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This textbook is dedicated to the humane and compassionate treatment of animals

A man is truly ethical only when he obeys the compulsion to help all life
which he is able to assist, and shrinks from injuring anything that lives.

Albert Schweitzer

It ill becomes us to invoke in our daily prayers the blessings of God, the
compassionate, it we in turn will not practice elementary compassion

towards our fellow creatures.

Gandhi

We can judge the heart of man by his treatment of animals.

Immanuel Kant
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PREFACE

This is the second edition of a textbook that is intended for a senior or graduate-level
course in an electrical engineering (EE) curriculum on the subject of the analysis of
multiconductor transmission lines (MTLs). It will also serve as a useful reference
for industry professionals. The term MTL typically refers to a set of n + 1 parallel
conductors that serve to transmit electrical signals between two or more points, for
example, a source and a load. The dominant mode of propagation on an MTL is the
transverse electromagnetic (TEM) mode of propagation, where the electric and mag-
netic fields surrounding the conductors lie solely in the transverse plane orthogonal
to the line axis. This structure is capable of guiding waves whose frequencies range
from dc to where the line cross-sectional dimensions become a significant fraction
of a wavelength. At higher frequencies, higher order modes coexist with the TEM
mode, and other guiding structures such as waveguides and antennas are more prac-
tical structures for transmitting the signal between a source and a load. There are
many applications for this wave-guiding structure. High-voltage power transmission
lines are intended to transmit 60-Hz sinusoidal waveforms and the resulting power. In
addition to this low-frequency power signal, there may exist other higher frequency
components of the transmitted signal such as when a fault occurs on the line or a circuit
breaker opens and recloses. The waveforms on the line associated with these events
have high-frequency spectral content. Cables in modern electronic systems such as
aircraft, ships, and vehicles serve to transmit power as well as signals throughout the
system. These cables consist of a large number of individual wires that are packed into
bundles for neatness and space conservation. The electromagnetic fields surrounding
these closely spaced individual wires interact with each other and induce signals in
all the other adjacent circuits. This is unintended and is referred to as crosstalk. This
crosstalk can cause functional degradation of the circuits at the ends of the cable. The
prediction of crosstalk will be one of the major objectives in this text.

There are numerous other similar transmission-line structures. A printed circuit
board (PCB) consists of a planar dielectric board on which rectangular cross-section
conductors (lands) serve to interconnect digital devices as well as analog devices.
Crosstalk can be a significant functional problem with these PCBs as can the degra-

xvii
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dation of the intended signal transmission through attenuation, time delay, and other
effects. Signal degradation, time delay, and crosstalk can create significant functional
problems in today’s high-speed digital circuits so that it is important to understand and
predict this effect. Digital systems constitute the primary type of electronic system
today and will no doubt dominate in the future. Clock speeds and data transfer rates
are accelerating at an astounding rate. Personal computers today have clock speeds
on the order of 3GHz. The spectral content of these high-speed digital waveforms
extends well into the lower GHz frequency range. This means that crosstalk as well
as unintended radiated emissions are presenting performance problems in digital
systems that were unheard of a decade ago. This will no doubt increase in the future.
As recent as 15 years ago, many of the signal connection conductors such as wires
and PCB lands were electrically short enough at the highest significant frequency of
the digital signals that the effect of those interconnection conductors could generally
be ignored. Today, most of the PCB lands must be treated as a transmission line, and
the matching of those lines is no longer an option in the design of a digital system.
Distributed-parameter properties of these conductors can no longer be ignored.
Hence, there is a growing need for digital design engineers to be able to understand
the concepts and design principles of a transmission line. The objective of this text
is to examine various methods for solving the transmission-line equations for mul-
ticonductor lines as well as to develop an understanding of the general properties of
wave propagation on the lines.

The analysis of transmission lines consisting of two parallel conductors of uniform
cross section has traditionally been a fundamental subject in electrical engineering.
Prior to the introduction of digital computer engineering topics into the undergrad-
uate EE curricula, all EE undergraduates were required to complete a course on
two-conductor transmission lines. However, because of the introduction of computer
engineering courses into an already crowded 4-year undergraduate degree program,
the transmission-line course(s) in many EE programs has been relegated to a senior
technical elective if offered at all. Unfortunately, the increasing use of high-speed
digital technology requires that all EEs must have a working knowledge of trans-
mission lines. In addition, the use of MTLs consisting of more than two conductors
is becoming more widespread because of the increasing need for high-volume and
high-speed data and signal transmission. Signal integrity (the effect of the transmis-
sion line on the signal transmission) is becoming a critical aspect of high-speed digital
system performance. This text is intended to fill the need for a structured course on
transmission lines in an EE program.

This text is the second edition of a previous text concerning the analysis of MTLs.
The text has undergone a significant reorganization with the emphasis given toward
a university textbook for a senior/graduate textbook on transmission lines. In the first
edition the two-conductor and MTL discussions were combined into a single chapter.
In this second edition, each broad analysis topic, for example, per-unit-length param-
eters, frequency-domain analysis, time-domain analysis, and incident field excitation,
now has a chapter concerning two-conductor lines followed immediately by a chap-
ter on MTLs for that topic. This allows the instructor to choose his or her emphasis
either on two-conductor lines or on MTLs, or on both. This organization also makes
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it easier for the reader to understand the analysis of MTLs. The analysis of MTLs
is very similar to that of two-conductor lines except that the detail is considerably
increased. However, with the aid of matrix symbology and techniques, most of the
MTL topics are straightforward extensions of the corresponding two-conductor line
topics. Hence, by devoting a separate chapter to each two-conductor line topic and
then following that with a chapter on the corresponding MTL topic, the MTL material
can be more readily understood.

In addition to this significant reorganization of the material, the text now contains
important developments in analysis methods that have been developed in the inter-
vening 13 years since the first edition was published. Digital technology has virtually
taken over the field of electronics. The clock and data speeds in those digital systems
have accelerated at an astonishing rate, meaning that the spectral content of those
signals that are propagating along the interconnect lands now extends into and, in
some high-end servers, above the 20-GHz region. This has caused most of the sig-
nal interconnects in those systems, which were inconsequential from a standpoint of
transmission-line effects 13 years ago, to now become critical to the functionality of
those systems. The transmission-line behavior of those interconnects can no longer be
ignored. In addition, the number and density of those interconnects have increased dra-
matically so that the analysis of their effects is now a serious computational problem.
Hence, the current emphasis is on the development of macromodels and on “model
order reduction” or (MOR) for the time-domain analysis of these high-density in-
terconnects. Generation of macromodels that compactly describe these interconnects
from a port standpoint requires the determination of the transfer functions representing
those interconnects. Typical distributed-parameter interconnects have an enormous
number of poles such that the transfer functions are ratios of very high order polyno-
mials in the Laplace transform variable s. The current analysis methods focus on MOR
methods that seek to determine a highly reduced number of dominant poles of those
transfer functions, thereby simplifying the analysis. MOR methods such as recursive
convolution, complex frequency hopping (CFH), Pade, asymptotic waveform expan-
sion (AWE), and vector fitting (VF) as well as the synthesis of lumped-circuit models
are the current methods of choice. Chapters 8 and 9 , which cover the time-domain
analysis of two-conductor lines and MTLs, respectively, have been considerably ex-
panded to now include those topics among many others that have been developed in
the intervening years.

The second edition of this text is now divided into 13 chapters, whereas the first
edition only had eight chapters. Considerable thought has gone into the reorganization
of the text. The author is of the strong opinion that organization of subject material
into a logical and well thought-out form is perhaps the most important pedagogical
technique in a reader’s learning process. This logical organization is one of the im-
portant attributes of the text. Chapter 1 discusses the background and rationale for the
use of MTLs. The general properties of the TEM mode of propagation are discussed,
and the transmission-line equations are derived for two-conductor lines using several
methods. The various classifications of MTLs (uniform, lossless, and homogeneous
medium) are discussed along with the restrictions on the use of the TEM model. An
important addition to this chapter has been made in the second edition: the discussion
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of the time domain versus the frequency domain. This is a crucial aspect of any EE’s
ability to design electronic systems. The chapter presents a very useful method for the
time-domain analysis of a linear system such as an MTL having linear terminations
by computing the frequency-domain transfer function, decomposing the periodic or
nonperiodic input signal into its Fourier spectral components, passing those through
the system, and recombining in time at the output. This allows a straightforward
incorporation of frequency-dependent losses of the conductors and the surrounding
medium. These frequency-dependent losses complicate, as we will see, the direct
time-domain solution of the transmission-line equations.

Chapter 2 provides a derivation of the two-conductor transmission-line equations
along with the general properties of the per-unit-length parameters in those equations.
Chapter 3 discusses these topics for MTLs.

Chapter 4 discusses the derivation of the per-unit-length parameters of inductance,
capacitance, resistance, and conductance for two-conductor lines, whereas Chapter 5
repeats this for MTLs. In both chapters, numerical methods for the determination of
these important per-unit-length parameters are discussed in detail.

Chapter 6 discusses the frequency-domain solution of the transmission-line equa-
tions, and Chapter 7 repeats this for MTLs. The discussion of two-conductor transmis-
sion lines in Chapter 6 has been expanded considerably over the first edition coverage
and now constitutes a traditional undergraduate coverage.

Chapter 8 discusses the time-domain analysis of two-conductor lines, and Chapter
9 repeats this for MTLs. Again, the time-domain solution for two-conductor lines in
Chapter 8 is considerably expanded over the first edition coverage and now constitutes
a traditional undergraduate coverage. In addition, Chapter 8 now includes an extensive
discussion of methods for achieving signal integrity (SI) in high-speed digital inter-
connects. The finite-difference, time-domain (FDTD) solution method is developed
as is the time-domain to frequency-domain transformation (TDFD) method. Both of
these allow the inclusion of frequency-dependent losses. Detailed discussions of re-
cursive convolution and MOR techniques such as Pade methods are now included in
Chapter 8 . Chapter 9 on the time-domain analysis of MTLs now includes extensive
discussion of MOR methods such as the generalized method of characteristics, Pade
methods, asymptotic waveform expansion, complex frequency hopping, and vector
fitting. In addition, Chapter 9 now includes the development of the FDTD method for
dynamic terminations.

Chapter 10 gives the symbolic or literal solution of perhaps the only MTL that
admits a closed-form solution in terms of symbols: a three-conductor lossless line
in a homogeneous medium. This chapter is virtually the same as in the first edition
although it has been revised.

Chapter 11 gives the frequency-domain and time-domain solutions for two-
conductor lines with incident field illumination. Chapter 12 repeats that for MTLs.
The emphasis is on uniform plane-wave excitation as from a distant antenna or a
lightning stroke.

Finally, Chapter 13 discusses the analysis of interconnected transmission-line net-
works such as branched cables. There is not enough difference between the methods
for two-conductor lines and MTLs to warrant splitting this chapter into two chapters.



PREFACE xxi

Appendix A contains the descriptions of numerous FORTRAN computer codes
that implement all the techniques in this text. Numerous experimental results are
included in this text ranging from cables to PCBs in order to illustrate real-
world problems. These codes are used to provide the predictions for these ex-
perimental results. The codes can be downloaded from the Wiley ftp site at
ftp:\\ftp.wiley.com/public/sci tech med/multiconductor transmission/.

Appendix B is new to this edition and contains a brief but thorough tutorial on the
SPICE/PSPICE circuit analysis program.

Many of the author’s colleagues have contributed substantially to the advancement
of this subject. Professors Antonio Orlandi and Frederick M. Tesche along with the
late Albert A. Smith Jr. are among those to whom the author owes a debt of gratitude
for many insightful discussions on this subject.

Clayton R. Paul
Macon, Georgia





1
INTRODUCTION

This text concerns the analysis of transmission-line structures that serve to guide elec-
tromagnetic (EM) waves between two or more points. The analysis of transmission
lines consisting of two parallel conductors of uniform cross section has traditionally
been a fundamental subject in electrical engineering (EE) [A.1,A.3,A.6]. Prior to the
introduction of digital computer engineering topics into the undergraduate EE curric-
ula, all EE undergraduates were required to complete a course on two-conductor trans-
mission lines. However, because of the introduction of computer engineering courses
into an already crowded 4-year undergraduate degree program, the transmission-line
course in many EE programs has been relegated to a senior technical elective if offered
at all. Unfortunately, the increasing use of high-speed digital technology requires that
all EE undergraduates must have a working knowledge of transmission lines. In ad-
dition, the use of multiconductor transmission lines (MTLs) consisting of more than
two conductors is becoming more widespread because of the increasing need for
high-volume and high-speed data and signal transmission. Signal integrity, the effect
of the transmission line on the signal transmission, is becoming a critical aspect of
high-speed digital system performance.

This text is the second edition of a previous text concerning the analysis of MTLs.
It has been reorganized with the emphasis given toward a university textbook for
a senior/graduate textbook on transmission lines. The text has been reorganized so
that each broad analysis topic, for example, per-unit-length parameters, frequency-
domain analysis, time-domain analysis, incident field excitation, and transmission-
line networks, has a chapter concerning two-conductor lines followed immediately by
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2 INTRODUCTION

a chapter on MTLs for that topic. This allows the instructors to choose their emphasis
either on two-conductor lines or on MTLs, or on both. This organization also makes
it easier for the reader to understand the analysis of MTLs. The analysis of MTLs
is very similar to that of two-conductor lines except that the detail is considerably
increased. However, with the aid of matrix symbology and techniques most of the
MTL topics are straightforward extensions of the corresponding two-conductor line
topics. Hence by devoting a separate chapter to each two-conductor line topic and
then following that with a chapter on the corresponding MTL topic, the MTL material
can be more readily understood.

The analysis of MTLs is somewhat more difficult than the analysis of two-
conductor lines, but the applications cover a broad frequency spectrum and encom-
pass a wide variety of transmission lines ranging from power transmission lines to
microwave circuits [B.4, Refs. 1–16]. However, matrix methods and notation provide
a straightforward extension of many, if not most, of the aspects of two-conductor lines
to MTLs. Many of the concepts and performance measures of two-conductor lines
require more elaborate concepts when extended to MTLs. For example, in order to
eliminate reflections at terminations on a two-conductor line, we simply terminate
it in a matched load, that is, a load resistance that equals the (real) characteristic
impedance of the line. In the case of MTLs, we must terminate the line in a charac-
teristic impedance matrix or network of resistances in order to eliminate all reflec-
tions. It is not sufficient to simply insert a resistance between each conductor and
the reference conductor; there must also be resistances between every pair of con-
ductors. In order to describe the degree of mismatch of a particular load impedance
on a two-conductor line, we compute a scalar reflection coefficient. In the case of an
MTL, we can obtain the analogous quantity, but it becomes a reflection coefficient
matrix.

On a two-conductor line there is a forward- and a backward-traveling wave each
traveling in opposite directions with velocity v. In the case of an MTL consisting of
n + 1 conductors, there exist n forward- and n backward-traveling waves each with
its own velocity. Each pair of forward- and backward-traveling waves is referred to
as a mode. If the MTL is immersed in a homogeneous medium, each mode velocity
is identical to the phase velocity of light in that medium. The mode velocities of an
MTL that is immersed in an inhomogeneous medium (such as wires with dielectric
insulations or printed circuit boards (PCBs)) will, in general, be different.

The governing transmission-line equations for a two-conductor line will be a cou-
pled set of two first-order partial differential equations for the line voltage V (z, t) and
line current I(z, t), where the line conductors are parallel to the z axis and time is
denoted as t. In the case of an MTL consisting of n + 1 conductors parallel to the z axis,
the corresponding governing equations are a coupled set of 2n first-order matrix partial
differential equations relating the n line voltages Vi(z, t) and n line currents Ii(z, t) for
i = 1, 2, . . . , n. The number of conductors may be quite large, for example, n + 1 =
100, in which case efficiency of solution of the 2n MTL equations becomes an im-
portant consideration. The ease of solution of the MTL equations depends upon the
assumptions or approximations one is willing to make about the line, for example,
uniform line versus nonuniform line, lossless line versus lossy line, a homogeneous
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surrounding medium versus an inhomogeneous surrounding media, and so on, as well
as the solution technique chosen. Although it is tempting to dismiss the analysis of
MTLs as simply being a special case of two-conductor lines and thereby not requiring
scrutiny, this is not the case. In addition to a thorough discussion of two-conductor
lines, we will examine the methods for solution of MTLs. Numerous experimental
results will be compared to the predictions of the transmission-line equations, for both
two-conductor lines and MTLs, in order to show their accuracy as well as the relative
influence of the line parameters.

The analysis of an MTL for the resulting n line voltages Vi(z, t) and n line currents
Ii(z, t) is in general, a three-step process:

Step 1: Determine the per-unit-length parameters of inductance, capacitance, con-
ductance, and resistance for the given line. All cross-sectional information
about the particular line such as conductor cross sections, wire radii, conductor
separations, and so on that distinguishes it from some other line is contained
in these per-unit-length parameters and nowhere else. In the case of an two-
conductor line, these parameters are scalars. In the case of an MTL consisting
of n + 1 conductors, these parameters are contained in matrices that are of
dimension n × n. The MTL equations are identical in form for all lines: only
the per-unit-length parameters are different. Without the determination of the
per-unit-length parameters for the specific line, one cannot solve the resulting
MTL equations because the coefficients in those equations (the per-unit-length
parameters) will be unknown.

Step 2: Determine the general solution of the resulting MTL equations. For a two-
conductor line, the general solution consists of the sum of a forward- and a
backward-traveling wave. In the case where the sources driving the line are
general excitation waveforms, these waves are represented by two unknown
functions that are functions of position along the line z and time t. In the case
of sinusoidal steady-state excitation of the line, there are two complex-valued
undetermined constants. For an MTL consisting of n + 1 conductors, the general
solution consists of the sum of n forward- and n backward-traveling waves. In the
case where the sources driving the line are general excitation waveforms, these
waves are represented by 2n unknown functions that are functions of position
along the line z and time t. In the case of sinusoidal steady-state excitation of
the line, there are 2n complex-valued undetermined constants.
Step 3: Incorporate the terminal conditions to determine the unknown functions
or unknown coefficients in the general form of the solution. A transmission line
will have terminations at the left and right ends consisting of independent volt-
age and/or current sources and lumped elements such as resistors, capacitors,
inductors, diodes, transistors, and so on. These terminal constraints provide the
additional 2n equations (n for the left termination and n for the right termina-
tion), which can be used to explicitly determine the 2n undetermined functions
or the 2n coefficients in the general form of the MTL equation solution that was
obtained in step 2.
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The above sequence of steps is referred to as the direct method. There are also other
methods of solution that avoid these individual steps. These are numerical methods
that seek to directly integrate the transmission-line differential equations and at the
same time include the terminal constraint relations at the two ends of the line. An
example of such a method that we will investigate is the finite-difference, time-domain
(FDTD) method.

The excitation sources for the MTL will have several forms. Independent lumped
sources within the two termination networks are one method of exciting the line. Each
source is intended to be coupled to the endpoint of the line to which it is attached.
However, the electromagnetic fields associated with the current and voltage on that
line interact with neighboring lines inducing signals at those endpoints. This coupling
is unintentional and is referred to as crosstalk. Another method of exciting a line is
with an incident electromagnetic field such as radio, radar, or TV signals, or a lightning
pulse. This form of unintended excitation produces sources that are distributed along
the line and will also induce unintentional signals at the line endpoints that may cause
interference. Lumped sources can occur at discrete points along the line as with the
direct attachment of a lightning stroke. The effect of incident fields distributed either
along the line or at discrete points can be included in the MTL equations. In order to
obtain the complete solution for the line voltages and currents via the direct solution
method, each of the above three steps must be performed and in the above order.
Throughout our discussions, this sequence of solution steps should be kept in mind.

Electromagnetic fields are, in reality, distributed throughout space. If a structure’s
largest dimension is electrically small, that is, much less than a wavelength, we can
approximately lump the EM effects into circuit elements as in lumped-circuit theory
and represent the line with a lumped equivalent circuit, thereby avoiding a direct so-
lution of the transmission-line equations. The transmission-line formulation that we
will use to analyze the line views the line as a distributed-parameter structure along
the line axis and thereby extends the lumped-circuit analysis techniques to structures
that are electrically large in this dimension. However, the cross-sectional dimensions,
for example, conductor separations, must be electrically small in order for the analysis
to yield valid results. The fundamental assumption for all transmission-line formu-
lations and analyses whether it be for a two-conductor line or an MTL is that the
electromagnetic field surrounding the conductors has a transverse electromagnetic
(TEM) structure. A TEM field structure is one in which the electric and magnetic
fields in the space surrounding the line conductors are transverse or perpendicular to
the line axis. In other words, the TEM field structure has no components of the elec-
tric or magnetic fields directed along the line axis. The electric and magnetic fields
in the space around the line conductors propagate along the line as waves and are
said to propagate in the TEM mode. One of the important consequences of the TEM
mode of propagation is to allow the unique definition of line voltages and currents.
Voltage and current are normally definable only for dc or static fields [A.1]. For the
TEM field structure, voltage between the line conductors and currents flowing on
those conductors can be uniquely defined even though the fields are varying with
time. There are certain nonideal aspects of an MTL, such as imperfect line conduc-
tors and/or an inhomogeneous surrounding medium, that, theoretically, invalidate the
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TEM mode, transmission-line equation description. However, we will include these
nonideal properties in the transmission-line equation formulation of the ideal TEM
mode on the assumption that their effects are small. This is referred to as the quasi-
TEM mode assumption. In addition to the TEM mode of propagation, there may
exist other higher order modes of propagation [17–19]. These higher order modes
generally have cutoff frequencies below which they are highly attenuated and for all
practical purposes do not propagate. The TEM mode has a cutoff frequency of dc. For
typical transmission-line structures such as cables and PCBs, the higher order modes
are cutoff (or highly attenuated) for frequencies up to the lower gigahertz frequency
range. Consequently using the TEM mode, transmission-line equation formulation to
analyze typical lines will provide an accurate analysis of the line for frequencies of
excitation well into the lower gigahertz frequency range. An important consequence
of the TEM mode, MTL equation formulation is that the sum of the line currents at
any cross section of the line is zero. In this sense we say that one of the conductors, the
reference conductor, is the return for the other n currents. Even though the line cross
section is electrically small, it may not be true that the currents sum to zero at any
cross section; there may be other currents in existence on the line conductors [20–23].
Presence of nearby conductors or other metallic structures that are not included in the
formulation may cause these additional currents [24]. Asymmetries in the physical
terminal excitation such as offset source positions (which are implicitly ignored in the
terminal representation) can also create these non-TEM currents [24]. It is important
to understand these restrictions on the applicability of the transmission-line equation
representation and the validity of the results obtained from it.

Although there is a voluminous base of references for this topic, important ones will
be referenced, where appropriate, by [x]. These are grouped into two categories—
those by the author (grouped by category) and other references. References con-
sisting of publications on this topic by the author are listed at the end of the text
and are grouped by category. Additional references will be listed at the end of each
chapter.

1.1 EXAMPLES OF MULTICONDUCTOR TRANSMISSION-LINE
STRUCTURES

There are a number of examples of wave-guiding structures that may be viewed
as “transmission lines.” Figure 1.1 shows examples of (n + 1)-conductor, wire-type
lines consisting of parallel wires. Throughout this text, we will refer to conductors
that have circular–cylindrical cross sections as wires. The conductors are parallel
to the line axis, which is the z axis of a rectangular coordinate system. One of the
conductors is designated as the 0 (zero) conductor or reference conductor. The line
voltages Vi(z, t) are defined between each of the other n conductors and this ref-
erence conductor. The currents flowing on the other n conductors, Ii(z, t), “return”
along this reference conductor. The voltages and currents are functions of position
along the line, z, and time t. Figure 1.1(a) shows an example of n + 1 wires, where
the reference conductor is another wire. Typical examples of such lines are ribbon
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cables used to interconnect electronic systems. Figure 1.1(b) shows n wires above
an infinite, perfectly conducting ground plane (the reference conductor). Typical ex-
amples are cables that have a metallic structure as a return or high-voltage power
distribution lines. Figure 1.1(c) shows n wires within an overall cylindrical shield
(the reference conductor). Shields are often placed around groups of wires in order
to prevent or reduce the coupling of electromagnetic fields to the wires from adja-
cent wires (crosstalk) or from distant sources such as radar transmitters or radio and
television transmitters. Normally, all wires are surrounded by circular–cylindrical di-
electric insulations. However, these insulations are omitted from these figures and,
in some cases, may be ignored in the analysis of such lines. Hence the surrounding
medium is said to be homogeneous in that the permittivity ε and permeability µ of
the surrounding dielectric medium are constants and are independent of position.
Hence, the wire structures of Figure 1.1 are said to constitute lines in a homoge-
neous medium. For the lines in Figure 1.1(a) and (b), the only logical homogeneous
medium of infinite extent would be free space with parameters of permittivity ε0 and
permeability µ0. For the line within an overall shield in Figure 1.1(c), the fields are
contained within the shield that may be a homogeneous dielectric other than free
space with parameters ε = εrε0 and µ = µ0. The permeability of all dielectrics is
that of free space, whereas the permittivity is characterized by a relative permittivity
(relative to that of free space) of εr. Thus dielectrics affect electric fields and do not
affect magnetic fields. The wires in each of these structures are also shown as being
of uniform cross section along their length and parallel to each other (as well as the

FIGURE 1.1 Multiconductor lines in homogeneous media: (a) (n + 1)-wire line, (b) n wires
above a ground plane, and (c) n wires within a cylindrical shield.
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ground plane in Fig. 1.1(b) and the shield axis in Fig. 1.1(c)). Such lines are said to
be uniform lines. Nonuniform lines in which the conductors either are not of uniform
cross section along their length or are not parallel arise from either nonintentional
or intentional reasons. For example, the conductors of a high-voltage power distri-
bution line, because of their weight, sag and are not parallel to the ground. Tapered
lines are intentionally designed to give certain desirable characteristics in microwave
filters.

Figure 1.2 shows examples of lines wherein the conductors have rectangular cross
sections. Figure 1.2(a) shows a structure having n conductors of rectangular cross

FIGURE 1.2 Multiconductor lines consisting of conductors of rectangular cross section
(lands): (a) an n-conductor coupled stripline (homogeneous medium), (b) an n-conductor cou-
pled microstrip line (inhomogeneous medium), and (c) n lands on a PCB (inhomogeneous
medium).
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section (lands) imbedded in a dielectric substrate. This type of structure is referred
to as a coupled stripline. Infinite ground planes are on either side of the substrate and
constitute the reference conductor(s). This structure represents the case of innerplanes
in PCBs. Multiple layers of interconnected lands are buried in a single board and allow
for “wiring” the board without taking up a large surface area. “Vias” connect lands
on each level. Figure 1.2(b) shows n lands on one side of a dielectric substrate and an
infinite ground plane, the reference conductor, on the other side. This is referred to
in microwave literature as a coupled microstrip and is used to construct microwave
filters. This structure also represents the outer layer of a printed circuit board that has
innerplanes. Figure 1.2(c) shows n + 1 lands on one side of the dielectric substrate. One
of those lands constitutes the reference conductor to which all the other line voltages
are referenced. This type of structure is common on PCBs in low-cost electronic
circuits that do not contain innerplanes. The stripline of Figure 1.2(a) has the fields
contained between the two ground planes much like the shielded cable of Figure 1.1(c).
Hence, the dielectric is homogeneous with permittivity ε = εrε0 and permeability
µ = µ0. The structures of Figure 1.2(b) and (c) constitute lines in an inhomogeneous
medium in that the electric field lines will exist partly in the substrate and partly in
the surrounding air.

The structures in Figure 1.1, as well as the coupled stripline in Figure 1.2(a),
are, by implication, immersed in a homogeneous medium. Therefore, the velocity of
propagation of the waves on those lines is equal to that of the medium in which they
are immersed or v = 1/

√
µε, where µ is the permeability of the surrounding medium

and ε is the permittivity of the surrounding medium. For free space, these become
µ0 = 4π × 10−7 H/m and ε0 ∼= 1/36π × 10−9 F/m. The velocity of propagation in
free space is v0 = 1/

√
µ0ε0 = 2.99792458 × 108 m/s. For the structures shown in

Figure 1.2(b) and (c), which are immersed in an inhomogeneous medium (the fields
exist partly in free space and partly in the substrate), there are n waves or modes whose
velocities are, in general, different. This complicates the analysis of such structures
as we will see.

1.2 PROPERTIES OF THE TEM MODE OF PROPAGATION

As mentioned previously, the fundamental assumption in any transmission-line for-
mulation is that the electric field intensity vector �E(x, y, z, t) and the magnetic field
intensity vector �H(x, y, z, t) satisfy the TEM field structure, that is, they lie in a plane
(the x–y plane) transverse or perpendicular to the line axis (the z axis). Therefore, it
is appropriate to examine the general properties of this TEM mode of propagation or
field structure.

Consider a rectangular coordinate system shown in Figure 1.3 illustrating a prop-
agating TEM wave in which the field vectors are assumed to lie in a plane (the x–y
plane) that is transverse to the direction of propagation (the z axis). These field vectors
are denoted with a t subscript to denote that they lie in the transverse (x–y) plane. It
is assumed that the medium is homogeneous, linear, and isotropic and is character-
ized by the scalar parameters of permittivity ε, permeability µ, and conductivity σ.
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FIGURE 1.3 Illustration of the electromagnetic field structure of the TEM mode of
propagation.

Maxwell’s equations in differential or point form are [A.1,A.3,A.6]:

∇ × �Et = −µ
∂ �Ht

∂t
(1.1a)

∇ × �Ht = σ �Et + ε
∂�Et

∂t
(1.1b)

Equation (1.1a) is Faraday’s law, and Eq. (1.1b) is Ampere’s law. The del operator
∇ can be broken into two components: one component, ∇z, in the z direction and the
other component, ∇t, in the transverse plane, as in [A.1]

∇ = ∇t + ∇z (1.2a)

where

∇t = �ax

∂

∂x
+ �ay

∂

∂y
(1.2b)

∇z = �az

∂

∂z
(1.2c)

and �ax, �ay, and �az are unit vectors pointing in the appropriate directions. Applying
(1.2) to (1.1) gives

(∇t + ∇z) × �Et = ∇t × �Et︸ ︷︷ ︸
z directed

+ ∇z × �Et︸ ︷︷ ︸
in the

transverse
plane

= −µ
∂ �Ht

∂t
(1.3a)
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(∇t + ∇z) × �Ht = ∇t × �Ht︸ ︷︷ ︸
z directed

+ ∇z × �Ht︸ ︷︷ ︸
in the

transverse
plane

= σ �Et + ε
∂�Et

∂t
(1.3b)

Matching those components on both sides of (1.3) in the z direction and in the trans-
verse plane gives

�az × ∂�Et

∂z
= −µ

∂ �Ht

∂t
(1.4a)

�az × ∂ �Ht

∂z
= σ �Et + ε

∂�Et

∂t
(1.4b)

∇t × �Et = 0 (1.4c)

∇t × �Ht = 0 (1.4d)

Equations (1.4a) and (1.4b) show that the electric and magnetic field intensity vectors
are orthogonal (perpendicular to each other) [A.1]. Equations (1.4c) and (1.4d) are
identical in the transverse plane to those for static fields [A.1]. This shows that the
electric and magnetic fields of a TEM field distribution satisfy a static distribution in
the transverse plane. In other words, the electric and magnetic fields in the transverse
plane are identical in structure to those for dc excitation, even though they vary with
time. This is an extremely important consequence of the TEM field structure in that
(a) voltages and currents that are ordinarily definable only for static (dc) excitation
can be uniquely defined for this problem in the transverse plane even though the fields
are time varying, and (b) we can determine important transmission-line parameters
such as per-unit-length capacitance, inductance, and conductance by using only static
field analysis methods in the transverse (x–y) plane, which greatly simplifies their
determination.

An important vector identity is that the curl of the gradient of some scalar
field f (x, y, z) is always zero: ∇ × ∇f (x, y, z) = 0 [A.1]. In the transverse plane,
this identity translates to

∇t × ∇t f (x, y) = 0 (1.5)

where ∇t is the transverse del operator given in (1.2b). Because of (1.4c), (1.4d),
and this identity, we may define each of the transverse field vectors as the transverse
gradients of some auxiliary scalar fields or potential functions, φ(x, y) and ψ(x, y),
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which lie in the transverse plane as [A.1]

�Et = e(z, t)∇tφ(x, y) (1.6a)

�Ht = h(z, t)∇tψ(x, y) (1.6b)

Note that the field vectors are separable into the product of functions of z and t
and functions of the transverse plane coordinates x and y. This is permissible in
the rectangular coordinate system [A.1]. Because the transverse electric and mag-
netic field vectors are orthogonal, according to (1.6) the gradient fields ∇tφ(x, y) and
∇tψ(x, t) are also orthogonal in the transverse plane. Hence, the scalar field lines for
φ = constant are everywhere in the transverse plane orthogonal to the scalar field
lines for ψ = constant. Gauss’ laws in the transverse plane become [A.1]

∇t · �Et = 0 (1.7a)

∇t · �Ht = 0 (1.7b)

Applying (1.7) to (1.6) gives

∇t · ∇tφ(x, y) = ∇2
t φ(x, y) = 0 (1.8a)

∇t · ∇tψ(x, y) = ∇2
t ψ(x, y) = 0 (1.8b)

where

∇2
t φ(x, y) = ∂2φ(x, y)

∂2x
+ ∂2φ(x, y)

∂2y
= 0 (1.9a)

∇2
t ψ(x, y) = ∂2ψ(x, y)

∂2x
+ ∂2ψ(x, y)

∂2y
= 0 (1.9b)

are Laplace’s equations in the transverse plane [A.1]. Equations (1.9) show that the
auxiliary scalar potential functions satisfy Laplace’s equation in any transverse plane,
as is the case for static (dc) fields. This again shows that the electric and magnetic
field structure in the transverse plane for the TEM mode of propagation is identical
to that of a static (dc) distribution. As we will show later, there are numerous static
field methods to compute this static field distribution.
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Now suppose we take the cross product of the z-directed unit vector with (1.4a)
and (1.4b). This gives

�az ×
[
�az × ∂�Et

∂z

]
= −µ

[
�az × ∂ �Ht

∂t

]
(1.10a)

�az ×
[
�az × ∂ �Ht

∂z

]
= σ(�az × �Et) + ε

[
�az × ∂�Et

∂t

]
(1.10b)

However,

�az ×
[
�az × ∂�Et

∂z

]
= −∂�Et

∂z
(1.11a)

�az ×
[
�az × ∂ �Ht

∂z

]
= −∂ �Ht

∂z
(1.11b)

as illustrated in Figure 1.4. Therefore, Eqs. (1.10) become

−∂�Et

∂z
= −µ

[
�az × ∂ �Ht

∂t

]
(1.12a)

FIGURE 1.4 Illustration of the identity �az × (�az × �Et) = −�Et.
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−∂ �Ht

∂z
= σ(�az × �Et) + ε

[
�az × ∂�Et

∂t

]
(1.12b)

Taking the partial derivative of both sides of (1.12) with respect to z, taking the partial
derivative of both sides of (1.4a) and (1.4b) with respect to t, and substituting gives
the second-order vector partial differential equations that the transverse field vectors
must satisfy:

∂2 �Et

∂z2 = µσ
∂�Et

∂t
+ µε

∂2 �Et

∂t2 (1.13a)

∂2 �Ht

∂z2 = µσ
∂ �Ht

∂t
+ µε

∂2 �Ht

∂t2 (1.13b)

Substituting (1.6) into (1.13) yields the second-order scalar partial differential equa-
tions in terms of the scalar functions e(z, t) and h(z, t) as

∂2e(z, t)

∂z2 = µσ
∂e(z, t)

∂t
+ µε

∂2e(z, t)

∂t2 (1.14a)

∂2h(z, t)

∂z2 = µσ
∂h(z, t)

∂t
+ µε

∂2h(z, t)

∂t2 (1.14b)

Once (1.14) are solved for the scalar functions e(z, t) and h(z, t), we can determine
the transverse field vectors by solving for the scalar potential functions in the trans-
verse plane, ∇tφ(x, y) and ∇tψ(x, y), and taking the products as in (1.6). This second
problem, solving for the scalar potential functions in the transverse plane, depends
only on the cross-sectional dimensions of the transmission line.

Now let us consider the case where the medium is lossless, that is, σ = 0. In this
case, Eqs. (1.14) reduce to

∂2e(z, t)

∂z2 = µε
∂2e(z, t)

∂t2 (1.15a)

∂2h(z, t)

∂z2 = µε
∂2h(z, t)

∂t2 (1.15b)

The general solutions of these consist of waves traveling in the +z and −z directions
as in [A.1]

e(z, t) = e+
(
t − z

v

)
+ e−

(
t + z

v

)
(1.16a)



14 INTRODUCTION

h(z, t) = h+
(
t − z

v

)
+ h−

(
t + z

v

)
(1.16b)

where the velocity of propagation is

v = 1√
µε

(1.17)

Observe that in these solutions, the variables z and t can only appear together as
t ± (z/v). The function e+(t − (z/v)) represents a forward-traveling wave since as
t progresses, z must increase to keep the argument constant and track corresponding
points on the waveform. Similarly, the function e−(t + (z/v)) represents a backward-
traveling wave traveling in the −z direction. The solutions for the electric and
magnetic field vectors may be obtained by substituting (1.16a) and (1.16b) into (1.6)
to yield

�Et(x, y, z, t) = e+
(
t − z

v

)
∇tφ(x, y)︸ ︷︷ ︸

�E+
t

+ e−
(
t + z

v

)
∇tφ(x, y)︸ ︷︷ ︸

�E−
t

(1.18a)

�Ht(x, y, z, t) = h+
(
t − z

v

)
∇tψ(x, y)︸ ︷︷ ︸

�H+
t

+ h−
(
t + z

v

)
∇tψ(x, y)︸ ︷︷ ︸

�H−
t

= 1

η
e+
(
t − z

v

)
[�az × ∇tφ(x, y)] − 1

η
e−
(
t+ z

v

)
[�az×∇tφ(x, y)]

(1.18b)

where the intrinsic impedance of the medium is

η =
√

µ

ε
(1.19)

These may be proven by direct substitution into (1.12) and recalling that
�az × [�az × ∇tφ] = −∇tφ and �az × [�az × ∇tψ] = −∇tψ. Hence we may write the
transverse fields as

�Et(x, y, z, t) = �E+
t (x, y, z, t) + �E−

t (x, y, z, t) (1.20a)

�Ht(x, y, z, t) = �H+
t (x, y, z, t) + �H−

t (x, y, z, t)

= 1

η
�az × �E+

t (x, y, z, t) − 1

η
�az × �E−

t (x, y, z, t) (1.20b)

Consequently, we may indicate the vector relation between the forward- and
backward-traveling electric and magnetic field components as

�H±
t = ±1

η
�az × �E±

t (1.21)
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with the sign depending on whether we are considering the backward- or forward-
traveling wave component.

If the time variation of the field vectors is sinusoidal, we use phasor notation
[A.2,A.5]:

�Et(x, y, z, t) = Re
{ �̂Et(x, y, z)e jωt

}
(1.22a)

�Ht(x, y, z, t) = Re
{ �̂H t(x, y, z)e jωt

}
(1.22b)

where the phasor transverse field vectors are complex valued and denoted as �̂Et and
�̂H t. We will denote complex-valued quantities with a caret (.̂) over the quantity. In
terms of the scalar functions e(z, t) and h(z, t), these become

e(z, t) = Re{ê(z)e jωt} (1.23a)

h(z, t) = Re{ĥ(z)e jωt} (1.23b)

Replacing time derivatives with
∂

∂t
= jω in (1.15) gives the phasor form of the

differential equations for a lossless medium, σ = 0, as

d2ê(z)

dz2 = −ω2µε ê(z) (1.24a)

d2ĥ(z)

dz2 = −ω2µε ĥ(z) (1.24b)

The solutions to these equations are [A.1]

ê(z) = ê+e− jβz + ê−e jβz (1.25a)

ĥ(z) = ĥ+e− jβz + ĥ−e jβz (1.25b)

where the complex undetermined constants are denoted as ê± and ĥ±, and the phase
constant is denoted as

β = ω
√

µε (rad/m) (1.26)

The terms e± jβz = 1� (±βz) represent a phase shift as the single-frequency, sinusoidal
waves propagate in the z direction. Substituting (1.25) into (1.6) gives the phasor field
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vectors:

�̂Et(x, y, z) = ê+∇tφ(x, y)︸ ︷︷ ︸
�̂E+

(x,y)

e− jβz + ê−∇tφ(x, y)︸ ︷︷ ︸
�̂E−

(x,y)

e jβz (1.27a)

�̂H t(x, y, z) = ĥ+∇tψ(x, y)︸ ︷︷ ︸
�̂H+

(x,y)

e− jβz + ĥ−∇tψ(x, y)︸ ︷︷ ︸
�̂H−

(x,y)

e jβz

= 1

η
ê+�az × ∇tφ(x, y)e− jβz − 1

η
ê−�az × ∇tφ(x, y)e jβz (1.27b)

and once again

�̂H± = ±1

η
�az × �̂E±

(1.28)

The time-domain expressions are obtained by multiplying (1.27) by e jω t and taking
the real part of the result according to (1.22) [A.1]. For example, the x component of
the transverse electric field vector and the y component of the magnetic field vector
are

Ex(x, y, z, t) = E+
mxcos(ωt − βz + θ+

x ) + E−
mxcos(ωt + βz + θ−

x ) (1.29a)

Hy(x, y, z, t) = 1

η
E+

mxcos(ωt − βz + θ+
x ) − 1

η
E−

mxcos(ωt + βz + θ−
x ) (1.29b)

where the x components of the undetermined complex field components are functions
of x and y and are denoted as Ê±

x (x, y) = E±
mx

� θ±
x . The phase velocity of the waves

is obtained by setting the argument of each cosine in (1.29) to a constant (in order
to follow a point on the waveform) and differentiating to yield ωdt − βdz = 0 or
v = (dz/dt) = (ω/β). Substituting (1.26) gives the wave constant phase velocity as

v = ω

β

= 1√
µε

(1.30)

The phase constant β has the unit of rad/m and represents a phase shift as the wave
propagates through the medium. A wavelength, denoted as λ, is the distance (in
meters) a single-frequency, sinusoidal wave must travel to change phase by 2π radians
or 360◦. Hence, βλ = 2π and therefore

λ = 2π

β
= v

f
(1.31)
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If we now consider adding conductive losses to the medium, σ �= 0, this adds a
transverse conductive current term, �Jt = σ �Et, to Ampere’s law given in Eq. (1.1b).
Replacing time derivatives with jω in the second-order differential equations in (1.14)
gives the corresponding phasor differential equations for the case of a lossy medium
as

d2 ê(z)

dz2 = jωµσ ê(z) + ( jω)2(µε) ê(z)

= jωµ(σ + jωε) ê(z)
= γ̂2 ê(z) (1.32a)

d2 ĥ(z)

dz2 = jωµσ ĥ(z) + ( jω)2(µε) ĥ(z)

= jωµ(σ + jωε) ĥ(z)
= γ̂2 ĥ(z) (1.32b)

where the propagation constant is

γ̂ =
√

jωµ(σ + jωε)
= α + jβ (1.33)

The solutions to these equations are [A.1]

ê(z) = ê+e−αze− jβz + ê−eαze jβz (1.34a)

ĥ(z) = ĥ+e−αze− jβz + ĥ−eαze jβz (1.34b)

Hence, the phase constant is the imaginary part of the propagation constant and is no
longer ω

√
µε, as was the case for a lossless medium, that is, β �= ω

√
µε. In addition,

the real part of the propagation constant, α, is said to be the attenuation constant and
it represents losses in the medium as we will see later. The phasor solutions for the
phasor field vectors for this case of a lossy medium, σ �= 0, are

�̂Et(x, y, z) = ê+∇tφ(x, y)︸ ︷︷ ︸
�̂E+

(x,y)

e−αze− jβz + ê−∇tφ(x, y)︸ ︷︷ ︸
�̂E−

(x,y)

eαze jβz (1.35a)

�̂H t(x, y, z) = ĥ+∇tψ(x, y)︸ ︷︷ ︸
�̂H+

(x,y)

e−αze− jβz + ĥ−∇tψ(x, y)︸ ︷︷ ︸
�̂H−

(x,y)

eαze jβz

= 1

η̂
ê+�az × ∇tφ(x, y)e−αze− jβz − 1

η̂
ê−�az × ∇tφ(x, y)eαze jβz

(1.35b)
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where the intrinsic impedance now becomes complex as

η̂ =
√

jωµ

σ + jωε

= η � θη

= ηe jθη (1.36)

and once again

�̂H± = ±1

η̂
�az × �̂E±

(1.37)

Again, the time-domain expressions are obtained by multiplying (1.35a) and (1.35b)
by e jωt and taking the real part of the result according to (1.22) [A.1]. For example,
the x component of the transverse electric field vector and the y component of the
magnetic field vector are

Ex(x, y, z, t) = E+
mxe

−αzcos(ωt − βz + θ+
x ) + E−

mxe
αzcos(ωt + βz + θ−

x ) (1.38a)

Hy(x, y, z, t) = 1

η
E+

mxe
−αzcos(ωt − βz + θ+

x − θη)

−1

η
E−

mxe
αzcos(ωt + βz + θ−

x − θη) (1.38b)

Thus, in addition to a phase shift represented by e± jβz, the waves suffer an attenuation
of their amplitudes as represented by e± αz. We will find these properties of the TEM
mode of propagation arising in various guises throughout our examination of MTLs.

1.3 THE TRANSMISSION-LINE EQUATIONS: A PREVIEW

Consider a two-conductor transmission line that has two conductors of uniform cross
section that are parallel to each other and the z axis as shown in Figure 1.5(a). The
conductors are considered to be perfect conductors (lossless, σ = ∞), and the sur-
rounding medium is homogeneous and lossy with parameters µ = µ0, ε = εrε0, σ.
The transverse electric and magnetic fields are shown in Figure 1.5(b) in the transverse
x–y plane. In order to satisfy the boundary conditions on the surfaces of the perfect
conductors, the electric fields must be normal to the conductor surfaces and the mag-
netic fields must be tangent to the conductor surfaces [A.1]. It should be noted that
because these conductors are assumed to be perfect conductors, the boundary con-
ditions also show that the magnetic field intensity vector �H must be tangent to the
surfaces of these perfect conductors and induces a surface current to flow on these
conductors [A.1]. Since the magnetic field lies in the transverse plane, these induced
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FIGURE 1.5 Illustration of (a) the current and voltage and (b) the TEM fields for a two-
conductor line.

currents on the surfaces of the conductors are directed in the z direction [A.1]. These
are the transmission-line currents. In addition, since the conductors are assumed to be
perfect conductors, these boundary conditions show that the electric flux density vec-
tor �D = ε�E that is normal to the surfaces of the conductors induces a surface charge
density on these conductors from which the transverse electric field vectors emanate
[A.1]. In addition, the transverse electric and magnetic field lines are everywhere in
this transverse plane orthogonal to each other.

1.3.1 Unique Definition of Voltage and Current for the TEM
Mode of Propagation

In the previous section, it was shown that the electric and magnetic field vectors in the
transverse (x–y) plane satisfy a static distribution. In other words, the electric and mag-
netic fields in the transverse plane have distributions identical to dc fields even though
they vary with time. Hence we may uniquely define a voltage between the two con-
ductors by integrating the component of the electric field tangent to a contour c in the
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FIGURE 1.6 Illustrations of the contours and surfaces for the definitions of voltage and
current for a two-conductor line.

transverse plane between two points on each conductor as shown in Figure 1.6 [A.1]:

V (z, t) = −
∫
c

�Et · d�l

= −
P1∫
P0

�Et · d�l (1.39)

This may be directly shown by substituting the relation between the transverse electric
field and the scalar potential function in (1.6a):

V (z, t) = −
P1∫
P0

e(z, t)∇tφ(x, y) · d�l

= −e(z, t)

P1∫
P0

∇tφ(x, y) · d�l

= −e(z, t)[φ1 − φ0] (1.40)

where φ0 and φ1 are the potentials on the surfaces of the two conductors in this
transverse plane [A.1 ]. Because the conductors are assumed to be perfect conductors,
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FIGURE 1.7 Illustrations of the intuitive meaning of the per-unit-length parameters.

the potentials are the same at all points on their surfaces, and because this transverse
electric field is conservative, this integral is independent of path in the transverse
plane and is therefore unique. Similarly, we can uniquely define current as the line
integral of the transverse magnetic field around a closed path c′ encircling the top
conductor as shown in Figure 1.6 [A.1]:

I(z, t) =
∮
c′

�Ht · d�l′ (1.41)

Since there is no component of the electric field in the z direction, there is no displace-
ment current in the z direction and this reduces to Ampere’s law for static conditions
[A.1]. Hence, this result is independent of path taken around this conductor so long
as it encircles only this conductor.
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1.3.2 Defining the Per-Unit-Length Parameters

Figure 1.7 gives an intuitive view of the essential ingredients of the transmission-line
equations: the per-unit-length parameters of the line. Figure 1.7(a) shows the effect
of the transverse electric field �Et that is directed from the top conductor to the bottom
conductor. The transverse electric field lines begin on positive charge on the surface
of the upper conductor and terminate on negative charge on the surface of the lower
conductor. This transverse electric field will cause two currents in the surrounding
dielectric in this transverse plane that are directed from the top conductor to the lower
conductor:

It(z, t)︸ ︷︷ ︸
transverse
current

= Ig(z, t)︸ ︷︷ ︸
conduction
current

+ Ic(z, t)︸ ︷︷ ︸
displacement
current

(1.42)

A transverse conduction current �Jt = σ �Et, is induced by this transverse electric field
to flow in the lossy medium due to its conductivity σ from the top conductor to the
bottom conductor in this transverse plane. This effect is represented for a section of line
of length �z by a conductance. For a uniform line, this effect is uniformly distributed
along the line. Hence if a section of line of length �z has a total conductance G, then
a per-unit-length conductance g whose units are S/m, is given by

g = lim︸︷︷︸
�z → 0

G

�z
(S/m) (1.43)

The transverse current flowing from the top conductor to the bottom conductor is
related to the voltage between the two conductors by

Ig(z, t) = g�zV (z, t) (1.44)

In addition, since charge is stored on the top and bottom conductors, we essentially
have a capacitance between the two conductors. If a section of line of length �z has
a total capacitance C, the charge is related to the voltage by Q = CV . For a uniform
line, this effect is uniformly distributed along the line. Hence if a section of line of
length �z has a total capacitance C, then the per-unit-length capacitance c whose
units are F/m, is given by

c = lim︸︷︷︸
�z → 0

C

�z
(F/m) (1.45)

The (displacement) current flowing in the transverse plane from the top conductor to
the bottom conductor is

Ic(z, t) = c�z
∂V (z, t)

∂t
(1.46)
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Consider Figure 1.7(b). The current flowing along the top conductor and returning
along the bottom conductor will generate a magnetic field intensity in the transverse
plane, �Ht. The transverse magnetic flux density is [A.1] �Bt = µ �Ht Wb/m2. This
produces a magnetic flux ψ = ∫

s
�Bt · d�s through the surface that lies between the two

conductors. A section of line will therefore have a total inductance L. For a uniform
line, this effect is uniformly distributed along the line. Hence if a section of line of
length �z has a total inductance L, then a per-unit-length inductance l whose units
are H/m, is given by

l = lim︸︷︷︸
�z→ 0

L

�z
(H/m) (1.47)

This will produce a longitudinal voltage drop around the loop contained by the two
conductors of

Vl(z, t) = l�z
∂I(z, t)

∂t
(1.48)

Note that this inductance is a property of the loop formed by the two conductors and
as such may be placed in either the top or the bottom conductor. It cannot be uniquely
assigned to either conductor.

Adjacent to each of these figures is a lumped-circuit model of an electrically small
�z section. Figure 1.8(a) combines these into one model. The total line length is
represented as a continuum of these, as shown in Figure 1.8(b). From the per-unit-
length model of the line in Figure 1.8(a), we can obtain the transmission-line equations
by using Kirchhoff’s voltage (KVL) and current (KCL) laws [A.2,A.5]. Writing KVL
at the left and right ends of this circuit gives

V (z + �z, t) − V (z, t) = −l�z
∂I(z, t)

∂t
(1.49a)

and writing KCL at the top right node gives

I(z + �z) − I(z, t) = −g�zV (z + �z, t) − c�z
∂V (z + �z, t)

∂t
(1.49b)

Dividing (1.49) by �z and taking the limit as �z → 0 yields the transmission-line
equations:

∂V (z, t)

∂z
= −l

∂I(z, t)

∂t
(1.50a)

∂I(z, t)

∂z
= −gV (z, t) − c

∂V (z, t)

∂t
(1.50b)
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FIGURE 1.8 The per-unit-length equivalent circuit for a two-conductor line.

The above is an intuitive view of the per-unit-length line parameters. In order to
compute values of these parameters, we need more precise definitions of them. First,
we compute the per-unit-length inductance. We desire to compute the total magnetic
flux through a surface between the two conductors that is of differential length along
the line of �z, and the surface is uniform along the line, that is, does not vary with z.
The desired surface is shown in Figure 1.9(a) where the unit normal to the surface s
is denoted as �an. A cross section in the transverse plane is shown in Figure 1.6. The
magnetic flux density vector is �Bt = µ �Ht and the total magnetic flux through the
surface is the surface integral of this over the surface:

ψ =
∫
s

µ �Ht · �ands (1.51)

The total inductance is the ratio of the magnetic flux through this surface to the
current that caused it:

l�z = −
ψ = ∫

s

µ �Ht · �ands

I(z, t)
(1.52)

where l is the per-unit-length inductance desired. We have defined the closed contour
around the perimeter of this surface as c. The differential path length along this
contour is denoted by d�l, and the normal to the surface is denoted as �an, as shown in
Figure 1.6. The definition of the direction of the desired flux through this surface is
according to the right-hand rule with respect to the current. Placing the thumb in the
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FIGURE 1.9 Contours and surfaces for the derivation of the transmission-line equations: (a)
derivation of the voltage change equation, and (b) derivation of the current change equation.

direction of the current (into the page in the +z direction for the top conductor and out
of the page in the −z direction for the bottom conductor) gives the direction of the
desired flux as clockwise when looking in the +z direction, as in Figure 1.6, which
is opposite to the direction of the normal to the surface, �an. Hence, a minus sign is
required in (1.52). For a length of the surface of �z that is considered differentially



26 INTRODUCTION

small, the flux through the surface does not vary with z. Hence we may remove this
dimension from the integral in (1.52). Therefore, as we shrink the length of the surface
to zero, the desired flux is obtained by simply integrating along the contour c to give

l�z = −
�zµ

∫
c

�Ht · �andl

I(z, t)
(1.53a)

or

l = −
µ

∫
c

�Ht · �andl

I(z, t)
(1.53b)

Substituting the definition of current given in (1.41) gives

l = −µ

∫
c

�Ht · �andl

∮
c′

�Ht · d�l′
(1.54)

Next, consider obtaining the per-unit-length capacitance c as illustrated in Figure
1.9(b). Charge of equal magnitude but opposite sign is distributed along each con-
ductor and around their peripheries. We desire to compute the total charge contained
on the top conductor along a differential length along the line of �z. The electric
flux density vector on the surface of the perfect conductor is �Dt = ε�Et and, according
to the boundary conditions on the surface of this perfect conductor, is normal to the
surface [A.1]. In order to determine the charge on the conductor surface, we surround
it with a closed surface s′ that is just off the surface of the conductor and determine the
total electric flux through that surface. A cross section in the transverse plane is shown
in Figure 1.6, where the unit normal to the surface s′ is �a′

n. The total capacitance is
the ratio of this total charge to the voltage between the two conductors:

c�z =
ε

∮
s′

�Et · �a′
nds′

V (z, t)
(1.55)

where s′ is the closed surface and c is the per-unit-length capacitance desired. We have
defined the closed contour around the perimeter of this surface as c′. The differential
path length along this contour is denoted by d�l′ and the normal to the surface is denoted
as �a′

n. Note that these surfaces and contours are designated with primes to distinguish
them from the surfaces and contours used to determine the inductance above. Since
the transverse electric field and electric flux density vector is from the upper conductor
to the lower conductor, it is directed out of this closed surface s′ giving the enclosed
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charge as positive. For a length of the surface of �z that is considered differentially
small, the flux through the surface does not vary with z. Hence we may remove this
dimension from the integral in (1.55). Therefore, as we shrink the length of the surface
to zero, the desired flux is obtained by simply integrating along the closed contour c′
to give

c�z =
�zε

∮
c′

�Et · �a′
ndl′

V (z, t)
(1.56a)

or

c =
ε

∮
c′

�Et · �a′
ndl′

V (z, t)
(1.56b)

Substituting the definition of voltage given in (1.39) gives

c = ε

∮
c′

�Et · �a′
ndl′

−
∫
c

�Et · d�l
(1.57)

In order to determine the per-unit-length conductance g, we need to determine
the transverse conduction current. The transverse conduction current is obtained by
integrating σ �Et over the closed surface s′ as

g�z =
σ

∮
s′

�Et · �a′
nds′

V (z, t)
(1.58)

Once again, we assume that the length of the surface along the line �z is differentially
small so that this dimension may be removed from the integral in (1.58), and the
desired transverse current is obtained by simply integrating along the contour c′ to give

g�z =
�zσ

∮
c′

�Et · �a′
ndl′

V (z, t)
(1.59a)

or

g =
σ

∮
c′

�Et · �a′
ndl′

V (z, t)
(1.59b)
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Substituting the definition of voltage given in (1.39) gives

g = σ

∮
c′

�Et · �a′
ndl′

−
∫
c

�Et · d�l
(1.60)

In Section 1.3.4, we will show that the per-unit-length parameters satisfy the
following relations:

lc = µε (1.61)

gl = σµ (1.62)

Taking the ratio of (1.61) and (1.62) or the ratio of (1.60) and (1.57) gives another
relation:

g

c
= σ

ε
(1.63)

Hence for a homogeneous medium surrounding the conductors that is characterized
by the parameters σ, ε, and µ, we only need to determine one of the three parameters.
For example, if we determine the per-unit-length capacitance c, then the other two
parameters are obtained in terms of c as l = (µε/c) and g = (σ/ε)c.

1.3.3 Obtaining the Transmission-Line Equations from the Transverse
Electromagnetic Field Equations

In Section 1.2 we showed that, for the TEM mode, the transverse field vectors satisfy
the relations in (1.12):

−∂�Et

∂z
= −µ

[
�az × ∂ �Ht

∂t

]
(1.12a)

−∂ �Ht

∂z
= σ(�az × �Et) + ε

[
�az × ∂�Et

∂t

]
(1.12b)

Integrating (1.12a) along contour c to define the line voltage as given in (1.39) gives

∂V (z, t)

∂z
= −µ

∂

∂t

∫
c

(�az × �Ht) · d�l (1.64)
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FIGURE 1.10 Illustration of the derivation of certain vector identities.

From Figure 1.10(a), we observe the identities:

(�az × �Ht) · d�l = − �Ht · (�az × d�l)
= − �Ht · �andl

(1.65)

Substituting this into (1.64), we obtain

∂V (z, t)

∂z
= µ

∂

∂t

∫
c

�Ht · �andl (1.66)

From the definition of the per-unit-length inductance in (1.53b), this becomes the first
transmission-line equation:

∂V (z, t)

∂z
= −l

∂I(z, t)

∂t
(1.67)
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Similarly, integrating (1.12b) around the closed contour c′ to define the line currents
as in (1.41) gives

∂I(z, t)

∂z
= −σ

∮
c′

(�az × �Et) · d�l′ − ε
∂

∂t

∮
c′

(�az × �Et) · d�l′ (1.68)

From Figure 1.10(b), we observe the identities

(�az × �Et) · d�l′ = −�Et · (�az × d�l′)
= �Et · �a′

ndl′ (1.69)

Substituting this into (1.68) yields

∂I(z, t)

∂z
= −σ

∮
c′

�Et · �a′
ndl′ − ε

∂

∂t

∮
c′

�Et · �a′
ndl′ (1.70)

Observing the definitions of the per-unit-length capacitance and conductance in
(1.56b) and (1.59b), respectively, this gives the second transmission-line equation

∂I(z, t)

∂z
= −gV (z, t) − c

∂V (z, t)

∂t
(1.71)

1.3.4 Properties of the Per-Unit-Length Parameters

In this section, we will prove the important relations between the per-unit-length
parameters given in (1.61) and (1.62):

lc = µε (1.61)

gl = σµ (1.62)

which also give the relation

g

c
= σ

ε
(1.63)

The first-order transmission-line differential equations in (1.67) and (1.71) are coupled
in that V and I appear in each equation. They can be converted to uncoupled second-
order equations by differentiating (1.67) with respect to z, differentiating (1.71) with
respect to t, and then substituting and reversing the process to yield

∂2V (z, t)

∂z2 = gl
∂V (z, t)

∂t
+ lc

∂2V (z, t)

∂t2 (1.72a)
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∂2I(z, t)

∂z2 = gl
∂I(z, t)

∂t
+ lc

∂2I(z, t)

∂t2 (1.72b)

The transverse field vectors were shown to satisfy the second-order differential equa-
tions given in (1.13):

∂2 �Et

∂z2 = µσ
∂�Et

∂t
+ µε

∂2 �Et

∂t2 (1.13a)

∂2 �Ht

∂z2 = µσ
∂ �Ht

∂t
+ µε

∂2 �Ht

∂t2 (1.13b)

Integrating these according to (1.39) and (1.41) in order to write them in terms of the
line voltage and current gives

∂2V (z, t)

∂z2 = µσ
∂V (z, t)

∂t
+ µε

∂2V (z, t)

∂t2 (1.73a)

∂2I(z, t)

∂z2 = µσ
∂I(z, t)

∂t
+ µε

∂2I(z, t)

∂t2 (1.73b)

Comparing (1.73) to (1.72), we observe the important relations between the per-unit-
length parameters:

gl = µσ (1.74a)

lc = µε (1.74b)

Alternatively, we may obtain a direct proof of these relations between the per-unit-
length parameters in the following manner. Write the product of the per-unit-length
inductance and capacitance from their definitions in (1.54) and (1.57) as

lc = −µ

∫
c

�Ht · �andl

∮
c′

�Ht · d�l′
ε

∮
c′

�Et · �a′
ndl′

−
∫
c

�Et · d�l
(1.75)

We showed in Section 1.2 that, for a lossless medium (σ = 0), the forward- and
backward-traveling components of the waves are related by the intrinsic impedance
of the medium as

�E±
t = ∓ η(�az × �H±

t ) (1.76a)
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Taking the cross product of �az with both sides and using �az × (�az × �Ht) = − �Ht
yields

�H±
t = ±1

η
(�az × �E±

t ) (1.76b)

Substituting these into (1.75) yields

lc = −µ

∫
c

±1

η
(�az × �E±

t ) · �andl

∮
c′

�H±
t · d�l′

ε

∮
c′

∓ η(�az × �H±
t ) · �a′

ndl′

−
∫
c

�E±
t · d�l

(1.77)

From Figure 1.10 (replacing �Et with �Ht and vice versa) we obtain the identities

(�az × �E±
t ) · �andl = �E±

t · d�l (1.78a)

and

(�az × �H±
t ) · �a′

ndl′ = − �H±
t · d�l′ (1.78b)

Substituting these into (1.77) yields

lc = −µ

±
∫
c

�E±
t · d�l

∮
c′

�H±
t · d�l′

ε

±
∮
c′

�H±
t · d�l′

−
∫
c

�E±
t · d�l

= µε

(1.79)

Taking the ratio of the basic definitions of g in (1.60) and c in (1.57) gives the relation
g = (σ/ε)c. Substituting (1.79) into this gives the relation gl = σµ.

1.4 CLASSIFICATION OF TRANSMISSION LINES

One of the primary tasks in obtaining the complete solution for the voltage and
current of a transmission line is the general solution of the transmission-line equations
(Step 2). The type of line being considered significantly affects this solution. We are
familiar with the difficulties in the solution of various ordinary differential equations
encountered in the analysis of lumped circuits [A.2,A.5]. An example of an ordinary
differential equation encountered in lumped-circuit analysis is

dV (t)

dt
+ aV (t) = b sin(ωt)
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Although the equations to be solved for lumped systems are ordinary differential
equations (there is only one independent variable, time t) and are somewhat simpler
to solve than the transmission-line equations, which are partial differential equations
(since the voltage and current are functions of two independent variables, time t and
position along the line z), the type of circuit strongly affects the solution difficulty.
For example, if any of the circuit elements are functions of time (a time-varying
circuit), then the coefficients in the equation, for example, a, will be functions of the
independent variable, t. An example is

dV (t)

dt
+ a(t)V (t) = b sin(ωt)

These equations, although linear, are said to be nonconstant coefficient ordinary dif-
ferential equations, which are considerably more difficult to solve than constant co-
efficient ones [A.4]. Suppose one or more of the circuit elements are nonlinear; that
is, the element voltage has a nonlinear relation to its current. In this case, the cir-
cuit differential equations become nonlinear ordinary differential equations, which
are equally difficult to solve [A.4]. So the class of lumped circuit being considered
drastically affects the difficulty of solution of the governing differential equations.

1.4.1 Uniform versus Nonuniform Lines

Solution of the transmission-line partial differential equations has similar parallels.
We have been implicitly assuming that the per-unit-length parameters are independent
of position along the line z and, of course, time t. The per-unit-length parameters
contain all the cross-sectional structural dimensions of the line. If the cross-sectional
dimensions of the line vary along the line axis, then the per-unit-length parameters will
be functions of the position variable, z, for example, g(z), c(z), and l(z). This makes the
resulting transmission-line equations very difficult to solve because the coefficients,
the per-unit-length parameters, will be functions of one of the independent variables
in the same fashion as a nonconstant coefficient ordinary differential equation:

∂V (z, t)

∂z
= −l(z)

∂I(z, t)

∂t

∂I(z, t)

∂z
= −g(z)V (z, t) − c(z)

∂V (z, t)

∂t

Such transmission-line structures are said to be nonuniform lines. This includes both
the cross-sectional dimensions of the line conductors and the cross-sectional dimen-
sions of any inhomogeneous surrounding medium. If the cross-sectional dimensions
of both the line conductors and the surrounding, perhaps inhomogeneous, medium
are constant along the line axis, the line is said to be a uniform line whose resulting
differential equations are simple to solve because the per-unit-length parameters l, c,
and g are constants independent of z. An example of a nonuniform (in conductor cross
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FIGURE 1.11 Illustration of a nonuniform line caused by variations in the conductor cross
section.

section) line is shown in Figure 1.11. Figure 1.11(a) shows the view along the line axis,
whereas Figure 1.11(b) shows the view in cross section. Because the conductor cross
sections are different at z1 and z2, the per-unit-length parameters will be functions of
position z. This type of structure occurs frequently on printed circuit boards. A com-
mon way of handling this is to divide the line into three uniform sections and cascade
the representations. This is an approximation since it neglects the fringing of the fields
at the junctions. Figure 1.12 shows a nonuniform line where the nonuniformity is intro-
duced by the inhomogeneous medium. A wire is surrounded by dielectric insulation.
Along the two end segments, the medium is inhomogeneous since in one part of the re-
gion the fields exist in the dielectric insulation, ε1, µ0, and in the other they exist in free
space, ε0, µ0. In the middle region, the dielectric insulation is also inhomogeneous
consisting of regions containing ε1, µ0, ε2, µ0 and ε0, µ0. However, because of this
change in the properties of the surrounding medium from one section to the next, the
total line is a nonuniform one and the resulting per-unit-length parameters will be func-
tions of z. The resulting transmission-line equations for Figures 1.11 and 1.12 are very
difficult to solve because of the nonuniformity of the line. Again, a common way of
analyzing this type of problem is to partition the line into a cascade of uniform subsec-
tions This is, again, an approximation since it neglects the fringing of the fields at the
junctions.
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FIGURE 1.12 Illustration of a nonuniform line caused by variations in the surrounding
medium cross section.

1.4.2 Homogeneous versus Inhomogeneous Surrounding Media

Figure 1.1 shows lines in a homogeneous medium; that is, there is one dielec-
tric surrounding the conductors and hence the permittivity, conductivity, and per-
meability are independent of position in the space surrounding the conductors.
Dielectric insulations surrounding wires such as in ribbon cables are examples
of inhomogeneous media since the electric field lines will be partly in this di-
electric insulation and partly in the remaining free space. The PCB structures in
Figure 1.2(b) and (c) are also examples of lines in an inhomogeneous medium.
The electric field lines will lie partly in the dielectric substrate and partly in the
remaining free space. For structures in a homogeneous medium such as the wire-
type structures in Figure 1.1 and the coupled stripline in Figure 1.2(a), all waves
will travel at the same velocity. For lines consisting of n + 1 conductors in an in-
homogeneous medium, there will be n waves each traveling with different veloci-
ties. This complicates the solution of the transmission-line equations as we will see
later.
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There are numerous combinations of these characterizations. A line may be in a
homogeneous medium yet because of a change in the conductor cross sections along
the line, it would be classified as a nonuniform line and would be very difficult to
solve. A line may be in an inhomogeneous medium but because this inhomogeneity
as well as the conductor cross sections do not change along the line axis, it would be
classified as a uniform line. It would be relatively simple to solve. For these reasons,
we will restrict the transmission lines that we will consider in this text to be uniform
lines. They may, however, be in a homogeneous or an inhomogeneous medium. In
either case, a uniform line has (a) conductor cross sections that do not vary with z and
(b) surrounding dielectric properties that may be functions of x and y but do not vary
with z.

Technically, an inhomogeneous surrounding medium, although uniform along the
line (z) axis, invalidates the basic assumption of a TEM field structure. The rea-
son for this is that a TEM field structure must have one and only one velocity of
propagation of the waves in the medium. However, this cannot be the case for an
inhomogeneous medium. If one portion of the inhomogeneous medium is charac-
terized by ε1, µ0 and the other is characterized by ε2, µ0, such as for the lines in
Figure 1.2(b) and (c), the velocities of TEM waves in infinite, homogeneous regions
characterized by these parameters will be v1 = 1/

√
ε1µ0 and v2 = 1/

√
ε2µ0, which

will be different. Nevertheless, the transmission-line equations are usually solved in
spite of this observation and are assumed to adequately represent the situation so long
as these velocities are not substantially different. This is referred to as the quasi-TEM
assumption.

1.4.3 Lossless versus Lossy Lines

All of the previous derivations include losses in the medium through a per-unit-
length conductance parameter g. This loss in the surrounding (assumed homoge-
neous) medium does not invalidate the TEM field structure assumption. However, the
previous derivations also assumed perfect conductors. In other words, the conduc-
tors were assumed to be lossless and to have no resistance properties along their z
axes. Practical transmission lines are obviously constructed of imperfect conductors
that have loss. However, in order that the transmission line be a useful guided wave
structure, these conductor losses must be small. Nevertheless, how shall we include
these losses and what will be their effect on the ideal assumption of a TEM field
structure?

We may include the possibility of the line conductors being imperfect conductors
with small losses through a per-unit-length resistance parameter r. Unlike losses in the
surrounding medium, lossy conductors implicitly invalidate the TEM field structure
assumption. Figure 1.13 shows why this is the case. The line current flowing through
the imperfect line conductor generates a nonzero electric field along the conductor
surface, Ez(z, t) = rI(z, t), which is directed in the z direction, thereby violating the
basic assumption of the TEM field structure in the surrounding medium. The total
electric field is the sum of the transverse component and this z-directed component.
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FIGURE 1.13 Illustration of the effect of conductor losses in creating non-TEM fields.

However, if the conductor losses are small, this resulting field structure is almost
similar to a TEM structure. This is again referred to as the quasi-TEM assumption
and, although the transmission-line equations are no longer valid, they are nevertheless
assumed to represent the situation for small losses through the inclusion of the per-
unit-length resistance parameter r. In the derivation of the transmission-line equations
for an MTL, we will include this parameter.

In summary, the TEM field structure and mode of propagation characterization of
a transmission line is valid only for uniform lines consisting of perfect conductors
and surrounded by a homogeneous medium. Note that this medium may be lossy
and not violate the TEM assumption so long as it is homogeneous (in σ, ε, and µ).
Violations of these assumptions (lossy conductors and/or an inhomogeneous medium
surrounding the conductors) are considered under the quasi-TEM assumption so long
as they are not extreme [17, 18].

1.5 RESTRICTIONS ON THE APPLICABILITY OF THE
TRANSMISSION-LINE EQUATION FORMULATION

There are some additional, implicit assumptions in the TEM transmission-line equa-
tion characterization. In the derivation of the transmission-line equations from the
distributed-parameter lumped circuit of Figure 1.8, distributing the lumped elements
along the line and allowing the section length to go to zero, lim�z → 0 �z, means
that line lengths that are electrically long, that is, much greater than a wavelength
λ, are properly handled with this lumped-circuit characterization. However, it was
assumed that the line cross-sectional dimensions such as conductor separations were
electrically small at the frequencies of excitation of the line. Structures whose cross-
sectional dimensions are electrically large at the frequency of excitation will have,
in addition to the TEM field structure and mode of propagation, other higher order
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TE and TM field structures and modes of propagation simultaneously with the TEM
mode [A.1,17–19]. Therefore, the solution of the transmission-line equations does not
give the complete solution in the range of frequencies where these non-TEM modes
coexist on the line. A comparison of the predictions of the TEM transmission-line
equation results with the results of a numerical code (which does not presuppose
existence of only the TEM mode) for a two-wire line showed differences beginning
with frequencies where the wire separations were as small as λ/40 [H.7]. Analytical
solution of Maxwell’s equations in order to consider the total effect of all modes is
usually a formidable task. There are certain structures where an analytical solution is
feasible, and we will discuss these in the next two sections.

1.5.1 Higher Order Modes

In the following two subsections, we analytically solve Maxwell’s equations for two
closed structures to obtain the complete solution and demonstrate that the TEM formu-
lation is complete up to some frequency where the conductor separations are some sig-
nificant fraction of a wavelength above which higher order modes begin to propagate.

1.5.1.1 The Infinite, Parallel-Plate Transmission Line Consider the infinite,
parallel-plate transmission line shown in Figure 1.14. The two infinite and perfectly
conducting plates lie in the y–z plane and are located at x = 0 and x = a. We will
obtain the complete solutions for the fields in the space between the two plates, which
is assumed to be homogeneous and lossless and characterized by ε and µ. Maxwell’s
equations for sinusoidal excitation become

∇ × �E = − jωµ �H (1.80a)

∇ × �H = jωε �E (1.80b)

Expanding these and noting that the plates are infinite in extent in the y direction so
that ∂

∂y
= 0 gives [A.1]

∂Ey

∂z
= jωµHx

∂Ex

∂z
− ∂Ez

∂x
= − jωµHy

∂Ey

∂x
= − jωµHz

∂Hy

∂z
= − jωεEx

∂Hx

∂z
− ∂Hz

∂x
= jωεEy

∂Hy

∂x
= jωεEz

(1.81)
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FIGURE 1.14 The infinite parallel-plate waveguide for demonstrating the effect of cross-
sectional dimensions on higher order modes.

In addition, we have the wave equations [A.1]:

∇2 �E + ω2µε �E = 0

∇2 �H + ω2µε �H = 0
(1.82)

Expanding these and recalling that the plates are infinite in the y dimension so that
∂
∂y

= 0 gives [A.1]

∂2 �E
∂x2 + ∂2 �E

∂z2 +ω2µε �E = 0

∂2 �H
∂x2 + ∂2 �H

∂z2 +ω2µε �H = 0

(1.83)

Let us now look for waves propagating in the +z direction. To do so, we use the
principle of separation of variables, where we separate the dependence on x, y, and
z as

�E(x, y, z) = �E′(x, y)e−γz (1.84)
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where γ is the propagation constant (to be determined). Substituting this into (1.81)
yields

γE′
y = − jωµH ′

x

−γE′
x − ∂E′

z

∂x
= − jωµH ′

y

∂E′
y

∂x
= − jωµH ′

z

γH ′
y = jωεE′

x

−γH ′
x − ∂H ′

z

∂x
= jωεE′

y

∂H ′
y

∂x
= jωεE′

z

(1.85)

and

∂2 �E′

∂x2 +(γ2 + ω2µε) �E′ = 0

∂2 �H ′

∂x2 +(γ2 + ω2µε) �H ′ = 0

(1.86)

The equations in (1.85) can be manipulated to yield [A.1]

H ′
x = − γ

h2

∂H ′
z

∂x

E′
x = − γ

h2

∂E′
z

∂x

H ′
y = − jωε

h2

∂E′
z

∂x

E′
y = jωµ

h2

∂H ′
z

∂x

h2 = γ2 + ω2µε

(1.87)

Observe that E′(x, y) and H ′(x, y) are functions of x only since there can be no varia-
tion in the y direction due to the infinite extent of the plates in this direction and also the
z variation has been assumed. Thus the partial derivatives in (1.85)–(1.87) can be re-
placed by ordinary derivatives. We now investigate the various modes of propagation.

The Transverse Electric (TE) Mode (Ez = 0) The TE mode of propagation assumes
that the electric field is confined to the transverse or x–y plane so that Ez = 0. There-
fore, from (1.87) we see that E′

x = H ′
y = 0. The wave equations in (1.86) reduce to

d2E′
y

dx2 + h2E′
y = 0 (1.88)
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whose general solution is

E′
y = C1sin(hx) + C2cos(hx) (1.89)

The boundary conditions are such that the electric field tangent to the surfaces of the
plates is zero:

Ey = 0|x=0,x=a (1.90)

which, when applied to (1.89), yields C2 = 0 and ha = m for m = 0, 1, 2, 3, . . .

Thus, the solution becomes

Ey = C1sin
(mπx

a

)
e−γz (1.91)

From (1.85) we obtain

Hz = j
1

ωµ

∂Ey

∂x

= j
mπ

ωµa
C1cos

(mπx

a

)
e−γz

(1.92)

and

Hx = j
γ

ωµ
C1sin

(mπx

a

)
e−γz (1.93)

Since

h = mπ

a
(1.94)

the propagation constant becomes

γ =
√(mπ

a

)2 − ω2µε (1.95)

For the lowest order mode, m = 0, all field components vanish. The next higher
order mode is the TE1 mode for m = 1.

The Transverse Magnetic (TM) Mode (Hz = 0) The TM mode has the magnetic field
confined to the transverse x–y plane so that Hz = 0. Carrying through a development
similar to the above for this mode gives the nonzero field vectors as

Hy = D2cos
(nπx

a

)
e−γz

Ex = − j
γ

ωε
D2cos

(nπx

a

)
e−γz

Ez = j
nπ

aωε
D2sin

(nπx

a

)
e−γz

(1.96)
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for n = 0, 1, 2, . . . The propagation constant is again given by (1.95) with m replaced
by n. In contrast to the TE modes, the lowest order TM mode is the TM0 mode for
n = 0. For this case, the propagation constant reduces to the familiar

γ = jω
√

µε

= jβ
(1.97)

and the field vectors in (1.96) reduce to

Hy = D2e
− jβz

Ex = − j
γ

ωε
D2e

− jβz

=
√

µ

ε
D2e

− jβz

Ez = 0

(1.98)

However, this is the TEM mode!
The transmission-line equations for this TEM mode can be obtained by differen-

tiating (1.98) with respect to z to yield

dEx

dz
= − jωµHy

dHy

dz
= − jωεEx

(1.99)

We may write these in terms of voltage and current by integrating in the transverse
plane:

V (z) = −
x=a∫
x=0

Exdx

= −aEx

(1.100a)

and

I(z) = −wHy (1.100b)

The result for the current in (1.100b) is due to the fact that the H field is tangent to the
upper and lower plates that are assumed to be perfect conductors and hence produces a
surface current on the plate Jsz = − Hy

∣∣
x=a

in A/m that is directed in the z direction.
In a section of width w along the y dimension, the total current is Jszw = −Hyw A.
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Hence (1.99) becomes

dV

dz
= jωµ

x=a∫
x=0

Hydx

= − jω
(
µ

a

w

)
︸ ︷︷ ︸

l

(−Hyw)︸ ︷︷ ︸
I

dI

dz
= − jω

(
ε

w

a

)
︸ ︷︷ ︸

c

V

(1.101)

and the per-unit-length inductance and capacitance are then defined as

l = µ
a

w
H/m

c = ε
w

a
F/m

(1.102)

Therefore, the lowest order TM mode, TM0, is equivalent to the TEM mode and the
TE0 mode is nonexistent. We must then ascertain when the next higher order modes
begin to propagate, thus adding to the total picture. The propagation constant in (1.95)
must be imaginary or at least have a nonzero imaginary part. Clearly, for m = n = 0,
we have the propagation constant of a plane wave: γ = jω

√
µε = jβ. For higher

order modes to propagate, we require from (1.95) that ω2µε ≥ h2, giving

ω ≥ 1√
µε

nπ

a
(1.103)

The cutoff frequency for the lowest order TEM mode, TM0, is clearly dc. The cutoff
frequencies of the next higher order modes, TE1 and TM1, are from (1.103)

f TE1,TM1
= 1

2π
√

µε

π

a

= v

2a

(1.104)

In terms of wavelength, λ = v/f , we find that the TEM mode will be the only possible
mode so long as the plate separation a is less than one-half wavelength, that is,

a <
λ

2
(1.105)

This illustrates that so long as the cross-sectional dimensions of the line are electrically
small, only the TEM mode can propagate! This is illustrated in Figure 1.15.

1.5.1.2 The Coaxial Transmission Line Another closed system transmission line
that is capable of supporting the TEM mode is the coaxial transmission line shown in
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FIGURE 1.15 Illustration of the dependence of higher order modes on cross-sectional elec-
trical dimensions for the parallel-plate transmission line.

Figure 1.16. The general solution to Maxwell’s equations for the fields and modes in
the space between the inner wire and the outer shield was obtained in [1]. Clearly, this
structure can support the TEM mode with a cutoff frequency of dc. The higher order
TE and TM modes have the following cutoff properties. The lowest order TE mode
is cutoff for frequencies such that the average circumference between the conductors
is less than approximately a wavelength, that is,

2π
(a + b)

2
< λ (1.106)

Similarly, the lowest order TM mode is cutoff for frequencies such that the differ-
ence between the two conductor radii is less than approximately one-half wavelength,
that is,

(b − a) <
λ

2
(1.107)

These results again support the notion that the TEM mode will be the only mode of
propagation in closed systems so long as the conductor separation is electrically small.

1.5.1.3 Two-Wire Lines The previous two transmission-line structures are closed
systems. For open systems such as the two-wire line, the issue of higher order modes
is not so clear-cut. Numerical analysis of a two-wire line given in [H.7] showed
that the predictions of the transmission-line formulation for the two-wire line began

FIGURE 1.16 The coaxial cable for illustrating the dependence of higher order modes on
cross-sectional electrical dimensions.
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to deviate from the complete solution when the cross-sectional dimensions such as
wire separation are no longer electrically small. This supports our intuition. The
problem was investigated in more detail in [19] where these notions are confirmed.
Also certain other modes are capable of propagating with no clearly defined cutoff
frequency. However, the TEM mode formulation and the resulting transmission-line
equation representation for two-wire lines will be reasonably adequate so long as
the wire separations are electrically small. Ordinarily, this is satisfied for practical
transmission-line structures.

1.5.2 Transmission-Line Currents versus Antenna Currents

There is one remaining restriction on the completeness of the TEM mode,
transmission-line representation that needs to be discussed. It can be shown that
under the TEM transmission-line equation formulation for a two-conductor line,
the currents so determined on the two conductors at any cross section must be
equal in magnitude and oppositely directed (see Problem 1.3). Thus, the total cur-
rent at any cross section is zero. This is the origin of the reference to the term
that one of the conductors serves as a “return” for the current on the other con-
ductor. On a transmission line, there may also be currents that do not sum to zero
at any cross section. These so-called “antenna currents” or “common-mode currents”
tend to go to zero at the line endpoints. Hence, their presence along the line does not
substantially change the predictions of the terminal voltages and currents. Therefore,
in the usual use of the transmission-line model to predict crosstalk and signal in-
tegrity on transmission lines, the TEM transmission-line equations give substantially
the complete result.

Consider the pair of parallel wires shown in Figure 1.17(a) carrying, at the same
cross section, currents I1 and I2. In general, we may decompose or represent these as
a linear combination of two other currents. The so-called differential-mode currents
ID are equal in magnitude at a cross section and are oppositely directed, as shown
in Figure 1.17(b). These correspond to the TEM mode, transmission-line currents
that will be predicted by the transmission-line model. The other currents are the so-
called common-mode currents IC which are equal in magnitude at a cross section but
are directed in the same direction, as shown in Figure 1.17(c). These are sometimes
referred to as “antenna-mode” currents [20, 21]. This decomposition can be obtained
by writing, from Figure 1.17,

I1 = IC + ID

I2 = IC − ID
(1.108)

In matrix form, these can be written as[
I1

I2

]
=
[

1 1
1 −1

] [
IC

ID

]
(1.109)

Equation (1.109) represents a nonsingular transformation between the two sets of
currents since the transformation matrix is nonsingular. Therefore, its inverse can be
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FIGURE 1.17 Illustration of the decomposition of total currents into differential-mode
(transmission-line mode) and common-mode (antenna mode) components.

taken and the transformation reversed to yield[
IC

ID

]
= 1

2

[
1 1
1 −1

] [
I1

I2

]
(1.110)

This gives

IC = I1 + I2

2

ID = I1 − I2

2

(1.111)

Note that I2 ∼= − I1; that is, in a normal situation, one current “returns” to its source
on the other conductor. Hence, IC � ID. Therefore, the common-mode currents are
much smaller in magnitude than the differential-mode currents and so do not sub-
stantially affect the results of an analysis of currents and voltages of a transmission
line. However, in the prediction of radiated emissions from this two-wire line, the
common-mode currents are significant because the radiated electric fields from the
differential-mode currents tend to subtract, but those from the common-mode cur-
rents tend to add. Thus, a “small” common-mode current can give the same order
of magnitude of radiated emission as a much larger differential-mode current. This
was confirmed for cables and PCBs in [A.3,22,23]. The significant point here is that
if one bases a prediction of the radiated emissions from a two-conductor line on the
currents obtained from a transmission-line equation analysis, the predicted emissions
will generally lie far below those of the emissions due to the common-mode currents.
On the contrary, the common-mode currents can generally be ignored in a near-field
transmission-line analysis such as in determining crosstalk.
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FIGURE 1.18 Illustration of an asymmetry that creates common-mode currents.

There are a number of ways through which these non-TEM mode currents can be
created on a transmission line. Figure 1.18 illustrates one of these. It is important to
remember that the TEM mode, transmission-line equation formulation only charac-
terizes the line and assumes that the two (or more) conductors of the line continue
indefinitely along the z axis. The analysis does not inherently consider the field effects
of the eventual terminations for a finite-length line. This problem was investigated
in [24]. It was found that asymmetries as well as the presence of nearby metallic
structures create these “nonideal” currents. For example, consider the two-wire line
shown in Figure 1.18, which is driven by a voltage source at the left end and termi-
nated in a short circuit at the right end. This was analyzed using a numerical solution
of Maxwell’s equations, commonly referred to as a method of moments (MoM). This
analysis gives the complete solution for the currents without presupposing the exis-
tence of only the TEM mode. It was found that if the voltage source was situated and
modeled as being centered in the left segment on the centerline, then I2 = −I1; in
other words, the currents on the wires are only differential-mode currents. However,
if the voltage source was placed asymmetrically to the centerline such as shown and
the resulting currents decomposed as in (1.111), common-mode currents appeared.
This asymmetrical placement of the source, which is not explicitly considered in the
transmission-line equation formulation, was apparently the source.

The important point here is that the TEM mode, transmission-line equation formu-
lation that we will consider in this text predicts only the differential-mode currents.
If the line cross section is electrically small and one is interested only in predicting
the currents and voltages on the line for the purposes of predicting signal distortion
and crosstalk (the primary goal of this text), this prediction will be reasonably ac-
curate. On the contrary, if one is interested in predicting the radiated electric field
from this line, then the predictions of that field using only the currents predicted by
the transmission-line equation formulation will most likely be inadequate since the
contributions due to the common-mode currents typically are frequently the dominant
contributors to radiated emissions [22, 23].

1.6 THE TIME DOMAIN VERSUS THE FREQUENCY DOMAIN

The two important domains that we will use throughout this text to analyze
transmission-line structures are the time domain and the frequency domain. It is
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FIGURE 1.19 Illustration of the concept of a transfer function for a linear system.

critically important that we understand these two notions since they will form the
heart of our analyses. First, let us discuss viewing the transmission-line problem as
a single-input, single-output system as illustrated in Figure 1.19(a). This is a very
standard way of viewing a system [A.2,A.5]. An input x(t) is applied to the system
(which we suppose here is a linear one) and produces the output y(t). The system
may be characterized by its impulse response h(t). Analysis in the time domain refers
to applying a signal or waveform that has some general shape and dependence on
time t and determining the output or solution as a general waveform y(t). Although
not strictly required, we may obtain this solution in terms of the impulse response
h(t). The impulse response is the response when a unit impulse function is applied
at the input; that is, if x(t) = δ(t), then y(t) = h(t). The time-domain solution may be
obtained with the convolution integral [A.2,A.5]:

y(t) =
t∫
0

h(t − τ)x(τ)dτ (1.112)

Analysis in the frequency domain refers to applying a single-frequency sinusoidal
waveform

x(t) = X cos(ωt + θX) (1.113)

and determining the output under the assumption that the system response has reached
steady state. For a linear system, the response will be of the same form and the same
frequency as the input signal but with a different amplitude and phase:

y(t) = Y cos(ωt + θY ) (1.114)

To analyze the response of the system, we move to the frequency domain by replacing
time quantities with their complex-valued phasor equivalents [A.2,A.5]:

x(t) = X cos(ωt + θX) ⇒ X̂( jω) = X� θX (1.115a)
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y(t) = Y cos(ωt + θY ) ⇒ Ŷ ( jω) = Y � θY (1.115b)

as illustrated in Figure 1.19(b), and we write all complex-valued quantities with a
caret (.̂) over them and j = √−1. The impulse response in the frequency domain is
the familiar transfer function or frequency response that also has a magnitude and a
phase:

h(t) ⇒ Ĥ( jω) = H � θH (1.115c)

In order to obtain this frequency response, we apply a unit amplitude, zero phase
input sinusoidal signal, sweep its frequency, and determine the response magnitude
and phase at each applied frequency:

X̂ = 1� 0◦ ⇒ Ŷ = H � θH (1.116)

Then the solution process in the frequency domain is to obtain the magnitude and
phase of the output using complex algebra as

Y � θY = H � θH × X � θX (1.117)

The result is obtained by multiplying magnitudes and adding angles in accordance
with the rules of complex arithmetic [A.2,A.5]:

Ŷ = (HX)� (θH + θX) (1.118)

Having done this, we return to the time domain by (a) multiplying the phasor result
by e jωt and (b) taking the real part of the result:

y(t) = Re{Ŷe jωt}
= HX cos(ωt + θH + θX)

(1.119)

This phasor analysis method is virtually the heart of all analyses of electrical engi-
neering systems as well as other dynamical systems.

We may represent a two-conductor transmission-line problem in the form of a
single-input, single-output system as shown in Figure 1.20. Consider a general source
and load termination of a transmission line shown in Figure 1.20(a). The source
consists of an open-circuit voltage source, VS(t), and a source resistance, RS. The
load represents, perhaps, the input to a device and is represented by the resistor
RL. We may be interested in determining, for example, the output voltage across
the load, Vout(t). In order to put this into the form of a single-input, single-output
system as illustrated in Figure 1.19(a), we consider the input to the system to be the
voltage source, x(t) = VS(t), and the output to be the voltage across the load resistor,
y(t) = Vout(t). Hence we imbed the line and the termination resistors in the system as
shown in Figure 1.20(b). It is very important to observe that the “system” contains the
termination resistors. Hence, nonlinear terminations render the problem a nonlinear
one, and the phasor solution method is no longer valid. In the case of a multiconductor
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FIGURE 1.20 Characterizing a transmission line as a single-input, single-output system.

line as shown in Figure 1.20(c), the input is again x(t) = VS(t) and the desired output
may be, for example, the far-end crosstalk voltage, y(t) = VFE(t).

1.6.1 The Fourier Series and Transform

The primary reason we concentrate so much emphasis on the single-frequency sinu-
soidal response of a linear system via the frequency domain is that we can decompose
any periodic time-domain waveform into its sinusoidal components via the Fourier
series [A.2,A.3]. Hence we can represent any periodic waveform having period P as
the infinite sum of sinusoids whose frequencies are multiples of the basic repetition
frequency

f 0 = 1

P
(1.120)
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as [A.2,A.3]

x(t) = c0 +
∞∑

n=1

2cncos(nω0t + � cn) (1.121)

and ω0 = 2πf0 = 2π/P . The Fourier expansion coefficients in (1.121) are obtained
from [A.2,A.3]

ĉn = 1

P

t1+P∫
t1

x(t)e− jnω0tdt

= cn � cn

(1.122)

where ĉn is a complex number, and cn and � cn are the magnitude and the phase,
respectively, of it. In the frequency domain, we can determine the transfer function
at each of these harmonics as

Ĥ(jnω0) = |Ĥ(jnω0)|� Ĥ(jnω0) (1.123)

If the system (line and terminations) is linear, then we may employ superposition and
pass each sinusoidal component of the input through the system and sum them at the
output to obtain the Fourier series of the output y(t) as illustrated in Figure 1.21:

y(t) = c0Ĥ(0) +
∞∑

n=1

2cn|Ĥ(jnω0)|cos(nω0t + � cn + � Ĥ(jnω0)) (1.124)

This is an incredibly powerful result. It says that we can indirectly solve for the time-
domain response of the output y(t) by decomposing the input signal, x(t), into its
sinusoidal components with the Fourier series as in (1.121), solving for the frequency
response of the system to these harmonics of the input signal, and then summing
these individual responses in time as in (1.124). However, this will represent only
the steady-state solution part of y(t) and transients are not included. Theoretically,
the Fourier series requires an infinite number of harmonics be summed to yield the
time-domain function. In a practical sense, we only need to sum a finite number to
arrive at a reasonable approximation to the output solution y(t).

For waveforms that are not periodic, that is, consist of a single pulse, the Fourier
transform provides a similar representation [A.2,A.3]. In this case, the discrete spec-
trum consisting of harmonics is replaced by a continuous spectrum. The discrete
Fourier series coefficients are replaced by the Fourier transform, X̂(jω). The process
described above is essentially unchanged.
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FIGURE 1.21 Illustration of using superposition and the Fourier series to indirectly obtain
the time-domain output of a linear system.

1.6.2 Spectra and Bandwidth of Digital Waveforms

The methods and techniques for analyzing MTLs discussed in this text apply for source
waveforms in the termination networks as well as incident fields that have any general
time variation. However, because of the preponderance of digital methods and devices
today, we will concentrate our examples on digital waveforms that represent clock and
data signals. A digital clock signal is periodic and has a trapezoidal waveform shown
in Figure 1.22. The pulse width τ is defined between the half-amplitude levels of the
pulse, and τr and τf denote the 0–100 % rise and fall times of the pulse, respectively.
The expansion coefficients in (1.122) were obtained in [A.3 ] and are

c0 = A
τ

P
(1.125a)

FIGURE 1.22 A periodic, trapezoidal pulse train representing a digital signal.
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ĉn = − j
A

2πn

(
sin

(
nπτr
P

)
nπτr
P

e jnπτ/P − sin
(

nπτf
P

)
nπτf
P

e− jnπτ/P

)
e− jnπ

(τ+τr )
P (1.125b)

In digital applications, it is usually desired to have the rise and fall times of the
pulse equal. In this case, the expansion coefficients simplify to [A.3]

ĉn = A
τ

P

sin
(

nπτ
P

)
nπτ
P

sin
(

nπτr
P

)
nπτr
P

e− jnπ
(τ+τr )

P , τr = τf (1.126)

Observe that the dc component, c0 in (1.125a), and the harmonic amplitudes involve
the ratio of the pulse width to pulse period or the pulse duty cycle:

D = τ

P
(1.127)

It is also generally desired to have the duty cycle to be 50 % or D = 0.5. Bounds on
the spectral amplitudes can be developed for the case where the rise and fall times are
equal [A.3 ]. These are shown in Figure 1.23. There are two break frequencies. Up
to f = 1/πτ = f 0/πD, the amplitudes are bounded by a 0 dB/decade slope and after
that fall off at a rate of −20 dB/decade. Above the next break frequency of f = 1/πτr,
the harmonic amplitudes fall off at a rate of −40 dB/decade. Hence the high-frequency
spectral content is primarily determined by the rise/fall times of the pulse.

This result can be derived for unequal rise/fall times if we assume a 50% duty cycle,
that is, D = τ/P = 0.5. The magnitudes of the coefficients for odd n and even n are

|ĉn| = A

2πn

∣∣∣∣∣ sin
(

nπτr
P

)
nπτr
P

+ sin
(

nπτf
P

)
nπτf
P

∣∣∣∣∣ , n odd (1.128a)

FIGURE 1.23 Spectral bounds for a periodic, trapezoidal pulse train.
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and

|ĉn| = A

2πn

∣∣∣∣∣ sin
(

nπτr
P

)
nπτr
P

− sin
(

nπτf
P

)
nπτf
P

∣∣∣∣∣ , n even (1.128b)

Observe that for equal rise/fall times, the even harmonics are zero. However, plotting
this in asymptotic form as in Figure 1.23 cannot be done since it is not in the form
of a product of terms.

The important question of how many harmonics need be included in the sum
in (1.121) in order to reasonably reproduce the pulse waveform with that sum can
now be estimated for equal rise/fall times. Noting in Figure 1.23 that above the
second break point the harmonic amplitudes are rolling off at −40 dB/decade, we
might choose to stop the summation at some frequency above this second break
point. Since this is a somewhat loose criterion, we might choose for convenience a
frequency three times this break frequency. But this is approximately the inverse of
the pulse rise time. Hence, we might choose an estimate of the bandwidth of a digital
pulse as

BW ∼= 1

τr
(1.129)

Interestingly, the second (sin x)/x function involving the rise/fall time in (1.126)
goes to zero at this frequency. In order to illustrate the critical point that addition
of each harmonic in time gives a point on the total time-domain waveform and we
only need to sum harmonics up to the bandwidth of the pulse in order to obtain a
reasonable reproduction of the waveform, we show in Figure 1.24 a 5-V, 100-MHz,
1-ns rise/fall time, 50% duty cycle periodic, trapezoidal pulse train. The bandwidth
is, according to (1.129), BW = 1 GHz. Hence we should sum the first 10 harmonics.
The amplitudes and phases of these first 10 harmonics are

n cn � cn (rad)

1 3.1310 −1.8850
2 0 0
3 −0.9108 −5.6549
4 0 0
5 0.4053 −9.4248
6 0 0
7 −0.1673 −13.1947
8 0 0
9 0.0387 −16.9646

10 0 0



THE TIME DOMAIN VERSUS THE FREQUENCY DOMAIN 55

FIGURE 1.24 Reconstruction of a 5-V, 100-MHz, 1-ns rise/fall time, 50 % duty cycle trape-
zoidal pulse train (a) using the first 10 harmonics and (b) using the first five harmonics.
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Rather than including the minus signs of the third and seventh harmonics in the angle,
we have left them in the magnitude. Technically, this is not correct since a magnitude
can have no sign, but it simplifies the result. Observe that the even harmonics are
zero. This is a characteristic of a 50 % duty cycle waveform. Figure 1.24(a) shows
the result of summing the first 10 harmonics. Although there is a small error at the
corners, the overall representation is quite good. Figure 1.24(b) shows the result of
summing only the first five harmonics. This is another criterion that is often cited for
the bandwidth of a digital signal: BW = 0.5/τr. Observe that the reconstruction with
only five harmonics is not so good: there is considerable ringing on the waveform.

1.6.3 Computing the Time-Domain Response of Transmission Lines Having
Linear Terminations Using Fourier Methods and Superposition

In this section, we will show a very simple but extremely powerful method of so-
lution. It is called the time-domain to frequency-domain or TDFD transformation.
A FORTRAN program, TIMEFREQ.FOR, described in Appendix A implements
this powerful method. It may also be viewed as a “poor man’s inverse fast Fourier
transform (FFT).” The basic idea was described earlier. Decompose the input signal
into its sinusoidal harmonic components. Imbed the terminations into a single-input,
single-output “black-box” system as illustrated in Figures 1.19 and 1.20. Determine
by phasor methods the sinusoidal steady-state response of the transfer function of
this single-input, single-output system at each of the harmonics of the input signal.
Then pass each sinusoidal component through the system computing the sinusoidal
response by phasor methods and sum in time these responses as illustrated in Figure
1.21 to give the time-domain output of the system. Although this gives (within the
approximation of a finite number of Fourier components) the time-domain output
signal without having to directly solve the differential equations relating the out-
put to the input, there are two important restrictions. (1) In order for this method
to be applicable, the system must be linear because we have used the principle of
superposition. For transmission lines, this essentially means that the terminations
must be linear because the transmission lines are, in general, linear. For example,
if one line is terminated in a diode, then the entire system is nonlinear since this
nonlinear termination is imbedded in, and is therefore a part of, the system. (2) This
also assumes that the system has reached steady state; that is, the transient por-
tion of the response has decayed to essentially zero. Hence if we apply a periodic
waveform to the input as with a digital clock signal, we may have to wait several
cycles (periods) or time constants of the system before we will have reached steady
state.

As an example of this method, consider the low-pass filter in Figure 1.25(a) con-
sisting of a 1-k� resistor and a 5-pF capacitor. A trapezoidal digital waveform with
a frequency of 100 MHz (a period of 10 ns), 5 V amplitude, 50% duty cycle, and
1 ns rise/fall times is applied to the input. Figure 1.25(b) shows the exact output
voltage across the capacitor obtained directly in the time domain with PSPICE (see
Appendix B for a brief tutorial on the PSPICE program) using the program
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FIGURE 1.25 An electric circuit example illustrating the use of superposition to combine
the responses to harmonics of the input signal: (a) the circuit, (b) the total response computed
using PSPICE, and (c) the response by combining the responses to harmonics of the input
waveform.
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FIGURE 1.25 (Continued)

EXAMPLE
VS 1 0 PULSE(0 5 0 1N 1N 4N 10N)
R 1 2 1K
C 2 0 5P
.TRAN 0.1N 100N 0 0.1N
.PROBE
.PRINT TRAN V(2)
.END

Observe that there is a transient time interval at the beginning lasting approximately
five time constants: 5RC = 25 ns. Next, we compute the output using the TDFD
method. Since the bandwidth of this signal is on the order of BW ∼= 1/τr = 1 GHz,
we need to pass frequency components up to 1 GHz through the system. Figure 1.25(c)
shows the result of passing the first 10 harmonics, 100 MHz, 200 MHz, 300 MHz,
400 MHz, 500 MHz, 600 MHz, 700 MHz, 800 MHz, 900 MHz and 1 GHz, through
the system and summing their responses in time using the TDFD method and the
FORTRAN program TIMEFREQ.FOR. Observe that this result shows no transient
interval; it presupposes that steady state has been reached. Observe also that once the
response has reached steady state, the two waveforms are virtually identical.
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The method can also be used to compute the response to a single pulse. The basic
idea is to use a periodic waveform that has the same shape over one period as the
desired single pulse but choose the period sufficiently long (inverse of the repetition
frequency that is chosen sufficiently small) so that the response to the single pulse
has essentially reached steady state before the onset of the next pulse in this periodic
waveform. For a single pulse that starts at a level of 0 (zero) at t = 0 and ends at a
level of 0 at some later time, the steady-state response is also 0. Hence we choose
a period that is sufficiently long so that the response has essentially decayed to zero
before the onset of the next pulse. For example, suppose we apply a single pulse again
having a rise/fall time of 1 ns, a pulse width of 5 ns, and a peak level of 5 V to the
low-pass filter in Figure 1.25(a). If we choose the frequency of this periodic waveform
long enough, say 100 ns or a frequency of 10 MHz, as shown in Figure 1.26(a), the
response will probably have reached steady state before the onset of the next pulse
at 100 ns because the time constant of this system is RC = 5 ns. If not, choose a
lower frequency. Note that the duty cycle of this new pulse train in Figure 1.26(a) is
no longer 50%: it is D = 0.05. This insures that there is a sufficient length of time
after the pulse “turns off” to allow the response to settle down to its steady-state value
of 0. Actually, we could choose the duty cycle to be 50% so long as the remaining
time after the pulse has turned off, one-half the period, is much longer than the time
constant of the system. The exact value of the frequency of this new waveform is
not critical; its choice only requires that the system output has reached steady state
before the onset of the next pulse in order to use this method to compute the response
to a single pulse. The exact time-domain PSPICE simulation (for a single pulse) is
obtained with

EXAMPLE
VS 1 0 PWL(0 0 1N 5 5N 5 6N 0)
R 1 2 1K
C 2 0 5P
.TRAN 0.05N 50N 0 0.05N
.PROBE
.PRINT TRAN V(2)
.END

Figure 1.26(b) shows the comparison of the responses of the system to this pulse
computed by PSPICE and that computed with the TDFD method using the FORTRAN
program TIMEFREQ.FOR (for a 10-MHz pulse train having the same shape as the
desired pulse but a duty cycle of D = 0.05 or 5 %). The results are virtually identical.

An important advantage of using this method to obtain the time-domain response
of a transmission line as opposed to solving the differential equations directly is that
losses in the line (in the conductors and the surrounding medium) may be easily
incorporated into the frequency-domain transfer function solution and hence into the
final solution. The conductor losses above a certain frequency have a

√
f dependence

due to skin effect [1]. This is quite difficult to incorporate into a direct time-domain
solution, but it is simple to include in a frequency response calculation. When the
terminations are nonlinear, however, we have no choice but to obtain the solution
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FIGURE 1.26 Illustration of using a periodic waveform with a sufficiently long period to
determine the response to a single pulse: (a) the pulse train, (b) computed responses using
PSPICE and the TDFD transformation method.
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directly in the time domain by solving the differential equations. Frequency-dependent
losses then become a very difficult problem to include.

PROBLEMS

1.1 Two perfectly conducting circular plates are separated by a distance d as shown
in Figure P1.1. The plates have very large radii with respect to d (ideally
infinite) so that, in cylindrical coordinates, we may assume a “TEM-mode”
field structure, �E(ρ, t) = Ez(ρ, t)�az and �H(ρ, t) = Hφ(ρ, t)�aφ. Define voltage
and current as

FIGURE P 1.1

V (ρ, t) = −Ez(ρ, t)d

I(ρ, t) = 2πρHφ(ρ, t)

Show, from Maxwell’s equations in cylindrical coordinates, that V and I satisfy
the transmission-line equations

∂V (ρ, t)

∂ρ
= −l

∂I(ρ, t)

∂t

∂I(ρ, t)

∂ρ
= −c

∂V (ρ, t)

∂t

where l and c are static parameters defined by

l = µd

2πρ

c = 2περ

d
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Would it be appropriate to classify this as a nonuniform line? Could the mode
of propagation to which these equations apply be classified as a “TEM mode”?

FIGURE P 1.2

1.2 The infinite biconical transmission line consists of two perfectly conducting
cones of half angle θh as shown in Figure P1.2. Solve Maxwell’s equations
in spherical coordinates for this structure assuming that �E(r, θ) = Eθ(r, θ)�aθ

and �H(r, θ) = Hφ(r, θ)�aφ. Show that the following definitions of voltage and
current are unique:

V (r, t) =
π−θh∫

θh

Eθrdθ

I(r, t) =
2π∫
0

Hφr sin(θ)dφ

where V and I satisfy the following transmission-line equations:

∂V (r, t)

∂r
= −l

∂I(r, t)

∂t
∂I(r, t)

∂r
= −c

∂V (r, t)

∂t
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Show that

l = µ

π
ln

(
cot

θh

2

)
c = πε

ln

(
cot

θh

2

)
Would this be classified as a uniform or nonuniform line? Would it be appro-
priate to classify the propagation mode as TEM?

1.3 Show that, assuming a TEM field structure, the currents on the two conductors
in Figure 1.5 are equal in magnitude and oppositely directed at any cross
section.

1.4 Show that, assuming a TEM field structure, the charge per unit length on one
conductor in Figure 1.5 is equal in magnitude and opposite in sign to the charge
per unit length on the other conductor at any cross section.

1.5 Consider the coaxial cable in Figure 1.1(c) consisting of an exterior shield and
an inner wire that is located on the axis of the shield. The dielectric interior
to the shield has a relative permittivity of εr = 2.3. Determine the velocity of
propagation and the one-way time delay on the line, TD = L/v, for a line of
total length L = 10 m. [50.55 ns]

FIGURE P 1.7

1.6 Consider the stripline in Figure 1.2(a) consisting of one land between two
infinite ground planes. The dielectric is glass epoxy with εr = 4.7 Determine
the velocity of propagation and the one-way time delay on the line, TD = L/v,
for a line of total length L = 10 in. [1.84 ns]

1.7 The dot product of two vectors is defined as �A · �B = |�A|| �B|cosθAB, where
| �A| denotes the magnitude (length) of vector �A [A.1]. The dot product can
be thought of as the product of the length of one vector and the projection
of the other vector on this vector as illustrated in Figure Pl.7. The dot product
gives a scalar as the result. The dot product can be mechanically computed from
�A · �B = AxBx + AyBy + AzBz [A.1]. For the two vectors �A = 3�ax + 2�ay and
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FIGURE P 1.8

�B = 2�ax − 5�ay, determine the dot product of the two vectors (a) directly and
(b) using the basic definition of the dot product. Repeat for �A = 2�ax − 3�ay and
�B = 5�ax. [−4, 10]

1.8 The cross product of two vectors is defined as �A × �B = |�A|| �B|sinθAB�an, where
| �A| denotes the magnitude (length) of vector �A and �an is a unit vector normal or
perpendicular to the plane containing the vectors �A and �B [A.1 ]. There are two
sides to this plane, so the unit vector �an direction is determined according to
the right-hand rule as illustrated in Fig. P1.8. The cross product gives a vector
as the result. The cross product can be mechanically computed from [A.1 ]

�A × �B = (AyBz − AzBy)�ax + (AzBx − AxBz)�ay + (AxBy − AyBx)�az

For the vectors �A = �az and �B = E�ax, determine the cross product (a) directly
and (b) from the basic definition of the cross product. (Set up a rectangular
coordinate system and use your right hand.) Repeat this for �A = �ax and �B =
E�az and �A = �ay − �az and �B = E�ax. [E�ay, −E�ay, −E�ay − E�az]

1.9 The divergence of a vector field is given by [A.1]

∇ · �E(x, y, z) = ∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z

The divergence of a vector field gives the net outflow of the vector field from
a point and hence locates sources and sinks of the vector field. Determine the
divergence of �E = E0�ax. Repeat for �E = x�ax + y�ay. Interpret these results. [0,
x + y]

1.10 The curl of a vector field in rectangular coordinates is given by [A.1 ]

∇ × �E =
(

∂Ez

∂y
− ∂Ey

∂z

)
�ax +

(
∂Ex

∂z
− ∂Ez

∂x

)
�ay +

(
∂Ey

∂x
− ∂Ex

∂y

)
�az
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The curl gives the net circulation of the field much like vortices or eddies in a
river. Determine the curl of �E = E0�ay. Repeat for �E = −y�ax + x�ay. Interpret
these results. [0, 2�az]

1.11 Demonstrate that the various components in (1.3) are in the indicated directions.
(Draw a rectangular coordinate system and use your right hand.)

1.12 Demonstrate the identity in (1.5), where the gradient is defined as [A.1]

∇ f (x, y, z) = ∂ f

∂x
�ax + ∂ f

∂y
�ay + ∂ f

∂z
�az

1.13 Demonstrate the identity in (1.11).

1.14 Demonstrate the result in (1.13).

1.15 Show that the general solutions in (1.16) satisfy the equations in (1.15).

1.16 Power flow in an electromagnetic field is given by the Poynting vector [A.1]
as

�S = �E × �H

Show that the forward- and backward-traveling waves in (1.20) give the proper
direction of power flow. (Draw a rectangular coordinate system and use your
right hand.)

1.17 Show that (1.25) satisfy the phasor differential equations in (1.24).

1.18 Show that (1.34) satisfy the phasor differential equations in (1.32).

1.19 Show that the voltage definition in (1.40) reduces as shown.

1.20 Derive the transmission-line equations from each of the circuits in Figure P1.20
in the limit as �z → 0. Observe that the total inductance (capacitance) in each
structure is l�z(c�z). This shows that the structure of the per-unit-length equiv-
alent circuit is not important in obtaining the transmission-line equations from
it so long as the total per-unit-length inductance and capacitance is contained
in the structure and we let �z → 0.

1.21 Demonstrate the identities in (1.65) and (1.69).

1.22 Derive the second-order transmission-line equations in (1.72).

1.23 A coaxial cable shown in Figure P1.23 has an interior dielectric that is de-
fined in annuli as ε1, µ0 for rw < r < a and ε2, µ0 for a < r < rs. Is this a
uniform transmission line? Is the medium homogeneous or inhomogeneous?
How would you compute the per-unit-length capacitance for this transmission
line? (Recall that capacitors in series add like resistors in parallel and capacitors
in parallel add like resistors in series.)
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FIGURE P 1.20

1.24 A stripline shown in Figure P1.24 has a dielectric that is defined in planes of
thickness a and b as ε1, µ0 and ε2, µ0. Is this a uniform transmission line? Is
the medium homogeneous or inhomogeneous? How would you compute the
per-unit-length capacitance for this transmission line? (Recall that capacitors in
series add like resistors in parallel, and capacitors in parallel add like resistors
in series.)

1.25 Demonstrate the relations in (1.81) and (1.85).

1.26 Demonstrate the relations in (1.87).
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FIGURE P 1.23

FIGURE P 1.24

FIGURE P 1.28

1.27 Demonstrate the per-unit-length parameters of the parallel-plate line in (1.102).

1.28 Determine the Fourier coefficients in (1.122) for the square-wave waveform in
Figure P1.28. [ĉn = (5/3)(sin(nπ/3))/(nπ/3)� − nπ/3].

1.29 Determine the Fourier coefficients in (1.122) for the full-wave rectified wave-
form in Figure P1.29. [ĉn = (2A/π(1 − 4n2))]
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FIGURE P 1.29

FIGURE P 1.30

1.30 Determine the Fourier coefficients in (1.122) for the triangular waveform in
Figure P1.30. [c0 = (A/2), ĉn = −(2A/(nπ)2) n odd]

1.31 Use MATLAB or PSPICE to recombine the first 10 harmonics of the waveform
in Figure P1.28 to give an approximation to the time-domain waveform.

FIGURE P 1.34
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1.32 Use MATLAB or PSPICE to recombine the first 10 harmonics of the waveform
in Figure P1.29 to give an approximation to the time-domain waveform.

1.33 Use MATLAB or PSPICE to recombine the first 10 harmonics of the waveform
in Figure P1.30 to give an approximation to the time-domain waveform.

1.34 The square-wave current source in Figure P1.34 is applied to the associated
circuit as shown. Determine the resulting output current through the inductor,
i(t), in the form

i(t) = I0 +
7∑

n=1

In cos(nω0t + θn)

Use PSPICE and TIMEFREQ.FOR to determine the output current of this
linear system and compare the approximation using a finite number of
Fourier components (seven for TIMEFREQ.FOR) to the exact result (using
PSPICE). [I0 = 2.5, I1 = 0.5, θ1 = −80.96◦, I2 = 0, I3 = 0.0562, θ3 =
−86.96◦,I4 = 0, I5 = 0.0203, θ5 = −88.17◦, I6 = 0, I7 = 0.0103, θ7 =
−88.7◦]
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2
THE TRANSMISSION-LINE EQUATIONS
FOR TWO-CONDUCTOR LINES

In this chapter, we will show the derivation of the transmission-line equations for two-
conductor lines from two points of view. First, they will be derived from the integral
form of Maxwell’s equations, and second they will be derived from the per-unit-
length distributed parameter equivalent circuit. Both methods allow the incorporation
of conductor losses. In Chapter 3, we will repeat this for a general (n + 1)-conductor
multiconductor transmission line (MTL). The process will be identical to that for
a two-conductor line, but the details will be a bit more tedious. Nevertheless, the
transmission-line equations for an MTL, written using matrix notation, will be iden-
tical in form to those for a two-conductor line.

2.1 DERIVATION OF THE TRANSMISSION-LINE EQUATIONS
FROM THE INTEGRAL FORM OF MAXWELL’S EQUATIONS

Recall Faraday’s law in integral form [A.1,A.6]:

∮
c

�E · d�l = −µ
d

dt

∫
s

�H · d�s (2.1)

This is illustrated in Figure 2.1. The differential path length around the closed contour
c that bounds the open surface s is denoted by d�l. A differential surface area of surface

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.
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FIGURE 2.1 Illustration of the relation of the contour and surface in Faraday’s law.

s is denoted by d�s = ds �an, where �an is a unit normal to the surface. The direction of
the contour c and the normal to the open surface it surrounds are related in Faraday’s
law by the right-hand rule [A.1,A.6]. In other words, if we place the fingers of our
right hand in the direction of c, the thumb will point in the direction of �an, which
gives the direction “out of this open surface.”

Figure 2.2(a) shows a general two-conductor line. We have shown an open surface
s between the two conductors that is uniform in cross section along the longitudinal
or z direction, which is the axis of the line. (The surface is considered to be flat for
simplicity as illustrated in Figure 2.2(b), although any open surface will yield the
same result so long as its cross section in the z or longitudinal direction is uniform,
that is, independent of z.) The surface is bounded by the closed contour c. Writing
Faraday’s law around this contour yields

a′∫
a

�Et · d�l +
b′∫
a′

�El · d�l +
b∫
b′

�Et · d�l +
a∫
b

�El · d�l = µ
d

dt

∫
s

�Ht · �an ds (2.2)

where �Et denotes the transverse electric field (in the x–y cross-sectional plane) and
�El denotes the longitudinal or z-directed electric field (along the surfaces of the
conductors). Observe that in Figure 2.2 the unit normal to this surface, �an, is opposite
the direction for Faraday’s law since the contour c is defined in the clockwise direction,
and hence the minus sign on the right-hand side of (2.1) is absent here. Here, we are
including losses of the conductors as an approximation in that this longitudinal electric
field produced along the conductor surfaces by the imperfect conductors is assumed
not to significantly perturb the field structure from a transverse electromagnetic (TEM)
one. As discussed in Chapter 1, the assumption of a TEM field structure allows us
to uniquely define a voltage between the top conductor and the bottom conductor
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FIGURE 2.2 Definition of the contour c and associated surface s for derivation of the first
transmission-line equation: (a) longitudinal view (along the z line axis) and (b) in the transverse
x–y plane looking in the direction of increasing z.

(positive at the top conductor) as

V (z, t) = −
a′∫
a

�Et(x, y, z, t) · d�l (2.3a)

V (z + �z, t) = −
b′∫
b

�Et(x, y, z + �z, t) · d�l (2.3b)

To allow for imperfect conductors, we define the per-unit-length conductor resistance
of each conductor as r1 �/m and r0 �/m. Thus,

−
b′∫
a′

�El · d�l = −r1 �z I(z, t) (2.4a)

−
a∫
b

�El · d�l = −r0 �z I (z, t) (2.4b)
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FIGURE 2.3 Illustration of the definitions of the contour c and surface s for determining
the first transmission-line equation from Faraday’s law, and the definitions of the contour c′

and surface s′ for determining the second transmission-line equation from the equation of
conservation of charge.

where, along the conductors, �El = Ez �az and d�l = dz �az. As discussed in Chapter
1, the current is uniquely defined for a TEM field structure as

I(z, t) =
∮
c′

�Ht · d�l′ (2.5)

and contour c′ is a contour just off the surface of and encircling the top conductor in
the transverse plane as shown in Figure 2.3. Hence, (2.2) becomes

−V (z, t) + r1 �z I(z, t) + V (z + �z, t) + r0�z I (z, t) = µ
d

dt

∫
s

�Ht · �an ds

(2.6)
Dividing both sides by �z and rearranging gives

V (z + �z, t) − V (z, t)

�z
= −r1I (z, t) − r0I (z, t) + µ

1

�z

d

dt

∫
s

�Ht · �an ds (2.7)
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As shown in Chapter 1, the magnetic flux penetrating the surface per unit of line
length is, as shown in Figure 2.3,

ψ = −µ lim
�z → 0

1

�z

∫
s

�Ht · �an ds

= l I (z, t) (2.8)

where l is the per-unit-length inductance. Observe that a minus sign is required here
because of the relative directions of �Ht and the normal to the surface, �an, as shown in
Figure 2.3. Taking the limit of (2.7) as �z → 0 and substituting (2.8) yields the first
transmission-line equation:

∂ V (z, t)

∂ z
= −r I (z, t) − l

∂ I (z, t)

∂ t
(2.9)

The total per-unit-length resistance of a �z section of the line is the sum of the per-
unit-length resistances of each conductor, r1 and r0, and we denote this total resistance
as r = r1 + r0.

In order to derive the second transmission-line equation, consider placing a
closed surface s′ around the top conductor and just off that conductor as shown in
Figure 2.4. This is the same surface used to define current in (2.5). The portion
of the surface over the end caps is denoted as s′e, whereas the portion over the
sides is denoted as s′s. Recall the continuity equation or equation of conservation of
charge [A.1]:

�
s′

�I · d �s′ = − d

dt
Qenc (2.10)

Over the end caps, we have

∫ ∫
s′e

�I · d�s′ = I(z + �z, t) − I(z, t) (2.11)

Over the sides of the surface, there are two currents penetrating it: a conduction
current �Ic = σ �Et and a displacement current �Id = ε(∂�Et/∂t), where the surrounding
homogeneous medium is characterized by conductivity σ and permittivity ε. These
notions can be extended to an inhomogeneous medium surrounding the conductors in
a similar but approximate manner. This is an approximation since an inhomogeneous
medium, uniform along the line or not, invalidates the TEM field structure assumption,
which requires that all waves propagate with the same velocity. A portion of the left-
hand side of (2.10) contains the transverse conduction current flowing between the
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FIGURE 2.4 Definition of the contour c′ and surface s′ for derivation of the second MTL
equation: (a) longitudinal view (along the z line axis) and (b) in the transverse x–y plane looking
in the direction of increasing z.

conductors: ∫ ∫
s′s

�Ic · d �s′ = σ

∫ ∫
s′s

�Et · d �s′ (2.12)

This can again be considered by defining a per-unit-length conductance, g S/m, be-
tween the two conductors as the ratio of conduction current flowing between the two
conductors in the transverse plane to the voltage between the two conductors (see
Figure 2.4(b)). Therefore,

gV (z, t) = σ lim
�z → 0

1

�z

∫ ∫
s′s

�Et · d �s′ (2.13)
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Similarly, the charge enclosed by the surface (residing on the conductor surface) is,
by Gauss’ law,

Qenc = ε

∫ ∫
s′s

�Et · d �s′ (2.14)

The charge per unit of line length can be defined in terms of the per-unit-length
capacitance c between the conductors as

c V (z, t) = ε lim
�z→ 0

1

�z

∫ ∫
s′s

�Et · d �s′ (2.15)

Substituting (2.11), (2.12), and (2.14) into (2.10) and dividing both sides by �z gives

I(z + �z, t) − I(z, t)

�z
+σ

1

�z

∫ ∫
s′s

�Et · d �s′ = −ε
1

�z

d

dt

∫ ∫
s′s

�Et · d �s′ (2.16)

Taking the limit as �z → 0 and substituting (2.13) and (2.15) yields the second
transmission-line equation:

∂I(z, t)

∂z
= −g V (z, t) − c

∂V (z, t)

∂t
(2.17)

2.2 DERIVATION OF THE TRANSMISSION-LINE EQUATIONS
FROM THE PER-UNIT-LENGTH EQUIVALENT CIRCUIT

The per-unit-length equivalent circuit for a section of line of length �z is shown in
Figure 2.5. Writing Kirchhoff’s voltage law (KVL) around the loop gives

V (z + �z, t) − V (z, t) = −r�z I (z, t) − l�z
∂I (z, t)

∂t
(2.18)

Dividing both sides by �z and taking the limit as �z → 0 yields the first transmission-
line equation:

∂V (z, t)

∂z
= −r I (z, t) − l

∂I (z, t)

∂t
(2.19)

Writing Kirchhoff’s current law (KCL) at the upper node gives

I (z + �z, t) − I (z, t) = −g�zV (z + �z, t) − c�z
∂V (z + �z, t)

∂t
(2.20)
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FIGURE 2.5 The per-unit-length equivalent circuit for derivation of the transmission-line
equations.

Dividing both sides by �z and taking the limit as �z → 0 yields the second
transmission-line equation:

∂I(z, t)

∂z
= −gV (z, t) − c

∂V (z, t)

∂t
(2.21)

2.3 PROPERTIES OF THE PER-UNIT-LENGTH PARAMETERS

The per-unit-length parameters of inductance, l, capacitance, c, and conductance, g,
were obtained in Chapter 1 under the assumptions of (1) perfect line conductors and
(2) a homogeneous surrounding medium. The per-unit-length inductance is the ratio
of the magnetic flux per unit of line length penetrating the loop between the two wires,
ψ, and the current on the wires as

l = ψ

I
(2.22a)

The per-unit-length capacitance is the ratio of the per-unit-length charge distribution
on the conductors, q, and the voltage between the two conductors as

c = q

V
(2.22b)

The per-unit-length conductance is the ratio of the current through the surrounding
dielectric and flowing from one conductor to the other in the transverse plane, Jt, and
the voltage between the two conductors as

g = Jt

V
(2.22c)



INCORPORATING FREQUENCY-DEPENDENT LOSSES 79

These parameters are related, for a homogeneous medium, as shown in Chapter 1,
as

lc = µε (2.23a)

gl = σ µ (2.23b)

g

c
= σ

ε
(2.23c)

It was assumed that the parameters of the surrounding homogeneous medium, per-
meability µ, permittivity ε, and conductivity σ, are constants. Numerical methods
for obtaining the per-unit-length parameters of l, c, and g for an inhomogeneous
surrounding medium will be obtained in Chapter 5.

2.4 INCORPORATING FREQUENCY-DEPENDENT LOSSES

As will be discussed in more detail in Chapter 4, these per-unit-length parameters
will, in general, be frequency dependent and will depend to varying degrees on the
frequency of excitation of the line, ω = 2πf , which are denoted as l (ω), c (ω), g (ω),
and r(ω). For perfect conductors, the line currents will reside on the surfaces of
those conductors and therefore r = 0. For imperfect conductors, the currents will
be uniformly distributed over the conductor cross sections at low frequencies, but
at higher frequencies will, because of skin effect, migrate toward the surfaces of
the conductors lying in a thickness on the order of a skin depth, δ = 1/

√
πfµσc,

where µ = µ0 is the permeability of the conductor material and σc is its conductivity.
This results in the per-unit-length resistances being a function of frequency, r(ω).
As the frequency of excitation of the line increases, the resistance will increase at a
rate of

√
f . Similarly, some of the magnetic flux will lie internal to the conductors

giving a per-unit-length internal inductance that is also frequency dependent, li (ω).
As the frequency of excitation increases and the currents migrate to the conductor
surfaces, this internal inductance due to magnetic flux internal to the conductors will
decrease at a rate of

√
f eventually going to zero as the frequency increases without

bound. Hence, the total per-unit-length inductance will be the sum of this frequency-
dependent internal inductance and the external inductance due to the magnetic flux
external to the conductors, le, as l = le + li (ω). The per-unit-length inductance l
discussed in Chapter 1 and given in (2.22a) is essentially this external inductance le,
which is obtained as f → ∞, that is, for perfect line conductors. We will henceforth
denote le simply as l.

Similarly, the medium surrounding the conductors has an effective conductivity
that is primarily due to bound charge in the dielectric and is frequency dependent,
σeff (ω). Hence, the per-unit-length conductance will be frequency dependent, g (ω).
The relative permittivity of many dielectrics, εr (f ), is not constant but is (mildly)
a function of frequency decreasing with increasing frequency. Hence, the per-unit-
length capacitance will be a (mild) function of frequency, c (ω).



80 THE TRANSMISSION-LINE EQUATIONS FOR TWO-CONDUCTOR LINES

It is much easier to include these frequency-dependent per-unit-length parameters
when the transmission-line equations are written in phasor form in the frequency
domain. Transforming the time-domain transmission-line equations with the Fourier
transform yields the frequency-domain transmission-line equations. These may be
obtained by simply replacing ∂

∂t
→ jω to give

dV̂ (z, ω)

dz
= − [

r (ω) + jω li (ω)
]
Î (z, ω) − jω l Î (z, ω)

= −ẑ (ω) Î (z, ω) (2.24a)

dÎ (z, ω)

dz
= −g (ω) V̂ (z, ω) − jω c (ω) V̂ (z, ω)

= −ŷ (ω) V̂ (z, ω) (2.24b)

where the per-unit-length impedance and admittance, respectively, are

ẑ (ω) = [
r (ω) + jω li (ω)

]︸ ︷︷ ︸
ẑi

+ jω l (2.25a)

ŷ (ω) = g (ω) + jω c (ω) (2.25b)

and ẑi (ω) = [
r (ω) + jω li (ω)

]
is the per-unit-length internal impedance of the con-

ductors. The fact that the per-unit-length parameters are generally functions of fre-
quency presents no problems in the solution of these frequency-domain versions of the
transmission-line equations. These equations are solvable at each frequency by evalu-
ating the per-unit-length parameters at that frequency and including them as constants
at that frequency. In the time domain, Eqs. (2.24) become convolutions [A.2,A.5]:

∂V (z, t)

∂z
= −z (t) ∗ I (z, t)

= −
t∫
0

z (τ) I (z, t − τ) dτ (2.26a)

∂I (z, t)

∂z
= −y (t) ∗ V (z, t)

= −
t∫
0

y (τ) V (z, t − τ) dτ (2.26b)

where * denotes convolution, and z (t) and y (t) are the time-domain inverse Fourier
transforms of ẑ (ω) and ŷ(ω):

ẑ (ω) ⇔ z (t) (2.27a)

ŷ (ω) ⇔ y (t) (2.27b)
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Hence, frequency-dependent per-unit-length parameters can be easily included in the
frequency-domain transmission-line equations, but their inclusion in the time-domain
transmission-line equations presents significant computational problems because of
the requirement to (1) obtain the time-domain per-unit-length parameters from the
frequency-domain parameters and (2) perform the required convolution.

