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Similarly, the energy stored in the magnetic field per unit of line length is [2]

1 n
Wm = 5 ;Wklk

1 t
= S W (3.49)

where W is the n x 1 vector of magnetic fluxes through the respective circuits and is
given in (3.11b). Substituting the relation for L given in (3.11a) gives

1
wm = I'LI>0 (3.50)

where W' = [LI]' = I'L, and we use the property that L is symmetric, L' = L. Since
the stored magnetic energy must always be greater than zero, we see that L is positive
definite also:

I'LI> 0 (3.51)

Again, this means that the eigenvalues of L are all positive and nonzero.

Matrices C and G have the unique property that the sum of all elements in any row
is greater than zero (see (3.23) and (3.24)). Such a matrix is said to be hyperdominant.
It can be shown that any hyperdominant matrix form is always positive definite (see
Problem 3.11). Hence, G is also positive definite and therefore its eigenvalues are all
positive and nonzero.

PROBLEMS

3.1 Demonstrate the result in (3.8).

3.2 Demonstrate the form of R given in (3.12).

3.3 Demonstrate the result in (3.21).

3.4 Demonstrate the form of G in (3.23).

3.5 Demonstrate the form of C in (3.24).

3.6 Derive the MTL equations for the per-unit-length equivalent circuit of a four-
conductor line shown in Figure P3.6.

3.7 Demonstrate the result in (3.31).

3.8 A four-conductor line immersed in free space has the following per-unit-length
inductance matrix:
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1.5 Q/m 5 nH/m
[ ]

lS pF/m
0.5 nH/m
2 Q/m 2 nH/m T
@ —AN—— T —e— .
\ S -|_
15nW/m\ |tnB/m 3PF/m| 2pFim
0.5 Q/m 3 nH/m ‘[
@ - W[ o Z : ) o
6 pF/m ]lO pF/m 8 pF/m
FIGURE P3.6

Determine the per-unit-length capacitance matrix. If the surrounding medium is
homogeneous with conductivity ¢ = 1073 S/m, determine the per-unit-length
conductance matrix.

3.9 Demonstrate the result in (3.42).

3.10 Show that the criterion for positive definiteness of a real, symmetric matrix is
that its eigenvalues are all positive and nonzero. (Hint: Transform the matrix
to another equivalent one with a transformation matrix that diagonalizes it as
T~!MT = A, where A is diagonal with its eigenvalues on the main diagonal. It
is always possible to diagonalize any real, symmetric matrix such that T~! = T¢,
where T is the transpose of T.) Show that the per-unit-length inductance matrix
in Problem 3.8 is positive definite.

3.11 A matrix with the structure of G in (3.23) or C in (3.24) whose off-diagonal
terms are negative and the sum of the elements in a row or column is positive is
said to be hyperdominant. Show that a hyperdominant matrix is always positive
definite.
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THE PER-UNIT-LENGTH PARAMETERS
FOR TWO-CONDUCTOR LINES

The per-unit-length parameters of inductance, capacitance, resistance, and conduc-
tance are essential ingredients in the determination of the transmission-line voltages
and currents from the solution of the transmission-line equations. All of the cross-
sectional dimension information about the specific line being investigated is contained
in these parameters and nowhere else. Hence, without a determination of these for
the transmission line under consideration, solution of the transmission-line equations
cannot be completed as the per-unit-length parameters in them are unknown. It is
important to recall that, under the fundamental transverse electromagnetic (TEM)
field structure assumption, the per-unit-length parameters of inductance, capacitance,
and conductance are determined as a static (dc) solution to Laplace’s equation, for
example, V2¢(x, y) = 0, in the two-dimensional cross-sectional (x,y) plane of the
line. Therefore, the per-unit-length inductance (external), capacitance, and conduc-
tance are governed by the fields external to the line conductors and are determined
as static field solutions in the transverse plane for perfect conductors that have con-
ductivities of o = oco. The per-unit-length resistances and internal inductances are
computed from the currents and magnetic fields internal to the conductors. We will
consider only uniform lines where the conductor cross sections and the cross sections
of any inhomogeneous surrounding media are constant along the line. Hence, these
per-unit-length parameters are independent of the line axis variable z.

The purpose of this chapter is to investigate methods for determining these per-
unit-length parameters of inductance, [, capacitance, ¢, conductance, g, and resistance,
r, for two-conductor lines. In the following chapter, we will similarly investigate

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
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the determination of the entries in the n x n per-unit-length parameter matrices L,
C, G, and R. We will divide the determination of these parameters into those for
wire-type lines and those for conductors of rectangular cross section (lands) that are
typical of printed circuit boards (PCBs). In the case of wire-type lines consisting
of two wires (circular, cylindrical cross sections) where the surrounding medium
is homogeneous, we can obtain exact solutions for the per-unit-length parameters
of [, g, and c. The exact solution for the per-unit-length resistance r of wires is also
obtainable. When we add circular dielectric insulations as is typical of wires, we can
no longer obtain exact, closed-form solutions for g and ¢, and must use numerical
approximation methods [C.1,C.2]. In the case of two-conductor lines where the
conductors have rectangular cross sections such as are typical of PCBs, there exist
approximate formulas for the per-unit-length parameters of /, g, and c. However,
we must use approximate, numerical methods to determine the per-unit-length
resistance r for conductors of rectangular cross section. A similar discussion will
apply to the entries in the per-unit-length parameter matrices of a multiconductor
transmission line (MTL). So the determination of the per-unit-length parameters
can be simple or very difficult depending on (1) whether the cross sections of the
conductors are circular or rectangular and (2) whether the conductors are surrounded
by a homogeneous or an inhomogeneous dielectric medium.

In summary, there are very few transmission lines for which the cross-sectional
fields can be solved, analytically, in order to give simple formulas for the per-unit-
length parameters of inductance, conductance, and capacitance, contrary to what
many handbooks imply. We will show a few important special cases for which
formulas for these parameters exist. For the remaining cases, we have no alternative
but to employ approximate, numerical methods. These can be somewhat tedious but
are not difficult, conceptually.

4.1 DEFINITIONS OF THE PER-UNIT-LENGTH PARAMETERS
l,c,AND g

An intuitive definition of these per-unit-length parameters was given in Chapter 1.
First, it is important to designate the reference conductor for the line voltage as
illustrated in Figure 4.1(a). Once this is done, the currents on the conductors are equal
and oppositely directed at any cross section, and the current on the conductor that is
at the assumed positive voltage goes down that conductor in the positive z direction
and “returns” along the reference conductor in the —z direction. The per-unit-length
inductance [ is the ratio of the magnetic flux penetrating the cross-sectional surface
between the two conductors per unit of line length, v, and the current along the
conductors that produced it:

[ =

4
7 “.1)

In determining this inductance, we usually place a current on the conductors, go-
ing down one and returning on the reference conductor, and determine the resulting
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, —
on dr

(@) (b)

FIGURE 4.1 Cross-sectional illustration of (a) definitions of charge, current, voltage, mag-
netic flux, and transverse current, and (b) the contours and surfaces to be used in their formal
definitions.

magnetic flux. Hence, the direction for the desired magnetic flux through the surface
between the conductors is clockwise when looking in the +z direction. The per-unit-
length capacitance c is the ratio of the charge per unit of line length, ¢, and the voltage
between the two conductors that induced it:

c= — “4.2)

In determining this capacitance, we usually place a positive per-unit-length charge on
the positive voltage conductor and an equal but opposite charge on the reference con-
ductor and determine the resulting voltage induced between the two conductors. The
per-unit-length conductance g is the ratio of the per-unit-length conduction current
I; flowing in the transverse, x — y, plane from the positive conductor to the refer-
ence conductor through a lossy dielectric surrounding the conductors and the voltage
between the two conductors:

=— 4.3
g=y 4.3)
There are many clever ways of computing these static (dc) parameters in the x—y plane.
Formal definitions of each of these parameters for a homogeneous medium charac-
terized by w, €, and o were obtained in Chapter 1 with reference to Figure 4.1(b) as
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(4.6)

4.2 LINES HAVING CONDUCTORS OF CIRCULAR, CYLINDRICAL
CROSS SECTION (WIRES)

In this section, we will determine the per-unit-length parameters for lines consisting
of two conductors having circular, cylindrical cross sections. These are referred to as
wires.

4.2.1 Fundamental Subproblems for Wires

In order to determine simple relations for the per-unit-length parameters of wires, we
need to discuss the following important subproblems [A.3,B.4,1,2].

Consider an infinitely long wire carrying a dc current / that is uniformly distributed
over its cross section as shown in Figure 4.2. The transverse magnetic field intensity
1 is directed in the circumferential direction by symmetry. Enclosing the wire and
current by a cylinder of radius » and applying Ampere’s law for the TEM field [A.1]:

f{ Hio-di=1 (4.7)
C
gives
Hy = ! 4.8)
TN oy '

This result is due to the observation that (1) H 1 is tangent to dl and therefore the dot
product can be removed from (4.7) and the vectors replaced with their magnitudes,
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T >
FIGURE 4.2 The low-frequency magnetic field intensity vector about a current-carrying
wire.

and (2) H ¢ is constant around the contour of radius r and so may be removed from
the integral.

Now consider determining the magnetic flux from this current that penetrates a
surface s that is parallel to the wire and of uniform cross section along the wire
length as shown in Figure 4.3(a). The edges of the surface are at distances R; and R»
from the wire. Next consider this problem in cross section as shown in Figure 4.3(b).
Consider the closed, wedge-shaped surface consisting of the original surface along
with surfaces s; and sy. Surface s; is the flat surface extending radially along R;
to a radius of R, and surface s is a cylindrical surface of constant radius R, that
joins surfaces s and s1. Gauss’ law provides that there are no isolated sources of the
magnetic field. Thus, the total magnetic flux through a closed surface must be zero
[A.1]:

# PB-ds =0 4.9)
S

where 7 is the magnetic flux density vector and is related for linear, homogeneous,

isotropic media to the magnetic field intensity vector HasB = " #.From (4.9), the
total magnetic flux through the wedge-shaped surface of Figure 4.3(b) is the sum of
the fluxes through the original surface s and surfaces s1 and s; since no flux is directed
through the end caps because of the transverse nature of the magnetic field. But the
flux through s, is also zero because the magnetic field is tangent to it. Thus, the total
magnetic flux penetrating the original surface s is the same as the flux penetrating
surface s1, as shown in Figure 4.3(c). But the problem of Figure 4.3(c) is simpler than
the original problem because the magnetic field is orthogonal to the surface. Thus,
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FIGURE4.3 [Illustration of the fundamental subproblem for determination of the flux through
a surface due to a current-carrying wire by the computation of a simpler problem.

the total magnetic flux through either surface is

Ry
> 1
fﬁ;,%-ds—Az M—dr
2nr
51 Rl
wl (R
= Az—1In| — 4.10
ZZJT n(R]) ( )

where we have assumed that R, > R; to give the indicated direction of 1. The magnetic
flux per unit of line length is

wul ( Ry >

Y =—Inl — (Wb/m) (4.11)
21 R 1

We will find the results of this subproblem to be of considerable utility in our future

developments.

The above derivation has been made with two important assumptions: (1) the wire
is infinitely long and (2) the current is uniformly distributed over the wire cross section
and is symmetrical about its axis. The first assumption allows us to assume that the
magnetic field is invariant along the direction of the wire axis. The second assumption
means that we may replace the wire with a filamentary current at its axis on which all
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the current / is concentrated and implicitly assumes that there are no closely spaced
currents to disturb this symmetry. The effects of this infinitely long filament of current
on the flux penetrating the above surface will be the same as the original current.

We next consider the dual problem of determining the voltage between two points
due to a filament of charge. Consider a very long wire carrying a charge per unit of
length ¢ C/m, as shown in Figure 4.4(a). We assume that the charge is either uniformly
distributed around the periphery of the wire or concentrated as a filament of charge. In
this case, the electric field intensity & will be radially directed in a direction transverse
to the wire. Gauss’ law provides that the total electric flux penetrating a closed surface
is equal to the net positive charge enclosed by that surface [A.1]:

&
TS &
vd \\\ ;
// N
// \\
I/ gt \\ é’
Surface s | + + IS
i ————
\ + + !
\ /
\ + !
\ /
\ /
N /
N /
~ i
~ -~
~. -

=
-
Tw r

(b)

FIGURE 4.4 Illustration of the electric field intensity vector about a charge-carrying wire.
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fﬁg D -d5 = Qene (4.12)

s

where  is the electric flux density vector. For linear, homogeneous, and isotropic
media, this is related to the electric field intensity vector by & = &&. Consider enclos-
ing the charge-carrying wire with a cylinder of radius r, as shown in Figure 4.4(b).
The electric field is obtained by applying (4.12) to that closed surface to yield

eﬁg&.cﬁ:qm (4.13)

N

The dot product may be removed and the vectors replaced with their magnitudes
since the electric field is orthogonal to the sides of the surface and no electric field is
directed through the end caps of the surface. Furthermore, the electric field may be
removed from the integral since it is constant in value over the sides of the surface.
This gives a simple expression for the electric field away from the filament:
Si=—1_ (v/m) (4.14)
2rer
Next consider the problem of determining the voltage between two points away from
the filament as shown in Figure 4.5(a). The points are at radii R; and R, from the
filament. The voltage is defined as (uniquely because of the transverse nature of the
electric field)

Vi = —/ & - dl (4.15)
C

A simpler problem is illustrated in Figure 4.5(b). Contour c; extends along a radial
line from the end of R to a distance R, and contour c¢; is of constant radius R»

(b)

FIGURE 4.5 [Illustration of the calculation of voltage between two points from a charge-
carrying wire (a) directly and (b) from a simpler problem.
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and extends from that end to the beginning of the original contour. Thus, since the
definition of voltage in (4.15) is independent of the path taken between the two points,
we may alternatively compute

Vabz—/(?t-df—/ét.di

c 2
Ry

q
= — d
/Zner "

Ry

q Ry
— In| — 4.16
2me n< R1> (4.16)

where we assume R > Rj. This result was made possible by the observation that
over ¢, the electric field is orthogonal to the contour so that the second integral is
zero, and over ¢ the electric field is tangent to the contour. We will also find this
result to be of considerable utility in our future work.

Once again, this simple result implicitly assumes that (1) the wire is infinitely long
and (2) the charge is uniformly distributed around its periphery. The first assump-
tion ensures that the electric field will not vary along the line length. The second
assumption means that we may replace the wire with a filament of charge and im-
plicitly assumes that there are no closely spaced charge distributions to disturb this
symmetry.

4.2.1.1 The Method of Images The remaining principle that we will employ is
the method of images. Consider a point charge Q situated a height 4 above an in-
finite, perfectly conducting plane as shown in Figure 4.6(a). We can replace the
infinite plane with an equal but negative charge —Q at a distance / below the pre-
vious location of the surface of the plane, and the resulting fields will be identi-
cal in the space above the plane’s surface [A.1]. The negative charge is said to
be the image of the positive charge. We can similarly image currents. Consider
a current [ parallel to and at a height 4 above an infinite, perfectly conducting
plane shown in Figure 4.6(b). If the plane is replaced with an equal but oppo-
sitely directed current at a distance h below the position of the plane surface, all
the fields above the plane’s surface will be identical in both problems [A.1]. This
can be conveniently remembered using the following mnemonic device. Consider
the current I as producing positive charge at one endpoint and negative at the other
(denoted by circles with enclosed polarity signs). Imaging these “point charges”
as above gives the correct image current direction. A vertically directed current
is similarly imaged as shown in Figure 4.6(c). Current directions that are neither
vertical nor horizontal can be resolved into their horizontal and vertical compo-
nents, and the above results can used to give the correct image current distribution
[A.1].
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FIGURE 4.6 The method of images: (a) charge above a perfectly conducting plane, (b)

current parallel to a perfectly conducting plane, and (c) current perpendicular to a perfectly
conducting plane.

4.2.2 Per-Unit-Length Inductance and Capacitance for Wire-Type Lines

There exist few transmission-line structures for which the per-unit-length parameters
can be determined exactly. The class of two-conductor lines of circular, cylindrical
cross section (wires) in a homogeneous medium characterized by g, €, and o con-
sidered in this section represents a significant portion of such lines. In the case that
the wires are surrounded by circular dielectric insulations, the surrounding medium
is inhomogeneous in ¢ (air and the dielectric). The per-unit-length inductance / is not
affected by this inhomogeneous medium since dielectrics have = . Hence, [ is
the same as for wires surrounded by a homogeneous medium, that being free space.
However, for this case of an inhomogeneous medium, closed-form formulas for the
per-unit-length capacitance c are not obtainable, and approximate, numerical methods
must be used to determine this parameter [C.1,C.2]. We will reserve discussion of
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&1

FIGURE 4.7 Illustration of (a) a two-wire line, and calculation of (b) the per-unit-length
inductance and (c) the per-unit-length capacitance.

these numerical methods and inhomogeneous surrounding media until we consider
multiconductor lines in Chapter 5. For the present, we will assume that the wires are
immersed in a homogeneous medium.

Consider the case of two perfectly conducting wires of radii ry; and ry, that are
separated by a distance s in a homogeneous medium as shown in Figure 4.7(a). Let us
assume that the currents (which, for perfect conductors, must reside on the surface)
are uniformly distributed around the wire peripheries as shown in Figure 4.7(b). Using
the above result for the magnetic flux from a filament of current in (4.11), we obtain
the total flux passing between the two wires as

g[/:“—lln S”hwa _i_ll;]]n STMwt
2 I'wl 2 w2

wul <(S—rw2)(s—rw1)>

—In

21 rwilrw2

4.17)
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where © = pg. This result assumes that the current is uniformly distributed around
each wire periphery. This will not be the case if the wires are closely separated since
one current will interact and cause a nonuniform distribution of the other current (this
is referred to as proximity effect). In order to make this result valid, we must require
that the wires be widely separated. The necessary ratio of separation to wire radius to
make this valid will be investigated when we determine the exact solution. Therefore,
because of the necessity to have the wires widely separated, the separation must be
much larger than either of the wire radii so that (4.17) simplifies to

2
l:wéuln( i > (H/m) (4.18)

I 2n rwilfw?

In the practical case of the wire radii being equal, ry; = ry2 = ry, this reduces to

1= B ln(s> (H/m) (4.19)
b4 I'w

The per-unit-length capacitance will be similarly determined in an approximate
manner. Consider the two wires carrying charge uniformly distributed around each
wire periphery as shown in Figure 4.7(c). The voltage between the wires can similarly
be obtained by superimposing the voltages due to the two equal but opposite charge
distributions using (4.16) as

ve 4Bz (=)
2me rwl 2me Fw2

— _ 2
:qm((s rua)(s VW1)>~ 1 ln< a ) (4.20)

2me Fwitw?2 - 2me Fwitw?2

and we have used the necessary requirement that the wires be widely separated, that is,
s> > rwl, 'w2, S0 that the charge is uniformly distributed around the wire peripheries.
The per-unit-length capacitance is

<|<

2me
5 (F/m) 4.21)

s
ln< )
Iwilw2

For equal wire radii, this simplifies to

12

=" (F/m) 4.22)

()
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FIGURE 4.8 [Illustration of the exact calculation of the per-unit-length capacitance of two
wires.

We now turn to an exact derivation of the per-unit-length capacitance. The essence
of the method is to place a charge per unit of line length on each wire, g, on filaments
separated by a distance d, as shown in Figure 4.8. Then we determine the equipotential
contours about these filaments and locate the actual wires on these contours that
correspond to the voltage of the wires. This gives the equivalent spacing between
the two wires, s, that carry the same charge per unit of line length. The voltage at a
point P shown in Figure 4.8 due to the filaments of charge, one carrying g and the
other carrying —g, with respect to the origin, x = 0 and y = 0, can be found using the
previous basic subproblem as

Ve(x, y) 9 (RUY g (R
x,y)=——Inl — —In| —
Py 2me \d2) " 2me '\ d)2
q R™
= 1 [ =— 4.23
2me n< RT ) (4.23)
Thus, points on equipotential contours are such that the ratio

<2neVp>
R
- q
R+ €
=K (4.24)

is constant, where K is that constant. Substituting the equations for R™ and R™:

RY =\/(x+d/2)* + y? (4.252)
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R™ =1\/(x—d/2)* + 2 (4.25b)

gives

=/’ +¥ L,

= 4.26
(x +d/2)* +y2 (420
Expanding this gives
KX4+1) [d\*
x2+xd§K2_1;+<2> +y2=0 4.27)

In order to determine the location of the circular equipotential surfaces that define the
equivalent conductors and their radii, we write this in the equation of a circle located
at x = —s/2 and having a radius of ry:

2
Expanding this gives
2 S\2_ 2 2
X +xs+(§) —2 42 =0 (4.29)

Comparing (4.29) to (4.27) gives

s dK*+1 4.308)
- = = .ova
2 2K?2-1
and
Kd

The constant K can be eliminated by taking the difference of the squares of (4.30a)
and (4.30b) to give

d N2,
S = (E) —r2 4.31)
Dividing (4.30a) by (4.30b) eliminates d, giving a quadratic equation in K:

K- 2 k41=0 (4.32)

I'w
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Solving for K gives

2
K=—t() =1 (4.33)
2rw 2rw

Substituting this into (4.23) and (4.24) gives the voltage as

2
Vo= L 1| >+ (S> —1 (4.34)

T 2me 2w m

Recall that this is the voltage of the point with respect to the origin of the coordinate
system, which is located midway between the two wires. Thus, the voltage between
the two wires that are separated by a distance s is

2
veove= L /() <1 (4.35)
e 2rw 2rw

and the per-unit-length capacitance becomes

q
c=—

14

_ i (F/m) (4.36)

s s \?2
In| — — ] —1
2ry + (er )
This can be defined in terms of the inverse hyperbolic cosine as

cosh~(x) = In [x V2= 1} (4.37)

to give

e

cosh™! (s>
2rw

If the wire radii are not equal, the corresponding exact result for the per-unit-length
capacitance is derived in [3] and becomes

(F/m) (4.38)

CcC =

2me

(F/m) (4.39)
cosh~! <52 - r\%vl - r&«z)

CcC =

2rwirw2
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FIGURE 4.9 A comparison of the exact and approximate formulas for the per-unit-length
capacitance of two wires.

The exact result in (4.36) or (4.38) simplifies for widely spaced wires. For example,
suppose s > ry. The exact result in (4.36) reduces to the approximate result derived
earlier and given in (4.22). The error for a ratio s/r,, =5 is only 2.7%. A ratio of
separation to wire radius of 4 would mean that another wire of the same radius would
just fit between the two original wires. For this very small separation, the error between
the approximate expression (4.22) and the exact expression (4.36) is only 5.3%. So
the wide-separation approximation given in (4.22) is quite adequate for practical wire
separations. Figure 4.9 shows the comparison between the approximate relation in
(4.22) and the exact relation in (4.38).

In Chapter 1, it was shown that for lines in a homogeneous medium characterized
by u, &, and o, the per-unit-length parameters are related as
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le = ue (4.40a)
lg = uo (4.40b)
and
o
8.7 (4.40¢)
c &

The per-unit-length inductance can be obtained from this result, assuming that the
surrounding medium is homogeneous in € and w as

1

l=pue ¢~
=H cosh~! <s> (H/m) (4.41)
T 2rw

Similarly, if the medium is lossy and homogeneous in o we can obtain

c

o
g=-
&

o

cosh™! (S
2ry

Next, consider the case of one wire at a height & above and parallel to an infinite,
perfectly conducting plane (sometimes referred to as a ground plane) as shown in
Figure 4.10(a). By the method of images, we may replace the plane with its image lo-
cated at an equal distance & below the position of the plane as shown in Figure 4.10(b).
The desired capacitance is between each wire and the position of the plane. But, as
capacitances in series add like resistors in parallel, we see that this problem can be
related to the problem of the previous section as

) (S/m) (4.42)

Cone wire above ground

Ctwo-wire = ) (4.43)

Therefore, the capacitance of one wire above an infinite, perfectly conducting plane
becomes, substituting & = s/2 in (4.38),

(F/m) (4.44)

or, approximately, for > ry:
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FIGURE 4.10 Illustration of the calculation of the per-unit-length capacitance of one wire

above a conducting plane from the corresponding capacitance of two wires via the method of
images.

= (E/m) (4.45)

(%)
In[ —
I'w

The inductance can be obtained for this homogeneous medium from this result as

I = ue ¢!
h
= icosh_1 () (H/m)
2 Fw
2h
~ “m() (4.46)
21 I'w

Similarly, if the medium is lossy and homogeneous in o, we can obtain
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2mo
=\ (S/m)
—1
cosh ()
Iw

2no

(‘ VhV )
ln

12

(4.47)

Finally, consider the coaxial cable shown in Figure 4.11 consisting of a wire of
radius ry, within and centered on the axis of a shield of inner radius rs. The medium
between the wire and the shield is assumed to be homogeneous. The case of an
inhomogeneous medium can be solved so long as the inhomogeneity exists in annuli
symmetric about the shield axis. If we place a total charge g per unit of line length
on the inner conductor, a negative charge of equal magnitude will be induced on the
interior of the shield. Observe that, by symmetry, the charge distributions will be
uniformly distributed around the conductor peripheries regardless of the conductor
separations. We earlier obtained the result for the electric field due to the charge g per

FIGURE 4.11 Illustration of the direct calculation of the per-unit-length parameters for a
coaxial cable: (a) the general structure, (b) the per-unit-length capacitance, (c) the per-unit-
length inductance, and (d) the per-unit-length conductance.
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unit of line length on the inner wire as

=L G re<r<n (4.48)
2mer

-
o)

Observe that the field will be directed in the radial (transverse) direction. The voltage
between the two conductors can be obtained as

'w

V:—/ q dr
2mwer

rs

-1 ln<rs> (4.49)
2me I'w

The capacitance per unit of line length is therefore

= ——+ (F/m) (4.50)
rs
ln()
I'w
Observe that, because of symmetry, the charge distributions will be uniform around

the conductor peripheries regardless of conductor separation so that this result is exact.
The per-unit-length inductance can be derived directly or by using

1

I =pue ¢~
-2 ln<rs) (H/m) 4.51)
21 I'w

Similarly, the per-unit-length conductance is

= ———- (S/m) (4.52)
s
ln(>
I'w
The per-unit-length inductance can be derived directly. Consider placing a flat surface
of length Az between the inner and outer conductors as shown in Figure 4.11(c).
The desired magnetic flux passes through this surface. Clearly, the flux will be in

the circumferential direction since, due to symmetry, the current will be uniformly
distributed around the periphery of the inner wire and the inside surface of the shield.
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Thus, we may use the fundamental result derived earlier to give

= —
I

- ln<rs> (4.53)
2 T'w

The per-unit-length conductance can similarly be obtained directly from Fig-
ure 4.11(d) by finding the ratio of the transverse current to the voltage using (4.48)
and (4.49):

= — (4.54)

4.2.3 Per-Unit-Length Conductance and Resistance for Wire-Type Lines

In the preceding section, we have represented the losses in a homogeneous medium
by conductivity o. The conductivity o represents losses in the medium that are due to
free charge in the dielectric. There is another loss mechanism that usually dominates
the resistive losses in a dielectric. This is due to the polarization of the dielectric
that is due to bound charge in the dielectric. Figure 4.12 illustrates this. Within the
dielectric are dipoles of charge consisting of equal but opposite-sign charges that are
tightly bound together. Some materials such as water consist of permanent dipoles
that are randomly oriented so that the material has no net polarization. Dipoles are
created in other materials when an external electric field slightly deforms the atoms

S eg” || Toree| deck

&
(@ (®) (c
FIGURE 4.12 Illustration of the effects of bound (polarization) charge: (a) microscopic
dipoles, (b) alignment of the dipoles with an applied electric field, and (c) creation of a bound
surface charge.
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creating microscopic separations of the positive and negative charge centers. When
an electric field is applied, these dipoles attempt to align with that field as shown in
Figure 4.12(b). This creates a bound surface charge appearing on the opposite faces
of a block of the dielectric, as illustrated in Figure 4.12(c). This process accounts for
the increase in capacitance of a parallel-plate capacitor when a dielectric other than
air is inserted between the plates [A.1].

As the frequency of the applied electric field increases, the alignment of these
dipoles with the changing direction of the field increasingly lags behind, thereby
creating a loss in the dielectric. This is represented by a frequency-dependent ef-
fective conductivity of the dielectric. Polarization loss is represented by a complex
permittivity of the dielectric as [A.1]

B=s— jg (4.55)

Both ¢ and &, are frequency dependent [6]. The real and imaginary parts of this
complex permittivity are not independent but are related by the Kronig—Kramers
relations given in (2.47) of Chapter 2 [4]. Ampere’s law for sinusoidal excitation is
modified as

Vx H=0E+ jwtE
= (0 + wep) E+ joweE (4.56)
———

and o represents the conduction current losses due to free charge in the dielectric
(which is usually very small and generally negligible in comparison with the effects
of bound charge). Hence, the effective conductivity, representing conductive and
polarization losses, is

oett = (0 + wep) 4.57)

An alternative way of representing both these losses is with the loss rangent. The loss
tangent is the ratio of the real part of (4.56) to the imaginary part [A.1]:

(0 + wep)
we

tand =

~ % (4.58)
&

The polarization losses will dominate the resistive losses in typical dielectrics of
practical interest. Handbooks tabulate this loss tangent for various dielectric materials
at various frequencies [5]. Therefore, the effective conductivity of a dielectric is related
to the loss tangent as

Oeff = wetand (4.59)
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Hence, in a homogeneous medium, the per-unit-length conductance is related to the
per-unit-length capacitance as

g=2 ¢ = wianse (4.60)
&

The loss tangent, tand, is not frequency independent, and hence the per-unit-length
conductance does not increase linearly with frequency as (4.60) seems to imply. For
typical dielectric materials used to construct transmission lines, the variation of the
loss tangent with frequency is relatively constant over certain frequency ranges [6].
For other dielectrics, the frequency variation of the loss tangent is more pronounced.
For FR4 (glass epoxy), which is a common dielectric substrate used to construct
PCBs, the loss tangent achieves a maximum value on the order of 0.02 in the range of
1-100 MHz and decreases on either side of this frequency range. For some materials,
¢ is mildly frequency dependent. For example, polyvinyl chloride, which is a typical
insulation for wires, has a permittivity ¢ = &;&g, which is frequency dependent with
&r decreasing from 4.3 at 10 kHz to 3 at 100 MHz [6]. Molecular resonances in the
microwave frequency range can lead to resonances in the loss tangent over certain
frequency bands [6]. For sinusoidal excitation, the total per-unit-length admittance
between the two conductors is the sum of the per-unit-length conductance and the
per-unit-length capacitive reactance as

A

Y=g+ joc
= jwc(l — jtan§) 4.61)

For FR4 in PCBs, tand = 0.02 in the frequency range of 1-100 MHz, and the con-
ductance is a factor of 50 smaller than the capacitive reactance.

For the case of lines in an inhomogeneous surrounding medium such as the case
of wires that are surrounded by circular dielectric insulations (the inhomogeneity
is caused by the surrounding dielectric and air), the relation in (4.60) for the per-
unit-length conductance, of course, does not apply since each region has its own loss
tangent and these loss tangents are not the same. However, it is possible to incorporate
losses in the inhomogeneous medium in the following manner [A.1,B.4,7]. Write
Ampere’s law as

>l

VxH=0E+ jwt £

(0 + wep)E + jwe E

jws(1 — jtan ) E (4.62)
—
£

Hence, we can incorporate losses in the medium by determining only the capacitance
and using a complex permittivity in that calculation as

g =e(1— jtand) (4.63)
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As we will see later in this chapter, for lines surrounded by an inhomogeneous medium
such as wires with circular dielectric insulations, we must use approximate, numer-
ical methods to solve for the per-unit-length capacitance [C.1,C.2]. Losses can be
readily incorporated into that capacitance solver by using complex permittivities as
in (4.63) for each region instead of real permittivities to give a complex capacitance as
[B.4,7]

C=cr+ ja (4.64)

where cr and cj are the real and imaginary parts, respectively, of the complex capac-
itance. Hence, the complex admittance is

A TN

y = jwi
= jow(cr + jcr)
= —wc] + jo cr

=g+ joc (4.65)
and we identify the effective per-unit-length conductance as
g=—wey (4.66a)
and the per-unit-length capacitance is obtained as
¢ =cCR (4.66b)

As an example, consider the case of a coaxial cable having two different dielectric
regions as shown in Figure 4.13(a). Two dielectrics occupy annuli between the two
conductors. The inner wire is of radius ry and the overall shield is of interior radius
rs. The inhomogeneous medium is characterized by

&1, tandy, ry<r<rm (4.67a)

&, tandy, rm<r<rs (4.67b)

First, let us ignore loss. The surface between the two dielectrics located at r = ryy, is
an equipotential surface and hence the net per-unit-length capacitance is that of the
capacitances of each region in series as shown in Figure 4.13(b). Since capacitors in
series combine like resistances in parallel, the net capacitance is

¢ = 12 (4.682)
c1+ e
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€62

L]

(c)

FIGURE 4.13 Calculation of the per-unit-length capacitance and conductance for a coaxial
cable having an inhomogeneous medium in the form of concentric annuli: (a) the general
structure, (b) representing the two regions in terms of per-unit-length capacitances in series,
and (c) representing loss in the medium in terms of per-unit-length conductances.
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where, from our previous results,

2
e = = EL (4.68b)
m
1n(>
'y
and
27 &
= —= (4.68¢)
s
ln(>
'm
Hence, the overall capacitance is
2
o= T 162 (4.69)

€1 1n(rs> + & ln<rm>
’m I'w
We will examine a numerical example having the dimensions of a RG58U coax-
ial cable. Suppose that the desired frequency is f = 100 MHz, and the dimensions
are ry = 16 mils, ry, = 35mils, rg = 58 mils, &1 = 2¢g, &2 = 6gp, tand; = 0.01,

and tandy = 0.04. The per-unit-length capacitance neglecting loss in the medium
is

2w 18

&1 ln<rs> + & ln<rm)
'm I'w

=1.168 x 10719 (F/m) (4.70)

CcC =

To include losses, we use a complex permittivity for each region as shown in (4.63),
and (4.70) becomes

2 @‘1@2

& ln(rs) 5 ln(rm)
'm 'y

=1.168 x 10719 — j1.788 x 10712 4.71)

¢ =

where &1 = ¢1(1 — jtand;) and & = (1 — jtandy). Hence, from this we obtain,
according to (4.66),

g = —w(

=1.123 x 107 (S/m) (4.72a)
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and

C = CR

=1.168 x 10719 (F/m) (4.72b)

We may check these results by observing that the equivalent circuit becomes as shown
in Figure 4.13(c), where ¢ and ¢ are as given in (4.68b) and (4.68c) and

2
1= (4.73)
m
ln<>
T'w
and
2w o
&= (4.73b)
s
ln<>
m
and, according to (4.59),
o] = wep tan §y (4.74a)
and
07 = w &y tan bo (4.74b)
From Figure 4.13(c), the complex per-unit-length admittance is
5= (g1 + jwci)(g + joc)
(g1 + jwc) + (g2 + jwca)
=g+ joc
=1.123 x 1073 + j7.341 x 1072 4.75)

This confirms our previous calculation that g = 1.123 x 1072 and wc = 7.341
x 1072, giving ¢ = 1.168 x 107'%. The equivalence of jw & in (4.71) and (4.75)
can also be proven analytically.

We now turn to the determination of the per-unit-length resistance of wires. The
current density and the electric and magnetic fields in good conductors are governed
by the diffusion equation. Ampere’s law relates the curl of the magnetic field to the
sum of conduction current and displacement current. For sinusoidal excitation, this
becomes

-
A,

oE + jwe E 4.76
J (4.76)
conduction current  gjsplacement current

<
X
mﬂ
Il
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A good conductor is one in which the conduction current, greatly exceeds the dis-
placement current, which is satisfied for most metallic conductors and frequencies of
reasonable interest. Thus, Ampere’s law within the conductor becomes approximately

VxA=j=ok (4.77a)
Similarly, Faraday’s law is
VxE=—joull (4.77b)
Taking the curl of Faraday’s law gives [A.1]
VxVxE=V (V. E)-VE
= —jouV x H (4.78)
Substituting Gauss’ law
V.ek =0 (4.79)
gives
V2E = jouo E (4.80)

Since the current density is related to the electric field in the conductor as J = o E,
we arrive at the diffusion equation

ol

V2J = jopo (4.81)

Consider a semi-infinite, conducting half space with parameters g, ¢, and ©, whose
surface lies in the x—y plane as shown in Figure 4.14 [4]. Assume that the electric
field and associated conduction current density are directed in the z direction. The
diffusion equation in terms of this z-directed electric field becomes

- = jouo E, (4.82)

Similar equations govern the magnetic field I:Iy and the current density J.. The solu-
tions are

E. = Eqe~/%¢ 310 (4.83a)

A

Hy = Hoe™/Pe= 13/ (4.83b)
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€0, Mo
/ Eo _ :

J, = Joe P I/ (4.83¢)

where the familiar skin depth is

5= (4.84)

Jrfuo

and E,, H,, and J, are the appropriate quantities at the surface (x = 0). This result
shows that the fields and current density decay rapidly in the conductor and are
essentially confined to layers at the surface of thickness equal to a few skin depths.

The surface impedance can be defined as the ratio of the z-directed electric field
at the surface and total current density:

7= (4.85)

sl

The total current in the conductor can be obtained by integrating the current density
given in (4.83c) throughout the conductor:

(4.86)

A4+ )
Substituting into (4.85) gives (J, = o E,)

7= R+ joL; (4.87)
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where
bis
Ry = — =/ —— (/square) (4.88a)
o

wLi = Ry (4.88b)

This surface impedance is the impedance of an area of the surface of unit width and
unit length so that we use the term ohms/square. The term Ry is referred to as the
surface resistance, and the term L; is referred to as the internal inductance. Observe
that the surface resistance increases as / f, whereas the internal inductance decreases
as / f so that the internal inductive reactance increases as +/f. Observe also that the
surface resistance in (4.88a) could have been more easily calculated by assuming the
current density to be constant in a thickness equal to one skin depth of the surface
and zero elsewhere. Equivalently, the surface impedance can be written as

7, =/ 12" (4.89)

o

Essentially, we could have obtained the same result from the intrinsic impedance of
the conductor [A.1]:

Jjou

_— 4.90
o+ jwe ( )

=
Il

by observing that within the conductor the conduction current dominates the displace-
ment current, that is, o > we.

Next we consider the resistance and internal inductance of circular—cylindrical
conductors (wires). The resistance and internal inductance are again due to the wire
conductance being finite. In the case of perfect conductors, the currents flow on the
surfaces of the conductors. Resistance and internal inductance result from the current
and magnetic flux internal to the imperfect conductors in a fashion similar to the case of
the surface impedance of a plane conductor and can be computed in a straightforward
fashion if we know the current distribution over the wire cross section. The internal
inductance results from magnetic flux internal to the conductor that links the current,
whereas the external inductance results from the magnetic flux that is external to the
conductors that penetrates the area between the conductor and the reference conductor
as discussed previously.

The determination of these parameters for wires is very straightforward if we
assume the current is symmetric about the axis of the wire [4, 8]. At dc the current is
uniformly distributed over the cross section, whereas at higher frequencies the current
crowds to the surface being concentrated in a thickness on the order of a skin depth.
This observation leads to a useful equivalent circuit representing this skin effect,
which attempts to mimic this phenomenon [9]. Essentially, this assumption of current
symmetry about the wire axis means that we assume there are no nearby currents
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close enough to upset this symmetry (proximity effect) [10]. Neighboring conductors
also affect this current distribution for conductors of rectangular cross section [11].
Determination of these parameters when other currents are close enough to upset
this symmetry is considerably more difficult, and for typical wire radii and spacings
the symmetrical current distribution assumption is adequate. For example, reference
[4] gives the exact per-unit-length high-frequency resistance for a two-wire line in a
homogeneous medium consisting of two identical wires of radii ry, separated by s as

N

;= 2Rs 2rw (Q/m)

T 27ry s \2
(o) -
2rw

where the surface resistance Ry is given in (4.88a).

1 /
RS:—: @
od o

is the surface resistance of the conductor. For s = 4ry, such that one wire exactly fits
between the two wires, the resistance is 15% higher than that obtained by assuming
the current is symmetric about the axis of the wire; that is, the wire separation is
sufficient so that proximity effect is not pronounced.

Internal to the conductor, the conduction current dominates the displacement cur-
rent so that the diffusion equation again describes the conduction current distribution
internal to the wire. Let us assume that this current density is z directed (along the wire
axis) and is symmetric about the axis of the wire and write the diffusion equation in
cylindrical coordinates. We orient the wire about the z axis of a cylindrical coordinate
system. Because of the assumed symmetry, the current density is independent of z
and ¢ but is a function of the radius r from the wire axis so that the diffusion equation
reduces to [A.1]

d*Jj, 1di, ,.
-+ ——4+k°J, =0 491
dr? + r dr + z ( )
where
k> = — jouo
2
=—j 2 (4.92)
The solution to this equation is [A.1,4,8]
. ber (V2r78) + jvei (vV2r78)
J.=Jo (4.93)

ber (ﬁrw/a) + jbei (ﬁrw /a)



LINES HAVING CONDUCTORS OF CIRCULAR, CYLINDRICAL CROSS SECTION 141

where ber(x) and bei(x) are the real and imaginary parts, respectively, of the Bessel
function of the first kind of a complex argument (4,8,12). The term J,, is the current
density at the outer radius of the wire, r = ry.

It now remains to determine the total internal impedance (per unit length) of the
wire. The total current in the wire can be found by integrating Ampere’s law around
the wire surface (assuming that displacement current within the wire is much less
than the conduction current):

i=fhd

=27 ry 1':1¢|r:rw (4.94)

The magnetic field can be obtained from Faraday’s law multiplied by the wire
conductivity:

V xJ=—jouc H (4.95)

Substituting the result for curl in cylindrical coordinates [A.1] and recalling that
the current density is z directed and dependent only on r and the magnetic field is
¢ directed gives

djz_ j a (4.96)
—= = jouo .
dr JORT He

Substituting this into (4.94) and using (4.93) gives the total current in terms of the
current at the wire surface. The per-unit-length internal impedance becomes

Zint =

1 { ber(q) + jbei(g) (Q/m) (4.97a)

= 2nryos |bei'(q) — jber'(q)

where
d
ber'(q) = — ber(q)
dgq

y d .
bei'(q) = @ bei(g)
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and

g=~2 %W (4.97b)

Writing this total internal impedance in terms of its real and imaginary parts as
Zine =1+ joli (4.98)

gives the conductor resistance and internal inductance as

r_4 [ber(q)bei’(q; - bei(q)beré(q)] wo9)

rae 2 (bei/(q)) + (ber/(q))
Lo _4 [bei(q)bei/(q; +ber(q)ber;(q)] @100,

liae ¢ (bei'(q))” + (ber'())

where
1
rdc = pu— (£2/m) (4.101)
li,dc = %2

=0.5x 1077 (H/m) (4.102)

are the dc per-unit-length resistance and internal inductance, respectively, of the wire
[A.1].

Although the results in (4.99) and (4.100) are exact assuming a current distribution
that is symmetric about the wire axis, they are somewhat complicated. Reasonable
simplifications can be obtained depending on whether the frequency is such that the
wire radius is greater than or less than a skin depth. Figure 4.15 shows the ratio of
the per-unit-length resistance and the dc resistance of (4.99) plotted as a function
of the ratio of the wire radius and a skin depth, ry /8. Observe that the transition to
J/f frequency dependence commences around the point where the wire radius is two
skin depths, ry, = 28. Similarly, Figure 4.16 shows the ratio of the per-unit-length
internal inductance and the dc internal inductance of (4.100) plotted as a function of
the ratio of wire radius to skin depth. The transition to 1//f frequency dependence
commences at the same point as for the resistance. Consequently, the exact results
can be approximated by

1
r=—p (/m)
o T F <28 (4.103a)

li==—==05x10"7 (H/m)
8
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FIGURE 4.15 Frequency dependence of the per-unit-length resistance of a wire as a function
of the ratio of wire radius to skin depth.
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Observe that the low-frequency resistance for ry, < 2§ in (4.103a) could have been
computed by assuming that the current is uniformly distributed over the cross section
as illustrated in Figure 4.17(a), as is the case at dc. Similarly, the high-frequency
resistance for ry, > 26 in (4.103b) could have been computed by assuming that the
current is uniformly distributed over an annulus at the wire surface of thickness equal
to one skin depth as illustrated in Figure 4.17(b), which satisfies our intuition based
on the plane conductor case. Considering the complexity of the exact results, we will
use these approximations in our future work.

Also observe an important point from (4.103b). For high frequencies, that is,
rw > 26, the resistance and internal inductive reactance are equal. In other words,

Fg > 28 (4.103b)

Zin =1+ jol (4.104a)
and
r=wl, ry>»28 (4.104b)

This fact will prove to be very beneficial in our future results.
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FIGURE 4.16 Frequency dependence of the per-unit-length internal inductance of a wire as
a function of the ratio of wire radius to skin depth.
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FIGURE 4.17 Illustration of the cross-sectional current distribution of a wire for (a) low
frequencies and (b) high frequencies.

4.3 LINES HAVING CONDUCTORS OF RECTANGULAR CROSS
SECTION (PCB LANDS)

In this section, we will consider lines composed of conductors of rectangular cross
section (lands). These represent typical transmission lines found on PCBs.
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4.3.1 Per-Unit-Length Inductance and Capacitance for PCB-Type Lines

There are very few closed-form equations for the per-unit-length inductance and ca-
pacitance of transmission lines consisting of parallel conductors having rectangular
cross sections. Most are approximate relations, and references [ 13—19] provide the fol-
lowing. These structures are usually characterized by their characteristic impedance:

1
Zc = \[ (4.1052)
C

and velocity of propagation:

v

Vo
VErEo10 &

where ¢/ is the effective relative permittivity of the surrounding (possibly inhomoge-
neous) medium. From these, we can therefore obtain the per-unit-length inductance
and capacitance as

1
N
1
- (4.105b)
&

= — (4.106a)
v
and
1
c= —— (4.106b)
Zcv

Figure 4.18 shows the three such primary lines: the stripline, the microstrip line, and
the PCB line. The stripline shown in Figure 4.18(a) consists of a perfectly conducting
strip of rectangular cross section of width w and thickness 7 situated midway between
two infinite, perfectly conducting planes that are separated by a distance s. This
configuration represents lands that are buried in an innerplane PCB. The dielectric
medium between the planes is homogeneous and is characterized by ¢ = g,e9 and
W = [o. Assuming a zero-thickness strip (f = 0), the per-unit-length inductance is

B

[ = - - (4.107a)
Yo [2€ 40441
s
and the effective width of the conductor is
w w
W —, — >0.35
e _ vf} 5 vf} (4.107b)
s 4 —(0.35 . —) . Y035
s S
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FIGURE 4.18 Cross-sectional dimensions of lines composed of conductors of rectangular
cross section: (a) the stripline, (b) the microstrip line, and (c) the printed circuit board.

The per-unit-length capacitance is

Er

We
_ [— + 0.441] (4.107¢)
30wy L s

The microstrip line shown in Figure 4.18(b) is typical of the outer layers on an
innerplane PCB. A land of width w is placed on a board of thickness 4 that has a
perfectly conducting plane on the opposite side. The board has a relative permittivity
&r. Assuming the land thickness is zero (# = 0), the per-unit-length inductance is

60 Sh w w
w o T n =1
—J W
= 1207 rw w o (4.108a)
[7 +1.393+ 0.667In( > +1.444)| =1
v Lh h h
and the effective relative permittivity is
1 —1 1
N (4.108b)

2 2 h
1+12—
w
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This effective relative permittivity accounts for the fact that the electric field lines
are partly in air and partly in the substrate dielectric. If this inhomogeneous medium
(air and the dielectric) is replaced with a homogeneous one having an effective rel-
ative permittivity of &, as shown in Figure 4.18(b), all properties of the line remain
unchanged. The per-unit-length capacitance is

g w

Srh ’ 7=t
w
601)0 ln|:w + 4h:| (41080)
[ (G +1aa) ] 5
2 1393 4+0.6671In(— +1.444)], = >1
120 L T "yt h =

The PCB shown in Figure 4.18(c) has two lands of width w placed on one side
of the board and separated edge to edge by a distance s. The board has a thickness
h and a relative permittivity e;. Assuming the land thickness is zero (t = 0), the
per-unit-length inductance is

12 1 1
—Oln 2 vk , —<k<x<l1
Vo 1 — vk V2
[ = 377n o<k S (4.109a2)
n 21+¢P V2
" LT Vvk
L Y/
where k is
k= —"> (4.109b)
T s+ 2w '

and k' = +/1 — k2. The effective relative permittivity is

1 h
o = &SL {tanh{0.775 ln(> + 1.75]
w

k
+ %[0.04 — 0.7k +0.01(1 — 0.1¢,) (0.25 + k)]} (4.109¢)

which again accounts for the fact that the electric field lines are partly in air and partly
in the substrate dielectric. If this inhomogeneous medium (air and the dielectric) is
replaced with a homogeneous one having an effective relative permittivity of &/ as
shown in Figure 4.18(c), all properties of the line remain unchanged. The per-unit-
length capacitance is
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& 1

S ., —=<k=<l1
1+ vk V2
120vg In 21 NG
c= -~ (4.109d)
. 21+«/P
e.1n S ——
r 1— VK 1
, 0<k=<—
3777‘[1)0 ﬁ

4.3.2 Per-Unit-Length Conductance and Resistance for PCB-Type Lines

For the case of a homogeneous medium such as the stripline shown in Figure 4.18(a),
the per-unit-length conductance g is obtained from the per-unit-length capacitance ¢
as before:

Oeff

€
=wtandc (4.110)

where tand is the loss tangent of the homogeneous dielectric medium. For the case of
an inhomogeneous medium such as the microstrip line shown in Figure 4.18(b) or the
PCB shown in Figure 4.18(c), it is not possible to use (4.110) because the loss tangents
for the various regions are different. However, the previously discussed method of
using a numerical solver for the determination of the per-unit-length capacitance ¢
but using in that solver complex permittivities in terms of the loss tangents for each
region as

& =¢&i(1 — jtand;) (4.111)

to give an overall, complex capacitance as
c=cr+ ja (4.112)

can be used. From this complex capacitance, the effective per-unit-length conductance
and capacitance of this inhomogeneous medium can be determined as before as

g=-—w (] (4.113a)
and
c = CR (4.113b)

The per-unit-length resistance and internal inductance for conductors of rectan-
gular cross section (a land) have not been obtained in closed form, and numerical
approximation methods must be used. Unlike wires, analytical solutions for the re-
sistance and internal inductance are complicated by the fact that we do not know the
current distribution over the cross section. As frequency increases, skin effect causes
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the current distribution to move toward the outer surface of the conductor tending to
be concentrated at the corners when skin effect is well developed [C.9-C.11]. Early
works consisted of measured results for the skin effect [20, 21]. Wheeler developed
a simple “incremental inductance rule” for computing the high-frequency impedance
of a conductor when skin effect is well developed [22]. Wheeler’s incremental induc-
tance rule requires that the conductor resistance and internal inductive reactance must
be equal at high frequencies where skin effect is well developed. This is the case for
conductors of circular cross section » = w Iy (see 4.103b). However, it should not
be used for conductors of rectangular cross section, because, as we will see later in
this section, the resistance and internal inductive reactance are not equal. The direct
solution for the resistance and internal inductance of conductors of rectangular cross
section can be obtained using a variety of methods for solving the diffusion equa-
tion in the two-dimensional transverse plane for infinitely long conductors [23-31,
C.9-C.11].

The partial element equivalent circuit (PEEC) method can be used to solve the
problem numerically by dividing the rectangular bar into rectangular subbars as
shown in Figure 4.19(a) [32, 33]. The method uses the concepts of partial induc-
tance [A.3,33-36]. Figure 4.19(a) shows a bar of length L, width w, and thickness z.
If we assume the current to be uniformly distributed over the cross section, the total

R L
— AW
I R, (il:Z Loz
i | 1
[ I e i——@
[ ! :
: R, '\ Lpn :

(®)

FIGURE 4.19 Representation of a rectangular bar having a nonuniform current distribution
over the cross section in terms of subbars having constant current distributions and the resulting
circuit model.
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bar resistance can be determined as

R=—— (@) (4.114)
owt

The self partial inductance of the bar, L, can be similarly determined for uniform
current distribution over the cross section [33—-36]. This notion can be extended to
bars that have nonuniform current distributions over their cross section by dividing
the bar into N subbars of rectangular cross section over which we assume the current
to be uniformly distributed but whose level is unknown. This essentially approxi-
mates the actual current distribution over the cross section as a piecewise-constant
approximation. The voltage across each subbar is

N
E=Rili+ joLuli+ jo Y Lyl (4.115)
k=1
ki

where R; is the resistance of each subbar, Ly; is the self partial inductance of the subbar,
and Lp;y is the mutual partial inductance between the ith and kth subbars. Formulas
for these mutual partial inductances between conductors of rectangular cross section
having uniformly distributed currents over their cross section are available in [33-35].
Arranging (4.115) for all subbars gives

i (R1 + joLpy) JoLpia JoLpin 1
E _ JoLpi2 (Ry+ joLyp) - JoLpn 7.2
E jwl;plN jwl;pZN - (Ry + .].Q)LpN) Iv
(4.116a)
or
E=271 (4.116b)

for N subbars. The sum of the subbar currents equals the total current for the bar, and
the voltages across all subbars are equal to the voltage across the bar as illustrated
in Figure 4.19(b). These constraints can be imposed to give the total resistance and
partial inductance of the overall bar by inverting Z in (4.116b) to yield

A

i=72'E (4.116¢)

The first constraint that the total current of the bar is the sum of the currents of
the subbars is imposed by summing the entries in the rows of 7!, and the second
constraint that the voltages across the subbars must be equal is imposed by summing
the entries in the columns of Z~! to give the effective admittance
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N N
Y(H=>>127"; (4.117a)

i=1 j=1

The impedance of the complete bar including skin effect is obtained by inverting this
admittance as

A 1
2=

N
ZZ[Z_I]U’

i=1 j=1

(4.117b)

The real part of this resulting composite impedance is the resistance R( ) and includes
the effect of nonuniform current distribution over the bar cross section. The imaginary
part includes the internal inductance (due to flux internal to the conductor) as well as
the effect of flux external to the conductor.

A similar numerical method described in [C.10] allows the computation of
the internal inductance as well. Figure 4.20 shows the current distribution across
the conductor cross section for a 1.4-mil-thick (1 ounce copper cladding) and
15-mil-wide land, where 1 mil = 0.001 inch. These are shown for frequencies
of 100kHz, 10MHz, 100MHz, and 1GHz. This shows the previously mentioned
phenomenon that the current distribution tends to peak at the sharp corners of the land
cross section. Figure 4.21 shows plots of the per-unit-length resistance and internal

sy
i,

gt

7

gy iy
ety

A
/III:’”’
i
Srry

e
7

e

3

Current (mA)
0150 300 450 500
e
7

Current (mA)

(a)

Current (mA}
Current (mA}

(@

FIGURE 4.20 Current distribution over the rectangular cross section of a 1.4 mil x 15 mil
land at (a) 100 kHz, (b) 10 MHz, (c) 100 MHz, and (d) 1 GHz.
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FIGURE 4.21 The per-unit-length internal impedance of a 1.4 mil x 15 mil land: (a) resis-
tance, (b) internal inductance, and (c) resistance versus internal inductive reactance.
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inductance for this case of a 1.4-mil-thick and 15-mil-wide copper land as a function
of frequency. This shows that above approximately 10 MHz, the per-unit-length
resistance increases at a rate of 10 dB/decade or /f symbolizing that skin effect
is becoming well developed above this frequency. Similarly, the per-unit-length
internal inductance decreases above 10 MHz at a rate of 10 dB/decade or 1/./f.
Figure 4.21(c) compares the per-unit-length resistance to the per-unit-length internal
inductive reactance, w /;. Observe that when skin effect is well developed, the resis-
tance and internal inductive reactance w/; are not equal. The difference for these bar
dimensions is on the order of 10%. This is slightly different from the case of a circular
cross-section conductor (wire) where the per-unit-length resistance and internal
inductive reactance are equal (see the results for wires in (4.103b)). Figure 4.22(a)
shows this comparison for a 50 pm x 50 wm copper land, and Figure 4.22(b) shows
the comparison for a 4.62 mm x 4.62 mm copper land. For these latter cases, the

Impedance (€2/m)

N~ o

1 2 3 4567 10 2 3 4567 100
Frequency (MHz)
(a)

Impedance (m£2/m)

1000 2 3 456 10000

Frequency (Hz)
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FIGURE 4.22 Comparison of the per-unit-length resistance and high-frequency
internal inductive reactance for (a) a 50 um x 50 pm land and (b) a 4.62 mm x 4.62 mm land.
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difference between the resistance and internal inductive reactance is on the order
of 30%. It appears that for bars with high aspect rations, that is, w >> ¢, the high-
frequency resistance ryr and the high-frequency internal inductive reactance w [; pr are
approximately equal as was the case for round wires.

The above methods, although quite accurate if the number of subbars is chosen
sufficiently large, are computationally intensive. A simple but approximate method
that parallels the notions for a round wire is to approximate the resistance for the
two cases where the bar dimensions are much less than or much greater than a skin
depth. In the case where the bar dimensions are much less than a skin depth, the
current can be approximated as being uniform over the bar cross section as illustrated
in Figure 4.23(a). Thus, the low-frequency, dc per-unit-length resistance can simply
be calculated as

rde = 1 (2/m) (4.118)
owt

For higher frequencies where the bar dimensions are much greater than a skin depth,
thatis, w, r > § and skin effect is well developed, we assume that the current distribu-
tion over the bar is uniformly distributed over strips of thickness that is proportional to
a skin depth, that is, k§/2, and zero elsewhere as illustrated in Figure 4.23(b). Actually
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FIGURE 4.23 An approximate frequency-dependent model for a land: (a) low frequency,
w, t K 4, (b) high frequency, w, ¢ > §, and (c) asymptotes for the resistance frequency response.
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this is not correct since, as is shown in Figure 4.20, the current tends to concentrate
first along the short edge, the thickness, and then along the long edge, the width.
Also, as was shown previously, the current peaks at the corners of the bar when skin
effect is well developed, but this effect is ignored here. This gives the approximate
high-frequency per-unit-length resistance as

1
okt +kéw)
1

= m (4.119)

12

I'hf

which increases as +/f. Numerical calculations show that k is some constant whose
value lies between 1 and 2, 1 <k <2. The high-frequency resistance formula in
(4.119) assumes that the widths of the current concentrations are the same. The
plots of the current distribution shown in Figure 4.20 show that the current first
tends to crowd to the edge of one dimension where that dimension becomes on
the order of a skin depth and then crowds toward the edge of the other dimen-
sion when that dimension becomes on the order of a skin depth at a higher fre-
quency. Setting the dc and high-frequency asymptotes in (4.118) and (4.119) equal
gives

_1 wt
kw40

(4.120)

as shown in Figure 4.23(c). Figure 4.24 illustrates the comparison of this approxima-
tion to the method of subbars described previously for various divisions of the bar
(W/NW, t/NT). The resistance of the bar is the real part of Z computed as in (4.117b).
The bar is typical of a land on the surface of a printed circuit board and has t = 1.4
mils and w = 15 mils. The results were computed for bar lengths of 1 and 10 in.,
and the per-unit-length resistance obtained by dividing the total resistance by the bar
length was virtually identical for the two lengths. The break frequency in (4.120) oc-
curs around 7 MHz for k = 1.3, where the dimension wt/(w + t) in (4.120) is 1.36. For
this dimension, the thickness of each current concentration is 0.655. The computed
results are plotted in Figure 4.24 and indicate very close correlation for k = 1.3. For
k = 2, the break frequency in (4.120) occurs around 16.5 MHz, where the dimen-
sion wt/(w + 1) in (4.120) is 26. For this dimension, the thickness of each current
concentration is one skin depth: k/2 = §. The results of the subbar method shown
in Figure 4.24 indicate that the true resistance in the high-frequency region is some
50% higher than that predicted by the approximate method for k = 24. This error is
evidently due to the omission of the peaking of the current at the corners in the ap-
proximation. For the data shown in Figure 4.22(a) for a square bar of side dimensions
of 50 wm, the value of k to provide close prediction of the high-frequency asymptote
at 100 MHz of 16.5 Q/m is k = 1.58. For the data shown in Figure 4.22(b) for a square
bar of side dimensions of 4.62 mm, the value of k to provide close prediction of the
high-frequency asymptote at 10 kHz of 1.9 x 1073 Q/m is k = 1.486.
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FIGURE 4.24 Results of the computation of the per-unit-length resistance of a land via the
method of subbars for a thickness of 1.4 mils and a width of 15 mils.
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Write the equation for the per-unit-length inductance of two widely spaced
identical wires in (4.19) in terms of nH/in. [10.16 In (s/rw)]

Determine the exact and approximate values for the per-unit-length induc-
tance and capacitance of a two-wire ribbon cable consisting of two #28 gauge
stranded wires (r = 7.5 mils, 1 mil = 0.001 in.)that are separated by 50 mils.
Determine the ratio of wire separation to wire radius. [Exact: 0.75 pH/m =
19.04 nH/in., 14.82 pF/m = 0.3765 pF/in., approximate: 0.759 wH/m = 19.27
nH/in., 14.64 pF/m = 0.372 pF/in. The ratio of wire separation to wire radius
is 6.7.]

Determine the exact and approximate values for the per-unit-length capaci-
tance and inductance of one #20 gauge solid wire of radius 16 mils at a
height of 1 cm above an infinite ground plane. Determine the ratio 24 /ry.
[Exact: 14.26 pF/m = 0.36 pF/in., 0.779 wH/m = 19.79 nH/in.; approximate:
14.26 pF/m =0.36 pF/in., 0.779 pH/m = 19.79 nH/in. The ratio 2h/ry
is 49.]

A RG58U coaxial cable consists of a #20 gauge solid wire (ry = 16 mils), a
shield having an inner radius of 58 mils. The interior dielectric is polyethy-
lene (e; = 2.3). Determine the per-unit-length capacitance and inductance as

well as the velocity of propagation as a percentage of the speed of light.
[0.2576 wH/m = 6.54 nH/in., 99.2 pF/m=2.52 pF/in., 66%]
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Determine the per-unit-length capacitance and inductance of a stripline
having dimensions s = 20 mils, w = 5 mils, and a dielectric having &, = 4.7.
[113.2 pF/m = 2.88 pF/in., 0.461 wH/m = 11.7 nH/in.]

Determine the per-unit-length capacitance and inductance of a microstrip
line having dimensions of 4 = 50 mils, w = 5 mils, and & =4.7.
[38.26 pF/m = 0.972 pF/in., 0.877 pH/m = 22.3 nH/in., 3.018]

Determine the per-unit-length capacitance and inductance of a PCB configura-
tion having dimensions s = 15 mils, w = 15 mils, &4 = 62 mils, and &; = 4.7.
[38.53 pF/m = 0.979 pF/in., 0.804 wH/m = 20.42 nH/in.]

Two bare #20 gauge (radius = 16 mils) wires are separated center to center
by 50 mils. Determine the exact and approximate values of the per-unit-length
capacitance and inductance. [Exact: 27.33 pF/m, 0.4065 wH/m; approximate:
24.38 pF/m, 0.4558 pH/m. The ratio of separation to wire radius is only 3.13,
which is not sufficient for the approximate results to be valid.]

One bare #12 gauge (radius = 40 mils) is suspended at a height of 80 mils
above its return path, which is a large ground plane. Determine the exact and
approximate values of the per-unit-length capacitance and inductance. [Exact:
42.18 pF/m, 0.2634 wH/m; approximate: 40.07 pF/m, 0.2773 wH/m. The ratio
of wire height above ground to wire radius is only 2.0, which is not sufficient
for the approximate results to be valid although the error is only about 5%.]

A typical coaxial cable is RG-6U, which has an interior #18 gauge (radius 20.15
mils) solid wire, an interior shield radius of 90 mils, and an inner insulation of
foamed polyethylene having a relative permittivity of 1.45. Determine the per-
unit-length capacitance, inductance, and the velocity of propagation relative to
that of free space. [53.83 pF/m, 0.3 wH/m. The velocity of propagation relative
to free space is v/vg = 1/,/er = 0.83.]