2.4.1 Properties of the Frequency-Domain Per-Unit-Length Impedance ẑ(ω)
and Admittance ŷ(ω)

The frequency-domain per-unit-length impedance parameter ẑ (ω) and admittance
parameter ŷ (ω) cannot be specified arbitrarily. To show this, we first investigate
the general properties of the Fourier transform (integral). The Fourier transform
relates the frequency-domain function to the corresponding time-domain function
as [1, 2]

F̂ (ω) =
∞∫

−∞
f (t) e− jω t dt (2.28)

Substituting Euler’s identity

e jθ = cos (θ) + j sin (θ) (2.29)

into (2.28) yields

F̂ (ω) =
∞∫

−∞
f (t) cos (ωt) dt − j

∞∫
−∞

f (t) sin (ωt) dt (2.30)

Hence, the Fourier transform can be written as the sum of a real part FR (ω) and an
imaginary part FI (ω) as

F̂ (ω) = FR (ω) + jFI (ω) (2.31)

where FR (ω) and FI (ω) are real functions of ω = 2πf and f is the cyclic frequency,
and the real and imaginary parts are given by

FR (ω) =
∞∫

−∞
f (t) cos (ω t) dt (2.32a)

and

FI (ω) = −
∞∫

−∞
f (t) sin (ω t) dt (2.32b)
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If f (t) is a real-valued function of t, then the Fourier transform must satisfy

F̂ (−ω) = F̂∗ (ω) (2.33)

where the * superscript denotes the complex conjugate. To prove this, substitute
ω ⇒ − ω into (2.30) and use the trigonometric properties cos (−ω t) = cos (ωt) and
sin (−ωt) = −sin (ωt). Hence, for f (t) that are real-time functions, the real and imag-
inary parts of the Fourier transform are related as

FR (ω) = FR (−ω) (2.34a)

and

FI (ω) = −FI (−ω) (2.34b)

so that for real f (t) the real part of the Fourier transform must be an even function of
ω and the imaginary part must be an odd function of ω. The inverse Fourier transform
is [1, 2]

f (t) = 1

2π

∞∫
−∞

F̂ (ω) e jω t dω (2.35)

If F̂ (−ω) = F̂∗ (ω), then

f (t) = 1

2π

∞∫
0

F̂ (ω) e jω tdω + 1

2π

∞∫
0

F̂ (−ω) e− jω tdω

= 1

π

∞∫
0

[FR (ω) cos (ω t) − FI (ω) sin (ω t)] dω

= 1

π
Re

∞∫
0

F̂ (ω) e jω t dω (2.36)

and we have used the complex algebra property that Ĉ + Ĉ∗ = 2Re[Ĉ]. Therefore,
the necessary and sufficient condition for f (t) to be a real function of t is that the
Fourier transform satisfy (2.33) and therefore (2.34). Hence, the Fourier transforms
of the per-unit-length impedance and admittance parameters must satisfy

ẑ (−ω) = ẑ∗ (ω) (2.37a)

ŷ (−ω) = ŷ∗ (ω) (2.37b)
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or, equivalently,

zR (ω) = zR (−ω) (2.38a)

zI (ω) = −zI (−ω) (2.38b)

and

yR (ω) = yR (−ω) (2.39a)

yI (ω) = −yI (−ω) (2.39b)

Hence, the real parts of ẑ (ω) and ŷ (ω) must be even functions of ω and the imaginary
parts must be odd functions of ω.

These general properties of the Fourier transform can also be used to show that the
real and imaginary parts of the Fourier transform of the per-unit-length parameters
in (2.25) cannot be specified independently but are related [1–3]. First, consider the
general single-input, single-output linear system characterized by its time-domain
impulse response, h(t). The input is denoted by x (t), and the output is denoted by
y (t). The output may be obtained in the time domain with the convolution integral as

y (t) = h (t) ∗ x (t)

=
t∫
0

h (t − τ) x (τ) dτ

=
t∫
0

h (τ) x (t − τ) dτ (2.40)

These forms of the convolution integral are valid for x (t) = 0 for t < 0 and h (t) = 0
for t < 0. The impulse response h (t) is the response for a unit impulse input x (t) =
δ (t) as y (t) = h (t). We assume that the system is causal, that is,

h (t) = 0, t < 0 (2.41)

which means that we cannot have an output response before the input is applied.
Causality is obviously a general requirement for all physical systems and also applies
to z(t) and y(t) in (2.26) and (2.27). It can be shown that for a causal h(t), the real
and imaginary parts of its transform are Hilbert transform pairs and must be related
as [1–3]

HR (ω) = 1

π

∞∫
−∞

HI
(
ω′)

(ω − ω′)
dω′ (2.42a)
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and

HI (ω) = − 1

π

∞∫
−∞

HR
(
ω′)

(ω − ω′)
dω′ (2.42b)

where the Fourier transform of h(t) is

Ĥ (ω) = HR (ω) + j HI (ω) (2.43)

and HR (ω) and HI (ω) are real valued. Hence, we conclude that, in order to satisfy
causality, the real and imaginary parts of the per-unit-length impedance and admit-
tance parameters in (2.25) must be related as in (2.42). Similar relations exist between
the magnitude and phase of Ĥ (ω) = H (ω) � θ (ω):

ln |H (ω)| = 1

π

∞∫
−∞

θ
(
ω′)

ω − ω′ dω′ (2.44a)

θ (ω) = − 1

π

∞∫
−∞

ln
∣∣H (

ω′)∣∣
ω − ω′ dω′ (2.44b)

These relations can also be written, for real-valued f (t), as

HR (ω) = 1

π

∞∫
0

HI
(
ω′)

ω − ω′ dω′ + 1

π

0∫
−∞

HI
(
ω′)

ω − ω′ dω′

= 1

π

∞∫
0

HI
(
ω′)

ω − ω′ dω′ + 1

π

∞∫
0

HI
(−ω′)

ω + ω′ dω′

= 2

π

∞∫
0

ω′ HI
(
ω′)

ω2 − ω′2 dω′ (2.45a)

and

HI (ω) = − 1

π

∞∫
0

HR
(
ω′)

ω − ω′ dω′ − 1

π

0∫
−∞

HR
(
ω′)

ω − ω′ dω′

= − 1

π

∞∫
0

HR
(
ω′)

ω − ω′ dω′ − 1

π

∞∫
0

HR
(−ω′)

ω + ω′ dω′

= − 2ω

π

∞∫
0

HR
(
ω′)

ω2 − ω′2 dω′ (2.45b)
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where we have made the assumption that h(t) is a real-valued function of t and have
therefore substituted the relations in (2.34):

HR (ω) = HR (−ω) (2.46a)

and

HI (ω) = −HI (−ω) (2.46b)

The results in (2.42) and (2.45) assume that h (t) contains no impulses at t = 0 and
hence assumes that H (ω) → 0 as ω → ∞. If the real part approaches a finite, nonzero
constant as ω → ∞, HR (∞), then (2.45) can be written

HR (ω) = HR (∞) + 2

π

∞∫
0

ω′ HI
(
ω′)

ω2 − ω′2 dω′ (2.47a)

and

HI (ω) = − 2ω

π

∞∫
0

[
HR

(
ω′)− HR (∞)

]
ω2 − ω′2 dω′ (2.47b)

These important relations in (2.47) between the real and imaginary parts of the
Fourier transform of a real and causal time function h (t) are also known as the
Kronig–Kramers relations [3]. These will be useful in relating the real and imaginary
parts of the complex permittivity of a lossy dielectric in Chapter 4.

PROBLEMS

2.1 Demonstrate the result in (2.6).

2.2 Demonstrate the result in (2.16).

2.3 Derive the transmission-line equations from each of the circuits in Figure P2.3
in the limit as �z → 0. Observe that the total inductance (capacitance) in each
structure is l�z(c�z). This shows that the structure of the per-unit-length equiv-
alent circuit is not important in obtaining the transmission-line equations from
it so long as the total per-unit-length inductance and capacitance are contained
in the structure and we let �z → 0.

2.4 Evaluate the convolution integral

t=4 s∫
0

f (τ) I (z, t − τ) dτ

for the functions in Figure P2.4. [(5/3) × 10−3 V]
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FIGURE P 2.3

FIGURE P 2.4
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2.5 Evaluate the convolution integral

t=1 ns∫
0

f (τ) I (z, t − τ) dτ

for the functions in Figure P2.5. [3.8 µV]

FIGURE P 2.5

2.6 Demonstrate the result in (2.33).

2.7 Demonstrate the result in (2.36).

2.8 Demonstrate the result in (2.44).

2.9 Show that if a transform F̂ (ω) contains ω only as the product with j = √−1,
that is, j ω, then the transform represents a real-valued time function f (t).

2.10 Show that if a transform F̂ (ω) contains ω only as
√

ω (1 + j), then the transform
represents a real-valued time function f (t). [Hint: Use the complex-variable
identity

√
jω = (

√
ω/

√
2)(1 + j).]

2.11 Show that F̂ (ω) = M
√

jω represents a causal time function f (t). [Hint: Use the

complex-variable identity
√

jω =
(√

ω/
√

2
)

(1 + j), the results of Problem

2.10, and Eq. (2.45b).]

2.12 Suppose that the real part of Ĥ(ω) is a unit impulse (in frequency) centered at the
origin, ω = 0, defined by HR (ω) = δ(ω). Determine and sketch the imaginary
part of Ĥ(ω) in order that the time-domain function h(t) is causal. [HI (ω) =
−1/(πω)]

2.13 Suppose that the real part of Ĥ(ω) is defined by HR (ω) = 1 for −W < ω < W,
and is zero elsewhere, i.e., HR (ω) = 0 for ω < −W for ω > W. Determine and
sketch the imaginary part of Ĥ(ω) in order that the time-domain function h(t)
is causal. [HI(ω) = (1/π) ln |(ω−W)/(ω + W)|]
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3
THE TRANSMISSION-LINE EQUATIONS
FOR MULTICONDUCTOR LINES

In Chapter 1, we discussed the general properties of all transmission-line equation
characterizations. The transverse electromagnetic (TEM) field structure and associ-
ated mode of propagation is the fundamental, underlying assumption in the repre-
sentation of a transmission-line structure with the transmission-line equations. These
were developed in the previous chapter for two-conductor lines. In this chapter, we
will extend those notions to multiconductor transmission lines (MTLs) consisting of
n + 1 conductors.

The development and derivation of the MTL equations parallel the developments
for two-conductor lines considered in the previous chapter. In fact, the developed MTL
equations have, using matrix notation, a form identical to those equations. There are
some new concepts concerning the important per-unit-length parameters that contain
the cross-sectional dimensions of the particular line.

3.1 DERIVATION OF THE MULTICONDUCTOR TRANSMISSION-LINE
EQUATIONS FROM THE INTEGRAL FORM OF MAXWELL’S
EQUATIONS

Figure 3.1 shows the general (n + 1)-conductor line to be considered. It consists of n
conductors and a reference conductor (denoted as the zeroth conductor) to which the n
line voltages will be referenced. This choice of the reference conductor is not unique.
Applying Faraday’s law to the contour ci that encloses surface si shown between the

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.
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FIGURE 3.1 Illustration of the contour ci and associated surface si for the derivation of the
first transmission-line equation for the ith circuit.

reference conductor and the ith conductor gives

a′∫
a

�Et · d�l +
b′∫
a′

�El · d�l +
b∫
b′

�Et · d�l +
a∫
b

�El · d�l = µ
d

dt

∫
si

�Ht · �ands (3.1)

where, again, �Et denotes the transverse electric field (in the x–y cross-sectional plane)
and �El denotes the longitudinal or z-directed electric field (along the surfaces of the
conductors). Observe, once again, that because of the choice of the direction of the
contour, the direction of �an (out of the page), and the right-hand rule, the minus sign
on the right-hand side of Faraday’s law is absent in (3.1). Once again, because of the
assumption of a TEM field structure, we may uniquely define a voltage between the
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ith conductor and the reference conductor (positive on the ith conductor) as

Vi(z, t) = −
a′∫
a

�Et(x, y, z, t) · d�l (3.2a)

Vi(z + �z, t) = −
b′∫
b

�Et(x, y, z + �z, t) · d�l (3.2b)

We again define the per-unit-length conductor resistances as ri �/m, and the per-unit-
length resistance of the reference conductor is denoted as r0 �/m. Thus,

−
b′∫
a′

�El · d�l = −ri�zIi(z, t) (3.3a)

−
a∫
b

�El · d�l = −r0�z

n∑
k=1

Ik(z, t) (3.3b)

The current of the ith conductor is

Ii(z, t) =
∮
c′
i

�Ht · d �l′ (3.4)

where the contour c′
i surrounds the ith conductor just off its surface. For the TEM

field structure assumption it can be shown, as was the case for two-conductor lines,
that the sum of the currents on all n + 1 conductors in the z direction at any cross
section is zero. This is the basis for saying that the currents of the n conductors return
through the reference conductor. Substituting into (1) yields

−Vi(z, t) + ri�zIi(z, t) + Vi(z + �z, t) + r0�z

n∑
k=1

Ik(z, t) = µ
d

dt

∫
si

�Ht · �ands

(3.5)

Dividing both sides by �z and rearranging gives

Vi(z + �z, t) − Vi(z, t)

�z
= −r0I1 − r0I2 − · · · − (r0 + ri)Ii − · · · − r0In

+ µ
1

�z

d

dt

∫
si

�Ht · �ands (3.6)

Before taking the limit as �z → 0, let us make some observations similar to the
case of two-conductor lines. Clearly, the total magnetic flux penetrating the surface
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FIGURE 3.2 Cross-sectional illustration of the contour ci and associated surface si for the
derivation of the first transmission-line equation for the ith circuit.

si in Figure 3.1 will be a linear combination of the fluxes due to the currents on all
the conductors. Consider a cross-sectional view of the line looking in the direction
of increasing z shown in Figure 3.2. The currents of the n conductors are implicitly
defined in the positive z direction according to (3.4) since the contour c′

i surrounding
the ith conductor is defined in the clockwise direction. Therefore, the magnetic fluxes
due to the currents of the n conductors will also be in the clockwise direction looking
in the direction of increasing z. The per-unit-length magnetic flux ψi penetrating the
surface si between the reference conductor and the ith conductor is therefore defined
to be in this clockwise direction when looking in the direction of increasing z as shown
in Figure 3.2. Therefore, this per-unit-length magnetic flux penetrating surface si can
be written as

ψi = −µ lim
�z → 0

1

�z

∫
si

�Ht · �ands

= li1I1 + li2I2 + · · · + liiIi + · · · + linIn (3.7)

Observe that a minus sign is again required in this flux expression. This is because
the direction of the required flux, ψi, and the defined unit normal to the surface, �an,
are in opposite directions. The lii term is the per-unit-length self-inductance of the ith
circuit or loop, and the lij terms are the per-unit-length mutual inductances between
this ith circuit and the jth circuit. Taking the limit of (3.6) as �z → 0 and substituting
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(3.7) yields

∂ Vi(z, t)

∂z
= −r0I1(z, t) − r0I2(z, t) − · · · − (r0 + ri)Ii(z, t) − · · ·

−r0In(z, t) − li1
∂I1(z, t)

∂t
−li2

∂I2(z, t)

∂t
− · · · − lii

∂Ii(z, t)

∂t
− · · ·

−lin
∂In(z, t)

∂t
(3.8)

This first MTL equation can be written in a compact form using matrix notation
as

∂

∂z
V(z, t) = −RI(z, t) − L

∂

∂t
I(z, t) (3.9)

where the n × 1 voltage and current vectors are defined as

V(z, t) =




V1(z, t)
...

Vi(z, t)
...

Vn(z, t)


 (3.10a)

I(z, t) =




I1(z, t)
...

Ii(z, t)
...

In(z, t)


 (3.10b)

The per-unit-length inductance matrix is defined from (3.7) as

� = LI (3.11a)

where � is an n × 1 vector containing the total magnetic fluxes per unit length, ψi,
penetrating the ith circuit, which is the surface defined between the ith conductor and
the reference conductor:

� =




ψ1
...

ψi

...
ψn


 (3.11b)
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The flux through the circuit (loop), ψi, is directed in the clockwise direction when
looking in the +z direction (see Figure 3.2). The per-unit-length inductance matrix
L contains the individual per-unit-length self-inductances, lii, of the circuits and the
per-unit-length mutual inductances between the circuits, lij . In Section 3.5, L will be
shown to be a symmetric matrix as

L =




l11 l12 · · · l1n

l12 l22 · · · l2n
...

...
. . .

...
l1n l2n · · · lnn


 (3.11c)

Similarly, from (3.8) we define the per-unit-length resistance matrix as

R =




(r1 + r0) r0 · · · r0
r0 (r2 + r0) · · · r0
...

...
. . .

...
r0 r0 · · · (rn + r0)




=




r1 0 · · · 0
0 r2 · · · 0
...

...
. . .

...
0 0 · · · rn


+




r0 r0 · · · r0
r0 r0 · · · r0
...

...
. . .

...
r0 r0 · · · r0


 (3.12)

Observe that this first transmission-line equation given in (3.9) is identical in form to
the scalar first transmission-line equation for a two-conductor line given in (2.9) and
(2.19) of Chapter 2.

This per-unit-length resistance matrix in (3.12) has a nice form but is restricted
to reference conductors that are finite-sized conductors such as wires. In the case
of a reference conductor being a large ground plane, each current returning in the
ground plane will be concentrated beneath the “going down” conductor as illustrated
in Figure 3.3. These currents spread out in the ground plane and cause the per-unit-

FIGURE 3.3 Illustration of “current spreading” in a ground plane and the principle that the
return currents will concentrate beneath the associated “going-down” conductor.
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length resistance matrix to be of the form

R =




(r1 + r11) r12 · · · r1n

r12 (r2 + r22) · · · r2n
...

...
. . .

...
r1n r2n · · · (rn + rnn)




=




r1 0 · · · 0
0 r2 · · · 0
...

...
. . .

...
0 0 · · · rn


+




r11 r12 · · · r1n

r12 r22 · · · r2n
...

...
. . .

...
r1n r2n · · · rnn


 (3.13)

where rij are due to the resistance of the ground plane and are generally not equal.
In order to derive the second MTL equation, we place a closed surface s′ around

the ith conductor as shown in Figure 3.4. The portion of the surface over the end
caps is denoted as s′e, whereas the portion over the sides is denoted as s′s. Recall the

FIGURE 3.4 Illustration of the contour c′
i and associated surface s′

i for the derivation of the
second transmission-line equation for the ith conductor.
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continuity equation or equation of conservation of charge:

�
s′

�I · d �s′ = − d

dt
Qenc (3.14)

Over the end caps, we have∫ ∫
s′e

�I · d�s′ = Ii(z + �z, t) − Ii(z, t) (3.15)

Over the sides of the surface, there are again two currents: a conduction current �Ic =
σ �Et, and displacement current �Id = ε

∂�Et

∂t
, where the surrounding homogeneous

medium is characterized by conductivity σ and permittivity ε. Again, these notions
can be extended to an inhomogeneous medium surrounding the conductors in a similar
manner. A portion of the left-hand side of (3.14) contains the transverse conduction
current flowing between the conductors:∫ ∫

s′s

�Ic · d �s′ = σ

∫ ∫
s′s

�Et · d �s′ (3.16)

This can again be considered by defining per-unit-length conductances gij S/m
between each pair of conductors as the ratio of conduction current flowing between
the two conductors in the transverse plane to the voltage between the two conductors.
Therefore, as illustrated in Figure 3.5(a),

σ lim
�z → 0

1

�z

∫ ∫
s′s

�Et · d �s′ = gi1 (Vi − V1) + · · · + giiVi + · · · + gin (Vi − Vn)

= −gi1V1(z, t) − gi2V2(z, t) − · · · +
n∑

k=1

gikVi(z, t)

− · · · − ginVn(z, t) (3.17)

Similarly, the charge enclosed by the surface (residing on the conductor surface) is,
by Gauss’ law,

Qenc = ε

∫ ∫
s′s

�Et · d �s′ (3.18)

The charge per unit of line length can be defined in terms of the per-unit-length
capacitances cij between each pair of conductors. Therefore, as illustrated in
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FIGURE 3.5 Cross-sectional illustration of (a) the contour c′
i and associated surface s′

i for the
derivation of the second transmission-line equation for the ith conductor and (b) the equivalent
per-unit-length conductances and capacitances.
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Figure 3.5(a),

ε lim
�z → 0

1

�z

∫ ∫
s′s

�Et · d �s′ = ci1(Vi − V1) + · · · + ciiVi + · · · + cin(Vi − Vn)

= −ci1V1(z, t) − ci2V2(z, t) − · · · +
n∑

k=1

cikVi(z, t)

− · · · − cinVn(z, t) (3.19)

These concepts are illustrated in cross section in Figure 3.5(b). Substituting (3.15),
(3.16), and (3.18) into (3.14) and dividing both sides by �z gives

Ii(z + �z, t) − Ii(z, t)

�z
+ σ

1

�z

∫ ∫
s′s

�Et · d �s′ = −ε
1

�z

d

dt

∫ ∫
s′s

�Et · d �s′ (3.20)

Taking the limit as �z → 0 and substituting (3.17) and (3.19) yields

∂Ii(z, t)

∂z
= gi1V1(z, t) + gi2V2(z, t) + · · · −

n∑
k=1

gikVi(z, t) + · · ·

+ginVn(z, t) + ci1
∂

∂t
V1(z, t) + ci2

∂

∂t
V2(z, t) + · · ·

−
n∑

k=1

cik

∂

∂t
Vi(z, t) + · · · + cin

∂

∂t
Vn(z, t) (3.21)

Equations (3.21) can be placed in compact form with matrix notation giving

∂

∂z
I(z, t) = −G V(z, t) − C

∂

∂t
V(z, t) (3.22)

where V and I are defined by (3.10). The per-unit-length conductance matrix G rep-
resents the conduction current flowing between the conductors in the transverse plane
and is defined from (3.17) as

G =




n∑
k=1

g1k −g12 · · · −g1n

−g12

n∑
k=1

g2k · · · −g2n

...
...

. . .
...

−g1n −g2n · · ·
n∑

k=1

gnk




(3.23)



DERIVATION OF THE MULTICONDUCTOR TRANSMISSION-LINE EQUATIONS 99

The per-unit-length capacitance matrix,C, represents the displacement current flow-
ing between the conductors in the transverse plane and is defined from (3.19) as

C =




n∑
k=1

c1k −c12 · · · −c1n

−c12

n∑
k=1

c2k · · · −c2n

...
...

. . .
...

−c1n −c2n · · ·
n∑

k=1

cnk




(3.24)

As will be shown in Section 3.5, both G and C are symmetric. Again observe that
(3.22) is the matrix counterpart to the scalar second transmission-line equation for
two-conductor lines given in (2.17) and (2.21) in Chapter 2. If we denote the total
charge on the ith conductor per unit of line length as qi, then the fundamental definition
of C is

Q = C V (3.25a)

where Q is the n × 1 vector of the total per-unit-length charges

Q =




q1
...
qi

...
qn


 (3.25b)

and V is given by (3.10a). Similarly, the fundamental definition of G is It = GV,
where It is the n × 1 vector containing the transverse conduction currents between
the conductors per unit of line length.

The above per-unit-length parameter matrices once again contain all the
cross-sectional dimension information that distinguishes one MTL structure from
another.

3.2 DERIVATION OF THE MULTICONDUCTOR TRANSMISSION-LINE
EQUATIONS FROM THE PER-UNIT-LENGTH EQUIVALENT CIRCUIT

As an alternative method, we derive the MTL equations from the per-unit-length
equivalent circuit shown in Figure 3.6. Writing Kirchhoff’s voltage law around the
ith circuit consisting of the ith conductor and the reference conductor yields
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FIGURE 3.6 The per-unit-length equivalent circuit for derivation of the transmission-line
equations.

−Vi(z, t) + ri�zIi(z, t) + Vi(z + �z, t) + r0�z

n∑
k=1

Ik(z, t) = −li1�z
∂I1(z, t)

∂t

−li2�z
∂I2(z, t)

∂t
− · · · − lii�z

∂Ii(z, t)

∂t
− · · · − lin�z

∂In(z, t)

∂t
(3.26a)

Dividing both sides by �z and taking the limit as �z → 0 once again yields the first
transmission-line equation given in (3.8) with the collection for all i given in matrix
form in (3.9).

Similarly, the second MTL equation can be obtained by applying Kirchhoff’s
current law to the ith conductor in the per-unit-length equivalent circuit in Figure 3.6
to yield

Ii(z + �z, t) − Ii(z, t) = −gi1�z (Vi − V1) − · · · − gii�zVi − · · ·

−gin�z (Vi − Vn) − ci1�z
∂

∂t
(Vi − V1) − · · · − cii�z

∂

∂t
Vi − · · ·

−cin�z
∂

∂t
(Vi − Vn) (3.26b)
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Dividing both sides by �z, taking the limit as �z → 0, and collecting terms once
again yields the second transmission-line equation given in (3.21) with the collection
for all i given in matrix form in (3.22).

3.3 SUMMARY OF THE MTL EQUATIONS

In summary, the MTL equations are given by the collection

∂

∂z
V(z, t) = −R I(z, t) − L

∂

∂t
I(z, t) (3.27a)

∂

∂z
I(z, t) = −G V(z, t) − C

∂

∂t
V(z, t) (3.27b)

The structures of the per-unit-length resistance matrix R in (3.12) or (3.13), inductance
matrix L in (3.11c), conductance matrix G in (3.23), and capacitance matrix C in (3.24)
are very important as are the definitions of the per-unit-length entries in those matrices.
The precise definitions of these elements are rather intuitive and lead to many ways
of computing them for a particular MTL type. These computational methods will be
considered in detail in Chapters 4 and 5. The important properties of the per-unit-
length parameter matrices will be obtained in Section 3.5. Again, these bear striking
parallels to their scalar counterparts for the two-conductor line.

The MTL equations in (3.27) are a set of 2n, coupled, first-order, partial differential
equations. They may be put in a more compact form as

∂

∂z

[
V(z, t)
I(z, t)

]
= −

[
0 R
G 0

] [
V(z, t)
I(z, t)

]
−
[

0 L
C 0

]
∂

∂t

[
V(z, t)
I(z, t)

]
(3.28)

We will find this first-order form to be especially helpful when we set out to solve
them in later chapters. If the conductors are perfect conductors, then R = 0, whereas
if the surrounding medium is lossless (σ = 0), then G = 0. The line is said to be
lossless if both the conductors and the medium are lossless in which case the MTL
equations simplify to

∂

∂z

[
V(z, t)
I(z, t)

]
= −

[
0 L
C 0

]
∂

∂t

[
V(z, t)
I(z, t)

]
(3.29)

The first-order, coupled forms in (3.27) can be placed in the form of second-order,
uncoupled equations by differentiating (3.27a) with respect to z and differentiating
(3.27b) with respect to t to yield

∂2

∂z2 V(z, t) = −R
∂

∂z
I(z, t) − L

∂2

∂z∂t
I(z, t) (3.30a)
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∂2

∂z∂t
I(z, t) = −G

∂

∂t
V(z, t) − C

∂2

∂t2 V(z, t) (3.30b)

In taking the derivatives with respect to z, we assume that the line is uniform; that
is, the per-unit-length parameter matrices are independent of z. Substituting (3.30b)
and (3.27b) into (3.30a) and reversing the process yields the uncoupled, second-order
equations:

∂2

∂z2 V(z, t) = [RG] V(z, t) + [RC + LG]
∂

∂t
V(z, t) + LC

∂2

∂t2 V(z, t) (3.31a)

∂2

∂z2 I(z, t) = [GR] I(z, t) + [CR + GL]
∂

∂t
I(z, t) + CL

∂2

∂t2 I(z, t) (3.31b)

Observe that the various matrix products in (3.31) do not generally commute so that
the proper order of multiplication must be observed.

3.4 INCORPORATING FREQUENCY-DEPENDENT LOSSES

We have so far neglected the important fact that, like the two-conductor case, the
per-unit-length parameters in R, L, G, and C are generally frequency dependent,
that is, R (ω), L (ω), G (ω), and C (ω). For perfect conductors, the currents reside
on the surfaces of the conductors and R = 0. For imperfect conductors, the currents,
because of skin effect, will migrate toward the conductor surfaces as frequency is
increased, and at high frequencies will be concentrated near the conductor surfaces in
annuli of thickness equal to a skin depth: δ = 1/

√
πfσµ. In addition, closely spaced

conductors will cause the current distribution over the conductors to be nonuniformly
distributed over the cross sections. The currents internal to the conductors will cause
a per-unit-length internal inductance matrix Li (ω) that is also frequency dependent.
This is due to the magnetic flux internal to the conductors. As frequency increases,
this internal flux decreases as a rate of

√
f eventually decreasing to zero. This internal

inductance matrix can be included in the total inductance as the sum with the external
inductance matrix that is due to the magnetic flux external to the conductors, L, which
is substantially frequency independent. Similarly, the per-unit-length conductance
matrix will be frequency dependent. This is because the dielectric will have a loss due
to the incomplete alignment of the bound charges in it as frequency increases giving
an effective conductivity that is frequency dependent, G (ω). Similarly, the relative
permittivity of the surrounding dielectric is (mildly) dependent on frequency giving
a (mildly) frequency-dependent per-unit-length capacitance matrix C (ω).

These frequency-dependent parameters can more readily be incorporated by writ-
ing the above MTL equations in the frequency domain by replacing ∂

∂t
→ jω in (3.27)

to give

d

dz
V̂ (z, ω) = −Ẑ (ω) Î (z, ω) (3.32a)
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d

dz
Î (z, ω) = −Ŷ (ω) V̂ (z, ω) (3.32b)

where Ẑ (ω) and Ŷ (ω) are the per-unit-length impedance and admittance matrices,
respectively, and are given by

Ẑ (ω) = R (ω) + jωLi (ω) + jωL (3.33a)

Ŷ (ω) = G (ω) + jω C (ω) (3.33b)

The second-order uncoupled equations are

d2

dz2 V̂ (z, ω) = Ẑ (ω) Ŷ (ω) V̂ (z, ω) (3.34a)

d2

dz2 Î (z, ω) = Ŷ (ω) Ẑ (ω) Î (z, ω) (3.34b)

Again, the matrices do not generally commute and the proper order of multiplication
must be preserved.

In the time domain, the frequency-domain MTL equations in (3.32) become

∂

∂z
V (z, t) = −Z (t) ∗ I (z, t)

= −
t∫
0

Z (τ) I (z, t − τ) dτ (3.35a)

∂

∂z
I (z, t) = −Y (t) ∗V (z, t)

= −
t∫
0

Y (τ) V (z, t − τ) dτ (3.35b)

where * denotes convolution and the inverse Fourier transforms are denoted as

Z (t) ⇔ Ẑ (ω) (3.36a)

Y (t) ⇔ Ŷ (ω) (3.36b)

3.5 PROPERTIES OF THE PER-UNIT-LENGTH PARAMETER
MATRICES L, C, G

In Chapter 1 we showed that, for a two-conductor line immersed in a homogeneous
medium characterized by permeability µ, conductivity σ, and permittivity ε, the per-
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unit-length inductance l, conductance g, and capacitance c are related by lc = µε

and lg = µσ. For the case of an MTL consisting of n + 1 conductors immersed
in a homogeneous medium characterized by permeability µ, conductivity σ, and
permittivity ε, the per-unit-length parameter matrices are similarly related by

LC = CL = µε 1n (3.37a)

LG = GL = µσ 1n (3.37b)

where the n × n identity matrix is defined as having unity entries on the main diagonal
and zeros elsewhere:

1n =




1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1


 (3.38)

Other important properties such as our logical assumption that these per-unit-length
matrices are symmetric will also be shown.

Recall from Chapter 1 that the transverse electric and magnetic fields of the TEM
field structure in a homogeneous medium characterized by ε, µ, and σ satisfy the
following differential equations (see Eqs. (1.13) of Chapter 1):

∂2 �Et

∂z2 = µσ
∂�Et

∂t
+µε

∂2 �Et

∂t2 (3.39a)

∂2 �Ht

∂z2 = µσ
∂ �Ht

∂t
+µε

∂2 �Ht

∂t2 (3.39b)

Define voltage and current in the usual fashion as integrals in the transverse plane
(see Fig. 2.3) as

Vi(z, t) = −
∫
ci

�Et · d�l (3.40a)

Ii(z, t) =
∮
c′
i

�Ht · d�l′ (3.40b)

Applying (3.40) to (3.39) yields

∂2

∂z2 Vi(z, t) = µσ
∂

∂t
Vi(z, t) + µε

∂2

∂t2 Vi(z, t) (3.41a)

∂2

∂z2 Ii(z, t) = µσ
∂

∂t
Ii(z, t) + µε

∂2

∂t2 Ii(z, t) (3.41b)

Collecting Eqs. (3.41) for all conductors in matrix form yields
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∂2

∂z2 V(z, t) = µσ
∂

∂t
V(z, t) + µε

∂2

∂t2 V(z, t) (3.42a)

∂2

∂z2 I(z, t) = µσ
∂

∂t
I(z, t) + µε

∂2

∂t2 I(z, t) (3.42b)

Comparing (3.42) to (3.31) with R = 0 gives the identities in (3.37). Because of
the identities in (3.37), which are valid only for a homogeneous medium, we need
to determine only one of the per-unit-length parameter matrices since (3.37) can be
written, for example, as

L = µε C−1 (3.43a)

G = σ

ε
C

= µσ L−1 (3.43b)

C = µε L−1 (3.43c)

The previous relations in (3.37) and (3.43) are valid only for a homogeneous sur-
rounding medium. In the remainder of this chapter, we will address the general case
where the dielectric medium surrounding the n + 1 conductors may be inhomoge-
neous. Throughout this text, we will assume that any medium surrounding the line
conductors (homogeneous or inhomogeneous) is not ferromagnetic and therefore has
a permeability of free space, µ = µ0. Designate the capacitance matrix with the sur-
rounding medium (homogeneous or inhomogeneous) removed and replaced by free
space having permeability ε0 and permeability µ0 as C0. Since inductance depends
on the permeability of the surrounding medium and does not depend on the permit-
tivity of the medium, and the permeability of dielectrics is that of free space, µ0, the
inductance matrix L can be obtained from C0 using the relations for a homogeneous
medium (in this case, free space) given in (3.43a) as

L = µ0ε0C−1
0 (3.44)

Therefore, for an inhomogeneous medium, we may determine these per-unit-length
parameter matrices by (1) computing the capacitance matrix with the inhomogeneous
medium present, C, (2) computing the per-unit-length capacitance matrix with the
inhomogeneous medium removed and replaced with free space, C0, and then (3)
computing L from (3.44). It turns out that we will also develop in Chapters 4 and 5 a
method for computing G for an inhomogeneous medium from a modified capacitance
calculation. Hence, we will only have to construct a capacitance solver in order to
determine the per-unit-length parameter matrices of L, C, and G for the general case
of an inhomogeneous medium. In Chapter 5, we will examine numerical methods
for computing the entries in these per-unit-length matrices for an inhomogeneous
medium surrounding the conductors.
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The identities in (3.37) and (3.43) are valid only for a homogeneous surrounding
medium as is the assumption of a TEM field structure and the resulting MTL equations.
We will often extend the MTL equation representation, in an approximate manner,
to include inhomogeneous media as well as imperfect conductors under the quasi-
TEM assumption. In the case of a surrounding medium that is either homogeneous
or inhomogeneous, the per-unit-length parameter matrices L, C, and G have several
important properties. The primary ones are that they are symmetric and positive-
definite matrices. As an illustration, we will prove that C is symmetric. The proof that C
is a symmetric matrix (regardless of whether the surrounding medium is homogeneous
or inhomogeneous) can be accomplished from energy considerations [A.1,1]. The
basic relation for C is given in (3.25). Suppose we invert this relation to give

V = PQ (3.45a)

where P = C−1 or, in expanded form,

V1 = p11q1 + · · · + p1nqn

...
Vn = pn1q1 + · · · + pnnqn

(3.45b)

If we can prove that pij = pj i, then it follows that cij = cj i. Suppose all conductors
except the ith and jth are connected to the reference conductor (grounded) and all
conductors are initially uncharged. Suppose we start charging the ith conductor to a
final per-unit-length charge of qi. Charging the ith conductor to an incremental charge
q results in a voltage of the conductor, from (3.45b), of Vi = piiq. The incremental
energy required to do this is dW = Vidq. The total energy required to place the

charge qi on the ith conductor is W =
qi∫
0

piiq dq = ( piiq
2
i /2). Now if we charge

the jth conductor to an incremental charge of q in the presence of the charged ith
conductor, the voltage of the jth conductor is Vj = pjiqi + pjjq and the incremental
energy required is dW = ( pjiqi + pjjq)dq. The total energy required to charge the

jth conductor to a charge of qj becomes W =
qj∫
0

dWdq = pjiqiqj + ( pjjq
2
j/2). Thus,

the total energy required to charge conductor i to qi and conductor j to qj is

Wtotal = pjiqiqj + piiq
2
i

2
+ pjjq

2
j

2

If we reverse this process charging conductor j to qj and then charging conductor i to
qi, we obtain

Wtotal = pijqjqi + pjjq
2
j

2
+ piiq

2
i

2
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Since the total energies must be the same regardless of the sequence in which the
conductors are charged, we see, by comparing these two energy expressions, that

pij = pj i

Therefore, it follows that

cij = cj i

and therefore the capacitance matrix C is symmetric.
Recall that this proof of symmetry relied on energy considerations and therefore

is valid for inhomogeneous media. Because of the relation in (3.44), L = µ0ε0C−1
0 ,

it is clear that the per-unit-length inductance matrix is also symmetric. The proof
that C, L, and G are symmetric matrices (regardless of whether the surrounding
medium is homogeneous or inhomogeneous) can also be obtained from a more general
relation called Green’s reciprocity theorem [2]. This relation relies on the important
assumption that the surrounding medium is isotropic. This means that the parameters
of permittivity, permeability, and conductivity are scalars. An anisoptropic medium is
one in which these parameters are matrices relating the three components of the vectors
E, D, B, H, and Jt, where Jt is the vector of transverse currents flowing through the
surrounding medium [A.1]. We also, of course, assume that the surrounding medium
is linear.

We next set out to prove that L, C, and G are positive definite. The energy stored
in the electric field per unit of line length is [2]

we = 1

2

n∑
k=1

qkVk

= 1

2
QtV (3.46)

where the transpose of a matrix M is denoted by Mt. The vector Q contains the
per-unit-length charges on the conductors and is given in (3.25b). Substituting the
relation for C in (3.25a), Q = CV, into (3.46) gives

we = 1

2
VtCV > 0 (3.47)

where we have used the matrix property that Qt = [CV]t = VtCt along with the
previously proven property that C is symmetric, that is, Ct = C. This total energy
stored in the electric field must be positive and nonzero for all nonzero choices of the
voltages (positive or negative). Thus, we say that C is positive definite if

VtCV > 0 (3.48)

for all possible nonzero values of the entries in V. It turns out that this implies that
all of the eigenvalues of C must be positive and nonzero, a property we will find very
useful in our later developments [3].



108 THE TRANSMISSION-LINE EQUATIONS FOR MULTICONDUCTOR LINES

Similarly, the energy stored in the magnetic field per unit of line length is [2]

wm = 1

2

n∑
k=1

ψkIk

= 1

2
�tI (3.49)

where � is the n × 1 vector of magnetic fluxes through the respective circuits and is
given in (3.11b). Substituting the relation for L given in (3.11a) gives

wm = 1

2
ItLI > 0 (3.50)

where �t = [LI]t = ItL, and we use the property that L is symmetric, Lt = L. Since
the stored magnetic energy must always be greater than zero, we see that L is positive
definite also:

ItLI > 0 (3.51)

Again, this means that the eigenvalues of L are all positive and nonzero.
Matrices C and G have the unique property that the sum of all elements in any row

is greater than zero (see (3.23) and (3.24)). Such a matrix is said to be hyperdominant.
It can be shown that any hyperdominant matrix form is always positive definite (see
Problem 3.11). Hence, G is also positive definite and therefore its eigenvalues are all
positive and nonzero.

PROBLEMS

3.1 Demonstrate the result in (3.8).

3.2 Demonstrate the form of R given in (3.12).

3.3 Demonstrate the result in (3.21).

3.4 Demonstrate the form of G in (3.23).

3.5 Demonstrate the form of C in (3.24).

3.6 Derive the MTL equations for the per-unit-length equivalent circuit of a four-
conductor line shown in Figure P3.6.

3.7 Demonstrate the result in (3.31).

3.8 A four-conductor line immersed in free space has the following per-unit-length
inductance matrix:

L =
[ 8 3 2

3 6 1
2 1 4

]
nH

m
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FIGURE P3.6

Determine the per-unit-length capacitance matrix. If the surrounding medium is
homogeneous with conductivity σ = 10−3 S/m, determine the per-unit-length
conductance matrix.

3.9 Demonstrate the result in (3.42).

3.10 Show that the criterion for positive definiteness of a real, symmetric matrix is
that its eigenvalues are all positive and nonzero. (Hint: Transform the matrix
to another equivalent one with a transformation matrix that diagonalizes it as
T−1MT = �, where � is diagonal with its eigenvalues on the main diagonal. It
is always possible to diagonalize any real, symmetric matrix such that T−1 = Tt,
where Tt is the transpose of T.) Show that the per-unit-length inductance matrix
in Problem 3.8 is positive definite.

3.11 A matrix with the structure of G in (3.23) or C in (3.24) whose off-diagonal
terms are negative and the sum of the elements in a row or column is positive is
said to be hyperdominant. Show that a hyperdominant matrix is always positive
definite.
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4
THE PER-UNIT-LENGTH PARAMETERS
FOR TWO-CONDUCTOR LINES

The per-unit-length parameters of inductance, capacitance, resistance, and conduc-
tance are essential ingredients in the determination of the transmission-line voltages
and currents from the solution of the transmission-line equations. All of the cross-
sectional dimension information about the specific line being investigated is contained
in these parameters and nowhere else. Hence, without a determination of these for
the transmission line under consideration, solution of the transmission-line equations
cannot be completed as the per-unit-length parameters in them are unknown. It is
important to recall that, under the fundamental transverse electromagnetic (TEM)
field structure assumption, the per-unit-length parameters of inductance, capacitance,
and conductance are determined as a static (dc) solution to Laplace’s equation, for
example, ∇2φ(x, y) = 0, in the two-dimensional cross-sectional (x,y) plane of the
line. Therefore, the per-unit-length inductance (external), capacitance, and conduc-
tance are governed by the fields external to the line conductors and are determined
as static field solutions in the transverse plane for perfect conductors that have con-
ductivities of σ = ∞. The per-unit-length resistances and internal inductances are
computed from the currents and magnetic fields internal to the conductors. We will
consider only uniform lines where the conductor cross sections and the cross sections
of any inhomogeneous surrounding media are constant along the line. Hence, these
per-unit-length parameters are independent of the line axis variable z.

The purpose of this chapter is to investigate methods for determining these per-
unit-length parameters of inductance, l, capacitance, c, conductance, g, and resistance,
r, for two-conductor lines. In the following chapter, we will similarly investigate
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the determination of the entries in the n × n per-unit-length parameter matrices L,
C, G, and R. We will divide the determination of these parameters into those for
wire-type lines and those for conductors of rectangular cross section (lands) that are
typical of printed circuit boards (PCBs). In the case of wire-type lines consisting
of two wires (circular, cylindrical cross sections) where the surrounding medium
is homogeneous, we can obtain exact solutions for the per-unit-length parameters
of l, g, and c. The exact solution for the per-unit-length resistance r of wires is also
obtainable. When we add circular dielectric insulations as is typical of wires, we can
no longer obtain exact, closed-form solutions for g and c, and must use numerical
approximation methods [C.1,C.2]. In the case of two-conductor lines where the
conductors have rectangular cross sections such as are typical of PCBs, there exist
approximate formulas for the per-unit-length parameters of l, g, and c. However,
we must use approximate, numerical methods to determine the per-unit-length
resistance r for conductors of rectangular cross section. A similar discussion will
apply to the entries in the per-unit-length parameter matrices of a multiconductor
transmission line (MTL). So the determination of the per-unit-length parameters
can be simple or very difficult depending on (1) whether the cross sections of the
conductors are circular or rectangular and (2) whether the conductors are surrounded
by a homogeneous or an inhomogeneous dielectric medium.

In summary, there are very few transmission lines for which the cross-sectional
fields can be solved, analytically, in order to give simple formulas for the per-unit-
length parameters of inductance, conductance, and capacitance, contrary to what
many handbooks imply. We will show a few important special cases for which
formulas for these parameters exist. For the remaining cases, we have no alternative
but to employ approximate, numerical methods. These can be somewhat tedious but
are not difficult, conceptually.

4.1 DEFINITIONS OF THE PER-UNIT-LENGTH PARAMETERS
l, c, AND g

An intuitive definition of these per-unit-length parameters was given in Chapter 1.
First, it is important to designate the reference conductor for the line voltage as
illustrated in Figure 4.1(a). Once this is done, the currents on the conductors are equal
and oppositely directed at any cross section, and the current on the conductor that is
at the assumed positive voltage goes down that conductor in the positive z direction
and “returns” along the reference conductor in the −z direction. The per-unit-length
inductance l is the ratio of the magnetic flux penetrating the cross-sectional surface
between the two conductors per unit of line length, ψ, and the current along the
conductors that produced it:

l = ψ

I
(4.1)

In determining this inductance, we usually place a current on the conductors, go-
ing down one and returning on the reference conductor, and determine the resulting
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FIGURE 4.1 Cross-sectional illustration of (a) definitions of charge, current, voltage, mag-
netic flux, and transverse current, and (b) the contours and surfaces to be used in their formal
definitions.

magnetic flux. Hence, the direction for the desired magnetic flux through the surface
between the conductors is clockwise when looking in the +z direction. The per-unit-
length capacitance c is the ratio of the charge per unit of line length, q, and the voltage
between the two conductors that induced it:

c = q

V
(4.2)

In determining this capacitance, we usually place a positive per-unit-length charge on
the positive voltage conductor and an equal but opposite charge on the reference con-
ductor and determine the resulting voltage induced between the two conductors. The
per-unit-length conductance g is the ratio of the per-unit-length conduction current
It flowing in the transverse, x – y, plane from the positive conductor to the refer-
ence conductor through a lossy dielectric surrounding the conductors and the voltage
between the two conductors:

g = It

V
(4.3)

There are many clever ways of computing these static (dc) parameters in the x–y plane.
Formal definitions of each of these parameters for a homogeneous medium charac-
terized by µ, ε, and σ were obtained in Chapter 1 with reference to Figure 4.1(b) as
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l = −µ

∫
c

�Ht · �andl

∮
c′

�Ht · d�l′
(4.4)

c = ε

∮
c′

�Et · �a′
ndl′

−
∫
c

�Et · d�l
(4.5)

g = σ

∮
c′

�Et · �a′
ndl′

−
∫
c

�Et · d�l
(4.6)

4.2 LINES HAVING CONDUCTORS OF CIRCULAR, CYLINDRICAL
CROSS SECTION (WIRES)

In this section, we will determine the per-unit-length parameters for lines consisting
of two conductors having circular, cylindrical cross sections. These are referred to as
wires.

4.2.1 Fundamental Subproblems for Wires

In order to determine simple relations for the per-unit-length parameters of wires, we
need to discuss the following important subproblems [A.3,B.4,1,2].

Consider an infinitely long wire carrying a dc current I that is uniformly distributed
over its cross section as shown in Figure 4.2. The transverse magnetic field intensity
�Ht is directed in the circumferential direction by symmetry. Enclosing the wire and

current by a cylinder of radius r and applying Ampere’s law for the TEM field [A.1]:∮
c

�Ht · d�l = I (4.7)

gives

Ht = I

2πr
(4.8)

This result is due to the observation that (1) �Ht is tangent to d�l and therefore the dot
product can be removed from (4.7) and the vectors replaced with their magnitudes,
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FIGURE 4.2 The low-frequency magnetic field intensity vector about a current-carrying
wire.

and (2) �Ht is constant around the contour of radius r and so may be removed from
the integral.

Now consider determining the magnetic flux from this current that penetrates a
surface s that is parallel to the wire and of uniform cross section along the wire
length as shown in Figure 4.3(a). The edges of the surface are at distances R1 and R2
from the wire. Next consider this problem in cross section as shown in Figure 4.3(b).
Consider the closed, wedge-shaped surface consisting of the original surface along
with surfaces s1 and s2. Surface s1 is the flat surface extending radially along R1
to a radius of R2, and surface s2 is a cylindrical surface of constant radius R2 that
joins surfaces s and s1. Gauss’ law provides that there are no isolated sources of the
magnetic field. Thus, the total magnetic flux through a closed surface must be zero
[A.1]:

�
s

�B · d�s = 0 (4.9)

where �B is the magnetic flux density vector and is related for linear, homogeneous,
isotropic media to the magnetic field intensity vector �H as �B = µ �H. From (4.9), the
total magnetic flux through the wedge-shaped surface of Figure 4.3(b) is the sum of
the fluxes through the original surface s and surfaces s1 and s2 since no flux is directed
through the end caps because of the transverse nature of the magnetic field. But the
flux through s2 is also zero because the magnetic field is tangent to it. Thus, the total
magnetic flux penetrating the original surface s is the same as the flux penetrating
surface s1, as shown in Figure 4.3(c). But the problem of Figure 4.3(c) is simpler than
the original problem because the magnetic field is orthogonal to the surface. Thus,
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FIGURE 4.3 Illustration of the fundamental subproblem for determination of the flux through
a surface due to a current-carrying wire by the computation of a simpler problem.

the total magnetic flux through either surface is

�
s1

�Bt · d �s = �z

R2∫
R1

µI

2πr
dr

= �z
µI

2π
ln

(
R2

R1

)
(4.10)

where we have assumed that R2 > R1 to give the indicated direction of ψ. The magnetic
flux per unit of line length is

ψ = µI

2π
ln

(
R2

R1

)
(Wb/m) (4.11)

We will find the results of this subproblem to be of considerable utility in our future
developments.

The above derivation has been made with two important assumptions: (1) the wire
is infinitely long and (2) the current is uniformly distributed over the wire cross section
and is symmetrical about its axis. The first assumption allows us to assume that the
magnetic field is invariant along the direction of the wire axis. The second assumption
means that we may replace the wire with a filamentary current at its axis on which all
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the current I is concentrated and implicitly assumes that there are no closely spaced
currents to disturb this symmetry. The effects of this infinitely long filament of current
on the flux penetrating the above surface will be the same as the original current.

We next consider the dual problem of determining the voltage between two points
due to a filament of charge. Consider a very long wire carrying a charge per unit of
length q C/m, as shown in Figure 4.4(a). We assume that the charge is either uniformly
distributed around the periphery of the wire or concentrated as a filament of charge. In
this case, the electric field intensity �E will be radially directed in a direction transverse
to the wire. Gauss’ law provides that the total electric flux penetrating a closed surface
is equal to the net positive charge enclosed by that surface [A.1]:

FIGURE 4.4 Illustration of the electric field intensity vector about a charge-carrying wire.
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�
s

�D · d�s = Qenc (4.12)

where �D is the electric flux density vector. For linear, homogeneous, and isotropic
media, this is related to the electric field intensity vector by �D = ε�E. Consider enclos-
ing the charge-carrying wire with a cylinder of radius r, as shown in Figure 4.4(b).
The electric field is obtained by applying (4.12) to that closed surface to yield

ε �
s

�Et · d�s = q�z (4.13)

The dot product may be removed and the vectors replaced with their magnitudes
since the electric field is orthogonal to the sides of the surface and no electric field is
directed through the end caps of the surface. Furthermore, the electric field may be
removed from the integral since it is constant in value over the sides of the surface.
This gives a simple expression for the electric field away from the filament:

Et = q

2πε r
(V/m) (4.14)

Next consider the problem of determining the voltage between two points away from
the filament as shown in Figure 4.5(a). The points are at radii R1 and R2 from the
filament. The voltage is defined as (uniquely because of the transverse nature of the
electric field)

Vab = −
∫
c

�Et · d�l (4.15)

A simpler problem is illustrated in Figure 4.5(b). Contour c1 extends along a radial
line from the end of R1 to a distance R2, and contour c2 is of constant radius R2

FIGURE 4.5 Illustration of the calculation of voltage between two points from a charge-
carrying wire (a) directly and (b) from a simpler problem.
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and extends from that end to the beginning of the original contour. Thus, since the
definition of voltage in (4.15) is independent of the path taken between the two points,
we may alternatively compute

Vab = −
∫
c1

�Et · d�l −
∫
c2

�Et · d�l

= −
R1∫
R2

q

2πε r
dr

= q

2πε
ln

(
R2

R1

)
(4.16)

where we assume R2 > R1. This result was made possible by the observation that
over c2 the electric field is orthogonal to the contour so that the second integral is
zero, and over c1 the electric field is tangent to the contour. We will also find this
result to be of considerable utility in our future work.

Once again, this simple result implicitly assumes that (1) the wire is infinitely long
and (2) the charge is uniformly distributed around its periphery. The first assump-
tion ensures that the electric field will not vary along the line length. The second
assumption means that we may replace the wire with a filament of charge and im-
plicitly assumes that there are no closely spaced charge distributions to disturb this
symmetry.

4.2.1.1 The Method of Images The remaining principle that we will employ is
the method of images. Consider a point charge Q situated a height h above an in-
finite, perfectly conducting plane as shown in Figure 4.6(a). We can replace the
infinite plane with an equal but negative charge −Q at a distance h below the pre-
vious location of the surface of the plane, and the resulting fields will be identi-
cal in the space above the plane’s surface [A.1]. The negative charge is said to
be the image of the positive charge. We can similarly image currents. Consider
a current I parallel to and at a height h above an infinite, perfectly conducting
plane shown in Figure 4.6(b). If the plane is replaced with an equal but oppo-
sitely directed current at a distance h below the position of the plane surface, all
the fields above the plane’s surface will be identical in both problems [A.1]. This
can be conveniently remembered using the following mnemonic device. Consider
the current I as producing positive charge at one endpoint and negative at the other
(denoted by circles with enclosed polarity signs). Imaging these “point charges”
as above gives the correct image current direction. A vertically directed current
is similarly imaged as shown in Figure 4.6(c). Current directions that are neither
vertical nor horizontal can be resolved into their horizontal and vertical compo-
nents, and the above results can used to give the correct image current distribution
[A.1].
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FIGURE 4.6 The method of images: (a) charge above a perfectly conducting plane, (b)
current parallel to a perfectly conducting plane, and (c) current perpendicular to a perfectly
conducting plane.

4.2.2 Per-Unit-Length Inductance and Capacitance for Wire-Type Lines

There exist few transmission-line structures for which the per-unit-length parameters
can be determined exactly. The class of two-conductor lines of circular, cylindrical
cross section (wires) in a homogeneous medium characterized by µ0, ε, and σ con-
sidered in this section represents a significant portion of such lines. In the case that
the wires are surrounded by circular dielectric insulations, the surrounding medium
is inhomogeneous in ε (air and the dielectric). The per-unit-length inductance l is not
affected by this inhomogeneous medium since dielectrics have µ = µ0. Hence, l is
the same as for wires surrounded by a homogeneous medium, that being free space.
However, for this case of an inhomogeneous medium, closed-form formulas for the
per-unit-length capacitance c are not obtainable, and approximate, numerical methods
must be used to determine this parameter [C.1,C.2]. We will reserve discussion of



120 THE PER-UNIT-LENGTH PARAMETERS FOR TWO-CONDUCTOR LINES

FIGURE 4.7 Illustration of (a) a two-wire line, and calculation of (b) the per-unit-length
inductance and (c) the per-unit-length capacitance.

these numerical methods and inhomogeneous surrounding media until we consider
multiconductor lines in Chapter 5. For the present, we will assume that the wires are
immersed in a homogeneous medium.

Consider the case of two perfectly conducting wires of radii rw1 and rw2 that are
separated by a distance s in a homogeneous medium as shown in Figure 4.7(a). Let us
assume that the currents (which, for perfect conductors, must reside on the surface)
are uniformly distributed around the wire peripheries as shown in Figure 4.7(b). Using
the above result for the magnetic flux from a filament of current in (4.11), we obtain
the total flux passing between the two wires as

ψ = µI

2π
ln

(
s − rw2

rw1

)
+ µI

2π
ln

(
s − rw1

rw2

)

= µI

2π
ln

(
(s − rw2)(s − rw1)

rw1rw2

)
(4.17)
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where µ = µ0. This result assumes that the current is uniformly distributed around
each wire periphery. This will not be the case if the wires are closely separated since
one current will interact and cause a nonuniform distribution of the other current (this
is referred to as proximity effect). In order to make this result valid, we must require
that the wires be widely separated. The necessary ratio of separation to wire radius to
make this valid will be investigated when we determine the exact solution. Therefore,
because of the necessity to have the wires widely separated, the separation must be
much larger than either of the wire radii so that (4.17) simplifies to

l = ψ

I
∼= µ

2π
ln

(
s2

rw1rw2

)
(H/m) (4.18)

In the practical case of the wire radii being equal, rw1 = rw2 = rw, this reduces to

l ∼= µ

π
ln

(
s

rw

)
(H/m) (4.19)

The per-unit-length capacitance will be similarly determined in an approximate
manner. Consider the two wires carrying charge uniformly distributed around each
wire periphery as shown in Figure 4.7(c). The voltage between the wires can similarly
be obtained by superimposing the voltages due to the two equal but opposite charge
distributions using (4.16) as

V = q

2πε
ln

(
(s − rw2)

rw1

)
+ q

2πε
ln

(
(s − rw1)

rw2

)

= q

2πε
ln

(
(s − rw2)(s − rw1)

rw1rw2

)
∼= q

2πε
ln

(
s2

rw1rw2

)
(4.20)

and we have used the necessary requirement that the wires be widely separated, that is,
s > > rw1, rw2, so that the charge is uniformly distributed around the wire peripheries.
The per-unit-length capacitance is

c = q

V

∼= 2πε

ln

(
s2

rw1rw2

) (F/m) (4.21)

For equal wire radii, this simplifies to

c ∼= πε

ln

(
s

rw

) (F/m) (4.22)
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FIGURE 4.8 Illustration of the exact calculation of the per-unit-length capacitance of two
wires.

We now turn to an exact derivation of the per-unit-length capacitance. The essence
of the method is to place a charge per unit of line length on each wire, q, on filaments
separated by a distance d, as shown in Figure 4.8. Then we determine the equipotential
contours about these filaments and locate the actual wires on these contours that
correspond to the voltage of the wires. This gives the equivalent spacing between
the two wires, s, that carry the same charge per unit of line length. The voltage at a
point P shown in Figure 4.8 due to the filaments of charge, one carrying q and the
other carrying −q, with respect to the origin, x = 0 and y = 0, can be found using the
previous basic subproblem as

VP(x, y) = − q

2πε
ln

(
R+

d/2

)
+ q

2πε
ln

(
R−

d/2

)

= q

2πε
ln

(
R−

R+

)
(4.23)

Thus, points on equipotential contours are such that the ratio

R−

R+ = e

(
2πεVP

q

)

= K (4.24)

is constant, where K is that constant. Substituting the equations for R+ and R−:

R+ =
√

(x + d/2)2 + y2 (4.25a)
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R− =
√

(x − d/2)2 + y2 (4.25b)

gives

(x − d/2)2 + y2

(x + d/2)2 + y2
= K2 (4.26)

Expanding this gives

x2 + xd
(K2 + 1)

(K2 − 1)
+
(

d

2

)2

+ y2 = 0 (4.27)

In order to determine the location of the circular equipotential surfaces that define the
equivalent conductors and their radii, we write this in the equation of a circle located
at x = −s/2 and having a radius of rw:

(
x + s

2

)2 + y2 = r2
w (4.28)

Expanding this gives

x2 + xs +
( s

2

)2 − r2
w + y2 = 0 (4.29)

Comparing (4.29) to (4.27) gives

s

2
= d

2

K2 + 1

K2 − 1
(4.30a)

and

rw = Kd

K2 − 1
(4.30b)

The constant K can be eliminated by taking the difference of the squares of (4.30a)
and (4.30b) to give

d

2
=
√( s

2

)2 − r2
w (4.31)

Dividing (4.30a) by (4.30b) eliminates d, giving a quadratic equation in K:

K2 − s

rw
K + 1 = 0 (4.32)
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Solving for K gives

K = s

2rw
±
√(

s

2rw

)2

− 1 (4.33)

Substituting this into (4.23) and (4.24) gives the voltage as

VP = q

2πε
ln


 s

2rw
±
√(

s

2rw

)2

− 1


 (4.34)

Recall that this is the voltage of the point with respect to the origin of the coordinate
system, which is located midway between the two wires. Thus, the voltage between
the two wires that are separated by a distance s is

V = 2VP = q

πε
ln


 s

2rw
+
√(

s

2rw

)2

− 1


 (4.35)

and the per-unit-length capacitance becomes

c = q

V

= πε

ln


 s

2rw
+
√(

s

2rw

)2

− 1




(F/m) (4.36)

This can be defined in terms of the inverse hyperbolic cosine as

cosh−1(x) = ln
[
x +

√
x2 − 1

]
(4.37)

to give

c = πε

cosh−1
(

s

2rw

) (F/m) (4.38)

If the wire radii are not equal, the corresponding exact result for the per-unit-length
capacitance is derived in [3] and becomes

c = 2πε

cosh−1

(
s2 − r2

w1 − r2
w2

2rw1rw2

) (F/m) (4.39)
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FIGURE 4.9 A comparison of the exact and approximate formulas for the per-unit-length
capacitance of two wires.

The exact result in (4.36) or (4.38) simplifies for widely spaced wires. For example,
suppose s � rw. The exact result in (4.36) reduces to the approximate result derived
earlier and given in (4.22). The error for a ratio s/rw = 5 is only 2.7%. A ratio of
separation to wire radius of 4 would mean that another wire of the same radius would
just fit between the two original wires. For this very small separation, the error between
the approximate expression (4.22) and the exact expression (4.36) is only 5.3%. So
the wide-separation approximation given in (4.22) is quite adequate for practical wire
separations. Figure 4.9 shows the comparison between the approximate relation in
(4.22) and the exact relation in (4.38).

In Chapter 1, it was shown that for lines in a homogeneous medium characterized
by µ, ε, and σ, the per-unit-length parameters are related as
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lc = µε (4.40a)

lg = µσ (4.40b)

and

g

c
= σ

ε
(4.40c)

The per-unit-length inductance can be obtained from this result, assuming that the
surrounding medium is homogeneous in ε and µ as

l = µε c−1

= µ

π
cosh−1

(
s

2rw

)
(H/m) (4.41)

Similarly, if the medium is lossy and homogeneous in σ we can obtain

g = σ

ε
c

= πσ

cosh−1
(

s

2rw

) (S/m) (4.42)

Next, consider the case of one wire at a height h above and parallel to an infinite,
perfectly conducting plane (sometimes referred to as a ground plane) as shown in
Figure 4.10(a). By the method of images, we may replace the plane with its image lo-
cated at an equal distance h below the position of the plane as shown in Figure 4.10(b).
The desired capacitance is between each wire and the position of the plane. But, as
capacitances in series add like resistors in parallel, we see that this problem can be
related to the problem of the previous section as

ctwo-wire = cone wire above ground

2
(4.43)

Therefore, the capacitance of one wire above an infinite, perfectly conducting plane
becomes, substituting h = s/2 in (4.38),

c = 2πε

cosh−1
(

h

rw

) (F/m) (4.44)

or, approximately, for h � rw:
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FIGURE 4.10 Illustration of the calculation of the per-unit-length capacitance of one wire
above a conducting plane from the corresponding capacitance of two wires via the method of
images.

c ∼= 2πε

ln

(
2h

rw

) (F/m) (4.45)

The inductance can be obtained for this homogeneous medium from this result as

l = µε c−1

= µ

2π
cosh−1

(
h

rw

)
(H/m)

∼= µ

2π
ln

(
2h

rw

)
(4.46)

Similarly, if the medium is lossy and homogeneous in σ, we can obtain
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g = σ

ε
c

= 2πσ

cosh−1
(

h

rw

) (S/m)

∼= 2πσ

ln

(
2h

rw

) (4.47)

Finally, consider the coaxial cable shown in Figure 4.11 consisting of a wire of
radius rw within and centered on the axis of a shield of inner radius rs. The medium
between the wire and the shield is assumed to be homogeneous. The case of an
inhomogeneous medium can be solved so long as the inhomogeneity exists in annuli
symmetric about the shield axis. If we place a total charge q per unit of line length
on the inner conductor, a negative charge of equal magnitude will be induced on the
interior of the shield. Observe that, by symmetry, the charge distributions will be
uniformly distributed around the conductor peripheries regardless of the conductor
separations. We earlier obtained the result for the electric field due to the charge q per

FIGURE 4.11 Illustration of the direct calculation of the per-unit-length parameters for a
coaxial cable: (a) the general structure, (b) the per-unit-length capacitance, (c) the per-unit-
length inductance, and (d) the per-unit-length conductance.
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unit of line length on the inner wire as

�Et = q

2πε r
�ar, rw ≤ r ≤ rs (4.48)

Observe that the field will be directed in the radial (transverse) direction. The voltage
between the two conductors can be obtained as

V = −
rw∫
rs

q

2π ε r
dr

= q

2πε
ln

(
rs

rw

)
(4.49)

The capacitance per unit of line length is therefore

c = q

V

= 2πε

ln

(
rs

rw

) (F/m) (4.50)

Observe that, because of symmetry, the charge distributions will be uniform around
the conductor peripheries regardless of conductor separation so that this result is exact.
The per-unit-length inductance can be derived directly or by using

l = µε c−1

= µ

2π
ln

(
rs

rw

)
(H/m) (4.51)

Similarly, the per-unit-length conductance is

g = σ

ε
c

= 2πσ

ln

(
rs

rw

) (S/m) (4.52)

The per-unit-length inductance can be derived directly. Consider placing a flat surface
of length �z between the inner and outer conductors as shown in Figure 4.11(c).
The desired magnetic flux passes through this surface. Clearly, the flux will be in
the circumferential direction since, due to symmetry, the current will be uniformly
distributed around the periphery of the inner wire and the inside surface of the shield.
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Thus, we may use the fundamental result derived earlier to give

l = ψ

I

= µ

2π
ln

(
rs

rw

)
(4.53)

The per-unit-length conductance can similarly be obtained directly from Fig-
ure 4.11(d) by finding the ratio of the transverse current to the voltage using (4.48)
and (4.49):

g =

2π∫
φ=0

σEt rdφ

V

= 2πσ

ln

(
rs

rw

) (4.54)

4.2.3 Per-Unit-Length Conductance and Resistance for Wire-Type Lines

In the preceding section, we have represented the losses in a homogeneous medium
by conductivity σ. The conductivity σ represents losses in the medium that are due to
free charge in the dielectric. There is another loss mechanism that usually dominates
the resistive losses in a dielectric. This is due to the polarization of the dielectric
that is due to bound charge in the dielectric. Figure 4.12 illustrates this. Within the
dielectric are dipoles of charge consisting of equal but opposite-sign charges that are
tightly bound together. Some materials such as water consist of permanent dipoles
that are randomly oriented so that the material has no net polarization. Dipoles are
created in other materials when an external electric field slightly deforms the atoms

FIGURE 4.12 Illustration of the effects of bound (polarization) charge: (a) microscopic
dipoles, (b) alignment of the dipoles with an applied electric field, and (c) creation of a bound
surface charge.
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creating microscopic separations of the positive and negative charge centers. When
an electric field is applied, these dipoles attempt to align with that field as shown in
Figure 4.12(b). This creates a bound surface charge appearing on the opposite faces
of a block of the dielectric, as illustrated in Figure 4.12(c). This process accounts for
the increase in capacitance of a parallel-plate capacitor when a dielectric other than
air is inserted between the plates [A.1].

As the frequency of the applied electric field increases, the alignment of these
dipoles with the changing direction of the field increasingly lags behind, thereby
creating a loss in the dielectric. This is represented by a frequency-dependent ef-
fective conductivity of the dielectric. Polarization loss is represented by a complex
permittivity of the dielectric as [A.1]

ε̂ = ε − jεp (4.55)

Both ε and εp are frequency dependent [6]. The real and imaginary parts of this
complex permittivity are not independent but are related by the Kronig–Kramers
relations given in (2.47) of Chapter 2 [4]. Ampere’s law for sinusoidal excitation is
modified as

∇ × �̂H = σ �̂E + jωε̂ �̂E
= (σ + ωεp)︸ ︷︷ ︸

σeff

�̂E + jωε �̂E (4.56)

and σ represents the conduction current losses due to free charge in the dielectric
(which is usually very small and generally negligible in comparison with the effects
of bound charge). Hence, the effective conductivity, representing conductive and
polarization losses, is

σeff = (σ + ωεp) (4.57)

An alternative way of representing both these losses is with the loss tangent. The loss
tangent is the ratio of the real part of (4.56) to the imaginary part [A.1]:

tan δ = (σ + ωεp)

ωε

∼= εp

ε
(4.58)

The polarization losses will dominate the resistive losses in typical dielectrics of
practical interest. Handbooks tabulate this loss tangent for various dielectric materials
at various frequencies [5]. Therefore, the effective conductivity of a dielectric is related
to the loss tangent as

σeff = ωε tan δ (4.59)
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Hence, in a homogeneous medium, the per-unit-length conductance is related to the
per-unit-length capacitance as

g = σeff

ε
c = ω tan δ c (4.60)

The loss tangent, tanδ, is not frequency independent, and hence the per-unit-length
conductance does not increase linearly with frequency as (4.60) seems to imply. For
typical dielectric materials used to construct transmission lines, the variation of the
loss tangent with frequency is relatively constant over certain frequency ranges [6].
For other dielectrics, the frequency variation of the loss tangent is more pronounced.
For FR4 (glass epoxy), which is a common dielectric substrate used to construct
PCBs, the loss tangent achieves a maximum value on the order of 0.02 in the range of
1–100 MHz and decreases on either side of this frequency range. For some materials,
ε is mildly frequency dependent. For example, polyvinyl chloride, which is a typical
insulation for wires, has a permittivity ε = εrε0, which is frequency dependent with
εr decreasing from 4.3 at 10 kHz to 3 at 100 MHz [6]. Molecular resonances in the
microwave frequency range can lead to resonances in the loss tangent over certain
frequency bands [6]. For sinusoidal excitation, the total per-unit-length admittance
between the two conductors is the sum of the per-unit-length conductance and the
per-unit-length capacitive reactance as

ŷ = g + jωc

= jωc(1 − j tan δ) (4.61)

For FR4 in PCBs, tanδ ∼= 0.02 in the frequency range of 1–100 MHz, and the con-
ductance is a factor of 50 smaller than the capacitive reactance.

For the case of lines in an inhomogeneous surrounding medium such as the case
of wires that are surrounded by circular dielectric insulations (the inhomogeneity
is caused by the surrounding dielectric and air), the relation in (4.60) for the per-
unit-length conductance, of course, does not apply since each region has its own loss
tangent and these loss tangents are not the same. However, it is possible to incorporate
losses in the inhomogeneous medium in the following manner [A.1,B.4,7]. Write
Ampere’s law as

∇ × �̂H = σ �̂E + jωε̂ �̂E
= (σ + ωεp) �̂E + jωε �̂E
= jωε(1 − j tan δ)︸ ︷︷ ︸

ε̂

�̂E (4.62)

Hence, we can incorporate losses in the medium by determining only the capacitance
and using a complex permittivity in that calculation as

ε̂ = ε(1 − j tan δ) (4.63)
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As we will see later in this chapter, for lines surrounded by an inhomogeneous medium
such as wires with circular dielectric insulations, we must use approximate, numer-
ical methods to solve for the per-unit-length capacitance [C.1,C.2]. Losses can be
readily incorporated into that capacitance solver by using complex permittivities as
in (4.63) for each region instead of real permittivities to give a complex capacitance as
[B.4,7]

ĉ = cR + j cI (4.64)

where cR and cI are the real and imaginary parts, respectively, of the complex capac-
itance. Hence, the complex admittance is

ŷ = jωĉ

= jω(cR + jcI)

= −ωcI + jω cR

= g + jωc (4.65)

and we identify the effective per-unit-length conductance as

g = −ω cI (4.66a)

and the per-unit-length capacitance is obtained as

c = cR (4.66b)

As an example, consider the case of a coaxial cable having two different dielectric
regions as shown in Figure 4.13(a). Two dielectrics occupy annuli between the two
conductors. The inner wire is of radius rw and the overall shield is of interior radius
rs. The inhomogeneous medium is characterized by

ε1, tanδ1, rw < r < rm (4.67a)

ε2, tanδ2, rm < r < rs (4.67b)

First, let us ignore loss. The surface between the two dielectrics located at r = rm is
an equipotential surface and hence the net per-unit-length capacitance is that of the
capacitances of each region in series as shown in Figure 4.13(b). Since capacitors in
series combine like resistances in parallel, the net capacitance is

c = c1c2

c1 + c2
(4.68a)
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FIGURE 4.13 Calculation of the per-unit-length capacitance and conductance for a coaxial
cable having an inhomogeneous medium in the form of concentric annuli: (a) the general
structure, (b) representing the two regions in terms of per-unit-length capacitances in series,
and (c) representing loss in the medium in terms of per-unit-length conductances.
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where, from our previous results,

c1 = 2π ε1

ln

(
rm

rw

) (4.68b)

and

c2 = 2π ε2

ln

(
rs

rm

) (4.68c)

Hence, the overall capacitance is

c = 2π ε1ε2

ε1 ln

(
rs

rm

)
+ ε2 ln

(
rm

rw

) (4.69)

We will examine a numerical example having the dimensions of a RG58U coax-
ial cable. Suppose that the desired frequency is f = 100 MHz, and the dimensions
are rw = 16 mils, rm = 35 mils, rs = 58 mils, ε1 = 2ε0, ε2 = 6ε0, tanδ1 = 0.01,
and tanδ2 = 0.04. The per-unit-length capacitance neglecting loss in the medium
is

c = 2π ε1ε2

ε1 ln

(
rs

rm

)
+ ε2 ln

(
rm

rw

)
= 1.168 × 10−10 (F/m) (4.70)

To include losses, we use a complex permittivity for each region as shown in (4.63),
and (4.70) becomes

ĉ = 2π ε̂1ε̂2

ε̂1 ln

(
rs

rm

)
+ ε̂2 ln

(
rm

rw

)
= 1.168 × 10−10 − j1.788 × 10−12 (4.71)

where ε̂1 = ε1(1 − jtanδ1) and ε̂2 = ε2(1 − jtanδ2). Hence, from this we obtain,
according to (4.66),

g = −ωcI

= 1.123 × 10−3 (S/m) (4.72a)
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and

c = cR

= 1.168 × 10−10 (F/m) (4.72b)

We may check these results by observing that the equivalent circuit becomes as shown
in Figure 4.13(c), where c 1 and c 2 are as given in (4.68b) and (4.68c) and

g1 = 2π σ1

ln

(
rm

rw

) (4.73a)

and

g2 = 2π σ2

ln

(
rs

rm

) (4.73b)

and, according to (4.59),

σ1 = ω ε1 tan δ1 (4.74a)

and

σ2 = ω ε2 tan δ2 (4.74b)

From Figure 4.13(c), the complex per-unit-length admittance is

ŷ = (g1 + jω c1)(g2 + jω c2)

(g1 + jω c1) + (g2 + jω c2)

= g + jω c

= 1.123 × 10−3 + j7.341 × 10−2 (4.75)

This confirms our previous calculation that g = 1.123 × 10−3 and ω c = 7.341
× 10−2, giving c = 1.168 × 10−10. The equivalence of jω ĉ in (4.71) and (4.75)
can also be proven analytically.

We now turn to the determination of the per-unit-length resistance of wires. The
current density and the electric and magnetic fields in good conductors are governed
by the diffusion equation. Ampere’s law relates the curl of the magnetic field to the
sum of conduction current and displacement current. For sinusoidal excitation, this
becomes

∇ × �̂H = σ �̂E︸︷︷︸
conduction current

+ jωε �̂E︸ ︷︷ ︸
displacement current

(4.76)
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A good conductor is one in which the conduction current, greatly exceeds the dis-
placement current, which is satisfied for most metallic conductors and frequencies of
reasonable interest. Thus, Ampere’s law within the conductor becomes approximately

∇ × �̂H ∼= �̂J = σ �̂E (4.77a)

Similarly, Faraday’s law is

∇ × �̂E = − jωµ �̂H (4.77b)

Taking the curl of Faraday’s law gives [A.1]

∇ × ∇ × �̂E = ∇
(
∇ · �̂E

)
− ∇2 �̂E

= − jωµ ∇ × �̂H (4.78)

Substituting Gauss’ law

∇ · ε0
�̂E = 0 (4.79)

gives

∇2 �̂E = jωµσ �̂E (4.80)

Since the current density is related to the electric field in the conductor as �̂J = σ �̂E,
we arrive at the diffusion equation

∇2 �̂J = jωµσ �̂J (4.81)

Consider a semi-infinite, conducting half space with parameters σ, ε, and µ, whose
surface lies in the x–y plane as shown in Figure 4.14 [4]. Assume that the electric
field and associated conduction current density are directed in the z direction. The
diffusion equation in terms of this z-directed electric field becomes

d2Êz

dx2 = jωµσ Êz (4.82)

Similar equations govern the magnetic field Ĥy and the current density Ĵ z. The solu-
tions are

Êz = Êoe
−x/δe− jx/δ (4.83a)

Ĥy = Ĥoe
−x/δe− jx/δ (4.83b)
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FIGURE 4.14 Diffusion of currents and fields into a semi-infinite conductive half space.

Ĵ z = Ĵoe
−x/δe− jx/δ (4.83c)

where the familiar skin depth is

δ = 1√
πfµσ

(4.84)

and Êo, Ĥo, and Ĵo are the appropriate quantities at the surface (x = 0). This result
shows that the fields and current density decay rapidly in the conductor and are
essentially confined to layers at the surface of thickness equal to a few skin depths.

The surface impedance can be defined as the ratio of the z-directed electric field
at the surface and total current density:

Ẑs = Êo

ĴT
(4.85)

The total current in the conductor can be obtained by integrating the current density
given in (4.83c) throughout the conductor:

ĴT =
∞∫
0

Ĵ zdx

= Ĵoδ

(1 + j)
(4.86)

Substituting into (4.85) gives (Ĵo = σÊo)

Ẑs = Rs + jωLi (4.87)
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where

Rs = 1

σδ
=
√

πfµ

σ
(�/square) (4.88a)

ωLi = Rs (4.88b)

This surface impedance is the impedance of an area of the surface of unit width and
unit length so that we use the term ohms/square. The term Rs is referred to as the
surface resistance, and the term Li is referred to as the internal inductance. Observe
that the surface resistance increases as

√
f , whereas the internal inductance decreases

as
√

f so that the internal inductive reactance increases as
√

f . Observe also that the
surface resistance in (4.88a) could have been more easily calculated by assuming the
current density to be constant in a thickness equal to one skin depth of the surface
and zero elsewhere. Equivalently, the surface impedance can be written as

Ẑs =
√

jωµ

σ
(4.89)

Essentially, we could have obtained the same result from the intrinsic impedance of
the conductor [A.1]:

η̂ =
√

jωµ

σ + jωε
(4.90)

by observing that within the conductor the conduction current dominates the displace-
ment current, that is, σ � ωε.

Next we consider the resistance and internal inductance of circular–cylindrical
conductors (wires). The resistance and internal inductance are again due to the wire
conductance being finite. In the case of perfect conductors, the currents flow on the
surfaces of the conductors. Resistance and internal inductance result from the current
and magnetic flux internal to the imperfect conductors in a fashion similar to the case of
the surface impedance of a plane conductor and can be computed in a straightforward
fashion if we know the current distribution over the wire cross section. The internal
inductance results from magnetic flux internal to the conductor that links the current,
whereas the external inductance results from the magnetic flux that is external to the
conductors that penetrates the area between the conductor and the reference conductor
as discussed previously.

The determination of these parameters for wires is very straightforward if we
assume the current is symmetric about the axis of the wire [4, 8]. At dc the current is
uniformly distributed over the cross section, whereas at higher frequencies the current
crowds to the surface being concentrated in a thickness on the order of a skin depth.
This observation leads to a useful equivalent circuit representing this skin effect,
which attempts to mimic this phenomenon [9]. Essentially, this assumption of current
symmetry about the wire axis means that we assume there are no nearby currents
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close enough to upset this symmetry (proximity effect) [10]. Neighboring conductors
also affect this current distribution for conductors of rectangular cross section [11].
Determination of these parameters when other currents are close enough to upset
this symmetry is considerably more difficult, and for typical wire radii and spacings
the symmetrical current distribution assumption is adequate. For example, reference
[4] gives the exact per-unit-length high-frequency resistance for a two-wire line in a
homogeneous medium consisting of two identical wires of radii rw separated by s as

r = 2Rs

2πrw




s

2rw√(
s

2rw

)2

− 1


 (�/m)

where the surface resistance Rs is given in (4.88a).

Rs = 1

σδ
=
√

πfµ

σ

is the surface resistance of the conductor. For s = 4rw such that one wire exactly fits
between the two wires, the resistance is 15% higher than that obtained by assuming
the current is symmetric about the axis of the wire; that is, the wire separation is
sufficient so that proximity effect is not pronounced.

Internal to the conductor, the conduction current dominates the displacement cur-
rent so that the diffusion equation again describes the conduction current distribution
internal to the wire. Let us assume that this current density is z directed (along the wire
axis) and is symmetric about the axis of the wire and write the diffusion equation in
cylindrical coordinates. We orient the wire about the z axis of a cylindrical coordinate
system. Because of the assumed symmetry, the current density is independent of z
and φ but is a function of the radius r from the wire axis so that the diffusion equation
reduces to [A.1]

d2Ĵ z

dr2 + 1

r

dĴz

dr
+ k2Ĵ z = 0 (4.91)

where

k2 = − jωµσ

= − j
2

δ2 (4.92)

The solution to this equation is [A.1,4,8]

Ĵ z = Ĵo

ber
(√

2r/δ
)

+ jbei
(√

2r/δ
)

ber
(√

2rw/δ
)

+ jbei
(√

2rw/δ
) (4.93)
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where ber(x) and bei(x) are the real and imaginary parts, respectively, of the Bessel
function of the first kind of a complex argument (4,8,12). The term Ĵo is the current
density at the outer radius of the wire, r = rw.

It now remains to determine the total internal impedance (per unit length) of the
wire. The total current in the wire can be found by integrating Ampere’s law around
the wire surface (assuming that displacement current within the wire is much less
than the conduction current):

Î =
∮

�̂H · d�l

= 2π rw Ĥφ

∣∣
r=rw

(4.94)

The magnetic field can be obtained from Faraday’s law multiplied by the wire
conductivity:

∇ × �̂J = − jωµσ �̂H (4.95)

Substituting the result for curl in cylindrical coordinates [A.1] and recalling that
the current density is z directed and dependent only on r and the magnetic field is
φ directed gives

d Ĵz

dr
= jωµσ Ĥφ (4.96)

Substituting this into (4.94) and using (4.93) gives the total current in terms of the
current at the wire surface. The per-unit-length internal impedance becomes

ẑint =
Êz

∣∣
r=rw

Î

= jωµσ

2πrwσ

Ĵz

∣∣
r=rw

dĴz

dr

∣∣∣
r=rw

= 1√
2πrwσδ

[
ber(q) + j bei(q)

bei′(q) − j ber′(q)

]
(�/m) (4.97a)

where

ber′(q) = d

dq
ber(q)

bei′(q) = d

dq
bei(q)
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and

q =
√

2
rw

δ
(4.97b)

Writing this total internal impedance in terms of its real and imaginary parts as

ẑint = r + jωli (4.98)

gives the conductor resistance and internal inductance as

r

rdc
= q

2

[
ber(q)bei′(q) − bei(q)ber′(q)(

bei′(q)
)2 + (

ber′(q)
)2

]
(4.99)

li

li,dc
= 4

q

[
bei(q)bei′(q) + ber(q)ber′(q)(

bei′(q)
)2 + (

ber′(q)
)2

]
(4.100)

where

rdc = 1

σπr2
w

(�/m) (4.101)

li,dc = µ0

8π

= 0.5 × 10−7 (H/m) (4.102)

are the dc per-unit-length resistance and internal inductance, respectively, of the wire
[A.1].

Although the results in (4.99) and (4.100) are exact assuming a current distribution
that is symmetric about the wire axis, they are somewhat complicated. Reasonable
simplifications can be obtained depending on whether the frequency is such that the
wire radius is greater than or less than a skin depth. Figure 4.15 shows the ratio of
the per-unit-length resistance and the dc resistance of (4.99) plotted as a function
of the ratio of the wire radius and a skin depth, rw/δ. Observe that the transition to√

f frequency dependence commences around the point where the wire radius is two
skin depths, rw = 2δ. Similarly, Figure 4.16 shows the ratio of the per-unit-length
internal inductance and the dc internal inductance of (4.100) plotted as a function of
the ratio of wire radius to skin depth. The transition to 1/

√
f frequency dependence

commences at the same point as for the resistance. Consequently, the exact results
can be approximated by

r = 1

σπr2
w

(�/m)

li = µ0

8π
= 0.5 × 10−7 (H/m)


 rw < 2δ (4.103a)
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FIGURE 4.15 Frequency dependence of the per-unit-length resistance of a wire as a function
of the ratio of wire radius to skin depth.

r = 1

2πrwσδ
= 1

2rw

√
µ

πσ

√
f (�/m)

li = 1

4πrw

√
µ

πσ

1√
f

(H/m)




rw > 2δ (4.103b)

Observe that the low-frequency resistance for rw < 2δ in (4.103a) could have been
computed by assuming that the current is uniformly distributed over the cross section
as illustrated in Figure 4.17(a), as is the case at dc. Similarly, the high-frequency
resistance for rw > 2δ in (4.103b) could have been computed by assuming that the
current is uniformly distributed over an annulus at the wire surface of thickness equal
to one skin depth as illustrated in Figure 4.17(b), which satisfies our intuition based
on the plane conductor case. Considering the complexity of the exact results, we will
use these approximations in our future work.

Also observe an important point from (4.103b). For high frequencies, that is,
rw � 2δ, the resistance and internal inductive reactance are equal. In other words,

zint = r + jω li (4.104a)
and

r = ω li, rw � 2δ (4.104b)

This fact will prove to be very beneficial in our future results.
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FIGURE 4.16 Frequency dependence of the per-unit-length internal inductance of a wire as
a function of the ratio of wire radius to skin depth.

FIGURE 4.17 Illustration of the cross-sectional current distribution of a wire for (a) low
frequencies and (b) high frequencies.

4.3 LINES HAVING CONDUCTORS OF RECTANGULAR CROSS
SECTION (PCB LANDS)

In this section, we will consider lines composed of conductors of rectangular cross
section (lands). These represent typical transmission lines found on PCBs.
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4.3.1 Per-Unit-Length Inductance and Capacitance for PCB-Type Lines

There are very few closed-form equations for the per-unit-length inductance and ca-
pacitance of transmission lines consisting of parallel conductors having rectangular
cross sections. Most are approximate relations, and references [13–19] provide the fol-
lowing. These structures are usually characterized by their characteristic impedance:

ZC =
√

l

c
(4.105a)

and velocity of propagation:

ν = 1√
lc

= 1√
ε′

rε0µ0
= ν0√

ε′
r

(4.105b)

where ε′
r is the effective relative permittivity of the surrounding (possibly inhomoge-

neous) medium. From these, we can therefore obtain the per-unit-length inductance
and capacitance as

l = ZC

ν
(4.106a)

and

c = 1

ZCν
(4.106b)

Figure 4.18 shows the three such primary lines: the stripline, the microstrip line, and
the PCB line. The stripline shown in Figure 4.18(a) consists of a perfectly conducting
strip of rectangular cross section of width w and thickness t situated midway between
two infinite, perfectly conducting planes that are separated by a distance s. This
configuration represents lands that are buried in an innerplane PCB. The dielectric
medium between the planes is homogeneous and is characterized by ε = εrε0 and
µ = µ0. Assuming a zero-thickness strip (t = 0), the per-unit-length inductance is

l = 30π

ν0

1[we

s
+0.441

] (4.107a)

and the effective width of the conductor is

we

s
=



w

s
,

w

s
≥ 0.35

w

s
−
(

0.35 − w

s

)2
,

w

s
≤ 0.35

(4.107b)
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FIGURE 4.18 Cross-sectional dimensions of lines composed of conductors of rectangular
cross section: (a) the stripline, (b) the microstrip line, and (c) the printed circuit board.

The per-unit-length capacitance is

c = εr

30π ν0

[we

s
+ 0.441

]
(4.107c)

The microstrip line shown in Figure 4.18(b) is typical of the outer layers on an
innerplane PCB. A land of width w is placed on a board of thickness h that has a
perfectly conducting plane on the opposite side. The board has a relative permittivity
εr. Assuming the land thickness is zero (t = 0), the per-unit-length inductance is

l =




60

ν0
ln

[
8h

w
+ w

4h

]
,

w

h
≤ 1

120π

ν0

[w

h
+ 1.393 + 0.667 ln

(w

h
+1.444

)]−1
,

w

h
≥ 1

(4.108a)

and the effective relative permittivity is

ε′
r = εr + 1

2
+ εr − 1

2

1√
1 + 12

h

w

(4.108b)
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This effective relative permittivity accounts for the fact that the electric field lines
are partly in air and partly in the substrate dielectric. If this inhomogeneous medium
(air and the dielectric) is replaced with a homogeneous one having an effective rel-
ative permittivity of ε′

r as shown in Figure 4.18(b), all properties of the line remain
unchanged. The per-unit-length capacitance is

c =




ε′
r

60ν0 ln

[
8h

w
+ w

4h

] ,
w

h
≤ 1

ε′
r

120πν0

[w

h
+1.393 + 0.667 ln

(w

h
+1.444

)]
,

w

h
≥ 1

(4.108c)

The PCB shown in Figure 4.18(c) has two lands of width w placed on one side
of the board and separated edge to edge by a distance s. The board has a thickness
h and a relative permittivity εr. Assuming the land thickness is zero (t = 0), the
per-unit-length inductance is

l =




120

ν0
ln

(
2

1 + √
k

1 − √
k

)
,

1√
2

≤ k ≤ 1

377π

ν0 ln

(
2

1 + √
k′

1 − √
k′

) , 0 ≤ k ≤ 1√
2

(4.109a)

where k is

k = s

s + 2w
(4.109b)

and k′ = √
1 − k2. The effective relative permittivity is

ε′
r = εr + 1

2

{
tanh

[
0.775 ln

(
h

w

)
+ 1.75

]

+ kw

h
[0.04 − 0.7k + 0.01(1 − 0.1εr) (0.25 + k)]

}
(4.109c)

which again accounts for the fact that the electric field lines are partly in air and partly
in the substrate dielectric. If this inhomogeneous medium (air and the dielectric) is
replaced with a homogeneous one having an effective relative permittivity of ε′

r as
shown in Figure 4.18(c), all properties of the line remain unchanged. The per-unit-
length capacitance is
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c =




ε′
r

120ν0 ln

(
2

1 + √
k

1 − √
k

) ,
1√
2

≤ k ≤ 1

ε′
r ln

(
2

1 + √
k′

1 − √
k′

)
377πν0

, 0 ≤ k ≤ 1√
2

(4.109d)

4.3.2 Per-Unit-Length Conductance and Resistance for PCB-Type Lines

For the case of a homogeneous medium such as the stripline shown in Figure 4.18(a),
the per-unit-length conductance g is obtained from the per-unit-length capacitance c
as before:

g = σeff

ε
c

= ω tan δ c (4.110)

where tanδ is the loss tangent of the homogeneous dielectric medium. For the case of
an inhomogeneous medium such as the microstrip line shown in Figure 4.18(b) or the
PCB shown in Figure 4.18(c), it is not possible to use (4.110) because the loss tangents
for the various regions are different. However, the previously discussed method of
using a numerical solver for the determination of the per-unit-length capacitance c
but using in that solver complex permittivities in terms of the loss tangents for each
region as

ε̂i = εi(1 − j tan δi) (4.111)

to give an overall, complex capacitance as

ĉ = cR + jcI (4.112)

can be used. From this complex capacitance, the effective per-unit-length conductance
and capacitance of this inhomogeneous medium can be determined as before as

g = −ω cI (4.113a)

and

c = cR (4.113b)

The per-unit-length resistance and internal inductance for conductors of rectan-
gular cross section (a land) have not been obtained in closed form, and numerical
approximation methods must be used. Unlike wires, analytical solutions for the re-
sistance and internal inductance are complicated by the fact that we do not know the
current distribution over the cross section. As frequency increases, skin effect causes
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the current distribution to move toward the outer surface of the conductor tending to
be concentrated at the corners when skin effect is well developed [C.9–C.11]. Early
works consisted of measured results for the skin effect [20, 21]. Wheeler developed
a simple “incremental inductance rule” for computing the high-frequency impedance
of a conductor when skin effect is well developed [22]. Wheeler’s incremental induc-
tance rule requires that the conductor resistance and internal inductive reactance must
be equal at high frequencies where skin effect is well developed. This is the case for
conductors of circular cross section r = ω lint (see 4.103b). However, it should not
be used for conductors of rectangular cross section, because, as we will see later in
this section, the resistance and internal inductive reactance are not equal. The direct
solution for the resistance and internal inductance of conductors of rectangular cross
section can be obtained using a variety of methods for solving the diffusion equa-
tion in the two-dimensional transverse plane for infinitely long conductors [23–31,
C.9–C.11].

The partial element equivalent circuit (PEEC) method can be used to solve the
problem numerically by dividing the rectangular bar into rectangular subbars as
shown in Figure 4.19(a) [32, 33]. The method uses the concepts of partial induc-
tance [A.3,33–36]. Figure 4.19(a) shows a bar of length L, width w, and thickness t.
If we assume the current to be uniformly distributed over the cross section, the total

FIGURE 4.19 Representation of a rectangular bar having a nonuniform current distribution
over the cross section in terms of subbars having constant current distributions and the resulting
circuit model.
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bar resistance can be determined as

R = L

σ wt
(�) (4.114)

The self partial inductance of the bar, Lp, can be similarly determined for uniform
current distribution over the cross section [33–36]. This notion can be extended to
bars that have nonuniform current distributions over their cross section by dividing
the bar into N subbars of rectangular cross section over which we assume the current
to be uniformly distributed but whose level is unknown. This essentially approxi-
mates the actual current distribution over the cross section as a piecewise-constant
approximation. The voltage across each subbar is

Ê = RiÎi + jωLpiÎi + jω

N∑
k = 1
k �= i

(LpikÎk) (4.115)

whereRi is the resistance of each subbar,Lpi is the self partial inductance of the subbar,
and Lpik is the mutual partial inductance between the ith and kth subbars. Formulas
for these mutual partial inductances between conductors of rectangular cross section
having uniformly distributed currents over their cross section are available in [33–35].
Arranging (4.115) for all subbars gives




Ê

Ê
...
Ê


 =




(R1 + jωLp1) jωLp12 · · · jωLp1N

jωLp12 (R2 + jωLp2)
. . . jωLp2N

...
...

. . .
...

jωLp1N jωLp2N · · · (RN + jωLpN )






Î1
Î2
...

ÎN




(4.116a)

or

Ê = Ẑ Î (4.116b)

for N subbars. The sum of the subbar currents equals the total current for the bar, and
the voltages across all subbars are equal to the voltage across the bar as illustrated
in Figure 4.19(b). These constraints can be imposed to give the total resistance and
partial inductance of the overall bar by inverting Ẑ in (4.116b) to yield

Î = Ẑ−1 Ê (4.116c)

The first constraint that the total current of the bar is the sum of the currents of
the subbars is imposed by summing the entries in the rows of Ẑ−1, and the second
constraint that the voltages across the subbars must be equal is imposed by summing
the entries in the columns of Ẑ−1 to give the effective admittance
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Ŷ (f ) =
N∑

i=1

N∑
j=1

[Ẑ−1]ij (4.117a)

The impedance of the complete bar including skin effect is obtained by inverting this
admittance as

Ẑ(f ) = 1
N∑

i=1

N∑
j=1

[Ẑ−1]ij

(4.117b)

The real part of this resulting composite impedance is the resistance R(f ) and includes
the effect of nonuniform current distribution over the bar cross section. The imaginary
part includes the internal inductance (due to flux internal to the conductor) as well as
the effect of flux external to the conductor.

A similar numerical method described in [C.10] allows the computation of
the internal inductance as well. Figure 4.20 shows the current distribution across
the conductor cross section for a 1.4-mil-thick (1 ounce copper cladding) and
15-mil-wide land, where 1 mil = 0.001 inch. These are shown for frequencies
of 100kHz, 10MHz, 100MHz, and 1GHz. This shows the previously mentioned
phenomenon that the current distribution tends to peak at the sharp corners of the land
cross section. Figure 4.21 shows plots of the per-unit-length resistance and internal

FIGURE 4.20 Current distribution over the rectangular cross section of a 1.4 mil × 15 mil
land at (a) 100 kHz, (b) 10 MHz, (c) 100 MHz, and (d) 1 GHz.
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FIGURE 4.21 The per-unit-length internal impedance of a 1.4 mil × 15 mil land: (a) resis-
tance, (b) internal inductance, and (c) resistance versus internal inductive reactance.
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inductance for this case of a 1.4-mil-thick and 15-mil-wide copper land as a function
of frequency. This shows that above approximately 10 MHz, the per-unit-length
resistance increases at a rate of 10 dB/decade or

√
f symbolizing that skin effect

is becoming well developed above this frequency. Similarly, the per-unit-length
internal inductance decreases above 10 MHz at a rate of 10 dB/decade or 1/

√
f .

Figure 4.21(c) compares the per-unit-length resistance to the per-unit-length internal
inductive reactance, ω li. Observe that when skin effect is well developed, the resis-
tance and internal inductive reactance ω li are not equal. The difference for these bar
dimensions is on the order of 10%. This is slightly different from the case of a circular
cross-section conductor (wire) where the per-unit-length resistance and internal
inductive reactance are equal (see the results for wires in (4.103b)). Figure 4.22(a)
shows this comparison for a 50 �m × 50 �m copper land, and Figure 4.22(b) shows
the comparison for a 4.62 mm × 4.62 mm copper land. For these latter cases, the

FIGURE 4.22 Comparison of the per-unit-length resistance and high-frequency
internal inductive reactance for (a) a 50 µm × 50 µm land and (b) a 4.62 mm × 4.62 mm land.
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difference between the resistance and internal inductive reactance is on the order
of 30%. It appears that for bars with high aspect rations, that is, w � t, the high-
frequency resistance rhf and the high-frequency internal inductive reactance ω li,hf are
approximately equal as was the case for round wires.

The above methods, although quite accurate if the number of subbars is chosen
sufficiently large, are computationally intensive. A simple but approximate method
that parallels the notions for a round wire is to approximate the resistance for the
two cases where the bar dimensions are much less than or much greater than a skin
depth. In the case where the bar dimensions are much less than a skin depth, the
current can be approximated as being uniform over the bar cross section as illustrated
in Figure 4.23(a). Thus, the low-frequency, dc per-unit-length resistance can simply
be calculated as

rdc = 1

σ wt
(�/m) (4.118)

For higher frequencies where the bar dimensions are much greater than a skin depth,
that is, w, t � δ and skin effect is well developed, we assume that the current distribu-
tion over the bar is uniformly distributed over strips of thickness that is proportional to
a skin depth, that is, kδ/2, and zero elsewhere as illustrated in Figure 4.23(b). Actually

FIGURE 4.23 An approximate frequency-dependent model for a land: (a) low frequency,
w, t � δ, (b) high frequency, w, t � δ, and (c) asymptotes for the resistance frequency response.
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this is not correct since, as is shown in Figure 4.20, the current tends to concentrate
first along the short edge, the thickness, and then along the long edge, the width.
Also, as was shown previously, the current peaks at the corners of the bar when skin
effect is well developed, but this effect is ignored here. This gives the approximate
high-frequency per-unit-length resistance as

rhf ∼= 1

σ(kδ t + kδ w)

= 1

kσδ(w + t)
(4.119)

which increases as
√

f . Numerical calculations show that k is some constant whose
value lies between 1 and 2, 1 < k < 2. The high-frequency resistance formula in
(4.119) assumes that the widths of the current concentrations are the same. The
plots of the current distribution shown in Figure 4.20 show that the current first
tends to crowd to the edge of one dimension where that dimension becomes on
the order of a skin depth and then crowds toward the edge of the other dimen-
sion when that dimension becomes on the order of a skin depth at a higher fre-
quency. Setting the dc and high-frequency asymptotes in (4.118) and (4.119) equal
gives

δ = 1

k

wt

(w + t)
(4.120)

as shown in Figure 4.23(c). Figure 4.24 illustrates the comparison of this approxima-
tion to the method of subbars described previously for various divisions of the bar
(w/NW, t/NT). The resistance of the bar is the real part of Ẑ computed as in (4.117b).
The bar is typical of a land on the surface of a printed circuit board and has t = 1.4
mils and w = 15 mils. The results were computed for bar lengths of 1 and 10 in.,
and the per-unit-length resistance obtained by dividing the total resistance by the bar
length was virtually identical for the two lengths. The break frequency in (4.120) oc-
curs around 7 MHz for k = 1.3, where the dimension wt/(w + t) in (4.120) is 1.3δ. For
this dimension, the thickness of each current concentration is 0.65δ. The computed
results are plotted in Figure 4.24 and indicate very close correlation for k = 1.3. For
k = 2, the break frequency in (4.120) occurs around 16.5 MHz, where the dimen-
sion wt/(w + t) in (4.120) is 2δ. For this dimension, the thickness of each current
concentration is one skin depth: k/2 = δ. The results of the subbar method shown
in Figure 4.24 indicate that the true resistance in the high-frequency region is some
50% higher than that predicted by the approximate method for k = 2δ. This error is
evidently due to the omission of the peaking of the current at the corners in the ap-
proximation. For the data shown in Figure 4.22(a) for a square bar of side dimensions
of 50 �m, the value of k to provide close prediction of the high-frequency asymptote
at 100 MHz of 16.5 �/m is k = 1.58. For the data shown in Figure 4.22(b) for a square
bar of side dimensions of 4.62 mm, the value of k to provide close prediction of the
high-frequency asymptote at 10 kHz of 1.9 × 10−3 �/m is k = 1.486.



156 THE PER-UNIT-LENGTH PARAMETERS FOR TWO-CONDUCTOR LINES

FIGURE 4.24 Results of the computation of the per-unit-length resistance of a land via the
method of subbars for a thickness of 1.4 mils and a width of 15 mils.

PROBLEMS

4.1 Write the equation for the per-unit-length inductance of two widely spaced
identical wires in (4.19) in terms of nH/in.

[
10.16 ln (s/rw)

]
4.2 Determine the exact and approximate values for the per-unit-length induc-

tance and capacitance of a two-wire ribbon cable consisting of two #28 gauge
stranded wires (rw = 7.5 mils, 1 mil = 0.001 in.)that are separated by 50 mils.
Determine the ratio of wire separation to wire radius. [Exact: 0.75 �H/m =
19.04 nH/in., 14.82 pF/m = 0.3765 pF/in., approximate: 0.759 �H/m = 19.27
nH/in., 14.64 pF/m = 0.372 pF/in. The ratio of wire separation to wire radius
is 6.7.]

4.3 Determine the exact and approximate values for the per-unit-length capaci-
tance and inductance of one #20 gauge solid wire of radius 16 mils at a
height of 1 cm above an infinite ground plane. Determine the ratio 2h/rw.
[Exact: 14.26 pF/m = 0.36 pF/in., 0.779 �H/m = 19.79 nH/in.; approximate:
14.26 pF/m =0.36 pF/in., 0.779 �H/m = 19.79 nH/in. The ratio 2h/rw
is 49.]

4.4 A RG58U coaxial cable consists of a #20 gauge solid wire (rw = 16 mils), a
shield having an inner radius of 58 mils. The interior dielectric is polyethy-
lene (εr = 2.3). Determine the per-unit-length capacitance and inductance as
well as the velocity of propagation as a percentage of the speed of light.
[0.2576 �H/m = 6.54 nH/in., 99.2 pF/m=2.52 pF/in., 66%]
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4.5 Determine the per-unit-length capacitance and inductance of a stripline
having dimensions s = 20 mils, w = 5 mils, and a dielectric having εr = 4.7.
[113.2 pF/m = 2.88 pF/in., 0.461 �H/m = 11.7 nH/in.]

4.6 Determine the per-unit-length capacitance and inductance of a microstrip
line having dimensions of h = 50 mils, w = 5 mils, and εr = 4.7.
[38.26 pF/m = 0.972 pF/in., 0.877 �H/m = 22.3 nH/in., 3.018]

4.7 Determine the per-unit-length capacitance and inductance of a PCB configura-
tion having dimensions s = 15 mils, w = 15 mils, h = 62 mils, and εr = 4.7.
[38.53 pF/m = 0.979 pF/in., 0.804 �H/m = 20.42 nH/in.]

4.8 Two bare #20 gauge (radius = 16 mils) wires are separated center to center
by 50 mils. Determine the exact and approximate values of the per-unit-length
capacitance and inductance. [Exact: 27.33 pF/m, 0.4065 �H/m; approximate:
24.38 pF/m, 0.4558 �H/m. The ratio of separation to wire radius is only 3.13,
which is not sufficient for the approximate results to be valid.]

4.9 One bare #12 gauge (radius = 40 mils) is suspended at a height of 80 mils
above its return path, which is a large ground plane. Determine the exact and
approximate values of the per-unit-length capacitance and inductance. [Exact:
42.18 pF/m, 0.2634 �H/m; approximate: 40.07 pF/m, 0.2773 �H/m. The ratio
of wire height above ground to wire radius is only 2.0, which is not sufficient
for the approximate results to be valid although the error is only about 5%.]

4.10 A typical coaxial cable is RG-6U, which has an interior #18 gauge (radius 20.15
mils) solid wire, an interior shield radius of 90 mils, and an inner insulation of
foamed polyethylene having a relative permittivity of 1.45. Determine the per-
unit-length capacitance, inductance, and the velocity of propagation relative to
that of free space. [53.83 pF/m, 0.3 �H/m. The velocity of propagation relative
to free space is ν/ν0 = 1/

√
εr = 0.83.]

4.11 Typical dimensions for striplines in multilayer PCBs are a plate separation of 10
mils, a conductor width of 5 mils, and εr = 4.7. Determine the per-unit-length
capacitance and inductance for this structure. [156.4 pF/m and 0.334 �H/m]

4.12 A microstrip line is constructed on a FR-4 board having a relative permittivity
of 4.7. The board thickness is 64 mils and the land width is 10 mils. Determine
the per-unit-length capacitance and inductance as well as the effective relative
permittivity. [0.7873 �H/m, 43.18 pF/m and ε′

r = 3.06]

4.13 A PCB has land widths of 5 mils and an edge-to-edge separation of 5 mils. The
board is glass epoxy having a relative permittivity of 4.7 and a thickness of 47
mils. Determine the per-unit-length capacitance and inductance as well as the
effective relative permittivity. [0.8038 �H/m, 39.06 pF/m, and ε′

r = 2.825]

4.14 Determine the per-unit-length dc resistance of a #28 gauge solid wire (rw =
6.3 mils) and a #28 gauge stranded wire consisting of seven strands of #36
gauge wire (rw = 2.5 mils). [214.3 m�/m, 194.4 m�/m]

4.15 Determine the frequency where the resistance of a #20 gauge solid wire
(rw = 16 mils) begins to increase due to skin effect. [105.8 kHz] Determine
the resistance of the wire at 100 MHz. [1.022 �/m]
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4.16 Determine the resistance of a 6-in. PCB land of width 5 mils at 1 MHz and at
40 MHz. [0.59 �, 0.776 �]

4.17 A current is at a certain distance above a perfectly conducting, infinite ground
plane, which lies in the x–y plane. If the vector current is given by −3ax −
5ay + 2az, determine the image current that is at the same distance below the
location of the ground plane. [3ax + 5ay + 2az]
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5
THE PER-UNIT-LENGTH PARAMETERS
FOR MULTICONDUCTOR LINES

In this chapter, we will extend the notions developed for two-conductor lines in
the previous chapter to multiconductor lines. In general, the concepts are identical
but the details are more involved. We will find that numerical approximate methods
must generally be employed to compute the entries in the per-unit-length parameter
matrices L, C, and G. The entries in the per-unit-length resistance matrix R are
grouped as shown in Chapter 3, Eqs. (3.12) and (3.13), and are computed, as an
approximation, for the isolated conductors. Hence, the entries in R are the same as
were obtained for two-conductor lines in the previous chapter; that is, we disregard
proximity effect in the resistance calculation.

In the case of multiconductor transmission lines (MTLs), the situation is somewhat
similar except that the details become more involved. In the case of a MTL where the
conductors have circular, cylindrical cross sections such as wires and the surrounding
medium is homogeneous, we can obtain approximate closed-form solutions for the
entries in the per-unit-length parameter matrices L, C, and G under the assumption that
the conductors are widely separated from each other. This condition of being widely
separated is not very restrictive for typical dimensions of wire-type lines such as ribbon
cables. However, dielectric insulations are usually present around the conductors of
wire-type lines such as ribbon cables, and therefore wire-type MTLs generally require
the use of numerical methods to compute the entries in the per-unit-length parameter
matrices. For the case of MTLs having conductors of rectangular cross sections such as
lands on printed circuit boards (PCBs), approximate numerical methods must always
be used regardless of whether the surrounding medium is homogeneous (as is the case

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.
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for the coupled stripline) or inhomogeneous (as for the case of the coupled microstrip
and the case of a general PCB).

5.1 DEFINITIONS OF THE PER-UNIT-LENGTH PARAMETER
MATRICES L, C, AND G

We first review the fundamental definitions of the per-unit-length parameter matrices
of inductance, L, capacitance, C, and conductance, G. Recall that these per-unit-
length parameters are determined as static field solutions in the transverse plane for
perfect line conductors. As opposed to two-conductor lines, there are only a few
closed-form solutions for MTLs. Generally, approximate numerical methods must be
used for the computation of the entries in the per-unit-length parameter matrics L,
C, and G. In any event, we showed in Chapter 3 that L, C, and G are symmetric and
positive-definite matrices. Again, we will restrict our discussions to uniform lines. As
discussed previously, computation of the entries in R is identical to those calculations
for two-conductor lines given previously; that is, we will neglect proximity effect and
compute these entries for isolated conductors.

The entries in the per-unit-length inductance matrix L relate the total magnetic flux
penetrating the ith circuit, per unit of line length, to all the line currents producing it as

� = L I (5.1a)

or, in expanded form,


ψ1
ψ2
...

ψn


 =




l11 l12 · · · l1n

l12 l22 · · · l2n
...

...
. . .

...
l1n l2n · · · lnn






I1
I2
...
In


 (5.2b)

If we interpret the above relations in a manner similar to the n-port parameters [A.2],
we obtain the following relations for the entries in L:

lii = ψi

Ii

∣∣∣∣
I1= ··· =Ii−1=Ii+1= ··· =In=0

(5.2a)

lij = ψi

Ij

∣∣∣∣
I1= ··· =Ij−1=I j+1= ··· =In=0

(5.2b)

The entries lii are the self-inductances of the ith circuit, and the entries lij with i �= j are
the mutual inductances between the ith and the jth circuits. Thus, we can compute these
inductances by placing a current on one conductor (and returning it on the reference
conductor), setting the currents on all other conductors to zero, and determining the
magnetic flux, per unit of line length, penetrating the other circuit. The definition of
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FIGURE 5.1 Illustration of the definitions of flux through a circuit for determination of the
per-unit-length inductances: (a) self-inductances lii and (b) mutual inductances lij .

the ith circuit is critically important in obtaining the correct value and sign of these
elements. This important concept is illustrated in Figure 5.1. The ith circuit is the
surface between the ith conductor and the reference conductor. This surface is of
arbitrary shape but is uniform along the line. This surface shape may be a flat surface
or some other shape so long as this shape is uniform along the line. The magnetic flux
per unit length penetrating this surface (circuit) is defined as being in the clockwise
direction around the ith conductor when looking in the direction of increasing z. In
other words, the flux direction �i through surface si is the direction in which magnetic
flux would be generated by the current of the ith conductor. Figure 5.1(a) shows the
calculation of lii , and Figure 5.1(b) shows the calculation of lij .
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In order to illustrate this important concept further, consider a three-conductor
line consisting of three wires lying in a plane where the middle wire is chosen,
arbitrarily, as the reference conductor as shown in Figure 5.2(a). This resembles a
ribbon cable without dielectric insulations. The surfaces and individual configurations
for computing l11, l22, and l12 are shown in the remaining figures. Observe that the
surface for �2 is between conductor 2 and the reference conductor, but observe the
desired direction of this flux; it is chosen with respect to the magnetic flux that would
be produced by current I2 on conductor 2. So, the flux direction for the ith circuit is
defined by the direction of the current on the ith conductor and the right-hand rule
when looking in the direction of increasing z.

The entries in the per-unit-length capacitance matrix C relate the total charge on
the ith conductor per unit of line length to all of the line voltages producing it as

Q = C V (5.3a)

FIGURE 5.2 Illustrations of the derivation of the per-unit-length inductances for a three-wire
ribbon cable with the center wire as the reference conductor.
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or, in expanded form,




q1
q2
...

qn


 =




n∑
k=1

c1k −c12 · · · −c1n

−c12

n∑
k=1

c2k · · · −c2n

...
...

. . .
...

−c1n −c2n · · ·
n∑

k=1

cnk







V1
V2
...

Vn


 (5.3b)

The particular form for the entries in C in (5.3b) was derived in Chapter 3. If we
denote the entries in C in the ith row and jth column as [C]ij , these can be obtained by
interpreting (5.3b) as an n-port relation and applying the usual constraints of setting
all voltages except the jth voltage Vj to zero (“grounding” them to the reference con-
ductor) and determining the charge qi on the ith conductor (and −qi on the reference
conductor) to give [C]ij:

[C]ii = qi

Vi

∣∣∣∣
V1= ··· =Vi−1=Vi+1= ··· =Vn=0

(5.4a)

[C]ij = qi

Vj

∣∣∣∣
V1= ··· =Vj−1=Vj+1= ··· =Vn=0

(5.4b)

This amounts to several two-conductor capacitance calculations where the other n −
1 conductors are connected with short circuits to the reference conductor.

Although the above method of setting all but one voltage to zero and deter-
mining the resulting per-unit-length charge on the other conductors is straightfor-
ward, an alternative and simpler method is to apply a per-unit-length charge qj on
the jth conductor, the negative of this, −qj , on the reference conductor, and zero
charge on the other conductors and then determining the resulting voltage between
the ith conductor and the reference conductor. In order to do this, we invert (5.3)
to give

V = P Q (5.5a)

or, in expanded form,




V1
V2
...

Vn


 =




p11 p12 · · · p1n

p12 p22 · · · p2n
...

...
. . .

...
p1n p2n · · · pnn






q1
q2
...

qn


 (5.5b)
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where

C = P−1 (5.5c)

The entries in P are referred to as the coefficients of potential. Once the entries in P
are obtained, C is obtained via (5.5c). The coefficients of potential are obtained from
(5.5b) as

pii = Vi

qi

∣∣∣∣
q1= ··· =qi−1=qi+1= ··· =qn=0

(5.6a)

pij = Vi

qj

∣∣∣∣
q1= ··· =qj−1=qj+1= ··· =qn=0

(5.6b)

These relationships show that to determine pij we place a per-unit-length charge
qj on conductor j with no charge on the other conductors (but −qj on the reference
conductor) and determine the resulting voltage Vi of conductor i (between it and the
reference conductor with the voltage positive at the ith conductor). These concepts
are illustrated in Figure 5.3. Once P is obtained in this fashion, C is obtained as the
inverse of P as shown in (5.5c). It is important to point out that the self-capacitance
between the ith conductor and the reference conductor, cii , is not simply the entry
in the ith row and ith column of C. Observe the form of the entries in C given in
(5.3b). The off-diagonal entries are the negatives of the mutual capacitances between
the pairs of conductors whereas the main-diagonal entries are the sum of the self-
capacitance and the mutual capacitances in that row (or column). Therefore, to obtain
the self-capacitance cii , we sum the entries in the ith row (or column) of C.

The per-unit-length conductance matrix G relates the total transverse conduction
current passing between the conductors per unit of line length to all the line voltages
producing it as

It = G V (5.7a)

or, in expanded form,




It1
It2
...

Itn


 =




n∑
k=1

g1k −g12 · · · −g1n

−g12

n∑
k=1

g2k · · · −g2n

...
...

. . .
...

−g1n −g2n · · ·
n∑

k=1

gnk







V1
V2
...

Vn


 (5.7b)

The particular forms of the entries in G in (5.7b) were obtained in Chapter 3.
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FIGURE 5.3 Illustrations of the determination of the per-unit-length coefficients of potential:
(a) self terms pii and (b) mutual terms pij .

Once again, the entries in G can be determined as several subproblems by inter-
preting (5.7b) as an n-port. For example, to determine the entry in G in the ith row
and jth column, which is denoted as [G]ij , we could enforce a voltage between the jth
conductor and the reference conductor, Vj , with all other conductor voltages set to zero
(“grounding” them to the reference conductor), V1 = · · · Vj−1 = Vj+1 = · · · Vn = 0,
and determine the per-unit-length transverse current Iti flowing between the ith con-
ductor and the reference conductor. Denoting each of the entries in G as [G]ij gives
these entries in G as

[G]ii = Iti

Vi

∣∣∣∣
V1= ··· =Vi−1=Vi+1= ··· =Vn=0

(5.8a)
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[G]ij = Iti

Vj

∣∣∣∣
V1= ··· =Vj−1=Vj+1= ··· =Vn=0

(5.8b)

In order to numerically determine the entries in L, C, and G, we need only a capac-
itance solver. First, we solve for the scalar capacitance matrix with the dielectric(s)
surrounding the conductors removed and replaced with free space that is denoted as
C0. The per-unit-length inductance matrix can be obtained from

L = µ0ε0 C−1
0 (5.9)

In order to obtain the per-unit-length capacitance and conductance matrices, we could,
as an alternative to the direct method outlined before, use the capacitance solver with
each dielectric replaced by its complex permittivity:

ε̂i = εi (1 − jtan δi) (5.10)

where tan δi is the loss tangent (at the particular frequency of interest) of the ith
dielectric layer and tan δi = (σeff,i/εi). This will give a complex-valued capacitance
matrix as

Ĉ = CR + jCI (5.11)

Then, as discussed in the previous chapter, we obtain the per-unit-length capacitance
and conductance matrices as

C = CR (5.12a)

and

G = −ω CI (5.12b)

and ω = 2πf is the radian frequency of interest.

5.1.1 The Generalized Capacitance Matrix CCCCCC

The above definitions as well as the derivation of the MTL equations assume that
we (arbitrarily) select one of the n + 1 conductors as the reference conductor to
which all the n voltages Vi are referenced. Once the reference conductor is chosen,
all the per-unit-length parameter matrices must be computed for that choice con-
sistently. Although the choice of reference conductor is arbitrary, choosing one of
the n + 1 conductors over another as reference may facilitate the computation of
the per-unit-length parameters. For example, if one of the n + 1 conductors is an
infinite, perfectly conducting plane, choosing the plane as the reference conductor
simplifies the calculation of the per-unit-length parameters. However, choice of this
plane as reference is not mandatory; we could instead choose one of the other n
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conductors as the reference conductor. In this section, we describe a technique for
computing a certain per-unit-length parameter matrix, the generalized capacitance
matrix CCCCCC, without regard to the choice of the reference conductor. The dimensions
of this generalized capacitance matrix are (n + 1) × (n + 1). We will show that a
transmission-line capacitance C which is of dimensions n × n, for any conductor
chosen as reference conductor can be easily obtained from this generalized capaci-
tance matrix. If a different choice of the reference conductor is made, we can readily
obtain the transmission-line capacitance matrix C for this new choice of reference
conductor from the generalized capacitance matrix using simple algebraic relations
without repeating the time-consuming calculation of the per-unit-length generalized
capacitance. The generalized capacitance matrix for the line with the surrounding
medium removed and replaced by free space, CCCCCC0, and the generalized capacitance
matrix with the permittivities replaced by their complex-valued permittivities given
in (5.10) as ĈCCCCC = CCCCCCR + CCCCCCI can similarly be obtained. The transmission-line capacitance
matrix C0 and the complex transmission-line capacitance matrix Ĉ = CR + jCI can
then be easily obtained from these corresponding generalized capacitance matrices.
Then other transmission-line per-unit-length matrices L, C, and G can then be easily
obtained from these as

L = µ0ε0C−1
0 (5.13)

and

C = CR (5.14a)

and

G = −ω CI (5.14b)

Hence, the major computational effort is in determining the generalized capacitance
matrices.

The n MTL voltages Vi are defined to be between each conductor and the chosen
reference conductor. We may also define the potentials φi of each of the n + 1
conductors with respect to some reference point or line that is parallel to the z axis
[C.4]. The total charge per unit of line length, qi , of each of the n + 1 conductors
can be related to their potentials φi for i = 0, 1, 2, · · · , n with the (n + 1) × (n + 1)
generalized capacitance matrix CCCCCC as

Q′ = CCCCCC � (5.15a)
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or, in expanded form, as




q0
q1
...

qn




︸ ︷︷ ︸
Q′

=




C00 C01 · · · C0n

C10 C11 · · · C1n
...

...
. . .

...
Cn0 Cn1 · · · Cnn




︸ ︷︷ ︸
CCCCCC




φ0
φ1
...

φn




︸ ︷︷ ︸
�

(5.15b)

Observe that CCCCCC is (n + 1) × (n + 1), whereas the previous per-unit-length parameter
matrices L, C, and G are n × n. Also the generalized capacitance matrix, like the
transmission-line capacitance matrix, is symmetric, that is, Cij = Cj i, for similar rea-
sons. It can be shown that for a charge-neutral system, as is the case for the MTL, the
reference potential terms for the choice of reference point for these potentials, φi, van-
ish as the reference point recedes to infinity so that the choice of reference point does
not affect the determination of the generalized capacitance matrix [B.4,C.1,C.4,C.7].

Suppose that CCCCCC has been computed and we select a reference conductor. Without
loss of generality, let us select the reference conductor as the zeroth conductor. In
order to obtain the n × n capacitance matrix C from CCCCCC, define the MTL line voltages,
with respect to this zeroth reference conductor, as

Vi = φi − φ0 (5.16)

for i = 1, 2,. . . , n. We assume that the entire system of n + 1 conductors is charge
neutral:

q0 + q1 + q2 + · · · + qn = 0 (5.17a)

Therefore, the charge (per unit of line length) on the zeroth conductor can be written
in terms of the charges on the other n conductors as

q0 = −
n∑

k=1

qk (5.17b)

Denote the entries in the ith row and jth column of the per-unit-length capacitance
matrix C, with the zeroth conductor chosen as reference conductor, as Cij :




q1
q2
...

qn


 =




C11 C12 · · · C1n

C12 C22 · · · C2n
...

...
. . .

...
C1n C2n · · · Cnn






V1
V2
...

Vn


 (5.18)
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Comparing (5.18) to (5.3b), we observe that Cii = ∑n
k=1 cik and Cij = −cij . Substi-

tuting (5.16) and (5.17) into (5.15) and expanding gives (φi = Vi + φ0)

−
n∑

k=1

qk = C01V1 + C02V2 + · · · + C0nVn +
(

n∑
m=0

C0m

)
φ0

q1 = C11V1 + C12V2 + · · · + C1nVn +
(

n∑
m=0

C1m

)
φ0

...

qn = Cn1V1 + Cn2V2 + · · · + CnnVn +
(

n∑
m=0

Cnm

)
φ0

(5.19)

Adding all equations in (5.19) gives

0 =
(

n∑
m=0

Cm1

)
V1 +

(
n∑

m=0

Cm2

)
V2 + · · · +

(
n∑

m=0

Cmn

)
Vn

+
(

n∑
m=0

C0m +
n∑

m=0

C1m + · · · +
n∑

m=0

Cnm

)
φ0

(5.20a)

or

φ0 = −
∑n

k=1

[(∑n
m=0Cmk

)
Vk

]∑n
l=0

[∑n
m=0Clm

] (5.20b)

Substituting (5.20b) into the last n equations in (5.19) yields the entries in the per-
unit-length capacitance matrix C, given in (5.18) as [C.4]

Cij = Cij −
(∑n

k=0Cik

) (∑n
m=0Cmj

)(∑
CCCCCC
) (5.21)

The first summation in the numerator of (5.21) is the sum of all the elements in the
ith row of CCCCCC, whereas the second summation in the numerator of (5.21) is the sum of
all the elements in the jth column of CCCCCC. The denominator summation

∑
CCCCCC is the sum

of all the elements in CCCCCC.
In the case of two conductors, the result in (5.21) gives per-unit-length capacitance

between the two conductors and reduces to

c = C11C00 − C01C10

C00 + C01 + C10 + C11
(5.22)

The generalized capacitance matrix, like the transmission-line capacitance, is sym-
metric so that C01 = C10. Eliminating the potential reference node (or line) and
observing that capacitors in series (parallel) combine like resistors in parallel (se-
ries), one can directly obtain the result in (5.22) from the equivalent circuit of
Figure 5.4(a).
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FIGURE 5.4 Illustration of (a) the meaning of the per-unit-length generalized capacitance
matrix for a two-conductor line and (b) the elimination of the reference line to yield the
capacitance between the conductors.

Therefore, we can obtain the per-unit-length generalized capacitance matrix CCCCCC,
then choose a reference conductor, and then easily compute C for that choice of ref-
erence conductor from CCCCCC using the relation in (5.21). If the surrounding medium is
inhomogeneous in ε, we similarly compute the generalized capacitance matrix with
the dielectric removed (replaced with free space), CCCCCC0, and from that compute the
per-unit-length capacitance matrix with the dielectric removed, C0, with the above
method. Once C0 is computed in this fashion, we may then compute L = µ0ε0C−1

0 .
Computing the complex generalized capacitance matrix using a complex permit-
tivity for each homogeneous region as in (5.10), ĈCCCCC = CCCCCCR + jCCCCCCI, we can obtain the
complex transmission-line matrix as Ĉ = CR + jCI and from that we can obtain
the transmission-line capacitance matrix as C = CR and the conductance matrix as
G = −ω CI as shown in (5.12).

5.2 MULTICONDUCTOR LINES HAVING CONDUCTORS
OF CIRCULAR, CYLINDRICAL CROSS SECTION (WIRES)

Conductors having cross sections that are circular–cylindrical are referred to as wires.
These types of conductors are frequently found in cables that interconnect electronic
circuitry and form an important class of MTLs.

5.2.1 Wide-Separation Approximations for Wires in Homogeneous Media

The results for two-conductor lines in a homogeneous medium obtained in the
previous chapter are exact. For similar lines consisting of more than two con-
ductors, exact, closed-form solutions cannot be obtained, in general. However, if
the wires are relatively widely spaced, we can obtain some simple but approx-
imate closed-form solutions using the fundamental subproblems derived in Sec-
tion 4.2.1 of the previous chapter [B.4]. These results assume that the currents
and charges are symmetric about the wire axes, which implicitly assumes that the
wires are widely spaced. In other words we assume that proximity effect is not
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FIGURE 5.5 Illustration of the calculation of per-unit-length inductances using the wide-
separation approximations for n + 1 wires: (a) the cross-sectional structure, (b) self-inductance,
and (c) mutual inductance.

pronounced. As we saw in the case of two-wire lines, the requirement of widely
spaced wires is not overly restrictive. The following wide-separation approximations
for wires are implemented in the FORTRAN program WIDESEP.FOR described in
Appendix A.
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5.2.1.1 n+1 Wires Consider the case of n + 1 wires in a homogeneous medium
as shown in Figure 5.5(a). The entries in the per-unit-length inductance matrix are
defined in (5.1) and (5.2). If the wires are widely separated, we can use the fundamental
subproblems derived in Section 4.2.1 of the previous chapter to give these entries. The
self-inductance is obtained from Figure 5.5(b) and the mutual inductance is obtained
as in Figure 5.5(c) as

lii = ψi

Ii

∣∣∣∣
I1= ··· =Ii−1=Ii+1= ··· =In=0

= µ

2π
ln

(
di0

rw0

)
+ µ

2π
ln

(
di0

rwi

)

= µ

2π
ln

(
d2
i0

rw0rwi

)
(5.23a)

lij = ψi

Ij

∣∣∣∣
I1= ··· =Ij−1=Ij+1= ··· =In=0

= µ

2π
ln

(
dj0

dij

)
+ µ

2π
ln

(
di0

rw0

)

= µ

2π
ln

(
di0dj0

dijrw0

)
(5.23b)

The entries in the per-unit-length capacitance and conductance matrices for this as-
sumed homogeneous surrounding medium can be obtained from this result as before:

C = µε L−1 (5.24a)

G = σ

ε
C

= σµ L−1
(5.24b)

5.2.1.2 n Wires Above an Infinite, Perfectly Conducting Plane Consider the case
of n wires above and parallel to an infinite, perfectly conducting plane shown in
Figure 5.6. Replacing the plane with the image currents and using the fundamental
result derived in Section 4.2.1 of the previous chapter yields

lii = ψi

Ii

∣∣∣∣
I1= ··· =Ii−1=Ii+1= ··· =In=0

= µ

2π
ln

(
hi

rwi

)
+ µ

2π
ln

(
2hi

hi

)

= µ

2π
ln

(
2hi

rwi

)
(5.25a)
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FIGURE 5.6 Illustration of the calculation of per-unit-length inductances using the wide-
separation approximations for n wires above a ground plane.

lij = lji = ψj

Ii

∣∣∣∣
I1= ··· =Ii−1=Ii+1= ··· =In=0

= µ

2π
ln

(
s′

sij

)
+ µ

2π
ln

(
s′′

s′

)

= µ

2π
ln



√

s2
ij + 4hihj

sij




= µ

4π
ln

[
1 + 4hihj

s2
ij

]
(5.25b)

This is again a problem of a homogeneous medium, and therefore the entries in the
per-unit-length capacitance and conductance matrices can then be found from these
results using (5.24).

5.2.1.3 n Wires Within a Perfectly Conducting Cylindrical Shield Consider n
wires of radii rwi within a perfectly conducting circular–cylindrical shield shown
in Figure 5.7(a). The interior radius of the shield is denoted by rS and the distances
of the wires from the shield axis are denoted by di , whereas the angular separa-
tions are denoted by θij . The perfectly conducting shield may be replaced by image
currents located at radial distances from the shield center of r2

S/di as shown in Fig-
ure 5.7(b) [B.1, 1, 2]. The directions of the desired magnetic fluxes are as shown.
Assuming that the wires are widely separated from each other and the shield, we
may assume that the currents are uniformly distributed around the wire and shield
peripheries. Thus, we may use the basic results of Section 4.2.1 of the previous
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FIGURE 5.7 Illustration of the calculation of per-unit-length inductances using the wide-
separation approximations for n wires within a cylindrical shield: (a) the cross-sectional struc-
ture and (b) replacement with images.

chapter to give [B.1]

lii = ψi

Ii

∣∣∣∣
I1= ··· =Ii−1=Ii+1= ··· =In=0

= µ

2π
ln

(
rS − di

rwi

)
+ µ

2π
ln




r2
S

di

−di

r2
S

di

−rS




= µ

2π
ln

(
r2

S − d2
i

rSrwi

)
(5.26a)
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lij = lji = ψj

Ii

∣∣∣∣
I1= ··· =Ii−1=Ii+1= ··· =In=0

= µ

2π
ln


dj

rS

√√√√(
didj

)2 + r4
S − 2didjr

2
Scos θij(

didj

)2 + d4
j − 2did

3
j cos θij


 (5.26b)

The entries in the per-unit-length capacitance and conductance matrices for this
homogeneous medium can be obtained using the relations in (5.24).

5.2.2 Numerical Methods for the General Case

The results in the previous three subsections give simple formulas for the entries in
the per-unit-length parameter matrices of L, C, and G for n wires and a reference
conductor for three cases: (1) n + 1 wires, (2) n wires above an infinite, perfectly con-
ducting “ground” plane, and (3) n wires within an overall circular–cylindrical shield.
There are two important restrictions on their applicability. These are that (1) the wires
must be widely separated and (2) the dielectric medium surrounding the wires must be
homogeneous; that is, circular dielectric insulations are ignored. The wide-separation
assumption provides the simplification that the charge distributions around the wire
peripheries are approximately uniform. This assumption was made so that we may
use the fundamental subproblems for wires derived in Section 4.2.1 of the previous
chapter to obtain those results. The charge distributions around closely spaced wires
will be nonuniform around their peripheries but will be approximately uniform for
ratios of wire separation to wire radius of 4 and higher (see Fig. 4.9). However, a sig-
nificant restriction on the utility of those results is that they assume a homogeneous
surrounding dielectric medium. Practical wire-type cables have circular–cylindrical
insulating dielectrics surrounding them, which creates an inhomogeneous medium (air
and the dielectric insulation). In this section, we will obtain a numerical technique that
can be used to obtain accurate results for multiwire lines having an inhomogeneous
surrounding medium as well as closely spaced conductors. The following method is
described in [C.1–C.7] and is implemented for the practical case of a ribbon cable in
a FORTRAN computer program RIBBON.FOR described in Appendix A.