Typical dimensions for striplines in multilayer PCBs are a plate separation of 10
mils, a conductor width of 5 mils, and ¢, = 4.7. Determine the per-unit-length
capacitance and inductance for this structure. [156.4 pF/m and 0.334 pH/m]
A microstrip line is constructed on a FR-4 board having a relative permittivity
of 4.7. The board thickness is 64 mils and the land width is 10 mils. Determine
the per-unit-length capacitance and inductance as well as the effective relative
permittivity. [0.7873 wH/m, 43.18 pF/m and &, = 3.06]

A PCB has land widths of 5 mils and an edge-to-edge separation of 5 mils. The
board is glass epoxy having a relative permittivity of 4.7 and a thickness of 47
mils. Determine the per-unit-length capacitance and inductance as well as the
effective relative permittivity. [0.8038 wH/m, 39.06 pF/m, and ¢ = 2.825]

Determine the per-unit-length dc resistance of a #28 gauge solid wire (ry =
6.3 mils) and a #28 gauge stranded wire consisting of seven strands of #36
gauge wire (ry = 2.5 mils). [214.3 mQ/m, 194.4 mQ/m]

Determine the frequency where the resistance of a #20 gauge solid wire

(rw = 16 mils) begins to increase due to skin effect. [105.8 kHz] Determine
the resistance of the wire at 100 MHz. [1.022 2/m]
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4.16 Determine the resistance of a 6-in. PCB land of width 5 mils at 1 MHz and at
40 MHz. [0.59 2, 0.776 2]

4.17 A current is at a certain distance above a perfectly conducting, infinite ground
plane, which lies in the x—y plane. If the vector current is given by —3a, —
5ay + 2a,, determine the image current that is at the same distance below the
location of the ground plane. [3a, + 5a, + 2a,]
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THE PER-UNIT-LENGTH PARAMETERS
FOR MULTICONDUCTOR LINES

In this chapter, we will extend the notions developed for two-conductor lines in
the previous chapter to multiconductor lines. In general, the concepts are identical
but the details are more involved. We will find that numerical approximate methods
must generally be employed to compute the entries in the per-unit-length parameter
matrices L, C, and G. The entries in the per-unit-length resistance matrix R are
grouped as shown in Chapter 3, Eqs. (3.12) and (3.13), and are computed, as an
approximation, for the isolated conductors. Hence, the entries in R are the same as
were obtained for two-conductor lines in the previous chapter; that is, we disregard
proximity effect in the resistance calculation.

In the case of multiconductor transmission lines (MTLs), the situation is somewhat
similar except that the details become more involved. In the case of a MTL where the
conductors have circular, cylindrical cross sections such as wires and the surrounding
medium is homogeneous, we can obtain approximate closed-form solutions for the
entries in the per-unit-length parameter matrices L, C, and G under the assumption that
the conductors are widely separated from each other. This condition of being widely
separated is not very restrictive for typical dimensions of wire-type lines such as ribbon
cables. However, dielectric insulations are usually present around the conductors of
wire-type lines such as ribbon cables, and therefore wire-type MTLs generally require
the use of numerical methods to compute the entries in the per-unit-length parameter
matrices. For the case of MTLs having conductors of rectangular cross sections such as
lands on printed circuit boards (PCBs), approximate numerical methods must always
be used regardless of whether the surrounding medium is homogeneous (as is the case

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.
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for the coupled stripline) or inhomogeneous (as for the case of the coupled microstrip
and the case of a general PCB).

5.1 DEFINITIONS OF THE PER-UNIT-LENGTH PARAMETER
MATRICES L, C, AND G

We first review the fundamental definitions of the per-unit-length parameter matrices
of inductance, L, capacitance, C, and conductance, G. Recall that these per-unit-
length parameters are determined as static field solutions in the transverse plane for
perfect line conductors. As opposed to two-conductor lines, there are only a few
closed-form solutions for MTLs. Generally, approximate numerical methods must be
used for the computation of the entries in the per-unit-length parameter matrics L,
C, and G. In any event, we showed in Chapter 3 that L, C, and G are symmetric and
positive-definite matrices. Again, we will restrict our discussions to uniform lines. As
discussed previously, computation of the entries in R is identical to those calculations
for two-conductor lines given previously; that is, we will neglect proximity effect and
compute these entries for isolated conductors.

The entries in the per-unit-length inductance matrix L relate the total magnetic flux
penetrating the ith circuit, per unit of line length, to all the line currents producing it as

v =LI (5.1a)
or, in expanded form,
Y1 I hoa - i I
) lip I - Dby I
. = . . . . . (5.2b)
wn lln lZn T lnn In

If we interpret the above relations in a manner similar to the n-port parameters [A.2],
we obtain the following relations for the entries in L:

lii = ﬂ (5.23)
I; h=-=lLi_1=liy1=-=1,=0

=V (5.2b)
J = =lj_=Ijy 1= =I=0

The entries [;; are the self-inductances of the ith circuit, and the entries /;; with i # j are
the mutual inductances between the ith and the jth circuits. Thus, we can compute these
inductances by placing a current on one conductor (and returning it on the reference
conductor), setting the currents on all other conductors to zero, and determining the
magnetic flux, per unit of line length, penetrating the other circuit. The definition of
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I,=0 @

=Y
®) i= T

J

L==L =l =-=1=0

FIGURE 5.1 Illustration of the definitions of flux through a circuit for determination of the
per-unit-length inductances: (a) self-inductances /; and (b) mutual inductances ;.

the ith circuit is critically important in obtaining the correct value and sign of these
elements. This important concept is illustrated in Figure 5.1. The ith circuit is the
surface between the ith conductor and the reference conductor. This surface is of
arbitrary shape but is uniform along the line. This surface shape may be a flat surface
or some other shape so long as this shape is uniform along the line. The magnetic flux
per unit length penetrating this surface (circuit) is defined as being in the clockwise
direction around the ith conductor when looking in the direction of increasing z. In
other words, the flux direction \V; through surface s; is the direction in which magnetic
flux would be generated by the current of the ith conductor. Figure 5.1(a) shows the
calculation of /;;, and Figure 5.1(b) shows the calculation of /;;.
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In order to illustrate this important concept further, consider a three-conductor
line consisting of three wires lying in a plane where the middle wire is chosen,
arbitrarily, as the reference conductor as shown in Figure 5.2(a). This resembles a
ribbon cable without dielectric insulations. The surfaces and individual configurations
for computing /11, 22, and [1> are shown in the remaining figures. Observe that the
surface for W, is between conductor 2 and the reference conductor, but observe the
desired direction of this flux; it is chosen with respect to the magnetic flux that would
be produced by current /> on conductor 2. So, the flux direction for the ith circuit is
defined by the direction of the current on the ith conductor and the right-hand rule
when looking in the direction of increasing z.

The entries in the per-unit-length capacitance matrix C relate the fotal charge on
the ith conductor per unit of line length to all of the line voltages producing it as

Q=CV (5.3a)

I
O «a = D

L+l

® a = )
I

® a = »)

(@

616

®) 4

I, e
L=0 ‘ o
@

©) Iy

L A
L=0 O ©
o1©® ©

¥
(d) 2

FIGURES.2 [Illustrations of the derivation of the per-unit-length inductances for a three-wire
ribbon cable with the center wire as the reference conductor.
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or, in expanded form,

- n
g Clk —C12 T —Cln
k=1

q1 zn: Vi
q2 —c12 Cu ot —Cop V>

C| = P : (5.3b)
qn Vi

. -
—Cln —C2n ce chk
k=1 -

The particular form for the entries in C in (5.3b) was derived in Chapter 3. If we
denote the entries in C in the ith row and jth column as [C];;, these can be obtained by
interpreting (5.3b) as an n-port relation and applying the usual constraints of setting
all voltages except the jth voltage V; to zero (“grounding” them to the reference con-
ductor) and determining the charge g; on the ith conductor (and —g; on the reference
conductor) to give [C];;:

[cl =& (5.42)
Vilvi= o =Vis =Vig1= - =Vu=0

[l =& (5.4b)
Vj Vi= =V 1=V = =V,=0

This amounts to several two-conductor capacitance calculations where the other n —
1 conductors are connected with short circuits to the reference conductor.

Although the above method of setting all but one voltage to zero and deter-
mining the resulting per-unit-length charge on the other conductors is straightfor-
ward, an alternative and simpler method is to apply a per-unit-length charge ¢; on
the jth conductor, the negative of this, —¢;, on the reference conductor, and zero
charge on the other conductors and then determining the resulting voltage between
the ith conductor and the reference conductor. In order to do this, we invert (5.3)
to give

V=PQ (5.5a)
or, in expanded form,
Vi Pt P2 0 P [
\%} P12 Pxn ' Pum q2

- : : - : : (5.5b)

7 Pin Pon e Pnn 4n
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where
c=p! (5.5¢)

The entries in P are referred to as the coefficients of potential. Once the entries in P
are obtained, C is obtained via (5.5¢). The coefficients of potential are obtained from
(5.5b) as

V.

Dii = *l (563.)
9i lg1=- =gi_1=qi41= " =qn=0
V.

py= (5.6b)
9 1g1=-=gj-1=qj11==gu=0

These relationships show that to determine p;; we place a per-unit-length charge
gq;j on conductor j with no charge on the other conductors (but —g; on the reference

conductor) and determine the resulting voltage V; of conductor i (between it and the
reference conductor with the voltage positive at the ith conductor). These concepts
are illustrated in Figure 5.3. Once P is obtained in this fashion, C is obtained as the
inverse of P as shown in (5.5c). It is important to point out that the self-capacitance
between the ith conductor and the reference conductor, c;;, is not simply the entry
in the ith row and ith column of C. Observe the form of the entries in C given in
(5.3b). The off-diagonal entries are the negatives of the mutual capacitances between
the pairs of conductors whereas the main-diagonal entries are the sum of the self-
capacitance and the mutual capacitances in that row (or column). Therefore, to obtain
the self-capacitance c;;, we sum the entries in the ith row (or column) of C.

The per-unit-length conductance matrix G relates the fotal transverse conduction
current passing between the conductors per unit of line length to all the line voltages
producing it as

=GV (5.7a)
or, in expanded form,
- n -
Zglk =812 - —&ln
k=1
Itl n Vi
) —812 &k 1+ —&n V
L= g : (5.7b)
Itl’l . n : Vn
—&l1n —&2n te Zgnk
L k:1 .

The particular forms of the entries in G in (5.7b) were obtained in Chapter 3.
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qn=o

+
v
v,
@ p.«,-=7/
Hgr= - =qi1= g1 =--=qa=0

+
Vi
v
by py=—
9 G = =gi-1=¢js1= =4, =0

FIGURES.3 [Illustrations of the determination of the per-unit-length coefficients of potential:
(a) self terms p;; and (b) mutual terms p;;.

Once again, the entries in G can be determined as several subproblems by inter-
preting (5.7b) as an n-port. For example, to determine the entry in G in the ith row
and jth column, which is denoted as [G];;, we could enforce a voltage between the jth
conductor and the reference conductor, V;, with all other conductor voltages set to zero
(“grounding” them to the reference conductor), Vi = --- V1 = Vi1 = --- V,, =0,
and determine the per-unit-length transverse current I;; flowing between the ith con-
ductor and the reference conductor. Denoting each of the entries in G as [G];; gives
these entries in G as

Iy

[Gli = Vil

(5.8a)

1= =Vis1=Vig1=-=V,=0
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(Gl = - (5.8b)

Vj Vi=-=Vj_1=Vji 1= =V, =0

In order to numerically determine the entries in L, C, and G, we need only a capac-
itance solver. First, we solve for the scalar capacitance matrix with the dielectric(s)
surrounding the conductors removed and replaced with free space that is denoted as
Cop. The per-unit-length inductance matrix can be obtained from

L = uogo Cy! (5.9)

In order to obtain the per-unit-length capacitance and conductance matrices, we could,
as an alternative to the direct method outlined before, use the capacitance solver with
each dielectric replaced by its complex permittivity:

8 =& (1 — jtans;) (5.10)

where tan §; is the loss tangent (at the particular frequency of interest) of the ith
dielectric layer and tan §; = (oefr,;/€;). This will give a complex-valued capacitance
matrix as

C = Cr+jC; (5.11)

Then, as discussed in the previous chapter, we obtain the per-unit-length capacitance
and conductance matrices as

C=Cr (5.12a)
and
G=-0C (5.12b)

and w = 2xf is the radian frequency of interest.

5.1.1 The Generalized Capacitance Matrix ¢

The above definitions as well as the derivation of the MTL equations assume that
we (arbitrarily) select one of the n + 1 conductors as the reference conductor to
which all the n voltages V; are referenced. Once the reference conductor is chosen,
all the per-unit-length parameter matrices must be computed for that choice con-
sistently. Although the choice of reference conductor is arbitrary, choosing one of
the n 4+ 1 conductors over another as reference may facilitate the computation of
the per-unit-length parameters. For example, if one of the n + 1 conductors is an
infinite, perfectly conducting plane, choosing the plane as the reference conductor
simplifies the calculation of the per-unit-length parameters. However, choice of this
plane as reference is not mandatory; we could instead choose one of the other n
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conductors as the reference conductor. In this section, we describe a technique for
computing a certain per-unit-length parameter matrix, the generalized capacitance
matrix €, without regard to the choice of the reference conductor. The dimensions
of this generalized capacitance matrix are (n + 1) x (n + 1). We will show that a
transmission-line capacitance C which is of dimensions n x n, for any conductor
chosen as reference conductor can be easily obtained from this generalized capaci-
tance matrix. If a different choice of the reference conductor is made, we can readily
obtain the transmission-line capacitance matrix C for this new choice of reference
conductor from the generalized capacitance matrix using simple algebraic relations
without repeating the time-consuming calculation of the per-unit-length generalized
capacitance. The generalized capacitance matrix for the line with the surrounding
medium removed and replaced by free space, ¢y, and the generalized capacitance
matrix with the permittivities replaced by their complex-valued permittivities given
in(5.10)as € = 6r + & can similarly be obtained. The transmission-line capacitance
matrix Cp and the complex transmission-line capacitance matrix C= Cr + jCjcan
then be easily obtained from these corresponding generalized capacitance matrices.
Then other transmission-line per-unit-length matrices L, C, and G can then be easily
obtained from these as

L = 110e0Cy (5.13)

and
C=Cx (5.14a)

and
G=-w( (5.14b)

Hence, the major computational effort is in determining the generalized capacitance
matrices.

The n MTL voltages V; are defined to be between each conductor and the chosen
reference conductor. We may also define the potentials ¢; of each of the n + 1
conductors with respect to some reference point or line that is parallel to the z axis
[C.4]. The total charge per unit of line length, g;, of each of the n 4+ 1 conductors
can be related to their potentials ¢; fori =0, 1, 2, ---,nwiththe (n + 1) x (n + 1)
generalized capacitance matrix € as

Q =¢o (5.152)
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or, in expanded form, as

q0 €00 Co1 -+ Con] [0
q1 (710 (]] v Cln ¢1
L L , (5.15b)
qn Cno  Gp1 -+ Cpp On
—— N——
Q 6 [

Observe that €'is (n + 1) x (n + 1), whereas the previous per-unit-length parameter
matrices L, C, and G are n x n. Also the generalized capacitance matrix, like the
transmission-line capacitance matrix, is symmetric, that is, ¢;; = ¢};, for similar rea-
sons. It can be shown that for a charge-neutral system, as is the case for the MTL, the
reference potential terms for the choice of reference point for these potentials, ¢;, van-
ish as the reference point recedes to infinity so that the choice of reference point does
not affect the determination of the generalized capacitance matrix [B.4,C.1,C.4,C.7].

Suppose that € has been computed and we select a reference conductor. Without
loss of generality, let us select the reference conductor as the zeroth conductor. In
order to obtain the n x n capacitance matrix C from &, define the MTL line voltages,
with respect to this zeroth reference conductor, as

Vi=¢i—do (5.16)
fori =1, 2,..., n. We assume that the entire system of n + 1 conductors is charge
neutral:

go+qg+p+ - +¢. =0 (5.17a)

Therefore, the charge (per unit of line length) on the zeroth conductor can be written
in terms of the charges on the other n conductors as

n
Q==Y (5.17b)
k=1

Denote the entries in the ith row and jth column of the per-unit-length capacitance
matrix C, with the zeroth conductor chosen as reference conductor, as C;;:

q1 Ci Cip -+ Cyy Vi
q2 Cpp Cpn - (Cyy \%}

(5.18)

qn Cin Coy SRR O Va
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Comparing (5.18) to (5.3b), we observe that C;; = ZZZI cik and C;; = —c;;. Substi-
tuting (5.16) and (5.17) into (5.15) and expanding gives (¢; = V; + ¢o)

n n
=Y @k = Vi+ Vot -+ G0V + <Z¢om) $o

k=1 m=0
n
qg=cuVi+cpVo+ - +61,Vy + ZG/&m o
— (5.19)
’ n
gn =t Vi+C2Va+ - +Cpn Vi + <Z5nm> %o
m=0
Adding all equations in (5.19) gives
n n n
0= (Z(’ml) Vi + (Z(//m2> Vo4+ - + (Z”mn) Vi
=0 =0 =0
m K ” . m (5.20a)
+ (Z(”Om +> Gt + ZG’W) bo
m=0 m=0 m=0
or
gy — _ k=t (o fmk) Vi] (5.20b)

>0 [Dom=oCim]

Substituting (5.20b) into the last n equations in (5.19) yields the entries in the per-
unit-length capacitance matrix C, given in (5.18) as [C.4]

(ZZ:O 65k> (Z:mo Cmj )
(X6

The first summation in the numerator of (5.21) is the sum of all the elements in the
ith row of €, whereas the second summation in the numerator of (5.21) is the sum of
all the elements in the jth column of €. The denominator summation » , €is the sum
of all the elements in &,

In the case of two conductors, the resultin (5.21) gives per-unit-length capacitance
between the two conductors and reduces to

Cij = Gij — (5.2D)

_ €11Co0 — Co1C10
o0 + o1 + €10 + €11

(5.22)

c

The generalized capacitance matrix, like the transmission-line capacitance, is sym-
metric so that ¢y = ¢19. Eliminating the potential reference node (or line) and
observing that capacitors in series (parallel) combine like resistors in parallel (se-
ries), one can directly obtain the result in (5.22) from the equivalent circuit of
Figure 5.4(a).
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~6n=-%s ¢
(b)
oo + €01 # +€0

Potential reference point (line)

(a)

FIGURE 5.4 [Illustration of (a) the meaning of the per-unit-length generalized capacitance
matrix for a two-conductor line and (b) the elimination of the reference line to yield the
capacitance between the conductors.

Therefore, we can obtain the per-unit-length generalized capacitance matrix &,
then choose a reference conductor, and then easily compute C for that choice of ref-
erence conductor from € using the relation in (5.21). If the surrounding medium is
inhomogeneous in &, we similarly compute the generalized capacitance matrix with
the dielectric removed (replaced with free space), 6p, and from that compute the
per-unit-length capacitance matrix with the dielectric removed, Cy, with the above
method. Once Cy is computed in this fashion, we may then compute L = j10g0Cy I
Computing the complex generalized capacitance matrix using a complex permit-
tivity for each homogeneous region as in (5.10), &= 6 + j&, we can obtain the
complex transmission-line matrix as C= Cr + jCp and from that we can obtain
the transmission-line capacitance matrix as C = Cr and the conductance matrix as
G = —w Cj as shown in (5.12).

5.2 MULTICONDUCTOR LINES HAVING CONDUCTORS
OF CIRCULAR, CYLINDRICAL CROSS SECTION (WIRES)

Conductors having cross sections that are circular—cylindrical are referred to as wires.
These types of conductors are frequently found in cables that interconnect electronic
circuitry and form an important class of MTLs.

5.2.1 Wide-Separation Approximations for Wires in Homogeneous Media

The results for two-conductor lines in a homogeneous medium obtained in the
previous chapter are exact. For similar lines consisting of more than two con-
ductors, exact, closed-form solutions cannot be obtained, in general. However, if
the wires are relatively widely spaced, we can obtain some simple but approx-
imate closed-form solutions using the fundamental subproblems derived in Sec-
tion 4.2.1 of the previous chapter [B.4]. These results assume that the currents
and charges are symmetric about the wire axes, which implicitly assumes that the
wires are widely spaced. In other words we assume that proximity effect is not
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(c)

FIGURE 5.5 [Illustration of the calculation of per-unit-length inductances using the wide-
separation approximations for n + 1 wires: (a) the cross-sectional structure, (b) self-inductance,

and (c) mutual inductance.

pronounced. As we saw in the case of two-wire lines, the requirement of widely
spaced wires is not overly restrictive. The following wide-separation approximations
for wires are implemented in the FORTRAN program WIDESEP . FOR described in

Appendix A.
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5.2.1.1 n+1 Wires Consider the case of n 4+ 1 wires in a homogeneous medium
as shown in Figure 5.5(a). The entries in the per-unit-length inductance matrix are
definedin (5.1) and (5.2). If the wires are widely separated, we can use the fundamental
subproblems derived in Section 4.2.1 of the previous chapter to give these entries. The
self-inductance is obtained from Figure 5.5(b) and the mutual inductance is obtained
as in Figure 5.5(c) as

L Vi
i = —
1; h=-=li_1=lit1==1,=0
u (dio) <d10)
= 711’1 e 1
2 w0 o T'wi
d?
=t <l°> (5.232)
21 rwol'wi
/ Y
=
= =11=lj41= =1,=0
Y U L )
27 d,'j 2w w0
diod ;
= Moy [ Gedio (5.23b)
2 dijer

The entries in the per-unit-length capacitance and conductance matrices for this as-
sumed homogeneous surrounding medium can be obtained from this result as before:

C=psL™! (5.24a)
¢ = Zc
e (5.24b)
= ouL™!

5.2.1.2 n Wires Above an Infinite, Perfectly Conducting Plane Consider the case
of n wires above and parallel to an infinite, perfectly conducting plane shown in
Figure 5.6. Replacing the plane with the image currents and using the fundamental
result derived in Section 4.2.1 of the previous chapter yields

li = Ifi

=w=li=liy==,=0

En()- £ ()
(e

> (5.25a)
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FIGURE 5.6 Illustration of the calculation of per-unit-length inductances using the wide-
separation approximations for n wires above a ground plane.

Li = L=

i
e

)ese)

5+ i (525b)

- M
47

Ahih; 1
sij

This is again a problem of a homogeneous medium, and therefore the entries in the
per-unit-length capacitance and conductance matrices can then be found from these
results using (5.24).

5.2.1.3 n Wires Within a Perfectly Conducting Cylindrical Shield Consider n
wires of radii ry; within a perfectly conducting circular—cylindrical shield shown
in Figure 5.7(a). The interior radius of the shield is denoted by rg and the distances
of the wires from the shield axis are denoted by d;, whereas the angular separa-
tions are denoted by 6;;. The perfectly conducting shield may be replaced by image
currents located at radial distances from the shield center of r§ /d; as shown in Fig-
ure 5.7(b) [B.1, 1, 2]. The directions of the desired magnetic fluxes are as shown.
Assuming that the wires are widely separated from each other and the shield, we
may assume that the currents are uniformly distributed around the wire and shield
peripheries. Thus, we may use the basic results of Section 4.2.1 of the previous
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FIGURE 5.7 Illustration of the calculation of per-unit-length inductances using the wide-
separation approximations for n wires within a cylindrical shield: (a) the cross-sectional struc-
ture and (b) replacement with images.

chapter to give [B.1]

/ Vi
i = —
Li h=-=li1=liy1=-=I=0
2
r
—S—d,-
A U W I/ 596
2 I'wi 2 r% (5.26a)
S g
d
2 2
_ony (s—d
2 rStwi
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_ W

L
! Ii I=-

=l =lip1==1,=0

_K dj (didj)2 + 1 — 2d;djr3cos ;; (5.26b)
2\ s\ (did))? +d} —2did}cos by

The entries in the per-unit-length capacitance and conductance matrices for this
homogeneous medium can be obtained using the relations in (5.24).

5.2.2 Numerical Methods for the General Case

The results in the previous three subsections give simple formulas for the entries in
the per-unit-length parameter matrices of L, C, and G for n wires and a reference
conductor for three cases: (1) n + 1 wires, (2) n wires above an infinite, perfectly con-
ducting “ground” plane, and (3) n wires within an overall circular—cylindrical shield.
There are two important restrictions on their applicability. These are that (1) the wires
must be widely separated and (2) the dielectric medium surrounding the wires must be
homogeneous; that is, circular dielectric insulations are ignored. The wide-separation
assumption provides the simplification that the charge distributions around the wire
peripheries are approximately uniform. This assumption was made so that we may
use the fundamental subproblems for wires derived in Section 4.2.1 of the previous
chapter to obtain those results. The charge distributions around closely spaced wires
will be nonuniform around their peripheries but will be approximately uniform for
ratios of wire separation to wire radius of 4 and higher (see Fig. 4.9). However, a sig-
nificant restriction on the utility of those results is that they assume a homogeneous
surrounding dielectric medium. Practical wire-type cables have circular—cylindrical
insulating dielectrics surrounding them, which creates an inhomogeneous medium (air
and the dielectric insulation). In this section, we will obtain a numerical technique that
can be used to obtain accurate results for multiwire lines having an inhomogeneous
surrounding medium as well as closely spaced conductors. The following method is
described in [C.1-C.7] and is implemented for the practical case of a ribbon cable in
a FORTRAN computer program RIBBON . FOR described in Appendix A.

First, consider an (n + 1)-wire line in a homogeneous medium. If the wires are
closely spaced, proximity effect will cause the charge distributions to be nonuniform
around the wire peripheries. In the case of wires that are closely spaced, the charge
distributions will tend to concentrate on the adjacent surfaces (proximity effect) (see
Fig. 4.9). In order to model this effect, we will assume a form of the charge distribution
around the ith wire periphery in the form of a Fourier series as a function of the
peripheral angle 6; as

A; B;
pi (6) = aio + ) _aixcos (k6;) + D bsin (k8) (C/m*)  (5.27)
k=1 k=1

This Fourier series representation for the ith wire contains a total number of unknowns
of N;j =1+ A; + B;. For a line consisting of n + 1 wires, there will be a total
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of N =73"" 4 N; unknowns to be determined. The coefficients of each expansion,
aio, aijk,and bjx, are to be determined such that the boundary conditions are satisfied.
These boundary conditions are that the potential at points on each conductor due
to all charge distributions equals the potential of that conductor. (Since we assume
perfect conductors for the computation of L, C, and G, the potentials of all points on
a conductor are the same.) The charge distribution in (5.27) has dimensions of C/m?
since it gives the distribution around the wire periphery per unit of line length. Once
the expansion coefficients in (5.27) are determined to satisfy the boundary conditions,
the total charge on the ith conductor per unit of line length is obtained by integrating
(5.27) around the wire periphery to yield

2

qi = /Pi (0;) rvwidb;
6;=0
= 2mryiajo (C/m)

(5.28)

Hence, the charge per unit of line length is determined solely by the constant term in
the expansion. However, the other terms affect this constant term. This simple result
is due to the fact that fe%lo cos (k0;)d6; = feio sin (k6;)do; = 0.

We now determine the potential at an arbitrary point in the transverse plane at a
position rp, 6, from each of these charge distributions, that is, ¢;(r}, 0), as illustrated
in Figure 5.8. This can be obtained by assuming that the charge distribution around
the periphery of the ith conductor is composed of filaments of per-unit-length charge
pirwidf; C/m, each of whose amplitudes are weighted by the particular distribution,
that is, 1, cos (k0;), and sin (k6;). Then we use the previous fundamental subproblem
result given in Eq. (4.16) for the voltage between two points. With reference to Figure
(5.8), we obtain

Pirwid0; s
Gi(rp. 6p) — do(ro, o) = —%ln (p> (5.29)
e S0
Potential
reference
point

$o(r0, 8o)

FIGURE 5.8 Determination of the potential of a charge-carrying wire having various cir-
cumferential distributions by replacement of the charge with weighted filaments of charge.
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It was shown in [C.7] that the potential of the reference point, ¢o(ro, 6p), can be
omitted if the system of conductors is electrically neutral, that is, the net charge
per unit of line length is zero. Since this is satisfied for our MTL systems, we will
henceforth omit the reference potential term. Thus, the differential contribution to the
potential due to a filamentary component of the charge distribution is

d¢i(rp» Qp) =

Fid?
”’2’ In(sp) (5.30)

The distance from the filament to the point is (according to the law of cosines) given
by

Sp = \/rg + r\%vi - 2reriCOS (9,' — 9p) (5.31)

Substituting this along with the form for the charge distribution given in (5.27) into
(5.30) and integrating around the conductor periphery gives the total contribution to
the potential due to the charge distributions:

27
Giro8) = aio / 165) raidt)

6;=0
2w

+Zaik / 1(6;) cos (k6;) ry;db; (5.32a)

k=1 =0
2

+) ik / 1(6;)sin (k6;) ry;d6;
6;=0

where

! 2 2
1(6;) =— Tme In \/rp + rg; — 2rprwicos (Oi - Op)

1
=~ In (rg + ”\%w' — 2rpryicos (Qi — Gp)>

(5.32b)

Each of the integrals in (5.32a) can be evaluated in closed form giving [B.4]

k+1
rw,ln rp cos (kep)
@i(rp, Bp) = jo ( ) + Zazk < 2ke k

k+1 k6,
+Zblk< ;;“r(k ")) (5.33)

Therefore, the contributions to the potential from each of these charge distributions
are given in Table 5.1.
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TABLE 5.1
Charge distribution Contribution to the potential ¢(ry, 6,)
1 ryln(rp)
r’”“cosg(m@ )
cos (mh) A S 4
2em ry
sin (mf) r™sin (m6,)

1
28mrp

Satisfaction of the boundary conditions is obtained if we choose a total of

N = iNi
i=0

=mn+1)+ ZA,' + ZBi (5.34)
i=0 i=0

points on the wires at which we enforce the potential of the wire due to all the
charge distributions on this conductor and all of the other conductors as illustrated in
Figure 5.9. This leads to a set of N simultaneous equations that must be solved for
the expansion coefficients, written in matrix form, as

®=DA (5.35a)

FIGURE 5.9 Determination of the total potential at a point due to all charge distributions.
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or, in expanded form,

D Do -+ Do;j -+ Doy Ay
| =D -+ Djj -+ Djy Aj (5.35b)
P, Dy -+ Dy -+ Dy A,

The vector of potentials at the match points on the ith conductor is denoted as
bi
CD,' = ¢[ (5.35C)
bi

and the vector of expansion coefficients of the charge distribution on the ith conductor
is denoted as

aio
ail

A = | aix (5.35d)
bi1

L b;ip, |

and A; denotes the expansion coefficients associated with the ith conductor according
to (5.27). Each A; will have N; = 1 + A; + B; rows as will ®;. Each D;; will have
dimension of N; x N;. Inverting (5.35) gives the expansion coefficients in terms of a
linear combination of the potentials of each conductor:

A=D"'o (5.36a)
or, in expanded form,
Ao Bo -+ Bo; -+ Bou ol
Ai|=|Bo -~ B - By d; (5.36b)
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The generalized capacitance matrix ¢ described in Section 5.1.1 can be obtained from
(5.36), using (5.28), as [C.1-C.7]

él‘j =27 Iwi Z B,‘j (5-37)

first row

This simple result is due to the fact that according to (5.28) we need only to determine
ajo, and each submatrix in (5.36) relates

[ aio - - 91
ajl '
ajA; = B,‘j ¢j (5.38)
bi1 :
Lbig ] - S
iB -¢j-

or, in expanded form,
aio = [Byly &)+ -+ + [Byj] &5+ - + [By y 0
= {Baly+ o+ Byt o+ Bl b G539

where [B;;],,, denotes the entry in row m and column # of B;;. Hence, ¢;; involves
the sum of the entries in the first row of B;;.

5.2.2.1 Applications to Inhomogeneous Dielectric Media This method can be ex-
tended to handle inhomogeneous media such as circular—cylindrical dielectric insula-
tions around the wires. Observe that for each wire and dielectric insulation of that wire
there are two surfaces that contain charge and each distribution must be expanded into
a Fourier series with respect to the angle around that boundary 6;. These two surfaces
are the conductor—dielectric surface and the dielectric—free-space surface.

As previously discussed in Chapter 4, dielectric media consist of microscopic
dipoles of bound charge as illustrated in Figure 5.10(a). Application of an external

&

> —f ___»

@/@ OROICROIOEONENGS 200z ©
6{69 ®\@ OO0 O0—® © 2OlOx ©
CmOICECIO=CRENS 2OIOF ©)

é > & >
(a) ® ©

FIGURE 5.10 Illustration of the effects of bound (polarization) charge: (a) microscopic

dipoles, (b) alignment of the dipoles with an applied electric field, and (c) creation of a bound
surface charge.
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electric field causes these microscopic dipoles of bound charge to align with the field
as illustrated in Figure 5.10(b). If a slab of dielectric is immersed in an electric field,
a bound charge density will appear on the surfaces of the dielectric as illustrated in
Figure 5.10(c).

Charge consists of two types: free charge is the charge that is free to move and
bound charge is the charge appearing on the surfaces of dielectrics in response to
an applied electric field as shown in Figure 5.10(c). At the interface between two
dielectric surfaces, the boundary condition is that the components of the electric
flux density vector 7/ that are normal to the interface must be continuous, that is,
Dy = €181, = €262, = Dy. A simple way of handling inhomogeneous dielectric
media is to replace the dielectrics with free space having bound charge at the interface
[C.1-C.7,1,2]. At places where the dielectric is adjacent to a perfect conductor, we
have both free charge and bound charge, and the free charge density on the surface
of the conductor is equal to the component of the electric flux density vector that
is normal to the conductor surface, &, (C/mz) [A.1]. Of course, the component of
the electric field intensity vector that is tangent to a boundary is continuous across
the boundary for an interface between two dielectrics, ;1 = &1, and is zero at the
surface of a perfect conductor.

In order to adapt the above numerical method to wires that have circular, cylindri-
cal dielectric insulations, we describe the charge (bound plus free) around the wire
periphery as a Fourier series in the peripheral angle, 6;, as in (5.27):

A; B;
pit (0:) — piv (0) = aio + Y _aixcos (6) + Y _bisin (6;) (C/m*)  (5.40)
k=1 k=1

In (5.40), pir denotes the free charge distribution on the ith conductor periphery
and p;p, denotes the bound charge distribution on the dielectric periphery facing the
conductor as shown in Figure 5.11. At the dielectric periphery facing the free-space
region, there is only bound charge that we similarly expand in a Fourier series in
peripheral angle 6; as

A; B;
pib (0) = djg + > _ajycos (6) + > _bsin () (C/m?) (5.41)
k=1 k=1
€y ¢'i(fp: 9p)

FIGURE 5.11 The general problem of the determination of the potential of a dielectric-
insulated wire due to free and bound charge distributions at the two interfaces.
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In (5.40), we have anticipated that the bound charge distribution at the conduc-
tor periphery will be opposite in sign to the bound charge distribution around the
dielectric—free-space boundary. Also, we denote the bound charge distribution at
the dielectric—free-space boundary in (5.41) with a prime, whereas the bound charge
distribution at the conductor—dielectric boundary in (5.40) is denoted without a prime.
This is because, although the fofal bound charge per unit length at each bound-
ary must be the same, the distributions around the peripheries are different since
the boundary radii are different. For each dielectric-insulated wire, there are a to-
tal of N; unknown expansion coefficients, N; = 1 + A; + B;, for the free plus bound
charge on the conductor peripheries and a total of N/ unknown expansion coefficients,
N/ =1+ A/ + B, for the bound charge on the outer dielectric periphery. For a total
of n + 1 wires, this gives a total number of unknowns of N + N’, where

n
N=>"N
i=0

N n n
=m+D+> Ai+ ) B (5.42a)
n i=0 i=0
N =>"N
i=0
n n
=+ D+ A+ B (5.42b)
i=0 i=0

unknowns. Observe that the total bound charge at the dielectric—conductor boundary
per unit of line length must equal the total bound charge per unit of line length at
the dielectric—free-space boundary but their distributions will not be the same. To
determine the total charge on each surface per unit of line length, we integrate the
charge distribution in (5.40) and (5.41) to yield

2
qif — qiv = / (it — piv) Twidb;
0

= 2nry; aip (C/m) (5.43a)
and
2
qib = / () (rwi + ;) db;
0
= 27 (rwi + i) ajy (C/m) (5.43b)

where t#; is the thickness of the dielectric for the ith wire.

In order to enforce the boundary conditions, we choose points on each conduc-
tor periphery at which to enforce the conductor potential ¢; and points on each
dielectric—free-space periphery at which to enforce the continuity of the normal com-
ponents of the electric flux density vector due to all these charge distributions. This
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gives a set of N + N’ simultaneous equations of a form similar to (5.35):

& D Dip| | A
HEEEEIN 549

The first N = Z?:o N; rows enforce the conductor potentials, and the second N’ =
1o N/ rows enforce the continuity of the normal components of the electric flux
density vector across the dielectric—free-space interfaces. The vector A contains the
N = >"7_, N; expansion coefficients of the free plus bound charge at the conductor
peripheries, and the vector A’ contains the N’ = ", N/ expansion coefficients of
the bound charge at the dielectric—free-space peripheries. The match points around
the two peripheries are not chosen to be evenly spaced but are chosen with a scheme
that avoids giving a singular matrix in (5.44) [C.3].

The entries in (5.44) can be obtained by considering a cylindrical boundary of ra-
dius r, of infinite length shown in Figure 5.12, which supports the charge distributions
1, cos (m6y), and sin (m6y) around its periphery. This is identical to the problem of
free charge around a conductor periphery considered in the previous section, but here
the charge distribution can represent free or bound charge distributions. Proceeding
as in the previous section by modeling the charge distributions as weighted filaments
of charge gives the potential both inside and outside the boundary. Similarly, the elec-
tric field due to these charge distributions can be obtained from the gradient of these
potential solutions [A.1]:

E(rp, 0p) = —V¢

J 1 o
= ——(b(-l), - ——¢a9 (5.45)
or rp 00
! N7

y4

v

0,
0,
T

Charge distribution on cylinder

coslmGh
sin m0,

FIGURE 5.12 The general problem of determining the potential inside and outside a charge
distribution.
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TABLE 5.2 Match point outside the charge distribution, r, > ry,.

Charge distribution Contribution to the potential at P Contribution to the electric field at P

rpln (7,
1 _nin (rp) T oo
£ erp
m m+1 o
cos (m6y) ry*eos (mfp) 1w\ { cos (m,)d, }
’ 2emry 2e \ r, +sin (m6,)dy
. rngsin (mép) (7 m+1 sin (mep)a,
sin (m6y) L S 2l = . R
2emry E\1p cos (mby)ag

Carrying out these operations, the potential and electric field at a point ry, 6, both
inside and outside the charge distribution are given in Tables (5.2) and (5.3) [C.1-C.3].

Inverting Eq. (5.44)gives

Ao T _Boo By, Bo, | r &

A, Bio B:ij B;, ®;

al |8 B, . B q;n

N P B e ]

LA, B:;,o B, - B, o
) _ (5.46a)

TABLE 5.3 Match point inside the charge distribution, r, < ry,.

Charge distribution Contribution to the potential at P Contribution to the electric field at P

| _ rbln (rb) 0
€
rycos (méh) O
cos (mth) 2em i 2e \ v —sin (m6,)dy

rpsin (mé,) sin (m6,)d,

m—1
. Tp 51 MYy ) _1(n
sin (m6y) 2emp] 2¢ (rb) { +cos (mb,)dg }
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which becomes

_AO_ 'BOO BO] BO)’l_
Az Bl() Bij Bm
: : [oX
A, Bw -+ By -+ By :
B D; (5.46b)
/ / / /
Ay By - BOj o By, :
: : : : : : D,
/
A; ;0 B;j, B;n
’ , : , : :
L A, LB, --- B, - B,

Recall that the charge at the conductor—dielectric interface consists of free charge
plus bound charge, pit—pip. The entries in the generalized capacitance matrix relate
the free charge on the conductors to the conductor potentials. Therefore, according to
(5.43a) and (5.43b), we must add the total (bound) charge at the dielectric—free-space
surface to the total (bound plus free) charge at the conductor—dielectric surface in
order to obtain the free charge on the conductor to give the total per-unit-length free
charge for each wire as

qit = (git — qivb) + gib
= 27rwiaio + 27 (rwi + ;) dl (5.47)

Thus, in a fashion similar to the bare conductor case above, the entries in the gener-
alized capacitance matrix can be obtained from (5.47) as

, qif
Gj= ==
; $o="+=¢;j_1=@jt1= " =¢n=0
=2mryi Y By+2m(rwit+t) Y Bj (5.48)
first row first row

where ) s rowBij denotes the sum of the elements in the first row of the submatrix
B;; of (5.46b) relating the coefficients of the bound plus free charge at the ith conductor
interface to the potential of the jth conductor, ¢, and 3 g, 1o, Bf; denotes the sum of
the elements in the first row of the submatrix B’ j of (5.46b) relating the coefficients
of the bound charge at the dielectric—free-space interface for the ith conductor to the
potential of the jth conductor, ¢;.
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d = 50 mils

L

d = 50 mils / ¢
r, = 7.5 mils (# 28 gauge, 7 X 36) 0’
¢ = 10 mils ’
& = 3.5 (PVC) ,,//

FIGURE 5.13 Dimensions of a three-wire ribbon cable for illustration of numerical results.

5.2.3 Computed Results: Ribbon Cables

As an illustration of the numerical results, consider the three-wire ribbon cable shown
in Figure 5.13. The outside wire is chosen for the reference conductor. The center-to-
center separations of the wires are 50 mils (1 mil =0.001 inch). The wires are identical
and are composed of # 28 gauge (7 x 36) stranded wires with radii of ry, = 7.5 mils
and polyvinyl chloride (PVC) insulations of thickness ¢ = 10 mils and relative dielec-
tric constant ¢, = 3.5. The results are computed using the RIBBON . FOR computer
program described in Appendix A, which implements the method described in this
section for ribbon cables. The generalized capacitance matrix was computed using
10 Fourier coefficients around each wire surface (the constant term and nine cosine
terms) and 10 Fourier coefficients around each dielectric—free-space surface and the
results are shown in Table 5.4.

The per-unit-length transmission-line capacitance matrices C and Cy become as
shown in Table 5.5. The last column of Table 5.5 shows the effective dielectric constant
(relative permittivity) as &, = [C]; ;i / [Col;j. The per-unit-length inductances shown in

TABLE 5.4 The generalized capacitances for the three-wire ribbon cable with and
without the dielectric insulations.

Entry With dielectric (pF/m) € Without dielectric (pF/m) &)
Coo 26.2148 17.6900

Co1 —18.0249 —10.5205

G —5.03325 —4.22544

1 37.8189 22.9694

C12 —18.0249 —10.5205
n 26.2148 17.6901
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TABLE 5.5 The transmission-line capacitances for the three-wire ribbon cable with
and without the insulation dielectrics.

Entry With dielectric (pF/m) C Without dielectric Effective dielectric
(pF/m) Cy constant, &,

Cn 37.432 22.494 1.664

Ci —18.716 —11.247 1.664

Cxp 24.982 16.581 1.507

TABLES5.6 The transmission-line inductances for the three-wire ribbon cable computed
exactly and using the wide-separation approximations.

Entry Exact (wH/m) Wide-separation approxation («H/m) Percent error (%)

Ly 0.74850 0.75885 1.38
Ly, 0.50770 0.51805 2.04
Ly 1.0154 1.0361 2.04

Table 5.6 were computed exactly as L = pogoCy ! and using the wide-separation
approximations.

The wide-separation approximations are computed from (5.23) using the FOR-
TRAN program WIDESEP . FOR described in Appendix A as

d

lll = @ln <>
T Iw
2d

I = X ()
2w I'w

o 2d
Iy = —In | —
T Fw

Once again, the wide-separation approximations give results for the entries in the
per-unit-length inductance matrix that are within some 2 % of the values computed
from L = p0e0Cy ' The ratio of adjacent wire separation to wire radius is 6.67, so
we would expect this.

Figure 5.14 illustrates the convergence of the method for the three-wire ribbon
cable. The per-unit-length inductances and per-unit-length capacitances are plotted
versus the number of Fourier coefficients around the wire and dielectric boundaries
in Figure 5.14(a) and (b), respectively. Observe that the inductances converge
to accurate values after about two Fourier coefficients per boundary, whereas the
capacitances require on the order of three or four Fourier coefficients per boundary for
convergence.
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Convergence versus number of Fourier Coefficients
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FIGURE 5.14 Convergence of the per-unit-length parameters of the three-wire ribbon cable
versus number of expansion coefficients: (a) inductances and (b) capacitances.

5.3 MULTICONDUCTOR LINES HAVING CONDUCTORS
OF RECTANGULAR CROSS SECTION

The basic solution problem in determining the entries in the per-unit-length param-
eter matrices L, C, and G remains the same as before. The per-unit-length parameters
of inductance, capacitance, and conductance are all obtained as the static (dc) solu-
tion of the fields in the transverse x—y plane for perfect conductors. Essentially, this
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means that we need to solve Laplace’s or Poisson’s equation in the two-dimensional
transverse plane [A.1]:

82 ¢ 82 ¢
Vip(x,y) = — + — = p(x, 5.49
é(x, y) o2 T a2 p(x, y) (5.49)
There are various methods for solving this equation. The method we will use de-
termines an approximate solution using various numerical techniques that we will
discuss in this section.

5.3.1 Method of Moments (MoM) Techniques

MoM techniques essentially solve integral equations where the unknown is in the
integrand. An example is the integral form of Poisson’s equation in the transverse
x—y plane:

P(x, ) = —— / / LESRRN (5.50)
dme ‘ r

where a charge distribution in the x—y plane, p, is distributed over some surface
s. Ordinarily, we know or prescribe the potential at points in the region (e.g., on
perfectly conducting bodies) and wish to determine the charge distribution that
produces it. Thus, we need to solve an integral equation for the integrand [A.1, 2-5].

The problems of interest here are the perfect conductors in the two-dimensional
plane that are infinite in length (in the z direction) and the ith conductor that has
some unknown surface charge density, p; (x, y) (C/m?), residing on its surface as
illustrated in Figure 5.15. Observe that the units of this charge distribution are
per square meter: One dimension is along the z axis and the other dimension is

Foo

p,C/m?

fo
!

¥

FIGURE 5.15 Tllustration of the solution of Poisson’s equation in two dimensions.
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around the conductor surface in the transverse x—y plane. One common way of
doing this, which we used for the ribbon cable, is to approximate the charge dis-
tribution around the two-dimensional conductor periphery as infinitely long fila-
ments of charge in the z direction (C/m) and use the basic problem of the poten-
tial of an infinitesimal line charge that was developed in Section 4.2.1. This forms
the basis for numerical techniques that are used to analyze these two-dimensional
structures of infinite length for determining the per-unit-length parameters [2-5].
Thus, we initially solve the problem of the potential of an infinitely long filament
of charge carrying a per-unit-length charge in the z direction, which is uniformly
distributed in the z direction. The potential at a point is the sum of the potentials of
each line charge that makes up the desired charge distribution around the conductor
periphery.

A more general way is to represent the charge distribution over the ith conductor
surface as a linear combination of basis functions, pji, as

pi(x,y) = aipin(x,y)+appin(x,y)+ -+ pin; (X, Y)
al (5.51)
= > aipix (x,)

k=1

Entire domain expansions use basis functions that are nonzero over the entire contour
of the surface in the same manner as a Fourier series represents a time-domain func-
tion using basis functions defined over the time interval encompassing one complete
period. This was the technique used earlier to expand the charge distributions around
the wire and dielectric insulation peripheries of ribbon cables. Subdomain expansions
seek to represent the charge distribution over discrete segments of the surface contour
[C.1,C.2]. Each of the expansion basis functions, pjx, are defined over the discrete
segments of the contour, c;k, and are zero over the other segments. We will concentrate
on the subdomain expansion method. There are many ways of choosing the expan-
sion functions over the segments. One of the simplest ways is to represent the charge
distribution as a “staircase function,” where the charge distribution is constant over
the segments of the contour:

1, € Cik
— 5.52
Pik {0’ ¢ Cik ( )

This is illustrated in Figure 5.16 and is referred to as the pulse expansion method. The
charge distribution is assumed to be constant over the segments c;; of the surface, but
the levels o are unknown as yet. Hence, we are making a “staircase’ approximation
to the true distribution. This is the essence of the MoM method that we will use for
PCBs. More elaborate approximations such as triangular distributions may be made
with corresponding increase in difficulty of analysis.

In order to illustrate the method as applied to PCB structures, consider a PCB shown
in Figure 5.17(a) where three infinitesimally thin lands (flat, perfect conductors) reside
on the surface of a dielectric substrate having a relative permittivity of &;. Each land is
at potential ¢; and carries a per-unit-length charge distribution ¢;(C/m). This charge
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FIGURE 5.16 Illustration of the pulse expansion of a charge distribution on a flat strip.

distribution ¢; is the total charge on the land per unit of line length in the z direction.
Figure 5.17(b) shows an important distinction between the case of PCB lands and the
case of round wires; the charge distributions across the land widths on PCB lands,
0i(C/m?), tend to peak at the edges of the lands [6]. In order to determine the per-

goC/m 9 4, C/m
0 \_ . / (o33
® ©

po C/m? p, C/m?2 p, C/m?2

© @ ®
®)
FIGURE 5.17 Tllustration of the charge distributions over the lands of a PCB.
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unit-length capacitance matrix for this structure we must relate these per-unit-length
charge distributions g; to the conductor potentials ¢;, with the generalized capacitance
matrix ¢ as

q0 @0 o1 2 [¢Po
Q| =|¢ ¢t Ci2| |d1 (5.53)
q2 G €21 Cnl Lo
—— ——
Q € @

We represent this charge distribution over each land as in (5.51) with the staircase
approximation or pulse expansion method given in (5.52) as illustrated in Figure
5.18(a). The «j; unknown levels of the charge distributions are to be determined
to satisfy the boundary condition that the potential over the ith conductor is ¢; as
illustrated in Figure 5.18(b). The total charge (per unit length in the z direction) in

>
210
[

R el et =

| | | |
T T T T
- W Wy W Wy — W — >

(@)

Ol Qi O3 Olig Qs

¢i ¢i ) q)i q)i ) ¢i

[ | I [ ]
1 1 T
- Wi Wy e Wy Wy — W —»

(b)

FIGURE 5.18 Illustration of (a) approximating the charge distribution over a land with
piecewise-constant expansion functions and (b) matching the potential at the center of each strip.
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C/m is obtained by summing the charges of the subsections of that conductor:

Ni
0= i [ pudes (C/m (5.54)
k=1

Ci
In the case of the pulse expansion method, this simplifies to
qi = w1 +apwp + -+ aiN;WiN;

Ni
> aiwix (C/m)

k=1

(5.55)

where wji is the width of the kth segment of the ith conductor. The potential at a
point on the ith conductor due to this representation will be due to the contributions
from all the unknown charge distributions and can therefore be written as a linear
combination of them as

Ni
oi(x,y) = ZKikaik (5.56)
k=1

Each coefficient Kj; is determined as the contribution to the potential due to each
basis function alone:

Kit = Piloy=1, ai1.on1.is1..m ain; =0 (5.57)

There are many ways of generating the required equations. One rather simple tech-
nique is the method of point matching. For illustration consider a system of n + 1
conductors each having a prescribed potential of ¢; fori =0, 1, ..., n. We next en-
force the potential of each conductor, ¢;, due to all charge distributions in the system
to be the potential of that conductor at the center of each subsection of the conductor.
Typical resulting equations are of the form

No N; Ny
¢ =Y Koaor+ - + > Kaaix + - + > Knxatk (5.58)
k=1 k=1 k=1

Choosing a total of
N = ZNk (5.59)

points on the conductors gives the following set of N simultaneous equations in terms
of the expansion coefficients:

®=DA (5.60a)
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or, in expanded form,

b Do -+ Doj --- Don7 [Ao
@ | =|Dip --- Di --- Dy Aj (5.60b)
o, Dy -+ Dy -+ Dy, A,

The vector of potentials at the match points on the ith conductor is denoted as
bi
D= | ¢ (5.60c)
éi

and the vector of expansion coefficients of the charge distribution on the ith conductor
is denoted as

Qi
A= Ol:ik (5.60d)
a;n;
Inverting (5.60) gives
A=D"'o (5.61a)
or, in expanded form,
Ao Bo -+ Bo; -+ By N
al=lB0 By B | .61
A, B - By - Bullo,

Once the expansion coefficients are obtained from (5.61), the total charge (per unit
of length in the z direction in C/m) can be obtained from (5.55). The generalized
capacitance matrix € can then be obtained. In the case of point matching and pulse
expansion functions as with flat conductors, the entries in the generalized capacitance
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matrix can be directly obtained from (5.61) as

Cij = wil Z Bij +wiz Z Bij+ -+ +win; Z Bij (5.62)

row 1 row 2 row N;j

where wiy is the width of the kth subsection of the ith conductor. This simple result
is obtained from (5.55):

qi = aiiwil +dipwiz + -+ + 0N WiN;

Ni
=D iwi (C/m) (5.55)

k=1

and is due to the fact that a submatrix of (5.61b) relates

o] of
iy | = B;; o; (5.632)
iN; o

Expanding this gives the expansion coefficients as

ik = {Z Bij} Y (5.63b)

row k

If the widths of all conductor segments are chosen to be the same and designated as
w, then the elements of the generalized capacitance matrix are simplified as

Gi=w> By (5.64)

where ) B;; is the sum of all the elements in the submatrix B;;.

Thus, the basic subproblem is determining Kjx in (5.57), that is, determining the
potential at the center of a segment due to a constant charge distribution of unit value,
o = 1(C/ m?), over some other segment where that segment can be associated with
another conductor. In order to illustrate this, consider the infinitesimally thin conduct-
ing strip of width w and infinite length supporting a charge distribution p(C/m?) that
is constant along the strip cross section as shown in Figure 5.19. If we treat this as
an array of wire filaments each of which bears a charge per unit of filament length of
pdx C/m, then we may determine the potential at a point as the sum of the potentials
of these filaments again using the basic result for the potential of a filament given in
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FIGURE 5.19 Calculation of the potential due to a constant charge distribution on a flat strip.

(4.16) or (5.30) [2, 51:

w
2
dw, xp, yp) = — . / In <\/(xp - x)2 + (YP)Z) dx

(5.65)

This integral is evaluated using [7]. This may be simplified somewhat if we denote
the distances from the edges of the strip as R™ and R~ and the angles as 6+ and 6,
as shown in Figure 5.19. In terms of these (5.65) becomes

0 Rt _ _
0w, Xp, 3p) = 5 — {xpln <R> - %m (R*YR™)4+w—y, (67 —67)| (5.66)
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In the case where the field or observation point lies at the midpoint of the strip in
question, this becomes

B(w) = ﬁw [1 —In (%)} (5.67)

The electric field due to this charge distribution will be needed for problems that
involve dielectric interfaces. The electric field can be computed from this result as
[A.1]

. . A
E= ——¢ax - —‘Ibay (5.68)
ox ay

As an illustration of this method, consider the rectangular conducting box shown
in Figure 5.20. The four walls are insulated from one another and are maintained
at potentials of ¢1 =0, ¢ = 10V, ¢3 =20V, and ¢4 = 30 V. Suppose we divide
the two vertical conductors into four segments each and the horizontal members into
three segments each. Using pulse expansion functions for each segment and point
matching gives 14 equations in 14 unknowns (the levels of the assumed constant
charge distributions over each segment). Using the above results gives the potentials
at the six interior points as shown in Table 5.7.

The exact results were obtained via a direct solution of Laplace’s equation using
separation of variables. In terms of the general parameters denoted in Figure 5.20,

y
$3=20V
b=4 —} o=
¢
¢a ¢b
° ® +
*
$.=10V d. ba =30V
° o -+
*
¢e d)f
° ° -+
*
*~—|—o——e ——7
=0V a=3

FIGURE 5.20 A two-dimensional problem for demonstration of the solution of Laplace’s
equation via the pulse expansion—point matching method.
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TABLE 5.7
MoM Exact

P (x=1,y=3) 16.433 16.4784
dp(x=2,y=23) 21.834 21.8499
d(x=1,y=2) 14.130 14.1575
Pa(x=2,y=2) 20.514 20.4924
¢.(x=1,y=1) 9.527 9.60942
orx=2,y=1) 14.934 14.9810

the solution is [8]

oy = > { % m [¢4 sinh (?) + ¢ sinh (%(a - x))}
n—
nodd

4 & sin(nx/a) {¢3 sinh (”aﬂ) + ¢, sinh (%(b - y))] }

nm sinh(nwa/b)

where a =3, b=4,and ¢1 =0, ¢, =10V, ¢p3 =20V, and ¢4 = 30 V. The solu-
tion using finite-difference and finite-element methods will be given in subsequent
subsections.

The pulse expansion—point matching technique described above is particularly
simple to implement in a digital computer program. Achieving convergence generally
requires arather large computational expense since the conductor subsections must be
chosen sufficiently small to give an accurate representation of the charge distributions.
This is particularly true in the case of lands on PCBs where the charge distribution
peaks at the edges of each land. There are other choices of expansion functions such
as triangles or piecewise sinusoidal functions, but the programming complexity also
increases. For this reason, we will use the pulse expansion—point matching method
for PCBs.

5.3.1.1 Applications to Printed Circuit Boards The above MoM method can be
adapted to the computation of the per-unit-length capacitances of conductors with
rectangular cross sections as occur on PCBs. Consider a typical PCB shown in Figure
5.21(a) having infinitesimally thin conducting lands on the surface of a dielectric
board of thickness ¢ and relative dielectric constant of &,. The widths of the lands are
denoted as w; and the edge-to-edge separations are denoted as s;;. A direct approach
would be to subsection each land into N; segments of length w;;. The charge on
each subsection could be represented using the pulse expansion method as being
constant over that segment with unknown level of «;;. We could similarly subsection
the surface of the dielectric and represent the bound charge on that surface with pulse
expansions. A more direct way would be to imbed the dielectric in the basic Green’s
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FIGURES.21 A PCB for illustration of the determination of the per-unit-length capacitances.

Sfunction. We will choose to do this. Thus, the problem becomes one of subsectioning
the conductors immersed in free space as illustrated in Figure 5.21(b).

First, we consider solving the problem with the board removed as in Figure 5.21(b)
and then we will consider adding the board. Consider the subproblem of a strip of
width w representing one of the subsections of a land shown in Figure 5.22. We need
to determine the potential at a point a distance d from the strip center and in the plane
of the strip. This basic subproblem was solved earlier, and the results of (5.65) and
(5.67) specialized to this case are as follows. For a point at the center of the strip, that
is, d = 0, the self-potential is given by (5.67):

) = - [~ win (2]

2meg 2
w w
= 5 [1 —In (5)} (5.69)
YA
|
|
! 1C/m? €
|
r“f"?/ .
R < -
. w X
N v J
d

FIGURE 5.22 Illustration of the determination of the potential due to a constant charge
distribution on a flat strip via point matching.
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For the potential on another segment where d # 0 and generally d > w/2, the potential
is

o= g [ooe (0= )= 5) = (e ) 3)]
= Pseir(w) + %80 [; 2D—-1)In(2D-1) — %(2D+l)ln (2D+1)]
(5.69b)

The mutual result in (5.69b) is written in terms of the self term in (5.69a) and the ratio
of the subsection separation to subsection width:

d

D= (5.69¢c)
w

Next consider incorporating the dielectric board into these basic results. The first
problem that needs to be solved is that of an infinite (in the z direction) line charge of
g C/m situated at a height & above the plane interface between two dielectric media
as shown in Figure 5.23. The upper half space has free-space permittivity &g, and
the lower half space has permittivity ¢ = &, &9. This classic problem allows one to
compute the potential in each region by images in the same fashion as though the lower
region were a perfect conductor [1, 9]. The solution can be obtained by visualizing
lines of electric flux density, ¥, enamating from the line charge. For an infinite line
charge carrying a per-unit-length charge density of ¢ C/m, the electric flux density at
a distance r from the line charge is [A.1]

Y =D
q

(5.70)

T 2mr

|

i

FIGURE 5.23 Illustration of the method of images for a point charge above an infinite
dielectric half space.
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In a region of permittivity &, the electric field intensity E is related to D as D = ¢ E.
Consider one such flux line emanating from the line charge that is incident on the
interface at some angle 6;. Some of this flux can be visualized as passing through the
interface as (1 4 k) v, whereas some is reflected at an angle 6; as —ki. The boundary
conditions at the interface require that the normal components of the electric flux
density be continuous or

Ysin 6; + kyrsin 6, = (1 + k)ysin 6; (5.71a)

This shows that the angles of incidence and reflection are the same (Snell’s law), 6; =
0; [A.1]. Similarly, the tangential components of the electric field must be continuous
across the interface giving

1 1 1
—cos by — —kcos b, = (1 + k)yrcos 6; (5.71b)
&0 &0 Eré0
Recalling that 6; = 6; gives
—1
k=12t (5.72a)
e +1
and
(1 4k = 25 (5.72b)
T e+ 1 '
We will find the following combinations of & arising later:
2
(1—-k) = 1
ot (5.73a)
N Er,eff
and
(1-#) = 2 (+k
e+ 1
1
= (1+k) (5.73b)
Er,eff
and
e +1
reff = — (5.73¢)

We have written (5.73) in terms of an effective relative permittivity, (& + 1)/2. This
would be the effective permittivity for the half space in Figure 5.23 as the average of
the two permittivities.
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FIGURE 5.24 Solution for the potential in each half space in Figure 5.23.

The potential in each half space can be determined as two complementary problems
illustrated in Figure 5.24. The potential in a region of permittivity ¢ at a distance d
from an infinite line charge bearing a charge distribution of ¢ C/m is [A.1]

¢(d) = — 2i1n<d>
Te (5.74)

= — 4j[[—gln <d2>

This omits the reference potential. The potential in the upper half space (y > 0) is
as though it were due to the original charge ¢ at the original height 4 and an image
charge —kq with the dielectric removed and at a distance & below the interface as



204 THE PER-UNIT-LENGTH PARAMETERS FOR MULTICONDUCTOR LINES

shown in Figure 5.24(a):
+ 2 kq 2 2
oty = ——L 2+ — h)] g, [x +(y+h) (5.752)
4meg 4dmeg

The potential below the interface (y < 0) is computed as though it is due to a line
charge (1 + k) g located at a height & above the interface with the upper free-space
region replaced by the dielectric as shown in Figure 5.24(b):

(1+k)q
——In

x>+ (y — h)? (5.75b)
drece

¢7(X, y) = -

The problem of imaging across a dielectric boundary can be visualized as reflection
of the electric flux density vector at the interface similar to optics as shown in Figure
5.25. For a source in the region of permittivity go crossing a boundary into a region of
permittivity e-&¢ as shown in Figure 5.25(a), the reflected and transmitted electric flux
densities are as shown. On the contrary, for a source in the region of permittivity e.&q
crossing a boundary into a region of permittivity o9 as shown in Figure 5.25(b), the
reflected and transmitted electric flux densities are as shown. The reflected ray is the
incidentray, instead of being multiplied by —k is multiplied by k. The transmitted ray is

Sy
///%// Z

(1-ky
&

(b)
FIGURE 5.25 Solution of the half-space dielectric problem in Figure 5.23 in terms of fluxes.
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FIGURE 5.26 Images of a point charge above a dielectric slab of finite thickness.

the incident ray, instead of being multiplied by (1 + k) is multiplied by (1 — k). Hence,
for the case of two dielectric boundaries representing a PCB dielectric substrate such
as shown in Figure 5.26, we can easily successively image across both boundaries
using this idea. This then gives an infinite set of images.

The problem now of interest for the PCB is a line charge on the surface of a
dielectric slab (the PCB board) of relative permittivity ¢; and thickness ¢ shown in
Figure 5.27(a). We wish to find the potential at a point on the board at a distance d
from the line charge. Specializing the results of Figure 5.26 for /2 = 0 gives the images



206 THE PER-UNIT-LENGTH PARAMETERS FOR MULTICONDUCTOR LINES

d

£ ———
|
ag 1 d(d)
| §/ / / /
t €, /
fo @
d
&y :‘—_—ﬂ e
(1-kq¢ 1 4(d) 0
‘ ~
il -4
0 92—
&
k(1 — k?)q 02
&
lrm
(1 - k?)qo3
J>21
k(1 - k*)g03
th
K'(1 - kg0 .

FIGURE 5.27 Illustration of the replacement of a dielectric slab of finite thickness with
images to be used in modeling a PCB.

shown in Figure 5.27(b) where, for the purposes of computing the potential above the
board, the board is replaced with free space. Utilizing 5.74, the potential then is of
the form of a series:

o0

o) = -2 —tom 2] = 2L (1-42) Sk [a2 + 2nn]
n=1
o0
___ 1 2] 4 Gne1) ) )
Rrev—— In [d } pr—— (1+k) ;k n=Dip [a’ + (2n1) }

(5.76)

and we have replaced items with those given in 5.73. This series converges rapidly as

(e&r — 1)
= <
(er +1)
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FIGURE 5.28 Illustration of the determination of the per-unit-length capacitances for a PCB
by point matching.

Applying this result for a line charge to a infinitesimally thin strip on a dielectric
slab by representing the charge distribution (pulse expansion function) as a set of 1
C/m line charges as shown in Figure 5.28 requires performing the following integral:

5
$(d) = / In i +ay’] a
47T808r off
Cw
2

(5.77)

1+ k) Zk@" D [ In {(x +d?+ (2nt)2} dx

47T808r off

|
N\€\N\§

For a point at the center of the strip, that is, d = 0, the self-potential is given by

1 w
a0 = g i (5)] gy O K
Gsetr (W) 2ME0Er off [W W 2 + 2meper, eff( - )Zl

{W _ %m {(V;)z + (2m)2] — (4nt)tan ! (4?”)} (5.78a)

For the potential on another segment where d # 0 and generally d > w /2, the potential

is
1 w w w w
d="Ym(a=-Y) = (a+ 2\ m(a+ 2
GE - {“( 2)“( 2) <+2)“( +2)]
1 - 1 2
1+6) ) k@=D —(dfﬂ)l <d73> 2n1)?
+Qm%mﬁ(+)§: w3 ~ ) =) +em
n=1

Y Y | (a2 2) + @uy
—§(+E)n(+5) +(l’l[)

a-2 a+2
+ (2nt) [tan1 ( 3 t2 ) —tan ! ( 2 t2 >] }
" " (5.78b)

pOw, d) =
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These results can be simplified and written as

w w w w
selfW) = ———— [1—In (= 1+k) Y k2D {1 -1 (7)
Guatt (W) 2me0er eff [ ! (2 ﬂ * 2me0ér eff a-+ ); "\2 (5.79a)

S [1 +(4nT)2] — (4nT)tan ! (L)}
2 4nT

and

w w 1 1
¢w,d) = [1 —1In (7) +-Q2D-1)In@2D—-1)—=-2D+ 1)In(2D + 1)}
2TTEQEx,eff 2 2 2

o0
w
L+ k 22D
+2”505r,eff( * )Z

n=1

x{l —n (%) + %(ZD — Din [@D — 1Y + (4nT)]

- %(w + Dln [(2D +1)2+ (4nT)2]

- onT) {tan_l (233”;1) —tan ! (22;1)} } (5.79b)

The results have been written in terms of the ratios of the subsection separation to
subsection width, D, and board thickness to land width, T

d
D=— (5.80a)
w
and
t
T=— (5.80b)
w
Recall that
1
Er,eff = (Sr; ) (5.80c)

denotes the effective dielectric constant as the board thickness becomes infinite,
t — 00, such that it fills the lower half space so that half the electric field lines would
exist in air and the other half in the infinite half space occupied by the board. These
results are used in the FORTRAN program PCB.FOR described in Appendix A to
compute the entries in the per-unit-length capacitance matrix C of a PCB. The per-
unit-length inductance matrix L is computed with the board removed from the basic
relationship derived earlier:

L = 110e0Cy ! (5.81)

where C is the per-unit-length capacitance matrix with the board removed.
As an example consider the three-conductor PCB shown in Figure 5.29 consisting
of three conductors of equal width w and identical edge-to-edge separations s. The
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FIGURE 5.29 A PCB consisting of identical conductors with identical separations for the
computation of numerical results.

following computed results are obtained with the FORTRAN program PCB.FOR
(pulse expansion functions and point matching). The results will be computed for
typical board parameters: &, = 4.7 (glass epoxy), ¢ = 47 mils, w = s = 10 mils. Choos-
ing the left-most conductor as the reference conductor, Figure 5.30(a) compares the
elements of the per-unit-length inductance matrix L, Figure 5.30(b) compares the
elements of the per-unit-length capacitance matrix C, and Figure 5.30(c) compares
the elements of the per-unit-length capacitance without the board, Cy, computed for
various numbers of land subdivisions. Observe that convergence is achieved for about
20-30 subdivisions of each land. As a check on these results, observe that Ly > L1
as it should be since the loop area between the reference conductor and the second
conductor is larger than the loop area between the reference conductor and the first
conductor. Similarly, in the capacitance plots observe that C1; > C; and Cp11 > Cop22
since the first conductor is closer to the reference conductor. Figure 5.31 shows the
convergence for the capacitances for various numbers of land subdivisions with, C,
and without, Cyp, the board. If one takes the ratios of the corresponding capacitance
with and without the board, we see that the effective relative dielectric constant is on
the order of 2.6-2.8 for this land width, land separation, and board thickness. This is
on the order of the effective dielectric constant

e +1
2

Ercff = =285

if the board occupied the infinite half space such that half the electric field lines would
reside in free space and the other half in the board. We would expect this to be the
case for (a) moderately thick boards and (b) closely spaced lands. For wide land
separations, more of the electric field lines exit the bottom of the board and are more
important than for closely spaced lands.

There are no known closed-form solutions for this problem, but we may compare
the computed results of PCB.FOR to the approximate relations of Chapter 4 for
two-conductor PCBs. For example, the results for a two-conductor PCB are given
in Eqgs. (4.109) of Chapter 4. For example, consider a two-conductor PCB having
& = 4.7, w =s = 15 mils and ¢ = 62 mils. Equations (4.109) give [ = 0.804 uH/m
and ¢=38.53 pF/m. PCB.FOR using 30 divisions per land gives / = 0.809 uH/m
and ¢ = 38.62pF/m, a difference of 0.2-0.6 %. For a PCB having & =4.7,
w = s = 5 mils and t = 47 mils, the formulas in (4.109) of Chapter 4 give
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(a) Printed circuit board
(e,=4.7, w=1s5=10 mils, =47 mils)
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FIGURE 5.30 Illustration of the per-unit-length (a) inductances, (b) capacitances, and (c)
capacitances with the board removed for various numbers of divisions of each land for ¢, = 4.7,
land width = separation = 10 mils, and board thickness = 47 mils.

[=0.804 uH/m and ¢ = 39.06 pF/m, whereas PCB . FOR using 30 divisions per land
gives I = 0.809 uH/m and ¢ = 39.07 pF/m, a difference of 0.03-0.6 %.

And finally, we will compute the entries in C and L for a PCB that will be used
in later crosstalk analyses: &, = 4.7 (glass epoxy), t = 47 mils, w = 15 mils, and
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(c) Printed circuit board
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FIGURE 5.30 (Continued).

s = 45 mils. This separation is such that exactly three lands could be placed between
any two adjacent lands. The results for the pulse expansion function, point matching
method for 50 divisions per land computed using PCB . FOR are

1.10515  0.690613
L= [0.690613 1.38123 ] (1uH/m)

40.5985  —20.2992
€= [—20.2992 29.7378 ] (pF/m)

5.3.1.2 Applications to Coupled Microstrip Lines Next, we consider applying this
technique to the coupled microstrip consisting of lands (of zero thickness) on a di-
electric substrate of thickness ¢ and relative permittivity &, with an infinite ground
plane on the other side shown in Figure 5.32. The ground plane will serve as the
reference or zeroth conductor so that the computation of the generalized capacitance
matrix will not be necessary for this case: We directly compute the transmission-line
capacitance matrix with the dielectric present, C, and with the dielectric removed,
Co. This is implemented in the FORTRAN computer code MSTRP . FOR described in
Appendix A. We will assume that all lands are of equal width, w, and edge-to-edge
separation, s. Although only three lands are shown, the code will handle any number
of lands with the appropriate dimensioning of the arrays in MSTRP . FOR. This prob-
lem will represent a PCB with innerplanes, that is, the outer surface of the PCB and
the underlying innerplane.
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Printed circuit board
(e,=4.7,w =5 = 10 mils, t = 47 mils)
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FIGURE 5.31 Comparison of the capacitances with and without the dielectric board versus
the number of divisions per land from Figure 5.30(b) and (c).

The first and most basic subproblem we must address is the case of an infinitely
long (in the z direction) filament carrying a per-unit-length charge of ¢ C/m on the
surface of the board and the determination of the potential on the board at a distance
d away as shown in Figure 5.33(a). The sequence of images is shown in Figure
5.33(b) with their sequence number shown. With regard to Figures 5.25 and 5.26, we
start with the original charge g and its image across the upper surface that gives a
total of (1 — k) g on the surface of the dielectric with that removed. Then, we image
this across the ground plane in order to remove the ground plane giving the second
image of — (1 — k) g located at a distance ¢ below the original position of the ground
plane or a distance 2¢ below the first charge. Next, we image this charge across the

1 1 1 1 1

[ s el 1 § w 1

1 1 1 1 1
| |

Grou)nd \ @

plane

FIGURE 5.32 The three-conductor coupled microstrip line with equal land widths and
separations.
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upper surface of the dielectric according to Figure 5.25(b) by multiplying by k to
give an image charge of —k (1 — k) g located at a distance of 2¢ above the dielectric
surface. Then, this is imaged across the ground plane to give an image charge of
k (1 — k) g located at a distance 3¢ below the ground plane or a distance of 47 below
the first charge. Successive imaging across the ground plane and the dielectric gives
the sequence of image charges shown in Figure 5.33(b). This allows the computation
of the potential on the surface of the dielectric at a distance d from the original charge

t
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i
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1
L

(a)

G K (kg
21{ €9
o (3 k2 (l-k)g
2t{
- d » O(d)
(1-kgq ¢ © .
! & t
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e(D-(1-klg
2[{ .
0
oD k(l-k)g
Zt{
*©®-K(1-kg
I

'
()

FIGURE 5.33 Determination of (a) the potential on a microstrip due to a line charge by (b)
imaging across the boundaries.
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with the dielectric and the ground plane removed. Hence, we have the simple problem
of computing the potential of an infinite set of line charges in free space. The basic
potential for each of these is

T 1n(x)
2meo (5.82)

S ()
dmeg
Applying this to the sequence of images in Figure 5.33(b) gives

_ _U=Rgq ., (1-kg k(1—kq
¢ = 4 In [d ] + 4dmeg 4me

—_ 2 -
S0 e ] - U0 T2y (5.83)
47eg 4reg

K-k 31 -
N ( )ql kK (1—-k)q
4eg 47eg

¢ (x)

In [d2 + (2t)2] + In [d2 + (2t)2]

n [d® +6r?] + In [d® + (612] + -

This can be written as

LT (1

_ 2 N
dd) = pr—m %O)q Z(—l)”k("’l)ln [d2 + (2m)2}
n=1

(5.84)

[o¢]
= 9 2 g (1) 2 2
=———h|d| - ——0+k —1Y"k"VIn |d* + 2nt
Ameoer eff " [ ] 47[8()8rveff a+ )Z( ) n [ +@n1) ]

n=l1

where we have substituted (1 + k) (1 — k) = (1 — k2) and we have written this in
terms of the effective dielectric constant where the board thickness goes to infinity,
that is, t — oo:
e +1

2

1

Ereff =

=05 (5.85)

Comparing (5.84) to the same basic subproblem solution for the PCB given in (5.76)
shows that we may easily modify the PCB code by simply replacing the summation
>0 k@n=Din the PCB. FOR program results for the potential with the board present
given in (5.78) and (5.79) with "2 | (—1)"k®~D:

oo 9]
D S C VU S (5.86)
n=1 n=1

PCB MSTRP

Hence, we can make a simple modification of PCB. FOR. In addition, we remove the
generalized capacitance calculation from that code as we will be directly computing
the transmission-line capacitance matrix since the reference conductor, the ground

plane, is already designated.
There is one final but subtle difference. Note that the first term in the summation
in (5.84) for n = 1 is nonzero even with the board absent, that is, k = 0. This is the
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term representing the first image across the ground plane. Hence, the self-potential
of aland (d = 0) with the board removed is, from (5.79a) (e = 1, k = 0),

U PR AU R SRR A A W 2 (L
qbse]f(w)_zﬂgo [1 ln(2>} Imeo {1 ln(z) 21n[1+(4T)] 4Ttan (4T)}

W 1 5 1 L
_zﬂgo{zln[1+(4T)]+4Ttan (4T)} (5.872)

and we have written this in terms of the ratio of dielectric thickness 7 to land subsection
width w:

T=— (5.88)

Similarly, the potential with the board removed but d #0 and generally d > w/2
becomes, from (5.79b),
ow,d) = — = {(2D — DIn2D —1)— 2D+ DIn(2D + 1)
- 5(2D — DIn[2D — 1)*> + (4T)*]

+ %(21) + DIn[2D + 1)*> 4+ (4T)*)
+T |tan ! 2b+1N a1 (2P (5.87b)
an aT an aT .

and we have written this in terms of (5.88) and the ratio of distance to the potential
point, d, to land subsection width w:

(5.89)

Sl

The potentials with the board present are obtained from (5.79a) and (5.79b) by
substituting (5.86). For the self-potential term, d = 0, we obtain

=———(1+k 1y" k=
Pseir (W) 2momﬁ( + >;< )k

x {lln [1 +(4nT)2} + (4nT)tan " <1)} (5.90a)
2 anT '
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In reducing this result, we have used the summation (1 —k + K2 — K3+ )=
1/(1 + k). For d # 0, the potential becomes, from (5.79b) substituting (5.86),

o(w,d) = T [1 2D—-—1)In(2D—-1)— l(2D—|— DIn(2D + 1)
2meper et |2 2

w

A+K> (DD

2meoer eff -

x {1(21) — Din {(20 12+ (4nT)2]
| 4 (5.90b)
— @D+ Din [(20 F 1%+ (4nT)2}

1 (2D—1 o 2D +1
4+ (2nT) [tan ( AT > tan ( AT )]}

As an example consider a two-conductor coupled microstrip line consisting of two
conductors of equal width w over a ground plane. The following computed results are
obtained with the FORTRAN program MSTRP . FOR (pulse expansion functions and
point matching). The results will be computed for typical board parameters: &, = 4.7
(glass epoxy), t=47 mils, and w = s = 10 mils. Figure 5.34(a) compares the elements of
the per-unit-length inductance matrix L, Figure 5.34(b) compares the elements of the
per-unit-length capacitance matrix C, and Figure 5.34(c) compares the elements of the
per-unit-length capacitance without the board, Cy, computed for various numbers of
land subdivisions. Observe that convergence is achieved for about 20-30 subdivisions
of each land. Also observe that the capacitances on the main diagonal of C and Cp,
C11 and Cy; as well as Cop; and Cpo, are equal as they should be by symmetry.
Similarly, L1; = Lo as should be the case by symmetry. Figure 5.35 shows the
convergence for the capacitances for various numbers of land subdivisions. If one takes
the ratios of the corresponding capacitance with and without the board, we see that the
effective relative dielectric constant is on the order of 2.6-3.1 for this land width, land
separation, and board thickness. This is on the order of the effective dielectric constant

e+1
2

=2.85

Ereff =

if the board occupied the infinite half space such that half the electric field lines
would reside in free space and the other half in the board. We would expect this to be
the case for (a) moderately thick boards and (b) closely spaced lands. For wide land
separations, more of the electric field lines will be influenced by the ground plane at
the bottom of the board and are more important than for closely spaced lands.

We may compare the computed results of MSTRP . FOR to the approximate rela-
tions of Chapter 4. For example, the results for a microstrip line consisting of one land
of width w above a ground plane are given in Egs. (4.108) of Chapter 4. For example,
consider a microstrip line having e, = 4.7, w = 5 mils, and ¢ = 50 mils. Equations
(4.108) give! = 0.8765 uH/m and ¢ = 38.26 pF/m.MSTRP . FOR using 30 divisions
per land gives / = 0.879 uH/m and ¢ = 39.03 pF/m, a difference of 0.3-2 %. For a
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Microstrip line
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FIGURE 5.34 Determination of (a) inductances, (b) capacitances, and (c) capacitances with
the board removed for a two-conductor coupled microstrip with &, = 4.7, land width = sepa-
ration = 10 mils, and board thickness = 47 mils.

microstrip line having ¢, = 4.7, w = 100 mils, and ¢ = 62 mils, the formulas in (4.108)
of Chapter 4 give [ = 0.3354 H/m and ¢ = 115.7 pF/m, whereas MSTRP . FOR us-
ing 30 divisions per land gives / = 0.336p H/m and ¢ = 115.2 pF/m, a difference of
0.3-0.4 %.
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Microstrip line
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FIGURE 5.34 (Continued).

And finally, we will compute the entries in C and L for a coupled microstrip
line that will be used in later crosstalk analyses: & = 4.7 (glass epoxy), t =
62 mils, w = 100 mils, and s = 100 mils. The results for the pulse expan-
sion function, point matching method for 50 divisions per land computed using

Microstrip line
(&, =4.7, w=s= 10 mils, t =47 mils)

60 T T T T T T T T T
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20 ——Cl12 1
—s— (22 1
—~ 40 L —e— (011 i
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S =
10 | e u e ]
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0 1 1 1 1 [ 1 [ 1 [
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FIGURE 5.35 Comparison of the capacitances with and without the dielectric board versus
the number of divisions per land from Figure 5.34 (b) and (c).
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MSTRP.FOR are

0.334497  0.0372044
L= {0.0372044 0.334497 ] (1WH/m)

Cc— [ 115.844  —4.96916

—4.96916  115.844 } (PF/m)

5.3.1.3 Applications to Coupled Striplines Next, we consider applying this tech-
nique to the coupled stripline consisting of lands (of zero thickness) embedded in
a dielectric substrate of thickness ¢ and relative permittivity ¢, with infinite ground
planes on both sides as shown in Figure 5.36. The ground planes will serve as the
reference or zeroth conductor so that the computation of the generalized capacitance
matrix will not be necessary for this case: We directly compute the transmission-line
capacitance matrix with the dielectric present, C, and with the dielectric removed, Cyp.
This is implemented in the FORTRAN computer code STRPLINE. FOR described
in Appendix A. We will assume that all lands are of equal width, w, with equal
edge-to-edge separations, s, and the lands are located midway between the ground
planes. Although only three lands are shown, the code will handle any number of
lands with the appropriate dimensioning of the arrays in STRPLINE.FOR. This
problem will represent a PCB with innerplanes where lands are buried between the
innerplanes.

The first and most basic subproblem we must address is the case of an infinitely
long (in the z direction) filament carrying a per-unit-length charge of 1 (C/m) located
midway between the ground planes, and we need to determine the potential at a point
also midway between the ground planes and a distance d from the line charge as shown
in Figure 5.37(a). This is a somewhat canonical problem that is solved in Collin [6]

WIS SIS I IS SIS

— s —  —» s -
1 1 1 1
1 1 1 1
— —— — t
- — - — - W —
12 12

S S

FIGURE 5.36 The three-conductor coupled stripline with equal land widths and separations.
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FIGURE 5.37 Illustration of the basic determination of the potential of a stripline for (a) a
line charge and (b) a land with constant charge distribution.

and Smythe [1]. The potential specialized to this case is [6].

7 |d]|
tanh~! | e t

¢(d) =

e
_rld| (5.91)
1 | 1+e t
= n
27808; _mld
l1—e t

Smythe also gives an equivalent form as

1 1
¢ (d) = tanh ™! (5.92)
2me0er " (cosh (T[td>)
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The final subproblem is a strip of zero thickness and width w carrying a charge
distribution of 1 C/m? shown in Figure 5.37(b). The strip is parallel to the ground
planes and is located midway between them. The desired potential is located midway
between the planes and is a distance d from the midpoint of the strip. Treating the
strip as a sequence of charge filaments 1dx (C/m), we sum the contributions to the
potential as

w/2

$(d) =~ / tanh ™! (e*@) dx (5.93)
e

—w/2

This can be integrated by making a change of variables as u = e~/ ¢/ g0 that
du = (7r/t)u dx. Substituting into (5.93) gives

oy
t tanh ! (u)

o) = — / " du (5.94)
€

u
7 (dy)

This integrates to (see Dwight [7] integral 735.1)

¢>(d)=7%2(‘3 (Em+Eg’3"+§§"+Z§+ )
_<EP+E93P+221’+§§’+...>] (5.95a)
where
Ep =e 1(d7%) (5.95b)
and
E,=¢ 7(4+%) (5.95¢)

Each of these two series converges rapidly as for a match point on another strip,
d > w/2. For the case where the match point is at the center of the charge-bearing
strip, that is, d = 0, we require

w

X

Bt (0) = — / tanh ™" (¢7% ) dx (5.96)

e
0
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This may also be integrated by making the substitution u = e~/ and du =
—(7/t)u dx to give

2t tanh~u
¢self (0) - . du
=€ u
1
_ 1+1+1+1+ E+E3+E5+
Tl 9 25 49 9 2
(5.97a)
where
E=¢ 2 (5.97b)

Again, both series converge rapidly and the first series converges to (see Dwight [7]
#48.12)

SRSV IS (5.97¢)
925 49 =g 2re

We can essentially adapt the program MSTRP . FOR directly to this case by simply
changing the computation subroutine for determining ¢ (d) and ¢ (0) to the above
results.

As an example, consider the coupled stripline consisting of two conductors between
ground planes where ¢ = 47 mils, w = s = 10 mils, and &, = 4.7. The results obtained
with STRPLINE. FOR are shown in the following figures. Figure 5.38(a) compares
the elements of the per-unit-length inductance matrix L and Figure 5.38(b) compares
the elements of the per-unit-length capacitance matrix, C, computed for various num-
bers of land subdivisions. It is not necessary to show the corresponding results with
the board replaced by free space, Cy, since for this homogeneous medium C = ¢,Cy.
Observe that convergence is achieved for about 20-30 subdivisions of each land. Also
observe that the capacitances on the main diagonal of C, C; and C»», are equal as they
should be by symmetry. Similarly, L1; = L, as should be the case by symmetry.

We may compare the computed results of STRPLINE. FOR to the approximate
relations of Chapter 4. For example, the results for a stripline line consisting of one land
of width w midway between the ground planes are given in Eqs. (4.107) of Chapter
4. For example, consider a stripline line having &, = 4.7, w = 5 mils, and ¢ = 50 mils.
Equations (4.107) give [ = 0.6566p H/m and ¢ = 79.54 pF/m. STRPLINE.FOR
using 60 divisions per land gives [ = 0.6515¢ H/m and ¢ = 80.27 pF/m, a difference
of 0.8-0.9 %. For a stripline line having ¢, = 4.7, w = 5 mils, and ¢ = 10 mils,
the formulas in (4.107) of Chapter 4 give [ = 0.334¢H/m and ¢ = 156.4 pF/m,
whereas STRPLINE . FOR using 60 divisions per land gives [ = 0.3362x H/m and
¢ = 155.53 pF/m, a difference of 0.6-0.7 %.
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FIGURE 5.38 Determination of (a) inductances and (b) capacitances for a two-conductor
coupled stripline with ¢, = 4.7, land width = separation = 10 mils, and board thickness =47 mils.

5.4 FINITE DIFFERENCE TECHNIQUES

Recall that the entries in the per-unit-length inductance, capacitance, and conduc-
tance matrices are determined as a static (dc) solution for the fields in the transverse
(x—y) plane. Essentially, the transverse fields are such that the potential in the space
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FIGURE 5.39 The finite-difference grid.

surrounding the conductors, ¢(x,y), again satisfies Laplace’s equation in the transverse
plane:

Fp(x,y) | P, y)
2 _ —
V ¢(-xv Y) - axz 8y2 -

0 (5.98)

Finite-difference techniques approximate these spatial partial derivatives in a discrete
fashion in the space surrounding the conductors. For example, consider the closed
region shown in Figure 5.39. The space is gridded into cells of length and width 4.
First-order approximations to the first partial derivatives at the interior cell points a,
b, c,and d are [A.1,4]

| Po—¢i
a . = 711 (5993)
0| P3— o
™ . = A (5.99b)
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| $2—¢o
0| Po— ¢
P P (5.99d)

The second-order derivatives are similarly approximated using these results as

2 _1(a¢> _a¢>>

a2y b \ox|,  oxl, (5.100a)
_ (@3 —¢0) — (¢0 — ¢1)
= -

¢ _1(3‘1’ _3¢)

ol A \ayl, Wl (5.100b)
_ (2 — o) — (d0 — ¢4)
- -

This amounts to a central difference expression for the partial derivatives [4]. Substi-
tuting these results into (5.98) gives a discrete approximation to Laplace’s equation:

Poix.y) | Pony) _

ax2 dy? 101
Q1+ 2+ P33+ s — 4o 10D
= >
or
1
¢o = 1 [p1 + P2 + D3 + P4 (5.102)

Thus, the potential at a point is the average of the potentials of the surrounding four
points in the mesh. Equation (5.102) is to be satisfied at all mesh points. Typically,
this is accomplished by prescribing the potentials of the mesh points on the conductor
surfaces, initially prescribing zero potential to the interior points and then recursively
applying (5.102) at all the interior points until the change is less than some predeter-
mined amount at which point the iteration is terminated.

An example of the application of the method is shown in Figure 5.40, which was
solved earlier using a MoM method and a direct solution of Laplaces’s equation with
those results given in Table 5.8. A rectangular box having the four conducting walls at
different potentials is shown. The potentials of the interior mesh points obtained iter-
atively are shown. Observe that, even with this relatively course mesh, the potentials
of the mesh points converge rather rapidly.

This method could also be solved in a direct fashion rather than iteratively. En-
forcement of the potential via (5.102) at the six interior mesh points gives
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TABLE 5.8
Direct method Iteration Exact
bu 16.44 16.41 16.4784
b 21.66 21.63 21.8499
. 14.10 14.07 14.1575
b 20.19 20.16 20.4924
b 9.77 9.76 9.60942
oy 14.99 14.98 14.9810
4 -1 -1 O 0 0 Vg 30
-1 4 0O -1 0 0 Vi 50
-1 0 4 -1 -1 O Vel _ 10
0O -1 -1 4 0o -1 Vil = 130 (5.103)
0 0o -1 0 4 -1 Ve 10
0 0 o -1 -1 4 Vy 30

Solving this gives the potentials of the interior mesh points compared to those obtained
by iteration in Figure 5.40 as shown in Table 5.8. The exact results were obtained
from an analytical solution of Laplace’s equation given previously [8].

The solution for the potentials via this method is only one part of the process of
determining the per-unit-length generalized capacitance matrix. In order to compute
the generalized capacitance matrix, we need to determine the total charge on the
conductors (per unit of line length). To implement this calculation, recall Gauss’s
law:

0= ﬁg 7. ds (5.104)

that provides that the charge enclosed by a surface is equal to the integral of the
normal component of the electric flux density vector over that surface. For a linear,
homogeneous, isotropic medium,

.. L
D =eé = e—¢an (5.105)
on

where dy, is the unit vector normal to the surface. In order to apply this to the problem
of computing the charge on the surface of a conductor, consider Figure 5.41. Applying
(5.104) and (5.105) to a strip along the conductor surface between the conductor and
the first row of mesh points just off the surface gives

- - 0
q= %é% -dl = s—¢dl (5.106)
on
i 1
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FIGURE 5.40 Example for illustration of the finite-difference method.
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FIGURE 5.41 Use of the finite-difference method in determining surface charge on a
conductor.
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FIGURE 5.42 Illustration of the implementation of the finite-difference method for multiple
dielectrics.

Using the potentials computed at the interior mesh points, we can obtain the charge
on the surface by applying (5.106) in discrete form as

SM,,HS@%MMH(@;@)MH(¢,~;¢f)

hV v v v

hh+ -
(5.107)

+

where &y denotes the “vertical” length of the mesh perpendicular to the conductor
surface and &y, denotes the “horizontal” length of the mesh parallel to the conductor
surface. Once the charges on the conductors are obtained in this fashion, the gener-
alized capacitance matrix can be formed and from it the per-unit-length capacitances
can be obtained.

Dielectric inhomogeneities can be handled in a similar fashion with this method.
Gauss’s law requires that, in the absence of any free charge intentionally placed at an
interface between two dielectrics, there can be no net charge on the surface. Consider
the interface between two dielectrics shown in Figure 5.42, where a mesh has been
assigned at the boundary. Applying Gauss’s law to the surface surrounding the center
point of the mesh shown as a dashed line gives

- o o
0= ]{E/ﬂd:j{ —¢dl

(¢>2 - ¢o) It (¢1 (@1 — o) hy G0 (¢1 — ¢o) hy (5.108)
h hp 2 hp
te (¢4 — o) Iy + e (¢3 $o) hy rey (¢3 ¢>0) hy

hy hp 2 hn 2
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Finite-difference methods are particularly adapted to closed systems. For open systems
where the space extends to infinity in all directions, a method must be employed to
terminate the mesh. A rather simple but computationally intensive technique is to
extend the mesh to a large but finite distance from the conductors and terminate it in
zero potential. To check the sufficiency of this, extend the mesh slightly larger and
recompute the results.

5.5 FINITE-ELEMENT TECHNIQUES

The third important numerical method for solving (approximately) Laplace’s equa-
tion is the finite-element method or FEM. The FEM approximates the region and
its potential distribution by dividing the region into subregions (finite elements) and
representing the potential distribution over that subregion. We will restrict our discus-
sion to the most commonly used finite element, the triangle surface shown in Figure
5.43(a). Higher order elements are discussed in [4, 9]. Figure 5.43(b) illustrates the ap-
proximation of a 2D region using these triangular elements. The triangle element has
three nodes at which the potentials are prescribed (known). The potential distribution
over the element is a polynomial approximation in the x,y coordinates:

ox,y)=a+bx+cy (5.109)

Evaluating this equation at the three nodes gives

o1 I x1 y1]Ja
[qbz] = [l X2 yzl lb] (5.110)
®3 I x3 w3l Lec

¢

2 /
(x2, y2)

(a) (b)

FIGURE 5.43 Illustration of (a) the finite-element triangular element and (b) its use in
representing two-dimensional problems.
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Solving this for the coefficients gives

1

a= (K191 + K2¢2 + K3¢3] (5.111a)
1

b= ﬂ[Yl(bl + Yoy + Y3¢3] (5.111b)
1

Cc = —ﬂ[xl(bl +X2¢2+X3¢3] (51110)

where

K1 = (x2y3 — x3y2)
K> = (x3y1 — x1y3) (5.111d)
K3 = (x1y2 — x2y1)

Yi=02-—y)
Yo =3 —y1) (5.111¢)
Y3 =1 — )
X1 = (x2 — x3)
Xy = (x3—x1) (5.111f%)
X3 = (x1 —x2)
and the area of the element is
1 1 X1 )
A=-11 x »
1 x3 w3 (5.112)

1
=§[K1+K2+K3]

Observe the cyclic ordering of the subscripts in (5.111) as 1 — 2 — 3. Given the node
potentials, the potential at points on the element surface can be found from (5.109)
using (5.111) and (5.112). The electric field over the surface of the element is constant:

E=-Vé
= —bad, — cay (5.113)
Observe that when a surface is approximated by these triangular elements as in Figure

5.43(b), the potential is guaranteed to be continuous across the common boundaries
between any adjacent elements.
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The key feature in insuring a solution of Laplace’s equation by this method is
that the solution is such that the total energy in the field distribution in the region is
a minimum [4, 9]. The total energy in the system is the sum of the energies of the
elements:

Ne
w=> w? (5.114)
i=1

The minimum energy requirement is that the derivatives with respect to all free nodes
(nodes where the potential is unknown) are zero:

ow
0

=0 (5.115)

all free nodes

The energy of the ith element is

; 1 -
w = */Si‘EilzdSi
2
i
.
= 5/(b,2+c;) ds;
si
= J(+) A (5.116)
Ei : - . .
= STf [(Yzzl +Xi21> ¢V +2(Yn Yoo + X1 Xi) 695
! o . . o
+ (Y3 + X2) 6505 +2(Ya Yis + X1 Xi3) 995
y2 1 x2 (@) () 2(YrY: X X (@) ()
+ (Y53 + X3) 6305 +2(YYi3s + X Xi3) ¢ 03

where ¢,(<i) is the potential of node k (k = 1, 2, 3) for the ith element. This can be
written in matrix notation as a quadratic form as

. 1 .. . ,
w® — Ed)(l)tc(l)d)(l) (5.117a)
where
Gk
d)(l) — ¢g) (5.117b)
b3

and superscript t denotes transpose. The matrix
(@) @) @)
. Cip Cip Cp3
cV=|cy ) 5 (5.117¢)
@) (®) (0
C13 C23 C33
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&, (Free)

$3(Free)
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FIGURE 5.44 An example to illustrate the use of the FEM.

is referred to as the local coefficient matrix with entries

. &
Chn = 7 YimYin + Xim Xin) (5.117d)
1

Now, we must assemble the total energy expression for a system that is approxi-
mated by finite elements according to (5.114). In order to illustrate this, consider the
example of a region that is represented by three finite elements shown in Figure 5.44.
The node numbers inside the elements are the local node numbers as used above. The
global node numbers are shown uniquely for the five nodes. Nodes 1, 2, and 3 are
free nodes whose potential is to be determined to satisfy Laplace’s equation in the
region. Nodes 4 and 5 are prescribed nodes whose potentials are fixed (known). The
total energy expression can be written in terms of the global nodes as

N
e ) 1
w=> wi= 5¢‘C¢ (5.118a)
i=1

where the vector of global node potentials is

o) ="
$2 =05 = =}
b= ¢3 = 45 (5.118b)

2 3
1 2



and

Ci
Cn2
Ciy
Cis

Ci2
Cn
Co3
Coy
Cos

Ci3
Co3
C33
Ciy
Css
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Ci4
Co4
Cs4
Cuy
Cys

Cis
Cas
Css (5.118c¢c)
Cys
Css

This global coefficient matrix C, like the local coefficient matrix, can be shown to be
symmetric by energy considerations [9]. The entries in the global coefficient matrix
can be assembled quite easily from the local coefficient matrix (whose entries are
computed for the isolated elements independent of their future connection) with the
following observation. For each element write the global coefficient matrix as

wh =g | o
0

0
0
W =o' |0
0
0

Gt
v e
0
0
ey e

S o o o O

0

3 O
C12 C13

SIE)
C23 C33

0

S O o O O
S O o o O

0

0

0 |¢ (5.119a)

0 |¢ (5.119b)

0
0
) ) ole (5.119¢)
0
0
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Assembling these according to (5.118) gives the total energy
w=wbiLw?_Lw®
D (1) (1) .
Cii Cia 0 0 Ci3

(1) (1) (2) (3) (3) (2) (3) (D) (2)
Chy Cp+Cyp+Cp Cn Gy +Cn G+

_ (3) (3) A3)
=¢'| 0 C; C55 C53 0 ¢
0 C(Z) C(3) C(3) C(Z) C(3) C(Z)
(1) 1 2 2 1 2
LCi3 C§3) +Cf; ) 0 C§3) C§3) + CE 1) .
(5.120)

A very simple rule for assembling this global coefficient matrix can be developed
from this example. The main diagonal terms are the sums of the main diagonal terms
of the local coefficient matrices for those elements that connect to this global node.
The off-diagonal terms are the sums of the off-diagonal terms of the local coefficient
matrices whose sides connect the two global nodes. Observe that the off-diagonal
terms will have at most two entries, whereas the main diagonal terms will be the sum
of a number of terms equal to the number of elements that share the global node.

Now it remains to differentiate this result with respect to the free nodes to insure
minimum energy of the system thereby satisfying Laplace’s equation. To that end, let
us number the global nodes by numbering the free nodes first and then numbering
the prescribed (fixed potential) nodes last. The above energy expression can then be
written in partitioned form as

w=swian| " P[]
GCor Cppl Ly,
= 5[d{Crrds + bfCrpd, + by Corr + b Cppdy|

Differentiating this with respect to the free node potentials and setting the result to
zero gives the final equations to be solved:

(5.121)

Cirdr = —Crpd, (5.122)

Solving this matrix equation for the free node potentials is referred to as the direct
method of solving the FEM equations.

Observe from the example of Figure 5.44 that the global coefficient matrix C has
a number of zero entries. This is quite evident as only those (two) elements that
contain the nodes for this entry will contribute a nonzero term. Thus, the coefficient
matrices in (5.122) will be sparse. Although there exist sparse matrix solution routines
that efficiently take advantage of this, FEM problems, particularly large ones, are
generally solved more efficiently using the iterative method. This is similar to the
iterative method for the finite-difference technique in that the free nodes are initially
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FIGURE 5.45 Tllustration of the FEM applied to a previously solved problem.

prescribed some starting value (such as zero) and the new values of the free node
potentials are computed. The process continues until the change in the free node
potentials between iteration steps is less than some value. Writing out (5.122) for the
example of Figure 5.44 gives

Cni Cn Ci3] [ Cuu Cis 5 0
Cip Cxn Co ¢ | + | Cas Cos {‘Pﬂ = [0] (5.123)
Ci3 Cx C33 &3 Cis Css 0

Writing this in terms of each free potential with respect to the other free potentials
and the prescribed potentials gives

0 Ci2/Cn1 Ci13/Cni Ci4/C11 Ci15/C11
or " = — | C12/Cx2 0 C23/Co | &+ | Coa/Cr2 Cos/Cp | b,
C13/C33 C23/C33 0 C34/C33 C35/C33

(5.124a)
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TABLE 5.9
Direct method Iteration Exact
o) 16.4389 16.4389 16.4784
¢ 21.6563 21.6563 21.8499
d3 14.0994 14.0994 14.1575
o 20.1863 20.1863 20.4924
s 9.77226 9.77224 9.60942
s 14.9896 14.9896 14.9810
where
?1
b= | (5.124b)
&3
04 }
= 5.124¢
by [ A (5.124¢)

As a numerical illustration of the method, consider the problem of a rectangular
region of side lengths 4 and 3 with prescribed potentials of 0 V, 10 V,20 V, and 30 V as
shown in Figure 5.20. This was solved earlier with the MoM technique and the finite-
difference technique. In order to compare this with the finite-difference technique, we
will again choose six interior nodes and approximate the space between these nodes
with 24 finite elements as shown in Figure 5.45. Observe that the potentials at nodes
7,10, 14, and 17 are not known since there are gaps between the adjacent conductors.
We will prescribe these potentials as the average of the adjacent conductor potentials
or 5V, 15V,25V, and 15 V. The solution for the six interior node potentials via the
direct and the iterative method become as shown in Table 5.9. The iterative method
converged after 15 iterations.

Some of the important features of the FEM are that it can handle irregular bound-
aries as well as inhomogeneous media. Inhomogeneous media are handled by ensuring
that the region is subdivided such that each finite element covers (approximately) a
homogeneous subregion. The permittivities of the finite elements, ¢;, are contained
in the C{!), local node coefficients.

Once again, as with the finite-difference method, the finite-element method is most
suited to closed systems. For open systems whose boundaries extend to infinity, an
infinite mesh method can be developed [4] or the mesh can be extended sufficiently
far from the main areas of interest and artificially terminated in zero potential thereby
forming a (artificial) closed system.

The FEM is a highly versatile method for solving Laplace’s equation as well as
other electromagnetic fields problems [4, 9]. Other parameters of interest such as
capacitances can be determined in the usual fashion by determining the resulting
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charge on the conductors as the normal component of the displacement vector just
off the conductor surfaces.

PROBLEMS

51
5.2
5.3
54

5.5

5.6

5.7

5.8

5.9
5.10

Demonstrate the generalized capacitance relations in (5.21).
Show the result in (5.22).
Demonstrate the result in (5.23) for (n 4+ 1) widely spaced wires.

Determine the per-unit-length inductances for a three-wire ribbon ca-
ble where the center wire is chosen as the reference conductor.
[111 =l = (no/m)In(d/ry), l12 = (,uo/27r)ln(d/2rw)] Evaluate these for a
center-to-center wire spacing of 50 mils and #28 gauge stranded wires having
wire radii of ry = 7.5mils. [l1] =l = 0.759uH/m = 19.3nH/in., l1; =
0.24pH/m = 6.1 nH/in.]. Determine the per-unit-length capacitances (ne-
glecting the wire insulations) from these. [c11 = 22 = 11.1pF/m =
0.28 pF/in., c;2 = 5.17pF/m = 0.13 pF/in.]

Repeat the calculations of problem 5.4 using WIDESEP.FOR. [l1] =
I, =0.7588uH/m, l1p = 0.2408uu H/m, c¢11 =c¢p = 11.13pF/m, c1p =
5.174 pF/m]

Demonstrate the relations in (5.25) for n wires above an infinite, perfectly
conducting ground plane.

Determine the per-unit-length inductances for two wires at an equal height
above a ground plane and separation s. [l11 =l = (uo/2m)In(2h/ry),
lip = (M0/47T)1I1(1+4(h2/5'2))] Evaluate these for a center-to-center wire
spacing of 2 cm, a height of 2 cm and #20 gauge solid wires having
wire radii of ry = 16mils. [/1] =l =0.918u H/m = 23.3nH/in., [, =
0.161x H/m = 4.09 nH/in.]. Determine the per-unit-length capacitances (ne-
glecting the wire insulations) from these. [c1] = c22 = 10.3pF/m, c12 =
2.19pF/m]

Repeat the calculations of problem 5.7 using WIDESEP.FOR. [lj] =
lrp = 09178 H/m, l17 = 0.1609u H/m, c11 = c2» = 10.314pF/m, c1» =
2.193 pF/m]

Demonstrate the relations in (5.26) for n wires within an overall shield.

Determine the per-unit-length inductances for two wires within an overall
shield where the wires are #28 gauge stranded having wire radii of ry =
7.5 mils. The wires are separated by 180°, the shield radius is rg = 4ry, and
the distance of each wire from the center is two wire radii. This is typical for
shielded pairs of wires where the wire insulation thicknesses are equal to the
wire radii. [[{; = lpp = 0.22 uH/m, l1; = 44.6 nH/m]
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5.11

5.12
5.13
5.14
5.15

5.16
517
5.18
5.19

5.20
5.21

5.22
5.23

5.24
5.25

THE PER-UNIT-LENGTH PARAMETERS FOR MULTICONDUCTOR LINES

Repeat the calculations of Problem 5.10 using WIDESEP.FOR. [/1] =
lp =0.2197uH/m, [l =44.63nH/m, c¢11 =cpn =42.1pF/m,c2 =
10.73 pF/m]

Demonstrate the results in Table 5.1.
Demonstrate the results in Tables 5.2 and 5.3.
Demonstrate the results in (5.48).

Determine, using RIBBON.FOR, the results in Tables 5.5 and 5.6 for
a three-wire ribbon cable consisting of #28 gauge stranded wires (ry =
7.5mils) with insulation thicknesses of 10 mils and & = 3.5 and sep-
arations of 50 mils but with the center wire chosen as the ref-
erence conductor. [l1] =l = 0.7485u H/m, 12 = 0.2408u H/m, c11 =
¢y = 2498 pF/m, c1p = 6.266 pF/m]

Demonstrate the relations in (5.65) and (5.67).
Demonstrate the relations in (5.75) and (5.76).
Demonstrate the relations in (5.78).

Determine the per-unit-length inductances and capacitances for a three-
conductor PCB having land widths of 25 mils, a board thickness
of 30 mils, and an edge-to-edge separation of 10 mils and & = 4.7
using PCB.FOR. Use 30 divisions per land and choose the reference con-
ductor to be the center land. [I1] = I = 0.626u H/m, l15 = 0.1812u H/m,
c11 = c22 = 38.35pF/m, c¢12 = 11.197 pF/m]

Demonstrate the relations in (5.83).

Determine the per-unit-length inductances and capacitances for a two-
conductor coupled microstrip having land widths of 25 mils, a board thick-
ness of 30 mils, and an edge-to-edge separation of 10 mils and &, = 4.7 us-
ing MSTRP . FOR. Use 30 divisions per land and choose the reference con-
ductor to be the center land. [/1; = lpp = 0.4484u H/m, [15 = 0.1543u H/m,
€11 = ¢ = 65.26 pF/m, c1» = 22.92 pF/m]

Demonstrate the relations in (5.95) and (5.97).

Determine the per-unit-length inductances and capacitances for a two-
conductor coupled stripline having land widths of 25 mils, a separation between
the two ground planes of 30 mils, and an edge-to-edge separation of 10 mils and
& = 4.7 using STRPLINE.FOR. Use 30 divisions per land and choose the

reference conductor to be the center land. [l1] = Iy = 0.2466 H/m, I =
21.6nH/m, c1; = ¢22 = 195pF/m, c1» = 18.72 pF/m]

Demonstrate the relation for the finite-difference method in (5.102).

Reproduce the results in Table 5.8 for the finite-difference method.
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5.26 Demonstrate the relations in (5.111) for the finite-element method.
5.27 Demonstrate the relation in (5.116) for the finite-element method.

5.28 Reproduce the results in Table 5.9 for the finite-element method.
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FREQUENCY-DOMAIN ANALYSIS
OF TWO-CONDUCTOR LINES

In this chapter, we will examine the solution of the transmission-line equations for
two-conductor lines, where the line is excited by a single-frequency sinusoidal sig-
nal and is in steady state. The analysis method is the familiar phasor technique of
electric circuit analysis [A.2, A.5]. The excitation sources for the line are single-
frequency sinusoidal waveforms such as x (f) = Xcos (ot + 0x). Again, as explained
in Chapter 1, the reason we invest so much time and interest in this form of line ex-
citation is that we may decompose any other periodic waveform into an infinite sum
of sinusoidal signals that have frequencies that are multiples of the basic repetition
frequency of the signal via the Fourier series. We may then obtain the response to
the original waveform as the superposition of the responses to those single-frequency
harmonic components of the (nonsinusoidal) periodic input signal (see Figure 1.21
of Chapter 1 ). In the case of a nonperiodic waveform, we may similarly decompose
the signal into a continuum of sinusoidal components via the Fourier transform and
the analysis process remains unchanged. An additional reason for the importance of
the frequency-domain method is that losses (of the conductors and the surrounding
dielectric) can easily be handled in the frequency domain, whereas their inclusion
in a time-domain analysis is problematic as we will see in Chapters 8 and 9 . The
per-unit-length resistance of the line conductors at high frequencies increases as the
square root of the frequency, +/f, because of skin effect, whereas the per-unit-length
conductance of a homogeneous surrounding dielectric is also frequency dependent.
In the frequency domain, we simply evaluate these at the frequency of interest and
treat them as constants throughout the analysis.

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.
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For the phasor method, we replace the excitation signal with its phasor equivalent
as

x(1) < X (jo) (6.1a)

where

X(jw) = X /0%

X ot (6.1b)

We return to the time domain using Euler’s identity by (1) multiplying the phasor
result by e/? and (2) taking the real part of the result:

x(t) = X cos(wt + 0x)
=Re{ X/0x /™ (6.2)
——

X
6.1 THE TRANSMISSION-LINE EQUATIONS IN THE FREQUENCY

DOMAIN

We form the phasor or frequency-domain differential equations by replacing all time
derivatives with jw as

9
— & 6.3
P & jo (6.3)

In the case of a lossless line, this reduces the time-domain partial differential
transmission-line equations to their frequency-domain equivalent as

0 0 d . A

— Vi, t)=—-l—1I(z,t —V =—joll 6.4
" (z,1) o (z,1) & iz (2) jol I(2) (6.4a)
0 0 d . A
—I(z,)=—c=—V(iz, ) & —1(z)=— jocV(2) (6.4b)
0z ot dz

Observe that the frequency-domain or phasor transmission-line equations become
ordinary differential equations because they are functions of only one variable, the
line axis variable z. This is another important reason we go to the frequency domain:
the solution of the transmission-line equations is simpler. Once we solve the phasor
transmission-line ordinary differential equations in (6.4) and incorporate the terminal
constraints at the left and right ends of the line, we return to the time domain by
(1) multiplying the phasor solutions 1% (z) and I (z) by e/®" and (2) taking the real
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part of that result as

V(z,t) = Re{VZGV ej‘“’}
N——

- (6.5a)
V(z)
= V(2)cos(wt + Oy (2))
and
I(z,1) = Re{llel €jwl}
120, (6.5b)

1(z)
= I(z)cos(wt + 07(2))

Losses of the line are incorporated via the per-unit-length resistance of the con-
ductors, r (ﬁ ) and the per-unit-length conductance of the surrounding medium,
g (f). The frequency-domain transmission-line equations in (6.4) are amended to

i‘A/(Z) =—(r+ jol) I(2) (6.6a)
dz —

d . o

Z 1@ =—(g+ jwo) V(2) (6.6b)
dz ———

¥

We will first examine the solution for a lossless line and then easily modify that
solution for a lossy line.

6.2 THE GENERAL SOLUTION FOR LOSSLESS LINES

The transmission-line equations for a lossless line are given in (6.4) and repeated
here:

LG = - jell () (6.72)
dz

d . A

—1I(2) = — joc V (2) (6.7b)
dz

These coupled first-order differential equations can be converted to uncoupled second-
order differential equations in the usual manner by differentiating each with respect
to z and substituting the other to yield ( j* = —1)

2

d” o 5
d—ZZV(Z)— w’lcV (2) (6.82)
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2

2.
Tl @=—0cl@) (6.8b)

The general solution to these coupled second-order equations is again [A.1, A.6]

V)= Vte P4 Ueibft (6.92)
and
X | V- .
1) = ——e 7P — ——¢JFz 6.9b
(2) Ze e Ze e (6.9b)

where the phase constant is again denoted as

B = a)\/E
=2 (rad/m) (6.10)
v
and the phase velocity of propagation is
v=ow/p
= 1/Vlc (6.11)

If the line is immersed in a homogeneous medium characterized by permittivity € and
permeability u, then lc = e and v = 1/,/jue. Hence, these TEM waves travel at the
speed of light in that medium. The phase constant 8 represents a phase shift as the
waves propagate along the line. The quantities ¥+ and V™ are, as yet, undetermined
constants. These will be determined by the specific load and source parameters. The
line characteristic impedance is denoted as

Zc = \/lje (6.12)

The source and load configurations at z = 0 and at z = % are shown in Fig-
ure 6.1. In the frequency-domain representation, we may easily include inductors and

A1) i@ @
2 ——
+ + + .
~ A A A zZ
Vs 7(0) V(2) V(@)
—
S -
Z(2)
f f >
z2=0 z=¥ z

FIGURE 6.1 Definition of the parameters of a two-conductor line in the frequency domain.
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capacitors in those complex-valued impedances, Zs and Zy . Once we incorporate the
source and load terminal constraints into the general solution in (6.9) and determine
the complex-valued constants Y+ and V—, we can return to the time domain in the
usual fashion by (1) multiplying the phasor result by e/’ and (2) taking the real part
of the result to yield

V(z, 1) = Re{Vtell o= ibigiot 4 =0 gibzeijet)

= VT cos(wt — Bz +6T)+ V™~ cos(wt + Bz +67) (6.13a)
forward —traveling backward-traveling
+ z wave —zwave
and i B
1) = Re d Y pit* gmibzgior _ YV jo iz, jor
’ Zc Zc
vt V-
— ~ cos(wt — Bz +6F) — — cos(wr + fz +67) (6.13b)
Zc Zc
forward—traveling backward—traveling
+ z wave —zwave

where the undetermined constants are, in general, complex as VE = yE/0F =
VEe % Observe that the characteristic impedance is the ratio of the voltage and
current in the forward-traveling wave and the ratio of the voltage and current in the
backward-traveling wave. Also, observe from (6.13) that since f = w/v, we may
write

(wt £ B7) ©w(txz/v)

This shows that the phase-shift term in the frequency-domain representation, e* /52,
is equivalent in the time domain to a time delay (t + z/v).

6.2.1 The Reflection Coefficient and Input Impedance

In order to incorporate the source and load into the general solution, we define a
voltage reflection coefficient as the ratio of the (phasor) voltages in the backward-
traveling and forward-traveling waves:

P@) = ———
e i (6.14)

The general solution in (6.9) for the phasor voltage and current along the line can be
written in terms of the reflection coefficient at that point by substituting (6.14):

V(z)=Vte 7 [1 + ()] (6.152)
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and

N

X vt . a
I(z) = Zice*]ﬂz [] — F(Z)} (6.15b)

Evaluating the general expression for the reflection coefficient anywhere along the
line given in (6.14) at the load, z = &, gives

=

V™ sy
— _ pi2BZ
L=77 e (6.16)
At the load, the phasor voltage and current are related by Ohm’s law as
V(¥)=2L1(P) (6.17)

Substituting (6.15) evaluated at the load, z = &, gives

N 1+fL
71 = Z = 6.18
L CI—FL (6.18)

Solving this gives reflection coefficient at the load:

. L-Z

fp=2—2C (6.19)
Z1+ Zc

Substituting (6.16) into (6.14) gives an expression for the reflection coefficient at any

point along the line in terms of the load reflection coefficient, which can be directly

calculated via (6.19):

[(z) = [Le/Pe=?) (6.20)
Substituting the explicit relation for the reflection coefficient in terms of the load

reflection coefficient given in (6.20) into (6.15) gives a general expression for the
phasor voltage and current anywhere on the line as

bor = e 14 B2 6219
and
. vt . I 9
i) = 76—1& {1 _ pLgﬂﬁ&—f)] (6.21b)
C

An important parameter of the line is the input impedance to the line at any point
on the line. The input impedance is the ratio of the total voltage and current at that
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point as shown in Figure 6.1:
7o
1(z)
[1+f‘(z)] (6.22)
“[i-F@)

where we have substituted (6.15). The process for determining the input impedance is
to (1) compute the load reflection coefficient from (6.19), (2) compute the reflection
coefficient at the desired point from (6.20), and (3) then substitute that result into
(6.22).

An important position to calculate the input impedance is at the input to the entire
line, z = 0. The reflection coefficient at the input to the line is obtained from (6.20):

Zin(Z) =

£0) = fLe 27 (6.23)
Hence, the input impedance to a line of length % is

. [1 4+ [(0)]
Zin(0) = Ze
Or=2ze - RO
(1 4 Fpe 1267]
“ 1= Fre27]

(6.24)

An explicit formula for this input impedance to the line can be obtained as [A.1, A.6]

7L + jZctan (L)
Zc + jZptan (BZ)

Zin (0) = Zc (6.25)

A matched line is one in which the load impedance is equal to the characteristic
impedance, 71 = Zc. Hence, from (6.25) or (6.24) with I';, = 0, the input impedance
to amatched line is equal to the characteristic impedance at all points along the line and
is purely resistive. Observe that for a lossless line the characteristic impedance Z¢ =
J/I/c is areal number. Hence, in order to match a lossless line the load impedance can
only be purely resistive. A few other interesting facts may be observed from (6.25).

Substituting 8 = 27/A, where the wavelength at the frequency of excitation of the
line is A = v/f, yields

8

71+ jZctan (2” ) 6.26)

Zin (0) = Zc¢ - .
Ze+ jZian (52)

]+

For a line that is one-quarter wavelength long, that is, ¥ = X /4, (6.26) becomes

. 72
Zn(0)= S, Z=21/4 6.27)
ZL
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If the load is an open circuit, Z; = oo, then the input impedance to a quarter-
wavelength section is a short circuit, Zin (0) = 0. Conversely, if the load is a short
circuit, Zy = 0, then the input impedance to a quarter-wavelength section is an open
circuit, Z, (0) = oco. Also, (6.26) shows that for lengths of line that are a multiple
of a half wavelength, that is, ¥ = n(A/2) forn = 1,2, 3, ..., the input impedance
replicates, that is,

7L+ jZc tan (nm)

Zin (0) = Z -
in (0) ¢ Zc + jZy tan(nm)
=7y, £=n/2) (6.28)
and
~ A ~
Zin (Z + n2> =Zin(2) (6.29)

This result applies even if the line is not matched.

6.2.2 Solutions for the Terminal Voltages and Currents

In general, we will only be interested in determining the current and voltage at the
input and output of the line. Evaluating (6.15) at z = 0 and z = & gives

V(©O)= V" [1+10)] (6.30a)
N v .
10) = Z [1—10)] (6.30b)
and
V(@)= Vre P2 (141 (6.31a)
() = Ee—fﬁf [1-1y] (6.31b)
= ZC L .

If we can determine the undetermined constant V1, then we can determine the source
and load voltages and currents by substituting into (6.30) and (6.31).

In order to determine this undetermined constant, a convenient position to evaluate
it is at the input to the line, z = 0. At the line input, the line can be replaced by the
input impedance to the line as shown in Figure 6.2. The input voltage to the line can
be determined by voltage division as

Zin (0) ‘A/

V)= ———TVs
Zs + Zin (0)

(6.32)
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FIGURE 6.2 Determination of the phasor input voltage of the line.

Hence, the undetermined constant is determined from (6.30a) as
V()

Vi ————
[1+10)]

(6.33)

The process of determining the input and output voltages and currents to the line is

Determine the load reflection coefficient [, from (6.19)

Determine the input reflection coefficient (0) from (6.23)

Determine the input impedance to the line, Zin (0), from (6.24) or (6.25)

. Determine the input voltage V(0) from (6.32)

Determine the undetermined constant ¥+ from (6.33)

Substitute this into (6.30) and (6.31) to determine the source and load voltages
and currents.

SR SR

A more direct way of determining these terminal voltages and currents is as follows.
First, write the source relation in terms of a Thevenin equivalent relation as

V()= Vs — Zs1(0) (6.34)
Next, write the load terminal relation similarly as
V(¥)=2L1(P) (6.35)

Substitute the general solution in (6.9) evaluated at z = 0 and at z = % into (6.34)
and (6.35) to yield

VE4 v =V — =2 (VF -V~ 6.36
+ ST Zc ( ) (6.36a)
Ve B L VelBY = Z—L (‘7+e_jﬂ$ — V_ejﬂg}) (6.36b)
c



THE GENERAL SOLUTION FOR LOSSLESS LINES 249

Rearranging these gives

(Zc + Zs) (Zc — Zs) Vtl [ zcVs 637)
(Zc—ZL)e_jﬂg (Zc—i-ZL)ej'Bg] V=1~ |0 ’

Solve these two simultaneous equations for the two undetermined constants ¥+ and
V'~ and substitute them into the general solutions in (6.9) to determine the line voltage
and current anywhere on the line and, in particular, at the source and the load. This
general method of solution will be used in a virtually identical fashion for multicon-
ductor transmission lines (MTLs) in the next chapter.

For the simple case of a two-conductor line, (6.37) can be solved by hand in literal
fashion (symbols instead of numbers) to give general expressions for V+ and V.
These can then be written in closed form in terms of the reflection coefficients at the
source and the load:

. 7Zs—Z

fg= 25— %C (6.38a)
Zs+ Zc

. ZL—-Z

fp=2L—7¢ (6.38b)
Z1+ Zc

to give general expressions for the line voltage and current anywhere on the line as

. 1 4+ T e J2BL 5 282 7 N )
V()= oLe e € Vge i (6.392)
1 —TsT'Le= 7284 Zc + Zs

1 — e /282 ¢ 282 1 ~ i
1(z) = = - — Vge /7 6.39b
@ 1 —TslLe 728Y Zc+ Zg § ( )

A considerable amount of information can be gleaned from these informative expres-
sions. For example, the source and load voltages and currents become

1+ e 7282 Zc .

V(0) = — . V. 6.40a
© 1 —TsI'Le= 7282 Zc + Zg ( )
Foy= 1= L% 1 ¢ (6.40b)
1 —TslLe= 282 Zc + Zg '
and A
. 1+ 1 Ze ..
V(@)= —a - TC e Y (6.412)
1 —IsILe 122 Zc + Zg
. 1-1 1 . .
o) = L Vg B (6.41b)

1 —glLe= 2L Z¢ + Zg
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If the line is matched at the load, that is, ZL = Z¢, so that the load reflection coefficient
is zero, I'L, = 0, these reduce to

VO)y=—""1V5, TL=0 6.42a
0) Ze + s S L ( )
1(0)= ! V. fL=0 (6.42b)
and
N Zc A —jpy N
V(&)= —FVse /7, 'L=0 (6.432)
Zc+ Zs
. 1 . , N
1(P)=——Vge P, fL=0 6.43b
(Z) Ze + s S L ( )

Observe that these results are sensible because the line input looks like 7L = Zc, the
magnitude of the voltage and current is constant all along the line, and the load and
source voltage and current differ only by the phase shift of the line, e~ /#<

6.2.3 The SPICE (PSPICE) Solution for Lossless Lines

SPICE (or PSPICE) can be used to solve these phasor transmission-line problems
for lossless lines. The SPICE or its personal computer version, PSPICE, computer
program contains a model that is an exact solution of the transmission-line equations
for a lossless two-conductor transmission line. See Appendix B for a tutorial on the
use of SPICE/PSPICE. This exact model will be derived in Chapter 8 . It is invoked
by the following statement:

TXXX N1 N2 N3 N4 Z0 =Z¢c TD =Tp

where Z¢ = 4/I/c is the characteristic impedance of the line and Tp = (#/v) is the
one-way time delay for propagation from one end of the line to the other. The name
of the element, TXXX, denotes the model and XXX is the name of that specific model
given by the user. The line and model are connected between nodes N1 -N2 and N3 -
N4 as shown in Figure 6.3. Normally, nodes N2 and N4 are chosen to be the universal
reference or ground node, the zero node: N2 =0 and N4 = 0.

An example is shown in Figure 6.4(a). A 100-MHz voltage source having a mag-
nitude of 10 V and an angle of 30° is attached to a two-conductor lossless line having
a characteristic impedance of 50 €2, a velocity of propagation of 200 m/us, and a line
length of 2.7 m. This gives a one-way time delay of Tp = % /v = 13.5ns. The source
impedance is Zs = 100 — j50 Q and the load impedance is Z; = 100 + ;j200 .
The PSPICE node numbering is shown in Figure 6.4(b). SPICE requires R, L, and
C circuit elements, so we have synthesized equivalent circuits for the source and
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NI ® O N3
Ze, Tp
N2 ® O N4
! | >
z2=0 2= z
Nl @ O N3
Z0,TD
0e ® 0
Txxx NI 0 N3 0 Z20=2 ™D =Tp

FIGURE 6.3 Representing a lossless transmission line with the SPICE (PSPICE) equivalent
circuit.

load impedances as shown, which, at a frequency of 100 MHz, will give the desired
complex impedances. The PSPICE program is

EXAMPLE

vsS 1 0 AC 10 30

RS 1 2 100

Cs 2 3 31.8P

T 3 0 4 0 z0=50 TD=13.5N

RL 4 5 100

LL 5 0 0.318U

.AC DEC 1 1E8 1ES8

.PRINT AC VM(3) VP(3) VM(4) VP(4)
.END

The .AC command causes the program to calculate the result from a starting frequency
of 100 MHz to an ending frequency of 100 MHz in steps of one frequency per decade.
In other words, the solutions are obtained at only 100 MHz. The .PRINT statement
requests that the results be printed to a file with the magnitude of the node voltage at
node 3 denoted as VM(3) and the phase denoted as VP(3). The results are

V(0) = VM(3)/VP(@3)
=2.136/120.1°
and

V(%) = VM(4)/VP(4)
= 4.926/ —49.1°
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Zs=100-750 Q
-« 27m ———P
)]

+ +
- R Ze=50Q R R
Vg =10 30° V(0) ¢ V(@) < Z;=100+,200Q
_ v =200 m/us _
)]
=100 MHz (a)
100 - 50
r -~ il
100Q 31.8pF
[©) '©) ® 100Q
0 Zs=50Q
10@ ¢ 100 + ;200 @
T,=135ns 0.318 uH
£=100 MHz g *
© ©

(b)

FIGURE 6.4 An example for computing the phasor terminal voltages of a lossless transmis-
sion line: (a) the problem statement and (b) the SPICE coding diagram.

These compare favorably with those computed directly by hand with the earlier results
of

V(0) = 2.14/120.13°
and
V(%) = 4.93/ — 409.12°

Observe that the load voltage angle of —409.12° is equivalent to —49.12°.

6.2.4 Voltage and Current as a Function of Position on the Line

We have been primarily interested in determining the voltages and currents at the
endpoints of the line. In this section, we will investigate and provide plots of the
magnitudes of the phasor line voltage and current at various points along the line.
We will plot the magnitude of these for distances d = ¥ — z away from the load.
Recall the expressions for the voltage and current at various positions along the line
in (6.21). Substituting z = ¥ — d into (6.21) and taking the magnitude gives

[Val = |7+| |1+ Pre 2 (6.442)
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and
{7+
74| = "; | ‘1 — [Le 2K (6.44b)
C

There are three important cases of special interest that we will investigate: (1) the
load is a short circuit, Z;, = 0, (2) the load is an open circuit, 71, = oo, and (3) the
load is matched, Z| = Zc.

For the case where the load is a short circuit, ZL = 0, the load reflection coefficient
is ['. = —1. Equations (6.44) reduce to

[Va = |74 [1 = e8]
= || ’e—jﬁd‘ ’ejﬂd _ e—jﬁd’
I 12 sin(Bd)|
o [sin (Bd)|

in |2 d 6.45
sm(n)\) (6.45a)

and N
5 [V o
|Id’=TC ‘1+e 2P ‘
v+ . . .
_ |z | ‘eﬁﬂd‘ ’ejﬁdJref/ﬂd’

C
1 |2 cos(Bd)|
& |cos (Bd)|

cos (2ni) ‘ (6.45b)

and we have written the result in terms of the distance from the load, d, in terms of
wavelengths. These are plotted in Figure 6.5(b). Observe that the voltage is zero at the
load and at distances from the load that are multiples of a half wavelength. The current
is maximum at the load and is zero at distances from the load that are odd multiples
of a quarter wavelength. Further, observe that corresponding points are separated by
one-half wavelength. We will find this to be an important property for all other loads.

For the case where the load is an open circuit, ZL = 00, the load reflection coef-
ficient is 'L = 1. Equations (6.44) reduce to

|Va| = 17111 4 e /24|
o |cos(Bd)|

d
cos <2nk) ‘ (6.46a)
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FIGURE 6.5 Illustration of the variation of the magnitudes of the line voltage and current
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and

v+\
7 — j2pd
Id|= Tc‘l—e Jﬁ’

o« |sin(Bd)| (6.46b)

= |sin | 27 — ’
A

and we have again written the result in terms of the distance from the load, d, in terms of
wavelengths. These are plotted in Figure 6.5(c). Observe that the current is zero at the
load and at distances from the load that are multiples of a half wavelength. The voltage
is maximum at the load and is zero at distances from the load that are odd multiples of
a quarter wavelength. This is the reverse of the short-circuit load case. Further, again
observe that corresponding points are separated by one-half wavelength.