First, consider an (n + 1)-wire line in a homogeneous medium. If the wires are
closely spaced, proximity effect will cause the charge distributions to be nonuniform
around the wire peripheries. In the case of wires that are closely spaced, the charge
distributions will tend to concentrate on the adjacent surfaces (proximity effect) (see
Fig. 4.9). In order to model this effect, we will assume a form of the charge distribution
around the ith wire periphery in the form of a Fourier series as a function of the
peripheral angle θi as

ρi (θi) = ai0 +
Ai∑

k=1

aik cos (kθi) +
Bi∑

k=1

biksin (kθi) (C/m2) (5.27)

This Fourier series representation for the ith wire contains a total number of unknowns
of Ni = 1 + Ai + Bi. For a line consisting of n + 1 wires, there will be a total
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of N = ∑n
i=0 Ni unknowns to be determined. The coefficients of each expansion,

ai0, aik, and bik, are to be determined such that the boundary conditions are satisfied.
These boundary conditions are that the potential at points on each conductor due
to all charge distributions equals the potential of that conductor. (Since we assume
perfect conductors for the computation of L, C, and G, the potentials of all points on
a conductor are the same.) The charge distribution in (5.27) has dimensions of C/m2

since it gives the distribution around the wire periphery per unit of line length. Once
the expansion coefficients in (5.27) are determined to satisfy the boundary conditions,
the total charge on the ith conductor per unit of line length is obtained by integrating
(5.27) around the wire periphery to yield

qi =
2π∫

θi=0

ρi (θi) rwidθi

= 2π rwiai0 (C/m)

(5.28)

Hence, the charge per unit of line length is determined solely by the constant term in
the expansion. However, the other terms affect this constant term. This simple result
is due to the fact that

∫ 2π

θi=0 cos (kθi)dθi = ∫ 2π

θi=0 sin (kθi)dθi = 0.
We now determine the potential at an arbitrary point in the transverse plane at a

position rp, θp from each of these charge distributions, that is, φi(rp, θp), as illustrated
in Figure 5.8. This can be obtained by assuming that the charge distribution around
the periphery of the ith conductor is composed of filaments of per-unit-length charge
ρirwidθi C/m, each of whose amplitudes are weighted by the particular distribution,
that is, 1, cos (kθi), and sin (kθi). Then we use the previous fundamental subproblem
result given in Eq. (4.16) for the voltage between two points. With reference to Figure
(5.8), we obtain

φi(rp, θp) − φ0(r0, θ0) = −ρirwidθi

2πε
ln

(
sp

s0

)
(5.29)

FIGURE 5.8 Determination of the potential of a charge-carrying wire having various cir-
cumferential distributions by replacement of the charge with weighted filaments of charge.
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It was shown in [C.7] that the potential of the reference point, φ0(r0, θ0), can be
omitted if the system of conductors is electrically neutral, that is, the net charge
per unit of line length is zero. Since this is satisfied for our MTL systems, we will
henceforth omit the reference potential term. Thus, the differential contribution to the
potential due to a filamentary component of the charge distribution is

dφi(rp, θp) = −ρirwidθi

2πε
ln(sp) (5.30)

The distance from the filament to the point is (according to the law of cosines) given
by

sp =
√

r2
p + r2

wi − 2rprwicos
(
θi − θp

)
(5.31)

Substituting this along with the form for the charge distribution given in (5.27) into
(5.30) and integrating around the conductor periphery gives the total contribution to
the potential due to the charge distributions:

φi(rp, θp) = ai0

2π∫
θi=0

I (θi) rwidθi

+
Ai∑

k=1

aik

2π∫
θi=0

I (θi) cos (kθi) rwidθi

+
Bi∑

k=1

bik

2π∫
θi=0

I (θi) sin (kθi) rwidθi

(5.32a)

where

I (θi) = − 1

2πε
ln

(√
r2

p + r2
wi − 2rprwicos

(
θi − θp

))
= − 1

4πε
ln
(
r2

p + r2
wi − 2rprwicos

(
θi − θp

)) (5.32b)

Each of the integrals in (5.32a) can be evaluated in closed form giving [B.4]

φi(rp, θp) = αi0

(
− rwiln

(
rp
)

ε

)
+

Ai∑
k=1

aik

(
rk+1

wi cos
(
kθp

)
2kε rk

p

)

+
Bi∑

k=1

bik

(
rk+1

wi sin
(
kθp

)
2kε rk

p

)
(5.33)

Therefore, the contributions to the potential from each of these charge distributions
are given in Table 5.1.
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TABLE 5.1

Charge distribution Contribution to the potential φ(rp, θp)

1 − rwln(rp)

ε

cos (mθ)
rm+1

w cos (mθp)

2 ε m rm
p

sin (mθ)
rm+1

w sin (mθp)

2 ε m rm
p

Satisfaction of the boundary conditions is obtained if we choose a total of

N =
n∑

i=0

Ni

= (n + 1) +
n∑

i=0

Ai +
n∑

i=0

Bi (5.34)

points on the wires at which we enforce the potential of the wire due to all the
charge distributions on this conductor and all of the other conductors as illustrated in
Figure 5.9. This leads to a set of N simultaneous equations that must be solved for
the expansion coefficients, written in matrix form, as

� = D A (5.35a)

FIGURE 5.9 Determination of the total potential at a point due to all charge distributions.
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or, in expanded form,




�0
...

�i
...

�n


 =




D00 · · · D0j · · · D0n

...
...

...
...

...
Di0 · · · Dij · · · Din

...
...

...
...

...
Dn0 · · · Dnj · · · Dnn







A0
...

Aj

...
An


 (5.35b)

The vector of potentials at the match points on the ith conductor is denoted as

�i =




φi
...
φi
...
φi


 (5.35c)

and the vector of expansion coefficients of the charge distribution on the ith conductor
is denoted as

Ai =




ai0
ai1
...

aiAi

bi1
...

biBi




(5.35d)

and Ai denotes the expansion coefficients associated with the ith conductor according
to (5.27). Each Ai will have Ni = 1 + Ai + Bi rows as will �i. Each Dij will have
dimension of Ni × Nj . Inverting (5.35) gives the expansion coefficients in terms of a
linear combination of the potentials of each conductor:

A = D−1� (5.36a)

or, in expanded form,




A0
...

Ai
...

An


 =




B00 · · · B0j · · · B0n

...
...

...
...

...
Bi0 · · · Bij · · · Bin

...
...

...
...

...
Bn0 · · · Bnj · · · Bnn







�0
...

�j

...
�n


 (5.36b)
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The generalized capacitance matrix CCCCCC described in Section 5.1.1 can be obtained from
(5.36), using (5.28), as [C.1–C.7]

Cij = 2π rwi

∑
first row

Bij (5.37)

This simple result is due to the fact that according to (5.28) we need only to determine
ai0, and each submatrix in (5.36) relates



ai0
ai1
...

aiAi

bi1
...

biBi




=




Bij







φj

...

...
φj

...

...
φj




(5.38)

or, in expanded form,

ai0 = [
Bij

]
11 φj + · · · + [

Bij

]
1k

φj + · · · + [
Bij

]
1Nj

φj

=
{[

Bij

]
11 + · · · + [

Bij

]
1k

+ · · · + [
Bij

]
1Nj

}
φj (5.39)

where [Bij]mn denotes the entry in row m and column n of Bij . Hence, Cij involves
the sum of the entries in the first row of Bij .

5.2.2.1 Applications to Inhomogeneous Dielectric Media This method can be ex-
tended to handle inhomogeneous media such as circular–cylindrical dielectric insula-
tions around the wires. Observe that for each wire and dielectric insulation of that wire
there are two surfaces that contain charge and each distribution must be expanded into
a Fourier series with respect to the angle around that boundary θi. These two surfaces
are the conductor–dielectric surface and the dielectric–free-space surface.

As previously discussed in Chapter 4, dielectric media consist of microscopic
dipoles of bound charge as illustrated in Figure 5.10(a). Application of an external

FIGURE 5.10 Illustration of the effects of bound (polarization) charge: (a) microscopic
dipoles, (b) alignment of the dipoles with an applied electric field, and (c) creation of a bound
surface charge.
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electric field causes these microscopic dipoles of bound charge to align with the field
as illustrated in Figure 5.10(b). If a slab of dielectric is immersed in an electric field,
a bound charge density will appear on the surfaces of the dielectric as illustrated in
Figure 5.10(c).

Charge consists of two types: free charge is the charge that is free to move and
bound charge is the charge appearing on the surfaces of dielectrics in response to
an applied electric field as shown in Figure 5.10(c). At the interface between two
dielectric surfaces, the boundary condition is that the components of the electric
flux density vector �D that are normal to the interface must be continuous, that is,
D1n = ε1E1n = ε2E2n = D2n. A simple way of handling inhomogeneous dielectric
media is to replace the dielectrics with free space having bound charge at the interface
[C.1–C.7,1,2]. At places where the dielectric is adjacent to a perfect conductor, we
have both free charge and bound charge, and the free charge density on the surface
of the conductor is equal to the component of the electric flux density vector that
is normal to the conductor surface, Dn (C/m2) [A.1]. Of course, the component of
the electric field intensity vector that is tangent to a boundary is continuous across
the boundary for an interface between two dielectrics, Et1 = Et2, and is zero at the
surface of a perfect conductor.

In order to adapt the above numerical method to wires that have circular, cylindri-
cal dielectric insulations, we describe the charge (bound plus free) around the wire
periphery as a Fourier series in the peripheral angle, θi, as in (5.27):

ρif (θi) − ρib (θi) = ai0 +
Ai∑

k=1

aik cos (θi) +
Bi∑

k=1

bik sin (θi) (C/m2) (5.40)

In (5.40), ρif denotes the free charge distribution on the ith conductor periphery
and ρib denotes the bound charge distribution on the dielectric periphery facing the
conductor as shown in Figure 5.11. At the dielectric periphery facing the free-space
region, there is only bound charge that we similarly expand in a Fourier series in
peripheral angle θi as

ρ′
ib (θi) = a′

i0 +
A′

i∑
k=1

a′
ikcos (θi) +

B′
i∑

k=1

b′
iksin (θi) (C/m2) (5.41)

FIGURE 5.11 The general problem of the determination of the potential of a dielectric-
insulated wire due to free and bound charge distributions at the two interfaces.
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In (5.40), we have anticipated that the bound charge distribution at the conduc-
tor periphery will be opposite in sign to the bound charge distribution around the
dielectric–free-space boundary. Also, we denote the bound charge distribution at
the dielectric–free-space boundary in (5.41) with a prime, whereas the bound charge
distribution at the conductor–dielectric boundary in (5.40) is denoted without a prime.
This is because, although the total bound charge per unit length at each bound-
ary must be the same, the distributions around the peripheries are different since
the boundary radii are different. For each dielectric-insulated wire, there are a to-
tal of Ni unknown expansion coefficients, Ni = 1 + Ai + Bi, for the free plus bound
charge on the conductor peripheries and a total of N ′

i unknown expansion coefficients,
N ′

i = 1 + A′
i + B′

i, for the bound charge on the outer dielectric periphery. For a total
of n + 1 wires, this gives a total number of unknowns of N + N ′, where

N =
n∑

i=0

Ni

= (n + 1) +
n∑

i=0

Ai +
n∑

i=0

Bi (5.42a)

N ′ =
n∑

i=0

N ′
i

= (n + 1) +
n∑

i=0

A′
i +

n∑
i=0

B′
i (5.42b)

unknowns. Observe that the total bound charge at the dielectric–conductor boundary
per unit of line length must equal the total bound charge per unit of line length at
the dielectric–free-space boundary but their distributions will not be the same. To
determine the total charge on each surface per unit of line length, we integrate the
charge distribution in (5.40) and (5.41) to yield

qif − qib =
2π∫
0

(ρif − ρib) rwidθi

= 2πrwi ai0 (C/m) (5.43a)

and

qib =
2π∫
0

(
ρ′

ib

)
(rwi + ti) dθi

= 2π (rwi + ti) a′
i0 (C/m) (5.43b)

where ti is the thickness of the dielectric for the ith wire.
In order to enforce the boundary conditions, we choose points on each conduc-

tor periphery at which to enforce the conductor potential φi and points on each
dielectric–free-space periphery at which to enforce the continuity of the normal com-
ponents of the electric flux density vector due to all these charge distributions. This



184 THE PER-UNIT-LENGTH PARAMETERS FOR MULTICONDUCTOR LINES

gives a set of N + N ′ simultaneous equations of a form similar to (5.35):

[
�

0

]
=
[

D11 D12
D21 D22

] [
A
A′
]

(5.44)

The first N = ∑n
i=0 Ni rows enforce the conductor potentials, and the second N ′ =∑n

i=0 N ′
i rows enforce the continuity of the normal components of the electric flux

density vector across the dielectric–free-space interfaces. The vector A contains the
N = ∑n

i=0 Ni expansion coefficients of the free plus bound charge at the conductor
peripheries, and the vector A′ contains the N ′ = ∑n

i=0 N ′
i expansion coefficients of

the bound charge at the dielectric–free-space peripheries. The match points around
the two peripheries are not chosen to be evenly spaced but are chosen with a scheme
that avoids giving a singular matrix in (5.44) [C.3].

The entries in (5.44) can be obtained by considering a cylindrical boundary of ra-
dius rb of infinite length shown in Figure 5.12, which supports the charge distributions
1, cos (mθb), and sin (mθb) around its periphery. This is identical to the problem of
free charge around a conductor periphery considered in the previous section, but here
the charge distribution can represent free or bound charge distributions. Proceeding
as in the previous section by modeling the charge distributions as weighted filaments
of charge gives the potential both inside and outside the boundary. Similarly, the elec-
tric field due to these charge distributions can be obtained from the gradient of these
potential solutions [A.1]:

�E(rp, θp) = −∇φ

= −∂φ

∂r
�ar − 1

rp

∂φ

∂θ
�aθ (5.45)

FIGURE 5.12 The general problem of determining the potential inside and outside a charge
distribution.
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TABLE 5.2 Match point outside the charge distribution, rp ≥ rb.

Charge distribution Contribution to the potential at P Contribution to the electric field at P

1 − rbln
(
rp

)
ε

rb

εrp
�ar

cos (mθb)
rm+1

b cos
(
mθp

)
2ε m rm

p

1
2ε

(
rb

rp

)m+1{
cos (mθp)�ar

+sin (mθp)�aθ

}

sin (mθb)
rm+1

b sin
(
mθp

)
2ε m rm

p

1
2ε

(
rb

rp

)m+1{
sin (mθp)�ar

−cos (mθp)�aθ

}

Carrying out these operations, the potential and electric field at a point rb, θb both
inside and outside the charge distribution are given in Tables (5.2) and (5.3) [C.1–C.3].

Inverting Eq. (5.44)gives




A0
...

Ai

...
An

· · ·
A′

0
...

A′
i

...
A′

n




=




B00 · · · B0j · · · B0n

...
...

...
...

...
Bi0 · · · Bij · · · Bin

...
...

...
...

...
Bn0 · · · Bnj · · · Bnn

· · · · · · · · · · · · · · ·
B′

00 · · · B′
0j · · · B′

0n

...
...

...
...

...
B′

i0 · · · B′
ij · · · B′

in

...
...

...
...

...
B′

n0 · · · B′
nj · · · B′

nn

...

...
...

... · · · · · ·

...
...

...
· · · · · · · · · · · · · · · · · ·
...
...

...
... · · · · · ·
...

...
...







�0
...

�j

...
�n

· · ·
0
...
0
...
0




(5.46a)

TABLE 5.3 Match point inside the charge distribution, rp < rb.

Charge distribution Contribution to the potential at P Contribution to the electric field at P

1 − rbln (rb)

ε
0

cos (mθb)
rm

p cos
(
mθp

)
2ε m rm−1

b

− 1
2ε

(
rp

rb

)m−1{ cos (mθp)�ar

−sin (mθp)�aθ

}
sin (mθb)

rm
p sin

(
mθp

)
2ε m rm−1

b

− 1
2ε

(
rp

rb

)m−1{ sin (mθp)�ar

+cos (mθp)�aθ

}
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which becomes




A0
...

Ai
...

An

· · ·
A′

0
...

A′
i

...
A′

n




=




B00 · · · B0j · · · B0n

...
...

...
...

...
Bi0 · · · Bij · · · Bin

...
...

...
...

...
Bn0 · · · Bnj · · · Bnn

· · · · · · · · · · · · · · ·
B′

00 · · · B′
0j · · · B′

0n

...
...

...
...

...
B′

i0 · · · B′
ij · · · B′

in

...
...

...
...

...
B′

n0 · · · B′
nj · · · B′

nn







�0
...

�j

...
�n


 (5.46b)

Recall that the charge at the conductor–dielectric interface consists of free charge
plus bound charge, ρif –ρib. The entries in the generalized capacitance matrix relate
the free charge on the conductors to the conductor potentials. Therefore, according to
(5.43a) and (5.43b), we must add the total (bound) charge at the dielectric–free-space
surface to the total (bound plus free) charge at the conductor–dielectric surface in
order to obtain the free charge on the conductor to give the total per-unit-length free
charge for each wire as

qif = (qif − qib) + qib

= 2πrwiai0 + 2π (rwi + ti) a′
i0 (5.47)

Thus, in a fashion similar to the bare conductor case above, the entries in the gener-
alized capacitance matrix can be obtained from (5.47) as

Cij = qif

φj

∣∣∣∣
φ0= ··· =φj−1=φj+1= ··· =φn=0

= 2πrwi

∑
first row

Bij + 2π (rwi + ti)
∑

first row

B′
ij (5.48)

where
∑

first rowBij denotes the sum of the elements in the first row of the submatrix
Bij of (5.46b) relating the coefficients of the bound plus free charge at the ith conductor
interface to the potential of the jth conductor, φj , and

∑
first rowB′

ij denotes the sum of
the elements in the first row of the submatrix B′

ij of (5.46b) relating the coefficients
of the bound charge at the dielectric–free-space interface for the ith conductor to the
potential of the jth conductor, φj .
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FIGURE 5.13 Dimensions of a three-wire ribbon cable for illustration of numerical results.

5.2.3 Computed Results: Ribbon Cables

As an illustration of the numerical results, consider the three-wire ribbon cable shown
in Figure 5.13. The outside wire is chosen for the reference conductor. The center-to-
center separations of the wires are 50 mils (1 mil = 0.001 inch). The wires are identical
and are composed of # 28 gauge (7 × 36) stranded wires with radii of rw = 7.5 mils
and polyvinyl chloride (PVC) insulations of thickness t = 10 mils and relative dielec-
tric constant εr = 3.5. The results are computed using the RIBBON.FOR computer
program described in Appendix A, which implements the method described in this
section for ribbon cables. The generalized capacitance matrix was computed using
10 Fourier coefficients around each wire surface (the constant term and nine cosine
terms) and 10 Fourier coefficients around each dielectric–free-space surface and the
results are shown in Table 5.4.

The per-unit-length transmission-line capacitance matrices C and C0 become as
shown in Table 5.5. The last column of Table 5.5 shows the effective dielectric constant
(relative permittivity) as ε′

r = [C]ij / [C0]ij . The per-unit-length inductances shown in

TABLE 5.4 The generalized capacitances for the three-wire ribbon cable with and
without the dielectric insulations.

Entry With dielectric (pF/m) CCCCCC Without dielectric (pF/m) CCCCCC0

C00 26.2148 17.6900
C01 −18.0249 −10.5205
C02 −5.03325 −4.22544
C11 37.8189 22.9694
C12 −18.0249 −10.5205
C22 26.2148 17.6901
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TABLE 5.5 The transmission-line capacitances for the three-wire ribbon cable with
and without the insulation dielectrics.

Entry With dielectric (pF/m) C Without dielectric
(pF/m) C0

Effective dielectric
constant, ε′

r

C11 37.432 22.494 1.664
C12 −18.716 −11.247 1.664
C22 24.982 16.581 1.507

TABLE 5.6 The transmission-line inductances for the three-wire ribbon cable computed
exactly and using the wide-separation approximations.

Entry Exact (µH/m) Wide-separation approxation (µH/m) Percent error (%)

L11 0.74850 0.75885 1.38
L12 0.50770 0.51805 2.04
L22 1.0154 1.0361 2.04

Table 5.6 were computed exactly as L = µ0ε0C−1
0 , and using the wide-separation

approximations.
The wide-separation approximations are computed from (5.23) using the FOR-

TRAN program WIDESEP.FOR described in Appendix A as

l11 = µ0

π
ln

(
d

rw

)

l12 = µ0

2π
ln

(
2d

rw

)

l22 = µ0

π
ln

(
2d

rw

)

Once again, the wide-separation approximations give results for the entries in the
per-unit-length inductance matrix that are within some 2 % of the values computed
from L = µ0ε0C−1

0 . The ratio of adjacent wire separation to wire radius is 6.67, so
we would expect this.

Figure 5.14 illustrates the convergence of the method for the three-wire ribbon
cable. The per-unit-length inductances and per-unit-length capacitances are plotted
versus the number of Fourier coefficients around the wire and dielectric boundaries
in Figure 5.14(a) and (b), respectively. Observe that the inductances converge
to accurate values after about two Fourier coefficients per boundary, whereas the
capacitances require on the order of three or four Fourier coefficients per boundary for
convergence.
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FIGURE 5.14 Convergence of the per-unit-length parameters of the three-wire ribbon cable
versus number of expansion coefficients: (a) inductances and (b) capacitances.

5.3 MULTICONDUCTOR LINES HAVING CONDUCTORS
OF RECTANGULAR CROSS SECTION

The basic solution problem in determining the entries in the per-unit-length param-
eter matrices L, C, and G remains the same as before. The per-unit-length parameters
of inductance, capacitance, and conductance are all obtained as the static (dc) solu-
tion of the fields in the transverse x–y plane for perfect conductors. Essentially, this
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means that we need to solve Laplace’s or Poisson’s equation in the two-dimensional
transverse plane [A.1]:

∇2φ(x, y) = ∂2φ

∂x2 + ∂2φ

∂y2 = ρ(x, y) (5.49)

There are various methods for solving this equation. The method we will use de-
termines an approximate solution using various numerical techniques that we will
discuss in this section.

5.3.1 Method of Moments (MoM) Techniques

MoM techniques essentially solve integral equations where the unknown is in the
integrand. An example is the integral form of Poisson’s equation in the transverse
x–y plane:

φ(x, y) = 1

4πε

∫ ∫
s

ρ(x′, y′)
r

ds (5.50)

where a charge distribution in the x–y plane, ρ, is distributed over some surface
s. Ordinarily, we know or prescribe the potential at points in the region (e.g., on
perfectly conducting bodies) and wish to determine the charge distribution that
produces it. Thus, we need to solve an integral equation for the integrand [A.1, 2–5].

The problems of interest here are the perfect conductors in the two-dimensional
plane that are infinite in length (in the z direction) and the ith conductor that has
some unknown surface charge density, ρi (x, y) (C/m2), residing on its surface as
illustrated in Figure 5.15. Observe that the units of this charge distribution are
per square meter: One dimension is along the z axis and the other dimension is

FIGURE 5.15 Illustration of the solution of Poisson’s equation in two dimensions.
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around the conductor surface in the transverse x–y plane. One common way of
doing this, which we used for the ribbon cable, is to approximate the charge dis-
tribution around the two-dimensional conductor periphery as infinitely long fila-
ments of charge in the z direction (C/m) and use the basic problem of the poten-
tial of an infinitesimal line charge that was developed in Section 4.2.1. This forms
the basis for numerical techniques that are used to analyze these two-dimensional
structures of infinite length for determining the per-unit-length parameters [2–5].
Thus, we initially solve the problem of the potential of an infinitely long filament
of charge carrying a per-unit-length charge in the z direction, which is uniformly
distributed in the z direction. The potential at a point is the sum of the potentials of
each line charge that makes up the desired charge distribution around the conductor
periphery.

A more general way is to represent the charge distribution over the ith conductor
surface as a linear combination of basis functions, ρik, as

ρi (x, y) = αi1ρi1 (x, y) + αi2ρi2 (x, y) + · · · + αiNiρiNi (x, y)

=
Ni∑

k=1

αikρik (x, y)
(5.51)

Entire domain expansions use basis functions that are nonzero over the entire contour
of the surface in the same manner as a Fourier series represents a time-domain func-
tion using basis functions defined over the time interval encompassing one complete
period. This was the technique used earlier to expand the charge distributions around
the wire and dielectric insulation peripheries of ribbon cables. Subdomain expansions
seek to represent the charge distribution over discrete segments of the surface contour
[C.1,C.2]. Each of the expansion basis functions, ρik, are defined over the discrete
segments of the contour, cik, and are zero over the other segments. We will concentrate
on the subdomain expansion method. There are many ways of choosing the expan-
sion functions over the segments. One of the simplest ways is to represent the charge
distribution as a “staircase function,” where the charge distribution is constant over
the segments of the contour:

ρik =
{

1,

0,

∈ cik

/∈ cik
(5.52)

This is illustrated in Figure 5.16 and is referred to as the pulse expansion method. The
charge distribution is assumed to be constant over the segments cik of the surface, but
the levels αik are unknown as yet. Hence, we are making a “staircase” approximation
to the true distribution. This is the essence of the MoM method that we will use for
PCBs. More elaborate approximations such as triangular distributions may be made
with corresponding increase in difficulty of analysis.

In order to illustrate the method as applied to PCB structures, consider a PCB shown
in Figure 5.17(a) where three infinitesimally thin lands (flat, perfect conductors) reside
on the surface of a dielectric substrate having a relative permittivity of εr. Each land is
at potential φi and carries a per-unit-length charge distribution qi(C/m). This charge
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FIGURE 5.16 Illustration of the pulse expansion of a charge distribution on a flat strip.

distribution qi is the total charge on the land per unit of line length in the z direction.
Figure 5.17(b) shows an important distinction between the case of PCB lands and the
case of round wires; the charge distributions across the land widths on PCB lands,
ρi(C/m2), tend to peak at the edges of the lands [6]. In order to determine the per-

FIGURE 5.17 Illustration of the charge distributions over the lands of a PCB.
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unit-length capacitance matrix for this structure we must relate these per-unit-length
charge distributions qi to the conductor potentials φi, with the generalized capacitance
matrix C as

[
q0
q1
q2

]
︸ ︷︷ ︸

Q′

=
[

C00 C01 C02
C10 C11 C12
C20 C21 C22

]
︸ ︷︷ ︸

CCCCCC

[
φ0
φ1
φ2

]
︸ ︷︷ ︸

�

(5.53)

We represent this charge distribution over each land as in (5.51) with the staircase
approximation or pulse expansion method given in (5.52) as illustrated in Figure
5.18(a). The αik unknown levels of the charge distributions are to be determined
to satisfy the boundary condition that the potential over the ith conductor is φi as
illustrated in Figure 5.18(b). The total charge (per unit length in the z direction) in

FIGURE 5.18 Illustration of (a) approximating the charge distribution over a land with
piecewise-constant expansion functions and (b) matching the potential at the center of each strip.
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C/m is obtained by summing the charges of the subsections of that conductor:

qi =
Ni∑

k=1

αik

∫
ci

ρikdci (C/m) (5.54)

In the case of the pulse expansion method, this simplifies to

qi = αi1wi1 + αi2wi2 + · · · + αiNiwiNi

=
Ni∑

k=1

αikwik (C/m)
(5.55)

where wik is the width of the kth segment of the ith conductor. The potential at a
point on the ith conductor due to this representation will be due to the contributions
from all the unknown charge distributions and can therefore be written as a linear
combination of them as

φi(x, y) =
Ni∑

k=1

Kikαik (5.56)

Each coefficient Kik is determined as the contribution to the potential due to each
basis function alone:

Kik = φi|αik=1, αi1,...,αik−1,αik+1,...,αiNi
=0 (5.57)

There are many ways of generating the required equations. One rather simple tech-
nique is the method of point matching. For illustration consider a system of n + 1
conductors each having a prescribed potential of φi for i = 0, 1, . . . , n. We next en-
force the potential of each conductor, φi, due to all charge distributions in the system
to be the potential of that conductor at the center of each subsection of the conductor.
Typical resulting equations are of the form

φi =
N0∑
k=1

K0kα0k + · · · +
Ni∑

k=1

Kikαik + · · · +
Nn∑
k=1

Knkαnk (5.58)

Choosing a total of

N =
n∑

k=0

Nk (5.59)

points on the conductors gives the following set of N simultaneous equations in terms
of the expansion coefficients:

� = D A (5.60a)
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or, in expanded form,




�0
...

�i
...

�n


 =




D00 · · · D0j · · · D0n

...
...

...
...

...
Di0 · · · Dij · · · Din

...
...

...
...

...
Dn0 · · · Dnj · · · Dnn







A0
...

Aj

...
An


 (5.60b)

The vector of potentials at the match points on the ith conductor is denoted as

�i =




φi
...
φi
...
φi


 (5.60c)

and the vector of expansion coefficients of the charge distribution on the ith conductor
is denoted as

Ai =




αi1
...

αik
...

αiNi


 (5.60d)

Inverting (5.60) gives

A = D−1� (5.61a)

or, in expanded form,




A0
...

Ai
...

An


 =




B00 · · · B0j · · · B0n

...
...

...
...

...
Bi0 · · · Bij · · · Bin

...
...

...
...

...
Bn0 · · · Bnj · · · Bnn







�0
...

�j

...
�n


 (5.61b)

Once the expansion coefficients are obtained from (5.61), the total charge (per unit
of length in the z direction in C/m) can be obtained from (5.55). The generalized
capacitance matrix CCCCCC can then be obtained. In the case of point matching and pulse
expansion functions as with flat conductors, the entries in the generalized capacitance
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matrix can be directly obtained from (5.61) as

Cij = wi1

∑
row 1

Bij + wi2

∑
row 2

Bij + · · · + wiNi

∑
row Ni

Bij (5.62)

where wik is the width of the kth subsection of the ith conductor. This simple result
is obtained from (5.55):

qi = αi1wi1 + αi2wi2 + · · · + αiNiwiNi

=
Ni∑

k=1

αikwik (C/m) (5.55)

and is due to the fact that a submatrix of (5.61b) relates




αi1
...

αik
...

αiNi


 =


 Bij







φj

...
φj

...
φj


 (5.63a)

Expanding this gives the expansion coefficients as

αik =
{∑

row k

Bij

}
φj (5.63b)

If the widths of all conductor segments are chosen to be the same and designated as
w, then the elements of the generalized capacitance matrix are simplified as

Cij = w
∑

Bij (5.64)

where
∑

Bij is the sum of all the elements in the submatrix Bij .
Thus, the basic subproblem is determining Kik in (5.57), that is, determining the

potential at the center of a segment due to a constant charge distribution of unit value,
αik = 1(C/m2), over some other segment where that segment can be associated with
another conductor. In order to illustrate this, consider the infinitesimally thin conduct-
ing strip of width w and infinite length supporting a charge distribution ρ(C/m2) that
is constant along the strip cross section as shown in Figure 5.19. If we treat this as
an array of wire filaments each of which bears a charge per unit of filament length of
ρdx C/m, then we may determine the potential at a point as the sum of the potentials
of these filaments again using the basic result for the potential of a filament given in
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FIGURE 5.19 Calculation of the potential due to a constant charge distribution on a flat strip.

(4.16) or (5.30) [2, 5]:

φ(w, xp, yp) = − ρ

2πε

w

2∫
x=−

w

2

ln

(√(
xp − x

)2 + (
yp
)2
)

dx

= − ρ

4πε

[(
xp + w

2

)
ln

((
xp + w

2

)2 + y2
p

)

−
(
xp − w

2

)
ln

((
xp − w

2

)2 + y2
p

)

−2w + 2yp


tan −1


xp + w

2
yp


− tan −1


xp − w

2
yp




]

(5.65)

This integral is evaluated using [7]. This may be simplified somewhat if we denote
the distances from the edges of the strip as R+ and R− and the angles as θ+ and θ−,
as shown in Figure 5.19. In terms of these (5.65) becomes

φ(w, xp, yp) = ρ

2πε

[
xpln

(
R+

R−

)
− w

2
ln
(
R+R−)+ w − yp

(
θ+ − θ−)] (5.66)
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In the case where the field or observation point lies at the midpoint of the strip in
question, this becomes

φ(w) = ρ

2πε
w
[
1 − ln

(w

2

)]
(5.67)

The electric field due to this charge distribution will be needed for problems that
involve dielectric interfaces. The electric field can be computed from this result as
[A.1]

�E = −∂φ

∂x
�ax − ∂φ

∂y
�ay (5.68)

As an illustration of this method, consider the rectangular conducting box shown
in Figure 5.20. The four walls are insulated from one another and are maintained
at potentials of φ1 = 0, φ2 = 10 V, φ3 = 20 V, and φ4 = 30 V. Suppose we divide
the two vertical conductors into four segments each and the horizontal members into
three segments each. Using pulse expansion functions for each segment and point
matching gives 14 equations in 14 unknowns (the levels of the assumed constant
charge distributions over each segment). Using the above results gives the potentials
at the six interior points as shown in Table 5.7.

The exact results were obtained via a direct solution of Laplace’s equation using
separation of variables. In terms of the general parameters denoted in Figure 5.20,

FIGURE 5.20 A two-dimensional problem for demonstration of the solution of Laplace’s
equation via the pulse expansion–point matching method.
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TABLE 5.7

MoM Exact

φa(x = 1, y = 3) 16.433 16.4784
φb(x = 2, y = 3) 21.834 21.8499
φc(x = 1, y = 2) 14.130 14.1575
φd(x = 2, y = 2) 20.514 20.4924
φe(x = 1, y = 1) 9.527 9.60942
φf (x = 2, y = 1) 14.934 14.9810

the solution is [8]

φ(x, y) =
∞∑

n = 1
n odd

{
4

nπ

sin (nπy/b)

sinh(nπa/b)

[
φ4 sinh

(nπx

b

)
+ φ2 sinh

(nπ

b
(a − x)

)]

+ 4

nπ

sin (nπx/a)

sinh(nπa/b)

[
φ3 sinh

(nπy

a

)
+ φ1 sinh

(nπ

a
(b − y)

)]}

where a = 3, b = 4, and φ1 = 0, φ2 = 10 V, φ3 = 20 V, and φ4 = 30 V. The solu-
tion using finite-difference and finite-element methods will be given in subsequent
subsections.

The pulse expansion–point matching technique described above is particularly
simple to implement in a digital computer program. Achieving convergence generally
requires a rather large computational expense since the conductor subsections must be
chosen sufficiently small to give an accurate representation of the charge distributions.
This is particularly true in the case of lands on PCBs where the charge distribution
peaks at the edges of each land. There are other choices of expansion functions such
as triangles or piecewise sinusoidal functions, but the programming complexity also
increases. For this reason, we will use the pulse expansion–point matching method
for PCBs.

5.3.1.1 Applications to Printed Circuit Boards The above MoM method can be
adapted to the computation of the per-unit-length capacitances of conductors with
rectangular cross sections as occur on PCBs. Consider a typical PCB shown in Figure
5.21(a) having infinitesimally thin conducting lands on the surface of a dielectric
board of thickness t and relative dielectric constant of εr. The widths of the lands are
denoted as wi and the edge-to-edge separations are denoted as sij . A direct approach
would be to subsection each land into Ni segments of length wik. The charge on
each subsection could be represented using the pulse expansion method as being
constant over that segment with unknown level of αik. We could similarly subsection
the surface of the dielectric and represent the bound charge on that surface with pulse
expansions. A more direct way would be to imbed the dielectric in the basic Green’s
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FIGURE 5.21 A PCB for illustration of the determination of the per-unit-length capacitances.

function. We will choose to do this. Thus, the problem becomes one of subsectioning
the conductors immersed in free space as illustrated in Figure 5.21(b).

First, we consider solving the problem with the board removed as in Figure 5.21(b)
and then we will consider adding the board. Consider the subproblem of a strip of
width w representing one of the subsections of a land shown in Figure 5.22. We need
to determine the potential at a point a distance d from the strip center and in the plane
of the strip. This basic subproblem was solved earlier, and the results of (5.65) and
(5.67) specialized to this case are as follows. For a point at the center of the strip, that
is, d = 0, the self-potential is given by (5.67):

φself (w) = 1

2πε0

[
w − wln

(w

2

)]
= w

2πε0

[
1 − ln

(w

2

)]
(5.69a)

FIGURE 5.22 Illustration of the determination of the potential due to a constant charge
distribution on a flat strip via point matching.



MULTICONDUCTOR LINES HAVING CONDUCTORS OF RECTANGULAR 201

For the potential on another segment where d �= 0 and generally d > w/2, the potential
is

φ (w, d) = 1

2πε0

[
w +

(
d − w

2

)
ln
(
d − w

2

)
−
(
d + w

2

)
ln
(
d + w

2

)]
= φself (w) + w

2πε0

[
1

2
(2D − 1) ln (2D − 1) − 1

2
(2D+1) ln (2D+1)

]
(5.69b)

The mutual result in (5.69b) is written in terms of the self term in (5.69a) and the ratio
of the subsection separation to subsection width:

D = d

w
(5.69c)

Next consider incorporating the dielectric board into these basic results. The first
problem that needs to be solved is that of an infinite (in the z direction) line charge of
q C/m situated at a height h above the plane interface between two dielectric media
as shown in Figure 5.23. The upper half space has free-space permittivity ε0, and
the lower half space has permittivity ε = εr ε0. This classic problem allows one to
compute the potential in each region by images in the same fashion as though the lower
region were a perfect conductor [1, 9]. The solution can be obtained by visualizing
lines of electric flux density, ψ, enamating from the line charge. For an infinite line
charge carrying a per-unit-length charge density of q C/m, the electric flux density at
a distance r from the line charge is [A.1]

ψ = D

= q

2π r

(5.70)

FIGURE 5.23 Illustration of the method of images for a point charge above an infinite
dielectric half space.
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In a region of permittivity ε, the electric field intensity E is related to D as D = ε E.
Consider one such flux line emanating from the line charge that is incident on the
interface at some angle θi. Some of this flux can be visualized as passing through the
interface as (1 + k) ψ, whereas some is reflected at an angle θr as −kψ. The boundary
conditions at the interface require that the normal components of the electric flux
density be continuous or

ψsin θi + kψsin θr = (1 + k)ψsin θi (5.71a)

This shows that the angles of incidence and reflection are the same (Snell’s law), θi =
θr [A.1]. Similarly, the tangential components of the electric field must be continuous
across the interface giving

1

ε0
ψcos θi − 1

ε0
kψcos θr = 1

εrε0
(1 + k)ψcos θi (5.71b)

Recalling that θi = θr gives

k = εr − 1

εr + 1
(5.72a)

and

(1 + k) = 2εr

εr + 1
(5.72b)

We will find the following combinations of k arising later:

(1 − k) = 2

εr + 1

= 1

εr,eff

(5.73a)

and (
1 − k2

)
= 2

εr + 1
(1 + k)

= 1

εr,eff
(1 + k) (5.73b)

and

εr,eff = εr + 1

2
(5.73c)

We have written (5.73) in terms of an effective relative permittivity, (εr + 1)/2. This
would be the effective permittivity for the half space in Figure 5.23 as the average of
the two permittivities.
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FIGURE 5.24 Solution for the potential in each half space in Figure 5.23.

The potential in each half space can be determined as two complementary problems
illustrated in Figure 5.24. The potential in a region of permittivity ε at a distance d
from an infinite line charge bearing a charge distribution of q C/m is [A.1]

φ (d) = − q

2π ε
ln (d)

= − q

4π ε
ln
(
d2
) (5.74)

This omits the reference potential. The potential in the upper half space (y > 0) is
as though it were due to the original charge q at the original height h and an image
charge −kq with the dielectric removed and at a distance h below the interface as
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shown in Figure 5.24(a):

φ+(x, y) = − q

4πε0
ln
[
x2 + (y − h)2

]
+ kq

4πε0
ln
[
x2 + (y + h)2

]
(5.75a)

The potential below the interface (y < 0) is computed as though it is due to a line
charge (1 + k) q located at a height h above the interface with the upper free-space
region replaced by the dielectric as shown in Figure 5.24(b):

φ−(x, y) = − (1 + k) q

4πεrε0
ln
[
x2 + (y − h)2

]
(5.75b)

The problem of imaging across a dielectric boundary can be visualized as reflection
of the electric flux density vector at the interface similar to optics as shown in Figure
5.25. For a source in the region of permittivity ε0 crossing a boundary into a region of
permittivity εrε0 as shown in Figure 5.25(a), the reflected and transmitted electric flux
densities are as shown. On the contrary, for a source in the region of permittivity εrε0
crossing a boundary into a region of permittivity ε0 as shown in Figure 5.25(b), the
reflected and transmitted electric flux densities are as shown. The reflected ray is the
incident ray, instead of being multiplied by −k is multiplied by k. The transmitted ray is

FIGURE 5.25 Solution of the half-space dielectric problem in Figure 5.23 in terms of fluxes.
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FIGURE 5.26 Images of a point charge above a dielectric slab of finite thickness.

the incident ray, instead of being multiplied by (1 + k) is multiplied by (1 − k). Hence,
for the case of two dielectric boundaries representing a PCB dielectric substrate such
as shown in Figure 5.26, we can easily successively image across both boundaries
using this idea. This then gives an infinite set of images.

The problem now of interest for the PCB is a line charge on the surface of a
dielectric slab (the PCB board) of relative permittivity εr and thickness t shown in
Figure 5.27(a). We wish to find the potential at a point on the board at a distance d
from the line charge. Specializing the results of Figure 5.26 for h = 0 gives the images
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FIGURE 5.27 Illustration of the replacement of a dielectric slab of finite thickness with
images to be used in modeling a PCB.

shown in Figure 5.27(b) where, for the purposes of computing the potential above the
board, the board is replaced with free space. Utilizing 5.74, the potential then is of
the form of a series:

φ(d) = − q

4πε0
(1 − k) ln

[
d2
]

− q

4πε0

(
1 − k2

) ∞∑
n=1

k(2n−1)ln
[
d2 + (2nt)2

]

= − q

4πε0εr,eff
ln
[
d2
]

− q

4πε0εreff
(1 + k)

∞∑
n=1

k(2n−1)ln
[
d2 + (2nt)2

]
(5.76)

and we have replaced items with those given in 5.73. This series converges rapidly as

k = (εr − 1)

(εr + 1)
< 1
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FIGURE 5.28 Illustration of the determination of the per-unit-length capacitances for a PCB
by point matching.

Applying this result for a line charge to a infinitesimally thin strip on a dielectric
slab by representing the charge distribution (pulse expansion function) as a set of 1
C/m line charges as shown in Figure 5.28 requires performing the following integral:

φ(d) = − 1

4πε0εr,eff

w

2∫
−

w

2

ln
[
(x + d)2

]
dx

− 1

4πε0εr,eff
(1 + k)

∞∑
n=1

k(2n−1)

w

2∫
−

w

2

ln
[
(x + d)2 + (2nt)2

]
dx

(5.77)

For a point at the center of the strip, that is, d = 0, the self-potential is given by

φself (w) = 1

2πε0εr,eff

[
w − wln

(w

2

)]
+ 1

2πε0εr,eff
(1 + k)

∞∑
n=1

k(2n−1)×{
w − w

2
ln

[(w

2

)2 + (2nt)2
]

− (4nt) tan −1
( w

4nt

)}
(5.78a)

For the potential on another segment where d �= 0 and generally d > w/2, the potential
is

φ(w, d) = 1

2πε0εr,eff

[
w +

(
d − w

2

)
ln
(

d − w

2

)
−
(

d + w

2

)
ln
(

d + w

2

)]
+ 1

2πε0εr,eff
(1 + k)

∞∑
n=1

k(2n−1)

{
w + 1

2

(
d − w

2

)
ln

[(
d − w

2

)2

+ (2nt)2

]

− 1

2

(
d + w

2

)
ln

[(
d + w

2

)2

+ (2nt)2

]

+ (2nt)

[
tan −1

(
d − w

2
2nt

)
− tan −1

(
d + w

2
2nt

)]}
(5.78b)
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These results can be simplified and written as

φself (w) = w

2πε0εr,eff

[
1 − ln

(
w

2

)]
+ w

2πε0εr,eff
(1 + k)

∞∑
n=1

k(2n−1)
{

1 − ln
(

w

2

)
− 1

2
ln
[

1 + (4nT )2
]

− (4nT ) tan −1
(

1

4nT

)} (5.79a)

and

φ(w, d) = w

2πε0εr,eff

[
1 − ln

(
w

2

)
+ 1

2
(2D − 1) ln (2D − 1) − 1

2
(2D + 1) ln (2D + 1)

]
+ w

2πε0εr,eff
(1 + k)

∞∑
n=1

k(2n−1)

×
{

1 − ln
(

w

2

)
+ 1

4
(2D − 1)ln

[
(2D − 1)2 + (4nT )2

]
− 1

4
(2D + 1)ln

[
(2D + 1)2 + (4nT )2

]
+ (2nT )

[
tan −1

(
2D − 1

4nT

)
− tan −1

(
2D + 1

4nT

)]}
(5.79b)

The results have been written in terms of the ratios of the subsection separation to
subsection width, D, and board thickness to land width, T:

D = d

w
(5.80a)

and

T = t

w
(5.80b)

Recall that

εr,eff = (εr + 1)

2
(5.80c)

denotes the effective dielectric constant as the board thickness becomes infinite,
t → ∞, such that it fills the lower half space so that half the electric field lines would
exist in air and the other half in the infinite half space occupied by the board. These
results are used in the FORTRAN program PCB.FOR described in Appendix A to
compute the entries in the per-unit-length capacitance matrix C of a PCB. The per-
unit-length inductance matrix L is computed with the board removed from the basic
relationship derived earlier:

L = µ0ε0C−1
0 (5.81)

where C0 is the per-unit-length capacitance matrix with the board removed.
As an example consider the three-conductor PCB shown in Figure 5.29 consisting

of three conductors of equal width w and identical edge-to-edge separations s. The
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FIGURE 5.29 A PCB consisting of identical conductors with identical separations for the
computation of numerical results.

following computed results are obtained with the FORTRAN program PCB.FOR
(pulse expansion functions and point matching). The results will be computed for
typical board parameters: εr = 4.7 (glass epoxy), t = 47 mils, w = s = 10 mils. Choos-
ing the left-most conductor as the reference conductor, Figure 5.30(a) compares the
elements of the per-unit-length inductance matrix L, Figure 5.30(b) compares the
elements of the per-unit-length capacitance matrix C, and Figure 5.30(c) compares
the elements of the per-unit-length capacitance without the board, C0, computed for
various numbers of land subdivisions. Observe that convergence is achieved for about
20–30 subdivisions of each land. As a check on these results, observe that L22 > L11
as it should be since the loop area between the reference conductor and the second
conductor is larger than the loop area between the reference conductor and the first
conductor. Similarly, in the capacitance plots observe that C11 > C22 and C011 > C022
since the first conductor is closer to the reference conductor. Figure 5.31 shows the
convergence for the capacitances for various numbers of land subdivisions with, C,
and without, C0, the board. If one takes the ratios of the corresponding capacitance
with and without the board, we see that the effective relative dielectric constant is on
the order of 2.6–2.8 for this land width, land separation, and board thickness. This is
on the order of the effective dielectric constant

εr,eff = εr + 1

2
= 2.85

if the board occupied the infinite half space such that half the electric field lines would
reside in free space and the other half in the board. We would expect this to be the
case for (a) moderately thick boards and (b) closely spaced lands. For wide land
separations, more of the electric field lines exit the bottom of the board and are more
important than for closely spaced lands.

There are no known closed-form solutions for this problem, but we may compare
the computed results of PCB.FOR to the approximate relations of Chapter 4 for
two-conductor PCBs. For example, the results for a two-conductor PCB are given
in Eqs. (4.109) of Chapter 4. For example, consider a two-conductor PCB having
εr = 4.7, w = s = 15 mils and t = 62 mils. Equations (4.109) give l = 0.804 µH/m
and c=38.53 pF/m. PCB.FOR using 30 divisions per land gives l = 0.809 µH/m
and c = 38.62 pF/m, a difference of 0.2–0.6 %. For a PCB having εr = 4.7,
w = s = 5 mils and t = 47 mils, the formulas in (4.109) of Chapter 4 give
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FIGURE 5.30 Illustration of the per-unit-length (a) inductances, (b) capacitances, and (c)
capacitances with the board removed for various numbers of divisions of each land for εr = 4.7,
land width = separation = 10 mils, and board thickness = 47 mils.

l=0.804 µH/m and c = 39.06 pF/m, whereas PCB.FOR using 30 divisions per land
gives l = 0.809 µH/m and c = 39.07 pF/m, a difference of 0.03–0.6 %.

And finally, we will compute the entries in C and L for a PCB that will be used
in later crosstalk analyses: εr = 4.7 (glass epoxy), t = 47 mils, w = 15 mils, and
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FIGURE 5.30 (Continued ).

s = 45 mils. This separation is such that exactly three lands could be placed between
any two adjacent lands. The results for the pulse expansion function, point matching
method for 50 divisions per land computed using PCB.FOR are

L =
[

1.10515 0.690613
0.690613 1.38123

]
(µH/m)

C =
[

40.5985 −20.2992
−20.2992 29.7378

]
(pF/m)

5.3.1.2 Applications to Coupled Microstrip Lines Next, we consider applying this
technique to the coupled microstrip consisting of lands (of zero thickness) on a di-
electric substrate of thickness t and relative permittivity εr with an infinite ground
plane on the other side shown in Figure 5.32. The ground plane will serve as the
reference or zeroth conductor so that the computation of the generalized capacitance
matrix will not be necessary for this case: We directly compute the transmission-line
capacitance matrix with the dielectric present, C, and with the dielectric removed,
C0. This is implemented in the FORTRAN computer code MSTRP.FOR described in
Appendix A. We will assume that all lands are of equal width, w, and edge-to-edge
separation, s. Although only three lands are shown, the code will handle any number
of lands with the appropriate dimensioning of the arrays in MSTRP.FOR. This prob-
lem will represent a PCB with innerplanes, that is, the outer surface of the PCB and
the underlying innerplane.
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FIGURE 5.31 Comparison of the capacitances with and without the dielectric board versus
the number of divisions per land from Figure 5.30(b) and (c).

The first and most basic subproblem we must address is the case of an infinitely
long (in the z direction) filament carrying a per-unit-length charge of q C/m on the
surface of the board and the determination of the potential on the board at a distance
d away as shown in Figure 5.33(a). The sequence of images is shown in Figure
5.33(b) with their sequence number shown. With regard to Figures 5.25 and 5.26, we
start with the original charge q and its image across the upper surface that gives a
total of (1 − k) q on the surface of the dielectric with that removed. Then, we image
this across the ground plane in order to remove the ground plane giving the second
image of − (1 − k) q located at a distance t below the original position of the ground
plane or a distance 2t below the first charge. Next, we image this charge across the

FIGURE 5.32 The three-conductor coupled microstrip line with equal land widths and
separations.
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upper surface of the dielectric according to Figure 5.25(b) by multiplying by k to
give an image charge of −k (1 − k) q located at a distance of 2t above the dielectric
surface. Then, this is imaged across the ground plane to give an image charge of
k (1 − k) q located at a distance 3t below the ground plane or a distance of 4t below
the first charge. Successive imaging across the ground plane and the dielectric gives
the sequence of image charges shown in Figure 5.33(b). This allows the computation
of the potential on the surface of the dielectric at a distance d from the original charge

FIGURE 5.33 Determination of (a) the potential on a microstrip due to a line charge by (b)
imaging across the boundaries.
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with the dielectric and the ground plane removed. Hence, we have the simple problem
of computing the potential of an infinite set of line charges in free space. The basic
potential for each of these is

φ (x) = − q

2πε0
ln (x)

= − q

4πε0
ln
(
x2
) (5.82)

Applying this to the sequence of images in Figure 5.33(b) gives

φ (d) = − (1 − k) q

4πε0
ln
[
d2
]

+ (1 − k) q

4πε0
ln
[
d2 + (2t)2

]
+ k (1 − k) q

4πε0
ln
[
d2 + (2t)2

]
− k (1 − k) q

4πε0
ln
[
d2 + (4t)2

]
− k2 (1 − k) q

4πε0
ln
[
d2 + (4t)2

]
+ k2 (1 − k) q

4πε0
ln
[
d2 + (6t)2

]
+ k3 (1 − k) q

4πε0
ln
[
d2 + (6t)2

]
+ · · ·

(5.83)

This can be written as

φ (d) = − (1 − k) q

4πε0
ln
[
d2
]

−
(

1 − k2
)

q

4πε0

∞∑
n=1

(−1)nk(n−1)ln
[
d2 + (2nt)2

]
= − q

4πε0εr,eff
ln
[
d2
]

− q

4πε0εr,eff
(1 + k)

∞∑
n=1

(−1)nk(n−1)ln
[
d2 + (2nt)2

] (5.84)

where we have substituted (1 + k) (1 − k) = (
1 − k2

)
and we have written this in

terms of the effective dielectric constant where the board thickness goes to infinity,
that is, t → ∞:

εr,eff = εr + 1

2

= 1

(1 − k)
(5.85)

Comparing (5.84) to the same basic subproblem solution for the PCB given in (5.76)
shows that we may easily modify the PCB code by simply replacing the summation∑∞

n=1 k(2n−1) in the PCB.FOR program results for the potential with the board present
given in (5.78) and (5.79) with

∑∞
n=1 (−1)nk(n−1):

∞∑
n=1

k(2n−1)

︸ ︷︷ ︸
PCB

⇔
∞∑

n=1

(−1)nk(n−1)

︸ ︷︷ ︸
MSTRP

(5.86)

Hence, we can make a simple modification of PCB.FOR. In addition, we remove the
generalized capacitance calculation from that code as we will be directly computing
the transmission-line capacitance matrix since the reference conductor, the ground
plane, is already designated.

There is one final but subtle difference. Note that the first term in the summation
in (5.84) for n = 1 is nonzero even with the board absent, that is, k = 0. This is the
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term representing the first image across the ground plane. Hence, the self-potential
of a land (d = 0) with the board removed is, from (5.79a) (εr = 1, k = 0),

φself (w) = w

2πε0

[
1 − ln

(
w

2

)]
− w

2πε0

{
1 − ln

(
w

2

)
− 1

2
ln[1 + (4T )2] − 4T tan −1

(
1

4T

)}
= w

2πε0

{
1

2
ln[1 + (4T )2] + 4T tan −1

(
1

4T

)}
(5.87a)

and we have written this in terms of the ratio of dielectric thickness t to land subsection
width w:

T = t

w
(5.88)

Similarly, the potential with the board removed but d �= 0 and generally d > w/2
becomes, from (5.79b),

φ(w, d) = w

2πε0

1

2
{(2D − 1)ln(2D − 1) − (2D + 1)ln(2D + 1)

− 1

2
(2D − 1)ln[(2D − 1)2 + (4T )2]

+ 1

2
(2D + 1)ln[(2D + 1)2 + (4T )2]

+T

[
tan −1

(
2D + 1

4T

)
− tan −1

(
2D − 1

4T

)]
(5.87b)

and we have written this in terms of (5.88) and the ratio of distance to the potential
point, d, to land subsection width w:

D = d

w
(5.89)

The potentials with the board present are obtained from (5.79a) and (5.79b) by
substituting (5.86). For the self-potential term, d = 0, we obtain

φself (w) = − w

2πε0εr,eff
(1 + k)

∞∑
n=1

(−1)nk(n−1)

×
{

1

2
ln
[
1 + (4nT )2

]
+ (4nT ) tan −1

(
1

4nT

)}
(5.90a)
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In reducing this result, we have used the summation (1 − k + k2 − k3 + · · · ) =
1/(1 + k). For d �= 0, the potential becomes, from (5.79b) substituting (5.86),

φ(w, d) = w

2πε0εr,eff

[
1

2
(2D − 1) ln (2D − 1) − 1

2
(2D + 1) ln (2D + 1)

]

+ w

2πε0εr,eff
(1 + k)

∞∑
n=1

(−1)nk(n−1)

×
{

1

4
(2D − 1)ln

[
(2D − 1)2 + (4nT )2

]
(5.90b)

− 1

4
(2D + 1)ln

[
(2D + 1)2 + (4nT )2

]
+ (2nT )

[
tan −1

(
2D − 1

4nT

)
− tan −1

(
2D + 1

4nT

)]}
As an example consider a two-conductor coupled microstrip line consisting of two

conductors of equal width w over a ground plane. The following computed results are
obtained with the FORTRAN program MSTRP.FOR (pulse expansion functions and
point matching). The results will be computed for typical board parameters: εr = 4.7
(glass epoxy), t = 47 mils, and w = s = 10 mils. Figure 5.34(a) compares the elements of
the per-unit-length inductance matrix L, Figure 5.34(b) compares the elements of the
per-unit-length capacitance matrix C, and Figure 5.34(c) compares the elements of the
per-unit-length capacitance without the board, C0, computed for various numbers of
land subdivisions. Observe that convergence is achieved for about 20–30 subdivisions
of each land. Also observe that the capacitances on the main diagonal of C and C0,
C11 and C22 as well as C011 and C022, are equal as they should be by symmetry.
Similarly, L11 = L22 as should be the case by symmetry. Figure 5.35 shows the
convergence for the capacitances for various numbers of land subdivisions. If one takes
the ratios of the corresponding capacitance with and without the board, we see that the
effective relative dielectric constant is on the order of 2.6–3.1 for this land width, land
separation, and board thickness. This is on the order of the effective dielectric constant

εr,eff = εr + 1

2
= 2.85

if the board occupied the infinite half space such that half the electric field lines
would reside in free space and the other half in the board. We would expect this to be
the case for (a) moderately thick boards and (b) closely spaced lands. For wide land
separations, more of the electric field lines will be influenced by the ground plane at
the bottom of the board and are more important than for closely spaced lands.

We may compare the computed results of MSTRP.FOR to the approximate rela-
tions of Chapter 4. For example, the results for a microstrip line consisting of one land
of width w above a ground plane are given in Eqs. (4.108) of Chapter 4. For example,
consider a microstrip line having εr = 4.7, w = 5 mils, and t = 50 mils. Equations
(4.108) give l = 0.8765 µH/m and c = 38.26 pF/m. MSTRP.FOR using 30 divisions
per land gives l = 0.879 µH/m and c = 39.03 pF/m, a difference of 0.3–2 %. For a
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FIGURE 5.34 Determination of (a) inductances, (b) capacitances, and (c) capacitances with
the board removed for a two-conductor coupled microstrip with εr = 4.7, land width = sepa-
ration = 10 mils, and board thickness = 47 mils.

microstrip line having εr = 4.7, w = 100 mils, and t = 62 mils, the formulas in (4.108)
of Chapter 4 give l = 0.335µ H/m and c = 115.7 pF/m, whereas MSTRP.FOR us-
ing 30 divisions per land gives l = 0.336µ H/m and c = 115.2 pF/m, a difference of
0.3–0.4 %.



218 THE PER-UNIT-LENGTH PARAMETERS FOR MULTICONDUCTOR LINES

FIGURE 5.34 (Continued ).

And finally, we will compute the entries in C and L for a coupled microstrip
line that will be used in later crosstalk analyses: εr = 4.7 (glass epoxy), t =
62 mils, w = 100 mils, and s = 100 mils. The results for the pulse expan-
sion function, point matching method for 50 divisions per land computed using

FIGURE 5.35 Comparison of the capacitances with and without the dielectric board versus
the number of divisions per land from Figure 5.34 (b) and (c).
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MSTRP.FOR are

L =
[

0.334497 0.0372044
0.0372044 0.334497

]
(µH/m)

C =
[

115.844 −4.96916
−4.96916 115.844

]
(pF/m)

5.3.1.3 Applications to Coupled Striplines Next, we consider applying this tech-
nique to the coupled stripline consisting of lands (of zero thickness) embedded in
a dielectric substrate of thickness t and relative permittivity εr with infinite ground
planes on both sides as shown in Figure 5.36. The ground planes will serve as the
reference or zeroth conductor so that the computation of the generalized capacitance
matrix will not be necessary for this case: We directly compute the transmission-line
capacitance matrix with the dielectric present, C, and with the dielectric removed, C0.
This is implemented in the FORTRAN computer code STRPLINE.FOR described
in Appendix A. We will assume that all lands are of equal width, w, with equal
edge-to-edge separations, s, and the lands are located midway between the ground
planes. Although only three lands are shown, the code will handle any number of
lands with the appropriate dimensioning of the arrays in STRPLINE.FOR. This
problem will represent a PCB with innerplanes where lands are buried between the
innerplanes.

The first and most basic subproblem we must address is the case of an infinitely
long (in the z direction) filament carrying a per-unit-length charge of 1 (C/m) located
midway between the ground planes, and we need to determine the potential at a point
also midway between the ground planes and a distance d from the line charge as shown
in Figure 5.37(a). This is a somewhat canonical problem that is solved in Collin [6]

FIGURE 5.36 The three-conductor coupled stripline with equal land widths and separations.



220 THE PER-UNIT-LENGTH PARAMETERS FOR MULTICONDUCTOR LINES

FIGURE 5.37 Illustration of the basic determination of the potential of a stripline for (a) a
line charge and (b) a land with constant charge distribution.

and Smythe [1]. The potential specialized to this case is [6].

φ (d) = 1

πε0εr
tanh−1


e

−
π |d|

t




= 1

2πε0εr
ln


1 + e

−
π |d|

t

1 − e
−

π |d|
t




(5.91)

Smythe also gives an equivalent form as

φ (d) = 1

2πε0εr
tanh−1


 1

cosh
(

πd
t

)

 (5.92)
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The final subproblem is a strip of zero thickness and width w carrying a charge
distribution of 1 C/m2 shown in Figure 5.37(b). The strip is parallel to the ground
planes and is located midway between them. The desired potential is located midway
between the planes and is a distance d from the midpoint of the strip. Treating the
strip as a sequence of charge filaments 1dx (C/m), we sum the contributions to the
potential as

φ (d) = 1

πε

w/2∫
−w/2

tanh−1
(
e− π|d−x|

t

)
dx (5.93)

This can be integrated by making a change of variables as u = e−(πd/t)e(πx/t) so that
du = (π/t)u dx. Substituting into (5.93) gives

φ (d) = t

π2ε

e
− π

t (d− w
2 )∫

e
− π

t (d+ w
2 )

tanh−1 (u)

u
du (5.94)

This integrates to (see Dwight [7] integral 735.1)

φ (d) = t

π2ε

[(
Em + E3

m

9
+ E5

m

25
+ E7

m

49
+ · · ·

)

−
(

Ep + E3
p

9
+ E5

p

25
+ E7

p

49
+ · · ·

)]
(5.95a)

where

Em = e− π
t (d− w

2 ) (5.95b)

and

Ep = e− π
t (d+ w

2 ) (5.95c)

Each of these two series converges rapidly as for a match point on another strip,
d > w/2. For the case where the match point is at the center of the charge-bearing
strip, that is, d = 0, we require

φself (0) = 2

πε

w
2∫
0

tanh−1
(
e− πx

t

)
dx (5.96)
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This may also be integrated by making the substitution u = e−(πx/t) and du =
−(π/t)u dx to give

φself (0) = − 2t

π2ε

e
− πw

2t∫
1

tanh−1u

u
du

= 2t

π2ε

[(
1 + 1

9
+ 1

25
+ 1

49
+ · · ·

)
−
(

E + E3

9
+ E5

25
+ · · ·

)]
(5.97a)

where

E = e− πw
2t (5.97b)

Again, both series converge rapidly and the first series converges to (see Dwight [7]
# 48.12)

1 + 1

9
+ 1

25
+ 1

49
+ · · · = π2

8
(5.97c)

We can essentially adapt the program MSTRP.FOR directly to this case by simply
changing the computation subroutine for determining φ (d) and φ (0) to the above
results.

As an example, consider the coupled stripline consisting of two conductors between
ground planes where t = 47 mils, w = s = 10 mils, and εr = 4.7. The results obtained
with STRPLINE.FOR are shown in the following figures. Figure 5.38(a) compares
the elements of the per-unit-length inductance matrix L and Figure 5.38(b) compares
the elements of the per-unit-length capacitance matrix, C, computed for various num-
bers of land subdivisions. It is not necessary to show the corresponding results with
the board replaced by free space, C0, since for this homogeneous medium C = εrC0.
Observe that convergence is achieved for about 20–30 subdivisions of each land. Also
observe that the capacitances on the main diagonal of C, C11 and C22, are equal as they
should be by symmetry. Similarly, L11 = L22 as should be the case by symmetry.

We may compare the computed results of STRPLINE.FOR to the approximate
relations of Chapter 4. For example, the results for a stripline line consisting of one land
of width w midway between the ground planes are given in Eqs. (4.107) of Chapter
4. For example, consider a stripline line having εr = 4.7, w = 5 mils, and t = 50 mils.
Equations (4.107) give l = 0.6566µ H/m and c = 79.54 pF/m. STRPLINE.FOR
using 60 divisions per land gives l = 0.6515µ H/m and c = 80.27 pF/m, a difference
of 0.8–0.9 %. For a stripline line having εr = 4.7, w = 5 mils, and t = 10 mils,
the formulas in (4.107) of Chapter 4 give l = 0.334µ H/m and c = 156.4 pF/m,
whereas STRPLINE.FOR using 60 divisions per land gives l = 0.3362µ H/m and
c = 155.53 pF/m, a difference of 0.6–0.7 %.
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FIGURE 5.38 Determination of (a) inductances and (b) capacitances for a two-conductor
coupled stripline with εr = 4.7, land width = separation = 10 mils, and board thickness = 47 mils.

5.4 FINITE DIFFERENCE TECHNIQUES

Recall that the entries in the per-unit-length inductance, capacitance, and conduc-
tance matrices are determined as a static (dc) solution for the fields in the transverse
(x–y) plane. Essentially, the transverse fields are such that the potential in the space
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FIGURE 5.39 The finite-difference grid.

surrounding the conductors, φ(x,y), again satisfies Laplace’s equation in the transverse
plane:

∇2φ(x, y) = ∂2φ(x, y)

∂x2 + ∂2φ(x, y)

∂y2 = 0 (5.98)

Finite-difference techniques approximate these spatial partial derivatives in a discrete
fashion in the space surrounding the conductors. For example, consider the closed
region shown in Figure 5.39. The space is gridded into cells of length and width h.
First-order approximations to the first partial derivatives at the interior cell points a,
b, c, and d are [A.1,4]

∂φ

∂x

∣∣∣∣
a

= φ0 − φ1

h
(5.99a)

∂φ

∂x

∣∣∣∣
c

= φ3 − φ0

h
(5.99b)
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∂φ

∂y

∣∣∣∣
b

= φ2 − φ0

h
(5.99c)

∂φ

∂y

∣∣∣∣
d

= φ0 − φ4

h
(5.99d)

The second-order derivatives are similarly approximated using these results as

∂2φ

∂x2

∣∣∣∣
0

= 1

h

(
∂φ

∂x

∣∣∣∣
c

− ∂φ

∂x

∣∣∣∣
a

)

= (φ3 − φ0) − (φ0 − φ1)

h2

(5.100a)

∂2φ

∂y2

∣∣∣∣
0

= 1

h

(
∂φ

∂y

∣∣∣∣
b

− ∂φ

∂y

∣∣∣∣
d

)

= (φ2 − φ0) − (φ0 − φ4)

h2

(5.100b)

This amounts to a central difference expression for the partial derivatives [4]. Substi-
tuting these results into (5.98) gives a discrete approximation to Laplace’s equation:

∂2φ(x, y)

∂x2 + ∂2φ(x, y)

∂y2 = 0

= φ1 + φ2 + φ3 + φ4 − 4φ0

h2

(5.101)

or

φ0 = 1

4
[φ1 + φ2 + φ3 + φ4] (5.102)

Thus, the potential at a point is the average of the potentials of the surrounding four
points in the mesh. Equation (5.102) is to be satisfied at all mesh points. Typically,
this is accomplished by prescribing the potentials of the mesh points on the conductor
surfaces, initially prescribing zero potential to the interior points and then recursively
applying (5.102) at all the interior points until the change is less than some predeter-
mined amount at which point the iteration is terminated.

An example of the application of the method is shown in Figure 5.40, which was
solved earlier using a MoM method and a direct solution of Laplaces’s equation with
those results given in Table 5.8. A rectangular box having the four conducting walls at
different potentials is shown. The potentials of the interior mesh points obtained iter-
atively are shown. Observe that, even with this relatively course mesh, the potentials
of the mesh points converge rather rapidly.

This method could also be solved in a direct fashion rather than iteratively. En-
forcement of the potential via (5.102) at the six interior mesh points gives
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TABLE 5.8

Direct method Iteration Exact

φa 16.44 16.41 16.4784
φb 21.66 21.63 21.8499
φc 14.10 14.07 14.1575
φd 20.19 20.16 20.4924
φe 9.77 9.76 9.60942
φf 14.99 14.98 14.9810




4 −1 −1 0 0 0
−1 4 0 −1 0 0
−1 0 4 −1 −1 0
0 −1 −1 4 0 −1
0 0 −1 0 4 −1
0 0 0 −1 −1 4







Va

Vb

Vc

Vd

Ve

Vf


 =




30
50
10
30
10
30


 (5.103)

Solving this gives the potentials of the interior mesh points compared to those obtained
by iteration in Figure 5.40 as shown in Table 5.8. The exact results were obtained
from an analytical solution of Laplace’s equation given previously [8].

The solution for the potentials via this method is only one part of the process of
determining the per-unit-length generalized capacitance matrix. In order to compute
the generalized capacitance matrix, we need to determine the total charge on the
conductors (per unit of line length). To implement this calculation, recall Gauss’s
law:

Q = �
s

�D · d�s (5.104)

that provides that the charge enclosed by a surface is equal to the integral of the
normal component of the electric flux density vector over that surface. For a linear,
homogeneous, isotropic medium,

�D = ε�E = ε
∂φ

∂n
�an (5.105)

where �an is the unit vector normal to the surface. In order to apply this to the problem
of computing the charge on the surface of a conductor, consider Figure 5.41. Applying
(5.104) and (5.105) to a strip along the conductor surface between the conductor and
the first row of mesh points just off the surface gives

q =
∮
l

�D · d�l =
∮
l

ε
∂φ

∂n
dl (5.106)
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FIGURE 5.40 Example for illustration of the finite-difference method.

FIGURE 5.41 Use of the finite-difference method in determining surface charge on a
conductor.
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FIGURE 5.42 Illustration of the implementation of the finite-difference method for multiple
dielectrics.

Using the potentials computed at the interior mesh points, we can obtain the charge
on the surface by applying (5.106) in discrete form as

q = · · · + ε
(φi − φa)

hv
hh + ε

(φi − φb)

hv
hh

+ ε
(φi − φc)

hv
hh + ε

(φi − φd)

hv
hh + ε

(φi − φe)

hv
hh + ε

(
φi − φf

)
hv

hh + · · ·
(5.107)

where hv denotes the “vertical” length of the mesh perpendicular to the conductor
surface and hh denotes the “horizontal” length of the mesh parallel to the conductor
surface. Once the charges on the conductors are obtained in this fashion, the gener-
alized capacitance matrix can be formed and from it the per-unit-length capacitances
can be obtained.

Dielectric inhomogeneities can be handled in a similar fashion with this method.
Gauss’s law requires that, in the absence of any free charge intentionally placed at an
interface between two dielectrics, there can be no net charge on the surface. Consider
the interface between two dielectrics shown in Figure 5.42, where a mesh has been
assigned at the boundary. Applying Gauss’s law to the surface surrounding the center
point of the mesh shown as a dashed line gives

0 =
∮
l

�D · d�l =
∮
l

ε
∂φ

∂n
dl

= ε1
(φ2 − φ0)

hv
hh + ε1

(φ1 − φ0)

hh

hv

2
+ε2

(φ1 − φ0)

hh

hv

2

+ε2
(φ4 − φ0)

hv
hh + ε2

(φ3 − φ0)

hh

hv

2
+ε1

(φ3 − φ0)

hh

hv

2

(5.108)
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Finite-difference methods are particularly adapted to closed systems. For open systems
where the space extends to infinity in all directions, a method must be employed to
terminate the mesh. A rather simple but computationally intensive technique is to
extend the mesh to a large but finite distance from the conductors and terminate it in
zero potential. To check the sufficiency of this, extend the mesh slightly larger and
recompute the results.

5.5 FINITE-ELEMENT TECHNIQUES

The third important numerical method for solving (approximately) Laplace’s equa-
tion is the finite-element method or FEM. The FEM approximates the region and
its potential distribution by dividing the region into subregions (finite elements) and
representing the potential distribution over that subregion. We will restrict our discus-
sion to the most commonly used finite element, the triangle surface shown in Figure
5.43(a). Higher order elements are discussed in [4, 9]. Figure 5.43(b) illustrates the ap-
proximation of a 2D region using these triangular elements. The triangle element has
three nodes at which the potentials are prescribed (known). The potential distribution
over the element is a polynomial approximation in the x,y coordinates:

φ(x, y) = a + bx + cy (5.109)

Evaluating this equation at the three nodes gives

[
φ1
φ2
φ3

]
=
[ 1 x1 y1

1 x2 y2
1 x3 y3

][
a

b

c

]
(5.110)

FIGURE 5.43 Illustration of (a) the finite-element triangular element and (b) its use in
representing two-dimensional problems.
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Solving this for the coefficients gives

a = 1

2A
[K1φ1 + K2φ2 + K3φ3] (5.111a)

b = 1

2A
[Y1φ1 + Y2φ2 + Y3φ3] (5.111b)

c = − 1

2A
[X1φ1 + X2φ2 + X3φ3] (5.111c)

where

K1 = (x2y3 − x3y2)
K2 = (x3y1 − x1y3)
K3 = (x1y2 − x2y1)

(5.111d)

Y1 = (y2 − y3)
Y2 = (y3 − y1)
Y3 = (y1 − y2)

(5.111e)

X1 = (x2 − x3)
X2 = (x3 − x1)
X3 = (x1 − x2)

(5.111f)

and the area of the element is

A = 1

2

∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣
= 1

2
[K1 + K2 + K3]

(5.112)

Observe the cyclic ordering of the subscripts in (5.111) as 1 → 2 → 3. Given the node
potentials, the potential at points on the element surface can be found from (5.109)
using (5.111) and (5.112). The electric field over the surface of the element is constant:

�E = −∇φ

= −b�ax − c�ay (5.113)

Observe that when a surface is approximated by these triangular elements as in Figure
5.43(b), the potential is guaranteed to be continuous across the common boundaries
between any adjacent elements.
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The key feature in insuring a solution of Laplace’s equation by this method is
that the solution is such that the total energy in the field distribution in the region is
a minimum [4, 9]. The total energy in the system is the sum of the energies of the
elements:

W =
Ne∑
i=1

W (i) (5.114)

The minimum energy requirement is that the derivatives with respect to all free nodes
(nodes where the potential is unknown) are zero:

∂W

∂φi

∣∣∣∣
all free nodes

= 0 (5.115)

The energy of the ith element is

W (i) = 1

2

∫
si

εi

∣∣ �Ei

∣∣2dsi

= εi

2

∫
si

(
b2
i + c2

i

)
dsi

= εi

2

(
b2
i + c2

i

)
Ai

= εi

8Ai

[(
Y2

i1 + X2
i1

)
φ

(i)
1 φ

(i)
1 + 2 (Yi1Yi2 + Xi1Xi2) φ

(i)
1 φ

(i)
2

+ (
Y2

i2 + X2
i2

)
φ

(i)
2 φ

(i)
2 + 2 (Yi1Yi3 + Xi1Xi3) φ

(i)
1 φ

(i)
3

+ (
Y2

i3 + X2
i3

)
φ

(i)
3 φ

(i)
3 + 2 (Yi2Yi3 + Xi2Xi3) φ

(i)
2 φ

(i)
3

]

(5.116)

where φ
(i)
k is the potential of node k (k = 1, 2, 3) for the ith element. This can be

written in matrix notation as a quadratic form as

W (i) = 1

2
�(i)tC(i)�(i) (5.117a)

where

�(i) =

�

(i)
1

�
(i)
2

�
(i)
3


 (5.117b)

and superscript t denotes transpose. The matrix

C(i) =

C

(i)
11 C

(i)
12 C

(i)
13

C
(i)
12 C

(i)
22 C

(i)
23

C
(i)
13 C

(i)
23 C

(i)
33


 (5.117c)
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FIGURE 5.44 An example to illustrate the use of the FEM.

is referred to as the local coefficient matrix with entries

C(i)
mn = εi

4Ai

(YimYin + XimXin) (5.117d)

Now, we must assemble the total energy expression for a system that is approxi-
mated by finite elements according to (5.114). In order to illustrate this, consider the
example of a region that is represented by three finite elements shown in Figure 5.44.
The node numbers inside the elements are the local node numbers as used above. The
global node numbers are shown uniquely for the five nodes. Nodes 1, 2, and 3 are
free nodes whose potential is to be determined to satisfy Laplace’s equation in the
region. Nodes 4 and 5 are prescribed nodes whose potentials are fixed (known). The
total energy expression can be written in terms of the global nodes as

W =
Ne∑
i=1

W (i) = 1

2
�tC� (5.118a)

where the vector of global node potentials is

� =




�1 = φ
(1)
1

φ2 = φ
(1)
2 = φ

(2)
2 = φ

(3)
1

φ3 = φ
(3)
2

φ4 = φ
(2)
3 = φ

(3)
3

φ5 = φ
(1)
3 = φ

(2)
1


 (5.118b)
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and

C =




C11 C12 C13 C14 C15
C12 C22 C23 C24 C25
C13 C23 C33 C34 C35
C14 C24 C34 C44 C45
C15 C25 C35 C45 C55


 (5.118c)

This global coefficient matrix C, like the local coefficient matrix, can be shown to be
symmetric by energy considerations [9]. The entries in the global coefficient matrix
can be assembled quite easily from the local coefficient matrix (whose entries are
computed for the isolated elements independent of their future connection) with the
following observation. For each element write the global coefficient matrix as

W (1) = �t




C
(1)
11 C

(1)
12 0 0 C

(1)
13

C
(1)
12 C

(1)
22 0 0 C

(1)
23

0 0 0 0 0

0 0 0 0 0

C
(1)
13 C

(1)
23 0 0 C

(1)
33




� (5.119a)

W (2) = �t




0 0 0 0 0

0 C
(2)
22 0 C

(2)
23 C

(2)
12

0 0 0 0 0

0 C
(2)
23 0 C

(2)
33 C

(2)
13

0 C
(2)
12 0 C

(2)
13 C

(2)
11




� (5.119b)

W (3) = �t




0 0 0 0 0

0 C
(3)
11 C

(3)
12 C

(3)
13 0

0 C
(3)
12 C

(3)
22 C

(3)
23 0

0 C
(3)
13 C

(3)
23 C

(3)
33 0

0 0 0 0 0




� (5.119c)
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Assembling these according to (5.118) gives the total energy

W = W (1) + W (2) + W (3)

= �t




C
(1)
11 C

(1)
12 0 0 C

(1)
13

C
(1)
12 C

(1)
22 + C

(2)
22 + C

(3)
11 C

(3)
12 C

(2)
23 + C

(3)
13 C

(1)
23 + C

(2)
12

0 C
(3)
12 C

(3)
22 C

(3)
23 0

0 C
(2)
23 + C

(3)
13 C

(3)
23 C

(2)
33 + C

(3)
33 C

(2)
13

C
(1)
13 C

(1)
23 + C

(2)
12 0 C

(2)
13 C

(1)
33 + C

(2)
11




�

(5.120)

A very simple rule for assembling this global coefficient matrix can be developed
from this example. The main diagonal terms are the sums of the main diagonal terms
of the local coefficient matrices for those elements that connect to this global node.
The off-diagonal terms are the sums of the off-diagonal terms of the local coefficient
matrices whose sides connect the two global nodes. Observe that the off-diagonal
terms will have at most two entries, whereas the main diagonal terms will be the sum
of a number of terms equal to the number of elements that share the global node.

Now it remains to differentiate this result with respect to the free nodes to insure
minimum energy of the system thereby satisfying Laplace’s equation. To that end, let
us number the global nodes by numbering the free nodes first and then numbering
the prescribed (fixed potential) nodes last. The above energy expression can then be
written in partitioned form as

W = 1

2
[�t

f �t
p]

[ Cff Cfp

Cpf Cpp

] [
�f

�p

]
= 1

2 [�t
fCff�f + �t

fCfp�p + �t
pCpfφf + �t

pCpp�p]

(5.121)

Differentiating this with respect to the free node potentials and setting the result to
zero gives the final equations to be solved:

Cff �f = −Cfp�p (5.122)

Solving this matrix equation for the free node potentials is referred to as the direct
method of solving the FEM equations.

Observe from the example of Figure 5.44 that the global coefficient matrix C has
a number of zero entries. This is quite evident as only those (two) elements that
contain the nodes for this entry will contribute a nonzero term. Thus, the coefficient
matrices in (5.122) will be sparse. Although there exist sparse matrix solution routines
that efficiently take advantage of this, FEM problems, particularly large ones, are
generally solved more efficiently using the iterative method. This is similar to the
iterative method for the finite-difference technique in that the free nodes are initially
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FIGURE 5.45 Illustration of the FEM applied to a previously solved problem.

prescribed some starting value (such as zero) and the new values of the free node
potentials are computed. The process continues until the change in the free node
potentials between iteration steps is less than some value. Writing out (5.122) for the
example of Figure 5.44 gives


C11 C12 C13

C12 C22 C23

C13 C23 C33




φ1

φ2

φ3


+


C14 C15

C24 C25

C34 C35


[φ4

φ5

]
=
[ 0

0
0

]
(5.123)

Writing this in terms of each free potential with respect to the other free potentials
and the prescribed potentials gives

�new
f = −


 0 C12/C11 C13/C11

C12/C22 0 C23/C22

C13/C33 C23/C33 0


�old

f +

C14/C11 C15/C11

C24/C22 C25/C22

C34/C33 C35/C33


�p

(5.124a)
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TABLE 5.9

Direct method Iteration Exact

φ1 16.4389 16.4389 16.4784
φ2 21.6563 21.6563 21.8499
φ3 14.0994 14.0994 14.1575
φ4 20.1863 20.1863 20.4924
φ5 9.77226 9.77224 9.60942
φ6 14.9896 14.9896 14.9810

where

� =
[

φ1
φ2
φ3

]
(5.124b)

�p =
[

φ4
φ5

]
(5.124c)

As a numerical illustration of the method, consider the problem of a rectangular
region of side lengths 4 and 3 with prescribed potentials of 0 V, 10 V, 20 V, and 30 V as
shown in Figure 5.20. This was solved earlier with the MoM technique and the finite-
difference technique. In order to compare this with the finite-difference technique, we
will again choose six interior nodes and approximate the space between these nodes
with 24 finite elements as shown in Figure 5.45. Observe that the potentials at nodes
7, 10, 14, and 17 are not known since there are gaps between the adjacent conductors.
We will prescribe these potentials as the average of the adjacent conductor potentials
or 5 V, 15 V, 25 V, and 15 V. The solution for the six interior node potentials via the
direct and the iterative method become as shown in Table 5.9. The iterative method
converged after 15 iterations.

Some of the important features of the FEM are that it can handle irregular bound-
aries as well as inhomogeneous media. Inhomogeneous media are handled by ensuring
that the region is subdivided such that each finite element covers (approximately) a
homogeneous subregion. The permittivities of the finite elements, εi, are contained
in the C(i)

mn local node coefficients.
Once again, as with the finite-difference method, the finite-element method is most

suited to closed systems. For open systems whose boundaries extend to infinity, an
infinite mesh method can be developed [4] or the mesh can be extended sufficiently
far from the main areas of interest and artificially terminated in zero potential thereby
forming a (artificial) closed system.

The FEM is a highly versatile method for solving Laplace’s equation as well as
other electromagnetic fields problems [4, 9]. Other parameters of interest such as
capacitances can be determined in the usual fashion by determining the resulting
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charge on the conductors as the normal component of the displacement vector just
off the conductor surfaces.

PROBLEMS

5.1 Demonstrate the generalized capacitance relations in (5.21).

5.2 Show the result in (5.22).

5.3 Demonstrate the result in (5.23) for (n + 1) widely spaced wires.

5.4 Determine the per-unit-length inductances for a three-wire ribbon ca-
ble where the center wire is chosen as the reference conductor.[
l11 = l22 = (µ0/π)ln(d/rw), l12 = (µ0/2π)ln(d/2rw)

]
Evaluate these for a

center-to-center wire spacing of 50 mils and #28 gauge stranded wires having
wire radii of rw = 7.5 mils. [l11 = l22 = 0.759µH/m = 19.3 nH/in., l12 =
0.24µ H/m = 6.1 nH/in.]. Determine the per-unit-length capacitances (ne-
glecting the wire insulations) from these. [c11 = c22 = 11.1 pF/m =
0.28 pF/in., c12 = 5.17 pF/m = 0.13 pF/in.]

5.5 Repeat the calculations of problem 5.4 using WIDESEP.FOR. [l11 =
l22 = 0.7588µH/m, l12 = 0.2408µ H/m, c11 = c22 = 11.13 pF/m, c12 =
5.174 pF/m]

5.6 Demonstrate the relations in (5.25) for n wires above an infinite, perfectly
conducting ground plane.

5.7 Determine the per-unit-length inductances for two wires at an equal height
above a ground plane and separation s. [l11 = l22 = (µ0/2π)ln(2h/rw),
l12 = (µ0/4π)ln(1+4(h2/s2))] Evaluate these for a center-to-center wire
spacing of 2 cm, a height of 2 cm and #20 gauge solid wires having
wire radii of rw = 16 mils. [l11 = l22 = 0.918µ H/m = 23.3 nH/in., l12 =
0.161µ H/m = 4.09 nH/in.]. Determine the per-unit-length capacitances (ne-
glecting the wire insulations) from these. [c11 = c22 = 10.3 pF/m, c12 =
2.19 pF/m]

5.8 Repeat the calculations of problem 5.7 using WIDESEP.FOR. [l11 =
l22 = 0.9178µ H/m, l12 = 0.1609µ H/m, c11 = c22 = 10.314 pF/m, c12 =
2.193 pF/m]

5.9 Demonstrate the relations in (5.26) for n wires within an overall shield.

5.10 Determine the per-unit-length inductances for two wires within an overall
shield where the wires are #28 gauge stranded having wire radii of rw =
7.5 mils. The wires are separated by 180◦, the shield radius is rS = 4rw, and
the distance of each wire from the center is two wire radii. This is typical for
shielded pairs of wires where the wire insulation thicknesses are equal to the
wire radii. [l11 = l22 = 0.22 µH/m, l12 = 44.6 nH/m]
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5.11 Repeat the calculations of Problem 5.10 using WIDESEP.FOR. [l11 =
l22 = 0.2197µ H/m, l12 = 44.63 nH/m, c11 = c22 = 42.1 pF/m, c12 =
10.73 pF/m]

5.12 Demonstrate the results in Table 5.1.

5.13 Demonstrate the results in Tables 5.2 and 5.3.

5.14 Demonstrate the results in (5.48).

5.15 Determine, using RIBBON.FOR, the results in Tables 5.5 and 5.6 for
a three-wire ribbon cable consisting of #28 gauge stranded wires (rw =
7.5 mils) with insulation thicknesses of 10 mils and εr = 3.5 and sep-
arations of 50 mils but with the center wire chosen as the ref-
erence conductor. [l11 = l22 = 0.7485µ H/m, l12 = 0.2408µ H/m, c11 =
c22 = 24.98 pF/m, c12 = 6.266 pF/m]

5.16 Demonstrate the relations in (5.65) and (5.67).

5.17 Demonstrate the relations in (5.75) and (5.76).

5.18 Demonstrate the relations in (5.78).

5.19 Determine the per-unit-length inductances and capacitances for a three-
conductor PCB having land widths of 25 mils, a board thickness
of 30 mils, and an edge-to-edge separation of 10 mils and εr = 4.7
using PCB.FOR. Use 30 divisions per land and choose the reference con-
ductor to be the center land. [l11 = l22 = 0.626µ H/m, l12 = 0.1812µ H/m,
c11 = c22 = 38.35 pF/m, c12 = 11.197 pF/m]

5.20 Demonstrate the relations in (5.83).

5.21 Determine the per-unit-length inductances and capacitances for a two-
conductor coupled microstrip having land widths of 25 mils, a board thick-
ness of 30 mils, and an edge-to-edge separation of 10 mils and εr = 4.7 us-
ing MSTRP.FOR. Use 30 divisions per land and choose the reference con-
ductor to be the center land. [l11 = l22 = 0.4484µ H/m, l12 = 0.1543µ H/m,
c11 = c22 = 65.26 pF/m, c12 = 22.92 pF/m]

5.22 Demonstrate the relations in (5.95) and (5.97).

5.23 Determine the per-unit-length inductances and capacitances for a two-
conductor coupled stripline having land widths of 25 mils, a separation between
the two ground planes of 30 mils, and an edge-to-edge separation of 10 mils and
εr = 4.7 using STRPLINE.FOR. Use 30 divisions per land and choose the
reference conductor to be the center land. [l11 = l22 = 0.2466µ H/m, l12 =
21.6 nH/m, c11 = c22 = 195 pF/m, c12 = 18.72 pF/m]

5.24 Demonstrate the relation for the finite-difference method in (5.102).

5.25 Reproduce the results in Table 5.8 for the finite-difference method.
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5.26 Demonstrate the relations in (5.111) for the finite-element method.

5.27 Demonstrate the relation in (5.116) for the finite-element method.

5.28 Reproduce the results in Table 5.9 for the finite-element method.
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6
FREQUENCY-DOMAIN ANALYSIS
OF TWO-CONDUCTOR LINES

In this chapter, we will examine the solution of the transmission-line equations for
two-conductor lines, where the line is excited by a single-frequency sinusoidal sig-
nal and is in steady state. The analysis method is the familiar phasor technique of
electric circuit analysis [A.2, A.5]. The excitation sources for the line are single-
frequency sinusoidal waveforms such as x (t) = Xcos (ωt + θX). Again, as explained
in Chapter 1 , the reason we invest so much time and interest in this form of line ex-
citation is that we may decompose any other periodic waveform into an infinite sum
of sinusoidal signals that have frequencies that are multiples of the basic repetition
frequency of the signal via the Fourier series. We may then obtain the response to
the original waveform as the superposition of the responses to those single-frequency
harmonic components of the (nonsinusoidal) periodic input signal (see Figure 1.21
of Chapter 1 ). In the case of a nonperiodic waveform, we may similarly decompose
the signal into a continuum of sinusoidal components via the Fourier transform and
the analysis process remains unchanged. An additional reason for the importance of
the frequency-domain method is that losses (of the conductors and the surrounding
dielectric) can easily be handled in the frequency domain, whereas their inclusion
in a time-domain analysis is problematic as we will see in Chapters 8 and 9 . The
per-unit-length resistance of the line conductors at high frequencies increases as the
square root of the frequency,

√
f , because of skin effect, whereas the per-unit-length

conductance of a homogeneous surrounding dielectric is also frequency dependent.
In the frequency domain, we simply evaluate these at the frequency of interest and
treat them as constants throughout the analysis.

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.
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For the phasor method, we replace the excitation signal with its phasor equivalent
as

x(t) ⇔ X̂ (jω) (6.1a)

where

X̂(jω) = X � θX

= X ejθX
(6.1b)

We return to the time domain using Euler’s identity by (1) multiplying the phasor
result by ejωt and (2) taking the real part of the result:

x(t) = X cos(ωt + θX)

= Re

{
X � θX︸ ︷︷ ︸

X̂

ejωt

}
(6.2)

6.1 THE TRANSMISSION-LINE EQUATIONS IN THE FREQUENCY
DOMAIN

We form the phasor or frequency-domain differential equations by replacing all time
derivatives with jω as

∂

∂t
⇔ jω (6.3)

In the case of a lossless line, this reduces the time-domain partial differential
transmission-line equations to their frequency-domain equivalent as

∂

∂z
V (z, t) = −l

∂

∂t
I (z, t) ⇔ d

d z
V̂ (z) = − jωl Î (z) (6.4a)

∂

∂z
I (z, t) = −c

∂

∂t
V (z, t) ⇔ d

d z
Î (z) = − jωc V̂ (z) (6.4b)

Observe that the frequency-domain or phasor transmission-line equations become
ordinary differential equations because they are functions of only one variable, the
line axis variable z. This is another important reason we go to the frequency domain:
the solution of the transmission-line equations is simpler. Once we solve the phasor
transmission-line ordinary differential equations in (6.4) and incorporate the terminal
constraints at the left and right ends of the line, we return to the time domain by
(1) multiplying the phasor solutions V̂ (z) and Î (z) by e jωt and (2) taking the real
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part of that result as

V (z, t) = Re

{
V � θV︸ ︷︷ ︸
V̂ (z)

ejωt

}

= V (z)cos(ωt + θV (z))

(6.5a)

and

I(z, t) = Re

{
I � θI︸︷︷︸
Î(z)

ejωt

}

= I(z)cos(ωt + θI (z))

(6.5b)

Losses of the line are incorporated via the per-unit-length resistance of the con-
ductors, r

(√
f
)
, and the per-unit-length conductance of the surrounding medium,

g (f ). The frequency-domain transmission-line equations in (6.4) are amended to

d

d z
V̂ (z) = − (r + jωl)︸ ︷︷ ︸

ẑ

Î (z) (6.6a)

d

d z
Î (z) = − (g + jωc)︸ ︷︷ ︸

ŷ

V̂ (z) (6.6b)

We will first examine the solution for a lossless line and then easily modify that
solution for a lossy line.

6.2 THE GENERAL SOLUTION FOR LOSSLESS LINES

The transmission-line equations for a lossless line are given in (6.4) and repeated
here:

d

d z
V̂ (z) = − jωl Î (z) (6.7a)

d

d z
Î (z) = − jωc V̂ (z) (6.7b)

These coupled first-order differential equations can be converted to uncoupled second-
order differential equations in the usual manner by differentiating each with respect
to z and substituting the other to yield

(
j2 = −1

)
d2

d z2 V̂ (z) = −ω2lc V̂ (z) (6.8a)
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d2

d z2 Î (z) = −ω2lc Î (z) (6.8b)

The general solution to these coupled second-order equations is again [A.1, A.6]

V̂ (z) = V̂+e− jβz + V̂−e jβz (6.9a)

and

Î(z) = V̂+

ZC
e− jβz − V̂−

ZC
e jβz (6.9b)

where the phase constant is again denoted as

β = ω
√

lc

= ω

v
(rad/m)

(6.10)

and the phase velocity of propagation is

v = ω/β

= 1/
√

lc (6.11)

If the line is immersed in a homogeneous medium characterized by permittivity ε and
permeability µ, then lc = µε and v = 1/

√
µε. Hence, these TEM waves travel at the

speed of light in that medium. The phase constant β represents a phase shift as the
waves propagate along the line. The quantities V̂+ and V̂− are, as yet, undetermined
constants. These will be determined by the specific load and source parameters. The
line characteristic impedance is denoted as

ZC =
√

l/c (6.12)

The source and load configurations at z = 0 and at z = L are shown in Fig-
ure 6.1. In the frequency-domain representation, we may easily include inductors and

FIGURE 6.1 Definition of the parameters of a two-conductor line in the frequency domain.
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capacitors in those complex-valued impedances, ẐS and ẐL. Once we incorporate the
source and load terminal constraints into the general solution in (6.9) and determine
the complex-valued constants V̂+ and V̂−, we can return to the time domain in the
usual fashion by (1) multiplying the phasor result by e jωt and (2) taking the real part
of the result to yield

V (z, t) = Re{V+e jθ+
e− jβze jωt + V−e jθ−

e jβze jωt}
= V+ cos(ωt − βz + θ+)︸ ︷︷ ︸

forward−traveling
+ z wave

+ V− cos(ωt + βz + θ−)︸ ︷︷ ︸
backward-traveling

− z wave

(6.13a)

and

I(z, t) = Re

{
V+

ZC
e jθ+

e− jβze jωt − V−

ZC
e jθ−

e jβze jωt

}

= V+

ZC
cos(ωt − βz + θ+)︸ ︷︷ ︸
forward−traveling

+ z wave

− V−

ZC
cos(ωt + βz + θ−)︸ ︷︷ ︸

backward−traveling
− z wave

(6.13b)

where the undetermined constants are, in general, complex as V̂± = V±� θ± =
V±e jθ±

. Observe that the characteristic impedance is the ratio of the voltage and
current in the forward-traveling wave and the ratio of the voltage and current in the
backward-traveling wave. Also, observe from (6.13) that since β = ω/v, we may
write

(ωt ± βz) ⇔ ω (t ± z/v)

This shows that the phase-shift term in the frequency-domain representation, e± jβz,
is equivalent in the time domain to a time delay (t ± z/v).

6.2.1 The Reflection Coefficient and Input Impedance

In order to incorporate the source and load into the general solution, we define a
voltage reflection coefficient as the ratio of the (phasor) voltages in the backward-
traveling and forward-traveling waves:

�̂(z) = V̂
−
e jβz

V̂
+
e− jβz

= V̂
−

V̂
+ e j2βz

(6.14)

The general solution in (6.9) for the phasor voltage and current along the line can be
written in terms of the reflection coefficient at that point by substituting (6.14):

V̂ (z) = V̂+e− jβz
[
1 + �̂(z)

]
(6.15a)
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and

Î(z) = V̂+

ZC
e− jβz

[
1 − �̂(z)

]
(6.15b)

Evaluating the general expression for the reflection coefficient anywhere along the
line given in (6.14) at the load, z = L, gives

�̂L = V̂−

V̂+ e j2βL (6.16)

At the load, the phasor voltage and current are related by Ohm’s law as

V̂ (L) = ẐL Î (L) (6.17)

Substituting (6.15) evaluated at the load, z = L, gives

ẐL = ZC
1 + �̂L

1 − �̂L
(6.18)

Solving this gives reflection coefficient at the load:

�̂L = ẐL − ZC

ẐL + ZC
(6.19)

Substituting (6.16) into (6.14) gives an expression for the reflection coefficient at any
point along the line in terms of the load reflection coefficient, which can be directly
calculated via (6.19):

�̂(z) = �̂Le j2β(z−L) (6.20)

Substituting the explicit relation for the reflection coefficient in terms of the load
reflection coefficient given in (6.20) into (6.15) gives a general expression for the
phasor voltage and current anywhere on the line as

V̂ (z) = V̂+e− jβz
[
1 + �̂Le j2β(z−L)

]
(6.21a)

and

Î(z) = V̂+

ZC
e− jβz

[
1 − �̂Le j2β(z−L)

]
(6.21b)

An important parameter of the line is the input impedance to the line at any point
on the line. The input impedance is the ratio of the total voltage and current at that
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point as shown in Figure 6.1:

Ẑin(z) = V̂ (z)

Î(z)

= ZC

[
1+�̂(z)

][
1−�̂(z)

] (6.22)

where we have substituted (6.15). The process for determining the input impedance is
to (1) compute the load reflection coefficient from (6.19), (2) compute the reflection
coefficient at the desired point from (6.20), and (3) then substitute that result into
(6.22).

An important position to calculate the input impedance is at the input to the entire
line, z = 0. The reflection coefficient at the input to the line is obtained from (6.20):

�̂(0) = �̂Le− j2β L (6.23)

Hence, the input impedance to a line of length L is

Ẑin(0) = ZC
[1 + �̂(0)]

[1 − �̂(0)]

= ZC

[
1 + �̂Le− j2βL

][
1 − �̂Le− j2βL

] (6.24)

An explicit formula for this input impedance to the line can be obtained as [A.1, A.6]

Ẑin (0) = ZC
ẐL + jZC tan (βL)

ZC + jẐL tan (βL)
(6.25)

A matched line is one in which the load impedance is equal to the characteristic
impedance, ẐL = ZC. Hence, from (6.25) or (6.24) with �̂L = 0, the input impedance
to a matched line is equal to the characteristic impedance at all points along the line and
is purely resistive. Observe that for a lossless line the characteristic impedance ZC =√

l/c is a real number. Hence, in order to match a lossless line the load impedance can
only be purely resistive. A few other interesting facts may be observed from (6.25).
Substituting β = 2π/λ, where the wavelength at the frequency of excitation of the
line is λ = v/f , yields

Ẑin (0) = ZC

ẐL + jZC tan
(

2πL
λ

)
ZC + jẐL tan

(
2πL

λ

) (6.26)

For a line that is one-quarter wavelength long, that is, L = λ/4, (6.26) becomes

Ẑin (0) = Z2
C

ẐL
, L = λ/4 (6.27)
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If the load is an open circuit, ẐL = ∞, then the input impedance to a quarter-
wavelength section is a short circuit, Ẑin (0) = 0. Conversely, if the load is a short
circuit, ẐL = 0, then the input impedance to a quarter-wavelength section is an open
circuit, Ẑin (0) = ∞. Also, (6.26) shows that for lengths of line that are a multiple
of a half wavelength, that is, L = n(λ/2) for n = 1, 2, 3, . . ., the input impedance
replicates, that is,

Ẑin (0) = ZC
ẐL + jZC tan (nπ)

ZC + jẐL tan (nπ)

= ZL, L = n(λ/2) (6.28)

and

Ẑin

(
z ± n

λ

2

)
= Ẑin (z) (6.29)

This result applies even if the line is not matched.

6.2.2 Solutions for the Terminal Voltages and Currents

In general, we will only be interested in determining the current and voltage at the
input and output of the line. Evaluating (6.15) at z = 0 and z = L gives

V̂ (0) = V̂+ [1 + �̂(0)
]

(6.30a)

Î(0) = V̂+

ZC

[
1 − �̂(0)

]
(6.30b)

and

V̂ (L) = V̂+e− jβL
[
1 + �̂L

]
(6.31a)

Î(L) = V̂+

ZC
e− jβL

[
1 − �̂L

]
(6.31b)

If we can determine the undetermined constant V̂+, then we can determine the source
and load voltages and currents by substituting into (6.30) and (6.31).

In order to determine this undetermined constant, a convenient position to evaluate
it is at the input to the line, z = 0. At the line input, the line can be replaced by the
input impedance to the line as shown in Figure 6.2. The input voltage to the line can
be determined by voltage division as

V̂ (0) = Ẑin (0)

ẐS + Ẑin (0)
V̂S (6.32)
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FIGURE 6.2 Determination of the phasor input voltage of the line.

Hence, the undetermined constant is determined from (6.30a) as

V̂+ = V̂ (0)[
1 + �̂(0)

] (6.33)

The process of determining the input and output voltages and currents to the line is

1. Determine the load reflection coefficient �̂L from (6.19)

2. Determine the input reflection coefficient �̂(0) from (6.23)

3. Determine the input impedance to the line, Ẑin (0), from (6.24) or (6.25)

4. Determine the input voltage V̂ (0) from (6.32)

5. Determine the undetermined constant V̂+ from (6.33)

6. Substitute this into (6.30) and (6.31) to determine the source and load voltages
and currents.

A more direct way of determining these terminal voltages and currents is as follows.
First, write the source relation in terms of a Thevenin equivalent relation as

V̂ (0) = V̂S − ẐS Î (0) (6.34)

Next, write the load terminal relation similarly as

V̂ (L) = ẐL Î (L) (6.35)

Substitute the general solution in (6.9) evaluated at z = 0 and at z = L into (6.34)
and (6.35) to yield

V̂+ + V̂− = V̂S − ẐS

ZC

(
V̂+ − V̂−) (6.36a)

V̂+e− jβL + V̂−e jβL = ẐL

ZC

(
V̂+e− jβL − V̂−e jβL

)
(6.36b)
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Rearranging these gives[ (
ZC + ẐS

) (
ZC − ẐS

)(
ZC − ẐL

)
e− jβL

(
ZC + ẐL

)
e jβL

] [
V̂+
V̂−

]
=
[

ZCV̂S
0

]
(6.37)

Solve these two simultaneous equations for the two undetermined constants V̂+ and
V̂− and substitute them into the general solutions in (6.9) to determine the line voltage
and current anywhere on the line and, in particular, at the source and the load. This
general method of solution will be used in a virtually identical fashion for multicon-
ductor transmission lines (MTLs) in the next chapter.

For the simple case of a two-conductor line, (6.37) can be solved by hand in literal
fashion (symbols instead of numbers) to give general expressions for V̂+ and V̂−.
These can then be written in closed form in terms of the reflection coefficients at the
source and the load:

�̂S = ẐS − ZC

ẐS + ZC
(6.38a)

�̂L = ẐL − ZC

ẐL + ZC
(6.38b)

to give general expressions for the line voltage and current anywhere on the line as

V̂ (z) = 1 + �̂Le− j2βLe j2βz

1 − �̂S�̂Le− j2βL

ZC

ZC + ẐS
V̂S e− jβz (6.39a)

Î (z) = 1 − �̂Le− j2βLe j2βz

1 − �̂S�̂Le− j2βL

1

ZC + ẐS
V̂S e− jβz (6.39b)

A considerable amount of information can be gleaned from these informative expres-
sions. For example, the source and load voltages and currents become

V̂ (0) = 1 + �̂Le− j2βL

1 − �̂S�̂Le− j2βL

ZC

ZC + ẐS
V̂S (6.40a)

Î (0) = 1 − �̂Le− j2βL

1 − �̂S�̂Le− j2βL

1

ZC + ẐS
V̂S (6.40b)

and

V̂ (L) = 1 + �̂L

1 − �̂S�̂Le− j2βL

ZC

ZC + ẐS
V̂S e− jβL (6.41a)

Î (L) = 1 − �̂L

1 − �̂S�̂Le− j2βL

1

ZC + ẐS
V̂S e− jβL (6.41b)
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If the line is matched at the load, that is, ẐL = ZC, so that the load reflection coefficient
is zero, �̂L = 0, these reduce to

V̂ (0) = ZC

ZC + ẐS
V̂S, �̂L = 0 (6.42a)

Î (0) = 1

ZC + ẐS
V̂S, �̂L = 0 (6.42b)

and

V̂ (L) = ZC

ZC + ẐS
V̂S e− jβL, �̂L = 0 (6.43a)

Î (L) = 1

ZC + ẐS
V̂S e− jβL, �̂L = 0 (6.43b)

Observe that these results are sensible because the line input looks like ẐL = ZC, the
magnitude of the voltage and current is constant all along the line, and the load and
source voltage and current differ only by the phase shift of the line, e− jβL.

6.2.3 The SPICE (PSPICE) Solution for Lossless Lines

SPICE (or PSPICE) can be used to solve these phasor transmission-line problems
for lossless lines. The SPICE or its personal computer version, PSPICE, computer
program contains a model that is an exact solution of the transmission-line equations
for a lossless two-conductor transmission line. See Appendix B for a tutorial on the
use of SPICE/PSPICE. This exact model will be derived in Chapter 8 . It is invoked
by the following statement:

TXXX N1 N2 N3 N4 Z0 = ZC TD = TD

where ZC = √
l/c is the characteristic impedance of the line and TD = (L/v) is the

one-way time delay for propagation from one end of the line to the other. The name
of the element, TXXX, denotes the model and XXX is the name of that specific model
given by the user. The line and model are connected between nodes N1-N2 and N3-
N4 as shown in Figure 6.3. Normally, nodes N2 and N4 are chosen to be the universal
reference or ground node, the zero node: N2 = 0 and N4 = 0.

An example is shown in Figure 6.4(a). A 100-MHz voltage source having a mag-
nitude of 10 V and an angle of 30◦ is attached to a two-conductor lossless line having
a characteristic impedance of 50 �, a velocity of propagation of 200 m/µs, and a line
length of 2.7 m. This gives a one-way time delay of TD = L/v = 13.5 ns. The source
impedance is ẐS = 100 − j50 � and the load impedance is ẐL = 100 + j200 �.
The PSPICE node numbering is shown in Figure 6.4(b). SPICE requires R, L, and
C circuit elements, so we have synthesized equivalent circuits for the source and
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FIGURE 6.3 Representing a lossless transmission line with the SPICE (PSPICE) equivalent
circuit.

load impedances as shown, which, at a frequency of 100 MHz, will give the desired
complex impedances. The PSPICE program is

EXAMPLE
VS 1 0 AC 10 30
RS 1 2 100
CS 2 3 31.8P
T 3 0 4 0 Z0=50 TD=13.5N
RL 4 5 100
LL 5 0 0.318U
.AC DEC 1 1E8 1E8
.PRINT AC VM(3) VP(3) VM(4) VP(4)
.END

The .AC command causes the program to calculate the result from a starting frequency
of 100 MHz to an ending frequency of 100 MHz in steps of one frequency per decade.
In other words, the solutions are obtained at only 100 MHz. The .PRINT statement
requests that the results be printed to a file with the magnitude of the node voltage at
node 3 denoted as VM(3) and the phase denoted as VP(3). The results are

V̂ (0) = VM(3) � VP(3)

= 2.136� 120.1◦

and

V̂ (L) = VM(4) � VP(4)
= 4.926� − 49.1◦
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FIGURE 6.4 An example for computing the phasor terminal voltages of a lossless transmis-
sion line: (a) the problem statement and (b) the SPICE coding diagram.

These compare favorably with those computed directly by hand with the earlier results
of

V̂ (0) = 2.14 � 120.13◦

and

V̂ (L) = 4.93 � − 409.12◦

Observe that the load voltage angle of −409.12◦ is equivalent to −49.12◦.

6.2.4 Voltage and Current as a Function of Position on the Line

We have been primarily interested in determining the voltages and currents at the
endpoints of the line. In this section, we will investigate and provide plots of the
magnitudes of the phasor line voltage and current at various points along the line.
We will plot the magnitude of these for distances d = L − z away from the load.
Recall the expressions for the voltage and current at various positions along the line
in (6.21). Substituting z = L − d into (6.21) and taking the magnitude gives

∣∣V̂d

∣∣ = ∣∣V̂+∣∣ ∣∣∣1 + �̂Le− j2βd
∣∣∣ (6.44a)
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and

∣∣Îd

∣∣ =
∣∣V̂+∣∣
ZC

∣∣∣1 − �̂Le− j2βd
∣∣∣ (6.44b)

There are three important cases of special interest that we will investigate: (1) the
load is a short circuit, ẐL = 0, (2) the load is an open circuit, ẐL = ∞, and (3) the
load is matched, ẐL = ZC.

For the case where the load is a short circuit, ẐL = 0, the load reflection coefficient
is �̂L = −1. Equations (6.44) reduce to∣∣V̂d

∣∣ = ∣∣V̂+∣∣ ∣∣∣1 − e−j2βd
∣∣∣

= ∣∣V̂+∣∣ ∣∣∣e−jβd
∣∣∣︸ ︷︷ ︸

1

∣∣∣ejβd − e−jβd
∣∣∣︸ ︷︷ ︸

|2j sin(βd)|
∝ |sin (βd)|

=
∣∣∣∣sin

(
2π

d

λ

)∣∣∣∣ (6.45a)

and ∣∣Îd

∣∣ =
∣∣V̂+∣∣
ZC

∣∣∣1 + e−j2βd
∣∣∣

=
∣∣V̂+∣∣
ZC

∣∣∣e−jβd
∣∣∣︸ ︷︷ ︸

1

∣∣∣ejβd + e−jβd
∣∣∣︸ ︷︷ ︸

|2 cos(βd)|
∝ |cos (βd)|

=
∣∣∣∣cos

(
2π

d

λ

)∣∣∣∣ (6.45b)

and we have written the result in terms of the distance from the load, d, in terms of
wavelengths. These are plotted in Figure 6.5(b). Observe that the voltage is zero at the
load and at distances from the load that are multiples of a half wavelength. The current
is maximum at the load and is zero at distances from the load that are odd multiples
of a quarter wavelength. Further, observe that corresponding points are separated by
one-half wavelength. We will find this to be an important property for all other loads.

For the case where the load is an open circuit, ẐL = ∞, the load reflection coef-
ficient is �̂L = 1. Equations (6.44) reduce to∣∣V̂d

∣∣ = |V̂+||1 + e− j2βd |
∝ |cos(βd)|

=
∣∣∣∣cos

(
2π

d

λ

)∣∣∣∣ (6.46a)
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FIGURE 6.5 Illustration of the variation of the magnitudes of the line voltage and current
for (b) a short-circuit load, RL = 0, (c) an open-circuit load, RL = ∞, (d) a matched load,
RL = ZC and (e) a general resistive termination.



THE GENERAL SOLUTION FOR LOSSLESS LINES 255

and

∣∣Îd

∣∣ =

∣∣∣V̂+∣∣∣
ZC

∣∣∣1 − e− j2βd
∣∣∣

∝ |sin(βd)|
=

∣∣∣∣sin

(
2π

d

λ

)∣∣∣∣
(6.46b)

and we have again written the result in terms of the distance from the load, d, in terms of
wavelengths. These are plotted in Figure 6.5(c). Observe that the current is zero at the
load and at distances from the load that are multiples of a half wavelength. The voltage
is maximum at the load and is zero at distances from the load that are odd multiples of
a quarter wavelength. This is the reverse of the short-circuit load case. Further, again
observe that corresponding points are separated by one-half wavelength.

And finally, we investigate the case of a matched load, ẐL = ZC. For this case, the
load reflection coefficient is zero, �̂L = 0, so that the results in (6.44) show that the
voltage and current are constant in magnitude along the line as shown in Figure 6.5(d).
This is an important reason to match a line. Although the magnitudes of the voltage and
current are constant along the line, they suffer a phase shift e− jβz as they propagate
along it.

The general case is sketched in Figure 6.5(e). The locations of the voltage and
current maxima and minima are determined by the actual load impedance, but adjacent
corresponding points on each waveform are separated by one-half wavelength. This
is an important and general result and can be proved from the general expressions in
(6.44). In those expressions, the only dependence on the distance from the load, d, is
in the phase term e− j2βd . Substituting β = 2π/λ and distances that are multiples of
a half wavelength, d ⇒ d ± n(λ/2), we obtain

e
− j2β

(
d± nλ

2

)
= e− j2βd e∓ j2nπ︸ ︷︷ ︸

+1

(6.47)

Hence, we obtain the important result that corresponding points on the magnitude of
the line voltage and line current are separated by one-half wavelength in distance.

6.2.5 Matching and VSWR

Figure 6.5 illustrates how the magnitudes of the voltage and current vary with position
on the line. In the matched case shown in Figure 6.5(d), the magnitudes of the voltage
and current do not vary with position, but in the cases of a short-circuit or an open-
circuit load (severely mismatched), the magnitudes of the voltage and current vary
drastically with position achieving minima of zero. Observe that the maximum and
the adjacent minimum are separated by one-quarter wavelength. This variation of
the voltage and current along the line for a mismatched load is very undesirable as
it can cause spots along the line where large voltages can occur that may damage
insulation or produce load voltages and currents that are radically different from the
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input voltage to the line. Ideally, we would like the line to have no effect on the signal
transmission (other than a phase shift or time delay) as will occur for the matched
load.

Although we ideally always would like to match the line, there are many practical
cases where we cannot exactly match the line. If ẐL �= ZC, the line is mismatched but
how do we quantitatively measure this degree of “mismatch”? A useful measure of
this mismatch is the voltage standing wave ratio (VSWR). The VSWR is the ratio of
the maximum voltage on the line to the minimum voltage on the line:

VSWR =
∣∣V̂ ∣∣max∣∣V̂ ∣∣min

(6.48)

These maximum and minimum voltages will be separated by one-quarter wavelength.
Observe that for the extreme cases of a short-circuit load, ẐL = 0, or an open-circuit
load, ẐL = ∞, the minimum voltage is zero and hence the VSWR is infinite:

VSWR =
{

∞, ẐL = 0

∞, ẐL = ∞ (6.49)

but the VSWR is unity for a matched load:

VSWR = 1, ẐL = ZC (6.50)

The VSWR must therefore lie between these two bounds:

1 ≤ VSWR < ∞ (6.51)

Industry considers a line to be “matched” if VSWR < 1.2
We can derive a quantitative result for the VSWR from (6.44a), which shows that

the voltage at some distance d is proportional to
∣∣V̂d

∣∣ ∝ ∣∣1 + �̂Le− j2βd
∣∣. The maxi-

mum will be proportional to
∣∣V̂ ∣∣max ∝ 1 + ∣∣�̂L

∣∣ and the minimum will be proportional
to
∣∣V̂ ∣∣min ∝ 1 − ∣∣�̂L

∣∣. Hence, the VSWR is

VSWR = 1 + ∣∣�̂L
∣∣

1 − ∣∣�̂L
∣∣ (6.52)

6.2.6 Power Flow on a Lossless Line

We now investigate the power flow on a lossless line. The forward- and backward-
traveling voltage and current waves carry power. The average power flowing to the
right (+z) at a point on the line can be determined in terms of the total voltage and
current at that point in the same fashion as for a lumped circuit as

PAV = 1

2
Re
{

V̂ (z)Î
∗
(z)
}

(6.53)
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where * denotes the complex conjugate. Substituting the general expressions for
voltage and current given in (6.21) gives

PAV = 1

2
Re
{

V̂ (z)Î
∗
(z)
}

= 1

2
Re

{
V̂+e− jβz

[
1 + �̂Le j2β (z−L)

] V̂+∗

ZC
e jβz

[
1 − �̂∗

Le− j2β (z−L)
]}

= 1

2
Re




V̂+V̂+∗

ZC


1 +

(
�̂Le j2β (z−L) − �̂∗

Le− j2β (z−L)
)

︸ ︷︷ ︸
imaginary

−�̂L�̂∗
L






=
∣∣V̂+∣∣2
2ZC

[
1 − ∣∣�̂L

∣∣2]
(6.54)

and we have used the complex algebra result that the product of a complex number and
its conjugate is the magnitude squared of that complex number. This result confirms
that if the load is a short circuit, �̂L = −1, or an open circuit, �̂L = 1, then the net
power flow in the +z direction is zero. Clearly, an open circuit or a short circuit
can absorb no power. Essentially, then the power in the forward-traveling wave is
equal to the power in the backward-traveling wave and all the incident power is
reflected.

This can be confirmed by separately computing the average power flow in
the individual waves. The power flowing to the right in the forward-traveling
wave is

P+
AV = 1

2
Re

{(
V̂+e− jβz

)( V̂+∗

ZC
e jβz

)}

=
∣∣V̂+∣∣2
2ZC

(6.55a)

and the power flowing to the left in the backward-traveling wave is

P−
AV = 1

2
Re

{(
V̂−e jβz

)(
− V̂−∗

ZC
e− jβz

)}

= −
∣∣V̂−∣∣2
2ZC

= −
∣∣V̂+∣∣2
2ZC

∣∣�̂L
∣∣2

(6.55b)

The sum of (6.55a) and (6.55b) gives (6.54). The ratio of reflected power to incident

power is
∣∣�̂L

∣∣2. For a matched load, ẐL = ZC, �̂L = 0 and all the power in the
forward-traveling wave is absorbed in the (matched) load.
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6.3 THE GENERAL SOLUTION FOR LOSSY LINES

The transmission-line equations for lossy lines include the per-unit-length resistance
of the conductors, r

(√
f
)
, and the per-unit-length conductance of the lossy surround-

ing medium, g (f ). The frequency-domain equations are

d

d z
V̂ (z) = −ẑ Î(z) (6.56a)

d

d z
Î(z) = −ŷ V̂ (z) (6.56b)

where the per-unit-length impedance and admittance are

ẑ = r + jωl (6.57a)

and

ŷ = g + jωc (6.57b)

Differentiating one equation with respect to z and substituting the other, and vice
versa, gives the uncoupled second-order differential equations

d2

d z2 V̂ (z) = ẑŷ︸︷︷︸
γ̂2

V̂ (z) (6.58a)

d2

d z2 Î(z) = ŷẑ︸︷︷︸
γ̂2

Î(z) (6.58b)

and the propagation constant is

γ̂ =
√

ẑŷ

= α + jβ (6.59)

The real part, α, is the attenuation constant and the imaginary part, β, is the phase
constant. Observe that for a lossy line, β �= ω

√
lc, as was the case for the lossless line.

Furthermore, the phase velocity of propagation along the line is v = ω/β �= 1/
√

lc.
The general solution to (6.58) is [ A.1]

V̂ (z) = V̂+e−α ze− jβz + V̂−eα ze jβz (6.60a)

Î(z) = V̂+

ẐC
e−α ze− jβz − V̂−

ẐC
eα ze jβz (6.60b)
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where the characteristic impedance now becomes complex as

ẐC =
√

ẑ

ŷ

= ZC � θZC

= ZC e jθZC (6.61)

The time-domain result is obtained in the usual fashion by (1) multiplying the phasor
quantity by e jωt and (2) taking the real part of the result:

V (z, t) = V+e−α zcos(ωt − βz + θ+) + V−eα zcos(ωt + βz + θ−) (6.62a)

I(z, t) = V+

ZC
e−α zcos(ωt − βz + θ+ − θZC ) − V−

ZC
eα zcos(ωt + βz + θ− − θZC)

(6.62b)

Again, the general solution consists of the sum of a forward-traveling wave (+z di-
rection) and a backward-traveling wave (−z direction). Observe that there are only
two differences between the lossless line solution and the lossy line solution. First,
the voltage and current amplitudes are attenuated as shown by the terms e±α z. Sec-
ond, the characteristic impedance is no longer real but has a phase angle. Hence, the
voltage and current are no longer in time phase but are out of phase by θZC , which is
at most 45◦.

Hence, we can directly modify the results obtained for the lossless line to include
losses by replacing jβ in those results with γ̂ = α + jβ. For example, we define the
load reflection coefficient as

�̂L = ẐL − ẐC

ẐL + ẐC
(6.63)

and the reflection coefficient anywhere on the line can be written in terms of the load
reflection coefficient as

�̂(z) = �̂Le2γ̂(z−L)

= �̂Le2α(z−L)e j2β(z−L) (6.64)

The phasor general solution in (6.60) becomes

V̂ (z) = V̂+e−α ze− jβz
(
1 + �̂(z)

)
(6.65a)

Î(z) = V̂+

ẐC
e−α ze− jβz

(
1 − �̂(z)

)
(6.65b)

Hence, the input impedance of the line at a point along the line is the ratio of (6.65a)
and (6.65b):
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Ẑin(z) = ẐC

(
1 + �̂(z)

)(
1 − �̂(z)

) (6.66)

The input impedance to the entire line at z = 0 is

Ẑin(z) = ẐC

(
1 + �̂Le−2αLe− j2βL

)(
1 − �̂Le−2αLe− j2βL

) (6.67)

This can be written in an alternative form as

Ẑin(0) = ẐC
ẐL + ẐCtanh (γ̂L)

ẐC + ẐLtanh (γ̂L)
(6.68)

The solution process for determining the terminal voltages and currents of the line is
virtually unchanged from the lossless case. The direct solution for the undetermined
constants in (6.60) and given in (6.37) for the lossless case becomes[ (

ẐC + ẐS
) (

ẐC − ẐS
)(

ẐC − ẐL
)
e−γ̂L

(
ẐC + ẐL

)
eγ̂L

] [
V̂+
V̂−

]
=
[

ẐCV̂S
0

]
(6.69)

The explicit solution for the line voltage and current anywhere on the line given for
the lossless line in (6.39) becomes for the lossy line

V̂ (z) = 1 + �̂Le−2γ̂Le2γ̂ z

1 − �̂S�̂Le−2γ̂L

ẐC

ẐC + ẐS
V̂S e−γ̂z (6.70a)

Î(z) = 1 − �̂Le−2γ̂Le2γ̂z

1 − �̂S�̂Le−2γ̂L

1

ẐC + ẐS
V̂Se−γ̂z (6.70b)

6.3.1 The Low-Loss Approximation

Typically, losses are small at the significant range of frequencies for typical high-
speed digital signals and for typical boards. For example, for a stripline with plate
separation of 20 mils and a land of width 5 mils in FR4 (εr = 4.7) we compute, from
Eqs. ( 4.107 ) in Section 4.3.1 of Chapter 4 , c = 113.2 pF/m and l = 0.461 µ H/m.
The characteristic impedance for this lossless stripline is ZC = √

l/c = 63.8 � and
the velocity of propagation is v = 1/

√
lc = 1.38 × 108m/s. Using Eq. ( 4.60 ) of

Chapter 4 , the per-unit-length conductance is given by

g = ω tanδ c (6.71)

where tan δ is the loss tangent of this (homogeneous) surrounding medium. For FR4
glass epoxy that is typical of PCBs, the loss tangent is approximately 0.02 in the low
to high MHz range. Hence, for this board we obtain g = 14.2 × 10−12f S/m. The
high-frequency resistance in ( 4.119) dominates the dc resistance in (4.118) above a
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frequency given in ( 4.120). For this problem and assuming that the constant k = 2,
the frequency is 23 MHz. Hence, for frequencies above 23 MHz, the per-unit-length
resistance of the land (thickness of 1.38 mils for 1 ounce copper) is computed from
the high-frequency equation in (4.119) giving r = 8.05 × 10−4√f �/m. By low loss
we mean

r � ωl (6.72a)

g � ωc (6.72b)

For this stripline problem, r is less than ωl for f > 1.34 MHz and g is less than ωc for
all frequencies. Observe that since g = ω tan δ c, g is less than ωc by the loss tangent,
which for FR4 is on the order of 0.02 in the low to high MHz range. (The loss tangent
goes to zero at dc and at very high frequencies.)

Let us consider obtaining a simple formula for the characteristic impedance and
the attenuation constant. The propagation constant is given in (6.59). Rewriting this,

γ̂ = α + jβ

= √
(r + jωl)(g + jωc)

=
√

( jωl)( jωc)

(
1 + r

jωl

)(
1 + g

jωc

)

= jω
√

lc

√(
1 − rg

ω2lc

)
− j

( r

ωl
+ g

ωc

)
∼= jω

√
lc

√
1 − j

( r

ωl
+ g

ωc

) {
r � ωl

g � ωc

}
(6.73)

We now apply the Taylor’s series to expand this:

(1 + x)n = 1 + nx

1!
+ n(n − 1)x2

2!
+ · · · , |x| < 1

to give

γ̂ ∼= jω
√

lc
[
1 − j

( r

2ωl
+ g

2ωc

)]
(6.74)

from which we identify the attenuation and phase constants as

α ∼= 1

2

(
r

ZC
+ gZC

)
(6.75a)

β ∼= ω
√

lc (6.75b)

In a similar fashion, we obtain
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ZC =
√

r + jωl

g + jωc

∼=
√

l

c

{
r � ωl

g � ωc

} (6.76)

Hence for a low-loss line where r � ωl and g � ωc, the characteristic impedance and
the velocity of propagation are independent of frequency and are essentially the same
as for a lossless line. Figure 6.6 shows the magnitude and angle of the characteristic
impedance versus frequency from 10 kHz to 1 GHz for the stripline considered
previously, where the land is of width 5 mils and the plate separation is 20 mils.
Observe that above about 5 MHz the characteristic impedance approaches the lossless
value of ZC = 63.8 �. Figure 6.7(a) shows the attenuation constant and Figure 6.7(b)
shows the velocity of propagation, v = ω/β. The velocity of propagation approaches
the lossless value of v = 1.38 × 108m/s above about 5 MHz. The value of the
attenuation constant computed from the approximation in (6.75a) at 100 MHz is
α = 1.085 × 10−1, whereas the value computed directly from the exact expression
in (6.59) is the same. Hence for typical board dimensions, the low-loss region where
the above approximations apply is above about 5 MHz. Hence for today’s digital
signals, all of their sinusoidal components lie in the low-loss frequency range.

Consider a lossy line that is matched so that there are only forward-traveling waves
on the line. The voltage and current, according to (6.60), are attenuated according
to e−α z as they travel along the line. Hence, the power loss in a line of length L is
e−2αL [ A.1,A.3 ]. In dB, this becomes [ A.3]

LossdB = 10 log10(e2αL)
= 8.686 αL (6.77)

For the above stripline at a frequency of 1 GHz, we obtain

ZC = 63.8 �

r = 25.46 �/m

g = 1.423 × 10−2 S/m

α = 0.653

The resistive loss is

Lossr = 4.343
r

ZC
L

= 1.73L dB (6.78a)

and the loss in the surrounding medium is

Lossg = 4.343gZCL
= 3.93L dB

(6.78b)
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FIGURE 6.6 Plot of (a) the magnitude and (b) the phase of the line characteristic impedance
for a low-loss line versus frequency.
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FIGURE 6.7 Plot of (a) the attenuation constant and (b) the velocity of propagation for a
low-loss line versus frequency.
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The total loss is the sum of these. For a 6-in. length of this stripline, the total loss at
1 GHz is 0.86 dB. This says that the amplitude of a 1-GHz sine wave, which varies as
e−α z, is reduced by about 1 dB; that is, the input level is reduced to about 90% at the
output when traversing a line length of 6 in. Observe that above 1 GHz, the dielectric
loss dominates the conductor loss.

6.4 LUMPED-CIRCUIT APPROXIMATE MODELS OF THE LINE

Although SPICE/PSPICE contains a model representing the exact solution of the
transmission-line equations for a two-conductor lossless line, a frequently used alter-
native is a lumped-circuit approximate representation. The basic idea is to represent
the line or segments of it as lumped circuits. Two common such models are the
lumped-Pi and lumped-T models shown in Figure 6.8, named so for their topolog-
ical appearance. In order for these to adequately represent the line, the line length
must be electrically short at the excitation frequency; that is, L < (1/10)λ. In some

FIGURE 6.8 Illustration of lumped-circuit approximate models: (b) the lumped-Pi model
and (c) the lumped-T model.
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cases the line must be much shorter than this, electrically, say, L < (1/20)λ, in or-
der for lumped-circuit models to characterize what is truly a distributed-parameter
phenomenon. If the total line length exceeds this criterion, then it is divided into a
sequence of smaller segments, each of which is electrically short. Observe that in
each of these lumped circuits, the total capacitance is cL and the total inductance is
lL. For example, in the lumped-Pi circuit in Figure 6.8(b), the total line capacitance
is split and put on either side of the total inductance. This gives the lumped circuit a
reciprocal property that the actual line possesses. Similarly, the lumped-T model in
Figure 6.8(c) has all the capacitance placed in the middle of the line, and the total
inductance is split and placed on either side. This gives reciprocal structures.

In order to investigate the adequacy of these approximate models, consider a two-
conductor line of length 1 m and characterized by l = 0.5 µ H/m and c = 200 pF/m
shown in Figure 6.9(a). The characteristic impedance is 50 � and the velocity of

FIGURE 6.9 SPICE simulation of the frequency-response of (a) the transmission-line model,
(b) a one-section lumped-Pi model, and (c) a two-section lumped-Pi model.
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propagation is 1 × 108 m/s, giving a one-way time delay of 10 ns. The node number-
ing for the exact transmission-line model representation is shown in Figure 6.9(a).
Figure 6.9(b) shows a one-section lumped-Pi model of the line along with the PSPICE
node numbering. Figure 6.9(c) shows the line being broken in half and modeled with
two lumped-Pi sections along with the PSPICE node numbering. The line is λ/10 at
10 MHz. Combining these three models into one program using one voltage source
gives

EXAMPLE
VS 1 0 AC 1

* TRANSMISSION LINE MODEL
RS1 1 2 10
T 2 0 3 0 Z0=50 TD=10N
RL1 3 4 100
LL1 4 0 0.2653U

* ONE-PI SECTION
RS2 1 5 10
C11 5 0 100P
L11 5 6 0.5U
C12 6 0 100P
RL2 6 7 100
LL2 7 0 0.2653U

* TWO-PI SECTIONS
RS3 1 8 10
C21 8 0 50P
L21 8 9 0.25U
C22 9 0 50P
C23 9 0 50P
L22 9 10 0.25U
C24 10 0 50P
RL3 10 11 100
LL3 11 0 0.2653U
.AC DEC 50 1E6 100E6
.PRINT AC VM(2) VP(2) VM(3) VP(3) VM(5) VP(5)

+ VM(6) VP(6) VM(8) VP(8) VM(10) VP(10)
.PROBE
.END

Plots of the input and output voltages of the line resulting from these three models are
shown in Figure 6.10. Observe that for frequencies below where the line is λ/10, that
is, 10 MHz, all three models give the same result. The lumped-Pi model consisting of
two sections extends this prediction range slightly higher. Previous work has shown
that increasing the number of sections does not significantly increase the prediction
range of the lumped-circuit model to make the increased complexity of the circuit
worth it [B.15].
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FIGURE 6.10 Plots of the SPICE-computed magnitudes of the circuits of Figure 6.9 for
(a) the source voltages and (b) the load voltages.