And finally, we investigate the case of a matched load, 71 = Zc. For this case, the
load reflection coefficient is zero, f‘L = 0, so that the results in (6.44) show that the
voltage and current are constant in magnitude along the line as shown in Figure 6.5(d).
This is an important reason to match a line. Although the magnitudes of the voltage and
current are constant along the line, they suffer a phase shift e~ /5% as they propagate
along it.

The general case is sketched in Figure 6.5(e). The locations of the voltage and
current maxima and minima are determined by the actual load impedance, but adjacent
corresponding points on each waveform are separated by one-half wavelength. This
is an important and general result and can be proved from the general expressions in
(6.44). In those expressions, the only dependence on the distance from the load, d, is
in the phase term e~ /24, Substituting 8 = 27/ and distances that are multiples of
a half wavelength, d = d &£ n(A/2), we obtain

e_jzﬁ(di%) = ¢~ 2P o F jonm (6.47)
N——
+1

Hence, we obtain the important result that corresponding points on the magnitude of
the line voltage and line current are separated by one-half wavelength in distance.

6.2.5 Matching and VSWR

Figure 6.5 illustrates how the magnitudes of the voltage and current vary with position
on the line. In the matched case shown in Figure 6.5(d), the magnitudes of the voltage
and current do not vary with position, but in the cases of a short-circuit or an open-
circuit load (severely mismatched), the magnitudes of the voltage and current vary
drastically with position achieving minima of zero. Observe that the maximum and
the adjacent minimum are separated by one-quarter wavelength. This variation of
the voltage and current along the line for a mismatched load is very undesirable as
it can cause spots along the line where large voltages can occur that may damage
insulation or produce load voltages and currents that are radically different from the
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input voltage to the line. Ideally, we would like the line to have no effect on the signal
transmission (other than a phase shift or time delay) as will occur for the matched
load.

Although we ideally always would like to match the line, there are many practical
cases where we cannot exactly match the line. If Z; # Zc, the line is mismatched but
how do we quantitatively measure this degree of “mismatch”? A useful measure of
this mismatch is the voltage standing wave ratio (VSWR). The VSWR is the ratio of
the maximum voltage on the line to the minimum voltage on the line:

VSWR = X (6.48)

These maximum and minimum voltages will be separated by one-quarter wavelength.
Observe that for the extreme cases of a short-circuit load, Z;, = 0, or an open-circuit
load, Z1, = oo, the minimum voltage is zero and hence the VSWR is infinite:

oo, ZL =0
VSWR = . (6.49)
00, L =00
but the VSWR is unity for a matched load:
VSWR =1, Z; = Zc (6.50)
The VSWR must therefore lie between these two bounds:
1 < VSWR <0 (6.51)

Industry considers a line to be “matched” if VSWR < 1.2

We can derive a quantitative result for the VSWR from (6.44a), which shows that
the voltage at some distance d is proportional to | Vd’ x | 14 [pe 7284 | The maxi-
mum will be proportional to | v | max X1+ | Ny | and the minimum will be proportional
to }V‘mm x1— ’f‘L‘. Hence, the VSWR is

L+ |

VSWR = =
1-— |FL

(6.52)

6.2.6 Power Flow on a Lossless Line

We now investigate the power flow on a lossless line. The forward- and backward-
traveling voltage and current waves carry power. The average power flowing to the
right (+z) at a point on the line can be determined in terms of the total voltage and
current at that point in the same fashion as for a lumped circuit as

Pv = sRe { V)" 6.53
w = 3Re (VI @)} (6.53)
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where * denotes the complex conjugate. Substituting the general expressions for
voltage and current given in (6.21) gives

l
Pav = 3 Re{ VI ()}
IR o] VI f = 2B~
S +om Jb2 [1 T e )} o Bz [1 [ 2B )}
2 Zc L
e
_ vty ]" pi28G—2) _ f*]ﬂ:e*jzﬂ(szf)) PR
imaginary
+p
= — 'L
2z (6.54)

and we have used the complex algebra result that the product of a complex number and
its conjugate is the magnitude squared of that complex number. This result confirms
that if the load is a short circuit, fL = —1, or an open circuit, f’L =1, then the net
power flow in the +z direction is zero. Clearly, an open circuit or a short circuit
can absorb no power. Essentially, then the power in the forward-traveling wave is
equal to the power in the backward-traveling wave and all the incident power is
reflected.

This can be confirmed by separately computing the average power flow in
the individual waves. The power flowing to the right in the forward-traveling

wave is
oy
P = lRe (\A/+e_jﬁz) Y. e P
AV B Zc
. (6.55a)

27Z¢c

and the power flowing to the left in the backward-traveling wave is

Py == e]ﬁz V_ e JBz
2 Zc

_ i (6.55b)
EZC

Nadl
2Z¢c

The sum of (6.55a) and (6.55b) gives (6.54). The ratio of reflected power to incident

power is |f L|2. For a matched load, Z; = Zc, f‘L = 0 and all the power in the
forward-traveling wave is absorbed in the (matched) load.
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6.3 THE GENERAL SOLUTION FOR LOSSY LINES
The transmission-line equations for lossy lines include the per-unit-length resistance

of the conductors, r (ﬁ ) , and the per-unit-length conductance of the lossy surround-
ing medium, g (f). The frequency-domain equations are

4 V() =-21() (6.56a)
dz

d . .
—I(2)=-yV(2) (6.56b)
dz

where the per-unit-length impedance and admittance are

Z=r+ jol (6.57a)
and
y=g+ joc (6.57b)

Differentiating one equation with respect to z and substituting the other, and vice
versa, gives the uncoupled second-order differential equations

d . .
— V@)= 2y V(@ (6.58a)
dz —~—
)A/Z
d> . 5
Sl = 52 1) (6.58b)
dz ~~
f,z
and the propagation constant is
=125
=a+ jp (6.59)

The real part, «, is the attenuation constant and the imaginary part, 8, is the phase

constant. Observe that for a lossy line, 8 # a)\/ﬁ, as was the case for the lossless line.

Furthermore, the phase velocity of propagation along the line is v = w/B # 1/+/lIc.
The general solution to (6.58) is [ A.1]

Viz) = Ve @2 i 4 Y evieibt (6.60a)

N A

vt . V- .
I(2) = —e %t P — @%bz (6.60b)
Zc Zc
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where the characteristic impedance now becomes complex as

A Z
Ze =4[

P

= Zc /07
= ZC ejeZC (661)

The time-domain result is obtained in the usual fashion by (1) multiplying the phasor
quantity by e/*" and (2) taking the real part of the result:

V(z,t) = Ve **cos(wt — Bz +61) + Ve *cos(wt + Bz +67) (6.62a)

v+ 1%
I(z,1) = Z—Ce_‘”cos(a)t — Bz + 60T —0z7.) — Z—Ce‘”COS(wt + Bz + 6 —0z.)

(6.62b)

Again, the general solution consists of the sum of a forward-traveling wave (+z di-
rection) and a backward-traveling wave (—z direction). Observe that there are only
two differences between the lossless line solution and the lossy line solution. First,
the voltage and current amplitudes are attenuated as shown by the terms e**2. Sec-
ond, the characteristic impedance is no longer real but has a phase angle. Hence, the
voltage and current are no longer in time phase but are out of phase by 7., which is
at most 45°.

Hence, we can directly modify the results obtained for the lossless line to include
losses by replacing jg in those results with = o + jB. For example, we define the
load reflection coefficient as
2 - Zc

| P — (6.63)
- ZL+ Zc

and the reflection coefficient anywhere on the line can be written in terms of the load
reflection coefficient as

P(z) = PLe?e)

— f*LeZa(z—f)e 28(z—%) (6.64)

The phasor general solution in (6.60) becomes

V()= Vte e /% (1 + I(2)) (6.652)

R v . R

I(2) = z—e e 7 (1 - [(2)) (6.65b)
Zc

Hence, the input impedance of the line at a point along the line is the ratio of (6.65a)
and (6.65b):



260 FREQUENCY-DOMAIN ANALYSIS OF TWO-CONDUCTOR LINES

. . (1+1@)
Zinz) = Ze——F—% (6.66)
" (1-1@)
The input impedance to the entire line at z = 0 is
A A (l + e 20Z e jzﬁg)
Zm(Z) - ZC (1 . f‘Le_2age_ ]Zﬁy) (667)
This can be written in an alternative form as
. ~ 71+ Zctanh (§.%)
Zin(0) = Zc (6.68)

Zc + Zitanh (5.2)

The solution process for determining the terminal voltages and currents of the line is
virtually unchanged from the lossless case. The direct solution for the undetermined
constants in (6.60) and given in (6.37) for the lossless case becomes

(Zc + Zs)A (Zc — Zs) \:/+ _ ZcVs (6.69)
(ZC — ZL) e 7 (ZC + ZL) e?? \ 0 )
The explicit solution for the line voltage and current anywhere on the line given for
the lossless line in (6.39) becomes for the lossy line

. 1+ TLe 222 7 .
e P S I A (6.702)
1 —IslLe V2 Zc+ Zg

1 — [ e 202 20z 1

1(z) =

A

—= — = — V.
1 —I'sl'Le 22 Zc + Zs S

eV (6.70b)

6.3.1 The Low-Loss Approximation

Typically, losses are small at the significant range of frequencies for typical high-
speed digital signals and for typical boards. For example, for a stripline with plate
separation of 20 mils and a land of width 5 mils in FR4 (¢, = 4.7) we compute, from
Egs. (4.107 ) in Section 4.3.1 of Chapter 4, ¢ = 113.2pF/m and [ = 0.461 w H/m.
The characteristic impedance for this lossless stripline is Z¢ = 4/I/¢ = 63.8 Q and
the velocity of propagation is v = 1/+/Ic = 1.38 x 108m/s. Using Eq. ( 4.60 ) of
Chapter 4 , the per-unit-length conductance is given by

g=wtand ¢ (6.71)

where tan § is the loss tangent of this (homogeneous) surrounding medium. For FR4
glass epoxy that is typical of PCBs, the loss tangent is approximately 0.02 in the low
to high MHz range. Hence, for this board we obtain g = 14.2 x 1072 f S/m. The
high-frequency resistance in ( 4.119) dominates the dc resistance in (4.118) above a
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frequency given in ( 4.120). For this problem and assuming that the constant k = 2,
the frequency is 23 MHz. Hence, for frequencies above 23 MHz, the per-unit-length
resistance of the land (thickness of 1.38 mils for 1 ounce copper) is computed from
the high-frequency equation in (4.119) giving r = 8.05 x 107*/f Q/m. By low loss
we mean

r<<wl (6.72a)

gL we (6.72b)

For this stripline problem, r is less than ! for f > 1.34 MHz and g is less than wc for
all frequencies. Observe that since g = wtan § ¢, g is less than wc by the loss tangent,
which for FR4 is on the order of 0.02 in the low to high MHz range. (The loss tangent
goes to zero at dc and at very high frequencies.)

Let us consider obtaining a simple formula for the characteristic impedance and
the attenuation constant. The propagation constant is given in (6.59). Rewriting this,

y=a+jp
= Jr+ joh(g+ joc)

— \/(ja)l)(ja)c) (1+,r> (1+,g)

Jjol Jjowc 6.73)
_ _"N_ (L8
Bl Jw\/E\/O a)2lc> J<a)l+a)c)

~ (T8 r<ol
= ]wﬂ\/l_](wl+wc) {g<<a)c}

We now apply the Taylor’s series to expand this:

nx  nn — 1)x?

no_ e ...
(1+x)—1+1!+ 20 + . lxl <1
to give
P jw«/ﬂl . j(L—i-iﬂ (6.74)
2wl 2wc
from which we identify the attenuation and phase constants as
LY A (6.75a)
e 75a
“=3 Zc 84c
B=w/lc (6.75b)

In a similar fashion, we obtain
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Zc = 4/ ijl
g+ jwc

l { r L wl }
c &§Kwe
Hence for a low-loss line where r << wl and g < wc, the characteristic impedance and
the velocity of propagation are independent of frequency and are essentially the same
as for a lossless line. Figure 6.6 shows the magnitude and angle of the characteristic
impedance versus frequency from 10 kHz to 1 GHz for the stripline considered
previously, where the land is of width 5 mils and the plate separation is 20 mils.
Observe that above about 5 MHz the characteristic impedance approaches the lossless
value of Z¢ = 63.8 Q2. Figure 6.7(a) shows the attenuation constant and Figure 6.7(b)
shows the velocity of propagation, v = w/B. The velocity of propagation approaches
the lossless value of v = 1.38 x 108m/s above about 5 MHz. The value of the
attenuation constant computed from the approximation in (6.75a) at 100 MHz is
a = 1.085 x 107!, whereas the value computed directly from the exact expression
in (6.59) is the same. Hence for typical board dimensions, the low-loss region where
the above approximations apply is above about 5 MHz. Hence for today’s digital
signals, all of their sinusoidal components lie in the low-loss frequency range.

Consider a lossy line that is matched so that there are only forward-traveling waves
on the line. The voltage and current, according to (6.60), are attenuated according

to e~ *% as they travel along the line. Hence, the power loss in a line of length % is
e 2*Z [ A.1,A.3]. In dB, this becomes [ A.3]

(6.76)

12

Lossqg = 101log(¢**?)

= 8.686 0¥ (6.77)

For the above stripline at a frequency of 1 GHz, we obtain

Zc = 63.8Q
r=2546Q/m
g=1423x1072S/m
a = 0.653

The resistive loss is

Loss, = 4.343 L &
Zc
=1.73% dB (6.78a)

and the loss in the surrounding medium is

Loss, = 4.343gZc &

— 3.93.% dB (6.78b)
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FIGURE 6.6 Plot of (a) the magnitude and (b) the phase of the line characteristic impedance
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for a low-loss line versus frequency.
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FIGURE 6.7 Plot of (a) the attenuation constant and (b) the velocity of propagation for a
low-loss line versus frequency.
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The total loss is the sum of these. For a 6-in. length of this stripline, the total loss at
1 GHz is 0.86 dB. This says that the amplitude of a 1-GHz sine wave, which varies as
e~ %%, is reduced by about 1 dB; that is, the input level is reduced to about 90% at the
output when traversing a line length of 6 in. Observe that above 1 GHz, the dielectric
loss dominates the conductor loss.

6.4 LUMPED-CIRCUIT APPROXIMATE MODELS OF THE LINE

Although SPICE/PSPICE contains a model representing the exact solution of the
transmission-line equations for a two-conductor lossless line, a frequently used alter-
native is a lumped-circuit approximate representation. The basic idea is to represent
the line or segments of it as lumped circuits. Two common such models are the
lumped-Pi and lumped-T models shown in Figure 6.8, named so for their topolog-
ical appearance. In order for these to adequately represent the line, the line length
must be electrically short at the excitation frequency; that is, ¥ < (1/10)A. In some

- 4 >
Q ]
Ze,v
lc
Q ]
(@)
1
P Y'Y Y\ Py
-— ¢ g - g
2 [ 2

(®)

%
3

()

FIGURE 6.8 Illustration of lumped-circuit approximate models: (b) the lumped-Pi model
and (c) the lumped-T model.
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cases the line must be much shorter than this, electrically, say, & < (1/20)A, in or-
der for lumped-circuit models to characterize what is truly a distributed-parameter
phenomenon. If the total line length exceeds this criterion, then it is divided into a
sequence of smaller segments, each of which is electrically short. Observe that in
each of these lumped circuits, the total capacitance is ¢.# and the total inductance is
1. For example, in the lumped-Pi circuit in Figure 6.8(b), the total line capacitance
is split and put on either side of the total inductance. This gives the lumped circuit a
reciprocal property that the actual line possesses. Similarly, the lumped-T model in
Figure 6.8(c) has all the capacitance placed in the middle of the line, and the total
inductance is split and placed on either side. This gives reciprocal structures.

In order to investigate the adequacy of these approximate models, consider a two-
conductor line of length 1 m and characterized by / = 0.5 1 H/m and ¢ = 200 pF/m
shown in Figure 6.9(a). The characteristic impedance is 50 © and the velocity of

D 10 @] o)
100Q
1A° /=0.5uH/m c=200pF/m @
0.2653uH
© - I m » @
(a)
0 @ 0.5 uH ®
@ o N a °
100 Q
1 ZQQ 100 pF 100 pF @
0.2653 puH
© - Im >
()
® 10 0.25 uH @ 0.25 pH
100Q
1/0° @
0.2653 uH

O «———)5n——» (05 mn—>»

©

FIGURE 6.9 SPICE simulation of the frequency-response of (a) the transmission-line model,
(b) a one-section lumped-Pi model, and (c) a two-section lumped-Pi model.
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propagation is 1 x 10% m/s, giving a one-way time delay of 10 ns. The node number-
ing for the exact transmission-line model representation is shown in Figure 6.9(a).
Figure 6.9(b) shows a one-section lumped-Pi model of the line along with the PSPICE
node numbering. Figure 6.9(c) shows the line being broken in half and modeled with
two lumped-Pi sections along with the PSPICE node numbering. The line is 1 /10 at
10 MHz. Combining these three models into one program using one voltage source
gives

EXAMPLE
Vs 1 0 AC 1

* TRANSMISSION LINE MODEL
RS1 1 2 10
T 2 0 3 0 20=50 TD=10N
RL1 3 4 100
LL1 4 0 0.2653U

* ONE-PI SECTION

RS2 1 5 10

Ccll 5 0 100P

L11 5 6 0.5U0

Cl2 6 0 100P

RL2 6 7 100

LL2 7 0 0.2653U
* TWO-PI SECTIONS

RS3 1 8 10

c21 8 0 50P

L21 8 9 0.25U

c22 9 0 50pP

Cc23 9 0 50pP

L22 9 10 0.25U

c24 10 0 50P

RL3 10 11 100

LL3 11 0 0.2653U

.AC DEC 50 1E6 100E6

.PRINT AC VM(2) VP(2) VM(3) VP(3) VM(5) VP(5)
+ VM(6) VP(6) VM(8) VP(8) VM(10) VP(10)

. PROBE

.END

Plots of the input and output voltages of the line resulting from these three models are
shown in Figure 6.10. Observe that for frequencies below where the line is A /10, that
is, 10 MHz, all three models give the same result. The lumped-Pi model consisting of
two sections extends this prediction range slightly higher. Previous work has shown
that increasing the number of sections does not significantly increase the prediction
range of the lumped-circuit model to make the increased complexity of the circuit
worth it [B.15].
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FIGURE 6.10 Plots of the SPICE-computed magnitudes of the circuits of Figure 6.9 for
(a) the source voltages and (b) the load voltages.

Lossy lines can also be modeled with these lumped-circuit approximations. The
line can similarly be modeled with lumped-Pi or lumped-T sections but with the line
per-unit-length resistance and conductance added as shown in Figure 6.11. Again,
observe that the totals are r ¥ and g.%. However, these per-unit-length parameters
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FIGURE 6.11 [llustration of the inclusion of losses into (b) the lumped-Pi and (c) the lumped-
T equivalent circuits.

of resistance and conductance are frequency dependent as discussed in Sections
4.2.3 and 4.3.2 of Chapter 4. In the case of lossy lines excited at one frequency,
these approximate models have a useful role since these per-unit-length parame-
ters can be evaluated at the frequency of excitation and included in these mod-
els as a constant value element. However, in modeling time-domain excitation of
the line such as the line driven by digital pulse waveforms, there is a significant
problem. The digital pulse waveforms contain a continuum of sinusoidal compo-
nents. Yet the per-unit-length resistance and conductance are frequency dependent.
Hence, we should not use these lumped-circuit approximate models to model lines
that are excited by general waveforms unless we ignore the frequency-dependant
losses.

6.5 ALTERNATIVE TWO-PORT REPRESENTATIONS OF THE LINE

Since we are generally not interested in the line voltages and currents at points
along the line other than at the terminations, we can imbed the line as a two-port
as shown in Figure 6.12 and relate the terminal voltages and currents with two-port
parameters.
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FIGURE 6.12 Characterization of a transmission line as a two-port.

6.5.1 The Chain Parameters

One of the most useful forms of two-port parameters for a transmission line is the
chain-parameter matrix representation. This relates the terminal voltages and currents
as

V)] Teu ¢ [V
{i(f)] = L}m &22} {NO)} (6.79)
D
d2)

These can be straightforwardly obtained by evaluating the general solutions for a
lossless line given in (6.9) at z = 0 and z = % to give

"‘/(0) 1 1 "‘/+ g
{ R } =11 1 [ N (6.80a)
1(0) Ze 7 Vv
. —jBZ iBL 17 -
N
I =| 1 _jpr 1 g N (6.80b)
{ 1 (%) Zc e Zc e ] \%
Inverting (6.80a) gives
vtl 111 zZc ][V
C R |3 I
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Substituting this into (6.80b) gives

[f/(g)} le—jw elmf ] 1 [1 Zc ] [V(O)]
7 =L e _ L z|3 _ 5
1(&) Zc e Zc e 211 =Zcl LI
cos(BL)  —jZesin(BL)] () (6.82)
R Y ELIGE LSNP { 7(0) ]
Zc
d@)
Hence, for a lossless line the chain parameters are
d11 = cos (BL) (6.83a)
d12 = — jZcsin (BL) (6.83b)
$o1 = — jw (6.83¢)
Zc
¢ = cos (BL) (6.83d)

Observe some interesting properties of the chain-parameter matrix for a lossless
line. If the line length is one quarter of a wavelength, 8.¥ = 27(¥ /1) = /2 and the
chain-parameter matrix becomes

0 —JjZc A
1 , == (6.84a)

q>(z>=l 0

— J?C
Conversely, if the line length is one-half wavelength, the chain-parameter matrix
becomes

o 1 == (6.84b)

. - A
cp(g):[l 0}7 :

If the line length is three quarters of a wavelength, the chain-parameter matrix becomes

. 0 JjZc 31
()= .1 , L =— (6.84¢c)
j=— O 4
Zc
If the line is one wavelength, the chain-parameter matrix becomes the identity matrix:
2 1 0
D (L) = {O 1} , L =xr (6.84d)
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which means that the input and output voltages are equal as are the input and output
currents.

These are obtained for a lossless line. To obtain the chain parameters for a lossy
line, we simply replace cos (8.%) = cosh (7.%) and replace jsin (8.¥) = sinh (7.%)
along with Zc = Zc. Hence, for a lossy line, the chain parameters become

~

¢11 = cosh (y£)

vP | 9
_ % (6.85a)

¢12 = —Zcsinh (7£)

=—Zc——— (6.85b)

—_ s e (6.85¢)

$22 = cosh (7.2)

A
= % (6.85d)

The chain parameters only relate the voltage and current at one end of the line to
the voltage and current at the other end of the line. They do not explicitly determine
those voltages and currents until we incorporate the terminals conditions. In order to
incorporate the terminal conditions, we write the terminal conditions in the form of
Thevenin equivalents. For example, for the typical terminations shown in Figure 6.1,
these become

V() = Vs — Zs 1(0) (6.86a)

and
V(L)=2ZL1(P) (6.86b)
Writing out the chain-parameter representation in (6.79) and substituting (6.86) gives

V(&) =2 1(2) = 11 [V(0) = Vs = Zs 1(0)] + ¢121(0) (6.87a)

1(2) = o1 [V(0) = Vs — Zs 1(0)] + ¢22 1(0) (6.87b)



ALTERNATIVE TWO-PORT REPRESENTATIONS OF THE LINE 273

Substituting (6.87b) into (6.87a) yields.

(12 — d11Zs — Zidoo + Z1p21 Zs] 1(0) = [Zrdo1 — d11] Vs (6.88a)
and
1(2) = ¢ Vs + [d22 — d21 Zs] 1(0) (6.88b)

Once (6.88a) is solved for the current at z = 0, (6.88b) can be solved for the current
at z = . Then the voltages can be obtained from the terminal relations in (6.86).

6.5.2 Approximating Abruptly Nonuniform Lines with the Chain-Parameter
Matrix

The chain-parameter matrix relates the voltage and current at the right end of the line
to the voltage and current at the left end of the line. Hence, the overall chain-parameter
matrix of several such lines that are cascaded in series can be obtained as the product
of the chain-parameter matrices of the sections (in the proper order). For example,
consider the cascade of N lines or sections of lines having chain-parameter matrices
® (A z;), each of length A z; fori =1,2,3,..., N as shown in Figure 6.13(a). In
other words, the overall chain-parameter matrix is

O(L) = dy(Azn) x - x D (Az) x -+ x D1 (Azy)

N

A 6.89

= [[®n—t1 (Aznir) (059
k=1

It is important to observe the proper order of multiplication of the individual chain-
parameter matrices in this product. This is a result of the definition of the chain-
parameter matrices as

Vs | _ s V (z0)
|:i(Zk+1) | Pier1 (A k) {7(&{)} (6.90a)
and
Vo] s V(zk—1)
{ T | — Pe (B ze) { I (zk-1) ] (6:506)

Figure 6.13(b) and (c) shows that the chain-parameter representation can be
used to model nonuniform lines. For example, the twisted pair of wires shown in
Figure 6.13(b) is truly a bifilar helix, but we can approximate it as a sequence of loops
lying in the page with an abrupt interchange at the junctions. The chain-parameter ma-
trices of the uniform sections are then multiplied together along with chain-parameter
matrices that give an interchange of the voltages and currents at the junctions. If the
lengths of the sections are assumed to be identical, then the overall chain-parameter
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FIGURE 6.13 Representing abruptly nonuniform lines as (a) a cascade of uniform subsec-
tions, and applications to (b) twisted pairs and (c) shielded wires with pigtails.

matrix is the Nth power of the chain-parameter matrix of each section (that includes
the interchange chain-parameter matrix). This can be computed quite efficiently us-
ing, for example, the Cayley—Hamilton theorem for powers of a matrix [ A.2, G.1,

G.6, G.7].

Figure 6.13(c) shows another application for shielded cables. Shielded cables of-
ten have exposed sections at the ends to facilitate connection of the shield to the
terminal networks [F.1-F.6]. The shield is connected to the terminations via a “pig-
tail” wire over the exposed sections. The overall chain-parameter matrix can then
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be obtained as the product of the chain-parameter matrices for the pigtail sections of
length £ and #,r and the chain-parameter matrix of the shielded section of length
P as

D (L) = pr (Lpr) x Ps(Ls) x Dy, (LpL) (6.91)

Once the overall chain-parameter matrix is obtained, the terminal constraints at the
left and right ends of the line can be incorporated to solve for the terminal voltages
and currents as described previously.

6.5.3 The Z and Y Parameters

The Z (impedance) parameters have the units of ohms and relate the voltages to the
currents. These are defined as

VO ] [Zu Zin][ 10
[Wff)}‘[zzl ZnH—i(f)} (6.92)
%:—/
7

For the Z and Y parameters, the currents are defined to be directed into the two-port.
Hence, we use —1 (&) in this matrix representation. For a lossless line, the impedance
parameters are again obtained by eliminating V* and ¥~ from the basic solution in
(6.9) to yield

Zccos (BL) Zc
Vo) | _ | jsinB?)  jsin(p2) 1) 6.93)
V(&) | Zc Zccos (BYL) —1(¥) ’
Jsin(BZ) Jsin(BZ)

A

Z

The Z-parameter matrix is symmetric, SO we may write it as

Vo)l _[Ze Za][ IO
)=z 7)) (9%
N————’

y/
where
5 _ Zccos (BL)
jsin (L) (6.94b)
e ————r
Jtan (BY)

g o % 6.94
m = Tsin(BY) (6.94¢)

>
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FIGURE 6.14 Equivalent circuits for (a) the Z parameters and (b) the Y parameters.

An (exact) equivalent circuit for the Z-parameter representation is shown in
Figure 6.14(a).

Similarly, the Y (admittance) parameters relate the terminal currents to the terminal
voltages and have the units of siemens and are defined as

10y 1_[Yu Yo [ V(0
{_i(ff)} B [?21 ffzz} {V(ff)} (6.95)
T
Y

The Y-parameter matrix is the inverse of the Z-parameter matrix, Y = Z~!, so that

cos (BY) _ 1
10y |1 _ | jZesin(BD) JjZcsin(B2) | [ V(0) (6.96)
-1 | 1 cos (BZ) V() '
JZcsin(BY) _ jZcsin(BL)
Y

The Y-parameter matrix is symmetric, SO we may write it as

10 1 _[¥ ][ VO
{—7(3)} = [f’m ffJ {f/(g)] (6.972)
—_——

'
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where
7 cos (BY)
* 7 jZcsin (BL)
1
= 2w 6P (6.97b)
Vo = L (6.97¢)
m = T csin (BY) e

An (exact) equivalent circuit for the Y-parameter representation is shown in
Figure 6.14(b). Observe that the Z-and Y-parameter matrices are singular when
the line length is a multiple of a half wavelength, that is, ¥ = n(1/2), because
sin (8¥) = sin 2w (£ /1)) is zero. The chain-parameter matrix on the contrary is
never singular.

These are obtained for a lossless line. To obtain the Z or Y parameters
for a lossy line, we again simply replace cos(8%) = cosh (%) and replace
jsin (B.%) = sinh (%) along with Zc = Zc. Hence, for a lossy line the Z parame-
ters become

1
C
tanh(y &)
e’ 4 eV
C o — 7

I
N

(6.982)

I
N

1
€ sinh(7 2)

2
e — e 7Y

N
Il
N

m

(6.98b)
Zc

and the Y parameters become

1

€ tanh( L)
e’ e Y

=Yeso— 57

>
>

o<
Il

(6.99a)

>

N - 1

_YC _—
sinh( L) (6.99b)

N 1
and Yo = —.

As was the case for the chain parameters, the Z and Y parameters only relate the
voltages at each end of the line to the currents at each end of the line; they do not



278

FREQUENCY-DOMAIN ANALYSIS OF TWO-CONDUCTOR LINES

explicitly determine them. As was the case for the chain parameters, the terminal
conditions in (6.86) can be combined with the Z or Y parameters to give equations to
explicitly solve for the terminal voltages and currents.

PROBLEMS

6.1
6.2
6.3

6.4

6.5

6.6

Show by direct substitution that (6.9) satisfy (6.8).
Show that (6.25) and (6.24) are equivalent.

For the transmission line shown in Figure 6.1, f=5MHz, v=3 x
108m/s, & =78m, Zc = 50, Vs = 50/0°, Zs = 20 — j30Q, Z = 200 +
j500 2. Determine (a) the line length as a fraction of a wavelength, (b) the
voltage reflection coefficient at the load and at the input to the line, (c) the
input impedance to the line, (d) the time-domain voltages at the input to the
line and at the load, (e) the average power delivered to the load, and (f)
the VSWR. [(a) 1.3, (b) 0.9338/9.866°, 0.9338/153.9°, (c) 11.73/81.16°,
(d) 20.55cos(107 x 10% 4 121.3°), 89.6cos(10m x 1067 — 50.45°), (e) 2.77
W, and (f) 29.21]

For the transmission line shown in Figure 6.1, f = 200 MHz, v = 3 x 108m/s,
P =21m, Zc =100, Vs = 10/60°, Zs = 50K, and Z;, = 10 — j50 2.
Determine (a) the line length as a fraction of a wavelength, (b) the volt-
age reflection coefficient at the load and at the input to the line, (c) the in-
put impedance to the line, (d) the time-domain voltages at the input to the
line and at the load, (e) the average power delivered to the load, and (f) the
VSWR. [(a) 1.4, (b) 0.8521/ — 126.5°, 0.8521/ — 54.5°, (¢) 192/ — 78.83°,
(d) 9.25cos(4m x 1087 + 46.33°), 4.738cos(4x x 108t — 127°), (e) 43 mW,
and (f) 12.52]

For the transmission line shown in Figure 6.1, f = 1 GHz, v = 1.7 x 108m/s,
L =119cm, Zc =100Q, Vs =5/0°, Zs =20, and Z; = — j160 .
Determine (a) the line length as a fraction of a wavelength, (b) the voltage
reflection coefficient at the load and at the input to the line, (c) the input
impedance to the line, (d) the time-domain voltages at the input to the line
and at the load, (e) the average power delivered to the load, and (f) the VSWR.
[(a) 0.7, (b) 1/ —64.1°, 1/152°, (c) 24.94/90°, (d) 3.901cos(2m x 10°r +
38.72°), 13.67cos(2 x 10%1 4+ 38.72°), (e) 0 W, and (f) 0o]

For the transmission line shown in Figure 6.1, f = 600 MHz, v = 2 x 108m/s,
P =53cm, Zc =75RQ, Vs = 20/40°, Zs =30 Q2 and Z = 100 — j300 2.
Determine (a) the line length as a fraction of a wavelength, (b) the voltage
reflection coefficient at the input to the line and at the load, (c) the input
impedance to the line, (d) the time-domain voltages at the input to the line
and at the load, (e) the average power delivered to the load, and (f) the VSWR.
[(a) 1.59, (b) 0.8668/ — 25.49°, 0.8668/ — 90.29°, (c) 74.62/ — 81.84°, (d)
17.71cos(127 x 1087 + 19.37°), 24.43cos(127 x 107 — 163.8°), (¢) 0.298 W,
and (f) 14.02]
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For the transmission line shown in Figure 6.1, f = 1 MHz, v = 3 x IOSm/s,
¥ =108m, Zc =300, Vs = 100/0°, Zs = 50 + j502, and Z; = 100 —
j100 Q. Determine (a) the line length as a fraction of a wavelength, (b) the
voltage reflection coefficient at the load and at the input to the line, (c) the input
impedance to the line, (d) the time-domain voltages at the input to the line and
at the load, (e) the average power delivered to the load, and (f) the VSWR.
[(a) 0.36, (b) 0.5423/ — 139.4°, 0.5423/ — 38.6°, (c) 657.1/ —43.79°, (d)
99.2cos(2m x 105 — 6.127°), 46.5cos(2m x 10% — 153.3°), (e) 5.41 W, and
(f) 3.37]

Confirm the input and load voltages for Problem 6.3 using SPICE.

Confirm the input and load voltages for Problem 6.4 using SPICE.

Confirm the input and load voltages for Problem 6.5 using SPICE.

Confirm the input and load voltages for Problem 6.6 using SPICE.

Confirm the input and load voltages for Problem 6.7 using SPICE.

A half-wavelength dipole antenna is connected to a 100-MHz source with a
3.6-m length of 300-Q transmission line (twin lead, v = 2.6 x 10%m/s) as
shown in Figure P6.13. The source is represented by an open-circuit voltage of
10 V and source impedance of 50 €2, whereas the input to the dipole antenna
is represented by a 73-Q resistance in series with an inductive reactance of
42.5 Q. The average power dissipated in the 73-2 resistance is equal to the
power radiated into space by the antenna. Determine the average power radi-
ated by the antenna with and without the transmission line and the VSWR on
the line. [91.14 mW, 215.53 mW, 4.2]

50Q T
Ze=300Q L

0 1.5m
10fo° v v=2.6x10% m/s [—
f= 100 MHz -« 36m——» l
(&)
50Q
AN -
Zc=300Q 3Q

10l0°v v =2.6x10° m/s j4250Q

«—36m ——»
()

FIGURE P6.13

Two identical half-wavelength dipole antennas are connected in parallel and fed
from one 300-MHz source as shown in Figure P6.14. Determine the average
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power delivered to each antenna. Hint: Determine the electrical lengths of the
transmission lines. [115 mW]

73Q

o N
w0l /4
2’5Q

FIGURE P 6.14

6.15 Demonstrate the incorporation of terminal impedances in (6.37).

6.16 Demonstrate the formula for the voltage and current anywhere on the line in
(6.39).

6.17 Demonstrate the power flow relation in (6.54).

6.18 Show, by direct substitution, that (6.60) satisfies (6.58).

6.19 Demonstrate the results in (6.75).

6.20 A low-loss coaxial cable has the following parameters: Zc = (75 + j0) S,
a = 0.05,and v = 2 x 103m/s. Determine the input impedance to a 11.175-m
length of the cable at 400 MHz if the line is terminated in (a) a short cir-
cuit, (b) an open circuit, and (c) a 300-€2 resistor. [(a) 90.209/ — 34.86° €2,
(b) 62.355/34.06° €2, and (c) 66.7/21.2° Q]

6.21 An air-filled line (v =3 x 108m/s) having a characteristic impedance of
50 2 is driven at a frequency of 30 MHz and is 1 m in length. The line is termi-
nated in a load of Z;, = (200 — ;j200) €. Determine the input impedance using
(a) the transmission-line model and (b) the approximate lumped-Pi model.
Use PSPICE to compute both results. [(a) (12.89 — j51.49) 2, and (b)
(13.76 — j52.25) Q2]

6.22 A lossless coaxial cable (v =2x10%m/ s) having a characteristic impedance
of 100 €2 is driven at a frequency of 4 MHz and is 5 m in length. The line is
terminated in a load of Z; = (150 — j50) 2 and the source is Vs = 10/0°V
with Zg = 25 Q. Determine the input and output voltages to the line using (a)
the transmission-line model, and (b) the approximate lumped-Pi model. Use
PSPICE to compute both results. [Exact: V(0) = 7.954/ — 6.578°, V(%) =
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10.25/ — 33.6°; approximate: V(0) = 7.959/ — 5.906°, V(%)= 10.27
/ —35.02°]

6.23 Verify the chain-parameter relations in (6.82).

6.24 Verify the Z parameters in (6.93).

6.25 Verify the Y parameters in (6.96).

6.26 Verify the equivalent circuits for the Z and Y parameters in Figure 6.14.
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FREQUENCY-DOMAIN ANALYSIS
OF MULTICONDUCTOR LINES

In this chapter, we consider the frequency-domain solution of the MTL (multi-
conductor transmission lines) equations for an (n + 1)-conductor line where the ex-
citation sources are sinusoids that have been applied for a sufficient length of time so
that the line voltages and currents are in steady state. We will find that, using matrix
notation, the solutions to these phasor MTL equations bear a striking similarity to
the solutions for two-conductor lines obtained in the previous chapter. The primary
method we will use to solve these phasor MTL equations is to decouple them with
a similarity transformation [A.4, 1-4]. This frequency-domain solution of the MTL
equations has a long history [5-10].

7.1 THE MTL TRANSMISSION-LINE EQUATIONS
IN THE FREQUENCY DOMAIN

We assume that the time variation of the line excitation sources is sinusoidal and the
line is in steady state. Therefore, the line voltages and currents are also sinusoidal
having a magnitude and a phase angle and the same frequency as the sources. Thus,
the n line voltages and » line currents in the time domain are obtained from their
phasor form in the usual fashion as

Vi(z. 1) = Re{ Vi(z) e/} (7.1a)

Ii(z, 1) = Re{Ti(z) e/} (7.1b)

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.

282



THE MTL TRANSMISSION-LINE EQUATIONS IN THE FREQUENCY DOMAIN 283

where Re{-} denotes the real part of the enclosed complex quuantity, and the phasor
voltages and currents have a magnitude and a phase angle as

Vi(2) = Vi(2)L6,(2)
= Vi(z) e /% (7.2a)

Ii(z) = Ii(x)L$i(2)
= [i(2)e @ (7.2b)
The radian frequency of excitation (as well as the radian frequency of the resulting line
voltages and currents) is denoted by w, where w = 27f and f is the cyclic frequency

of excitation. Inserting (7.2) into (7.1) gives the resulting time-domain forms of the n
line voltages and n line currents as

Vi(z, 1) = Vi(z)cos(wt + 6;(z)) (7.3a)
Ii(z, 1) = Ii(z)cos(wt + ¢i(2)) (7.3b)
Replacing all time derivatives in the time-domain MTL equations with jw, the

frequency-domain (phasor) MTL equations are given, in matrix form, in Eq. (3.32)
of Chapter 3:

4N = —2ie) (7.42)
dz

d. .

—I(z) =-Y V() (7.4b)
dz

where the n x 1 column vectors V(z) and 1(z) contain the 7 line voltages Vi(z) and n
currents 1;(2) as

V1(2)
V(z) = ‘%z(z) (7.52)
i Vn:(z)
r11(2)

i =| L (7.5b)

-?n.(Z)
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The n x n per-unit-length impedance, Z, and admittance, SA(, matrices are given by

Z=R+ joL (7.62)

Y=G+ joC (7.6b)

and contain the n x n per-unit-length resistance R, inductance (containing both in-
ternal and external inductance) L. = L; + L., conductance G, and capacitance C
matrices. Since R, L, C, and G are symmetric matrices, 7 and Y are also symmetric.
The resulting equations in (7.4) are a set of coupled, first-order ordinary differential
equations with complex coefficients.

Alternatively, the coupled, first-order phasor MTL equations in (7.4) can be placed
in the form of uncoupled, second-order ordinary differential equations by differenti-
ating one with respect to line position z and substituting the other, and vice versa, to
yield.

d2

EV(@ =72YV(2) (7.72)
d? . nn
deI(z) =YZi(2) (7.7b)

Ordinarily, the per-unit-length parameter matrices Z and Y do not commute, that is,
7Y #YZ, so that the proper order of multiplication in (7.7) must be observed. In
differentiating (7.4) with respect to line position z, we have assumed that the per-
unit-length parameter matrices R, L, G, and C are independent of z. Thus, we have
assumed that the cross-sectional line dimensions and surrounding media properties
are invariant along the line (independent of z) or, in other words, the line is a uniform
line. Both the first-order coupled forms of the MTL equations given in (7.4) and
the second-order uncoupled forms given in (7.7) will be useful in obtaining the final
solution.

7.2 THE GENERAL SOLUTION FOR AN (n 4+ 1)-CONDUCTOR LINE

In the previous chapter, we discussed the well-known solutions for a two-conductor
line. In this section, we begin our study of the solutions for an (n + 1)-conductor line
or MTL. In many cases, the results and properties of the solution for a two-conductor
line carry over, with matrix notation, to an MTL.

7.2.1 Decoupling the MTL Equations by Similarity Transformations

As was the case for two-conductor lines, we concentrate on solving the second-order
differential equations given in (7.7). Notice that the equations in (7.7) are coupled
together because ZY and YZ are full matrices; that is, each set of voltages and currents,
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Vi(z) and T;(z), affects all the other sets of voltages and currents, V j(z) and 1 j(2).
The essential idea in the solution method that we will use is to decouple them with
a similarity transformation [1-4]. We will use a change of variables to decouple the
second-order differential equations in (7.7) by putting them into the form of n separate
equations describing n isolated two-conductor lines. Apply the solution techniques in
the previous chapter to these individual two-conductor lines and then use the change
of variables to return to the original voltages and currents. This method of using a
change of variables is perhaps the most frequently used technique for generating the
general solution to the MTL equations. A complete discussion of this technique for
the phasor MTL equations is given in [B.25].
In implementing this method, we transform to mode quantities as

V(@) =Ty Vi(2) (7.82)
i) =TI (7.8b)

The n x n complex matrices Ty and T; define a change of variables between the
actual phasor line voltages and currents, V and i, and the mode voltages and currents,
Vm and im. In order for this to be valid, these n x n matrices must be nonsingular;
that is, ’i‘;l and T;l must exist, where we denote the inverse of an n X n matrix
M as M~! in order to go between both sets of variables. Substituting these into the
second-order MTL equations in (7.7) gives

d’ A e a o
22 V@ = T2V Ty Vin(2)
=92 V() (7.92)

d? . o aa A e
s In) =T7'YZ2 T, 10(2)

=7 1n (7.9b)

The objective is to decouple these second-order equations by finding a Ty anda T
that simultaneously diagonalize ZY and YZ via similarity transformations as

' 2Y Ty =92 (7.10a)
(PR VAVESS (7.10b)

where 2 is an n x n diagonal matrix:

oo 0
2 0 9 o
P2 = 2 (7.10¢)
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The mode equations in (7.9) will therefore be decoupled. This will yield the n prop-
agation constants ; of the n modes.

This is the classic eigenvalue/eigenvector problem of matrices [A.2, A.4, B.1, 1-
4]. This classic problem can be summarized by the following. Suppose we wish to
find an n x n nonsingular matrix T that diagonalizes an n x n matrix M as

T 'MT=A (7.11)

where A is an n x n diagonal matrix with A; on the main diagonal and zeros else-
where. Multiplying both sides of (7.11) by T yields

MT-TA =0 (7.12)

where 0 is the n x n zero matrix. The n columns of T, T;, are the eigenvectors of M
and the n values A; are the eigenvalues of M. Equation (7.12) gives n equations for
the n eigenvectors as [A.4, 1-4]

M-A;1,)T; =0, i=1,....n (7.13)

where 0 is the n x 1 zero vector that contains all zeros and the n x 1 column vectors
of the eigenvectors T; contain the unknowns to be solved for. Equations (7.13) are a
set of n homogeneous, algebraic equations. As such, they have [A.4,1-4]

1. the unique solution T; = 0 or
2. an infinite number of solutions for T;.

Clearly, we want to determine the nontrivial solution (solution 2), which will exist
only if the determinants of the coefficient matrices of (7.13) are zero [A.4, 1-4]:

M — A;1,] =0 (7.14)

This gives the nth-order characteristic equation whose roots are the eigenvalues of M.

From this discussion and a comparison with (7.10), it is clear that the columns of
Ty are the eigenvectors of ZY and the columns of T; are the eigenvectors of Y Z.
The entries in )72, )?iz fori =1, ..., n, are the eigenvalues of 7Y and of Y Z. That the
eigenvalues of ZY and Y Z are the same follows from the fact that the eigenvalues of
a matrix M and its transpose M are the same, which is clear from (7.14) because the
determinant of a matrix and its transpose are the same [A.4,1-4]. Taking the transpose
of ZY yields (fo‘)t = Y'Z' = YZ, where we have used the fact that Z and Y are
symmetric, that is, Z' = Z and Y' = Y. Hence, the transpose of ZY is Y Z, thus
showing that they have the same eigenvalues. Observe that this property relies only
on Z and Y being symmetric matrices. Hence, in order to decouple the second-order
MTL equations, we only need to find a Ty that diagonalizes the product of ZY as in
(7.10a) or a T; that diagonalizes the product YZ as in (7.10b).
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In order to diagonalize Z Y or Y Z as in (7.10), we must be able to find a linearly
independent set of n eigenvectors. A sufficient condition for this is that all n eigenval-
ues be distinct. There are important cases where some of the eigenvalues are repeated,
yet a linearly independent set of n eigenvectors can be found such that ZY can be
diagonalized as in (7.10). In the case of repeated eigenvalues, the arrangement of
the columns of Ty and/or T; corresponding to those repeated eigenvalues is clearly
not unique. Structures that exhibit certain types of symmetry can result in repeated
eigenvalues and hence give rise to this nonunique assignment of the columns of Ty
or T;. The nonunique assignment of these columns of Ty or T; will not affect the
diagonalization of the second-order equations in (7.7). We will assume in this chapter
that ZY and YZ can be diagonalized as in (7.10). See [B.25] for a more complete
discussion of this diagonalization problem for MTLs.

The transformations Ty and T; are related [B.25]. Taking the transpose of both
sides of (7.10) yields

N A t ~ AN A
(\RV/ (T;l) =2 =1,921, (7.152)
PPN t N A A A
T’,ZY(TI_1> =2 =121y (7.15b)

and we have used the matrix algebra properties that the transpose of a product of
matrices is the product of the transposes in reverse order, that is, (AB)! = B'A", and
that Z and Y are symmetric, that is, Z' = Z and Y' = Y, along with the fact that 2
is diagonal, so it equals its transpose, that is, (f/z)[ = $2. This indicates that Ty and
T, can be chosen such that they satisfy [B.25]

T, = 1! (7.16a)
T =1 (7.16b)
or
1, = 1,
=TiTy (7.17)

where 1, isthe n x n identity matrix with Is on the main diagonal and zeros elsewhere,
that is,

0 0
o 1 0 .
L=|"- o . o - (7.18)
0 1 0
L o . 0 i

Reference [B.25] gives a rigorous proof of this.
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Thus, the equations governing the mode voltages and currents in (7.9) are decou-
pled and have the simple solution

Vm(z) =e 73V +e”2 v, (7.192)

InG) =e 771 —e’? 1 (7.19b)

where the matrix exponentials are defined as

e o .. 0
N +nz . :
et | O ¢ . ' (7.20)
: : 0
0 .. 0 etttz

and V£ and T are n x 1 vectors of (as yet) undetermined constants associated with
the forward/backward-traveling waves of the modes:

o= ke
le Iml
A Ve N E=
Vi= V|, ift=|Im (7.21)
o 2
an Imn

Transforming back to the actual line voltages and currents via (7.8) gives
Vo) =Ty (e—?Z Vi 4 efs V;) (7.22a)
i) =1, (e—? S R i;l) (7.22b)

Therefore, if we can find a transformation that diagonalizes either ZYorY Z, then the
decoupling of the equations is assured and the general solution of the MTL equations
can be readily obtained.

The general solutions for the line voltages and currents given in (7.22) contain a
total of 4n undetermined constants in the n x 1 vectors V£, Vo Tt and .. We will
now relate those by defining the characteristic impedance matrix, thereby reducing
the number of undetermined constants to 2n. Substituting (7.22b) into (7.4b) yields

N N d .
Vi) = -Y ! =i
dz

(er?Z it tefs i;l) (7.23)
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If we define the characteristic impedance matrix as

Ze=Y""'T;9T;! (7.24)

then
Vi) =2c T, (cff’Z Ih+es ir;) (7.25a)
i) =1, (e—?z i efe ir;) (7.25b)

and the number of unknowns is reduced to the 2n unknowns in the n x 1 vectors i;‘l
and I,. An alternative form of the characteristic impedance matrix can be obtained
from (7.10b):

Y ', =21,92 (7.26)

Substituting this into (7.24) yields an alternative form for the characteristic impedance
matrix:

Zc =771, '1;! (7.27)

Similarly, substituting (7.22a) into (7.4a) yields

. . d .
i) =-2"" =V
dz

A Tk A CRAN AR (128)
—_——
Ye

If we define the characteristic admittance matrix as
Ye=2""Ty 1! (7.29)
then

V(i) =Ty (e‘?Z Vi +e?? \7;1) (7.30a)

i) = Yy (e—?Z \AREIVE V;) (7.30D)
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TABLE 7.1  Characteristic impedance/admittance matrix relations

Zc Ye
YT, T 'ty
21,971 Yy 5y
T 91, Z T,7'1T,'Y
Ty p T, v T, 9102
A A —1 ~ A s A —1 S
¥ (Ty) Ty z7 (1) 5T
(1) ' Y (1) '

and the number of unknowns is reduced to the 21 unknowns in the n x 1 vectors V-
and V. An alternative form of the characteristic admittance matrix can be obtained

from (7.10a):
27Ty =YTy 972 (7.31)

Substituting this into (7.29) yields an alternative form for the characteristic admittance
matrix:

Ye=YTyp ') (7.32)

Additional relations for the characteristic impedance/admittance matrix can be
similarly obtained and are given in Table 7.1 [B.25].
To summarize, the general solution to the MTL equations is given by

V@ =Tv (77 Vi + e ¥;) (7.33a)

I =Yty (e‘?Z Vi —e* V;l)
=Yty (e*?Z Vi e VI;) (7.33b)
where
T, Z2Y Ty =92 (7.33¢)
and the characteristic admittance matrix is given by
Ye=YTvi ' 1y (7.33d)

An alternative form is

A

=2cy (770 + 070y (7.342)
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i) =1, (e—?z it — e’ i;l) (7.34b)
where
IR GAVESS (7.34¢)
and the characteristic impedance matrix is given by
Zc =771, '1;! (7.344)

Although either form of solution is acceptable, we will consistently use throughout
the remainder of this text the form in (7.34) that requires diagonalization of Y Z.

7.2.2  Solution for Line Categories

The solution process for determining the general solutions to the MTL equations
described previously assumes that one can find an n x n nonsingular transformation
matrix T; that diagonalizes the product of per-unit-length parameter matrices, YZ,
via a similarity transformation as

(PR VAVESS (7.35a)
where §? is diagonal as
o0 0
2 |0
P = 2 (7.35b)
Lo 0
0O ... 0 )73

The columns of T, [TI]I., are said to be the eigenvectors of the matrix YZ and
the items )7,2 are its eigenvalues as discussed previously [A.4 ]. Thus, the question
becomes whether we can find n linearly independent eigenvectors of YZ that will
diagonalize it as in (7.35). We now set out to investigate when this is possible and
computational methods.

There are a number of known cases of n x n matrices M whose diagonalization

is assured via a similarity transformation as T-!MT. These are [A.4,1-4]

1. All eigenvalues of M are distinct
2. M is real and symmetric

3. Mis complex but normal; that is, MM =M" 1\7[, where we denote the trans-
pose of a matrix by t and its conjugate by *

4. M is complex and Hermitian; that is, M = M"
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For normal or Hermitian M, the transformation matrix can be found such that
T-! =T, which is said to be a unitary transformation. For a real, symmetric M,
the real transformation matrix can be found such that T~! = T, which is said to
be an orthogonal transformation. There are very efficient and stable computer rou-
tines that determine this orthogonal transformation matrix for a real, symmetric ma-
trix [4]. The Jacobi algorithm is one such method [4]. For other types of matrices,
we are not assured that a nonsingular transformation can be found that diagona-
lizes it.
The matrix product to be diagonalized is expanded as

YZ = (G + joC)R + jwL)

= GR + jwCR + joGL — »?>CL (7.36)
There exist digital computer subroutines that find the eigenvalues and eigenvectors
of a general complex matrix and can be used to diagonalize YZ. However, because
the number of conductors, n, of the MTL can be quite large, it is important to in-
vestigate the conditions under which we can obtain an efficient and numerically
stable diagonalization. Furthermore, because the frequency-domain computations
must be repeated in order to obtain the frequency response of the line, we desire
a transformation that is frequency independent; that is, Ty and T; are indepen-

dent of frequency and need to be computed only once. The following subsections
address this point.

7.2.2.1 Perfect Conductors in Lossy, Homogeneous Media Consider the case of
perfect conductors for which R = 0. The matrix product becomes

YZ = (G + joC)( jwL)
= joGL — »*CL (7.37)

If the surrounding medium is homogeneous with parameters o, €, and u, then we have
the important identities:

CL =LC = puel, (7.38a)

GL=LG=uol, (7.38b)

and YZ is already diagonal. The internal inductance is zero here, that is, L = L. In
this case, we may choose

T, =1, (7.39a)

Ty =1, (7.39b)
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and all the eigenvalues are identical giving the propagation constants as
p =/ jouo — v ue
=oa+jb (7.39c)

and the characteristic impedance matrix becomes

7c= 2L (7.40a)
2
e (7.40b)
Jjw joue

If the medium, in addition to being homogeneous is also lossless, o = 0, the
propagation constants become

V= joJue (7.41)

so that the attenuation constant is zero, @ = 0, and the phase constant is § = w./ue.
The velocity of propagation becomes

= (7.42)

where the characteristic impedance becomes real, given by
Zc =vL (7.43a)
Z:' =vC (7.43b)

An example of the application of these results is the coupled stripline. This
case of perfect conductors in a homogeneous medium (lossless or lossy) is the
only case where we may have TEM waves on the line. In the following sec-
tions, we investigate the quasi-TEM mode of propagation wherein the conduc-
tors can be lossy and/or the medium may be inhomogeneous. For these cases, the
TEM mode cannot exist, but we assume that the conductor losses and/or inhomo-
geneities of the medium do not significantly perturb the field structure from a TEM
distribution.

7.2.2.2  Lossy Conductors in Lossy, Homogeneous Media Consider the case
where we permit imperfect conductors, R # 0, but assume a homogeneous medium.
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The matrix product YZ in (7.36) becomes, using the identities for a homogeneous
medium given in (7.38),

YZ = GR + joCR + (jopo — o*ue)l,

= (2 +jo) CR + (jouo - w*pen, (7.44)
&€

where we neglected the infernal inductance of the conductors, L; = 0. Hence, we
need to diagonalize only CR as

T/'CRT; = A?

AT 0 0
2 . :
— |0 A ' ' (7.45)
0 0 A2
The eigenvalues of YZ become
P2 = (g + jw) A? + (jopo — »®ue) (7.46)
l e l :

The key problem here is finding the transformation matrix that diagonalizes CR
as in (7.45). Thus, we need to diagonalize the product of two matrices. A numerically
stable transformation can be found to accomplish this in the following manner. Recall
that C is real, symmetric, and positive definite and R is real and symmetric. First,
consider diagonalizing C. As C is real and symmetric, one can find a real, orthogonal
transformation U that diagonalizes C, where U~! =U'[B.1, 3, 4]:

U'CU =¢?
6} 0 0
2 . :
= 9 % Co (7.47)
)
0 -~ 0 @

Since C is real, symmetric, and positive definite, its eigenvalues 9:‘2 are all real,

nonzero, and positive [B.1, 3]. Therefore, the square roots of these, 6; = Giz, will
be real, nonzero numbers. Next form the real, symmetric matrix product

o-lutcue! =1, (7.48)
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Now form

"' U'CRUO=0"'U'CUO'OU'RUD
N————
ll‘l

=0U'RUG (7.49)

The matrix 8 U'R U6 is real and symmetric, so it can also be diagonalized with a
real, orthogonal transformation S as

S [pU'RUG] S =8 [67' U'CR U] S
= A? (7.50)

This result shows that the desired transformations are

T; =U6S (7.51a)
Ty =U6"'S (7.51b)
Also
T, =S80
=T (7.52a)
T,' =S'%9U
- (7.52b)
This gives

Ty'ZT; =Ty R + joL) T,
= A% + jopel, (7.53a)

T,'Y Ty = T; (G + jo C) Ty
_ (9 + ja)) 1, (7.53b)
>
Hence, the product YZ is diagonalized for this choice of the transformations as

T892, = (9 T ja)) A2 + (jouo — o?ue)l, (7.54)
£
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The inverse of T; is also T;' = 8%9~"U' = T% C~'. There are numerous digital
computer subroutines that implement the diagonalization of the product of two real,
symmetric matrices, one of which is positive definite in the above fashion [B.5]. Note
that ’i‘tv'i‘ ;1 = 1,,, and hence the eigenvectors of 7Y and YZ are orthonormal.

The entries in the per-unit-length resistance matrix R are functions of the square
root of frequency, /f, at high frequencies due to skin effect. This does not pose
any problems in the phasor solution as we simply evaluate these at the frequency
of interest and perform the above computation at that frequency. We will find in the
next chapter that this dependence of R on 1/ f poses some significant problems in the
time-domain analysis of MTLs.

An example of the application of these results is the case of a lossy, coupled
stripline. If all n conductors are identical and we assume that the reference conductor
(a ground plane) is lossless, then R = r 1,, and we only need to diagonalize C. Hence,
the transformation in this case is independent of frequency and is an orthogonal one
such that we can choose TI_1 CT; = 62 asin (7.47)and ’i‘l = TV = Uwith ’i‘l_l = "i‘tl
The eigenvalues of YZ are obtained by replacing Al-2 in (7.46) with r@iz.

7.2.2.3  Perfect Conductors in Lossless, Inhomogeneous Media We next turn
our attention to the diagonalization of the matrix product YZ, where we assume
perfect conductors, R = 0, and lossless media, G = 0. The surrounding, lossless
medium may be inhomogeneous in which case we no longer have the fundamental
identity in (7.38a), that is, CL # ue 1,. In fact, the product of the per-unit-length
inductance and capacitance matrices is generally not diagonal. The matrix product to
be diagonalized becomes

YZ = —0’CL (7.55)

Once again, C and L are real, symmetric and C is positive definite. Therefore, we can
diagonalize CL as in the previous section with orthogonal transformations as

A0 -0
2 . :
_| 0 A3 .o (7.56)
o o0
0 -~ 0 A2
The transformations that accomplish this are real and given by
T, =U6S (7.57a)

Ty =U6"'S (7.57b)
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where U and S are obtained from

U'CU = ¢
02 0 0
2 . :
_| 0 & Co (7.58a)
0 0 6?2
S pU'LUG S=§' o7 U'CLUG] S
= A? (7.58b)

The inverse of T is T; ! = $'9~1U' = T C~!. The desired eigenvalues of YZ are

PP = —?A? (7.59)
Also
T, =S~ '
= Ttv (7.60a)
T,' =S'U
=T (7.60b)
This gives

T,'Z2T; = Ty (joL) T,
= joA? (7.61a)

;'Y Ty = T;'(joC) Ty
= jol, (7.61b)

Hence, YZis diagonalized for this choice of the transformations as

T7IVZ2T, = —0? A2 (7.62)
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The characteristic impedance matrix is real and becomes
- N P
ZC =7ZT 1Y T I

1
= joLU#S — A~!S'o~ U
Jw

=Uo'SAS' oLt (7.63)

Note that Ttv'i‘ 1 = 1, and therefore the eigenvectors of 7Y and YZ are orthonormal.
An example of the use of this method is the case of a coupled microstrip line.

7.2.2.4  The General Case: Lossy Conductors in Lossy, Inhomogeneous Me-
dia In the most general case wherein the line conductors and medium are lossy,
R#0, G#0, and the medium is inhomogeneous so that LC# uel,, we
have no other recourse but to seek a frequency-dependent transformation T ;(w) such
that

T7(@) (G + joC) (R + joL) Ti(w) = $(w) (7.64)
N — N——

Y(w) Z(w)

The computational problem here is that the transformation matrix T;(w) is
frequency dependent and must be recomputed at each frequency. Thus, an
eigenvector—eigenvalue subroutine for complex matrices must be called repeatedly
at each frequency, which can be quite time consuming if the responses at a large
number of frequencies are desired. In order to provide for this general case, a gen-
eral frequency-domain FORTRAN program MTL . FOR, which determines T;(w) via
(7.64) and incorporates the terminal relations at the left and right ends of the line, is
described in Appendix A .

7.2.2.5 Cyclic-Symmetric Structures The MTL structures considered in Sections
7.2.2.1-7.2.2.3 are such that the matrix product YZ can always be diagonalized with
a numerically efficient and stable similarity transformation T, which, except in the
case of Section 7.2.2.2, is frequency independent. In the general case, the transfor-
mation matrix T;(w) will be frequency dependent as was discussed in the previous
section. This section discusses MTLs that have certain structural symmetry so that a
numerically stable (and trivial) transformation T/ can always be be found that diag-
onalizes YZ. Furthermore, this transformation is frequency independent, regardless
of whether the line is lossy and/or the medium is inhomogeneous, that is, the general
case.

Consider structures composed of n identical conductors and a reference conductor
wherein the n conductors have structural symmetry with respect to the reference
conductor so that the per-unit-length impedance and admittance matrices have the
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following symmetry [B.1, 11]:

21 Zo Zj Z3 277

Z, v 7, 73 Z3
7= |5 2 4 L (7.652)

VA T4 Z3

23 K 21 Z2

LZ, Z3 Zs 7, 7]

RN IRE 3 17

v o B Y3
po | 2 n (7.65b)

Y Y3

B B b

L, 3 -0 13 1 1

Examples of structures that result in these types of per-unit-length parameter matrices
are shown in Figure 7.1. Observe that in order for the main diagonal terms to be
equal, the n conductors must be identical and the surrounding media (which may be
inhomogeneous) must also exhibit symmetry. For example, if the n conductors are
dielectric-insulated wires, the dielectric insulations of the n wires must have identical
permittivities ¢ and thicknesses. The reference conductor need not share this property.
A general cyclic-symmetric matrix M has the entries given by

[M],; = )i 41 (7.66a)

where
Misn = B, (7.66b)
Myio—j = M; (7.66¢)

and indices greater than n or less than 1 are defined by the convention: n + j = j
and n + i = i [B.1]. Because of this special structure of the per-unit-length matrices,
they are normal matrices, ZZ" = 7' Z, and each can be diagonalized by the same
transformation as [B.1, 1-4]

T12T =192 (7.67a)
T1YT =42 (7.67b)
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FIGURE 7.1 Cyclic-symmetric structures that are diagonalizable by a frequency-
independent transformation.

where the n x n matrices f/% and )712/ are diagonal and whose diagonal entries are
given by [B.1]

7] = [Z [Z]lpl{zf(p— 1)(1‘—1)}] (7.682)

p=1

n

A 2
], < {Z(q— 1) — 1)}] (7.68b)
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In fact, the transformation is trivial to obtain [B.1]

) 1 (2
[T]ij:ﬁl{:(i—l)(j—l)} (7.69)

and
T =1t (7.70)

Therefore, T is a unitary transformation. Similarly, the eigenvalues of YZ and ZY
(the propagation constants) are easily determined as [B.1]

‘}A/lz [j}%} ii |:‘j>)2/:| ii
S @, A pona-oY] S, e va-n
lp n P ! lq n q '

p=1 g=1
(7.71)
Hence, we may choose
TV =7 (7.72a)
T, =1 (7.72b)

Note that T4, T% = 1,, and the eigenvectors of ZY and YZ are orthonormal.
As an illustration of these results, consider a four-conductor (n = 3), cyclic-
symmetric structure line with

Zs Zm Znm
Z=\7Zm Z Zm] (7.73)
Zm Zm Zs

and Y has a similar form. The transformation matrices become

Lo 1
Tv=T,=T= 1 e/2m/3  gJ4n/3 (7.74a)
1 ed4n/3  pi2n/3

11 1
. - 1 : :
=1"=1= 1 e /23 e J4m/3 (7.74b)
1 e—J4n/3  ,—j2n/3
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The propagation constants become

}
= (Zy+2Zm) (Y5 +2Y¥m) (7.75a)

) , . 4nY [« . 2t . 4
- {zszoo Il Tl 3”} {YSZO" v ?” -y 3”}
= (Zs— Zm) (Ys— Ym) (7.75b)
A L dr . 27 (e . 4n L. 2
2= 200° + Zml = 4 2l NI L0° 4 YL = 4l
3 3 3 3
= (Zs— Zm) (Ys — Ym) (7.75¢)

as

z¢i = \/ (Zg+2Zm) / (Ys +2Ynm) (7.76a)

Z; = \/(ZS —Zm)/ (Ys— Ym) (7.76b)

(2&+22¢) (28 -2¢) (28 -2c)
=3 | (Ze-2c) (2¢+22c) (2 - 2c) (1.77)
(28 -2c) (28-2c) (28 +22)

There are a number of cases where an MTL can be approximated as a cyclic-
symmetric structure. A common case is a three-phase, high-voltage power transmis-
sion line consisting of three wires above earth. In order to reduce interference to
neighboring telephone lines, the three conductors are often transposed at regular in-
tervals. As an approximation, we may assume that each of the three (identical) wires
occupies, at regular intervals, each of the three possible positions along the line (each
of which is at the same height above earth, and the separation distance between adja-
cent wires is identical). With this assumption, the per-unit-length matrices Z and Y
take on a cyclic-symmetric structure as in (7.73). Two of the propagation constants,
2 and 93, are equal and these are associated with the aerial mode of propagation. The
third propagation constant, |, is associated with the ground mode of propagation.
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This transformation is referred to in the power transmission literature as the method
of symmetrical components [9, 10]. Such lines are said to be balanced. In the case
of unbalanced lines where, for example, one phase may be shorted to ground, this
transformation does not apply.