Lossy lines can also be modeled with these lumped-circuit approximations. The
line can similarly be modeled with lumped-Pi or lumped-T sections but with the line
per-unit-length resistance and conductance added as shown in Figure 6.11. Again,
observe that the totals are rL and gL. However, these per-unit-length parameters
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FIGURE 6.11 Illustration of the inclusion of losses into (b) the lumped-Pi and (c) the lumped-
T equivalent circuits.

of resistance and conductance are frequency dependent as discussed in Sections
4.2.3 and 4.3.2 of Chapter 4. In the case of lossy lines excited at one frequency,
these approximate models have a useful role since these per-unit-length parame-
ters can be evaluated at the frequency of excitation and included in these mod-
els as a constant value element. However, in modeling time-domain excitation of
the line such as the line driven by digital pulse waveforms, there is a significant
problem. The digital pulse waveforms contain a continuum of sinusoidal compo-
nents. Yet the per-unit-length resistance and conductance are frequency dependent.
Hence, we should not use these lumped-circuit approximate models to model lines
that are excited by general waveforms unless we ignore the frequency-dependant
losses.

6.5 ALTERNATIVE TWO-PORT REPRESENTATIONS OF THE LINE

Since we are generally not interested in the line voltages and currents at points
along the line other than at the terminations, we can imbed the line as a two-port
as shown in Figure 6.12 and relate the terminal voltages and currents with two-port
parameters.
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FIGURE 6.12 Characterization of a transmission line as a two-port.

6.5.1 The Chain Parameters

One of the most useful forms of two-port parameters for a transmission line is the
chain-parameter matrix representation. This relates the terminal voltages and currents
as

[
V̂ (L)
Î (L)

]
=
[

φ̂ 11 φ̂ 12
φ̂ 21 φ̂ 22

]
︸ ︷︷ ︸

�̂(L)

[
V̂ (0)
Î (0)

]
(6.79)

These can be straightforwardly obtained by evaluating the general solutions for a
lossless line given in (6.9) at z = 0 and z = L to give

[
V̂ (0)

Î(0)

]
=
[ 1 1

1

ZC
− 1

ZC

] [
V̂+

V̂−

]
(6.80a)

[
V̂ (L)
Î (L)

]
=
[

e− jβL e jβL

1

ZC
e− jβL − 1

ZC
e jβL

] [
V̂+
V̂−

]
(6.80b)

Inverting (6.80a) gives

[
V̂+
V̂−

]
= 1

2

[
1 ZC
1 −ZC

] [
V̂ (0)
Î(0)

]
(6.81)
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Substituting this into (6.80b) gives

[
V̂ (L)

Î (L)

]
=
[

e− jβL e jβL

1

ZC
e− jβL − 1

ZC
e jβL

]
1

2

[
1 ZC

1 −ZC

] [
V̂ (0)

Î(0)

]

=

 cos (βL) − jZCsin (βL)

− j
sin (βL)

ZC
cos (βL)




︸ ︷︷ ︸
�̂(L)

[
V̂ (0)

Î(0)

] (6.82)

Hence, for a lossless line the chain parameters are

φ̂11 = cos (βL) (6.83a)

φ̂12 = − jZCsin (βL) (6.83b)

φ̂21 = − j
sin (βL)

ZC
(6.83c)

φ̂22 = cos (βL) (6.83d)

Observe some interesting properties of the chain-parameter matrix for a lossless
line. If the line length is one quarter of a wavelength, βL = 2π(L/λ) = π/2 and the
chain-parameter matrix becomes

�̂ (L) =
[

0 − jZC

− j
1

ZC
0

]
, L = λ

4
(6.84a)

Conversely, if the line length is one-half wavelength, the chain-parameter matrix
becomes

�̂ (L) =
[−1 0

0 −1

]
, L = λ

2
(6.84b)

If the line length is three quarters of a wavelength, the chain-parameter matrix becomes

�̂ (L) =
[

0 jZC

j
1

ZC
0

]
, L = 3λ

4
(6.84c)

If the line is one wavelength, the chain-parameter matrix becomes the identity matrix:

�̂ (L) =
[

1 0
0 1

]
, L = λ (6.84d)
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which means that the input and output voltages are equal as are the input and output
currents.

These are obtained for a lossless line. To obtain the chain parameters for a lossy
line, we simply replace cos (βL) ⇒ cosh (γ̂L) and replace jsin (βL) ⇒ sinh (γ̂L)
along with ZC ⇒ ẐC. Hence, for a lossy line, the chain parameters become

φ̂11 = cosh (γ̂L)

= eγ̂L + e−γ̂L

2
(6.85a)

φ̂12 = −ẐCsinh (γ̂L)

= −ẐC
eγ̂L − e−γ̂L

2
(6.85b)

φ̂21 = − 1

ẐC
sinh (γ̂L)

= − 1

ẐC

eγ̂L − e−γ̂L

2
(6.85c)

φ̂22 = cosh (γ̂L)

= eγ̂L + e−γ̂L

2
(6.85d)

The chain parameters only relate the voltage and current at one end of the line to
the voltage and current at the other end of the line. They do not explicitly determine
those voltages and currents until we incorporate the terminals conditions. In order to
incorporate the terminal conditions, we write the terminal conditions in the form of
Thevenin equivalents. For example, for the typical terminations shown in Figure 6.1,
these become

V̂ (0) = V̂S − ẐS Î(0) (6.86a)

and

V̂ (L) = ẐL Î (L) (6.86b)

Writing out the chain-parameter representation in (6.79) and substituting (6.86) gives

V̂ (L) = ẐL Î (L) = φ̂11
[
V̂ (0) = V̂S − ẐS Î(0)

]+ φ̂12 Î(0) (6.87a)

Î (L) = φ̂21
[
V̂ (0) = V̂S − ẐS Î(0)

]+ φ̂22 Î(0) (6.87b)
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Substituting (6.87b) into (6.87a) yields.[
φ̂12 − φ̂11ẐS − ẐLφ̂22 + ẐLφ̂21ẐS

]
Î(0) = [

ẐLφ̂21 − φ̂11
]
V̂S (6.88a)

and

Î (L) = φ̂21V̂S + [
φ̂22 − φ̂21ẐS

]
Î(0) (6.88b)

Once (6.88a) is solved for the current at z = 0, (6.88b) can be solved for the current
at z = L. Then the voltages can be obtained from the terminal relations in (6.86).

6.5.2 Approximating Abruptly Nonuniform Lines with the Chain-Parameter
Matrix

The chain-parameter matrix relates the voltage and current at the right end of the line
to the voltage and current at the left end of the line. Hence, the overall chain-parameter
matrix of several such lines that are cascaded in series can be obtained as the product
of the chain-parameter matrices of the sections (in the proper order). For example,
consider the cascade of N lines or sections of lines having chain-parameter matrices
� (� zi), each of length � zi for i = 1, 2, 3, . . . , N as shown in Figure 6.13(a). In
other words, the overall chain-parameter matrix is

�̂ (L) = �̂N (� zN ) × · · · × �̂i (� zi) × · · · × �̂1 (� z1)

=
N∏

k=1

�̂N−k+1 (� zN−k+1)
(6.89)

It is important to observe the proper order of multiplication of the individual chain-
parameter matrices in this product. This is a result of the definition of the chain-
parameter matrices as[

V̂ (zk+1)
Î (zk+1)

]
= �̂k+1 (� zk+1)

[
V̂ (zk)
Î (zk)

]
(6.90a)

and [
V̂ (zk)
Î (zk)

]
= �̂k (� zk)

[
V̂ (zk−1)
Î (zk−1)

]
(6.90b)

Figure 6.13(b) and (c) shows that the chain-parameter representation can be
used to model nonuniform lines. For example, the twisted pair of wires shown in
Figure 6.13(b) is truly a bifilar helix, but we can approximate it as a sequence of loops
lying in the page with an abrupt interchange at the junctions. The chain-parameter ma-
trices of the uniform sections are then multiplied together along with chain-parameter
matrices that give an interchange of the voltages and currents at the junctions. If the
lengths of the sections are assumed to be identical, then the overall chain-parameter
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FIGURE 6.13 Representing abruptly nonuniform lines as (a) a cascade of uniform subsec-
tions, and applications to (b) twisted pairs and (c) shielded wires with pigtails.

matrix is the Nth power of the chain-parameter matrix of each section (that includes
the interchange chain-parameter matrix). This can be computed quite efficiently us-
ing, for example, the Cayley–Hamilton theorem for powers of a matrix [ A.2, G.1,
G.6, G.7].

Figure 6.13(c) shows another application for shielded cables. Shielded cables of-
ten have exposed sections at the ends to facilitate connection of the shield to the
terminal networks [F.1–F.6]. The shield is connected to the terminations via a “pig-
tail” wire over the exposed sections. The overall chain-parameter matrix can then
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be obtained as the product of the chain-parameter matrices for the pigtail sections of
length LpL and LpR and the chain-parameter matrix of the shielded section of length
LS as

�̂ (L) = �̂pR
(
LpR

)× �̂S (LS) × �̂pL
(
LpL

)
(6.91)

Once the overall chain-parameter matrix is obtained, the terminal constraints at the
left and right ends of the line can be incorporated to solve for the terminal voltages
and currents as described previously.

6.5.3 The Z and Y Parameters

The Z (impedance) parameters have the units of ohms and relate the voltages to the
currents. These are defined as[

V̂ (0)
V̂ (L)

]
=
[

Ẑ11 Ẑ12
Ẑ21 Ẑ22

]
︸ ︷︷ ︸

Ẑ

[
Î (0)

−Î (L)

]
(6.92)

For the Z and Y parameters, the currents are defined to be directed into the two-port.
Hence, we use −Î (L) in this matrix representation. For a lossless line, the impedance
parameters are again obtained by eliminating V̂+ and V̂− from the basic solution in
(6.9) to yield

[
V̂ (0)

V̂ (L)

]
=




ZCcos (βL)

jsin (βL)

ZC

jsin (βL)
ZC

jsin (βL)

ZCcos (βL)

jsin (βL)




︸ ︷︷ ︸
Ẑ

[
Î(0)

−Î (L)

]
(6.93)

The Z-parameter matrix is symmetric, so we may write it as[
V̂ (0)

V̂ (L)

]
=
[

Ẑs Ẑm
Ẑm Ẑs

]
︸ ︷︷ ︸

Ẑ

[
Î(0)

−Î (L)

]
(6.94a)

where

Ẑs = ZCcos (βL)

j sin (βL)

= ZC
1

j tan (βL)

(6.94b)

Ẑm = ZC

jsin (βL)
(6.94c)
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FIGURE 6.14 Equivalent circuits for (a) the Z parameters and (b) the Y parameters.

An (exact) equivalent circuit for the Z-parameter representation is shown in
Figure 6.14(a).

Similarly, the Y (admittance) parameters relate the terminal currents to the terminal
voltages and have the units of siemens and are defined as

[
Î(0)

−Î (L)

]
=
[

Ŷ11 Ŷ12
Ŷ21 Ŷ22

]
︸ ︷︷ ︸

Ŷ

[
V̂ (0)

V̂ (L)

]
(6.95)

The Y-parameter matrix is the inverse of the Z-parameter matrix, Y = Z−1, so that

[
Î(0)

−Î (L)

]
=




cos (βL)

jZCsin (βL)
− 1

jZCsin (βL)

− 1

jZCsin (βL)

cos (βL)

jZCsin (βL)




︸ ︷︷ ︸
Ŷ

[
V̂ (0)
V̂ (L)

]
(6.96)

The Y-parameter matrix is symmetric, so we may write it as

[
Î(0)

−Î (L)

]
=
[

Ŷs Ŷm
Ŷm Ŷs

]
︸ ︷︷ ︸

Ŷ

[
V̂ (0)

V̂ (L)

]
(6.97a)
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where

Ŷs = cos (βL)

jZCsin (βL)

= 1

jZCtan (βL)
(6.97b)

Ŷm = − 1

jZCsin (βL)
(6.97c)

An (exact) equivalent circuit for the Y-parameter representation is shown in
Figure 6.14(b). Observe that the Z-and Y-parameter matrices are singular when
the line length is a multiple of a half wavelength, that is, L = n(λ/2), because
sin (βL) = sin (2π(L/λ)) is zero. The chain-parameter matrix on the contrary is
never singular.

These are obtained for a lossless line. To obtain the Z or Y parameters
for a lossy line, we again simply replace cos (βL) ⇒ cosh (γ̂L) and replace
jsin (βL) ⇒ sinh (γ̂L) along with ZC ⇒ ẐC. Hence, for a lossy line the Z parame-
ters become

Ẑs = ẐC
1

tanh(γ̂ L)

= ẐC

eγ̂L + e−γ̂L

eγ̂L − e−γ̂L

(6.98a)

Ẑm = ẐC
1

sinh(γ̂ L)

= ẐC
2

eγ̂L − e−γ̂L

(6.98b)

and the Y parameters become

Ŷs = ŶC
1

tanh(γ̂ L)

= ŶC
eγ̂L + e−γ̂L

eγ̂L − e−γ̂L

(6.99a)

Ŷm = −ŶC
1

sinh(γ̂ L)

= −ŶC
2

eγ̂L − e−γ̂L

(6.99b)

and ŶC = 1

ẐC
.

As was the case for the chain parameters, the Z and Y parameters only relate the
voltages at each end of the line to the currents at each end of the line; they do not
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explicitly determine them. As was the case for the chain parameters, the terminal
conditions in (6.86) can be combined with the Z or Y parameters to give equations to
explicitly solve for the terminal voltages and currents.

PROBLEMS

6.1 Show by direct substitution that (6.9) satisfy (6.8).

6.2 Show that (6.25) and (6.24) are equivalent.

6.3 For the transmission line shown in Figure 6.1, f = 5 MHz, v = 3 ×
108m/s, L = 78 m, ZC = 50 �, V̂S = 50 � 0◦, ẐS = 20 − j30 �, ẐL = 200 +
j500 �. Determine (a) the line length as a fraction of a wavelength, (b) the
voltage reflection coefficient at the load and at the input to the line, (c) the
input impedance to the line, (d) the time-domain voltages at the input to the
line and at the load, (e) the average power delivered to the load, and (f)
the VSWR. [(a) 1.3, (b) 0.9338� 9.866◦, 0.9338 � 153.9◦, (c) 11.73 � 81.16◦,
(d) 20.55cos(10π × 106t + 121.3◦), 89.6cos(10π × 106t − 50.45◦), (e) 2.77
W, and (f) 29.21]

6.4 For the transmission line shown in Figure 6.1, f = 200 MHz, v = 3 × 108m/s,
L = 2.1 m, ZC = 100 �, V̂S = 10 � 60◦, ẐS = 50 �, and ẐL = 10 − j50 �.
Determine (a) the line length as a fraction of a wavelength, (b) the volt-
age reflection coefficient at the load and at the input to the line, (c) the in-
put impedance to the line, (d) the time-domain voltages at the input to the
line and at the load, (e) the average power delivered to the load, and (f) the
VSWR. [(a) 1.4, (b) 0.8521� − 126.5◦, 0.8521� − 54.5◦, (c) 192 � − 78.83◦,
(d) 9.25cos(4π × 108t + 46.33◦), 4.738cos(4π × 108t − 127◦), (e) 43 mW,
and (f) 12.52]

6.5 For the transmission line shown in Figure 6.1, f = 1 G Hz, v = 1.7 × 108m/s,
L = 11.9 cm, ZC = 100 �, V̂S = 5� 0◦, ẐS = 20 �, and ẐL = − j160 �.
Determine (a) the line length as a fraction of a wavelength, (b) the voltage
reflection coefficient at the load and at the input to the line, (c) the input
impedance to the line, (d) the time-domain voltages at the input to the line
and at the load, (e) the average power delivered to the load, and (f) the VSWR.
[(a) 0.7, (b) 1� − 64.1◦, 1 � 152◦, (c) 24.94 � 90◦, (d) 3.901cos(2π × 109t +
38.72◦), 13.67cos(2π × 109t + 38.72◦), (e) 0 W, and (f) ∞]

6.6 For the transmission line shown in Figure 6.1, f = 600 MHz, v = 2 × 108m/s,
L = 53 cm, ZC = 75 �, V̂S = 20 � 40◦, ẐS = 30 � and ẐL = 100 − j300 �.
Determine (a) the line length as a fraction of a wavelength, (b) the voltage
reflection coefficient at the input to the line and at the load, (c) the input
impedance to the line, (d) the time-domain voltages at the input to the line
and at the load, (e) the average power delivered to the load, and (f) the VSWR.
[(a) 1.59, (b) 0.8668� − 25.49◦, 0.8668 � − 90.29◦, (c) 74.62 � − 81.84◦, (d)
17.71cos(12π × 108t + 19.37◦), 24.43cos(12π × 106t − 163.8◦), (e) 0.298 W,
and (f) 14.02]
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6.7 For the transmission line shown in Figure 6.1, f = 1 MHz, v = 3 × 108m/s,
L = 108 m, ZC = 300 �, V̂S = 100 � 0◦, ẐS = 50 + j50 �, and ẐL = 100 −
j100 �. Determine (a) the line length as a fraction of a wavelength, (b) the
voltage reflection coefficient at the load and at the input to the line, (c) the input
impedance to the line, (d) the time-domain voltages at the input to the line and
at the load, (e) the average power delivered to the load, and (f) the VSWR.
[(a) 0.36, (b) 0.5423� − 139.4◦, 0.5423 � − 38.6◦, (c) 657.1 � − 43.79◦, (d)
99.2cos(2π × 106t − 6.127◦), 46.5cos(2π × 106t − 153.3◦), (e) 5.41 W, and
(f) 3.37]

6.8 Confirm the input and load voltages for Problem 6.3 using SPICE.

6.9 Confirm the input and load voltages for Problem 6.4 using SPICE.

6.10 Confirm the input and load voltages for Problem 6.5 using SPICE.

6.11 Confirm the input and load voltages for Problem 6.6 using SPICE.

6.12 Confirm the input and load voltages for Problem 6.7 using SPICE.

6.13 A half-wavelength dipole antenna is connected to a 100-MHz source with a
3.6-m length of 300-� transmission line (twin lead, v = 2.6 × 108m/s) as
shown in Figure P6.13. The source is represented by an open-circuit voltage of
10 V and source impedance of 50 �, whereas the input to the dipole antenna
is represented by a 73-� resistance in series with an inductive reactance of
42.5 �. The average power dissipated in the 73-� resistance is equal to the
power radiated into space by the antenna. Determine the average power radi-
ated by the antenna with and without the transmission line and the VSWR on
the line. [91.14 mW, 215.53 mW, 4.2]

FIGURE P 6.13

6.14 Two identical half-wavelength dipole antennas are connected in parallel and fed
from one 300-MHz source as shown in Figure P6.14. Determine the average
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power delivered to each antenna. Hint: Determine the electrical lengths of the
transmission lines. [115 mW]

FIGURE P 6.14

6.15 Demonstrate the incorporation of terminal impedances in (6.37).

6.16 Demonstrate the formula for the voltage and current anywhere on the line in
(6.39).

6.17 Demonstrate the power flow relation in (6.54).

6.18 Show, by direct substitution, that (6.60) satisfies (6.58).

6.19 Demonstrate the results in (6.75).

6.20 A low-loss coaxial cable has the following parameters: ẐC ∼= (75 + j0) �,
α = 0.05, and v = 2 × 108m/s. Determine the input impedance to a 11.175-m
length of the cable at 400 MHz if the line is terminated in (a) a short cir-
cuit, (b) an open circuit, and (c) a 300-� resistor. [(a) 90.209� − 34.86◦ �,
(b) 62.355� 34.06◦ �, and (c) 66.7 � 21.2◦ �]

6.21 An air-filled line
(
v = 3 × 108m/s

)
having a characteristic impedance of

50 � is driven at a frequency of 30 MHz and is 1 m in length. The line is termi-
nated in a load of ẐL = (200 − j200) �. Determine the input impedance using
(a) the transmission-line model and (b) the approximate lumped-Pi model.
Use PSPICE to compute both results. [(a) (12.89 − j51.49) �, and (b)
(13.76 − j52.25) �]

6.22 A lossless coaxial cable
(
v = 2 × 108m/s

)
having a characteristic impedance

of 100 � is driven at a frequency of 4 MHz and is 5 m in length. The line is
terminated in a load of ẐL = (150 − j50) � and the source is V̂S = 10 � 0◦V
with ẐS = 25 �. Determine the input and output voltages to the line using (a)
the transmission-line model, and (b) the approximate lumped-Pi model. Use
PSPICE to compute both results. [Exact: V̂ (0) = 7.954 � − 6.578◦, V̂ (L) =
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10.25 � − 33.6◦; approximate: V̂ (0) = 7.959� − 5.906◦, V̂ (L) = 10.27
� − 35.02◦]

6.23 Verify the chain-parameter relations in (6.82).

6.24 Verify the Z parameters in (6.93).

6.25 Verify the Y parameters in (6.96).

6.26 Verify the equivalent circuits for the Z and Y parameters in Figure 6.14.



7
FREQUENCY-DOMAIN ANALYSIS
OF MULTICONDUCTOR LINES

In this chapter, we consider the frequency-domain solution of the MTL (multi-
conductor transmission lines) equations for an (n + 1)-conductor line where the ex-
citation sources are sinusoids that have been applied for a sufficient length of time so
that the line voltages and currents are in steady state. We will find that, using matrix
notation, the solutions to these phasor MTL equations bear a striking similarity to
the solutions for two-conductor lines obtained in the previous chapter. The primary
method we will use to solve these phasor MTL equations is to decouple them with
a similarity transformation [A.4, 1–4]. This frequency-domain solution of the MTL
equations has a long history [5–10].

7.1 THE MTL TRANSMISSION-LINE EQUATIONS
IN THE FREQUENCY DOMAIN

We assume that the time variation of the line excitation sources is sinusoidal and the
line is in steady state. Therefore, the line voltages and currents are also sinusoidal
having a magnitude and a phase angle and the same frequency as the sources. Thus,
the n line voltages and n line currents in the time domain are obtained from their
phasor form in the usual fashion as

Vi(z, t) = Re
{
V̂i(z) e jωt

}
(7.1a)

Ii(z, t) = Re
{
Îi(z) e jωt

}
(7.1b)

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.
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where Re{·} denotes the real part of the enclosed complex quuantity, and the phasor
voltages and currents have a magnitude and a phase angle as

V̂i(z) = Vi(z)� θi(z)

= Vi(z) e jθi(z) (7.2a)

Îi(z) = Ii(z) � φi(z)

= Ii(z)e jφi(z) (7.2b)

The radian frequency of excitation (as well as the radian frequency of the resulting line
voltages and currents) is denoted by ω, where ω = 2πf and f is the cyclic frequency
of excitation. Inserting (7.2) into (7.1) gives the resulting time-domain forms of the n
line voltages and n line currents as

Vi(z, t) = Vi(z)cos(ωt + θi(z)) (7.3a)

Ii(z, t) = Ii(z)cos(ωt + φi(z)) (7.3b)

Replacing all time derivatives in the time-domain MTL equations with jω, the
frequency-domain (phasor) MTL equations are given, in matrix form, in Eq. (3.32)
of Chapter 3:

d

d z
V̂(z) = −Ẑ Î(z) (7.4a)

d

d z
Î(z) = −Ŷ V̂(z) (7.4b)

where the n × 1 column vectors V̂(z) and Î(z) contain the n line voltages V̂i(z) and n
currents Îi(z) as

V̂(z) =




V̂1(z)
...

V̂i(z)
...

V̂n(z)


 (7.5a)

Î(z) =




Î1(z)
...

Îi(z)
...

În(z)


 (7.5b)
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The n × n per-unit-length impedance, Ẑ, and admittance, Ŷ, matrices are given by

Ẑ = R + jω L (7.6a)

Ŷ = G + jω C (7.6b)

and contain the n × n per-unit-length resistance R, inductance (containing both in-
ternal and external inductance) L = Li + Le, conductance G, and capacitance C
matrices. Since R, L, C, and G are symmetric matrices, Ẑ and Ŷ are also symmetric.
The resulting equations in (7.4) are a set of coupled, first-order ordinary differential
equations with complex coefficients.

Alternatively, the coupled, first-order phasor MTL equations in (7.4) can be placed
in the form of uncoupled, second-order ordinary differential equations by differenti-
ating one with respect to line position z and substituting the other, and vice versa, to
yield.

d2

dz2 V̂(z) = ẐŶ V̂(z) (7.7a)

d2

dz2 Î(z) = ŶẐ Î(z) (7.7b)

Ordinarily, the per-unit-length parameter matrices Ẑ and Ŷ do not commute, that is,
ZY �= YZ, so that the proper order of multiplication in (7.7) must be observed. In
differentiating (7.4) with respect to line position z, we have assumed that the per-
unit-length parameter matrices R, L, G, and C are independent of z. Thus, we have
assumed that the cross-sectional line dimensions and surrounding media properties
are invariant along the line (independent of z) or, in other words, the line is a uniform
line. Both the first-order coupled forms of the MTL equations given in (7.4) and
the second-order uncoupled forms given in (7.7) will be useful in obtaining the final
solution.

7.2 THE GENERAL SOLUTION FOR AN (n + 1)-CONDUCTOR LINE

In the previous chapter, we discussed the well-known solutions for a two-conductor
line. In this section, we begin our study of the solutions for an (n + 1)-conductor line
or MTL. In many cases, the results and properties of the solution for a two-conductor
line carry over, with matrix notation, to an MTL.

7.2.1 Decoupling the MTL Equations by Similarity Transformations

As was the case for two-conductor lines, we concentrate on solving the second-order
differential equations given in (7.7). Notice that the equations in (7.7) are coupled
together because ZY and YZ are full matrices; that is, each set of voltages and currents,
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V̂i(z) and Îi(z), affects all the other sets of voltages and currents, V̂ j(z) and Î j(z).
The essential idea in the solution method that we will use is to decouple them with
a similarity transformation [1–4]. We will use a change of variables to decouple the
second-order differential equations in (7.7) by putting them into the form of n separate
equations describing n isolated two-conductor lines. Apply the solution techniques in
the previous chapter to these individual two-conductor lines and then use the change
of variables to return to the original voltages and currents. This method of using a
change of variables is perhaps the most frequently used technique for generating the
general solution to the MTL equations. A complete discussion of this technique for
the phasor MTL equations is given in [B.25].

In implementing this method, we transform to mode quantities as

V̂(z) = T̂V V̂m(z) (7.8a)

Î(z) = T̂I Îm(z) (7.8b)

The n × n complex matrices T̂V and T̂I define a change of variables between the
actual phasor line voltages and currents, V̂ and Î, and the mode voltages and currents,
V̂m and Îm. In order for this to be valid, these n × n matrices must be nonsingular;
that is, T̂−1

V and T̂−1
I must exist, where we denote the inverse of an n × n matrix

M as M−1 in order to go between both sets of variables. Substituting these into the
second-order MTL equations in (7.7) gives

d2

dz2 V̂m(z) = T̂−1
V Ẑ Ŷ T̂V V̂m(z)

= γ̂2 V̂m(z) (7.9a)

d2

dz2 Îm(z) = T̂−1
I ŶẐ T̂I Îm(z)

= γ̂2 Îm(z) (7.9b)

The objective is to decouple these second-order equations by finding a T̂V and a T̂I

that simultaneously diagonalize ẐŶ and ŶẐ via similarity transformations as

T̂−1
V Ẑ Ŷ T̂V = γ̂2 (7.10a)

T̂−1
I ŶẐ T̂I = γ̂2 (7.10b)

where γ̂2 is an n × n diagonal matrix:

γ̂2 =




γ̂2
1 0 · · · 0

0 γ̂2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 γ̂2

n


 (7.10c)
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The mode equations in (7.9) will therefore be decoupled. This will yield the n prop-
agation constants γ̂i of the n modes.

This is the classic eigenvalue/eigenvector problem of matrices [A.2, A.4, B.1, 1–
4]. This classic problem can be summarized by the following. Suppose we wish to
find an n × n nonsingular matrix T that diagonalizes an n × n matrix M as

T−1 M T = � (7.11)

where � is an n × n diagonal matrix with �i on the main diagonal and zeros else-
where. Multiplying both sides of (7.11) by T yields

M T − T � = 0 (7.12)

where 0 is the n × n zero matrix. The n columns of T, Ti, are the eigenvectors of M
and the n values �i are the eigenvalues of M. Equation (7.12) gives n equations for
the n eigenvectors as [A.4, 1–4]

(M − �i 1n) Ti = 0, i = 1, . . . , n (7.13)

where 0 is the n × 1 zero vector that contains all zeros and the n × 1 column vectors
of the eigenvectors Ti contain the unknowns to be solved for. Equations (7.13) are a
set of n homogeneous, algebraic equations. As such, they have [A.4,1–4]

1. the unique solution Ti = 0 or

2. an infinite number of solutions for Ti.

Clearly, we want to determine the nontrivial solution (solution 2), which will exist
only if the determinants of the coefficient matrices of (7.13) are zero [A.4, 1–4]:

|M − �i 1n| = 0 (7.14)

This gives the nth-order characteristic equation whose roots are the eigenvalues of M.
From this discussion and a comparison with (7.10), it is clear that the columns of

T̂V are the eigenvectors of ẐŶ and the columns of T̂I are the eigenvectors of Ŷ Ẑ.
The entries in γ̂2, γ̂2

i for i = 1, . . . , n, are the eigenvalues of ẐŶ and of Ŷ Ẑ. That the
eigenvalues of ẐŶ and Ŷ Ẑ are the same follows from the fact that the eigenvalues of
a matrix M and its transpose Mt are the same, which is clear from (7.14) because the
determinant of a matrix and its transpose are the same [A.4,1–4]. Taking the transpose
of ẐŶ yields

(
ẐŶ

)t = ŶtẐt = ŶẐ, where we have used the fact that Ẑ and Ŷ are
symmetric, that is, Ẑt = Ẑ and Ŷt = Ŷ. Hence, the transpose of ẐŶ is Ŷ Ẑ, thus
showing that they have the same eigenvalues. Observe that this property relies only
on Ẑ and Ŷ being symmetric matrices. Hence, in order to decouple the second-order
MTL equations, we only need to find a T̂V that diagonalizes the product of ẐŶ as in
(7.10a) or a T̂I that diagonalizes the product ŶẐ as in (7.10b).
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In order to diagonalize Ẑ Ŷ or Ŷ Ẑ as in (7.10), we must be able to find a linearly
independent set of n eigenvectors. A sufficient condition for this is that all n eigenval-
ues be distinct. There are important cases where some of the eigenvalues are repeated,
yet a linearly independent set of n eigenvectors can be found such that ẐŶ can be
diagonalized as in (7.10). In the case of repeated eigenvalues, the arrangement of
the columns of T̂V and/or T̂I corresponding to those repeated eigenvalues is clearly
not unique. Structures that exhibit certain types of symmetry can result in repeated
eigenvalues and hence give rise to this nonunique assignment of the columns of T̂V

or T̂I . The nonunique assignment of these columns of T̂V or T̂I will not affect the
diagonalization of the second-order equations in (7.7). We will assume in this chapter
that ẐŶ and ŶẐ can be diagonalized as in (7.10). See [B.25] for a more complete
discussion of this diagonalization problem for MTLs.

The transformations T̂V and T̂I are related [B.25]. Taking the transpose of both
sides of (7.10) yields

T̂t
V ŶẐ

(
T̂−1

V

)t = γ̂2 = T̂−1
I ŶẐ T̂I (7.15a)

T̂t
I Ẑ Ŷ

(
T̂−1

I

)t = γ̂2 = T̂−1
V Ẑ Ŷ T̂V (7.15b)

and we have used the matrix algebra properties that the transpose of a product of
matrices is the product of the transposes in reverse order, that is, (AB)t = BtAt, and
that Ẑ and Ŷ are symmetric, that is, Ẑt = Ẑ and Ŷt = Ŷ, along with the fact that γ̂2

is diagonal, so it equals its transpose, that is,
(
γ̂2
)t = γ̂2. This indicates that T̂V and

T̂I can be chosen such that they satisfy [B.25]

T̂t
V = T̂−1

I (7.16a)

T̂t
I = T−1

V (7.16b)

or

T̂t
V T̂I = 1n

= T̂t
I T̂V (7.17)

where 1n is the n × n identity matrix with 1s on the main diagonal and zeros elsewhere,
that is,

1n =




1 0
. . . 0 0

0 1 0
. . . 0

. . . 0
. . . 0

. . .

0
. . . 0 1 0

0 0
. . . 0 1




(7.18)

Reference [B.25] gives a rigorous proof of this.
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Thus, the equations governing the mode voltages and currents in (7.9) are decou-
pled and have the simple solution

V̂m(z) = e−γ̂ z V̂+
m + eγ̂ z V̂−

m (7.19a)

Îm(z) = e−γ̂ z Î+
m − eγ̂ z Î−

m (7.19b)

where the matrix exponentials are defined as

e±γ̂ z =




e±γ̂1z 0 · · · 0

0 e±γ̂2z
. . .

...
...

. . .
. . . 0

0 · · · 0 e±γ̂nz


 (7.20)

and V̂±
m and Î±

m are n × 1 vectors of (as yet) undetermined constants associated with
the forward/backward-traveling waves of the modes:

V̂±
m =




V̂±
m1

V̂±
m2
...

V̂±
mn


 , Î±

m =




Î±
m1

Î±
m2
...

Î±
mn


 (7.21)

Transforming back to the actual line voltages and currents via (7.8) gives

V̂(z) = T̂V

(
e−γ̂ z V̂+

m + eγ̂ z V̂−
m

)
(7.22a)

Î(z) = T̂I

(
e−γ̂ z Î+

m − eγ̂ z Î−
m

)
(7.22b)

Therefore, if we can find a transformation that diagonalizes either Ẑ Ŷ or Ŷ Ẑ, then the
decoupling of the equations is assured and the general solution of the MTL equations
can be readily obtained.

The general solutions for the line voltages and currents given in (7.22) contain a
total of 4n undetermined constants in the n × 1 vectors V̂+

m, V̂−
m, Î+

m, and Î−
m. We will

now relate those by defining the characteristic impedance matrix, thereby reducing
the number of undetermined constants to 2n. Substituting (7.22b) into (7.4b) yields

V̂(z) = −Ŷ−1 d

dz
Î(z)

= Ŷ−1 T̂I γ̂
(

e−γ̂ z Î+
m + eγ̂ z Î−

m

)
= Ŷ−1 T̂I γ̂ T̂−1

I︸ ︷︷ ︸
ẐC

T̂I

(
e−γ̂ z Î+

m + eγ̂ z Î−
m

)
(7.23)
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If we define the characteristic impedance matrix as

ẐC = Ŷ−1 T̂I γ̂ T̂−1
I (7.24)

then

V̂(z) = ẐC T̂I

(
e−γ̂z Î+

m + eγ̂ z Î−
m

)
(7.25a)

Î(z) = T̂I

(
e−γ̂ z Î+

m − eγ̂ z Î−
m

)
(7.25b)

and the number of unknowns is reduced to the 2n unknowns in the n × 1 vectors Î+
m

and Î−
m. An alternative form of the characteristic impedance matrix can be obtained

from (7.10b):

Ŷ−1T̂I = Ẑ T̂I γ̂−2 (7.26)

Substituting this into (7.24) yields an alternative form for the characteristic impedance
matrix:

ẐC = Ẑ T̂I γ̂−1 T̂−1
I (7.27)

Similarly, substituting (7.22a) into (7.4a) yields

Î(z) = −Ẑ−1 d

dz
V̂(z)

= Ẑ−1 T̂V γ̂
(

e−γ̂ z V̂+
m − eγ̂ z V̂−

m

)
= Ẑ−1 T̂V γ̂ T̂−1

V︸ ︷︷ ︸
ŶC

T̂V

(
e−γ̂ z V̂+

m − eγ̂ z V̂−
m

)
(7.28)

If we define the characteristic admittance matrix as

ŶC = Ẑ−1 T̂V γ̂ T̂−1
V (7.29)

then

V̂(z) = T̂V

(
e−γ̂ z V̂+

m + eγ̂ z V̂−
m

)
(7.30a)

Î(z) = ŶC T̂V

(
e−γ̂ z V̂+

m − eγ̂ z V̂−
m

)
(7.30b)
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TABLE 7.1 Characteristic impedance/admittance matrix relations

ẐC ŶC

Ŷ−1 T̂I γ̂ T̂−1
I Ẑ−1 T̂V γ̂ T̂−1

V

Ẑ T̂I γ̂−1 T̂−1
I Ŷ T̂V γ̂−1 T̂−1

V

T̂V γ̂−1 T̂−1
V Ẑ T̂I γ̂−1 T̂−1

I Ŷ
T̂V γ̂ T̂−1

V Ŷ−1 T̂I γ̂ T̂−1
I Ẑ−1

Ŷ−1
(

T̂t
V

)−1
γ̂ T̂t

V Ẑ−1
(

T̂t
I

)−1
γ̂ T̂t

I

Ẑ
(

T̂t
V

)−1
γ̂−1 T̂t

V Ŷ
(

T̂t
I

)−1
γ̂−1 T̂t

I

and the number of unknowns is reduced to the 2n unknowns in the n × 1 vectors V̂+
m

and V̂−
m. An alternative form of the characteristic admittance matrix can be obtained

from (7.10a):

Ẑ−1T̂V = Ŷ T̂V γ̂−2 (7.31)

Substituting this into (7.29) yields an alternative form for the characteristic admittance
matrix:

ŶC = Ŷ T̂V γ̂−1 T̂−1
V (7.32)

Additional relations for the characteristic impedance/admittance matrix can be
similarly obtained and are given in Table 7.1 [B.25].

To summarize, the general solution to the MTL equations is given by

V̂(z) = T̂V

(
e−γ̂z V̂+

m + eγ̂z V̂−
m

)
(7.33a)

Î(z) = Ŷ T̂V γ̂−1
(

e−γ̂z V̂+
m − eγ̂z V̂−

m

)
= ŶC T̂V

(
e−γ̂z V̂+

m − eγ̂z V̂−
m

)
(7.33b)

where

T̂−1
V Ẑ Ŷ T̂V = γ̂2 (7.33c)

and the characteristic admittance matrix is given by

ŶC = Ŷ T̂V γ̂−1 T̂−1
V (7.33d)

An alternative form is

V̂(z) = Ẑ T̂I γ̂−1
(

e−γ̂z Î+
m + eγ̂z Î−

m

)
= ẐC T̂I

(
e−γ̂z Î+

m + eγ̂z Î−
m

)
(7.34a)
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Î(z) = T̂I

(
e−γ̂z Î+

m − eγ̂z Î−
m

)
(7.34b)

where

T̂−1
I Ŷ Ẑ T̂I = γ̂2 (7.34c)

and the characteristic impedance matrix is given by

ẐC = Ẑ T̂I γ̂−1 T̂−1
I (7.34d)

Although either form of solution is acceptable, we will consistently use throughout
the remainder of this text the form in (7.34) that requires diagonalization of Ŷ Ẑ.

7.2.2 Solution for Line Categories

The solution process for determining the general solutions to the MTL equations
described previously assumes that one can find an n × n nonsingular transformation
matrix T̂I that diagonalizes the product of per-unit-length parameter matrices, ŶẐ,
via a similarity transformation as

T̂−1
I ŶẐ T̂I = γ̂2 (7.35a)

where γ̂2 is diagonal as

γ̂2 =




γ̂2
1 0 · · · 0

0 γ̂2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 γ̂2

n


 (7.35b)

The columns of T̂I ,
[
T̂I

]
i
, are said to be the eigenvectors of the matrix ŶẐ and

the items γ̂2
i are its eigenvalues as discussed previously [A.4 ]. Thus, the question

becomes whether we can find n linearly independent eigenvectors of ŶẐ that will
diagonalize it as in (7.35). We now set out to investigate when this is possible and
computational methods.

There are a number of known cases of n × n matrices M̂ whose diagonalization
is assured via a similarity transformation as T̂−1M̂ T̂. These are [A.4,1–4]

1. All eigenvalues of M̂ are distinct

2. M̂ is real and symmetric

3. M̂ is complex but normal; that is, M̂ M̂t∗ = M̂t∗M̂, where we denote the trans-
pose of a matrix by t and its conjugate by *

4. M̂ is complex and Hermitian; that is, M̂ = M̂t∗
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For normal or Hermitian M̂, the transformation matrix can be found such that
T̂−1 = T̂t∗ , which is said to be a unitary transformation. For a real, symmetric M,
the real transformation matrix can be found such that T−1 = Tt, which is said to
be an orthogonal transformation. There are very efficient and stable computer rou-
tines that determine this orthogonal transformation matrix for a real, symmetric ma-
trix [4]. The Jacobi algorithm is one such method [4]. For other types of matrices,
we are not assured that a nonsingular transformation can be found that diagona-
lizes it.

The matrix product to be diagonalized is expanded as

ŶẐ = (G + jωC)(R + jωL)

= GR + jωCR + jωGL − ω2CL (7.36)

There exist digital computer subroutines that find the eigenvalues and eigenvectors
of a general complex matrix and can be used to diagonalize ŶẐ. However, because
the number of conductors, n, of the MTL can be quite large, it is important to in-
vestigate the conditions under which we can obtain an efficient and numerically
stable diagonalization. Furthermore, because the frequency-domain computations
must be repeated in order to obtain the frequency response of the line, we desire
a transformation that is frequency independent; that is, T̂V and T̂I are indepen-
dent of frequency and need to be computed only once. The following subsections
address this point.

7.2.2.1 Perfect Conductors in Lossy, Homogeneous Media Consider the case of
perfect conductors for which R = 0. The matrix product becomes

ŶẐ = (G + jωC)( jωL)

= jωGL − ω2CL (7.37)

If the surrounding medium is homogeneous with parameters σ, ε, and µ, then we have
the important identities:

CL = LC = µε 1n (7.38a)

GL = LG = µσ 1n (7.38b)

and ŶẐ is already diagonal. The internal inductance is zero here, that is, L = Le. In
this case, we may choose

T̂I = 1n (7.39a)

T̂V = 1n (7.39b)
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and all the eigenvalues are identical giving the propagation constants as

γ̂ =
√

jωµσ − ω2µε

= α + jβ (7.39c)

and the characteristic impedance matrix becomes

ẐC = jω

γ̂
L (7.40a)

Ẑ−1
C = γ̂

jω
L−1 = γ̂

jω µ ε
C (7.40b)

If the medium, in addition to being homogeneous is also lossless, σ = 0, the
propagation constants become

γ̂ = jω
√

µε (7.41)

so that the attenuation constant is zero, α = 0, and the phase constant is β = ω
√

µε.
The velocity of propagation becomes

v = ω

β

= 1√
µε

(7.42)

where the characteristic impedance becomes real, given by

ẐC = ν L (7.43a)

Ẑ−1
C = ν C (7.43b)

An example of the application of these results is the coupled stripline. This
case of perfect conductors in a homogeneous medium (lossless or lossy) is the
only case where we may have TEM waves on the line. In the following sec-
tions, we investigate the quasi-TEM mode of propagation wherein the conduc-
tors can be lossy and/or the medium may be inhomogeneous. For these cases, the
TEM mode cannot exist, but we assume that the conductor losses and/or inhomo-
geneities of the medium do not significantly perturb the field structure from a TEM
distribution.

7.2.2.2 Lossy Conductors in Lossy, Homogeneous Media Consider the case
where we permit imperfect conductors, R �= 0, but assume a homogeneous medium.
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The matrix product ŶẐ in (7.36) becomes, using the identities for a homogeneous
medium given in (7.38),

ŶẐ = GR + jωCR + (jωµσ − ω2µε)1n

=
(σ

ε
+jω

)
CR + (jωµσ − ω2µε)1n (7.44)

where we neglected the internal inductance of the conductors, Li = 0. Hence, we
need to diagonalize only CR as

T̂−1
I C R T̂I = �2

=




�2
1 0 · · · 0

0 �2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 �2

n


 (7.45)

The eigenvalues of ŶẐ become

γ̂2
i =

(σ

ε
+ jω

)
�2

i + (jωµσ − ω2µε) (7.46)

The key problem here is finding the transformation matrix that diagonalizes CR
as in (7.45). Thus, we need to diagonalize the product of two matrices. A numerically
stable transformation can be found to accomplish this in the following manner. Recall
that C is real, symmetric, and positive definite and R is real and symmetric. First,
consider diagonalizing C. As C is real and symmetric, one can find a real, orthogonal
transformation U that diagonalizes C, where U−1 = Ut [B.1, 3, 4]:

UtC U = θ2

=




θ2
1 0 · · · 0

0 θ2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 θ2

n


 (7.47)

Since C is real, symmetric, and positive definite, its eigenvalues θ 2
i are all real,

nonzero, and positive [B.1, 3]. Therefore, the square roots of these, θi =
√

θ 2
i , will

be real, nonzero numbers. Next form the real, symmetric matrix product

θ−1 Ut C U θ−1 = 1n (7.48)
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Now form

θ−1 Ut C R U θ = θ−1 Ut C U θ−1︸ ︷︷ ︸
1n

θ Ut R U θ

= θ Ut R U θ (7.49)

The matrix θ Ut R U θ is real and symmetric, so it can also be diagonalized with a
real, orthogonal transformation S as

St [θ Ut R U θ
]

S = St
[
θ−1 Ut C R U θ

]
S

= �2 (7.50)

This result shows that the desired transformations are

TI = U θ S (7.51a)

TV = U θ−1S (7.51b)

Also

T−1
I = Stθ−1Ut

= Tt
V (7.52a)

T−1
V = Stθ Ut

= Tt
I (7.52b)

This gives

T−1
V Ẑ TI = T−1

V (R + jω L) TI

= �2 + jωµε 1n (7.53a)

T−1
I Ŷ TV = T−1

I (G + jω C) TV

=
(σ

ε
+jω

)
1n (7.53b)

Hence, the product ŶẐ is diagonalized for this choice of the transformations as

T̂−1
I ŶẐT̂I =

(σ

ε
+ jω

)
�2 + (jωµσ − ω2µε)1n (7.54)
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The inverse of TI is also T−1
I = Stθ−1Ut = Tt

I C−1. There are numerous digital
computer subroutines that implement the diagonalization of the product of two real,
symmetric matrices, one of which is positive definite in the above fashion [B.5]. Note
that T̂t

V T̂I = 1n, and hence the eigenvectors of ẐŶ and ŶẐ are orthonormal.
The entries in the per-unit-length resistance matrix R are functions of the square

root of frequency,
√

f , at high frequencies due to skin effect. This does not pose
any problems in the phasor solution as we simply evaluate these at the frequency
of interest and perform the above computation at that frequency. We will find in the
next chapter that this dependence of R on

√
f poses some significant problems in the

time-domain analysis of MTLs.
An example of the application of these results is the case of a lossy, coupled

stripline. If all n conductors are identical and we assume that the reference conductor
(a ground plane) is lossless, then R = r 1n and we only need to diagonalize C. Hence,
the transformation in this case is independent of frequency and is an orthogonal one
such that we can choose T−1

I CTI = θ2 as in (7.47) and T̂I = T̂V = U with T̂−1
I = T̂t

I .
The eigenvalues of ŶẐ are obtained by replacing �2

i in (7.46) with rθ2
i .

7.2.2.3 Perfect Conductors in Lossless, Inhomogeneous Media We next turn
our attention to the diagonalization of the matrix product ŶẐ, where we assume
perfect conductors, R = 0, and lossless media, G = 0. The surrounding, lossless
medium may be inhomogeneous in which case we no longer have the fundamental
identity in (7.38a), that is, C L �= µε 1n. In fact, the product of the per-unit-length
inductance and capacitance matrices is generally not diagonal. The matrix product to
be diagonalized becomes

ŶẐ = −ω2C L (7.55)

Once again, C and L are real, symmetric and C is positive definite. Therefore, we can
diagonalize CL as in the previous section with orthogonal transformations as

T̂−1
I C L T̂I = �2

=




�2
1 0 · · · 0

0 �2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 �2

n


 (7.56)

The transformations that accomplish this are real and given by

TI = U θ S (7.57a)

TV = U θ−1S (7.57b)
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where U and S are obtained from

UtC U = θ2

=




θ 2
1 0 · · · 0

0 θ 2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 θ 2

n


 (7.58a)

St [θ Ut L U θ
]

S = St
[
θ−1 Ut C L U θ

]
S

= �2 (7.58b)

The inverse of TI is T−1
I = Stθ−1Ut = Tt

I C−1. The desired eigenvalues of ŶẐ are

γ̂2
i = −ω2�2

i (7.59)

Also

T−1
I = Stθ−1Ut

= Tt
V (7.60a)

T−1
V = Stθ Ut

= Tt
I (7.60b)

This gives

T−1
V Ẑ TI = T−1

V ( jω L) TI

= jω �2 (7.61a)

T−1
I Ŷ TV = T−1

I ( jω C) TV

= jω 1n (7.61b)

Hence, ŶẐ is diagonalized for this choice of the transformations as

T̂−1
I ŶẐT̂I = −ω 2 �2 (7.62)
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The characteristic impedance matrix is real and becomes

ẐC = Ẑ T̂I γ−1T̂−1
I

= jω L U θ S
1

jω
�−1 St θ−1Ut

= U θ−1S � St θ−1Ut (7.63)

Note that T̂t
V T̂I = 1n and therefore the eigenvectors of ẐŶ and ŶẐ are orthonormal.

An example of the use of this method is the case of a coupled microstrip line.

7.2.2.4 The General Case: Lossy Conductors in Lossy, Inhomogeneous Me-
dia In the most general case wherein the line conductors and medium are lossy,
R �= 0, G �= 0, and the medium is inhomogeneous so that L C �= µε 1n, we
have no other recourse but to seek a frequency-dependent transformation T̂I (ω) such
that

T̂−1
I (ω) (G + jωC)︸ ︷︷ ︸

Ŷ(ω)

(R + jωL)︸ ︷︷ ︸
Ẑ(ω)

T̂I (ω) = γ̂2(ω) (7.64)

The computational problem here is that the transformation matrix T̂I (ω) is
frequency dependent and must be recomputed at each frequency. Thus, an
eigenvector–eigenvalue subroutine for complex matrices must be called repeatedly
at each frequency, which can be quite time consuming if the responses at a large
number of frequencies are desired. In order to provide for this general case, a gen-
eral frequency-domain FORTRAN program MTL.FOR, which determines T̂I (ω) via
(7.64) and incorporates the terminal relations at the left and right ends of the line, is
described in Appendix A .

7.2.2.5 Cyclic-Symmetric Structures The MTL structures considered in Sections
7.2.2.1–7.2.2.3 are such that the matrix product ŶẐ can always be diagonalized with
a numerically efficient and stable similarity transformation T̂I , which, except in the
case of Section 7.2.2.2, is frequency independent. In the general case, the transfor-
mation matrix T̂I (ω) will be frequency dependent as was discussed in the previous
section. This section discusses MTLs that have certain structural symmetry so that a
numerically stable (and trivial) transformation T̂I can always be be found that diag-
onalizes ŶẐ. Furthermore, this transformation is frequency independent, regardless
of whether the line is lossy and/or the medium is inhomogeneous, that is, the general
case.

Consider structures composed of n identical conductors and a reference conductor
wherein the n conductors have structural symmetry with respect to the reference
conductor so that the per-unit-length impedance and admittance matrices have the
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following symmetry [B.1, 11]:

Ẑ =




Ẑ1 Ẑ2 Ẑ3 · · · Ẑ3 Ẑ2

Ẑ2 Ẑ1 Ẑ2 Ẑ3
. . . Ẑ3

Ẑ3 Ẑ2 Ẑ1 Ẑ2
. . .

...
... Ẑ3 Ẑ2

. . .
. . . Ẑ3

Ẑ3
. . .

. . .
. . . Ẑ1 Ẑ2

Ẑ2 Ẑ3 · · · Ẑ3 Ẑ2 Ẑ1




(7.65a)

Ŷ =




Ŷ1 Ŷ2 Ŷ3 · · · Ŷ3 Ŷ2

Ŷ2 Ŷ1 Ŷ2 Ŷ3
. . . Ŷ3

Ŷ3 Ŷ2 Ŷ1 Ŷ2
. . .

...
... Ŷ3 Ŷ2

. . .
. . . Ŷ3

Ŷ3
. . .

. . .
. . . Ŷ1 Ŷ2

Ŷ2 Ŷ3 · · · Ŷ3 Ŷ2 Ŷ1




(7.65b)

Examples of structures that result in these types of per-unit-length parameter matrices
are shown in Figure 7.1. Observe that in order for the main diagonal terms to be
equal, the n conductors must be identical and the surrounding media (which may be
inhomogeneous) must also exhibit symmetry. For example, if the n conductors are
dielectric-insulated wires, the dielectric insulations of the n wires must have identical
permittivities ε and thicknesses. The reference conductor need not share this property.
A general cyclic-symmetric matrix M̂ has the entries given by[

M̂
]
ij

= M̂|i− j|+1 (7.66a)

where

M̂j±n = M̂j (7.66b)

M̂n+2−j = M̂j (7.66c)

and indices greater than n or less than 1 are defined by the convention: n + j = j
and n + i = i [B.1]. Because of this special structure of the per-unit-length matrices,
they are normal matrices, Ẑ Ẑt∗ = Ẑt∗Ẑ, and each can be diagonalized by the same
transformation as [B.1, 1–4]

T̂−1 Ẑ T̂ = γ̂2
Z (7.67a)

T̂−1 Ŷ T̂ = γ̂2
Y (7.67b)
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FIGURE 7.1 Cyclic-symmetric structures that are diagonalizable by a frequency-
independent transformation.

where the n × n matrices γ̂2
Z and γ̂2

Y are diagonal and whose diagonal entries are
given by [B.1]

[
γ̂2
Z

]
ii

=

 n∑

p=1

[
Ẑ
]

1 p
�
{

2π

n
( p − 1) (i − 1)

} (7.68a)

[
γ̂2
Y

]
ii

=

 n∑

q=1

[
Ŷ
]

1q
�
{

2π

n
(q − 1) (i − 1)

} (7.68b)
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In fact, the transformation is trivial to obtain [B.1]

[
T̂
]
ij

= 1√
n

�
{

2π

n
(i − 1) ( j − 1)

}
(7.69)

and

T̂−1 = T̂t∗ (7.70)

Therefore, T̂ is a unitary transformation. Similarly, the eigenvalues of ŶẐ and ẐŶ
(the propagation constants) are easily determined as [B.1]

γ̂2
i =

[
γ̂2
Z

]
ii

[
γ̂2
Y

]
ii

=

 n∑

p=1

[
Ẑ
]

1 p
�
{

2π

n
( p − 1) (i − 1)

}

 n∑

q=1

[
Ŷ
]

1q
�
{

2π

n
(q − 1) (i − 1)

}
(7.71)

Hence, we may choose

T̂V = T̂ (7.72a)

T̂I = T̂ (7.72b)

Note that T̂t
V T̂∗

I = 1n and the eigenvectors of ẐŶ and ŶẐ are orthonormal.
As an illustration of these results, consider a four-conductor (n = 3), cyclic-

symmetric structure line with

Ẑ =
[

Ẑs Ẑm Ẑm
Ẑm Ẑs Ẑm
Ẑm Ẑm Ẑs

]
(7.73)

and Ŷ has a similar form. The transformation matrices become

T̂V = T̂I = T̂ = 1√
3

[ 1 1 1
1 e j2π/3 e j4π/3

1 e j4π/3 e j2π/3

]
(7.74a)

T̂−1
V = T̂−1

I = T̂∗ = 1√
3

[ 1 1 1
1 e− j2π/3 e− j4π/3

1 e− j4π/3 e− j2π/3

]
(7.74b)
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The propagation constants become

γ̂2
1 = {

Ẑs + Ẑm + Ẑm
}{

Ŷs + Ŷm + Ŷm
}

= (
Ẑs + 2Ẑm

) (
Ŷs + 2Ŷm

)
(7.75a)

γ̂2
2 =

{
Ẑs � 0o + Ẑm � 2π

3
+Ẑm � 4π

3

}{
Ŷs � 0o + Ŷm � 2π

3
+Ŷm � 4π

3

}
= (

Ẑs − Ẑm
) (

Ŷs − Ŷm
)

(7.75b)

γ̂2
3 =

{
Ẑs � 0o + Ẑm � 4π

3
+Ẑm � 2π

3

}{
Ŷs � 0o + Ŷm � 4π

3
+Ŷm � 2π

3

}
= (

Ẑs − Ẑm
) (

Ŷs − Ŷm
)

(7.75c)

and two of the propagation constants are equal. Define the characteristic impedances
as

Ẑ+
C =

√(
Ẑs + 2Ẑm

)
/
(
Ŷs + 2Ŷm

)
(7.76a)

Ẑ−
C =

√(
Ẑs − Ẑm

)
/
(
Ŷs − Ŷm

)
(7.76b)

The characteristic impedance matrix becomes

ẐC = Ẑ T̂I γ̂−1 T̂−1
I

= 1

3



(
Ẑ+

C + 2Ẑ−
C

) (
Ẑ+

C − Ẑ−
C

) (
Ẑ+

C − Ẑ−
C

)(
Ẑ+

C − Ẑ−
C

) (
Ẑ+

C + 2Ẑ−
C

) (
Ẑ+

C − Ẑ−
C

)(
Ẑ+

C − Ẑ−
C

) (
Ẑ+

C − Ẑ−
C

) (
Ẑ+

C + 2Ẑ−
C

)

 (7.77)

There are a number of cases where an MTL can be approximated as a cyclic-
symmetric structure. A common case is a three-phase, high-voltage power transmis-
sion line consisting of three wires above earth. In order to reduce interference to
neighboring telephone lines, the three conductors are often transposed at regular in-
tervals. As an approximation, we may assume that each of the three (identical) wires
occupies, at regular intervals, each of the three possible positions along the line (each
of which is at the same height above earth, and the separation distance between adja-
cent wires is identical). With this assumption, the per-unit-length matrices Ẑ and Ŷ
take on a cyclic-symmetric structure as in (7.73). Two of the propagation constants,
γ̂2 and γ̂3, are equal and these are associated with the aerial mode of propagation. The
third propagation constant, γ̂1, is associated with the ground mode of propagation.
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This transformation is referred to in the power transmission literature as the method
of symmetrical components [9, 10]. Such lines are said to be balanced. In the case
of unbalanced lines where, for example, one phase may be shorted to ground, this
transformation does not apply.

Other approximations of MTLs as cyclic-symmetric structures are useful. Cable
harnesses carrying tightly packed insulated wires have been assumed to be cyclic-
symmetric structures on the notion that all wires occupy, at some point along the line,
all possible positions [11]. This leads to a cyclic-symmetric structure of the n × n

per-unit-length impedance and admittance matrices that is similar to the special case
of transposed power distribution lines where all off-diagonal terms are equal and, if
we assume the conductors are identical, the main diagonal terms are equal:[

Ẑ
]
ii

= Ẑs,
[
Ẑ
]

ij︸︷︷︸
i �= j

= Ẑm (7.78a)

[
Ŷ
]
ii

= Ŷs,
[
Ŷ
]

ij︸︷︷︸
i �= j

= Ŷm (7.78b)

The transformation matrices that diagonalize this structure are real and simple to
obtain:

TI = TV = 1√
n




1 1 1 · · · 1
1 (1 − n) 1 · · · 1
1 1 (1 − n) · · · 1
...

...
... (1 − n) 1

1 1 · · · 1 (1 − n)


 (7.79a)

whose inverse is

T−1
I = T−1

V = 1√
n




1 1 1 · · · 1
1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
... −1 0

1 0 · · · 0 −1


 (7.79b)

The eigenvalues are

γ̂2
1 = [

Ẑs + (n − 1)Ẑm
] [

Ŷs + (n − 1)Ŷm
]

(7.80a)

γ̂2
2 = · · · = γ̂2

n = [
Ẑs − Ẑm

] [
Ŷs − Ŷm

]
(7.80b)

Other common cases are the cyclic-symmetric, three-conductor lines shown in
Figure 7.2. Two identical dielectric-insulated wires are suspended at equal heights
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FIGURE 7.2 Certain three-conductor structures that are cyclic symmetric: (a) two identi-
cal wires at identical heights above a ground plane and (b) two identical lands of a coupled
microstrip configuration.

above a ground plane as shown in Figure 7.2(a). The per-unit-length impedance and
admittance matrices become

Ẑ =
[

Ẑs Ẑm
Ẑm Ẑs

]
(7.81a)

Ŷ =
[

Ŷs Ŷm
Ŷm Ŷs

]
(7.81b)

The transformation matrices simplify to

TI = TV = 1√
2

[
1 1
1 −1

]
(7.82a)

T−1
I = T−1

V = 1√
2

[
1 1
1 −1

]
(7.82b)

and the propagation constants become

γ̂2
1 = (Ẑs + Ẑm)(Ŷs + Ŷm) (7.83a)

γ̂2
2 = (Ẑs − Ẑm)(Ŷs − Ŷm) (7.83b)
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Defining the characteristic impedances as

Ẑ±
C =

√
Ẑs ± Ẑm

Ŷs ± Ŷm
(7.84)

we obtain the characteristic impedance matrix as

ẐC = 1

2

[ (
Ẑ+

C + Ẑ−
C

) (
Ẑ+

C − Ẑ−
C

)(
Ẑ+

C − Ẑ−
C

) (
Ẑ+

C + Ẑ−
C

) ] (7.85)

This transformation is referred to in the microwave literature as the even–odd mode
transformation and has been applied to the symmetrical, coupled microstrip line shown
in Figure 7.2(b).

7.3 INCORPORATING THE TERMINAL CONDITIONS

The general solutions to the phasor MTL equations given in (7.34) involve 2n un-
determined constants in the n × 1 vectors Î+

m and Î−
m:

V̂(z) = ẐC T̂I

(
e−γ̂z Î+

m + eγ̂z Î−
m

)
(7.86a)

Î(z) = T̂I

(
e−γ̂z Î+

m − eγ̂z Î−
m

)
(7.86b)

Therefore, we need 2n additional constraint equations in order to evaluate these.
These additional constraint equations are provided by the terminal conditions at z = 0
and z = L as illustrated in Figure 7.3. The driving sources and load impedances
are contained in these terminal networks that are attached to the two ends of the
line. The terminal constraint network at z = 0 shown in Figure 7.3(a) provides n
equations relating the n phasor voltages V̂(0) and n phasor currents Î(0). The terminal
constraint network at z = L shown in Figure 7.3(b) provides n equations relating the
n phasor voltages V̂(L) and n phasor currents Î(L). The purpose of this section is
to incorporate these terminal constraints to explicitly determine the terminal voltages
and currents and complete this final but important last step in the solution process.

7.3.1 The Generalized Thevenin Equivalent

There are many ways of relating the voltages and currents at the terminals of an n-
port. If the network is linear, this relationship will be a linear combination of the
port voltages and currents. One obvious way is to generalize the Thevenin equivalent
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FIGURE 7.3 Modeling the terminal constraints of a (n + 1)-conductor line.

representation of a one port as [A.2]

V̂(0) = V̂S − ẐS Î(0) (7.87a)

V̂(L) = V̂L + ẐL Î(L) (7.87b)

The n × 1 vectors V̂S and V̂L contain the effects of the independent voltage and current
sources in the termination networks at z = 0 and z = L, respectively. The n × n

matrices ẐS and ẐL contain the effects of the impedances and any controlled sources
in the terminal networks at z = 0 and z = L, respectively. In general, the impedance
matrices ẐS or ẐL are full; that is, there is cross coupling between all ports of the
network. However, the most common case will be terminal network configurations
wherein these impedance matrices are diagonal and the coupling occurs only along
the MTL. Figure 7.4 shows such a case wherein each line at z = 0 is terminated
directly to the chosen reference conductor with an impedance and a voltage source,
which represents a single Thevenin equivalent. In this case, the matrices in (7.87a)
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FIGURE 7.4 The generalized Thevenin representation of a termination with no cross
coupling.

become

V̂S =




V̂S1
...

V̂Si
...

V̂Sn


 (7.88a)

ẐS =




ẐS1 0 · · · · · · 0

0
. . .

. . .
. . .

...
...

. . . ẐSi

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 ẐSn


 (7.88b)

In order to solve for the 2n undetermined constants in Î+
m and Î−

m, we evaluate the
general forms of the solutions in (7.86) at z = 0 and z = L and substitute into the
generalized Thevenin equivalent characterizations given in (7.87) to yield

ẐC T̂I

[
Î+

m + Î−
m

] = V̂S − ẐS T̂I

[
Î+

m − Î−
m

]
(7.89a)

ẐC T̂I

[
e−γ̂ L Î+

m + eγ̂ L Î−
m

]
= V̂L + ẐL T̂I

[
e−γ̂L Î+

m − eγ̂L Î−
m

]
(7.89b)
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Writing this in matrix form gives[ (
ẐC + ẐS

)
T̂I

(
ẐC − ẐS

)
T̂I(

ẐC − ẐL
)

T̂Ie−γ̂L
(
ẐC + ẐL

)
T̂Ieγ̂ L

] [
Î+

m
Î−

m

]
=
[

V̂S
V̂L

]
(7.90)

Once this set of 2n simultaneous equations is solved for Î+
m and Î−

m, the line voltages
and currents are obtained at any z along the line by substitution into (7.86).

An alternative method for incorporating the terminal conditions is to substitute the
generalized Thevenin equivalent characterizations in (7.87) into the chain-parameter
matrix characterization of the line as a 2n-port, which was discussed in the previous
chapter for two-conductor lines and is given for MTLs in Section 7.5.2 as

V̂(L) = �̂11(L)V̂(0) + �̂12(L) Î(0) (7.91a)

Î(L) = �̂21(L)V̂(0) + �̂22(L) Î(0) (7.91b)

where each �̂ij(L) is n × n to yield [B.1]

[
�̂12 − �̂11ẐS − ẐL�̂22 + ẐL�̂21ẐS

]
Î(0) = V̂L − [

�̂11 − ẐL�̂21
]

V̂S (7.92a)

Î(L) = �̂21V̂S + [
�̂22 − �̂21ẐS

]
Î(0) (7.92b)

Equations (7.92a) are a set of n simultaneous, algebraic equations, which can be
solved for the n terminal currents at z = 0, Î(0). Once these are solved, the n terminal
currents at z = L, Î(L), can be obtained from (7.92b). The 2n terminal voltages
V̂(0) and V̂(L) can be obtained from the terminal relations in (7.87).

7.3.2 The Generalized Norton Equivalent

The generalized Thevenin equivalent in the previous section is only one way of re-
lating the terminal voltages and currents of a linear n-port. An alternative represen-
tation is the generalized Norton equivalent, wherein the voltages and currents are
related by

Î(0) = ÎS − ŶS V̂(0) (7.93a)

Î(L) = −ÎL + ŶL V̂(L) (7.93b)

The n × 1 vectors ÎS and ÎL again contain the effects of the independent voltage
and current sources in the termination networks at z = 0 and z = L, respectively.
The n × n matrices ŶS and ŶL again contain the effects of the impedances and any
controlled sources in the terminal networks at z = 0 and z = L, respectively. Again,
the admittance matrices ŶS or ŶL may be full; that is, there may be cross coupling
between all ports of a terminal network. However, the most common case will be
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FIGURE 7.5 The generalized Norton representation of a termination with no cross
coupling.

terminal network configurations wherein these admittance matrices are diagonal and
the coupling occurs only along the MTL. Figure 7.5 shows such a case wherein
each line is terminated directly at z = 0 to the chosen reference conductor with an
admittance in parallel with a current source that represents a single Norton equivalent.
In this case, the matrices in (7.93a) become

ÎS =




ÎS1
...

ÎSi
...

ÎSn


 (7.94a)

ŶS =




ŶS1 0 · · · · · · 0

0
. . .

. . .
. . .

...
...

. . . ŶSi

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 ŶSn


 (7.94b)

The 2n undetermined constants Î+
m and Î−

m in the general solution given in (7.86)
are once again found by evaluating these solutions at z = 0 and z = L and sub-
stituting into the generalized Norton equivalent characterizations given in (7.93)
to yield

T̂I

[
Î+

m − Î−
m

] = ÎS − ŶSẐC T̂I

[
Î+

m + Î−
m

]
(7.95a)

T̂I

[
e−γ̂L Î+

m − eγ̂L Î−
m

]
= −ÎL + ŶLẐC T̂I

[
e−γ̂L Î+

m + eγ̂L Î−
m

]
(7.95b)
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Writing this in matrix form gives

[ (
ŶSẐC + 1n

)
T̂I

(
ŶSẐC − 1n

)
T̂I(

ŶLẐC − 1n

)
T̂Ie−γ̂L

(
ŶLẐC + 1n

)
T̂Ieγ̂L

] [
Î+

m
Î−

m

]
=
[

ÎS
ÎL

]
(7.96)

Once this set of 2n simultaneous equations is solved for Î+
m and Î−

m, the line voltages
and currents are obtained at any z along the line by substitution into (7.86).

An alternative method of incorporating the terminal conditions is to again substitute
the generalized Norton equivalent terminal relations given in (7.93) into the chain-
parameter representation given in (7.91) to yield [B.1]

[
�̂21 − �̂22ŶS − ŶL�̂11 + ŶL�̂12ŶS

]
V̂(0) = −ÎL − [

�̂22 − ŶL�̂12
]

ÎS
(7.97a)

V̂(L) = �̂12ÎS + [
�̂11 − �̂12ŶS

]
V̂(0) (7.97b)

Equations (7.97a) are once again a set of n simultaneous, algebraic equations, which
can be solved for the n terminal voltages at z = 0, V̂(0). Once these are solved,
the n terminal voltages at z = L, V̂(L), can be obtained from (7.97b). The 2n
terminal currents Î(0) and Î(L) can be obtained from the terminal relations in
(7.93).

7.3.3 Mixed Representations

There are some special cases where a termination cannot be represented as generalized
Thevenin equivalents or as generalized Norton equivalents [F.10,G.3]. For example,
suppose some of the conductors are terminated at z = 0 to the reference conductor in
short circuits. In this case, the generalized Norton equivalent representation in (7.93a)
does not exist for this termination since the termination admittance is infinite. How-
ever, the generalized Thevenin equivalent representation in (7.87a) does exist because
the short circuit is equivalent to a load impedance of zero, which is a legitimate entry
in ẐS. Shielded wires in which the shield (one of the MTL conductors) is “grounded”
to the reference conductor represent such a case. Conversely, one of the conductors
may be unterminated, that is, there is an open circuit between that conductor and
the reference conductor. In this case, we must use the generalized Norton equivalent
representation (the termination has zero admittance) since the generalized Thevenin
equivalent representation does not exist (the termination has infinite impedance). An
example of this is commonly found in balanced wire lines such as twisted pairs
where neither wire is connected to the reference conductor [G.1–G.10]. This calls
for a mixed representation of the terminal networks wherein one is represented with
a generalized Thevenin equivalent and the other is represented with a generalized
Norton equivalent.
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We now obtain the equations to be solved for these mixed representations. Substi-
tuting (7.87a) and (7.93b) into the general solution in (7.86) yields

[ (
ẐC + ẐS

)
T̂I

(
ẐC − ẐS

)
T̂I(

ŶLẐC − 1n

)
T̂Ie−γ̂L

(
ŶLẐC + 1n

)
T̂Ieγ̂L

] [
Î+

m
Î−

m

]
=
[

V̂S
ÎL

]
(7.98)

or, via the chain-parameter matrix,

[
�̂22 − �̂21ẐS − ŶL�̂12 + ŶL�̂11ẐS

]
Î(0) = −ÎL − [

�̂21 − ŶL�̂11
]

V̂S (7.99a)

V̂(L) = �̂11V̂S + [
�̂12 − �̂11ẐS

]
Î(0) (7.99b)

Similarly, substituting (7.93a) and (7.87b) into the general solution in (7.86) yields

[ (
ŶSẐC + 1n

)
T̂I

(
ŶSẐC − 1n

)
T̂I(

ẐC − ẐL
)

T̂Ie−γ̂L
(
ẐC + ẐL

)
T̂Ieγ̂L

] [
Î+

m
Î−

m

]
=
[

ÎS
V̂L

]
(7.100)

or, using the chain-parameter matrix,

[
�̂11 − �̂12ŶS − ẐL�̂21 + ẐL�̂22ŶS

]
V̂(0) = V̂L − [

�̂12 − ẐL�̂22
]

ÎS (7.101a)

Î(L) = �̂22ÎS + [
�̂21 − �̂22ŶS

]
V̂(0) (7.101b)

The above mixed representation can characterize termination networks wherein
short-circuit terminations exist within one termination network and open-circuit ter-
minations exist within the other termination network. Terminal networks wherein
both short-circuit and open-circuit terminations exist within the same network can be
handled with a more general formulation as

ŶSV̂(0) + ẐSÎ(0) = P̂S (7.102a)

ŶLV̂(L) − ẐL Î(L) = P̂L (7.102b)

where P̂S and P̂L contain the effects of the independent sources in the termina-
tions. Substituting the expressions for the line currents and voltages given in (7.86)
yields

[ (
ŶSẐC + ẐS

)
T̂I

(
ŶSẐC − ẐS

)
T̂I(

ŶLẐC − ẐL
)

T̂Ie−γ̂ L
(
ŶLẐC + ẐL

)
T̂Ieγ̂ L

] [
Î+

m
Î−

m

]
=
[

P̂S
P̂L

]
(7.103)
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7.4 LUMPED-CIRCUIT APPROXIMATE CHARACTERIZATIONS

Lumped-circuit notions apply to circuits whose largest dimension is electrically small;
that is,�λ, whereλ = v/f is the wavelength at the frequency of interest. This suggests
another frequently used approximation of an MTL. Divide the line into N sections
of length L/N. If each of these section lengths is electrically short at the frequency
of interest, L/N � λ, then each section may be represented with a lumped model.
These are referred to as lumped, iterative structures since the line must be more finely
divided as frequency is increased.

Some typical lumped structures are shown in Figure 7.6 [B.1, 12]. Observe that
the total parameter is the per-unit-length parameter multiplied by the section length,
L/N. These structures are named after the symbols their structures represent: the
lumped-Pi or lumped-T structures. The chain-parameter matrices (discussed in Sec-

FIGURE 7.6 Lumped-circuit iterative approximate structures: (a) lumped Pi and
(b) lumped T.
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tion 7.5) of these structures can be derived in a straightforward fashion as [B.1]

�̂Pi =




{
1n + 1

2
ẐŶ

(
L

N

)2
} {

−Ẑ
L

N

}
{

−Ŷ
L

N
− 1

4
ŶẐŶ

(
L

N

)3
} {

1n + 1

2
ŶẐ

(
L

N

)2
}

 (7.104a)

�̂T =



{

1n + 1

2
ẐŶ

(
L

N

)2
} {

−Ẑ
L

N
− 1

4
ẐŶẐ

(
L

N

)3
}

{
−Ŷ

L

N

} {
1n + 1

2
ŶẐ

(
L

N

)2
}


 (7.104b)

The overall chain-parameter matrix of a line that is represented as a cascade of N
such lumped sections is

�̂ = �̂N
(Pi,T) (7.105)

Once this overall chain-parameter matrix is obtained, the terminal conditions are
incorporated as described in the previous section to give the terminal voltages and
currents of the MTL. Lumped-circuit analysis programs such as SPICE can be used
to analyze the resulting lumped circuit as an alternative to obtaining the overall chain-
parameter matrix via (7.105) and then incorporating the terminal conditions. Nonlin-
ear terminations such as transistors and diodes can be readily incorporated into the
terminations as these lumped-circuit programs include sophisticated models for them.

FIGURE 7.7 Representing an MTL as a 2n-port with its chain-parameter matrix �, its
impedance matrix Z, or its admittance matrix Y.
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7.5 ALTERNATIVE 2n-PORT CHARACTERIZATIONS

In this section, we will investigate the two-port characterization of an MTL using the
chain-parameters, the Z parameters and the Y parameters. The MTL can be viewed
as having 2n ports, n at the left and n at the right. Hence, we seek representations that
relate the n voltages and n currents at z = 0, V̂ (0) and Î (0), to the n voltages and n
currents at z = L, V̂ (L) and Î(L), as illustrated in Figure 7.7.

7.5.1 Analogy of the Frequency-Domain MTL Equations
to State-Variable Equations

Let us reconsider the phasor transmission-line equations for an (n + 1)-conductor line
given in (7.4). Writing these in compact matrix form gives

d

dz
X̂(z) = Â X̂(z) (7.106a)

where

X̂(z) =
[

V̂(z)
Î(z)

]
(7.106b)

Â =
[

0 −Ẑ
−Ŷ 0

]
(7.106c)

These are first-order ordinary differential equations. As such, they are identical in form
to the state-variable equations that describe automatic control systems and other linear
systems [A.2, B.2, B.4, 1, 2]. In those characterizations, the independent variable is
time t, whereas the independent variable for the MTL equations is the line axis variable
z. Nevertheless, we may directly adapt the well-known solutions of those state-variable
equations to the solution of the phasor MTL equations by simply replacing t in the
state-variable formulation and solution with z.

Hence, the solution to the MTL phasor equations in (7.106) is [A.2, B.2, B.4, 1, 2]

X̂(z2) = �̂ (z2 − z1) X̂ (z1) (7.107)

and the two position points on the line are such that z2 ≥ z1. The 2n × 2n matrix �̂

is called the state-transition matrix. In our terminology, �̂ is the chain-parameter
matrix. Hence, we may write this out as

[
V̂(z2)
Î(z2)

]
︸ ︷︷ ︸

X̂(z2)

=
[

�̂11(z2 − z1) �̂12(z2 − z1)
�̂21(z2 − z1) �̂22(z2 − z1)

]
︸ ︷︷ ︸

�̂(z2−z1)

[
V̂(z1)
Î(z1)

]
︸ ︷︷ ︸

X̂(z1)

(7.108)
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where �̂ij are n × n. If we choose z2 = L and z1 = 0, we essentially obtain the
chain-parameter matrix �̂ for the overall line, which is 2n × 2n, as[

V̂(L)
Î(L)

]
= �̂(L)

[
V̂(0)
Î(0)

]

=
[

�̂11(L) �̂12(L)
�̂21(L) �̂22(L)

] [
V̂(0)
Î(0)

]
(7.109)

Because of the direct analogy between the state-variable equations for a lumped
system and the phasor MTL equations, we can immediately observe some impor-
tant properties of the chain-parameter matrix that are directly taken from the same
identities for the state-variable solution with t replaced with z [1, 2]:

�̂(0) = 12n (7.110)

�̂−1(L) = �̂(−L) (7.111)

and

�̂(L) = eÂL

= 12n + L

1!
Â + L2

2!
Â2 + L3

3!
Â3 + · · · (7.112)

The property of the inverse of the chain-parameter matrix given in (7.111) is logical
to expect because the inverse of (7.109) yields

[
V̂(0)
Î(0)

]
= �̂−1(L)

[
V̂(L)
Î(L)

]

= �̂(−L)

[
V̂(L)
Î(L)

]
(7.113)

This follows as a simple reversal of the line axis scale (replacing z with −z) similar
to the reversal in time for the state-transition matrix of lumped systems and the line
is reciprocal (assuming the surrounding medium is linear and isotropic). We will find
these properties to be important in obtaining insight into the interpretation of the MTL
equation solution.

There is another powerful identity of the chain-parameter matrix. Suppose two
sections of identical lines, each having lengths L1 and L2, characterized by chain-
parameter matrices as �̂(L1) and �̂(L2) are cascaded as shown in Figure 7.8. Clearly,
the overall chain-parameter matrix is the product of these, in the proper order, as
�̂(L2)�̂(L1). But this is the chain-parameter matrix of a line whose total length is
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FIGURE 7.8 Illustration of a basic chain-parameter matrix identity.

L1 + L2. Hence, we arrive at another important matrix chain-parameter identity

�̂(L1 + L2) = �̂(L2)�̂(L1) (7.114)

From this identity, we can establish the important identity concerning the inverse of
the chain-parameter matrix in (7.111) as

�̂(L)�̂(−L) = �̂ (L + (−L))

= �̂(0)
= 12n (7.111)

Observe that in order for the identity in (7.114) to be true, the �̂ must be the exact
solution of the first-order differential equations characterizing the line voltages and
currents given in (7.4). Hence the identity in (7.114) cannot be used in lieu of (7.105)
to obtain the overall chain-parameter matrix of a line that is represented by lumped Pi
or lumped T approximate models since these are approximations to the exact solution
of (7.4).

7.5.2 Characterizing the Line as a 2n-Port with the Chain-Parameter Matrix

The phasor voltages and currents at the two ends of the line are related with the
chain-parameter matrix as[

V̂(L)
Î(L)

]
= �̂(L)

[
V̂(0)
Î(0)

]

=
[

�̂11(L) �̂12(L)
�̂21(L) �̂22(L)

] [
V̂(0)
Î(0)

]
(7.109)

This corresponds to viewing the (n + 1)-conductor line as a 2n-port, as illustrated in
Figure 7.7. The essential task in solving the phasor MTL equations is to determine
the entries in the n × n submatrices �̂ij . This section is devoted to that task.
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The general solutions of the phasor MTL equations are given, via similarity trans-
formations, in (7.86). Evaluating these at z = 0 and z = L and eliminating Î±

m gives
the chain-parameter submatrices as [B.1]

�̂11(L) = 1

2
Ŷ−1T̂I

(
eγ̂L + e−γ̂L

)
T̂−1

I Ŷ

= 1

2
ẐCT̂I

(
eγ̂ L + e−γ̂ L

)
T̂−1

I ŶC (7.115a)

�̂12(L) = − 1

2
Ŷ−1T̂I γ̂

(
eγ̂ L − e−γ̂ L

)
T̂−1

I

= − 1

2
ẐC

[
T̂I

(
eγ̂ L − e−γ̂ L

)
T̂−1

I

]
(7.115b)

�̂21(L) = − 1

2
T̂I

(
eγ̂ L − e−γ̂ L

)
γ̂−1T̂−1

I Ŷ

= − 1

2

[
T̂I

(
eγ̂ L − e−γ̂ L

)
T̂−1

I

]
ŶC (7.115c)

�̂22(L) = 1

2
T̂I

(
eγ̂ L + e−γ̂ L

)
T̂−1

I (7.115d)

and ŶC = Ẑ−1
C . As a check on this result, observe that the identity in (7.110), �̂(0) =

12n, is satisfied.
Although (7.115) will be the primary method of computing the chain-parameter

matrices, we may obtain an alternative form by evaluating (7.33a) and (7.33b) at
z = 0 and z = L and eliminating V̂±

m to yield

�̂11(L) = 1

2
T̂V

(
eγ̂ L + e−γ̂ L

)
T̂−1

V (7.116a)

�̂12(L) = − 1

2
T̂V

(
eγ̂ L − e−γ̂ L

)
γ̂−1T̂−1

V Ẑ

= − 1

2

[
T̂V

(
eγ̂ L − e−γ̂ L

)
T̂−1

V

]
ẐC (7.116b)

�̂21(L) = − 1

2
Ẑ−1T̂V γ̂

(
eγ̂ L − e−γ̂ L

)
T̂−1

V

= − 1

2
ŶC

[
T̂V

(
eγ̂ L − e−γ̂ L

)
T̂−1

V

]
(7.116c)

�̂22(L) = 1

2
Ẑ−1T̂V

(
eγ̂ L + e−γ̂ L

)
T̂−1

V Ẑ

= 1

2
ŶCT̂V

(
eγ̂ L + e−γ̂ L

)
T̂−1

V ẐC (7.116d)
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7.5.3 Properties of the Chain-Parameter Matrix

In this section, we will define certain matrix analogies to the two-conductor solu-
tion [B.1, B.4]. These will place the results in a form directly analogous to the
two-conductor case, which will simplify the notation and make the results easily
remembered.

First, let us define the square root of a matrix. In scalar algebra, the square root is
defined as any quantity that when multiplied by itself gives the original quantity, that
is,

√
a
√

a = a. The square root of a matrix can similarly be defined as a matrix that
when multiplied by itself gives the original matrix, that is,

√
M

√
M = M. Recall the

basic diagonalization:

T̂−1
I ŶẐ T̂I = γ̂2 (7.117)

From this, we may define the square root of the matrix product as√
ŶẐ = T̂I γ̂ T̂−1

I (7.118)

This can be verified by taking the product and using (7.117):√
ŶẐ

√
ŶẐ = T̂I γ̂ T̂−1

I T̂I γ̂ T̂−1
I

= T̂I γ̂2 T̂−1
I

= ŶẐ (7.119)

The square root of the matrix product Ẑ Ŷ can similarly be defined. Similarly, the
transformation T̂V diagonalizes Ẑ Ŷ as T̂−1

V Ẑ Ŷ T̂V = γ̂2. Hence, it is logical to
define the square root of Ẑ Ŷ as √

ẐŶ = T̂V γ̂ T̂−1
V (7.120)

as multiplication by itself shows. From Table 7.1, we obtain T̂I γ̂ T̂−1
I =

Ŷ T̂V γ̂ T̂−1
V Ŷ−1 and T̂V γ̂ T̂−1

V = Ẑ T̂I γ̂ T̂−1
I Ẑ−1. Hence,

√
ẐŶ and

√
ŶẐ are re-

lated as √
ẐŶ = Ŷ−1

√
ŶẐ Ŷ

= Ẑ
√

ŶẐ Ẑ−1 (7.121)

which can again be confirmed by multiplication by itself. Therefore, from Table 7.1,
the characteristic impedance matrix can be written, symbolically, as

ẐC = Ŷ−1
√

ŶẐ = Ẑ
[√

ŶẐ
]−1

=
√

ẐŶ Ŷ−1 =
[√

ẐŶ
]−1

Ẑ (7.122a)
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and √
ẐŶ = ẐC

√
ŶẐ ŶC (7.122b)

These results again reduce to the scalar characteristic impedance for two-conductor
lines.

Additional symbolic definitions can be obtained for direct analogy to the two-
conductor case by defining the matrix hyperbolic functions. First, define the matrix
exponentials as

eγ̂ L = 1n + L

1!
γ̂ + L2

2!
γ̂2 + · · · (7.123a)

e
√

ŶẐ L = 1n + L

1!

√
ŶẐ + L2

2!

(√
ŶẐ

)2
+ · · · (7.123b)

e
√

ŶẐ L = T̂I eγ̂ L T̂−1
I (7.123c)

e
√

ẐŶ L = 1n + L

1!

√
ẐŶ + L2

2!

(√
ẐŶ

)2
+ · · · (7.123d)

e
√

ẐŶ L = T̂V eγ̂ L T̂−1
V (7.123e)

where we have used the relations in (7.118) and (7.120) for the matrix square roots√
ŶẐ and

√
ẐŶ. Substituting the relations in (7.121) and (7.122) yields

e
√

ẐŶ L = Ŷ−1 e
√

ŶẐ L Ŷ

= ẐC e
√

ŶẐ L ŶC (7.124)

In terms of these matrix exponentials, we may define the matrix hyperbolic functions
as

cosh
(√

ŶẐ L
)

= 1

2

(
e
√

ŶẐ L + e−
√

ŶẐ L

)

= 1n + L2

2!

(√
ŶẐ

)2
+ L4

4!

(√
ŶẐ

)4
+ · · ·

= 1

2
T̂I

(
eγ̂ L + e−γ̂ L

)
T̂−1

I (7.125a)
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sinh
(√

ŶẐ L
)

= 1

2

(
e
√

ŶẐ L − e−
√

ŶẐ L

)

= L

1!

√
ŶẐ + L3

3!

(√
ŶẐ

)3
+ · · ·

= 1

2
T̂I

(
eγ̂ L − e−γ̂ L

)
T̂−1

I (7.125b)

Similarly, as
√

ẐŶ = Ŷ−1
√

ŶẐ Ŷ and using the identities in Table 7.1,

cosh
(√

ẐŶ L
)

= 1

2

(
e
√

ẐŶ L + e−
√

ẐŶ L

)

= 1n + L2

2!

(√
ẐŶ

)2
+ L4

4!

(√
ẐŶ

)4
+ · · ·

= 1

2
Ŷ−1 T̂I

(
eγ̂ L + e−γ̂ L

)
T̂−1

I Ŷ

= 1

2
ẐC T̂I

(
eγ̂ L + e−γ̂ L

)
T̂−1

I ŶC

= ẐC cosh
(√

ŶẐ L
)

ŶC (7.126a)

sinh
(√

ẐŶ L
)

= 1

2

(
e
√

ẐŶ L − e−
√

ẐŶ L

)
= L

1!

√
ẐŶ + L3

3!

(√
ẐŶ

)3
+ · · ·

= 1

2
Ŷ−1 T̂I

(
eγ̂ L − e−γ̂ L

)
T̂−1

I Ŷ

= 1

2
ẐC T̂I

(
eγ̂ L − e−γ̂ L

)
T̂−1

I ŶC

= ẐC sinh
(√

ŶẐ L
)

ŶC (7.126b)

In terms of these symbolic definitions, the chain-parameter submatrices in (7.115)
can be written, symbolically, as

�̂11(L) = cosh
(√

ẐŶ L
)

= Ŷ−1cosh
(√

ŶẐ L
)

Ŷ

= ẐC cosh
(√

ŶẐ L
)

ŶC (7.127a)

�̂12(L) = −ẐC sinh
(√

ŶẐ L
)

= −sinh
(√

ẐŶ L
)

ẐC (7.127b)
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�̂21(L) = −ŶC sinh
(√

ẐŶ L
)

= −sinh
(√

ŶẐ L
)

ŶC (7.127c)

�̂22(L) = cosh
(√

ŶẐ L
)

= Ŷ cosh
(√

ẐŶ L
)

Ŷ−1

= ŶC cosh
(√

ẐŶ L
)

ẐC (7.127d)

Observe that these reduce to the scalar results obtained for the two-conductor line in
the previous chapter.

The final chain-parameter identity is obtained using the inverse of the chain-
parameter matrix given in (7.111). Multiplying the chain-parameter matrix by its
inverse and using the identity for the inverse given in (7.111) gives

�̂(L)�̂−1(L) = 12n

= �̂(L)�̂(−L)
(7.128a)

Substituting the form of the chain-parameter matrix gives[
�̂11(L) �̂12(L)
�̂21(L) �̂22(L)

] [
�̂11(−L) �̂12(−L)
�̂21(−L) �̂22(−L)

]
=
[

1n 0
0 1n

]
(7.128b)

Multiplying this gives the following identities for the chain-parameter submatrices:

�̂11(L)�̂11(−L) + �̂12(L)�̂21(−L) = 1n (7.129a)

�̂11(L)�̂12(−L) + �̂12(L)�̂22(−L) = 0 (7.129b)

�̂21(L)�̂11(−L) + �̂22(L)�̂21(−L) = 0 (7.129c)

�̂21(L)�̂12(−L) + �̂22(L)�̂22(−L) = 1n (7.129d)

Substituting the form of Â given in (7.106c) into the infinite series expansion of
the chain-parameter matrix in (7.112) gives an infinite summation for the entries in
the state-transition matrix as

�̂11(L) = 1n + L2

2!
Ẑ Ŷ + L4

4!

[
Ẑ Ŷ

]2 + · · · (7.130a)

�̂12(L) = −L

1!
Ẑ − L3

3!

[
Ẑ Ŷ

]
Ẑ − L5

5!

[
Ẑ Ŷ

]2
Ẑ + · · · (7.130b)

�̂21(L) = −L

1!
Ŷ − L3

3!

[
Ŷ Ẑ

]
Ŷ − L5

5!

[
Ŷ Ẑ

]2
Ŷ + · · · (7.130c)



322 FREQUENCY-DOMAIN ANALYSIS OF MULTICONDUCTOR LINES

�̂22(L) = 1n + L2

2!
Ŷ Ẑ + L4

4!

[
Ŷ Ẑ

]2 + · · · (7.130d)

From this series expansions of the chain-parameter submatrices, we see that

�̂11(−L) = �̂11(L) (7.131a)

�̂12(−L) = −�̂12(L) (7.131b)

�̂21(−L) = −�̂21(L) (7.131c)

�̂22(−L) = �̂22(L) (7.131d)

Substituting these into (7.129) yields the following identities for the chain-parameter
submatrices:

�̂12(L)�̂22(L)�̂−1
12 (L)�̂11(L) − �̂12(L)�̂21(L) = 1n (7.132a)

�̂21(L)�̂11(L)�̂−1
21 (L)�̂22(L) − �̂21(L)�̂12(L) = 1n (7.132b)

�̂12(L)�̂22(L)�̂−1
12 (L) = �̂11(L) (7.132c)

�̂21(L)�̂11(L)�̂−1
21 (L) = �̂22(L) (7.132d)

�̂t
22(L) = �̂11(L) (7.132e)

The last identity follows from the series expansions in (7.130) and the fact that Ẑ and
Ŷ are symmetric. These identities have proved to be of considerable value in reducing
large matrix expressions that result from the solution of the MTL equations [B.1, B.2,
B.4].

7.5.4 Approximating Nonuniform Lines with the Chain-Parameter Matrix

As discussed previously, nonuniform lines are lines whose cross-sectional dimensions
(conductors and media) vary along the line axis [B.1, 13, 14]. For these types of lines,
the per-unit-length parameter matrices will be functions of z, that is, R(z), L(z), G(z),
and C(z). In this case, the MTL differential equations become nonconstant-coefficient
differential equations. Although they remain linear (if the surrounding medium is
linear), they are as difficult to solve as nonlinear differential equations. A simple
but approximate way of solving the MTL equations for a nonuniform MTL is to
approximate it as a discretely uniform MTL. This neglects any interaction between
the sections, which may be due to fringing of the fields at the junctions between
the uniform sections. To do this we break the line into a cascade of sections, each
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of which can be modeled approximately as a uniform line characterized by a chain-
parameter matrix �̂k, as illustrated in Figure 6.13(a). The overall chain-parameter
matrix of the entire line can be obtained as the product (in the appropriate order) of
the chain-parameter matrices of the individual uniform sections as

�̂(L) = �̂N (�zN ) × · · · × �̂i(�zi) × · · · × �̂1(�z1) (7.133)

=
N∏

k=1

�̂N−k+1(�zN−k+1) (7.133)

Observe the important order of multiplication of the individual chain-parameter ma-
trices. This is a result of the definitions of the chain-parameter matrices as[

V̂(zk+1)
Î(zk+1)

]
= �̂k+1(�zk+1)

[
V̂(zk)
Î(zk)

]
[

V̂(zk)
Î(zk)

]
= �̂k(�zk)

[
V̂(zk−1)
Î(zk−1)

] (7.134)

Many nonuniform MTLs can be approximately modeled in this fashion. Once the
overall chain-parameter matrix of the entire line is obtained as in (7.133), the terminal
constraints at the ends of the line may be incorporated as described in Section 7.3
and the terminal voltages and currents solved for. Voltages and currents at interior
points can also be determined from these terminal solutions by using the individual
chain-parameter matrices of the uniform sections. For example, the voltages and
currents at the right port of the second subsection can be obtained from the terminal
voltages and currents as[

V̂(z2)
Î(z2)

]
= �̂2(�z2) × �̂1(�z1)

[
V̂(0)
Î(0)

]
(7.135)

7.5.5 The Impedance and Admittance Parameter Matrix Characterizations

The chain-parameter matrix is not the only way of relating the voltages and currents
of the MTL viewed as a 2n-port. Other obvious ways are the impedance parameters
[A.2] [

V̂(0)
V̂(L)

]
=
[

Ẑ11 Ẑ12
Ẑ21 Ẑ22

]
︸ ︷︷ ︸

Ẑ(L)

[
Î(0)

−Î(L)

]
(7.136)

and the admittance parameters [A.2][
Î(0)

−Î(L)

]
=
[

Ŷ11 Ŷ12
Ŷ21 Ŷ22

]
︸ ︷︷ ︸

Ŷ(L)

[
V̂(0)
V̂(L)

]
(7.137)
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The currents at both ends, Î(0) and −Î(L), are defined as being directed into the
2n-port in accordance with the usual convention. These alternative representations
can be obtained from the chain-parameter submatrices. For example, the impedance
parameter submatrices are defined, from (7.136), by setting currents equal to zero as

V̂(L) = −Ẑ22 Î(L)
∣∣
Î(0)=0 (7.138a)

V̂(0) = −Ẑ12 Î(L)
∣∣
Î(0)=0 (7.138b)

V̂(L) = Ẑ21 Î(0)
∣∣
Î(L)=0 (7.138c)

V̂(0) = Ẑ11 Î(0)
∣∣
Î(L)=0 (7.138d)

From the chain-parameter matrix, setting Î(0) = 0, we obtain

V̂(L) = �̂11V̂(0)
∣∣
Î(0)=0 (7.139a)

Î(L) = �̂21V̂(0)
∣∣
Î(0)=0 (7.139b)

from which we obtain

Ẑ22 = −�̂11�̂
−1
21

= −�̂−1
21 �̂22 (7.140a)

Ẑ12 = −�̂−1
21 (7.140b)

and we have used the chain-parameter identity given in (7.132d) in (7.140a). Similarly,
setting Î(L) = 0 in the chain-parameter matrix gives

V̂(L) = �̂11V̂(0) + �̂12 Î(0) (7.141a)

0 = �̂21V̂(0) + �̂22 Î(0) (7.141b)

from which we obtain

Ẑ21 = �̂12 − �̂11�̂
−1
21 �̂22

= −�̂−1
21 (7.142a)
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Ẑ11 = −�̂−1
21 �̂22

= −�̂11�̂
−1
21 (7.142b)

We have used the matrix chain-parameter identities given in (7.132b) and (7.132d)
to give equivalent forms of these impedance parameters, which demonstrate that the
line is reciprocal, that is, Ẑ11 = Ẑ22 and Ẑ12 = Ẑ21. Substituting the relations for the
various chain-parameter submatrices given in (7.115) and (7.127) yields

Ẑ11 = Ẑ22

= Ŷ−1T̂I γ̂
(

eγ̂ L − e−γ̂ L
)−1 (

eγ̂ L + e−γ̂ L
)

T̂−1
I

= ẐC

[
sinh

(√
ŶẐ L

)]−1
cosh

(√
ŶẐ L

)
= cosh

(√
ẐŶ L

) [
sinh

(√
ẐŶ L

)]−1
ẐC (7.143a)

Ẑ12 = Ẑ21

= 2Ŷ−1T̂I γ̂
(

eγ̂ L − e−γ̂ L
)−1

T̂−1
I

= ẐC

[
sinh

(√
ŶẐ L

)]−1

=
[
sinh

(√
ẐŶ L

)]−1
ẐC (7.143b)

The admittance parameters can also be derived from the chain-parameters in a
similar fashion or by realizing that the admittance parameter matrix is the inverse of
the impedance parameter matrix. This yields

Ŷ11 = Ŷ22
= −�̂−1

12 �̂11

= −�̂22�̂
−1
12

= T̂I

(
eγ̂ L − e−γ̂ L

)−1 (
eγ̂ L + e−γ̂ L

)
γ̂−1 T̂−1

I Ŷ

=
[
sinh

(√
ŶẐ L

)]−1
cosh

(√
ŶẐ L

)
ŶC

= ŶC cosh
(√

ẐŶ L
) [

sinh
(√

ẐŶ L
)]−1

(7.144a)

Ŷ12 = Ŷ21
= �̂−1

12

= −2 T̂I

(
eγ̂ L − e−γ̂ L

)−1
γ̂−1 T̂−1

I Ŷ

= −
[
sinh

(√
ŶẐ L

)]−1
ŶC

= −ŶC

[
sinh

(√
ẐŶ L

)]−1
(7.144b)
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The lumped-Pi and lumped-T circuits of Figure 7.6(a) and (b) can also be obtained
from the impedance and admittance parameters. For example, write the impedance
parameters as

V̂(0) = (
Ẑ11 − Ẑ12

)
Î(0) + Ẑ12

(
Î(0) − Î(L)

)
V̂(L) = Ẑ12

(
Î(0) − Î(L)

)+ (
Ẑ22 − Ẑ12

) (−Î(L)
) (7.145)

If the line is electrically short at the frequency of interest, we obtain

Ẑ11 − Ẑ12 = ẐC

[
sinh

(√
ŶẐ L

)]−1 {
cosh

(√
ŶẐ L

)
− 1n

}
∼= ẐC

[√
ŶẐ L

]−1
{

L2

2

(√
ŶẐ

)2
}

= ẐC
L

2

√
ŶẐ

= Ẑ
L

2
(7.146a)

where we used the series expansions in (7.125) and the identity in (7.122a) and

Ẑ12 = ẐC

[
sinh

(√
ŶẐ L

)]−1

∼= ẐC

[√
ŶẐ L

]−1

= Ŷ−1 L−1 (7.146b)

and we have used (7.125b) and (7.122a). Substituting (7.146) into (7.145) yields the
lumped-T circuit shown in Figure 7.6(b) since the vertical branches have admittance
of Ẑ−1

12 = Ŷ L and the horizontal branches have impedances of Ẑ11 − Ẑ12 = Ẑ22 −
Ẑ21 = Ẑ L/2. Similarly, the admittance parameters in (7.137) can be written as

Î(0) = (
Ŷ11 + Ŷ12

)
V̂(0) − Ŷ12

(
V̂(0) − V̂(L)

)
−Î(L) = −Ŷ12

(
V̂(L) − V̂(0)

)+ (
Ŷ22 + Ŷ12

)
V̂(L) (7.147)

Again, if the line is electrically short at the frequency of interest, we obtain

Ŷ11 + Ŷ12 =
[
sinh

(√
ŶẐ L

)]−1 {
cosh

(√
ŶẐ L

)
− 1n

}
ŶC

∼=
[√

ŶẐ L
]−1

{
L2

2

(√
ŶẐ

)2
}

ŶC

= L

2

√
ŶẐ ŶC

= Ŷ
L

2
(7.148a)
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and

−Ŷ12 =
[
sinh

(√
ŶẐ L

)]−1
ŶC

∼=
[√

ŶẐ L
]−1

ŶC

= Ẑ−1L−1 (7.148b)

Substituting (7.148) into (7.147) yields the lumped-Pi circuit of Figure 7.6(a) as the
horizontal branches have impedance of Ẑ L and the vertical branches have admit-
tances of Ŷ11 + Ŷ12 = Ŷ22 + Ŷ21 = Ŷ L/2.

7.6 POWER FLOW AND THE REFLECTION COEFFICIENT MATRIX

As a final analogy to the two-conductor line, let us define the voltage reflection
coefficient matrix �̂V (z) and investigate the flow of power on the line. The general
solution for the phasor voltages and currents is written in the form of forward-traveling
waves, V̂+(z) and Î+(z), and backward-traveling waves, V̂−(z) and Î−(z), from (7.34)
as

V̂(z) = V̂+(z) + V̂−(z)
= ẐC

(
Î+(z) + Î−(z)

)
(7.149a)

Î(z) = Î+(z) − Î−(z) (7.149b)

where

Î+(z) = T̂I e−γ̂z Î+
m (7.150a)

Î−(z) = T̂I eγ̂ z Î−
m (7.150b)

and

T̂−1
I ŶẐ T̂I = γ̂2 (7.150c)

Hence, the forward- and backward-traveling voltage and current waves are related by
the characteristic impedance matrix as

V̂±(z) = ẐC Î±(z) (7.151)

Similarly, from (7.33)

V̂(z) = V̂+(z) + V̂−(z) (7.152a)
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Î(z) = Î+(z) − Î−(z)
= ŶC

(
V̂+(z) − V̂−(z)

)
(7.152b)

where

V̂+(z) = T̂V e−γ̂z V̂+
m (7.153a)

V̂−(z) = T̂V eγ̂ z V̂−
m (7.153b)

and

T̂−1
V Ẑ ŶT̂V = γ̂2 (7.153c)

and ŶC = Ẑ−1
C . Let us define the voltage reflection coefficient matrix �̂V (z) in a logical

manner relating the reflected or backward-traveling voltage waves to the incident or
forward-traveling voltage waves at any point on the line as

V̂−(z) = �̂V (z) V̂+(z) (7.154a)

Substituting (7.151) yields

Î−(z) = ŶC �̂V (z) ẐC Î+(z) (7.154b)

Hence, the current reflection coefficient matrix is related to the voltage reflection
coefficient matrix as

�̂I (z) = −ŶC �̂V (z) ẐC (7.155)

as the total backward-traveling current is −Î−(z). Although (7.155) reduces to the
scalar case for two-conductor lines, it is important to distinguish between the two
reflection coefficient matrices in the MTL case since the products in (7.155) do not
commute. Substituting (7.154a) and (7.155) into (7.152) gives

V̂(z) = [
1n + �̂V (z)

]
V̂+(z)

= [
1n − ẐC �̂I (z) ŶC

]
V̂+(z) (7.156a)

Î(z) = ŶC
[
1n − �̂V (z)

]
V̂+(z)

= ŶC
[
1n + ẐC�̂I (z)ŶC

]
V̂+(z) (7.156b)

Similarly, substituting (7.154b) into (7.149) yields

V̂(z) = ẐC
[
1n + ŶC �̂V (z) ẐC

]
Î+(z)

= ẐC
[
1n − �̂I (z)

]
Î+(z) (7.157a)
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Î(z) = [
1n − ŶC �̂V (z) ẐC

]
Î+(z)

= [
1n + �̂I (z)

]
Î+(z) (7.157b)

The reflection coefficient matrices at two points z2 and z1 on the line can be related
by substituting the general forms of forward- and backward-traveling voltages given
in (7.153) into (7.154) to yield

V̂−(z) = T̂V eγ̂z V̂−
m

= �̂V (z)V̂+(z)
= �̂V (z) T̂V e−γ̂ z V̂+

m (7.158)

Evaluating these at z = z1 and z = z2 gives

T̂V eγ̂ z2 V̂−
m = �̂V (z2) T̂V e−γ̂ z2 V̂+

m (7.159a)

and

T̂V eγ̂ z1 V̂−
m = �̂V (z1) T̂V e−γ̂ z1 V̂+

m (7.159b)

Hence,

e−γ̂ z2 T̂−1
V �̂V (z2)T̂V e−γ̂ z2 = e−γ̂ z1T̂−1

V �̂V (z1)T̂V e−γ̂ z1 (7.160)

Solving gives

�̂V (z2) = T̂V eγ̂ (z2−z1)T̂−1
V �̂V (z1) T̂V eγ̂ (z2−z1)T̂−1

V (7.161)

Substituting the identities in (7.123e) gives

�̂V (z2) = e
√

ẐŶ(z2−z1) �̂V (z1) e
√

ẐŶ(z2−z1) (7.162)

Similarly, using (7.150) and (7.154), the current reflection coefficients are related as

�̂I (z2) = e
√

ŶẐ(z2−z1) �̂I (z1) e
√

ŶẐ(z2−z1) (7.163)

Again, these reduce to the scalar results for a two-conductor line given in the previous
chapter.

The input impedance matrix at any point on the line relates the total voltages and
total currents at that point as

V̂(z) = Zin(z) Î(z) (7.164)
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Substituting (7.156) and (7.157) into (7.164) yields

Ẑin(z) = [
1n + �̂V (z)

] [
1n − �̂V (z)

]−1
ẐC

= ẐC
[
1n + ŶC �̂V (z)ẐC

] [
1n − ŶC �̂V (z)ẐC

]−1

= ẐC
[
1n − �̂I (z)

] [
1n + �̂I (z)

]−1
(7.165)

Similarly, the voltage reflection coefficient matrix can be written in terms of the input
impedance matrix at a point on the line from (7.165) as

�̂V (z) = ẐC
[
Ẑin(z) + ẐC

]−1 [
Ẑin(z) − ẐC

]
ŶC

= [
Ẑin(z) − ẐC

] [
Ẑin(z) + ẐC

]−1
(7.166)

Substituting (7.166) into the relation for the current reflection coefficient given by
(7.155), we see that the current reflection coefficient matrix is

�̂I (z) = −ŶC�̂V (z)ẐC

= −[Ẑin(z) + ẐC
]−1 [

Ẑin(z) − ẐC
]

= −ŶC
[
Ẑin(z) − ẐC

] [
Ẑin(z) + ẐC

]−1
ẐC (7.167)

If the line is terminated at z = L as

V̂(L) = ẐL Î(L) (7.168)

then the voltage reflection coefficient matrix at the load is

�̂V (L) = ẐC
[
ẐL + ẐC

]−1 [
ẐL − ẐC

]
ŶC

= [
ẐL − ẐC

] [
ẐL + ẐC

]−1
(7.169)

Similarly, the current reflection coefficient matrix at the load is obtained from (7.167)
as

�̂I (L) = −[ẐL + ẐC
]−1 [

ẐL − ẐC
]

= −ŶC
[
ẐL − ẐC

] [
ẐL + ẐC

]−1
ẐC (7.170)

The voltage reflection coefficient at the input to the line z = 0 is given from (7.161)
in terms of the voltage reflection coefficient at the load as

�̂V (0) = T̂V e−γ̂ LT̂−1
V �̂V (L) T̂V e−γ̂ LT̂−1

V (7.171)

These formulas reduce to the corresponding scalar results for a two-conductor line.
From (7.169), we observe that in order to eliminate all reflections at the load, the line
must be terminated in its characteristic impedance matrix, that is, ẐL = ẐC. This is
the meaning of a matched line in the MTL case. It is not sufficient to simply place
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impedances only between each line and the reference conductor. Impedances will
need to be placed between all pairs of the n lines since the characteristic impedance
is, in general, full.

The total average power transmitted on the MTL in the +z direction is [A.2]

Pav(z) = 1

2
Re
{

V̂t(z)Î∗(z)
}

= 1

2
Re


[ V̂1(z) V̂2(z) · · · V̂n(z) ]




Î∗
1 (z)

Î∗
2 (z)
...

Î∗
n (z)






= 1

2
Re
{
V̂1(z)Î∗

1 (z) + V̂2(z)Î∗
2 (z) + · · · + V̂n(z)Î∗

n (z)
}

(7.172)

where the asterisk * denotes the conjugate of the complex-valued quantity. Suppose
the line is matched at its load, that is, ẐL = ẐC, so that the load reflection coefficient
matrix is zero, that is, �̂V (L) = 0. Equation (7.171) shows, as expected, that the
reflection coefficient matrices are zero at all points on the line, that is, �̂V,I (z) = 0.
Thus, there are only forward-traveling waves on the line, and there is no power flow
in the −z direction.

In terms of the mode voltages and currents, the average power flow on the line is

Pav(z) = 1

2
Re
(
V̂t Î∗)

= 1

2
Re
(
V̂t

mT̂t
V T̂∗

I Î∗
m

)
(7.173)

If T̂V and T̂I are such that

T̂t
V T̂∗

I = 1n (7.174)

then

Pav(z) = 1

2
Re
(
V̂t

m Î∗
m

)
(7.175)

and the power is the sum of the powers of the individual modes. The condition in
(7.174) is equivalent to stating that the voltage and current eigenvectors, the columns
of T̂V and T̂I , are orthonormal. In previous sections, we showed several cases for
which the MTL equations are decoupleable and (7.174) is satisfied.

These properties are, of course, also directly analogous to the scalar, two-conductor
line. The use of matrix notation allows a straightforward adaptation of the scalar results
to the MTL case although there are some peculiarities unique to the MTL case.
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FIGURE 7.9 A three-conductor line for illustrating numerical results.

7.7 COMPUTED AND EXPERIMENTAL RESULTS

In this section, we will show some computed and experimental results that demonstrate
the prediction methods of this chapter. The frequency-domain prediction model of this
chapter is implemented in the computer program MTL.FOR described in Appendix
A. This program determines the 2n undetermined constants in the general form of
solution in (7.90): I±

m. The terminal configurations for both structures are shown in
Figure 7.9. These are characterized as a generalized Thevenin equivalent as in (7.87)
where

V̂S =
[

0
1� 0o

]
ẐS =

[
50 0
0 0

]
V̂L =

[
0
0

]
ẐL =

[
50 0
0 50

]

Two configurations of a three-conductor line (n = 2) are considered: a three-wire
ribbon cable and a three-conductor printed circuit board. Experimentally determined
frequency responses will be compared to the predictions of the MTL model as well
as those of the lumped-Pi iterative approximation.

7.7.1 Ribbon Cables

The cross section of the three-wire ribbon cable is shown in Figure 7.10. The total
line length is L = 2 m. The per-unit-length parameters for this configuration were
computed using the computer program RIBBON.FOR described in Appendix A and
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are

L =
[

0.7485 0.5077
0.5077 1.0154

]
�H/m

C =
[

37.432 −18.716
−18.716 24.982

]
pF/m

The experimental results are compared to the predictions of the MTL model, with
and without conductor losses, over the frequency range of 1 kHz to 100 MHz in
Figure 7.11. Observe that below 100 kHz, losses in the line conductors are important
and cannot be ignored. The dc resistance was computed for one of the #36 gauge
strands (rw = 2.5 mils) and dividing this result by the number of strands (7) to give
0.19444 �/m. Skin effect was included by determining the frequency where the ra-
dius of one of the #36 gauge strands equals two skin depths, rw = 2δ = 2/

√
πf0µσ

(f0 = 4.332 MHz), and taking the resistance to vary as r(f ) = rdc
√

f/f0 above
this. Both the magnitude and the phase are well predicted. Observe that the line
is one wavelength (ignoring the dielectric insulation) at 150 MHz. So the line is
electrically short below, say, 15 MHz. Observe that the magnitude of the crosstalk
for the lossless case (and a significant portion of the lossy case) increases di-
rectly with frequency or 20 dB/decade. We will find this to be a general result in
Chapter 10.

Figure 7.12 shows the predictions of the lumped-Pi approximate model of Figure
7.6(a) using one and two Pi sections to represent the entire line. The wire resistances
are assumed to be the dc values over the entire frequency range for these lumped-Pi
models because skin effect (

√
f ) dependency is difficult to model in the lumped-circuit

program SPICE, which was used to solve the resulting circuit. Both one and two Pi

FIGURE 7.10 Dimensions of a three-conductor ribbon cable for illustrating numerical
results.
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sections give virtually identical predictions to the exact MTL model for frequencies
below where the line is one tenth of a wavelength long. Observe that two Pi sections
do not substantially extend the prediction accuracy frequency range even though the
circuit complexity is double that for one Pi section.

FIGURE 7.11 Comparison of the frequency response of the near-end crosstalk of the ribbon
cable of Figure 7.10 determined experimentally and via the MTL model with and without
losses: (a) magnitude and (b) phase.
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7.7.2 Printed Circuit Boards

The next configuration is a three-conductor printed circuit board whose cross section
is shown in Figure 7.13. The total line length is L = 10 in. = 0.254 m. The per-unit-
length parameters were computed using the computer program PCB.FOR described

FIGURE 7.12 Comparison of the frequency response of the near-end crosstalk of the ribbon
cable of Figure 7.10 determined via the MTL model with losses and via the lumped-Pi model
with losses using one and two sections to represent the line: (a) magnitude and (b) phase.
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FIGURE 7.13 Dimensions of a three-conductor PCB for illustrating numerical results.

FIGURE 7.14 Comparison of the frequency response of the near-end crosstalk of the PCB
of Figure 7.13 determined experimentally and via the MTL model with and without losses: (a)
magnitude and (b) phase.
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FIGURE 7.15 Comparison of the frequency response of the near-end crosstalk of the PCB
of Figure 7.13 determined via the MTL model with losses and via the lumped-Pi model with
losses using one and two sections to represent the line: (a) magnitude and (b) phase.

in Appendix A :

L =
[

1.10515 0.690613
0.690613 1.38123

]
� H/m

C =
[

40.5985 −20.2992
−20.2992 29.7378

]
pF/m
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The experimentally obtained results are compared to the predictions of the MTL
model with and without conductor losses over the frequency range of 10 kHz to 1
GHz in Figure 7.14. The conductor resistances were computed in a similar fashion to
the ribbon cable. The dc resistance is rdc = 1/wtσ = 1.291 �/m, where w is the land
width (w = 15 mils) and t is the land thickness for 1 ounce copper (t = 1.38 mils). The
frequency where this transitions to a

√
f behavior was approximated as being where

the land thickness equals two skin depths: t = 2δ or f 0 = 14.218 MHz. Observe that
the frequency where the losses become important is on the order of 1 MHz. Both the
magnitude and the phase are well predicted. The line is one wavelength (ignoring
the board dielectric) at 1.18 GHz. Thus, the line can be considered to be electrically
short for frequencies below some 100 MHz. Again note that the magnitude of the
frequency response increases directly with frequency or 20 dB/decade, where the line
is electrically short for the lossless case (and a significant portion of the lossy case).

Figure 7.15 shows the predictions of the lumped-Pi approximate model of Figure
7.6(a) using one and two Pi sections to represent the entire line. The wire resistances
are again assumed to be the dc values over the entire frequency range for these
lumped-Pi models because skin effect (

√
f ) dependency is difficult to model in the

lumped-circuit program SPICE, which was used to solve the resulting circuit. Both
one and two Pi sections give virtually identical predictions to the exact MTL model
for frequencies below where the line is one tenth of a wavelength long. Observe that,
as in the case of the ribbon cable, two Pi sections do not substantially extend the
prediction accuracy frequency range even though the circuit complexity is double
that for one Pi section.

PROBLEMS

7.1 Verify the second-order phasor MTL equations in (7.7).

7.2 Verify the modal phasor MTL equations in (7.9).

7.3 Verify, by direct substitution, that (7.19) satisfy (7.9).

7.4 Verify, by direct substitution, that (7.33) and (7.34) satisfy (7.7).

7.5 Diagonalize the following matrix as T−1MT = �:

M =
[

4 2
1 3

]

[T11 = 2, T12 = 1, T21 = 1, T22 = −1, �1 = 5, �2 = 2]

7.6 Determine the 2 × 2 matrices T, which will diagonalize the following matrices:

M =
[−4 2

−1 −1

]

M =
[−2 −1

−1 −2

]
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[T11 = 2, T12 = 1, T21 = 1, T22 = 1, �1 = −3, �2 = −2 and T11 =
1, T12 = 1, T21 = 1, T22 = −1, �1 = −3, �2 = −1]

7.7 Diagonalize the following inductance matrix for a homogeneous medium via
the method of Section 7.2.2.1:

L =
[

5 1
1 3

]
(�H/m)

[eigenvalues are
(

4 + √
2
)

× 10−6 = 5.414 × 10−6 and
(

4 − √
2
)

×
10−6 = 2.586 × 10−6, T11 = T22 = 0.924, T21 = −T12 = 0.383]

7.8 Demonstrate (7.52) and (7.53).

7.9 Demonstrate (7.60) and (7.61).

7.10 Show that a 2 × 2 real, symmetric matrix M can be diagonalized with the
orthogonal transformation:

T =
[

cos θ −sin θ

sin θ cos θ

]

where

tan 2θ = 2M12

M11 − M22

Show that the eigenvalues are

�2
1 = M11cos2θ + 2M12cos θ sin θ + M22sin2θ

�2
2 = M11sin2θ − 2M12cos θ sin θ + M22cos2θ

7.11 Diagonalize the following product, CL, where

C =
[

3 −1
−1 4

]
L =

[
2 1
1 3

]

[eigenvalues are 5 and 11, T11 = 3, T22 = 1, T21 = −1, T12 = 0]

7.12 Demonstrate (7.66), (7.68), and (7.69).

7.13 Show that T in (7.69) and its inverse in (7.70) diagonalize the following cyclic-
symmetric matrix:

M =
[ 5 2 2

2 5 2
2 2 5

]
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7.14 Demonstrate that the transformations in (7.79) and (7.82) diagonalize the
cyclic-symmetric matrices.

7.15 Diagonalize the following matrix, which has cyclic-symmetric structure:

M =




4 3 2 3
3 4 3 2
2 3 4 3
3 2 3 4




Show by direct calculation that the T̂ you obtain does in fact diagonalize
this matrix and that T̂−1 = T̂t∗ . Verify from this that the eigenvalues are as
expected according to (7.68).

7.16 Determine the generalized Thevenin equivalent representation, V̂(0) = V̂S −
ẐSÎ(0), of the source termination network shown in Figure P7.16.[

V̂S =
[

VS1
VS2

]
, ŶS =

[
(R1 + R3) R3

R3 (R1 + R3)

]]

FIGURE P7.16

7.17 Determine the generalized Norton equivalent representation, Î(0) = ÎS −
ŶSV̂(0), of the source termination network shown in Figure P7.17.

ÎS =
[

VS1/R1
VS2/R2

]
, ŶS =



(

1

R1
− 1

R3

)
1

R3
1

R3

(
1

R2
− 1

R3

)





7.18 Characterize the source and load termination networks shown in Figure P7.18.[
Î(0) = ÎS − ŶSV̂(0), ÎS = 1

RS

[−VS
VS

]
, ŶS = 1

RS

[−1 1
1 −1

]
,

V̂(L) = V̂L + ẐL Î(L), V̂L = 0, ẐL =
[

0 0
0 R2

]]
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FIGURE P7.17

FIGURE P7.18

7.19 Verify the terminal relation incorporations using the chain-parameter matrices
in (7.92), (7.97), and (7.101).

7.20 Verify the chain-parameter matrices for the lumped-circuit iterative structures
given in (7.115).

7.21 Verify the chain-parameter matrix identities in (7.132).

7.22 Derive the relations for the impedance and admittance parameter submatri-
ces in terms of the chain-parameter submatrices given in (7.140), (7.142),
(7.144a), and (7.144b). Evaluate these for a lossless line in a homogeneous
medium.

7.23 Use the FORTRAN code MTL.FOR to verify the results for the ribbon cable
in Section 7.7.1 as shown in Figure 7.11.

7.24 Use the FORTRAN code SPICELPI.FOR to construct PSPICE subcircuit
lumped-Pi models for the ribbon cable in Section 7.7.1 and verify the results
in Figure 7.12.

7.25 Use the FORTRAN code MTL.FOR to verify the results for the PCB in Section
7.7.2 as shown in Figure 7.14.

7.26 Use the FORTRAN code SPICELPI.FOR to construct PSPICE subcircuit
lumped-Pi models for the PCB in Section 7.7.2 and verify the results in Figure
7.15.
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8
TIME-DOMAIN ANALYSIS
OF TWO-CONDUCTOR LINES

The previous two chapters dealt with the solution of the transmission-line equations
in the frequency domain, that is, for the case of sinusoidal steady-state excitation
of the line. That is, the sources are sinusoids at a single frequency and are assumed
to have been applied for a sufficiently long time such that all transients have de-
cayed to zero leaving only the steady-state solution. In this and the following chapter,
we will examine the solution of the transmission-line equations for sources that have
any general time variation. This will include both the transient and the steady-state
components of the solution and represents the solution in the time domain. Again,
there will be striking parallels between the two-conductor solution methods given in
this chapter and those for MTLs given in the following chapter.

We have seen in the previous chapters that incorporating line losses into the solution
of the transmission-line equations is a very straightforward process in the frequency
domain. We will see in this and the following chapter that the time-domain solution of
the transmission-line equations for a lossless line is also a very simple and straightfor-
ward computational process for either two-conductor lines or multiconductor trans-
mission lines (MTLs)! Line losses, however, introduce substantial complications in
the solution of the transmission-line equations in the time domain. In addition to the
low-frequency dc resistance and internal inductance, conductors exhibit a frequency-
dependent resistance and internal inductance due to skin effect at high frequencies.
This dependence on frequency is

√
f , which is difficult to characterize in the time

domain. Incorporation of these losses into the frequency-domain solution is trivial;
compute the resistances and internal inductive reactances of the line conductors at

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
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the frequency of interest, include them as constants in the phasor transmission-line
equations, and solve the resulting equations. For the next frequency of interest, re-
compute the resistances and internal inductive reactances of the conductors for this
frequency and repeat the solution. The loss introduced by a nonzero conductivity of
the surrounding media is also dependent on frequency and can likewise be easily in-
corporated into the frequency-domain solution. Although the inclusion of these losses
does not significantly complicate the frequency-domain solution, it adds considerable
complications to the general time-domain solution of the transmission-line equations.

We begin the discussion with a review of the solutions for two-conductor lossless
lines. This serves to introduce the notion of traveling waves on the line and also in-
troduces an important solution technique for numerical computation, the method of
characteristics, which leads to the exact solution for a lossless line that is incorpo-
rated into the SPICE (PSPICE) computer program. Once these concepts and solution
methods for lossless lines are discussed, we discuss methods for the incorporation
of frequency-dependent losses. Frequency-dependent losses can be included in the
solution via the time-domain to frequency-domain (TDFD) solution method whereby
the input signal is resolved into its Fourier sinusoidal components and passed through
the frequency-domain transfer function. The line losses are easily included when we
compute the frequency-domain transfer function via the methods of Chapters 6 and
7. The output sinusoidal components are then summed over time to return to the time
domain. This method requires that the line terminations be linear since superposi-
tion was used. An alternative method is the numerical finite-difference, time-domain
(FDTD) method. This method approximates the derivatives in the transmission-line
equations and solves the resulting difference equations in a recursive manner. The
FDTD method will be first developed for the case of lossless lines and then ex-
tended to include frequency-dependent line losses. In the following chapter, all these
methods will be extended to MTLs in a fashion that bears striking similarities to the
two-conductor solution methods.

8.1 THE SOLUTION FOR LOSSLESS LINES

The scalar transmission-line equations for two-conductor lossless lines are

∂V (z, t)

∂z
= −l

∂I(z, t)

∂t
(8.1a)

∂I(z, t)

∂z
= −c

∂V (z, t)

∂t
(8.1b)

Differentiating one equation with respect to z and the other with respect to t and
substituting yields the uncoupled second-order differential equations

∂2V (z, t)

∂z2 = lc
∂2V (z, t)

∂t2 (8.2a)
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∂2I(z, t)

∂z2 = lc
∂2I(z, t)

∂t2 (8.2b)

The solutions to these equations are [A.1]

V (z, t) = V+
(
t − z

v

)
︸ ︷︷ ︸

forward,+z,traveling wave

+ V−
(
t + z

v

)
︸ ︷︷ ︸

backward,−z,traveling wave

(8.3a)

I(z, t) = I+
(
t − z

v

)
︸ ︷︷ ︸

forward,+z,traveling wave

+ I−
(
t + z

v

)
︸ ︷︷ ︸

backward,−z,traveling wave

= 1

ZC
V+

(
t − z

v

)
− 1

ZC
V−

(
t + z

v

) (8.3b)

where the characteristic impedance is

ZC =
√

l

c

= vl

= 1

vc
(8.4)

The waves V+ and I+ are traveling in the +z direction as can be seen from their argu-
ments; as t increases, z must also increase in order to track a point on the waveform.
Hence, they are called forward-traveling waves. The waves V− and I− are similarly
traveling in the −z direction and are called backward-traveling waves. The character-
istic impedance relates the voltage and current in the forward-traveling wave and in
the backward-traveling wave as

V+
(
t − z

v

)
= ZCI+

(
t − z

v

)
(8.5a)

V−
(
t + z

v

)
= −ZCI−

(
t + z

v

)
(8.5b)

The velocity of propagation of the forward-traveling waves and the backward-
traveling waves is

v = 1√
lc

(8.6)

The functions of t and z, V+(t, z) and V−(t, z), are as yet unknown but have time and
position related only as t ± z/v.
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FIGURE 8.1 A two-conductor line in the time domain.

8.1.1 Wave Tracing and the Reflection Coefficients

Consider the two-conductor line of total length shown in Figure 8.1, where we assume
resistive loads RS and RL. We will later extend this solution to include dynamic loads
such as inductors and/or capacitors using the Laplace transform method or the SPICE
solution. The SPICE solution method will also handle nonlinear loads. The forward-
and backward-traveling waves are related at the load z = L by the load reflection
coefficient as [A.1]

�L = V−(t + L/v)

V+(t − L/v)

= RL − ZC

RL + ZC
(8.7)

Therefore, the reflected waveform at the load can be found from the incident wave
using the load reflection coefficient as

V−
(

t + L

v

)
= �LV+

(
t − L

v

)
(8.8)

The reflection coefficient so defined applies to voltage waves only. A current reflection
coefficient applying to the current waves can similarly be obtained and is the negative
of the voltage reflection coefficient (due to the negative sign in (8.3b))

I−
(

t + L

v

)
= −�LI+

(
t − L

v

)
(8.9)

The reflection at the load is illustrated in Figure 8.2. The reflection process can be
viewed as a mirror that produces, as a reflected V−, a replica of V+ that is “flipped
around,” and all points on the V− waveform are the corresponding points on the
V+ waveform multiplied by �L. Note that the total voltage at the load, V (L, t), is
the sum of the individual waves present at the load at a particular time as shown
by (8.3a).

Now let us consider the portion of the line at the source, z = 0, shown in Figure 8.3.
When we initially connect the source to the line, we reason that a forward-traveling
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FIGURE 8.2 Illustration of reflections at a termination of a mismatched line.

wave will be propagated down the line. We would not expect a backward-traveling
wave to appear on the line until this initial forward-traveling wave has reached the
load, a time delay of

TD = L/v (8.10)

since the incident wave will not have arrived to produce this reflected wave. The
portion of the incident wave that is reflected at the load will require an additional time
TD to move back to the source. Therefore, for 0 ≤ t ≤ 2L/v = 2TD, no backward-
traveling waves will appear at z = 0, and for any time less than 2TD the total voltage
and current at z = 0 will consist only of forward-traveling waves V+ and I+. Therefore,
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FIGURE 8.3 Characterization of the initially transmitted pulse.

from (8.3)

V (0, t) = V+
(

t − 0

v

)
(8.11a)

I(0, t) = I+
(

t − 0

v

)

=
V+

(
t − 0

v

)
ZC

for 0 ≤ t ≤ 2TD (8.11b)

Since the ratio of total voltage and total current on the line at the input to it is ZC for
0 ≤ t ≤ 2TD, the line appears to have an input resistance of ZC over this time interval.
Thus, the forward-traveling voltage and current waves that are initially launched are
related to the source voltage by (using voltage division)

V (0, t) = ZC

RS + ZC
VS(t) for 0 ≤ t ≤ 2TD (8.12a)

I(0, t) = 1

RS + ZC
VS(t) for 0 ≤ t ≤ 2TD (8.12b)

This initially launched wave has the same shape as the source voltage VS(t) (but is
reversed; see Fig. 8.2).

The initially launched wave travels toward the load requiring a time TD = L/v

for the leading edge of the pulse to reach the load. When the pulse reaches the load,
a reflected pulse is initiated, as shown in Figure 8.2. This reflected pulse requires an
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additional time TD = L/v for its leading edge to reach the source. At the source, we
can similarly obtain a voltage reflection coefficient

�S = RS − ZC

RS + ZC
(8.13)

as the ratio of the incoming incident wave (which is the wave that was reflected
at the load) and the reflected portion of this incoming wave (which is sent back
toward the load). A forward-traveling wave is therefore initiated at the source in the
same fashion as at the load. This forward-traveling wave has the same shape as the
incoming backward-traveling wave (which is the original pulse sent out by the source
and reflected at the load), but corresponding points on the incoming wave are reduced
by �S. This process of repeated reflections continues as re-reflections at the source
and the load. At any time, the total voltage (current) at any point on the line is the
sum of all the individual voltage (current) waves existing on the line at that point and
time, as shown by (8.3).

As an example, consider the transmission line shown in Figure 8.4(a). At t = 0,
a 30-V battery with zero source resistance is attached to the line that has a total
length of L = 400 m, a velocity of propagation of v = 200 m/�s, and a characteristic
impedance of ZC = 50 �. The line is terminated at the load in a 100 resistor so that
the load reflection coefficient is

�L = 100 − 50

100 + 50

= 1

3

and the source reflection coefficient is

�S = 0 − 50

0 + 50

= −1

The one-way transit time is TD = L/v = 2 �s. At t = 0, a 30-V pulse is sent down
the line, and the line voltage is zero prior to the arrival of the pulse and 30 V after
the pulse has passed. At t = 2 �s, the pulse arrives at the load, and a backward-
traveling pulse of magnitude 30�L = 10 V is sent back toward the source. When this
reflected pulse arrives at the source, a pulse of magnitude �S of the incoming pulse
or �S�L30 = −10 V is sent back toward the load. This pulse travels to the load, at
which time a reflected pulse of �L of this incoming pulse or �L�S�L30 = −3.33 V
is sent back toward the source. At each point on the line, the total line voltage is the
sum of the waves present on the line at that point and at that time.

The previous example has illustrated the process of sketching the line voltage at
various points along the line and at discrete times. Generally, we are interested only
in the voltage or current at the source end of the line, V(0, t) and I(0, t), and at the load
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FIGURE 8.4 An example illustrating the computation of the line voltage at various points
on the line.

end, V (L, t) and I(L, t) as functions of time and are not concerned with voltages
and currents at interior points of the line. In order to illustrate this process, let us
reconsider the previous example and sketch the voltage at the line output z = L as
a function of time, as illustrated in Figure 8.5. At t = 0, a 30-V pulse is sent out
by the source. The leading edge of this pulse arrives at the load at t = 2 �s. At this
time, a pulse of �L30 = 10 V is sent back toward the source. This 10-V pulse arrives



THE SOLUTION FOR LOSSLESS LINES 351

FIGURE 8.5 An example illustrating the computation of (a) the load voltage and (b) the
source current as a function of time.
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at the source at t = 4 �s, and a pulse of �S�L30 = −10 V is returned to the load.
This pulse arrives at the load at t = 6 �s, and a pulse of �L�S�L30 = −3.33 V is
sent back toward the source. The contributions of these waves at z = L are shown in
Figure 8.5(b) as dashed lines, and the total voltage is shown as a solid line. Arrows are
placed on each component to indicate its direction of travel. Note that the load voltage
oscillates about 30 V during the transient time interval, but asymptotically converges
to the expected steady-state value of 30 V. If we had attached an oscilloscope across
the load to display this voltage as a function of time, and the time scale were set
to 1 ms per division, it would appear that the load voltage immediately assumed a
value of 30 V. We would see the picture of Figure 8.5(b) only if the time scale of the
oscilloscope were sufficiently reduced to, say, 1 �s per division. In order to sketch the
load current I(L, t), we could divide the previously sketched load voltage by RL. We
could directly sketch the current at either end of the line by using current reflection
coefficients (which are the negative of the voltage reflection coefficients) �S = 1 and
�L = −1/3 and an initial current pulse of 30 V/ZC = 0.6 A and combining the various
forward- and backward-traveling current waves at each time point as was done for
the voltages. The current at the input to the line, I(0, t), is sketched in this fashion in
Figure 8.5(c). Observe that the current oscillates about an expected steady-state value
of 30 V/RL = 0.3 A.

The previous examples have illustrated sketching the voltage and current wave-
forms at the source and the load for sources that are dc (constant with time). The next
example shows the effect of source voltage pulse width on the total voltages. Consider
the example shown in Figure 8.6(a). The source voltage is a pulse of 100 V amplitude
and 6 �s duration as shown in Figure 8.6(b). The line is specified by its per-unit-length
capacitance and inductance of c = 100 pF/m and l = 0.25 �H/m. This corresponds to
RG58U coaxial cable. The line therefore has a characteristic impedance of

ZC =
√

l

c

= 50 �

and a velocity of propagation of

v = 1√
lc

= 2 × 108 m/s

= 200 m/�s

The source resistance is RS = 150 � and the load is a short circuit with RL = 0 �.
Hence, the source reflection coefficient is

�S = 150 − 50

150 + 50

= 1

2
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and the load reflection coefficient is

�L = 0 − 50

0 + 50

= −1

The one-way time delay is

TD = L

v

= 2 �s

The initially sent out voltage pulse is

50

50 + 150
× 100 = 25 V

The voltage at the input to the line, V (0, t), is sketched in Figure 8.6(c). The incident
and reflected voltage waveforms are again sketched with dashed lines with an arrow
added to each to indicate whether they are associated with a forward-traveling or a
backward-traveling wave. The initial voltage pulse of 25 V and 6 �s duration is sent
to the load, arriving there after one time delay of 2 �s, where it is reflected as a pulse
of −25 V. This pulse, reflected at the load, is inverted because of �L = −1 and arrives
at the source after an additional 2-�s time delay. This incoming pulse is reflected as
−12.5 V and arrives at the load after 2 �s, where it is reflected as 12.5 V arriving at
the source after another 2-�s delay. The process continues as shown. Adding all the
incident and reflected pulses at the source at each time, we obtain the total voltage
drawn with a solid line. Clearly, this total decays to zero as it should in steady state
for this short-circuit load and the fact that the pulse turns off at t = 6 �s. Observe in
this example, the pulse width of 6 �s is equivalent to three time delays. Hence, we
see an overlap of the forward- and backward-traveling components, which creates an
interesting result.

The current at the load, I(L, t), is similarly sketched in Figure 8.6(d). The reflec-
tion coefficients for the current are the negative of those for the voltage:

�S = − 1

2
�L = +1

and the initally sent out current pulse has a level of

100

150 + 50
= 1

2
A

Figure 8.6(d) shows the result that converges to the expected steady-state value of 0
A.
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FIGURE 8.6 An example illustrating the computation of (c) the source voltage and (d) the
load current for a pulse waveform illustrating the effect of pulse width, and (e) the effect of
pulse shape.

In order to show the influence of the pulse shape, we reconsider this problem
but with a pulse that rises steadily to 100 V in 6 �s as shown in Figure 8.6(e). The
individual forward- and backward-traveling components are sketched with dashed
lines and the total with a solid line. Observe that the waveforms at the end of the line



THE SOLUTION FOR LOSSLESS LINES 355

FIGURE 8.6 (Continued)
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FIGURE 8.7 The lattice diagram.

have the same time shape in time as the source voltage. In other words, the first point
to arrive at the source or load is the first point of VS (t) sent out at t = 0.

There are a number of other graphical methods that are equivalent to this graphical
method. One of the more popular ones is referred to as the so-called lattice diagram
[A.1]. This is illustrated in Figure 8.7(a). Position along the line is plotted along the
upper horizontal axis and time is plotted vertically. The initial waveform applied to the
line is (ZC/(ZC + RS))VS(t), as shown in Figure 8.7(b). The lattice diagram simply
tracks a particular point on this applied waveform, K at t′, as it travels back and forth
along the line.

8.1.2 Series Solutions and the Difference Operator

An exact solution for this general result can be obtained for any VS(t) waveform by
carrying through the above graphical method (or using the lattice diagram) in literal
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form to yield

V (0, t) = ZC

ZC + RS
{VS(t) + (1 + �S) �LVS(t − 2TD)

+ (1 + �S) (�S�L) �LVS(t − 4TD)

+ (1 + �S) (�S�L)2�LVS(t − 6TD) + · · · } (8.14a)

V (L, t) = ZC

ZC + RS
{(1 + �L) VS(t − TD) + (1 + �L) �S�LVS(t − 3TD)

+ (1 + �L) (�S�L)2VS(t − 5TD) + (1 + �L)(�S�L)3VS(t − 7TD) + · · · }

= ZC

ZC + RS
(1 + �L) {VS(t − TD) + �S�LVS(t − 3TD)

+(�S�L)2VS(t − 5TD) + (�S�L)3VS(t − 7TD) + · · · } (8.14b)

This succinct form of the solution gives the time-domain voltages explicitly as scaled
versions of the input signal waveform VS(t), which are delayed by multiples of the line
one-way delay TD. To compute the total solution waveforms V (0, t) and V (L, t), one
simply draws the scaled and delayed VS(t) and adds the waveforms at corresponding
time points according to (8.14).

Alternatively, this general result can be proved from an earlier frequency-domain
exact solution given in Chapter 6 in (6.39a ) for a lossless line. Substituting the relation
for the phase constant in terms of the radian frequency and the velocity of propagation:

β = ω/v

into that result yields

V̂ (z) = 1 + �Le−2 jωTDe2 jωz/v

1 − �S�Le−2 jωTD

ZC

ZC + RS
V̂Se− jωz/v (8.15)

and we have substituted the line one-way time delay

TD = L/v

In terms of the Laplace transform variable s, we replace

s ⇐⇒ jω

and (8.15) becomes, at the source, z = 0,

V̂ (0, s) =
[

1 + �Le−2sTD

1 − �S�Le−2sTD

]
ZC

ZC + RS
V̂S(s) (z = 0) (8.16a)
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and at the load, z = L,

V̂ (L, s) =
[

(1 + �L) e−sTD

1 − �S�Le−2sTD

]
ZC

ZC + RS
V̂S(s) (z = L) (8.16b)

Multiplying both sides of (8.16) by the common denominator gives

[
1 − �S�Le−2sTD

]
V̂ (0, s) =

[
1 + �Le−2sTD

] ZC

ZC + RS
V̂S(s) (8.17a)

[
1 − �S�Le−2sTD

]
V̂ (L, s) = (1 + �L) e−sTD

ZC

ZC + RS
V̂S(s) (8.17b)

To put this into the time domain, we utilize the basic Laplace transform result of

e±smTD F̂ (s) ⇐⇒ f (t ± mTD) (8.18)

Hence, multiplication of a Laplace transformed function F̂ (s) by e±s mTD gives the
time-domain function advanced or delayed in time by mTD. Using this result, (8.17)
becomes

[V (0, t) − �S�LV (0, t − 2TD)] = ZC

ZC + RS
[VS(t) + �LVS(t − 2TD)] (8.19a)

[V (L, t) − �S�LV (L, t − 2TD)] = ZC

ZC + RS
[1 + �L] VS(t − TD) (8.19b)

This represents a recursive solution. In other words, we obtain the present time so-
lutions V (0, t) and V (L, t) by using the solution at previous times that are two time
delays before the present time, V (0, t − 2TD) and V (L, t − 2TD) and the source
voltage delayed by various time delays: VS(t), VS(t − TD), and VS(t − 2TD). So this
recursive solution is obtained in a “bootstrapping” manner.

In order to obtain an explicit solution, we introduce the time-shift or difference
operator D as

D±mf (t) = f (t ± mTD) (8.20)

In other words, the difference operator operates on a function of time to shift it ahead
or backward in time. This difference operator obeys all the rules of algebra and can be
manipulated as though it is an algebraic variable until it is used to return to the time
domain using (8.20). We will have numerous occasions throughout this text to use
this difference operator in solving lossless lines. Substituting this result into (8.19)
gives

[
1 − �S�LD−2

]
V (0, t) = ZC

ZC + RS
[1 + �LD−2]VS(t) (8.21a)
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[
1 − �S�LD−2

]
V (L, t) = ZC

ZC + RS

[
(1 + �L) D−1

]
VS(t) (8.21b)

Multiplying by D2 gives[
D2 − �S�L

]
V (0, t) = ZC

ZC + RS
[D2 + �L] VS(t) (8.22a)

[
D2 − �S�L

]
V (L, t) = ZC

ZC + RS
[(1 + �L) D] VS(t) (8.22b)

Dividing both sides by
[
D2 − �S�L

]
to put this in the form of a transfer function and

using long division gives

V (0, t) = ZC

ZC + RS

[
D2 + �L

D2 − �S�L

]
VS(t)

= ZC

ZC + RS

[
1 + (1 + �S) �LD−2 + (1 + �S) (�S�L) �LD−4

+ (1 + �S) (�S�L)2�LD−6 + · · · ] VS(t) (8.23a)

V (L, t) = ZC

ZC + RS

[
(1 + �L) D

D2 − �S�L

]
VS(t)

= ZC

ZC + RS
(1 + �L)

[
D−1 + �S�LD−3 + (�S�L)2D−5 + · · ·

]
VS(t)

(8.23b)

where we have used the long division result:

1

D2 − �S�L
= D−2 + �S�LD−4 + (�S�L)2D−6 + (�S�L)3D−8 + · · · (8.24)

Operating on VS (t) with the various powers of D in the expansion using (8.20) returns
to the time domain giving results that are identical to (8.14):

V (0, t) = ZC

ZC + RS
{VS(t) + (1 + �S) �LVS(t − 2TD)

+ (1 + �S) (�S�L) �LVS(t − 4TD)

+ (1 + �S) (�S�L)2�LVS(t − 6TD) + · · · } (8.14a)

V (L, t) = ZC

ZC + RS
(1 + �L) {VS(t − TD)

+�S�LVS(t − 3TD) + (�S�L)2VS(t − 5TD)

+(�S�L)3VS(t − 7TD) + · · · } (8.14b)
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Thus, for a two-conductor lossless line having resistive loads, one can immediately
sketch the terminal voltage waveforms as scaled and delayed versions of the source
voltage waveform VS(t).

A number of important results can be immediately seen from the general result
in (8.14). For example, suppose the line is “matched” at the load, that is, RL = ZC.
(Note that a matched line requires a completely resistive termination since ZC for a
lossless line is a real number.) For a matched line, the load reflection coefficient is
zero, �L = 0, and hence (8.14) reduce to

V (0, t) = ZC

ZC + RS
VS(t) (for RL = ZC) (8.25a)

V (L, t) = ZC

ZC + RS
VS(t − TD) (for RL = ZC) (8.25b)

This is the ideal case; the load voltage is identical to the initially sent out wave but
scaled by the voltage division term and delayed by one time delay. Similarly, for a
line that is matched at the source, that is, RS = ZC, (8.14) reduce to

V (0, t) = ZC

ZC + RS
[VS(t) + �LVS (t − 2TD)] (for RS = ZC) (8.26a)

V (L, t) = ZC

ZC + RS
(1 + �L) VS(t − TD) (for RS = ZC) (8.26b)

With the line matched at the source but not at the load, the source voltage V (0, t) is
a combination of the initially sent out voltage and the voltage reflected at the load.
No further reflections occur at the sources since it is matched. Similarly, with the line
matched at the source but not at the load, the load voltage V (L, t) is the sum of the
incoming wave and that immediately reflected at the load.

Mismatched lines �S �= 0 and �L �= 0 give rise to terminal voltages that do not
immediately assume their steady-state voltages but converge to it in some fashion.
Some of these converge by oscillating about the steady-state voltage, whereas others
rise from zero to the steady-state value. Table 8.1 shows when this behavior occurs.
Inspection of the load voltage expression in Eq. (8.14b) shows that the additional terms
in this expression depend on the products of various powers of (�S�L) and the initially
sent out voltage wave. For the case where the source and reflection coefficients are of
opposite sign, this product will be negative with its odd powers being negative but its
even powers being positive. Hence, the waveform will oscillate about the steady-state
value. On the contrary, if the source and reflection coefficients are of the same sign,
all products will be positive and the load voltage waveform will rise steadily to the
steady-state value. This behavior will explain how certain matching schemes achieve
signal integrity, which will be considered in a later section.

The difference operator given in (8.20) is a powerful tool for lossless lines. Time
shifting can be accomplished as a simple algebraic manipulation of this operator. We
will have numerous occasions to use this powerful result.
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TABLE 8.1 Effects of the signs of the reflection coefficients on the load voltage.

8.1.3 The Method of Characteristics and a Two-Port Model of the Line

The previous sections have shown graphical and series methods for sketching the
time-domain solution of the transmission-line equations for linear resistive loads. It is
frequently desirable to have a numerical method that is suitable for a digital computer
and will handle nonlinear as well as dynamic loads. The following method is referred
to as the method of characteristics. The numerical implementation is attributed to
Branin and was originally described in [1].

The method of characteristics seeks to transform the partial differential equations
of the transmission line into ordinary differential equations that are easily integrable.
To this end, we define the characteristic curves in the z–t plane shown in Figure 8.8
as

dz

dt
= 1√

lc
(8.27a)

dz

dt
= − 1√

lc
(8.27b)

The differential changes in the line voltage and current are

dV (z, t) = ∂ V (z, t)

∂ z
dz + ∂ V (z, t)

∂ t
dt (8.28a)

dI(z, t) = ∂ I(z, t)

∂ z
dz + ∂ I(z, t)

∂ t
dt (8.28b)

Substituting the transmission-line equations in (8.1) into (8.28) gives

dV (z, t) =
(

−l
∂ I(z, t)

∂ t

)
dz + ∂ V (z, t)

∂ t
dt (8.29a)
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dI(z, t) =
(

−c
∂ V (z, t)

∂ t

)
dz + ∂ I(z, t)

∂ t
dt (8.29b)

Along the forward characteristic defined by (8.27a), dz = (1/
√

lc) dt, these become

dV (z, t) =
(

−ZC
∂ I(z, t)

∂ t
+ ∂ V (z, t)

∂ t

)
dt (8.30a)

dI(z, t) =
(

− 1

ZC

∂ V (z, t)

∂ t
+ ∂ I(z, t)

∂ t

)
dt (8.30b)

where we have substituted ZC = (
√

1/c). Similarly, along the backward characteristic
defined by (8.27b), dz = −(1/

√
lc) dt, these become

dV (z, t) =
(

ZC
∂ I(z, t)

∂ t
+ ∂ V (z, t)

∂ t

)
dt (8.31a)

dI(z, t) =
(

1

ZC

∂ V (z, t)

∂ t
+ ∂ I(z, t)

∂ t

)
dt (8.31b)

Multiplying (8.30b) by the characteristic impedance ZC = √
l/c and adding the equa-

tions gives

dV (z, t) + ZC dI(z, t) = 0 (8.32a)

Similarly, multiplying (8.31b) by the characteristic impedance ZC = √
l/c and sub-

tracting the equations gives

dV (z, t) − ZC dI(z, t) = 0 (8.32b)

Equation (8.32a) holds along the characteristic curve defined by (8.27a) with phase
velocity v = 1/

√
lc, whereas (8.32b) holds along the characteristic curve defined by

(8.27b) with the same phase velocity. This is illustrated in Figure 8.8. These are
directly integrable showing that the difference between two voltages at two points on
a given characteristic is related to the difference between two currents on the same
characteristic. Therefore, from Figure 8.8 we may obtain

[V (L, t) − V (0, t − TD)] = −ZC [I(L, t) − I(0, t − TD)] (8.33a)

[V (0, t) − V (L, t − TD)] = +ZC [I(0, t) − I(L, t − TD)] (8.33b)

where the one-way delay is TD = L/v.
A very useful two-port model of the line can be obtained by rewriting (8.33) as

[V (0, t) − ZCI(0, t)] = [V (L, t − TD) − ZCI(L, t − TD)] (8.34a)
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FIGURE 8.8 Illustration of characteristic curves for the method of characteristics.

[V (L, t) + ZCI(L, t)] = [V (0, t − TD) + ZCI(0, t − TD)] (8.34b)

Hence, the voltage and current at one end of the line at some present time can be
found from the voltage and current at the other end of the line at one time delay
earlier. Hence, we obtain another recursive solution. This can be put in the form of
an equivalent circuit by writing (8.34) as

V (0, t) = ZCI(0, t) + E0(L, t − TD) (8.35a)

where

E0(L, t − TD) = V (L, t − TD) − ZCI(L, t − TD) (8.35b)

and

V (L, t) = −ZCI(L, t) + EL(0, t − TD) (8.36a)

where

EL(0, t − TD) = V (0, t − TD) + ZCI(0, t − TD) (8.36b)
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FIGURE 8.9 A time-domain equivalent circuit of a two-conductor line in terms of time-
delayed controlled sources obtained from the method of characteristics (Branin’s method) as
implemented in SPICE.

Equations (8.35) and (8.36) suggest the equivalent circuit of the total line shown in
Figure 8.9(a). The controlled source EL(0, t − TD) is produced by the voltage and
current at the input to the line at a time equal to a one-way transit delay earlier than
the present time. Similarly, the controlled source E0(L, t − TD) is produced by the
voltage and current at the line output at a time equal to a one-way transit delay earlier
than the present time.

Equations (8.34) can also be obtained in a simpler manner by manipulating the
basic solutions given in (8.3) using the difference operator. Write (8.3) as

V (z, t) = V+
(
t − z

v

)
+ V−

(
t + z

v

)
(8.37a)

ZCI(z, t) = V+
(
t − z

v

)
− V−

(
t + z

v

)
(8.37b)

where we have multiplied (8.3b) by the characteristic impedance ZC. Adding and
subtracting these gives

V (z, t) + ZCI(z, t) = 2V+
(
t − z

v

)
(8.38a)

V (z, t) − ZCI(z, t) = 2V−
(
t + z

v

)
(8.38b)
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Evaluating these at z = 0 and z = L gives

V (0, t) + ZCI(0, t) = 2V+ (t) (8.39a)

V (0, t) − ZCI(0, t) = 2V− (t) (8.39b)

V (L, t) + ZCI(L, t) = 2V+ (t − TD) = 2D−1V+ (t) (8.39c)

V (L, t) − ZCI(L, t) = 2V− (t + TD) = 2D+1V− (t) (8.39d)

Multiplying (8.39d) by D−1 (which amounts to time shifting the equation) and sub-
stituting into (8.39b) gives (8.34a):

[V (0, t) − ZCI(0, t)] = [V (L, t − TD) − ZCI(L, t − TD)] (8.34a)

Similarly, multiplying (8.39a) by D−1 (which also amounts to time shifting the equa-
tion) and substituting into (8.39c) gives (8.34b):

[V (L, t) + ZCI(L, t)] = [V (0, t − TD) + ZCI(0, t − TD)] (8.34b)

8.1.4 The SPICE (PSPICE) Solution for Lossless Lines

The equivalent circuit shown in Figure 8.9(a) is an exact solution of the transmission-
line equations for a lossless two-conductor uniform transmission line. The circuit
analysis program SPICE contains this exact model among its list of available circuit
element models that the user may call [A.2, A.3, A.5, A.6 ]. The model is the TXXX
element, where XXX is the model name chosen by the user. SPICE uses controlled
sources having time delay to construct the equivalent circuit of Figure 8.9(a). The
format of the SPICE command to invoke this model is given in Figure 8.9(b):

TXXX N1 N2 N3 N4 Z0 = ZC TD = TD

The user needs to input only the characteristic impedance of the line ZC (SPICE
refers to this parameter as Z0) and the one-way transit delay TD (SPICE refers to this
parameter as TD). Usually, nodes 2 and 4 are the SPICE universal ground node, that
is, N2 = 0 and N4 = 0. Thus, SPICE will produce exact solutions of the transmission-
line equations. Furthermore, nonlinear terminations such as diodes and transistors
as well as dynamic terminations such as capacitors and inductors are easily handled
with the SPICE code, whereas a graphical solution for these types of loads would be
quite difficult. This author highly recommends the use of SPICE for the incorporation
of two-conductor lossless transmission-line effects into any analysis of an electronic
circuit. It is simple and straightforward to incorporate the transmission-line effects
in any time-domain analysis of an electronic circuit, and, more importantly, models
of the complicated, but typical, nonlinear loads such as diodes and transistors as well
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as inductors and capacitors already exist in SPICE and can be called on by the user
rather than the user needing to develop models for these devices.

As an example of the use of SPICE or the personal computer version PSPICE
to model two-conductor lossless transmission lines in the time domain, consider the
time-domain analysis of the circuit of Figure 8.5. The 30-V source is modeled with
the PWL (piecewise linear) model (see Appendix B for a tutorial on SPICE) as
transitioning from 0 to 30 V in 0.01 �s and remaining there throughout the analysis
time interval of 20 �s as shown in Figure 8.10(a). The nodes are numbered as in
Figure 8.10(a) and the SPICE (PSPICE) program is

FIGURE 8.5
VS 1 0 PWL(0 0 0.01U 30 20U 30)
TLINE 1 0 2 0 Z0=50 TD=2U
RL 2 0 100
.TRAN 0.01U 20U 0 0.01U
.PRINT TRAN V(2) I(VS)
.PROBE
.END

The results for the load voltage are plotted using the .PROBE option of the personal
computer version PSPICE in Figure 8.10(b), and the input current to the line is plotted
in Figure 8.10(c). Comparing these with the hand-calculated results shown in Figure
8.5 shows exact agreement.

The problem shown in Figure 8.6 is coded as shown in Figure 8.11(a). The source
voltage is represented as having rise and fall times of 0.01 �s, as shown in Figure
8.11(a). The nodes are numbered in Figure 8.11(a), and the SPICE coding is

FIGURE 8.6
VS 1 0 PWL(0 0 0.01U 100 6U 100 6.01U 0)
RS 1 2 150
TLINE 2 0 3 0 Z0=50 TD=2U
RL 3 0 1E-6
.TRAN 0.01U 20U 0 0.01U
.PRINT TRAN V(2) I(RL)
.PROBE
.END

The solution for the input voltage V(2) is plotted in Figure 8.11(b) and is identical
to the graphical solution in Figure 8.6(c). The solution for the load current I(RL) is
shown in 8.11(c) and is identical to the graphical solution in Figure 8.6(d). For the other
waveform shown in Figure 8.6(e), we need to change only the source specification to

VS 1 0 PWL(0 0 6U 100 6.01U 0)

The result is shown in Figure 8.11(d) and is identical to the graphical solution shown
in Figure 8.6(e).
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FIGURE 8.10 Results of the exact SPICE model for the problem of Figure 8.5.



368 TIME-DOMAIN ANALYSIS OF TWO-CONDUCTOR LINES

FIGURE 8.11 Results of the exact SPICE model for the problem of Figure 8.6(c)–(e).

8.1.5 The Laplace Transform Solution

An alternative method of solution of the transmission-line equations is the Laplace
transform method. Taking the Laplace transform of the transmission-line equations
in (8.1) with respect to time reduces these to ordinary differential equations as

d

d z
V̂ (z, s) = −sl Î (z, s) (8.40a)

d

d z
Î (z, s) = −sc V̂ (z, s) (8.40b)
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FIGURE 8.11 (Continued)

where s is the Laplace transform variable [A.2, A.5]. Differentiating each equation
with respect to z and substituting the other gives the uncoupled second-order differ-
ential equations as

d2

d z2 V̂ (z, s) = s2

v2 V̂ (z, s) (8.41a)

d2

d z2 Î (z, s) = s2

v2 Î (z, s) (8.41b)
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where v = 1/
√

lc is the velocity of propagation of the waves on the line. The solution
to these is simply [A.2, A.5]

V̂ (z, s) = e−sz/vV̂+ (s) + esz/vV̂− (s) (8.42a)

Î (z, s) = 1

ZC
e−sz/vV̂+ (s) − 1

ZC
esz/v V̂− (s) (8.42b)

where the characteristic impedance is ZC = √
l/c. Using the time shift property of

the Laplace transform:

e±asF̂ (s) = f (t ± a) (8.43)

gives the time-domain solution in (8.3).

8.1.5.1 Lines with Capacitive and Inductive Loads There are two advantages of
using this Laplace transform method of solution. It allows a straightforward solution
when the terminations contain dynamic elements, that is, inductive and/or capacitive
elements. In addition, it also provides a method of including

√
f skin-effect losses as

we will see later.
Sketching the source and load voltages on a line that has resistive terminations

is quite simple. Sketching these voltages when one or both of the terminations are
dynamic (capacitive or inductive) is a bit more complicated, but the use of the Laplace
transform simplifies that process. Consider the situation shown in Figure 8.12(a),
where the source resistance is RS = ZC and hence the line is matched at the source.
The load, however, is a capacitor representing, perhaps, the input to a CMOS logic
gate. The source voltage is a pulse or step function rising to a level of V0 volts
and remaining there, that is, VS(t) = V0u(t), where u(t) is the unit step function.
This represents the transition from a logic 0 to a logic 1. In order to analyze this,
we transform it with the Laplace transform, where s denotes the Laplace transform,
variable as shown in Figure 8.12(b). The capacitor has an impedance of ZL = 1/sC

[A.2, A.5]. The reflection coefficient at the source is zero as it is matched:

�S = 0 (8.44a)

and the reflection coefficient at the load is

�L = ZL − ZC

ZL + ZC

=
1

sC
−ZC

1

sC
+ZC

= 1 − sTC

1 + sTC
(8.44b)
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FIGURE 8.12 Illustration of the Laplace transform method of computing the load voltage
time-domain response for a capacitive load.

and the time constant is denoted as [A.2, A.5]

TC = ZCC (8.45)

Since the source is matched, we will only have a forward-traveling wave incident at
the load and a reflected wave traveling back to the source. The load voltage is

VL(t) = (1 + �L)
ZC

(RS = ZC) + ZC
V0u(t − TD) (8.46)

Transforming this yields

VL(s) = (1 + �L(s))
1

2
VS(s)e−sTD
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=
1

TC(
s + 1

TC

)
s

V0e
−sTD

=


1

s
− 1(

s + 1

TC

)

V0e

−sTD (8.47)

The 1/2 represents the voltage division factor for the initially sent out wave:
ZC/ ((RS = ZC) + ZC) = 1/2. The term e−sTD represents a one-way time delay of
TD. The final result has been expanded in partial fractions. Inverse transforming gives
[A.2, A.5]

VL(t) = V0u(t − TD) − e
− (t−TD)

TC V0u(t − TD) (8.48)

This waveform is sketched in Figure 8.12(c). This result makes sense because the
incoming traveling wave is a pulse with zero rise time. Initially, the capacitor looks
like a short circuit gradually transitioning to an open circuit. Ideally (with an open-
circuit load instead of a capacitor), the load voltage should rise abruptly to V0 at
t = TD. The effect of the capacitor is to introduce a time delay (measured at the
50 % point) td, thereby giving the load voltage a rise time when the source had none.
Evaluating (8.48) for VL(t) = 0.5V0 gives this time delay as

td = 0.693TC

= 0.693CZC (8.49)

For example, for a 50-� line and a 5-pF load capacitor, we would obtain a time delay
of 0.173 ns in addition to the line one-way time delay of TD.

Suppose we replace the capacitive load with an inductive one as shown in Fig-
ure 8.13(a). Carrying out the analysis of the previous section but with ZL = sL gives
a similar result. The reflection coefficient at the source is again zero as it is matched:

�S = 0 (8.50a)

and the reflection coefficient at the load is

�L = ZL − ZC

ZL + ZC

= sL − ZC

sL + ZC

= sTL − 1

sTL + 1
(8.50b)
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FIGURE 8.13 Illustration of the Laplace transform method of computing the load voltage
time-domain response for an inductive load.

and the time constant is denoted as [A.2, A.5]

TL = L

ZC
(8.51)

The transformed load voltage is

VL(s) = (1 + �L(s))
1

2
VS(s)e−sTD

= 1(
s + 1

TL

) V0e
−sTD (8.52)

Inverse transforming this gives [A.2, A.5]

VL(t) = V0e
− (t−TD)

TL u(t − TD) (8.53)

which is plotted in Figure 8.13(c). This result makes sense because the incoming
traveling wave at the load is a pulse with zero rise time. Initially, the inductor looks
like an open circuit gradually becoming a short circuit.

8.1.6 Lumped-Circuit Approximate Models of the Line

As was the case for the frequency-domain analyses, the line may, under certain re-
strictions, be approximated with a lumped-circuit model as shown in Figure 8.14.
Figure 8.14(b) shows the so-called lumped-Pi model, and Figure 8.14(c) shows the
so-called lumped-T model. The lumped-Pi model extends the prediction frequency
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FIGURE 8.14 Illustration of (b) lumped-Pi and (c) lumped-T approximate time-domain
circuits.

range slightly larger than that of the lumped-T model for high-impedance loads, that
is, RS, RL � ZC, and vice versa [B.15].

8.1.6.1 When is the Line Electrically Short in the Time Domain? In previous
chapters, we noted that lumped-circuit models of a distributed parameter structure
such as a transmission line are valid only so long as the line length is electrically short at
the excitation frequency. For the time-domain analysis this presents problems because
a time-domain waveform contains a continuum of sinusoidal frequency components
according to Fourier analysis. However, if we specialize the analysis to the primary
time-domain waveforms today, digital clock and data pulse trains, we can obtain a
useful criterion for this. In Section 1.6.2 of Chapter 1, we showed that a reasonable
criterion for the maximum significant spectral content of a digital waveform (its
bandwidth) consisting of a periodic pulse train of trapezoidal pulses having equal rise
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and fall times of τr is

BW = 1

τr
Hz (8.54)

In order for the line to be electrically short at the highest significant frequency, we
require that

L <
1

10
λ

= 1

10

v

fmax
(8.55)

Substituting (8.54), fmax = 1/τr, yields

τr > 10 TD (8.56)

In other words, the pulse rise and fall times must be greater than approximately
10 one-way time delays of the line in order for the line to be classified as “electrically
short.” For example, for a pulse train having 100 ns rise and fall times and a line
whose surrounding medium is free space, the total line length should not exceed 3 m.
On the contrary, for a stripline representing a printed circuit board with innerplanes
and a pulse train having 1 ns rise and fall times, the maximum line length should not
exceed 1.4 cm (0.55 in.).

For today’s high-speed digital systems, the maximum length allowed in order for
the line to be electrically short and the lumped-circuit models of Figure 8.14 to be
valid often requires impractically short lengths of PCB lands. In order to extend the
frequency range of validity of these lumped-circuit models, one might divide the
total line length into sections that are electrically short and model each section with
a lumped-Pi or lumped-T structure. This gives a progressively very large lumped
circuit. It has been shown, however, that this process for such lines does not extend
the frequency range enough to warrant the resulting complexity of the lumped circuit
[B.15].

8.1.7 The Time-Domain to Frequency-Domain (TDFD) Transformation
Method

The solution of a lossless line is virtually a trivial process using the SPICE (PSPICE)
circuit analysis program and the exact model of a lossless line that is built into that
program. Losses are not included in that model and are difficult to handle, as we will
see in subsequent sections of this chapter. However, a simple technique for determin-
ing the time-domain response of a transmission line that will handle losses is known
as the time-domain to frequency-domain transformation or TDFD method. This is a
straightforward adaptation of a common analysis technique for lumped, linear circuits
and systems that was described in Section 1.6.3 of Chapter 1 [A.2]. Here, we briefly
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review that method. The only potential drawback to the method is that it is restricted
to linear loads since the method inherently relies on the principle of superposition.
However, it is an alternative technique for verifying other methods. Consider the
single-input, single-output lumped linear system shown in Figure 8.15(a). The input
to the system is denoted as x(t), the output is denoted by y(t), and the unit impulse
response (x(t) = δ(t), y(t) = h(t)) is denoted by h(t). The independent variable for
the lumped system is time denoted by t. In the time domain, the response is obtained
via the convolution integral [A.2, A.5]

y(t) =
t∫

0

h(t − τ) x (τ)dτ (8.57a)

which is denoted as

y(t) = h(t) ∗ x(t) (8.57b)

In the frequency domain, this translates to

Ŷ ( jω) = Ĥ( jω)X̂( jω) (8.58)

FIGURE 8.15 Illustration of the time-domain to frequency-domain transformation method
of computing time-domain responses of linear MTLs: (a) a single-input, single-output lin-
ear system in the time domain, (b) a single-input, single-output linear system in the fre-
quency domain, and (c) representation of an MTL as a single-input, single-output linear
system.
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where Ĥ( jω) is the Fourier transform of h(t) and is called the transfer function
of the system as illustrated in Figure 8.15(b) [A.2]. The frequency-domain transfer
function Ĥ( jω) can be easily obtained by applying unit magnitude sinusoids to the
input and computing the response using the usual phasor computational methods
with the frequency of those sinusoids varied over the desired frequency range as
illustrated in Figure 8.15(b). Once Ĥ( jω) is obtained in this manner, the time-domain
impulse response is obtained as the inverse Fourier transform of Ĥ( jω): h(t) =
F−1 {Ĥ( jω)

}
.

The method is a very intuitive one. Any time-domain waveform can be decom-
posed into its sinusoidal components with the Fourier series if it is periodic and
the Fourier transform if it is not periodic [A.2]. A periodic waveform with period
P has these frequency components appearing at discrete frequencies that are mul-
tiples of the basic repetition frequency: f0 = 1/P, 2f0, 3f0, . . .. If the waveform
is nonperiodic, these frequency components appear as a continuum. Nevertheless,
the method for computing the time-domain response can be described quite sim-
ply in the following manner. Decompose the input signal via Fourier methods into
its constituent sinusoidal components (magnitude and phase). Pass each component
through the system and sum in time the time-domain responses at the output to
each of these components by using phasor methods (See Figure 1.21 of Chapter 1 .)
The magnitudes of the output sinusoidal components are the products of the magni-
tudes of the input sinusoidal components multiplied by the magnitude of Ĥ( jω) at
that frequency. The phases of the output sinusoidal components are the sums of the
phases of the input sinusoidal components and the phases of Ĥ( jω) at that frequency.
Therefore,

∣∣Ŷ ( jωi)
∣∣ = ∣∣Ĥ( jωi)

∣∣× ∣∣X̂( jωi)
∣∣ (8.59a)

� Ŷ ( jωi) = � Ĥ( jωi) + � X̂( jωi) (8.59b)

Clearly, a major restriction on the method is that the system be linear since we are
implicitly applying the principle of superposition.

In the case of a periodic waveform with period P, these frequency components
appear at discrete frequencies that are multiples of the basic repetition frequency
ω0 = 2πf0 = 2π/P , and x(t) can be represented as the sum of these time-domain
sinusoidal components with the Fourier series as [A.2, A.3]

x(t) = c0 +
NH∑
n=1

cncos (nω0t + � cn) (8.60)

where we have truncated the series to contain only NH harmonics. In the case of
a periodic pulse train having trapezoidal pulses of peak magnitude X, duty cycle
D = τ/P , where τ is the pulse width (between 50% points), and equal rise/fall times
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of τr, the items in (8.60) become [A.3]

c0 = XD (8.61a)

cn = 2XD
sin (nπD)

nπD

sin
(
nπ f 0τr

)
nπ f 0τr

(8.61b)

� cn = −nπ (D + f0τr) (8.61c)

For this case of a periodic waveform, we compute the frequency-domain transfer
function at each of the NH harmonic frequencies with the methods of Chapters 6
and 7 (including skin-effect losses if we choose):

Ĥ(jnω0) = |Ĥ(jnω0)|� Ĥ(jnω0) (8.62)

Then multiply each appropriate magnitude and add the angles to give the time-domain
output as

y(t) = c0H(0) +
NH∑
n=1

cn

∣∣Ĥ ( jnω0)
∣∣ cos

(
nω0t + � cn + � Ĥ ( jnω0)

)
(8.63)

In this way, we can include
√

f dependent skin-effect losses that are difficult to
characterize directly in the time domain as we will discuss in Section 8.2.1, but again
this supposes a linear system. This method is implemented in the FORTRAN program
TIMEFREQ.FOR described in Appendix A . Actually, the periodic waveform results
can be used for a nonperiodic waveform if we choose the pulse wave shape over
a period to be that of the desired pulse and also choose a repetition frequency low
enough that the response reaches its steady-state value before the onset of the next
pulse.

Consider applying these concepts to an MTL. Suppose we apply a voltage source
VS(t) to the ith conductor at z = 0 and desire the time-domain response of the jth line
voltage, say, at the far end of the line z = L, Vj(L, t). In order to view this problem
as a single-input, single-output system, we imbed the transmission line along with the
terminations into a two-port as illustrated in Figure 8.15(c) and extract the input to the
system, VS(t), and the output of the system, Vj(L, t). The frequency-domain transfer
function between these two ports, Ĥij( jω), can be computed by the phasor methods
of Chapters 6 and 7 wherein VS(t) is a sinusoid, VS(t) = sin(ω t). Once the frequency-
domain transfer function is obtained in this fashion, the time-domain response can be
determined for any time variation of VS(t) using the above summation of the responses
to its sinusoidal components in (8.63), which amounts to the convolution integral of
(8.57).

An important advantage is that this method can directly handle frequency-
dependent losses such as skin-effect resistance of conductors. Another advantage is
that only phasor computational methods are required; there is no need to numerically
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integrate the time-domain transmission-line equations. A disadvantage is that the
transmission line is assumed to be a linear line; that is, the line parameters and the
terminations are assumed linear. For example, corona breakdown of the surrounding
medium as well as nonlinear loads such as diodes and transistors cannot be handled
with this method since it implicitly assumes a linear system. Nevertheless, the method
is simple to implement for determining the time-domain response of a transmission
line having linear terminations.

8.1.8 The Finite-Difference, Time-Domain (FDTD) Method

A numerical method for approximately determining the time-domain solution of the
transmission-line equations is the Finite-Difference, Time-Domain or FDTD method
[B.22–B.24, 2–5]. The derivatives in the transmission-line equations are discretized
and approximated with various finite differences. In this method, the position variable
z is discretized as �z and the time variable t is discretized as �t. There are many
ways of approximating the derivatives ∂/∂z and ∂/∂t in those equations [2,6]. We used
a particularly simple such discretization in the finite-difference method of solving
Laplace’s equation in two dimensions in Chapter 5 .

Consider a function of one variable, f (t). Expanding this in a Taylor series in a
neighborhood of a desired point t0 gives

f (t0 + �t) = f (t0) + �tf ′(t0) + �t2

2!
f ′′(t0) + �t3

3!
f ′′′(t0) + · · · (8.64)

where the primes denote the various derivatives with respect to t of the function.
Solving this for the first derivative gives

f ′(t0) = f (t0 + �t) − f (t0)

�t
− �t

2
f ′′(t0) − �t2

6
f ′′′(t0) − · · · (8.65)

Thus, the first derivative is approximated as

f ′(t0) = f (t0 + �t) − f (t0)

�t
+ θ (�t) (8.66)

where θ(� t) denotes that the error in truncating the series is on the order of � t. So
the first derivative may be approximated with the forward difference

f ′(t0) ∼= f (t0 + �t) − f (t0)

�t
(8.67)

This amounts to approximating the derivative of f (t) as with its slope about the region
of the desired point. If we expand the Taylor’s series as

f (t0 − �t) = f (t0) − �tf ′(t0) + �t2

2!
f ′′(t0) − �t3

3!
f ′′′(t0) + · · · (8.68)
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the first derivative can be approximated as

f ′(t0) = f (t0) − f (t0 − �t)

�t
+ �t

2
f ′′(t0) − �t2

6
f ′′′(t0) + · · · (8.69)

This gives the backward difference

f ′(t0) ∼= f (t0) − f (t0 − �t)

�t
(8.70)

Other approximations known as central differences can be found by subtracting
(8.68) from (8.64) to yield the first derivative central difference approximation

f ′(t0) ∼= f (t0 + �t) − f (t0 − �t)

2�t
(8.71)

with a truncation error on the order of � t2. Similarly, the second derivative central
difference is obtained by adding (8.64) and (8.68) to yield

f ′′(t0) ∼= f (t0 + �t) − 2f (t0) + f (t0 − �t)

�t2 (8.72)

with a truncation error on the order of � t2. The discretization of Laplace’s equation
in the finite-difference method of Chapter 3 amounts to a central difference approx-
imation to Laplace’s equation. The stability of the solution of Laplace’s equation
resulting from that discretization is assured unlike the stability of the discretizations
of the transmission-line equations, which we now investigate.

Consider the discretization of the transmission-line equations in (8.1) for a two-
conductor line:

∂V (z, t)

∂z
+ l

∂I(z, t)

∂t
= 0 (8.73a)

∂I(z, t)

∂z
+ c

∂V (z, t)

∂t
= 0 (8.73b)

We divide the line into NDZ sections, each of length �z as shown in Figure 8.16.
Similarly, we divide the total solution time into NDT segments of length �t. In
order to ensure stability of the discretization and to ensure second-order accuracy,
we interlace the NDZ +1 voltage points, V1, V2, . . . , VNDZ, VNDZ+1, and the NDZ
current points, I1, I2, . . . , INDZ, as shown in Figure 8.17 [2,3,A.9]. Each voltage and
adjacent current solution point is separated by �z/2. In addition, the time points
must also be interlaced and each voltage time point and adjacent current time point
are separated by �t/2, as illustrated in Figure 8.17. This sequencing diagram shown
in Figure 8.17 is crucial for obtaining the correct discretization of the differential
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FIGURE 8.16 Discretization of the line into NDZ segments of length �z for the FDTD
analysis.

equations. The central difference approximations to (8.73) become

Vn+1
k+1 − Vn+1

k

�z
+ l

I
n+3/2
k − I

n+1/2
k

�t
= 0 (8.74a)

FIGURE 8.17 Interlacing the current and voltage solutions in space and time for the FDTD
analysis.



382 TIME-DOMAIN ANALYSIS OF TWO-CONDUCTOR LINES

for k = 1, 2, . . . , NDZ and

I
n+1/2
k − I

n+1/2
k−1

�z
+ c

Vn+1
k − Vn

k

�t
= 0 (8.74b)

for k = 2, 3, . . . , NDZ, where we denote

Vn
k ≡ V ((k − 1) �z, n�t) (8.75a)

In
k ≡ I

((
k − 1

2

)
�z, n�t

)
(8.75b)

The required recursion relations for the interior points on the line are obtained by
solving Eqs. (8.74) giving

I
n+3/2
k = I

n+1/2
k − �t

�z
l−1

(
Vn+1

k+1 − Vn+1
k

)
(8.76a)

for k = 1, 2, . . . , NDZ and

Vn+1
k = Vn

k − �t

�z
c−1

(
I
n+1/2
k − I

n+1/2
k−1

)
(8.76b)

for k = 2, 3, . . . , NDZ. Equations (8.76) are solved in a leapfrog fashion. First, the
voltages along the line are obtained, for a fixed time, from (8.76b) in terms of the
previous solutions. Then the currents are obtained from (8.76a) in terms of the voltages
obtained from (8.76b) as well as previously obtained values. The solution starts with
an initially relaxed line having zero voltage and current values.

Next consider the incorporation of the terminal conditions. The essential problem
in incorporating the terminal conditions is that the FDTD voltages and currents at
each end of the line, V1, I1, and VNDZ+1, INDZ, are not collocated in space or time,
whereas the terminal conditions relate the voltage and current at the same position
and at the same time. We will denote the current at the source (z = 0) as IS and the
current at the load (z = L) as IL, as shown in Figure 8.18. The second transmission-
line equation given in Eq. (8.73b) is discretized at the source by averaging the source
currents IS in order to obtain a value that is located in time at the same time point as
I
n+1/2
1 as

1

�z/2


I

n+1/2
1 −

(
In+1

S + In
S

)
2


+ 1

�t
c
[
Vn+1

1 − Vn
1

]
= 0. (8.77a)

Similarly, the second transmission-line equation, (8.73b), is discretized at the load by
averaging the load currents IL in order to obtain a value that is located in time at the
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FIGURE 8.18 Discretizing the terminal voltages and currents of the line in order to incor-
porate the terminal constraints.

same time point as I
n+1/2
NDZ as

1

�z/2



(
In+1

L + In
L

)
2

− I
n+1/2
NDZ


+ 1

�t
c
[
Vn+1

NDZ+1 − Vn
NDZ+1

]
= 0 (8.77b)

Equations (8.77) are solved to give the recursion relations at the source and the load:

Vn+1
1 = Vn

1 − 2�t

�z
c−1I

n+1/2
1 + �t

�z
c−1

[
In+1

S + In
S

]
(8.78a)

Vn+1
NDZ+1 = Vn

NDZ+1 + 2�t

�z
c−1I

n+1/2
NDZ − �t

�z
c−1

[
In+1

L + In
L

]
(8.78b)
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In the case of resistive terminations, the terminal characterizations are written in
terms of a generalized Thevenin equivalent as

V1 = VS − RSIS (8.79a)

VNDZ+1 = VL + RLIL (8.79b)

Inverting these gives

IS = −GSV1 + GSVS (8.80a)

IL = GLVNDZ+1 − GLVL (8.80b)

Substituting (8.80) into Eqs. (8.78) gives the recursion relations for V1 and VNDZ+1:

Vn+1
1 =

(
�z

�t
RSc + 1

)−1 {(
�z

�t
RSc − 1

)
Vn

1 − 2RSI
n+1/2
1 +

(
Vn+1

S + Vn
S

)}
(8.81a)

and

Vn+1
NDZ+1 =

(
�z

�t
RLc + 1

)−1 {(
�z

�t
RLc − 1

)
Vn

NDZ+1 + 2RLI
n+1/2
NDZ

+
(
Vn+1

L + Vn
L

)}
(8.81b)

and the voltages at the interior points are determined from (8.76b):

Vn+1
k = Vn

k − �t

�z
c−1

(
I
n+1/2
k − I

n+1/2
k−1

)
(8.81c)

for k = 2, 3, . . . , NDZ. Equations (8.81) are first solved for the voltages and then the
currents are determined from those voltages using (8.76a) as

I
n+3/2
k = I

n+1/2
k − �t

�z
l−1

(
Vn+1

k+1 − Vn+1
k

)
(8.81d)

for k = 1, 2, 3, . . . , NDZ. For stability of the solution, the position and time dis-
cretizations must satisfy the Courant condition [2,3,6]

�t ≤ �z

v
(8.82)

The Courant stability condition provides that for stability of the solution the time step
must be no greater than the propagation time over each cell. The �z discretization is
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chosen sufficiently small such that each �z section is electrically small at the signif-
icant spectral components of the source voltages VS(t) and VL(t). The FDTD method
described in this section is implemented in the FORTRAN code FINDIF.FOR, which
is described in Appendix A .

8.1.8.1 The Magic Time Step In order to ensure stability of the solution, we require
that the time step � t and spatial discretization � z satisfy the Courant condition given
in (8.82). Suppose we divide the total line length L into NDZ sections of length

�z = L

NDZ
(8.83a)

and divide the total simulation run time, final solution time, into NDT intervals of
length

�t = final solution time

NDT
(8.83b)

The Courant stability condition in (8.82) requires that NDT and NDZ be related as

NDT ≥ NDZ × v × final solution time

L
(8.84)

Choosing the time step to give an equality in this relation is referred to as the “magic
time step”:

�t = �z

v
(8.85a)

or

NDT = NDZ × v × final solution time

L
(8.85b)

We will now prove that if the time step is chosen to be the magic time step, then
the FDTD method gives an exact solution to the transmission-line equations with no
approximation error!

In order to prove this amazing result, we will utilize the exact SPICE equivalent
circuit of the line given in (8.35) and (8.36) and shown in Figure 8.9(a). Consider this
representation for interior points along the line shown in Figure 8.19. The voltages
and currents to be solved for in the finite-difference solution are Vk, Ik, and Vk+1. The
currents and voltages IA, VA, and IB are auxiliary variables that are to be eliminated.
Each half of length �z/2 is modeled with its own exact solution with reference to
Figure 8.9(a) with a time delay of τ/2, where

τ = �z

v
(8.86)
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FIGURE 8.19 Use of Branin’s method to prove the exact FDTD discretization for interior
current points for the magic time step.

In order to simplify the derivation, we again use the difference operator

D±mf (t) = f (t ± mτ) (8.87)

From Figure 8.19, we obtain

Vk = ZCIA + D−1/2 (VA − ZCIk) (8.88a)

VA = −ZCIk + D−1/2 (Vk + ZCIA) (8.88b)

VA = ZCIk + D−1/2 (Vk+1 − ZCIB) (8.88c)

Vk+1 = −ZCIB + D−1/2 (VA + ZCIk) (8.88d)

The objective is to eliminate VA, IA and IB from these expressions. To do so, first
subtract (8.88a) from (8.88d) giving

(Vk+1 − Vk) = −ZC (IA + IB) + 2ZCD−1/2Ik (8.89)

Next, subtract (8.88b) from (8.88c) giving

0 = 2ZCIk + D−1/2 (Vk+1 − Vk) − ZCD−1/2 (IA + IB) (8.90)

Multiplying (8.90) by D1/2 gives

0 = 2ZCD1/2Ik + (Vk+1 − Vk) − ZC (IA + IB) (8.91)

Subtracting (8.91) from (8.89) gives

(Vk+1 − Vk) = −ZC

(
D1/2Ik − D−1/2Ik

)
(8.92)
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FIGURE 8.20 Use of Branin’s method to prove the exact FDTD discretization for interior
voltage points for the magic time step.

Multiplying this by D and substituting the relation for the characteristic impedance
ZC = vl gives

(DVk+1 − DVk) = −vl
(
D3/2Ik − D1/2Ik

)
(8.93)

Substituting the magic time step �t = �z/v and rearranging gives

D3/2Ik = D1/2Ik − �t

�z
l−1 (DVk+1 − DVk) (8.94)

which is the recursion relation for currents given in (8.81d).
Similarly, from Figure 8.20 we obtain

VA = ZCIk−1 + D−1/2 (Vk − ZCIA) (8.95a)

Vk = −ZCIA + D−1/2 (VA + ZCIk−1) (8.95b)

Vk = ZCIA + D−1/2 (VB − ZCIk) (8.95c)

VB = −ZCIk + D−1/2 (Vk + ZCIA) (8.95d)

The objective is again to eliminate VA, IA, and VB from these expressions. To do so,
first add (8.95a) and (8.95d) giving

(VA + VB) = −ZC (Ik − Ik−1) + 2D−1/2Vk (8.96)

Multiplying this by D1/2 gives

D1/2 (VA + VB) = −ZC

(
D1/2Ik − D1/2Ik−1

)
+ 2Vk (8.97)
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Next, add (8.95b) and (8.95c) giving

2Vk = D−1/2 (VA + VB) − ZCD−1/2 (Ik − Ik−1) (8.98)

Multiplying (8.98) by D1/2 gives

2D1/2Vk = (VA + VB) − ZC (Ik − Ik−1) (8.99)

Adding (8.96) and (8.99) gives(
D1/2Vk − D−1/2Vk

)
= −ZC (Ik − Ik−1) (8.100)

Multiplying this by D1/2 and substituting the relation for the characteristic impedance
ZC = (1/vc) gives

(DVk − Vk) = − 1

vc

(
D1/2Ik − D1/2Ik−1

)
(8.101)

Substituting the magic time step �t = �z/v, gives

DVk = Vk − �t

�z
c−1

(
D1/2Ik − D1/2Ik−1

)
(8.102)

which is the recursion relation for voltages given in (8.81c).
Next, consider the source termination along with the first half section shown in

Figure 8.21. The relations are

V1 = ZCIS + D−1/2 (VA − ZCI1) (8.103a)

FIGURE 8.21 Use of Branin’s method to prove the exact FDTD discretization for terminal
voltage points at the left end of the line for the magic time step.
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VA = −ZCI1 + D−1/2 (V1 + ZCIS) (8.103b)

The objective is to eliminate VA. To do so, we multiply (8.103a) by D and multiply
(8.103b) by D1/2 and add the equations to give

DV1 − V1 = −ZC

[
2D1/2I1 − (DIS + IS)

]
(8.104)

Substituting the relation for the characteristic impedance ZC = 1/vc, along with the
magic time step �t = �z/v gives

1

�z/2

[
D1/2I1 − (DIS + IS)

2

]
+ c

(DV1 − V1)

�t
= 0 (8.105)

which is the source discretization relation given in (8.77a).
Similarly, consider the load termination along with the last half section shown in

Figure 8.22. The relations are

VB = ZCINDZ + D−1/2 (VNDZ+1 − ZCIL) (8.106a)

VNDZ+1 = −ZCIL + D−1/2 (VB + ZCINDZ) (8.106b)

The objective is to eliminate VB. To do so, we multiply (8.106a) by D1/2 and multiply
(8.106b) by D and add the equations to give

DVNDZ+1 − VNDZ+1 = −ZC

[
(DIL + IL) − 2D1/2INDZ

]
(8.107)

FIGURE 8.22 Use of Branin’s method to prove the exact FDTD discretization for terminal
voltage points at the right end of the line for the magic time step.
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Substituting the relation for the characteristic impedance, ZC = 1/vc along with the
magic time step �t = �z/v gives

1

�z/2

[
(DIL + IL)

2
− D1/2INDZ

]
+ c

(DVNDZ+1 − VNDZ+1)

�t
= 0 (8.108)

which is the load discretization relation given in (8.77b).
As an example, consider the two-conductor lossless line considered earlier and

shown in Figure 8.5. The exact solution for the load voltage V (L, t) is sketched by
hand in Figure 8.5(b), and the SPICE results (using a 30-V source voltage with a
0.01-�s rise time) are sketched in Figure 8.10(b). In the following computed results,
we will designate

�z = L

NDZ

�t = final solution time

NDT

The Courant condition given in (8.82) for stability of the FDTD solution translates to

NDT ≥ NDZ
v × final solution time

L

The magic time step occurs for an equality in this expression. Figure 8.23(a) shows
the FDTD predictions for zero rise time and NDZ = 200 or �z = 2 m and the
magic time step of �t = �z/v = 10 ns. For a final solution time of 20 �s, this gives
2000 time steps or NDT = 2000. The results are exactly those for the hand calculations
and the SPICE predictions. If we reduce the time step below that of the magic time step
using 4000 time steps or �t = 5 ns, we observe considerable “ringing” on the leading
edge of each transition. The FDTD solution for NDZ = 1 (dividing the line into only
one section) and the “magic time step” of NDT = 10 or �t = 2 �s is denoted as X
and gives the exact solution even for this course gridding of the line! Figure 8.23(b)
shows the FDTD predictions for a 0.1 �s rise time and NDZ = 200 or �z = 2 m and
the magic time step of �t = �z/v = 10 ns. Again, the results are exactly those for the
SPICE predictions and the hand calculations. If we reduce the time step below that of
the magic time step using 4000 time steps or �t = 5 ns, we observe less “ringing” on
the leading edge of each transition than for the zero rise time solution. The spectrum of
this 0.1-�s rise time pulse has a bandwidth of approximately BW = 1/τr = 10 MHz.
So the section length �z should be electrically short at this frequency requiring
�z<(1/10)(v/fmax) = 2 m (fmax = 10 MHz, v = 2 × 108 m/s). Thus, if we do not
wish to use the magic time step, we must further reduce �z to eliminate this ringing.
The results for the magic time step, NDZ = 1 and NDT = 10, are denoted with X and
again give the exact solution even for this course gridding of the line!
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FIGURE 8.23 Illustration of the computation of the load voltage of Figure 8.5 using the
FDTD method and comparison of the convergence to the choice of spatial and temporal dis-
cretization: (a) step response and (b) rise time of 0.1 �s.
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8.1.9 Matching for Signal Integrity

We have seen how mismatches at the source and/or load of a transmission line can
cause the received voltage waveform to differ drastically from what was sent. In order
to prevent logic errors, it is necessary that the received pulses have levels, shapes,
and rise/fall times within certain allowable ranges. This is referred to as achieving
signal integrity. Hence, mismatches affect signal integrity. In order to illustrate the
detrimental effects of line mismatch, consider the typical line configuration shown in
Figure 8.24(a). This approximates two CMOS inverters connected by a transmission

FIGURE 8.24 Illustration of “ringing” caused by mismatched lines in digital applications.
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line. The driver has a very low output impedance of 10 � and an open-circuit voltage
that rises to 5 V with zero rise time. The load CMOS inverter is represented as an open
circuit to facilitate graphing the waveform at its input. Typical CMOS devices have
an input circuit that looks like a capacitance of some 5–15pF. We will investigate the
effect of actual device capacitance using SPICE in later results. The line is represented
as having a characteristic impedance of 50 � and a general time delay. Sketching the
load voltage, the input voltage to the CMOS receiver, is simple. The source reflec-
tion coefficient is �S = −2/3, and the open-circuit load has a reflection coefficient
of �L = +1. The initially sent out voltage is 50/(50 + 10) × 5 = 4.17 V. Figure
8.24(b) shows the resulting output voltage of the line. This illustrates “ringing” or
overshoot common on such mismatched lines that can possibly cause logic errors (see
Table 8.1).

It is common in digital circuits to eliminate this ringing using various match-
ing schemes. The most common matching scheme is the series match shown in
Figure 8.25(a). For typical CMOS gates, their source (output) resistances are less

FIGURE 8.25 Illustration of how series matching eliminates ringing.
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than the characteristic impedances of PCB lines. Hence, a resistor R is added to the
input of the line (the output of the driving gate) such that

RS + R = ZC

This matches the line at the source. The initially sent out voltage wave will have a
level half the source voltage level or V0/2. Typically, the load is an open circuit or
approximately so and hence the load reflection coefficient is �L = +1. In this case the
incident wave is completely reflected at the load giving a total of V0/2 + V0/2 = V0
as illustrated in Figure 8.25(b). Hence, the load voltage rises to V0 immediately
giving perfect signal integrity. Another advantage of the series match is that, for an
open-circuit load, no current flows in the line and hence the resistor R dissipates no
power.

A second scheme for matching is the parallel match shown in Figure 8.26(a).
Here, we place a resistor R in parallel with the load. We choose R such that the line

FIGURE 8.26 Illustration of how parallel matching eliminates ringing.
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is matched at the load:

R‖RL = RRL

R + RL

= ZC

The load voltage is plotted in Figure 8.26(b). Note that the initially sent out voltage
has a level of

Vinit = ZC

RS + ZC
V0

This incoming wave at the load is totally absorbed and there is no reflected wave.
There are two disadvantages to the parallel match. First, the load voltage is always
less than the source level of V0. For example, suppose RS = 25 �, ZC = 50 �, and
V0 = 5 V. The load voltage level will be 3.33 V. In the parallel match case, we have
no reflected wave to bring the load voltage up to the source voltage level. The second
disadvantage of the parallel match case is that, even for an open-circuited load, the line
will draw current when the source is in the high state. Hence, the matching resistor R
will consume power.

As an example, consider a microstrip line shown in Figure 8.27(a) having glass
epoxy (εr = 4.7) as the substrate of thickness 47 mils and a land of width 10 mils. The
characteristic impedance computed using the results of Chapter 4 is ZC = 124 � and
the effective relative permittivity is ε′

r = 3.09. A line length of approximately 2 in.

FIGURE 8.27 An example of a digital microstrip line.
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would have a total one-way time delay of TD = 0.3 ns. The source voltage waveform
is as shown in Figure 8.27(b) consisting of a 5-V pulse train with a repetition frequency
of 50 MHz and rise/fall times of 0.5 ns and a 50% duty cycle. The ideal case is shown
in Figure 8.28, where the load voltage is identical to that sent out but with only a

FIGURE 8.28 The ideal case of Figure 8.27 wherein the only effect of the line is a time
delay.
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FIGURE 8.29 The mismatched case for a line connecting two CMOS inverters showing
extreme ringing that has logic error ramifications.

0.3-ns delay. Figure 8.29 shows the SPICE simulation for the actual configuration
illustrating a rather severe ringing even for this relatively short line. Logic errors will
clearly result for this situation. Figure 8.30 shows the series matching case where
a 114-� resistance is inserted in series with the source to provide series matching.
The ringing is eliminated, but the load capacitance adds another time delay since
the time constant is ZCC = 0.62 ns. Figure 8.31 shows the case of a parallel match.
Ringing here is not eliminated because the impedance of the capacitor dominates
the parallel resistance at frequencies in the high-frequency portion of the spectrum
giving a mismatch. The 124-� resistor in parallel with the 5-pF load capacitance has
a break frequency of fc = 1/2π ZCC = 257 MHz, which is considerably below the
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FIGURE 8.30 Series matching eliminates the ringing but the capacitive load imposes an
additional time delay.

bandwidth of BW = 1/τr = 2GHz. Hence, for frequencies above 257 MHz the line
is not matched.

8.1.9.1 When is Matching Required? Matching a line is not always required in
order that the voltage waveforms at the output of the line be approximately the same as
the waveforms at the input to the line. Clearly, if the line is sufficiently short, matching
will not be required. In general, we can obtain a time-domain criterion where the line
is electrically short at the significant frequencies of the pulse spectrum. This was
obtained in Section 8.1.6.1 in order to determine when a lumped-circuit model of the
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FIGURE 8.31 Parallel matching does not eliminate ringing because the load capacitance is
not an open circuit and causes mismatch at the higher frequencies of the input pulse.

line was adequate. The same criterion applies here:

τr > 10TD (8.109)

Hence, if the pulse rise time is greater than 10 one-way time delays of the line, the
line and any mismatches should not significantly degrade the shape of the output
waveform.

8.1.9.2 Effects of Line Discontinuities Until now there are no discontinuities along
the line; that is, there are no changes in cross section along the line and there are no
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terminations added along the line. In this section, we will investigate the effects
of discontinuities along the line. A common discontinuity is where the line cross
section changes, for example, the line width changes at some point as illustrated in
Figure 8.32(a). Hence, the first portion has characteristic impedance ZC1 and the
second portion has characteristic impedance ZC2. First, consider a wave traveling on
line 1 that is incident on the junction. A portion of the incident voltage, vi1, is reflected
back to the left and is given by vr1 = �12vi1 where the reflection coefficient is

�12 = ZC2 − ZC1

ZC2 + ZC1
(8.110a)

since the incoming wave essentially sees a termination impedance that is the charac-
teristic impedance of the second line. In addition, a portion of the incident voltage, vt2,
is transmitted across the junction onto the second line and is given by vt2 = T12vi1.
The total voltage on each side of the junction must be equal:

vi1 + vr1 = vt2 (8.110b)

Hence, the reflection and transmission coefficients are related as

1 + �12 = T12 (8.110c)

and the transmission coefficient is given by

T12 = 2ZC2

ZC2 + ZC1
(8.110d)

This process is illustrated in Figure 8.32(b).
A similar process governs a wave on line 2 that is traveling to the left and strikes

the junction as illustrated in Figure 8.32(c). A portion of the incident voltage, vi2, is
reflected back to the right and is given by vr2 = �21vi2, where the reflection coefficient
is

�21 = ZC1 − ZC2

ZC1 + ZC2
(8.111a)

since the incoming wave essentially sees a termination impedance that is the charac-
teristic impedance of the first line. In addition, a portion of the incident voltage, vt1,
is transmitted across the junction onto the first line and is given by vt1 = T21vi2. The
total voltage on each side of the junction again must be equal:

vi2 + vr2 = vt1 (8.111b)

Hence, the reflection and transmission coefficients are related as

1 + �21 = T21 (8.111c)
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FIGURE 8.32 Reflections caused by a line discontinuity such as a change in line width.
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FIGURE 8.33 An example for calculating the effects of a line discontinuity: (a) the reflection
and transmission coefficients, (b) plots of the midpoint and (c) terminal voltages, and (d)
confirmation from a SPICE analysis.
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FIGURE 8.33 (Continued)
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and the transmission coefficient is given by

T21 = 2ZC1

ZC1 + ZC2
(8.111d)

This process is again illustrated in Figure 8.32(c).
We can again sketch the voltage waveforms at the load and at the junction by

tracing the waves and using the above transmission and reflection coefficients while
noting the direction of travel of the incident wave. For example, consider the series
connection of two different lines illustrated in Figure 8.33(a). We wish to sketch the
voltage at the load and at the junction. The line is series matched at the source and
terminated in an open circuit. Line 1 has a total time delay of 1 ns and a characteristic
impedance of 50 �, whereas line 2 has a total time delay of 2 ns and a characteristic
impedance of 100 �. First, we compute the appropriate reflection and transmission
coefficients for a wave incident on the junction from line 1 as shown:

�12 = ZC2 − ZC1

ZC2 + ZC1

= 100 − 50

100 + 50

= 1

3

T12 = 2ZC2

ZC2 + ZC1

= 200

100 + 50

= 4

3

Observe that 1 + �12 = T12. Similarly, for a wave incident on the junction from line
2, we obtain

�21 = ZC1 − ZC2

ZC1 + ZC2

= 50 − 100

50 + 100

= − 1

3

T21 = 2ZC1

ZC1 + ZC2

= 100

50 + 100

= 2

3
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Again, observe that 1 + �21 = T21. The initial voltage sent out onto line 1 is

Vinit = ZC1

(RS = ZC1) + ZC1
5 V

= 2.5 V

Figure 8.33(b) shows the load voltage at the end of line 2. The initial voltage of
2.5 V is sent out and at one time delay of line 1, 1 ns, arrives at the junction. A
voltage of �122.5 V = 0.833 V is reflected to the left, arriving at the source after
another 1 ns, where it is completely absorbed. A voltage of T122.5 V = 3.333 V is
transmitted across the junction onto line 2, arriving at the open-circuit load after
2 ns more or 3 ns. The open-circuited load had a reflection coefficient of +1, and
hence 3.333 V is reflected. Thus, the total voltage is 6.667 V. This reflected voltage
of 3.333 V arrives at the junction incident from the right after another 2 ns where
T213.33 V = 2.222 V is transmitted across the junction and after an additional 1 ns
arrives at the source where it is completely absorbed. However, a reflected voltage
of �213.33 V = −1.111 V is reflected at the junction sending this back to the right,
arriving at the load after 2 ns more or 7 ns. Since the load reflection coefficient is
+1, this is totally reflected giving a total of 4.444 V. The process continues where the
incoming (from the right) wave of 1 (reflected at the load) arrives at the junction after
2 ns more where �21 (−1.111 V) = +0.37 V is reflected back to the load, arriving
there after an additional 2 ns or 11 ns where it is completely reflected giving a total
of 5.185 V.

Sketching the voltage at the junction is done in a similar process and is shown
in Figure 8.33(c). The initially sent out voltage of 2.5 V arrives at the junction at
1 ns, where �122.5 V = 0.833 V is reflected and T122.5 V = 3.333 V is transmitted
across the junction onto line 2. We can calculate the total voltage at the junction
either as vi1 + vr1 = 2.5 + 0.833 = 3.333 V or as vt2 = 3.333 V since the voltages
on either side of the junction must be equal. The reflected voltage of 0.833 V is
totally absorbed at the matched source, but the transmitted voltage arrives at the
load after an additional 2 ns and is totally reflected giving 3.333 V, arriving at the
junction (as an incident wave from the right) after another 2 ns or a total of 1 ns
+2 ns +2 ns = 5 ns. This is reflected as �213.333 V = −1.111 V and transmitted as
T213.333 V = 2.222 V. Since the total voltage on either side of the junction must be
the same, we obtain either (1 + �21) 3.333 V = 2.222 V or T213.333 V = 2.222 V.
Adding this to the voltage of 3.333 V already present gives a total voltage of 5.556 V.
The 2.222 V is reflected and arrives at the load after another 2 ns, at which time it
is completely reflected arriving at the junction after another 2 ns or a total of 9 ns.
This is reflected as �212.222 V = −0.741 V. Adding this to the voltages present from
previous reflections gives a total of 4.815 V. This is sketched in Figure 8.33(c).

PSPICE can be used to sketch both these voltages. The PSPICE code is

EXAMPLE
VS 1 0 PWL(0 0 1.0P 5 100N 5)
RS 1 2 50
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T1 2 0 3 0 Z0=50 TD=1N
T2 3 0 4 0 Z0=100 TD=2N
RL 4 0 1E8
.TRAN 0.1N 20N 0 0.1N
.PROBE
.END

and we have used a rise time of 1 ps to simulate the step voltage. The voltages at the
junction and at the load are sketched using PROBE in Figure 8.33(d), which confirm
the hand-calculated plots.

In the previous example, series matching at the source does not eliminate reflections
as evidenced in the computed results. This is due to the discontinuity. Reflections at
the discontinuity that are sent back to the source are absorbed at the source because of
matching, but a portion of the incident wave at the discontinuity is transmitted across
the discontinuity and sent to the load. Because the load is not matched to the second
part of the line, a reflection is transmitted back to the left, which is incident on the
discontinuity and hence a portion is transmitted across it toward the source where it
is absorbed. Consider the reverse, that is, suppose we parallel match at the load but
do not series match at the source. A wave sent out by the source and incident on the
discontinuity will create a reflection that is sent back to the source where it will be
reflected. The portion of the incident wave that is transmitted across the discontinuity
will be incident on the load but will be completely absorbed because the load is parallel
matched. But the portion of the wave reflected at the source will again be incident
on the discontinuity, and a portion will be transmitted across the discontinuity. This
will again be incident on the load where it is absorbed. But we will have reflections at
the source and at the discontinuity. Hence, in order to eliminate reflections we must
series match at the source and parallel match at the load.

8.2 INCORPORATION OF LOSSES

Losses occur in the conductors and in the surrounding medium. Since these losses
are, in general, frequency dependent, the frequency-domain representation of the
transmission-line equations is the best way to represent them. Hence, the frequency-
domain transmission-line equations are (see Chapter 2)

dV̂ (z, ω)

dz
= − [

r (ω) + jωli (ω)
]︸ ︷︷ ︸

ẑi(ω)

Î (z, ω) − jωlÎ (z, ω)

= −ẑ (ω) Î (z, ω) (8.112a)

dÎ (z, ω)

dz
= −g (ω) V̂ (z, ω) − jωcV̂ (z, ω)

= −ŷ (ω) V̂ (z, ω) (8.112b)



INCORPORATION OF LOSSES 407

where the per-unit-length impedance and admittance, respectively, are

ẑ (ω) = ẑi (ω) + jωl (8.113a)

ŷ (ω) = g (ω) + jωc (8.113b)

and the internal impedance of the conductors is

ẑi (ω) = r (ω) + jωli (ω) (8.113c)

The frequency-dependent per-unit-length (pul) resistance is denoted by r(ω), whereas
the frequency-dependent pul internal inductance due to magnetic flux internal to the
conductors is denoted by li(ω) and ω = 2πf is the radian frequency of excitation of
the line. The frequency-dependent pul conductance due to losses in the surrounding
dielectric is denoted by g(ω). The external pul parameters of inductance, l, and ca-
pacitance, c, are essentially independent of frequency up to frequencies in the lower
GHz range. The relative permittivity εr of the surrounding dielectric medium may be
a slight function of frequency, in which case c will be slightly frequency dependent.
For example, polyvinyl chloride, a typical wire insulation material, has εr = 4.3 at 10
kHz, but this decreases to εr = 3 at 100 MHz [7]. The fact that some of the per-unit-
length parameters are generally functions of frequency presents no problems in the
solution of these frequency-domain versions of the transmission-line equations. These
equations are solvable at each frequency by evaluating the per-unit-length parameters
at that frequency and including them as constants at that frequency (see Chapter 6).

The Laplace transform of these equations is also a convenient and meaningful way
to represent them. Replacing s ⇐⇒ jω yields

dV̂ (z, s)

dz
= −ẑ (s) Î (z, s)

= −ẑi (s) Î (z, s) − slÎ (z, s) (8.114a)

dÎ (z, s)

dz
= −ŷ (s) V̂ (z, s)

= −ĝ(s)V̂ (z, s) − scV̂ (z, s) (8.114b)

and the transform of the internal impedance is denoted as

ẑi (s) = r (s) + sli (s) (8.115)

In the time domain, Eqs. (8.114) give convolutions:

∂V (z, t)

∂z
= −zi (t) ∗ I (z, t) − l

∂I (z, t)

∂t
(8.116a)
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∂I (z, t)

∂z
= −g (t) ∗ V (z, t) − c

∂V (z, t)

∂t
(8.116b)

where ∗ denotes convolution as [A.2, A.5]

zi(t) ∗ I(z, t) =
t∫

0

zi (τ) I (z, t − τ) dτ (8.117a)

g (t) ∗ V (z, t) =
t∫

0

g(τ)V (z, t − τ)dτ (8.117b)

and zi (t) and g (t) are the inverse transforms of the pul internal impedance ẑi(s) and
the pul conductance ĝ (s):

ẑi (s) ⇐⇒ zi (t) (8.118a)

ĝ (s) ⇐⇒ g (t) (8.118b)

Hence, frequency-dependent per-unit-length parameters can be easily included in the
frequency-domain transmission-line equations, but their inclusion in the time-domain
transmission-line equations presents significant computational problems because of
the requirement to (1) obtain the time-domain per-unit-length parameters from the
frequency-domain parameters and (2) perform the required convolution.

8.2.1 Representing Frequency-Dependent Losses

Representation of these frequency-dependent losses in the frequency domain was
discussed in Chapter 4 . In this section, we will summarize those important concepts. In
addition, we will investigate the implementation of convolution with these frequency-
dependent loss parameters.

8.2.1.1 Representing Losses in the Medium The primary loss mechanism in di-
electrics is due to polarization loss where the bound charges are represented by dipoles
[A.1 ]. Their rotation to align with changes in an applied sinusoidally varying electric
field lags behind and is not complete at the higher frequencies. This is represented by
a complex permittivity as [7,8]

ε̂ = ε − jεp (8.119)

where εp is due to the lag in the rotation of the bound charge dipoles to align with
the applied electric field with increasing frequencies. Dielectrics usually have a very
small and generally negligible conductivity σ due to free charge in them. Substituting
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(8.119) into Ampere’s law gives

∇ × �̂H = σ �̂E + jωε̂ �̂E
= (

σ + ωεp
)︸ ︷︷ ︸

σeff

�̂E + jωε �̂E (8.120)

Hence, the effective conductivity representing conductive and polarization losses is

σeff = (
σ + ωεp

)
(8.121)

The loss tangent of the material is tabulated in handbooks at various frequencies [9]
and is the ratio of the conduction current to the displacement current as

tan δ =
(
σ + ωεp

)
ωε

∼= εp

ε
(8.122)

The polarization losses represented by ωεp will dominate the resistive losses that are
represented by σ in typical dielectrics of practical interest. Both ε and εp are functions
of frequency. Hence, the loss tangent is frequency dependent. Therefore, the effective
conductivity of a dielectric is frequency dependent and is related to the loss tangent
as

σeff = ω ε tan δ (8.123)

Hence, in a homogeneous medium, the per-unit-length conductance is related to the
per-unit-length capacitance as

g = σeff

ε
c

= ω tan δ c (8.124)

Since the loss tangent is a function of frequency, this does not imply that the per-unit-
length conductance increases linearly with frequency.

The frequency-dependent complex permittivity in (8.119) can be represented over
the frequency range of interest with the Debye model [7,8,10–12] as

ε̂(ω) = ε (ω) − jεp(ω)

= εhf +
N∑

i=1

Ki

1 + jωτi

(8.125)
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and τi are the dipole relaxation time constants. At infinite frequency, lim︸︷︷︸
f → ∞

εhf = ε0

[7,11]. At dc, εrε0 = εhf +∑N
i=1 Ki. Noting that

Ki

1 + jωτi

× 1 − jωτi

1 − jωτi

= Ki − jKiωτi

1 + ω2τ2
i

we obtain the real and imaginary parts of ε̂(ω) as

ε(ω) = εhf +
N∑

i=1

Ki

1 + ω2τ2
i

(8.126a)

εp (ω) =
N∑

i=1

Kiωτi

1 + ω2τ2
i

(8.126b)

The Debye model satisfies the Kronig–Kramers requirements for causality ob-
tained in Section 2.4.1 of Chapter 2 . Also, from Section 2.4.1 of Chapter 2 , in order
for the inverse transform to represent a real function of time, the real part of the com-
plex permittivity must be an even function of frequency, that is, ε(ω) = ε (−ω), and
the imaginary part must be an odd function of frequency, that is, εp(ω) = −εp (−ω),
which (8.126) satisfy. The terms in the model, ε hf , Ki, and τi, can be obtained by
comparison with measured frequency response data [10]. Figure 8.34 illustrates a
frequency response plot of the real and imaginary parts of the complex permittivity
for typical dielectrics [7,11]. The real part decreases from the dc value of εrε0 to
its value at high frequencies of ε∞ = ε 0, exhibiting resonances at ωi = 1/τi much
like a low-pass filter having several cutoff frequencies. The real part of the model in
(8.126a) models this behavior but excludes the resonances shown. The imaginary part
exhibits resonances at each ωi = 1/τi in a form like that of bandpass filters. Equation
(8.126b) models this behavior of the imaginary part.

8.2.1.2 Representing Losses in the Conductors and Skin Effect As discussed in
Chapter 4, as frequency increases, the currents in the conductors move to their sur-
faces, eventually residing in depths on the order of a skin depth

δ = 1√
π f � σ

(8.127)

For isolated conductors of circular cylindrical cross sections (wires), the current dis-
tribution at dc and at high frequencies where skin effect is well developed is illustrated
in Figure 8.35. Hence, we can obtain approximations to that pul resistance as

rdc = 1

σπr2
w

�/m

li,dc = �0

8π
= 0.5 × 10−7 H/m


 rw < 2δ (8.128a)
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FIGURE 8.34 Illustration of the frequency response of the real and imaginary parts of the
complex permittivity ε̂ = ε − jεp of a lossy dielectric.

rhf = 1

2πrwσδ
= 1

2rw

√
�0

πσ

√
f �/m

li,hf = 1

4πrw

√
�0

πσ

1√
f

H/m


 rw > 2δ (8.128b)

FIGURE 8.35 Illustration of skin effect for a solid wire.
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FIGURE 8.36 Asymptotic representation of the frequency response of the internal impedance
of a wire.

Again, observe that the high-frequency resistance rhf increases as the square root
of frequency,

√
f , whereas the high-frequency internal inductance li,hf decreases as

the square root of frequency, 1/
√

f . Hence we may, as a reasonable computational
simplification, represent the pul resistance and internal inductance each with two
asymptotes as illustrated in Figure 8.36. It was shown in Chapter 4 that for wires
the asymptotes for the resistance and for the internal inductance join at the same
frequency f0. In the case of an isolated wire, this break frequency is located where
the wire radius is two skin depths, rw = 2δ, giving a break frequency of

f0 = 4

πr2
w�0σ

(rw = 2δ) (8.129)

Also, observe that the high-frequency resistance and internal inductive reactance are
equal, that is,

rhf = ωli,hf (8.130)
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FIGURE 8.37 Asymptotic representation of the frequency response of the resistance of a
PCB land.

The property in (8.130) is unique to wires but applies in an approximate fashion to
conductors of rectangular cross section such as PCB lands.

Conductors of rectangular cross section such as PCB lands do not yield closed-form
solutions for the pul resistance and internal inductance (see [13], Appendix III, for an
approximate solution for the pul resistance of an isolated rectangular bar). Consider
a conductor of rectangular cross section and width w and thickness t. Numerical
solutions for the pul resistance and internal inductance were provided in Chapter 4 .
These computations show that at low frequencies where the width and thickness are
much less than a skin depth, the current is again uniformly distributed over the cross
section as illustrated in Figure 8.37(a). As frequency increases, the current crowds
to the edges eventually lying substantially within a thickness of a few skin depths
as illustrated in Figure 8.37(b). Numerical computations in Chapter 4 also showed
a behavior unlike that of a wire; the current distribution over the PCB land cross
section tends to peak at the corners. (See Figure 4.20 of Chapter 4 and Appendix
III of [13]). This behavior complicates the characterization of the pul resistance and
internal inductance of the land. Nevertheless, we will approximately characterize
the resistance as shown in Figure 8.37(c) with two asymptotes that are joined at a
frequency where

δ = wt

k (w + t)
(8.131)
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Numerical computations indicate that the constant k lies between 1 and 2, 1<k < 2.
The dc resistance is, of course,

rdc = 1

σwt
(�/m) (8.132a)

and, referring to Figure 8.37(b), the high-frequency pul resistance is (approximately)

rhf = 1

kσδ (w + t)
(�/m) (8.132b)

The computation of the pul internal inductance is not so simple. Numerical computa-
tions are shown in Figures 4.21 and 4.22 of Chapter 4 . These indicate, as expected,
that the high-frequency resistance, like that of a wire, increases as the square root of
frequency,

√
f , and the high-frequency internal inductance decreases as the square

root of frequency, 1/
√

f . However, these figures show that, unlike the wire, the high-
frequency resistance and high-frequency internal inductive reactance of an isolated
conductor of rectangular cross section (PCB land) are not identical, that is, rhf �= ωli,hf .
However, for lands that have a high aspect ratio, that is, w � t, they are approximately
equal, that is, rhf ∼= ωli,hf . For example, for a land of width 15 mils and thickness 1.4
mils whose results are compared in Figure 4.21, the high-frequency resistance and in-
ternal inductive reactance differ by only about 10%. For square lands (see Figure 4.22
), the high-frequency resistance and internal inductive reactance differ by about 30%.
We can also represent the pul resistance and internal inductance with two asymptotes
as for wires in Figure 8.36. However, the break frequency for the resistance and the
break frequency for the internal inductance are not equal. We may make the approx-
imation rhf = ω li,hf for PCB lands because li,hf is effectively added to the external
inductance l in the transmission-line equations in (8.112a). The high-frequency in-
ternal inductance for practical line dimensions is orders of magnitude smaller than
the external inductance and decreases with increasing frequency as

√
f . Hence, any

approximation error in assuming rhf = ω li,hf in the case of PCB lands is absorbed in
and negligible with respect to the external inductance.

Hence for wires and PCB lands, we will approximate the frequency behavior with
asymptotic representations shown in Figure 8.36. The break frequencies f0 for both
the resistance and the internal inductance are assumed equal for both wires and PCB
lands. This will greatly simplify the characterization of these parameters. For example,
because the two asymptotes join at the same frequency f0, we can write

r =



rdc, f<f0

rdc

√
f

f0
, f > f0

(8.133a)
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and

li =



li,dc, f<f0

li,dc

√
f0

f
, f > f0

(8.133b)

We can also relate rdc and li,dc. The high-frequency resistance and internal inductive
reactance are also equal:

rhf = ω li,hf (8.134)

The asymptotic approximate characterization in Figure 8.36 allows us to obtain a
relation between the dc resistance rdc and dc internal inductance li,dc. Substituting
the high-frequency relations given in (8.133) into (8.134) gives, at ω0 = 2πf0,

rdc = ω0li,dc (8.135)

This can be verified for wires:

rdc = 1

πr2
wσ

= 2π
4

πr2
w�0σ︸ ︷︷ ︸
f0

× �0

8π︸︷︷︸
li,dc

(8.136)

which checks. Substituting (8.135) into (8.133) gives a simple approximation for the
internal impedance of the conductors (which is true for wires and approximately true
for PCB lands) as

ẑi(ω) = r(ω) + jω li (ω) =




rdc

(
1 + j

f

f0

)
, f<f0

rdc

√
f

f0
(1 + j) , f > f0

(8.137)

These relations satisfy the requirement ẑi (−ω) = ẑ∗
i (ω) derived in Section 2.4.1 of

Chapter 2 for the transform to represent a real-valued function of time, zi (t). The
relations in (8.137) require that we need only obtain (1) rdc and (2) f0 in order to
characterize the complete frequency behavior with the asymptotic characterization in
Figure 8.36. We can easily obtain the values for wires for rdc (8.128a) and f0 (8.129).
We can approximately obtain these for PCB lands from (8.132a) and (8.131).

8.2.1.3 Convolution with Frequency-Dependent Losses The final task is to deter-
mine the time-domain form of the pul internal impedance, ẑi (s), and conductance,
ĝ (s). Once this is done, we next address how to perform the convolutions ẑi (s) ∗ Î (z, s)
and ĝ (s) ∗ V̂ (z, s).

First, consider the pul internal impedance given in asymptotic form in (8.137). The
fact that the high-frequency internal impedance varies as the square root of frequency
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makes this a very difficult task. There are some known inverse Laplace transforms of
impedances that depend on square root of frequency [3,14,15]. The inverse Laplace
transform of the square root of the Laplace transform variable is known [14]:

1√
s

⇐⇒ 1√
π

1√
t

(8.138)

where s denotes the Laplace transform variable. We have the important complex
variable relation [A.5]:

√
jω =

√
ω√
2

(1 + j)

= √
π
√

f (1 + j) (8.139)

This gives insight as to how we should go about obtaining frequency-domain functions
that are transformable to the time domain. We need to write the frequency-domain
function in the form of the square root of frequency multiplied by (1 + j). Then
transform that result to the Laplace domain by using (8.139), replace jω ⇒ s, and
use (8.138). For example, the high-frequency surface impedance of plane conductors
occurs frequently in electromagnetic scattering problems and is given by [3,15]

Ẑ(ω) =
√

jω �

σ

=
√

jω

√
�

σ
(8.140)

The Laplace transform of this is

Ẑ (s) =
√

�

σ

√
s (8.141)

In order to utilize the inverse transform in (8.138), we multiply numerator and de-
nominator by

√
s to yield

Ẑ (s) =
√

�

σ

√
s

=
√

�

σ

1√
s

s (8.142)

whose inverse transform is, according to (8.138),

Z (t) =
√

�

πσ

1√
t

∂

∂t
(8.143)
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Hence, the convolution of this time-domain impedance with another function of time
requires that we convolve this with the time derivative of that time function.

In the case of the line conductors of the transmission line, a simple way of obtaining
this inverse transform of the conductor internal impedance is described in [16–18].
This relies on writing the Laplace transform of the conductor internal impedance in
the form of A + B

√
s. The inverse transform of this result is, using (8.138),

A + B
√

s = A + B
1√
s
s ⇐⇒ A + B√

π

1√
t

∂

∂t
(8.144)

This form can be achieved for conductors by simply adding the dc and high-frequency
representations from (8.137) as

ẑi(ω) = rdc + rdc

√
ω√
ω0

(1 + j) (8.145)

We identify A = rdc and have omitted the dc internal inductance. This is a reasonable
approximation since it is dominated by the external (loop) inductance of the line. The
dc internal inductance li,dc is (see (8.112a)) in series with the loop inductance l and
is almost always negligible since it is much smaller that the loop inductance. Using
(8.139) yields

ẑi(ω) = rdc + rdc
1√

π
√

f0

√
jω (8.146)

This relation satisfies the requirement ẑi (−ω) = ẑ∗
i (ω) derived in Section 2.4.1 of

Chapter 2 for the transform to represent a real-valued function of time, zi (t). The
Laplace transform is

ẑi (s) = rdc + rdc
1√

π
√

f0

√
s

= rdc + rdc
1√

π
√

f0

1√
s

s (8.147)

We identify A = rdc and B = rdc√
π
√

f0
. Hence, the inverse transform is

zi (t) = rdc + rdc
1

π

1√
f0

1√
t

∂

∂t
(8.148)
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Next, we perform the required convolution given in (8.117a):

zi(t) ∗ I(z, t) =
t∫

0

zi(τ)I (z, t − τ) dτ

= rdcI (z, t) + rdc
1

π

1√
f0

t∫
0

1√
τ

∂I (z, t − τ)

∂ (t − τ)
dτ (8.149)

We will show in Section 8.2.3 how to discretize this convolution and include it into a
numerical analysis.

The representation A + B
√

s essentially adds the dc and high-frequency asymp-
totes as shown in Figure 8.38. Observe in Figure 8.38(a) that adding the asymptotes for
the resistance gives a reasonable approximation because below f0 the dc resistance

FIGURE 8.38 Illustration of the point that representing the conductor internal impedance as
A + B

√
s provides an error resulting from the high-frequency internal impedance being added

to the low-frequency response.
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asymptote dominates the high-frequency resistance asymptote as it should, giving
the total as the dc resistance asymptote. Above f0, the high-frequency resistance
asymptote dominates the dc resistance asymptote as it should, giving the total as the
high-frequency asymptote. However, adding the internal inductance asymptotes as
in Figure 8.38(b) causes some inaccuracy below f0 since the high-frequency asymp-
tote dominates the dc asymptote. (The approximation A + B

√
s inherently omits the

dc internal inductance, but this has little effect on the result because of the domi-
nance of the high-frequency internal inductance in this region.) A method was given
in [B.23] to rectify this problem. The A + B

√
s model of the conductor impedance

given in (8.145) can be modified to simulate the frequency-selective model given in
(8.137) by multiplying the low-frequency impedance by a first-order low-pass filter
and multiplying the high-frequency impedance by a first-order high-pass filter:

ẑi(ω) = rdc

(
1 + j

ω

ω0

)
︸ ︷︷ ︸

ẑi,dc

(
ω0

ω0 + jω

)
︸ ︷︷ ︸

low-pass filter

+ rdc

√
ω

ω0
(1 + j)︸ ︷︷ ︸

ẑi,hf

(
jω

ω0 + jω

)
︸ ︷︷ ︸
high-pass filter

= rdc + rdc

[√
2

ω0

√
jω

(
jω

ω0 + jω

)]
. (8.150)

This relation satisfies the requirement ẑi (−ω) = ẑ∗
i (ω) derived in Section 2.4.1 of

Chapter 2 for the transform to represent a real-valued function of time, zi (t). Observe
that this representation includes the dc internal inductance. Figure 8.39 shows the
comparison between the frequency-selective representation of (8.137), the first-order
filter representation of (8.150), a second-order filter representation, and the simple
addition of A + B

√
s given in (8.145). The first-order filter representation of (8.150)

provides a reasonable approximation of the frequency-selective representation. The
second-order filter improves this representation, but the computational implementa-
tion is considerably more complex than the first-order representation. In terms of the
Laplace transform, (8.150) becomes

ẑi(s) = rdc + rdc

√
2

ω0

( √
s

s + ω0

)
s (8.151)

The function in (8.151) has the inverse transform [14]

√
s

s + ω0
⇐⇒ 1√

πt
− 2

√
ω0√
π

e−ω0t

√
ω0t∫
0

eλ2
dλ (8.152)
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Thus, the relevant convolution in (8.149) becomes

ẑi(s)I(z, s) ⇐⇒ zi(t) ∗ I(z, t)

= rdcI(z, t) + rdc

√
2

π


 1√

α
−2e−α

√
α∫

0

eλ2
dλ


 ∗ ∂I(z, t)

∂t

(8.153a)

where

α = ω0t (8.153b)

Note that the bracketed term in (8.153) may be computed in terms of α; that is, it
is independent of the specific break frequency of the conductor impedance ω0 and
is therefore independent of the specific problem. The integral in the second term in
(8.153) can be approximated as

√
α∫

0

eλ2
dλ =

√
α∫

0

[
1 + λ2

1!
+ λ4

2!
+ · · ·

]
dλ

=


α

1

2 + α

3

2

3 × 1!
+ α

5

2

5 × 2!
+ · · ·




=
∞∑

n=0

α
n+

1

2

(2n + 1) n!
(8.154)

The frequency-dependent per-unit-length conductance g(ω) can be easily included
in a convolution if we assume a homogeneous medium, for example, a stripline. It
becomes a bit more detailed for a lossy inhomogeneous medium although, in principle,
the method of calculating the pul capacitance using a complex permittivity discussed
in Chapter 4 can be used to obtain g(ω) for an inhomogeneous medium at several
frequencies and using curve fitting. For a homogeneous medium, the per-unit-length
capacitance can be written as the product of the permittivity and a constant M as

ĉ(ω) = ε̂(ω)M (8.155)
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Substituting the Debye expression for ε̂ (ω) given in (8.125) gives

ĉ(ω) =
[
εhf +

N∑
i=1

Ki

1 + jωτi

]
M

=
[

N∑
i=1

Ki

1 + jωτi

]
M + chf (8.156)

and chf = εhfM. Hence, the per-unit-length admittance is

ŷ(ω) = jωĉ (ω)

=
[

N∑
i=1

Ki

1 + jωτi

]
jω M + jωchf (8.157)

Converting to the Laplace transform by substituting jω ⇒ s yields

ŷ (s) =
[

N∑
i=1

Ki

1 + sτi

]
sM + schf (8.158)

The term Ki/(1 + sτi) has a simple inverse transform of (Ki/τi) e−t/τi [A.2,A.5].
Hence, the time-domain result is

y (t) =
[

N∑
i=1

Ki

τi

e−t/τi

]
M

∂

∂t
+ chf

∂

∂t
(8.159)

The convolution y (t) ∗V (t) in (8.116b) becomes

y (t) ∗V (t) =
[

N∑
i=1

M
Ki

τi

e−t/τi

]
∗ ∂V (t)

∂t
+chf

∂V (t)

∂t

= M

N∑
i=1


Ki

τi

t∫
0

e−τ/τi
∂V (t − τ)

∂ (t − τ)
dτ


+ chf

∂V (t)

∂t
(8.160)

The fact that the time-domain result y (t) is the sum of exponentials makes the evalu-
ation of the convolution y (t) ∗ V (z, t) in (8.116b) a simple task by using the method
of recursive convolution to be described in Section 8.2.3.4.

8.2.2 The Time-Domain to Frequency-Domain (TDFD) Transformation
Method

The TDFD transformation method described in Section 8.1.7 can easily in-
corporate frequency-dependent parameters since we need only to compute the
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FIGURE 8.39 Plots of the magnitude and phase of the frequency-selective model of the
conductor impedance, A + B

√
s, and the use of filters to eliminate the low-frequency error.

frequency-domain transfer function relating the source to the desired output (see
Fig. 8.15). First, compute the Fourier series coefficients of the input waveform as

x(t) = c0 +
NH∑
n=1

cncos (nω0t + � cn) (8.161)
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where the period of the input waveform is P and the fundamental frequency of the
waveform is denoted by ω0 = 2πf0 = 2π/P . Then compute the frequency-domain
transfer function, including the frequency-dependent losses such as skin-effect losses
and/or dielectric losses, at each harmonic frequency:

Ĥ(jnω0) = |Ĥ(jnω0)|� Ĥ(jnω0) (8.162)

Then pass each component through this frequency-domain transfer function and re-
combine the time domain responses to each component in the time domain. To do this,
we multiply each appropriate magnitude and add the angles to give the time-domain
output as

y(t) = c0H(0) +
NH∑
n=1

cn|Ĥ(jnω0)|cos(nω0t + � cn + � Ĥ(jnω0)) (8.163)

In this way, we can include
√

f -dependent skin-effect losses that are difficult to
characterize directly in the time domain. Again this supposes a linear system, that is,
linear terminations on the line, but it gives us a simple way of verifying the accuracy
of other solution methods. This method is implemented in the FORTRAN program
TIMEFREQ.FOR described in Appendix A. The frequency-domain transfer function
of the line can be computed including frequency-dependent skin-effect losses of the
line conductors using the FORTRAN program MTL.FOR described in Appendix A.

8.2.3 The Finite-Difference, Time-Domain (FDTD) Method

The FDTD discretization of the time-domain transmission-line equations for lossy
lines given in (8.116) can be accomplished in a virtually identical fashion to the
case of lossless lines in Section 8.1.8 with reference to Figures 8.17 and 8.18. The
only difference between the lossless and lossy line cases is in the discretization of the
convolution terms in (8.117a) representing the frequency-dependent conductor losses
and in (8.117b) representing the frequency-dependent dielectric losses.

8.2.3.1 Including Frequency-Independent Losses We have seen that the conductor
loss per-unit-length parameters of resistance, r(ω), and internal inductance, li(ω), and
the dielectric loss per-unit-length parameter of conductance, g(ω), are functions of
frequency at high frequencies. At low frequencies, these are independent of frequency,
that is, approximately their dc values. For today’s high spectral content digital signals,
this high-frequency dependence generally cannot be ignored. However, using the dc
values of these parameters can give some reasonable approximations of the time-
domain responses of the line as we will see in the computed results. In addition, this
high-frequency dependence of these parameters complicates the formulation of the
FDTD method. Hence, we will start this discussion of the FDTD method for lossy
lines by formulating the FDTD recursion equations for a line that has only frequency-
independent, that is, dc, values of these line loss parameters. This will also provide
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a simplified introduction to the FDTD formulation, which will aid in understanding
the more complicated result for frequency-dependent parameters in the next section.
The transmission-line equations become

∂V (z, t)

∂z
+ rI(z, t) + l

∂I (z, t)

∂t
= 0 (8.164a)

∂I(z, t)

∂z
+ gV (z, t) + c

∂V (z, t)

∂t
= 0 (8.164b)

where we assume that the per-unit-length parameters r, l, g, and c are frequency
independent, that is, constants. We discretize these as for the lossless case in Section
8.1.8 with reference to Figures 8.17 and 8.18 as

Vn+1
k+1 − Vn+1

k

�z
+ r

I
n+3/2
k + I

n+1/2
k

2
+ l

I
n+3/2
k − I

n+1/2
k

�t
= 0 (8.165a)

for k = 1, 2, . . . , NDZ and

I
n+1/2
k − I

n+1/2
k−1

�z
+ g

Vn+1
k + Vn

k

2
+ c

Vn+1
k − Vn

k

�t
= 0 (8.165b)

for k = 2, 3, . . . , NDZ, where we again denote

Vn
k ≡ V ((k − 1)�z, n�t) (8.166a)

In
k ≡ I

((
k − 1

2

)
�z, n�t

)
(8.166b)

Observe that we have averaged the current and voltage values about the discretization
point in order to include the r and g parameters. This averaging amounts to the
trapezoidal rule for numerical solution of ordinary differential equations [6]. The
required recursion relations for the interior points on the line are obtained by solving
Eqs. (8.165) giving(

�z

�t
l + �z

2
r

)
I
n+3/2
k −

(
�z

�t
l − �z

2
r

)
I
n+1/2
k = −

(
Vn+1

k+1 − Vn+1
k

)
(8.167a)

(
�z

�t
c + �z

2
g

)
Vn+1

k −
(

�z

�t
c − �z

2
g

)
Vn

k = −
(
I
n+1/2
k − I

n+1/2
k−1

)
(8.167b)

Note that the coefficients (�z/�t) have the units of velocity, and hence (�z/�t)l
and (�z/�t)c have the units of resistance and conductance, respectively. Similarly,
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(�z/2)r and (�z/2)g have the units of resistance and conductance, respectively.
Solving these and putting the voltage update equation first gives

Vn+1
k =

(
�z

�t
c + �z

2
g

)−1 (
�z

�t
c − �z

2
g

)
Vn

k

−
(

�z

�t
c + �z

2
g

)−1 (
I
n+1/2
k − I

n+1/2
k−1

)
(8.168a)

for k = 2, 3, . . . , NDZ and

I
n+3/2
k =

(
�z

�t
l + �z

2
r

)−1 (
�z

�t
l − �z

2
r

)
I
n+1/2
k

−
(

�z

�t
l + �z

2
r

)−1 (
Vn+1

k+1 − Vn+1
k

)
(8.168b)

for k = 1, 2, . . . , NDZ.
Next consider the incorporation of the terminal conditions. The essential prob-

lem in incorporating the terminal conditions is, as for the lossless case, that the
FDTD voltages and currents at each end of the line, V1, I1 and VNDZ+1, INDZ, are not
collocated in space or time, whereas the terminal conditions relate the voltage and
current at the same position and at the same time. We will again denote the current
at the source (z = 0) as IS and the current at the load (z = L) as IL, as shown in
Figure 8.18. The second transmission-line equation given in Eq. (8.164b) is dis-
cretized at the source by averaging the source current IS in order to obtain a value
that is located in time at the same time point as I

n+1/2
1 as

1

�z/2


I

n+1/2
1 −

(
In+1

S + In
S

)
2


+ 1

2
g
[
Vn+1

1 + Vn
1

]
+ 1

�t
c
[
Vn+1

1 − Vn
1

]
= 0

(8.169a)

Similarly, the second transmission-line equation, (8.164b), is discretized at the load
by averaging the load current IL in order to obtain a value that is located in time at
the same time point as I

n+1/2
NDZ as

1

�z/2



(
In+1

L + In
L

)
2

− I
n+1/2
NDZ


 + 1

2
g
[
Vn+1

NDZ+1 + Vn
NDZ+1

]

+ 1

�t
c
[
Vn+1

NDZ+1 − Vn
NDZ+1

]
= 0

(8.169b)
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Equations (8.169) are solved to give the recursion relations for the voltages at the
source and the load as

Vn+1
1 =

(
�z

�t
c + �z

2
g

)−1 (
�z

�t
c − �z

2
g

)
Vn

1 − 2

(
�z

�t
c + �z

2
g

)−1

I
n+1/2
1

+
(

�z

�t
c + �z

2
g

)−1 [
In+1

S + In
S

]
(8.170a)

Vn+1
NDZ+1 =

(
�z

�t
c + �z

2
g

)−1 (
�z

�t
c − �z

2
g

)
Vn

NDZ+1

+2

(
�z

�t
c + �z

2
g

)−1

I
n+1/2
NDZ

−
(

�z

�t
c + �z

2
g

)−1 [
In+1

L + In
L

]
(8.170b)

In the case of resistive terminations, the terminal characterizations are written in
terms of a generalized Thevenin equivalent as

V1 = VS − RSIS (8.171a)

VNDZ+1 = VL + RLIL (8.171b)

Inverting these gives

IS = −GSV1 + GSVS (8.172a)

IL = GLVNDZ+1 − GLVL (8.172b)

Substituting (8.172) into Eqs. (8.170) gives the recursion relations for V1 and VNDZ+1:

Vn+1
1 =

(
�z

�t
RSc + �z

2
RSg + 1

)−1 {(
�z

�t
RSc − �z

2
RSg − 1

)
Vn

1

− 2RSI
n+1/2
1 +

(
Vn+1

S + Vn
S

)}
(8.173a)

and

Vn+1
NDZ+1 =

(
�z

�t
RLc + �z

2
RLg + 1

)−1 {(
�z

�t
RLc − �z

2
RLg − 1

)
Vn

NDZ+1

+2RLI
n+1/2
NDZ +

(
Vn+1

L + Vn
L

)}
(8.173b)
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and the voltages at the interior points are determined from (8.168a)

Vn+1
k =

(
�z

�t
c + �z

2
g

)−1 (
�z

�t
c − �z

2
g

)
Vn

k

−
(

�z

�t
c + �z

2
g

)−1 (
I
n+1/2
k − I

n+1/2
k−1

)
(8.173c)

for k = 2, 3, . . . , NDZ. Equations (8.173) are first for solved the voltages and then
the currents are determined from those voltages using (8.168b) as

I
n+3/2
k =

(
�z

�t
l + �z

2
r

)−1 (
�z

�t
l − �z

2
r

)
I
n+1/2
k

−
(

�z

�t
l + �z

2
r

)−1 (
Vn+1

k+1 − Vn+1
k

)
(8.168b)

for k = 1, 2, 3, . . . , NDZ. For stability of the solution, the position and time dis-
cretizations should again satisfy the Courant condition �t ≤ �z/v.

8.2.3.2 Including Frequency-Dependent Losses First, consider the incorporation
of the frequency-dependent conductor loss. Using the approximation A + B

√
s for

the conductor losses developed in Section 8.2.1.3, the time domain inverse Laplace
transform of the conductor internal impedance is given, using the transform pair in
(8.138), as

ẑi (s) = A + B
√

s = A + B
1√
s
s ⇐⇒ A + B

1√
π

1√
t

∂

∂t
(8.174)

From (8.148), we identify

A = rdc (8.175a)

B = rdc√
π
√

f0
(8.175b)

Hence, the required convolution given in (8.149) is

zi(t) ∗ I(z, t) =
t∫

0

zi(τ)I (z, t − τ) dτ

= AI(z, t) + B
1√
π

t∫
0

1√
τ

∂I (z, t − τ)

∂ (t − τ)
dτ (8.176)
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This convolution term can be discretized in the following fashion. Again divide
the time axis into �t segments. The discrete convolution can be approximated in the
following manner, where F (t) in the following represents the time derivative of
the line current, F (t) = (∂/∂t)I(z, t), which is approximated as being constant over
the �t segments [3]:

t∫
0

1√
τ

F (t − τ)dτ ∼=
(n+1)�t∫

0

1√
τ

F ((n + 1)�t − τ)dτ

∼=
n∑

m=0

Fn+1−m

(m+1)�t∫
m�t

1√
τ

dτ

=
√

�t

n∑
m=0

Fn+1−mZ0(m) (8.177a)

where

Z0(m) =
(m+1)∫

m

1√
ζ

dζ

= 2
[√

m + 1 − √
m
]

(8.177b)

and we have made a change of variables in the integral in (8.177a) of τ = �tζ in
order to make this integral independent of the time discretization chosen for a specific
problem. The derivation of this discrete convolution is illustrated in Figure 8.40 [A.2,
A.5]. In this figure we see that

(n+1)�t∫
0

1√
τ

F ((n + 1)�t − τ)dτ ∼= Fn+1

�t∫
0

1√
τ

dτ + · · ·

+ F3

(n−1)�t∫
(n−2)�t

1√
τ

dτ + F2

n�t∫
(n−1)�t

1√
τ

dτ

+ F1

(n+1)�t∫
n�t

1√
τ

dτ

=
n∑

m=0

Fn+1−m

(m+1)�t∫
m�t

1√
τ

dτ

=
√

�t

n∑
m=0

Fn+1−mZ0(m) (8.178)
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FIGURE 8.40 Illustration of the discrete convolution
∫ (n+1)�t

0
1√
τ
F (t − τ)dτ.

Adapting this result to the discretization of the first transmission-line equation in
(8.116a) using (8.149) gives, with reference to Figure 8.17,

Vn+1
k+1 − Vn+1

k

�z
+l

I
n+3/2
k − I

n+1/2
k

�t
+A

I
n+3/2
k + I

n+1/2
k

2

+
√

�t√
π

B

n∑
m=0

[
I
n+3/2−m
k − I

n+1/2−m
k

�t

]
Z0(m) = 0 (8.179a)

I
n+1/2
k − I

n+1/2
k−1

�z
+ c

Vn+1
k − Vn

k

�t
= 0 (8.179b)

where A = rdc and B = rdc/
√

π
√

f0. Hence, the first equation, (8.74a) or (8.76a),
has changed from the previous discretization for the case of perfect conductors.
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Solving (8.179a) gives the recursion relation for this equation:(
l
�z

�t
+A

�z

2
+B

1√
π

�z√
�t

Z0(0)

)
I
n+3/2
k

=
(

l
�z

�t
−A

�z

2
+B

1√
π

�z√
�t

Z0(0)

)
I
n+1/2
k

−B
1√
π

�z√
�t

n∑
m=1

[
I
n+3/2−m
k − I

n+1/2−m
k

]
Z0(m) −

(
Vn+1

k+1 − Vn+1
k

)(8.180)

or

I
n+3/2
k = F−1

(
l
�z

�t
−A

�z

2
+B

1√
π

�z√
�t

Z0(0)

)
I
n+1/2
k

− F−1B
1√
π

�z√
�t

n∑
m=1

[
I
n+3/2−m
k − I

n+1/2−m
k

]
Z0(m)

− F−1
(
Vn+1

k+1 − Vn+1
k

)
(8.181a)

for k = 1, . . . , NDZ where

F =
(

l
�z

�t
+ A

�z

2
+ B

1√
π

�z√
�t

Z0(0)

)
(8.181b)

This replaces Eq. (8.76a) of the lossless case. For lossless dielectrics, g = 0, the
voltage update equation in (8.76b) remains the same:

Vn+1
k = Vn

k − �t

�z
c−1

(
I
n+1/2
k − I

n+1/2
k−1

)
(8.76b)

for k = 2, 3, . . . , NDZ. The terminal relations can again be included with reference
to Figure 8.18 giving, for the case of a lossless dielectric, g = 0,

Vn+1
1 = Vn

1 − 2�t

�z
c−1I

n+1/2
1 + �t

�z
c−1

[
In+1

S + In
S

]
(8.78a)

Vn+1
NDZ+1 = Vn

NDZ+1 + 2�t

�z
c−1I

n+1/2
NDZ − �t

�z
c−1

[
In+1

L + In
L

]
(8.78b)

where IS and IL are the line currents at the source and load ends, respectively. In the
case of resistive terminations, the terminal characterizations are written in terms of a
generalized Thevenin equivalent as

V1 = VS − RSIS (8.79a)

VNDZ+1 = VL + RLIL (8.79b)
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and these voltage update equations are unchanged from the lossless case since they
were derived from the second transmission-line equation, which is unaffected by the
conductor losses:

Vn+1
1 =

(
�z

�t
RSc + 1

)−1 {(
�z

�t
RSc − 1

)
Vn

1 − 2RSI
n+1/2
1 +

(
Vn+1

S + Vn
S

)}
(8.81a)

and

Vn+1
NDZ+1 =

(
�z

�t
RLc + 1

)−1 {(
�z

�t
RLc − 1

)
Vn

NDZ+1 + 2RLI
n+1/2
NDZ

+
(
Vn+1

L + Vn
L

)}
(8.81b)

The overall solution process is the same as for the lossless line case. First solve for the
line voltages from (8.81) and (8.76b) and then obtain the line currents from (8.181).

8.2.3.3 Prony’s Method for Representing a Function Unfortunately, the current
update equation in (8.181a) requires storage of all past values of the currents, which
presents a significant demand on storage requirements. A solution to this problem
approximates Z0(m) as the sum of N exponential functions [3]:

Z0(m) =
(m+1)∫

m

1√
ζ

dζ

∼=
N∑

j=1

a je
mbj (8.182)

In order to determine the 2N unknowns in this expansion, a1, a2, . . . , aN and
b1, b2, . . . , bN , we can use Prony’s method [19,20]. Prony’s method approximates
some general function of m, f (m), at NS equally spaced sample points, m =
0, T, 2T, . . . , (NS − 1) T , over the complete interval of interest in terms of the sam-
pling interval T ; where NS ≥ 2N. These are denoted as

f (m = iT ) ≡ fi for i = 0, 1, 2, . . . , NS − 1 (8.183a)

and the first sample is at m = 0. Hence, the NS equally spaced samples are denoted as

f0 ≡ f (0)

f1 ≡ f (T )

f2 ≡ f (2T )
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...

fNS−1 ≡ f ((NS − 1) T ) (8.183b)

Prony’s method approximates the function as a sum of exponentials as

fi
∼=

N∑
j=1

a je
ib jT

= a1e
ib1T + a2e

ib2T + · · · + aNeibNT

= a1z
i
1 + a2z

i
2 + · · · + aNzi

N (8.184a)

where we denote

z j = ebjT for j = 1, . . . , N (8.184b)

Hence, we can write the Prony approximation as

fi
∼=

N∑
j=1

a jz
i
j for i = 0, 1, 2, . . . , NS − 1 (8.184c)

If we determine z j , we can recover the desired b j from (8.184b) as

b j = 1

T
ln
(
z j

)
(8.185)

Matching (8.184a) at the NS equally spaced sample points gives a set of NS linear
equations:

a1 + a2 + · · · + aN = f0

a1z1 + a2z2 + · · · + aNzN = f1

a1z
2
1 + a2z

2
2 + · · · + aNz2

N = f2

...

a1z
(NS−1)
1 + a2z

(NS−1)
2 + · · · + aNz

(NS−1)
N = fNS−1 (8.186)

If we know zj (or equivalently we know bj so that we could determine zj from
(8.184b)), we could solve the first N of the equations in (8.186) for the values of
the aj . We could also solve all of the equations in (8.186) (an overdetermined set
of NS equations in N unknowns) using the method of least squares [21,30]. (See
Section 9.2.5.4 of Chapter 9 for a discussion of the method of least squares.) In
order to determine zj , we construct the following polynomial in terms of N auxiliary
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coefficients βi (which are to be determined):

N∑
i=0

βiz
i = β0 + β1z + β2z

2 + · · · + βN−1z
N−1 + zN = 0 (8.187a)

and βN = 1. If the βi are determined, the polynomial in (8.187a) can be factored
giving its roots as the desired zj:

(z − z1) (z − z2) · · · (z − zN ) = 0 (8.187b)

In order to obtain βi, we write

N∑
i=0

fk+iβi =
N∑

i=0




N∑
j=1

a jz
k+i
j


βi

=
N∑

j=1

a jz
k
j

{
N∑

i=0

βiz
i
j

}
︸ ︷︷ ︸

=0

= 0 for k = 0, 1, 2, . . . , NS − N − 1

(8.188)

This gives NS − N linear equations in βi:

f0β0 + f1β1 + · · · + fN−1βN−1 + fN = 0

f1β0 + f2β1 + · · · + fNβN−1 + fN+1 = 0

...

fNS-N−1β0 + fNS−Nβ1 + · · · + fNS−2βN−1 + fNS−1 = 0 (8.189a)

where βN = 1 or in matrix form


f0 f1 · · · fN−1
f1 f2 · · · fN

...
. . .

. . .
...

fNS-N−1 fNS−N · · · fNS−2






β0
β1
...

βN−1


 =




−fN

−fN+1
...

−fNS−1


 (8.189b)

After the βi are obtained from the solution of (8.189), the zj can be obtained from the
solution for the roots of the polynomial of (8.187). Then, the ai can be found from
the solution of the equations in (8.186). If the number of data points NS, is greater
than the number of unknowns in the expansion, NS>2N, the above simultaneous
equations can be solved by the method of least squares [21,30]. (See Section 9.2.5.4
of Chapter 9 for a discussion of the method of least squares.)

Kunz showed that a reasonable Prony approximation to Z0(m) as in (8.182) can
be obtained by using 10 terms, where the coefficients are given by [3]:



434 TIME-DOMAIN ANALYSIS OF TWO-CONDUCTOR LINES

TABLE 8.2 Coefficients of the Prony approximation of Z0(m).

i ai bi

1 0.79098180E − 1 −0.11484427E − 2
2 0.11543423E0 −0.13818329E − 1
3 0.13435380E0 −0.54037596E − 1
4 0.21870422E0 −0.14216494E0
5 0.98229667E − 1 −0.30128437E0
6 0.51360484E0 −0.56142185E0
7 −0.20962898E0 −0.97117126E0
8 0.11974447E1 −0.16338433E1
9 0.11225491E − 1 −0.28951329E1
10 −0.74425255E0 −0.50410969E1

Observe from (8.177b) that Z0 (0) = 2. Adding the values of the expansion coeffi-
cients ai in Table 8.2 gives Z0(0) = a1 + a2 + · · · + a10 = 1.41 �= 2. But this error
does not substantially effect the problem since Z0 (0) appears only in the term in
(8.181b):

F =
(

l
�z

�t
+ A

�z

2
+ B

1√
π

�z√
�t

Z0(0)

)
(8.181b)

and a similar term in (8.181a). The term containing the per-unit-length inductance
l(�z/�t), dominates the other terms even for the high-loss line in the example in
Section 8.2.3.5.

There are other ways of obtaining these coefficients in an exponential approxima-
tion as in (8.182). One is the Prony singular-value-decomposition (SVD) method [19].
The other is the matrix pencil (MP) method [22]. The coefficients of the exponential
approximation of Z0 (m) by all these methods are given in Table 8.3 [B.29].

The SVD method gives Z0 (0) = 2.000000149, whereas the MP method gives
Z0 (0) = 1.99994134. The approximation error for each of these three methods is
compared in Figure 8.41. Note that the MP method gives the best approximation, but
all three methods give virtually the exact result for samples less than approximately
500.

8.2.3.4 Recursive Convolution The recursion relation for the currents in (8.181a)
requires that we store all previous values of the currents. To obviate this need, we
substitute (8.182) into (8.181a) to yield

I
n+3/2
k = F−1

(
l
�z

�t
−A

�z

2
+B

�z√
π�t

Z0(0)

)
I
n+1/2
k

− F−1B
�z√
π�t

N∑
i=1

�n
i − F−1

(
Vn+1

k+1 − Vn+1
k

)
(8.190a)



TABLE 8.3

Prony Prony-SVD Matrix Pencil

i ai bi ai bi ai bi

1 0.79098180E − 1 −0.11484427E − 2 0.94437314E − 1 −0.15821633E − 2 0.83141576 −0.38772965E1
2 0.11543423 −0.13818329E − 1 0.15665434 −0.21821581E − 1 0.36307454 −0.10222379E1
3 0.13435380 −0.54037596E − 1 0.16504027 −0.92157810E − 1 0.27397819 −0.38821712
4 0.21870422 −0.14216494 0.28881469 −0.25144386 0.18917986 −0.15317357
5 0.98229667E − 1 −0.30128437 0.74258946E − 1 −0.54918917 0.12665224 −0.60535209E − 1
6 0.51360484 −0.56142185 0.47247797 −1.07005584 0.60012910E − 1 −0.69394020E − 3
7 −0.20962898 −0.97117126 −0.19950136E − 1 −2.03571364 0.67810981E − 1 −0.67863637E − 2
8 0.11974447E1 −0.16338433E1 0.76826675 −5.42397697 0.87875521E − 1 −0.22711265E − 1
9 0.11225491E − 1 −0.28951329E1
10 −0.74425255 −0.50410969E1

435
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FIGURE 8.41 Comparison of the various representations of Z0 (m) =
m+1∫
m

1√
ζ

dζ.

for k = 1, . . . , NDZ, where

�n
i = ai e

bi

[
I
n+1/2
k − I

n−1/2
k

]
+ ebi �n−1

i (8.190b)

The �n
i functions are updated via (8.190a) before evaluating (8.190a). Thus, only one

additional past value of current, I
n−1/2
k , needs to be retained. The result in (8.190b)

can be obtained by substituting the representation of Z0 (m) as a sum of exponentials
as shown in (8.182) into (8.181a) and expanding as

n∑
m=1

Z0(m)
[
I
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]
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]

+ ebi
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aie
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[
I
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k

]

+ e2bi

N∑
i=1

aie
bi

[
I
n−3/2
k − I

n−5/2
k

]
+ · · · (8.191)
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This method of representing a function as a sum of exponential terms as in (8.182)
to avoid storage of previous values in the convolution is referred to as the method of
recursive convolution [23,24]. It relies on the property of the exponential: e(a+b) =
eaeb. For example, suppose we wish to represent a function of t at discrete points ti
that are separated by �t = ti − ti−1. Approximating the impulse response h(t) as a
sum of exponentials, the convolution h(t) ∗ x(t) gives

[h(t)∗x(t)]|t=ti =
ti∫
0

aebτ︸︷︷︸
h(τ)

x (ti − τ) dτ

=
ti−ti−1∫

0

aebτx (ti − τ) dτ +
ti∫

ti−ti−1

aebτx (ti − τ) dτ

=
�t∫
0

aebτx (ti − τ) dτ + eb�t

ti−1∫
0

aebζx (ti−1 − ζ) dζ

=
�t∫
0

aebτx (ti − τ) dτ + eb�ty (ti−1) (8.192)

and we have used a change of variables ζ = τ − (ti − ti−1) in the second integral.
Hence, the recursive convolution technique allows us to accumulate the values of the
convolution at the previous time points as we proceed.

The FDTD equations in (8.76b), (8.81), and (8.190) that incorporate the
frequency-dependent conductor loss are implemented in the FORTRAN program
FDTDLOSS.FOR. (see Appendix A ). This program does not include dielectric loss
for which we now develop a recursion relation.

Recursive convolution can be used to provide a computationally efficient FDTD so-
lution that also includes the dielectric losses for a homogeneous surrounding medium,
for example, a stripline. The second transmission-line equation in the time domain
contains the dielectric loss and is

∂I(z, t)

∂z
= −y (t) ∗ V (z, t)

= −M

[
N∑

i=1

Ki

τi

e−t/τi

]
∗ ∂V (z, t)

∂t
−chf

∂V (z, t)

∂t

= −
N∑

i=1

M
Ki

τi


 t∫

0

e−τ/τi
∂V (z, t − τ)

∂ (t − τ)
dτ


− chf

∂V (z, t)

∂t

(8.193)
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where we have substituted the previous result for the dielectric loss in a homogeneous
medium given in (8.160). The convolution integral can be discretized as before to
yield

t∫
0

e−τ/τi
∂V (z, t − τ)

∂ (t − τ)
dτ ∼=

(n+1)�t∫
0

e−τ/τiF ((n + 1)�t − τ)dτ

=
n∑

m=0

Fn+1−m

(m+1)�t∫
m�t

e−τ/τidτ

= −
n∑

m=0

Fn+1−mτi

[
e−(m+1)�t/τi − e−m�t/τi

]
(8.194)

where F (t) = ∂V (z, t)/∂t. Hence, (8.193) can discretized with reference to Figure
8.17 as

I
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n+1/2
k−1

�z
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]
(8.195)

Solving this gives
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(8.196a)

where

H =
[

1 − c−1
hf M

N∑
i=1

Ki

(
e−�t/τi − 1

)]
(8.196b)
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Writing this out and using the recursive convolution idea gives

Vn+1
k = Vn

k − H−1c−1
hf

�t

�z

[
I
n+1/2
k − I

n+1/2
k−1

]
+ H−1c−1

hf M

N∑
i=1

�n
i (8.197a)

for k = 2, . . . , NDZ, where

�n
i = Kie

−�t/τi

[
e−�t/τi − 1

] [
Vn

k − Vn−1
k

]
+ e−�t/τi�n−1

i (8.197b)

Hence, only one additional past value, Vn−1
k , needs to be retained. In addition, the

terminal voltage update equations in (8.78) and (8.81) were also derived from the
second transmission-line equation and must likewise be discretized with reference to
Figure 8.18.

8.2.3.5 An Example: A High-Loss Line In order to compare the predictions of
these models, we will investigate a high-loss two-conductor transmission line shown
in Figure 8.42. Two conductors of rectangular cross section of width 20 �m and
thickness 10 �m are separated by 20 �m and placed on one side of a silicon substrate

FIGURE 8.42 A lossy printed circuit board for illustration of numerical results: (a) line
dimensions and terminations, (b) cross-sectional dimensions, and (c) representation of the
open-circuit source voltage waveform.
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(εr = 12) of thickness 100 �m. The total line length is 20 cm and is terminated at
the near and far ends in 50-� resistors. The source is a ramp function rising to a
level of 1 V with a rise time of 50 ps. The per-unit-length inductance and capacitance
were computed as l = 0.805969 �H/m and c = 88.2488 pF/m. This gives a velocity
of propagation in the lossless case of v = 1.18573 × 108 m/s and a one-way time
delay of TD = 1.68672 ns, which gives an effective dielectric constant of ε′

r = 6.4
and a characteristic impedance of ZC = 95.566 �. The per-unit-length dc resistance
is computed as A = rdc = 1/ (σwt) = 86.207 �/m. The break frequency where this
transitions to the high-frequency resistance that varies as

√
f is computed from (8.131)

with k = 2 as f0 = 393.06 MHz. The factor B is computed as described previously to
be

B = 1

2(t + w)

√
�0

σ
= rdc√

πf0
= 2.45323 × 10−3.

Dielectric loss is not included in these calculations. Figure 8.43 shows the comparison
of the SPICE (lossless) predictions, TDFD, and FDTD results for the near-end and
far-end voltages. The TDFD transformation modeled the source as a 10-MHz peri-
odic trapezoidal waveform with 50 % duty cycle and rise/fall times of 50 ps. The code
TIMEFREQ.FOR was used, which uses the frequency-domain transfer function ob-
tained from MTL.FOR. The bandwidth of this signal is on the order of 1/τr = 20 GHz,
so 2000 harmonics were used in the computation of the frequency response via the

FIGURE 8.43 Source and load voltages of the two-conductor line of Figure 8.42 using the
lossless SPICE model, the lossy FDTD model, and the time-domain to frequency-domain
(TDFD) method including losses for a rise time of 50 ps.
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FIGURE 8.44 Model for computing the terminal voltages due to dc land resistance.

MTL.FOR code. The FDTD results were obtained with FDTDLOSS.FOR, which
uses the Prony coefficients in Table 8.2 for approximating Z0 (m) as in (8.182). The
high-frequency spectrum rolls off at −40 dB/decade above 1/πτr = 6.3662 GHz. The
spatial discretization for the FDTD results was chosen so that each cell was λ/10 at
twice this break frequency giving NDZ = 215. The “magic time step” of �t = �z/v

for this spatial discretization and a total solution time of 10 ns is NDT = 1275. The
TDFD results approach the steady-state limit obtained by replacing the line conduc-
tors with their total dc resistances of rdcL = 17.2414 � as shown in Figure 8.44
of VNE,ss = 0.628205 V and VFE,ss = 0.371795 V. The TDFD results at 10 ns are
VNE = 0.6286 V and VFE = 0.3719 V, which converge rapidly to the steady-state
values calculated from Figure 8.44. The FDTD results at 10 ns are VNE = 0.6436 V
and VFE = 0.3566 V, and do not converge as rapidly to the steady-state values. How-
ever, the FDTD computations were recalculated to 40 ns, giving VNE = 0.6285 V and
VFE = 0.3715 V. Hence, the FDTD results converge to the correct steady-state values
but at a much slower rate than the TDFD predictions.

The effect of conductor loss is evident and significant, but the TDFD and the FDTD
method give different results. This is due to the fact that the FDTD method simply
adds the low-frequency dc resistance to the high-frequency impedance and models
the total conductor impedances as

ẑi(ω) = A + B
√

jω

= rdc + rhf + jω li,hf

= rdc + rdc

√
f

f0
(1 + j) (8.198a)

The time-domain to frequency-domain method uses the frequency-domain transfer
function computed with MTL.FOR, which uses the frequency-selective model of the
conductor internal impedances:

ẑi(ω) =
{

rdc + jω li,dc = rdc (1 + jf/f0) , f ≤ f0

rhf + jω li,hf = rdc
√

f/f0 (1 + j) , f ≥ f0
(8.198b)

At the break frequency f0 = 393.06 MHz, the FDTD value for ẑi (ω) is a factor of
√

2
larger than those of the frequency-selective TDFD method. The true value lies between
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FIGURE 8.45 Recomputation of the results of Figure 8.43 but with the losses represented
as A + B

√
s in both the FDTD and the TDFD methods.

these two values (see Figs. 4.15 and 4.16 of Chapter 4 ). This break frequency lies in
the −20 dB/decade region of the spectrum, which begins at 1/πτ = 6.366 MHz and
ends at 1/πτr = 6.366 GHz [A.3 ]. Thus, we should expect a difference between the
two model predictions. To verify that this is the case, the time-domain to frequency-
domain transformation results were recomputed, wherein the low-frequency and high-
frequency conductor impedances are added together in the frequency-domain transfer
function as in the FDTD code rather than using a frequency-selective computation as
described above. Figure 8.45 shows the results of this computation for the near-end and
far-end voltages. These results confirm the hypothesis and additionally show that the
FDTD code gives virtually identical results to the time-domain to frequency-domain
transformation method when the same equations are being solved.

In the applications of the FDTD technique to electromagnetic scattering problems,
a surface impedance boundary condition is frequently used. This condition essentially
has a

√
f frequency dependence and requires no constant resistance [3,15]. This has

led others to neglect rdc in transmission-line problems. Numerous solutions of the
transmission-line equations for lossy lines in the literature include only the high-
frequency

√
f impedance of the line conductors and ignore their dc, constant resis-

tance. We have included this dc resistance in the FDTD solution via the A term. The
question is whether the dc resistance can be neglected and only the high-frequency√

f impedance be used. Figure 8.46 shows the results of including only the dc resis-
tance or only the high-frequency

√
f impedance of the conductors. Including only

the dc resistance gives the correct late-time steady-state dc level of the responses,
but the early-time results are not well predicted at the beginning of the transitions.
Including only the high-frequency

√
f impedance of the conductors does not predict
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FIGURE 8.46 Recomputation of the TDFD results of Figure 8.43 but with losses represented
as only their dc values or only their high-frequency values.

the correct late-time dc levels. Figure 8.47 shows the comparison between the TDFD
and FDTD models using either only the dc resistance or only the high-frequency
resistance. This again confirms the importance of including the dc resistance and
additionally shows that the TDFD and FDTD models give virtually identical results
when the same representations of the conductor impedances are used.

Observe in Figures 8.45–8.47 that there appears to be a violation of causality in
the far-end computed results; that is, a response appears prior to one time delay of
the lossless line of TD = L

√
lc = 1.6867 ns. Examining the plotted data, we find

that all of the FDTD calculations for the far-end voltages in Figures 8.43 and 8.45–
8.47 are, in fact, causal; that is, no response in the far-end voltages appears before
TD = 1.6867 ns. However, all of the TDFD computed results for the far-end voltages
are noncausal to some degree. This may be a reconstruction error (aliasing) inherent
in the TDFD recombination process.

8.2.3.6 A Correction for the FDTD Errors The difference in the TDFD and FDTD
results is due to the different ways the two codes model the frequency-dependent
internal impedance. The TDFD method uses a frequency-selective asymptote model
given in (8.198b), whereas the FDTD method essentially adds the two asymptotes as in
(8.198a). The actual result (at least for wires) lies between the two at the breakpoint f0
(see Figs. 4.15 and 4.16 in Chapter 4 ). As discussed previously, the A + B

√
s model

in the FDTD code simply adds the low-frequency and high-frequency asymptotes.
This has a representation problem because the high-frequency internal inductance
dominates the dc internal inductance below the break frequency f0 as illustrated in
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FIGURE 8.47 Recomputation of the FDTD and TDFD results of Figure 8.43 but with losses
represented as only their dc values or only their high-frequency values.