Other approximations of MTLs as cyclic-symmetric structures are useful. Cable
harnesses carrying tightly packed insulated wires have been assumed to be cyclic-
symmetric structures on the notion that all wires occupy, at some point along the line,
all possible positions [11]. This leads to a cyclic-symmetric structure of the n x n
per-unit-length impedance and admittance matrices that is similar to the special case
of transposed power distribution lines where all off-diagonal terms are equal and, if
we assume the conductors are identical, the main diagonal terms are equal:

1
N
=]

2],=2. [Z] (7.78a)
~~
i

I
>
8

Y] =Y [¥] (7.78b)
Ny
i)

The transformation matrices that diagonalize this structure are real and simple to
obtain:

1 1 1 1
| 1 (I1-n) 1 1
T1=Tv=7 1 1 d-n - 1 (7.79a)
: (1—n) 1
1 1 1 1-=n)
whose inverse is
1 1 1 1
| 1 -1 0 - 0
1 0 0 -1
The eigenvalues are
=2+ —1DZn] [Ys+ 0 —1D¥m] (7.80a)
= =92 = (2= Zn] [Ys— Ya) (7.80b)

Other common cases are the cyclic-symmetric, three-conductor lines shown in
Figure 7.2. Two identical dielectric-insulated wires are suspended at equal heights
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FIGURE 7.2 Certain three-conductor structures that are cyclic symmetric: (a) two identi-
cal wires at identical heights above a ground plane and (b) two identical lands of a coupled

microstrip configuration.

above a ground plane as shown in Figure 7.2(a). The per-unit-length impedance and

admittance matrices become

N
Il
N
INE

>

Il
e
st

The transformation matrices simplify to

=Ty =— |} !
== a1 -1
1

g1
2|1 -1
and the propagation constants become

7712 = (Zs + Zm)(?s + ?m)

A

73 = (Zs — Zmn)Xs — Ym)

(7.81a)

(7.81b)

(7.82a)

(7.82b)

(7.83a)

(7.83b)
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Defining the characteristic impedances as

. 7o+ 7
75 = | = (7.84)
Yot Ym

we obtain the characteristic impedance matrix as

S+ | H— S+ H—

7, _1 (Zc+ZC) (ZC_ZC) 7.85

c= oY _ o=\ (gL oo (7.85)
2 (28 -2¢) (28 +72c)

This transformation is referred to in the microwave literature as the even—odd mode

transformation and has been applied to the symmetrical, coupled microstrip line shown
in Figure 7.2(b).

7.3 INCORPORATING THE TERMINAL CONDITIONS

The general solutions to the phasor MTL equations given in (7.34) involve 2n un-
determined constants in the n x 1 vectors I}, and I;:

V() =Zc Ty (e‘?Z | R i,;) (7.862)
I)=1, (e‘?z I — e i,;) (7.86b)

Therefore, we need 2n additional constraint equations in order to evaluate these.
These additional constraint equations are provided by the terminal conditions atz = 0
and z = & as illustrated in Figure 7.3. The driving sources and load impedances
are contained in these terminal networks that are attached to the two ends of the
line. The terminal constraint network at z = 0 shown in Figure 7.3(a) provides n
equations relating the n phasor voltages V(0) and n phasor currents 1(0). The terminal
constraint network at z = ¢ shown in Figure 7.3(b) provides n equations relating the
n phasor voltages V(&) and n phasor currents i(%). The purpose of this section is
to incorporate these terminal constraints to explicitly determine the terminal voltages
and currents and complete this final but important last step in the solution process.

7.3.1 The Generalized Thevenin Equivalent

There are many ways of relating the voltages and currents at the terminals of an n-
port. If the network is linear, this relationship will be a linear combination of the
port voltages and currents. One obvious way is to generalize the Thevenin equivalent
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FIGURE 7.3 Modeling the terminal constraints of a (n + 1)-conductor line.

representation of a one port as [A.2]
V(0) = Vs — Zs 1(0) (7.87a)

V(&) =V +7Z.1(9) (7.87b)

Then x 1 vectors Vs and Vi contain the effects of the independent voltage and current
sources in the termination networks at z = 0 and z = &, respectively. The n x n
matrices Zs and Z;_ contain the effects of the impedances and any controlled sources
in the terminal networks at z = 0 and z = &, respectively. In general, the impedance
matrices Zs or Zr, are full; that is, there is cross coupling between all ports of the
network. However, the most common case will be terminal network configurations
wherein these impedance matrices are diagonal and the coupling occurs only along
the MTL. Figure 7.4 shows such a case wherein each line at z = 0 is terminated
directly to the chosen reference conductor with an impedance and a voltage source,
which represents a single Thevenin equivalent. In this case, the matrices in (7.87a)
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FIGURE 7.4 The generalized Thevenin representation of a termination with no cross
coupling.

become

Vsi
Vs = | Vs (7.88a)
‘A/Sn
Zs1 0 0
0 ) .
Zs=| ' . 7y .G (7.88b)
: . . . 0
0 cee e 0 Zsh

In order to solve for the 2 undetermined constants in I and I, we evaluate the
general forms of the solutions in (7.86) at z = 0 and z = % and substitute into the
generalized Thevenin equivalent characterizations given in (7.87) to yield

=Vs —Zs T, [I}; — 1] (7.89a)

2cT, [efw it el ? ir;} =V + 2.1 [ew it —e"? iI;] (7.89b)
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Writing this in matrix form gives

(ZC + Zs) TIA (

Zs
(Ze —20) T1e77 (Ze +71)

][] o

m

N>|

Once this set of 2n simultaneous equations is solved for I and T, the line voltages
and currents are obtained at any z along the line by substitution into (7.86).

An alternative method for incorporating the terminal conditions is to substitute the
generalized Thevenin equivalent characterizations in (7.87) into the chain-parameter
matrix characterization of the line as a 2n-port, which was discussed in the previous
chapter for two-conductor lines and is given for MTLs in Section 7.5.2 as

V(&) = &11(L)V(0) + d12(2) 1(0) (7.91a)
1(2) = 2212V (0) + P0(2) 1(0) (7.91b)

where each &ij(f) isn X n to yield [B.1]
(12 — ®11Zs — ZL Do + 21 D21 Zs] 1(0) = Vi — [y — Zd21] Vs (7.92a)
1(#) = &1 Vs + [D2 — 21Zs] 100) (7.92b)

Equations (7.92a) are a set of n simultaneous, algebraic equations, which can be
solved for the »n terminal currents at z = 0, i(O). Once these are solved, the n terminal
currents at 7 = &, i(c&”), can be obtained from (7.92b). The 2n terminal voltages
V(O) and \A’(E ) can be obtained from the terminal relations in (7.87).

7.3.2 The Generalized Norton Equivalent

The generalized Thevenin equivalent in the previous section is only one way of re-
lating the terminal voltages and currents of a linear n-port. An alternative represen-
tation is the generalized Norton equivalent, wherein the voltages and currents are
related by

10) =15 — Ys V(0) (7.93a)

(¥ =-1L+YLV(®) (7.93b)

The n x 1 vectors Is and I again contain the effects of the independent voltage
and current sources in the termination networks at z = 0 and z = &, respectively.
The n x n matrices Ys and Y again contain the effects of the impedances and any
controlled sources in the terminal networks at z = 0 and z = &, respectively. Again,
the admittance matrices Ys or Y may be full; that is, there may be cross coupling
between all ports of a terminal network. However, the most common case will be
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FIGURE 7.5 The generalized Norton representation of a termination with no cross
coupling.

terminal network configurations wherein these admittance matrices are diagonal and
the coupling occurs only along the MTL. Figure 7.5 shows such a case wherein
each line is terminated directly at z = O to the chosen reference conductor with an
admittance in parallel with a current source that represents a single Norton equivalent.
In this case, the matrices in (7.93a) become

Is
Is=|Is (7.94a)
7Sn
Ys1 O 0
(. . S
Ys= | - 9y . (7.94b)
: . . . 0
0 -+ - 0 ¥

The 21 undetermined constants I and I in the general solution given in (7.86)
are once again found by evaluating these solutions at z = 0 and z = . and sub-
stituting into the generalized Norton equivalent characterizations given in (7.93)
to yield

T, [if - 1] =15 = YsZe T [1F + 1] (7.95a)

T, [e 72 it — e i*} = —f + Vi 2c T [e%’ it +e? ir;} (7.95b)

m
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Writing this in matrix form gives

> o>

B I8+

(?SZC + ln) T[A (YsZC — ln) T[
(?LZC — 1n> T167V$ (?LZC + ln) ’i‘lef/‘(f

Once this set of 2 simultaneous equations is solved for I and I, the line voltages
and currents are obtained at any z along the line by substitution into (7.86).

An alternative method of incorporating the terminal conditions is to again substitute
the generalized Norton equivalent terminal relations given in (7.93) into the chain-
parameter representation given in (7.91) to yield [B.1]

(D7) — Do Vs — YL &1 + YL &2 Ys] V(0) = -1 — [0 — Y. $12] s
(7.97a)

V(&) = dpls + (D11 — 12Ys] V(O) (7.97b)

Equations (7.97a) are once again a set of n simultaneous, algebraic equations, which
can be solved for the n terminal voltages at z = 0, V(O). Once these are solved,
the n terminal voltages at z = &, \A’(g), can be obtained from (7.97b). The 2n
terminal currents i(O) and i(f) can be obtained from the terminal relations in
(7.93).

7.3.3 Mixed Representations

There are some special cases where a termination cannot be represented as generalized
Thevenin equivalents or as generalized Norton equivalents [F.10,G.3]. For example,
suppose some of the conductors are terminated at z = 0 to the reference conductor in
short circuits. In this case, the generalized Norton equivalent representation in (7.93a)
does not exist for this termination since the termination admittance is infinite. How-
ever, the generalized Thevenin equivalent representation in (7.87a) does exist because
the short circuit is equivalent to a load impedance of zero, which is a legitimate entry
in Zs. Shielded wires in which the shield (one of the MTL conductors) is “grounded”
to the reference conductor represent such a case. Conversely, one of the conductors
may be unterminated, that is, there is an open circuit between that conductor and
the reference conductor. In this case, we must use the generalized Norton equivalent
representation (the termination has zero admittance) since the generalized Thevenin
equivalent representation does not exist (the termination has infinite impedance). An
example of this is commonly found in balanced wire lines such as twisted pairs
where neither wire is connected to the reference conductor [G.1-G.10]. This calls
for a mixed representation of the terminal networks wherein one is represented with
a generalized Thevenin equivalent and the other is represented with a generalized
Norton equivalent.
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We now obtain the equations to be solved for these mixed representations. Substi-
tuting (7.87a) and (7.93b) into the general solution in (7.86) yields

(Zc +Zs) Ty (Zc — Zs) T, } [m] _ [VS} (7.98)

(?LZC — ln) T[C_f/g) (YLZC + ln) T,ef’g ir; iL
or, via the chain-parameter matrix,

(D20 — D21Zs — YLd1p + YL 011Zs] 1(0) = —T — [D2) — Y1.&11] Vs (7.992)

V(2) = 011 Vs + [®12 — D11 Zs] 1(0) (7.99b)

Similarly, substituting (7.93a) and (7.87b) into the general solution in (7.86) yields

(YsZc +1,) T, (YsZc —1,) Ty } Pﬂ _ PS } (7.100)

(ZC — ZL) Tle—f/ﬂ’ (ZC + ZL) ’i‘le?y II; VL
or, using the chain-parameter matrix,

(D11 — D1o¥s — ZLdoy + ZL P2 Ys] V(0) = VL — [D12 — ZL D) Is (7.101a)
1[(2) = dpls + [ — D Y] V(0) (7.101b)

The above mixed representation can characterize termination networks wherein
short-circuit terminations exist within one termination network and open-circuit ter-
minations exist within the other termination network. Terminal networks wherein
both short-circuit and open-circuit terminations exist within the same network can be
handled with a more general formulation as

YsV(0) + Zsi(0) = Ps (7.102a)

YZWV(®) -2 i(») =P (7.102b)

where f’s and f’L contain the effects of the independent sources in the termina-
tions. Substituting the expressions for the line currents and voltages given in (7.86)

yields
(VsZc +25) T/ (YsZc —Zs) T, ] [i ] - Lljﬂ (7.103)

(YLZC — ZL) Tleiyg (?LZC + ZL) T[ef/“(f

8 IB+



312  FREQUENCY-DOMAIN ANALYSIS OF MULTICONDUCTOR LINES
7.4 LUMPED-CIRCUIT APPROXIMATE CHARACTERIZATIONS

Lumped-circuit notions apply to circuits whose largest dimension is electrically small;
thatis, <A, where A = v/ f is the wavelength at the frequency of interest. This suggests
another frequently used approximation of an MTL. Divide the line into N sections
of length &/ N. If each of these section lengths is electrically short at the frequency
of interest, ¥ /N < A, then each section may be represented with a lumped model.
These are referred to as lumped, iterative structures since the line must be more finely
divided as frequency is increased.

Some typical lumped structures are shown in Figure 7.6 [B.1, 12]. Observe that
the total parameter is the per-unit-length parameter multiplied by the section length,
Z/N. These structures are named after the symbols their structures represent: the
lumped-Pi or lumped-T structures. The chain-parameter matrices (discussed in Sec-

¢ ¢
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FIGURE 7.6 Lumped-circuit iterative approximate structures: (a) lumped Pi and
(b) lumped T.
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tion 7.5) of these structures can be derived in a straightforward fashion as [B.1]

() (3]

(7.104a)

(7.104b)

The overall chain-parameter matrix of a line that is represented as a cascade of N
such lumped sections is

b=y, (7.105)

Once this overall chain-parameter matrix is obtained, the terminal conditions are
incorporated as described in the previous section to give the terminal voltages and
currents of the MTL. Lumped-circuit analysis programs such as SPICE can be used
to analyze the resulting lumped circuit as an alternative to obtaining the overall chain-
parameter matrix via (7.105) and then incorporating the terminal conditions. Nonlin-
ear terminations such as transistors and diodes can be readily incorporated into the
terminations as these lumped-circuit programs include sophisticated models for them.

FIGURE 7.7
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7.5 ALTERNATIVE 2r-PORT CHARACTERIZATIONS

In this section, we will investigate the two-port characterization of an MTL using the
chain-parameters, the Z parameters and the Y parameters. The MTL can be viewed
as having 2n ports, n at the left and n at the right. Hence, we seek representations that
relate the n voltages and » currents at z = 0, \Y (0) and i(O), to the n voltages and n
currents at z = %, V(%) and 1(#), as illustrated in Figure 7.7.

7.5.1 Analogy of the Frequency-Domain MTL Equations
to State-Variable Equations

Let us reconsider the phasor transmission-line equations for an (n + 1)-conductor line
given in (7.4). Writing these in compact matrix form gives

ii{(z) = AX(z) (7.106a)
dz

where
X(z) = P{((;))} (7.106b)
" 0 -7
A= [_? 0 ] (7.106¢)

These are first-order ordinary differential equations. As such, they are identical in form
to the state-variable equations that describe automatic control systems and other linear
systems [A.2, B.2, B.4, 1, 2]. In those characterizations, the independent variable is
time ¢, whereas the independent variable for the MTL equations is the line axis variable
z. Nevertheless, we may directly adapt the well-known solutions of those state-variable
equations to the solution of the phasor MTL equations by simply replacing ¢ in the
state-variable formulation and solution with z.

Hence, the solution to the MTL phasor equations in (7.106) is [A.2, B.2,B.4, 1, 2]

X(z2) = ® (22 — 21) X (21) (7.107)

and the two position points on the line are such that z» > z1. The 2n x 2n matrix d
is called the state-transition matrix. In our terminology, ® is the chain-parameter
matrix. Hence, we may write this out as

P’(Zz)} _ [@’11(12—21) @12(22—21)} P’(Zl)}

i) | 7 | ®2a—21) ®nGa—2z1)] | 1)
——— ——

X(z2) d(z2-21) X(z1)

(7.108)
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where <f>,~j are n x n. If we choose zo = &% and z; = 0, we essentially obtain the
chain-parameter matrix O for the overall line, which is 2n x 2n, as

V(g) s V(O)
KL
_ ‘i’n(i”) @12(3) \:7(())
B {CDZI(D(/) Cbzz(ff)} {1(0)} (7.109)

Because of the direct analogy between the state-variable equations for a lumped
system and the phasor MTL equations, we can immediately observe some impor-
tant properties of the chain-parameter matrix that are directly taken from the same
identities for the state-variable solution with 7 replaced with z [1, 2]:

&(0) = 1y, (7.110)
S NP = d(—2) (7.111)
and
d(2) =AY
k% 2 &3
_12n+FA+—A2+?A* (7.112)

The property of the inverse of the chain-parameter matrix given in (7.111) is logical
to expect because the inverse of (7.109) yields

VO] - V(&)
{iw)] @ [w)}
= b(—2) Hgf} (7.113)

This follows as a simple reversal of the line axis scale (replacing z with —z) similar
to the reversal in time for the state-transition matrix of lumped systems and the line
is reciprocal (assuming the surrounding medium is linear and isotropic). We will find
these properties to be important in obtaining insight into the interpretation of the MTL
equation solution.

There is another powerful identity of the chain-parameter matrix. Suppose two
sections of identical lines, each having lengths .| and %5, characterized by chain-
parameter matrices as &( &) and D(¥») are cascaded as shown in Figure 7.8. Clearly,
the overall chain-parameter matrix is the product of these, in the proper order, as
O(L2)P(Z)). But this is the chain-parameter matrix of a line whose total length is
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FIGURE 7.8 Illustration of a basic chain-parameter matrix identity.

L1+ &». Hence, we arrive at another important matrix chain-parameter identity
(L) + L) = H(L)P(L) (7.114)

From this identity, we can establish the important identity concerning the inverse of
the chain-parameter matrix in (7.111) as

S(LYD(~2L) = D (L + (—2))

= &(0)
= 1y, (7.111)

Observe that in order for the identity in (7.114) to be true, the & must be the exact
solution of the first-order differential equations characterizing the line voltages and
currents given in (7.4). Hence the identity in (7.114) cannot be used in lieu of (7.105)
to obtain the overall chain-parameter matrix of a line that is represented by lumped Pi
or lumped T approximate models since these are approximations to the exact solution
of (7.4).

7.5.2 Characterizing the Line as a 2n-Port with the Chain-Parameter Matrix

The phasor voltages and currents at the two ends of the line are related with the
chain-parameter matrix as

V] _ s [VO
[i(g)} = &) {1(0)
o112 d(D)] [VO)
=|x N - 7.109

Lbzl(ff) on(2)] | 10) (7109
This corresponds to viewing the (n + 1)-conductor line as a 2n-port, as illustrated in
Figure 7.7. The essential task in solving the phasor MTL equations is to determine
the entries in the n x n submatrices ﬁJi‘,’. This section is devoted to that task.
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The general solutions of the phasor MTL equations are given, via similarity trans-
formations, in (7.86). Evaluating these at z = 0 and z = % and eliminating Iﬁ gives
the chain-parameter submatrices as [B.1]

bu(e) =¥ (e +e )7y
= 5 2cTy (er +e—Vf) ¥ (7.115a)
Lo e s
d12(2) = —EY—lT,f/(eyi” e_V’g)) Tl
1. A 5 G 5\ A
= -5 % [T; (er—e_V”[)TI_I} (7.115b)
" 1 Eyy 4 o A A
bu(2) = =T (7 =T ) 71T Y
LTa (50 oo\ mt] <
=—> {T, (eyof _ e—er) TI—I} Ye (7.115¢)
. L. /s oo
bo() = 3T (e +e ) 17! (7.115d)

and \A(c = ZE ! As a check on this result, observe that the identity in (7.110), d0) =
1,,, is satisfied.

Although (7.115) will be the primary method of computing the chain-parameter
matrices, we may obtain an alternative form by evaluating (7.33a) and (7.33b) at
z=0and z = & and eliminating Vrﬁ to yield

A 1 N S8 G 5 G N
bu(2) =1 (e”’ +e—%f) 1! (7.116a)
op(#)=—-5Ty (eyg—e_yg) A W /
1 A 2, 5 2\ A A
=-3 Ty (7 7)1y Zc (7.116b)
o) =327ty y (¢ —e )yt
Lo Ta (o0  —oo\a
=3 Yc [TV (e%y _ e—Vi’) T(,]] (7.116¢)
1

ey (¢ +e77 ) 1y 2 (7.116d)
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7.5.3 Properties of the Chain-Parameter Matrix

In this section, we will define certain matrix analogies to the two-conductor solu-
tion [B.1, B.4]. These will place the results in a form directly analogous to the
two-conductor case, which will simplify the notation and make the results easily
remembered.

First, let us define the square root of a matrix. In scalar algebra, the square root is
defined as any quantity that when multiplied by itself gives the original quantity, that
is, «/a/a = a. The square root of a matrix can similarly be defined as a matrix that
when multiplied by itself gives the original matrix, that is, vM+/M = M. Recall the
basic diagonalization:

T7YZ21, =92 (7.117)
From this, we may define the square root of the matrix product as
VYZ =T, 91! (7.118)

This can be verified by taking the product and using (7.117):

1
— TI ~2 Tl—l
=YZ (7.119)
The square root of the matrix product 7Y can si imilarly be defined. Similarly, the
transformation Ty diagonalizes ZY as Ty, 'ZY Ty = 2. Hence, it is logical to

define the square root of ZY as
VZY =Ty 7Ty (7.120)
as multiplication by itself shows. From Table 7.1, we obtain T; f/’i‘l_l =

Y1y f/’i‘(,l Y~!and Ty f/’i‘;l =71, f/’i‘;l Z~'. Hence, VZY and V' YZ are re-
lated as

=72VY7277! (7.121)

which can again be confirmed by multiplication by itself. Therefore, from Table 7.1,
the characteristic impedance matrix can be written, symbolically, as

VY Yy = [@"z (7.122a)
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and

5

2Y = 2cVYZYc (7.122b)

These results again reduce to the scalar characteristic impedance for two-conductor
lines.

Additional symbolic definitions can be obtained for direct analogy to the two-
conductor case by defining the matrix hyperbolic functions. First, define the matrix
exponentials as

2

e?f=1n+%f/+ %?2+ (7.123a)
em$=1n+% YZ+°§2(@)2+ (7.123b)
VYL _ Tye? 21! (7.123¢)

e 2?1=1n+% Zs?+°§2( Z?>2+~-- (7.123d)
emg = TV ef’gT‘_,l (7.123¢)

where we have used the relations in (7.118) and (7.120) for the matrix square roots
VYZ and VZY. Substituting the relations in (7.121) and (7.122) yields

e\/Zs?gJ —v! e«/f{Zg?
— Z2ceVYLL Y (7.124)

In terms of these matrix exponentials, we may define the matrix hyperbolic functions
as

- 1 ([ Nz 7
cosh (\/\TZ$> =3 (e Y% +e—VYZj>

(7.125a)
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— 1 s s
sinh (\/ﬁf) = — <e YLZL _ o- YZy)
L om P —\ 3
= S V¥Z+ (\/YZ) TR

1 e DN
=51 (eyf —e—Vf) ;! (7.125b)

[\

Similarly, as v 7Y = Y 'WYZY and using the identities in Table 7.1,

cosh (\/ﬁg) — 1 (e Z?ff_i_e— ZY:/)

[\

Il
£
+

N — N~

c cosh (\/7 ,sf) Yo (7.1262)

2
1
2
//

c sinh (\/ Y7 g) Yo (7.126b)

In terms of these symbolic definitions, the chain-parameter submatrices in (7.115)
can be written, symbolically, as

&11(%) = cosh (\/Ef)
=Y 'cosh (\/ﬁg) Y
— Zc cosh (\/ﬁ g) Ye (7.127a)

&12(#) = —Zc sinh (\/ﬁ 3)
— _sinh (\/ﬁ g) Zc (7.127b)
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(,1\321(,7) = _?C sinh (@Lﬂ)
— _sinh (\/ﬁ g)) Ve (7.127¢)

&2 (%) = cosh (\/ﬁ z)
= Y cosh (\/Zis?:f) y-!
= Y cosh (\/27 3) Zc (7.127d)

Observe that these reduce to the scalar results obtained for the two-conductor line in
the previous chapter.

The final chain-parameter identity is obtained using the inverse of the chain-
parameter matrix given in (7.111). Multiplying the chain-parameter matrix by its
inverse and using the identity for the inverse given in (7.111) gives

P NP) = 1
— HD)(-2) (7.128a)
Substituting the form of the chain-parameter matrix gives
11(L) dp@)] [¢1(-2) D] _ [l 0 (7.128b)
01(Z) Pn(P) ]| [ P2(—2) Pn(-2) 0 1, '

Multiplying this gives the following identities for the chain-parameter submatrices:

&11(L)D1(~2L) + D12(L) D2 (- L) =1, (7.129a)
&11(L)D12(~ L) + D12 L)D20(—L) =0 (7.129b)
021(L)D11(— L) + (L) D2 (-2L) =0 (7.129¢)
D(L)P12(— L) + (D)0 (-2) =1, (7.1294)

Substituting the form of A given in (7.106¢c) into the infinite series expansion of
the chain-parameter matrix in (7.112) gives an infinite summation for the entries in
the state-transition matrix as

. K2
@11(3)=1n+?ZY+?[ZY]2+ (7.130a)
L P P o
d12(P) —I—!Z—?[ZY]Z—?[ZY] Z+ - (7.130b)
. Lo PP P
@21($)=—HY—? [YZ}Y—?[YZ] Y+ - (7.130c)
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. P P
®22($)=1n+7YZ+?[ 7"+ - (7.130d)

From this series expansions of the chain-parameter submatrices, we see that

b11(-2) = 11(2) (7.131a)
b(—2) = —d12(2) (7.131b)
by (-2) = —921(2) (7.131¢)
P(—Z) = O(2L) (7.131d)

Substituting these into (7.129) yields the following identities for the chain-parameter
submatrices:

$12(L)D0(L)D ()P 11(L) — D12(L)D2(2) =1, (7.132a)
$21(2)11(2) D, (L) D0(L) — &21( L) 1(L) =1, (7.132b)
$12(L)dn(2)d, (L) = d11(2) (7.132¢)
$21(2)911(2)95(2) = d0(2) (7.132d)

b (L) = d11(2) (7.132¢)

The last identity follows from the series expansions in (7.130) and the fact that Z and
Y are symmetric. These identities have proved to be of considerable value in reducing
large matrix expressions that result from the solution of the MTL equations [B.1, B.2,
B.4].

7.5.4 Approximating Nonuniform Lines with the Chain-Parameter Matrix

As discussed previously, nonuniform lines are lines whose cross-sectional dimensions
(conductors and media) vary along the line axis [B.1, 13, 14]. For these types of lines,
the per-unit-length parameter matrices will be functions of z, that is, R(z), L(z), G(z),
and C(2). In this case, the MTL differential equations become nonconstant-coefficient
differential equations. Although they remain linear (if the surrounding medium is
linear), they are as difficult to solve as nonlinear differential equations. A simple
but approximate way of solving the MTL equations for a nonuniform MTL is to
approximate it as a discretely uniform MTL. This neglects any interaction between
the sections, which may be due to fringing of the fields at the junctions between
the uniform sections. To do this we break the line into a cascade of sections, each
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of which can be modeled approximately as a uniform line characterized by a chain-
parameter matrix &y, as illustrated in Figure 6.13(a). The overall chain-parameter
matrix of the entire line can be obtained as the product (in the appropriate order) of
the chain-parameter matrices of the individual uniform sections as

S(P) = dy(Azy) x -+ x Di(Az) x -+ x D1(Az)) (7.133)
N
= [[®nwr1(Azysq) (7.133)

Observe the important order of multiplication of the individual chain-parameter ma-
trices. This is a result of the definitions of the chain-parameter matrices as

Vi) | 4 V(zx)

[i(zm) ] = Prr(Bzer) [i(Zk)} (7.134)
Ve ] s V1) '

[ iz } = Pu(Az) { i) }

Many nonuniform MTLs can be approximately modeled in this fashion. Once the
overall chain-parameter matrix of the entire line is obtained as in (7.133), the terminal
constraints at the ends of the line may be incorporated as described in Section 7.3
and the terminal voltages and currents solved for. Voltages and currents at interior
points can also be determined from these terminal solutions by using the individual
chain-parameter matrices of the uniform sections. For example, the voltages and
currents at the right port of the second subsection can be obtained from the terminal
voltages and currents as

V)] s - V(0)
{ i(z2) } = ®2(Azp) x ©1(Az1) { i) } (7.135)

7.5.5 The Impedance and Admittance Parameter Matrix Characterizations

The chain-parameter matrix is not the only way of relating the voltages and currents
of the MTL viewed as a 2n-port. Other obvious ways are the impedance parameters
[A.2]

VO | _ [Zin Zp i)
[V(f)] B {Zm Zzz} {—I(gf)] (7.136)
—_—
2P)

and the admittance parameters [A.2]

i0) 1_[Yu Y[ VO
{—i(f)} = [Yzl Yzz} {V(ﬁ)} (7.137)
—————

Y(2)
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The currents at both ends, 1(0) and —I(.%), are defined as being directed into the
2n-port in accordance with the usual convention. These alternative representations
can be obtained from the chain-parameter submatrices. For example, the impedance
parameter submatrices are defined, from (7.136), by setting currents equal to zero as

V(&) = 2 (D) (7.1382)
V) = ~Z12 1) (7.138b)
V(&) = 221 10)j 4, (7.138¢)
V(©0) = Z11 103 4, (7.138d)

From the chain-parameter matrix, setting i(0) = 0, we obtain
V(&) = $11V(0)|j9,9 (7.139a)
1(2) = $21V(0)]30)_y (7.139b)

from which we obtain
2y = —d1d5)

= —d5'dn (7.140a)
Zpp = -5/ (7.140b)

and we have used the chain-parameter identity givenin (7.132d) in (7.140a). Similarly,
setting I(#) = 0 in the chain-parameter matrix gives

V(&) = &,V(0) + &1, 1(0) (7.141a)

0 = &, V(0) + 2, 1(0) (7.141b)
from which we obtain

Zr = & — &11&32_116922
= (7.142a)
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N

7y = —d5'dn
=& &5 (7.142b)

We have used the matrix chain-parameter identities given in (7.132b) and (7.132d)
to give equivalent forms of these impedance parameters, which demonstrate that the
line is reciprocal, that is, 211 = 222 and 212 = 221. Substituting the relations for the
various chain-parameter submatrices given in (7.115) and (7.127) yields

I
N>

71 22 1
_1ri~”7(ef/f[’_e—f/£l’) (e)‘/fl’_i_e—fxff) TI—I
h

ZC [sin (\/ﬁg)}ilcosh (\/ﬁf)
cosh (\/E g) {sinh (\/27Y g)] e (7.143a)

Il
>

A

7 21 |

el (ef/,g) _ e—f/Sf)_ TI—I
=7c [Sinh (\/ﬁy)]_l
- [sinh (\/ZiY g)}"zc (7.143b)

Il
NN

The admittance parameters can also be derived from the chain-parameters in a
similar fashion or by realizing that the admittance parameter matrix is the inverse of
the impedance parameter matrix. This yields

—&)22331_21
N ) L
:Tl(ey‘g —e*’”y) (eyy—i-efy‘g) f/*lT;lY
—— — .
— [sinh (\/ Y7 g)} cosh (\/YZ g) Y
N PN = —1
— Y cosh (\/ v 5/) [sinh (\/ 7y y)} (7.144a)

- —[sinh (\/ﬁy)r?c
= ~¥elsinh (VZY & )r (7.144b)
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The lumped-Pi and lumped-T circuits of Figure 7.6(a) and (b) can also be obtained
from the impedance and admittance parameters. For example, write the impedance
parameters as

V(0) = (Z11 — Z12) 10) + Z1> (10) - 1(2))

. PN . . N R 7.145
V(2) = 212 (10~ LD) + (222 — Z1o) (-1 2)) (149
If the line is electrically short at the frequency of interest, we obtain
. N . = -1 -
i1 — 200 = Zc [sinh (\/YZ 3)] {cosh (\/YZ 3) — 1,,}
. = 17 L a2
~ 7c [\/YZ,E’} {2 (\/YZ) }
R oy
= Zc 5 vYZ
s P
=7 5 (7.146a)

where we used the series expansions in (7.125) and the identity in (7.122a) and
. R — —1
71 = Z¢ [sinh (\/YZ g))}

. — 41

Zc [VY2. 9|

7 (7.146b)

12

and we have used (7.125b) and (7.122a). Substituting (7.146) into (7.145) yields the
lumped-T circuit shown in Figure 7.6(b) since the vertical branches have admittance
of Zle = Y % and the horizontal branches have impedances of 211 — 212 = Zzz —
7, = 7. % /2. Similarly, the admittance parameters in (7.137) can be written as

IO = (Y + Y1) VO - Y2 (VO) - V()
—1(#) = Y1 (V(2) = V(©0) + (Y + Y1i2) V() (7.147)

Again, if the line is electrically short at the frequency of interest, we obtain
- N = -1 = N
Vi + ¥ = [sinh (VIZ2)| {eosh (VIZZ) - 1,} Yc
= 17 2 ] e
vaze] {5 (52 fse
ANETA
) ¢

&z
2

12

=Y (7.148a)
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and
Yy, = [sinh (\/ﬁz)}_l?c
[\/ﬁg}_l%

=711 (7.148b)

12

Substituting (7.148) into (7.147) yields the lumped-Pi circuit of Figure 7.6(a) as the
horizontal branches have impedance of Z % and the vertical branches have admit-
tancesof Y11 + Y2 =Y + Y2 =Y Z/2.

7.6 POWER FLOW AND THE REFLECTION COEFFICIENT MATRIX

As a final analogy to the two-conductor line, let us define the voltage reflection
coefficient matrix Ty (z) and investigate the flow of power on the line. The general
solution for the phasor voltages and currents is written in the form of forward-traveling
waves, V1 (z) and I*(z), and backward-traveling waves, V™ (z) and I~ (z), from (7.34)
as

V@)=V (@)+V ()

=Zc (1T +1 () (7.149a)
=" -1 (7.149b)
where
M) =T/ e 71} (7.150a)
i) =T,e" 1 (7.150b)
and
(PR VAVESS (7.150c)

Hence, the forward- and backward-traveling voltage and current waves are related by
the characteristic impedance matrix as

Vi) = Zc 1% (2) (7.151)
Similarly, from (7.33)

Vo) =V @)+ V() (7.152a)
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() =1"-T(

=Yc (V@) -V () (7.152b)
where
Vi) =Tye 77V (7.153a)
V(@) =Tve*V, (7.153b)
and
T,'2YTy = 92 (7.153¢)

andYc = ZE ! Let us define the voltage reflection coefficient matrix Iy (z) in alogical
manner relating the reflected or backward-traveling voltage waves to the incident or
forward-traveling voltage waves at any point on the line as

V@) =Tv@ V@) (7.154a)
Substituting (7.151) yields
M@ =YcIv@Zcit(2) (7.154b)

Hence, the current reflection coefficient matrix is related to the voltage reflection
coefficient matrix as

I =-Yc v Zc (7.155)

as the total backward-traveling current is -1 (). Although (7.155) reduces to the
scalar case for two-conductor lines, it is important to distinguish between the two
reflection coefficient matrices in the MTL case since the products in (7.155) do not
commute. Substituting (7.154a) and (7.155) into (7.152) gives

V@) = [l +Tv@] V(@
=1, —Zc T (@) Y| V() (7.156a)
i(z) = Yc [1, - Tv(@)] V' (2)
=Yc [1 + ZcT1(2)Yc] V() (7.156b)
Similarly, substituting (7.154b) into (7.149) yields

V(@) = Zc [1, + Yc Dv(@) Zc] T (2)
=Zc [1, - T T (2) (7.157a)
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i) = [1, = Ye Py Ze] T (2)
= 1, + )] @) (7.157b)

The reflection coefficient matrices at two points z> and z; on the line can be related
by substituting the general forms of forward- and backward-traveling voltages given
in (7.153) into (7.154) to yield

V (z) =Tye” vV
=lvVi@
=Ty Tye 7V (7.158)

Evaluating these at z = z; and z = z» gives

Tye’2 V. =Ty (@) Tye 72V (7.159a)
and
Tye 1V, =Ty @)Tve 74 V], (7.159b)
Hence,
e 72T Ty Ty e 72 = e 7T Py ey e 7 (7.160)
Solving gives
Ty (z2) = Ty e? @010y (20) Ty e G201 ! (7.161)

Substituting the identities in (7.123e) gives
Fyv(z2) = eV Fy(z1) eV 2V (7.162)
Similarly, using (7.150) and (7.154), the current reflection coefficients are related as
Pi(z2) = eVVEE=2) [y (g oV VG20 (7.163)

Again, these reduce to the scalar results for a two-conductor line given in the previous
chapter.

The input impedance matrix at any point on the line relates the total voltages and
total currents at that point as

V(@) = Zin(2)1(2) (7.164)
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Substituting (7.156) and (7.157) into (7.164) yields

1, + Fv@)] 1~ Fv@)] ' Ze
Zc (1, + Y Tv(@)Ze] [1, — Ye Tv()Zc] -

Zc (1, - P1@) [+ )] (7.165)

Zin(2)

Similarly, the voltage reflection coefficient matrix can be written in terms of the input
impedance matrix at a point on the line from (7.165) as

Pv(@) = Ze[Zin) + 2c] ' [Zinz) — 2] Ye
= [Zin(2) — Zc] [Zin(2) + Zc] (7.166)

Substituting (7.166) into the relation for the current reflection coefficient given by
(7.155), we see that the current reflection coefficient matrix is

Fi) = —?Acf‘v(z)ZAc o A
= —[Zin@) +Zc|  [Zin(2) - Zc]
= —Yc [Zin(z) — Zc] [Zin(2) + ZC]_IZC (7.167)

If the line is terminated at z = % as
V(@) =2.1(2) (7.168)

then the voltage reflection coefficient matrix at the load is

=2, -2c] 2L+ 2] (7.169)

Similarly, the current reflection coefficient matrix at the load is obtained from (7.167)
as

e =- [ZL + Zc} - [ZL - Zc}
= —\?C [ZL — Zc} [ZL + Zc] _1ZC (7.170)

The voltage reflection coefficient at the input to the line z = 0 is given from (7.161)
in terms of the voltage reflection coefficient at the load as

Ly =Tye 72Ty Ty (&) Ty e 721! (7.171)

These formulas reduce to the corresponding scalar results for a two-conductor line.
From (7.169), we observe that in order to eliminate all reflections at the load, the line
must be terminated in its characteristic impedance matrix, that is, ZL = ZC. This is
the meaning of a matched line in the MTL case. It is not sufficient to simply place
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impedances only between each line and the reference conductor. Impedances will
need to be placed between all pairs of the n lines since the characteristic impedance
is, in general, full.

The total average power transmitted on the MTL in the +z direction is [A.2]

1 N N
Pu(2) = 5 Re {VII*(2)}

I ()
1 A A A 55 (2)

= 5 Re<d [Vi(z) Va(z) -+ Viu(2)] .
I*(2)

1 IR ISR I
ERG (M@ + WL+ - + @I}  (7.172)

where the asterisk * denotes the conjugate of the complex-valued quantity. Suppose
the line is matched at its load, that is, ZL = Zc, so that the load reflection coefficient
matrix is zero, that is, f‘v (&) = 0. Equation (7.171) shows, as expected, that the
reflection coefficient matrices are zero at all points on the line, that is, f‘u 1(z) = 0.
Thus, there are only forward-traveling waves on the line, and there is no power flow
in the —z direction.

In terms of the mode voltages and currents, the average power flow on the line is

1 A
PaV(Z) = E Re (VZI*)
1 NI
= 5 Re (Vi T, T71) (7.173)
If Ty and T; are such that
15 =1, (7.174)
then
1 X7t F*
Pay(2) = JRe (ViIx) (7.175)

and the power is the sum of the powers of the individual modes. The condition in
(7.174) is equivalent to stating that the voltage and current eigenvectors, the columns
of TV and T,, are orthonormal. In previous sections, we showed several cases for
which the MTL equations are decoupleable and (7.174) is satisfied.

These properties are, of course, also directly analogous to the scalar, two-conductor
line. The use of matrix notation allows a straightforward adaptation of the scalar results
to the MTL case although there are some peculiarities unique to the MTL case.
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FIGURE 7.9 A three-conductor line for illustrating numerical results.

7.7 COMPUTED AND EXPERIMENTAL RESULTS

In this section, we will show some computed and experimental results that demonstrate
the prediction methods of this chapter. The frequency-domain prediction model of this
chapter is implemented in the computer program MTL . FOR described in Appendix
A. This program determines the 2n undetermined constants in the general form of
solution in (7.90): Iffl. The terminal configurations for both structures are shown in
Figure 7.9. These are characterized as a generalized Thevenin equivalent as in (7.87)
where

Vs = :1100”}
=[]
V= g]
n=|% 9l

Two configurations of a three-conductor line (n = 2) are considered: a three-wire
ribbon cable and a three-conductor printed circuit board. Experimentally determined
frequency responses will be compared to the predictions of the MTL model as well
as those of the lumped-Pi iterative approximation.

7.7.1 Ribbon Cables

The cross section of the three-wire ribbon cable is shown in Figure 7.10. The total
line length is ¥ = 2 m. The per-unit-length parameters for this configuration were
computed using the computer program RIBBON . FOR described in Appendix A and
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are

0.7485 05077
L:[0.5077 1.0154] wH/m

37432 —18.716
€= [—18.716 24.982} pF/m

The experimental results are compared to the predictions of the MTL model, with
and without conductor losses, over the frequency range of 1 kHz to 100 MHz in
Figure 7.11. Observe that below 100 kHz, losses in the line conductors are important
and cannot be ignored. The dc resistance was computed for one of the #36 gauge
strands (ry = 2.5 mils) and dividing this result by the number of strands (7) to give
0.19444 Q2 /m. Skin effect was included by determining the frequency where the ra-
dius of one of the #36 gauge strands equals two skin depths, ry = 28 = 2//nfouoc
(fo = 4.332 MHz), and taking the resistance to vary as r(f) = rac/f/fo above
this. Both the magnitude and the phase are well predicted. Observe that the line
is one wavelength (ignoring the dielectric insulation) at 150 MHz. So the line is
electrically short below, say, 15 MHz. Observe that the magnitude of the crosstalk
for the lossless case (and a significant portion of the lossy case) increases di-
rectly with frequency or 20 dB/decade. We will find this to be a general result in
Chapter 10.

Figure 7.12 shows the predictions of the lumped-Pi approximate model of Figure
7.6(a) using one and two Pi sections to represent the entire line. The wire resistances
are assumed to be the dc values over the entire frequency range for these lumped-Pi
models because skin effect (/ f) dependency is difficult to model in the lumped-circuit
program SPICE, which was used to solve the resulting circuit. Both one and two Pi

ry = 7.5 mils (#28 gauge stranded 7 x 36)
t =10 mils
&= 3.5 (PVC)

FIGURE 7.10 Dimensions of a three-conductor ribbon cable for illustrating numerical
results.
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sections give virtually identical predictions to the exact MTL model for frequencies
below where the line is one tenth of a wavelength long. Observe that two Pi sections
do not substantially extend the prediction accuracy frequency range even though the
circuit complexity is double that for one Pi section.

Magnitude (mV)

Angle (degrees)

Near-End Crosstalk Voltage
(Ribbon cable)

T T T T T T T T T
I g
10k E
10'E .
E E
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10°F .
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""""" MTL model (lossless) 1
_80_ L Ll iall . Lol L [ oilil 1 L1 a1l S N MW RS
10° 10* 10° 108 10’ 10t
Frequency (Hz)

()

FIGURE 7.11 Comparison of the frequency response of the near-end crosstalk of the ribbon
cable of Figure 7.10 determined experimentally and via the MTL model with and without
losses: (a) magnitude and (b) phase.
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7.7.2 Printed Circuit Boards

The next configuration is a three-conductor printed circuit board whose cross section
is shown in Figure 7.13. The total line length is ¥ = 10 in. = 0.254 m. The per-unit-
length parameters were computed using the computer program PCB . FOR described
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(Ribbon cable)

T T T

T T T T T T T T
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FIGURE 7.12
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104

Comparison of the frequency response of the near-end crosstalk of the ribbon

cable of Figure 7.10 determined via the MTL model with losses and via the lumped-Pi model
with losses using one and two sections to represent the line: (a) magnitude and (b) phase.
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1.38 mils 15 mils  45mils 15mils, 45mils 15 mils

t % ® AI
g, = 4.7}glass?)oxy)

FIGURE 7.13 Dimensions of a three-conductor PCB for illustrating numerical results.
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FIGURE 7.14 Comparison of the frequency response of the near-end crosstalk of the PCB
of Figure 7.13 determined experimentally and via the MTL model with and without losses: (a)
magnitude and (b) phase.
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FIGURE 7.15 Comparison of the frequency response of the near-end crosstalk of the PCB
of Figure 7.13 determined via the MTL model with losses and via the lumped-Pi model with
losses using one and two sections to represent the line: (a) magnitude and (b) phase.

in Appendix A :

1.10515  0.690613

L= [0.690613 138123 ] wH/m
40.5985  —20.2992

€= [—20.2992 29.7378 } pE/m
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The experimentally obtained results are compared to the predictions of the MTL
model with and without conductor losses over the frequency range of 10 kHz to 1
GHz in Figure 7.14. The conductor resistances were computed in a similar fashion to
the ribbon cable. The dc resistance is r4c = 1/wto = 1.291 Q/m, where w is the land
width (w = 15 mils) and ¢ is the land thickness for 1 ounce copper ( = 1.38 mils). The
frequency where this transitions to a /f behavior was approximated as being where
the land thickness equals two skin depths: ¢t = 26 or f; = 14.218 MHz. Observe that
the frequency where the losses become important is on the order of 1 MHz. Both the
magnitude and the phase are well predicted. The line is one wavelength (ignoring
the board dielectric) at 1.18 GHz. Thus, the line can be considered to be electrically
short for frequencies below some 100 MHz. Again note that the magnitude of the
frequency response increases directly with frequency or 20 dB/decade, where the line
is electrically short for the lossless case (and a significant portion of the lossy case).

Figure 7.15 shows the predictions of the lumped-Pi approximate model of Figure
7.6(a) using one and two Pi sections to represent the entire line. The wire resistances
are again assumed to be the dc values over the entire frequency range for these
lumped-Pi models because skin effect (v/f) dependency is difficult to model in the
lumped-circuit program SPICE, which was used to solve the resulting circuit. Both
one and two Pi sections give virtually identical predictions to the exact MTL model
for frequencies below where the line is one tenth of a wavelength long. Observe that,
as in the case of the ribbon cable, two Pi sections do not substantially extend the
prediction accuracy frequency range even though the circuit complexity is double
that for one Pi section.

PROBLEMS

7.1 Verify the second-order phasor MTL equations in (7.7).

7.2 Verify the modal phasor MTL equations in (7.9).

7.3 Verify, by direct substitution, that (7.19) satisfy (7.9).

7.4 Verify, by direct substitution, that (7.33) and (7.34) satisfy (7.7).
7.5 Diagonalize the following matrix as T"!MT = A:

(it

(T =2T=1T=1,Tnr=-1,A1 =5 A =2]
7.6 Determine the 2 x 2 matrices T, which will diagonalize the following matrices:

-1 -1

(R e

BEER)
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[T11=2,Tp=1,T1=1,Tn=1,A1 =-3,Ar, =—2and T =

1, T, =1,T1 =1, T =—1,A1 = =3, Ap = —1]

Diagonalize the following inductance matrix for a homogeneous medium via
the method of Section 7.2.2.1:

L= ﬁ ﬂ (wH/m)

[eigenvalues are (4 + \/E) x 1070 =5.414 x 107® and (4 - ﬁ) X
107 = 2.586 x 10_6, Ti1 = T2 =0.924, Ty = —T1, = 0.383]
Demonstrate (7.52) and (7.53).

Demonstrate (7.60) and (7.61).

Show that a 2 x 2 real, symmetric matrix M can be diagonalized with the
orthogonal transformation:

__ | cosf —sinb
~ | sinf cos@

where

2M>

tan20 = ——————
My — M»

Show that the eigenvalues are

A% = My cos?0 + 2M3cos 6 sin 6 + M22s1n29
A% = Mj;sin’0 — 2M2c0s 0 sin 6 + Maycos>6

Diagonalize the following product, CL, where
3 -1
c=]4 3]

[eigenvalues are S and 11, T =3, T = 1,121 = —1, T1p = 0]
Demonstrate (7.66), (7.68), and (7.69).

Show that T in (7.69) and its inverse in (7.70) diagonalize the following cyclic-
symmetric matrix:
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7.14 Demonstrate that the transformations in (7.79) and (7.82) diagonalize the
cyclic-symmetric matrices.

7.15 Diagonalize the following matrix, which has cyclic-symmetric structure:

3

W N WA
N WA W
W A W

2
3
4

Show by direct calculation that the T you obtain does in fact diagonalize
this matrix and that T~ = T Verify from this that the eigenvalues are as
expected according to (7.68).

7.16 Determine the generalized Thevenin equivalent representation, V(0) = Vg —
Z51(0), of the source termination network shown in Figure P7.16.

[VSZ[VM]’YS:{(&—F&) R3 ”

Vs2 R3 (R1 + R3)
R, Vs,
@Yo p— —
R,
I ® ————— —
Vsi
R;
—8 @ o
z ; 0 z I= 4 -

FIGURE P7.16

7.17 Determine the generalized Norton equivalent representation, 1(0) = Is —
YsV(0), of the source termination network shown in Figure P7.17.

7.18 Characterize the source and load termination networks shown in Figure P7.18.

e =] e 1 [=1 1
1(0) =Is — YsV(0), Is = — ,Ys = — )
[() s — YsV(0), Is RS{VS} S Rs[l _1]

. [0 o
|

V(&) =V +Z2.1(2), VL
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g

|

T

Rs

we 0 @ %

z=0 2= z
FIGURE P7.18

Verify the terminal relation incorporations using the chain-parameter matrices
in (7.92), (7.97), and (7.101).

Verify the chain-parameter matrices for the lumped-circuit iterative structures
given in (7.115).

Verify the chain-parameter matrix identities in (7.132).

Derive the relations for the impedance and admittance parameter submatri-
ces in terms of the chain-parameter submatrices given in (7.140), (7.142),
(7.144a), and (7.144b). Evaluate these for a lossless line in a homogeneous
medium.

Use the FORTRAN code MTL . FOR to verify the results for the ribbon cable
in Section 7.7.1 as shown in Figure 7.11.

Use the FORTRAN code SPICELPI.FOR to construct PSPICE subcircuit
lumped-Pi models for the ribbon cable in Section 7.7.1 and verify the results
in Figure 7.12.

Use the FORTRAN code MTL . FOR to verify the results for the PCB in Section
7.7.2 as shown in Figure 7.14.

Use the FORTRAN code SPTCELPI.FOR to construct PSPICE subcircuit

lumped-Pi models for the PCB in Section 7.7.2 and verify the results in Figure
7.15.
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TIME-DOMAIN ANALYSIS
OF TWO-CONDUCTOR LINES

The previous two chapters dealt with the solution of the transmission-line equations
in the frequency domain, that is, for the case of sinusoidal steady-state excitation
of the line. That is, the sources are sinusoids at a single frequency and are assumed
to have been applied for a sufficiently long time such that all transients have de-
cayed to zero leaving only the steady-state solution. In this and the following chapter,
we will examine the solution of the transmission-line equations for sources that have
any general time variation. This will include both the transient and the steady-state
components of the solution and represents the solution in the time domain. Again,
there will be striking parallels between the two-conductor solution methods given in
this chapter and those for MTLs given in the following chapter.

‘We have seen in the previous chapters that incorporating line losses into the solution
of the transmission-line equations is a very straightforward process in the frequency
domain. We will see in this and the following chapter that the time-domain solution of
the transmission-line equations for a lossless line is also a very simple and straightfor-
ward computational process for either two-conductor lines or multiconductor trans-
mission lines (MTLs)! Line losses, however, introduce substantial complications in
the solution of the transmission-line equations in the time domain. In addition to the
low-frequency dc resistance and internal inductance, conductors exhibit a frequency-
dependent resistance and internal inductance due to skin effect at high frequencies.
This dependence on frequency is +/f, which is difficult to characterize in the time
domain. Incorporation of these losses into the frequency-domain solution is trivial;
compute the resistances and internal inductive reactances of the line conductors at

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.

343



344 TIME-DOMAIN ANALYSIS OF TWO-CONDUCTOR LINES

the frequency of interest, include them as constants in the phasor transmission-line
equations, and solve the resulting equations. For the next frequency of interest, re-
compute the resistances and internal inductive reactances of the conductors for this
frequency and repeat the solution. The loss introduced by a nonzero conductivity of
the surrounding media is also dependent on frequency and can likewise be easily in-
corporated into the frequency-domain solution. Although the inclusion of these losses
does not significantly complicate the frequency-domain solution, it adds considerable
complications to the general time-domain solution of the transmission-line equations.

We begin the discussion with a review of the solutions for two-conductor lossless
lines. This serves to introduce the notion of traveling waves on the line and also in-
troduces an important solution technique for numerical computation, the method of
characteristics, which leads to the exact solution for a lossless line that is incorpo-
rated into the SPICE (PSPICE) computer program. Once these concepts and solution
methods for lossless lines are discussed, we discuss methods for the incorporation
of frequency-dependent losses. Frequency-dependent losses can be included in the
solution via the time-domain to frequency-domain (TDFD) solution method whereby
the input signal is resolved into its Fourier sinusoidal components and passed through
the frequency-domain transfer function. The line losses are easily included when we
compute the frequency-domain transfer function via the methods of Chapters 6 and
7. The output sinusoidal components are then summed over time to return to the time
domain. This method requires that the line terminations be linear since superposi-
tion was used. An alternative method is the numerical finite-difference, time-domain
(FDTD) method. This method approximates the derivatives in the transmission-line
equations and solves the resulting difference equations in a recursive manner. The
FDTD method will be first developed for the case of lossless lines and then ex-
tended to include frequency-dependent line losses. In the following chapter, all these
methods will be extended to MTLs in a fashion that bears striking similarities to the
two-conductor solution methods.

8.1 THE SOLUTION FOR LOSSLESS LINES
The scalar transmission-line equations for two-conductor lossless lines are

W 90G 1D
z ot

(8.1a)

al(z, 1) V(z, 1)
= —C
0z ot

(8.1b)

Differentiating one equation with respect to z and the other with respect to ¢ and
substituting yields the uncoupled second-order differential equations

2V(z, 1) 82V (z, 1)
=lc

822 P2 (8.22)
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F1(z, 1) F1(z, 1)
=lc

8.2b
dz2 ar? (8:25)
The solutions to these equations are [A.1]
n z _ z
Ven= Vv (r - 7) + v (t + 7) (8.3a)
W_U/ \—,—v/
forward,+z,traveling wave  backward, —z,traveling wave
I(z,t) = It (r— E) + I~ (t+ 5)
%,_v/ h,_v/
forward,+z,traveling wave  backward,—z,traveling wave (8.3b)
1 , 1
e (e A
Zc v Zc v
where the characteristic impedance is
l
Zc =1/ -
C
= vl
1
= (8.4)
ve

The waves V* and I' are traveling in the +z direction as can be seen from their argu-
ments; as ¢ increases, z must also increase in order to track a point on the waveform.
Hence, they are called forward-traveling waves. The waves V™~ and I are similarly
traveling in the —z direction and are called backward-traveling waves. The character-
istic impedance relates the voltage and current in the forward-traveling wave and in
the backward-traveling wave as

v+ (r _ %) — ZeIt (r - %) (8.5a)

V- (t n %) — —Zcl (r " %) (8.5b)

The velocity of propagation of the forward-traveling waves and the backward-
traveling waves is

1
= — 8.6
V== (8.6)

The functions of t and z, V*(¢, z) and V™ (¢, z), are as yet unknown but have time and
position related only as t & z/v.
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Rg 1(0, 1) I(z,1) I(%,1)
- —
+ + +
Vs(9) V(0, 1) Viz,1) V£ ) R,
— .‘
| I(z,1) i
| i
I I
! H
z = 0 z I=Y :

FIGURE 8.1 A two-conductor line in the time domain.

8.1.1 Wave Tracing and the Reflection Coefficients

Consider the two-conductor line of total length shown in Figure 8.1, where we assume
resistive loads Rg and Ry . We will later extend this solution to include dynamic loads
such as inductors and/or capacitors using the Laplace transform method or the SPICE
solution. The SPICE solution method will also handle nonlinear loads. The forward-
and backward-traveling waves are related at the load z = £ by the load reflection
coefficient as [A.1]

Ve +Z)/v)
Ve — 2)v)
R, — Zc

= — 8.7
Ry + Zc¢ ®7)

Therefore, the reflected waveform at the load can be found from the incident wave
using the load reflection coefficient as

()= (=7)
Vilt+— | =TV |t —— (8.8)
v v

The reflection coefficient so defined applies to voltage waves only. A current reflection
coefficient applying to the current waves can similarly be obtained and is the negative
of the voltage reflection coefficient (due to the negative sign in (8.3b))

()= ()
I (t+— ) =-TpI"|t—— (8.9)
v v

The reflection at the load is illustrated in Figure 8.2. The reflection process can be
viewed as a mirror that produces, as a reflected V~, a replica of V* that is “flipped
around,” and all points on the V~ waveform are the corresponding points on the
V+ waveform multiplied by I'L. Note that the total voltage at the load, V(%, 1), is
the sum of the individual waves present at the load at a particular time as shown
by (8.3a).

Now let us consider the portion of the line at the source, z =0, shown in Figure 8.3.
When we initially connect the source to the line, we reason that a forward-traveling
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Vs (t)
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+
V(Q, t) RL
t
)

z=¥

A )

A

e

V(= zlv)
/ V7t +ziv)

~ Y

I )

~Y

FIGURE 8.2 Illustration of reflections at a termination of a mismatched line.

wave will be propagated down the line. We would not expect a backward-traveling
wave to appear on the line until this initial forward-traveling wave has reached the

load, a time delay of
o =Z/v (8.10)

since the incident wave will not have arrived to produce this reflected wave. The
portion of the incident wave that is reflected at the load will require an additional time
Tp to move back to the source. Therefore, for 0 < r < 2.% /v = 2Tp, no backward-
traveling waves will appear at z = 0, and for any time less than 27, the fotal voltage
and current at z = 0 will consist only of forward-traveling waves V' and I'". Therefore,



348 TIME-DOMAIN ANALYSIS OF TWO-CONDUCTOR LINES

R 100, 1)
+
Vs(9) V(0,1
[ | -
z=0 z
(2)
Rs  1(0,1) v
-1 0.9
+
Vs(2) V(0,1) gzc Z y
I _———d RS+ZC
t
&
b) t<2 -

FIGURE 8.3 Characterization of the initially transmitted pulse.

from (8.3)
N 0
VO,)=Vt(r—= (8.11a)
v
10,0 = I (r - 0)
v
0
—— N Y tr0<t<2Tp (8.11b)
Zc

Since the ratio of rotal voltage and fotal current on the line at the input to it is Z¢ for
0 <t < 2Tp, the line appears to have an input resistance of Z¢ over this time interval.
Thus, the forward-traveling voltage and current waves that are initially launched are
related to the source voltage by (using voltage division)

Zc
V(0,1) = ———Vs(t) for0 <t <2T 8.12a
0,1 Rs 1 Zc s(?) D ( )
1
10,t) = —Vs() for0 <1t <2T; 8.12b
() Rs 1 Zc 5(7) D ( )

This initially launched wave has the same shape as the source voltage Vs(#) (but is
reversed; see Fig. 8.2).

The initially launched wave travels toward the load requiring a time Tp = % /v
for the leading edge of the pulse to reach the load. When the pulse reaches the load,
a reflected pulse is initiated, as shown in Figure 8.2. This reflected pulse requires an



THE SOLUTION FOR LOSSLESS LINES 349

additional time Tp = % /v for its leading edge to reach the source. At the source, we
can similarly obtain a voltage reflection coefficient

_ Rs—Zc

= = 8.13
Rs + Z¢ $-13)

Is

as the ratio of the incoming incident wave (which is the wave that was reflected
at the load) and the reflected portion of this incoming wave (which is sent back
toward the load). A forward-traveling wave is therefore initiated at the source in the
same fashion as at the load. This forward-traveling wave has the same shape as the
incoming backward-traveling wave (which is the original pulse sent out by the source
and reflected at the load), but corresponding points on the incoming wave are reduced
by I's. This process of repeated reflections continues as re-reflections at the source
and the load. At any time, the total voltage (current) at any point on the line is the
sum of all the individual voltage (current) waves existing on the line at that point and
time, as shown by (8.3).

As an example, consider the transmission line shown in Figure 8.4(a). Att =0,
a 30-V battery with zero source resistance is attached to the line that has a total
length of ¥ = 400 m, a velocity of propagation of v =200 m/pus, and a characteristic
impedance of Z¢ = 50 2. The line is terminated at the load in a 100 resistor so that
the load reflection coefficient is

_ 100 — 50
L= T00+50
1
3
and the source reflection coefficient is
0-150
I's =
0+ 50

The one-way transit time is Tp = % /v = 2 ps. At ¢t = 0, a 30-V pulse is sent down
the line, and the line voltage is zero prior to the arrival of the pulse and 30 V after
the pulse has passed. At r = 2 s, the pulse arrives at the load, and a backward-
traveling pulse of magnitude 30I'L, = 10 V is sent back toward the source. When this
reflected pulse arrives at the source, a pulse of magnitude I's of the incoming pulse
or ['sT'.30 = —10 V is sent back toward the load. This pulse travels to the load, at
which time a reflected pulse of I', of this incoming pulse or I'L ['s['1.30 = —3.33 V
is sent back toward the source. At each point on the line, the total line voltage is the
sum of the waves present on the line at that point and at that time.