Figure 8.38. This was remedied by multiplying the low-frequency impedance by a
first-order low-pass filter and multiplying the high-frequency impedance by a first-
order high-pass filter giving the representation in (8.150). The convolution term is
then given by (8.153):

ẑi(s)I(z, s) ⇐⇒ zi(t) ∗ I(z, t)

= rdcI(z, t) + rdc

√
2

π


 1√

α
−2e−α

√
α∫

0

eλ2
dλ


 ∗ ∂I(z, t)

∂t

(8.153)

where

α = ω0t. (8.154)

and the integral in the second term in (8.153) can be approximated as

√
α∫

0

eλ2
dλ =

√
α∫

0

[
1 + λ2

1!
+ λ4

2!
+ · · ·

]
dλ



INCORPORATION OF LOSSES 445

=


α

1

2 + α

3

2

3 × 1!
+ α

5

2

5 × 2!
+ · · ·




=
∞∑

n=0

α
n+

1

2

(2n + 1) n!
. (8.155)

Evaluating the second term of (8.153) as before yields

t∫
0

rdc

√
2

π


 1√

α
−2e−α

√
α∫

0

eλ2
dλ


F (t − τ)dτ

∼=
(n+1)�t∫

0

rdc

√
2

π


 1√

α
−2e−α

√
α∫

0

eλ2
dλ


F ((n + 1)�t − τ)dτ

∼= rdc

√
2

π

n∑
m=0

Fn+1−m

(m+1)�t∫
m�t


 1√

α
−2e−α

√
α∫

0

eλ2
dλ


 dτ

= rdc

√
2

π

1

ω0

n∑
m=0

Fn+1−m

ω0(m+1)�t∫
ω0m�t


 1√

α
−2e−α

∞∑
n=0

α

(2n + 1)

2

(2n + 1)n!


 dα

= rdc

√
2

π

2

ω0

n∑
m=0

Fn+1−m

[
√

α −
∞∑

n=0

G(n, α)

]ω0(m+1)�t

ω0m�t
(8.199a)

where

G(n, α) =




−√
αe−α +

√
π

2

√
α∫

0

eλ2
dλ n = 0

(
2n − 1

2n

)
G(n − 1, α) − 1

(2n + 1)n!
α

2n + 1

2 e−α n �= 0




.

(8.199b)
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In order to modify the previous development without these filters, define the quantity

K(α) = √
α −

∞∑
n=0

G(n, α). (8.200)

We may identify the quantity Z0(m) in the original development as

Z0(m) = 1√
�t

[K (ω0(m + 1)�t) − K (ω0m�t)] (8.201a)

and

B = rdc
2
√

2√
πω0

. (8.201b)

Thus, the previous formulation may be modified if we obtain the appropriate repre-
sentation for Z0(m).

The function K(α) can similarly be approximated with Prony’s method as

K(α) ∼=
p∑

i=1

aie
αbi (8.202)

whose coefficients ai and bi are predetermined independent of the specific problem,
that is, independent of ω0. The �n

i in (8.190b) are similarly modified using (8.201a)
and this Prony representation. A reasonable approximation uses p = 14 terms in the
Prony expansion with coefficients given in Table 8.4 [B.23].

TABLE 8.4 Coefficients of the Prony Approximation of K(α).

i ai bi

1 2.1592880E − 2 −1.1293984E0
2 −3.4051657E − 2 −1.6697772E0
3 4.8901666E0 −5.0659628E − 1
4 1.1037285E2 −2.5482929E0
5 6.3898279E − 2 −6.8362799E0
6 1.6387213E − 1 −2.6023629E − 1
7 −9.3826731E + 1 −1.7778543E0
8 7.0160068E − 1 −1.4966650E − 1
9 −6.0668061E − 1 −1.2588752E + 1
10 1.3735503E + 3 −2.1344676E0
11 −1.6127498E − 1 −5.1526627E − 2
12 −1.3915974E + 3 −2.1891200E0
13 −3.7391617E0 −3.9021096E − 1
14 1.5776220E − 1 −1.0451770E − 2
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FIGURE 8.48 Prony representation of Z0 (m) given in Eq. (8.201a).

Figure 8.48 compares the representation of Z0(m) given in (8.201a) using the
Prony approximation of K(α) given in (8.202) to the exact result using (8.200). It
should be noted that, although the Prony coefficients for K(α) can be predetermined
independent of the problem, the representation error in Z0(m) depends on the specific
structure since Z0(m) involves ω0 and �t. These values for the example previously
considered are ω0 = 2.47 × 109 and �t = 7.84 ps.

Figure 8.49 compares the modified FDTD results to the TDFD results for the
problem of Figure 8.42, which was considered previously. The FDTD errors in Figure
8.43 are now corrected illustrating the accuracy of the FDTD implementation of the
first-order filter representation of conductor losses given in (8.150). Both results now
give rapid convergence to the correct late-time steady-state limit obtained by replacing
the line conductors with their total dc resistances of rdcL = 17.2414 � as shown in
Figure 8.44 of VNE,ss = 0.628205 � and VFE,ss = 0.371795 �. Although not shown,
the TDFD results incorporating the filters as in (8.150) were compared to the FDTD
results using these filters as implemented above and the results were virtually identical
as they should be, further illustrating the accuracy of the Prony approximation.

8.2.4 Lumped-Circuit Approximate Characterizations

Perhaps the simplest way of including losses is via an approximate lumped-circuit
model. The obvious structural choices are the lumped-Pi or lumped-T structures in-
vestigated previously. The advantage of these representations is that simple lumped-
circuit analysis programs can be used to solve the line voltages either in the frequency
domain or in the time domain. The primary difficulty with these approximations is
that they do not correctly process certain of the high-frequency spectral components
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FIGURE 8.49 Recomputation of the results of Figure 8.43 but with the FDTD results repre-
sented using the corrected result in (8.153) using filters.

of the input signal because their validity is based on the assumption that they are
electrically short at all frequencies of interest. Figure 8.50(a) shows a lumped-Pi rep-
resentation of a section of the line. Typically, this type of representation requires a
large number of such sections to represent the line for input signals having significant
high-frequency spectral content. Implementation of this lumped-circuit approxima-
tion is straightforward if we omit consideration of the skin-effect

√
f behavior of

the line resistance (and internal inductance) and only include the dc resistance and
internal inductance, which can be represented as constant elements. We showed in
the previous section that this would lead to errors in the early-time results.

A recurring problem is how we shall represent the
√

f skin-effect behavior in the
time domain that is required in these lumped-circuit representations. A novel method
of doing this is to simulate the physical process that occurs in the development of skin
effect [25]. For a conductor of circular cross section, the current resides in annuli and
is more strongly concentrated in the outer annuli as frequency is increased. Each of
these annuli can be represented by a resistor and an inductor. The circuit representation
of this process shown in Figure 8.50(b) serves to simulate this process. At dc, all
resistors are in parallel giving the dc resistance. As frequency increases, each branch
is successively removed from the circuit generating a

√
f frequency dependence.

Of course, a larger number of branches are required to extend this
√

f behavior to
higher frequencies. Another representation that is particularly useful for conductors
of rectangular cross section is to simulate the representation of the conductor as
numerous bars in parallel, as described in Chapter 4 and shown in Figure 4.19 .
The current over each subbar is assumed constant but of unknown value, and the
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FIGURE 8.50 Methods of including frequency-dependent conductor losses into a lumped-
circuit representation.

dc resistances and partial inductances of the individual subbars are used to give the
circuit shown in Figure 8.50(c). This was implemented in [26–28]. Because of the
interaction between the subbars via the mutual partial inductances, the currents in
the subbars adjust to simulate the actual skin effect that occurs. Other methods of
generating lumped-circuit models of the frequency-dependent skin-effect impedance
are given in [B.17 ].

The FORTRAN code SPICELPI.FOR described in Appendix A generates a
lumped-Pi SPICE subcircuit model for a lossless line. This can then be modified to
include losses by adding either dc resistances or one of the skin effect simulations
in Figure 8.50(b) or (c). In this way, only the line is modeled and nonlinear loads
can be handled in the CAD code in which this model is imbedded. This is a simple
approximation but suffers from the lengthy computation time, which a sufficiently
large circuit model requires to model the very high-frequency spectral components
of the input signal.
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8.2.5 The Use of Macromodels in Modeling the Line

Macromodels of the line essentially represent the line as a two-port model at its
input and output ports. An important part of the process in generating a macromodel
is to convert the partial differential equations of the transmission line into ordinary
differential equations that most CAD computer programs such as SPICE can handle.
The SPICE equivalent circuit for a lossless line shown in Figure 8.9 is an example of
a macromodel of the line. The effect of the terminal voltage and current at one port on
the voltage and current at the other port is represented using time-delayed controlled
sources. An additional advantage of a macromodel of the line occurs in modeling
today’s high-speed digital interconnect structures where, in many cases, line losses
cannot be neglected. The solutions of the lossy transmission-line equations involve
transcendental functions that have an infinite number of roots. Any transfer function
of such a system will therefore have an infinite number of poles that characterize the
time-domain response. Determining the inverse Laplace transforms of these in order
to return to the time domain is an impossible task. If we can determine a macromodel
of the line as a transfer function using a finite number of dominant poles, we can
drastically reduce the simulation times. One method for doing this, the Pade method,
will be discussed in this section. Other methods for model order reduction (MOR) for
these dense, high-speed digital interconnects will be discussed in the next chapter.

A macromodel of a lossy line similar to that for a lossless line shown in Figure
8.9 can be obtained by using the generalized method of characterics as follows [29].
First, we obtain the chain parameters of the lossy line in the frequency domain as[

V̂ (L)
Î (L)

]
=
[

φ̂11 φ̂12
φ̂21 φ̂22

]
︸ ︷︷ ︸

�̂(L)

[
V̂ (0)
Î (0)

]
(8.203)

where the frequency-domain chain parameters are

φ̂11 = cosh (γ̂L)

= eγ̂L + e−γ̂L

2
(8.204a)

φ̂12 = −ẐCsinh (γ̂L)

= −ẐC
eγ̂L − e−γ̂L

2
(8.204b)

φ̂21 = − 1

ẐC
sinh (γ̂L)

= − 1

ẐC

eγ̂L − e−γ̂L

2
(8.204c)
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φ̂22 = cosh (γ̂L)

= eγ̂L + e−γ̂L

2
(8.204d)

The characteristic impedance is frequency dependent and is given by

ẐC(ω) =
√

r(ω) + jω li(ω) + jω l

g(ω) + jω c
(8.205a)

The propagation constant is also frequency dependent and is given by

γ̂(ω) =
√[

r(ω) + jω li(ω) + jω l
] [

g (ω) + jω c
]

(8.205b)

In terms of the Laplace transform variable s, these become

ẐC (s) =
√

r (s) + sli (s) + sl

g (s) + sc
(8.206a)

and

γ̂ (s) =
√

[r (s) + sli (s) + sl]
[
g (s) + sc

]
(8.206b)

Writing out (8.203) and using the relations in (8.204) gives

V̂ (L, s) =
(

eγ̂(s)L + e−γ̂(s)L

2

)
V̂ (0, s) − ẐC (s)

(
eγ̂(s)L − e−γ̂(s)L

2

)
Î (0, s)

(8.207a)

ẐC (s) Î (L, s) = −
(

eγ̂(s)L − e−γ̂(s)L

2

)
V̂ (0, s)

+ ẐC(s)

(
eγ̂(s)L + e−γ̂(s)L

2

)
Î (0, s) (8.207b)

Adding and subtracting these gives

V̂ (0, s) − ẐC(s)Î(0, s) = e−γ̂(s)L [
V̂ (L, s) − ẐC(s)Î(L, s)

]
(8.208a)

V̂ (L, s) + ẐC(s)Î(L, s) = e−γ̂(s)L [
V̂ (0, s) + ẐC(s)Î(0, s)

]
(8.208b)

These relations may be represented as shown in Figure 8.51(a), where

Ê0(s) = e−γ̂(s)L [
V̂ (L, s) − ẐC(s)Î(L, s)

]
(8.209a)
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FIGURE 8.51 Two implementations of the generalized method of characteristics to represent
lossy lines.

ÊL(s) = e−γ̂(s)L [
V̂ (0, s) + ẐC(s)Î(0, s)

]
(8.209b)

or, alternatively,

Ê0(s) = e−γ̂(s)L [
2V̂ (L, s) − ÊL (s)

]
(8.210a)

ÊL(s) = e−γ̂(s)L [
2V̂ (0, s) − Ê0(s)

]
(8.210b)

The results in (8.208) using either (8.209) or (8.210) give the equivalent macro-
model shown in Figure 8.51(a), which is easily implementable in the frequency do-
main. For the time domain, the model in Figure 8.51(a) is problematic because of the
need to develop the inverse transforms of

ẐC (s) ⇐⇒ zC (t) (8.211a)

e−γ̂(s)L ⇐⇒ h (t) (8.211b)
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where h (t) is essentially the impulse response of a completely matched line. In the
time domain, (8.208) become

V (0, t) − zC (t) ∗ I(0, t) = E0 (t) (8.212a)

V (L, t) + zC (t) ∗ I(L, t) = EL(t) (8.212b)

where

E0 (t) = h (t) ∗ [V (L, t) − zC (t) ∗ I(L, t)] (8.213a)

EL (t) = h (t) ∗ [V (0, t) + zC (t) ∗ I(0, t)] (8.213b)

or

E0 (t) = h (t) ∗ [2V (L, t) − EL (t)] (8.214a)

EL (t) = h (t) ∗ [2V (0, t) − E0 (t)] (8.214b)

and ∗ denotes convolution. Hence, we are again faced with the difficult computational
task of convolution.

An alternative form of the equivalent circuit macromodel (of the many that are
possible) of the line can be obtained by multiplying both sides of (8.208a) and (8.208b)
by the characteristic admittance ŶC (s) = 1/ẐC (s) and rearranging to give

Î(0, s) − ŶC(s)V̂ (0, s) = e−γ̂(s)L [
Î(L, s) − ŶC(s)V̂ (L, s)

]
(8.215a)

Î(L, s) + ŶC(s)V̂ (L, s) = e−γ̂(s)L [
Î(0, s) + ŶC(s)V̂ (0, s)

]
(8.215b)

This may be represented by the equivalent circuit shown in Figure 8.51(b). In the time
domain, these become

I(0, t) − yC (t) ∗ V (0, t) = h (t) ∗ [I(L, t) − yC (t) ∗ V (L, t)
]

(8.216a)

I(L, t) + yC (t) ∗ V (L, t) = h (t) ∗ [I(0, t) + yC(t) ∗ V (0, t)
]

(8.216b)

where ŶC (s) ⇐⇒ yC (t).

8.2.6 Representing Frequency-Dependent Functions in the Time Domain
Using Pade Methods

The inverse Laplace transform time-domain forms in the macromodels in the previ-
ous section can be obtained using the Pade method [30–34]. The Laplace transform
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function to be represented is modeled as a ratio of polynomials in s as

F (s) = N(s)

D(s)
(8.217)

Approximate the numerator and denominator polynomials N(s) and D(s) as Nth order
polynomials in s as

F (s) = F (0)
1 + a1s + · · · + aNsN

1 + b1s + · · · + bNsN
(8.218)

where F (0) = F (s)|s=0 is the dc response. Expanding this with partial fractions as
[A.2, A.5]

F (s) = F (∞) +
N∑

k=1

ck

s − pk

(8.219)

where F (∞) = F (s)|s → ∞ is the steady-state response of the system and F (∞) =
F (0)(aN/bN ). pk are the N poles of F (s), and ck are the N residues associated with
the poles. The inverse Laplace transform becomes

f (t) = F (∞)δ(t) +
N∑

k=1

cke
pkt (8.220)

where δ(t) is the unit impulse function [A.2, A.5]. Hence, the time-domain represen-
tation can be represented as a sum of exponentials, thereby allowing the use of the
recursive convolution procedure.

The 2N coefficients a1, . . . , aN, b1, . . . , bN in (8.218) are determined by expand-
ing F (s) in terms of a power series in s or, in other words, the moments of f (t), using
a Maclaurin series about s = 0:

F (s) = F (0)

[
1 +

∞∑
k=1

mks
k

]

= F (0)
[
1 + m1s + m2s

2 + · · ·
]

(8.221)

The moments of F (s) can be found by differentiating F (s). Differentiating (8.221)
gives mk in terms of the derivatives of F (s) as

mk = 1

F (0)

1

k!

dkF (s)

dsk

∣∣∣∣∣
s=0

(8.222)
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The term “moments” arises from the following. The Laplace transform of F (s) is

F (s) =
∞∫
0

f (t) e−stdt

=
∞∫
0

f (t)

[
1 − st

1!
+ s2t2

2!
− · · ·

]
dt

=
∞∫
0

f (t) dt − s

∞∫
0

tf (t) dt + s2

∞∫
0

t2

2!
f (t)dt − · · ·

= k0 + k1s + k2s
2 + · · ·

(8.223)

Hence, ki = F (0)mi are said to be the moments of f (t).
Equating (8.218) and (8.221), multiplying both sides by the denominator of (8.218),

and grouping terms with like powers of s yields 2N equations that can be solved for
the 2N coefficients a1, . . . , aN, b1, . . . , bN :

s : a1 = b1 + m1
s2 : a2 = b2 + m1b1 + m2
s3 : a3 = b3 + m1b2 + m2b1 + m3
...
sN−1 : aN−1 = bN−1 + m1bN−2 + m2bN−3 + · · · + mN−1
sN : aN = bN + m1bN−1 + m2bN−2 + · · · + mN

(8.224a)

and

sN+1 : 0 = m1bN + m2bN−1 + · · · + mNb1 + mN+1
sN+2 : 0 = m2bN + m3bN−1 + · · · + mN+1b1 + mN+2
...
s2N−1 : 0 = mN−1bN + mNbN−1 + · · · + m2N−2b1 + m2N−1
s2N : 0 = mNbN + mN+1bN−1 + · · · + m2N−1b1 + m2N

(8.224b)

Representing these in matrix form gives the required 2N equations. The bi coefficients
for i = 1, . . . , N can be obtained from (8.224b) as




m1 m2 m3 · · · mN

m2 m3 m4 · · · mN+1
m3 m4 m5 · · · mN+2
...

...
...

...
...

mN mN+1 mN+2 · · · m2N−1







bN

bN−1
bN−2

...
b1


 = −




mN+1
mN+2
mN+3

...
m2N


 (8.225a)
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and the ai coefficients for i = 1, . . . , N can then be obtained from (8.224a) as


a1
a2
a3
...

aN


 =




1 0 0 · · · 0
m1 1 0 · · · 0
m2 m1 1 · · · 0
...

...
...

...
...

mN−1 mN−2 mN−3 · · · 1







b1
b2
b3
...

bN


+




m1
m2
m3
...

mN


 (8.225b)

The N residues of the partial-fraction expansion in (8.219) can be found directly
using the methods of [A.2, A.5] or in terms of the moments mk [34]. First, obtain
the N poles of the denominator polynomial D(s) by factoring D(s) using a root-
finding algorithm as D(s) = 1 + b1s + · · · + bNsN = bN

(
s − p1

) · · · (s − pN

)
.

Differentiating (8.219) with respect to s and evaluating at s = 0 and comparing to
(8.222) yields

mkF (0) = −
N∑

i=1

ci

pk+1
i

(8.226)

hence we can obtain the residues indirectly from




1

p2
1

1

p2
2

· · · 1

p2
N

1

p3
1

1

p3
2

· · · 1

p3
N

...
... · · · ...

1

pN+1
1

1

pN+1
2

· · · 1

pN+1
N







c1
c2
...

cN


 = −F (0)




m1
m2
...

mN


 (8.227)

and

F (∞) − F (0) =
N∑

i=1

ci

pi

(8.228)

Unstable poles, that is, poles in the right-half plane, may be obtained rendering
the representation unstable. Generally, these poles can be moved to the left-half plane
resulting in a stable representation if we increase the order of the representation,
N. However, the coefficient matrix in (8.225a), although a Toeplitz matrix, tends
to be ill conditioned. Hence, care must be observed in increasing the order of the
representation, N, and solving (8.225a). A LU decomposition method is recommended
for use in solving (8.225a) along with some conditioning [30].

The Pade method of expanding the transfer function in moments about s = 0
described above is accurate in a region about s = 0 [30]. In the next chapter, we
will discuss complex frequency hopping (CFH), which seeks to expand the region of
convergence. References [31, 32] point out that it is generally preferable to expand
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F (s) about s = ∞ instead of about s = 0 and show examples to support this assertion.
If we think about the frequency-domain meaning of F (s), values around s = ∞
correspond to the high-frequency spectral content of the impulse response, whereas
values around s = 0 correspond to the low-frequency spectral content. Predicting the
low-frequency spectral content well means that our time-domain predictions of the
impulse response will be most accurate for the late-time or steady-state part of that
response. On the contrary, predicting the high-frequency spectral content well means
that our time-domain predictions of the impulse response will be most accurate for the
early-time or initial part of that response. In using this time-domain impulse response
result in a convolution (the primary reason for using Pade), the early-time content of
the impulse response is the most important aspect in the accurate prediction of the
overall response. In performing the convolution, we virtually never use the steady-
state response of the impulse response. To this end, we write the transfer function in
terms of z = 1/s as

F (s) = F (∞)
sN + A1s

N−1 + · · · + AN

sN + B1sN−1 + · · · + BN

= F (∞)
1 + A1z + · · · + ANzN

1 + B1z + · · · + BNzN
(z = 1/s) (8.229)

and F (0) = F (∞)(AN/BN ). Again expand F (s) in terms of moments by expanding
about s = ∞ or, equivalently, about z = 0 as

F (s) = F (∞)

[
1 +

∞∑
k=1

Mkz
k

]

= F (∞)
[
1 + M1z + M2z

2 + · · ·
]

(8.230)

and the moments Mk are obtained from

Mk = 1

F (∞)

1

k!

dkF (s)

dzk

∣∣∣∣∣
z=0

(8.231)

Equations (8.229) and (8.230) are of an identical form to (8.218) and (8.221) with
z ⇐⇒ 1/s. Hence, we may solve the 2N equations in (8.224) by replacing ai ⇒ Ai,
bi ⇒ Bi, and mi ⇒ Mi and interchanging F (0) ⇒ F (∞). Alternatively, using the first
N − 1 equations of (8.224a), the last equation of (8.224a), and the first N − 1 equations
of (8.224b) yields an alternative set of 2N equations that can be solved for the 2N
coefficientsA1, . . . , AN−1, B1, . . . , BN [31, 32]. TheBi coefficients for i = 1, . . . , N
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can be obtained from




(
1 − An

Bn

)
M1 M2 · · · MN−1

M1 M2 M3 · · · MN

M2 M3 M4 · · · MN+1
...

...
...

...
...

MN−1 MN MN+1 · · · M2N−2







BN

BN−1
BN−2

...
B1


 = −




MN

MN+1
MN+2

...
M2N−1




(8.232a)

and the Ai coefficients for i = 1, . . . , N − 1 can then be obtained from




A1
A2
A3
...

AN−1


 =




1 0 0 · · · 0
M1 1 0 · · · 0
M2 M1 1 · · · 0

...
...

...
...

...
MN−2 MN−3 MN−4 · · · 1







B1
B2
B3
...

BN−1


+




M1
M2
M3

...
MN−1




(8.232b)

and AN = BN (F (0) /F (∞)). The rational function in (8.229) can again be expanded
in partial fractions as

F (s) = F (∞) +
N∑

k=1

dk

s − qk

(8.233)

where qk are the N poles computed for this representation of F (s) and dk are the
N residues associated with the poles. The poles and residues for this representation
are generally different from those of the representation in (8.218). The time-domain
result can again be written in terms of a sum of exponentials so that the method of
recursive convolution can be used:

f (t) = F (∞)δ(t) +
N∑

k=1

dke
qkt (8.234)

Hence, the Prony method or the Pade method can be used to give exponential rep-
resentations of h (t) and zC (t) or yC (t) that can be used to implement the convolutions
using the recursive convolution as described in Section 8.2.3.4. The Pade method has
the advantage of using frequency-domain data. However, poles with nonnegative real
parts may occur, thereby causing instabilities. Generally, these unstable poles can be
moved to the left-half plane by increasing the order of the representation, N.

As an example, consider a lossy transmission line characterized by constant r, l, g,
and c per-unit-length parameters, that is, their dc values. The characteristic admittance
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is written as [32]

ŶC (s) =
√

g + sc

r + sl

=
√

c

l

√√√√√1 + g

c
z

1 + r

l
z

= ŶC (∞)

√√√√√1 + g

c
z

1 + r

l
z

(8.235)

where z = 1/s. Note that ŶC (∞) = √
c/l. Expanding this in moments about s = ∞

or, equivalently, z = 0 gives

√√√√√1 + g

c
z

1 + r

l
z

= 1 + M1z + M2z
2 + · · · + Mkz

k + · · · (8.236)

and the moments are obtained as

Mk = 1

k!

dk

√√√√√1 + g

c
z

1 + r

l
z

dzk
(8.237)

This differentiation, although tedious, can be performed symbolically giving exact
expressions for the moments. Hence, ŶC (s) can be expanded in partial fractions as in
(8.233) with the resulting time-domain expressions given in (8.234). Observe that the
time-domain expression in (8.234) is in terms of a sum of exponentials. Hence, it can
be used in a recursive convolution method to perform the convolutions in (8.216).

The propagation function e−γ̂(s)L can similarly be expanded to obtain h (t). The
propagation constant is

γ̂ (s) =
√

(r + sl) (g + sc)

= s
√

lc

√(
1 + r

l
z
)(

1 + g

c
z
)

= s
√

lc

[
1 +

∞∑
k=1

Mkz
k

]
(8.238)
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where we symbolically differentiate
√

(1 + (r/ l) z) (1 + (g/c) z) to obtain the mo-
ments Mk as

Mk = 1

k!

dk
√(

1 + r
l
z
) (

1 + g
c
z
)

dzk
(8.239)

Hence, the propagation function e−γ̂(s)L is

e−γ̂(s)L = e−s
√

lcLe

−s
√

lcL

∞∑
k=1

Mkz
k

= e−s
√

lcLe−M1
√

lcLe

−√
lcL

∞∑
k=1

(
Mk+1/s

k
)

= e−sTDe−M1TDe

−
∞∑

k=1

TD

(
Mk+1/s

k
)

(8.240)

where we denote the one-way time delay of the lossless line as TD = √
lcL. Represent

the last exponential with Pade methods as

e
−
∑∞

k=1
TD

(
Mk+1/s

k
)

= 1 +
∞∑

k=1

βk

sk

= sL + c1s
L−1 + · · · + cL

sL + d1sL−1 + · · · + dL

= 1 +
L∑

i=1

Ki

s − qi

(8.241)

Using the infinite series expansion for the exponential gives recursion relations for
βk as [31,32]

β1 = α1

β2 = 1

2
(2α2 + α1) = 1

2
(α1, 2α2) (β1, 1)

β3 = 1

3
(α1, 2α2, 3α3) (β2, β1, 1)

...

βk = 1

k
(α1, 2α2, . . . , kαk) (βk−1, βk−2, . . . , 1) (8.242)
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where we denote αk = −TDMk+1. Hence, we can write the propagation function as

e−γ̂(s)L = e−sTDe−M1TD

(
1 +

L∑
i=1

Ki

s − qi

)
(8.243)

In the time domain, (8.243) gives

e−γ̂(s)LF (s) ⇐⇒ e−M1TDf (t − TD) ∗
(

δ(t) +
L∑

i=1

Kie
qit

)
(8.244)

Hence, we have the required representation in terms of exponentials to facilitate
the recursive convolution scheme in performing the convolution. In order to include
skin-effect losses, we use the previous representation of the internal impedance as
r + sli = A + B

√
s giving

ŶC(s) =
√

g + sc

A + B
√

s + sl
(8.245a)

and

γ̂ (s) =
√

(g + sc)
(
A + B

√
s + sl

)
(8.245b)

These are similarly symbolically differentiated to obtain their moments, and the Pade
method yields the exponential representations as before. Other representations of
these parameters using the Pade method are given in [33].

PROBLEMS

8.1 Show by direct substitution that the results in (8.3) satisfy (8.1) and (8.2).

8.2 Derive the voltage reflection coefficient in (8.7).

8.3 Show that the per-unit-length inductance and capacitance can be found from
the characteristic impedance and velocity of propagation. [l = (ZC/v), c =
(1/vZC)]

8.4 Sketch the load voltage V (L, t) and the input current to
the line, I(0, t), for the problem depicted in Figure P8.4 for
0<t<10 ns. What should these plots converge to in the steady state?
[V (L, t), 0<t<1 ns, 0 V, 1 ns < t<3 ns, 9.375 V, 3 ns<t < 5 ns, 8.203 V, 5ns<
t < 7 ns, 8.35 V, 7 ns<t < 9 ns, 8.331 V, 9 ns<t<11 ns, 8.334 V, steady-state
8.333 V, and I(0, t), 0<t < 2 ns, 0.125 A, 2 ns<t < 4 ns, 0.047A, 4 ns<t < 6 ns,
0.057 A,6 ns<t < 8 ns, 0.055 A, 8 ns<t<10 ns, 0.056 A, steady-state 0.056
A]
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FIGURE P8.4

8.5 Sketch the load voltage V (L, t), and the input voltage to the line,
V (0, t), for the problem depicted in Figure P8.5 for 0<t<20 ns.
What should these plots converge to in the steady state? [V (L, t),
0<t<2 ns, 0 V, 2 ns < t<6 ns, 6.667 V, 6 ns<t < 10 ns, 4.444 V, 10 ns <

t < 14ns, 5.185 V, 14 ns<t < 18 ns, 4.938 V, 18 ns<t<22 ns, 5.021V, steady-
state 5 V, and V (0, t), 0<t < 4 ns, 3.33 V, 4 ns<t < 8 ns, 5.556 V, 8 ns<t <

12 ns, 4.815 V,12 ns<t < 16 ns, 5.062 V, 16 ns<t<20 ns, 4.979 V, steady-
state 5 V]

FIGURE P8.5

8.6 Sketch the input voltage to the line, V (0, t), and the load current I(L, t) for
the problem depicted in Figure P8.6 for 0<t<10 �s. What should these
plots converge to in the steady state? [V (0, t), 0<t < 2 �s, 66.67
V, 2 �s<t < 4 �s, 22.22 V, 4 �s<t < 6 �s, 7.407 V, 6 �s<t < 8 �s, 2.469V, 8
�s<t < 10 �s, 0.823 V, steady-state 0 V and I(L, t), 0<t < 1 �s, 0 V,

1 �s<t < 3 �s, 1.33 A, 3 �s<t < 5 �s, 1.778 A,5 �s<t < 7 �s, 1.926 A, 7 �s
<t < 9 �s, 1.975 A, 9 �s<t < 11 �s, 1.992 A, steady-state 2 A]

FIGURE P8.6
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8.7 Sketch the input voltage to the line, V (0, t), and the load voltage V (L, t)
for the problem depicted in Figure P8.7 for 0<t<32 ns. What should
these plots converge to in the steady state? [V (0, t), 0<t<8 ns, 10 V,

8 ns < t<12 ns, 5.556 V, 12 ns<t<16 ns,−4.444V, 16 ns<t<20 ns,−3.951 V,

20 ns<t<24 ns, 0.494 V, 24 ns < t<28 ns, 0.439 V, 28 ns<t < 32 ns,−0.055 V
steady-state 0 V, andV (L, t), 0 < t<4 ns, 0 V, 4 ns<t < 12 ns, 6.667 V, 12 ns<t

< 16 ns, 5.926 V,16 ns<t<20 ns, −0.741 V, 20 ns<t<24 ns,−0.658 V, 24 ns
<t<28 ns, 0.082 V, 28 ns < t<32 ns, 0.073 V steady-state 0 V]

FIGURE P8.7

8.8 A time-domain reflectometer (TDR) is an instrument used to determine prop-
erties of transmission lines. In particular, it can be used to detect the locations
of imperfections such as breaks in the line. The instrument launches a pulse
down the line and records the transit time for that pulse to be reflected at some
discontinuity and to return to the line input. Suppose a TDR having a source
impedance of 50 � is attached to a 50-� coaxial cable having some unknown
length and load resistance. The dielectric of the cable is Teflon (εr = 2.1). The
open-circuit voltage of the TDR is a pulse of duration 10 �s. If the recorded

FIGURE P8.8
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voltage at the input to the line is as shown in Figure P8.8, determine (a) the
length of the line and (b) the unknown load resistance. [75 �, 621.059 m]

8.9 A 12-V battery (RS = 0) is attached to an unknown length of transmission line
that is terminated in a resistance. If the input current to the line for 6 �s is
as shown in Figure P8.9, determine (a) the line characteristic impedance and
(b) the unknown load resistance. [ZC = 80 �, RL = 262.9 �]

FIGURE P8.9

8.10 Digital clock and data pulses should ideally consist of rectangular pulses. Ac-
tual clock and data pulses, however, resemble pulses having a trapezoidal shape
with certain rise and fall times. Depending on the ratio of the rise/fall time to the
one-way transit time of the transmission line, the received voltage may oscillate
about the desired value, possibly causing a digital gate at that end to switch
falsely to an undesired state, and cause errors. Matching the line eliminates
this problem because there are no reflections, but matching cannot always be
accomplished. In order to investigate this problem, consider a line connecting
two CMOS gates. The driver gate is assumed to have zero source resistance
(RS = 0), and the open-circuit voltage is a ramp waveform (simulating the lead-
ing edge of the clock/data pulse) given by VS(t) = 0 for t < 0, VS(t) = 5(t/τr) V
for 0 ≤ t ≤ τr and VS(t) = 5 V for t ≥ τr, where τr is the pulse rise time. The
input to a CMOS gate (the load on the line here) can be modeled as a capac-
itance of some 5–15pF. However, in order to simplify the problem, we will
assume that the input to the load CMOS gate is an open circuit RL = ∞.
Sketch the load voltage of the line (the input voltage to the load CMOS gate)
for line lengths having one-way transit times T such that (a) τr = (TD/10), (b)
τr = 2TD, (c) τr = 3TD, and (d) τr = 4TD. This example shows that in order to
avoid problems resulting from mismatch, one should choose line lengths short
enough such that TD<<τr, that is, the line one-way delay is much less than
the rise time of the clock/data pulses carried by the line.

8.11 Highly mismatched lines in digital products can cause what appears to
be “ringing” on the signal output from the line. This is often referred
to as “overshoot” or “undershoot” and can cause digital logic errors. To
simulate this, we will investigate the problem shown in Figure P8.11.
Two CMOS gates are connected by a transmission line as shown. A 5-V
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step function voltage of the first gate is applied. Sketch the output voltage
of the line (the input voltage to the load CMOS gate) for 0<t<9TD.
[0<t<TD, 0 V, TD < t<3 TD, 6.944 V, 3 TD<t < 5 TD, 3.858 V,5 TD<t <

7 TD, 5.23 V, 7 TD<t<9 TD, 4.62 V. Steady state is 5 V]

FIGURE P8.11

8.12 A transmission line of total length 200 m and velocity of propagation of v =
2 × 108(m/s) has ZC = 50 �, and RL = 20 �. It is driven by a source having
RS = 100 � and an open-circuit voltage that is a rectangular pulse of 6 V mag-
nitude and 3 �s duration. Sketch the input current to the line for a total time of 5
�s. [0<t<2 �s, 40 mA, 2 �s<t < 3 �s, 51.43 mA, 3 �s<t < 4 �s, 11.43 mA,
4 �s<t < 5 �s, 9.796 mA, 5 �s<t < 6 �s, −1.633 mA. Steady state is 0 A.]

8.13 Confirm the results of Problem 8.4 using SPICE (PSPICE).

8.14 Confirm the results of Problem 8.5 using SPICE (PSPICE).

8.15 Confirm the results of Problem 8.6 using SPICE (PSPICE).

8.16 Confirm the results of Problem 8.7 using SPICE (PSPICE).

8.17 Confirm the results of Problem 8.8 using SPICE (PSPICE).

8.18 Confirm the results of Problem 8.9 using SPICE (PSPICE).

8.19 Confirm the results of Problem 8.10 using SPICE (PSPICE).

8.20 Confirm the results of Problem 8.11 using SPICE (PSPICE).

8.21 Confirm the results of Problem 8.12 using SPICE (PSPICE).

8.22 One of the important advantages in using SPICE to solve transmission-line
problems is that it will readily give the solution for problems that would be
difficult to solve by hand. For example, consider the case of two CMOS inverter
gates connected by a 5 cm length of 100-� transmission line as shown in Figure
P8.22. The output of the driver gate is represented by a ramp waveform voltage
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rising from 0 to 5 V in 1 ns and a 30-� internal source resistance. The receiving
gate is represented at its input by 10 pF. Because of the capacitive load, this
would be a difficult problem to do by hand. Use SPICE (PSPICE) to plot the
output voltage of the line, VL(t), for 0<t<10 ns. Observe in the solution that
this output voltage varies rather drastically about the desired 5-V level going
from 4.2 to7 V before it stabilizes to 5 V well after 10 ns.

FIGURE P8.22

8.23 Demonstrate the series solutions in (8.14).

8.24 Derive the method of characteristics solution in (8.34).

8.25 Rederive the time-domain load voltage waveform for the line in Figure 8.12
but with a resistor R in parallel with the inductor C. Sketch the result. Does it
make sense?
VL (t) = R

R + ZC
V0u (t−TD) − R

R + ZC
e
−

R + ZC

CRZC
(t − TD)

V0u (t − TD)




8.26 Rederive the time-domain load voltage waveform for the line in Figure 8.13
but with a resistor R in series with the inductor L. Sketch the result. Does it
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make sense?


VL (t) = R

R + ZC
V0u (t−TD) + ZC

R + ZC
e
−

R + ZC

L
(t − TD)

V0u (t − TD)




8.27 Verify the FDTD recursion relations for a lossless line with resistive loads
given in (8.81).

8.28 Verify that the FDTD recursion relations for a lossless line in (8.76) and (8.78)
give the exact solution of the transmission-line equations for the magic time
step.

8.29 Use FINDIF.FOR described in Appendix A to verify the results in Figure
8.23.

8.30 Use PSPICE to verify the extreme results for a mismatched line shown in
Figure 8.29.

8.31 Verify the results for a line discontinuity shown in Figure 8.33 by hand and by
using PSPICE.

8.32 Use MATLAB to plot the real and imaginary parts of the Debye model given
in (8.126).

8.33 Verify the FDTD recursion relations for a lossy line with dc losses given in
(8.173) and (8.168).

8.34 Verify the FDTD recursion relations for a lossy line and resistive loads given
in (8.181), (8.76), and (8.81).

8.35 Recompute the Prony coefficients in Table 8.1 using MATLAB and, if they are
different, plot the result versus the exact value of Z0 (m).

8.36 Use TIMEFREQ.FOR, MTL.FOR, and FDTDLOSS.FOR to confirm the re-
sults in Figure 8.43.

8.37 Derive the results for the Pade approximation given in (8.224).
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9
TIME-DOMAIN ANALYSIS OF
MULTICONDUCTOR LINES

In the previous chapter, we examined the time-domain solution of the transmission-
line equations and the incorporation of the terminal constraints for two-conductor
lines. We will extend those results to the case of lines composed of more than two
conductors or multiconductor transmission lines (MTLs) in this chapter. We will find
that the results of the preceeding chapter for two-conductor lines can be extended to
the case of MTLs consisting of n + 1 conductors with n > 1 in a very straightforward
manner using matrix notation.

9.1 THE SOLUTION FOR LOSSLESS LINES

In this section, we will examine the time-domain solution of the MTL equations for
a lossless line:

∂

∂z
V(z, t) = −L

∂

∂t
I(z, t) (9.1a)

∂

∂z
I(z, t) = −C

∂

∂t
V(z, t) (9.1b)

where L and C are the per-unit-length inductance and capacitance matrices, respec-
tively, and are of dimension n × n. The line voltages and currents are contained in
the n × 1 vectors V and I. The uncoupled, second-order equations are

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.
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∂2

∂z2 V(z, t) = L C
∂2

∂t2 V(z, t) (9.2a)

∂2

∂z2 I(z, t) = C L
∂2

∂t2 I(z, t) (9.2b)

Note that the order of multiplication of L and C in these second-order equations
must be strictly observed. The objective in this section is to determine the general
solution of these equations and the incorporation of the terminal conditions. Some
earlier works are represented by [1–9].

9.1.1 The Recursive Solution for MTLs

In the previous chapter, we developed a series solution for the terminal voltages of a
lossless, two-conductor line. (See Eq. (8.14) in the previous chapter.) Branin’s method
was also developed for two-conductor lossless lines and expressed the terminal volt-
ages at one end of the line in terms of the terminal voltages at the other end one-time
delay earlier. This led to the SPICE exact solution model for two-conductor, lossless
lines. The series solution can be extended in the following manner to lossless MTLs in
homogeneous media. The following recursive solution cannot be readily extended to
handle inhomogeneous media. Recall the frequency-domain chain parameter matrix
as [

V̂(L)
Î(L)

]
=
[

�̂11(L) �̂12(L)
�̂21(L) �̂22(L)

] [
V̂(0)
Î(0)

]
(9.3)

where the submatrices are given in (7.115) of Chapter 7. Specializing these for a
lossless line in a homogeneous medium gives

�̂11 = cos(β L)1n (9.4a)

�̂12 = − j sin(β L)ZC (9.4b)

�̂21 = − j sin(β L)Z−1
C (9.4c)

�̂22 = cos(β L)1n (9.4d)

where 1n is the n × n identity matrix with ones on the main diagonal and zeros
elsewhere. The n × n characteristic impedance matrix is defined as

ZC = v L (9.5a)

Z−1
C = v C (9.5b)

and the velocity of propagation for this homogeneous medium is defined by
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v = 1√
µε

(9.6)

The phase constant in (9.4) is β = ω/v.
The Laplace transform of the corresponding time-domain result can be obtained

from this by substituting the Laplace transform variable s for jω, and replacing

jβ L = jω
L

v
⇔ sTD (9.7)

where the line one-way time delay is again denoted as

TD = L

v
(9.8)

The Laplace-transformed chain parameter matrices in (9.4) become

�̂11(z, s) =
(

esTD + e−sTD

2

)
1n (9.9a)

�̂12(z, s) = −
(

esTD − e−sTD

2

)
ZC (9.9b)

�̂21(z, s) = −
(

esTD − e−sTD

2

)
Z−1

C (9.9c)

�̂22(z, s) =
(

esTD + e−sTD

2

)
1n (9.9d)

Hence, taking the Laplace transform of the chain-parameter relation in (9.3) shows
that the terminal voltages and currents are related as

V̂(L, s) =
(

esTD + e−sTD

2

)
V̂(0, s) −

(
esTD − e−sTD

2

)
ZC Î(0, s) (9.10a)

Î(L, s) = −
(

esTD − e−sTD

2

)
Z−1

C V̂(0, s) +
(

esTD + e−sTD

2

)
Î(0, s) (9.10b)

Multiplying (9.10b) by ZC and adding and subtracting the equations gives

V̂(L, s) + ZC Î(L, s) = e−sTDV̂(0, s) + e−sTD ZC Î(0, s) (9.11a)

V̂(L, s) − ZC Î(L, s) = esTD V̂(0, s) − esTD ZC Î(0, s) (9.11b)
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Observing once again the delay transform pair given in (8.43) of Chapter 8 gives the
time-domain forms as

V(L, t) + ZC I(L, t) = V(0, t − TD) + ZC I(0, t − TD) (9.12a)

V(L, t) − ZC I(L, t) = V(0, t + TD) − ZC I(0, t + TD) (9.12b)

Time shifting (9.12b) and rearranging gives

V(0, t) − ZC I(0, t) = V(L, t − TD) − ZC I(L, t − TD) (9.12c)

Define the vectors

E0(L, t − TD) = V(L, t − TD) − ZC I(L, t − TD) (9.13a)

EL(0, t − TD) = V(0, t − TD) + ZC I(0, t − TD) (9.13b)

Equations (9.12) become

V(0, t) − ZC I(0, t) = E0(L, t − TD) (9.14a)

V(L, t) + ZC I(L, t) = EL(0, t − TD) (9.14b)

Equations (9.13) after being time shifted become

E0(L, t) = V(L, t) − ZC I(L, t) (9.15a)

EL(0, t) = V(0, t) + ZC I(0, t) (9.15b)

Substituting (9.14) into (9.15) gives the terminal voltages in terms of the E vectors as

V(0, t) = 1

2
EL(0, t) + 1

2
E0(L, t − TD) (9.16a)

V(L, t) = 1

2
E0(L, t) + 1

2
EL(0, t − TD) (9.16b)

In order to incorporate the terminal constraints at the ends of the line, we describe
the resistive terminations as generalized Thevenin equivalents:

V(0, t) = VS(t) − RS I(0, t) (9.17a)
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V(L, t) = VL(t) + RL I(L, t) (9.17b)

Substituting these terminal relations into (9.15) and (9.14) gives

EL(0, t) = 2 MS VS(t) + �S E0(L, t − TD) (9.18a)

E0(L, t) = 2 ML VL(t) + �L EL(0, t − TD) (9.18b)

where we have defined, in the fashion for two-conductor lines, the n × n reflection
coefficient matrices as

�S = [RS − ZC][RS + ZC]−1 (9.19a)

�L = [RL − ZC][RL + ZC]−1 (9.19b)

and the n × n voltage division coefficient matrices are defined as

MS = ZC[RS + ZC]−1 (9.20a)

ML = ZC[RL + ZC]−1 (9.20b)

The scheme is to discretize the time axis into N computation steps in each one-
way time delay TD as �t = TD/N and then form the four n × N arrays Eold

0 , Eold
L ,

Enew
0 , and Enew

L . The N columns of these are associated with the time increment,
and the n rows are associated with the particular conductor of the line. To begin the
recursion algorithm, we assume an initially relaxed line and fill Eold

0 and Eold
L with

zero entries. Then compute the entries in Enew
0 and Enew

L according to (9.18) and
compute the terminal voltages from (9.16). Once all entries are filled for all N time
increments for 0 ≤ t ≤ TD, write the entries in Enew

0 and Enew
L into Eold

0 and Eold
L ,

respectively, and repeat the calculations for the N time increments in the next interval
TD ≤ t ≤ 2TD. This is repeated to solve for the terminal voltages in blocks of time
of length equal to the one-way line delay, TD. This extension of Branin’s method
to MTLs is implemented in the FORTRAN program BRANIN.FOR described in
Appendix A. The method implicitly assumes that all modes propagate with the same
velocity so that it does not appear feasible to extend it to the lines in inhomogeneous
media.

The recursive method can be solved in series form by recursively substituting
(9.18) into (9.16) to give
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V(0, t) = MSVS(t) + (1n + �S){�LMSVS(t − 2TD)
+ (�L�S)�LMSVS(t − 4TD)
+ (�L�S)2�LMSVS(t − 6TD)
+ (�L�S)3�LMSVS(t − 8TD) + · · · }

+ (1n + �S){MLVL(t − TD)
+ (�L�S)MLVL(t − 3TD)
+ (�L�S)2MLVL(t − 5TD)
+ (�L�S)3MLVL(t − 7TD) + · · · }

(9.21a)

V(L, t) = MLVL(t) + (1n + �L){�SMLVL(t − 2TD)
+ (�S�L)�SMLVL(t − 4TD)
+ (�S�L)2�SMLVL(t − 6TD)
+ (�S�L)3�SMLVL(t − 8TD) + · · · }

+ (1n + �L){MSVS(t − TD)
+ (�S�L)MSVS(t − 3TD)
+ (�S�L)2MSVS(t − 5TD)
+ (�S�L)3MSVS(t − 7TD) + · · · }

(9.21b)

These reduce to the exact scalar results for a two-conductor line given in (8.14)
of Chapter 8, but the order of multiplication of the matrices must be preserved
here.

Equations (9.21) show that in order to eliminate reflections at the terminations,
we must terminate the line in matched loads, that is, RL = ZC and/or RS = ZC, in
which case (9.19) become �L = 0n and �S = 0n where 0n is the n × n zero matrix
with zeros in all positions. Therefore, in order to “match” an MTL, we must provide
resistors between all pairs of lines [1]. It is not sufficient to simply attach resistors
between each line and the reference conductor to eliminate reflections, as was the
case for two-conductor lines. If the line is matched at the right end, that is, RL = ZC,
then �L = 0n and (9.21) become

V(0, t) = MSVS(t) + (1n + �S)MLVL(t − TD) (RL = ZC) (9.21c)

and

V(L, t) = MLVL(t) + �SMLVL(t − 2TD) + MSVS(t − TD) (RL = ZC)
(9.21d)

and ML = 21n. Suppose that the sources are only in the left termination, that is,
VL(t) = 0. These results reduce to

V(0, t) = MSVS(t) (RL = ZC, VL(t) = 0) (9.21e)

and

V(L, t) = MSVS(t − TD) (RL = ZC, VL(t) = 0) (9.21f)
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which simply says that the input voltages to the line are the “voltage-divided” portions
of the sources in the left termination, VS(t), and the output voltages at the right end of
the line are those delayed by one line one-way delay TD, which means that there are
no reflections. The result in (9.21c) for the voltage at z = 0, V(0, t), is composed of
two contributions. The source in the left termination, VS(t), produces (9.21e), and the
source in the right termination, VL(t), is “voltage-divided” by ML, sent down to the
source arriving there after one-time delay, reflected by �S, added to the incident wave,
and sent back down the line to the load where it is completely absorbed. Similarly, the
result in (9.21d) for the voltage at z = L, V(L, t), is composed of two contributions.
The source in the left termination, VS(t), produces (9.21f), and the source in the right
termination, VL(t), is “voltage-divided” by ML, sent down to the source, reflected by
�S, and sent back down the line to the load arriving after two-time delays where it is
completely absorbed.

9.1.2 Decoupling the MTL Equations

The primary technique used to determine the general form of the solution of the MTL
equations for sinusoidal, steady-state excitation in Chapter 7 was to decouple them
with similarity transformations. In the case of the general time-domain solution of
lossless lines, the technique of decoupling the MTL equations in (9.1) or (9.2) via
similarity transformations is again a useful technique that can always be used to affect
the solution.

We define the similarity transformations to mode voltages and currents as

V(z, t) = TV Vm(z, t) (9.22a)

I(z, t) = TI Im(z, t) (9.22b)

Substituting these into (9.1) gives

∂

∂z
Vm(z, t) = −T−1

V L TI

∂

∂t
Im(z, t) (9.23a)

∂

∂z
Im(z, t) = −T−1

I C TV

∂

∂t
Vm(z, t) (9.23b)

or for the uncoupled second-order equations in (9.2)

∂2

∂z2 Vm(z, t) = T−1
V L C TV

∂2

∂t2 Vm(z, t) (9.24a)

∂2

∂z2 Im(z, t) = T−1
I C L TI

∂2

∂t2 Im(z, t) (9.24b)

If we can choose a TV and a TI such that (9.23) or (9.24) are uncoupled, then
we have the general form of the mode solutions as those of two-conductor lines of
the previous chapter. This is always guaranteed for lossless lines as was shown in
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Chapter 7 for sinusoidal excitation. For example, consider the coupled first-order
equations in (9.23). Suppose we can find a TV and a TI such that they simultaneously
diagonalize both L and C as

T−1
V L TI = Lm (9.25a)

T−1
I C TV = Cm (9.25b)

where Lm and Cm are diagonal as

Lm =




lm1 0 · · · 0

0 lm2
. . .

...
...

. . .
. . . 0

0 · · · 0 lmn


 (9.25c)

Cm =




cm1 0 · · · 0

0 cm2
. . .

...
...

. . .
. . . 0

0 · · · 0 cmn


 (9.25d)

Then the mode equations in (9.23) become

∂

∂z
Vm(z, t) = −Lm

∂

∂t
Im(z, t) (9.26a)

∂

∂z
Im(z, t) = −Cm

∂

∂t
Vm(z, t) (9.26b)

or

∂

∂z
Vm1(z, t) = −lm1

∂

∂t
Im1(z, t)

∂

∂z
Im1(z, t) = −cm1

∂

∂t
Vm1(z, t)

...
∂

∂z
Vmn(z, t) = −lmn

∂

∂t
Imn(z, t)

∂

∂z
Imn(z, t) = −cmn

∂

∂t
Vmn(z, t)

(9.27)

These are the same equations as for uncoupled, two-conductor lines having charac-
teristic impedances of

ZCmi =
√

lmi

cmi

(9.28)
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and velocities of propagation of

vmi = 1√
lmicmi

(9.29)

for i = 1, 2, . . . , n. Therefore, the solutions for these mode voltages and currents have
the same general form as for the two-conductor line. The actual voltages and currents
can be obtained from the forms of the mode voltages, and current solutions via (9.22).
We now address the determination of the diagonalizing similarity transformation for
the various classes of lines.

9.1.2.1 Lossless Lines in Homogeneous Media For this class of line, we have the
important identity

LC = CL = µε 1n (9.30)

where the surrounding homogeneous medium is characterized by permittivity ε and
permeability µ. The similarity transformations that simultaneously diagonalize L and
C as in (9.25) can be found in the following manner as shown in Chapter 7. Because
L is real and symmetric, a real, orthogonal transformation T can be found such that

TtL T = Lm (9.31a)

where

Lm =




lm1 0 · · · 0

0 lm1
. . .

...
...

. . .
. . . 0

0 · · · 0 lm1


 (9.31b)

and the inverse of T is its transpose that is denoted with the superscript t [10]:

T−1 = Tt (9.31c)

Similarly, with the aid of the identity in (9.30) expressed as

C = µε L−1 (9.32)

we may form

T−1C Tt−1 = TtC T

= µε TtL−1 T

= 1

v2 L−1
m (9.33)
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where v = 1/
√

µ ε. Comparing (9.31) and (9.33) to (9.25) shows that the transfor-
mations can be defined as

TI = T (9.34a)

TV = T (9.34b)

T−1
I = T−1

V = Tt (9.34c)

Therefore, the mode characteristic impedances in (9.28) are

ZCmi = v lmi (9.35)

and all modes have the same velocity of propagation:

vmi = v = 1√
µε

(9.36)

For the special case of a three-conductor line, n = 2, the mode transformation is
simple [10]:

T =
[

cos θ −sin θ

sin θ cosθ

]
(9.37a)

where

tan 2θ = 2l12

l11 − l22
(9.37b)

For n ≥ 3, a numerical computer subroutine implementing, for example, the Jacobi
method is used to obtain the orthogonal transformation [10]. Appendix A describes
a FORTRAN subroutine, JACOBI.SUB, that accomplishes this reduction.

9.1.2.2 Lossless Lines in Inhomogeneous Media For this case we no longer have
the identity in (9.30). However, we showed in Chapter 7 that because L and C are real,
symmetric, and positive definite, we can find a transformation that simultaneously
diagonalizes these matrices in the following manner. First, we find an orthogonal
transformation that diagonalizes C as

UtC U = θ2 (9.38a)

where

θ2 =




θ 2
1 0 · · · 0

0 θ 2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 θ 2

n


 (9.38b)
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and

U−1 = Ut (9.38c)

Since C is positive definite, we can obtain the square root of θ2, θ, which is real and
nonsingular and forms the product θ Ut L U θ. Since this is real and symmetric, we
can diagonalize it with another orthogonal transformation as

St (θ Ut L U θ
)

S = �2 (9.39a)

where

�2 =




�2
1 0 · · · 0

0 �2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 �2

n


 (9.39b)

and

S−1 = St (9.39c)

Define the matrix T as

T = U θ S (9.40)

The columns of T can be normalized to a Euclidean length of unity as

Tnorm = Tα (9.41)

where α is the n × n diagonal matrix with entries

αii = 1√∑n
k=1T

2
ki

(9.42a)

αij = 0 (9.42b)

The mode transformations in (9.22) that simultaneously diagonalize L and C as in
(9.25) can then be defined as

TI = U θ S α

= Tnorm (9.43a)

TV = U θ−1S α−1

= Tt−1

norm (9.43b)
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Also

T−1
I = α−1Stθ−1Ut

= Tt
V (9.44a)

T−1
V = α Stθ Ut

= Tt
I (9.44b)

Substituting (9.43) and (9.44) into (9.25) gives

T−1
V L TI = α Stθ UtL U θ S α

= α �2 α (9.45a)

T−1
I C TV = α−1 Stθ−1 UtC U θ−1 S α−1

= α−2 (9.45b)

Comparing (9.45) and (9.25) shows that

Lm = α �2 α (9.46a)

Cm = α−2 (9.46b)

Since α and � are diagonal matrices, the mode characteristic impedances and veloc-
ities of propagation are given by

ZCmi =
√

lmi

cmi

= α2
ii�i (9.47)

and

vmi = 1√
lmicmi

= 1

�i

(9.48)

One can show that ZC = Tt−1

I ZCmT−1
I = TV ZCmTt

V . The desired mode transforma-
tion matrices are

TV = U θ−1S α−1

= Tt−1

norm (9.49a)

T−1
I = α−1Stθ−1Ut

= T−1
norm (9.49b)
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The above diagonalization is implemented in the FORTRAN subroutine DIAG.SUB
described in Appendix A. This subroutine calls the FORTRAN subroutine JA-
COBI.SUB to compute the two orthogonal transformations required by DIAG.SUB.

9.1.2.3 Incorporating the Terminal Conditions via the SPICE Program Since
we have uncoupled the equations via the mode transformation in the preceding
sections, the mode voltages and currents are essentially associated with n uncoupled,
two-conductor transmission lines as is illustrated in (9.27) whose general solutions
are known. Again each general mode solution contains two undetermined constants
so that there are a total of 2n undetermined constants. It remains to incorporate
the terminal conditions at the two ends of the line in order to evaluate these 2n
undetermined constants.

There are a number of ways of doing this. The most useful and simplest way is
to utilize the exact time-domain model for a lossless, two-conductor line that exists
in the SPICE code as shown in Figure 8.9 of Chapter 8 [A.2,A.3,B.19,11]. But each
of these models relates only the n mode voltages and currents at the two ends of the
line. In order to relate these mode quantities to the actual voltages and currents, we
implement the mode transformations given in (9.22). These transformations can be
implemented in the SPICE program through the use of controlled sources as illustrated
in Figure 9.1. Writing the transformations in (9.22) out gives


V1(z, t)
V2(z, t)

...
Vn(z, t)




︸ ︷︷ ︸
V

=




TV11 TV12 · · · TV1n

TV21 TV22
. . .

...
...

. . .
. . .

...
TVn1 · · · · · · TVnn




︸ ︷︷ ︸
TV




Vm1(z, t)
Vm2(z, t)

...
Vmn(z, t)




︸ ︷︷ ︸
Vm

(9.50a)

FIGURE 9.1 Illustration of the use of controlled sources to implement the mode
transformations.
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


I1(z, t)
I2(z, t)

...
In(z, t)




︸ ︷︷ ︸
I

=




TI11 TI12 · · · TI1n

TI21 TI22
. . .

...
...

. . .
. . .

...
TIn1 · · · · · · TInn




︸ ︷︷ ︸
TI




Im1(z, t)
Im2(z, t)

...
Imn(z, t)




︸ ︷︷ ︸
Im

(9.50b)

Inverting (9.50b) gives

Im = T−1
I I (9.50c)

Hence, the rows of (9.50c) and 9.50c can be written as

Vi =
n∑

k=1

[TV ]ik [Vm]k (9.50d)

Imi =
n∑

k=1

[
T−1

I

]
ik

[I]k (9.50e)

where we denote the entries in the ith row and jth column of TV and T−1
I as [TV ]ij

and
[
T−1

I

]
ij

, respectively, and the entries in the ith rows of the vectors Vm and I are

denoted as [Vm]i and [I]i, respectively. The transformations in (9.50a) and (9.50c)
can be implemented in SPICE using the controlled source representation illustrated
in Figure 9.1. Zero-volt voltage sources are placed in each input to sample the current
Ii(z, t) for use in the controlled sources representing the transformation in (9.50e).
The interior two-conductor mode lines having characteristic impedance ZCmi and time
delay TDi = L/vmi are simulated with the existing two-conductor SPICE model as

TXXX N1 0 N2 0 Z0 = ZCmi TD = TDi

as shown in Figure 9.2.

FIGURE 9.2 The two-conductor mode transmission lines.
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The advantages of this method of implementing the terminal conditions are that the
model for the line is independent of the terminations and any of the available device
models in SPICE such as resistors, capacitors, inductors as well as the nonlinear
models such as diodes and transistors can be called. Hence, the model is referred to
as a macromodel of the line and also called a 2n-port model of the line. The user
need not redevelop the mathematical models of those devices in the terminations.
The overall model of the line can be implemented as a subcircuit model in SPICE
and the appropriate line terminations attached to the ports of this subcircuit. Thus,
the solution implemented in this way in SPICE (or PSPICE) is exact within the time
step discretization in the SPICE solution.

As an example of the implementation of this valuable technique, consider the ex-
ample of three rectangular cross-section conductors (lands) on the surface of a printed
circuit board (PCB) shown in Figure 9.3 that has been considered previously. This
problem is that of an inhomogeneous medium, and we shall assume a lossless medium
and perfect conductors so that the results of Section 9.1.2.2 will apply. The per-unit-
length capacitance matrix was computed using the numerical technique described in
Chapter 5 via the PCB.FOR program discussed in Appendix B using 50 divisions per
land:

C =
[

40.5985 −20.2992
−20.2992 29.7378

]
pF/m

The per-unit-length inductance matrix was computed from the capacitance matrix
with the dielectric board removed, C0, as

L = µ0ε0C−1
0 =

[
1.10515 0.690613

0.690613 1.38123

]
µH/m

Using SPICEMTL.FOR, the similarity transformations become

TV =
[

1.118 0.5
−3.9 × 10−6 1.0

]

and

T−1
I = Tt

V =
[

1.118 −3.9 × 10−6

0.5 1.0

]

The mode characteristic impedances and propagation velocities are

ZCm1 = 109.445 �

vm1 = 1.80046 × 108 m/s
ZCm2 = 265.544 �

vm2 = 1.92251 × 108 m/s
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FIGURE 9.3 Example illustrating the generation of a SPICE model for coupled transmission
lines: (a) longitudinal dimensions, (b) cross-sectional dimensions, and (c) the applied pulse
train.

This gives the mode circuit one-way time delays as

TD1 = 1.410753 ns
TD2 = 1.321187 ns

The SPICE program (implemented on the personal computer version, PSPICE) is
obtained from the circuit of Figure 9.4 as
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FIGURE 9.4 The SPICE model for the coupled line of Figure 9.3.

SPICE MTL MODEL
VS 1 0 PULSE(0 1 0 6.25N 6.25N 43.75N 100N)
RS 1 2 50
V1 2 3
RL 7 0 50
V3 7 6
RNE 13 0 50
V2 13 12
RFE 8 0 50
V4 8 9
EC1 3 0 POLY(2) (4,0) (11,0) 0 1.118 0.5
EC2 12 0 POLY(2) (4,0) (11,0) 0 -3.9E-6 1.0
EC3 6 0 POLY(2) (5,0) (10,0) 0 1.118 0.5
EC4 9 0 POLY(2) (5,0) (10,0) 0 -3.9E-6 1.0
FC1 0 4 POLY(2) V1 V2 0 1.118 -3.9E-6
FC2 0 11 POLY(2) V1 V2 0 0.5 1.0
FC3 0 5 POLY(2) V3 V4 0 1.118 -3.9E-6
FC4 0 10 POLY(2) V3 V4 0 0.5 1.0
T1 4 0 5 0 Z0=109.445 TD=1.410753N
T2 11 0 10 0 Z0=265.544 TD=1.321187N
.TRAN .1N 20N 0 .05N
.PRINT TRAN V(2) V(7) V(13) V(8)
.PROBE
.END

Comparisons with the experimentally obtained data will be shown in Section 9.3.2.
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The method is implemented in the FORTRAN program SPICEMTL.FOR that is
described in Appendix A. This code generates a SPICE subcircuit model. The user
then imbeds this into a SPICE (PSPICE) program where the terminal constraints are
added.

Another important advantage of the SPICE implementation of the solution is that
the frequency-domain or sinusoidal steady-state phasor solution considered in Chap-
ter 7 can also be obtained from this program with only a slight change in the control
statements. These are to redefine the voltage source as

VS 1 0 AC 1

and redefine the control and print statements as

.AC DEC 50 10K 1000MEG

(which solves the frequency-domain circuit from 10 kHz to 1 GHz in steps of 50 per
decade) and

.PRINT AC VM(2) VP(2) VM(7) VP(7) VM(13) VP(13) VM(8) VP(8)

where VM(X) and VP(X) denote the magnitude and phase, respectively, of the voltage
at node X. Adding the .PROBE statement to this allows the plotting of the frequency
response in a decibel plot. The remaining statements in the original time-domain
program above are unchanged.

9.1.3 Lumped-Circuit Approximate Characterizations

One can also model the line using a lumped-Pi or a lumped-T equivalent circuit
so long as the line is electrically short at the highest significant frequency of the
time-domain source waveform. These structures are shown for MTLs in Figure 7.6 of
Chapter 7. For digital pulse waveforms having equal rise- and fall times τr, the highest
significant frequency is approximately the bandwidth given earlier, f max

∼= 1/τr. The
line length is one tenth of a wavelength at this frequency if the pulse rise-/fall time is
approximately 10 times the line one-way delay or

τr > 10 TD

as was developed in Section 8.1.6.1 of Chapter 8. We saw that for MTLs there are n
velocities of the modes. In order to determine whether the above criterion is satisfied,
one should use the smaller of these mode velocities thereby guaranteeing that the con-
dition will be satisfied at the larger mode velocities. However, in today’s high-speed
digital world, this criterion generally places impractically short-length limits on the
PCB lands that can be modeled with one section. Other applications such as cables car-
rying signals with much lower spectral content perhaps can be feasibly modeled with
lumped-Pi or lumped-T sections. Again, for higher spectral content signals, dividing
the line into several sections that are individually short at the highest frequency of the
pulse waveform has been shown to not significantly increase the model accuracy to
justify the inordinately large circuit that must be solved [B.15]. For lossless lines, one
is better off simply using the SPICE subcircuit model generated by SPICEMTL.FOR.



488 TIME-DOMAIN ANALYSIS OF MULTICONDUCTOR LINES

9.1.4 The Time-Domain to Frequency-Domain (TDFD)
Transformation Method

This method is identical for MTLs to that described in Section 8.1.7 of Chapter 8 for
two-conductor lines. The only slight difference is that one must compute the single-
input, single-output frequency-domain transfer function using a frequency-domain
calculator such as MTL.FOR or using SPICEMTL.FOR to determine a MTL sub-
circuit model, imbedding that generated model into a SPICE (PSPICE) program and
using the .AC mode to compute this frequency-domain transfer function. Otherwise,
there is no difference in its use for two-conductor lines or for MTLs. Once again,
this method can incorporate line losses by including them in the frequency-domain
transfer function (if MTL.FOR is used to generate it), which is a very straightforward
process. However, the method suffers from the primary restriction that the line and
its terminations must be linear since it uses the principle of superposition to return to
the time domain.

9.1.5 The Finite-Difference, Time-Domain (FDTD) Method

The FDTD recursion relations were developed for a two-conductor line in the previous
chapter. These are virtually unchanged for MTLs with only the use of matrix notation.
Discretizing the derivatives in the MTL equations for a lossless line given in (9.1)
using central differences [10,12] according to the scheme in Figure 8.17 gives

1

�z

[
Vn+1

k+1 − Vn+1
k

]
= − 1

�t
L
[
In+3/2
k − In+1/2

k

]
(9.51a)

for k = 1, 2, · · · , NDZ and

1

�z

[
In+1/2
k − In+1/2

k−1

]
= − 1

�t
C
[
Vn+1

k − Vn
k

]
(9.51b)

for k = 2, · · · , NDZ. The n × 1 vectors I and V contain the line currents and line
voltages, respectively, and we denote

Vn
k ≡ V((k − 1)�z, n�t) (9.52a)

In
k ≡ I((k − 1/2)�z, n�t) (9.52b)

Solving these gives the recursion relations for the interior points along the line as

In+3/2
k = In+1/2

k − � t

� z
L−1

(
Vn+1

k+1 − Vn+1
k

)
(9.53a)

for k = 1, 2, · · · , NDZ and

Vn+1
k = Vn

k − � t

� z
C−1

(
In+1/2
k − In+1/2

k−1

)
(9.53b)

for k = 2, 3, · · · , NDZ.
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The second transmission-line equation given in Eq. (9.1b) is discretized at the
source according to the scheme in Figure 8.18 as

1

�z/2

[
In+1/2

1 − In+1
S + In

S

2

]
= − 1

�t
C
[
Vn+1

1 − Vn
1

]
(9.54a)

Similarly, the second transmission-line equation, (9.1b), is discretized at the load
according to the scheme in Figure 8.18 as

1

�z/2

[
In+1

L + In
L

2
− In+1/2

NDZ

]
= − 1

�t
C
[
Vn+1

NDZ+1 − Vn
NDZ+1

]
(9.54b)

In these relations, we denote the n × 1 vectors of the currents at the source and at
the load as IS and IL, respectively. Equations (9.54) are solved to give the recursion
relations for the voltages at the source and the load:

Vn+1
1 = Vn

1 − 2�t

�z
C−1In+1/2

1 + �t

�z
C−1

[
In+1

S + In
S

]
(9.55a)

Vn+1
NDZ+1 = Vn

NDZ+1 + 2�t

�z
C−1In+1/2

NDZ − �t

�z
C−1

[
In+1

L + In
L

]
(9.55b)

It should be pointed out that this method of obtaining collocated current and voltage
relations in (9.54) at the source and the load was shown in Chapter 8 to yield the
exact solution of a two-conductor line consisting of perfect conductors immersed in
a lossless, homogeneous medium for the magic time step of � t = � z/v.

Assume that the multiconductor line has lumped terminal source and load repre-
sentations that are resistive and are represented as generalized Thevenin equivalents:

V(0, t) = VS(t) − RS I(0, t) (9.56a)

V(L, t) = VL(t) + RL I(L, t) (9.56b)

Substituting these terminal representation of (9.56) into (9.55) yields the resulting
FDTD recursion relations for the voltages at the source and at the load as

Vn+1
1 =

[
�z

�t
RSC + 1n

]−1 {[
�z

�t
RSC − 1n

]
Vn

1 − 2RSIn+1/2
1 +

(
Vn+1

S + Vn
S

)}
(9.57a)

Vn+1
NDZ+1 =

[
�z

�t
RLC + 1n

]−1 {[
�z

�t
RLC − 1n

]
Vn

NDZ+1 + 2RLIn+1/2
NDZ

+
(

Vn+1
L + Vn

L

)}
(9.57b)

These equations are implemented in the FORTRAN program FINDIF.FOR de-
scribed in Appendix A. Again the time step � t and the spatial discretization � z must
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satisfy the Courant condition

� t ≤ � z

vmax
(9.58)

in order to guarantee stability of the solution. For MTLs in inhomogeneous media
that have n velocities of propagation of the modes, the Courant condition should
be satisfied by the larger of the mode velocities thereby guaranteeing that it will be
satisfied by the smaller mode velocities.

9.1.5.1 Including Dynamic and/or Nonlinear Terminations in the FDTD Analysis
Any lumped-element network can be completely characterized in a state-variable
form [13, 14]. In the case of a linear network, this completely general formulation
becomes

d

d t
X(t) = M X(t) + N U(t) (9.59a)

with an associated output relation

Y(t) = O X(t) + P U(t) + Q
d

d t
U(t) (9.59b)

The vector X contains the state variables of the lumped network. These are typically the
inductor currents and capacitor voltages in that network or some subset of those vari-
ables. The vector U contains the independent sources in the network (the inputs), and
the vector Y contains the designated outputs (currents and/or voltages) of the network.
It should be emphasized that this formulation can characterize general linear networks
that may contain such diverse conditions as inductor-current source cutsets and/or
capacitor-voltage source loops as well as controlled sources of all types [13, 14].

Consider the recursion relations at the endpoints of the line given in (9.55a) and
(9.55b). From these relations it is clear that we must configure the state-variable
representations of the termination networks such that the outputs are the terminal
currents IS and IL. The inputs for the state-variable representations must be the line
voltages at the endpoints, V1 and VNDZ+1, as well as the independent sources within
the termination networks. In order to accomplish this task, we will define the outputs
in (9.59) as IS and IL and will partition the input vectors to yield

d

dt
XS(t) = MS XS(t) + N1V1(t) + NSSS(t) (9.60a)

IS(t) = OS XS(t) + P1V1(t) + PSSS(t)

+ Q1
d

dt
V1(t) + QS

d

dt
SS(t) (9.60b)

d

dt
XL(t) = ML XL(t) + NNDZ+1VNDZ+1(t) + NLSL(t) (9.61a)
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IL(t) = OL XL(t) + PNDZ+1VNDZ+1(t)

+ PLSL(t) + QNDZ+1
d

dt
VNDZ+1(t) + QL

d

dt
SL(t) (9.61b)

where subscripts S and L refer to the networks at the source and load ends, respectively.
The independent sources within the termination networks are denoted as SS and SL.
Observe that in this state-variable characterization of the termination networks, the
terminal voltages V1 and VNDZ+1 are treated as being independent voltage sources
driving the terminations.

We now address the problem of interfacing the state-variable characterizations of
the termination networks with the recursion relations for the attached line. We need
to discretize the state-variable forms in (9.60) and (9.61). We will choose the implicit
backward Euler method (also called the first-order Adams–Moulton algorithm) [13].
This method is absolutely stable regardless of time step size so long as the termination
network itself is stable: a necessary assumption [13]. Because of this, the Courant
stability condition on � t given in (9.58) must be enforced only on the solution for
the MTL portion of the system. The state-variable forms in (9.60) for the source
termination network are discretized using the backward Euler method to yield [B.24]

Xn+1
S = Xn

S + �t
[
MS Xn+1

S + N1Vn+1
1 + NSSn+1

S

]
(9.62a)

In+1
S = OS Xn+1

S + P1Vn+1
1 + PSSn+1

S

+ 1

�t
Q1

[
Vn+1

1 − Vn
1

]
+ 1

�t
QS

[
Sn+1

S − Sn
S

]
(9.62b)

Solving (9.62a) for Xn+1
S yields

[1 − �t MS]Xn+1
S = Xn

S + �t N1Vn+1
1 + �t NSSn+1

S (9.63a)

In+1
S = OS Xn+1

S + P1Vn+1
1 + PSSn+1

S

+ 1

�t
Q1

[
Vn+1

1 − Vn
1

]
+ 1

�t
QS

[
Sn+1

S − Sn
S

]
(9.63b)

where 1 is the identity matrix with ones on the main diagonal and zeros elsewhere.
Substituting (9.63b) into (9.55a) and combining with (9.63a) yields[(�z

�t
C − P1 − 1

�t
Q1

)
−OS

−�t N1 1 − �t MS

] [
Vn+1

1
Xn+1

S

]

=
[(�z

�t
C − 1

�t
Q1

)
0

0 1

] [
Vn

1
Xn

S

]
+
[(

PS + 1

�t
QS

)
�t NS

]
Sn+1

S

+
[

In
S − 1

�t
QS Sn

S − 2 In+1/2
1

0

]
(9.64)
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These simultaneous equations are solved for the new terminal voltages Vn+1
1 and state

variables Xn+1
S . Vectors Sn+1

S and Sn
S contain the independent lumped sources in the

termination network all of which are readily evaluated at the appropriate time steps.
Vectors Vn

1, Xn
S, In+1/2

1 , and In
S are evaluated at the previous time step. Similarly,

discretizing and combining (9.61) and (9.55b) yields the recursion relations for the
load termination network as[(�z

�t
C + PNDZ+1 + 1

�t
QNDZ+1

)
OL

−�t NNDZ+1 1 − �t ML

] [
Vn+1

NDZ+1

Xn+1
L

]

=
[(�z

�t
C + 1

�t
QNDZ+1

)
0

0 1

] [
Vn

NDZ+1
Xn

L

]
+
[(

−PL − 1

�t
QL

)
�t NL

]
Sn+1

L

+
[

−In
L + 1

�t
QLSn

L + 2 In+1/2
NDZ+1

0

]
(9.65)

All variables in the right-hand side of (9.65) are known.
In the case of resistive terminations, the generalized Thevenin equivalent repre-

sentation in (9.56) is written as

IS = −GSV1 + GSVS (9.66a)

IL = GLVNDZ+1 − GLVL (9.66b)

where GS = R−1
S and GL = R−1

L . Hence, XS = XL = 0 so that
MS = N1 = NS = OS = Q1 = QS = 0 and
ML = NNDZ+1 = NL = OL = QNDZ+1 = QL = 0 and P1 = −GS, PS = GS,
PNDZ+1 = GL, PL = −GL. Equations (9.64) and (9.65) reduce to [B.24](

�z

�t
C + GS

)
Vn+1

1 =
(

�z

�t
C − GS

)
Vn

1 − 2 In+1/2
1 + GS

(
Vn+1

S + Vn
S

)
(9.67a)

and (
�z

�t
C + GL

)
Vn+1

NDZ+1 =
(

�z

�t
C − GL

)
Vn

NDZ+1 + 2 In+1/2
NDZ+1

+ GL

(
Vn+1

L + Vn
L

)
(9.67b)

If we premultiply (9.67a) with RS = G−1
S and (9.67b) with RL = G−1

L , these are
identical to those derived earlier and given in (9.57) for this special case.

The solution sequence is as follows. First, write the state-variable descriptions of
the terminations as given in (9.60) and (9.61). Equations (9.64) and (9.65) are then
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solved for the line voltages Vn+1
1 and Vn+1

NDZ+1 and state variables of the termination

networks Xn+1
S and Xn+1

L . Next the line voltages Vn+1
k for k = 2, · · · , NDZ are

obtained from (9.53b). Finally, the currents are updated for k = 1, · · · , NDZ via
(9.53a). In order to insure stability of the solution for the lossless, single velocity case,
the temporal and spatial discretizations should satisfy the Courant condition, which
is �t ≤ �z/v, where v is the velocity of propagation in the medium. We will assume
that the similar condition applies to the multimode, multivelocity MTL case where v
is the maximum of the velocities of the modes along the line. The above method can
be similarly implemented for the case of nonlinear termination networks [B.24].

To compare the predictions of these models, we will investigate a three-conductor
transmission line shown in Figure 9.5. Three conductors of rectangular cross section
of width 5 mils and thickness 0.5 mils are separated by 5 mils and placed on one side
of a silicon substrate having εr = 12 and thickness 5 mils as shown in Figure 9.5(b).
The total line length is 50 cm and is terminated as shown in Figure 9.5(a). The source is
a 1-V trapezoidal pulse having a rise/fall time of τr = τf = 100 ps and pulse width of
τ = 500 ps. The per-unit-length inductance and capacitance matrices are computed as

L =
[

0.805756 0.538771
0.538771 1.07754

]
µH/m

C =
[

117.791 −58.8956
−58.8956 71.8544

]
pF/m.

These give mode velocities in the lossless case of vm1 = 1.25809 × 108 m/s and
vm2 = 1.47934 × 108 m/s. The state-variable characterizations of the source and
load given in (9.60) and (9.61) become

XS(t) = 0, MS = 0, N1 = 0, NS = 0, OS = 0,

P1 =
[

1/RNE 0
0 1/RS

]
, PS =

[
1/RNE 0

0 1/RS

]
,

Q1 = 0, QS = 0, SS(t) =
[

0
VS(t)

]

and

XL(t) = [iL(t)], ML = [−R/L
]
, NNDZ+1 = [ 1/L 0 ] , NL = 0,

OL =
[

1
0

]
,PNDZ+1 =

[
0 0
0 1/RL

]
, PL = 0, QNDZ+1 =

[
C 0
0 0

]
, QL = 0

where C = 100 pF, L = 1 µH, R = 10 �, RS = 50 �, RL = 50 �, and RNE = 5 �

and iL(t) is the inductor current. Observe that the capacitor produces a voltage
source-capacitor loop with [VNDZ+1]1. Hence, the coefficient of the derivative of
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FIGURE 9.5 An example of a coupled line with dynamic loads: (a) longitudinal dimensions
and loads, (b) cross-sectional dimensions, and (c) the applied pulse train.

VNDZ+1 in the terminal state-variable relation in (9.61b), QNDZ+1, is nonzero. We
will compare the predictions of the SPICE (lossless) and the FDTD predictions. The
FDTD spatial and temporal discretizations are denoted by

NDZ = L

�z

NDT = final solution time

�t
.

Thus, the Courant stability criterion translates to

NDT ≥ NDZ × (final solution time) × v/L.
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FIGURE 9.6 Predictions of the SPICE and FDTD models for the line of Figure 9.5: (a) V101
and (b) V201.

The bandwidth of the input pulse is on the order of 1/τr = 10 GHz. The spatial
discretization for the FDTD results is chosen so that each cell is λ/10 using the
smaller of the mode velocities vm1 at 20 GHz = 2 × 1/τr, giving NDZ = 795. At
the Courant limit of �t = �z/v for this spatial discretization using the larger of the
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mode velocities vm2 and a total solution time of 40 ns, we obtain a total number of
time points of NDT = 9410. Figure 9.6(a) and (b) show the predictions for voltages
across the ends of the receptor line. The FDTD predictions are compared to the
SPICE predictions and give identical results as they should.

9.2 INCORPORATION OF LOSSES

Losses arise from either the nonzero conductivity and polarization loss of the sur-
rounding medium or from imperfect conductors. Of the two mechanisms, the loss
introduced by imperfect conductors is usually more significant than the loss due to
the medium for typical transmission line structures and frequencies up to around 10
GHz. The resistance due to imperfect conductors is represented in the n × n per-
unit-length resistance matrix R. For lossy conductors, there is a n × n per-unit-length
internal inductance matrix Li due to magnetic flux internal to the conductors. The
frequency-dependent losses in the surrounding medium are contained in the n × n

matrix G and can be represented with the Debye model as discussed in Section 8.2.1.1
in the previous chapter. This is fairly straightforward for a homogeneous surrounding
medium. For a lossy, inhomogeneous medium, incorporating losses in this fashion
becomes tedious.

In the frequency domain, the MTL equations can be written as

d

dz
V̂(z) = −[Ẑi(ω) + jωL]Î(z) (9.68a)

d

dz
Î(z) = −[G(ω) + jω C]V̂(z) (9.68b)

where L represents the external inductance, and the internal inductance is included in
Ẑi(ω) = R(ω) + jω Li(ω). To obtain the time-domain results we represent the MTL
equations with the Laplace transform as

d

dz
V̂(z, s) = −[Ẑi(s) + sL]Î(z, s) (9.69a)

d

dz
Î(z, s) = −[Ĝ(s) + s C]V̂(z, s) (9.69b)

A common way of approximating the internal impedance term as discussed in the
previous chapter is

Ẑi(s) = A + B
√

s (9.70)
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This represents a reasonable approximation to the skin-effect behavior as can be seen
if we substitute s = jω to yield

Ẑi(ω) = A + B
√

jω

= A + B
√

π
√

f (1 + j)
(9.71)

The n × n matrix A represents the dc per-unit-length resistance matrix. The n × n

matrix B
√

π
√

f (1 + j) represents the sum of the high-frequency per-unit-length
resistance matrix and the high-frequency per-unit-length internal inductive reactance
matrix. Hence, the entries in A and B are

[A]ij = [Rdc]ij (9.72a)

[B]ij
√

jω = [Rhf ]ij + jω[Li,hf ]ij = [Rdc]ij

√
f

f 0
(1 + j) (9.72b)

This assumes that the high-frequency resistance and internal inductive reactance of
each conductor are equal. As we saw in Chapter 4, this is exact for isolated wires but
is approximately true for conductors of rectangular cross section. This representation
ignores the dc internal inductance of the conductors, which is typically dominated
by the external inductance. The representation in (9.72b) also assumes that the break
frequency f 0, where the resistance and internal inductance transition from their dc
behavior to their high-frequency

√
f behavior, is the same for all the conductors.

This implicitly assumes that the conductors are identical. For example, an isolated
wire transitions from its dc behavior to its high-frequency behavior when its radius
equals two skin depths: rw = 2δ. If the conductors are not identical, this can be
accommodated by putting the individual

√
f 0 break frequencies into the individual

B matrix terms giving the general representation in (9.71).
The Laplace transform representation in (9.69) translates in the time domain to

∂

∂z
V(z, t) = −Zi(t)∗I(z, t) − L

∂

∂t
I(z, t) (9.73a)

∂

∂z
I(z, t) = −G(t)∗V(z, t) − C

∂

∂t
V(z, t) (9.73b)

where ∗ again denotes convolution, and the inverse Laplace transforms are denoted
as

Ẑi(s) ⇔ Zi(t) (9.74a)

Ĝ(s) ⇔ G(t) (9.74b)
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Using the Laplace transform identity given in the previous chapter:

1√
s

⇔ 1√
π

1√
t

(9.75)

the representation of the conductor internal impedance in (9.70) translates to

Ẑi(s) = A + B
√

s ⇔ Zi(t) = A + 1√
π

B
1√
t

∂

∂t
(9.76)

Hence, the convolution becomes

Zi(t)∗I(z, t) ⇔ A I(z, t) + 1√
π

B


 t∫

0

1√
τ

∂

∂ (t − τ)
I(z, t − τ)dτ


 (9.77)

9.2.1 The Time-Domain to Frequency-Domain (TDFD) Method

This method of circumventing the convolution for lossy lines is essentially unchanged
from previous descriptions except that the frequency-domain computation of the trans-
fer function requires inclusion of the line losses. (See Section 8.2.2 of the previous
chapter.) This is a very straightforward task and easily includes frequency-dependent
losses. Simply compute the internal impedance at each frequency and include that
in the solution for that frequency. Then recompute this for the next frequency and
resolve for the transfer function (magnitude and phase) at that frequency and so on.
The computer program MTL.FOR described in Appendix A provides this solution for
lossy multiconductor lines, and the program TIMEFREQ.FOR recombines the pro-
cessed Fourier frequency components of the time-domain input signal to indirectly
give the time-domain response of the system. Once again, use of this method requires
that the line terminations are linear since superposition was inherently used.

9.2.2 Lumped-Circuit Approximate Characterizations

Again, a common way of approximately representing the line is with a lumped-
Pi or lumped-T equivalent circuit shown in Figure 7.6 of Chapter 7. The primary
difficulty with these approximations is that they do not correctly process the high-
frequency spectral components of the input signal because their validity is based on
the assumption that they are electrically short at all frequencies of interest. Frequency-
dependent losses such as the skin-effect losses in conductors can be simulated using
the lumped-circuit models of the line impedances shown in Figure 8.50 .

The FORTRAN code SPICELPI.FOR described in Appendix A for lossless
lines generates a one-section, lumped-Pi SPICE subcircuit model. This can be then
modified to include losses by adding either dc resistances or one of the skin-effect
simulations in Figure 8.50. In this way only the line is modeled, and nonlinear loads
can be handled in the CAD code in which this model is imbedded. This is a simple
approximation but suffers from the lengthy computation time that a sufficiently large
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circuit model requires to model the very high-frequency spectral components of the
input signal [B.15].

9.2.3 The Finite-Difference, Time-Domain (FDTD) Method

The FDTD model for a lossy MTL is virtually identical to that for a lossy two-
conductor line but with matrix notation. We will first formulate the FDTD recursion
relations for a lossy line whose conductor loss parameters contained in R and Li, and
dielectric loss parameters contained in G are frequency independent, that is, their dc
values. The results can be obtained as in Section 8.2.3.1 but with matrix notation:

Vn+1
k =

(
�z

�t
C + �z

2
G
)−1 (

�z

�t
C − �z

2
G
)

Vn
k

−
(

�z

�t
C + �z

2
G
)−1 (

In+1/2
k − In+1/2

k−1

)
(9.78a)

for k = 2, 3, · · · , NDZ and

In+3/2
k =

(
�z

�t
L + �z

2
R
)−1 (

�z

�t
L − �z

2
R
)

In+1/2
k

−
(

�z

�t
L + �z

2
R
)−1 (

Vn+1
k+1 − Vn+1

k

)
(9.78b)

for k = 1, 2, · · · , NDZ. The terminal voltages are, for resistive terminations, in the
form of a generalized Thevenin equivalent given in (9.56),

Vn+1
1 =

(
�z

�t
RSC + �z

2
RSG + 1n

)−1 {(
�z

�t
RS C − �z

2
RSG − 1n

)
Vn

1

−2 RSIn+1/2
1 +

(
Vn+1

S + Vn
S

)}
(9.79a)

and

Vn+1
NDZ+1 =

(
�z

�t
RLC + �z

2
RLG + 1n

)−1 {(
�z

�t
RLC − �z

2
RLG − 1n

)

× Vn
NDZ+1 + 2 RLIn+1/2

NDZ +
(

Vn+1
L + Vn

L

)}
(9.79b)

Equations (9.78a) and (9.79) are solved first to obtain the line voltages, and then the
line currents are updated using (9.78b).

We next obtain the recursion relations for the FDTD formulation that includes
frequency-dependent conductor losses. Since the second transmission-line equation
in (9.73b) contains the dielectric losses in G, the voltage update equations for the
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interior voltages of a lossless MTL in (9.53b) are unchanged for the case of a lossless
medium, G = 0n where 0n is the n × n zero matrix with zeros in every position:

Vn+1
k = Vn

k − �t

�z
C−1

(
In+1/2
k − In+1/2

k−1

)
(9.53b)

for k = 2, 3, · · · , NDZ. The terminal voltage update equations in (9.55) or in (9.57)
for the generalized Thevenin equivalent characterization of the MTL terminations are
also unchanged from the case of a lossless medium:

Vn+1
1 =

[
�z

�t
RSC + 1n

]−1 {[
�z

�t
RSC − 1n

]
Vn

1 − 2RSIn+1/2
1

+
(

Vn+1
S + Vn

S

)}
(9.57a)

Vn+1
NDZ+1 =

[
�z

�t
RLC + 1n

]−1 {[
�z

�t
RLC − 1n

]
Vn

NDZ+1 + 2RLIn+1/2
NDZ

+
(

Vn+1
L + Vn

L

)}
(9.57b)

Only the equation for updating the current given in (9.53a) that is derived from the
first MTL equation in (9.73a) that contains the conductor losses needs to be changed.

In the case of a multiconductor line containing imperfect conductors, a virtually
identical development to the two-conductor line result in (8.180) provides the current
update equations for lossy conductors:

In+3/2
k = F−1

(
L

�z

�t
− A

�z

2
+ B

�z√
π �t

Z0(0)

)
In+1/2
k

−F−1 B
�z√
π �t

10∑
i=1

�n
i − F−1

(
Vn+1

k+1 − Vn+1
k

)
(9.80a)

for k = 1, · · · , NDZ where

�n
i = aie

bi

[
In+1/2
k − In−1/2

k

]
+ ebi �n−1

i (9.80b)

and the ai and bi are again determined with the Prony method and are given in Table 8.2
of Chapter 8. The matrix F is given by

F =
(

L
�z

�t
+ A

�z

2
+ B

�z√
π�t

Z0(0)

)
(9.80c)
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This replaces equation (9.53a) of the lossless line development. The details of the
derivation are essentially the same as for the lossy, two-conductor line given in Section
8.2.3 of Chapter 8. This is implemented in the FORTRAN code FDTDLOSS.FOR
that is described in Appendix A.

9.2.4 Representation of the Lossy MTL with the Generalized Method
of Characteristics

In Section 9.1.2, we discussed representing a lossless MTL with the generalized
method of characteristics [2]. Decoupling the MTL equations with similarity trans-
formations is easily accomplished for lossless MTLs. The generalized method of
characteristics derived for lossless MTLs can be extended to lossy MTLs in the fol-
lowing manner but the details become more tedious. Again, we attempt to decouple
the MTL equations for lossy lines by converting to modal quantities with similarity
transformations:

V̂(z, s) = T̂V (s) V̂m(z, s) (9.81a)

Î(z, s) = T̂I (s) Îm(z, s) (9.81b)

where we have denoted the line voltages and currents as their Laplace-transformed
variables. Substituting these into the MTL equations for a lossy line given in (9.69)
yields

d

dz
V̂m(z, s) = −T̂−1

V (s)
[
Ẑi(s) + sL

]
T̂I (s)Îm(z, s) (9.82a)

d

dz
Îm(z, s) = −T−1

I (s)
[
Ĝ(s) + s C

]
T̂V (s)V̂m(z, s) (9.82b)

where the internal impedances of the conductors are included as the sum of the
resistances and internal inductances as Ẑi(s) = R̂(s) + sL̂i(s). If we can determine
mode transformations such that the equations are uncoupled as

T̂−1
V (s)

[
Ẑi(s) + sL

]
T̂I (s) = Ẑm(s) (9.83a)

T−1
I (s)

[
Ĝ(s) + s C

]
T̂V (s) = Ŷm(s) (9.83b)
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where Ẑm(s) and Ŷm(s) are diagonal, then the modal MTL equations in (9.82) are
decoupled as

d V̂m1(z, s)

d z
= −Ẑm1(s)Îm1(z, s)

d Îm1(z, s)

d z
= −Ŷm1(s)V̂m1(z, s)

...

d V̂mn(z, s)

d z
= −Ẑmn(s)Îmn(z, s)

d Îmn(z, s)

d z
= −Ŷmn(s)V̂mn(z, s)

(9.84)

The mode voltages, V̂mi(z, s), and mode currents, Îmi(z, s), are then represented
with n separate, uncoupled, two-conductor, lossy lines. The diagonal per-unit-length
impedance and admittance matrices for the modes in (9.83), Ẑm(s) and Ŷm(s), have
entries

[
Ẑm(s)

]
ii

= Ẑmi(s) and
[
Ŷm(s)

]
ii

= Ŷmi(s) for i = 1, · · · , n on the main di-
agonal and zeros elsewhere. Hence, the solutions for the modes are

V̂m1(z, s) = e−γ̂m1(s)zV̂+
m1(s) + eγ̂m1(s)zV̂−

m1(s)

Îm1(z, s) = 1

ẐCm1(s)
e−γ̂m1(s)zV̂+

m1(s) − 1

ẐCm1(s)
eγ̂m1(s)zV̂−

m1(s)

...

V̂mn(z, s) = e−γ̂mn(s)zV̂+
mn(s) + eγ̂mn(s)zV̂−

mn(s)

Îmn(z, s) = 1

ẐCmn(s)
e−γ̂mn(s)zV̂+

mn(s) − 1

ẐCmn(s)
eγ̂mn(s)zV̂−

mn(s)

(9.85)

where the mode characteristic impedances and propagation constants are

ẐCmi(s) =
√

Ẑmi(s)

Ŷmi(s)
(9.86)

and

γ̂mi(s) =
√

Ẑmi(s)Ŷmi(s) (9.87)

The solutions in (9.85) can be written in the matrix form as

V̂m(z, s) = e−γ̂(s)zV̂+
m(s) + eγ̂(s)zV̂−

m(s) (9.88a)
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Îm(z, s) = Ẑ−1
Cm(s)

[
e−γ̂(s)zV̂+

m(s) − eγ̂(s)zV̂−
m(s)

]
(9.88b)

where ẐCm is the n × n characteristic impedance matrix for the modes, which is diag-
onal with

[
ẐCm(s)

]
ii

= ẐCmi(s) on the main diagonal and zeros elsewhere, and e±γ̂(s)

is an n × n diagonal matrix containing
[
e±γ̂(s)

]
ii

= e±γ̂mi(s) on the main diagonal and

zeros elsewhere. The n × 1 vectors of undetermined constants, V̂±
m(s), have entries[

V̂±
m(s)

]
i
= V̂±

mi(s) that are, in general, functions of s. Evaluating (9.88) at z = 0 and
at z = L gives

V̂m(0, s) = V̂+
m(s) + V̂−

m(s) (9.89a)

ẐCm(s)Îm(0, s) = V̂+
m(s) − V̂−

m(s) (9.89b)

and

V̂m(L, s) = e−γ̂(s)L V̂+
m(s) + eγ̂(s)LV̂−

m(s) (9.90a)

ẐCm(s) Îm(L, s) = e−γ̂(s)L V̂+
m(s) − eγ̂(s)L V̂−

m(s) (9.90b)

Adding and subtracting (9.89) and (9.90) yields

V̂m(0, s) − ẐCm(s)Îm(0, s) = Ê0(s) (9.91a)

V̂m(L, s) + ẐCm(s)Îm(L, s) = ÊL(s) (9.91b)

where

Ê0(s) = e−γ̂(s)L [
V̂m(L, s) − ẐCm(s)Îm(L, s)

]
(9.92a)

ÊL(s) = e−γ̂(s)L [
V̂m(0, s) + ẐCm(s)Îm(0, s)

]
(9.92b)

We can therefore use all the techniques developed in Chapter 8 for two-conductor,
lossy lines to model these uncoupled mode lines. The uncoupled mode line solutions
in (9.91) and (9.92) can be represented as shown in Figure 9.7. Time-domain rep-
resentations of the frequency-dependent individual mode characteristic impedances
ZCmi(s) ⇔ zCmi(t) as well as the propagation functions e−γ̂mi(s)L ⇔ hmi(t) can be
obtained with the Pade method or the Prony method as described in Chapter 8. This
allows the use of the recursive convolution method to evaluate the convolutions that
are represented by products of functions of s. In some cases, these can be represented
with lumped RLCG circuits [15]. Controlled sources can, as for lossless lines in the
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FIGURE 9.7 Illustration of the generalized method of characteristics for MTLs via
decoupling.

earlier part of this chapter, be used to transform the mode voltages and currents from
these uncoupled lines back to the actual line voltages and currents using (9.81) as il-
lustrated in Figure 9.1. Hence, we can represent the lossy line and the transformations
as shown in Figure 9.7.

This is very similar to the representation for the two-conductor lossless line shown
in Figure 8.9 that was derived from the method of characteristics in Chapter 8 and
produced the exact SPICE model of a two-conductor, lossless line. It is also used for a
lossless MTL in Section 9.1.2 of this chapter. This representation is referred to in the
literature as the generalized method of characteristics [15–27]. It should be noted that
the vast majority of these works assume that the loss parameter matrices, R, Li, and G,
are constant matrices, that is, independent of s and are therefore dc or low-frequency
parameters. This is done to simplify the mathematics. But clearly, this is unrealistic
since high-frequency skin-effect losses are neglected, as are the frequency-dependent
losses in the surrounding dielectric medium. Incorporating the frequency-dependent
losses of the conductors and dielectric medium obviously complicates the analysis
rather severely but is a necessary, practical requirement. Investigation of the required
relationship between Ẑ(ω) and Ŷ(ω) to ensure causality of the response is given in
[28]. The method of numerical inversion of the Laplace transform is an alternative
method of generating the time-domain functions and is discussed in [29–32]. Observe
that a major difficulty with diagonalizing the MTL equations for a lossy line as in
(9.83) is that, in general, the mode transformations will be frequency dependent and
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will be functions of s! Hence, the controlled sources in Figure 9.7 that implement the
transformations back to actual line voltages and currents will represent convolutions.
This presents a rather undesirable situation because we are faced with numerous
convolutions when we convert the mode quantities back to actual line voltages and
currents as in (9.81). Furthermore, it is difficult to compute the eigenvectors of a matrix
(the columns of T̂V (s) and T̂I (s)) when the matrix is a function of s. To henceforth
simplify the notation, we will denote the mode transformations as T̂V (s) = TV and
T̂I (s) = TI with the understanding that these will, in general, be frequency dependent
for lossy MTLs.

To avoid these convolutions in the mode transformations, we try to obtain
frequency-independent modal transformations. There are some special cases where
we can obtain frequency-independent mode transformations thereby simplifying
the equivalent circuit in Figure 9.7. The mode transformations will then be fre-
quency independent and hence the parameters of the controlled sources represent-
ing them in Figure 9.7 will be constants. First we write out (9.83), substituting
Ẑi(s) = R(s) + sLi(s):

T−1
V R(s)TI + sT−1

V Li(s)TI + sT−1
V LTI = Ẑm(s) (9.93a)

T−1
I G(s)TV + sT−1

I CTV = Ŷm(s) (9.93b)

Hence, we must determine two n × n constant transformation matrices TV and TI

that simultaneously diagonalize five matrices, R, Li, L, G, and C. Clearly, this is
too much to expect. Now let us make some assumptions to allow the decoupling
of the MTL equations and, in addition, give frequency-independent transformations.
The first assumption is that the surrounding medium is homogeneous, for example, a
stripline. For a homogeneous medium, we have the identities

G = σ(s)

ε(s)
C (9.94a)

CL = µ ε(s)1n = 1

v2 1n (9.94b)

Next, we assume that the n conductors are identical leading to

R = r(s)1n + r0(s)Un (9.95a)

Li = li(s)1n + li0(s)Un (9.95b)

where r0(s) and li0(s) represent the resistance and internal inductance, respectively,
of the reference conductor and 1n is the n × n identity matrix and Un is the n × n unit
matrix with ones in all positions. (Note: For a reference conductor not of finite size
such as a ground plane, spreading of the return current will cause the off-diagonal
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terms to be unequal so that the forms in (9.95) will not apply.) The equations to be
diagonalized in (9.93) reduce to

(r(s) + sli(s))T
−1
V TI + (r0(s) + sli0(s))T−1

V UnTI + 1

v2 sT−1
V C−1TI = Ẑm(s)

(9.96a)(
σ(s)

ε(s)
+ s

)
T−1

I CTV = Ŷm(s) (9.96b)

Hence, we must simultaneously diagonalize two matrices Un and C. In addition, the
transformations must be such that T−1

V TI is also diagonal. We can simultaneously
diagonalize Un and C because both are real, symmetric, and positive definite (see
Section 9.1.2.2). However, the product of the transformation matrices T−1

V TI is not
diagonal. Hence, we must make the following assumptions:

1. n identical conductors ignoring loss in the reference conductor, that is, r0(s) = 0
and li0(s) = 0 or

2. n + 1 identical conductors, that is, r0(s) = r(s) and li0(s) = li(s).

In the first case, the equations in (9.96) become

(r(s) + sli(s))T
−1
V 1nTI + 1

v2 sT−1
V C−1TI = Ẑm(s) (9.97a)

(
σ(s)

ε(s)
+ 1

)
T−1

I CTV = Ŷm(s) (9.97b)

The transformations can be found that diagonalize all matrices in (9.97) as the fol-
lowing shows. Since C is a real, symmetric matrix, it can be diagonalized by an
orthogonal transformation, as TtCT = � where � is an n × n diagonal matrix and
T−1 = Tt where the superscript t denotes the transpose of the matrix (see Section
9.1.2.1). Hence, we can choose TV = T and T−1

I = Tt so that T−1
I CTV = TtCT = �

is diagonal. The matrix T−1
V C−1TI , is automatically diagonalized: T−1

V C−1TI =(
T−1

I CTV

)−1 = �−1. Observe that T−1
V 1nTI = T−1

V TI = Tt
(
Tt
)−1 = 1n is also

automatically diagonalized.
In the second case the equations in (9.96) become

(r(s) + sli(s))T
−1
V (1n + Un)TI + 1

v2 sT−1
V C−1TI = Ẑm(s) (9.98a)

(
σ(s)

ε(s)
+ 1

)
T−1

I CTV = Ŷm(s) (9.98b)

As C and (1n + Un) are symmetric matrices and C is positive definite, the trans-
formations can be found that simultaneously diagonalize these two matrices as
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T−1
I CTV = �1 and T−1

V (1n + Un) TI = �2 where �1 and �2 are diagonal matrices
resulting in uncoupled mode equations (see Section 9.1.2.2). The matrix, T−1

V C−1TI ,

is again automatically diagonalized: T−1
V C−1TI =

(
T−1

I CTV

)−1 = �−1
1 .

Suppose, we assume that the n conductors are identical and that only the nearest
neighbor coupling exists, that is, only adjacent lines are coupled. In addition, if the
self-inductances are equal and the self-capacitances are equal, and if the mutual ca-
pacitances are equal and the mutual inductances are equal, then the C and L matrices
are in the very special form as tridiagonal Toeplitz matrices, and we can choose the
mode transformations to be identical as TV = TI = M and M−1 = Mt where t de-
notes the transpose [33, 34]. If all of the above special conditions are satisfied, then
the C and L matrices are of the very special form:

L =




l lm 0 0 0
lm l lm 0 0
0 lm l lm 0
0 0 lm l lm
0 0 0 lm l


 (9.99a)

C =




c cm 0 0 0
cm c cm 0 0
0 cm c cm 0
0 0 cm c cm

0 0 0 cm c


 (9.99b)

The coupled microstrip line is an example of this type of structure (although there
exists coupling to some degree between all pairs of conductors). Furthermore, the
entries in M are independent of the entries in C and L for this type of structure and
are given in [33, 34]. This is a very special case of symmetry and is very similar
to the case of cyclic-symmetric structures discussed in Section 7.2.2.5 of Chapter 7.
Hence, the C and L matrices may be simultaneously diagonalized as MtLM = �L

and MtCM = �C where �L and �C are diagonal matrices. Although this seems
to decouple the general case of lines in an inhomogeneous medium, decoupling of
the MTL equations requires that the conductor impedance matrices be of the form
R + sLi = (r + sli) 1n, which means that we must also assume that all conductors
are identical and neglect the loss in the reference conductor. In this case

T−1
V [R + sLi]TI = (r + sli)M−1M = (r + sli)1n (9.100)

Since C is a tridiagonal Toeplitz form, assuming only the nearest neighbor coupling
seems to imply that we may also assume that G is a tridiagonal Toeplitz form. If that
assumption is made, then the same M will also diagonalize G as

T−1
I GTV = MtGM

= �3 (9.101)
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So if we assume (1) only nearest neighbor coupling, (2) all conductors are identical
and neglect the loss in the reference conductor, and (3) special cross-sectional sym-
metry that yields the special forms of L and C in (9.99), then the MTL equations
can be decoupled for an inhomogeneous medium with frequency-independent trans-
formations. Furthermore, the transformations are general and are independent of the
entries in L and C.

The case of cyclic-symmetric structures discussed in Section 7.2.2.5 of Chapter 7
is decoupleable by frequency-independent transformations. Frequency-independent
transformations are given for these structures in Section 7.2.2.5. Cyclic-symmetric
structures require that the n conductors be identical, for example, identical wire radii
and insulation types and thicknesses as shown in Figure 7.1. The reference conductor
can be different. Common cases are the case of two identical wires at the same height
above a ground plane as shown in Figure 7.2(a) or the symmetrical microstrip line
shown in Figure 7.2(b). For both of these structures, the impedance and admittance
matrices have the form

Ẑ(s) =
[

Ẑs(s) Ẑm(s)
Ẑm(s) Ẑs(s)

]
(9.102a)

Ŷ(s) =
[

Ŷs(s) Ŷm(s)
Ŷm(s) Ŷs(s)

]
(9.102b)

The frequency-independent transformation that diagonalizes these is

T = TV = TI = 1√
2

[
1 1
1 −1

]
(9.103a)

T−1 = T−1
V = T−1

I = 1√
2

[
1 1
1 −1

]
(9.103b)

When none of the above special cases exist, the MTL equations includ-
ing frequency-dependent losses cannot, in general, be decoupled with frequency-
independent transformations. However, the method of characteristics developed ear-
lier for lossless lines can be extended, using convolution, to the lossy line case to
develop a 2n-port model of the lossy line. Consider the frequency-domain solution of
the MTL equations given in (7.30) of Chapter 7 written in Laplace-transformed form
substituting jω = s:

V̂(z, s) = T̂V

(
e−γ̂(s)zV̂+

m + eγ̂(s)zV̂−
m

)
(9.104a)

Î(z, s) = ŶC(s)T̂V

(
e−γ̂(s)zV̂+

m − eγ̂(s)zV̂−
m

)
(9.104b)

The characteristic admittance matrix ŶC(s) is the inverse of the characteristic
impedance matrix and is given in (7.32) as ŶC(s) = Ŷ(s)T̂V γ̂−1(s)T̂−1

V . The n ×
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n matrix T̂V diagonalizes the product of the frequency-domain per-unit-length
impedance and admittance matrices as T̂−1

V Ẑ(s)Ŷ(s)T̂V = γ̂2(s) where the per-unit-
length impedance and admittance matrices of the line are Ẑ(s) = R(s) + sLi(s) + sL
and Ŷ(s) = G(s) + sC. All matrices and vectors are, in general, frequency depen-
dent, that is, functions of s. Multiplying (9.104b) by the characteristic impedance
matrix, ẐC(s) = Ŷ−1

C (s), evaluating at z = 0 and z = L, and adding and subtracting
the resulting equations gives

V̂(0, s) − ẐC(s)Î(0, s) =
[
T̂V e−γ̂(s)LT̂−1

V

] [
V̂(L, s) − ẐC(s)Î(L, s)

]
(9.105a)

V̂(L, s) + ẐC(s)Î(L, s) =
[
T̂V e−γ̂(s)LT̂−1

V

] [
V̂(0, s) + ẐC(s)Î(0, s)

]
(9.105b)

This gives the 2n-port equivalent circuit shown in Figure 9.8. Now, we convert to the
time domain. Taking the inverse Laplace transform gives

V(0, t) − zC(t)∗I(0, t) = h(t)∗ [V(L, t) − zC(t)∗I(L, t)] (9.106a)

V(L, t) + zC(t)∗I(L, t) = h(t)∗[V(0, t) + zC(t)∗I(0, t)] (9.106b)

where zC(t) ⇔ ẐC(s) and h(t) ⇔ T̂V e−γ̂(s)LT̂−1
V and ∗ denotes convolution. This

gives another form of the generalized method of characteristics (without the necessity
for the mode transformations) as the convolutions of the time-domain characteristic
impedance matrix zC(t) and the time-domain delay matrix h(t) with port currents and
voltages. The structure of this equivalent circuit in Figure 9.8 is virtually identical to
that shown in Figure 8.9 for two-conductor lossless lines but with coupling between
all lines. An alternative representation is obtained by premultiplying (9.105) by the
characteristic admittance matrix ŶC = Ẑ−1

C and rearranging to yield

Î(0, s) − ŶC(s)V̂(0, s) =
[
ŶC(s)T̂V e−γ̂(s)LT̂−1

V ẐC(s)
] [

Î(L, s) − ŶC(s)V̂(L, s)
]

(9.107a)

Î(L, s) + ŶC(s)V̂(L, s) =
[
ŶC(s)T̂V e−γ̂(s)LT̂−1

V ẐC(s)
] [

Î(0, s) + ŶC(s)V̂(0, s)
]

(9.107b)

This gives the 2n-port equivalent circuit shown in Figure 9.9. Now, we convert to the
time domain. Taking the inverse Laplace transform gives

I(0, t) − yC(t)∗V(0, t) = f(t)∗[I(L, t) − yC(t)∗V(L, t)] (9.108a)

I(L, t) + yC(t)∗V(L, t) = f(t)∗[I(0, t) + yC(t)∗V(0, t)] (9.108b)
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FIGURE 9.8 An alternative form of the generalized method of characteristics.

where yC(t) ⇔ ŶC(s) and f(t) ⇔ ŶC(s)T̂V e−γ̂(s)LT̂−1
V ẐC(s) and ∗ denotes convolu-

tion. This gives another form of the generalized method of characteristics (without
the necessity of mode transformations) as the convolutions of the time-domain char-
acteristic admittance matrix yC(t) and the time-domain delay matrix f(t) with port
currents and voltages.

Alternative representations of these in terms of the transformation matrix T̂I that
diagonalizes the product Ŷ(s)Ẑ(s) as T̂−1

I Ŷ(s)Ẑ(s)T̂I = γ2 are obtained from the
representation in (7.25) of Chapter 7:

V̂(z, s) = ẐC(s)T̂I

(
e−γ̂(s)z Î+

m + eγ̂(s)z Î−
m

)
(9.109a)
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FIGURE 9.9 An alternative form of the generalized method of characteristics.

Î(z, s) = T̂I

(
e−γ̂(s)z Î+

m − eγ̂(s)z Î−
m

)
(9.109b)

Eliminating the vectors of undetermined constants, Î±
m, as above gives

V̂(0, s) − ẐC(s)Î(0, s) =
[
ẐC(s)T̂Ie−γ̂(s)LT̂−1

I Ẑ−1
C (s)

] [
V̂(L, s) − ẐC(s)Î(L, s)

]
(9.110a)

V̂(L, s) + ẐC(s)Î(L, s) =
[
ẐC(s)T̂Ie−γ̂(s)LT̂−1

I Ẑ−1
C (s)

] [
V̂(0, s) + ẐC(s)Î(0, s)

]
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(9.110b)

and, after multiplying by ŶC = Ẑ−1
C , alternatively

Î(0, s) − ŶC(s)V̂(0, s) =
[
T̂Ie−γ̂(s)LT̂−1

I

] [
Î(L, s) − ŶC(s)V̂(L, s)

]
(9.111a)

Î(L, s) + ŶC(s)V̂(L, s) =
[
T̂Ie−γ̂(s)LT̂−1

I

] [
Î(0, s) + ŶC(s)V̂(0, s)

]
(9.111b)

Using the methods in [B.25], it can be shown that

ẐC(s)T̂Ie−γ̂(s)LT̂−1
I Ẑ−1

C (s) = T̂V e−γ̂(s)LT̂−1
V (9.112a)

ŶC(s)T̂V e−γ̂(s)LT̂−1
V ẐC(s) = T̂Ie−γ̂(s)LT̂−1

I (9.112b)

This demonstrates (as expected) that (9.105) and (9.110) are equivalent as are (9.107)
and (9.111), even though one set of equations involves T̂V and the other set of equa-
tions involves T̂I . The article in [B.25] demonstrates the hazards in using quantities
that involve both T̂V and T̂I rather than involving only T̂V or T̂I . This has caused
considerable confusion throughout the literature and the reader should be alert to
these seemingly equivalent definitions. Many of the publications in the references
use notation such as Si and Sv when not only are these different from the above T̂V

and T̂I but, even though it may be the case that Sv = T̂V , it also turns out that Si �= T̂I

and Si has an entirely different meaning.

9.2.5 Model Order Reduction (MOR) Methods

High-density interconnects in today’s integrated circuits and digital systems contain
an enormous number of coupled MTLs. The computational burden in using the above
methods is becoming intractable. Hence, there is a need to reduce the order of the
representation of these structures. These representations generally fit into the category
of macromodels. Transfer functions of MTLs involve transcendental functions that
have an infinite number of roots. Hence, these transfer functions will have an infinite
number of poles making the inverse transforms impossible to compute. However,
if we can represent these transfer functions with only a smaller, finite number of
dominant poles, then the computational burden is reduced. This is generally referred
to as Model Order Reduction or MOR. In this final section of the chapter, we will
discuss some of the many MOR methods such as Pade approximations, asymptotic
waveform evaluation or AWE, complex frequency hopping or CFH, and vector fitting
or VF along with the synthesis of lumped equivalent circuits. The literature is rapidly
expanding in terms of MOR techniques.

9.2.5.1 Pade Approximation of the Matrix Exponential The MTL equations in
Laplace transform form for a lossy line are coupled, ordinary differential equations
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given in (9.69) as

d

dz
V̂(z, s) = − (

Ẑi(s) + sL
)

Î(z, s) (9.69a)

d

dz
Î(z, s) = −

(
Ĝ(s) + sC

)
V̂(z, s) (9.69b)

where Ẑi (s) = R (s) + sLi (s) is the internal impedance matrix for the conductor
losses. These can be put into the so-called state-variable form as [13, 14]

d

dz
X̂(z, s) = Â(s)X̂(z, s) (9.113a)

where X̂(z, s) is a 2n × 1 vector containing the voltages and currents of the line as

X̂(z, s) =
[

V̂(z, s)
Î(z, s)

]
(9.113b)

Â(s) is a 2n × 2n matrix containing the line per-unit-length parameters as

Â(s) = −
[

0n (R + sL)
(G + sC) 0n

]
(9.113c)

and 0n is the n × n zero matrix with zeros in all positions. In the following, we will,
for the purposes of economy of notation, not continue to place the caret over the
transformed per-unit-length parameters nor indicate that they are functions of s. Nor
will we explicitly show the separation of the internal impedance into the resistance
and internal inductance. All of this is implied.

The solution to (9.113) is well known to be [A.2,13, 14]

X̂(L, s) = eÂ(s)LX̂(0, s) (9.114)

where L is the total line length. The 2n × 2n matrix eÂ(s)L is referred to in the circuits
and automatic controls literature as the state-transition matrix. In our vernacular, this
is equivalent to the chain-parameter matrix:[

V̂(L)
Î(L)

]
= eÂ(s)L︸ ︷︷ ︸

�̂(s,L)

[
V̂(0)
Î(0)

]
(9.115)

The state-transition or chain-parameter matrix has the following infinite series expan-
sion [A.2,13, 14]

eẐ = 1n + 1

1!
Ẑ + 1

2!
Ẑ2 + 1

3!
Ẑ3 + · · · (9.116a)
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and we denote the total line parameter matrix as

Ẑ = Â(s)L (9.116b)

In Section 8.2.6 of the previous chapter, we discussed using the Pade method how
to approximate a function F (s) as a rational function consisting of the ratio of Nth
order polynomials in s as

F (s) ∼= F (0)
1 + a1s + · · · + aNsN

1 + b1s + · · · + bNsN
(9.117)

where F (0) is the dc response at s = 0. We can determine the 2N parameters in this
representation, a1, · · · , aN, b1, · · · , bN , by matching it to a Maclaurin expansion
about s = 0 as an infinite series in s:

F (s) = F (0)
[
1 + m1s + m2s

2 + · · ·
]

(9.118)

and the mi are said to be the “moments” of f (t). Equating (9.117) and (9.118) and
multiplying both sides by the denominator gives

(
1 + b1s + · · · + bNsN

) (
1 + m1s + m2s

2 + · · ·
)

= 1 + a1s + · · · + aNsN

(9.119)
Matching powers of s gives the matrix equations given in equations (8.215) of
Chapter 8:




m1 m2 m3 · · · mN

m2 m3 m4 · · · mN+1
m3 m4 m5 · · · mN+2
...

...
...

...
...

mN mN+1 mN+2 · · · m2N−1







bN

bN−1
bN−2

...
b1


 = −




mN+1
mN+2
mN+3

...
m2N


 (8.215a)




a1
a2
a3
...

aN


 =




1 0 0 · · · 0
m1 1 0 · · · 0
m2 m1 1 · · · 0
...

...
...

...
...

mN−1 mN−2 mN−3 · · · 1







b1
b2
b3
...

bN


+




m1
m2
m3
...

mN


 (8.215b)

The bi denominator coefficients for i = 1, · · · , Ncan be obtained from (8.215a), and
the ai numerator coefficients for i = 1, · · · , N can then be obtained from (8.215b).
(See Section 8.2.6 of Chapter 8 for this development.) We can use this result to obtain
a Pade representation of the chain-parameter matrix. Each entry in the 2n × 2n chain-
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parameter matrix is represented as a rational function of s as a ratio of polynomials in s:

eẐ =

 F11(s) · · · F1(2n)(s)

...
. . .

...
F(2n)1(s) · · · F(2n)(2n)(s)


 (9.120)

Rather than expanding the individual entries, we can obtain this in matrix form as

P̂
(
Ẑ
)

eẐ = Q̂
(
Ẑ
)

(9.121a)

or

eẐ = P̂−1 (Ẑ) Q̂
(
Ẑ
)

(9.121b)

Comparing (9.116a) to (9.118) indicates that the “moments” of the expansion will
be in the form of factorials, that is, mi = 1/i!. A closed-form solution for the Pade
expansion polynomials can be obtained as powers of Ẑ [35–37]

Q̂
(
Ẑ
) =

N∑
k=0

(2N − k)!N!

(2N)!k!(N − k)!
Ẑk (9.122a)

P̂
(
Ẑ
) =

N∑
k=0

(2N − k)!N!

(2N)!k!(N − k)!

(−Ẑ
)k

(9.122b)

The general result for the orders of the numerator and denominator polynomials
not being the same is given in [35–37]. In addition, it is shown in [36] that these
representations and the associated model are passive. Passivity is a very important
criterion for any simulation model and means that the system cannot generate more
energy than it absorbs and that no passive termination on the system will make
the system unstable. Recall from Chapter 8 that the Pade method may generate
polynomials with unstable poles, that is, the denominator roots have positive real
parts. For the above development, we are assured that no such instability will be
generated. Furthermore, (9.122) gives a closed-form result for the expansions.

9.2.5.2 Asymptotic Waveform Evaluation (AWE) The AWE method is also a
moment-matching technique [35–39]. The method seeks to expand the Laplace-
transformed voltages and currents in power series in the Laplace transform variable
s, that is, in terms of moments. By matching matrix coefficients of corresponding
powers of s, the MTL equations are transformed into a series of differential equations
that can be solved iteratively or interfaced with a conventional circuit simulator such
as SPICE.



516 TIME-DOMAIN ANALYSIS OF MULTICONDUCTOR LINES

For example, the chain-parameter matrix can be solved this way by writing out
(9.116a) as

eẐ = 1n + 1

1!
Ẑ + 1

2!
Ẑ2 + 1

3!
Ẑ3 + · · ·

= 1n + 1

1!

([
0n R
G 0n

]
+ s

[
0n L
C 0n

])

+ 1

2!

([
0n R
G 0n

]
+ s

[
0n L
C 0n

])2

+ · · ·

(9.123)

Expanding this and grouping terms that are associated with powers of s and comparing
to a moment expansion as

eẐ = F̂0 + F̂1 s + F̂2 s2 + · · · (9.124)

gives recursion relations for the “moment matrices” F̂i [35].
Similarly, the transformed MTL equations in state-variable form given in (9.113)

can be diagonalized as [41]

[
Â(s) B̂(s)
Â(s) −B̂(s)

]
︸ ︷︷ ︸

T̂(s)

[
0n (R + sL)

G + sC 0n

]
=
[−γ̂ 0n

0n γ̂

] [
Â(s) B̂(s)
Â(s) −B̂(s)

]
︸ ︷︷ ︸

T̂(s)

(9.125)

where γ̂ is the diagonal matrix of propagation constants and

Â(s)(R + sL)B̂−1(s) = −γ̂ (9.126a)

B̂(s)(G + sC)Â−1(s) = −γ̂ (9.126b)

or, in other words,

Â(s)(R + sL)(G + sC)Â−1(s) = −γ̂2 (9.127a)

B̂(s)(G + sC)(R + sL)B̂−1(s) = γ̂2 (9.127b)

From this we identify the modal transformation matrices of Chapter 7 as

Â(s) = T̂−1
V (9.128a)

and

B̂(s) = T̂−1
V ẐC(s) (9.128b)
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and ẐC(s) is the characteristic impedance matrix. Hence, the solution of the first-order
state-variable matrices in (9.114) becomes

[
V̂(L, s)
Î(L, s)

]
=
[

Â(s) B̂(s)
Â(s) −B̂(s)

]−1 [ e−γ̂(s)L 0n

0n e−γ̂(s)L

] [
Â(s) B̂(s)
Â(s) −B̂(s)

] [
V̂(0, s)
Î(0, s)

]
(9.129)

and the chain-parameter matrix has been generated. This gives the form of the solution
that is identical to (9.107):

Î(0, s) − ŶC(s)V̂(0, s) =
[
B̂−1 (s) e−γ̂(s)LB̂ (s)

] [
Î(L, s) − ŶC(s)V̂(L, s)

]
(9.130a)

Î(L, s) + ŶC(s)V̂(L, s) =
[
B̂−1(s)e−γ̂(s)LB̂(s)

] [
Î(0, s) + ŶC(s)V̂(0, s)

]
(9.130b)

and ŶC(s) is the characteristic admittance matrix. Hence, the solution is representable
again in the form of the generalized method of characteristics as shown in Figure 9.9.

As an alternative to the use of Pade approximations to obtain the time-domain
representations of ŶC(s) and e−γ̂(s)L, we represent the various matrices in terms of
moments about s = 0 as

Â (s) = A0 + A1 s + A2 s2 + · · · (9.131a)

B̂ (s) = B0 + B1 s + B2 s2 + · · · (9.131b)

γ̂ (s) = γ0 + γ1 s + γ2 s2 + · · · (9.131c)

ŶC (s) = YC0 + YC1 s + YC2 s2 + · · · (9.131d)

Substituting these moment expansions into (9.125) gives a recursion relation for the
moments as [41]

[
Ak Bk

Ak −Bk

] [
0n R
G 0n

]
+
[

Ak−1 Bk−1
Ak−1 −Bk−1

] [
0n L
C 0n

]
= ∑k

i=0

[−γi 0n

0n γi

] [
Ak−1 Bk−1
Ak−1 −Bk−1

]
(9.132)

The moments of the characteristic admittance matrix can be obtained by substituting
the moment expansion given in (9.131) into (9.128)

B̂ (s) ŶC = Â (s) (9.133)
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to yield the recursion relation [41]

k∑
i=0

BiYC(k−i) = Ak (9.134)

The moments of the propagation function e−γ̂(s)L can be similarly obtained. The
time-domain results can be put in a form allowing a recursive convolution scheme
to be implemented and can be stenciled into the modified nodal admittance (MNA)
matrix of SPICE [43].

9.2.5.3 Complex Frequency Hopping (CFH) The transfer functions of transmis-
sion lines involve transcendental functions and therefore have an infinite number of
poles. However, not all of these poles need to be used in a macromodel of the line as
shown in the pole plot in Figure 9.10. The horizontal axis is the real part of s = σ + jω

and the vertical axis is the imaginary part. For example, two real poles s1 = −1 and
s2 = −1000 will have time-domain contributions in the response of e−t and e−1000t ,
respectively. The response due to the first pole s1 = −1 will take a much longer time
to decay to zero than the response to the second pole s2 = −1000. Hence, poles that
are further from the imaginary axis, s = jω, are less important in determining the
time-domain response accurately. Conversely, the poles that are closer to the s = jω

axis are more important in obtaining an accurate time-domain response and are called
the dominant poles. It is important to determine only the dominant poles in order to
obtain an accurate time-domain macromodel.

The Pade approximation is accurate only in a region of convergence about the
expansion point. For example, if we expand the function in moments about s = 0 as
in (9.118)

F (s) = F (0)
[
1 + m1s + m2s

2 + · · ·
]

(9.118)

then the resulting Pade approximation in (9.117)

F (s) ∼= F (0)
1 + a1s + · · · + aNsN

1 + b1s + · · · + bNsN
(9.117)

gives a good approximation only in a region of convergence about s = 0 as illustrated
in Figure 10. The method of CFH seeks to determine the other dominant poles by
redetermining the expansions by moving the regions of convergence along the s = jω

axis as illustrated in Figure 10 [35, 44].

9.2.5.4 Vector Fitting In obtaining a solution to differential equations (ordinary or
partial), we discretize the time axis into � t intervals and recursively solve the equa-
tions. Performing a convolution generally requires the storage of all past time points,
which is very burdensome in terms of memory requirements as well as computation
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FIGURE 9.10 Illustration of the method of complex frequency hopping to determine the
dominant poles.

time. In Section 8.2.3.4, we discussed the recursive convolution technique for eval-
uating convolution integrals, which avoids this problem. The recursive convolution
method relies on representing the time-domain responses as the sum of exponential
time functions such as

h (t) =
N∑

k=1

aie
bit (9.135)
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The recursive convolution scheme relies on the property of the exponential e(a+b) =
eaeb. For example, the convolution h(t)∗x(t) is evaluated as

[h(t)∗x(t)]|t=ti =
ti∫
0

aebτ︸︷︷︸
h(τ)

x (ti − τ) dτ

=
ti−ti−1∫

0

aebτx (ti − τ) dτ +
ti∫

ti−ti−1

aebτx (ti − τ) dτ

=
�t∫
0

aebτx (ti − τ) dτ + eb�t

ti−1∫
0

aebςx (ti−1 − ς) dς

=
�t∫
0

aebτx (ti − τ) dτ + eb�ty (ti−1)

(8.192)

and we have used a change of variables, ς = τ − (ti − ti−1) = τ − � t, in the second
integral. Hence, the recursive convolution technique allows us to accumulate the
values of the convolution at the previous time points as we proceed.

If we characterize a transfer function in the frequency domain in rational polyno-
mial form as

F (s) = a0 + a1s + · · · + aNsN

b0 + b1s + · · · + bNsN
(9.136a)

it can be expanded using partial fractions as

F (s) = c0 +
N∑

i=1

ci

s − pi

(9.136b)

where the pi are the poles and the ci are the residues. This becomes, in the time
domain,

f (t) = c0δ(t) +
N∑

i=1

cie
pit (9.137)

and hence, the recursive convolution scheme can be easily implemented. In order
to determine the frequency-domain expansion in (9.136), we need to determine the
dominant poles over the frequency range of interest and their residues as in (9.136b).
The vector fitting method seeks to do this [45–47].
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The vector fitting method uses an auxiliary undetermined rational function ex-
panded as

σ (s) = 1 +
N∑

i=1

c̃i

s − p̃i

(9.138)

and an approximation to F (s):

P (s) = c0 +
N∑

i=1

ci

s − p̃i

(9.139)

In both these functions, we choose a set of starting poles p̃i and write

P(s) = σ (s) F (s) (9.140)

Writing this out yields

[
c0 +

N∑
i=1

ci

s − p̃i

]
︸ ︷︷ ︸

P(s)

=
[

1 +
N∑

i=1

c̃i

s − p̃i

]
︸ ︷︷ ︸

σ(s)

F (s) (9.141a)

or

c0 +
N∑

i=1

ci

s − p̃i

−
N∑

i=1

c̃i F (s)

s − p̃i

= F (s) (9.141b)

Choosing M frequency points, sk = jωk, over the frequency range of interest to
evaluate this gives M equations in the 2N + 1 unknowns c0, ci, c̃i in the form

A X = B (9.142a)

where




1
1

s1 − p̃1
· · · 1

s1 − p̃N

− F (s1)

s1 − p̃1
· · · − F (s1)

s1 − p̃N

1
1

s2 − p̃1
· · · 1

s2 − p̃N

− F (s2)

s2 − p̃1
· · · − F (s2)

s2 − p̃N
...

...
...

...
...

...
...

1
1

sM − p̃1
· · · 1

sM − p̃N

− F (sM)

sM − p̃1
· · · − F (sM)

sM − p̃N




︸ ︷︷ ︸
A




c0
c1
...

cN

c̃1
...

c̃N




︸ ︷︷ ︸
X
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=




F (s1)
F (s2)

...
F (sM)




︸ ︷︷ ︸
B

(9.142b)

matrix A is M × (2N + 1), vector X is of length 2N + 1, and vector B is of length
M. Rewriting (9.140) as

F (s) = P(s)

σ(s)
(9.143)

shows the key fact about the vector fitting method: the poles, pi of F (s) are the zeros
of σ (s)! Also observe that the initial estimates of the poles p̃i cancel out! Hence, once
(9.142) is solved for the N residues of σ (s), c̃1, · · · , c̃N , the N zeros of σ (s) can be
determined by multiplying out (9.138) and then factoring the numerator polynomial.
An alternative, more direct, method is to determine the N poles of F (s), pi, as the N
eigenvalues of the N × N matrix [47, 48]

D =



(
p̃1 − c̃1

) −c̃2 · · · −c̃N

−c̃1
(
p̃2 − c̃2

) · · · −c̃N

...
...

...
...

−c̃1 · · · −c̃N−1
(
p̃N − c̃N

)


 (9.144a)

as

∣∣pi1n − D
∣∣ = 0 (9.144b)

where || denotes the determinant of the enclosed matrix. These new poles are again
used as the starting poles, and the process is repeated until the poles converge. The
initial poles are typically chosen to be equally spaced, logarithmically, over the fre-
quency range that we wish to characterize, and the real parts are chosen to be a factor
of 100 smaller than the imaginary parts, that is, p̃i = αi + jβi with βi = 100αi, as
recommended in [45].

If we choose the number of frequency points for the sk, M, to be larger than the
number of unknowns in X, 2N+1, (9.142) becomes an overdetermined set of equations,
and the residues can be determined to minimize the error in a least-squares sense [49].
In a linear least-squares problem, we approximate a function as a linear combination
of K basis functions φi (s) as

F̃ (s) =
K∑

i=1

aiφi (s) (9.145)
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Matching this to the known values of the function at M points, s j , where M ≥ K gives

K∑
i=1

aiφi

(
s j

) = F (s j) for j = 1, · · · , M (9.146)

This gives M equations in the K expansion coefficients, ai, written in matrix form as

AX = B (9.147a)

where

[A] ji = φi

(
s j

)
(9.147b)

[X]i = ai (9.147c)

[B] j = F
(
s j

)
(9.147d)

where A is M × K, X is K × 1, and B is M × 1. Then, we determine the ai to
minimize the square of the difference between F̃ (s) and the values of the function at
the M points, sj , as

min
M∑
j=1

[
F
(
sj
)−

K∑
i=1

aiφi

(
sj
)]2

(9.148)

To minimize this error, we differentiate (9.148) with respect to the ai and set the result
equal to zero giving K equations as

M∑
j=1

[
F
(
sj
)−

K∑
i=1

aiφi

(
sj
)]

φk

(
sj
) = 0 for k = 1, · · · , K (9.149)

This can be written as

K∑
i=1

αkiai = βk for k = 1, · · · , K (9.150a)

where

αki =
M∑
j=1

φk

(
sj
)
φi

(
sj
)

(9.150b)
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βk =
M∑
j=1

F
(
sj
)
φk

(
sj
)

(9.150c)

This can be written in matrix form as[
AtA

]
X = AtB (9.151)

where t denotes transpose and the entries in A, X, and B are given in (9.147). The re-
sulting equations in (9.151) are K equations in the K unknown expansion coefficients,
ai. To avoid roundoff error, the preferred method of solution for (9.151) is singular
value decomposition (SVD) [49].

The equations in (9.142) are in the form of (9.147) where the K ⇒
(2N + 1) φi

(
sj
)

are

φi

(
sj
) = 1,

1

sj − p̃i

, · · · , 1

sj − p̃i

, − F
(
sj
)

sj − p̃i

, · · · , − F
(
sj
)

sj − p̃i

(9.152a)

and the K ⇒ (2N + 1) ai are

c0, c1, . . . , cN, c̃1, . . . , c̃N (9.152b)

and A is M × (2N + 1), X is (2N + 1) × 1, and B is M × 1. The resulting equations
in the least-square method in (9.151) are 2N + 1 equations in the 2N + 1 residues
in (9.152b). The starting poles are chosen and (9.151) is solved for the residues
of σ (s) in (9.138), c̃1, · · · , c̃N . The new poles are obtained as the eigenvalues of
(9.144). These are used for the new starting poles, and the process is repeated. After
convergence, F (s) is factored as in (9.136b), and the time-domain representation in
terms of exponential functions is obtained as in (9.137). Any convolutions involving
this function can then be evaluated using the method of recursive convolution.

An alternative to using the recursive convolution scheme is to synthesize lumped
equivalent circuits to represent F (s) thereby directly using programs such as SPICE to
obtain the time-domain response of the system. Such representations of the frequency-
domain factored form in (9.136b) are given in [50] using R, L, C elements and
controlled sources.

9.3 COMPUTED AND EXPERIMENTAL RESULTS

The computed results are obtained for the time-domain responses of a three-wire
ribbon cable (shown in cross section in Fig.7.10) and a three-land PCB (shown in
cross section in Fig.7.13). The terminal configurations for both structures are shown in
Figure 9.11. The conductors are numbered as shown in accordance with the numbering
used to obtain the per-unit-length parameter matrices. A 50-� time-domain source
produces an open-circuit voltage VS (t) that is in the form of a periodic trapezoidal
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FIGURE 9.11 A three-conductor line for illustrating the predictions of various models: (a)
terminal representations and (b) representation of the open-circuit voltage waveform of the
source.

waveform having a 50 % duty cycle and equal rise and fall times with various values.
The level of VS (t) will be 1 V in all cases. The source and load structure will be
characterized with generalized Thevenin equivalents as

V (0, t) = VS (t) − RS I (0, t)

V (L, t) = RL I (L, t)

where

VS(t) =
[

0
VS (t)

]

RS =
[

50 0
0 50

]
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RL =
[

50 0
0 50

]

We will show the predictions of the lossless SPICE model, the lumped-Pi approximate
model, the TDFD transformation method, and the FDTD method. These will be
compared with oscilloscope photographs of the experimentally obtained results.

9.3.1 Ribbon Cables

The cross section of the three-wire ribbon cable is shown in Figure 7.10 and the
per-unit-length parameters are computed using RIBBON.FOR that is described in
Appendix A and given in Chapter 5 as

L =
[

0.7485 0.5077
0.5077 1.0154

]
µ H/m

C =
[

37.432 −18.716
−18.716 24.982

]
pF/m

The pulse rise/fall times are 20 ns and the line length is L = 2 m. The mode ve-
locities of propagation computed with SPICEMTL.FOR are vm1 = 2.324 × 108

m/s and vm2 = 2.5106 × 108 m/s giving one-way time delays of the modes of
TDm1 = 8.606 ns and TDm2 = 7.996 ns. The characteristic impedances of the modes
are ZCm1 = 91.96 � and ZCm2 = 254.93 �.

FIGURE 9.12 Oscilloscope photograph of the experimentally determined near-end crosstalk
for the ribbon cable of Figure 7.10 and a pulse rise time of 20 ns.
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Figure 9.12 shows an oscilloscope photograph of the near-end crosstalk voltage
V1 (0, t). The crosstalk waveform rises to a peak of around 110 mV. Figure 9.13(a)
shows a comparison of the predictions of (a) SPICE using SPICEMTL.FOR to gen-
erate the PSPICE subcircuit model as described in Section 9.1.2, (b) one Pi section
lumped model generated by SPICELPI.FOR to generate the PSPICE subcircuit
model as described in Section 9.1.3, and (c) the Branin recursive solution model
given in Section 9.1.1. All three models assume a lossless line and the Branin model
also assumes a homogeneous medium. The SPICE model predicts the experimen-
tally obtained waveform in Figure 9.12 very well. The peak voltage is also predicted
to be 110 mV. The one-section lumped-Pi model predicts the general shape of the
waveform, but there is some error around the peak. This is to be expected since the
spectral content of the input pulse is on the order of BW = 1/τr = 50 MHz. The line
length of 2 m is on the order of (1/2.3)λ at 50 MHz using the smaller of the mode ve-
locities of vm1 = 2.324 × 108 m/s. Branin’s recursive solution method also predicts
the general waveform shape but does not agree with the SPICE solution as it should.
This is because, as discussed in Section 9.1.1, Branin’s recursive solution as imple-
mented in BRANIN.FOR requires that we assume a homogenous medium (logically
free space). Figure 9.13(b) shows the comparison where we ignore the dielectric
insulations and recompute the per-unit-length parameters and the resulting SPICE
solution for free space surrounding the wires. The results are now identical as they
should be.

Figure 9.14 shows the predictions of the TDFD prediction model described in
Section 9.1.4. This model is implemented using TIMEFREQ.FOR. The values of the
frequency-domain transfer function at the harmonics of the input pulse that are input
to this program were computed, for a lossless line, using the SPICE code above to
compute in the .AC mode. Various numbers of harmonics are used to recombine the
sinusoidal components of the trapezoidal pulse train for a fundamental frequency of
f 0 = 1 MHz. (Actually, it does not matter what repetition frequency is used so long

as the response to the rising edge, which is shown in the figure, has died out sufficiently
before the response to the trailing edge occurs.) The predictions using 100 and 50
harmonics are virtually identical to the exact SPICE results. The predictions using 10
and 20 harmonics are poor. The spectrum of the trapezoidal pulse train begins rolling
off at −40 dB/decade above a frequency of 1/π τr = 15.9 MHz giving a bandwidth
on the order of 1/τr = 50 MHz. Hence, we require at least 50 harmonics of the
fundamental repetition frequency of f 0 = 1 MHz in order to capture the important
spectral content.

Figure 9.15 shows the predictions of the FDTD model discussed in Section 9.1.5.
This model is implemented using FINDIF.FOR for a lossless line. The line is dis-
cretized spatially into NDZ sections of length � z = L/NDZ. We chose NDZ = 2
so that each � z = 1 m section length was on the order of � z < (1/5) λ at 50 MHz.
The time discretization � t must satisfy the Courant condition, that is,

NDT ≥ NDZ
v × final solution time

L
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FIGURE 9.13 Comparison of the time-domain response of the near-end crosstalk of the
lossless ribbon cable of Figure 7.10 determined (a) via the SPICE model, the lumped-Pi model,
and Branin’s series method implemented for a pulse rise time of 20 ns and (b) for a homogeneous
medium.
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FIGURE 9.14 Comparison of the predictions of the SPICE model and the time-domain to
frequency-domain transformation method for various numbers of harmonics for the lossless
ribbon cable of Figure 7.10 for a pulse risetime of 20 ns.

For a final solution time of 200 ns, using the larger of the mode velocities, vm2 =
2.5106 × 108 m/s, we obtain NDT ≥ 50. The predictions for NDZ = 2 and NDT =
50 give reasonable correlation with the exact SPICE predictions. The results for NDT
= 500 are also shown and are virtually identical to the exact SPICE results.

These lumped-Pi, TDFD, and FDTD predictions were repeated to include the
line losses. The predictions for the lumped-Pi model including the dc resistances
of the conductors are compared to the SPICE (lossless) predictions in Figure 9.16
for one and two Pi sections used to represent the 2-m line length. Both the one-
Pi model and the two-Pi model show some error around the peak of the waveform
with the one-Pi model showing more error as expected. (Later predictions of the
TDFD and FDTD models including losses will show that the SPICE predictions for
a lossless line are very close to the actual results when losses are included.) The
radius of one of the #36 gauge strands is 2.5 mils giving a dc resistance of each wire
(dividing the resistance of each strand by the number in parallel, 7) as 0.3888 �. The
frequency of onset of the

√
f increase is where the radius of a strand is equal to

two skin depths or 4.3 MHz. Hence, using only the dc resistance in these lumped-
Pi models will incur some poor predictions at the higher frequencies of the pulse
spectrum.

Figure 9.17 shows the predictions of the TDFD and FDTD models as before but
including the conductor losses. The lossy frequency-domain transfer function that is
passed to the TDFD program, TIMEFREQ.FOR, was computed using MTL.FOR.
The FDTD predictions including losses were obtained using FDTDLOSS.FOR. All
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FIGURE 9.15 Comparison of the predictions of the SPICE model and the FDTD method
for the lossless ribbon cable of Figure 7.10 for a pulse rise time of 20 ns.

models give approximately the same results, and the conductor losses appear to be
inconsequential for this structure, line length, and pulse parameters. The losses give
a dc offset during the time when the input pulse is in its 1-V steady state, which is
referred to as common-impedance coupling. This level can be accurately predicted
by modeling the line as simply its total dc resistances of 0.3888 � as shown in the
next chapter to be around 2 mV.

Figure 9.18 shows the predictions of the TDFD and FDTD models including losses
for pulse rise/fall times of 1 ns. The bandwidth of the pulse is 1/τr = 1 GHz. The
TDFD program uses a repetition rate of f 0 = 1 MHz, and hence 1000 harmonics are
recombined in TIMEFREQ.FOR. The FDTD program breaks the 2-m line length into

� z = 1

10

vm1

1 GHz
= 2.32 cm

sections giving 2 m/� z = 86. Hence, we chose NDZ = 100. The magic time step
is NDT = 2511. The results are shown in Figure 9.18 giving very good accuracy for
both prediction methods. Again, the effect of the conductor losses is to give an offset
of around 2 mV when the pulse is in its steady state of 1 V.

9.3.2 Printed Circuit Boards

The cross section of the three-land PCB is shown in Figure 7.13 and the per-unit-length
parameters are computed using PCB.FOR that is described in Appendix A as
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FIGURE 9.16 Comparison of the time-domain response of the near-end crosstalk of the
ribbon cable of Figure 7.10 determined via the SPICE model (lossless) and the lumped-Pi
model (dc losses included) using one and two sections to represent the line for a pulse rise time
of 20 ns.

FIGURE 9.17 Comparison of the time-domain response of the near-end crosstalk of the
ribbon cable of Figure 7.10 determined via the SPICE model (lossless), the time-domain to
frequency-domain method (with skin effect losses), and the FDTD method (with skin effect
losses) for a pulse rise time of 20 ns.
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FIGURE 9.18 Comparison of the time-domain response of the near-end crosstalk of the
ribbon cable of Figure 7.10 determined via the SPICE model (lossless), the time-domain to
frequency-domain method (with skin effect losses), and the FDTD method (with skin effect
losses) for a pulse rise time of 1 ns.

FIGURE 9.19 Oscilloscope photograph of the experimentally determined near-end crosstalk
for the printed circuit board of Figure 7.13 and a pulse rise time of 6.25 ns.
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L =
[

1.10515 0.690613
0.690613 1.38123

]
µ H/m

C =
[

40.5985 −20.2992
−20.2992 29.7378

]
pF/m

The pulse rise-/fall times are 6.25 ns and the line length is L = 10 in. = 0.254 m.
The mode velocities of propagation computed with SPICEMTL.FOR are vm1 =
1.8005 × 108 m/s and vm2 = 1.9225 × 108 m/s giving one-way time delays of the
modes of TDm1 = 1.4108 ns and TDm2 = 1.3212 ns. The characteristic impedances
of the modes are ZCm1 = 109.45 � and ZCm2 = 265.54 �.

Figure 9.19 shows an oscilloscope photograph of the near-end crosstalk voltage,
V1 (0, t). The crosstalk waveform rises to a peak of around 95 mV. Figure 9.20 shows
a comparison of the predictions of (a) SPICE using SPICEMTL.FOR to generate the
PSPICE subcircuit model as described in Section 9.1.2, (b) one Pi section lumped
model generated by SPICELPI.FOR to generate the PSPICE subcircuit model as
described in Section 9.1.3, and (c) the Branin recursive solution model given in Section
9.1.1. All three models assume a lossless line and the Branin model also assumes
a homogeneous medium. The SPICE model predicts the experimentally obtained
waveform in Figure 9.19 very well. The peak voltage is also predicted to be 95 mV.
The one-section lumped-Pi model predicts the general shape of the waveform but

FIGURE 9.20 Comparison of the time-domain response of the near-end crosstalk of the
lossless printed circuit board of Figure 7.13 determined via the SPICE model, the lumped-Pi
model, and Branin’s series method implemented for a pulse rise time of 6.25 ns and for a
homogeneous medium.
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FIGURE 9.21 Comparison of the predictions of the SPICE model and the time-domain to
frequency-domain transformation method for various numbers of harmonics for the lossless
printed circuit board of Figure 7.13 for a pulse rise time of 6.25 ns.

there is some error particularly around the peak. This is to be expected since the
spectral content of the input pulse is on the order of BW = 1/τr = 160 MHz. The
line length of .254 m is on the order of (1/5) λ at 160 MHz using the smaller of
the mode velocities of vm1 = 1.8005 × 108 m/s. Branin’s recursive solution method
also predicts the general waveform shape but does not agree with the SPICE solution
because, as discussed previously, it neglects the inhomogeneous surrounding medium.

Figure 9.21 shows the predictions of the TDFD prediction model described in
Section 9.1.4. This model is implemented using TIMEFREQ.FOR. The values of
the frequency-domain transfer function at the harmonics of the input pulse that are
input to this program were computed, for a lossless line, using the SPICE code above
to compute in the .AC mode. Various numbers of harmonics are used to recom-
bine the sinusoidal components of the trapezoidal pulse train for a fundamental
frequency of f 0 = 1 MHz. The predictions using 300 and 150 harmonics are vir-
tually identical to the exact SPICE results. The predictions using 25 and 50 harmon-
ics are poor. The spectrum of the trapezoidal pulse train begins rolling off at −40
dB/decade above a frequency of 1/π τr = 51 MHz giving a bandwidth on the order
of 1/τr = 160 MHz. Hence, we require at least 160 harmonics of the fundamen-
tal repetition frequency of f 0 = 1 MHz in order to capture the important spectral
content.

Figure 9.22 shows the predictions of the FDTD model discussed in Section 9.1.5.
This model is implemented using FINDIF.FOR for a lossless line. The line is dis-
cretized spatially into NDZ sections of length � z = L/NDZ. We chose NDZ = 2
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FIGURE 9.22 Comparison of the predictions of the SPICE model and the FDTD method
for the lossless printed circuit board of Figure 7.13 for a pulse rise time of 6.25 ns.

so that each � z = 0.127 m section length was on the order of � z < (1/10)λ at 160
MHz.. The time discretization � t must satisfy the Courant condition, that is,

NDT ≥ NDZ
v × final solution time

L

For a final solution time of 40 ns, using the larger of the mode velocities, vm2 =
1.9225 × 108 m/s, we obtain NDT ≥ 60. The predictions for NDZ = 2 and NDT
= 60 give reasonable correlation with the exact SPICE predictions. The results
for NDT = 600 are also shown and are virtually identical to the exact SPICE
results.

These lumped-Pi, TDFD, and FDTD predictions were repeated to include the line
losses. The predictions for the lumped-Pi model including the dc resistances of the
conductors are compared to the SPICE (lossless) predictions in Figure 9.23 for one
and two Pi sections used to represent the 0.254 m line length. Both the one-Pi model
and the two-Pi model show some error around the peak of the waveform with the
one-Pi model showing more error as expected. (Later predictions of the TDFD and
FDTD models including losses will show that the SPICE predictions for a lossless
line are very close to the actual results when losses are included.) The dc resistance
of each land (width of 15 mils and thickness of 1.38 mils) is 0.328 �. The frequency
of onset of the

√
f increase is approximated as where the thickness of each land is

equal to two skin depths or 14.218 MHz. Hence, using only the dc resistance in these
lumped-Pi models will incur some poor predictions at the higher frequencies of the
pulse spectrum.
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FIGURE 9.23 Comparison of the time-domain response of the near-end crosstalk of the
printed circuit board of Figure 7.13 determined via the SPICE model (lossless) and the lumped-
Pi model (dc losses included) using one and two sections to represent the line for a pulse rise
time of 6.25 ns.

Figure 9.24 shows the predictions of the TDFD and FDTD models as before but
including the conductor losses. The lossy frequency-domain transfer function that is
passed to the TDFD program, TIMEFREQ.FOR, was computed using MTL.FOR.
The FDTD predictions including losses were obtained using FDTDLOSS.FOR. All
models give approximately the same results, and the conductor losses again appear
to be inconsequential for this structure, line length, and pulse parameters. The losses
again give a dc offset during the time when the input pulse is in its 1-V steady state,
which is referred to as common-impedance coupling. This level can be accurately
predicted by modeling the line as simply its total dc resistances of 0.328 � as shown
in the next chapter to be around 2 mV.

Figure 9.25 shows the predictions of the TDFD and FDTD models including losses
for pulse rise/fall times of 50 ps. The bandwidth of the pulse is 1/τr = 20 GHz. The
TDFD program uses a repetition rate of f 0 = 10 MHz, and hence 1000 harmonics
are recombined in TIMEFREQ.FOR. The FDTD program breaks the 0.254-m line
length into

� z = 1

10

vm1

20GHz
= 0.9 mm

sections giving 0.254 m/� z = 282. Hence, we chose NDZ = 280. The magic
time step is NDT = 6358. The results are shown in Figure 9.25 giving very
good accuracy for both prediction methods. Again, the effect of the conductor
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FIGURE 9.24 Comparison of the time-domain response of the near-end crosstalk of the
printed circuit board of Figure 7.13 determined via the SPICE model (lossless), the time-
domain to frequency-domain method (with skin effect losses), and the FDTD method (with
skin effect losses) for a pulse rise time of 6.25 ns.

losses is to give an offset of around 2 mV when the pulse is in its steady state
of 1 V.

PROBLEMS

9.1 Derive the recursive relations given in (9.21a) and (9.21b).

9.2 Consider a lossless two-conductor line that has RS = 300 �, RL = 60 �,
ZC = 100 �, v = 300 m/µs, L = 300 m, and vS(t) = 400u(t), where u(t)
is the unit step function. Sketch V (0, t), I(0, t), V (L, t), I(L, t) for 0 ≤ t ≤
10�s. Do the results converge to the expected steady-state values? Con-
firm your results using PSPICE. [For voltage: �S = 1/2, �L = −1/4, Vinit =
100. For current: �S = −1/2, �L = 1/4, Iinit = 1. V (0, t)SS = V (L, t)SS =
66.67, I (0, t)SS = I (L, t)SS = 1.11]

9.3 Repeat Problem 9.2 for RL = 0 (short-circuit load). Confirm your results
using PSPICE. [For voltage: �S = 1/2, �L = −1, Vinit = 100. For cur-
rent: �S = −1/2, �L = 1, Iinit = 1. V (0, t)SS = V (L, t)SS = 0, I (0, t)SS =
I (L, t)SS = 1.333]

9.4 Repeat Problem 9.2 for RL = ∞ (open-circuit load). Confirm your results
using PSPICE. [For voltage: �S = 1/2, �L = 1, Vinit = 100. For current:
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FIGURE 9.25 Comparison of the time-domain response of the near-end crosstalk of the
printed circuit board of Figure 7.13 determined via the SPICE model (lossless), the time-
domain to frequency-domain method (with skin effect losses), and the FDTD method (with
skin effect losses) for a pulse rise time of 50 ps.

�S = −1/2, �L = −1, Iinit = 1. V (0, t)SS = V (L, t)SS = 400, I (0, t)SS =
I (L, t)SS = 0]

9.5 Confirm the diagonalization matrix for a real, symmetric matrix given in
(9.37).

9.6 Determine the transformation T that diagonalizes L as TtLT = Lm where

L =
[

5 1
1 3

]
µ H/m

[T (1, 1) = T (2, 2) = 0.92388, T (1, 2) = −T (2, 1) = −0.382683, Lm(1, 1)
= 5.414E − 6, Lm (2, 2) = 2.586E − 6]

9.7 Determine the transformation T that diagonalizes C as TtCT = Cm where

C =
[

10 −5
−5 15

]
pF/m

[T (1, 1) = T (2, 2) = 0.85065, T(1, 2) = −T (2, 1) = −0.525731, Cm(1, 1)
= 6.90983E − 12, Cm (2, 2) = 18.0902E − 12]

9.8 Determine the TV and TI that simultaneously diagonalize the L and C in
Problems 9.6 and 9.7 as T−1

V LTI = Lm and T−1
I CTV = Cm. [TV (1, 1) =

0.745356,TV (1, 2) = −0.942809,TV (2, 1) = 0.745356,TV (2, 2) =0.4714,
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TI (1, 1) = 0.447214,TI (1, 2) = −0.707107, TI (2, 1) = 0.894427,TI (2, 2)
= 0.707107, Lm (1, 1) = 4.2E − 6, Lm (2, 2) = 3.0E − 6, Cm (1, 1) =
8.333E − 12, Cm (2, 2) = 16.667E − 12]

9.9 Determine the TV and TI that simultaneously diagonalize L and C as
T−1

V LTI = Lm and T−1
I CTV = Cm where

L =
[

3 1
1 2

]
H/m

C =
[

5 −3
−3 4

]
F/m

[TV (1, 1) = 1.10055, TV (1, 2) = 0.607046, TV (2, 1) = −0.1438, TV (2, 2)
= 0.929182, TI (1, 1)=0.837174, TI (1, 2)=0.129561, TI (2, 1)= −0.546936,

TI (2, 2) = 0.991571, Lm (1, 1) = 1.7851, Lm (2, 2) =2.27372, Cm (1, 1) =
7.0883, Cm (2, 2) = 1.9117]

9.10 Consider the three-conductor line shown in Figure P 9.10. The driven or gener-
ator conductor is a #20 gauge solid wire (radius 16 mils) and the pickup or re-
ceptor wire is a #28 gauge solid wire (radius 6.3 mils). The wires are separated
by 1.5 cm and are suspended above an infinite, perfectly conducting ground

FIGURE P9.10
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plane at heights of 2 cm and 1 cm as shown. The lines are terminated as shown
and are driven by a ramp voltage source. Neglect all losses, assume a homo-
geneous medium, and compute and plot versus time the near-end and far-end
coupled voltages, VNE(t) and VFE(t), by the following methods: (a) a PSPICE
model using SPICEMTL.FOR to generate a PSPICE subcircuit model, (b)
Branin’s method using BRANIN.FOR, (c) the TDFD transformation method
using TIMEFREQ.FOR, and (d) the FDTD method using FINDIF.FOR.

9.11 Recompute the SPICE results in Figure 9.6(a) and 9.6(b).

9.12 Verify the FDTD recursion relations in (9.78) and (9.79).

9.13 Verify the FDTD recursion relations in (9.53b), (9.57), and (9.80).

9.14 Verify the generalized method of characteristics results in (9.91) and (9.92).

9.15 Determine the transformation matrix that diagonalizes a 3 × 3 L as MtLM

having the general Toeplitz form given in (9.99a).

M =




1

2
− 1

2
− 1√

2
1√
2

1√
2

0

1

2
− 1

2

1√
2




9.16 Show that the transformation matrices in (9.103) diagonalize the per-unit-
length matrices in (9.102).

9.17 Derive the forms of the generalized method of characteristics given in (9.105),
(9.107), (9.110), and (9.111).

9.18 Derive the result in (9.122).

9.19 Derive the Vector Fitting result in (9.142) and (9.144).

9.20 Derive the least-squares result in (9.151).

9.21 Using BRANIN.FOR, SPICEMTL.FOR, and SPICELPI.FOR, reproduce
the results for the ribbon cable shown in Figure 9.13(a).

9.22 Using SPICEMTL.FOR and TIMEFREQ.FOR, reproduce the results for the
ribbon cable shown in Figure 9.14.

9.23 Using SPICEMTL.FOR and FINDIF.FOR, reproduce the results for the
ribbon cable shown in Figure 9.15.

9.24 Using SPICEMTL.FOR, TIMEFREQ.FOR (and MTL.FOR), and
FDTDLOSS.FOR, reproduce the results for the ribbon cable shown in
Figure 9.17.

9.25 Using BRANIN.FOR, SPICEMTL.FOR, and SPICELPI.FOR, reproduce
the results for the PCB shown in Figure 9.20.

9.26 Using SPICEMTL.FOR and TIMEFREQ.FOR, reproduce the results for the
PCB shown in Figure 9.21.

9.27 Using SPICEMTL.FOR and FINDIF.FOR, reproduce the results for the
PCB shown in Figure 9.22.
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9.28 Using SPICEMTL.FOR, TIMEFREQ.FOR (and MTL.FOR), and
FDTDLOSS.FOR, reproduce the results for the PCB shown in Figure
9.24.
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10
LITERAL (SYMBOLIC) SOLUTIONS
FOR THREE-CONDUCTOR LINES

The general solution of the transmission-line equations for a two-conductor line con-
sidered in Chapters 6 and 8 is simple enough that it can be obtained in literal form,
that is, in terms of symbols for the line terminations and the line parameters such as
characteristic impedance ZC and the line one-way time delay TD. For example, see
Eqs. (6.39) and (6.70) of Chapter 6 and (8.14) of Chapter 8. This literal or symbolic
solution gives considerable insight into how the various parameters affect the terminal
voltages and currents. This advantage is similar to a transfer function that is useful
in the design and analysis of electric circuits and automatic control systems [A.2].
In order to obtain the same insight from the numerical solution, we would need to
perform a large set of computations with these parameters being varied over their
range of anticipated values.

Chapters 7 and 9 have examined the solution of the MTL (multiconductor trans-
mission line) equations for a general (n + 1)-conductor line. This is so complex that
it is not feasible to generate literal solutions, and the solution process must be ac-
complished with digital computer programs, that is, a numerical result is obtained.
This numerical process does not reveal the general behavior of the solution. In other
words, the only information we obtain is the solution for the specific set of input
data, for example, line length, terminal impedance levels, source voltages, frequency,
and so on. In order to understand the general behavior of the solution for a general
(n + 1)-conductor MTL, it would be helpful to have a literal solution for the induced
crosstalk voltages in terms of the symbols for the line length, terminal impedances,
per-unit-length capacitances and inductances, source voltage, and so on. From such

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
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a result we could observe how changes in these parameters would affect the solution.
Although highly desirable, such a literal solution is, in general, not feasible.

It is important to keep in mind that even though it may be possible to obtain a
literal solution after laboriously manipulating the symbolic equations, any such result
is worthless unless the result is simple enough to clearly and easily show what the
mathematical result is telling us about the behavior of the system. There exist in the
literature several symbolic results that are so complicated that no physical insight can
be obtained. Hence, there is little value to going through the laborious symbolic solu-
tion, and one can obtain the same information included in these symbolic equations
more easily by simply solving the transmission-line equations and incorporating the
terminal constraints using numerical computer solutions. Hence, any symbolic result
is useful only if it is simple enough to be interpretable.

Several transmission-line literal transfer functions for the prediction of crosstalk
have been derived in the past for use in the frequency-domain analysis of microwave
circuits [1–4] or for time-domain analysis of crosstalk in digital circuits [5–11]. All
of these solutions assume that the line is a three-conductor line, that is, n = 2, with
two signal conductors and a reference conductor. In addition, these results make the
following assumptions about the line in order to simplify the derivation.

1. The line is symmetric, that is, the two signal conductors are identical in cross-
sectional shape and the cross-sectional line dimensions are such that the self
capacitances and inductances are identical, that is, c11 = c22 and l11 = l22. An
example is the coupled microstrip where the two identical lands are at the same
distance above the ground plane. For this case, the per-unit-length inductance
and capacitance matrices are of the form

L =
[

l lm
lm l

]
, C =

[
(c + cm) −cm

−cm (c + cm)

]

2. The line is weakly coupled, that is, the effect of the induced signals in the
receiving circuit on the driven circuit, that is, back interaction, is neglected
(widely separated lines tend to satisfy this in an approximate fashion the wider
the separation).

3. Both lines are matched at both ends, that is, the line is terminated at all four
ports in the line characteristic impedances. The question of what is meant by
the “line characteristic impedances” for an MTL will need to be clarified. For
weakly coupled or widely separated lines, these approximate to the character-
istic impedances of the isolated two-conductor lines.

4. The line is lossless, that is, the conductors are perfect conductors and the sur-
rounding medium is lossless.

The obvious reason why these assumptions are used is to simplify the difficult ma-
nipulation of the symbols that are involved in the literal solution. The assumption of
a symmetric line and the subsequent literal solution is referred to in the microwaves
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literature as the even–odd mode solution [1–3]. However, the vast majority of the
applications are not perfectly matched at all four ports. For example, consider a
three-conductor line where each line with the reference conductor connects a CMOS
driver and a CMOS receiver. The input to a CMOS inverter looks essentially capac-
itive. Since the characteristic impedances for lossless lines must be purely real, that
is, resistive, these lines are severely mismatched at their load ends.

The purpose of this chapter is to derive the literal or symbolic solution of the MTL
equations for a three-conductor line and to incorporate the terminal constraints into
this solution to yield explicit, symbolic equations for the crosstalk. Both the frequency-
domain and the time-domain solutions will be obtained. In addition, the derivations
will not presume a symmetric line nor will they presume a “matched” line. The idea
is to simply proceed through the usual solution steps that would be involved in a
numerical solution but instead to use symbols for all quantities rather than numbers.
First, we determine the general solution of the MTL equations for n = 2. This has
generally already been done in earlier chapters. However, in order to simplify the
solution, we will assume a lossless line, that is, we will assume perfect conductors in
a lossless medium, R = 0 and G = 0. Next, we incorporate the terminal constraints
into that general solution in order to give the desired literal solution. For a three-
conductor line this last step, incorporation of the terminal conditions, involves the
simultaneous solution of symbolic equations with, for example, Cramer’s rule and
is quite tedious. It therefore does not appear to be feasible to extend this symbolic
solution to lines consisting of more than three conductors. Even for a three-conductor
line, the solution effort is so great that we must make another simplifying assump-
tion. This primary assumption is to assume a homogeneous surrounding medium so
that we may take advantage of the important identity for a homogeneous medium,
LC = µε12. This identity essentially reduces the number of symbols and allows the
consolidation of certain other groups of the per-unit-length symbols. Once the exact
result has been derived for only the assumption of a lossless line in a homogeneous
medium, we will then specialize this exact result to the case of weak coupling between
the two circuits. This will verify the widely used approximate model referred to as
the inductive–capacitive coupling model [A.3]. The solution for the general case of
perfect conductors in a lossless but inhomogeneous medium is obtained in [B.30]. In
order for that solution to be feasible to obtain, the assumption of weak coupling must
be made at the outset.

The general statement of the problem is illustrated in Figure 10.1(a). The line
consists of three perfect conductors immersed in a lossless medium. The genera-
tor circuit is composed of a generator conductor with the reference conductor. It
is driven at the left end with an open-circuit source voltage VS(t) and source resis-
tance RS and is terminated at the right end in a load resistance RL. The receptor
circuit is composed of a receptor conductor and the reference conductor. It is termi-
nated at the left or “near end” in a resistance RNE and at the right or “far end” in a
resistance RFE. Although resistive terminations are used in the following develop-
ments, the frequency-domain phasor crosstalk results that we will obtain apply for
complex-valued terminal impedances. The per-unit-length equivalent circuit is shown
in Figure 10.1(b). From this, the MTL equations can be derived in the usual manner
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FIGURE 10.1 The three-conductor MTL: (a) line dimensions and terminal characterization
and (b) the per-unit-length equivalent circuit.

and become
∂

∂z
V(z, t) = − L

∂

∂t
I(z, t) (10.1a)

∂

∂z
I(z, t) = − C

∂

∂t
V(z, t) (10.1b)

where

V(z, t) =
[

VG(z, t)
VR(z, t)

]
(10.2a)

I(z, t) =
[

IG(z, t)
IR(z, t)

]
(10.2b)

L =
[

lG lm
lm lR

]
(10.2c)
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C =
[

cG + cm −cm
−cm cR + cm

]
(10.2d)

Subscripts G denote quantities associated with the generator circuit, whereas
subscripts R denote quantities associated with the receptor circuit. The subscript
m denotes the mutual quantity between the two circuits. The generalized Thevenin
equivalent characterization of the terminations becomes

V(0, t) = VS(t) − RSI(0, t) (10.3a)

V(L, t) = RLI(L, t) (10.3b)

where

VS (t) =
[

VS (t)
0

]
(10.4a)

RS =
[

RS 0
0 RNE

]
(10.4b)

RL =
[

RL 0
0 RFE

]
(10.4c)

Although we assume resistive terminations, the frequency-domain solution will allow
complex-valued terminations. The objective is to obtain equations for the time-domain
near-end and far-end crosstalk voltages:VNE (t) = VR(0, t) and VFE (t) = VR(L, t).

10.1 THE LITERAL FREQUENCY-DOMAIN SOLUTION FOR A
HOMOGENEOUS MEDIUM

In order to simplify the solution process, we assume that the surrounding medium is
homogeneous and characterized by permittivity ε and permeability µ. Because of the
assumption of a homogeneous surrounding medium, we have the important identity

LC = µε 12 = 1

v2 12 (10.5a)

or, by multiplying both sides by L−1,[
(cG + cm) −cm

−cm (cR + cm)

]
︸ ︷︷ ︸

C

= 1

v2

1(
lGlR − l2m

) [ lR −lm
−lm lG

]
︸ ︷︷ ︸

L−1

(10.5b)

where v = 1/
√

µε is the velocity of propagation of the waves in the homogeneous
medium. This identity gives the following relations between the per-unit-length
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parameters:

lG(cG + cm) = lR(cR + cm) (10.6a)

lm(cG + cm) = lRcm (10.6b)

lm(cR + cm) = lGcm (10.6c)

(cG + cm) = lR

v2
(
lGlR − l2m

) (10.6d)

(cR + cm) = lG

v2
(
lGlR − l2m

) (10.6e)

cm = lm

v2
(
lGlR − l2m

) (10.6f)

The frequency-domain MTL equations for sinusoidal steady-state excitation become

d

dz
V̂(z) = − jω LÎ(z) (10.7a)

d

dz
Î(z) = − jω CV̂(z) (10.7b)

where the phasor line voltages and currents are

V̂(z) =
[

V̂G(z)
V̂R(z)

]
(10.8a)

Î(z) =
[

ÎG(z)
ÎR(z)

]
(10.8b)

The phasor generalized Thevenin equivalent characterization of the terminations
becomes

V̂(0) = V̂S − RSÎ(0) (10.9a)

V̂(L) = RL Î(L) (10.9b)

where

V̂S =
[

V̂S
0

]
(10.10a)

RS =
[

RS 0
0 RNE

]
(10.10b)
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RL =
[

RL 0
0 RFE

]
(10.10c)

The objective is to obtain equations for the phasor near-end and far-end crosstalk
voltages: V̂NE = V̂R(0) and V̂FE = V̂R(L).

For this special case of perfect conductors in a lossless homogeneous medium, the
MTL equations are decoupled as in Section 7.2.2.1 giving

γ̂ = jω
√

µ ε 12 (10.11a)

T̂I = T̂V = 12 (10.11b)

ẐC = vL (10.11c)

ŶC = vC (10.11d)

where 12 is the 2 × 2 identity matrix. The general solution of the MTL equations in
terms of the chain-parameter matrix for this case becomes[

V̂(L)
Î(L)

]
=
[

�̂11 �̂12
�̂21 �̂22

] [
V̂(0)
Î(0)

]
(10.12)

where the chain-parameter submatrices for this case of perfect conductors in a lossless
homogeneous medium simplify to (see Eqs. (7.115) of Chapter 7)

�̂11 = C 12 (10.13a)

�̂12 = − jωL SL (10.13b)

�̂21 = − jωL SC (10.13c)

�̂22 = C 12 (10.13d)

where

C = cos(β L) (10.14a)

S = sin(β L)

β L
(10.14b)

and the phase constant is

β = ω

v
(10.14c)
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The terminal characterization in (10.9) is substituted into the chain-parameter
matrix in (10.12) to give (see Eqs. (7.92) of Chapter 7)[

�̂11RS + RL�̂22 − �̂12 − RL�̂21RS
]

Î(0) = [
�̂11 − RL�̂21

]
V̂S (10.15a)

[
�̂11RL + RS�̂22 − �̂12 − RS�̂21RL

]
Î(L) = V̂S (10.15b)

Substituting the chain-parameter submatrices given in (10.13) into (10.15) gives[
C (RS + RL) + S (RL jωCL RS + jωLL)

]
Î(0) = [

C12 + SRL jωCL
]

V̂S

(10.16a)[
C (RS + RL) + S (RS jωCL RL + jωLL)

]
Î(L) = V̂S (10.16b)

Each of the equations in (10.16a) and (10.16b) are two simultaneous equations and
once they are solved, the near-end and far-end crosstalk voltages are obtained from the
second entries in these solution vectors as V̂NE = V̂R(0) = −RNE ÎR(0) and V̂FE =
V̂R(L) = RFEÎR(L).

Equations (10.16) were solved in [B.6] in literal form via Cramer’s rule to yield
the following exact literal solutions for the near-end and far-end crosstalk voltages:

V̂NE = jωMNE S

Den

[
C + jωTDKNES

]
V̂S (10.17a)

V̂FE = jωMFE S

Den
V̂S (10.17b)

Den = C2 + ( jω)2S2τGτRP + jωCS (τG + τR) (10.17c)

The various quantities in these equations are defined as [B.6]

MNE = MIND
NE + MCAP

NE (10.18a)

MFE = MIND
FE + MCAP

FE (10.18b)

where the inductive coupling coefficients are defined by

MIND
NE = RNE

RNE + RFE
lmL

1

RS + RL
(10.19a)

MIND
FE = − RFE

RNE + RFE
lmL

1

RS + RL
(10.19b)

and the capacitive coupling coefficients are defined by

MCAP
NE = RNERFE

RNE + RFE
cmL

RL

RS + RL
(10.20a)
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MCAP
FE = MCAP

NE (10.20b)

The coupling coefficient between the two circuits is defined by

k = lm√
lGlR

= cm√
(cG + cm)(cR + cm)

(10.21)

and the circuit characteristic impedances are defined by

ZCG =
√

lG

(cG + cm)

= vlG

√
1 − k2

= 1

v(cG + cm)
√

1 − k2
(10.22a)

ZCR =
√

lR

(cR + cm)

= vlR

√
1 − k2

= 1

v(cR + cm)
√

1 − k2
(10.22b)

where we have substituted (10.21) and the identities from (10.6d) and (10.6e). It
should be pointed out that, as was previously determined, the line has a character-
istic impedance matrix, and scalar characteristic impedances as defined above have
no functional meaning. Here, we are merely defining terms that relate back and re-
duce to the scalar characteristic impedances of the two-conductor line. Observe that
these definitions of each characteristic impedance do not simply involve just the self-
capacitances of each circuit, cG and cR, but also contain the mutual capacitance cm as
(cG + cm) and (cR + cm). For weakly coupled lines (k � 1) these do indeed reduce to
the scalar characteristic impedances of the isolated lines; ZCG ∼= vlG and ZCR ∼= vlR.
The relationships of the termination impedances to their associated characteristic
impedances are important parameters. In order to highlight this dependency, the var-
ious ratios of termination impedance to the appropriate characteristic impedance are
defined by

αSG = RS

ZCG
, αLG = RL

ZCG

αSR = RNE

ZCR
, αLR = RFE

ZCR

(10.23)
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The remaining quantities are defined in the following way. The coefficient KNE in
(10.17) is defined by

KNE = 1√
1 − k2

(
ZCGRFE + ZCRRL

ZCGZCR + RLRFE

)

= 1√
1 − k2

(
αLG + αLR

1 + αLGαLR

)
(10.24)

If only one line is matched at its load end, that is, αLG = 1 or αLR = 1, then KNE =
1/

√
1 − k2 and for a weakly coupled line, k � 1, KNE ∼= 1. The circuit time constants

are logically defined as

τG = lG L

RS + RL
+ (cG + cm)L

RSRL

RS + RL

= TD√
1 − k2

{
1 + αSGαLG

αSG + αLG

}
(10.25a)

τR = lR L

RNE + RFE
+ (cR + cm)L

RNERFE

RNE + RFE

= TD√
1 − k2

{
1 + αSRαLR

αSR + αLR

}
(10.25b)

and the line one-way delay is denoted as

TD = L

v
(10.26)

and v = 1/
√

µ ε for this homogeneous medium. If a line is matched at only one
end, its time constant reduces to TD/

√
1 − k2. In other words, τi = TD/

√
1 − k2 if

αSi = 1 or if αLi = 1. In addition, if the line is weakly coupled, k � 1, the time
constant reduces to τi

∼= TD.
In terms of the ratios in (10.23) , the factor P in Den in (10.17c) becomes

P =
[

1 − k2 (1 − αSGαLR) (1 − αLGαSR)

(1 + αSGαLG) (1 + αSRαLR)

]
(10.27)

The coupling coefficient is always less than unity, that is, k < 1. Hence, P ∼= 1 if the
line is weakly coupled, k�1. There is another important case where P is identically
unity, P = 1, and that occurs when the lines are matched at opposite ends, that is,
αSG = αLR = 1 or αLG = αSR = 1, which occurs in directional couplers [1]. Hence,
for these cases, the denominator of the expression in (10.17c) factors as

Den ∼= (C + jω S τG) (C + jω S τR) , P ∼= 1 (10.17c)
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10.1.1 Inductive and Capacitive Coupling

The above results are an exact literal solution for the problem. No assumptions about
symmetry or matched loads are used. Therefore, they cover a wider class of problems
than have been considered in the past. Although they have been simplified by defining
certain terms, they can be simplified further if we make the following assumptions.
First, let us assume that the line is electrically short at the frequency of interest, that
is, L � λ. In this case, the terms C and S simplify to

C = cos(β L)

= cos

(
2π

L

λ

)
∼= 1, L � λ (10.28a)

S = sin(β L)

β L

=
sin

(
2π

L

λ

)
2π

L

λ

∼= 1, L � λ (10.28b)

Further, let us assume that Den ∼= 1 in (10.17c). This will be the case for a weakly
coupled line, that is, k � 1, such that P in (10.27) is approximately unity, P ∼= 1, and a
sufficiently small frequency such that Den ∼= 1 in (10.17c). Under these assumptions,
the exact results in (10.17) simplify to

V̂NE ∼= jω




RNE

RNE + RFE
lmL

1

RS + RL︸ ︷︷ ︸
MIND

NE

+ RNERFE

RNE + RFE
cmL

RL

RS + RL︸ ︷︷ ︸
MCAP

NE


 V̂S (10.29a)

V̂FE ∼= jω


−

RFE

RNE + RFE
lmL

1

RS + RL︸ ︷︷ ︸
MIND

FE

+ RNERFE

RNE + RFE
cmL

RL

RS + RL︸ ︷︷ ︸
MCAP

FE


 V̂S

(10.29b)
These low-frequency results can be computed from the equivalent circuit of
Figure 10.2(a). The terms depending on the per-unit-length mutual inductance lm
are referred to as the inductive coupling contributions, whereas the terms depending
on the per-unit-length mutual capacitance cm are referred to as the capacitive coupling
contributions.
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FIGURE 10.2 The frequency-domain inductive-capacitive low-frequency coupling model.

Observe that the low-frequency approximate results in (10.29) show that
the crosstalk varies directly with frequency or 20 dB/decade as illustrated in
Figure 10.2(b). The total coupling can be written as the sum of inductive coupling
and capacitive coupling components as

V̂NE ∼= jω MIND
NE V̂S︸ ︷︷ ︸

V̂ IND
NE

+ jω MCAP
NE V̂S︸ ︷︷ ︸

V̂ CAP
NE

(10.30a)

V̂FE ∼= jω MIND
FE V̂S︸ ︷︷ ︸

V̂ IND
FE

+ jω MCAP
FE V̂S︸ ︷︷ ︸

V̂ CAP
FE

(10.30b)

Depending on the levels of the load impedances, the inductive coupling contribution
may dominate the capacitive coupling contribution, or vice versa. This is illustrated
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FIGURE 10.3 Illustration of the dominance of (a) inductive coupling for low-impedance
terminations and (b) capacitive coupling for high-impedance terminations.

in Figure 10.3. If the termination impedances are much smaller than the line
characteristic impedances, that is, low-impedance loads, then inductive coupling
dominates. This is shown by substituting (10.19) and (10.20) into MIND

NE > MCAP
NE

and MIND
FE > MCAP

FE to yield

RFERL

(lm/cm)
= RFERL

ZCGZCR
< 1, MIND

NE > MCAP
NE (10.31a)

RNERL

(lm/cm)
= RNERL

ZCGZCR
< 1, MIND

FE > MCAP
FE (10.31b)

We have written this result in terms of the line characteristic impedances by
substituting the identity in (10.6f) along with (10.21) into (10.22). On the con-
trary, capacitive coupling dominates in the case of high-impedance loads, that is,
MIND

NE < MCAP
NE and MIND

FE < MCAP
FE . Thus, capacitive coupling dominates inductive

coupling when the inequalities in (10.31) are reversed, that is, for high-impedance
loads.

Although this approximation is valid only for a line that is electrically short and for
a sufficiently small frequency, this separation of the total coupling into an inductive
coupling and a capacitive coupling component provides considerable understanding of
the crosstalk phenomena. In particular, it readily explains how shields and/or twisted
pairs of wires will or will not reduce crosstalk [A.3].

10.1.2 Common-Impedance Coupling

The above derivation assumes that all three conductors are perfect conductors and
the surrounding homogeneous medium is lossless. Losses can be ignored in many
practical problems. However, there is a potentially significant contribution to crosstalk
via imperfect conductors that occurs at the lower frequencies. This is referred to as
common-impedance coupling and is contributed by the impedance of the reference
conductor.
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FIGURE 10.4 Illustration of common-impedance coupling due to a lossy reference
conductor.

Figure 10.4 illustrates the problem. As the frequency of excitation is lowered, the
crosstalk decreases directly with frequency. At some lower frequency, this contri-
bution due to the electric and magnetic field interaction between the two circuits is
dominated by the common-impedance coupling component. At a sufficiently low fre-
quency, the current in the generator circuit, ÎG, returns predominantly in the reference
conductor and can be computed from

ÎG ∼= 1

RS + RL
V̂S (10.32)

If we lump the per-unit-length resistance of the reference conductor, r0, as a total
resistance, R = r0 L, then a voltage drop of

V̂0 = r0 LÎG = r0 L

RS + RL
V̂S (10.33)

is developed across the reference conductor. This is voltage divided across the termi-
nation resistors of the receptor circuit to give
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V̂ CI
NE = RNE

RNE + RFE
r0 L

1

RS + RL︸ ︷︷ ︸
MCI

NE

V̂S (10.34a)

V̂ CI
FE = − RFE

RNE + RFE
r0 L

1

RS + RL︸ ︷︷ ︸
MCI

FE

V̂S (10.34b)

In an approximate sense, we may simply combine these contributions with the
inductive–capacitive coupling contributions in (10.30) to give the total as

V̂NE ∼= V̂ IND
NE + V̂ CAP

NE + V̂ CI
NE

= jω MIND
NE V̂S + jωMCAP

NE V̂S + MCI
NEV̂S (10.35a)

V̂FE ∼= V̂ IND
FE + V̂ CAP

FE + V̂ CI
FE

= jω MIND
FE V̂S + jωMCAP

FE V̂S + MCI
FEV̂S (10.35b)

This approximate inclusion of the impedance of the reference conductor at low
frequencies was verified in [B.20] by deriving the exact chain-parameter matrix with
the per-unit-length resistance of the reference conductor included.

10.2 THE LITERAL TIME-DOMAIN SOLUTION FOR A
HOMOGENEOUS MEDIUM

To obtain the exact time-domain solution, we will assume VS(t) = 0 for t ≤ 0 and
the line is initially relaxed: V(z, t) = I(z, t) = 0 for all 0 ≤ z ≤ L and t ≤ 0 [B.21].
In this case, the Laplace transform variable s can be substituted for jω in the above
frequency-domain exact solution. Substituting jω → s into (10.14a) and (10.14b)
along with (10.14c) gives

jωS = jω

sin

(
ω L

v

)
ω L

v

⇒ esTD − e−sTD

2TD
(10.36a)

C = cos

(
ω L

v

)
⇒ esTD + e−sTD

2
(10.36b)

where again the line one-way time delay is

TD = L

v
(10.37)
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Substituting these along with jω → s into (10.17) gives the exact Laplace-
transformed time-domain solution:

VNE(s) = MNE

X TD

[
(KNE + 1) − 2KNEe−2sTD + (KNE − 1)e−4sTD

1 + ae−2sTD + be−4sTD

]
VS(s) (10.38a)

VFE(s) = 2MFE

X TD

[
e−sTD − e−3sTD

1 + ae−2sTD + be−4sTD

]
VS(s) (10.38b)

where

X = 1 + P
τG τR

T 2
D

+ (τG + τR)

TD
(10.39a)

a = 2

X

[
1 − P

τG τR

T 2
D

]
(10.39b)

b = 1

X

[
1 + P

τG τR

T 2
D

− (τG + τR)

TD

]
(10.39c)

and VS(s) is the Laplace transform of VS(t).
We now take the inverse Laplace transform of these results. Rewrite (10.38a) and

(10.38b) as[
1 + ae−2sTD + be−4sTD

]
VNE(s)

= MNE

X TD

[
(KNE + 1) − 2KNEe−2sTD + (KNE − 1)e−4sTD

]
VS(s)

(10.40a)

[
1 + ae−2sTD + be−4sTD

]
VFE(s) = 2MFE

X TD

[
e−sTD − e−3sTD

]
VS(s) (10.40b)

In order to obtain the inverse Laplace transform of this result, we recall the simple
time-delay transform pair:

F (t ± nTD) ⇔ e±nsTDF (s) (10.41)

Therefore, the exact time-domain expressions become

VNE(t) = −a VNE(t − 2TD) − b VNE(t − 4TD) + MNE

X TD
[(KNE + 1) VS (t)

−2KNE VS (t − 2TD) + (KNE − 1) VS (t − 4TD)] (10.42a)

VFE(t) = −a VFE(t − 2TD) − b VFE(t − 4TD)

+2MFE

X TD
[VS(t − TD) − VS(t − 3TD)] (10.42b)
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These equations can be solved recursively for the crosstalk voltages for an initially
relaxed line, that is, VS(t) = VNE(t) = VFE(t) = 0 for t ≤ 0. The solutions are in terms
of values of the source voltage at the present time, VS(t), and at various time delays
prior to the present time: VS(t − TD), VS(t − 2TD), VS(t − 3TD), and VS(t − 4TD), as
well as prior solutions at various time delays prior to the present time: VNE(t − 2TD),
VNE(t − 4TD), VFE(t − 2TD), and VFE(t − 4TD).

10.2.1 Explicit Solution

Although the solution in (10.42) is exact, it requires knowledge of the solution at
previous times that are multiples of the line one-way delay TD. Thus, a recursive
solution is required. In order to obtain a solution that depends only on VS(t), we recall
the time-shift or difference operator D, where

DmF (t) ≡ F (t + mTD) (10.43a)

D−mF (t) ≡ F (t − mTD) (10.43b)

Using this time-shift operator along with (10.41) in (10.40) gives

[
1 + aD−2 + bD−4

]
VNE(t) = MNE

X TD

[
(KNE + 1) − 2KNED−2 + (KNE − 1)D−4

]
VS(t)

(10.44a)

[
1 + aD−2 + bD−4

]
VFE(t) = 2MFE

X TD

[
D−1 − D−3

]
VS(t) (10.44b)

Multiplying the equations by powers of D gives the transfer functions in terms of the
time-shift operator D as

VNE(t) = MNE

X TD

[
(KNE + 1) − 2KNED−2 + (KNE − 1)D−4

1 + aD−2 + bD−4

]
VS(t)

= MNE

X TD

[
(KNE + 1)D4 − 2KNED2 + (KNE − 1)

D4 + aD2 + b

]
VS(t)

(10.45a)

VFE(t) = 2MFE

X TD

[
D−1 − D−3

1 + aD−2 + bD−4

]
VS(t)

= 2MFE

X TD

[
D3 − D

D4 + aD2 + b

]
VS(t) (10.45b)

These expressions can be inverted by carrying out the long division of the following
basic problem:
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1

D4 + a D2 + b
= α0D

−4 + α1D
−6 + α2D

−8 + α3D
−10 + α4D

−12

+α5D
−14 + α6D

−16 + · · · (10.46a)

where

α0 = 1

α1 = −a

α2 = a2 − b

α3 = −a3 + 2ab

α4 = a4 − 3a2b + b2

α5 = −a5 + 4a3b − 3ab2

α6 = a6 − 5a4b + 6a2b2 − b3

... (10.46b)

Substituting the results of (10.46) into (10.45) gives the time-domain crosstalk
voltages in terms of VS(t) delayed by multiples of the one-way line delay T as

VNE(t) = MNE

X TD
[N0VS(t) + N2 VS(t − 2TD) + N4 VS(t − 4TD) + · · · ] (10.47a)

VFE(t) = 2
MFE

X TD
[F1 VS(t − TD) + F3 VS(t − 3TD) + F5 VS(t − 5TD) + · · · ]

(10.47b)
where the constants are

N0 = α0 (KNE + 1)

= (KNE + 1)

N2 = α1 (KNE + 1) − 2α0KNE

= −a (KNE + 1) − 2KNE

N4 = α2 (KNE + 1) − 2α1KNE + α0 (KNE − 1)

=
(
a2 − b

)
(KNE + 1) + 2aKNE + (KNE − 1)

N6 = α3 (KNE + 1) − 2α2KNE + α1 (KNE − 1)

=
(

2ab − a3
)

(KNE + 1) − 2
(
a2 − b

)
KNE − a (KNE − 1)

... (10.48a)
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and

F1 = (α0)

= 1

F3 = (α1 − α0)

= −a − 1

F5 = (α2 − α1)

= a2 − b + a

F7 = (α3 − α2)

= 2ab − a3 − a2 + b

... (10.48b)

These final expressions give the explicit relationships for the crosstalk voltages as
linear combinations of the source voltage delayed in time by various multiples of the
line one-way delay TD.

Some additional interesting forms of these expressions can be obtained by grouping
terms of (10.48) to yield

VNE(t) = MNE

X TD


α0[VS(t) − VS(t − 4TD)]

+α1[VS(t − 2TD) − VS(t − 6TD)]

+α2[VS(t − 4TD) − VS(t − 8TD)] + · · ·




+KNE
MNE

X TD




α0[VS(t) − 2VS(t − 2TD) + VS(t − 4TD)]

+α1[VS(t − 2TD) − 2VS(t − 4TD) + VS(t − 6TD)]

+α2[VS(t − 4TD) − 2VS(t − 6TD)
+VS(t − 8TD)] + · · ·




(10.49a)

VFE(t) = 2
MFE

X TD

[
α0[VS(t − TD) − VS(t − 3TD)]

+α1[VS(t − 3TD) − VS(t − 5TD)]
+α2[VS(t − 5TD) − VS(t − 7TD)] + · · ·

]
(10.49b)

10.2.2 Weakly Coupled Lines

The above time-domain solutions are exact but somewhat complicated. In this section,
we will assume that the lines are weakly coupled, that is, k � 1. In this case, P ∼= 1 in
Den, in which case the above results simplify considerably. The quantities in (10.39)
factor, for P ∼= 1, as

X =
(

1 + τG

TD

)(
1 + τR

TD

)
, k � 1, P ∼= 1, (10.50a)
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a =
(

1 − τG
TD

)
(

1 + τG
TD

) +
(

1 − τR
TD

)
(

1 + τR
TD

) , k � 1, P ∼= 1, (10.50b)

b =
(

1 − τG
TD

)(
1 − τR

TD

)
(

1 + τG
TD

)(
1 + τR

TD

) , k � 1, P ∼= 1, (10.50c)

Assuming that the line is weakly coupled such that
√

1 − k2 ∼= 1, the normalized time
constants in (10.25) become

τG

TD

∼= (1 + αSG αLG)

(αSG + αLG)
, k � 1 (10.51a)

τR

TD

∼= (1 + αSR αLR)

(αSR + αLR)
, k � 1 (10.51b)

Now suppose that one of the ends of each line is matched; αSG = 1 or αLG = 1
and αSR = 1 or αLR = 1. In this case, the time constants in (10.25) become τG = TD
and τR = TD. The quantities X, a, and b in (10.50) become X = 4, a = 0, and b =
0. The coefficients in (10.46b) are zero except for α 0 = 1. The near-end and far-end
crosstalk expressions in (10.49) simplify to

VNE(t) = MNE

4TD
[VS(t) − VS(t − 4TD)]

+MNEKNE

4TD
[VS(t) − 2VS(t − 2TD) + VS(t − 4TD)] (10.52a)

VFE(t) = MFE

2TD
[VS(t − TD) − VS(t − 3TD)] (10.52b)

If the line is matched at the load end of the generator circuit, αLG = 1, or at the load
end of the receptor circuit, αLR = 1, then KNE = 1 and (10.52) simplify to

VNE(t) = MNE

2TD
[VS(t) − VS(t − 2TD)] (10.53a)

VFE(t) = MFE

2TD
[VS(t − TD) − VS(t − 3TD)] (10.53b)

There exist numerous electronic design handbooks and other publications
that contain time-domain crosstalk prediction equations for three-conductor lines
[5–11]. However, as pointed out previously, these invariably make the following
assumptions:
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1. The line is weakly coupled.

2. All ports are matched: αSG = αLG = αSR = αLR = 1.

3. Both circuits have identical cross sections, for example, two identical wires at
the same height above a ground plane. Hence, cG = cR and lG = lR.

These are very special restrictions that are generally not fulfilled in practical cases.
For this special case where RS = RL = RNE = RFE = ZCG = ZCR = ZC, MNE and
MFE in (10.29) reduce to

MNE = 1

4

[
lmL

ZC
+ ZC cmL

]
(10.54a)

MFE = 1

4

[
− lmL

ZC
+ ZC cmL

]
(10.54b)

and the previously derived results in (10.53) reduce to

VNE(t) = L

8TD

[
lm

ZC
+ cmZC

]
[VS(t) − VS(t − 2TD)] (10.55a)

VFE(t) = − L

8TD

[
lm

ZC
− cmZC

]
[VS(t − TD) − VS(t − 3TD)] = 0 (10.55b)

For a homogeneous medium, using (10.6) and (10.22), lm/cm = Z2
C and the far-end

crosstalk is (ideally) zero. For an inhomogeneous medium, the far-end crosstalk is not
zero. These results are equivalent to results derived intuitively in [5–7]. Again, these
results in (10.55) are restricted to lines that are (1) weakly coupled, (2) matched at
all four ports, and (3) physically symmetric, that is, lG = lR and cG = cR. The total
of these conditions is very ideal and is not found in practical applications.

10.2.3 Inductive and Capacitive Coupling

In the frequency-domain solution, we observed that for a weakly coupled, electrically
short line and for a sufficiently small frequency, the near-end and far-end crosstalk
voltages reduce to (see (10.29))

V̂NE( jω) ∼= jω MNEV̂S( jω) (10.56a)

V̂FE( jω) ∼= jω MFEV̂S( jω) (10.56b)

The time-domain results can be obtained from these by substituting

jω ⇒ d

dt
(10.57)
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FIGURE 10.5 Illustration of near-end and far-end time-domain crosstalk predicted by the
inductive-capacitive coupling model.

to give

VNE(t) ∼= MNE
d

dt
VS(t) (10.58a)

VFE(t) ∼= MFE
d

dt
VS(t) (10.58b)

For trapezoidal pulses representing, perhaps, digital clock or data signals, these results
give crosstalk pulses occurring during the transitions of VS(t) with the levels of those
pulses dependent on the slope or “slew rate” of VS(t) as illustrated in Figure 10.5.
Substituting the definitions of MNE and MFE in (10.18) in terms of inductive and
capacitive coupling contributions as given in (10.19) and (10.20) shows that this
approximate time-domain crosstalk result can be computed from the equivalent circuit
shown in Figure 10.6. Therefore, the time-domain crosstalk is the sum of an inductive
coupling component and a capacitive coupling component.

The above time-domain result was obtained from the frequency-domain approx-
imate result. In order for that frequency-domain result to be valid, the line must be
electrically short at the highest significant sinusoidal frequency of excitation. Bounds
on the spectrum of a periodic trapezoidal waveform representing a digital signal
given in Chapter 1 are shown in Figure 10.7, where τr is the pulse rise time, and
we assume that the rise time and fall time of the pulse are equal, τr = τf . Essen-
tially, we require that the line be electrically short at the frequency components of
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FIGURE 10.6 The time-domain inductive–capacitive coupling model.

the time-domain pulse waveform for frequencies up to some limit, f max. We as-
sume that the frequency components above this maximum frequency are decreas-
ing in magnitude such that they do not substantially contribute to the pulse wave
shape and hence incorrect processing of them by the time-domain model does not

FIGURE 10.7 The frequency-domain representation of a periodic trapezoidal pulse train.
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substantially introduce errors. For the trapezoidal waveform, the frequency compo-
nents above the second break point, f = 1/π τr, are rolling off at −40 dB/decade. In
Chapter 1, we obtained a criterion for the bandwidth of a trapezoidal, digital waveform
as f max = 3(1/π τr) ∼= 1/τr. Hence, we assume that the above approximate model
is valid for frequency components below this. This gives a time-domain criterion for
the validity of the approximate model given in (10.58) and Figure 10.6. Hence, we
require that

L <
1

10
λmax

= 1

10

v

f max

= 1

10
v τr (10.59)

Rewriting this in terms of the line one-way delay, TD = L/v, gives the criterion for
validity of the approximate time-domain model as

τr > 10TD (10.60)

10.2.4 Common-Impedance Coupling

The effect of the impedance of the reference conductor can be handled in an approx-
imate manner at the lower frequencies of the pulse by simply adding the common-
impedance coupling term to the inductive–capacitive contributions in (10.58):

VNE,FE(t) =
[
MIND

NE,FE + MCAP
NE,FE

] dVS(t)

dt
+ MCI

NE,FEVS(t) (10.61)

where MNE and MFE are as given previously. The effect of common-impedance
coupling is to add a scaled replica of VS(t) to the crosstalk resulting from inductive
and capacitive coupling.

10.3 COMPUTED AND EXPERIMENTAL RESULTS

In this section, we will give some computed results comparing the predictions of
the exact transmission-line model, the lumped-Pi model, and the inductive-capacitive
coupling model developed in this chapter for three-conductor lines that were exam-
ined in the previous chapters. In all models, the conductors are considered to be
lossless. For both structures, the SPICE subcircuit models were computed with the
SPICEMTL.FOR, SPICELPI.FOR, and SPICELC.FOR computer programs de-
scribed in Appendix A and combined into one SPICE program for ease of plotting of
the results. The nodes at the input to the generator lines are designated as S1 (SPICE),
S2 (lumped-Pi), and S3 (inductive–capacitive coupling model), whereas the nodes at
the near end of the receptor circuit are designated as NE1 (SPICE), NE2 (lumped-Pi),
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and NE3 (inductive–capacitive coupling model). The termination impedances are all
50 � resistive, that is, RS = RL = RNE = RFE = 50 �.

10.3.1 A Three-Wire Ribbon Cable

The first configuration is a three-wire ribbon cable considered in previous chapters.
See Figure 7.10. The wires are #28 gauge stranded (7 × 36) and are separated by
50 mils. One of the outer wires is the reference conductor, and the line is of total
length 2 m. The per-unit-length parameters were computed in Chapter 5 with the
RIBBON.FOR computer program described in Appendix A. Figure 10.8 compares the

FIGURE 10.8 Illustration of the frequency response of the ribbon cable of Figure 7.10 via
the SPICE model, one lumped-Pi section, and the inductive–capacitive coupling model: (a)
magnitude and (b) phase.
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frequency-domain predictions for all three models over the frequency range of
1 kHz to 100 MHz. The line is one wavelength (ignoring the dielectric insulations)
at 150 MHz, so we may consider it to be electrically short for frequencies below,
say, 15 MHz. The lumped-Pi model gives good predictions below 10 MHz, whereas
the inductive–capacitive coupling model gives good predictions below 1 MHz.
This shows that the simple inductive–capacitive coupling model can give adequate
predictions for a significant frequency range so long as its basic limitations are
observed.

Figure 10.9 shows the correlation between the three models for the time domain
for the leading edge of the pulse. The source, VS(t), is a 1-MHz trapezoidal pulse
train with 50% duty cycle. The trapezoidal pulses have 1 V magnitude with various
rise times. The one-way time delay for the line (ignoring the dielectric insulations)
is TD = L/v = 6.67 ns, so we should not expect the inductive–capacitive coupling
model to give adequate predictions for rise times less than 70 ns. Figure 10.9(a)
shows the predictions for τr = 60 ns. The predictions of the lumped-Pi model compare
well with those of the exact SPICE model. Figure 10.9(b) shows the predictions for
τr = 120 ns, and Figure 10.9(c) shows the predictions for τr = 240 ns. Again, the
predictions of the exact SPICE model and the lumped-Pi model correlate well. For
the latter rise time of 240 ns, there is good agreement between the SPICE predictions
and those of the inductive–capacitive coupling model for the peak crosstalk and τr =
36 TD.

Figure 10.10 shows oscilloscope photographs of the experimental results. For
τr = 60 ns in Figure 10.10(a), the measured peak voltage is 80 mV compared to a
predicted value of 80 mV. For τr = 120 ns in Figure 10.10(b), the measured peak
voltage is 50 mV compared to a predicted value of 45 mV, and for τr = 240 ns in
Figure 10.10(c), the measured peak is 26 mV compared to a predicted value of 23 mV.
Observe in the measured results that, while the pulse is in its quiescent state of 1 V,
the crosstalk does not go to zero as predicted by the lossless model but appears to
asymptotically approach a value on the order of 2.5 mV, as shown in Figure 10.10(c).
This is a result of common-impedance coupling. The per-unit-length dc resistance of
one wire is obtained by dividing the dc resistance of one of the #36 gauge strands by 7
(the number of strands in parallel) to give a total resistance of the 2-m-long reference
wire as r0L = 0.389 �. Substituting this into (10.34a) gives a common-impedance
coupling level of 1.94 mV.

10.3.2 A Three-Conductor Printed Circuit Board

The next configuration is a three-conductor printed circuit board also considered
previously. See Figure 7.13. The conductors (lands) are 15 mils in width and have
thicknesses of 1.38 mils (1 ounce copper). They are on one side of a 47-mil-thick
glass epoxy board and have edge-to-edge separations of 45 mils. One of the outer
lands is the reference conductor, and the line is of total length 10 in. = 0.254 m. The
per-unit-length parameters were computed in Chapter 5 with the PCB.FOR computer
program described in Appendix A. Figure 10.11 compares the frequency-domain
predictions for all three models over the frequency range of 10 kHz to 1 GHz. The



FIGURE 10.9 Illustration of the time-domain response of the ribbon cable of Figure 7.10
via the SPICE model, one lumped-Pi section, and the inductive–capacitive coupling model for
a rise/fall time of (a) 60 ns, (b) 120 ns, and (c) 240 ns.



FIGURE 10.10 The experimentally-determined time-domain response of the ribbon cable
of Figure 7.10 for a rise/fall time of (a) 60 ns, (b) 120 ns, and (c) 240 ns.
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FIGURE 10.11 Illustration of the frequency response of the printed circuit board of
Figure 7.13 via the SPICE model, one lumped-Pi section and the inductive–capacitive
coupling model: (a) magnitude, and (b) phase.

line is one wavelength (assuming an effective relative permittivity as the average of
the board and free space or ε′

r = (4.7 + 1)/2 = 2.85) at 700 MHz, so we may con-
sider it to be electrically short for frequencies below, say, 70 MHz. The lumped-Pi
model gives good predictions below 100 MHz, whereas the inductive–capacitive cou-
pling model gives good predictions below 10 MHz. This again shows that the simple
inductive–capacitive coupling model can give adequate predictions for a significant
frequency range so long as its basic limitations are observed.

Figure 10.12 shows the correlation between the three models for the time domain.
The source, VS(t), is again a 1 - V, 1 - MHz trapezoidal pulse train with various
rise times. The one-way time delay for the line is (assuming an effective relative



FIGURE 10.12 Illustration of the time-domain response of the printed circuit board of Fig-
ure 7.13 via the SPICE model, one lumped-Pi section, and the inductive–capacitive coupling
model for a rise/fall time of (a) 6.25 ns, (b) 20 ns, and (c) 60 ns.



FIGURE 10.13 The experimentally-determined time-domain response of the printed circuit
board of Figure 7.13 for a rise/fall time of (a) 6.25 ns, (b) 20 ns, and (c) 60 ns.
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permittivity as the average of the board and free space or ε′
r = (4.7 + 1)/2 = 2.85)

TD = L/v = 1.43 ns, so we should not expect the inductive–capacitive coupling
model to give adequate predictions for rise times less than 20 ns. Figure 10.12(a) shows
the predictions for τr = 6.25 ns. The predictions of the lumped-Pi model compare well
with those of the SPICE model. Figure 10.12(b) shows the predictions for τr = 20 ns,
and Figure 10.12(c) shows the predictions for τr = 60 ns. Again the predictions of
the SPICE model and the lumped-Pi model are virtually identical. For the latter rise
time of 60 ns, the inductive–capacitive coupling model gives excellent prediction of
the peak crosstalk magnitude and τr = 70 TD.

Figure 10.13 shows oscilloscope photographs of the experimental results. For
τr = 6.25 ns in Figure 10.13(a), the measured peak voltage is 94 mV compared to
a predicted value of 95 mV. For τr = 20 ns in Figure 10.13(b), the measured peak
voltage is 46 mV compared to a predicted value of 46 mV, and for τr = 60 ns in
Figure 10.13(c), the measured peak is 17.5 mV compared to a predicted value of
15.8 mV. Observe in Figure 10.13(c) that, again while the pulse is in its quiescent
state of 1 V, the crosstalk does not go to zero as predicted by the lossless model
but appears to asymptotically approach a value on the order of 2.5 mV, as shown in
Figure 10.13. This shows that common-impedance coupling can be significant even for
short conductors. The total dc resistance of one land is r0L = 0.3279 �. Substituting
this into (10.34a) gives a common-impedance coupling level of 1.64 mV.

PROBLEMS

10.1 Show that the inverse of a 2 × 2 matrix

M =
[

a b

c d

]

is

M−1 = 1

ad − bc

[
d −b

−c a

]

10.2 Solve, using Cramer’s rule, Eqs. (10.16) to give the results in (10.17).

10.3 Derive the inductive–capacitaive coupling model results in (10.29).

10.4 Demonstrate the results in (10.31).

10.5 Derive the Laplace transform solution in (10.38).

10.6 Derive the time-domain recursive solution in (10.42).

10.7 Derive the explicit time-domain solution in (10.47).

10.8 Demonstrate the relations in (10.50) and (10.51).

10.9 Obtain the simplified relations in (10.52)–(10.54).

10.10 Consider a problem consisting of three identical, bare wires wherein one of
the wires serves as the reference conductor. The wires are #28 gauge stranded



576 LITERAL (SYMBOLIC) SOLUTIONS FOR THREE-CONDUCTOR LINES

wires (7 × 36) (radius 7.5 mils) and are arranged on the corners of an equilat-
eral triangle so that the separations between each wire are 1 cm. The termi-
nations are RS = 50 �, RL = 1k �, RNE = 300 �, and RFE = 100 �. If the
total line length is 2 m, compute the near-end and far-end frequency-domain
crosstalk (magnitude and angle) using (6.17) from 1 kHz to 100 MHz. Deter-
mine the coupling coefficient, the near-end and far-end crosstalk coefficients
MIND

NE,FE and MCAP
NE,FE, and the frequency where the line is 0.1λ long. Compare

your results with those of the SPICE model, SPICEMTL.FOR, to show that
(10.17) is correct.

10.11 For the structure of Problem 10.10, repeat the crosstalk calculations using the
low-frequency, inductive–capacitive coupling model in (10.29). Verify your
results using the SPICE model generated by SPICELC.FOR.

10.12 For the structure of Problem 10.10, assume that VS(t) is a 1-MHz periodic
train of trapezoidal pulses with equal rise/fall times of 100 ns and a level
of 1 V. Compute the time-domain near-end and far-end crosstalk using the
iterative solution given in (10.42). Repeat these calculations for rise/fall times
of 50 ns and 10 ns. Verify your results using the SPICE model generated by
SPICEMTL.FOR.

10.13 Repeat Problem 10.12 using the low-frequency, inductive–capacitive cou-
pling approximation given in (10.58). Verify your results using the SPICE
model generated by SPICELC.FOR.

10.14 Determine the common-impedance coupling waveform for Problem 10.12.

10.15 Reproduce the results of Figures 10.8 and 10.9 using the SPICE models
generated by SPICEMTL.FOR, SPICELPI.FOR, and SPICELC.FOR.

10.16 Reproduce the results of Figures 10.11 and 10.12 using the SPICE models
generated by SPICEMTL.FOR, SPICELPI.FOR, and SPICELC.FOR.

10.17 Explain why you would expect to obtain the inductive–capacitive coupling
models in the limit as the frequency goes to zero. [Hint: The current of the
generator circuit produces a magnetic flux that links the receptor circuit. Now
use Faraday’s law to determine the induced voltage in the receptor circuit
and assume weak coupling between the lines. Similarly, the voltage of the
generator circuit produces an electric field some of which terminates on the
receptor conductor that induces a charge on that conductor.]
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11
INCIDENT FIELD EXCITATION
OF TWO-CONDUCTOR LINES

In this chapter, we will examine the solution of the transmission-line equations for a
two-conductor line that is excited by an external, incident electromagnetic field. This
will represent, for example, airport surveillance radars and AM/FM radio station
transmitters as well as near-field sources. We will provide a simple derivation of the
transmission-line equations for the case of two-conductor lines and extend that in the
next chapter to multiconductor transmission lines (MTLs). Once the transmission-line
equations are derived and solved, the terminal constraints of the line are incorporated
to give the solution for the terminal voltages and currents.

Incorporation of the effects of incident electromagnetic fields into the transmission
line equations was considered for two-conductor lines in [1–5]. The transmission-line
formulation for two-conductor lines has been compared to the full-wave method of
moments (MoM) solution in [H.6,H.7] and to experimental results in [H.8]. A literal
solution for the two-wire case was obtained in [H.9,H.11]. The formulation has also
been adapted to twisted pairs [6] and to shielded cables [7]. The investigation of
higher-order modes on these two-conductor lines was given in [8].

11.1 DERIVATION OF THE TRANSMISSION-LINE EQUATIONS
FOR INCIDENT FIELD EXCITATION

The process of excitation of the line by an external, incident electromagnetic field can
be thought of in the following way. The incident field induces currents and charges on
the line conductors. These induced currents and charges in turn produce the scattered

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.
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FIGURE 11.1 Definition of the contour for the derivation of the first transmission-line equa-
tion for incident field illumination.

field that, when combined with the incident field, satisfy the boundary conditions on
the surfaces of the line conductors.

The derivation of the transmission-line equations for a two-conductor line that is
excited by an incident field follows the same lines as in Chapter 2. For example, writing
Faraday’s law around the contour of the flat surface between the two conductors as
shown in Figure 11.1(a) gives

a′∫
a

�E · d�l +
b′∫
a′

�E · d�l +
b∫
b′

�E · d�l +
a∫
b

�E · d�l = d

dt
ψn (11.1)

The total magnetic flux penetrating the flat surface is

ψn =
∫
s

Bn ds

=
∫
s

→
B · →

ands (11.2)
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where the magnetic flux density is denoted as �B and the component that is normal
to the flat surface and directed out of the page is denoted as Bn. Note in Figure
11.1(b) that the unit normal to the surface, �an, is directed out of the page. Hence,
because the direction of the contour c and the normal to the enclosed surface s
are related by the right-hand rule, the usual minus sign on the right-hand side of
Faraday’s law is absent in (11.1). For the case of incident field excitation, there are
two components of the magnetic flux density. One component is referred to as the

scattered field and is denoted as �Bscat
. The other component is due to the incident

field and is denoted as �Binc
. The total field is the sum of the scattered and incident

components as

�B = �Bscat + �Binc
(11.3)

Hence, the total flux penetrating the surface is the combination of the two:

ψn =
∫
s

�B · �an ds

=
∫
s

�Bscat · �an ds +
∫
s

�Binc · �an ds (11.4)

The line voltages are defined as

V (z, t) = −
a′∫
a

�E(x, y, z, t) · d�l (11.5a)

V (z + �z, t) = −
b′∫
b

�E(x, y, z + �z, t) · d�l (11.5b)

To allow for imperfect conductors, we again define the per-unit-length conductor
resistance of each conductor as r1 �/m and r0 �/m. Thus,

−
b′∫
a′

�E · d�l = −
b′∫
a′

Ez dz = −r1 �z I(z, t) (11.6a)

−
a∫
b

�E · d�l = −
a∫
b

Ez dz = −r0 �z I (z, t) (11.6b)
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where, along the conductors, �E = Ez �az and d�l = dz �az. The currents on the conduc-
tors are again defined as

I(z, t) =
∮
c′

�H · d�l′ (11.7)

where �B = µ �H and �H is the magnetic field intensity and contour c′ is a contour just
off the surface of and encircling the top conductor in the transverse plane as shown
in Figure 11.2. Hence, (11.1) becomes

FIGURE 11.2 Definition of the surface for the derivation of the second transmission-line
equation for incident field illumination.
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−V (z, t) + r1 �z I(z, t) + V (z + �z, t) + r0 �zI (z, t)

= d

dt

∫
s

�Bscat · �an ds + d

dt

∫
s

�Binc · �an ds (11.8)

Dividing both sides by �z and rearranging gives

V (z + �z, t) − V (z, t)

�z
+ r1I (z, t) + r0I (z, t) − 1

�z

d

dt

∫
s

�Bscat · �an ds

= 1

� z

d

dt

∫
s

�Binc · �an ds (11.9)

The per-unit-length magnetic flux penetrating the flat surface that is due to the currents
on the conductors is related to the per-unit-length inductance of the line, l, as

ψ = − lim
�z → 0

1

�z

∫
s

�Bscat · �an ds

= −
a′∫
a

�Bscat · �an dl

= lI (z, t) (11.10)

Taking the limit of (11.9) as �z → 0 and substituting (11.10) gives the first
transmission-line equation

∂V (z, t)

∂z
+ rI (z, t) + l

∂I (z, t)

∂t
= ∂

∂t

a′∫
a

�Binc · �an dl (11.11)

where the total per-unit-length resistance of the line is r = r1 + r0.
In order to derive the second transmission-line equation, consider placing a closed

surface s′ around the top conductor and just off that conductor as shown in Figure 11.2.
This is the same surface used to define current in (11.7). The portion of the surface
over the end caps is denoted as s′e, whereas the portion over the sides is denoted as s′s.
Recall the continuity equation or equation of conservation of charge [A.1]:

�
s′

�I · d �s′ = − ∂

∂t
Qenc (11.12)
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Over the end caps we have∫∫
s′e

�I · d �s′ = I(z + �z, t) − I(z, t) (11.13)

The total electric field is again the sum of a component that is due to the sca-

ttered field, which is denoted as �Escat
, and the electric field of the incident wave,

which is denoted as �Einc
, as

�E = �Escat + �Einc
(11.14)

and the voltage is defined in terms of the total field as

V (z, t) = −
a′∫
a

�E · d�l

= −
a′∫
a

�Escat · d�l −
a′∫
a

�Einc · d�l (11.15)

Some derivations define a scattered voltage in terms of the scattered electric field.
But that scattered voltage is not the total voltage in terms of which the terminal
relations are defined. This has created considerable confusion in the past. So when
we incorporate the terminal constraints at the ends of the line, we must use the total
voltage given in (11.15). Again, we define the per-unit-length conductance g S/m
between the two conductors as the ratio of the conduction current flowing between
the two conductors in the transverse plane per unit of line length, It, to the voltage
between the two conductors. Hence,

It(z, t) = lim︸︷︷︸
�z → 0

1

�z

∫ ∫
s′s

�I · d �s′

= −g

a′∫
a

�Escat · d�l

= gV (z, t) + g

a′∫
a

�Einc · d�l (11.16)

Similarly, define the per-unit-length capacitance as

lim︸︷︷︸
� z → 0

Qenc

�z
= −c

a′∫
a

�Escat · d�l
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= cV (z, t) + c

a′∫
a

�Einc · d�l (11.17)

Substituting (11.13), (11.16), and (11.17) into (11.12) gives

I (z + � z) − I (z) + g�zV (z, t) + c�z
∂V (z, t)

∂t

= −g�z

a′∫
a

�Einc · d�l − c
∂

∂t
�z

a′∫
a

�Einc · d�l (11.18)

Dividing (11.18) by �z and taking the limit as �z → 0 gives the second transmission-
line equation

∂I (z, t)

∂z
+ gV (z, t) + c

∂V (z, t)

∂t
= −g

a′∫
a

�Einc · d�l − c
∂

∂t

a′∫
a

�Einc · d�l (11.19)

These transmission-line equations can also be derived from the per-unit-length
equivalent circuit in Figure 11.3 as

∂V (z, t)

∂z
+ rI (z, t) + l

∂I (z, t)

∂t
= VF (z, t) (11.20a)

∂I (z, t)

∂z
+ gV (z, t) + c

∂V (z, t)

∂t
= IF (z, t) (11.20b)

FIGURE 11.3 The per-unit-length equivalent circuit for a transmission-line with incident
field illumination.
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where the per-unit-length distributed sources due to the incident field, VF (z, t) and
IF (z, t), are

VF (z, t) = ∂

∂t

a′∫
a

�Binc · �an dl (11.21a)

and

IF (z, t) = −g

a′∫
a

�Einc · d�l − c
∂

∂t

a′∫
a

�Einc · d�l (11.21b)

Thus, the sources are the component of the incident magnetic field normal to
the circuit loop and the component of the incident electric field transverse to the
line.

11.1.1 Equivalence of Source Representations

Observe that the equivalent per-unit-length voltage source in (11.21a) is in terms
of the incident magnetic field, and the equivalent per-unit-length current source in
(11.21b) is in terms of the incident electric field. Faraday’s law can be used to relate
these and give equivalent representations. Writing Faraday’s law around the contour
of the flat surface in Figure 11.1 gives, as �z → 0,

− ∂

∂z

a′∫
a

�Einc · d�l +
[
Einc

z (conductor #1, z, t) − Einc
z (reference conductor, z, t)

]

= ∂

∂t

a′∫
a

�Binc · �an dl (11.22)

Hence, the per-unit-length equivalent voltage source in (11.21a) can be equivalently
written in terms of the incident electric field as

VF (z, t) =
[
Einc

z (conductor #1, z, t) − Einc
z (reference conductor, z, t)

]

− ∂

∂z

a′∫
a

�Einc · d�l (11.23)

Therefore, we only need to know the components of the incident electric field
that are (1) along the surfaces of the conductors, Einc

z (conductor #1 or #0, z, t), and
(2) transverse (perpendicular) to the line and between the two conductors to give∫ a′
a

�Einc · d�l.
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11.2 THE FREQUENCY-DOMAIN SOLUTION

In the frequency domain, the time-domain transmission-line equations given in
(11.20) become, by replacing ∂/∂t ⇒ jω,

dV̂ (z)

dz
+ (r + jω l)︸ ︷︷ ︸

ẑ

Î(z) = V̂F (z) (11.24a)

dÎ (z)

dz
+ (g + jω c)︸ ︷︷ ︸

ŷ

V̂ (z) = ÎF (z) (11.24b)

where the phasor sources are

V̂F (z) = jω

a′∫
a

�̂Binc · �an dl (11.24c)

ÎF (z) = − (g + jω c)︸ ︷︷ ︸
ŷ

a′∫
a

�̂Einc · d�l (11.24d)

or, equivalently,

V̂F (z) =
[
Êinc

z (conductor #1, z) − Êinc
z (reference conductor, z)

]

− ∂

∂z

a′∫
a

�̂Einc · d�l (11.24e)

where we denote the phasor incident fields as �̂Binc
and �̂Einc

. The per-unit-length
impedance and admittance are again ẑ = r + jω l and ŷ = g + jωc, respectively.

11.2.1 Solution of the Transmission-Line Equations

The phasor transmission-line equations in (11.24a) and (11.24b) are coupled
first-order ordinary differential equations and are in the same form as state-
variable equations found in electric circuit analysis, automatic control system
analyses, or other linear system analyses [A.2,B.1,H.1,9,10]. These state-variable
equations are in the form

d

dt
X (t) = AX (t) + W (t) (11.25)
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where t represents the variable time, X(t) is a vector of state variables, and W (t) is a
vector of forcing functions that are the excitation for the linear system. The solution
to these state-variable equations is [9,10]

X(t) = �(t − t0)X(t0) +
t∫
t0

�(t − τ) W(τ)dτ (11.26a)

and the state-transition matrix is [9,10]

�(t) = eAt

= 1n + t

1!
A + t2

2!
A2 + t3

3!
A3 + · · · (11.26b)

where 1n is the n × n identity matrix with 1s on the main diagonal and zeros elsewhere.
This gives the solutions for the state variables of the system at some time t for the given
initial conditions at time t0. The forcing functions affect the solution via a convolution
term. The state-transition matrix has some very nice and very useful identities [9,10]:

�(0) = 1n (11.27a)

�−1(t) = �(−t) (11.27b)

�(t1)�(t2) = �(t1 + t2) (11.27c)

All three identities follow from the definition of the state-transition matrix in (11.26b):
�(0) = eA 0 = 1n, �−1(t) = e−A t = eA (−t) = �(−t), and �(t1 + t2) = eA (t1+t2) =
eA t1 eA t2 = �(t1)�(t2).

We can make an analogy of these state-variable equations and their solution to
that of the phasor transmission-line equations by replacing t in these state-variable
equations with the distance variable for the transmission line, z, and writing the phasor
transmission-line equations in (11.24) in matrix form as

d

dz
X̂ (z) = Â X̂(z) + Ŵ(z) (11.28a)

where

X̂(z) =
[

V̂ (z)
Î(z)

]
(11.28b)

Â =
[

0 −ẑ

−ŷ 0

]
(11.28c)
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Ŵ (z) =
[

V̂F (z)

ÎF(z)

]
(11.28d)

Hence, the solution to the phasor transmission-line equations in (11.28) can be ob-
tained by analogy to the state-variable equations as

X̂(z) = �̂(z − z0)X̂(z0) +
z∫
z0

�̂(z − τ)

[
V̂F(τ)

ÎF(τ)

]
︸ ︷︷ ︸

Ŵ(τ)

dτ (11.29a)

where the 2 × 2 chain-parameter matrix is defined as

�̂(z − z0) ≡ eÂ(z−z0)

=
[

φ̂11(z − z0) φ̂12(z − z0)
φ̂21(z − z0) φ̂22(z − z0)

]
(11.29b)

If we specialize this to a line of total length L, then we let z = L and z0 = 0 and
obtain from (11.29)

[
V̂ (L)
Î(L)

]
= �̂(L)

[
V̂ (0)
Î (0)

]
+

L∫
0

�̂(L − τ)

[
V̂F(τ)
ÎF(τ)

]
dτ (11.30a)

or, in expanded form,

[
V̂ (L)
Î(L)

]
=
[

φ̂11(L) φ̂12(L)
φ̂21(L) φ̂22(L)

] [
V̂ (0)
Î (0)

]
+

L∫
0

[
φ̂11(L − τ) φ̂12(L − τ)
φ̂21(L − τ) φ̂22(L − τ)

] [
V̂F(τ)
ÎF(τ)

]
dτ

(11.30b)
where �̂(L) is the chain-parameter matrix of the line. The entries in the chain-
parameter matrix, φ̂ij(L), are given, for a two-conductor line, in Eqs. (6.85) of
Chapter 6:

φ̂ 11(L) = cosh (γ̂ L)

= eγ̂ L + e−γ̂ L

2
(6.85a)

φ̂ 12(L) = −ẐCsinh (γ̂ L)

= −ẐC
eγ̂ L − e−γ̂ L

2
(6.85b)

φ̂ 21(L) = − 1

ẐC
sinh (γ̂ L)
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= − 1

ẐC

eγ̂ L − e−γ̂ L

2
(6.85c)

φ̂ 22(L) = cosh (γ̂ L)

= eγ̂ L + e−γ̂ L

2
(6.85d)

The propagation constant is γ̂ = √
ẑŷ = √

(r + jω l) (g + jω c) and the line char-
acteristic impedance is ẐC = √

ẑ/ŷ = √
(r + jω l) / (g + jω c). Observe in (11.30)

that the incident fields add a convolution term to the usual chain-parameter relation.
Because of the analogy of the phasor transmission-line equations to the state-

variable formulation, the chain-parameter matrix �̂(L) has some very nice and very
useful identities. From the identities for the state-transition matrix in (11.27), we
obtain

�̂(0) = 1n (11.31a)

�̂−1(L) = �(−L) (11.31b)

�(L1)�(L2) = �(L1 + L2) (11.31c)

These identities are extraordinarily sensible since the chain-parameter matrix relates
the voltage and current at the right end of a line to the voltage and current at the left
end of the line. The first identity in (11.31a) essentially means that the voltage and
current at one end of the line are equal to the voltage and current at the other end
of the line for a total line length of zero. The second identity in (11.31b) essentially
means that the voltage and current at the left end of the line, z = 0, are related to the
voltage and current at the right end of the line, z = L, by the chain-parameter matrix,
and we have simply made a reversal in the axis variable, z ⇒ −z. The last identity in
(11.31c) means that if we split a line into two consecutive sections each of length z1
and z2 where z = z1 + z2, then the chain-parameter matrix of the overall line that is
of length z = z1 + z2 is the product of the chain-parameter matrices of each section.

The effects of the incident field can be written in terms of equivalent voltage
and current sources. Writing (11.30) out for a transmission line of total length
L gives [

V̂ (L)
Î(L)

]
= �̂(L)

[
V̂ (0)
Î(0)

]
+
[

V̂FT(L)
ÎFT(L)

]
(11.32)

where the total voltage and current sources, V̂FT(L) and ÎFT(L), are, according to
(11.30),
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[
V̂FT(L)
ÎFT(L)

]
=

L∫
0

�̂(L − τ)

[
V̂F(τ)
ÎF(τ)

]
dτ (11.33a)

In expanded form, these total voltage and current sources become

V̂FT(L) =
L∫
0

[
φ̂11(L − τ)V̂F(τ) + φ̂12(L − τ)ÎF(τ)

]
dτ (11.33b)

ÎFT(L) =
L∫
0

[
φ̂21(L − τ)V̂F(τ) + φ̂22(L − τ)ÎF(τ)

]
dτ (11.33c)

According to (11.32), the equivalent circuit of the complete line can be viewed as
an unexcited line along with the equivalent sources V̂FT(L) and ÎFT(L) located at
z = L as illustrated in Figure 11.4(a).

We can also place equivalent sources at the left end of the line, z = 0. Premultiplying
(11.32) by the inverse of the chain-parameter matrix and rearranging gives[

V̂ (0)

Î (0)

]
= �̂−1(L)

[
V̂ (L)
Î(L)

]
− �̂−1(L)

[
V̂FT(L)
ÎFT(L)

]

= �̂(−L)

[
V̂ (L)
Î(L)

]
−
[

V̂ ′
FT(L)

Î ′
FT(L)

]

=
[

φ̂ 11(L) −φ̂ 12(L)
−φ̂ 21(L) φ̂ 22(L)

]
︸ ︷︷ ︸

�̂(−L)

[
V̂ (L)
Î(L)

]
−
[

V̂ ′
FT(L)

Î ′
FT(L)

]
(11.34)

where these equivalent voltage and current sources are defined as[
V̂ ′

FT(L)

Î ′
FT(L)

]
= �̂−1(L)

[
V̂FT(L)

ÎFT(L)

]

= �̂(−L)

[
V̂FT(L)
ÎFT(L)

]
(11.35)

and we have used the identity for the inverse in (11.31b), �̂−1(L) = �̂(−L),
and have used the chain-parameter identities from (6.85) of φ̂ 11 (−L) = φ̂ 11(L),
φ̂ 12 (−L) = −φ̂ 12(L), φ̂ 21 (−L) = −φ̂ 21(L), and φ̂22 (−L) = φ̂ 22(L). This
gives the equivalent circuit of Figure 11.4(b) where the incident field sources are
placed at the input to the line. We have reflected the sources at the right end of the
line z = L, V̂FT(L) and ÎFT(L), backward through the line to give the sources at
the left end of the line z = 0, V̂ ′

FT(L) and Î ′
FT(L). These sources at the left end of
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FIGURE 11.4 Illustration of the representation of a transmission line with incident field
illumination as a two-port having lumped sources that represent the effects of the incident
field.

the line can be written in a more direct form as

[
V̂ ′

FT(L)
Î ′

FT(L)

]
= �̂−1(L)

L∫
0

�̂(L − τ)

[
V̂F(τ)
ÎF(τ)

]
dτ

=
L∫
0

�̂−1(L)�̂(L − τ)

[
V̂F(τ)
ÎF(τ)

]
dτ

=
L∫
0

�̂(−τ)

[
V̂F(τ)
ÎF(τ)

]
dτ (11.36)

and we have used the chain-parameter matrix identity in (11.31c) to give �̂(L − τ) =
�̂(L)�̂(−τ) or �̂−1(L)�̂(L − τ) = �̂(−τ). Writing out (11.36) gives
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V̂ ′
FT(L) =

L∫
0

[
φ11(−τ)V̂F(τ) + φ12(−τ)ÎF(τ)

]
dτ

=
L∫
0

[
φ11(τ)V̂F(τ) − φ12(τ)ÎF(τ)

]
dτ (11.37a)

Î ′
FT(L) =

L∫
0

[
φ21(−τ)V̂F(τ) + φ22(−τ)ÎF(τ)

]
dτ

=
L∫
0

[−φ21(τ)V̂F(τ) + φ22(τ)ÎF(τ)
]
dτ (11.37b)

and we have again used the chain-parameter identities from (6.85) of φ̂ 11 (−τ) =
φ̂ 11 (τ), φ̂ 12 (−τ) = −φ̂ 12 (τ), φ̂ 21 (−τ) = −φ̂ 21 (τ), and φ̂22 (−τ) = φ̂ 22 (τ).

11.2.2 Simplified Forms of the Excitations

The total voltage and current sources V̂FT(L) and ÎFT(L) given in (11.33), represent-
ing the effects of the incident field, can be simplified by using the definitions of the
phasor distributed sources, V̂F(L) and ÎF(L), given in (11.24) and the properties of
the chain-parameter submatrices given in (6.85). Substituting (11.24) into (11.33b)
yields

V̂FT(L) =
L∫
0

[
φ̂11(L − τ)V̂F(τ) + φ̂12(L − τ)ÎF(τ)

]
dτ

=
L∫
0

φ̂11(L − τ)

[
Êinc

z (conductor #1, τ)

−Êinc
z (reference conductor, τ)

]
dτ

−
L∫
0

φ̂11(L − τ)


 ∂

∂τ

a′∫
a

�̂Einc · d�l


 dτ

−ŷ

L∫
0

φ̂12(L − τ)




a′∫
a

�̂Einc · d�l


 dτ (11.38)

Using the chain rule for differentiation:

∂

∂ τ
A (τ) B (τ) = A (τ)

[
∂

∂ τ
B (τ)

]
+
[

∂

∂ τ
A (τ)

]
B (τ) (11.39)
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we obtain

V̂FT(L) =
L∫
0

φ̂11(L − τ)

[
Êinc

z (conductor #1, τ)

−Êinc
z (reference conductor, τ)

]
dτ

−
L∫
0

∂

∂τ


φ̂11(L − τ)

a′∫
a

�̂Einc · d�l


 dτ

+
L∫
0


 ∂

∂τ
φ̂11(L − τ) − φ̂12(L − τ) ŷ︸ ︷︷ ︸

=0






a′∫
a

�̂Einc · d�l


 dτ (11.40)

The last term of (11.40) is identically zero. To show this, we substitute the chain-
parameter submatrices given in (6.85) into this last term to give

∂

∂τ
φ̂11(L − τ) − φ̂12(L − τ) ŷ = ∂

∂τ
cosh (γ̂ [L − τ]) + ẐCŷ sinh (γ̂ [ L − τ])

= [−γ̂ + ẐCŷ
]

sinh (γ̂ [L − τ])
= 0 (11.41)

since, from Chapter 6, γ̂ = ẐCŷ or
√

ẑŷ =
√

ẑ

ŷ
ŷ. Hence,

V̂FT(L) =
L∫
0

φ̂11(L − τ)

[
Êinc

z (conductor #1, τ)
−Êinc

z (reference conductor, τ)

]
dτ

− φ̂11(0)︸ ︷︷ ︸
1




a′∫
a

�̂Einc · d�l



∣∣∣∣∣∣∣
z = L

+ φ̂11(L)




a′∫
a

�̂Einc · d�l



∣∣∣∣∣∣∣
z = 0

(11.42)

Similarly, from (11.33c)

ÎFT(L) =
L∫
0

[
φ̂21(L − τ)V̂F(τ) + φ̂22(L − τ)ÎF(τ)

]
dτ

=
L∫
0

φ̂21(L − τ)

[
Êinc

z (conductor #1, τ)
−Êinc

z (reference conductor, τ)

]
dτ

− φ̂21(0)︸ ︷︷ ︸
0




a′∫
a

�̂Einc · d�l



∣∣∣∣∣∣∣
z = L

+φ̂21(L)




a′∫
a

�̂Einc · d�l



∣∣∣∣∣∣∣
z = 0

(11.43)
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Thus, the simplified total voltage and current sources due to the incident field are

V̂FT(L) =
L∫
0

φ̂11(L − τ)

[
Êinc

z (conductor #1, τ)
−Êinc

z (reference conductor, τ)

]
dτ

−




a′∫
a

�̂Einc · d�l



∣∣∣∣∣∣∣
z = L

+ φ̂11(L)




a′∫
a

�̂Einc · d�l



∣∣∣∣∣∣∣
z = 0

(11.44a)

and

ÎFT(L) =
L∫
0

φ̂21(L − τ)

[
Êinc

z (conductor #1, τ)
−Êinc

z (reference conductor, τ)

]
dτ

+ φ̂21(L)




a′∫
a

�̂Einc · d�l



∣∣∣∣∣∣∣
z = 0

(11.44b)

The corresponding simplified results for V̂ ′
FT(L) and Î ′

FT(L) given in (11.37) are
similarly derived as

V̂ ′
FT(L) =

L∫
0

φ̂11(τ)

[
Êinc

z (conductor #1, τ)
−Êinc

z (reference conductor, τ)

]
dτ

+




a′∫
a

�̂Einc · d�l



∣∣∣∣∣∣∣
z=0

− φ̂11(L)




a′∫
a

�̂Einc · d�l



∣∣∣∣∣∣∣
z=L

(11.45a)

and

Î ′
FT(L) = −

L∫
0

φ̂21(τ)

[
Êinc

z (conductor #1, τ)
−Êinc

z (reference conductor, τ)

]
dτ

+φ̂21(L)




a′∫
a

�̂Einc · d�l



∣∣∣∣∣∣∣
z=L

(11.45b)

11.2.3 Incorporating the Line Terminations

Now that the general solution of the phasor transmission-line equations has been
obtained, we will complete the remaining task in the solution: incorporating the line
terminations into that general solution. In Chapter 7, we obtained that solution wherein
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the sources were in the termination networks and were written in terms of a generalized
Thevenin equivalent representation that specializes for a two-conductor line to

V̂ (0) = V̂S − ẐSÎ(0) (7.87a)

V̂ (L) = V̂L + ẐLÎ(L) (7.87b)

Substituting these into the chain-parameter matrix representation without incident
field illumination gave the final solution in (7.92) that specializes for a two-conductor
line to[

φ̂ 12 − φ̂ 11ẐS − ẐLφ̂ 22 + ẐLφ̂ 21ẐS
]
Î(0) = V̂L − [

φ̂ 11 − ẐLφ̂ 21
]
V̂S (7.92a)

and

Î(L) = φ̂ 21V̂S + [
φ̂ 22 − φ̂ 21ẐS

]
Î(0) (7.92b)

Once (7.92a) is solved for the current at z = 0, (7.92b) can be solved for the current
at z = L. Then the voltages can be obtained from the terminal relations in (7.87).

We now incorporate the incident field excitation of the line into the above solution
where the excitation was only from lumped sources in the termination networks.
This final step is very simple for incident field illumination because we can write
the general solution in (11.32), by moving the total sources due to the incident field,
V̂FT(L) and ÎFT(L), to the left-hand side, to give[

V̂ ′(L) = [
V̂ (L) − V̂FT(L)

]
Î ′(L) = [

Î(L) − ÎFT(L)
] ] = �̂(L)

[
V̂ (0)
Î(0)

]
(11.46)

Hence, the chain-parameter matrix relates the voltage and current at z = 0 to the primed
variables at z = L, V̂ ′(L) = [

V̂ (L) − V̂FT(L)
]

and Î ′(L) = [
Î(L) − ÎFT(L)

]
, as

shown in Figure 11.4(a). Figure 11.4(a) shows that we may make the substitutions
V̂ (L) = [

V̂ ′(L) + V̂FT(L)
]

and Î(L) = [
Î ′(L) + ÎFT(L)

]
in the terminal rela-

tions in (7.87) to give

V̂ (0) = V̂S − ẐSÎ(0) (11.47a)

[
V̂ ′(L) + V̂FT(L)

] = V̂L + ẐL
[
Î ′(L) + ÎFT(L)

]
(11.47b)

or

V̂ (0) = V̂S − ẐSÎ(0) (11.47a)

V̂ ′(L) = [
V̂L − V̂FT(L) + ẐLÎFT(L)

]+ ẐLÎ ′(L) (11.47b)
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Comparing (11.47) to (7.87) shows that we can modify (7.92) for incident field exci-
tation by simply replacing V̂L with

[
V̂L − V̂FT(L) + ẐL ÎFT(L)

]
and replacing Î(L)

with Î ′(L) = [
Î(L) − ÎFT(L)

]
. Hence, the final solution is

[
ẐSφ̂ 11 + ẐLφ̂ 22 − φ̂ 12 − ẐSẐLφ̂ 21

]
Î(0) = [

φ̂ 11 − ẐLφ̂ 21
]
V̂S − V̂L︸ ︷︷ ︸

due to lumped sources

+ [
V̂FT(L) − ẐL ÎFT(L)

]︸ ︷︷ ︸
due to incident field

(11.48a)

Î(L) = ÎFT(L) + φ̂ 21V̂S + [
φ̂22 − ẐSφ̂ 21

]
Î(0) (11.48b)

These results can also be derived directly by substituting the terminal constraints,
V̂ (0) = V̂S − ẐSÎ(0) and V̂ (L) = V̂L + ẐSÎ(L), into (11.32).

Without any loss of generality, we will place the reference conductor at the origin
of a rectangular coordinate system, x = 0 and y = 0, and place the other conductor on
the x axis at x = d as shown in Figure 11.5. Hence, the two conductors are separated
by a distance d. The chain parameters for a two-conductor line become, for the most
general case of a lossy line,

φ̂22(L) = cosh(γ̂L) (11.49a)

φ̂12(L) = −sinh(γ̂L) ẐC (11.49b)

φ̂21(L) = −sinh(γ̂L) Ẑ−1
C (11.49c)

FIGURE 11.5 Orientation of the two-conductor line in the x–z plane for y = 0.
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φ̂22(L) = cosh(γ̂L) (11.49d)

where the characteristic impedance is

ẐC =
√

r + jω l

g + jω c
(11.50)

and the propagation constant is

γ̂ =
√

(r + jω l) (g + jω c) (11.51)

Since the terminations are implicitly assumed to be linear, we will omit any lumped
sources in them, that is, V̂S = V̂L = 0. The contributions to the terminal currents due
to these lumped sources in the termination networks can be obtained with the results
of Chapter 6 by superposition.

The total forcing functions due to the incident field given in (11.44) reduce
to (y = 0)

V̂FT(L) =
L∫
0

cosh(γ̂(L − τ))
[
Êinc

z (x = d, z = τ) − Êinc
z (x = 0, z = τ)

]
dτ

−

 d∫

0

Êinc
x (x, z = L) dx


+ cosh(γ̂ L)


 d∫

0

Êinc
x (x, z = 0) dx




(11.52a)

and

ÎFT(L) = −
L∫
0

sinh(γ̂(L − τ)) Ẑ−1
C

[
Êinc

z (x = d, z = τ) − Êinc
z (x = 0, z = τ)

]
dτ

−sinh(γ̂ L) Ẑ−1
C


 d∫

0

Êi
x(x, z = 0) dx


 (11.52b)

The solution for the terminal current at the source end, z = 0, for the Thevenin equiva-
lent representation of the terminations given in (11.48a) reduces to (for V̂S = V̂L = 0)

Î(0) = V̂FT(L) − ẐL ÎFT(L)

D̂

= 1

D̂

L∫
0

[
cosh(γ̂(L − τ)) + sinh(γ̂(L − τ))

ẐL

ẐC

]

×
[
Êinc

z (x = d, z = τ) − Êinc
z (x = 0, z = τ)

]
dτ
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− 1

D̂


 d∫

0

Êinc
x (x, z = L) dx




+ 1

D̂

[
cosh(γ̂ L) + sinh(γ̂ L)

ẐL

ẐC

]  d∫
0

Êinc
x (x, z = 0) dx




(11.53a)

The corresponding expression for the current at z = L can be obtained by substitut-
ing the terminal constraints, V̂ (0) = V̂S − ẐSÎ(0) and V̂ (L) = V̂L + ẐSÎ(L), into
(11.34). This gives, in terms of the simplified sources V̂ ′

FT(L) and Î ′
FT(L) in (11.45)

and for V̂S = V̂L = 0,

Î(L) = V̂ ′
FT(L) + ẐSÎ ′

FT(L)

D̂

= 1

D̂

L∫
0

[
cosh(γ̂ τ) + sinh(γ̂ τ)

ẐS

ẐC

]

×
[
Êinc

z (x = d, z = τ) − Êi
z(x = 0, z = τ)

]
dτ

− 1

D̂

[
cosh(γ̂ L) + sinh(γ̂ L)

ẐS

ẐC

]  d∫
0

Êi
x(x, z = L) dx




+ 1

D̂


 d∫

0

Êi
x(x, z = 0) dx


 (11.53b)

The denominator in both expressions, D̂, is

D̂ = cosh(γ̂ L)
(
ẐS + ẐL

)+ sinh(γ̂ L)

(
ẐC + ẐSẐL

ẐC

)
(11.53c)

These results agree with those obtained by Smith [2,5]. Once the terminal currents are
obtained from (11.53), the terminal voltages can be obtained from V̂ (0) = −ẐSÎ(0)
and V̂ (L) = ẐLÎ(L). These results can be specialized to lossless lines by replac-
ing cosh (γ̂ L) ⇒ cos (β L ), sinh (γ̂ L) ⇒ j sin (β L), ẐC ⇒ ZC = √

l/c, and
β = ω

√
lc.

11.2.4 Uniform Plane-Wave Excitation of the Line

A significant set of problems to which these results apply is the case of illumination of
the line by a uniform plane wave from some distant source [A.1]. The radiated fields
in the far field of a radiating structure are spherical waves that resemble, locally,
uniform plane waves. This assumption also simplifies the evaluation of the sources
in the above results.
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FIGURE 11.6 Definitions of the parameters characterizing the incident field as a uniform
plane wave.

In order to characterize the frequency-domain response of the line, let us describe
the incident uniform plane-wave angle of incidence and polarization with respect
to a spherical coordinate system as illustrated in Figure 11.6. The propagation vec-
tor of the wave is incident on the origin of the coordinate system (the phase ref-
erence for the wave) at angles θp from the x axis and φp from the projection onto
the y–z plane from the y axis as shown in Figure 11.6(a). The polarization of the
electric field vector is described in terms of the relation to the unit vectors in the
spherical coordinate system, �aθ and �aφ, as illustrated in Figure 11.6(b). In terms of
these, the general expression for the phasor electric field vector can be written as
[A.1]

�̂Einc = Êo
[
ex �ax + ey �ay + ez �az

]
e−jβxx e−jβyy e−jβzz (11.54)

where the components of the incident electric field vector along the x, y, and z axes
of the rectangular coordinate system describing the transmission line are [A.1]

ex = sin θE sin θp
ey = − sin θE cos θp cos φp − cos θE sin φp
ez = − sin θE cos θp sin φp + cos θE cos φp

(11.55a)
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and

e2
x + e2

y + e2
z = 1 (11.55b)

The components of the phase constant along those coordinate axes are

βx = −β cos θp
βy = −β sin θp cos φp
βz = −β sin θp sin φp

(11.56)

The phase constant is related to the frequency and properties of the medium as

β = ω
√

µε

= ω

v0

√
µrεr (11.57)

where v0 = 1/
√

µ0ε0 is the phase velocity in free space and the medium is character-
ized by ε = εrε0 and µ = µrµ0. Ordinarily, the medium in which the incident wave
is propagating is free space with εr = 1 and µr = 1. Êo is the complex amplitude of
the sinusoidal wave. Although not needed, the magnetic field intensity vector of the
incident wave is related to the electric field intensity vector by

�̂H inc = 1

η
�aβ × �̂Einc

(11.58)

where �aβ is a unit vector in the direction of propagation. This gives

�̂H inc = 1

η
Êo
[
hx �ax + hy �ay + hz �az

]
e−jβxx e−jβyy e−jβzz (11.59)

where the components of the incident magnetic field vector along the x, y, and z axes
of the rectangular coordinate system describing the line are [A.1 ]

hx = − cos θE sin θp
hy = cos θE cos θp cos φp − sin θE sin φp
hz = cos θE cos θp sin φp + sin θE cos φp

(11.60a)

and again

h2
x + h2

y + h2
z = 1 (11.60b)

The intrinsic impedance is

η =
√

µ

ε
= 120π

√
µr

εr
(11.61)

and η0 = √
µ0/ε0 = 120π ∼= 377 � is the intrinsic impedance of free space.
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The phasor sources due to the incident uniform plane wave in (11.53) can be easily
evaluated in terms of the above results. The transverse or x electric field components
in the plane of the conductors become, from (11.54) (y = 0),

�̂Einc

T = Êoexe
−jβxxe−jβzz�ax (11.62)

Hence, the contribution from this component becomes

a′∫
a

�̂Einc

T · d�l =
d∫

x=0

Êoexe
−jβxxe−jβzzdx

= Êoexe
−jβzz

(
e−jβxd − 1

)
−jβx

= jÊo
d

2
exe

−jβzze
−jβx

d

2


e

−jβx

d

2 − e
jβx

d

2




βx

d

2

= Êod ex e−jβzz e
−jβx

d

2




sin

(
βx

d

2

)
βx

d

2


 (11.63)

Similarly, the contributions from the longitudinal electric field components become

Êinc
z (x = d, z) − Êinc

z (x = 0, z) = Êoeze
−jβzz

(
e−jβxd − 1

)

= Êoezβx

d

2
e−jβzze

−jβx

d

2


e

−jβx

d

2 − e
jβx

d

2




βx

d

2

= −jβx Êod eze
−jβzze

−jβx

d

2




sin

(
βx

d

2

)
βx

d

2


 (11.64)

Therefore, the solutions for the terminal currents given in (11.53) become, for uniform
plane-wave excitation,
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Î(0) = dÊo

D̂
e−jβxd/2




sin

(
βxd

2

)
βxd

2




−jβx ez

L∫
0

×
[

cosh(γ̂(L − τ)) + sinh(γ̂(L − τ))
ẐL

ẐC

]
e−jβzτdτ

+ ex

[
cosh(γ̂ L) + sinh(γ̂ L)

ẐL

ẐC
−e−jβzL

]
 (11.65a)

and

Î(L) = dÊo

D̂
e−jβxd/2




sin

(
βxd

2

)
βxd

2




−jβx ez

L∫
0

×
[

cosh(γ̂τ) + sinh(γ̂τ)
ẐS

ẐC

]
e−jβzτdτ

+ ex

[
1 −

(
cosh(γ̂ L) + sinh(γ̂ L)

ẐS

ẐC

)
e−jβzL

]
 (11.65b)

where, again,

D̂ = cosh(γ̂ L)
(
ẐS + ẐL

)+ sinh(γ̂ L)

(
ẐC + ẐSẐL

ẐC

)
(11.65c)

11.2.4.1 Special Cases The above results, although exact and general for uniform
plane-wave excitation of two-conductor lines, are somewhat complicated. In this
section, we will specialize those results to three special cases. These are illustrated in
Figure 11.7.

The first case, illustrated in Figure 11.7(a), is referred to as Endfire excitation and
has θp = 90◦, φp = −90◦, and θE = 90◦. Thus, the wave is propagating in the +z
direction with the electric field polarized in the +x direction. For this incidence and
polarization,

ex = 1
ey = 0
ez = 0 (11.66a)
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FIGURE 11.7 Three important cases of wave incidence: (a) Endfire, (b) Sidefire, and (c)
Broadside.

and the components of the phase constant along those coordinate axes are

βx = 0
βy = 0
βz = β (11.66b)

as expected. The complete expression for the electric field vector is, from (11.54),

�̂Einc = Êo e−jβ z �ax (11.67)

Substituting these into (11.65) and evaluating gives

Î(0) = dÊo

D̂

[
cosh(γ̂ L) + sinh(γ̂ L)

ẐL

ẐC
− cos(β L) + j sin(β L)

]
(11.68a)
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Î(L) = dÊo

D̂

[
1 −

(
cosh(γ̂ L) + sinh(γ̂ L)

ẐS

ẐC

)
(cos(β L) − j sin(β L))

]
(11.68b)

and D̂ is given for this lossy case in (11.65c). For the case of a lossless line,

γ̂ = jβ (11.69a)

ZC =
√

l

c
(11.69b)

and the results in (11.68) simplify to

Î(0) = j
dÊo

D̂
sin(β L)

(
1 + ẐL

ZC

)
(11.70a)

Î(L) = dÊo

2D̂

(
1 − ẐS

ZC

)[
1 − cos(2β L) + j sin(2β L)

]
(11.70b)

and D̂ becomes, from (11.65c), for a lossless line

D̂ = cos(β L)
(
ẐS + ẐL

)+ j sin(β L)

(
ZC + ẐSẐL

ZC

)
(11.70c)

The next case, illustrated in Figure 11.7(b), is referred to as Sidefire excitation
and has θp = 180◦, φp = 0◦, and θE = 0◦. Thus, the wave is propagating in the +x
direction with the electric field polarized in the +z direction. For this incidence and
polarization,

ex = 0
ey = 0
ez = 1

(11.71a)

and the components of the phase constant along those coordinate axes are

βx = β

βy = 0
βz = 0

(11.71b)

as expected. The complete expression for the electric field vector is, from (11.54),

�̂Einc = Êo e−jβ x �az (11.72)
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Substituting these into (11.65) and evaluating gives

Î(0) = −j2
Êo

γ̂D̂
e−jβ d/2 sin

(
β d

2

) (
ẐL

ẐC
(cosh(γ̂ L) − 1) + sinh(γ̂ L)

)
(11.73a)

Î(L) = −j2
Êo

γ̂D̂
e−jβ d/2 sin

(
β d

2

) [
sinh(γ̂L) + (cosh(γ̂L) − 1)

ẐS

ẐC

]
(11.73b)

and D̂ is given for this lossy case in (11.65c). For the case of a lossless line, these
simplify to

Î(0) = − Êo

D̂
d e−jβ d/2


 sin

(
β d
2

)
β d
2


 (

ẐL

ZC
(cos(β L) − 1) + j sin(β L)

)
(11.74a)

Î(L) = − Êo

D̂
d e−jβ d/2


 sin

(
βd
2

)
β d
2


 [

j sin(βL) + (cos(βL) − 1)
ẐS

ZC

]
(11.74b)

where D̂ for the lossless case is given by (11.70c).
The final case, illustrated in Figure 11.7(c), is referred to as Broadside excitation

and has θp = 90◦, φp = 0◦, and θE = 90◦. Thus, the wave is propagating in the −y
direction with the electric field polarized in the +x direction. For this incidence and
polarization,

ex = 1
ey = 0
ez = 0

(11.75a)

and the components of the phase constant along those coordinate axes are

βx = 0
βy = −β

βz = 0
(11.75b)

as expected. The complete expression for the electric field vector is, from (11.54)
(y = 0),

�̂Einc = Êo e jβ y �ax = Êo �ax (11.76)

Substituting these into (11.65) along with y = 0 and evaluating gives

Î(0) = dÊo

D̂

(
cosh(γ̂ L) − 1 + sinh(γ̂ L)

ẐL

ẐC

)
(11.77a)
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Î(L) = dÊo

D̂

[
1 − cosh(γ̂L) − sinh(γ̂L)

ẐS

ẐC

]
(11.77b)

and D̂ is given for this lossy case in (11.65c). For the case of a lossless line, these
simplify to

Î(0) = dÊo

D̂

(
cos(β L) − 1 + j sin(β L)

ẐL

ZC

)
(11.78a)

Î(L) = dÊo

D̂

[
1 − cos(βL) − j sin(βL)

ẐS

ZC

]
(11.78b)

where D̂ for the lossless case is given by (11.70c).

11.2.4.2 One Conductor Above a Ground Plane As a final application of the results
for uniform plane-wave illumination of a two-conductor line, we consider the case
of one conductor at a height h above an infinite, perfectly conducting ground plane
as illustrated in Figure 11.8(a). This problem can be replaced with an equivalent
problem by replacing the ground plane with images as illustrated in Figure 11.8(b).
The image field can be viewed as the wave reflected by the ground plane, and the
total incident field is the sum of the original field and the image or reflected field.
Snell’s law provides that the angle of incidence and the angle of reflection are equal
[A.1,H.4]. Thus, the fields can be written as

�̂Einc = Êo

[
einc
x �ax + einc

y �ay + einc
z �az

]
e−jβxx e−jβyy e−jβzz (11.79a)

�̂Eref = Êo

[
eref
x �ax + eref

y �ay + eref
z �az

]
e jβxx e−jβyy e−jβzz (11.79b)

At the position of the ground plane, x = 0, the boundary conditions on the electric
field require that

eref
z = −einc

z ≡ − ez (11.80a)

eref
y = −einc

y ≡ − ey (11.80b)

eref
x = einc

x ≡ ex (11.80c)

Thus, the components of total field (incident plus reflected) can be written as (the y
component is not needed)

Êtotal
z = Êinc

z + Êref
z = −j2Êo ez sin (βx x) e−jβyy e−jβzz (11.81a)

Êtotal
x = Êinc

x + Êref
x = 2Êo ex cos (βx x) e−jβyy e−jβzz (11.81b)
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FIGURE 11.8 Replacement of a ground plane with images for incident field illumination.

Equations (11.53) become (y = 0)

Î(0) = 2h
Êo

D̂

sin (βxh)

βxh


−jβx ez

L∫
0

[
cosh(γ̂(L − τ)) + sinh(γ̂(L − τ))

ẐL

ẐC

]

× e−jβzτdτ + ex

[
cosh(γ̂ L) + sinh(γ̂ L)

ẐL

ẐC
− e−jβzL

]
 (11.82a)

Î(L) = 2h
Êo

D̂

sin (βxh)

βxh


−jβx ez

L∫
0

[
cosh(γ̂ τ) + sinh(γ̂ τ)

ẐS

ẐC

]

× e−jβzτdτ + ex

[
1 −

(
cosh(γ̂ L) + sinh(γ̂ L)

ẐS

ẐC

)
e−jβzL

]


(11.82b)



608 INCIDENT FIELD EXCITATION OF TWO-CONDUCTOR LINES

Comparing (11.82) to (11.65), we see that the results for the case of a ground plane
can be obtained from the case without a ground plane by (1) removing the factor
e−jβxd/2 and (2) replacing d with 2h: d ⇔ 2h. Of course, the characteristic impedance
ẐC in these expressions must be that of one conductor above a ground plane. In the
case of a lossless line, the characteristic impedance is real and is one half the ZC
of two conductors that are separated by twice the height above ground (the image
problem).

Again, if we restrict our consideration to the special cases shown in Figure 11.7,
the results simplify. For the Endfire excitation, θp = 90◦, φp = −90◦, and θE = 90◦.
For this case, we obtain ex = 1, βz = β, and all others zero. The total field vector
components become

Êtotal
z = 0 (11.83a)

Êtotal
x = 2 Êo e−jβ z (11.83b)

This compares to the results without the ground plane given in (11.67):

Êz = 0 (11.84a)

Êx = Êo e−jβ z (11.84b)

Therefore, we double (11.68) (replacing d = 2h), which gives

Î(0) = 2hÊo

D̂

[
cosh(γ̂ L) + sinh(γ̂ L)

ẐL

ẐC
− cos(β L) + j sin(β L)

]
(11.85a)

Î(L) = 2hÊo

D̂

[
1 −

(
cosh(γ̂ L) + sinh(γ̂ L)

ẐS

ẐC

)(
cos(β L) − j sin(β L)

)]
(11.85b)

and D̂ is given for this lossy case in (11.65c). For a lossless line, these simplify to

Î(0) = j
2hÊo

D̂
sin(β L)

(
1 + ẐL

ZC

)
(11.86a)

Î(L) = hÊo

D̂

(
1 − ẐS

ZC

)[
1 − cos(2β L) + j sin(2β L)

]
(11.86b)

where D̂ for the lossless case is given in (11.70c).
For the Sidefire excitation (propagating from above the ground plane in the −x

direction), θp = 0◦, φp = 0◦ and θE = 0◦. For this case, we obtain ez = 1, βx = −β,
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and all others zero. The total field vector components become

Êtotal
z = j2Êo sin(β x) (11.87a)

Êtotal
x = 0 (11.87b)

This compares to the results without the ground plane given in (11.72):

Êz = Êo e−jβ x (11.88a)

Êx = 0 (11.88b)

Substituting (11.88) into (11.82) gives

Î(0) = j2h β
Êo

γ̂ D̂

sin(β h)

β h

(
ẐL

ẐC
(cosh(γ̂ L) − 1) + sinh(γ̂ L)

)
(11.89a)

Î(L) = j2h β
Êo

γ̂ D̂

sin(β h)

β h

[
sinh(γ̂ L) + (cosh(γ̂ L) − 1)

ẐS

ẐC

]
(11.89b)

and D̂ is given for this lossy case in (11.65c). For a lossless line, these simplify to

Î(0) = 2h
Êo

D̂

sin(β h)

β h

(
ẐL

ZC
(cos(β L) − 1) + j sin(β L)

)
(11.90a)

Î(L) = 2h
Êo

D̂

sin(β h)

β h

[
j sin(β L) + (cos(β L) − 1)

ẐS

ZC

]
(11.90b)

where D̂ for the lossless case is given in (11.70c).
For the Broadside excitation, θp = 90◦, φp = 0◦, and θE = 90◦. For this case,

we obtain ex = 1, βy = −β, and all others zero. The total field vector components
become

Êtotal
z = 0 (11.91a)

Êtotal
x = 2Êo (11.91b)

This compares to the results without the ground plane given in (11.76):

Êz = 0 (11.92a)
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Êx = Êo (11.92b)

Therefore, we simply double the results in (11.77) and (11.78) and replace d = 2h to
give

Î(0) = 2h Êo

D̂

(
cosh(γ̂ L) − 1 + sinh(γ̂ L)

ẐL

ẐC

)
(11.93a)

Î(L) = 2h Êo

D̂

[
1 − cosh(γ̂ L) − sinh(γ̂ L)

ẐS

ẐC

]
(11.93b)

and D̂ is given for this lossy case in (11.65c). For a lossless line,

Î(0) = 2h Êo

D̂

(
cos(β L) − 1 + j sin(β L)

ẐL

ZC

)
(11.94a)

Î(L) = 2h Êo

D̂

[
1 − cos(β L) − j sin(β L)

ẐS

ZC

]
(11.94b)

where D̂ for the lossless case is given in (11.70c).

11.2.5 Comparison with Predictions of Method of Moments Codes

First we consider a lossless two-wire transmission line with uniform plane-wave
excitation [H.7]. The wires have radii of 0.1 mm (0.0001 m), separations of 1 cm, and
total length of 1 m. The terminations at each end are identical resistors, ẐS = ẐL = R,
with three sets of values: R = 552 � (matched loads), R = 50 � (low-impedance
loads), and R = 10 k� (high-impedance loads). Three polarizations of the incident
uniform plane wave are illustrated in Figure 11.7. The Endfire case has the wave
propagating along the line (z) axis with the electric field vector lying in the plane

of the line and polarized in the x directions: �̂Einc = 1e−jβ z �ax. The Sidefire case
has the uniform plane wave propagating in the plane of the wires in the x direction
perpendicular to them with the electric field vector polarized parallel to the wires in

the z direction, �̂Einc = 1e−jβ x �az. The Broadside case has the uniform plane wave
propagating perpendicular to the plane of the line in the −y direction with the electric

field vector polarized in the plane of the wires in the x direction, �̂Einc = 1e jβ y �ax.
Results for only certain polarizations, angles of incidence, and termination impedance
values will be shown here. The reader is referred to [H.7] for more extensive numerical
comparisons.

The numerical code used to give the baseline results is a method of moments
(MoM) code developed at Ohio State University by J.H. Richmond [11,12]. It will
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be referred to as OSMOM and uses piecewise sinusoidal expansion functions and a
Galerkin technique. These features give this code exceptional accuracy. It is important
to point out that the MoM method is a direct implementation of Maxwell’s equations
and, within numerical error, should provide “exact” solutions to compare with the
transmission-line model predictions. Figure 11.9 shows the results for the Endfire
case and low-impedance loads (R = 50 �). Observe that the line is one wavelength
long at 300 MHz, so we should expect to see nulls in the frequency response at
multiples of 150 MHz. Figure 11.9(a) shows the magnitude of the frequency response,
whereas Figure 11.9(b) shows the phase. Excellent correlation with the MoM results
(OSMOM) is observed. Figure 11.10 shows the results for the Sidefire excitation
and matched loads (R = 552 �), whereas Figure 11.11 shows the results for the
Broadside excitation and high-impedance loads (R = 10 k�). Excellent predictions
of the transmission-line model are obtained for these orientations of the incident wave.

11.3 THE TIME-DOMAIN SOLUTION

In this last part of this chapter, we will extend the previous frequency-domain results
to the time domain. In addition, we will develop a SPICE model for a lossless line and
will also develop the finite-difference, time-domain (FDTD) solution method also for
a lossless line.

11.3.1 The Laplace Transform Solution

In this section, we will transform the previous frequency-domain results using the
Laplace transform and then inverse transform them to give the time-domain solution
for a lossless line. The frequency-domain chain-parameter matrix relates the phasor
voltage and current at one end of the line to the voltage and current at the other end
as [

V̂ (L)
Î(L)

]
= �̂(L)

[
V̂ (0)
Î(0)

]
+
[

V̂FT(L)
ÎFT(L)

]
(11.95a)

where the chain-parameter matrix is

�̂(L) =
[

φ̂11(L) φ̂12(L)
φ̂21(L) φ̂22(L)

]
(11.95b)

The entries in the chain-parameter matrix for a lossless line are

φ̂11(L) = cos(βL)

= e jβL + e−jβL

2
(11.96a)
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FIGURE 11.9 Comparison of the predictions of the transmission-line model and the method
of moments for a two-wire line for Endfire illumination: (a) magnitude and (b) phase.
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FIGURE 11.10 Comparison of the predictions of the transmission-line model and the method
of moments for a two-wire line for Sidefire illumination: (a) magnitude and (b) phase.
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FIGURE 11.11 Comparison of the predictions of the transmission-line model and the method
of moments for a two-wire line for Broadside illumination: (a) magnitude and (b) phase.
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φ̂12(L) = −jZCsin(βL)

= −ZC

ejβL − e−jβL

2
(11.96b)

φ̂21(L) = −j
1

ZC
sin(βL)

= − 1

ZC

e jβL − e−jβL

2
(11.96c)

φ̂22(L) = cos(βL)

= e jβL + e−jβL

2
(11.96d)

The phase constant is

β = ω
√

lc (11.97)

the velocity of propagation is

v = ω

β

= 1√
lc

(11.98)

and the characteristic impedance is

ZC =
√

l

c
(11.99)

We can obtain the Laplace transform of these results by replacing jω ⇔ s, where
s is the Laplace transform variable. In the course of doing so, we replace in the
frequency-domain results above

e± jβ L ⇔ e±sTD (11.100)

where the one-way time delay of the line is

TD = L

v

= β

ω
L (11.101)

Hence, we replace

jβ L = jω TD ⇔ sTD (11.102)
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The frequency-domain chain-parameter relations in (11.95) are Laplace transformed
as

V̂ (L, s) =
(

esTD + e−sTD

2

)
V̂ (0, s) − ZC

(
esTD − e−sTD

2

)
Î(0, s) + V̂FT(L, s)

(11.103a)

ZCÎ(L, s) = −
(

esTD − e−sTD

2

)
V̂ (0, s) + ZC

(
esTD + e−sTD

2

)
Î(0, s)

+ZCÎFT(L, s) (11.103b)

where V̂ (L, s), Î (L, s), V̂ (0, s), Î (0, s), V̂FT(L, s), and ÎFT(L, s) denote the
Laplace-transformed variables. We have multiplied the second equation by ZC for rea-
sons that will soon become apparent. Adding and subtracting (11.103a) and (11.103b)
yields

V̂ (L, s) − ZCÎ(L, s) = esTD
[
V̂ (0, s) − ZCÎ(0, s)

]+ [
V̂FT(L, s) − ZCÎFT(L, s)

]
(11.104a)

V̂ (L, s) + ZCÎ(L, s) = e−sTD
[
V̂ (0, s) + ZCÎ(0, s)

]+ [
V̂FT(L, s) + ZCÎFT(L, s)

]
(11.104b)

Multiplying (11.104a) by e−sTD and rearranging yields

V̂ (0, s) − ZCÎ(0, s) = e−sTD
[
V̂ (L, s) − ZCÎ(L, s)

]− e−sTD V̂− (s) (11.105a)

V̂ (L, s) + ZCÎ(L, s) = e−sTD
[
V̂ (0, s) + ZCÎ(0, s)

]+ V̂+ (s) (11.105b)

and we have written (11.105) in terms of the incident field sources as

V̂+ (s) = V̂FT(L, s) + ZCÎFT(L, s) (11.106a)

V̂− (s) = V̂FT(L, s) − ZCÎFT(L, s) (11.106b)

We will find in the remaining results that the incident field sources, V̂FT(L, s) and
ÎFT(L, s), always occur in combination as in (11.106) rather than individually.