The previous example has illustrated the process of sketching the line voltage at
various points along the line and at discrete times. Generally, we are interested only
in the voltage or current at the source end of the line, V(0, ) and (0, ), and at the load
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t=0
+
Zc=50Q
T Vs =30V V(z,t) v = 200 m/ps R =100Q
I'u=13
Ts=-1 Z=400m——————»
(@
30V Total =30V
-1 10V
R Total =0V N S
z=0 z=200 m z=400m z=600m z
(b) t=1ps
Total =40V
Total = 30 V I 30V
_________ = -"q
10V -
I - i |
z=0 z=300m z=400m z=3500m
() t=25us
Total = 40V
Total =30V |
oy _
- N z=100m , T TTTTtT
________ g_=0 z=400m z
-10V
(d) r=4.5ps
Total = 30 V 30V
TTTTTTTET Iy EeYe—]——" T
10V Total = 26.67V
TTTTTTTT o z=300V z=400m z=500m
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-wov. /7707
-3.33V
(e) t=6.5ps

FIGURE 8.4 An example illustrating the computation of the line voltage at various points
on the line.

end, V(&, 1) and I(Z, t) as functions of time and are not concerned with voltages
and currents at interior points of the line. In order to illustrate this process, let us
reconsider the previous example and sketch the voltage at the line output z = £ as
a function of time, as illustrated in Figure 8.5. At t = 0, a 30-V pulse is sent out
by the source. The leading edge of this pulse arrives at the load at = 2 ps. At this
time, a pulse of I',30 = 10 V is sent back toward the source. This 10-V pulse arrives
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t=0
Rs=0_)(1(0,‘)

+ Ze=50Q
Ve=30V —/ t Ry, =100Q
S - v=200m/ps V&0 L
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Vs(t) l
30V
(@) f
V&
Total = 40V
30V Total = 31.11V
_____ [ pa— I —g— ey — T

Total = 29.63 V

Total = 26.67 V

1.11V 333V
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e e
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FIGURE 8.5 An example illustrating the computation of (a) the load voltage and (b) the
source current as a function of time.
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at the source at t = 4 s, and a pulse of I'sI';30 = —10 V is returned to the load.
This pulse arrives at the load at t = 6 ws, and a pulse of I' L 's['L.30 = —3.33 V is
sent back toward the source. The contributions of these waves at z = ¢ are shown in
Figure 8.5(b) as dashed lines, and the total voltage is shown as a solid line. Arrows are
placed on each component to indicate its direction of travel. Note that the load voltage
oscillates about 30 V during the transient time interval, but asymptotically converges
to the expected steady-state value of 30 V. If we had attached an oscilloscope across
the load to display this voltage as a function of time, and the time scale were set
to 1 ms per division, it would appear that the load voltage immediately assumed a
value of 30 V. We would see the picture of Figure 8.5(b) only if the time scale of the
oscilloscope were sufficiently reduced to, say, 1 s per division. In order to sketch the
load current I(%, t), we could divide the previously sketched load voltage by Ry,. We
could directly sketch the current at either end of the line by using current reflection
coefficients (which are the negative of the voltage reflection coefficients) I's = 1 and
'L = —1/3 and an initial current pulse of 30 V/Z¢ = 0.6 A and combining the various
forward- and backward-traveling current waves at each time point as was done for
the voltages. The current at the input to the line, /(0, #), is sketched in this fashion in
Figure 8.5(c). Observe that the current oscillates about an expected steady-state value
of 30 V/IRL, = 0.3 A.

The previous examples have illustrated sketching the voltage and current wave-
forms at the source and the load for sources that are dc (constant with time). The next
example shows the effect of source voltage pulse width on the total voltages. Consider
the example shown in Figure 8.6(a). The source voltage is a pulse of 100 V amplitude
and 6 ws duration as shown in Figure 8.6(b). The line is specified by its per-unit-length
capacitance and inductance of ¢ = 100 pF/m and [ = 0.25 wH/m. This corresponds to
RG58U coaxial cable. The line therefore has a characteristic impedance of

l
Zc =1/ —
C

=50Q

and a velocity of propagation of

1
Vie
=2x10%m/s
=200m/ps

V=

The source resistance is Rg = 150 2 and the load is a short circuit with R, = 0 Q.
Hence, the source reflection coefficient is

150 — 50

Mg = -
150 + 50
1

2
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and the load reflection coefficient is

0—50
'n=——+
0-+50
=-1
The one-way time delay is
&
> = —
v
=2 us
The initially sent out voltage pulse is
50
—— x 100 =25V
50 + 150

The voltage at the input to the line, V(0, ), is sketched in Figure 8.6(c). The incident
and reflected voltage waveforms are again sketched with dashed lines with an arrow
added to each to indicate whether they are associated with a forward-traveling or a
backward-traveling wave. The initial voltage pulse of 25 V and 6 s duration is sent
to the load, arriving there after one time delay of 2 s, where it is reflected as a pulse
of —25 V. This pulse, reflected at the load, is inverted because of I't, = —1 and arrives
at the source after an additional 2-ps time delay. This incoming pulse is reflected as
—12.5 V and arrives at the load after 2 s, where it is reflected as 12.5 V arriving at
the source after another 2-us delay. The process continues as shown. Adding all the
incident and reflected pulses at the source at each time, we obtain the total voltage
drawn with a solid line. Clearly, this total decays to zero as it should in steady state
for this short-circuit load and the fact that the pulse turns off at 7 = 6 ps. Observe in
this example, the pulse width of 6 ws is equivalent to three time delays. Hence, we
see an overlap of the forward- and backward-traveling components, which creates an
interesting result.

The current at the load, 1(%Z, 1), is similarly sketched in Figure 8.6(d). The reflec-
tion coefficients for the current are the negative of those for the voltage:

N
5T73

I' = +1
and the initally sent out current pulse has a level of

100 1
" _ZA
150+50 2

Figure 8.6(d) shows the result that converges to the expected steady-state value of 0
A.
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FIGURE 8.6 An example illustrating the computation of (c) the source voltage and (d) the
load current for a pulse waveform illustrating the effect of pulse width, and (e) the effect of
pulse shape.

In order to show the influence of the pulse shape, we reconsider this problem
but with a pulse that rises steadily to 100 V in 6 ws as shown in Figure 8.6(e). The
individual forward- and backward-traveling components are sketched with dashed
lines and the total with a solid line. Observe that the waveforms at the end of the line
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FIGURE 8.7 The lattice diagram.

have the same time shape in time as the source voltage. In other words, the first point
to arrive at the source or load is the first point of Vs (¢) sent out at r = 0.

There are a number of other graphical methods that are equivalent to this graphical
method. One of the more popular ones is referred to as the so-called lattice diagram
[A.1]. This is illustrated in Figure 8.7(a). Position along the line is plotted along the
upper horizontal axis and time is plotted vertically. The initial waveform applied to the
line is (Zc/(Zc + Rs))Vs(t), as shown in Figure 8.7(b). The lattice diagram simply
tracks a particular point on this applied waveform, K at ¢/, as it travels back and forth
along the line.

8.1.2 Series Solutions and the Difference Operator

An exact solution for this general result can be obtained for any Vs(¢) waveform by
carrying through the above graphical method (or using the lattice diagram) in literal
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form to yield

V.0 = = {(Vs(t) + (1 + T's) T Vs(t — 2Tp)
+ 1+ Ts)TsTL) 'L Vs(t —4Tp)
+(1 4+ Ts) (TsTL’TLVs( — 6Tp) 4 - -} (8.14a)

Z

V(L. 1) = ﬁCRS {(1+ L) Vs(t — Tp) + (1 + TL) TsTL Vs (r — 3Tp)
+ (14 TL) (TsTL)?*Vs(r — 5Tp) + (1 + TL)(TsTL)* Vs (t — 7Tp) + - - -}
Z
= ﬁ (14 TL) {Vs(t — Tp) + T'sTLVs(t — 3Tp)

+(sTL)?Vs(t — 5Tp) + (TsTL) Vst — TTp) + -+ -} (8.14b)

This succinct form of the solution gives the time-domain voltages explicitly as scaled
versions of the input signal waveform Vg(t), which are delayed by multiples of the line
one-way delay Tp. To compute the total solution waveforms V(0, t) and V (%, t), one
simply draws the scaled and delayed Vs(¢) and adds the waveforms at corresponding
time points according to (8.14).

Alternatively, this general result can be proved from an earlier frequency-domain
exact solution given in Chapter 6 in (6.39a ) for alossless line. Substituting the relation
for the phase constant in terms of the radian frequency and the velocity of propagation:

B=w/v
into that result yields

. 1 T =2 joTp ,2 jwz/v 7z . )
Vo=t e C e un/r (8.15)
1 —TsTLe2/®T>  Zc + Rg

and we have substituted the line one-way time delay
o =%/v

In terms of the Laplace transform variable s, we replace
s = jo

and (8.15) becomes, at the source, z = 0,

1+ FLe_ZSTD C
1 —TI'sTLe 2T | Zc + Rg

V0, s) = [ Vs(s) (z=0) (8.16a)
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and at the load, z = %,

Vss) (z=2) (8.16b)

b= [T 2

1 —TsTLe=2™ | Zc + Rg

Multiplying both sides of (8.16) by the common denominator gives

N Zc N
| =TT —MD} 7(0,5) = [1 r _zer} _fC v 8.17
[ sTLe 0, ) +TLe Zc+ Rs s(s) (8.17a)
—2s5Tj { —sTq ZC {
{1 —TsTLe D] V(L )= +TL) e —2C V(s) (8.17b)
Zc + Rs

To put this into the time domain, we utilize the basic Laplace transform result of
M F(s) < f(t +mTp) (8.18)
Hence, multiplication of a Laplace transformed function F(s) by ™" gives the

time-domain function advanced or delayed in time by m Tp. Using this result, (8.17)
becomes

[V(©,t) —TI'sI'LV(@,t —2Tp)] = L [Vs(t) + T'LVs(t — 21p)] (8.19a)
Zc + Rs
[V(Z.1) = TsTLV(Z, 1 — 2Tp)] = —2C— [1 +T0L] Vs(t—Tp)  (8.19b)
Zc+ Rs

This represents a recursive solution. In other words, we obtain the present time so-
lutions V(0, ) and V(%, ) by using the solution at previous times that are two time
delays before the present time, V(0,t — 2Tp) and V(Z,t — 2Tp) and the source
voltage delayed by various time delays: Vs(t), Vs(t — Tp), and Vs(t — 2Tp). So this
recursive solution is obtained in a “bootstrapping” manner.

In order to obtain an explicit solution, we introduce the time-shift or difference
operator D as

D" f(1) = f(t £ mTp) (8.20)

In other words, the difference operator operates on a function of time to shift it ahead
or backward in time. This difference operator obeys all the rules of algebra and can be
manipulated as though it is an algebraic variable until it is used to return to the time
domain using (8.20). We will have numerous occasions throughout this text to use
this difference operator in solving lossless lines. Substituting this result into (8.19)
gives

z
[1 —TsTL.D 2|V, 1) = 7CR [1 4+ LD 2Vs(1) (8.21a)
S

Zc +
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Zc
1—FFD‘2}V$,t:7[1 )t Vs 8.21b
[1-Tsr (0= e [T 5(t) (8.21b)
Multiplying by D? gives
{Dhr r ]V(O H=—2C D2y Ve) (8.22a)
S1L ) ZC+RS L S .
z

[D? =TTV, 1 = =S [+ T0) D] Vs(o) (8.22b)

Zc + Rs

Dividing both sides by [D? — T'sT' ] to put this in the form of a transfer function and
using long division gives

Z D?>+T
V. 1) = c [ + 1L

Zc+ Rs | D? —T'sI'L
Zc

- Zc + Rs

+ (14 Ts)(TsTL)TLD~ 0 + -1V (8.23a)

} Vs(®)

[1 +(1+T)TLD 2+ (14Ts)(MsT)TLD™*

Zc
Vo= Zc + Rs {
Zc

"~ Zc+Rs

(1+TvL)D
D? —T'sI',

] Vs(@)

(+T0) [D71 +TsTLD ™ + (TP + | Vs
(8.23b)

where we have used the long division result:

1

=D 24D+ ([T’ DO + (s’ D3+ ... (8.24)
D? —T'sI',

Operating on Vg (¢) with the various powers of D in the expansion using (8.20) returns
to the time domain giving results that are identical to (8.14):

V4
V@, = ﬁcles {Vs(®) + (1 + I's) 'L Vs(r — 2Tp)
+ 1 +Ts)(T'sI'L) 'L Vs(r — 41p)
+(1+T5s) (FSFL)zl"LVS(t —6Tp)+ ---} (8.14a)
V£, 1) = L(l +TI'L) {Vs(t — Tp)
D= 7 RS L {Vs D

+IsTLVs(t — 3Tp) 4 (CsT'L)? Vs(r — 5Tp)
+(TsTL) Vst = TTp) + - -} (8.14b)
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Thus, for a two-conductor lossless line having resistive loads, one can immediately
sketch the terminal voltage waveforms as scaled and delayed versions of the source
voltage waveform Vg(?).

A number of important results can be immediately seen from the general result
in (8.14). For example, suppose the line is “matched” at the load, that is, R, = Zc.
(Note that a matched line requires a completely resistive termination since Z¢ for a
lossless line is a real number.) For a matched line, the load reflection coefficient is
zero, I', = 0, and hence (8.14) reduce to

Zc

V(O,t) = —— Vs(t forRy, = Z 8.25a
0,1 7 R s ( L c) ( )
(&, t)y= —Vs(t — Tp) (for R = Z¢) (8.25b)
V s % or .
7 R S D L C

This is the ideal case; the load voltage is identical to the initially sent out wave but
scaled by the voltage division term and delayed by one time delay. Similarly, for a
line that is matched at the source, that is, Rs = Zc, (8.14) reduce to

z

V(0,1 = ﬁ [Vs(®) +TLVs (t —2Tp)] (for Rs = Z¢) (8.26a)
z

V(Z, 1) = ﬁ‘j& (14+TL) Vst —Tp) (for Rs = Zc) (8.26b)

With the line matched at the source but not at the load, the source voltage V (0, ¢) is
a combination of the initially sent out voltage and the voltage reflected at the load.
No further reflections occur at the sources since it is matched. Similarly, with the line
matched at the source but not at the load, the load voltage V(%, r) is the sum of the
incoming wave and that immediately reflected at the load.

Mismatched lines I's #20 and I'y, #£0 give rise to terminal voltages that do not
immediately assume their steady-state voltages but converge to it in some fashion.
Some of these converge by oscillating about the steady-state voltage, whereas others
rise from zero to the steady-state value. Table 8.1 shows when this behavior occurs.
Inspection of the load voltage expression in Eq. (8.14b) shows that the additional terms
in this expression depend on the products of various powers of (I'sI'L) and the initially
sent out voltage wave. For the case where the source and reflection coefficients are of
opposite sign, this product will be negative with its odd powers being negative but its
even powers being positive. Hence, the waveform will oscillate about the steady-state
value. On the contrary, if the source and reflection coefficients are of the same sign,
all products will be positive and the load voltage waveform will rise steadily to the
steady-state value. This behavior will explain how certain matching schemes achieve
signal integrity, which will be considered in a later section.

The difference operator given in (8.20) is a powerful tool for lossless lines. Time
shifting can be accomplished as a simple algebraic manipulation of this operator. We
will have numerous occasions to use this powerful result.
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TABLE 8.1 Effects of the signs of the reflection coefficients on the load voltage.

I'g I Load voltage waveform
- + v, A
Rs<Zc f> 2 | __|_steady [state __| _‘l _________
+ —_
Rg> Zc R <Z¢
>
. + Tp 3Tp 5T,  71p
R> Z, R >Z v, A
_S ¢ _L “ L steady state
Rs< Zo Ri<Zc ’—I_Ii
>/

h 3Tp 5Tp 7Tp

8.1.3 The Method of Characteristics and a Two-Port Model of the Line

The previous sections have shown graphical and series methods for sketching the
time-domain solution of the transmission-line equations for linear resistive loads. It is
frequently desirable to have a numerical method that is suitable for a digital computer
and will handle nonlinear as well as dynamic loads. The following method is referred
to as the method of characteristics. The numerical implementation is attributed to
Branin and was originally described in [1].

The method of characteristics seeks to transform the partial differential equations
of the transmission line into ordinary differential equations that are easily integrable.
To this end, we define the characteristic curves in the z—t plane shown in Figure 8.8
as

dz 1
— = — (8.27a)
d e
ez _ 1 (8.27b)
d i '
The differential changes in the line voltage and current are
aV(z,t aV(z,t
Vi n= V@D, VD, (8.28)
0z at
0l(z,t 0l(z, ¢t
diz,n = &0 @D, (8.28b)
0z at

Substituting the transmission-line equations in (8.1) into (8.28) gives

dv(z,1) = (—lal(,(;t’t)) dz + %dt (8.292)
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(8.29b)

e = (VED) g V1,
at 9t

Along the forward characteristic defined by (8.27a), dz = (1/ Vlc) dt, these become

AV 1) = <_zc 9 1{(; H,3 Va(i t)) di (8.30a)
di(z, 1) = <_zlc 9 V;i d 81;zt, t)> dt (8.30D)

where we have substituted Zc = (4/1/¢). Similarly, along the backward characteristic
defined by (8.27b), dz = —(1/+/Ic) dt, these become

dviz, 1) = <zc8[£(ft’ 2 av;i, ”) dr (8.31a)
_ LaV(z,t) 01(z, 1)
dl(z, 1) = (Zc > - )dt (8.31b)

Multiplying (8.30b) by the characteristic impedance Z¢ = +/I/c and adding the equa-
tions gives

dV(z, )+ Zcdl(z,t) = 0 (8.32a)

Similarly, multiplying (8.31b) by the characteristic impedance Z¢c = +/I/c and sub-
tracting the equations gives

dV(z,0) — Zcdl(z,1) = 0 (8.32b)

Equation (8.32a) holds along the characteristic curve defined by (8.27a) with phase
velocity v =1/ Vlc, whereas (8.32b) holds along the characteristic curve defined by
(8.27b) with the same phase velocity. This is illustrated in Figure 8.8. These are
directly integrable showing that the difference between two voltages at two points on
a given characteristic is related to the difference between two currents on the same
characteristic. Therefore, from Figure 8.8 we may obtain

[V(&Z,t) = V(O0,t —Tp)l = —Zc[I(Z,t) — 1(0,t — Tp)] (8.33a)

[VO,t) —V(Z,t —Tp)l =+Zc 10, 1) — (&L, t — Tp)] (8.33b)

where the one-way delay is Tp = % /v.
A very useful two-port model of the line can be obtained by rewriting (8.33) as

[V(©O,t) — ZcI1(0, )] = [V(Z,t — Tp) — ZcI(Z,t — Tp)] (8.34a)
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FIGURE 8.8 Illustration of characteristic curves for the method of characteristics.

(V(Z, )+ Zcl(Z,1)] =[V(0,t — Tp) + Zc1(0,t — Tp)] (8.34b)

Hence, the voltage and current at one end of the line at some present time can be
found from the voltage and current at the other end of the line at one time delay
earlier. Hence, we obtain another recursive solution. This can be put in the form of
an equivalent circuit by writing (8.34) as

V(0,1) = ZcI0,1) + Eo(Z,t — Tp) (8.35a)
where
Eo(ZL,t—Tp)=V(ZL,t —Tp) — Zcl(ZL,t — Tp) (8.35b)
and
V(ZL,t)=—Zcl(&L. )+ E¢0,t — Tp) (8.36a)
where

E#0,t— Tp) = V(0,1 — Tp) + Zc1(0, t — Tp) (8.36b)
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FIGURE 8.9 A time-domain equivalent circuit of a two-conductor line in terms of time-
delayed controlled sources obtained from the method of characteristics (Branin’s method) as
implemented in SPICE.

6

Equations (8.35) and (8.36) suggest the equivalent circuit of the total line shown in
Figure 8.9(a). The controlled source E (0, t — Tp) is produced by the voltage and
current at the input to the line at a time equal to a one-way transit delay earlier than
the present time. Similarly, the controlled source Eo(¥, t — Tp) is produced by the
voltage and current at the line output at a time equal to a one-way transit delay earlier
than the present time.

Equations (8.34) can also be obtained in a simpler manner by manipulating the
basic solutions given in (8.3) using the difference operator. Write (8.3) as

Vi, )= v+ (r - %) yvo (r n %) (8.37a)

Zel(z, 1) = V* (t — %) v (z + %) (8.37b)

where we have multiplied (8.3b) by the characteristic impedance Z¢c. Adding and
subtracting these gives

Viz, )+ Zcl(z, 1) = 2V (; - 5) (8.38)
v

V(1) — Zel(z 1) = 2V (z n 5) (8.38b)
v
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Evaluating these at z =0 and z = & gives

V(0,1) + ZcI(0,1) =2V (1) (8.39a)
V(0,1) — ZcI(0,1) =2V~ (1) (8.39b)
V(L O+ ZcI(L, 1) =2V (t — Tp) =2D 'V (1) (8.39¢)
V(L. 1) — ZcIl(L, 1) =2V~ (t + Tp) = 2DT'V™ (1) (8.39d)

Multiplying (8.39d) by D~! (which amounts to time shifting the equation) and sub-
stituting into (8.39b) gives (8.34a):

[V(©,t) — Zcl(0, )] =[V(Z,t — Tp) — ZcI(¥, t — Tp)] (8.34a)

Similarly, multiplying (8.39a) by D~! (which also amounts to time shifting the equa-
tion) and substituting into (8.39¢) gives (8.34b):

V&, )+ ZcI(Z, )] =[V(0,t — Tp) + ZcI(0, t — Tp)] (8.34b)

8.1.4 The SPICE (PSPICE) Solution for Lossless Lines

The equivalent circuit shown in Figure 8.9(a) is an exact solution of the transmission-
line equations for a lossless two-conductor uniform transmission line. The circuit
analysis program SPICE contains this exact model among its list of available circuit
element models that the user may call [A.2, A.3, A.5, A.6 ]. The model is the TXXX
element, where XXX is the model name chosen by the user. SPICE uses controlled
sources having time delay to construct the equivalent circuit of Figure 8.9(a). The
format of the SPICE command to invoke this model is given in Figure 8.9(b):

TXXX NI N2 N3 N4 Z20=Zc TD=T1p

The user needs to input only the characteristic impedance of the line Z¢ (SPICE
refers to this parameter as Z0) and the one-way transit delay 7p (SPICE refers to this
parameter as TD). Usually, nodes 2 and 4 are the SPICE universal ground node, that
is, N2 = 0 and N4 = 0. Thus, SPICE will produce exact solutions of the transmission-
line equations. Furthermore, nonlinear terminations such as diodes and transistors
as well as dynamic terminations such as capacitors and inductors are easily handled
with the SPICE code, whereas a graphical solution for these types of loads would be
quite difficult. This author highly recommends the use of SPICE for the incorporation
of two-conductor lossless transmission-line effects into any analysis of an electronic
circuit. It is simple and straightforward to incorporate the transmission-line effects
in any time-domain analysis of an electronic circuit, and, more importantly, models
of the complicated, but typical, nonlinear loads such as diodes and transistors as well
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as inductors and capacitors already exist in SPICE and can be called on by the user
rather than the user needing to develop models for these devices.

As an example of the use of SPICE or the personal computer version PSPICE
to model two-conductor lossless transmission lines in the time domain, consider the
time-domain analysis of the circuit of Figure 8.5. The 30-V source is modeled with
the PWL (piecewise linear) model (see Appendix B for a tutorial on SPICE) as
transitioning from O to 30 V in 0.01 ws and remaining there throughout the analysis
time interval of 20 ws as shown in Figure 8.10(a). The nodes are numbered as in
Figure 8.10(a) and the SPICE (PSPICE) program is

FIGURE 8.5

Vs 1 0 PWL(O O 0.01U 30 20U 30)
TLINE 1 0 2 0 z0=50 TD=2U

RL 2 0 100

.TRAN 0.01U 20U 0 0.01U

.PRINT TRAN V(2) I(VS)

.PROBE

.END

The results for the load voltage are plotted using the .PROBE option of the personal
computer version PSPICE in Figure 8.10(b), and the input current to the line is plotted
in Figure 8.10(c). Comparing these with the hand-calculated results shown in Figure
8.5 shows exact agreement.

The problem shown in Figure 8.6 is coded as shown in Figure 8.11(a). The source
voltage is represented as having rise and fall times of 0.01 ws, as shown in Figure
8.11(a). The nodes are numbered in Figure 8.11(a), and the SPICE coding is

FIGURE 8.6

vs 1 0 PWL(O O 0.01U 100 6U 100 6.01U 0)
RS 1 2 150

TLINE 2 0 3 0 zZ0=50 TD=2U

RL 3 0 1E-6

.TRAN 0.01U 20U 0 0.01U

.PRINT TRAN V(2) I(RL)

.PROBE

.END

The solution for the input voltage V(2) is plotted in Figure 8.11(b) and is identical
to the graphical solution in Figure 8.6(c). The solution for the load current I(RL) is
shownin 8.11(c) and is identical to the graphical solution in Figure 8.6(d). For the other
waveform shown in Figure 8.6(e), we need to change only the source specification to

VS 1 0 PWLO 0 6U 100 6.01U 0)

The result is shown in Figure 8.11(d) and is identical to the graphical solution shown
in Figure 8.6(e).
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FIGURE 8.10 Results of the exact SPICE model for the problem of Figure 8.5.
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FIGURE 8.11 Results of the exact SPICE model for the problem of Figure 8.6(c)—(e).

8.1.5 The Laplace Transform Solution

An alternative method of solution of the transmission-line equations is the Laplace
transform method. Taking the Laplace transform of the transmission-line equations
in (8.1) with respect to time reduces these to ordinary differential equations as

d . n

—Vi(z,5) = —sl1(z,5) (8.40a)
dz

d . N

—1I(z,8) = —scV(z,s) (8.40b)

dz
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FIGURE 8.11 (Continued)
where s is the Laplace transform variable [A.2, A.5]. Differentiating each equation

with respect to z and substituting the other gives the uncoupled second-order differ-
ential equations as

a . §2 .

TZZV(Z,S) = EV(Z’ 5) (8.41a)
d* . 2,

Ll = 1) (8.41b)

dz? V2
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where v = 1/+/Ic is the velocity of propagation of the waves on the line. The solution
to these is simply [A.2, A.5]

V(z,8) = e VT (5) 4 VT (5) (8.42a)
5 1 —sz/v{r+ 1 sz/v {7—
I1(z,5) = —e VT (s) — —e*'" V7 (5) (8.42b)
Zc Zc

where the characteristic impedance is Z¢c = +/I/c. Using the time shift property of
the Laplace transform:

A ()= ft+a) (8.43)
gives the time-domain solution in (8.3).

8.1.5.1 Lines with Capacitive and Inductive Loads There are two advantages of
using this Laplace transform method of solution. It allows a straightforward solution
when the terminations contain dynamic elements, that is, inductive and/or capacitive
elements. In addition, it also provides a method of including /f skin-effect losses as
we will see later.

Sketching the source and load voltages on a line that has resistive terminations
is quite simple. Sketching these voltages when one or both of the terminations are
dynamic (capacitive or inductive) is a bit more complicated, but the use of the Laplace
transform simplifies that process. Consider the situation shown in Figure 8.12(a),
where the source resistance is Rg = Zc and hence the line is matched at the source.
The load, however, is a capacitor representing, perhaps, the input to a CMOS logic
gate. The source voltage is a pulse or step function rising to a level of Vj volts
and remaining there, that is, Vs(z) = Vpu(#), where u(¢) is the unit step function.
This represents the transition from a logic 0 to a logic 1. In order to analyze this,
we transform it with the Laplace transform, where s denotes the Laplace transform,
variable as shown in Figure 8.12(b). The capacitor has an impedance of Z;, = 1/sC
[A.2, A.5]. The reflection coefficient at the source is zero as it is matched:

s=0 (8.442)

and the reflection coefficient at the load is

Z1, — Zc
ZL+ Zc

1Z
sCC

1
—+Z
sC+C

1 —sT,
= - %¢ (8.44b)
1+ sTc

I'L =
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FIGURE 8.12 Illustration of the Laplace transform method of computing the load voltage
time-domain response for a capacitive load.

and the time constant is denoted as [A.2, A.5]

Tc = ZcC (8.45)

Since the source is matched, we will only have a forward-traveling wave incident at
the load and a reflected wave traveling back to the source. The load voltage is

VL(I) = (1 + FL) mvou(f TD) (846)

Transforming this yields

1
VL) = (1 +TL(s) 5 Vs(s)e P
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1
_ TC] V()€7STD
<s + TC) s
1 1 ,
Voe TP (8.47)

E_T
s To

The 1/2 represents the voltage division factor for the initially sent out wave:
Zc/((Rs = Zc) + Zc) = 1/2. The term e—sTo represents a one-way time delay of
Tp. The final result has been expanded in partial fractions. Inverse transforming gives
[A.2, A5]

(=Tp)

Vi) = Voult — Tp) — e T¢ Vou(t — Tp) (8.48)

This waveform is sketched in Figure 8.12(c). This result makes sense because the
incoming traveling wave is a pulse with zero rise time. Initially, the capacitor looks
like a short circuit gradually transitioning to an open circuit. Ideally (with an open-
circuit load instead of a capacitor), the load voltage should rise abruptly to Vj at
t = Tp. The effect of the capacitor is to introduce a time delay (measured at the
50 % point) t4, thereby giving the load voltage a rise time when the source had none.
Evaluating (8.48) for V() = 0.5Vp gives this time delay as

tq = 0.693T¢
= 0.693CZc (8.49)

For example, for a 50-£2 line and a 5-pF load capacitor, we would obtain a time delay
of 0.173 ns in addition to the line one-way time delay of Tp.

Suppose we replace the capacitive load with an inductive one as shown in Fig-
ure 8.13(a). Carrying out the analysis of the previous section but with Z;, = sL gives
a similar result. The reflection coefficient at the source is again zero as it is matched:

s=0 (8.50a)

and the reflection coefficient at the load is

1, — Zc
ZL+Zc
sL — Z¢c
sL+Zc
STL—l

= (8.50b)
sTi, + 1

I'L =
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FIGURE 8.13 Illustration of the Laplace transform method of computing the load voltage

time-domain response for an inductive load.

and the time constant is denoted as [A.2, A.5]

T—L
L—ZC

The transformed load voltage is

1
Vi) = (14 TL) 5 Vs(s)e TP

= 71 Voe o

n 1
s+ —
I
Inverse transforming this gives [A.2, A.5]

_(=Tp)
VL@t)=Voe L u(t—Tp)

(8.51)

(8.52)

(8.53)

which is plotted in Figure 8.13(c). This result makes sense because the incoming
traveling wave at the load is a pulse with zero rise time. Initially, the inductor looks

like an open circuit gradually becoming a short circuit.

8.1.6 Lumped-Circuit Approximate Models of the Line

As was the case for the frequency-domain analyses, the line may, under certain re-
strictions, be approximated with a lumped-circuit model as shown in Figure 8.14.
Figure 8.14(b) shows the so-called lumped-Pi model, and Figure 8.14(c) shows the
so-called lumped-T model. The lumped-Pi model extends the prediction frequency
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FIGURE 8.14 Illustration of (b) lumped-Pi and (c) lumped-T approximate time-domain
circuits.

range slightly larger than that of the lumped-T model for high-impedance loads, that
is, Rs, R > Zc, and vice versa [B.15].

8.1.6.1 When is the Line Electrically Short in the Time Domain? In previous
chapters, we noted that lumped-circuit models of a distributed parameter structure
such as a transmission line are valid only so long as the line length is electrically short at
the excitation frequency. For the time-domain analysis this presents problems because
a time-domain waveform contains a continuum of sinusoidal frequency components
according to Fourier analysis. However, if we specialize the analysis to the primary
time-domain waveforms today, digital clock and data pulse trains, we can obtain a
useful criterion for this. In Section 1.6.2 of Chapter 1, we showed that a reasonable
criterion for the maximum significant spectral content of a digital waveform (its
bandwidth) consisting of a periodic pulse train of trapezoidal pulses having equal rise
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and fall times of 7; is
BW=— Hz (8.54)

In order for the line to be electrically short at the highest significant frequency, we
require that

1
L < — A
10
1
=0 (8.55)
10 fmax
Substituting (8.54), fmax = 1/, yields
. > 10Tp (8.56)

In other words, the pulse rise and fall times must be greater than approximately
10 one-way time delays of the line in order for the line to be classified as “electrically
short.” For example, for a pulse train having 100 ns rise and fall times and a line
whose surrounding medium is free space, the total line length should not exceed 3 m.
On the contrary, for a stripline representing a printed circuit board with innerplanes
and a pulse train having 1 ns rise and fall times, the maximum line length should not
exceed 1.4 cm (0.55 in.).

For today’s high-speed digital systems, the maximum length allowed in order for
the line to be electrically short and the lumped-circuit models of Figure 8.14 to be
valid often requires impractically short lengths of PCB lands. In order to extend the
frequency range of validity of these lumped-circuit models, one might divide the
total line length into sections that are electrically short and model each section with
a lumped-Pi or lumped-T structure. This gives a progressively very large lumped
circuit. It has been shown, however, that this process for such lines does not extend
the frequency range enough to warrant the resulting complexity of the lumped circuit
[B.15].

8.1.7 The Time-Domain to Frequency-Domain (TDFD) Transformation
Method

The solution of a lossless line is virtually a trivial process using the SPICE (PSPICE)
circuit analysis program and the exact model of a lossless line that is built into that
program. Losses are not included in that model and are difficult to handle, as we will
see in subsequent sections of this chapter. However, a simple technique for determin-
ing the time-domain response of a transmission line that will handle losses is known
as the time-domain to frequency-domain transformation or TDFD method. This is a
straightforward adaptation of a common analysis technique for lumped, linear circuits
and systems that was described in Section 1.6.3 of Chapter 1 [A.2]. Here, we briefly
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review that method. The only potential drawback to the method is that it is restricted
to linear loads since the method inherently relies on the principle of superposition.
However, it is an alternative technique for verifying other methods. Consider the
single-input, single-output lumped linear system shown in Figure 8.15(a). The input
to the system is denoted as x(z), the output is denoted by y(#), and the unit impulse
response (x(t) = &(t), y(t) = h(¢)) is denoted by A(t). The independent variable for
the lumped system is time denoted by ¢. In the time domain, the response is obtained
via the convolution integral [A.2, A.5]

t

y(t) = /h(t — 1) x(1)dt (8.57a)
0
which is denoted as
y(t) = h(t) * x(t) (8.57b)

In the frequency domain, this translates to

V(jo) = H(jo)X(jw) (8.58)
x(1) y(0) xXGoy | . Y (jo)
—1 40 —— H(jo) p——
(a) b

L @ L
T HoRENY
e
Vs(t)<i5. }; i © } 1 f,)

Linear, single-input single-output system
©

FIGURE 8.15 [Illustration of the time-domain to frequency-domain transformation method
of computing time-domain responses of linear MTLs: (a) a single-input, single-output lin-
ear system in the time domain, (b) a single-input, single-output linear system in the fre-
quency domain, and (c) representation of an MTL as a single-input, single-output linear
system.
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where H( jw) is the Fourier transform of h(r) and is called the transfer function
of the system as illustrated in Figure 8.15(b) [A.2]. The frequency-domain transfer
function H( jw) can be easily obtained by applying unit magnitude sinusoids to the
input and computing the response using the usual phasor computational methods
with the frequency of those sinusoids varied over the desired frequency range as
illustrated in Figure 8.15(b). Once H( jw) is obtained in this manner, the time-domain
impulse response is obtained as the inverse Fourier transform of H( jw): h(f) =
F {H(jo)}.

The method is a very intuitive one. Any time-domain waveform can be decom-
posed into its sinusoidal components with the Fourier series if it is periodic and
the Fourier transform if it is not periodic [A.2]. A periodic waveform with period
P has these frequency components appearing at discrete frequencies that are mul-
tiples of the basic repetition frequency: fo = 1/P, 2 fo, 3 fo, . ... If the waveform
is nonperiodic, these frequency components appear as a continuum. Nevertheless,
the method for computing the time-domain response can be described quite sim-
ply in the following manner. Decompose the input signal via Fourier methods into
its constituent sinusoidal components (magnitude and phase). Pass each component
through the system and sum in time the time-domain responses at the output to
each of these components by using phasor methods (See Figure 1.21 of Chapter 1 .)
The magnitudes of the output sinusoidal components are the products of the magni-
tudes of the input sinusoidal components multiplied by the magnitude of H( jw) at
that frequency. The phases of the output sinusoidal components are the sums of the
phases of the input sinusoidal components and the phases of H( jw) at that frequency.
Therefore,

Y (jor)| = |H(jor)| x |X(jor)| (8.59)

LY(jay) = LH(jo) + LX(jor) (8.59b)

Clearly, a major restriction on the method is that the system be linear since we are
implicitly applying the principle of superposition.

In the case of a periodic waveform with period P, these frequency components
appear at discrete frequencies that are multiples of the basic repetition frequency
wo = 2nfo = 27/ P, and x(¢) can be represented as the sum of these time-domain
sinusoidal components with the Fourier series as [A.2, A.3]

NH
x(t) = co + chcos (nwot + Lcg) (8.60)

n=1

where we have truncated the series to contain only NH harmonics. In the case of
a periodic pulse train having trapezoidal pulses of peak magnitude X, duty cycle
D = t/ P, where 7 is the pulse width (between 50% points), and equal rise/fall times
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of t;, the items in (8.60) become [A.3]

co=XD (8.61a)

. — Sy pin (n7D) sin (n7 foT;) (8.61b)
naD nw fotr

len = —nw (D + fytr) (8.61c¢)

For this case of a periodic waveform, we compute the frequency-domain transfer
function at each of the NH harmonic frequencies with the methods of Chapters 6
and 7 (including skin-effect losses if we choose):

H(jnwo) = |H(jnwo)|LH(jnwo) (8.62)

Then multiply each appropriate magnitude and add the angles to give the time-domain
output as

NH
Y0) = coHO)+ > e |H (jnwp)| cos (nawot + Loy + LH (jnwp))  (8.63)

n=1

In this way, we can include /f dependent skin-effect losses that are difficult to
characterize directly in the time domain as we will discuss in Section 8.2.1, but again
this supposes a linear system. This method is implemented in the FORTRAN program
TIMEFREQ.FOR described in Appendix A . Actually, the periodic waveform results
can be used for a nonperiodic waveform if we choose the pulse wave shape over
a period to be that of the desired pulse and also choose a repetition frequency low
enough that the response reaches its steady-state value before the onset of the next
pulse.

Consider applying these concepts to an MTL. Suppose we apply a voltage source
Vs(¢) to the ith conductor at z = 0 and desire the time-domain response of the jth line
voltage, say, at the far end of the line z = &, V j(Z, 1). In order to view this problem
as a single-input, single-output system, we imbed the transmission line along with the
terminations into a two-port as illustrated in Figure 8.15(c) and extract the input to the
system, Vs(1), and the output of the system, V ;(Z, t). The frequency-domain transfer
function between these two ports, H; i( jw), can be computed by the phasor methods
of Chapters 6 and 7 wherein Vs(¢) is a sinusoid, Vs(¢) = sin(w t). Once the frequency-
domain transfer function is obtained in this fashion, the time-domain response can be
determined for any time variation of Vg(¢) using the above summation of the responses
to its sinusoidal components in (8.63), which amounts to the convolution integral of
(8.57).

An important advantage is that this method can directly handle frequency-
dependent losses such as skin-effect resistance of conductors. Another advantage is
that only phasor computational methods are required; there is no need to numerically
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integrate the time-domain transmission-line equations. A disadvantage is that the
transmission line is assumed to be a linear line; that is, the line parameters and the
terminations are assumed linear. For example, corona breakdown of the surrounding
medium as well as nonlinear loads such as diodes and transistors cannot be handled
with this method since it implicitly assumes a linear system. Nevertheless, the method
is simple to implement for determining the time-domain response of a transmission
line having linear terminations.

8.1.8 The Finite-Difference, Time-Domain (FDTD) Method

A numerical method for approximately determining the time-domain solution of the
transmission-line equations is the Finite-Difference, Time-Domain or FDTD method
[B.22-B.24, 2-5]. The derivatives in the transmission-line equations are discretized
and approximated with various finite differences. In this method, the position variable
z is discretized as Az and the time variable ¢ is discretized as Af. There are many
ways of approximating the derivatives d/dz and 9/0¢ in those equations [2,6]. We used
a particularly simple such discretization in the finite-difference method of solving
Laplace’s equation in two dimensions in Chapter 5 .

Consider a function of one variable, f(¢). Expanding this in a Taylor series in a
neighborhood of a desired point #y gives

/ Atz /! At3 111
flao + A1 = [(t0) + Aif o) + = ") + S [0 + o+ (8.64)

where the primes denote the various derivatives with respect to ¢ of the function.
Solving this for the first derivative gives

fto+ A1) — f(to) At

/ _ 1 Atz 117 8.65
f(to) = AL 7]‘ (to)—?f (10) — -+~ (8.65)

Thus, the first derivative is approximated as

Flagy = 100t AA’i — S g an (8.66)

where 6(A ) denotes that the error in truncating the series is on the order of A z. So
the first derivative may be approximated with the forward difference

A —
f’(to)éf(t0+ Afi f(to) (8.67)

This amounts to approximating the derivative of f() as with its slope about the region
of the desired point. If we expand the Taylor’s series as

! Atz /! At3 /1!
flto — AN = f(tp) — Atf'(t0) + Tf (o) — 7]‘ (to) + - - (8.68)
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the first derivative can be approximated as

fto) — fto — At) At Ar?

fl(t0) = v + jf”(to) - ?f”/(to) + - (8.69)

This gives the backward difference

— fto — A
f/(to);f(to) i(tlo 1) 8.70)

Other approximations known as central differences can be found by subtracting
(8.68) from (8.64) to yield the first derivative central difference approximation

, o flo+ AD = flig — An)
)= o 8.71)

with a truncation error on the order of A 2. Similarly, the second derivative central
difference is obtained by adding (8.64) and (8.68) to yield

flto + A =2 f(t0) + f(to — A1)
AL?

)= (8.72)

with a truncation error on the order of A 2. The discretization of Laplace’s equation
in the finite-difference method of Chapter 3 amounts to a central difference approx-
imation to Laplace’s equation. The stability of the solution of Laplace’s equation
resulting from that discretization is assured unlike the stability of the discretizations
of the transmission-line equations, which we now investigate.

Consider the discretization of the transmission-line equations in (8.1) for a two-
conductor line:

oV(z, t 0l(z,t
(z )+l (z ):
0z ot

0 (8.73a)

iz, V(z, 1)
+c =
0z ot

0 (8.73b)

We divide the line into NDZ sections, each of length Az as shown in Figure 8.16.
Similarly, we divide the total solution time into NDT segments of length At. In
order to ensure stability of the discretization and to ensure second-order accuracy,
we interlace the NDZ +1 voltage points, Vi, V2, ..., Vapz, VNDz+1, and the NDZ
current points, I1, I, . .., INpz, as shown in Figure 8.17 [2,3,A.9]. Each voltage and
adjacent current solution point is separated by Az/2. In addition, the time points
must also be interlaced and each voltage time point and adjacent current time point
are separated by At/2, as illustrated in Figure 8.17. This sequencing diagram shown
in Figure 8.17 is crucial for obtaining the correct discretization of the differential



THE SOLUTION FOR LOSSLESS LINES 381

Vl I 1 VZ VNDZ Y NDZ VNDZ+I

|+ + + +|
Source |  mm=m==-==- Load

Az Az

-— 7 —» - 7 —» -+ Az _—

L Il 1 L 1 1 -

I T T I T T »
z=0 % Az (NDZ - 1)Az [NszéjAz NDZ Az =2

FIGURE 8.16 Discretization of the line into NDZ segments of length Az for the FDTD
analysis.

equations. The central difference approximations to (8.73) become

Vn+l _ yn+l In+3/2 _ In+]/2

k+1 k k k
+1 =0 8.74a)
Az At (
t A
(n+3/2)At + ° IILI +3/2
Vn+l “
k
(n+ DHar 4 > > =V/{n;;l
Time e A A
k-1
(n+ /DAt T * —p > Jr2
4 A
nAr 4+ * ® V,\”
by
2
t } t } »
(k=3/D)Az (k— DAz (k—1/2)Az kAz 2
Position

FIGURE 8.17 Interlacing the current and voltage solutions in space and time for the FDTD
analysis.
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fork=1,2,...,NDZ and

A S /e 7
= =0 8.74b
Az te At ( )
fork =2,3,...,NDZ, where we denote
Vi =V ((k—1) Az, nAr) (8.75a)

=1 ((k - ;) Az, nAt) (8.75b)

The required recursion relations for the interior points on the line are obtained by
solving Eqgs. (8.74) giving

4 4 At
IZ 3/2 = IZ 12 _ —Zl_1 (V]:H_l1 — ]:"H) (8.76a)
fork=1,2,...,NDZ and
At + +
V,:"H = Vl? — —Zc_l (IZ 12 _ I,’: 11/2) (8.76b)

for k =2,3,...,NDZ. Equations (8.76) are solved in a leapfrog fashion. First, the
voltages along the line are obtained, for a fixed time, from (8.76b) in terms of the
previous solutions. Then the currents are obtained from (8.76a) in terms of the voltages
obtained from (8.76b) as well as previously obtained values. The solution starts with
an initially relaxed line having zero voltage and current values.

Next consider the incorporation of the terminal conditions. The essential problem
in incorporating the terminal conditions is that the FDTD voltages and currents at
each end of the line, Vi, I1, and VNpz+1, INDz, are not collocated in space or time,
whereas the terminal conditions relate the voltage and current at the same position
and at the same time. We will denote the current at the source (z = 0) as Ig and the
current at the load (z = %) as I ¢, as shown in Figure 8.18. The second transmission-
line equation given in Eq. (8.73b) is discretized at the source by averaging the source
currents Ig in order to obtain a value that is located in time at the same time point as

12
I;H/ as

+1 n
| ()]
17+1/2 S N /A I [Vl”“ — V{’] =0. (8.77a)
Az)2 2 At

Similarly, the second transmission-line equation, (8.73b), is discretized at the load by
averaging the load currents /1, in order to obtain a value that is located in time at the
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FIGURE 8.18 Discretizing the terminal voltages and currents of the line in order to incor-
porate the terminal constraints.

. . 1/2
same time point as Iggz/ as

o[ () X
+1/2 1
Az/2 2 ~ bt + ;¢ |Vidz1 — Vpzer | =0 (877b)

Equations (8.77) are solved to give the recursion relations at the source and the load:

2At At
yr+l oy Tzc—llim/z n EC—l [1§+1 + Ig} (8.782)
n+1 2At n+1/2 _ ﬂ

Vapz+1 = Wbz + AizcillNDZ Achl [IEH + If} (8.78b)
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In the case of resistive terminations, the terminal characterizations are written in
terms of a generalized Thevenin equivalent as

Vi =Vs — Rsls (8.79a)
Wpz+1 = VWL + RLIL (8.79b)
Inverting these gives
Is = —GsVi + GsVs (8.80a)
I, = GLVNDz+1 — GLVL (8.80b)

Substituting (8.80) into Egs. (8.78) gives the recursion relations for Vi and Vpz+1:

A “hi(a
yi (ZRSc + 1) {(ZRSC — 1) Vi —2RsI] T 4 (v§+1 + v§)}

At At
(8.81a)
and
Az - Az
Vibz1 = (RLC + 1) { (RLC - 1) Vipzs1 + 2RLAD,
At At
+ (Vﬁ+l + Vf)} (8.81b)
and the voltages at the interior points are determined from (8.76b):
n+1 n AL {12 )2
e (2 =) (8.81¢)

fork = 2,3, ..., NDZ. Equations (8.81) are first solved for the voltages and then the
currents are determined from those voltages using (8.76a) as

n+3/2 n+1/2 At —1 +1 +1
A v (v = vee) (8.81d)
for k =1,2,3,...,NDZ. For stability of the solution, the position and time dis-
cretizations must satisfy the Courant condition [2,3,6]

Az
At < — (8.82)
v

The Courant stability condition provides that for stability of the solution the time step
must be no greater than the propagation time over each cell. The Az discretization is
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chosen sufficiently small such that each Az section is electrically small at the signif-
icant spectral components of the source voltages Vs(¢) and V(). The FDTD method
described in this section is implemented in the FORTRAN code FINDIF . FOR, which
is described in Appendix A .

8.1.8.1 The Magic Time Step In order to ensure stability of the solution, we require
that the time step A 7 and spatial discretization A z satisfy the Courant condition given
in (8.82). Suppose we divide the total line length % into NDZ sections of length

&

Az

and divide the total simulation run time, final solution time, into NDT intervals of
length

Af = final solution time (8.83b)
NDT

The Courant stability condition in (8.82) requires that NDT and NDZ be related as

final solution time
NDT >NDZ x v x 7 (8.84)

Choosing the time step to give an equality in this relation is referred to as the “magic
time step”:

Az
At = — (8.85a)
v

or

final solution fi
NDT = NDZ x v x 050 ;on 1me (8.85b)

We will now prove that if the time step is chosen to be the magic time step, then
the FDTD method gives an exact solution to the transmission-line equations with no
approximation error!

In order to prove this amazing result, we will utilize the exact SPICE equivalent
circuit of the line given in (8.35) and (8.36) and shown in Figure 8.9(a). Consider this
representation for interior points along the line shown in Figure 8.19. The voltages
and currents to be solved for in the finite-difference solution are Vj, I, and Viy. The
currents and voltages I, Va, and I are auxiliary variables that are to be eliminated.
Each half of length Az/2 is modeled with its own exact solution with reference to
Figure 8.9(a) with a time delay of t/2, where

Az
r="" (8.86)
v
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z=(k— DA z=(k-1/2) Az z=kAz

FIGURE 8.19 Use of Branin’s method to prove the exact FDTD discretization for interior
current points for the magic time step.

In order to simplify the derivation, we again use the difference operator

D" f(1) = f(t £ m7) (8.87)
From Figure 8.19, we obtain
Vi = Zcla + D72 (VA — Zclp) (8.88a)
Va=—Zcli+ D72 (Vi + Zcln) (8.88b)
Va = Zcl + D72 (Vi1 — Zclg) (8.88¢)
Vier = —Zclg + D™V2 (Va + Zc i) (8.88d)

The objective is to eliminate Vp, I5 and Ig from these expressions. To do so, first
subtract (8.88a) from (8.88d) giving

(Virt = V) = —=Zc (s + Ip) + 2Zc D™ (8.89)
Next, subtract (8.88b) from (8.88c) giving
0=2Zcli + D™'? (Vier = Vi) = ZcD™ 2 (Ia + Ip) (8.90)
Multiplying (8.90) by D'/? gives
0 =2ZcDY? I + (Vi1 = Vi) = Zc (Ia + Ip) (8.91)
Subtracting (8.91) from (8.89) gives

Vit = Vi) = =Zc (D21 = D721 (8.92)
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FIGURE 8.20 Use of Branin’s method to prove the exact FDTD discretization for interior
voltage points for the magic time step.

Multiplying this by D and substituting the relation for the characteristic impedance
Zc = vl gives

(DWH—mez—w<§ﬂQ—DWQ> (8.93)
Substituting the magic time step At = Az/v and rearranging gives
3/2 12 Ar
D21 = D'l — 17! (DViws = DVi) (8.94)
z

which is the recursion relation for currents given in (8.81d).
Similarly, from Figure 8.20 we obtain

VA =Zche1+ D72 (Vi — Zcln) (8.95a)
Vi = —Zcly + D™YV2 (VA + ZeIi—1) (8.95b)
Vi = Zcla + D7V (Vg — ZcIy) (8.95¢)
Ve = —Zcly + D72 (Vi + Zcly) (8.95d)

The objective is again to eliminate Vya, Ia, and Vp from these expressions. To do so,
first add (8.95a) and (8.95d) giving

(Va+ VB) = —Zc (I — Ii—1) + 2Dy (8.96)
Multiplying this by D!/? gives

D2 (Va + Vi) = —Zc <D1/2Ik - Dl/zlk_l) 2V, (8.97)
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Next, add (8.95b) and (8.95¢) giving
2V = D™Y2 (Vo 4+ VB) — Ze D7V (I — L)) (8.98)
Multiplying (8.98) by D'/2 gives
2DV = (Va + VB) — Zc (Ik — Ii—1) (8.99)
Adding (8.96) and (8.99) gives

(Dl/zvk _ D—l/zvk) = —Zc( — i) (8.100)

Multiplying this by D'/? and substituting the relation for the characteristic impedance
Zc = (1/vc) gives

1
(DVi — Vi) = —— (Dl/zlk - D‘/21k_1> (8.101)
vc
Substituting the magic time step At = Az/v, gives
At 1 (12 1/2
DVi=Vi— ¢ (D L —D Ik_l) (8.102)
z

which is the recursion relation for voltages given in (8.81c).
Next, consider the source termination along with the first half section shown in
Figure 8.21. The relations are

Vi = Zcls + D™V (Vo — Zch) (8.103a)

Source

"y

FIGURE 8.21 Use of Branin’s method to prove the exact FDTD discretization for terminal
voltage points at the left end of the line for the magic time step.
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Va = —Zcly + D™V (V) + Zcls) (8.103b)

The objective is to eliminate V4. To do so, we multiply (8.103a) by D and multiply
(8.103b) by D'/2 and add the equations to give

DV, — Vi = —Zc¢ [21)1/211 —(DIs + Is)] (8.104)

Substituting the relation for the characteristic impedance Z¢ = 1/vc, along with the
magic time step At = Az/v gives

1 DIs + I DV, -V
[01/211—( S+S)}+c( L=V g (8.105)

Az/2 2 At

which is the source discretization relation given in (8.77a).
Similarly, consider the load termination along with the last half section shown in
Figure 8.22. The relations are

Ve = ZcInpz + DV? (Vapzs1 — Zcl) (8.106a)

VNDpz+1 = —ZclL + D™V (Vg + ZcInpz) (8.106b)

The objective is to eliminate Vg. To do so, we multiply (8.106a) by D'/? and multiply
(8.106b) by D and add the equations to give

DVozi1 = Vapz = —Zc [(DI+ 1) = 2" Iy | (8.107)

z
INDZ C
+
Vi Load
Az
-« B2
2
I I »>
z:(NDZ 7%} Az 2=NDZ Az z

FIGURE 8.22 Use of Branin’s method to prove the exact FDTD discretization for terminal
voltage points at the right end of the line for the magic time step.
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Substituting the relation for the characteristic impedance, Z¢ = 1/vc along with the
magic time step At = Az/v gives

Azl/z (D1L2+ L) D2 Inpy +C(DVNDZ+1At VNDZ41) _0 (8.108)
which is the load discretization relation given in (8.77b).

As an example, consider the two-conductor lossless line considered earlier and
shown in Figure 8.5. The exact solution for the load voltage V(% ¢) is sketched by
hand in Figure 8.5(b), and the SPICE results (using a 30-V source voltage with a
0.01-ps rise time) are sketched in Figure 8.10(b). In the following computed results,
we will designate

<
Az = ——
NDZ

final solution time
At =
NDT

The Courant condition given in (8.82) for stability of the FDTD solution translates to

v x final solution time
&z

NDT > NDZ

The magic time step occurs for an equality in this expression. Figure 8.23(a) shows
the FDTD predictions for zero rise time and NDZ =200 or Az =2m and the
magic time step of At = Az/v = 10ns. For a final solution time of 20 s, this gives
2000 time steps or NDT = 2000. The results are exactly those for the hand calculations
and the SPICE predictions. If we reduce the time step below that of the magic time step
using 4000 time steps or At = 5 ns, we observe considerable “ringing” on the leading
edge of each transition. The FDTD solution for NDZ = 1 (dividing the line into only
one section) and the “magic time step” of NDT = 10 or Az = 2 s is denoted as X
and gives the exact solution even for this course gridding of the line! Figure 8.23(b)
shows the FDTD predictions for a 0.1 ws rise time and NDZ = 200 or Az = 2 m and
the magic time step of At = Az/v = 10 ns. Again, the results are exactly those for the
SPICE predictions and the hand calculations. If we reduce the time step below that of
the magic time step using 4000 time steps or Az = 5ns, we observe less “ringing” on
the leading edge of each transition than for the zero rise time solution. The spectrum of
this 0.1- s rise time pulse has a bandwidth of approximately BW = 1/, = 10 MHz.
So the section length Az should be electrically short at this frequency requiring
Az<(1/10)(v/fmax) = 2m (fmax = I0MHz, v = 2 x 108 m/s). Thus, if we do not
wish to use the magic time step, we must further reduce Az to eliminate this ringing.
The results for the magic time step, NDZ = 1 and NDT = 10, are denoted with X and
again give the exact solution even for this course gridding of the line!
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Finite difference — time domain
(rise time = O us)

501
40}
E 301
9
<
S
> 201
NDZ = 200, NDT = 2000
o | NDZ = 200, NDT = 4000
X NDZ = 1,NDT =10
0 1 i L I 1 L " i i 1 n J
0 2 4 6 8 10 12 14 16 18 20
Time (ps)
(a)
Finite difference — time domain
(rise time = 0.1 pus)
40
30
e
B
2 20 B
>
1ok NDZ = 200, NDT = 2000
~~~~~~~~~~~ NDZ = 200, NDT = 4000
X NDZ =1,NDT =10
0 | L 1 n 1 " L 1 Il 1 L 1
0 2 4 6 8 10 12 14 16 18 20

Time (us)
(b)
FIGURE 8.23 Illustration of the computation of the load voltage of Figure 8.5 using the

FDTD method and comparison of the convergence to the choice of spatial and temporal dis-
cretization: (a) step response and (b) rise time of 0.1 s.
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8.1.9 Matching for Signal Integrity

We have seen how mismatches at the source and/or load of a transmission line can
cause the received voltage waveform to differ drastically from what was sent. In order
to prevent logic errors, it is necessary that the received pulses have levels, shapes,
and rise/fall times within certain allowable ranges. This is referred to as achieving
signal integrity. Hence, mismatches affect signal integrity. In order to illustrate the
detrimental effects of line mismatch, consider the typical line configuration shown in
Figure 8.24(a). This approximates two CMOS inverters connected by a transmission

Rg=10Q
+
Z-=50Q
80) ¢ A0
Tp
- N4 >
Lo=-3 L=+
Vs() &
5V Vinn=6i>(5:4.l7v
=t
(@
01 833
6.48
5.66
417 — 146
e P i S P B o e e e
| 4,17
: 4.01
| 2.78
i
: 1.85
: ” : 0.823
i It il Sininininininind
i It I 0.823
\ 1 i ! I 1 i i i 1 1 1 -
In 2Ip 3Ip 4Tp s5Ip 61p 7Ip 8Ip 9Ip 107p nTp 127
1 i 1 _0.549
1 " -1.23 -0.549 v =
1] L‘.-_—_.—_—_—_—_1.‘.—_—_—_-‘_—'_—_—_—_':_—_:;_315—_
" -2.78 -1.23
e e s s m T T e e e e s
-2.78

(®

FIGURE 8.24 [Illustration of “ringing” caused by mismatched lines in digital applications.
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line. The driver has a very low output impedance of 10 €2 and an open-circuit voltage
that rises to 5 V with zero rise time. The load CMOS inverter is represented as an open
circuit to facilitate graphing the waveform at its input. Typical CMOS devices have
an input circuit that looks like a capacitance of some 5—15pF. We will investigate the
effect of actual device capacitance using SPICE in later results. The line is represented
as having a characteristic impedance of 50 €2 and a general time delay. Sketching the
load voltage, the input voltage to the CMOS receiver, is simple. The source reflec-
tion coefficient is I's = —2/3, and the open-circuit load has a reflection coefficient
of I'L = +1. The initially sent out voltage is 50/(50 4+ 10) x 5 = 4.17 V. Figure
8.24(b) shows the resulting output voltage of the line. This illustrates “ringing” or
overshoot common on such mismatched lines that can possibly cause logic errors (see
Table 8.1).

It is common in digital circuits to eliminate this ringing using various match-
ing schemes. The most common matching scheme is the series match shown in
Figure 8.25(a). For typical CMOS gates, their source (output) resistances are less

r T T T RLOR r————- 'i
| | R = '
I | + |
1 V() | Ze, Tp | (open :
| | - | circuit) |
: $ . i
L Souree L__Load |
o L =+1
v, b———— (@) R+Rs=Zc
t
46K |
Yo
1
=V,
5%
I'__::__________:__q__._ ———— "
] —éVo
i
i
i
L B
T t >
T 27, 3T, t
(b)

FIGURE 8.25 Tllustration of how series matching eliminates ringing.
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than the characteristic impedances of PCB lines. Hence, a resistor R is added to the
input of the line (the output of the driving gate) such that

Rs+ R=Zc

This matches the line at the source. The initially sent out voltage wave will have a
level half the source voltage level or Vj/2. Typically, the load is an open circuit or
approximately so and hence the load reflection coefficient is 'y, = +1. In this case the
incident wave is completely reflected at the load giving a total of Vo /2 + Vp/2 = V)
as illustrated in Figure 8.25(b). Hence, the load voltage rises to V immediately
giving perfect signal integrity. Another advantage of the series match is that, for an
open-circuit load, no current flows in the line and hence the resistor R dissipates no
power.

A second scheme for matching is the parallel match shown in Figure 8.26(a).
Here, we place a resistor R in parallel with the load. We choose R such that the line

Y | r——— 1
| N 1 I
I 1 | I
| ] *] i
A6 1 Ze, Tp R S10] R, I
| | _1 |
I + | I
|__ Souce L _Load |
Ve(0h
VO —— (a) R ” RL:ZC
t
A0 |
Zc
I —————————=
Ry+Z, i
|
|
|
|
|
|
| >
Ty t

(®)
FIGURE 8.26 Illustration of how parallel matching eliminates ringing.
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is matched at the load:
RRy,
R+ Ry
= ZC

R|Ry =

The load voltage is plotted in Figure 8.26(b). Note that the initially sent out voltage
has a level of
Zc
Vinit = Rs + Zc Vo

This incoming wave at the load is totally absorbed and there is no reflected wave.
There are two disadvantages to the parallel match. First, the load voltage is always
less than the source level of Vj. For example, suppose Rs = 25, Z¢ = 50 €2, and
Vo = 5V. The load voltage level will be 3.33 V. In the parallel match case, we have
no reflected wave to bring the load voltage up to the source voltage level. The second
disadvantage of the parallel match case is that, even for an open-circuited load, the line
will draw current when the source is in the high state. Hence, the matching resistor R
will consume power.

As an example, consider a microstrip line shown in Figure 8.27(a) having glass
epoxy (&r = 4.7) as the substrate of thickness 47 mils and a land of width 10 mils. The
characteristic impedance computed using the results of Chapter 4 is Z¢ = 124 Q and
the effective relative permittivity is &, = 3.09. A line length of approximately 2 in.

—» 10 mils --—
!

777

=309 Zc=124Q £=2" Tp=03ns ]

(a)

K (1) 5V, 50 MHz, 50% duty cycle, 0.5 ns rise/fall times

[
>

20 ns (50 MHz)

FIGURE 8.27 An example of a digital microstrip line.



396 TIME-DOMAIN ANALYSIS OF TWO-CONDUCTOR LINES

would have a total one-way time delay of 7p = 0.3 ns. The source voltage waveform
is as shown in Figure 8.27(b) consisting of a 5-V pulse train with a repetition frequency
of 50 MHz and rise/fall times of 0.5 ns and a 50% duty cycle. The ideal case is shown
in Figure 8.28, where the load voltage is identical to that sent out but with only a

rree———————-— - E—_————————— 1
| 0Q | | |
I I I I
! Ao . |
I I + I I
| Vo (t | = |
| s (D | Tp=0.3 ns Voo Zc I
| | _| i
| le ol |
| —
Load voltage: the ideal case
6 T T T T T T T
5 -
4 H -
>
o 3 1
o
&
©
>
3 2} -
<]
|
1 H .
O J
I 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

Time (ps)

FIGURE 8.28 The ideal case of Figure 8.27 wherein the only effect of the line is a time
delay.



THE SOLUTION FOR LOSSLESS LINES 397

Load voltage with mismatched source and load
10 T T T T T T T

/\vA q

]

U/\V/\Vq

Load voltage (V)

' L
LAl

15 20 25 30 35 40
Time (ns)

<
wn kb
<

FIGURE 8.29 The mismatched case for a line connecting two CMOS inverters showing
extreme ringing that has logic error ramifications.

0.3-ns delay. Figure 8.29 shows the SPICE simulation for the actual configuration
illustrating a rather severe ringing even for this relatively short line. Logic errors will
clearly result for this situation. Figure 8.30 shows the series matching case where
a 114-Q resistance is inserted in series with the source to provide series matching.
The ringing is eliminated, but the load capacitance adds another time delay since
the time constant is ZcC = 0.62 ns. Figure 8.31 shows the case of a parallel match.
Ringing here is not eliminated because the impedance of the capacitor dominates
the parallel resistance at frequencies in the high-frequency portion of the spectrum
giving a mismatch. The 124-€2 resistor in parallel with the 5-pF load capacitance has
a break frequency of f; = 1/2n ZcC = 257 MHz, which is considerably below the
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FIGURE 8.30 Series matching eliminates the ringing but the capacitive load imposes an
additional time delay.

bandwidth of BW = 1/t, = 2GHz. Hence, for frequencies above 257 MHz the line
is not matched.

8.1.9.1 When is Matching Required? Matching a line is not always required in
order that the voltage waveforms at the output of the line be approximately the same as
the waveforms at the input to the line. Clearly, if the line is sufficiently short, matching
will not be required. In general, we can obtain a time-domain criterion where the line
is electrically short at the significant frequencies of the pulse spectrum. This was
obtained in Section 8.1.6.1 in order to determine when a lumped-circuit model of the
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FIGURE 8.31 Parallel matching does not eliminate ringing because the load capacitance is
not an open circuit and causes mismatch at the higher frequencies of the input pulse.

line was adequate. The same criterion applies here:
. > 10Tp (8.109)
Hence, if the pulse rise time is greater than 10 one-way time delays of the line, the

line and any mismatches should not significantly degrade the shape of the output
waveform.

8.1.9.2 Effects of Line Discontinuities Until now there are no discontinuities along
the line; that is, there are no changes in cross section along the line and there are no
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terminations added along the line. In this section, we will investigate the effects
of discontinuities along the line. A common discontinuity is where the line cross
section changes, for example, the line width changes at some point as illustrated in
Figure 8.32(a). Hence, the first portion has characteristic impedance Zc; and the
second portion has characteristic impedance Zc». First, consider a wave traveling on
line 1 that is incident on the junction. A portion of the incident voltage, vi1, is reflected
back to the left and is given by v;; = I'12vi; where the reflection coefficient is

_Zcoo— Lo

I'p=
Zco+ Zc

(8.110a)

since the incoming wave essentially sees a termination impedance that is the charac-
teristic impedance of the second line. In addition, a portion of the incident voltage, v,
is transmitted across the junction onto the second line and is given by vy = T1ovi;.
The total voltage on each side of the junction must be equal:

Vi1 + U1 = v (8.110b)

Hence, the reflection and transmission coefficients are related as

1+T1="Tno (8.110¢)

and the transmission coefficient is given by

2Z¢2

- (8.110d)
Zco+ Zc

T,

This process is illustrated in Figure 8.32(b).

A similar process governs a wave on line 2 that is traveling to the left and strikes
the junction as illustrated in Figure 8.32(c). A portion of the incident voltage, vi», is
reflected back to the right and is given by vy» = I'>1 vip, where the reflection coefficient
is

_Zc1—Zc2

Iy =
Zc1+ Zc2

(8.111a)

since the incoming wave essentially sees a termination impedance that is the charac-
teristic impedance of the first line. In addition, a portion of the incident voltage, v,
is transmitted across the junction onto the first line and is given by vy = T21v;2. The
total voltage on each side of the junction again must be equal:

V2 + U2 = vy (8.111b)
Hence, the reflection and transmission coefficients are related as

14Ty =717 (8.111¢)
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FIGURE 8.32 Reflections caused by a line discontinuity such as a change in line width.
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FIGURE 8.33 An example for calculating the effects of a line discontinuity: (a) the reflection
and transmission coefficients, (b) plots of the midpoint and (c) terminal voltages, and (d)
confirmation from a SPICE analysis.
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and the transmission coefficient is given by

271

= — (8.1114d)
Zc1+ Zc2

1

This process is again illustrated in Figure 8.32(c).

We can again sketch the voltage waveforms at the load and at the junction by
tracing the waves and using the above transmission and reflection coefficients while
noting the direction of travel of the incident wave. For example, consider the series
connection of two different lines illustrated in Figure 8.33(a). We wish to sketch the
voltage at the load and at the junction. The line is series matched at the source and
terminated in an open circuit. Line 1 has a total time delay of 1 ns and a characteristic
impedance of 50 €2, whereas line 2 has a total time delay of 2 ns and a characteristic
impedance of 100 2. First, we compute the appropriate reflection and transmission
coefficients for a wave incident on the junction from line 1 as shown:

_Zcor—Za

" Zoo+ Ze
100 — 50

~ 100+ 50

IND)

27¢2
Zcy+ Zc
200
100 + 50

Ty, =

Observe that 1 4+ I'12 = T7. Similarly, for a wave incident on the junction from line
2, we obtain
_Zcar—Zce
 Zoi+ Zer
50 — 100
~ 50+ 100
1

3
2Z¢

Zci+ Zc

100
50+ 100
2

3

I

1 =
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Again, observe that 1 + I'y; = T51. The initial voltage sent out onto line 1 is
Z
Cl 5V
(Rs = Zc1) + Zci
=25V

Vinit =

Figure 8.33(b) shows the load voltage at the end of line 2. The initial voltage of
2.5 V is sent out and at one time delay of line 1, 1 ns, arrives at the junction. A
voltage of I"'122.5V = 0.833V is reflected to the left, arriving at the source after
another 1 ns, where it is completely absorbed. A voltage of 7122.5V = 3.333V is
transmitted across the junction onto line 2, arriving at the open-circuit load after
2 ns more or 3 ns. The open-circuited load had a reflection coefficient of +1, and
hence 3.333 V is reflected. Thus, the total voltage is 6.667 V. This reflected voltage
of 3.333 V arrives at the junction incident from the right after another 2 ns where
1513.33V = 2.222V is transmitted across the junction and after an additional 1 ns
arrives at the source where it is completely absorbed. However, a reflected voltage
of '713.33V = —1.111V is reflected at the junction sending this back to the right,
arriving at the load after 2 ns more or 7 ns. Since the load reflection coefficient is
+1, this is totally reflected giving a total of 4.444 V. The process continues where the
incoming (from the right) wave of 1 (reflected at the load) arrives at the junction after
2 ns more where I'y1 (—1.111 V) = 40.37V is reflected back to the load, arriving
there after an additional 2 ns or 11 ns where it is completely reflected giving a total
of 5.185 V.

Sketching the voltage at the junction is done in a similar process and is shown
in Figure 8.33(c). The initially sent out voltage of 2.5 V arrives at the junction at
1 ns, where I'122.5V = 0.833 V is reflected and 7122.5V = 3.333 V is transmitted
across the junction onto line 2. We can calculate the total voltage at the junction
either as vij; + vy = 2.5 + 0.833 = 3.333V or as vp = 3.333 V since the voltages
on either side of the junction must be equal. The reflected voltage of 0.833 V is
totally absorbed at the matched source, but the transmitted voltage arrives at the
load after an additional 2 ns and is totally reflected giving 3.333 V, arriving at the
junction (as an incident wave from the right) after another 2 ns or a total of 1 ns
+2 ns +2 ns = 5 ns. This is reflected as I'313.333V = —1.111 V and transmitted as
7,13.333 V = 2.222 V. Since the total voltage on either side of the junction must be
the same, we obtain either (1 4+ I'21)3.333V =2.222V or 75;3.333V =2.222 V.
Adding this to the voltage of 3.333 V already present gives a total voltage of 5.556 V.
The 2.222 V is reflected and arrives at the load after another 2 ns, at which time it
is completely reflected arriving at the junction after another 2 ns or a total of 9 ns.
This is reflected as ['212.222 V = —0.741 V. Adding this to the voltages present from
previous reflections gives a total of 4.815 V. This is sketched in Figure 8.33(c).

PSPICE can be used to sketch both these voltages. The PSPICE code is

EXAMPLE
Vs 1 0 PWL(O O 1.0P 5 100N 5)
RS 1 2 50
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Tl 2 0 3 0 z0=50 TD=1IN
T2 3 0 4 0 2z0=100 TD=2N

RL 4 0 1E8

.TRAN 0.1IN 20N O 0.1N
.PROBE

.END

and we have used a rise time of 1 ps to simulate the step voltage. The voltages at the
junction and at the load are sketched using PROBE in Figure 8.33(d), which confirm
the hand-calculated plots.

In the previous example, series matching at the source does not eliminate reflections
as evidenced in the computed results. This is due to the discontinuity. Reflections at
the discontinuity that are sent back to the source are absorbed at the source because of
matching, but a portion of the incident wave at the discontinuity is transmitted across
the discontinuity and sent to the load. Because the load is not matched to the second
part of the line, a reflection is transmitted back to the left, which is incident on the
discontinuity and hence a portion is transmitted across it toward the source where it
is absorbed. Consider the reverse, that is, suppose we parallel match at the load but
do not series match at the source. A wave sent out by the source and incident on the
discontinuity will create a reflection that is sent back to the source where it will be
reflected. The portion of the incident wave that is transmitted across the discontinuity
will be incident on the load but will be completely absorbed because the load is parallel
matched. But the portion of the wave reflected at the source will again be incident
on the discontinuity, and a portion will be transmitted across the discontinuity. This
will again be incident on the load where it is absorbed. But we will have reflections at
the source and at the discontinuity. Hence, in order to eliminate reflections we must
series match at the source and parallel match at the load.

8.2 INCORPORATION OF LOSSES

Losses occur in the conductors and in the surrounding medium. Since these losses
are, in general, frequency dependent, the frequency-domain representation of the
transmission-line equations is the best way to represent them. Hence, the frequency-
domain transmission-line equations are (see Chapter 2)

W;ij@ = - [r@+ jol; @] 1z,0) = joll z, )
\—/_’
Zi(w)
@l (8.112a)
%z’w) = 8@ V(w0 — jocV(z 0)

= -9 () V(z, w) (8.112b)
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where the per-unit-length impedance and admittance, respectively, are

2 (@) = Zi (w) + jol (8.113a)

¥ (@) =g(w) + joc (8.113b)
and the internal impedance of the conductors is
Zi(w) =r(w)+ joli (o) (8.113¢)

The frequency-dependent per-unit-length (pul) resistance is denoted by r(w), whereas
the frequency-dependent pul internal inductance due to magnetic flux internal to the
conductors is denoted by /j(w) and w = 2xf is the radian frequency of excitation of
the line. The frequency-dependent pul conductance due to losses in the surrounding
dielectric is denoted by g(w). The external pul parameters of inductance, /, and ca-
pacitance, c, are essentially independent of frequency up to frequencies in the lower
GHz range. The relative permittivity & of the surrounding dielectric medium may be
a slight function of frequency, in which case ¢ will be slightly frequency dependent.
For example, polyvinyl chloride, a typical wire insulation material, has e, = 4.3 at 10
kHz, but this decreases to &, = 3 at 100 MHz [7]. The fact that some of the per-unit-
length parameters are generally functions of frequency presents no problems in the
solution of these frequency-domain versions of the transmission-line equations. These
equations are solvable at each frequency by evaluating the per-unit-length parameters
at that frequency and including them as constants at that frequency (see Chapter 6).

The Laplace transform of these equations is also a convenient and meaningful way
to represent them. Replacing s <= jw yields

ALY =21z
dz
=—3i(s)1(z, ) — sl (z,s) (8.114a)
dI[(lZ’ 5) =—9(s) 1% (z,5)
Z

= -3V (z,8) —scV (2, 5) (8.114b)
and the transform of the internal impedance is denoted as
Zi () = r(s) + sl (s) (8.115)

In the time domain, Eqs. (8.114) give convolutions:

aVi(z, 1) al (zt, 1) (8.1162)

™ =—zi(®) xI(z,1)—1
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ol (z,t oV (z,t
e JapAA il (8.116b)
0z ot
where x denotes convolution as [A.2, A.5]
t
zi(O)xI(z, 1) = /zi Iz, t—1)dt (8.117a)
0
t
g®) *xV(z,t) = /g(r)V(z, t — 1)dt (8.117b)
0

and z; (f) and g (¢) are the inverse transforms of the pul internal impedance Z;(s) and
the pul conductance g (s):

i) = zi(® (8.118a)

g(s) — g (8.118b)

Hence, frequency-dependent per-unit-length parameters can be easily included in the
frequency-domain transmission-line equations, but their inclusion in the time-domain
transmission-line equations presents significant computational problems because of
the requirement to (1) obtain the time-domain per-unit-length parameters from the
frequency-domain parameters and (2) perform the required convolution.

8.2.1 Representing Frequency-Dependent Losses

Representation of these frequency-dependent losses in the frequency domain was
discussed in Chapter 4 . In this section, we will summarize those important concepts. In
addition, we will investigate the implementation of convolution with these frequency-
dependent loss parameters.

8.2.1.1 Representing Losses in the Medium The primary loss mechanism in di-
electrics is due to polarization loss where the bound charges are represented by dipoles
[A.1]. Their rotation to align with changes in an applied sinusoidally varying electric
field lags behind and is not complete at the higher frequencies. This is represented by
a complex permittivity as [7,8]

E=¢e— jg (8.119)
where ¢, is due to the lag in the rotation of the bound charge dipoles to align with

the applied electric field with increasing frequencies. Dielectrics usually have a very
small and generally negligible conductivity o due to free charge in them. Substituting
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(8.119) into Ampere’s law gives

oy

Vx H=0E+ jwé

= (0 + wep) E+ joe
————

ot

(8.120)

Oeff

Hence, the effective conductivity representing conductive and polarization losses is
Oeff = (0 + wsp) (8.121)

The loss tangent of the material is tabulated in handbooks at various frequencies [9]
and is the ratio of the conduction current to the displacement current as

(0 + wap)
we

~ % (8.122)
&

tand =

The polarization losses represented by we;, will dominate the resistive losses that are
represented by o in typical dielectrics of practical interest. Both ¢ and ¢, are functions
of frequency. Hence, the loss tangent is frequency dependent. Therefore, the effective
conductivity of a dielectric is frequency dependent and is related to the loss tangent
as

Oeff = w &tand (8.123)

Hence, in a homogeneous medium, the per-unit-length conductance is related to the
per-unit-length capacitance as

Oeff
8= ¢
&

= wtandc (8.124)

Since the loss tangent is a function of frequency, this does not imply that the per-unit-
length conductance increases linearly with frequency.

The frequency-dependent complex permittivity in (8.119) can be represented over
the frequency range of interest with the Debye model [7,8,10-12] as

&(w) = e(w) — jep(w)
N K

= PR 8.125
enf + ; I o ( )
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and t; are the dipole relaxation time constants. At infinite frequency, lim enr = &g

f— o0
[7,11]. Atdc, &rg0 = enr + >, Ki. Noting that
K; 1— jot; K; — jKiwTt;
X =
1+ jor, 11— jot 1+ 0?7?
we obtain the real and imaginary parts of &(w) as
= Ki 8.126
£(w) = shf+zl+w22 (8.126a)
N
Kiwri
gpw)= Yy —— 8.126b
p (@) ;1 e (8.126b)

The Debye model satisfies the Kronig—Kramers requirements for causality ob-
tained in Section 2.4.1 of Chapter 2 . Also, from Section 2.4.1 of Chapter 2 , in order
for the inverse transform to represent a real function of time, the real part of the com-
plex permittivity must be an even function of frequency, that is, e(w) = ¢ (—w), and
the imaginary part must be an odd function of frequency, that is, ep(w) = —&p (—w),
which (8.126) satisfy. The terms in the model, ey, K;, and t;, can be obtained by
comparison with measured frequency response data [10]. Figure 8.34 illustrates a
frequency response plot of the real and imaginary parts of the complex permittivity
for typical dielectrics [7,11]. The real part decreases from the dc value of &g to
its value at high frequencies of e5, = £, exhibiting resonances at w; = 1/7; much
like a low-pass filter having several cutoff frequencies. The real part of the model in
(8.126a) models this behavior but excludes the resonances shown. The imaginary part
exhibits resonances at each w; = 1/1; in a form like that of bandpass filters. Equation
(8.126b) models this behavior of the imaginary part.

8.2.1.2 Representing Losses in the Conductors and Skin Effect As discussed in
Chapter 4, as frequency increases, the currents in the conductors move to their sur-
faces, eventually residing in depths on the order of a skin depth

1
0 = ———— 8.127
e T o ( )

For isolated conductors of circular cylindrical cross sections (wires), the current dis-
tribution at dc and at high frequencies where skin effect is well developed is illustrated
in Figure 8.35. Hence, we can obtain approximations to that pul resistance as

1
rde = W Q/m
% ry <28 (8.128)
lide = ;L;; =05x 1077 H/m
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Im(e) = €k

(®

FIGURE 8.34 [Illustration of the frequency response of the real and imaginary parts of the
complex permittivity & = & — jg, of a lossy dielectric.

?

1 1 Ko -
Ihf = =—/=Vf @/m

2rrwod  2ry | 7o ro > 28 (8.128b)
! ko 1 H/m

drry \ o JF

Y
Z

(a) r,<<28 (b) ry>>28

Linf =

FIGURE 8.35 Illustration of skin effect for a solid wire.
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FIGURE8.36 Asymptotic representation of the frequency response of the internal impedance
of a wire.

Again, observe that the high-frequency resistance rps increases as the square root
of frequency, +/f, whereas the high-frequency internal inductance /; ps decreases as
the square root of frequency, 1/./f. Hence we may, as a reasonable computational
simplification, represent the pul resistance and internal inductance each with two
asymptotes as illustrated in Figure 8.36. It was shown in Chapter 4 that for wires
the asymptotes for the resistance and for the internal inductance join at the same
frequency fp. In the case of an isolated wire, this break frequency is located where
the wire radius is two skin depths, r,, = 28, giving a break frequency of

fo=

=—— (w=20) (8.129)
TG Moo

Also, observe that the high-frequency resistance and internal inductive reactance are
equal, that is,

Thf = ol hf (8.130)
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FIGURE 8.37 Asymptotic representation of the frequency response of the resistance of a
PCB land.

The property in (8.130) is unique to wires but applies in an approximate fashion to
conductors of rectangular cross section such as PCB lands.

Conductors of rectangular cross section such as PCB lands do not yield closed-form
solutions for the pul resistance and internal inductance (see [13], Appendix III, for an
approximate solution for the pul resistance of an isolated rectangular bar). Consider
a conductor of rectangular cross section and width w and thickness . Numerical
solutions for the pul resistance and internal inductance were provided in Chapter 4 .
These computations show that at low frequencies where the width and thickness are
much less than a skin depth, the current is again uniformly distributed over the cross
section as illustrated in Figure 8.37(a). As frequency increases, the current crowds
to the edges eventually lying substantially within a thickness of a few skin depths
as illustrated in Figure 8.37(b). Numerical computations in Chapter 4 also showed
a behavior unlike that of a wire; the current distribution over the PCB land cross
section tends to peak at the corners. (See Figure 4.20 of Chapter 4 and Appendix
IIT of [13]). This behavior complicates the characterization of the pul resistance and
internal inductance of the land. Nevertheless, we will approximately characterize
the resistance as shown in Figure 8.37(c) with two asymptotes that are joined at a
frequency where

wt
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Numerical computations indicate that the constant k lies between 1 and 2, 1 <k <2.
The dc resistance is, of course,

Fde = e ($2/m) (8.132a)
owt

and, referring to Figure 8.37(b), the high-frequency pul resistance is (approximately)

T'hf (£2/m) (8.132b)

~ koS (w+ 1)

The computation of the pul internal inductance is not so simple. Numerical computa-
tions are shown in Figures 4.21 and 4.22 of Chapter 4 . These indicate, as expected,
that the high-frequency resistance, like that of a wire, increases as the square root of
frequency, +/ f, and the high-frequency internal inductance decreases as the square
root of frequency, 1/ /f. However, these figures show that, unlike the wire, the high-
frequency resistance and high-frequency internal inductive reactance of an isolated
conductor of rectangular cross section (PCB land) are not identical, that s, rof 7 wl; nf.
However, for lands that have a high aspect ratio, that is, w >> ¢, they are approximately
equal, that is, rpt = wl; ht. For example, for a land of width 15 mils and thickness 1.4
mils whose results are compared in Figure 4.21, the high-frequency resistance and in-
ternal inductive reactance differ by only about 10%. For square lands (see Figure 4.22
), the high-frequency resistance and internal inductive reactance differ by about 30%.
We can also represent the pul resistance and internal inductance with two asymptotes
as for wires in Figure 8.36. However, the break frequency for the resistance and the
break frequency for the internal inductance are not equal. We may make the approx-
imation rpr = wl; pr for PCB lands because /; pr is effectively added to the external
inductance / in the transmission-line equations in (8.112a). The high-frequency in-
ternal inductance for practical line dimensions is orders of magnitude smaller than
the external inductance and decreases with increasing frequency as /f. Hence, any
approximation error in assuming rps = @/ pr in the case of PCB lands is absorbed in
and negligible with respect to the external inductance.

Hence for wires and PCB lands, we will approximate the frequency behavior with
asymptotic representations shown in Figure 8.36. The break frequencies fy for both
the resistance and the internal inductance are assumed equal for both wires and PCB
lands. This will greatly simplify the characterization of these parameters. For example,
because the two asymptotes join at the same frequency fp, we can write

Tdc, f<f0

r— rdc\/? e (8.133a)
fo
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and

L de, f<fo

li = 8.133b
li,dC\/?a f > f() ( )

We can also relate rgc and /; 4c. The high-frequency resistance and internal inductive
reactance are also equal:

Thf = @ i nf (8.134)
The asymptotic approximate characterization in Figure 8.36 allows us to obtain a

relation between the dc resistance rq. and dc internal inductance /; g4c. Substituting
the high-frequency relations given in (8.133) into (8.134) gives, at wg = 27 fy,

Fdc = (U()li,dc (8.135)
This can be verified for wires:
1 4
rac = =27 x 20 (8.136)
2 2
ri,o Trahgo 8w
f() li,dc

which checks. Substituting (8.135) into (8.133) gives a simple approximation for the
internal impedance of the conductors (which is true for wires and approximately true
for PCB lands) as

Vdc<1+j;;>v f<fo
Zilw) =r(@) + joli(w) = ¥ (8.137)
Tde %(1-%]), f>jo

These relations satisfy the requirement %; (—w) = Z{(w) derived in Section 2.4.1 of
Chapter 2 for the transform to represent a real-valued function of time, zj (f). The
relations in (8.137) require that we need only obtain (1) rgc and (2) fo in order to
characterize the complete frequency behavior with the asymptotic characterization in
Figure 8.36. We can easily obtain the values for wires for rqc (8.128a) and fy (8.129).
We can approximately obtain these for PCB lands from (8.132a) and (8.131).

8.2.1.3 Convolution with Frequency-Dependent Losses The final task is to deter-
mine the time-domain form of the pul internal impedance, Z; (s), and conductance,
2 (s). Once this is done, we next address how to perform the convolutions Z; () * 1(z,9)
and g (s) % V (z, 5).

First, consider the pul internal impedance given in asymptotic form in (8.137). The
fact that the high-frequency internal impedance varies as the square root of frequency
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makes this a very difficult task. There are some known inverse Laplace transforms of
impedances that depend on square root of frequency [3,14,15]. The inverse Laplace
transform of the square root of the Laplace transform variable is known [14]:

RIS
NNV

where s denotes the Laplace transform variable. We have the important complex
variable relation [A.5]:

(8.138)

: Jo ,
= — 1
Vo ﬁ( + )
=T+ ) (8.139)

This gives insight as to how we should go about obtaining frequency-domain functions
that are transformable to the time domain. We need to write the frequency-domain
function in the form of the square root of frequency multiplied by (1 + j). Then
transform that result to the Laplace domain by using (8.139), replace jw = s, and
use (8.138). For example, the high-frequency surface impedance of plane conductors
occurs frequently in electromagnetic scattering problems and is given by [3,15]

o
= \/ja)\/g (8.140)

The Laplace transform of this is

Z(s) = \/EJE (8.141)

In order to utilize the inverse transform in (8.138), we multiply numerator and de-
nominator by /s to yield

=,/=—5 (8.142)

whose inverse transform is, according to (8.138),

_ /w1
Z() = o (8.143)
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Hence, the convolution of this time-domain impedance with another function of time
requires that we convolve this with the time derivative of that time function.

In the case of the line conductors of the transmission line, a simple way of obtaining
this inverse transform of the conductor internal impedance is described in [16-18].
This relies on writing the Laplace transform of the conductor internal impedance in
the form of A + B./s. The inverse transform of this result is, using (8.138),

1 B 19
A+BY/s=A+B—s < A (8.144)
S

+ .

NG NN

This form can be achieved for conductors by simply adding the dc and high-frequency
representations from (8.137) as

Zi(w) = rgc + rdc\/\/g0 1+ ) (8.145)

We identify A = r4. and have omitted the dc internal inductance. This is a reasonable
approximation since it is dominated by the external (loop) inductance of the line. The
dc internal inductance /; ¢ is (see (8.112a)) in series with the loop inductance / and
is almost always negligible since it is much smaller that the loop inductance. Using
(8.139) yields

NET (8.146)

2i(w) = rqc + rac

1
Vv

This relation satisfies the requirement 2; (—w) = Z{(w) derived in Section 2.4.1 of
Chapter 2 for the transform to represent a real-valued function of time, z; (f). The
Laplace transform is

2i () = rac + rac \/El\/% Vs
1 1
:rdc‘i"’dcmﬁs (8147)

I'dc

VT fol

We identify A = rqc and B = Hence, the inverse transform is

1 10
- (8.148)

1
zit) =rigc+ric———+
RN A
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Next, we perform the required convolution given in (8.117a):

t
zi(O)xI(z,1) = /zi(r)l (z,t —1)drt
0
t
1 1 9l(z,t—1)

=racl (2, l)—i-rdc \/_ 7 oa—1 dr  (8.149)

We will show in Section 8.2.3 how to discretize this convolution and include it into a
numerical analysis.

The representation A + B./s essentially adds the dc and high-frequency asymp-
totes as shown in Figure 8.38. Observe in Figure 8.38(a) that adding the asymptotes for
the resistance gives a reasonable approximation because below fj the dc resistance

L

f
(a)
LA
\ *—total
[i,dc ______
li.dc
1
— s —
Vf
f

(b)

FIGURE 8.38 Illustration of the point that representing the conductor internal impedance as
A + B./s provides an error resulting from the high-frequency internal impedance being added
to the low-frequency response.



INCORPORATION OF LOSSES 419

asymptote dominates the high-frequency resistance asymptote as it should, giving
the total as the dc resistance asymptote. Above fp, the high-frequency resistance
asymptote dominates the dc resistance asymptote as it should, giving the total as the
high-frequency asymptote. However, adding the internal inductance asymptotes as
in Figure 8.38(b) causes some inaccuracy below fj since the high-frequency asymp-
tote dominates the dc asymptote. (The approximation A + B./s inherently omits the
dc internal inductance, but this has little effect on the result because of the domi-
nance of the high-frequency internal inductance in this region.) A method was given
in [B.23] to rectify this problem. The A + B./s model of the conductor impedance
given in (8.145) can be modified to simulate the frequency-selective model given in
(8.137) by multiplying the low-frequency impedance by a first-order low-pass filter
and multiplying the high-frequency impedance by a first-order high-pass filter:

” . w wo w . jw
2i(@) = rac (1 + J) () +rgey | — (14 ) (’)
wo wy + jo o wy + jo

Zi.de low-pass filter Zinf high-pass filter

2 - jo
VoV (W)] | (8150

This relation satisfies the requirement 2; (—w) = () derived in Section 2.4.1 of
Chapter 2 for the transform to represent a real-valued function of time, z; (). Observe
that this representation includes the dc internal inductance. Figure 8.39 shows the
comparison between the frequency-selective representation of (8.137), the first-order
filter representation of (8.150), a second-order filter representation, and the simple
addition of A + B./s given in (8.145). The first-order filter representation of (8.150)
provides a reasonable approximation of the frequency-selective representation. The
second-order filter improves this representation, but the computational implementa-
tion is considerably more complex than the first-order representation. In terms of the
Laplace transform, (8.150) becomes

[2
2i(8) = rde + rac ( Vs >s (8.151)
wo \ S+ wo

The function in (8.151) has the inverse transform [14]

= Frdc + "dc

wol
ﬁ 1 2. /wg _wt/ 52
= —=———=e di 8.152
s + wo Jrt JT ¢ ¢ ( )

0
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Thus, the relevant convolution in (8.149) becomes

Zi)I(z,s) = ziO)*1(z,1)

Ja
2 1 _ 2 l(z, 1)
= racl(z, ) +racy/ = | —= —2e O‘/e)‘ dir| *
T o ot
Vo )

(8.153a)

where
o = wot (8.153b)

Note that the bracketed term in (8.153) may be computed in terms of «; that is, it
is independent of the specific break frequency of the conductor impedance wg and
is therefore independent of the specific problem. The integral in the second term in
(8.153) can be approximated as

C(

Ve A2
/ /[1+++ d.
0

5
a2
3x1‘ 5><2!+

n+§

(2n + 1)n! (8.154)

:P"ﬂg

The frequency-dependent per-unit-length conductance g(w) can be easily included
in a convolution if we assume a homogeneous medium, for example, a stripline. It
becomes a bit more detailed for alossy inhomogeneous medium although, in principle,
the method of calculating the pul capacitance using a complex permittivity discussed
in Chapter 4 can be used to obtain g(w) for an inhomogeneous medium at several
frequencies and using curve fitting. For a homogeneous medium, the per-unit-length
capacitance can be written as the product of the permittivity and a constant M as

&) = )M (8.155)
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Substituting the Debye expression for & (w) given in (8.125) gives

N

K;:
€nf + Z 17’
i=1

¢(w
(@) + jort;

s
1+ jot

i=1

M + chr (8.156)

and cyr = ep M. Hence, the per-unit-length admittance is
Yw) = joi (o)

[
I+ jot

i=1

jo M 4+ jwchs (8.157)

Converting to the Laplace transform by substituting jo = s yields

N

K;
Zl + 5T;

i=1

Y= SM + scpf (8.158)

The term K;/(1 4 st;) has a simple inverse transform of (K;/1;) e~ !t [A2,A5].
Hence, the time-domain result is

y(@) =

K;
Zle_’/”] Mgl (8.159)

The convolution y (z) %V (¢) in (8.116b) becomes

N K
y (1) %V (1) = lZMT’ e~

i=1

LV V@
C]
ar T

N t

K; V(@ —1) aVv (1)

=M — Vi g —  (8.160

Z o /e oq—q | Ty (B160)
i=1 0

The fact that the time-domain result y (¢) is the sum of exponentials makes the evalu-

ation of the convolution y (¢) * V(z, t) in (8.116b) a simple task by using the method
of recursive convolution to be described in Section 8.2.3.4.

8.2.2 The Time-Domain to Frequency-Domain (TDFD) Transformation
Method

The TDFD transformation method described in Section 8.1.7 can easily in-
corporate frequency-dependent parameters since we need only to compute the
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FIGURE 8.39 Plots of the magnitude and phase of the frequency-selective model of the
conductor impedance, A + B./s, and the use of filters to eliminate the low-frequency error.

frequency-domain transfer function relating the source to the desired output (see
Fig. 8.15). First, compute the Fourier series coefficients of the input waveform as

NH
x(t) =co + chcos (nwot + Zcy)

n=1

(8.161)
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where the period of the input waveform is P and the fundamental frequency of the
waveform is denoted by wg = 27fy = 27/ P. Then compute the frequency-domain
transfer function, including the frequency-dependent losses such as skin-effect losses
and/or dielectric losses, at each harmonic frequency:

H(jnwo) = |H(jnwo)| L H(jnwoy) (8.162)

Then pass each component through this frequency-domain transfer function and re-
combine the time domain responses to each component in the time domain. To do this,
we multiply each appropriate magnitude and add the angles to give the time-domain
output as

NH
y(1) = coH(0) + chlﬁl( jnwo)|cos(nwot + Lep + LH(jnwo)) (8.163)

n=1

In this way, we can include +/f-dependent skin-effect losses that are difficult to
characterize directly in the time domain. Again this supposes a linear system, that is,
linear terminations on the line, but it gives us a simple way of verifying the accuracy
of other solution methods. This method is implemented in the FORTRAN program
TIMEFREQ.FOR described in Appendix A. The frequency-domain transfer function
of the line can be computed including frequency-dependent skin-effect losses of the
line conductors using the FORTRAN program MTL . FOR described in Appendix A.

8.2.3 The Finite-Difference, Time-Domain (FDTD) Method

The FDTD discretization of the time-domain transmission-line equations for lossy
lines given in (8.116) can be accomplished in a virtually identical fashion to the
case of lossless lines in Section 8.1.8 with reference to Figures 8.17 and 8.18. The
only difference between the lossless and lossy line cases is in the discretization of the
convolution terms in (8.117a) representing the frequency-dependent conductor losses
and in (8.117b) representing the frequency-dependent dielectric losses.

8.2.3.1 Including Frequency-Independent Losses We have seen that the conductor
loss per-unit-length parameters of resistance, r(w), and internal inductance, /;(w), and
the dielectric loss per-unit-length parameter of conductance, g(w), are functions of
frequency at high frequencies. Atlow frequencies, these are independent of frequency,
that is, approximately their dc values. For today’s high spectral content digital signals,
this high-frequency dependence generally cannot be ignored. However, using the dc
values of these parameters can give some reasonable approximations of the time-
domain responses of the line as we will see in the computed results. In addition, this
high-frequency dependence of these parameters complicates the formulation of the
FDTD method. Hence, we will start this discussion of the FDTD method for lossy
lines by formulating the FDTD recursion equations for a line that has only frequency-
independent, that is, dc, values of these line loss parameters. This will also provide
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a simplified introduction to the FDTD formulation, which will aid in understanding
the more complicated result for frequency-dependent parameters in the next section.
The transmission-line equations become

+ri(z,t)+1

Wz, 1 (2, t
;Z ) @n_, (8.164a)
Z

al(z, t aVi(z,t
@D | evig,n+ &0
0z ot

(8.164b)

where we assume that the per-unit-length parameters r, [, g, and ¢ are frequency
independent, that is, constants. We discretize these as for the lossless case in Section
8.1.8 with reference to Figures 8.17 and 8.18 as

Vn—H _ yn+l In+3/2 + In+1/2 In+3/2 _ In+1/2
k

k+1 k k k k
I -0 8.165
Az tr 2 + At (8.165a)

fork=1,2,...,NDZ and

w2 )2 I I
L 5y +gV1:l+ +V,f+CVk”+ -V

=0 (8.165b)
Az 2 At
fork = 2,3, ..., NDZ, where we again denote
Vi =V((k — 1)Az, nAr) (8.166a)
1
=1 ((k — 2> Az, nAt> (8.166b)

Observe that we have averaged the current and voltage values about the discretization
point in order to include the r and g parameters. This averaging amounts to the
trapezoidal rule for numerical solution of ordinary differential equations [6]. The
required recursion relations for the interior points on the line are obtained by solving
Egs. (8.165) giving

Az Az +3/2 Az, Az +1/2 +1 +1
(Atz+2r> - (S-S0 = (v = vet!) ®.167a)

Az Az I Az Az +1/2 +1/2
(Atc+ 2g> . (Atc - 2g> vi=— (- p?) @167b)

Note that the coefficients (Az/At) have the units of velocity, and hence (Az/A¢r)l
and (Az/At)c have the units of resistance and conductance, respectively. Similarly,
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(Az/2)r and (Az/2)g have the units of resistance and conductance, respectively.
Solving these and putting the voltage update equation first gives

Az Az 7' /Az Az
Vn—H — [ == =4 24 24 v
k AT 28 ACT 2 8) Yk
A Az \7!
- <Zc + Zg) (12 =) (8.1682)
fork=2,3,...,NDZ and

A Az \"'/A A

At 2 At 2
Az, Az \7!
- (Ajl + 2Zr> (vt = vest) (8.168b)

fork=1,2,...,NDZ.

Next consider the incorporation of the terminal conditions. The essential prob-
lem in incorporating the terminal conditions is, as for the lossless case, that the
FDTD voltages and currents at each end of the line, V1, I1 and Vnpz+1, INDZ, are not
collocated in space or time, whereas the terminal conditions relate the voltage and
current at the same position and at the same time. We will again denote the current
at the source (z = 0) as Is and the current at the load (z = %) as I, as shown in
Figure 8.18. The second transmission-line equation given in Eq. (8.164b) is dis-
cretized at the source by averaging the source current Ig in order to obtain a value

that is located in time at the same time point as / ?H/ % as

1 (ISH + 1§) 1 1
n+1/2 +1 +1
A | T Fag Vi) e[Vt - vi] =0

At
(8.169a)

Similarly, the second transmission-line equation, (8.164b), is discretized at the load

by averaging the load current I, in order to obtain a value that is located in time at

. . 1/2
the same time point as II'\’IEZ/ as

P [ ()
172 11
AZ2 3 — I/ |+ 58 [VI(LIDZ+1 + VIGDZH}

1 1
+ ¢ [V§$Z+l - VI<11D2+1} =0

At
(8.169b)
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Equations (8.169) are solved to give the recursion relations for the voltages at the
source and the load as

Az Az -1 Az Az Az Az -1 +1/2
Vn-‘rl — [ == i e 7 yr 2 == = 1” /
! AT 8 AT 28N IR !

Az Az N7
+(Atc+2g> {Ig +1§} (8.170a)

Az Az -1 Az Az
+1
VNDZ+1 = (Atc + 28> (Atc - 28) bz+1
Az Az N\ p
+2(Atc + Zg) II’zIDZ
A Az \ 7!
- (Zc + Zg) [If“ + Id (8.170b)

In the case of resistive terminations, the terminal characterizations are written in
terms of a generalized Thevenin equivalent as

Vi = Vs — Rsls (8.171a)
Wpz+1 = W+ RLIL (8.171b)
Inverting these gives
Is = —GsV) + GsVs (8.172a)
I = GLWNpz+1 — GLVL (8.172b)

Substituting (8.172) into Eqs. (8.170) gives the recursion relations for V| and VNpz+1:

A A /A A
Vl""'l = <ZRsc+ —Zng+ 1> {(ZRsC - —Zng - 1) 4

At 2 At 2
— 2RI (Ve ) ) (8.173a)
and
Az Az -1 Az Az
V;Ig%-i—l = (NRLC+ TRLg + 1) {(A[RLC — TRLg — 1) VII\1]DZ+1

2RSS+ (Vi + v} (8.173b)
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and the voltages at the interior points are determined from (8.168a)

Az Az 1/ Az Az
il = (254 28 . v
k AT 28 ACT 2 8) Tk
A Az \7!
- <Zc + Zg) (12 =) (8.173¢)

for k =2,3,...,NDZ. Equations (8.173) are first for solved the voltages and then
the currents are determined from those voltages using (8.168b) as

Az, Az \7!
—<Ajl+zzr> (v = vest) (8.168b)

for k =1,2,3,...,NDZ. For stability of the solution, the position and time dis-
cretizations should again satisfy the Courant condition At < Az/v.

8.2.3.2 Including Frequency-Dependent Losses First, consider the incorporation
of the frequency-dependent conductor loss. Using the approximation A + B./s for
the conductor losses developed in Section 8.2.1.3, the time domain inverse Laplace
transform of the conductor internal impedance is given, using the transform pair in
(8.138), as

1 1 19
zZi§)) =A+BJs=A+B—s &< A+B——— 8.174
Zi (8) + By/s + \/Es + N ( )
From (8.148), we identify
A =rqgc (8.175a)
Fde
= (8.175b)
NENAD
Hence, the required convolution given in (8.149) is
t
G160 = [a@1Gr-nar
0
1 / 1 al
t —
— Al(z,1)+ B — er=v, (8.176)

Va VR -



428 TIME-DOMAIN ANALYSIS OF TWO-CONDUCTOR LINES

This convolution term can be discretized in the following fashion. Again divide
the time axis into At segments. The discrete convolution can be approximated in the
following manner, where F(¢) in the following represents the time derivative of
the line current, F(t) = (9/0t)I(z, t), which is approximated as being constant over
the At segments [3]:

t ! (n+1)At 1
0 0
n (m+1)At |
o~ ZFrH-l—m / 7df
m=0 mAt ﬁ
n
= «/AtZF"'H_mZo(m) (8.177a)
m=0
where m+1) |
Zy(m) = —dt
NZ3
m
=2 [«/m Fi—Jm (8.177b)

and we have made a change of variables in the integral in (8.177a) of T = At in
order to make this integral independent of the time discretization chosen for a specific
problem. The derivation of this discrete convolution is illustrated in Figure 8.40 [A.2,
A.5]. In this figure we see that

(n+1)At

At
LF((n+1)At—t)dt = F”*l/idr+
JT JT

0

0
(n—1)At nAt
+ F? / idr+F2 / idr
JT JT
(n—2)At (n—1)At
(n+1)Ar
1
+ F! / —dt
JT
nAt
" (m+1DAt |
— ZFn+l—m / _—dr
T
m=0 mAt f
n
= VALY F"Tm Zo(m) (8.178)

m=0
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F() A i 1
. . Vi A
> 1 1
[— ! 1 1
FZ J 1 1
' 1 1
' 1 1
! il 1
F! ! ' 1 1
! ' 1 1
I ! ' 1 1
| ! ' 1 1
! ! ! 1 [ -
Ar 260 3Ar nbr Y i
(n+ DAt
| (a)
— F(t—1)A
T
Fit-1)
F3 /
F? 1
\Fl \/'C—

>
T

0 At (n—2)At (n—1)At nAt (n+ 1)At
(b)
FIGURE 8.40 Illustration of the discrete convolution fo("H)At % F(t — t)dr.

Adapting this result to the discretization of the first transmission-line equation in
(8.116a) using (8.149) gives, with reference to Figure 8.17,

V]?:—]l _ V]:H—l " IZ+3/2 _ I]r(H—l/Z A 1;(1-5—3/2 + 111(1+1/2
Az At 2
/_Al n In+3/2fm _ In+1/27m
+~—B k k Zo(m) =0 (8.179a)
N At
In+1/2 _ 1n+1/2 Vn+] _yn
k X k=1 ok N k —0 (8.179b)
Z

where A = rqc and B = ry./+/7+/ fo. Hence, the first equation, (8.74a) or (8.76a),
has changed from the previous discretization for the case of perfect conductors.
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Solving (8.179a) gives the recursion relation for this equation:

A 1A
<Z+AZ+B - VT (0)) e

A A J:
Z Z 2
= l——A— B— Zo(0

( At N «/_ o )) (8.180)

1 Az & _ _

_B z [I]r:+3/2 m IZ+1/2 m:| Zo(m) — (V]:l:-ll Vn+l)
T N At
m=1
or
1 A
032 = p (1 —A—+ 7 \/iZO(O)) 2

1 Az ¢ - -
_ FﬁlBﬁ ﬁ Z {IZH/z m_ IZH/Z mi| Zo(m)

- P (Ve - v (8.181a)
fork =1, ..., NDZ where

(l + A— +B— Zo(0)> (8.181b)

Az
f VAL
This replaces Eq. (8.76a) of the lossless case. For lossless dielectrics, g = 0, the
voltage update equation in (8.76b) remains the same:

At
it = v - e (72 =) (8.76b)
for k =2,3,...,NDZ. The terminal relations can again be included with reference

to Figure 8.18 giving, for the case of a lossless dielectric, g = 0,

2At At

+1 112 1 [ontl

L A 12+t + 1] (8.78a)
2At 1/2 At

Vi1 = Vipz1 + ¢ "Rt - ¢ [If+ Ly I;j} (8.78b)

where Is and I, are the line currents at the source and load ends, respectively. In the
case of resistive terminations, the terminal characterizations are written in terms of a
generalized Thevenin equivalent as

Vi = Vs — Rsls (8.79a)

Vnpz4+1 = VL + RLIL (8.79b)
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and these voltage update equations are unchanged from the lossless case since they

were derived from the second transmission-line equation, which is unaffected by the
conductor losses:

A “trra
vl = (Aszc + 1) {(Aszc - 1) vy —2RsII 2 (Vg’“ + VS>}
(8.81a)

and

Az -1 Az
Vibzet = (o Rue+1 SRie = 1) Viipga + 2RI
IN; IN;
+ (vﬁ“ + vﬁ)} (8.81b)

The overall solution process is the same as for the lossless line case. First solve for the
line voltages from (8.81) and (8.76b) and then obtain the line currents from (8.181).

8.2.3.3 Prony’s Method for Representing a Function Unfortunately, the current
update equation in (8.181a) requires storage of all past values of the currents, which
presents a significant demand on storage requirements. A solution to this problem
approximates Zo(m) as the sum of N exponential functions [3]:

(m+1) .
Zo(m) = / = d¢
Ve
m
N
= ajem (8.182)
j=1
In order to determine the 2N unknowns in this expansion, ap,as,...,ay and
b1, ba, ..., by, we can use Prony’s method [19,20]. Prony’s method approximates
some general function of m, f(m), at NS equally spaced sample points, m =
0,T,2T,...,(NS — 1) T, over the complete interval of interest in terms of the sam-
pling interval T'; where NS > 2N. These are denoted as
fm=iTl) = f; fori=0,1,2,...,NS—1 (8.183a)

and the first sample is at m = 0. Hence, the NS equally spaced samples are denoted as

fo= f(0)
fi= )
=127
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fus—1=fUNS—1DT) (8.183b)

Prony’s method approximates the function as a sum of exponentials as

N
f‘i g E ajelth
J=1

— alelblT +a2€lb2T 4 ... +ClN€IbNT

= a1z} +amzh + - +anzy (8.184a)
where we denote
zj=eT forj=1,...,N (8.184b)

Hence, we can write the Prony approximation as

N
f,-;zajzij fori=0,1,2,...,NS—1 (8.184c¢)
=1

If we determine z j, we can recover the desired b ; from (8.184b) as

1
b= Tln (z}) (8.185)
Matching (8.184a) at the NS equally spaced sample points gives a set of NS linear
equations:

aitar+ - +anv = fo

amzi+az+ - +avzy = fi

aizi + @z + - +ayzy = f

a1z 4z 4 a5 = e (8.186)

If we know z; (or equivalently we know b; so that we could determine z; from
(8.184b)), we could solve the first N of the equations in (8.186) for the values of
the aj. We could also solve all of the equations in (8.186) (an overdetermined set
of NS equations in N unknowns) using the method of least squares [21,30]. (See
Section 9.2.5.4 of Chapter 9 for a discussion of the method of least squares.) In
order to determine z j, we construct the following polynomial in terms of N auxiliary
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coefficients B; (which are to be determined):
N .
S Bz =Bo+ Bzt B4 AP 4N =0 (8.187a)
i=0

and By = 1. If the B; are determined, the polynomial in (8.187a) can be factored
giving its roots as the desired z;:

z—z)(z—22) - (z—2zn) =0 (8.187b)

In order to obtain B;, we write

N N (N A
S feriBi=> > ailt B
=0

i=0 | j=1I
N N
=Y a;d {Zﬁizij} =0 fork=0,1,2,...,NS—N—1
j=1 i=0
=0

(8.188)
This gives NS — N linear equations in f;:

fobBo+ fib1+ -+ fn-1Bn—1+ fn=0
fiBo+ faB1+ - + INBn-1+ fn+1 =0

Ins-N=1Bo + fns—nB1 + -+ + fns—2Bn—1+ fns—1 =0 (8.189a)

where Sy = 1 or in matrix form

fo fi e fNa Bo —fn

i f2 N Bi — N+

: N . =1 7 (8.189b)
fns-n—1 fns—n -+ fns—2d LBn-1 — fns—1

After the ; are obtained from the solution of (8.189), the z; can be obtained from the
solution for the roots of the polynomial of (8.187). Then, the a; can be found from
the solution of the equations in (8.186). If the number of data points NS, is greater
than the number of unknowns in the expansion, NS>2N, the above simultaneous
equations can be solved by the method of least squares [21,30]. (See Section 9.2.5.4
of Chapter 9 for a discussion of the method of least squares.)

Kunz showed that a reasonable Prony approximation to Zy(m) as in (8.182) can
be obtained by using 10 terms, where the coefficients are given by [3]:
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TABLE 8.2  Coefficients of the Prony approximation of Zy(m).

i a; bi

1 0.79098180E — 1 —0.11484427E — 2
2 0.11543423E0 —0.13818329E — 1
3 0.13435380E0 —0.54037596E — 1
4 0.21870422E0 —0.14216494E0
5 0.98229667E — 1 —0.30128437E0
6 0.51360484E0 —0.56142185E0
7 —0.20962898E0 —0.97117126E0
8 0.11974447E1 —0.16338433E1
9 0.11225491E — 1 —0.28951329E1
10 —0.74425255E0 —0.50410969E1

Observe from (8.177b) that Zy (0) = 2. Adding the values of the expansion coeffi-
cients a; in Table 8.2 gives Zo(0) = aj; +az + --- + ajo = 1.41 #2. But this error
does not substantially effect the problem since Zj (0) appears only in the term in
(8.181b):

(Z+AAZ+B 1 Az Z(O)) (8.181Db)
NN/ '

and a similar term in (8.181a). The term containing the per-unit-length inductance
[(Az/At), dominates the other terms even for the high-loss line in the example in
Section 8.2.3.5.

There are other ways of obtaining these coefficients in an exponential approxima-
tion as in (8.182). One is the Prony singular-value-decomposition (SVD) method [19].
The other is the matrix pencil (MP) method [22]. The coefficients of the exponential
approximation of Z (m) by all these methods are given in Table 8.3 [B.29].

The SVD method gives Zg (0) = 2.000000149, whereas the MP method gives
Zo (0) = 1.99994134. The approximation error for each of these three methods is
compared in Figure 8.41. Note that the MP method gives the best approximation, but
all three methods give virtually the exact result for samples less than approximately
500.

8.2.3.4 Recursive Convolution The recursion relation for the currents in (8.181a)
requires that we store all previous values of the currents. To obviate this need, we
substitute (8.182) into (8.181a) to yield

Az A Az
IZ+3/2 _ ! (zt —A 7Z +B—— NET] Zo(0)> I/Z'H/z
b

N
Az
—1 -1 +1 +1
_F BME v P (v vt s90w)
i=1
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TABLE 8.3

Prony Prony-SVD Matrix Pencil

a; b,‘ a; b,' a; b,‘
1 0.79098180E — 1 —0.11484427E — 2 0.94437314E — 1 —0.15821633E — 2 0.83141576 —0.38772965E1
2 0.11543423 —0.13818329E — 1 0.15665434 —0.21821581E — 1 0.36307454 —0.10222379E1
3 0.13435380 —0.54037596E — 1 0.16504027 —0.92157810E — 1 0.27397819 —0.38821712
4 0.21870422 —0.14216494 0.28881469 —0.25144386 0.18917986 —0.15317357
5 0.98229667E — 1 —0.30128437 0.74258946E — 1 —0.54918917 0.12665224 —0.60535209E — 1
6 0.51360484 —0.56142185 0.47247797 —1.07005584 0.60012910E — 1 —0.69394020E — 3
7 —0.20962898 —0.97117126 —0.19950136E — 1 —2.03571364 0.67810981E — 1 —0.67863637E — 2
8 0.11974447E1 —0.16338433E1 0.76826675 —5.42397697 0.87875521E — 1 —0.22711265E — 1
9 0.11225491E — 1 —0.28951329E1
10 —0.74425255 —0.50410969E1
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Zy(m)
Prony(10) vs. Prony SVD(8) vs. Matrix Pencil(8)
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1 :— Zy(m) (exact) _:

5 L ====Prony (10 terms) ]
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1
FIGURE 8.41 Comparison of the various representations of Z, (m) = % de.
fork =1, ...,NDZ, where
W = [T g (8.190b)

The W7 functions are updated via (8.190a) before evaluating (8.190a). Thus, only one

additional past value of current, I,’:_l/ 2, needs to be retained. The result in (8.190b)
can be obtained by substituting the representation of Zg (m) as a sum of exponentials
as shown in (8.182) into (8.181a) and expanding as

" n N
e A ED W BT Il A

m=1 m=1i=1
N
= Zaieb" [IZH/Z — 1;:_1/2}
i=1

N
+ eb"Zaieb" [12_1/2 — IZ_3/2]
i=1

N
+ gzb,-zal_eb,. [12—3/2 _ ]:—5/2]
i=1

T (8.191)
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This method of representing a function as a sum of exponential terms as in (8.182)
to avoid storage of previous values in the convolution is referred to as the method of
recursive convolution [23,24]. It relies on the property of the exponential: (%) =
¢“e?. For example, suppose we wish to represent a function of 7 at discrete points #;
that are separated by At = t; — t;_1. Approximating the impulse response A(t) as a
sum of exponentials, the convolution A(¢) * x(¢) gives

h(Oyx()]] —y, = / 0 vy dr
0 h(v)

li—ti—1 ti

/ ae’x (t; — 1)dr + / ae’x (t; — 1) dt

0 ti—ti—1
At i1
= /aebfx (t — 1) dr + ebA’/aeb{x (ti_1 — &) de
0 0
At
= / a” x (t; — )y dt + >y (1) (8.192)
0

and we have used a change of variables { = 7 — (; — #;—1) in the second integral.
Hence, the recursive convolution technique allows us to accumulate the values of the
convolution at the previous time points as we proceed.

The FDTD equations in (8.76b), (8.81), and (8.190) that incorporate the
frequency-dependent conductor loss are implemented in the FORTRAN program
FDTDLOSS . FOR. (see Appendix A ). This program does not include dielectric loss
for which we now develop a recursion relation.

Recursive convolution can be used to provide a computationally efficient FDTD so-
lution that also includes the dielectric losses for a homogeneous surrounding medium,
for example, a stripline. The second transmission-line equation in the time domain
contains the dielectric loss and is

al(z, 1)
0z

=—y@®)*V(z,1)

N

K
E 2t/
Tiletr

t
K; AV (z,t— aV(z,t
i /e—r/r, (z ) dt Ch (z,1)
ot —1) ot

oV(z, 1) aV(z, 1)
* —Chf
ot ot

i=1 0
(8.193)
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where we have substituted the previous result for the dielectric loss in a homogeneous
medium given in (8.160). The convolution integral can be discretized as before to
yield

t (n+1)At
oV(z,t—1 /T
/e—f/ff W=D ) / eV F((n + 1)At — 1)dt
3 —1)
0 0
n (m+1)At
— ZFn—H—m / e—r/r,-dr
m=0 mAt

ZFn—H my [ —(m+DAYT _ ~mAlfT
(8.194)

where F () = 0V(z, t)/0t. Hence, (8.193) can discretized with reference to Figure
8.17 as

172 n41/2 1
L =L + e Vit —w
Az At
ZZ Vn+] —m anm (m4 DAY At/
—M K {efm Ifi_e*m [T[]
m=0i=1
(8.195)
Solving this gives
At
1 -1 +1/2 +1/2
Vit =V — e ;Z[IZ / —11?—1/}
+ chf]MZZK [Vk+1 —m V]ngm} |:e—(m+1)At/t,- _e—mAt/r,}
m=0i=1
At
1 -1 n+1/2 4172
= Vi —H ey E[’k — 1l }
T H 1Chf1MZZK [ yntl=m _ V]?—m} [e—(m+1)m/r,- _e—mm/r,}
m=1i=1
(8.196a)

where

N
H= [1 — G MY K (e - 1)] (8.196b)
i=1
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Writing this out and using the recursive convolution idea gives

N
At
A [ P T MY e (81970

fork =2,...,NDZ, where
O = Kie™ A/ [ =20 | [y — et e (8.197b)

Hence, only one additional past value, V”_l, needs to be retained. In addition, the

terminal voltage update equations in (8.78) and (8.81) were also derived from the
second transmission-line equation and must likewise be discretized with reference to
Figure 8.18.

8.2.3.5 An Example: A High-Loss Line In order to compare the predictions of
these models, we will investigate a high-loss two-conductor transmission line shown
in Figure 8.42. Two conductors of rectangular cross section of width 20 wm and
thickness 10 wm are separated by 20 wm and placed on one side of a silicon substrate

50Q 20 cm >
+ Ze = 95.566 +
Vs(®) V) V) <50Q
_ Tp =1.68672 ns _
(a)
20 pm ;4-—
! |
—>= 20 — 20 um ﬂ—iloum
} : : :| :! 100 pm
Vs(®) 4
IV
50 ps i

(c)

FIGURE 8.42 A lossy printed circuit board for illustration of numerical results: (a) line
dimensions and terminations, (b) cross-sectional dimensions, and (c) representation of the
open-circuit source voltage waveform.
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(er = 12) of thickness 100 wm. The total line length is 20 cm and is terminated at
the near and far ends in 50-$2 resistors. The source is a ramp function rising to a
level of 1 V with a rise time of 50 ps. The per-unit-length inductance and capacitance
were computed as / = 0.805969 wH/m and ¢ = 88.2488 pF/m. This gives a velocity
of propagation in the lossless case of v = 1.18573 x 103 m/s and a one-way time
delay of Tp = 1.68672ns, which gives an effective dielectric constant of . = 6.4
and a characteristic impedance of Z¢ = 95.566 2. The per-unit-length dc resistance
is computed as A = rgc = 1/ (owt) = 86.207 2 /m. The break frequency where this
transitions to the high-frequency resistance that varies as 1/ f is computed from (8.131)
with k=2 as fy = 393.06 MHz. The factor B is computed as described previously to
be

1 Ko Tde -3
2t +w) \E Vfo

Dielectric loss is not included in these calculations. Figure 8.43 shows the comparison
of the SPICE (lossless) predictions, TDFD, and FDTD results for the near-end and
far-end voltages. The TDFD transformation modeled the source as a 10-MHz peri-
odic trapezoidal waveform with 50 % duty cycle and rise/fall times of 50 ps. The code
TIMEFREQ.FOR was used, which uses the frequency-domain transfer function ob-
tained from MTL . FOR. The bandwidth of this signal is on the order of 1 /7, = 20 GHz,
so 2000 harmonics were used in the computation of the frequency response via the

LOSSY PCB
(Risetime = 50 ps)
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N N A FDTD (lossy, NDZ =225, NDT = 1275)
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FIGURE 8.43 Source and load voltages of the two-conductor line of Figure 8.42 using the
lossless SPICE model, the lossy FDTD model, and the time-domain to frequency-domain
(TDFD) method including losses for a rise time of 50 ps.
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FIGURE 8.44 Model for computing the terminal voltages due to dc land resistance.

MTL.FOR code. The FDTD results were obtained with FDTDLOSS . FOR, which
uses the Prony coefficients in Table 8.2 for approximating Z (m) as in (8.182). The
high-frequency spectrum rolls off at —40 dB/decade above 1/77, = 6.3662 GHz. The
spatial discretization for the FDTD results was chosen so that each cell was A /10 at
twice this break frequency giving NDZ = 215. The “magic time step” of At = Az/v
for this spatial discretization and a total solution time of 10 ns is NDT = 1275. The
TDFD results approach the steady-state limit obtained by replacing the line conduc-
tors with their total dc resistances of rgc.# = 17.2414 Q as shown in Figure 8.44
of VNE.ss = 0.628205V and Vgg ¢ = 0.371795 V. The TDFD results at 10 ns are
VNE = 0.6286 V and Vgg = 0.3719V, which converge rapidly to the steady-state
values calculated from Figure 8.44. The FDTD results at 10 ns are VNg = 0.6436 V
and Vg = 0.3566 V, and do not converge as rapidly to the steady-state values. How-
ever, the FDTD computations were recalculated to 40 ns, giving VNg = 0.6285 V and
Vre = 0.3715 V. Hence, the FDTD results converge to the correct steady-state values
but at a much slower rate than the TDFD predictions.

The effect of conductor loss is evident and significant, but the TDFD and the FDTD
method give different results. This is due to the fact that the FDTD method simply
adds the low-frequency dc resistance to the high-frequency impedance and models
the total conductor impedances as

Zi(w) = A+ By/ jo

=7rdc +rnf + jolint

= rgc + rdc\/z(l + ) (8.198a)

The time-domain to frequency-domain method uses the frequency-domain transfer
function computed with MTL . FOR, which uses the frequency-selective model of the
conductor internal impedances:

Si(w) = { rde + jolige =rac(1+ jf/fo), f=fo (8.198b)

ot + joline =rac/ fffo(l+ ), f=fo

At the break frequency fy = 393.06 MHz, the FDTD value for 2; (w) is a factor of +/2
larger than those of the frequency-selective TDFD method. The true value lies between
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FIGURE 8.45 Recomputation of the results of Figure 8.43 but with the losses represented
as A + B./s in both the FDTD and the TDFD methods.

these two values (see Figs. 4.15 and 4.16 of Chapter 4 ). This break frequency lies in
the —20 dB/decade region of the spectrum, which begins at 1 /7t = 6.366 MHz and
ends at 1 /77, = 6.366 GHz [A.3 ]. Thus, we should expect a difference between the
two model predictions. To verify that this is the case, the time-domain to frequency-
domain transformation results were recomputed, wherein the low-frequency and high-
frequency conductor impedances are added together in the frequency-domain transfer
function as in the FDTD code rather than using a frequency-selective computation as
described above. Figure 8.45 shows the results of this computation for the near-end and
far-end voltages. These results confirm the hypothesis and additionally show that the
FDTD code gives virtually identical results to the time-domain to frequency-domain
transformation method when the same equations are being solved.

In the applications of the FDTD technique to electromagnetic scattering problems,
a surface impedance boundary condition is frequently used. This condition essentially
has a /f frequency dependence and requires no constant resistance [3,15]. This has
led others to neglect rgc in transmission-line problems. Numerous solutions of the
transmission-line equations for lossy lines in the literature include only the high-
frequency +/f impedance of the line conductors and ignore their dc, constant resis-
tance. We have included this dc resistance in the FDTD solution via the A term. The
question is whether the dc resistance can be neglected and only the high-frequency
/f impedance be used. Figure 8.46 shows the results of including only the dc resis-
tance or only the high-frequency +/f impedance of the conductors. Including only
the dc resistance gives the correct late-time steady-state dc level of the responses,
but the early-time results are not well predicted at the beginning of the transitions.
Including only the high-frequency +/f impedance of the conductors does not predict
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FIGURE 8.46 Recomputation of the TDFD results of Figure 8.43 but with losses represented
as only their dc values or only their high-frequency values.

the correct late-time dc levels. Figure 8.47 shows the comparison between the TDFD
and FDTD models using either only the dc resistance or only the high-frequency
resistance. This again confirms the importance of including the dc resistance and
additionally shows that the TDFD and FDTD models give virtually identical results
when the same representations of the conductor impedances are used.

Observe in Figures 8.45-8.47 that there appears to be a violation of causality in
the far-end computed results; that is, a response appears prior to one time delay of
the lossless line of Tp = #+/Ic = 1.6867 ns. Examining the plotted data, we find
that all of the FDTD calculations for the far-end voltages in Figures 8.43 and 8.45-
8.47 are, in fact, causal; that is, no response in the far-end voltages appears before
Tp = 1.6867 ns. However, all of the TDFD computed results for the far-end voltages
are noncausal to some degree. This may be a reconstruction error (aliasing) inherent
in the TDFD recombination process.

8.2.3.6 A Correction forthe FDTD Errors The difference in the TDFD and FDTD
results is due to the different ways the two codes model the frequency-dependent
internal impedance. The TDFD method uses a frequency-selective asymptote model
givenin (8.198b), whereas the FDTD method essentially adds the two asymptotes as in
(8.198a). The actual result (at least for wires) lies between the two at the breakpoint fy
(see Figs. 4.15 and 4.16 in Chapter 4 ). As discussed previously, the A + B./s model
in the FDTD code simply adds the low-frequency and high-frequency asymptotes.
This has a representation problem because the high-frequency internal inductance
dominates the dc internal inductance below the break frequency fo as illustrated in
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FIGURE 8.47 Recomputation of the FDTD and TDFD results of Figure 8.43 but with losses
represented as only their dc values or only their high-frequency values.

Figure 8.38. This was remedied by multiplying the low-frequency impedance by a
first-order low-pass filter and multiplying the high-frequency impedance by a first-
order high-pass filter giving the representation in (8.150). The convolution term is

then given by (8.153):

2:()1(z,8) < zi()*1(z,1)

Ja
= rch(z,t)—i—rdc\/z %—2670‘/&20]}» . Bl(azt, 1)
' (8.153)
where
® = wol. (8.154)

and the integral in the second term in (8.153) can be approximated as

Ve Va

Jra- |

0 0

)\2

ot

1!

24
di
2!
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3 3
5-1- o a2 N
= (04 .
3 5 x 2!
1
00 O{n+§
n=0

Evaluating the second term of (8.153) as before yields

r Ja
2 1 — 52
Fdc ; ﬁ —2e e* di F(t - f)df
0 0
(n+1)At

= / rdc\/7 — —2e _“/ekzdk F((n + 1)At — t)dr

0 0
(m+1)Al | Ja
Zrdcy/ = ZF"“ —m 7 —Ze_a/e)‘zdk dt
0
2n+1)
7 1 n wo(m+1)At ! 00 )
= Friom / L peeNTYY T
e\ Z Ja Z(2n+1)n!
womAt n=0
wo(m+1)At
= rdc,/ ZF"“ " [\/&— > G, a)]
womAt
(8.199a)
where
Ja
—Jae ™ + g /e)‘zdk n=0
Gn,a) = 0
5 | | 2n+1
"= Gn—l,a)———a 2 e* n#0
2n 2n + Dn!

(8.199b)
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In order to modify the previous development without these filters, define the quantity

K(a) = Vo — ZG(n, ). (8.200)

n=0

We may identify the quantity Zo(m) in the original development as

Zo(m) = \/lA_t [K (wo(m + 1)At) — K (wgm Alb)] (8.201a)
and
2v2
B = rdcm. (8201b)

Thus, the previous formulation may be modified if we obtain the appropriate repre-
sentation for Zy(m).
The function K () can similarly be approximated with Prony’s method as

14
K@= aie™ (8.202)
i=1

whose coefficients a; and b; are predetermined independent of the specific problem,
that is, independent of wp. The W} in (8.190b) are similarly modified using (8.201a)
and this Prony representation. A reasonable approximation uses p = 14 terms in the
Prony expansion with coefficients given in Table 8.4 [B.23].

TABLE 8.4 Coefficients of the Prony Approximation of K(«x).

i a; b;

1 2.1592880E — 2 —1.1293984E0
2 —3.4051657E — 2 —1.6697772E0
3 4.8901666E0 —5.0659628E — 1
4 1.1037285E2 —2.5482929E0
5 6.3898279E — 2 —6.8362799E0
6 1.6387213E — 1 —2.6023629E — 1
7 —9.3826731E + 1 —1.7778543E0
8 7.0160068E — 1 —1.4966650E — 1
9 —6.0668061E — 1 —1.2588752E + 1
10 1.3735503E + 3 —2.1344676E0
11 —1.6127498E — 1 —5.1526627E — 2
12 —1.3915974E + 3 —2.1891200E0
13 —3.7391617E0 —3.9021096E — 1
14 1.5776220E — 1 —1.0451770E — 2
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FIGURE 8.48 Prony representation of Z, (m) given in Eq. (8.201a).

Figure 8.48 compares the representation of Zo(m) given in (8.201a) using the
Prony approximation of K(«) given in (8.202) to the exact result using (8.200). It
should be noted that, although the Prony coefficients for K(«) can be predetermined
independent of the problem, the representation error in Zo(m) depends on the specific
structure since Zy(m) involves wg and At. These values for the example previously
considered are wy = 2.47 x 10° and At = 7.84 ps.

Figure 8.49 compares the modified FDTD results to the TDFD results for the
problem of Figure 8.42, which was considered previously. The FDTD errors in Figure
8.43 are now corrected illustrating the accuracy of the FDTD implementation of the
first-order filter representation of conductor losses given in (8.150). Both results now
give rapid convergence to the correct late-time steady-state limit obtained by replacing
the line conductors with their total dc resistances of rq..¥ = 17.2414 Q as shown in
Figure 8.44 of VN ss = 0.628205 2 and Vg s = 0.371795 Q. Although not shown,
the TDFD results incorporating the filters as in (8.150) were compared to the FDTD
results using these filters as implemented above and the results were virtually identical
as they should be, further illustrating the accuracy of the Prony approximation.

8.2.4 Lumped-Circuit Approximate Characterizations

Perhaps the simplest way of including losses is via an approximate lumped-circuit
model. The obvious structural choices are the lumped-Pi or lumped-T structures in-
vestigated previously. The advantage of these representations is that simple lumped-
circuit analysis programs can be used to solve the line voltages either in the frequency
domain or in the time domain. The primary difficulty with these approximations is
that they do not correctly process certain of the high-frequency spectral components
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FIGURE 8.49 Recomputation of the results of Figure 8.43 but with the FDTD results repre-
sented using the corrected result in (8.153) using filters.

of the input signal because their validity is based on the assumption that they are
electrically short at all frequencies of interest. Figure 8.50(a) shows a lumped-Pi rep-
resentation of a section of the line. Typically, this type of representation requires a
large number of such sections to represent the line for input signals having significant
high-frequency spectral content. Implementation of this lumped-circuit approxima-
tion is straightforward if we omit consideration of the skin-effect /f behavior of
the line resistance (and internal inductance) and only include the dc resistance and
internal inductance, which can be represented as constant elements. We showed in
the previous section that this would lead to errors in the early-time results.

A recurring problem is how we shall represent the 1/ f skin-effect behavior in the
time domain that is required in these lumped-circuit representations. A novel method
of doing this is to simulate the physical process that occurs in the development of skin
effect [25]. For a conductor of circular cross section, the current resides in annuli and
is more strongly concentrated in the outer annuli as frequency is increased. Each of
these annuli can be represented by a resistor and an inductor. The circuit representation
of this process shown in Figure 8.50(b) serves to simulate this process. At dc, all
resistors are in parallel giving the dc resistance. As frequency increases, each branch
is successively removed from the circuit generating a +/f frequency dependence.
Of course, a larger number of branches are required to extend this /f behavior to
higher frequencies. Another representation that is particularly useful for conductors
of rectangular cross section is to simulate the representation of the conductor as
numerous bars in parallel, as described in Chapter 4 and shown in Figure 4.19 .
The current over each subbar is assumed constant but of unknown value, and the
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FIGURE 8.50 Methods of including frequency-dependent conductor losses into a lumped-
circuit representation.

dc resistances and partial inductances of the individual subbars are used to give the
circuit shown in Figure 8.50(c). This was implemented in [26-28]. Because of the
interaction between the subbars via the mutual partial inductances, the currents in
the subbars adjust to simulate the actual skin effect that occurs. Other methods of
generating lumped-circuit models of the frequency-dependent skin-effect impedance
are given in [B.17 ].

The FORTRAN code SPICELPI.FOR described in Appendix A generates a
lumped-Pi SPICE subcircuit model for a lossless line. This can then be modified to
include losses by adding either dc resistances or one of the skin effect simulations
in Figure 8.50(b) or (c). In this way, only the line is modeled and nonlinear loads
can be handled in the CAD code in which this model is imbedded. This is a simple
approximation but suffers from the lengthy computation time, which a sufficiently
large circuit model requires to model the very high-frequency spectral components
of the input signal.



450 TIME-DOMAIN ANALYSIS OF TWO-CONDUCTOR LINES

8.2.5 The Use of Macromodels in Modeling the Line

Macromodels of the line essentially represent the line as a two-port model at its
input and output ports. An important part of the process in generating a macromodel
is to convert the partial differential equations of the transmission line into ordinary
differential equations that most CAD computer programs such as SPICE can handle.
The SPICE equivalent circuit for a lossless line shown in Figure 8.9 is an example of
a macromodel of the line. The effect of the terminal voltage and current at one port on
the voltage and current at the other port is represented using time-delayed controlled
sources. An additional advantage of a macromodel of the line occurs in modeling
today’s high-speed digital interconnect structures where, in many cases, line losses
cannot be neglected. The solutions of the lossy transmission-line equations involve
transcendental functions that have an infinite number of roots. Any transfer function
of such a system will therefore have an infinite number of poles that characterize the
time-domain response. Determining the inverse Laplace transforms of these in order
to return to the time domain is an impossible task. If we can determine a macromodel
of the line as a transfer function using a finite number of dominant poles, we can
drastically reduce the simulation times. One method for doing this, the Pade method,
will be discussed in this section. Other methods for model order reduction (MOR) for
these dense, high-speed digital interconnects will be discussed in the next chapter.
A macromodel of a lossy line similar to that for a lossless line shown in Figure
8.9 can be obtained by using the generalized method of characterics as follows [29].
First, we obtain the chain parameters of the lossy line in the frequency domain as

V) _[en o] [VO
. =% 4 A 8.203
[1(3’)} [d’zl ¢22] [1@] (8:203)
————
b(2)
where the frequency-domain chain parameters are
$11 = cosh (7.2)
A X4
_ete ™ (8.204a)
2
$12 = —Zcsinh (7.%)
L eV 7Y
=—Zc — (8.204b)

- (8.204c)
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$22 = cosh (7.2)

VL L Y
N e (8.204d)
2
The characteristic impedance is frequency dependent and is given by
A jw [ jw [
Se(w) = (|t Jol@) + jo (8.205a)
gw) + joc
The propagation constant is also frequency dependent and is given by
P w) = \/ [r(®) + joliw) + jol] [g@) + joc] (8.205b)

In terms of the Laplace transform variable s, these become
A L l
Zc(s) = r(s)+shi(s) +sl (8.206a)
g () +sc

5(s) = \/ [ () + sk (5) + 511 [g (5) + sc] (8.206b)

and

Writing out (8.203) and using the relations in (8.204) gives

X IOL 4 OL X FOL _ 2\
V& =—F— V0926 | ——F5— |10

(8.207a)

. . FTOL _ L\
Ze()I(Z,s) = — — V(0, 5)

. FTOL L VOL
+Zc) | ————— | 10,5)  (8.207b)
Adding and subtracting these gives
V(0,5) — Zc()1(0,5) = e 7O [V(2, 5) = Ze(H UL, 9)] (8.208a)
V(L 5)+ ZcI(Z, 5) = e 7O [V(0, 5) + Ze(9)1(0, 5)] (8.208b)

These relations may be represented as shown in Figure 8.51(a), where

Eo(s) = e "L [V(L, 5) — Zc()1(ZL, 5)] (8.209a)
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FIGURE8.51 Two implementations of the generalized method of characteristics to represent
lossy lines.

Eg(s) = e 797 [V(0, 5) + Zc(9)1(0, 5)] (8.209b)

or, alternatively,
Eo(s) = e "7 2V(2,5) — Eo (5)] (8.210a)
Eg(s) = e 797 290, 5) — Eo()] (8.210b)

The results in (8.208) using either (8.209) or (8.210) give the equivalent macro-
model shown in Figure 8.51(a), which is easily implementable in the frequency do-
main. For the time domain, the model in Figure 8.51(a) is problematic because of the
need to develop the inverse transforms of

Zc(s) & zc () (8.211a)

7O — h(r) (8.211b)
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where & (f) is essentially the impulse response of a completely matched line. In the
time domain, (8.208) become

V(©O,t) —zc(@®)*1(0,t) = Eg (¢) (8.212a)
V(Z,)+zc)*xI(ZL,t) = E»(t) (8.212b)

where
Eot)=h@®)*[V(ZL,t) —zc(O)*x (<L, 1)] (8.213a)
Ee@)=h@®)=[V(,1)+ zc (t)* 10, 1)] (8.213b)

or

Eo()=h@®)«[2V(ZL,t) — E¢ (1)] (8.214a)
Eg(t)=h(@®)*[2V(0,1) — Ey (1)] (8.214b)

and * denotes convolution. Hence, we are again faced with the difficult computational
task of convolution.

An alternative form of the equivalent circuit macromodel (of the many that are
possible) of the line can be obtained by multiplying both sides of (8.208a) and (8.208b)
by the characteristic admittance Yo () =1/Zc (s) and rearranging to give

10, 5) — Ye()V(0,5) = e 797 [1(Z, 5) = V() V(L 9)] (8.215a)
L, 5)+ Ve V(ZL,s) = e 7O [1(0, 5) + Te(s)V(0, )] (8.215b)

This may be represented by the equivalent circuit shown in Figure 8.51(b). In the time
domain, these become

10, 1) = yc (0% V(0,1) = h (1) % [I(Z, 1) — yc () V(Z, 1)] (8.216a)

I(Z,H+yc®*xV(ZL, ) =h(@)* [I(O, 1+ ye(®)xV(0, t)} (8.216b)

where Yc (5) < yc (1).

8.2.6 Representing Frequency-Dependent Functions in the Time Domain
Using Pade Methods

The inverse Laplace transform time-domain forms in the macromodels in the previ-
ous section can be obtained using the Pade method [30-34]. The Laplace transform
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function to be represented is modeled as a ratio of polynomials in s as

_ N()
F(s) = D) (8.217)

Approximate the numerator and denominator polynomials N(s) and D(s) as Nth order
polynomials in s as

l+ais+ - +aysV
1+bis+ -+ +bysV

F(s) = F(0) (8.218)

where F'(0) = F (s)|;—¢ is the dc response. Expanding this with partial fractions as
[A.2, A.5]

F(s) = F(c0) + Z (8.219)

S = Dk

where F(00) = F(s)|,_, o 1S the steady-state response of the system and F(oco) =
F(0)an/bn). py are the N poles of F (s), and ¢y are the N residues associated with
the poles. The inverse Laplace transform becomes

N
f(D) = F(00)8(t) + ) cxe ™! (8.220)

k=1

where () is the unit impulse function [A.2, A.5]. Hence, the time-domain represen-
tation can be represented as a sum of exponentials, thereby allowing the use of the
recursive convolution procedure.

The 2N coefficients ay, ..., ay, by, ..., by in (8.218) are determined by expand-
ing F (s) in terms of a power series in s or, in other words, the moments of f (¢), using
a Maclaurin series about s = 0:

F (s) = F(0)

o0
1+ kaskl

k=1

— F(0) [1 +mys 4 mas® + } (8.221)

The moments of F (s) can be found by differentiating F (s). Differentiating (8.221)
gives my, in terms of the derivatives of F (s) as

1 1 dfF(s)
FO)k! dsk

mi = (8.222)

s=0
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The term “moments” arises from the following. The Laplace transform of F (s) is

/f(t)e‘s’dt
5212
/f(t)[ +_"ldt (8.223)

/f(t)dt—s/tf(t)dt+s/ f(dt —

0
= ko+k1s—|—k2s + -

F (s)

Hence, k; = F(0)m; are said to be the moments of f (¢).

Equating (8.218) and (8.221), multiplying both sides by the denominator of (8.218),
and grouping terms with like powers of s yields 2N equations that can be solved for
the 2N coefficients ay, ..., an, b1, ..., by:

s:ay =b; +my
82: ar» = by + mib; +my
s3 1 a3 = by + myby + maby 4+ mj

(8.224a)
MU ay_y = by_1 Fmiby_g +maby_3 + - +my_y
sV ay =by +miby_y +maby_o+ - +my
and
L0 = miby +maby_1 4 -+ +myby +my4
2.0 =maby +m3by_1+ -+ +myy1b) +myi2

: (8.224b)
Nl 0 = my_1by + myby_1 4 -+ 4+ man_ob1 +man_1

s*N 00 =myby +myp1by—1 + - +man_1b1 +moy

Representing these in matrix form gives the required 2N equations. The b; coefficients
fori =1, ..., N can be obtained from (8.224b) as

mi mo m3 . my by MN+1
my  m3 my s MmNy by—1 Mmy+2
ms  mg ms .- MN42 bn—2 | = — | mN43 (8.225a)

my MNy1 MNy2 - M2N—|] by moN
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and the a; coefficients fori = 1, ..., N can then be obtained from (8.224a) as
aj 1 0 0 - 0 by mi
ap mi 1 0 - 0 by my
az | = | mp mi 1 0| b3 |4 | m3 (8.225b)
ay my—y my—p my-3 --- 11 Lby my

The N residues of the partial-fraction expansion in (8.219) can be found directly
using the methods of [A.2, A.5] or in terms of the moments my [34]. First, obtain
the N poles of the denominator polynomial D(s) by factoring D(s) using a root-
finding algorithm as D(s) = 1 + bys + --- 4+ bys™ = by (s - pl) (s - pN).
Differentiating (8.219) with respect to s and evaluating at s = 0 and comparing to
(8.222) yields

N
‘.
my F(0) = —ZPT’H (8.226)
i=1 ti

hence we can obtain the residues indirectly from

- 1 1 )
2 2 T2
l;l Iiz PlN c1 m
3 3 T3 2 ma3
P1 13 PN . = —-F(@) . (8.227)
1 1 1 N mpy
i p{v+1 pév+1 p%+l ]
and
N .
F(oo) = F(0) =Y — (8.228)
— Pi
i=1

Unstable poles, that is, poles in the right-half plane, may be obtained rendering
the representation unstable. Generally, these poles can be moved to the left-half plane
resulting in a stable representation if we increase the order of the representation,
N. However, the coefficient matrix in (8.225a), although a Toeplitz matrix, tends
to be ill conditioned. Hence, care must be observed in increasing the order of the
representation, NV, and solving (8.225a). A LU decomposition method is recommended
for use in solving (8.225a) along with some conditioning [30].

The Pade method of expanding the transfer function in moments about s = 0
described above is accurate in a region about s = 0 [30]. In the next chapter, we
will discuss complex frequency hopping (CFH), which seeks to expand the region of
convergence. References [31, 32] point out that it is generally preferable to expand
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F (s) about s = oo instead of about s = 0 and show examples to support this assertion.
If we think about the frequency-domain meaning of F (s), values around s = oo
correspond to the high-frequency spectral content of the impulse response, whereas
values around s = 0 correspond to the low-frequency spectral content. Predicting the
low-frequency spectral content well means that our time-domain predictions of the
impulse response will be most accurate for the late-time or steady-state part of that
response. On the contrary, predicting the high-frequency spectral content well means
that our time-domain predictions of the impulse response will be most accurate for the
early-time or initial part of that response. In using this time-domain impulse response
result in a convolution (the primary reason for using Pade), the early-time content of
the impulse response is the most important aspect in the accurate prediction of the
overall response. In performing the convolution, we virtually never use the steady-
state response of the impulse response. To this end, we write the transfer function in
terms of z = 1/s as

sV AV Ay
sV + BisN=1 4 ... + By
1+ Ajiz+ - + AyzY
1+ Biz+ -+ + ByzV

F(s) = F(00)

= F (00) (z=1/s) (8.229)

and F(0) = F(oc0)(An/By). Again expand F (s) in terms of moments by expanding
about s = 00 or, equivalently, about z = 0 as

F(5) = F(00)

o0
1+ ZMkzk]

k=1
= F(0) [1 + Mz + Maz® + } (8.230)

and the moments M are obtained from

1 1 dfF )

T Floo) k! dif ©230

M;

z=0

Equations (8.229) and (8.230) are of an identical form to (8.218) and (8.221) with
z <= 1/s. Hence, we may solve the 2N equations in (8.224) by replacing a; = A;,
b; = Bj, and m; = M; and interchanging F(0) = F(oc0). Alternatively, using the first
N — 1 equations of (8.224a), the last equation of (8.224a), and the first N — 1 equations
of (8.224b) yields an alternative set of 2N equations that can be solved for the 2N
coefficients Ay, ..., Ay—1, Bi, ..., By [31,32]. The B; coefficientsfori = 1,..., N
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can be obtained from

A
1-2) My M, - My, By My
By B M
M1 M2 1\43 MN BN—l MN—H
M M3 My coo My N-2| = — N+2
: : : : : B Iy ) B
My My Myy1 -+ Moy ! N1
(8.232a)
and the A; coefficients fori = 1,..., N — 1 can then be obtained from
Aq 1 0 0 - 0 By M,
Ao M 1 0 0 By M>
Aj = M M, 1 0 B3 + M3
AN My My3 My4 --- 1 By My
(8.232b)

and Ay = By(F (0) /F (00)). The rational function in (8.229) can again be expanded
in partial fractions as

N

PO = P+ ) &

S —qk

(8.233)

where g are the N poles computed for this representation of F (s) and di are the
N residues associated with the poles. The poles and residues for this representation
are generally different from those of the representation in (8.218). The time-domain
result can again be written in terms of a sum of exponentials so that the method of
recursive convolution can be used:

N
f() = F(00)8(t) + ) _dye™! (8.234)

k=1

Hence, the Prony method or the Pade method can be used to give exponential rep-
resentations of / (¢) and zc (¢) or yc (¢) that can be used to implement the convolutions
using the recursive convolution as described in Section 8.2.3.4. The Pade method has
the advantage of using frequency-domain data. However, poles with nonnegative real
parts may occur, thereby causing instabilities. Generally, these unstable poles can be
moved to the left-half plane by increasing the order of the representation, N.

As an example, consider a lossy transmission line characterized by constant r, /, g,
and c¢ per-unit-length parameters, that is, their dc values. The characteristic admittance
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is written as [32]

(8.235)

where z = 1/s. Note that Yc (c0) = /c/I. Expanding this in moments about s = 00
or, equivalently, z = 0 gives

8
1+ =z
C =1+Mz+MP+ - + M+ (8.236)
1+jZ

and the moments are obtained as

(8.237)

This differentiation, although tedious, can be performed symbolically giving exact
expressions for the moments. Hence, ¢ (s) can be expanded in partial fractions as in
(8.233) with the resulting time-domain expressions given in (8.234). Observe that the
time-domain expression in (8.234) is in terms of a sum of exponentials. Hence, it can
be used in a recursive convolution method to perform the convolutions in (8.216).

The propagation function e=7®< can similarly be expanded to obtain 4 (). The
propagation constant is

7 (s) = /r +sD) (g + s¢)
=sﬂ\/(1+;z) (1+§z)

=svlc |1+ ZMkzk] (8.238)

k=1
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where we symbolically differentiate /(1 + (r/1)z) (1 + (g/c) z) to obtain the mo-
ments M as

d*\/(1+%2) (14 82
1 R (5

= yE (8.239)

Hence, the propagation function e~ 7®< is

o0
—s«/EJZMka
e IOL _ Vi, r—1

o0
VELY (Mk+1 /sk)
— e—s\/ﬁi’e—Ml Jl?‘![e k=1

*iTD (Mk+1/Sk)

— e_STDE_Ml TDE k=1 (8240)

where we denote the one-way time delay of the lossless line as Tp = v/Ic.Z. Represent
the last exponential with Pade methods as

e M I ol

k
k=1 §
_ stcepst 4 oo o
skt dist -+ d
L
K.
=1+Z ! (8.241)
i=1

S —di

Using the infinite series expansion for the exponential gives recursion relations for
Br as [31,32]

B =
B2

1 1
3 Qap + 1) = 3 (a1, 2a2) (B1, 1)

1
B3 = g(otl, 202, 3a3) (B2, B1, 1)

: 1
Br = z (o1, 2002, . .., kog) (Be—1, Bk—2, -+, 1) (8.242)
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where we denote oy = —TpMj+1. Hence, we can write the propagation function as

L
. K;
e_)/(S)f — e—sTDe—M1TD <1 + E p lq ) (8.243)
—4qi

i=1
In the time domain, (8.243) gives
L
eTOLE(5) = M f(t — Tp)* <6(t) - ZKie"i’> (8.244)
i=1
Hence, we have the required representation in terms of exponentials to facilitate

the recursive convolution scheme in performing the convolution. In order to include
skin-effect losses, we use the previous representation of the internal impedance as

r+sl; = A + B./s giving
N g+ sc
Yec(s) = | ————— 8.245
c(s) \| A+ B + sl (8.245a)

P(s) = \/ (g +5¢) (A+ By/s+sl) (8.245b)

and

These are similarly symbolically differentiated to obtain their moments, and the Pade
method yields the exponential representations as before. Other representations of
these parameters using the Pade method are given in [33].

PROBLEMS

8.1 Show by direct substitution that the results in (8.3) satisfy (8.1) and (8.2).
8.2 Derive the voltage reflection coefficient in (8.7).

8.3 Show that the per-unit-length inductance and capacitance can be found from
the characteristic impedance and velocity of propagation. [/ = (Zc/v), ¢ =
(1/vZo)]

8.4 Sketch the load voltage V(%,t) and the input current to
the line, 1(0,¢), for the problem depicted in Figure P8.4 for
O<t<10ns. What should these plots converge to in the steady state?
[V(£,1),0<t<1ns,0V, Ins <t<3ns, 9.375V,3ns<t <5ns, 8.203V, Sns<
t<7ns,8.35V,7ns<t <9ns, 8.331 V,9ns<r<11ns, 8.334V, steady-state
8.333V,and 1(0, 1), 0<t <2ns, 0.125 A, 2ns<t <4ns, 0.047A, 4ns<t < 6ns,
0.057 A,6 ns<t < 8ns, 0.055 A, 8ns<t<10ns, 0.056 A, steady-state 0.056
Al
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30Q 1(0,5)
] +
=0 Z-=50Q
IOAY ¢ (&, 1) 150 Q
v=3x10%m/s
- 30 cm >
FIGURE P8.4

8.5 Sketch the load voltage V (Z,t), and the input voltage to the line,

8.6

V(0,t), for the problem depicted in Figure P8.5 for 0O<t<20ns.
What should these plots converge to in the steady state? [V(Z,1),
O<t<2ns,0V,2ns <t<6ns, 6.667V,6ns<t < 10ns, 4.444V, 10ns <
t < 14ns,5.185V, 14ns<t < 18ns,4.938 V, 18 ns<r<22ns, 5.021V, steady-
state 5 V, and V(0,1),0<t <4ns,3.33V,4ns<t <8ns,5.556V, 8ns<rt <
121ns,4.815V,12ns<t < 16ns,5.062V, 16 ns<t<20ns,4.979V,  steady-
state 5 V]

50Q

+ +
t=0
. Z0=100 Q
V.0 v =2.5x108m/s

V{Z,1)

- 50 cm >

FIGURE P8.5

Sketch the input voltage to the line, V(0, t), and the load current 1(.Z, t) for
the problem depicted in Figure P8.6 for O0<f<10ws. What should these
plots converge to in the steady state? [V(0,1),0<t<2ps, 66.67
V,2us<t <4 ps,22.22V, 4 pus<t <6 s, 7.407V, 6 ps<t < 8 ws, 2.469V, 8
ps<t < 10 ws, 0.823V, steady-state 0 V and I(Z,t),0<t<1ps, 0V,
Tps<t <3 s, 1.33A, 3 pus<t <5Sws, L.L778 A,5 us<t <7 s, 1.926 A, 7 ps
<t <9ps, 1.975A,9 ps<t < 11 s, 1.992 A, steady-state 2 A]

50Q &)

+ ¢

t=0

Ze=100 Q2
100V V(0,0)

v=3x108m/s

+— 300m ———>»

FIGURE P8.6
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8.7 Sketch the input voltage to the line, V(0, ¢), and the load voltage V(%,t)
for the problem depicted in Figure P8.7 for O<r<32ns. What should
these plots converge to in the steady state? [V(0, ), 0<t<8ns, 10V,
8ns <r<12ns,5.556V, 12ns<t<16ns, —4.444V, 16 ns<t<20ns, —3.951V,
20ns<t<24ns,0.494V,24ns <t<28ns, 0.439V, 28 ns<t < 32ns, —0.055V
steady-state O V,and V(Z, 1), 0 <t<4ns, 0V, 4ns<t < 12ns, 6.667 V, 12 ns<t
< 16ns,5.926 V,16 ns<t<20 ns, —0.741V, 20ns<t<24ns, —0.658 V, 24 ns
<t<28ns, 0.082V, 28 ns < t<32ns, 0.073 V steady-state 0 V]

200 Q
+ +
Z~=100Q
0 V0.0 N V@, 1) 500
v=2.5x108m/s
- Im >
Ve () A
30V
12ns ¢
FIGURE P8.7

8.8 A time-domain reflectometer (TDR) is an instrument used to determine prop-
erties of transmission lines. In particular, it can be used to detect the locations
of imperfections such as breaks in the line. The instrument launches a pulse
down the line and records the transit time for that pulse to be reflected at some
discontinuity and to return to the line input. Suppose a TDR having a source
impedance of 50 €2 is attached to a 50-$2 coaxial cable having some unknown
length and load resistance. The dielectric of the cable is Teflon (¢, = 2.1). The
open-circuit voltage of the TDR is a pulse of duration 10 ps. If the recorded

Vi

m

>V
120V

100 V I

6 10 16 200 t(ps)

FIGURE P8.8
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voltage at the input to the line is as shown in Figure P8.8, determine (a) the
length of the line and (b) the unknown load resistance. [75 €2, 621.059 m]

A 12-V battery (Rs = 0) is attached to an unknown length of transmission line
that is terminated in a resistance. If the input current to the line for 6 ws is

as shown in Figure P8.9, determine (a) the line characteristic impedance and
(b) the unknown load resistance. [Z¢c = 80 2, Ry, = 262.9 2]

]in‘

150 mA

4.5 ¢ (us)
—10 mA
FIGURE P8.9

Digital clock and data pulses should ideally consist of rectangular pulses. Ac-
tual clock and data pulses, however, resemble pulses having a trapezoidal shape
with certain rise and fall times. Depending on the ratio of the rise/fall time to the
one-way transit time of the transmission line, the received voltage may oscillate
about the desired value, possibly causing a digital gate at that end to switch
falsely to an undesired state, and cause errors. Matching the line eliminates
this problem because there are no reflections, but matching cannot always be
accomplished. In order to investigate this problem, consider a line connecting
two CMOS gates. The driver gate is assumed to have zero source resistance
(Rs = 0), and the open-circuit voltage is aramp waveform (simulating the lead-
ing edge of the clock/data pulse) given by Vs(#) = Oforz <0, Vs(¢) = 5(¢/t:) V
for 0 <t <t and V() = 5V for t > 1, where t; is the pulse rise time. The
input to a CMOS gate (the load on the line here) can be modeled as a capac-
itance of some 5—15pF. However, in order to simplify the problem, we will
assume that the input to the load CMOS gate is an open circuit Ry, = oco.
Sketch the load voltage of the line (the input voltage to the load CMOS gate)
for line lengths having one-way transit times 7 such that (a) 7, = (Tp/10), (b)
7. = 21p, (¢) 7 = 31p, and (d) 7y = 4Tp. This example shows that in order to
avoid problems resulting from mismatch, one should choose line lengths short
enough such that Tp <<y, that is, the line one-way delay is much less than
the rise time of the clock/data pulses carried by the line.

Highly mismatched lines in digital products can cause what appears to
be “ringing” on the signal output from the line. This is often referred
to as “overshoot” or “undershoot” and can cause digital logic errors. To
simulate this, we will investigate the problem shown in Figure P8.11.
Two CMOS gates are connected by a transmission line as shown. A 5-V



8.12

8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22

PROBLEMS 465

step function voltage of the first gate is applied. Sketch the output voltage
of the line (the input voltage to the load CMOS gate) for 0<t<9Tp.
[0<t<Tp,0V,Tp <t<3Tp, 6.944V,3Tp<t <51p, 3.858 V,5Tp<t <
71p,5.23V,7Tp<t<9 Tp, 4.62 V. Steady state is 5 V]

[
)

y
Zo Tp @
Y

Fes- === [rTsT=—==- 1
: A | | :
. ° i

| | 1 |
] ! |

A0 ! Ze, Tp AR 57 1
b=5u0 ] ! !
i | -4 :
| a ; .
| e i Do !

FIGURE P8.11

A transmission line of total length 200 m and velocity of propagation of v =
2 x 108(m/s) has Z¢ = 502, and Ry, = 20 Q. It is driven by a source having
Rs = 100 €2 and an open-circuit voltage that is a rectangular pulse of 6 V mag-
nitude and 3 s duration. Sketch the input current to the line for a total time of 5
ps. [0<t<2ps,40mA, 2 ps<t <3 s, 51.43mA, 3 us<t <4 ps, 11.43 mA,
4dus<t <S5ps, 9.796 mA, 5 ps<t < 6 ps, —1.633 mA. Steady state is 0 A.]

Confirm the results of Problem 8.4 using SPICE (PSPICE).
Confirm the results of Problem 8.5 using SPICE (PSPICE).
Confirm the results of Problem 8.6 using SPICE (PSPICE).
Confirm the results of Problem 8.7 using SPICE (PSPICE).
Confirm the results of Problem 8.8 using SPICE (PSPICE).
Confirm the results of Problem 8.9 using SPICE (PSPICE).
Confirm the results of Problem 8.10 using SPICE (PSPICE).
Confirm the results of Problem 8.11 using SPICE (PSPICE).
Confirm the results of Problem 8.12 using SPICE (PSPICE).

One of the important advantages in using SPICE to solve transmission-line
problems is that it will readily give the solution for problems that would be
difficult to solve by hand. For example, consider the case of two CMOS inverter
gates connected by a 5 cm length of 100-€2 transmission line as shown in Figure
P8.22. The output of the driver gate is represented by a ramp waveform voltage
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rising from 0 to 5 Vin 1 ns and a 30-€2 internal source resistance. The receiving
gate is represented at its input by 10 pF. Because of the capacitive load, this
would be a difficult problem to do by hand. Use SPICE (PSPICE) to plot the
output voltage of the line, V.(¢), for 0<#<10ns. Observe in the solution that
this output voltage varies rather drastically about the desired 5-V level going
from 4.2 to7 V before it stabilizes to 5 V well after 10 ns.

Z:=100 Q
v=1x108m/s

< Scm >
30Q
¥
Z-=100 Q
vso (F ¢ Vi(t) e
s (2 7o =0.5ns L =10 pF
Vi A
SV FTTT, d
!
|
I
!
1 .
1 ns !
FIGURE P8.22

Demonstrate the series solutions in (8.14).
Derive the method of characteristics solution in (8.34).

Rederive the time-domain load voltage waveform for the line in Figure 8.12
but with a resistor R in parallel with the inductor C. Sketch the result. Does it
make sense?

R+ Zc
¢ CRZc

t—T

D
VL ()= Vou (t — Tp)

Vou (t—Tp) —
R 7o Vou=Ip) = 2=

Rederive the time-domain load voltage waveform for the line in Figure 8.13
but with a resistor R in series with the inductor L. Sketch the result. Does it
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make sense?

R+ Zc
VL ()= Vou (t—Tp) + ze e L - TD)VOM (t —Tp)
R+ Zc R+ Zc

8.27 Verify the FDTD recursion relations for a lossless line with resistive loads
given in (8.81).

8.28 Verify that the FDTD recursion relations for a lossless line in (8.76) and (8.78)
give the exact solution of the transmission-line equations for the magic time
step.

8.29 Use FINDIF.FOR described in Appendix A to verify the results in Figure
8.23.

8.30 Use PSPICE to verify the extreme results for a mismatched line shown in
Figure 8.29.

8.31 Verify the results for a line discontinuity shown in Figure 8.33 by hand and by
using PSPICE.

8.32 Use MATLAB to plot the real and imaginary parts of the Debye model given
in (8.126).

8.33 Verify the FDTD recursion relations for a lossy line with dc losses given in
(8.173) and (8.168).

8.34 Verify the FDTD recursion relations for a lossy line and resistive loads given
in (8.181), (8.76), and (8.81).

8.35 Recompute the Prony coefficients in Table 8.1 using MATLAB and, if they are
different, plot the result versus the exact value of Zg (m).

8.36 Use TIMEFREQ.FOR, MTL.FOR, and FDTDLOSS . FOR to confirm the re-
sults in Figure 8.43.

8.37 Derive the results for the Pade approximation given in (8.224).
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TIME-DOMAIN ANALYSIS OF
MULTICONDUCTOR LINES

In the previous chapter, we examined the time-domain solution of the transmission-
line equations and the incorporation of the terminal constraints for two-conductor
lines. We will extend those results to the case of lines composed of more than two
conductors or multiconductor transmission lines (MTLs) in this chapter. We will find
that the results of the preceeding chapter for two-conductor lines can be extended to
the case of MTLs consisting of n 4+ 1 conductors with n > 1 in a very straightforward
manner using matrix notation.

9.1 THE SOLUTION FOR LOSSLESS LINES

In this section, we will examine the time-domain solution of the MTL equations for
a lossless line:

0 0
—V(z,t) = —-L—I(z, ¢t 9.1
% (z, 1) o (z, 1) (9.1a)

d d
—I =-C— .1b
™ (z, 1) C 8tV(z, 1) (9.1b)

where L and C are the per-unit-length inductance and capacitance matrices, respec-
tively, and are of dimension n x n. The line voltages and currents are contained in
the n x 1 vectors V and I. The uncoupled, second-order equations are

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.

470



THE SOLUTION FOR LOSSLESS LINES 471

2 2

3 3
—V(iz,)=LC—V(z, ¢t 9.2
p¥S) (z.1) ¥ (z,1) (9.2a)
e &
—I(z,1) =CL—=I(z, ¢ 9.2b
02 (z,1) v (z,1) (9.2b)

Note that the order of multiplication of L and C in these second-order equations
must be strictly observed. The objective in this section is to determine the general
solution of these equations and the incorporation of the terminal conditions. Some
earlier works are represented by [1-9].

9.1.1 The Recursive Solution for MTLs

In the previous chapter, we developed a series solution for the terminal voltages of a
lossless, two-conductor line. (See Eq. (8.14) in the previous chapter.) Branin’s method
was also developed for two-conductor lossless lines and expressed the terminal volt-
ages at one end of the line in terms of the terminal voltages at the other end one-time
delay earlier. This led to the SPICE exact solution model for two-conductor, lossless
lines. The series solution can be extended in the following manner to lossless MTLs in
homogeneous media. The following recursive solution cannot be readily extended to
handle inhomogeneous media. Recall the frequency-domain chain parameter matrix
as

{Y(f)} _ [cim(z) @12(3)} [?(O)] ©.3)
i(2)] 7 [e0(2) @) | 10) '

where the submatrices are given in (7.115) of Chapter 7. Specializing these for a
lossless line in a homogeneous medium gives

11 = cos(B )1, (9.4a)
bpp = — jsin(B L)Zc (9.4b)
&y = — jsin(B LVZ' (9.4¢)
b2 = cos(B )1, (9.4d)

where 1, is the n x n identity matrix with ones on the main diagonal and zeros
elsewhere. The n x n characteristic impedance matrix is defined as

Zc =vL (9.5a)
Z:' =vC (9.5b)

and the velocity of propagation for this homogeneous medium is defined by



472 TIME-DOMAIN ANALYSIS OF MULTICONDUCTOR LINES

1
v= N 9.6)

The phase constant in (9.4) is f = w/v.
The Laplace transform of the corresponding time-domain result can be obtained
from this by substituting the Laplace transform variable s for jw, and replacing

&z
JjBZ = ja)j < sTp 9.7
where the line one-way time delay is again denoted as

= — 9.8)
v

The Laplace-transformed chain parameter matrices in (9.4) become

R eSTD +€7‘YTD

D11(z,8) = <2> 1, (9.9a)
R eSTD _ e—STD

Da(z,8) = — (2) Zc (9.9b)
R eSTD _ e—STD

Do1(z,8) = — <2> Z(_;l (9.9¢)
R eSTD +€7‘YTD

Do(z,8) = <2> 1, (9.9d)

Hence, taking the Laplace transform of the chain-parameter relation in (9.3) shows
that the terminal voltages and currents are related as

eSTD 4 e—STD

. & — =T A
> > Y, s) — <2> Zc1(0, 5) (9.10a)

V(Z,s) = <

. sTp _ ,—sTp . sTp —sTp .
i(2.5) = — (e;) 22V, 5) + (e+2e) i0,s)  (9.10b)

Multiplying (9.10b) by Z¢ and adding and subtracting the equations gives

V(Z,s)+Zc 12, 5) = eV, 5) + e Z1(0, 5) 9.11a)

V(Z,5)—Zc (L, 5s) = PV, s) — ¢ TPZ1(0, 5) (9.11b)
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Observing once again the delay transform pair given in (8.43) of Chapter 8 gives the
time-domain forms as

V& t)+Zc (L, )= V(0,t — Tp) + Zc 1(0, t — Tp) (9.12a)

V&, t)-Zc (&L, t) = V(0,t+ Tp) — Zc 1(0, t + Tp) (9.12b)
Time shifting (9.12b) and rearranging gives

V(@0,t) —ZcI0,t) = V(&,t —Tp) —Zc (&L, t — Tp) (9.12¢)
Define the vectors

Eo(Z,t —Tp)=V(&L,t —Tp) —Zc (%, t — Tp) (9.13a)

E#0,t —Tp)=V(O,t — Tp) + Zc 1(0, t — Tp) (9.13b)
Equations (9.12) become

V(@©O,1) —ZcX0,t) = Eo(Z,t — Tp) (9.14a)

V&, )+ ZcI(Z,t) =Ex0,t — Tp) (9.14b)
Equations (9.13) after being time shifted become

Eo(Z,t) =V(ZL,t) —Zc (¥, 1) (9.15a)

E(0,1) = V(0, 1) + Zc 1(0, 1) (9.15b)

Substituting (9.14) into (9.15) gives the terminal voltages in terms of the E vectors as

1 1
V@O, = EEg(O, nH+ EEO(DSP, t—1Tp) (9.16a)

1 1
V&, 1) = EEO(SK, 1)+ EEg»(O, t—1p) (9.16b)

In order to incorporate the terminal constraints at the ends of the line, we describe
the resistive terminations as generalized Thevenin equivalents:

V(0, 1) =Vs(t) —Rs I(0, 1) (9.17a)
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V&, )=VL@t)+ RLI(Z, 1) (9.17b)
Substituting these terminal relations into (9.15) and (9.14) gives

E#(0,t) =2Mgs Vs(t) + I's Eo(Z, t — Tp) (9.18a)

Eo(Z,t) =2ML V(1) + TLE (0, t — Tp) (9.18b)

where we have defined, in the fashion for two-conductor lines, the n x n reflection
coefficient matrices as

I's = [Rs — Zcl[Rs + Zc] ™! (9.19a)

'L = [Re — Zc][Re + Zc] ™! (9.19b)
and the n x n voltage division coefficient matrices are defined as

Ms = Zc[Rs + Zc] ™! (9.20a)

My = Zc[Ry, + Zc] ™! (9.20b)

The scheme is to discretize the time axis into N computation steps in each one-
way time delay Tp as At = Tp/N and then form the four n x N arrays Egld, E‘}}d,
Ej™, and E'5". The N columns of these are associated with the time increment,
and the n rows are associated with the particular conductor of the line. To begin the
recursion algorithm, we assume an initially relaxed line and fill Egld and E?}d with
zero entries. Then compute the entries in Ej* and E'Z" according to (9.18) and
compute the terminal voltages from (9.16). Once all entries are filled for all N time
increments for 0 <t < Tp, write the entries in Eg*" and E'J" into Egld and E‘b}d,
respectively, and repeat the calculations for the N time increments in the next interval
Tp <t < 2Tp. This is repeated to solve for the terminal voltages in blocks of time
of length equal to the one-way line delay, Tp. This extension of Branin’s method
to MTLs is implemented in the FORTRAN program BRANIN.FOR described in
Appendix A. The method implicitly assumes that all modes propagate with the same
velocity so that it does not appear feasible to extend it to the lines in inhomogeneous
media.

The recursive method can be solved in series form by recursively substituting
(9.18) into (9.16) to give
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V@O,1) = MsVs@®) + 1, +Ts){I'LMsVs(t — 2Tp)
+ ([LI's)I'LMsVs(t — 4Tp)
+(ILTs)’TLMsVs(t — 6Tp)
+(ILTs)’ TLMsVs(t — 8Tp) + - -}

+1, +THMLVL( — Tp)

+ (L) MLVL(t — 3Tp)
+ (CLTs)*MLVL(7 — 5Tp)
+(CLIs’MLVL( — TTp) + -+ -}

(9.21a)

V&, t) = MLVL@®)+ A, +TL){TsMLVL(t — 2Tp)
+ TsTL)TsMLVL(t — 4Tp)
+(PsTL)’TsMLVL (1 — 6Tp)
+(IsTL)*TsMLVL(t — 8Tp) + -+ }

+ @1, +TI'L){MsVs(t — Tp)

+ TsI'L)MsVs(r — 3Tp)
+(I'sTL)*Ms Vs(t — 5Tp)
+(TsTL*MsVs(t — 7Tp) + - -}

(9.21b)

These reduce to the exact scalar results for a two-conductor line given in (8.14)
of Chapter 8, but the order of multiplication of the matrices must be preserved
here.

Equations (9.21) show that in order to eliminate reflections at the terminations,
we must terminate the line in matched loads, that is, Ry, = Z¢ and/or Rg = Zc, in
which case (9.19) become I';, = 0,, and I's = 0,, where 0,, is the n x n zero matrix
with zeros in all positions. Therefore, in order to “match” an MTL, we must provide
resistors between all pairs of lines [1]. It is not sufficient to simply attach resistors
between each line and the reference conductor to eliminate reflections, as was the
case for two-conductor lines. If the line is matched at the right end, that is, Ry, = Zc,
then I', = 0, and (9.21) become

V(0,1 =MsVs(#) + 1, +T's)MLVL(t — Tp) (RL =Zc¢) (9.21¢)
and
V(&Z,t) =MLVL(®) + sMLVL(t — 2Tp) + MsVs(t — Tp) (RL = Z¢)
(9.21d)

and My, = 21,,. Suppose that the sources are only in the left termination, that is,
VL(#) = 0. These results reduce to

V(0,1 =MsVs(#) (Rp =Zc, VL) =0) (9.21e)
and

V(Z,1) =MsVs(t —Tp) (RL =Zc, VL(1) = 0) (9.21)
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which simply says that the input voltages to the line are the “voltage-divided” portions
of the sources in the left termination, Vs(¢), and the output voltages at the right end of
the line are those delayed by one line one-way delay Tp, which means that there are
no reflections. The result in (9.21c) for the voltage at z = 0, V(0, 7), is composed of
two contributions. The source in the left termination, V¢(z), produces (9.21e), and the
source in the right termination, V. (¢), is “voltage-divided” by My, sent down to the
source arriving there after one-time delay, reflected by I''s, added to the incident wave,
and sent back down the line to the load where it is completely absorbed. Similarly, the
resultin (9.21d) for the voltage at z = &, V(¥Z, 1), is composed of two contributions.
The source in the left termination, Vg(#), produces (9.21f), and the source in the right
termination, Vp,(¢), is “voltage-divided” by My, sent down to the source, reflected by
I's, and sent back down the line to the load arriving after two-time delays where it is
completely absorbed.

9.1.2 Decoupling the MTL Equations

The primary technique used to determine the general form of the solution of the MTL
equations for sinusoidal, steady-state excitation in Chapter 7 was to decouple them
with similarity transformations. In the case of the general time-domain solution of
lossless lines, the technique of decoupling the MTL equations in (9.1) or (9.2) via
similarity transformations is again a useful technique that can always be used to affect
the solution.

We define the similarity transformations to mode voltages and currents as

V(z,t) =Ty Vu(z, 1) (9.222)
I(z,t) =T Lu(z, 1) (9.22b)

Substituting these into (9.1) gives

9 e D

&Vm(z, =-Ty LTlalm(z, 1) (9.23a)
9y (z,H)= —T;'CT i (2, 1) (9.23b)
82 m\Z, - I Vat m\Z, .

or for the uncoupled second-order equations in (9.2)

& _ &
o2 Ym0 = TVILCTV?Vm(z, D) (9.24a)

2 i 82
52 @ 0 =T CLT 251z 0 (9.24b)

If we can choose a Ty and a T; such that (9.23) or (9.24) are uncoupled, then
we have the general form of the mode solutions as those of two-conductor lines of
the previous chapter. This is always guaranteed for lossless lines as was shown in
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Chapter 7 for sinusoidal excitation. For example, consider the coupled first-order
equations in (9.23). Suppose we can find a Ty and a T such that they simultaneously
diagonalize both L and C as

T,'LT; =Ly, (9.25a)
T,'CTy = C, (9.25b)
where L, and C,,, are diagonal as
Ipi O -~ 0
L,= |9 M2 (9.250)
0 0 lun
Cml 0 0
Cp=|0 2 (9.25d)
)
0 --- 0 cun

Then the mode equations in (9.23) become

d d
—Vu(z,t) = =Ly —In(z, 1) (9.26a)
0z ot
d 0
—In(z, 1) = =Cpu—Vul(z, 1) (9.26b)
0z ot
or
i (z,n) = -l ! Ini(z, 1)
Py ml1\Z, = ml o ml1\Z,
d d
372 m1(Z, 1) = —cmi & Vini(z, 1)
: (9.27)
3 ' d
— V() = —bun — Inn(z, 1)
; ;
372 Lun(z, 1) = —cCmn 5 Vi (2, 1)

These are the same equations as for uncoupled, two-conductor lines having charac-
teristic impedances of

l .
Zemi = || — (9.28)

Cmi
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and velocities of propagation of

1

Ui = (9.29)
" MmiCmi
fori =1, 2, ..., n.Therefore, the solutions for these mode voltages and currents have

the same general form as for the two-conductor line. The actual voltages and currents
can be obtained from the forms of the mode voltages, and current solutions via (9.22).
We now address the determination of the diagonalizing similarity transformation for
the various classes of lines.

9.1.2.1 Lossless Lines in Homogeneous Media For this class of line, we have the
important identity

LC=CL = uel, (9.30)

where the surrounding homogeneous medium is characterized by permittivity & and
permeability . The similarity transformations that simultaneously diagonalize L and
C as in (9.25) can be found in the following manner as shown in Chapter 7. Because
L is real and symmetric, a real, orthogonal transformation T can be found such that

TLT =L, (9.31a)
where
Iyi O - 0
L,= |9 Mmoo (9.31b)
N
0 oo 0 Ly

and the inverse of T is its transpose that is denoted with the superscript t [10]:
T'=T (9.31c)
Similarly, with the aid of the identity in (9.30) expressed as
C=peL™! (9.32)
we may form
T'cT' =T'CT
= peTL7IT

|
- L (9.33)

v "
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where v = 1/,/u &. Comparing (9.31) and (9.33) to (9.25) shows that the transfor-
mations can be defined as

T, =T (9.34)
Ty =T (9.34b)
T,'=T,' =T (9.34c)

Therefore, the mode characteristic impedances in (9.28) are

ZCmi = Ulm,' (9.35)

and all modes have the same velocity of propagation:

1
Upi = V= —— (9.36)

N

For the special case of a three-conductor line, n = 2, the mode transformation is
simple [10]:

cosf —sinf
- [ sin@  cosf ] (9.37a)
where
21
tan 2 = —— 12 (9.37b)
Iy —Ixn

For n > 3, a numerical computer subroutine implementing, for example, the Jacobi
method is used to obtain the orthogonal transformation [10]. Appendix A describes
a FORTRAN subroutine, JACOBI . SUB, that accomplishes this reduction.

9.1.2.2 Lossless Lines in Inhomogeneous Media For this case we no longer have
the identity in (9.30). However, we showed in Chapter 7 that because L and C are real,
symmetric, and positive definite, we can find a transformation that simultaneously
diagonalizes these matrices in the following manner. First, we find an orthogonal
transformation that diagonalizes C as

U'CU = ¢* (9.382)
where
02 0 0
2 . N
2|0 6 o (9.38b)
. . 0
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and

Uu!'=ut

(9.38¢)

Since C is positive definite, we can obtain the square root of 62, §, which is real and
nonsingular and forms the product § U' L U 6. Since this is real and symmetric, we

can diagonalize it with another orthogonal transformation as

S'(PU'LUG) S = A?

where
A2 0 0
A2 |0 A3
. 0
0 0 A2
and
sl=¢
Define the matrix T as
T=U6S

The columns of T can be normalized to a Euclidean length of unity as
Thorm = Ta

where « is the n x n diagonal matrix with entries

1
Ojj = . >
\/ Zk:] Tki

Qjj = 0

(9.39a)

(9.39b)

(9.39¢c)

(9.40)

(9.41)

(9.42a)

(9.42b)

The mode transformations in (9.22) that simultaneously diagonalize L and C as in

(9.25) can then be defined as

T, =U6S«
=Tn0rm
Ty =U60'Sa™!
7t

norm

(9.43a)

(9.43b)
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Also
T, = oIS
=T (9.44a)
T,' =«S'9U
=T (9.44b)

Substituting (9.43) and (9.44) into (9.25) gives
T,'LT; =aSYU'LUASa
=alA’a (9.45a)
T;'CTy = 'S'97'U'CUH ' Sa!
—=q 2 (9.45b)
Comparing (9.45) and (9.25) shows that

L, =a A« (9.46a)
Cp =02 (9.46b)

Since o and A are diagonal matrices, the mode characteristic impedances and veloc-
ities of propagation are given by

l .
Zcemi = Cnl
mi
and
1
Uni = —
" VmiCmi

(9.48)

One can show that Z¢ = Tt[l Zcn T = TyZc, T, . The desired mode transforma-
tion matrices are
Ty =U6'Sa™!
=T (9.49a)

norm
T, = oIS
=T}

norm

(9.49b)
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The above diagonalization is implemented in the FORTRAN subroutine DIAG . SUB
described in Appendix A. This subroutine calls the FORTRAN subroutine JA-
COBI. SUB to compute the two orthogonal transformations required by DIAG. SUB.

9.1.2.3 Incorporating the Terminal Conditions via the SPICE Program Since
we have uncoupled the equations via the mode transformation in the preceding
sections, the mode voltages and currents are essentially associated with n uncoupled,
two-conductor transmission lines as is illustrated in (9.27) whose general solutions
are known. Again each general mode solution contains two undetermined constants
so that there are a total of 2n undetermined constants. It remains to incorporate
the terminal conditions at the two ends of the line in order to evaluate these 2n
undetermined constants.

There are a number of ways of doing this. The most useful and simplest way is
to utilize the exact time-domain model for a lossless, two-conductor line that exists
in the SPICE code as shown in Figure 8.9 of Chapter 8 [A.2,A.3,B.19,11]. But each
of these models relates only the n mode voltages and currents at the two ends of the
line. In order to relate these mode quantities to the actual voltages and currents, we
implement the mode transformations given in (9.22). These transformations can be
implemented in the SPICE program through the use of controlled sources as illustrated
in Figure 9.1. Writing the transformations in (9.22) out gives

Vi(z, 1) Tvie Tviz - Tvin] V(2 1)
Va(z, 1) : Vina(z, 1)
. _ TV'21 Ty : m . (9.50a)
Va(z, 1) Tvni ce oo Tyun Vinn(z, 1)
A% Ty Vo
Ii(z,n ov

1, mi (Z’ t)

O :

Vilz, ) E; <+> F; <¢> Vini(z,

~
-

- ® |
A
- o |

Actual Modes

E[, = z [Tv] ik[Vm]k

Fr=2 [T Tk

FIGURE 9.1 [llustration of the use of controlled sources to implement the mode
transformations.
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Li(z, 1) T Tnz - Tin] 1z, 0)
12(%, ) _ T{zl Ty . Imz(.z, 1) (9.50b)
I,(z, 1) Tini <o T Lun(z, 1)
I T, L,
Inverting (9.50b) gives
L, =T;'I (9.50c)
Hence, the rows of (9.50c) and 9.50c can be written as
n
Vi=Y [Tvli [Vl (9.50d)
k=1
n
-1
Ipi = ; [T ; Lk 1], (9.50€)

where we denote the entries in the ith row and jth column of Ty and TI_1 as [Ty];;
and [Tl_l} _, respectively, and the entries in the ith rows of the vectors V,, and I are
1

denoted as j[Vm] ; and [I];, respectively. The transformations in (9.50a) and (9.50c)
can be implemented in SPICE using the controlled source representation illustrated
in Figure 9.1. Zero-volt voltage sources are placed in each input to sample the current
I;(z, t) for use in the controlled sources representing the transformation in (9.50e).
The interior two-conductor mode lines having characteristic impedance Zc,; and time
delay Tp; = % /vy, are simulated with the existing two-conductor SPICE model as

TXXX NI 0 N2 0 Z0=Zcmi  TD=Tp;

as shown in Figure 9.2.

1,;(0,1) 1%
&) e s ©
Vi (0, 1) Zg  Tpi= L Vol )

Vi

©

FIGURE 9.2 The two-conductor mode transmission lines.

OLX
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The advantages of this method of implementing the terminal conditions are that the
model for the line is independent of the terminations and any of the available device
models in SPICE such as resistors, capacitors, inductors as well as the nonlinear
models such as diodes and transistors can be called. Hence, the model is referred to
as a macromodel of the line and also called a 2n-port model of the line. The user
need not redevelop the mathematical models of those devices in the terminations.
The overall model of the line can be implemented as a subcircuit model in SPICE
and the appropriate line terminations attached to the ports of this subcircuit. Thus,
the solution implemented in this way in SPICE (or PSPICE) is exact within the time
step discretization in the SPICE solution.

As an example of the implementation of this valuable technique, consider the ex-
ample of three rectangular cross-section conductors (lands) on the surface of a printed
circuit board (PCB) shown in Figure 9.3 that has been considered previously. This
problem is that of an inhomogeneous medium, and we shall assume a lossless medium
and perfect conductors so that the results of Section 9.1.2.2 will apply. The per-unit-
length capacitance matrix was computed using the numerical technique described in
Chapter 5 via the PCB . FOR program discussed in Appendix B using 50 divisions per
land:

[ 405985 2029927 L
= 12202992 297378 | P

The per-unit-length inductance matrix was computed from the capacitance matrix
with the dielectric board removed, Cyp, as

B 1 _ [ 1.10515  0.690613
L= oseCy = [0.690613 138123 ] pH/m

Using SPICEMTL . FOR, the similarity transformations become

To — 1.118 0.5
V= 1-39%x107° 1.0

and

3 1.118 —3.9x107°
T =Ty = { 0.5 1.0

The mode characteristic impedances and propagation velocities are

Zemi = 109.445Q
Um1 = 1.80046 x 103 m/s
Zemn = 265.544 Q
Umz = 1.92251 x 103 m/s
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FIGURE 9.3 Example illustrating the generation of a SPICE model for coupled transmission
lines: (a) longitudinal dimensions, (b) cross-sectional dimensions, and (c) the applied pulse
train.

This gives the mode circuit one-way time delays as

Tpit = 1.410753ns
Tpp = 1.321187ns

The SPICE program (implemented on the personal computer version, PSPICE) is
obtained from the circuit of Figure 9.4 as
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@ @ VO@ @ V;—O
v =109.445Q : 3
Vs (%) - e ¢ ? RL=500Q
T, = 1.410753 ns
© )
5

vzvo 0 V4—0

Z. =265.5440
Rng = SOQ EC4 Ry =50Q
Tz = 1.321187 ns

FIGURE 9.4 The SPICE model for the coupled line of Figure 9.3.

2 O

SPICE MTL MODEL
VS 1 0 PULSE(0O 1 0 6.25N 6.25N 43.75N 100N)
RS 1 2 50

vi 2 3

RL 7 0 50
V3 7 6

RNE 13 0 50
v2 13 12
RFE 8 0 50
v4d 8 9

ECl1 3 0 POLY(2) (4,0) (11,0) 0 1.118 0.5

)
EC2 12 0 POLY(2) (4,0) (11,0) 0 -3.9E-6 1.0
EC3 6 0 POLY(2) (5,0) (10,0) O 1.118 0.5
EC4 9 0 POLY(2) (5,0) (10,0) O -3.9E-6 1.0
FCl1 0 4 POLY(2) V1 V2 0 1.118 -3.9E-6
FC2 0 11 POLY(2) V1 V2 0 0.5 1.0
FC3 0 5 POLY(2) V3 V4 0 1.118 -3.9E-6
FC4 0 10 POLY(2) V3 v4 0 0.5 1.0

T1 4 0 5 0 20=109.445 TD=1.410753N
T2 11 0 10 0 Z0=265.544 TD=1.321187N
.TRAN .1N 20N O .05N

.PRINT TRAN V(2) V(7) V(13) V(8)

. PROBE

. END

Comparisons with the experimentally obtained data will be shown in Section 9.3.2.



THE SOLUTION FOR LOSSLESS LINES 487

The method is implemented in the FORTRAN program SPTCEMTL . FOR that is
described in Appendix A. This code generates a SPICE subcircuit model. The user
then imbeds this into a SPICE (PSPICE) program where the terminal constraints are
added.

Another important advantage of the SPICE implementation of the solution is that
the frequency-domain or sinusoidal steady-state phasor solution considered in Chap-
ter 7 can also be obtained from this program with only a slight change in the control
statements. These are to redefine the voltage source as

Vs 1 0 AC 1
and redefine the control and print statements as
.AC DEC 50 10K 1000MEG

(which solves the frequency-domain circuit from 10 kHz to 1 GHz in steps of 50 per
decade) and

.PRINT AC VM(2) VP(2) VM(7) VP(7) VM(13) VP(13) VM(8) VP(8)

where VM(X) and VP(X) denote the magnitude and phase, respectively, of the voltage
at node X. Adding the .PROBE statement to this allows the plotting of the frequency
response in a decibel plot. The remaining statements in the original time-domain
program above are unchanged.

9.1.3 Lumped-Circuit Approximate Characterizations

One can also model the line using a lumped-Pi or a lumped-T equivalent circuit
so long as the line is electrically short at the highest significant frequency of the
time-domain source waveform. These structures are shown for MTLs in Figure 7.6 of
Chapter 7. For digital pulse waveforms having equal rise- and fall times t;, the highest
significant frequency is approximately the bandwidth given earlier, f,,. =1/7:. The
line length is one tenth of a wavelength at this frequency if the pulse rise-/fall time is
approximately 10 times the line one-way delay or

> 10Tp

as was developed in Section 8.1.6.1 of Chapter 8. We saw that for MTLs there are n
velocities of the modes. In order to determine whether the above criterion is satisfied,
one should use the smaller of these mode velocities thereby guaranteeing that the con-
dition will be satisfied at the larger mode velocities. However, in today’s high-speed
digital world, this criterion generally places impractically short-length limits on the
PCB lands that can be modeled with one section. Other applications such as cables car-
rying signals with much lower spectral content perhaps can be feasibly modeled with
lumped-Pi or lumped-T sections. Again, for higher spectral content signals, dividing
the line into several sections that are individually short at the highest frequency of the
pulse waveform has been shown to not significantly increase the model accuracy to
justify the inordinately large circuit that must be solved [B.15]. For lossless lines, one
is better off simply using the SPICE subcircuit model generated by SPTCEMTL . FOR.
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9.14 The Time-Domain to Frequency-Domain (TDFD)
Transformation Method

This method is identical for MTLs to that described in Section 8.1.7 of Chapter 8 for
two-conductor lines. The only slight difference is that one must compute the single-
input, single-output frequency-domain transfer function using a frequency-domain
calculator such as MTL . FOR or using SPICEMTL. FOR to determine a MTL sub-
circuit model, imbedding that generated model into a SPICE (PSPICE) program and
using the .AC mode to compute this frequency-domain transfer function. Otherwise,
there is no difference in its use for two-conductor lines or for MTLs. Once again,
this method can incorporate line losses by including them in the frequency-domain
transfer function (if MTL . FOR is used to generate it), which is a very straightforward
process. However, the method suffers from the primary restriction that the line and
its terminations must be linear since it uses the principle of superposition to return to
the time domain.

9.1.5 The Finite-Difference, Time-Domain (FDTD) Method

The FDTD recursion relations were developed for a two-conductor line in the previous
chapter. These are virtually unchanged for MTLs with only the use of matrix notation.
Discretizing the derivatives in the MTL equations for a lossless line given in (9.1)
using central differences [10,12] according to the scheme in Figure 8.17 gives

1 i i 1 132 gntl)2
= Vit - Vit = - L Lot (9.51a)
fork=1, 2, ---,NDZ and
1 12 112 1 +1
= LA fa -5C Vit = vi] (9.51b)
for k =2, ---,NDZ. The n x 1 vectors I and V contain the line currents and line
voltages, respectively, and we denote
v =V(k —1)Az, nAr) (9.52a)
P =Xk — 1/2)Az, nAr) (9.52b)

Solving these gives the recursion relations for the interior points along the line as

+3/2 12 Aty (o +1
A (Vi = v (9.53a)
fork=1, 2, ---,NDZ and
yirl —yn - Bl (I"“/2 I"+1/2> (9.53b)
k - Yk Az k -1 .

fork=2,3, --.,NDZ.
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The second transmission-line equation given in Eq. (9.1b) is discretized at the
source according to the scheme in Figure 8.18 as

1 | (A (4 1
(ARTE . T Y PG [V';+1 - V'{] (9.54a)
Az/2 2 At

Similarly, the second transmission-line equation, (9.1b), is discretized at the load
according to the scheme in Figure 8.18 as

IE—H + Iﬁ _ In+1/2‘|

1
Az/2
In these relations, we denote the n x 1 vectors of the currents at the source and at

the load as Is and Ip, respectively. Equations (9.54) are solved to give the recursion
relations for the voltages at the source and the load:

1
5 NDZ | = _EC [V%SIZH - V'&DZH} (9.54b)

241 At

1 —1qn+1/2 -1 1

Vitt=vi- T [Ig+ + Ig} (9.552)
2A1 At

Vibzi1 = Vizer + TZC_HKI—BIZ/Z - EC_I [IfH - Iﬁ} (9.55b)

It should be pointed out that this method of obtaining collocated current and voltage
relations in (9.54) at the source and the load was shown in Chapter 8 to yield the
exact solution of a two-conductor line consisting of perfect conductors immersed in
a lossless, homogeneous medium for the magic time step of At = A z/v.

Assume that the multiconductor line has lumped terminal source and load repre-
sentations that are resistive and are represented as generalized Thevenin equivalents:

V@, 1) = Vs(@) — RsI(0, 1) (9.56a)
V(&Z,)=VL(t)+ RLI(Z, 1) (9.56b)

Substituting these terminal representation of (9.56) into (9.55) yields the resulting
FDTD recursion relations for the voltages at the source and at the load as

A 1 (r1Az
Vil = [AfRSC + 14 { [AjRSC _ 14 VI —2RgI' 2 (V’;“ + Vg)
(9.57a)

Az 1 (TAz
V%IZH = [NRLC + ln} { [NRLC - 1n} Vipz+1 + ZRLIIriﬁDlZ/Z

+ (vt vi) ) (9.57b)

These equations are implemented in the FORTRAN program FINDIF.FOR de-
scribed in Appendix A. Again the time step A ¢ and the spatial discretization A z must
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satisfy the Courant condition

A
A< 25

(9.58)

Umax

in order to guarantee stability of the solution. For MTLs in inhomogeneous media
that have n velocities of propagation of the modes, the Courant condition should
be satisfied by the larger of the mode velocities thereby guaranteeing that it will be
satisfied by the smaller mode velocities.

9.1.5.1 Including Dynamic and/or Nonlinear Terminations in the FDTD Analysis
Any lumped-element network can be completely characterized in a state-variable
form [13, 14]. In the case of a linear network, this completely general formulation
becomes

%X(r) =MX(@#) +NU(@) (9.5%9a)

with an associated output relation
d
Y =0X(@#+PU®@ + QEU(I) (9.59b)

The vector X contains the state variables of the lumped network. These are typically the
inductor currents and capacitor voltages in that network or some subset of those vari-
ables. The vector U contains the independent sources in the network (the inputs), and
the vector Y contains the designated outputs (currents and/or voltages) of the network.
It should be emphasized that this formulation can characterize general linear networks
that may contain such diverse conditions as inductor-current source cutsets and/or
capacitor-voltage source loops as well as controlled sources of all types [13, 14].

Consider the recursion relations at the endpoints of the line given in (9.55a) and
(9.55b). From these relations it is clear that we must configure the state-variable
representations of the termination networks such that the outputs are the terminal
currents Is and I . The inputs for the state-variable representations must be the line
voltages at the endpoints, V| and Vnpz+1, as well as the independent sources within
the termination networks. In order to accomplish this task, we will define the outputs
in (9.59) as Is and Iy, and will partition the input vectors to yield

%Xs(l) = M;s Xs(#) + N1V (#) + NsSs (1) (9.60a)
Is(®) = Os Xs(t) + PV (2) + PsSs(t)
d d
+Q 7 Vi) + Qs 7 Ss(?) (9.60b)
d
—XL(#) = My XL(#) + NNDZ+1VNDZ+1(2) + NLSL(?) (9.61a)

dt
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I.(r) = OL XL(?) + PnD