We can derive an explicit Laplace transform solution for the terminal voltages by
incorporating the terminal constraints:

V̂ (0, s) = −RSÎ (0, s) (11.107a)

V̂ (L, s) = RLÎ (L, s) (11.107b)
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We have assumed resistive loads to make a literal solution feasible, but a later SPICE
model will allow dynamic and/or nonlinear loads. Substituting these terminal con-
straints into (11.105) yields the terminal voltages as

V̂ (0, s) = e−sTD �LV̂+ (s) − e−sTD V̂− (s)[
1 − �S�L e−2sTD

] RS

RS + ZC
(11.108a)

V̂ (L, s) = V̂+ (s) − e−2sTD�S V̂− (s)[
1 − �S�L e−2sTD

] RL

RL + ZC
(11.108b)

where the reflection coefficients are given by

�S = RS − ZC

RS + ZC
(11.109a)

�L = RL − ZC

RL + ZC
(11.109b)

The transformed equivalent sources V̂+ (s) and V̂− (s) are obtained from the
frequency-domain results in (11.52) by substituting, for a lossless line,

cosh (γ̂ L) ⇒ cos (β L ) = e jβ L + e−jβ L

2
⇔ esTD + e−sTD

2
(11.110a)

sinh (γ̂ L) ⇒ j sin (β L ) = e jβ L − e−jβ L

2
⇔ esTD − e−sTD

2
(11.110b)

to yield

V̂+ (s) = V̂FT(L, s) + ZCÎFT(L, s) = e−sTD

L∫
0

esτ/v

×
[
Êinc

z (x = d, z = τ, s) − Êinc
z (x = 0, z = τ, s)

]
dτ + e−sTD

×

 d∫

0

Êinc
x (x, z = 0, s)dx


−


 d∫

0

Êinc
x (x, z = L, s)dx


 (11.111a)

V̂− (s) = V̂FT(L, s) − ZCÎFT(L, s) = esTD

L∫
0

e−sτ/v

×
[
Êinc

z (x = d, z = τ, s) − Êinc
z (x = 0, z = τ, s)

]
dτ + esTD

×

 d∫

0

Êinc
x (x, z = 0, s)dx


−


 d∫

0

Êinc
x (x, z = L, s)dx


(11.111b)
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We now return to the time domain using the fundamental Laplace transform result
[A.2]

e±sTD F̂ (s) ⇔ f (t ± TD) (11.112)

The time-domain solution is obtained from the Laplace-transformed result in (11.108)
by recognizing the basic result given in (11.112) as

V (0, t) − �S�L V (0, t − 2TD) = [
�LV+ (t − TD) − V− (t − TD)

] RS

RS + ZC

(11.113a)

V (L, t) − �S�L V (L, t − 2TD) = [
V+ (t) − �SV− (t − 2TD)

] RL

RL + ZC

(11.113b)

The time forms of the equivalent incident field sources in (11.111), V+ (t) and V− (t),
are

V+ (t) = VFT(L, t) + ZCIFT(L, t) =
L∫
0

[
Einc

z

(
x = d, z = τ, t − TD+τ

v

)

−Einc
z

(
x = 0, z = τ, t − TD+τ

v

)]
dτ +


 d∫

0

Einc
x (x, z = 0, t − TD)dx




−

 d∫

0

Einc
x (x, z = L, t)dx


 (11.114a)

V− (t) = VFT(L, t) − ZCIFT(L, t) =
L∫
0

[
Einc

z

(
x = d, z = τ, t + TD − τ

v

)

−Einc
z

(
x = 0, z = τ, t + TD − τ

v

)]
dτ +


 d∫

0

Einc
x (x, z = 0, t + TD)dx




−

 d∫

0

Einc
x (x, z = L, t)dx


 (11.114b)

The results in (11.113) are implicit relations in that the value of a solution variable,
V (0, t) or V (L, t), depends on the value two one-way line delays earlier, V (0, t − 2T )
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or V (L, t − 2T ). An explicit solution can be obtained with the time-shift or difference
operator D, as was done in Chapter 8:

D±k f (t) = f (t ± kTD) (11.115)

Thus, the results in (11.108) become

V (0, t) = �L D V+ (t) − DV− (t)[
D2 − α

] RS

RS + ZC
(11.116a)

V (L, t) = D2V+ (t) − �S V− (t)[
D2 − α

] RL

RL + ZC
(11.116b)

where

α = �S�L (11.116c)

Carrying out the long division giving

1

D2 − α
= D−2 + α D−4 + α2 D−6 + · · · (11.117)

and substituting (11.115) gives

V (0, t) = RS

RS + ZC

{
�L

[
V+(t − TD) + α V+(t − 3TD) + α 2V+(t − 5TD) + · · ·

]
−
[
V−(t − TD) + α V−(t − 3TD) + α 2V−(t − 5TD) + · · ·

]}
(11.118a)

V (L, t) = RL

RL + ZC

{[
V+(t) + α V+(t − 2TD) + α 2V+(t − 4TD) + · · ·

]
−�S

[
V−(t − 2TD) + α V−(t − 4TD) + α 2V−(t − 6TD) + · · ·

]}
(11.118b)

Thus, the terminal voltages are weighted sums of the functions produced by the
incident field, V̂FT(L) ⇔ VFT(L, t) and ÎFT(L) ⇔ IFT(L, t), delayed in time by
multiples of the line one-way delay TD. Thus, the basic problem here is again to
determine the frequency-domain to time-domain transformations of the functions
representing the effect of the incident field given in (11.114). If the line is matched at
both ends, �S = �L = 0, the results in (11.118) simplify to

V (0, t) = − RS

RS + ZC
V−(t − TD) (11.119a)

V (L, t) = RL

RL + ZC
V+(t) (11.119b)
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11.3.2 Uniform Plane-Wave Excitation of the Line

Although the above results are valid for any time form of the incident field excitation,
a useful form is that of a uniform plane wave considered earlier. Again consider a two-
conductor line shown in Figure 11.5 with line conductors located in the x–z plane at
x = 0, y = 0 and x = d, y = 0 and extending from z = 0 to z = L. The frequency-
domain forcing functions are given in (11.52). We consider a uniform plane wave
incident on the line as shown in Figure 11.6 whose frequency-domain representation
is, again,

�̂Einc
(x, y, z, ω) = Êo (ω)

[
ex �ax + ey �ay + ez �az

]
e−jβxx e−jβyy e−jβzz (11.120)

where the components of the incident electric field vector along the x, y, and z axes
of the rectangular coordinate system describing the line are given in (11.55). The
components of the phase constant along those coordinate axes are given in (11.56).
In the time domain, (11.120) translates to [A.1]

�Einc
(x, y, z, t) = [

ex �ax + ey �ay + ez �az

]
Eo

(
t − x

vx

− y

vy

− z

vz

)
(11.121)

The time form of the electric field is denoted by Eo(t) where Eo(t) ⇔ Êo(ω), and the
velocities of propagation along the axes are denoted by

vx = ω

βx

= − v

cos θp

vy = ω

βy

= − v

sin θP cos φP

vz = ω

βz

= − v

sin θP sin φP
(11.122)

The frequency-domain forcing functions, given in (11.52) and (11.111), become,
for a lossless line,

V̂+ (ω) = V̂FT(L) + ZCÎFT(L)

= Êo(ω) d

[
sin(βxd/2)

βxd/2

]
e−jβxd/2

{[
ex + ez

(
βx

β − βz

)]

×
[
e−jβ L − e−jβzL

]}
(11.123a)
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FIGURE 11.12 The pulse function representing the effect of propagation in the cross-
sectional plane.

V̂− (ω) = V̂FT(L) − ZCÎFT(L)

= Êo(ω) d

[
sin(βxd/2)

βxd/2

]
e−jβxd/2

{[
ex − ez

(
βx

β + βz

)]

× [
e jβ L − e−jβzL

]}
(11.123b)

The time-domain forms can be obtained by first noting that the term in (11.123) can
be written as

P(ω) =
[

sin(βxd/2)

βxd/2

]

=




sin

(
πf

d

vx

)
πf

d

vx




=
[

sin(πf Tx)

πf Tx

]
(11.124)

where the transit time delay of a wave propagating in the x direction between the two
conductors is

Tx = d

vx

(11.125)

The frequency-domain function P (ω) in (11.124) is equivalent, in the time domain,
to the pulse function shown in Figure 11.12 [A.2,A.3]:

p(t) =




0, t < − Tx

2
1

Tx

, − Tx

2
< t <

Tx

2

0, t >
Tx

2

(11.126)
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Therefore, the frequency-domain forcing functions given in (11.123) transform to the
time domain as a convolution of a time function and the pulse function in (11.126):

V+(t) = d

[
ex + ez

(
L

d

)
Tx

(TD − Tz)

]

×
[
Eo

(
t − TD − Tx

2

)
− Eo

(
t − Tz − Tx

2

)]
∗ p(t) (11.127a)

V−(t) = d

[
ex − ez

(
L

d

)
Tx

(TD + Tz)

]

×
[
Eo

(
t + TD − Tx

2

)
− Eo

(
t − Tz − Tx

2

)]
∗ p(t) (11.127b)

and we denote the convolution as

F (t)∗ p(t) =
∞∫

−∞
F (τ) p(t − τ) dτ (11.128)

The transit time along the line of the z component of the wave propagation vector is

Tz = L

vz

(11.129)

and the time delay of the line is denoted in the usual fashion as

TD = L

v
(11.130)

In order for the transmission-line model to be a valid representation, the line cross
sectional dimensions must be electrically small at the significant frequencies of the in-
cident field waveform Eo(t). The phase velocity of propagation in the cross-sectional
plane given in (11.122) is bounded by v ≤ vx < ∞. Hence, (d/L)TD ≥ Tx ≥ 0. When
the wave has no propagation component in the x direction, θp = ±90◦, then vx = ∞
and Tx = 0 and the function in (11.124) is unity, that is, P (ω)|vx=∞ = 1. At the other
extreme, when θp = 0◦, 180◦ then vx = v and the function in (11.124) is

P (ω) =
sin

(
π

d

λ

)
π

d

λ

.

Again, for the transmission-line model to be a valid representation, the line cross-
sectional dimensions must be electrically small at the significant frequencies of the
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incident field waveform Eo(t). Suppose that the conductor separation d is 1/10 λ at
the highest significant frequency of the incident field waveform, Eo(t). In this case,
1 ≥ P (ω) ≥ 0.984. This is somewhat marginal for the transmission-line model to be
applicable. So, suppose that the conductor separation d is 1/100 λ at the highest signifi-
cant frequency of the incident field waveform Eo(t). In this case, 1 ≥ P (ω) ≥ 0.99984.
Hence, for conditions on the line cross-sectional dimensions where the transmission-
line model is applicable, P (ω) ∼= 1. When the line cross section is sufficiently small,
electrically, over the spectrum of Êo(ω) such that P (ω) ∼= 1, then the pulse function
p(t) approximates an impulse function:

p(t) ∼= δ(t) small Tx (11.131)

For this practical case, the time-domain functions in (11.127) simplify to

V+(t) ∼= d

[
ex + ez

(
L

d

)
Tx

(TD − Tz)

] [
Eo

(
t − TD − Tx

2

)
− Eo

(
t − Tz − Tx

2

)]
(11.132a)

V−(t) ∼= d

[
ex − ez

(
L

d

)
Tx

(TD + Tz)

] [
Eo

(
t + TD − Tx

2

)
− Eo

(
t − Tz − Tx

2

)]
(11.132b)

Observe that all the forcing function Eo (t) terms in (11.132a) and (11.132b) are
delayed by Tx/2. In order to simplify the result, we will omit the terms Tx/2 from
the delays in the incident waveform functions Eo (t) in (11.132). Once we obtain
the solution for the terminal voltage and current waveforms using (11.132) with the
terms Tx/2 removed, we can delay those solutions by Tx/2 to get back to this original
solution. As a practical matter, the cross-sectional time delay Tx/2 will anyway be
very small compared to the time frames of interest in a typical problem. For example,
for a conductor separation of 10 cm and the wave propagating across the cross section,
the time delay is Tx = 0.33 ns.

In the case of a conductor located at a height h above an infinite ground plane as
illustrated in Figure 11.8, the above functions are easily modified. The total incident
electric field (the incident field plus the field reflected from the ground plane) is given
in the frequency domain in (11.81). The frequency-domain forcing functions given
in (11.52) depend on the z and x components of the electric field. Substituting (11.81)
(x = h and y = 0) gives


Êtotal

z (h, z) − Êtotal
z (0, z)︸ ︷︷ ︸

0


 =

[
−j2βxh

sin (βxh)

βxh

]
Êo(ω) ez e−jβz z (11.133)
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This compares to the case with no ground plane given in (11.64):

[
Êi

z(d, z) − Êi
z(0, z)

] =
[
−j2βx

d

2

sin (βxd/2)

βxd/2
e−jβxd/2

]
Êo(ω) ez e−jβz z

(11.134)
Similarly,

h∫
0

Êtotal
x dx = 2h

[
sin (βxh)

βxh

]
Êo(ω) ex e−jβz z (11.135)

This compares to the case with no ground plane given in (11.63):

d∫
0

Êi
xdx = 2

(
d

2

)[
sin (βxd/2)

βxd/2
e−jβxd/2

]
Êo(ω) ex e−jβz z (11.136)

Therefore, to convert the previous frequency-domain results to the case of a ground
plane, we simply remove the factor e−jβxd/2 and replace d/2 ⇔ h in those results.
The frequency-domain forcing functions given in (11.123) become

V̂+ (ω) = V̂FT(L) + ZCÎFT(L)

= 2Êo(ω) h

[
sin(βxh)

βxh

] {[
ex + ez

(
βx

β − βz

)] [
e−jβ L − e−jβzL

]}
(11.137a)

V̂− (ω) = V̂FT(L) − ZCÎFT(L)

= 2Êo(ω) h

[
sin(βxh)

βxh

] {[
ex − ez

(
βx

β + βz

)] [
e jβ L − e−jβzL

]}
(11.137b)

Therefore, the time-domain forcing functions are again given by the convolutions in
(11.127) as

V+(t) = 2h

[
ex + ez

(
L

d

)
Tx

(TD − Tz)

] [
Eo(t − TD) − Eo(t − Tz)

] ∗ p(t)
(11.138a)

V−(t) = 2h

[
ex − ez

(
L

d

)
Tx

(TD + Tz)

] [
Eo(t + TD) − Eo(t − Tz)

] ∗ p(t)
(11.138b)

and we denote

P(ω) =
[

sin(βxh)

βxh

]
⇔ p(t) (11.139)
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Again, assuming that the line cross-sectional dimensions are electrically very small,
we will ignore p(t) and assume

V+(t) ∼= 2h

[
ex + ez

(
L

d

)
Tx

(TD − Tz)

] [
Eo(t − TD) − Eo(t − Tz)

]
(11.140a)

V−(t) ∼= 2h

[
ex − ez

(
L

d

)
Tx

(TD + Tz)

] [
Eo(t + TD) − Eo(t − Tz)

]
(11.140b)

The explicit time-domain series solution given for resistive loads in (11.118) can be
used for this case of a ground plane without change except for the V+ (t) and V− (t)
functions.

11.3.3 A SPICE Equivalent Circuit

In this section, we will describe a simple model for computing the response of a
lossless two-conductor transmission line to an incident uniform plane wave. This will
be extended to the MTL case in the next chapter.

The frequency-domain chain parameters are given in (11.32):

V̂ (L) = φ̂11(L) V̂ (0) + φ̂12(L) Î(0) + V̂FT(L) (11.32a)

Î(L) = φ̂21(L) V̂ (0) + φ̂22(L) Î(0) + ÎFT(L) (11.32b)

Laplace transforming these and adding and subtracting them gives the Laplace trans-
form results in (11.105) as

V̂ (0, s) − ZCÎ(0, s) = e−sTD
[
V̂ (L, s) − ZCÎ(L, s)

]− e−sTD V̂−(s) (11.105a)

V̂ (L, s) + ZCÎ(L, s) = e−sTD
[
V̂ (0, s) + ZCÎ(0, s)

]+ V̂+(s) (11.105b)

Using the Laplace transform property in (11.112),

e±sTD F̂ (s) ⇔ f (t ± TD) (11.112)

these become, in the time domain,

V (0, t) − ZC I(0, t) = [V (L, t − TD) − ZC I(L, t − TD)] − V−(t − TD)
(11.141a)

V (L, t) + ZC I(L, t) = [V (0, t − TD) + ZC I(0, t − TD)] + V+(t) (11.141b)
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where V+ (t) and V− (t) are given in (11.132) as

V−(t − TD) = [VFT(L, t − TD) − ZC IFT(L, t − TD)]

∼= d

[
ex − ez

(
L

vx(Tz + TD)

)] [
Eo(t) − Eo(t − TD − Tz)

]
(11.142a)

V+(t) = [VFT(L, t) + ZC IFT(L, t)]

∼= d

[
ex − ez

(
L

vx (Tz − TD)

)] [
Eo(t − TD) − Eo(t − Tz)

]
(11.142b)

and, as discussed earlier, we have omitted the Tx/2 delay terms from the forcing
functions in (11.132). Once we obtain the solution for the terminal voltage and current
waveforms using (11.142) with the terms Tx/2 removed, we can delay those solutions
by Tx/2 to get back to this original solution. As a practical matter, the cross-sectional
time delay Tx/2 will anyway be very small compared to the time frames of interest
in a typical problem.

Observe that these sources in (11.142) only require that we obtain delayed versions
of Eo(t). This suggests the usual model of an unexcited line containing time-delayed
voltage sources. The problem is that we do not have access to internal nodes of the
usual SPICE transmission model so that we may add the sources in (11.142) in series
with the ones already present according to (11.141). The remedy here is to simply
build the model using ideal delay lines and controlled sources. Such a model is shown
in Figure 11.13. The external terminals of the line are denoted as 101 and 201 with
the 0 node being common. The controlled sources in that model are obtained as V (2),
V (4) and

E0(t) = −d

[
ex − ez

(
L

vx (Tz + TD)

)]
[V (100) − V (6)] (11.143a)

EL(t) = d

[
ex − ez

(
L

vx (Tz − TD)

)]
[V (5) − V (7)] (11.143b)

where the usual SPICE designation for the voltage of node n is denoted as V (n).
The reader can observe that the circuit of Figure 11.13 with the controlled source
parameters given in (11.143) yields Eqs. (11.141) and (11.142) and is therefore
an exact representation. (The cross-sectional time delay terms Tx/2 have been
omitted from the source functions in (11.143).) The characteristic impedances
ZC1, ZC2, ZC3, ZC4, and ZC5 in the five auxiliary delay lines need not equal the char-
acteristic impedances of the original line, ZC, but each line must be appropriately
matched to its chosen characteristic impedance to prevent reflections on that line and
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FIGURE 11.13 The SPICE model representing incident field illumination of a two-conductor
line.

provide for an ideal delay. The velocities of propagation and line lengths (or equiv-
alently the line time delays) must be as shown. Similarly, if the wave is propagating
solely in the z direction, Tz = ±TD, then the ez term in either (11.143a) or (11.143b)
is removed since it also contains vx = ∞. This basic model will be extended to the
MTL case in the next chapter by decoupling the MTL equations.



628 INCIDENT FIELD EXCITATION OF TWO-CONDUCTOR LINES

This SPICE/PSPICE subcircuit model is generated with the FORTRAN program
SPICEINC.FOR described in Appendix A.

11.3.4 The Time-Domain to Frequency-Domain (TDFD) Transformation

This method remains the same as before. First, we determine the Fourier coefficients
of the time-domain source waveform, in this case for uniform plane-wave excitation,
Eo(t). This is done for trapezoidal pulse trains representing digital signal waveforms
within the FORTRAN program TIMEFREQ.FOR. Note that a uniform plane wave
having a trapezoidal pulse train waveform is not a realistic waveform for a radiated
signal from an antenna if its average value (dc) is nonzero. However, this program
has not been changed from the case of lumped sources in the termination networks.
We could eliminate the dc response by setting H(0) = 0 in the input date for TIME-
FREQ.FOR. We simply need to determine the frequency-domain transfer function
between Eo(t) and the desired terminal voltage or current, V̂ (L), Î(L), V̂ (0), or Î(0)
at the harmonics of Eo(t). TIMEFREQ takes that frequency-domain transfer function
and combines it with the Fourier coefficients of Eo(t), and adds them in time to produce
the time domain terminal voltages or currents V (L, t) , I (L, t) , V (0, t) , or I (0, t).
We need to determine the frequency-domain transfer function at the harmonics of the
basic repetition frequency that we chose for Eo(t), f0, 2f0, 3f0, . . . up to at least

f max = 1

τr
(11.144)

where τr is the pulse rise time that we assume is equal to the pulse fall time.
The frequency-domain transfer function for a lossless line at the desired har-

monics of Eo(t) can be obtained by obtaining the SPICE subcircuit model with the
FORTRAN program SPICEINC.FOR that implements the model of the previous
section. Imbedding this subcircuit model into a SPICE/PSPICE program, attaching
the terminations, and running it in the .AC mode generates this frequency response of
the transfer function for sinusoidal sources, Eo(t) ⇔ Êo = 1� 0◦, of unit magnitude
and zero phase angle.

The frequency-domain transfer function for a lossy or lossless line at the
desired harmonics of Eo(t) can also be obtained using the FORTRAN program
INCIDENT.FOR also described in Appendix A. This program is MTL.FOR modi-
fied for incident field excitation. Again, we use it to determine the transfer function
for sinusoidal sources, Eo(t) ⇔ Êo = 1� 0◦, of unit magnitude and zero phase angle.

11.3.5 The Finite-Difference, Time-Domain (FDTD) Solution Method

The FDTD method of solution is virtually unchanged from the case of lumped source
excitation in the terminal networks described in Chapters 8 and 9 . First, consider the
basic time-domain partial differential equations of a lossless line with incident field
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excitation given in (11.20) as

∂

∂ z
V (z, t) + l

∂

∂ t
I(z, t) = − ∂

∂ z
ET(z, t) + EL(z, t) (11.145a)

∂

∂ z
I(z, t) + c

∂

∂ t
V (z, t) = −c

∂

∂ t
ET(z, t) (11.145b)

The line cross-sectional dimensions are again contained in the per-unit-length pa-
rameters of l (inductance) and c (capacitance). The quantities ET(z, t) and EL(z, t)
contain the components of the incident electric field that are transverse to the line and
parallel to the line conductors, respectively, with the line conductors removed. The
quantity ET(z, t) is

ET(z, t) =
d∫
0

Einc
x (x, z, t) dx (11.146)

The quantity EL(z, t) is the difference between the longitudinal (z-directed) compo-
nents of the incident electric field intensity vector along the position of conductor #
1 and along the position of the reference conductor (with those conductors absent):

EL(z, t) = Einc
z (conductor #1, z, t) − Einc

z (reference conductor, z, t) (11.147)

We now specialize the results to the case of uniform plane-wave excitation of the
line. The phasor results given in (11.63) and (11.64) are

ÊT(z, t) = Êodex e−jβzz e−jβx
d
2


 sin

(
βx

d
2

)
βx

d
2


 (11.63)

and

ÊL(z, t) = −jβx Êodez e−jβzz e−jβx
d
2




sin

(
βx

d

2

)
βx

d

2




= −jω Êod
ez

vx

e−jβzz e−jβx
d
2




sin

(
βx

d

2

)
βx

d

2


 (11.64)

We will omit the sin (βx(d/2)) /βx(d/2) term and the e−jβx(d/2) term for reasons
discussed in Section 11.3.2. Hence, the time-domain result becomes

ET(z, t) = d ex Eo

(
t − z

vz

)
(11.148)
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Similarly,

EL(z, t) = −d
ez

vx

∂

∂ t
Eo

(
t − z

vz

)
(11.149)

The forcing function terms on the right-hand side of (11.145) involve (∂/∂ z)ET(z, t)
and (∂/∂ t)ET(z, t). First, we observe that

∂

∂ t
Eo

(
t − z

vz

)
=

∂Eo

(
t − z

vz

)
∂

(
t − z

vz

) ∂

(
t − z

vz

)
∂ t︸︷︷︸
1

=
∂Eo

(
t − z

vz

)
∂

(
t − z

vz

) (11.150)

and

∂

∂ z
Eo

(
t − z

vz

)
=

∂Eo

(
t − z

vz

)
∂

(
t − z

vz

) ∂

(
t − z

vz

)
∂ z︸︷︷︸

−1/vz

= − 1

vz

∂Eo

(
t − z

vz

)
∂

(
t − z

vz

)

= − 1

vz

∂

∂t
Eo

(
t − z

vz

)
(11.151)

Hence, the various derivatives in the time domain become

∂

∂ z
ET(z, t) = d ex

∂

∂z
Eo

(
t − z

vz

)

= −d
ex

vz

∂

∂t
Eo

(
t − z

vz

)
(11.152)

∂

∂ t
ET(z, t) = d ex

∂

∂t
Eo

(
t − z

vz

)
(11.153)

Hence, the forcing function terms on the right-hand side of (11.145) become

− ∂

∂ z
ET(z, t) + EL(z, t) = d

(
ex

vz

− ez

vx

)
∂

∂t
Eo

(
t − z

vz

)
(11.154)

−c
∂

∂ t
ET(z, t) = −c d ex

∂

∂t
Eo

(
t − z

vz

)
(11.155)

In order to discretize these transmission-line equations, we divide the line axis
into NDZ sections each of length �z, as shown in Figure 11.14(b). Similarly, we
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divide the total solution time into NDT segments of length �t. To provide second-
order accuracy of the discretization, we interlace the NDZ + 1 voltage points,
V1, V2, . . . , VNDZ, VNDZ+1, and the NDZ current points, I1, I2, . . . , INDZ, as shown
in Figure 11.14(a). Each voltage and adjacent current solution point is separated by
�z/2. In addition, the time points are also interlaced, and each voltage time point and
adjacent current time point are separated by �t/2.

Discretizing the derivatives in the transmission-line equations using second-order
central differences according to the scheme in Figure 11.14(a) gives

1

�z

[
Vn+1

k+1 − Vn+1
k

]
+ 1

�t
l
[
I
n+3/2
k − I

n+1/2
k

]

= d

� t

(
1

vz

ex − 1

vx

ez

)[
Eo

(
tn+3/2 − (k − 1/2) � z

vz

)

−Eo

(
tn+1/2 − (k − 1/2) � z

vz

)]
(11.156a)

for k = 1, 2, . . . , NDZ and

1

�z

[
I
n+1/2
k − I

n+1/2
k−1

]
+ 1

�t
c
[
Vn+1

k − Vn
k

]
= −c

d

� t
ex

[
Eo

(
tn+1 − (k − 1) z

vz

)

−Eo

(
tn − (k − 1) z

vz

)]
(11.156b)

for k = 2, . . . , NDZ, where we denote

Vn
k ≡ V ((k − 1)�z, n�t) (11.157a)

In
k ≡ I ((k − 1/2) �z, n�t) (11.157b)

The required recursion relations for the interior points on the line are obtained by
solving Eqs. (11.156) giving

I
n+3/2
k = I

n+1/2
k − � t

� z
l−1

(
Vn+1

k+1 − Vn+1
k

)
+d l−1

(
1

vz

ex − 1

vx

ez

)[
Eo

(
tn+3/2 − (k − 1/2) � z

vz

)

−Eo

(
tn+1/2 − (k − 1/2) � z

vz

)] (11.158a)

Vn+1
k = Vn

k − � t

� z
c−1

(
I
n+1/2
k − I

n+1/2
k−1

)
−d ex

[
Eo

(
tn+1 − (k − 1) z

vz

)
− Eo

(
tn − (k − 1) z

vz

)] (11.158b)
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FIGURE 11.14 Spatial and temporal discretization of the two-conductor line for construction
of the FDTD recursion relations.

Equations (11.158) are again solved in a leapfrog fashion. First, the voltages along the
line are obtained, for a fixed time, from (11.158b) in terms of the previous solutions.
Then, the currents are obtained from (11.158a) in terms of the voltages from (11.158b)
as well as previously obtained values. The solution starts with an initially relaxed line
having zero voltage and current values.

Next, consider the incorporation of the terminal conditions. The essential problem
in incorporating the terminal conditions is that the FDTD voltages and currents at
each end of the line, V1, I1 and VNDZ+1, INDZ, are not collocated in space or time,
whereas the terminal conditions relate the voltage and current at the same position and
at the same time. We will denote the current at the source (z = 0) as IS and the current



THE TIME-DOMAIN SOLUTION 633

FIGURE 11.15 Spatial and temporal discretization of the two-conductor line at the source
and the load ends.

at the load (z = L) as IL as shown in Figure 11.15. The second transmission-line
equation given in Eq. (11.145b) is discretized at the source as

1

�z/2


I

n+1/2
1 −

(
In+1

S + In
S

)
2


+ 1

�t
c
[
Vn+1

1 − Vn
1

]

= −c
d

� t
ex

[
Eo

(
tn+1

)
− Eo

(
tn
)]

(11.159a)

Similarly, the second transmission-line equation, (11.145b), is discretized at the load
as

1

�z/2



(
In+1

L + In
L

)
2

−I
n+1/2
NDZ


+ 1

�t
c
[
Vn+1

NDZ+1 − Vn
NDZ+1

]

−c
d

� t
ex

[
Eo

(
tn+1 − L = NDZ � z

vz

)
− Eo

(
tn − L = NDZ � z

vz

)]
(11.159b)
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Equations (11.159) are solved to give the recursion relations at the source and the
load:

Vn+1
1 = Vn

1 − 2�t

�z
c−1I

n+1/2
1 + �t

�z
c−1

[
In+1

S + In
S

]
−d ex

[
Eo
(
tn+1

)− Eo (tn)
] (11.160a)

Vn+1
NDZ+1 = Vn

NDZ+1 + 2�t

�z
c−1I

n+1/2
NDZ − �t

�z
c−1

[
In+1
L + In

L

]

−d ex

[
Eo

(
tn+1 − L = NDZ � z

vz

)
− Eo

(
tn − L = NDZ � z

vz

)]
(11.160b)

In the case of resistive terminations, the terminal characterizations are written in terms
of a generalized Thevenin equivalent as

V1 = VS − RSIS (11.161a)

VNDZ+1 = VL + RLIL (11.161b)

Inverting these gives

IS = −GS V1 + GS VS (11.162a)

IL = GL VNDZ+1 − GL VL (11.162b)

Substituting (11.162) into Eq. (11.160) gives the recursion relations for V1 and
VNDZ+1:

Vn+1
1 =

(
� z

� t
RSc + 1

)−1 {(
� z

� t
RS c − 1

)
Vn

1 − 2RSI
n+1/2
1

+
(
Vn+1

S + Vn
S

)
−d ex

� z

� t
RS c

[
Eo

(
tn+1

)
− Eo

(
tn
)]} (11.163a)

and

Vn+1
NDZ+1 =

(
� z

� t
RLc + 1

)−1 {(
� z

� t
RL c − 1

)
Vn

NDZ+1 + 2 RLI
n+1/2
NDZ

+
(
Vn+1

L + Vn
L

)
−d ex

�z

� t
RL c

[
Eo

(
tn+1 − L = NDZ � z

vz

)
−Eo

(
tn − L = NDZ � z

vz

)]}
(11.163b)
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and the voltages at the interior points are determined from (11.158b)

Vn+1
k = Vn

k − � t

� z
c−1

(
I
n+1/2
k − I

n+1/2
k−1

)
− d ex

[
Eo

(
tn+1 − (k − 1) z

vz

)
− Eo

(
tn − (k − 1) z

vz

)]
(11.163c)

for k = 2, 3, . . . , NDZ. Equations (11.163) are first solved for the voltages and then
the currents are determined from those voltages using (11.158a) as

I
n+3/2
k = I

n+1/2
k − � t

� z
l−1

{
(Vn+1

k+1 − Vn+1
k

)

+d l−1
(

1

vz

ex − 1

vx

ez

)[
Eo

(
tn+3/2 − (k − 1/2) �z

vz

)

−Eo

(
tn+1/2 − (k − 1/2) �z

vz

)]}
(11.163d)

for k = 1, 2, 3, . . . , NDZ. Once again, for stability the position and time discretiza-
tions must satisfy the Courant conditions:

� t ≤ � z

v
(11.164)

The FDTD method described in this section is implemented in the FORTRAN code
FDTDINC.FOR that is described in Appendix A.

11.3.6 Computed Results

In order to illustrate the accuracy of models we have derived and to provide an under-
standing of the relationship between the time-domain parameters of the incident field
waveform Eo(t), such as rise/fall time, we will consider the example shown in Figure
11.16(a). A wire of radius rw = 10 mils and length L = 1 m is suspended at a height
of h = 2 cm above an infinite ground plane. The terminations are resistive with RS =
500 � and RL = 1000 �. The incident uniform plane wave is incident from above,
θE = 0◦, θp = 0◦, and φp = 0◦, so that ex = 0, ez = 1, vx = −v, and vz = ∞. The
time-domain waveform of the incident electric field Eo(t) is in the form of a trape-
zoidal periodic pulse train of repetition frequency 1 MHz and has a 1 V/m amplitude
and a 50% duty cycle and various rise times. We will look at the time during the
rise time of the pulse shown in Figure 11.16(b). The line characteristic impedance
is ZC = 303.56 �, and the line one-way delay is TD = 3.33 ns. We will consider
three cases for the rise time: τr = 50 ns, τr = 10 ns, τr = 1ns. This will illustrate
cases where the rise time is greater than or less than the line one-way delay. We will
determine the induced voltage at the left end of the line, V (0, t).

We will compare the predictions of four models: (1) the SPICE model described
in the previous section and illustrated in Figure 11.13, (2) the series solution given
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FIGURE 11.16 Characterization of a two-conductor line above a ground plane for illustration
of numerical results.

by (11.118) using seven terms where V+(t) and V−(t) are given in (11.140), (3)
the TDFD method, and (4) the FDTD method. For the SPICE model, the conductor
separation d in (11.143) is replaced by 2h since the problem is above a ground plane
for reasons discussed previously. The SPICE/PSPICE subcircuit model is generated
with the FORTRAN code SPICEINC.FOR. The TDFD transformation technique
simply views the problem as a two-port with Eo(t) as the input andV (0, t) as the output.
The incident waveform Eo(t) is modeled as a 1 MHz periodic trapezoidal waveform
with equal rise and fall times. The frequency of this waveform is sufficiently long
with respect to the transient behavior of the result that the response to the leading
edge should be the same as to the actual waveform. The frequency-domain transfer
function was computed at the various harmonics of the basic repetition rate of 1
MHz using the frequency-domain code INCIDENT.FOR described in Appendix A.
It could also be computed using PSPICE by generating the SPICE subcircuit model
using the FORTRAN code SPICEINC.FOR and running the code in the .AC mode.
In fact, the author computed the frequency-domain transfer functions both ways and
compared the results. Both codes gave virtually identical results. These values of
the frequency-domain transfer functions at the various harmonics of 1 MHz were
combined with the spectral amplitudes and phase angles of the periodic waveform
Eo(t) using the code TIMEFREQ.FOR. The FDTD solution divides the line into
NDZ discrete sections and the time variable into NDT divisions. The FDTD results
were obtained with the FDTDINC.FOR code described in Appendix A.
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FIGURE 11.17 Predictions of the time-domain near-end voltage of the line of Figure 11.16
using the SPICE model, the series solution, the time-domain to frequency-domain transfor-
mation method, and the FDTD method for pulse rise times of (a) 50 ns, (b) 10 ns, and (c) 1
ns.
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Figure 11.17(a) shows the result for a rise time of τr = 50 ns. The SPICE model
and the series result in (11.118) using seven terms give essentially the same results.
The bandwidth of the input pulse Eo(t) is approximately 1/τr = 20 MHz. Hence,
we may think we only need 20 harmonics for the TDFD method to give accurate
results. Figure 11.17(a) shows that using only 20 harmonics (spectral content up
to 20 MHz) gives a very poor representation of the output waveform. Looking at
the SPICE result, we see why this is the case. The output waveform has regions
where the rise/fall times are on the order of 3 ns! Hence, in order to reproduce the
output pulse, it is this minimum rise/fall time that needs to be considered. Hence,
the output waveform contains frequencies up to around 1/3 ns = 333 MHz. Hence,
we have used 500 harmonics, 1 MHz, 2 MHz, 3 MHz, . . . , 500 MHz, in the TDFD
transformation method with TIMEFREQ.FOR. This gives excellent predictions.
The FDTD method likewise requires the spatial discretization � z to be electrically
small at the highest spectral content of the output pulse waveform that is around
333 MHz! This requires that we choose NDZ = 10 in which case the cell lengths,
� z = 0.1 m, are λ/9 at 333 MHz. In order to satisfy the Courant stability condition
in (11.164), it requires that

NDT > NDZ × final time × v

line length
= 300

We will choose NDT = 1000 in order to satisfy the Courant condition and give
sufficient detail in the solution. Observe that the FDTD method using the FORTRAN
code FDTDINC.FOR described in Appendix A gives exceptionally good results.

Figure 11.17(b) shows the result for a rise time of τr = 10 ns. The SPICE model and
the series result in (11.118) using seven terms give essentially the same results. Again
we see that the output waveform has regions where the rise/fall time of the waveform
is on the order of 3 ns again. Hence, we choose 500 harmonics to be processed by the
TDFD method using TIMEFREQ.FOR. Similarly, we choose NDZ = 10 and NDT
= 1000 in the FDTD method using FDTDINC.FOR. Figure 11.17(b) shows that the
FDTD, TDFD, and SPICE methods give virtually identical results.

Figure 11.17(c) shows the result for a rise time of τr = 1 ns. The SPICE model
and the series result in (11.118) using seven terms give essentially the same results.
Observing the SPICE-predicted output waveform we see that it contains regions where
the rise/fall times are on the order of 1 ns. Hence, the spectral content of the output
waveform goes up to the order of 1 GHz. Hence, we use 1000 harmonics in the TDFD
result and NDZ = 50 and NDT = 1000 in the FDTD result. This gives a subsection
length of � z = 2cm, which is λ/15 at 1 GHz. Figure 11.17(c) shows that the FDTD,
TDFD, and SPICE methods give virtually identical results.

PROBLEMS

11.1 Derive the transmission-line equations in (11.20) from the per-unit-length
equivalent circuit in Figure 11.3.
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11.2 Verify the equivalent source given in (11.23).

11.3 Verify that the solution to the state-variable equations in (11.25) is given by
(11.26).

11.4 Verify the relations for the alternative sources given in (11.37).

11.5 Demonstrate the equivalence of the sources given in (11.44) and (11.45)).

11.6 Verify, by direct substitution, the terminal solutions in (11.48).

11.7 Verify the solutions for the terminal line currents given in (11.53).

11.8 Derive the relations for the components of the uniform plane wave given in
(11.55) and the phase constants given in (11.56).

11.9 Verify the source terms in (11.63) and (11.64).

11.10 Verify the terminal current solutions for uniform plane-wave sources given
in (11.65).

11.11 Verify the special cases given in (11.68), (11.73), and (11.77), and (11.77).

11.12 Verify the electric field relations for a conductor above a ground plane given
in (11.81).

11.13 Verify the relations for the terminal currents given in (11.82).

11.14 Use SPICEINC.FOR to verify the results in Figures 11.9–11.11.

11.15 Verify the time-domain results in (11.105).

11.16 Verify (11.108).

11.17 Verify the recursive solution in (11.113).

11.18 Verify the series solution in (11.118).

11.19 Verify the relations in (11.140).

11.20 Verify the SPICE equivalent circuit in Figure 11.13.

11.21 Verify (11.154).

11.22 Demonstrate the FDTD recursion relations in (11.163).

11.22 Use SPICEINC.FOR, the series solution in (11.118), TIMEFREQ.FOR,
and FDTDINC.FOR to verify the results in Figure 11.17.
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12
INCIDENT FIELD EXCITATION
OF MULTICONDUCTOR LINES

The previous chapter was devoted to the analysis of two-conductor lines excited
by an incident electromagnetic field that was generally in the form of a uniform
plane wave. In this chapter, we will extend that analysis to multiconductor trans-
mission lines (MTLs). Virtually all of the two-conductor line results in the previous
chapter can be extended rather straightforwardly to the case of MTLs using matrix
notation.

The derivation and solution of the MTL equations was considered in [H.1–H.5] and
in [1–5]. A SPICE model for their solution was given in [H.10]. The MTL equations
that we will obtain will be solved and the termination networks incorporated into
that general solution in the usual fashion in order to determine the line currents at
the ends of the line. The currents that are modeled with these MTL equations are,
once again, differential-mode or transmission-line currents in that the sum of the
currents directed in the +z direction on all n + 1 conductors is zero at any line cross
section. In other words, the differential-mode currents of n of the conductors “return”
on the reference conductor. In addition to these differential-mode currents, there can
exist certain common-mode or antenna-mode currents that are not modeled by the
MTL equations, as discussed in Chapter 1 [6]. So at points along the line there will
be a combination of both currents, only one component of which (the differential
mode) will be modeled by the MTL equations that we will develop. If the MTL
cross section is electrically small at the frequency of interest, the total current at the
terminations is that predicted by the MTL equations. This is because, for a line with
electrically small cross-sectional dimensions, we can surround each termination with

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.

641



642 INCIDENT FIELD EXCITATION OF MULTICONDUCTOR LINES

a closed surface (approximately a “node” in lumped-circuit analysis terminology), and
Kirchhoff’s current law shows that the total current entering this closed surface must be
zero. Therefore, at the terminations of a line having electrically small cross-sectional
dimensions, the total current at the terminations must sum to zero (differential-mode
or transmission-line current) so that the common-mode current not predicted by the
MTL equations must go to zero at the terminations and is therefore of no importance
in predicting the terminal responses of an MTL [6]. This also applies to crosstalk
on MTLs that have electrically small cross-sectional dimensions. Common-mode
currents are important in modeling radiated emissions or for determining currents at
some intermediate point along the line such as a folded dipole antenna. Therefore,
the MTL equations we will obtain provide the complete prediction of the terminal
response of an MTL that satisfies the necessary requirement of electrically small
cross-sectional dimensions.

12.1 DERIVATION OF THE MTL EQUATIONS FOR INCIDENT FIELD
EXCITATION

Consider an (n + 1)-conductor uniform MTL where the conductors are parallel to
the z axis as shown in Figure 12.1. In order to derive the first MTL equation, we
again integrate Faraday’s law around the contour ci between the reference conductor
and the ith conductor enclosing surface si in the clockwise direction as shown in
Figure 7.1:

∮
ci

�E · d �l = d

dt

∫
si

�B · d�s (12.1)

or

a′∫
a

�Et · d �l +
b′∫
a′

�El · d �l +
b∫
b′

�Et · d �l +
a∫
b

�El · d �l = d

dt

∫
si

�B · �ands (12.2)

where �Et is the transverse electric field in the x–y cross-sectional plane and �El is the
longitudinal or z-directed electric field along the surfaces of the conductors. Observe
that again the negative sign is absent from the right-hand side of Faraday’s law here
because of the choice of the direction of the contour ci and the normal �an to the en-
closed surface si . Again, it is necessary to distinguish between incident and scattered
field quantities. The incident field is that produced by the distant or nearby source in
the absence of the line conductors. The scattered fields are produced by the currents
and charges that are induced on the line conductors. The total field is the sum of a
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FIGURE 12.1 Definition of the contour for the derivation of the first MTL equation for
incident field illumination.

scattered and an incident component as

�Et(x, y, z, t) = �Einc
t (x, y, z, t) + �Escat

t (x, y, z, t)

�El(x, y, z, t) = �Einc
l (x, y, z, t) + �Escat

l (x, y, z, t)

�B(x, y, z, t) = �Binc
(x, y, z, t) + �Bscat

(x, y, z, t)

(12.3)

where superscript inc denotes incident and superscript scat denotes scattered. There
are some important assumptions that need to be stated. First, we assume that the
currents on the conductors are z directed. Therefore, the scattered magnetic fields will

lie entirely in the transverse plane. Since there is no z-directed �Bscat
field, Faraday’s
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law shows that we may uniquely define the scattered voltage between the ith conductor
and the reference conductor independent of path in the transverse plane as

V scat
i (z, t) = −

a′∫
a

�Escat
t · d �l (12.4a)

V scat
i (z + �z, t) = −

b′∫
b

�Escat
t · d �l (12.4b)

Second, because of the transverse nature of the scattered magnetic field, the scattered
magnetic field can be related to the currents that produced it with the usual per-unit-
length inductances as

lim
�z → 0

1

�z

∫
si

�Bscat · �an d s = −[li1 · · · lii · · · lin]




I1(z, t)
...

Ii(z, t)
...

In(z, t)


 (12.5)

Again, we represent the imperfect conductors with per-unit-length resistances ri .
Although these will be functions of frequency due to skin effect, let us for the moment
assume they are constant with the assurance that the frequency-domain result will
handle this dependence. The total longitudinal fields are related to the currents on the
conductors as

−
b′∫
a′

�El · d �l = −
b′∫
a′

Ez d z = −ri �z Ii(z, t) (12.6a)

−
a∫
b

�El · d �l = −
a∫
b

Ez d z = −r0 �z

n∑
k=1

Ik(z, t) (12.6b)

Substituting (12.3–12.6) into (12.2), dividing by �z, and taking the limit as �z → 0
yields

∂

∂ z
V scat

i (z, t) + [r0 · · · ri + r0 · · · r0]




I1(z, t)
...

Ii(z, t)
...

In(z, t)



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+ ∂

∂ t
[ li1 · · · lii · · · lin ]




I1(z, t)
...

Ii(z, t)
...

In(z, t)




= ∂

∂ z

a′∫
a

�Einc
t · d �l + ∂

∂ t

a′∫
a

�Binc · �an dl (12.7)

Repeating this for the other conductors and arranging in matrix form gives

∂

∂ z
Vscat(z, t) + R I(z, t) + L

∂

∂ t
I(z, t) =




...

∂

∂ z

a′∫
a

�Einc
t · d �l + ∂

∂ t

a′∫
a

�Binc · �an dl

...




(12.8)

Observe that the voltages in this expression are the scattered voltages and not the
total voltages.

The second MTL equation can similarly be derived as in Chapter 3 by enclosing
the ith conductor with a closed surface as illustrated in Figure 12.2 applying the
continuity equation:

�
s′
i

�I · d �s′ = − ∂

∂ t
Qenc (12.9)

Over the end caps, we have∫ ∫
s′e

�I · d �s′ = Ii(z + �z, t) − Ii(z, t) (12.10)

where s′e is the surface over the end caps. Although there are some subtleties involved
[1], we again define the per-unit-length conductance and capacitance matrices in terms
of the scattered voltages as

Iti(z, t) = lim
�z→ 0

1

�z

∫ ∫
s′s

�I · d �s′=
[
−gi1 · · ·

n∑
k=1

gik · · · −gin

]



V scat
1 (z, t)

...
V scat

i (z, t)
...

V scat
n (z, t)




(12.11)
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FIGURE 12.2 Definition of the surface for the derivation of the second MTL equation for
incident field illumination.

where Iti(z, t) is the transverse conduction current between the ith conductor and all
other conductors and s′s is the surface of the sides. Also,

lim
�z → 0

Qenc

�z
=
[

−ci1 · · ·
n∑

k=1

cik · · · −cin

]



V scat
1 (z, t)

...
V scat

i (z, t)
...

V scat
n (z, t)


 (12.12)

Substituting (12.10–12.12) into (12.9), dividing both sides of this result by �z, and
taking the limit as �z → 0 yields the second MTL equation in matrix form as

∂

∂ z
I(z, t) + G Vscat(z, t) + C

∂

∂ t
Vscat(z, t) = 0 (12.13)
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The above results are in terms of the scattered voltages. They can be placed in
terms of the total voltages by writing the total voltages in terms of the total electric
field as

Vi(z, t) = −
a′∫
a

�Et · d �l = V scat
i (z, t) −

a′∫
a

�Einc
t · d �l (12.14)

Substituting this into (12.8) and (12.13) gives the MTL equations in terms of the total
voltages as

∂

∂ z
V(z, t) + R I(z, t) + L

∂

∂ t
I(z, t) = ∂

∂ t




...
a′∫
a

�Binc · �an dl

...


 (12.15a)

∂

∂ z
I(z, t) + G V(z, t) + C

∂

∂ t
V(z, t) = −G




...
a′∫
a

�Einc
t · d �l

...


− C

∂

∂ t




...
a′∫
a

�Einc
t · d �l

...




(12.15b)

where the n × 1 vectors of the n line voltages and currents are

V(z, t) =




V1(z, t)
...

Vi(z, t)
...

Vn(z, t)


 (12.16a)

and

I(z, t) =




I1(z, t)
...

Ii(z, t)
...

In(z, t)


 (12.16b)
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12.1.1 Equivalence of Source Representations

Evidently, (12.15) again shows that incident electromagnetic fields modify the MTL
equations by adding sources to the usual MTL equations. The MTL equations in terms
of total voltages given in (12.15) can be written as

∂

∂ z
V(z, t) + R I(z, t) + L

∂

∂ t
I(z, t) = VF(z, t) (12.17a)

∂

∂ z
I(z, t) + G V(z, t) + C

∂

∂ t
V(z, t) = IF(z, t) (12.17b)

where

VF(z, t) = ∂

∂ t




...
a′∫
a

�Binc · �an dl

...


 (12.18a)

IF(z, t) = −G




...
a′∫
a

�Einc
t · d �l

...


− C

∂

∂ t




...
a′∫
a

�Einc
t · d �l

...


 (12.18b)

Thus, the sources are the component of the incident magnetic field normal to the ith
circuit as shown in (12.18a) and the component of the incident electric field transverse
to the ith circuit as shown in (12.18b). The ith circuit is the surface bounded by the ith
conductor and the reference conductor between z and z + �z. These MTL equations
can be derived from the per-unit-length equivalent circuit shown in Figure 12.3.

The equivalent per-unit-length sources in (12.18) are due to both the incident
electric field and the incident magnetic field. These can be written in terms of only
the incident electric field by recognizing that the transverse and longitudinal electric
fields and the normal magnetic fields are related by Faraday’s law. This can be shown
by writing Faraday’s law around the contour in terms of the incident fields, dividing
both sides of the result by �z, and taking the limit as �z → 0 to give

− ∂

∂ z

a′∫
a

�Einc
t · d �l + Einc

z (ith conductor, z, t)

− Einc
z (reference conductor, z, t) = ∂

∂ t

a′∫
a

�Binc · �an dl

(12.19)

where Einc
z (mth conductor, z) is the longitudinal or z-directed incident electric field

along the position of the mth conductor with the conductor removed. Substituting
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FIGURE 12.3 The per-unit-length equivalent circuit for an MTL with incident field
illumination.

(12.19) into (12.18a) gives an alternate form of the source voltage as

VF(z, t) = − ∂

∂ z




...
a′∫
a

�Einc
t · d �l

...




︸ ︷︷ ︸
ET

+




...
Einc

z (ith conductor, z, t) − Einc
z (reference conductor, z, t)
...




︸ ︷︷ ︸
EL

= − ∂

∂z
ET(z, t)+EL(z, t) (12.20)
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12.2 FREQUENCY-DOMAIN SOLUTIONS

In the frequency domain, the phasor MTL equations become

d

d z
V̂(z) = −Ẑ Î(z) + V̂F(z) (12.21a)

d

d z
Î(z) = −Ŷ V̂(z) + ÎF(z) (12.21b)

where the n × n per-unit-length impedance and admittance matrices are

Ẑ = R + jω L (12.22a)

Ŷ = G + jω C (12.22b)

and the n × 1 vectors of the incident field contributions are

V̂F(z) = jω




...
a′∫
a

�̂Binc · �an dl

...


 (12.22c)

ÎF(z) = −Ŷ




...
a′∫
a

�̂Einc

t · d �l

...


 (12.22d)

where �̂B(x, y, z) and �̂E(x, y, z) denote the phasor fields. Alternatively, the forcing
function V̂F(z) can be written in terms of the phasor incident electric field as in
(12.20) as

V̂F(z) = − ∂

∂ z




...
a′∫
a

�̂Einc

t · d �l

...




︸ ︷︷ ︸
ÊT
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+




...
Êinc

z (ith conductor, z) − Êinc
z (reference conductor, z)
...




︸ ︷︷ ︸
ÊL

= − ∂

∂ z
ÊT(z) + ÊL(z) (12.22e)

Once again these can be written in state-variable form as a coupled set of first-order
ordinary differential equations in matrix form as

d

d z

[
V̂(z)
Î(z)

]
︸ ︷︷ ︸

X̂(z)

=
[

0 −Ẑ
−Ŷ 0

]
︸ ︷︷ ︸

Â

[
V̂(z)
Î(z)

]
︸ ︷︷ ︸

X̂(z)

+
[

V̂F(z)
ÎF(z)

]
(12.23)

Again, there are considerable advantages in writing the phasor MTL equations in
this form as we showed in the previous chapter. In fact, drawing from the wealth
of properties of the analogous solution for lumped linear systems, we can again
immediately write the solution to these phasor MTL equations.

12.2.1 Solution of the MTL Equations

The solution to the phasor MTL equations given in (12.23) can again be immediately
obtained by observing that they are directly analogous to the state-variable equations
for lumped systems as was discussed in Chapter 11. Hence, the solution is again

X̂(z) = �̂(z − z0)X̂(z0) +
z∫
z0

�̂(z − τ)

[
V̂F (τ)
ÎF (τ)

]
dτ (12.24)

for z ≥ z0. Selecting z = L and z = 0 yields

[
V̂(L)
Î(L)

]
︸ ︷︷ ︸

X̂(L)

=
[

�̂11(L) �̂12(L)
�̂21(L) �̂22(L)

]
︸ ︷︷ ︸

�̂(L)

[
V̂(0)
Î(0)

]
︸ ︷︷ ︸

X̂(0)

+
[

V̂FT(L)
ÎFT(L)

]
(12.25a)

where the total source voltages V̂FTi(L) and ÎFTi(L) are, according to (12.24),

V̂FT(L) =
L∫
0

[
�̂11(L − τ)V̂F(τ) + �̂12(L − τ)ÎF(τ)

]
dτ (12.25b)
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ÎFT(L) =
L∫
0

[
�̂21(L − τ)V̂F(τ) + �̂22(L − τ)ÎF(τ)

]
dτ (12.25c)

and �̂(L) is the 2n × 2n chain-parameter matrix. From Chapter 7, the n × n chain-
parameter submatrices are

�̂11(L) = 1

2
Ŷ−1T̂I

(
e γ̂L + e− γ̂L

)
T̂−1

I Ŷ (7.115a)

�̂12(L) = −1

2
Ŷ−1T̂I γ̂

(
e γ̂L − e− γ̂L

)
T̂−1

I (7.115b)

�̂21(L) = −1

2
T̂I

(
e γ̂L − e− γ̂L

)
γ̂−1T̂−1

I Ŷ (7.115c)

�̂22(L) = 1

2
T̂I

(
e γ̂L + e− γ̂L

)
T̂−1

I (7.115d)

where T̂−1
I ŶẐ T̂I = γ̂2. According to (12.25a), the equivalent circuit of the complete

line can be viewed as an unexcited line in series with the equivalent sources V̂FTi(L)
and ÎFTi(L) located at z = L, as illustrated in Figure 12.4.

FIGURE 12.4 Illustration of the representation of an MTL with incident field illumination
as a 2n-port having lumped sources that represent the effects of the incident field.
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12.2.2 Simplified Forms of the Excitations

The total excitation source vectors due to the incident field, ÎFT(L) and V̂FT(L), in
(12.25b) and (12.25c) can be simplified using the definitions of the phasor distributed
sources, ÎF(z) and V̂F(z), given in (12.22d) and (12.22e) and the properties of the
chain-parameter submatrices obtained in Section 7.5.3 of Chapter 7. The total forcing
function V̂FT(L) given in (12.25b) becomes, by substituting ÎF(z) from (12.22d) and
V̂F(z) from (12.22e),

V̂FT(L)=
L∫
0

[
�̂11(L − τ)V̂F(τ) + �̂12(L − τ)ÎF(τ)

]
dτ

=
L∫
0

�̂11(L−τ)




...
Êinc

z (ith conductor, τ)−Êinc
z (reference conductor, τ)
...


 dτ

−
L∫
0

�̂11(L − τ)
∂

∂ τ




...
a′∫
a

�̂Einc

t · d �l

...


 dτ

−
L∫
0

�̂12(L − τ) Ŷ




...
a′∫
a

�̂Einc

t · d �l

...


 dτ

(12.26)

Using the chain rule for differentiation:

∂

∂ τ
[A(τ)B(τ)] = A(τ)

[
∂

∂ τ
B(τ)

]
+
[

∂

∂ τ
A(τ)

]
B(τ) (12.27)

we obtain

V̂FT(L) =
L∫
0

�̂11(L−τ)




...
Êinc

z (ith conductor, τ)−Êinc
z (reference conductor, τ)
...


 dτ

−
L∫
0

∂

∂ τ




�̂11(L − τ)




...
a′∫
a

�̂Einc

t · d �l

...







dτ
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+
L∫
0

{
∂

∂ τ
�̂11(L − τ) − �̂12(L − τ)Ŷ

}
︸ ︷︷ ︸

=0




...
a′∫
a

�̂Einc

t · d �l

...


 dτ (12.28)

We now show that the last term in (12.28) is identically zero, that is,

∂

∂ τ
�̂11(L − τ) − �̂12(L − τ)Ŷ = 0 (12.29)

This can easily be shown using the chain-parameter submatrix definitions given in
(7.115) of Chapter 7:

∂

∂ τ
�̂11(L − τ) = ∂

∂ τ

[
1

2
Ŷ−1T̂I

(
e γ̂(L−τ) + e− γ̂(L−τ)

)
T̂−1

I Ŷ
]

= − 1

2
Ŷ−1T̂I γ̂

(
e γ̂(L−τ) − e− γ̂(L−τ)

)
T̂−1

I Ŷ (12.30a)

−�̂12(L − τ) Ŷ = 1

2
Ŷ−1T̂I γ̂

(
eγ̂(L−τ) − e−γ̂(L−τ)

)
T̂−1

I Ŷ (12.30b)

Thus, the final result is

V̂FT(L) =
L∫
0

�̂11(L−τ)




...
Êinc

z (ith conductor, τ)−Êinc
z (reference conductor, τ)
...


 dτ

− �̂11(0)︸ ︷︷ ︸
1n




...
a′∫
a

�̂Einc

t · d �l

...




z = L

+ �̂11(L)




...
a′∫
a

�̂Einc

t · d �l

...




z = 0

(12.31)

where we have used the fact that �̂11(0) = 1n and where 1n is the n × n identity
matrix. In a similar fashion, we can show that
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ÎFT(L) =
L∫
0

�̂21(L−τ)




...
Êinc

z (ith conductor τ)−Êinc
z (reference conductor τ)
...


 dτ

− �̂21(0)︸ ︷︷ ︸
0




...
a′∫
a

�̂Einc

t · d �l

...




z = L

+ �̂21(L)




...
a′∫
a

�̂Einc

t · d �l

...




z = 0

(12.32)

where we have used the property that �̂21(0) = 0 (see Eq. (7.115c) of Chapter 7).
These results show that the total forcing functions V̂FT(L) and ÎFT(L) depend on a
convolution of one of the chain-parameter submatrices and the longitudinal incident
electric field along the positions of the conductors (with the conductors removed),
as well as the product of that chain-parameter submatrix and the integrals of the
transverse incident electric field (with the conductors removed) that are evaluated at
the left end of the line (z = 0) and at the right end of the line (z = L).

12.2.3 Incorporating the Line Terminations

Now that the general solution of the phasor MTL equations has been obtained in terms
of the chain-parameter matrix and the incident field forcing functions in (12.25), we
next incorporate the terminal conditions to arrive at an explicit solution for the phasor
line voltages and currents. Consider Figure 12.4. The voltages and currents at the
right end of the unexcited line are denoted as V̂′(L) and Î′(L). These are related to
the actual desired voltages and currents, V̂(L) and Î(L), as

V̂′(L) = V̂(L) − V̂FT(L) (12.33a)

Î′(L) = Î(L) − ÎFT(L) (12.33b)

Therefore, we can incorporate the effects of incident fields into the solution by re-
placing V̂(L) and Î(L) in the equations for the terminal responses without inci-
dent field illumination given in Section 7.3 of Chapter 7 with V̂(L) − V̂FT(L) and
Î(L) − ÎFT(L)! This is further confirmed by rewriting the general solution given in
(12.25a) in terms of the chain-parameter matrix with sources. Rewriting this in the
form of the chain-parameter relation without incident field illumination gives[

V̂(L) − V̂FT(L)
Î(L) − ÎFT(L)

]
=
[

�̂11(L) �̂12(L)
�̂21(L) �̂22(L)

] [
V̂(0)
Î(0)

]
(12.34)

Consider the terminal conditions written in the form of generalized Thevenin equiv-
alents as

V̂(0) = V̂S − ẐS Î(0) (12.35a)
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V̂(L) = V̂L + ẐL Î(L) (12.35b)

Making the substitutions given in (12.33) gives

V̂(0) = V̂S − ẐS Î(0) (12.36a)

[
V̂′(L) + V̂FT(L)

] = V̂L + ẐL
[
Î′(L) + ÎFT(L)

]
(12.36b)

or

V̂(0) = V̂S − ẐS Î(0) (12.37a)

V̂′(L) = [
V̂L − V̂FT(L) + ẐL ÎFT(L)

]+ ẐL Î′(L) (12.37b)

Observe that (12.37) shows we could modify the result derived in Chapter 7 for
no incident field illumination given in (7.92) by replacing V̂L with V̂L − V̂FT(L)
+ ẐL ÎFT(L) and Î(L) with Î(L) − ÎFT(L) to yield[

�̂11ẐS + ẐL�̂22 − �̂12 − ẐL�̂21ẐS
]

Î(0)
= [

�̂11 − ẐL�̂21
]

V̂S − V̂L︸ ︷︷ ︸
due to lumped sources

+ [
V̂FT(L) − ẐL ÎFT(L)

]︸ ︷︷ ︸
due to incident field

(12.38a)

Î(L) = ÎFT(L) + �̂21V̂S + [
�̂22 − �̂21ẐS

]
Î(0) (12.38b)

Similarly, the alternative result given in (7.90) becomes[ (
ẐC + ẐS

)
T̂I

(
ẐC − ẐS

)
T̂I(

ẐC − ẐL
)

T̂Ie−γ̂L
(
ẐC + ẐL

)
T̂Ieγ̂L

] [
Î+
m

Î−
m

]
=
[

V̂S
V̂L − V̂FT(L) + ẐL ÎFT(L)

]
(12.39)

where the characteristic impedance matrix is ẐC = Ẑ T̂I γ̂−1 T−1
I = Ŷ−1 T̂I γ̂ T−1

I .
The solutions for the terminal voltages so obtained will be

V̂(0) = Ŷ−1 T̂I γ̂
[
Î+
m + Î−

m

]
= Ẑ T̂I γ̂−1 [Î+

m + Î−
m

]
(12.40a)

V̂′(L) = V̂(L) − V̂FT(L)

= Ŷ−1 T̂I γ̂
[
e−γ̂ L Î+

m + eγ̂ L Î−
m

]
= Ẑ T̂I γ̂−1

[
e−γ̂ L Î+

m + eγ̂ L Î−
m

]
(12.40b)
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or

V̂(L) = V̂FT(L) + Ŷ−1 T̂I γ̂
[
e−γ̂ L Î+

m + eγ̂ L Î−
m

]
= V̂FT(L) + Ẑ T̂I γ̂−1

[
e−γ̂ L Î+

m + eγ̂ L Î−
m

]
(12.40c)

The terminal constraints for the generalized Norton equivalent representation:

Î(0) = ÎS − ŶS V̂(0) (12.41a)

Î(L) = −ÎL + ŶL V̂(L) (12.41b)

become, substituting (12.33),

Î(0) = ÎS − ŶS V̂(0) (12.42a)

Î′(L) = [−ÎL − ÎFT(L) + ŶL V̂FT(L)
]+ ŶL V̂′(L) (12.42b)

This shows that we can modify the equations developed for the generalized Norton
equivalent in (7.97) of Chapter 7 by replacing the source ÎL with ÎL + ÎFT(L) −
ŶL V̂FT(L) and V̂(L) with V̂(L) − V̂FT(L) in those equations:[

�̂22ŶS + ŶL�̂11 − �̂21 − ŶL�̂12ŶS
]

V̂(0)

= [
�̂22 − ŶL�̂12

]
ÎS + ÎL︸ ︷︷ ︸

due to lumped sources

+ [
ÎFT(L) − ŶLV̂FT(L)

]︸ ︷︷ ︸
due to incident field

(12.43a)

V̂(L) = V̂FT(L) + �̂12ÎS + [
�̂11 − �̂12ŶS

]
V̂(0) (12.43b)

Similarly, the alternative result given in (7.95) in Chapter 7 becomes[ (
ŶS ẐC + 1n

)
T̂

(
ŶS ẐC − 1n

)
T̂(

ŶL ẐC − 1n

)
T̂e−γ̂L

(
ŶL ẐC + 1n

)
T̂eγ̂L

] [
Î+
m

Î−
m

]

=
[

ÎS

ÎL + ÎFT(L) − ŶL V̂FT(L)

]
(12.44)

The solutions for the terminal voltages so obtained will again be given by (12.40).
The mixed termination representation results given in (7.98)–(7.101) in Chapter 7

are similarly obtained as[ (
ẐC + ẐS

)
T̂

(
ẐC − ẐS

)
T̂(

ŶL ẐC − 1n

)
T̂e−γ̂L

(
ŶL ẐC + 1n

)
T̂eγ̂L

] [
Î+
m

Î−
m

]

=
[

V̂S
ÎL + ÎFT(L) − ŶLV̂FT(L)

]
(12.45)
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or [
�̂21ẐS + ŶL�̂12 − �̂22 − ŶL�̂11ẐS

]
Î(0)

= [
�̂21 − ŶL�̂11

]
V̂S + ÎL︸ ︷︷ ︸

due to lumped sources

+ [
ÎFT(L) − ŶLV̂FT(L)

]︸ ︷︷ ︸
due to incident field

(12.46a)

V̂(L) = V̂FT(L) + �̂11V̂S + [
�̂12 − �̂11ẐS

]
Î(0) (12.46b)

and[ (
ŶS ẐC + 1n

)
T̂

(
ŶS ẐC − 1n

)
T̂(

ẐC − ẐL
)

T̂e−γ̂L
(
ẐC + ẐL

)
T̂eγ̂L

] [
Î+
m

Î−
m

]
=
[

ÎS
V̂L − V̂FT(L) + ẐL ÎFT(L)

]
(12.47)

or [
�̂12ŶS + ẐL�̂21 − �̂11 − ẐL�̂22ŶS

]
V̂(0)

= [
�̂12 − ẐL�̂22

]
ÎS − V̂L︸ ︷︷ ︸

due to lumped sources

+ [
V̂FT(L) − ẐL ÎFT(L)

]︸ ︷︷ ︸
due to incident field

(12.48a)

Î(L) = ÎFT(L) + �̂22ÎS + [
�̂21 − �̂22ŶS

]
V̂(0) (12.48b)

12.2.3.1 Lossless Lines in Homogeneous Media The above final equations for
determining the terminal currents and voltages of the line are considerably simplified
if we assume lossless lines in a homogeneous medium. For this case, the per-unit-
length parameter matrices satisfy

R = 0 (12.49a)

G = 0 (12.49b)

L C = C L = µε 1n (12.49c)

The chain parameters were derived in Chapter 7 and simplify to

�̂11 = cos (β L) 1n (12.50a)

�̂12 = − jv sin (β L) L

= − j sin (β L) ẐC (12.50b)

�̂21 = − jv sin (β L) C

= − j sin (β L) Ẑ−1
C (12.50c)
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�̂22 = cos (β L) 1n (12.50d)

where the characteristic impedance becomes real and is given by

ẐC = v L (12.51a)

Ẑ−1
C = v C (12.51b)

and the phase velocity of propagation in the surrounding homogeneous medium is

v = 1√
µε

(12.52)

The final equations to be solved for the terminal voltages simplify considerably
for this assumption. For example, consider the generalized Thevenin equivalent char-
acterization of the terminations given in (12.35). Substituting the simplified forms
of the total forcing functions V̂FT(L) and ÎFT(L) given in (12.31) and (12.32) into
(12.38) gives [H.2][

cos (β L)
(
ẐS + ẐL

)+ jvsin(β L)
(
L + ẐLC ẐS

)]
Î(0)

= [
cos (β L)1n + jvsin(β L) ẐLC

]
V̂S − V̂L

+
L∫
0

{
cos (β(L − τ))1n + jvsin(β(L − τ))ẐLC

}

×




...
Êinc

z (ith conductor, τ) − Êinc
z (reference conductor, τ)
...


 dτ

−




...
a′∫
a

�̂Einc

t · d �l

...




z = L

+ {
cos (β L)1n + jvsin(β L)ẐLC

}



...
a′∫
a

�̂Einc

t · d �l

...




z = 0

(12.53a)

and

Î(L) = − jvsin(β L) C V̂S + [
cos (β L) 1n + jvsin(β L) C ẐS

]
Î(0)

−
L∫
0

{ jvsin(β(L − τ)) C}
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×




...
Êinc

z (ith conductor, τ) − Êinc
z (reference conductor, τ)
...


 dτ

− { jv sin(β L) C}




...
a′∫
a

�̂Einc

t · d �l

...




z = 0

(12.53b)

The generalized Norton equivalent representation in (12.43) as well as the mixed
representations in (12.46) and (12.48) simplifies in a similar fashion.

12.2.4 Lumped-Circuit Approximate Characterizations

If the line is electrically short at the frequency of the incident field, then the usual
lumped-circuit approximate circuits are adequate to characterize the line. For example,
the per-unit-length equivalent circuit in Figure 12.3 as well as the MTL equations
shows that the lumped-Pi and lumped-T circuits in Figure 7.6 of Chapter 7 can be
modified to incorporate the effects of incident fields by simply multiplying the per-
unit-length phasor voltage and current sources created by the incident field by the
total line length, thus inserting the phasor voltage sources V̂Fi L in series with each
line self-inductance and inserting the phasor current sources ÎFi L in parallel to each
line self-capacitance. Since the line must be electrically short for the lumped-circuit
approximation to be valid, and the cross-sectional dimensions must be electrically
small for the TEM assumption to be valid, the phasor fields do not vary significantly
over the line. Thus, the per-unit-length phasor voltage and current sources, ÎF(z) in
(12.22d) and V̂F(z) in (12.22e), can be approximately evaluated at any convenient
location on the line, say, at the center of the line. These are then multiplied by the
total line length to give the lumped sources in the model. Lumped-Pi and lumped-T
circuits are illustrated in Figure 12.5.

12.2.5 Uniform Plane-Wave Excitation of the Line

A significant set of problems to which these results apply is the case of illumination of
the line by a uniform plane wave from some distant source [A.1]. The radiated fields
in the far field of a radiating structure are spherical waves that resemble, locally,
uniform plane waves. This assumption also simplifies the evaluation of the sources
in the above results.

In order to characterize the frequency-domain response of the line, let us again
describe the incident uniform plane-wave angle of incidence and polarization with
respect to a spherical coordinate system as illustrated in Figure 12.6. The propagation
vector of the wave is incident on the origin of the coordinate system (the phase
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FIGURE 12.5 Adaptation of the lumped-Pi and lumped-T approximate equivalent circuits
for incident field excitation.

reference for the wave) at angles θp from the x axis and φp from the projection onto
the y–z plane from the y axis, as shown in Figure 12.6(a). The polarization of the
electric field vector is described in terms of the relation to the unit vectors in the
spherical coordinate system, �aθ and �aφ, as illustrated in Figure 12.6(b). In terms of
these, the general expression for the phasor electric field vector can be written as
[A.1]

�̂Einc = Êo
[
ex �ax + ey �ay + ez �az

]
e− jβxx e− jβyy e− jβzz (12.54)
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FIGURE 12.6 Definitions of the parameters characterizing the incident field as a uniform
plane wave.

where the components of the incident electric field vector along the x, y, and z axes
of the rectangular coordinate system describing the line are [A.1]

ex = sin θE sin θp

ey = − sin θE cos θp cos φp − cos θE sin φp

ez = − sin θE cos θp sin φp + cos θE cos φp

(12.55a)

and

e2
x + e2

y + e2
z = 1 (12.55b)

The components of the phase constant along those coordinate axes are

βx = −β cos θp

βy = −β sin θp cos φp

βz = −β sin θp sin φp

(12.56)



FREQUENCY-DOMAIN SOLUTIONS 663

FIGURE 12.7 Derivation of the contributions to the equivalent sources due to the transverse
component of the incident electric field for (a) a (n + 1)-wire line and (b) n wires above a
ground plane.

The phase constant is related to the frequency and properties of the medium as

β = ω
√

µε

= 1

v0

√
εrµr (12.57)

where v0 = 1/
√

µ0ε0 is the phase velocity in free space and the medium is char-
acterized by permeability µ = µ0µr, and permittivity ε = ε0εr. Êo is the complex
amplitude of the sinusoidal wave.
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If the reference conductor is placed at the origin of the coordinate system,
x = 0, y = 0, as shown in Figure 12.7(a), the transverse field contributions in (12.22e)
can be written in terms of the cross-sectional coordinates of the kth conductor (xk, yk)
using the general form of the incident field in (12.54) as

ÊTk (L) =
a′∫
a

�̂Einc

tk · d �l

= Êo

dk∫
0

(
ex

xk

dk

+ey

yk

dk

)
e− jβz L e

− j

(
βx

xk

dk

+βy

yk

dk

)
ρ

dρ

= Êo
[
ex xk + ey yk

]
e− jβz L

[
e− j(βx xk+βy yk) − 1

]
− j

(
βx xk + βy yk

)
= Êo

[
ex xk + ey yk

] sin (ψk)

ψk

e− jψk e− jβz L (12.58a)

where dk =
√

x2
k + y2

k is the straight-line distance between the reference conductor
and the kth conductor in the transverse plane and

ψk =
(
βx xk + βy yk

)
2

(12.58b)

Similarly, the contributions due to the longitudinal field in (12.22e) are

ÊLk (z) = Êinc
z (xk, yk, z) − Êinc

z (0 , 0 , z)

= Êo ez e− jβz z
[
e− j(βx xk+βy yk) − 1

]
= − j

(
βx xk + βy yk

)
Êo ez

sin (ψk)

ψk

e− jψk e− jβz z

(12.59)

Substituting the expressions for the chain-parameter submatrices given in Chapter 7:

�̂11(L) = 1

2
Ŷ−1T̂

(
e γ̂L + e− γ̂L

)
T̂−1Ŷ (12.60a)

�̂21(L) = −1

2
T̂ γ̂−1

(
e γ̂L − e− γ̂L

)
T̂−1Ŷ (12.60b)
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into the expressions for V̂FT(L) given in (12.31) and ÎFT(L) given in (12.32) yields

V̂FT(L) =
L∫
0

1

2
Ŷ−1T̂

(
eγ̂(L−τ) + e− γ̂(L−τ)

)
T̂−1Ŷ




...
ÊLk(τ)

...


 dτ

−




...
ÊTk (L)

...


+ 1

2
Ŷ−1T̂

(
e γ̂L + e− γ̂L

)
T̂−1Ŷ




...
ÊTk (0)

...



(12.61)

and

ÎFT(L) = −
L∫
0

1

2
T̂ γ̂−1

(
eγ̂(L−τ) − e−γ̂(L−τ)

)
T̂−1Ŷ




...
ÊLk(τ)

...


 dτ

−1

2
T̂ γ̂−1

(
e γ̂L − e−γ̂L

)
T̂−1Ŷ




...
ÊTk (0)

...


 (12.62)

Observe that the evaluation of these forcing functions requires that we evaluate the
following n × 1 vectors:

M̂± =
L∫
0

(
e γ̂(L−τ) ± e− γ̂(L−τ)

)
T̂−1Ŷ




...
ÊLk(τ)

...


 dτ (12.63)

and

N̂± =
(

eγ̂L ± e−γ̂L
)

T̂−1Ŷ




...
ÊTk (0)

...


 (12.64)

The entries in these vectors become, in terms of the results in (12.58) and (12.59),

[
M̂±]

i
= Êo ez

{
eγiL

[
1 − e−(γi+ jβz)L

]
(γi + jβz)

±e−γiL

[
e(γi− jβz)L − 1

]
(γi − jβz)

}

×
n∑

k=1

{
− j

(
βx xk + βy yk

) sin (ψk)

ψk

e− jψk

[
T̂−1Ŷ

]
ik

}
(12.65)
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where ψk is given by (12.58b) and

[
N̂±]

i
= Êo

{
eγiL ± e−γiL

}
×

n∑
k=1

{[
ex xk + ey yk

] sin (ψk)

ψk

e− jψk

[
T̂−1Ŷ

]
ik

}
(12.66)

The forcing functions in (12.61) and (12.62) become

V̂FT(L) = 1

2
Ŷ−1T̂ M̂+ −




...
ÊTk (L)

...


+ 1

2
Ŷ−1T̂ N̂+ (12.67)

and

ÎFT(L) = −1

2
T̂ γ̂−1 M̂− − 1

2
T̂ γ̂−1 N̂− (12.68)

These results can be extended to the case where the reference conductor is an
infinite, perfectly conducting ground plane as illustrated in Figure 12.7(b). The total
incident field is the sum of the incident field (with the ground plane and the other
conductors removed) and the reflected field. Snell’s law shows that the angles of
incidence and reflection are the same [A.1]. Similarly, continuity of the tangential
electric fields at the surface of the ground plane gives constraints on the y and z
components of the electric field. Thus, the incident and reflected (at the ground plane)
fields are given by [A.1, H.1]

�̂Einc = Êo
[
ex �ax + ey �ay + ez �az

]
e− jβxx e− jβyy e− jβzz (12.69a)

�̂Eref = Êo
[
ex �ax − ey �ay − ez �az

]
e jβxx e− jβyy e− jβzz (12.69b)

Thus, the total fields are

ÊTotal
x = Êinc

x + Êref
x = 2 Êo ex cos (βxx) e− jβyy e− jβzz (12.70a)

ÊTotal
y = Êinc

y + Êref
y = −2 j Êo ey sin (βxx) e− jβyy e− jβzz (12.70b)

ÊTotal
z = Êinc

z + Êref
z = −2 j Êo ez sin (βxx) e− jβyy e− jβzz (12.70c)

Thus, the entries in the vectors in (12.63) and (12.64) become

[
M̂±]

i
= −2 j Êo ez

{
eγiL

[
1 − e−(γi+ jβz)L

]
(γi + jβz)

±e−γiL

[
e(γi− jβz)L − 1

]
(γi − jβz)

}
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×
n∑

k=1

{[
βxxk

sin (βxxk)

βxxk

e− jβy yk

] [
T̂−1Ŷ

]
ik

}
(12.71)

and

[
N̂±]

i
= Êo

{
eγiL ± e−γiL

}
×

n∑
k=1

{[
ex xk + ey yk

] [ sin
(
ψ+

k

)
ψ+

k

]
e− jψ+

k

+ [
ex xk − ey yk

] [ sin
(
ψ−

k

)
ψ−

k

]
e jψ−

k

} [
T̂−1Ŷ

]
ik

(12.72a)

where

ψ±
k = βx xk ± βy yk

2
(12.72b)

and

ÊTk(L) = Êo
[
ex xk + ey yk

] [ sin
(
ψ+

k

)
ψ+

k

]
e− jψ+

k e− jβzL

+Êo
[
ex xk − ey yk

] [ sin
(
ψ−

k

)
ψ−

k

]
e jψ−

k e− jβzL (12.73)

These results are substituted into the equations for the terminal voltages for the
generalized Thevenin equivalent characterization of the terminal networks given in
(12.39) and (12.40)and implemented in the FORTRAN program INCIDENT.FOR,
which is described in Appendix A.

12.3 THE TIME-DOMAIN SOLUTION

We next will extend the frequency-domain methods of the previous sections to develop
the time-domain solutions for MTLs that are excited by external electromagnetic fields
that are incident on the line. We will concentrate on lossless lines. The primary solution
method will be to uncouple the MTL equations via similarity transformations. This
yields n uncoupled two-conductor lines that can be modeled using all of the techniques
of the previous chapter. In particular, a simple SPICE model will be developed. In
addition, there are several other direct methods that will be discussed: lumped-circuit
approximate models, the time-domain to frequency-domain (TDFD) transformation,
and the finite-difference, time-domain (FDTD) method.
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12.3.1 Decoupling the MTL Equations

Diagonalization of the MTL equations as in Chapter 9 is a viable method of solution
for lossless lines. Consider the MTL equations for a lossless line:

∂

∂ z
V(z, t) = −L

∂

∂ t
I(z, t) + VF(z, t) (12.74a)

∂

∂ z
I(z, t) = −C

∂

∂ t
V(z, t) + IF(z, t) (12.74b)

In a fashion similar to the techniques of Chapters 7 and 9 , define the transformation
to mode quantities as

V(z, t) = TV Vm(z, t) (12.75a)

I(z, t) = TI Im(z, t) (12.75b)

Substituting these into (12.74) gives

∂

∂ z
Vm(z, t) = −Lm

∂

∂ t
Im(z, t) + VFm(z, t) (12.76a)

∂

∂ z
Im(z, t) = −Cm

∂

∂ t
Vm(z, t) + IFm(z, t) (12.76b)

where Lm and Cm are the n × n matrices

Lm = T−1
V L TI (12.77a)

Cm = T−1
I C TV (12.77b)

and the incident field forcing functions for the modes become

VFm(z, t) = T−1
V VF(z, t) (12.78a)

IFm(z, t) = T−1
I IF(z, t) (12.78b)

If TV and TI can be chosen such that Lm and Cm are diagonal matrices as

Lm = T−1
V L TI

=




lm1 0 · · · · · · 0

0
. . .

. . .
. . .

...
...

. . . lmi

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 lmn


 (12.79a)
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Cm = T−1
I C TV

=




cm1 0 · · · · · · 0

0
. . .

. . .
. . .

...
...

. . . cmi

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 cmn


 (12.79b)

then (12.76) represent n uncoupled sets of two-conductor lines, each with incident
field excitation through elements of the vectors VFm(z, t) and IFm(z, t). Once the
solution to these uncoupled two-conductor lines has been obtained, we return to the
original variables via the transformations given in (12.75). Hence, the basic solution
technique utilizes the solution for a field-illuminated lossless two-conductor line that
was obtained in the previous chapter.

As discussed in Chapters 7 and 9, a suitable transformation can be found that simul-
taneously diagonalizes L and C. This transformation is obtained by first determining
a real orthogonal transformation U that diagonalizes C as

Ut C U = θ2 (12.80)

where θ2 is a diagonal matrix and Ut denotes the transpose of U. Since C is real
and symmetric, this can always be done. Furthermore, since C is positive definite, all
elements of θ2 are real and positive so that we can form the square root of that matrix,
θ, which is also diagonal and will have real elements on its main diagonal and zeros
elsewhere. Next, find a real orthogonal transformation S such that

St (θ Ut L U θ
)

S = �2 (12.81)

where �2 is again a diagonal matrix with real, positive elements on its diagonal as

�2 =




�2
1 0 · · · · · · 0

0
. . .

. . .
. . .

...
...

. . . �2
i

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 �2
n


 (12.82)

This is always possible since the matrix in parentheses,
(
θ Ut L U θ

)
, is real and

symmetric. Define an n × n matrix T as

T = U θ S (12.83)
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Normalizing the columns of T to unity length gives

Tnorm = T α (12.84)

where α is an n × n diagonal matrix. We define the above transformations as

TI = Tnorm

= U θ S α (12.85)

TV = U θ−1 S α−1 (12.86)

The transformations TV and TI are related as

TV Tt
I = U θ−1 S α−1α St θ Ut

= 1n (12.87a)

where 1n is the n × n identity matrix, and we have used the identities S−1 = St and
U−1 = Ut for these orthogonal transformations. Hence,

T−1
V = Tt

I (12.87b)

We can directly show that these transformations simultaneously diagonalize L and C
by writing

T−1
V LTI = α St θ Ut L U θ S︸ ︷︷ ︸

�2

α

= α2 �2 (12.88a)

and

T−1
I CTV = α−1St θ−1 Ut C U︸ ︷︷ ︸

θ2

θ−1 S α−1

= α−2 (12.88b)

or T−1
V C−1TI = α2. Comparing (12.88) to (12.79) we see that

lmi = α 2
i �

2
i (12.89a)

and

cmi = α−2
i (12.89b)

The basic idea is to determine the frequency-domain solution and then to transform
that to the time domain. From Chapter 7 , the matrix of propagation constants in the
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frequency-domain result is

γ̂2 = T̂−1
I ŶẐ T̂I

= −ω2 T−1
I CLT−1

I

= −ω2 T−1
I CTV︸ ︷︷ ︸

α−2

T−1
V LTI︸ ︷︷ ︸
α2 �2

= −ω2 �2 (12.90)

Also from Chapter 7 , the characteristic impedance is real and becomes

ZC = Ŷ−1 T̂I γ̂ T̂−1
I

= C−1 TI� T−1
I (12.91)

From the decoupled equations in (12.76) and (12.79), the mode characteristic
impedances and velocities of propagation become, using (12.89),

ZCmi =
√

lmi

cmi

= α2
i �i (12.92)

vmi = 1√
lmi cmi

= 1

�i

(12.93)

Hence, the modal characteristic impedance matrix is diagonal as

ZCm = α2�

= T−1
V C−1TI︸ ︷︷ ︸

α2

�

= T−1
V C−1 TI� T−1

I︸ ︷︷ ︸
ZC

TI

= T−1
V ZCTI (12.94)

The frequency-domain chain-parameter matrix relates the phasor voltages and
currents at one end of the line to those at the other end as

V̂(L) = �̂11(L) V̂(0) + �̂12(L) Î(0) + V̂FT(L) (12.95a)

Î(L) = �̂21(L) V̂(0) + �̂22(L) Î(0) + ÎFT(L) (12.95b)
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where the total forcing functions are given by

V̂FT(L) =
L∫
0

[
�̂11(L − τ)V̂F(τ) + �̂12(L − τ)ÎF(τ)

]
dτ (12.96a)

ÎFT(L) =
L∫
0

[
�̂21(L − τ)V̂F(τ) + �̂22(L − τ)ÎF(τ)

]
dτ (12.96b)

and the chain-parameter submatrices are, for a lossless line,

�̂11(L) = 1

2
C−1 TI

(
e jω � L + e− jω � L

)
T−1

I C (12.97a)

�̂12(L) = − 1

2
C−1 TI �

(
e jω � L − e− jω � L

)
T−1

I

= − 1

2
C−1 TI �T−1

I︸ ︷︷ ︸
ZC

TI

(
e jω � L − e− jω � L

)
T−1

I (12.97b)

�̂21(L) = − 1

2
TI

(
e jω � L − e− jω � L

)
�−1 T−1

I C

= − 1

2
TI

(
e jω � L − e− jω � L

)
T−1

I TI�
−1 T−1

I C︸ ︷︷ ︸
Z−1

C
(12.97c)

�̂22(L) = 1

2
TI

(
e jω � L + e− jω � L

)
T−1

I (12.97d)

where e± jω � L are diagonal matrices with e± jω �i L on the main diagonals. Trans-
forming to mode quantities yields

V̂m(L) = �̂m11(L) V̂m(0) + �̂m12(L) Îm(0) + V̂FTm(L) (12.98a)

Îm(L) = �̂m21(L) V̂m(0) + �̂m22(L) Îm(0) + ÎFTm(L) (12.98b)

where the modal chain-parameter submatrices are

�̂m11(L) = T−1
V �̂11(L) TV

= 1

2

(
e jω � L + e− jω � L

)
(12.99a)
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�̂m12(L) = T−1
V �̂12(L) TI

= − 1

2
α2 �︸︷︷︸
ZCm

(
e jω �L − e− jω � L

)
(12.99b)

�̂m21(L) = T−1
I �̂21(L) TV

= − 1

2

(
e jω � L − e− jω � L

)
α−2 �−1︸ ︷︷ ︸

Z−1
Cm

(12.99c)

�̂m22(L) = T−1
I �̂22(L) TI

= 1

2

(
e jω � L + e− jω � L

)
(12.99d)

where we have used the identity T−1
V C−1TI = α2 and α2 is a diagonal matrix. We

have also used the fact that in the multiplication of diagonal matrices the order of
multiplication can be interchanged. The total modal forcing functions due to the
incident field become

V̂FTm(L) = T−1
V V̂FT(L)

=
L∫
0

[
�̂m11(L − τ)Tt

IV̂F(τ) + �̂m12(L − τ)Tt
V ÎF(τ)

]
dτ

=
L∫
0

[
1

2

(
e jω � (L−τ) + e− jω � (L−τ)

)
Tt

IV̂F(τ)

− 1

2

(
e jω � (L−τ) − e− jω � (L−τ)

)
ZCm Tt

V ÎF(τ)

]
dτ

(12.100a)

ÎFTm(L) = T−1
I ÎFT(L)

=
L∫
0

[
�̂m21(L − τ)Tt

IV̂F(τ) + �̂m22(L − τ)Tt
V ÎF(τ)

]
dτ

=
L∫
0

[
− 1

2

(
e jω � (L−τ) − e− jω � (L−τ)

)
Z−1

Cm Tt
IV̂F(τ)

+ 1

2

(
e jω � (L−τ) + e− jω � (L−τ)

)
Tt

V ÎF(τ)

]
dτ (12.100b)

where we have substituted, from (12.87) , T−1
V = Tt

I and T−1
I = Tt

V .



674 INCIDENT FIELD EXCITATION OF MULTICONDUCTOR LINES

12.3.2 A SPICE Equivalent Circuit

We now obtain the time-domain version of the chain-parameter representation. As in
the previous chapter, this will show how to construct a time-domain equivalent circuit
that is implementable in the SPICE program. Substituting (12.99) into (12.98) yields

V̂m(L) = 1

2

(
e jω � L + e− jω � L

)
V̂m(0)

− 1

2

(
e jω � L − e− jω � L

)
ZCm Îm(0) + V̂FTm(L)

(12.101a)

ZCm Îm(L) = − 1

2

(
e jω � L − e− jω � L

)
V̂m(0)

+ 1

2

(
e jω � L + e− jω � L

)
ZCm Îm(0) + ZCm ÎFTm(L)

(12.101b)

Adding and subtracting these yields

V̂m(0) − ZCm Îm(0) = e− jω � L
[
V̂m(L) − ZCm Îm(L)

]+ Ê0(L) (12.102a)

V̂m(L) + ZCm Îm(L) = e− jω � L
[
V̂m(0) + ZCm Îm(0)

]+ ÊL(L) (12.102b)

where

Ê0(L) = −e− jω � L
[
V̂FTm(L) − ZCm ÎFTm(L)

]
(12.103a)

ÊL(L) = [
V̂FTm(L) + ZCm ÎFTm(L)

]
(12.103b)

Recognizing the basic time-delay transformation:

e± jω T F̂ (ω) ⇔ F (t − T ) (12.104)

these become, in the time domain,

[Vm(0, t) − ZCm Im(0, t)]i = [Vm(L, t − Ti) − ZCm Im(L, t − Ti)]i + [E0(t)]i

(12.105a)

[Vm(L, t) + ZCm Im(L, t)]i = [Vm(0, t − Ti) + ZCm Im(0, t − Ti)]i + [EL(t)]i

(12.105b)
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where we denote the entry in the ith row of a vector V as [V]i, and the one-way time
delay of the ith modal line is denoted by

Ti = L

vmi

= �i L

(12.106)

The additional sources are

[E0(t)]i = − [VFTm(L, t − Ti) − ZCm IFTm(L, t − Ti)]i (12.107a)

[EL(t)]i = [VFTm(L, t) + ZCm IFTm(L, t)]i (12.107b)

Equations (12.105) suggest the usual SPICE equivalent circuit for the modes where we
add to it the sources due to the incident field, [E0(t)]i and [EL(t)]i. The transformation
back to the actual line voltages and currents is accomplished with controlled sources
that represent the mode transformations according to (12.75):

[V(z, t)]i =
n∑

k=1

{
[TV ]ik [Vm(z, t)]k

}
(12.108a)

[Im(z, t)]i =
n∑

k=1

{[
T−1

I

]
ik

[I(z, t)]k
}

(12.108b)

as in Chapter 9. Thus, the only difference between the SPICE model derived for the
case of the excitation in the terminal networks and this case wherein the excitation
is via an incident field is the implementation of the sources due to that field given in
(12.105)and (12.107).

Although the above is valid for any time-domain form of the incident field, we
will now restrict our attention to uniform plane wave excitation of the line. The modal
forcing functions in (12.103) become, using the equivalent form given in (12.31) and
(12.32),

Ê0(L) = −e− jω � L
[
V̂FTm(L) − ZCm ÎFTm(L)

]
= −e− jω � L




L∫
0

[
�̂m11(L − τ) − ZCm�̂m21(L − τ)

]
Tt

I ÊL (τ) dτ

+ [
�̂m11(L) − ZCm�̂m21(L)

]
Tt

I ÊT (0) − Tt
I ÊT (L)

}

= −
L∫
0

e− jω � τ Tt
I ÊL(τ) dτ

+e− jω � L Tt
I ÊT(L) − Tt

I ÊT(0)

(12.109a)
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ÊL(L) = [
V̂FTm(L) + ZCm ÎFTm(L)

]
=



L∫
0

[
�̂m11(L − τ) + ZCm�̂m21(L − τ)

]
Tt

I ÊL (τ) dτ

(12.109b)

+ [
�̂m11(L) + ZCm�̂m21(L)

]
Tt

I ÊT (0) − Tt
I ÊT (L)




=
L∫
0

e− jω �(L−τ) Tt
I ÊL(τ) dτ

−Tt
I ÊT(L) + e− jω � L Tt

I ÊT(0)

where ÊT denotes the vector of contributions from the transverse electric field and ÊL
denotes the vector of contributions from the longitudinal electric field. If the reference
conductor is placed at the origin of the coordinate system, x = 0, y = 0, as shown in
Figure 12.7(a), the transverse field contributions can again be written in terms of the
cross-sectional coordinates of the kth conductor (xk, yk) using the general form of the
incident field in (12.54) as in (12.58)

[
ÊT (L)

]
k

=
a′∫
a

�̂Einc

tk · d �l

= Êo
[
ex xk + ey yk

] sin (ψk)

ψk

e− jψk e− jβzL

(12.110a)

where dk =
√

x2
k + y2

k is the straight-line distance between the reference conductor
and the kth conductor in the transverse plane and

ψk =
(
βx xk + βy yk

)
2

(12.110b)

Similarly, the contributions due to the longitudinal field are given in (12.59) as

[
ÊL (z)

]
k

= Êinc
z (xk, yk, z) − Êinc

z (0, 0, z)

= − j
(
βx xk + βy yk

)
Êo ez

sin (ψk)

ψk

e− jψk e− jβzz (12.111)

Denoting the cross-sectional time delay as

Txyk = xk

vx

+ yk

vy

(12.112)
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and

Tz = L

vz

(12.113)

along with the time delay of the modes:

Ti = L

vmi

= �i L (12.114)

(12.109) becomes

[
Ê0(L)

]
i
= Êo(ω)

n∑
k=1



[

sin (ψk)

ψk

] [
Tt

I

]
ik

× [
ez Txyk L − (

exxk + eyyk

)
(Ti + Tz)

]

×


e

− jω
Txyk

2 − e

− jω

(
Ti+Tz+

Txyk

2

)


(Ti + Tz)




(12.115a)

[
ÊL(L)

]
i
= Êo(ω)

n∑
k=1

{[
sin (ψk)

ψk

] [
Tt

I

]
ik

× [
ez Txyk L + (

exxk + eyyk

)
(Ti − Tz)

]

×


e

− jω

(
Ti+

Txyk

2

)
− e

− jω

(
Tz+

Txyk

2

)


(Ti − Tz)




(12.115b)

Again, recognizing the basic time delay transformation in (12.104), these sources
transform to the time domain as

[E0(t)]i =
n∑

k=1

{[
ez Txyk L − (

exxk + eyyk

)
(Ti + Tz)

] [
Tt

I

]
ik
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× pk(t)∗
Eo

(
t − Txyk

2

)
− Eo

(
t − Ti − Tz − Txyk

2

)
(Ti + Tz)



(12.116a)

[EL(t)]i =
n∑

k=1


[

ez Txyk L + (
exxk + eyyk

)
(Ti − Tz)

] [
Tt

I

]
ik

× pk(t)∗
Eo

(
t − Ti − Txyk

2

)
− Eo

(
t − Tz − Txyk

2

)
(Ti − Tz)



(12.116b)

where pk(t) is the pulse function for the kth conductor given by

pk(t) =




0, t < − Txyk

2
1

Txyk

, − Txyk

2
< t <

Txyk

2

0, t >
Txyk

2

(12.117)

as illustrated in Figure 11.12 of Chapter 11 and ∗ denotes the convolution operation.
Again, let us assume that the line cross-sectional dimensions are electrically small
at the significant frequencies of the waveform Eo(t), so that pk(t) approximates an
impulse:

pk(t) ∼= δ(t) (12.118)

Similarly, we will neglect the cross-sectional time delay in the expressions involving
Eo(t), that is, we remove the Txyk/2 terms for all k, so that the forcing functions
simplify to

[E0(t)]i = [α0]i

[
Eo (t) − Eo (t − Ti − Tz)

(Ti + Tz)

]
(12.119a)

[EL(t)]i = [αL]i

[
Eo (t − Ti) − Eo (t − Tz)

(Ti − Tz)

]
(12.119b)
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where the entries in the n × 1 vectors α0 and αL are given by

[α0]i =
n∑

k=1

{[
ez Txyk L − (

exxk + eyyk

)
(Ti + Tz)

] [
Tt

I

]
ik

}
(12.120a)

[αL]i =
n∑

k=1

{[
ez Txyk L + (

exxk + eyyk

)
(Ti − Tz)

] [
Tt

I

]
ik

}
(12.120b)

Therefore, the modal expressions in (12.105)simplify to

[Vm(0, t) − ZCm Im(0, t)]i = [Vm(L, t − Ti) − ZCm Im(L, t − Ti)]i

+ [α0]i

[
Eo (t) − Eo (t − Ti − Tz)

(Ti + Tz)

]
(12.121a)

[Vm(L, t) + ZCm Im(L, t)]i = [Vm(0, t − Ti) + ZCm Im(0, t − Ti)]i

+ [αL]i

[
Eo (t − Ti) − Eo (t − Tz)

(Ti − Tz)

]
(12.121b)

Equations (12.121) suggest the SPICE model shown in Figure 12.8. The external
nodes are denoted as 10i (at z = 0) and 20i (at z = L). Nodes 30i, 40i, 50i, and 60i
attach to controlled sources that implement the transformations between actual and
mode quantities given in (12.108). The remainder of the network implements (12.121)
for the ith mode. The five delay lines simulating (12.119) for each mode need not
be terminated in the mode characteristic impedances but can be terminated in any
characteristic impedance in order to remove reflections and give the desired ideal
delay of Eo(t). If the wave has no propagation component in the z direction, Tz = 0,
then the last two lines are removed from the model. If the wave has a component in
the +z direction, it may happen that Ti = Tz, in which case (12.119b) appears to be
undefined. However, this term becomes[

Eo (t − Ti) − Eo (t − Tz)

(Ti − Tz)

]
Tz → Ti

= − d

dt
Eo (t − Ti) (12.122)

so that the last delay line is replaced as shown in Figure 12.9. Waves that have a
component in the −z direction may result in the last two delay lines having negative
delays, which SPICE does not allow. Thus, we must restrict this model to positive Tz.
For negative Tz, simply reverse the ends of the model.

The above results for [E0 (t)]i and [EL (t)]i for uniform plane wave excitation
for a line over an infinite ground plane can similarly be obtained using (12.70). This
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FIGURE 12.8 The SPICE model for an MTL with incident field illumination.
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FIGURE 12.9 Replacement of one of the sources in Figure 12.8 for the special case where
the propagation is solely in the z direction and the mode velocity equals that of the incident
wave.

model is implemented via a SPICE subcircuit generated by the FORTRAN program
SPICEINC.FOR described in Appendix A.

12.3.3 Lumped-Circuit Approximate Characterizations

The use of lumped-circuit approximations such as the lumped-Pi and lumped-T
circuits parallels all of the previous such uses. The lumped-Pi and lumped-T cir-
cuits shown for the phasor frequency-domain solution in Figure 12.5 can be used
directly for the time-domain solution by simply replacing the phasor sources V̂Fi L
and ÎFi L with their time-domain equivalents VFi L and IFi L.

12.3.4 The Time-Domain to Frequency-Domain (TDFD) Transformation

Perhaps the most straightforward method of obtaining the time-domain response is
to view the problem as a two-port with Eo(t) as the input and the desired termi-
nal response voltage (or current) as the output. The magnitude and phase of Eo(t)
can be obtained with the Fourier transform or can be approximated as a periodic
waveform with a sufficiently long period. The frequency-domain transfer function
for either a lossless or a lossy line can be obtained with the previous methods with
the code INCIDENT.FOR described in Appendix A or, for a lossless line, with
SPICEINC.FOR. The magnitudes of the spectral components of Eo(t) are multi-
plied by the magnitudes of the transfer function, and the phase angles of Eo(t) are
added to the angles of the transfer function to produce the magnitude and phase of
the response in the usual fashion. Then the inverse Fourier transform can be used to
convert this back to the time domain.
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The method is straightforward and can handle
√

f skin-effect losses (which IN-
CIDENT.FOR can handle). However, it relies on superposition so that the two-port
must be linear. This again means that the line terminations as well as the surrounding
medium must be linear. Therefore, nonlinear loads as well as corona breakdown in
lightning studies cannot be handled with this method.

12.3.5 The Finite-Difference, Time-Domain (FDTD) Solution Method

Another straightforward way of solving the MTL equations is with the FDTD method,
which was described for two-conductor lines in the previous chapter. The space and
time derivatives are discretized as �z and �t, respectively, giving a recursion relation
in the form of a set of difference equations. The transmission-line equations in (12.74)
become

∂

∂ z
V(z, t) + L

∂

∂ t
I(z, t) = − ∂

∂ z
ET(z, t) + EL(z, t) (12.123a)

∂

∂ z
I(z, t) + C

∂

∂ t
V(z, t) = −C

∂

∂ t
ET(z, t) (12.123b)

where the n × 1 vectors ET and EL are due to the transverse and longitudinal com-
ponents of the incident electric field, respectively. These were given, in the frequency
domain, for a uniform plane wave in (12.110)and (12.111). Thus (removing sin ψk/ψk

and e− jψk )[
− ∂

∂ z
ÊT(z) + ÊL(z)

]
i

= jω

[
1

vz

(
exxi + eyyi

)−
(

xi

vx

+ yi

vy

)
ez

]
Êo (ω) e− jβzz

(12.124)

This translates in the time domain to

− ∂

∂ z
ET(z, t) + EL(z, t) =

[
1

vz

AT − AL

]
∂

∂ t
Eo

(
t − z

vz

)
(12.125a)

where

AT =




...(
exxi + eyyi

)
...


 (12.125b)

AL =




...(
xi

vx

+ yi

vy

)
ez

...


 (12.125c)



THE TIME-DOMAIN SOLUTION 683

Similarly,

− ∂

∂ t
C ET(z, t) = −C AT

∂

∂ t
Eo

(
t − z

vz

)
(12.126)

The voltage and current solution points are interlaced one-half cell apart as shown
in Figure 11.14 of the previous chapter. Similarly, the voltage and current solution
times are also interlaced one-half time step apart as shown in Figure 11.14 . Using
this scheme, the difference equations become

1

� z

[
Vn+1

k+1 − Vn+1
k

]
+ 1

� t
L
[
In+3/2
k − In+1/2

k

]
=
[

1

vz

AT − AL

]
1

� t

[
Eo

(
tn+3/2 − (k − 1/2) � z

vz

)

− Eo

(
tn+1/2 − (k − 1/2) � z

vz

)]
(12.127a)

for k = 1, 2, . . . , NDZ and

1

� z

[
In+1/2
k − In+1/2

k−1

]
+ 1

� t
C
[
Vn+1

k − Vn
k

]
= −C AT

1

� t

[
Eo

(
tn+1 − (k − 1) � z

vz

)

−Eo

(
tn − (k − 1) � z

vz

)]
(12.127b)

for k = 2, . . . , NDZ, where

Vn
k = V ((k − 1) � z, n�t) (12.128a)

In
k = I ((k − 1/2) � z, n� t) (12.128b)

The required recursion relations can be obtained by solving (12.127) to give

In+3/2
k = In+1/2

k − � t

� z
L−1

[
Vn+1

k+1 − Vn+1
k

]
+ L−1

[
1

vz

AT − AL

] [
Eo

(
tn+3/2 − (k − 1/2) � z

vz

)

−Eo

(
tn+1/2 − (k − 1/2) � z

vz

)]
(12.129a)
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Vn+1
k = Vn

k − � t

� z
C−1

[
In+1/2
k − In+1/2

k−1

]
− AT

[
Eo

(
tn+1 − (k − 1) � z

vz

)
− Eo

(
tn − (k − 1) � z

vz

)]
(12.129b)

Next, consider the incorporation of the terminal conditions. The essential problem
in incorporating the terminal conditions is again that the FDTD voltages and currents
at each end of the line, V1, I1 and VNDZ+1, INDZ, are not collocated in space or time,
whereas the terminal conditions relate the voltage and current at the same position
and at the same time. We will denote the vector of currents at the source (z = 0) as IS
and the vector of currents at the load (z = L) as IL, as shown in Figure 11.15 . The
second transmission-line equation given in Eq. (12.123b) is discretized at the source
as

1

�z/2

[
In+1/2

1 − 1

2

(
In+1

S + In
S

)]
+ 1

�t
C
[
Vn+1

1 − Vn
1

]

= − 1

�t
CAT

[
Eo

(
tn+1

)
− Eo

(
tn
)]

(12.130a)

Similarly, the second transmission-line equation, (12.123b), is discretized at the load
as

1

�z/2

[
1

2

(
In+1

L + In
L

)
− In+1/2

NDZ

]
+ 1

�t
C
[
Vn+1

NDZ+1 − Vn
NDZ+1

]

= − 1

�t
CAT

[
Eo

(
tn+1 − L = NDZ�z

vz

)
− Eo

(
tn − L = NDZ�z

vz

)]
(12.130b)

Equations (12.130) are solved to give the recursion relations at the source and the
load:

Vn+1
1 = Vn

1 − 2�t

�z
C−1In+1/2

1 + �t

�z
C−1

[
In+1

S + In
S

]
−AT

[
Eo

(
tn+1

)
− Eo

(
tn
)]

(12.131a)

Vn+1
NDZ+1 = Vn

NDZ+1 + 2�t

�z
C−1In+1/2

NDZ − �t

�z
C−1

[
In+1

L + In
L

]
−AT

[
Eo

(
tn+1 − L = NDZ � z

vz

)
− Eo

(
tn − L = NDZ � z

vz

)]
(12.131b)
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In the case of resistive terminations, the terminal characterizations are written in
terms of a generalized Thevenin equivalent as

V1 = VS − RSIS (12.132a)

VNDZ+1 = VL + RLIL (12.132b)

Inverting these gives

IS = −GS V1 + GS VS (12.133a)

IL = GL VNDZ+1 − GL VL (12.133b)

Substituting (12.133) into Eq. (12.131) gives the recursion relations for V1 and
VNDZ+1:

Vn+1
1 =

(
� z

� t
RSC + 1n

)−1 {(
� z

� t
RS C − 1n

)
Vn

1 − 2 RSIn+1/2
1

+
(

Vn+1
S + Vn

S

)

− � z

� t
RS C AT

[
Eo

(
tn+1

)
− Eo

(
tn
)]}

(12.134a)

and

Vn+1
NDZ+1 =

(
� z

� t
RLC + 1n

)−1 {(
� z

� t
RL C − 1n

)
Vn

NDZ+1 + 2 RLIn+1/2
NDZ

+
(

Vn+1
L + Vn

L

)

− � z

� t
RL C AT

[
Eo

(
tn+1 − L = NDZ � z

vz

)

−Eo

(
tn − L = NDZ � z

vz

)]}
(12.134b)

and the voltages at the interior points are determined from (12.129b)

Vn+1
k = Vn

k − � t

� z
C−1

[
In+1/2
k − In+1/2

k−1

]
− AT

[
Eo

(
tn+1 − (k − 1) � z

vz

)
− Eo

(
tn − (k − 1) � z

vz

)]
(12.134c)
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for k = 2, 3, . . . , NDZ. Equations (12.134)are first solved for the voltages and then
the currents are determined from those voltages using (12.129a) as

In+3/2
k = In+1/2

k − � t

� z
L−1

[
Vn+1

k+1 − Vn+1
k

]

+L−1
[

1

vz

AT − AL

] [
Eo

(
tn+3/2 − (k − 1/2) � z

vz

)

−Eo

(
tn+1/2 − (k − 1/2) � z

vz

)]
(12.135)

for k = 1, 2, 3, . . . , NDZ. Once again, for stability the position and time discretiza-
tions must satisfy the Courant condition

� t ≤ � z

viMAX
(12.136)

where viMAX is the maximum of the mode velocities.
The above results can similarly be implemented for uniform plane wave excitation

for a line over an infinite ground plane. This method is implemented in the FORTRAN
program FDTDINC.FOR, which is described in Appendix A.

12.4 COMPUTED RESULTS

The computed results will compare the SPICE model using SPICEINC.FOR,
the TDFD transformation using TIMEFREQ.FOR, and the FDTD model using
FDTDINC.FOR. The structure is shown in Figure 12.10 and consists of a 2-m length
of ribbon cable. The wire radii are 7.5 mils, the dielectric thicknesses are 10 mils, and
the dielectric constant is 3.5. The wires have center-to-center separations of 50 mils.
The middle wire is chosen as the reference conductor, and a uniform plane wave
is incident in the z direction with the electric field polarized in the x direction. The
per-unit-length parameter matrices of L and C were computed with RIBBON.FOR
and are

L =
[

0.7485 0.2408
0.2408 0.7485

]
µ H/m

and

C =
[

24.982 −6.266
−6.266 24.982

]
pF/m
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FIGURE 12.10 A three-wire ribbon cable with incident field excitation for illustrating
numerical results.

The line is terminated in 500 � resistors giving

RS = RL =
[

500 0
0 500

]

The time form of the incident electric field, Eo(t), is a ramp waveform rising to
a level of 1 V/m with various rise times of τr = 100 ns, 10 ns, and 1 ns. With re-
gard to the diagram in Figure 12.6, θE = 90o, θp = 90o, and φp = −90o giving ex =
1, ey = ez = 0 and βx = βy = 0, βz = β0. We will compute and plot the voltage
V1 (0).

Figure 12.11(a) shows the results for the 100 ns rise time. All three mod-
els show excellent correlation. The Eo(t) waveform should have a bandwidth of
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BW = 1/τr = 10 MHz. However, the intent is to reproduce the induced wave-
form. The SPICE prediction shows a rise time of the output voltage V1 (0) of
roughly 20 ns. Hence, the induced waveform for V1 (0) should have significant
spectral content up to around 1/20 ns = 50 MHz. The TDFD transformation sim-
ulated the Eo(t) waveform as a 1-MHz trapezoidal pulse with a 50% duty cycle
and equal rise and fall times. The results were obtained using 100 harmonics to
contain a spectrum up to 100 MHz. The FDTD results were obtained by discretiz-
ing the line into NDZ = 5 sections of length �z = L/NDZ = 0.4 m and the time
into NDT = 200 time steps of �t = final time/NDT = 1 ns. Hence, each section
is 1/15 λ 0 at 50 MHz. In order to satisfy the Courant condition, we should have,
roughly, NDT > NDZ × finaltime × v0/line length giving NDT > 150, so we chose
NDT = 200.

Figure 12.11(b) shows the results for the 10 ns rise time. All three models again
show excellent correlation. The SPICE prediction shows a rise time of the output volt-
age V1 (0) of roughly 10 ns. Hence, the induced waveform for V1 (0) should have sig-
nificant spectral content up to around 1/10 ns = 100 MHz. The results were obtained
using 500 harmonics to contain a spectrum up to 500 MHz. The FDTD results were
obtained by discretizing the line into NDZ = 10 sections of length �z = L/NDZ =
0.2 m and the time into NDT = 200 time steps of �t = final time/NDT = 0.5 ns.
Hence, each section is 1/15 λ 0 at 100 MHz. In order to satisfy the Courant con-
dition, we should have, roughly, NDT > NDZ × final time × v0/line length giving
NDT > 150, so we again chose NDT = 200.

Figure 12.11(c) shows the results for the 1 ns rise time. All three models again
show excellent correlation. The SPICE prediction shows a rise time of the output
voltage V1 (0) of roughly 1 ns. Hence, the induced waveform for V1 (0) should have
significant spectral content up to around 1/1 ns = 1 GHz. The TDFD transformation
simulated the Eo(t) waveform as a 1-MHz trapezoidal pulse with a 50% duty cycle
and equal rise and fall times. The results were obtained using 1000 harmonics to
contain a spectrum up to 1 GHz. The FDTD results were obtained by discretizing
the line into NDZ = 100 sections of length �z = L/NDZ = 2 cm and the time into
NDT = 1500 time steps of �t = final time/NDT = 0.067 ns. Hence, each section is
1/15 λ 0 at 1 GHz. In order to satisfy the Courant condition, we should have, roughly,
NDT > NDZ × final time × v0/line length giving NDT > 1500, so we chose
NDT = 1500.

The SPICE model is not restricted to the time domain and can be used to give
frequency-domain results although restricted to lossless lines. These are shown in
Figure 12.12 from 1 kHz to 200 MHz. The results of the frequency-domain direct
calculation with and without losses are obtained using the code INCIDENT.FOR.
All three models give virtually identical results except around frequencies where the
line is some multiple of a half wavelength.

The effect of losses on the time-domain results can be investigated by computing
the results using the TDFD method using the TIMEFREQ.FOR program described in
Appendix A . The frequency-domain transfer function is computed with and without
losses using the program INCIDENT.FOR. The time-domain results for 1 ns rise time
are compared in Figure 12.13 using 1000 harmonics of the 1 MHz waveform. The
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FIGURE 12.11 Predictions of the time-domain near-end voltage of the line of Figure 12.10
using the SPICE model, the time-domain to frequency-domain transformation method, and
the FDTD method for pulse rise times of (a) 100 ns, (b) 10 ns, and (c) 1 ns.



690 INCIDENT FIELD EXCITATION OF MULTICONDUCTOR LINES

FIGURE 12.12 Predictions of the frequency response of the near-end voltage of the line
of Figure 12.10 using the SPICE model, and the MTL model with and without losses: (a)
magnitude and (b) phase.

SPICE prediction showed in Figure 12.11(c) a rise time of the output voltage V1 (0)
of roughly 1 ns. Hence, the induced waveform for V1 (0) should have significant
spectral content up to around 1/1 ns = 1 GHz, so excellent predictions are to be
expected. The results with and without losses are virtually identical. This is not to say
that losses are always unimportant, but for the particular load impedance level, line
dimensions and spectral content of the waveform used here, they are apparently not
significant.
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FIGURE 12.13 Predictions of the time-domain near-end voltage of the line of Figure 12.10
using the time-domain to frequency-domain transformation method with and without losses
for a rise time of 1 ns.

PROBLEMS

12.1 Verify the equivalence in (12.20).

12.2 Verify the simplified forms of the excitation sources in (12.31)and (12.32).

12.3 Verify the solutions in (12.38), (12.39), and (12.43)–(12.48) .

12.4 Verify the forms of the transverse and longitudinal excitations in (12.58)and
(12.59).

12.5 Verify the results for M± and N± given in (12.65) and (12.66).

12.6 Verify the results for M± and N± for a ground plane given in (12.71) and
(12.72).

12.7 Verify the results for the modal forcing functions in (12.100).

12.8 Verify the results for the SPICE sources in (12.116).

12.9 Verify the SPICE equivalent circuit shown in Figure 12.8.

12.10 Verify the MTL equations for plane-wave excitation given in (12.125) and
(12.126).

12.11 Verify the FDTD recursion relations in (12.134) and (12.135).

12.12 Verify the computed results in Figures 12.11–12.13.
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13
TRANSMISSION-LINE NETWORKS

The previous chapters of this book have considered the analysis of uniform transmis-
sion lines that have one important restriction: All n + 1 conductors are parallel to each
other. Numerous practical configurations consist of interconnections of these types of
lines as illustrated in Figure 13.1(a). These practical configurations will be referred
to as transmission-line networks. Lines may end in termination networks or may be
interconnected by interconnection networks. Each transmission line of the network
will be referred to as a tube after [1–3]. A convenient way of describing the overall
network is with a graph as illustrated in Figure 13.1(b) [1,2,4]. The transmission lines
are represented with single lines or branches of the graph. The termination networks
are defined as a node having only one tube incident on it and are represented by
rectangles. The interconnection networks are defined as a node having more than one
tube incident on it and are represented by circles. The excitation for the network may
be in the form of lumped sources in the termination or interconnection networks or it
may be due to either distributed excitation from an incident electromagnetic field or
a point excitation along the line as with the direct attachment of a lightning stroke.
Point excitation of a tube as in the case of a direct attachment of a lightning stroke can
be handled by characterizing the segments of the tube to the left and right of the ex-
citation point with any of the following models and treating the point excitation as an
interconnection network between these tube subsegments. Lumped sources in this in-
terconnection network then represent this point excitation at the junction. Distributed
excitation must be included in the overall characterization of the tube as described in
Chapters 11 and 12, whereas lumped sources within the termination/interconnection

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.
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FIGURE 13.1 Illustration of a transmission-line network: (a) tube and network definitions
and (b) representation with a graph.

networks are included in their description. The purpose of this chapter is to examine
methods for characterizing these types of interconnected lines.

Evidently, any method for characterizing this network seeks to (1) characterize each
tube in some fashion as outlined in the previous chapters and (2) interconnect these
tubes by enforcing the constraints on the line voltages and currents via Kirchhoff’s
laws and the element characteristics within the termination/interconnection networks.
One obvious representation method is to use SPICE subcircuit models for the tubes
developed in Chapters 8, 9, 11, and 12 and interconnect and/or terminate the
nodes of those subcircuit models in the resulting SPICE code. This method is very
straightforward using the program SPICEMTL.FOR or SPICEINC.FOR described
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in Appendix A to provide the SPICE subcircuit models of each tube. The advantages
of this method are that (1) it is straightforward to implement and (2) dynamic as well
as nonlinear loading and elements within the termination/interconnection networks
such as diodes and transistors are already available in the SPICE code and can
be readily used to build the termination/interconnection networks to complete the
overall characterization. So a wide variety of practical terminations can be analyzed
without the need for developing either the models of complicated elements or the
numerical integration routines to give a time-domain analysis. The disadvantage of
this method is that it is so far applicable only to lossless lines.

An approximate method is to use lumped-circuit iterative models of each tube such
as the lumped-Pi or lumped-T models and use any lumped-circuit analysis program
such as SPICE to analyze the resulting interconnection. Frequency-independent losses
can be incorporated into this result, but the method is restricted to tubes that are
electrically short. Time-domain results can again be reasonably approximated if the
rise/fall times of the source waveforms are sufficiently longer than the tube one-way
delays.

It is also possible to construct an exact model of the line using the frequency-
domain admittance or impedance parameter characterizations of each tube [4, 5].
These methods have the advantage of simple construction of the overall equations that
are to be solved to give the tube terminal voltages and currents. Losses such as skin-
effect losses that vary as

√
f can be included by simply determining the frequency

response of the network and converting to the time domain with the time-domain to
frequency-domain (TDFD) transformation.

With the exception of the SPICE subcircuit method, all methods ultimately must
face the problem of the systematic interconnection of the tube models. Computer
implementation of the interconnection of the tubes for a large network is not a simple
task and must be designed so that a user can easily and unambiguously describe
the interconnections to the resulting computer code. Of course, all standard lumped-
circuit analysis codes such as SPICE must address this problem of systematic and
unambiguous implementation of the element interconnections via user input to the
code, and the characterization of transmission-line networks is similar in that respect.
Characterization of the tubes via the admittance parameters as in [4] was designed
so that a systematic interconnection process will be affected. Another method is the
use of the scattering parameters for the tubes [1, 2]. This leads to the so-called BLT
equations (apparently named for the authors). A similar modal decomposition method
was described in [3].

All of the above methods must address both the frequency-domain and the time-
domain analysis of the network. The time-domain analysis of the network can be
obtained in the usual fashion using the TDFD transformation discussed earlier wherein
the source waveform is decomposed into its spectral components and each component
is passed through the previously computed frequency-domain transfer function. The
time-domain result is the inverse Fourier transform of this. As before, the TDFD
method can readily handle skin-effect losses that are difficult to characterize in the
time domain, but it suffers from the fundamental restriction that the network must be
linear, that is, the line and all terminations must be linear, since superposition is used.
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13.1 REPRESENTATION OF LOSSLESS LINES WITH THE SPICE
MODEL

Perhaps one of the more straightforward methods of characterizing and analyzing
the crosstalk on transmission-line networks or the effect of incident fields is with the
SPICE equivalent circuit developed in Chapters 8 and 9 or incident field illumination
in Chapters 11 and 12. Each tube is characterized by its SPICE subcircuit model

FIGURE 13.2 An example of a transmission-line network to illustrate and compare numerical
results.
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generated with the program SPICEMTL.FOR or SPICEINC.FOR described in
Appendix A. These subcircuit models are then interconnected and the terminations
added to produce the final SPICE model of the network. The method is straight-
forward using the above codes to generate the subcircuit models but is restricted to
lossless tubes. Again, this method can handle, in a straightforward way, dynamic
and/or nonlinear loads in the termination/interconnection networks.

In order to illustrate the methods of this chapter, we will use the example shown in
Figure 13.2. The network consists of three tubes. Tube # 1 contains four wires, whereas
tubes # 2 and # 3 contain two wires. All tubes will consist of bare wires above a ground
plane as illustrated in Figure 13.3. Tube # 1 is of length 2 m and tubes # 2 and # 3 are
of length 1 m. The cable is suspended 1 cm above an infinite, perfectly conducting
ground plane, and the wires have radii of 7.5 mils. A source, VS(t), in network # 1
drives line # 1 of tube # 1. This source is in the form of a ramp waveform with a rise
time of 1 ns as shown in Figure 13.3(c). The tubes are terminated in various resistive
terminations at termination networks # 1, # 2, and # 3. Interconnection network #
4 contains a variety of terminations, open circuit, short circuit, series impedance,

FIGURE 13.3 Cross-sectional dimensions of the tubes of the transmission-line network of
Figure 13.2.
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shunt impedance, and direct connection, to illustrate the versatility of the method.
The desired output will be the voltage, Vout(t), across the termination of wire # 1 of
tube # 3 at termination network # 3. The graph of this transmission-line network is
shown in Figure 13.1(b). Each termination or interconnection network has the number
of that node included within the symbol. The number of each tube is noted on that
branch of the graph.

Figure 13.4 illustrates the resulting construction of the overall SPICE network
with node numbering. The SPICE subcircuit models of the tubes are constructed
using SPICEMTL.FOR, and the per-unit-length parameters are computed using
WIDESEP.FOR.

FIGURE 13.4 Illustration of the SPICE model of the transmission-line network of
Figure 13.2.
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FIGURE 13.5 Comparison of crosstalk voltage at the termination of conductor # 1 of tube
# 3 for the transmission-line network of Figure 13.2 for a rise time of 1 ns using the SPICE
model and using one lumped-Pi section to represent each tube.

13.2 REPRESENTATION WITH LUMPED-CIRCUIT APPROXIMATE
MODELS

The next method is to approximately characterize each tube with a lumped-circuit
approximate structure such as a lumped-Pi structure. These characterizations are
obtained using the SPICELPI.FOR code. The resulting overall SPICE model of
the network is virtually identical to that of Figure 13.4 with the only exception being
that the subcircuit models of the tubes are lumped-Pi structures. Figure 13.5 shows
the comparison of the predictions of the output voltage, Vout(t), obtained with the
SPICE model of Figure 13.4 and 1the lumped-Pi structure using only one lumped-Pi
section to represent each tube. The correlation is obviously very poor due to the fact
that the tube one-way delays are on the order of 3 ns and 6 ns that are not significantly
smaller than the waveform rise time of 1 ns. Figure 13.6 shows this correlation for a
rise time of 100 ns, which is much better.

13.3 REPRESENTATION VIA THE ADMITTANCE OR IMPEDANCE
2n-PORT PARAMETERS

The use of the admittance parameters to characterize the tubes was described in [4].
This leads to a straightforward way of incorporating the termination and intercon-
nection networks, since we essentially need to simply add admittances in order to
construct the admittance matrix of the overall network.
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FIGURE 13.6 The predictions of Figure 13.5 for a rise time of 100 ns showing the adequacy
of the lumped-Pi representation.

The frequency-domain chain parameters of a uniform line are

V̂(L) = �̂11 V̂(0) + �̂12 Î(0) + V̂FT (13.1a)

Î(L) = �̂21 V̂(0) + �̂22 Î(0) + ÎFT (13.1b)

where V̂FT and ÎFT are due to any incident field excitation of the line. The frequency-
domain admittance parameters are derived in Section 7.5.5 of Chapter 7 from these
to yield

Î(0) = ŶS V̂(0) + ŶM V̂(L) + ÎS0 (13.2a)

−Î(L) = ŶM V̂(0) + ŶS V̂(L) + ÎSL (13.2b)

where

ŶS = −�̂−1
12 �̂11 = −�̂22 �̂−1

12

= T̂I

[
eγ̂ L − e−γ̂ L

]−1 [
eγ̂ L + e−γ̂ L

]
T̂−1

I ŶC (13.3a)

ŶM = �̂
−1
12

= −2T̂I

[
eγ̂ L − e−γ̂ L

]−1
T̂−1

I ŶC (13.3b)

ÎS0 = −ŶM V̂FT (13.3c)

ÎSL = −ŶS V̂FT − ÎFT (13.3d)
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Observe that the currents are defined as directed into each end of the tube. The
admittance parameters show that the tube is reciprocal as it should be. The various
parameters in these are as defined in Chapter 7 , where the per-unit-length impedance
and admittance parameters are diagonalized as

T̂−1
I (G + jω C)︸ ︷︷ ︸

Ŷ

(R(f ) + jω L)︸ ︷︷ ︸
Ẑ

T̂I = γ̂2 (13.4)

and the characteristic admittance matrix is

ŶC = Ẑ−1
C

= T̂I γ̂ T̂−1
I Ẑ−1

= T̂I γ̂−1 T̂−1
I Ŷ (13.5)

The only potential disadvantage to the admittance parameter description of the tubes
is that the parameters do not exist for lossless lines and frequencies where the tube is
a multiple of a half wavelength.

The tubes are characterized by the above admittance parameters with the following
notation illustrated in Figure 13.7(a). Consider the ith tube connecting the jth network
and the kth network at its endpoints. Denote the vector of currents and voltages at the
ends of the tube as Îj

i , V̂j
i , Îk

i , and V̂k
i , where the subscript denotes the tube and the

superscript denotes the network at that end:

V̂termination/interconnection network
tube

Îtermination/interconnection network
tube

The admittance parameters (13.2) and (13.3) become

Îj
i = ŶSi V̂j

i + ŶMi V̂k
i + Îj

Si (13.6a)

Îk
i = ŶMi V̂j

i + ŶSi V̂k
i + Îk

Si (13.6b)

where Îj
Si accounts for the effects of the incident field incident on tube i referred to

the end at network j, whereas Îk
Si accounts for the effect of the incident field on tube

i referred to the end at network k.
The characterization of the termination and interconnection networks must be

general enough to include open and short circuits as well as lumped sources and
impedances and direct connections within the termination/interconnection networks.
A general way of characterizing these is in the form of a combination of gen-
eralized Thevenin and generalized Norton equivalents [4]. Consider characteriz-
ing the mth interconnection network that has the ith, jth, and kth tubes intercon-
nected by it as illustrated in Figure 13.7(b). The tube voltages and currents can be
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FIGURE 13.7 Definitions of the tube voltages and currents for (a) an individual tube and
(b) and interconnection network.

interrelated as

Ŷm
i V̂m

i + Ẑm
i Îm

i + Ŷm
j V̂m

j + Ẑm
j Îm

j + Ŷm
k V̂m

k + Ẑm
k Îm

k = P̂m (13.7a)

The total number of equations in (13.7) equals the number of conductors incident
at the termination/interconnection network (node). For the example of Figure 13.2
at interconnection network # 4, this is 4 + 2 + 2 = 8. The equations in (13.7) are
organized in the order of tube # 1, then tube # 2, and then tube # 3. Within each row,
the conductors of that tube are ordered sequentially according to their number. Each
row refers to the conductor of the tube attached to the network. For example, the third
row of (13.7) is for conductor 3 of tube # 1, whereas the sixth row is for conductor #
2 of tube # 2 and the seventh row is for conductor # 1 of tube # 3. For a termination
network such as the pth termination network in Figure 13.7, the representation is

Ŷ p
i V̂ p

i + Ẑ p
i Î p

i = P̂ p (13.7b)

The fact that this representation is completely general can be proven from the fact
that it can be derived from a chain-parameter representation of the ports of the net-
work, which always exits for any linear network. The representation in (13.7) has
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the sole purpose of enforcing (1) Kirchhoff’s voltage law (KVL), (2) Kirchhoff’s
current law (KCL), and (3) the element relations that are imposed by the particular
interconnections within the interconnection network. Each row of (13.7) represents
a specific KVL constraint or a KCL constraint and/or an element relation for the
termination/interconnection network for which (13.7) is being written. All of the en-
tries in that row are zero with the exception of the following. Figure 13.8 illustrates

FIGURE 13.8 Illustration of the determination of the network characterizations for (a) an
open circuit, (b) a short circuit, (c) a direct connection, (d) a Thevenin equivalent, and (e) a
Norton equivalent.
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some common examples. Figure 13.8(a) illustrates the kth conductor of the ith tube
terminating in an open circuit within the mth network. The constraint here is that the
current is zero: [

Îm
i

]
k

= 0 (13.8)

Therefore, a 1 appears in the column of Ẑm
i corresponding to the current of that

conductor (the kth conductor) of that tube in Îm
i and all other entries in that row of

(13.7) are zero. Figure 13.8(b) illustrates the kth conductor of the ith tube terminating
in a short circuit within the mth network. The constraint here is that the voltage is
zero: [

V̂m
i

]
k

= 0 (13.9)

Therefore, a 1 appears in the column of Ŷm
i corresponding to the voltage of that

conductor of that tube in V̂m
i and all other entries in that row of (13.7) are zero.

Figure 13.8(c) illustrates a direct connection between the kth conductor of tube i and
the nth conductor of tube j within the mth network. The constraints here are that the
voltage of the conductor of the ith tube and the voltage of the conductor of the jth
tube are equal and the sum of the currents of the conductor of the ith tube and the
conductor of the jth tube equals zero:

[
V̂m

i

]
k
−
[
V̂m

j

]
n

= 0 (13.10a)[
Îm
i

]
k
+
[
Îm
j

]
n

= 0 (13.10b)

The first constraint is imposed by placing a 1 in the column of Ŷm
i corresponding to

the voltage of that conductor of that tube in V̂m
i and by placing a −1 in the column of

Ŷm
j corresponding to the voltage of that conductor of that tube in V̂m

j , and all other
entries in that row of (13.7) are zero. The second constraint is imposed by placing
a 1 in the column of Ẑm

i corresponding to the current of that conductor of that tube
in Îm

i and by placing a 1 in the column of Ẑm
j corresponding to the voltage of that

conductor of that tube in Îm
j , and all other entries in that row of (13.7) are zero.

Multiple connections of conductors can similarly be handled. For example, consider
the case of three conductors, k of tube i, n of tube j, and p of tube l, connected at a
common point within the network. KCL requires that the sum of the currents at that
interconnection equals zero:

[
Îm
i

]
k
+
[
Îm
j

]
n

+ [
Îm
l

]
p

= 0 (13.10c)

Similarly, KVL requires that the differences of two of the three pairs of the voltages
that are interconnected equal zero:

[
V̂m

i

]
k
−
[
V̂m

j

]
n

= 0,
[
V̂m

i

]
k
− [

V̂m
l

]
p

= 0 (13.10d)
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Figure 13.8(d) illustrates a series connection of an impedance and a lumped voltage
source. The constraints are that the currents are equal and the voltages are related by
the element relations: [

Îm
i

]
k
+
[
Îm
j

]
n

= 0 (13.11a)

[
V̂m

i

]
k
−
[
V̂m

j

]
n

+ ẐS
[
Îm
i

]
k

= V̂S (13.11b)

The first constraint is imposed by placing a 1 in the column of Ẑm
i corresponding to

the current of that conductor of that tube in Îm
i and by placing a 1 in the column of

Ẑm
j corresponding to the voltage of that conductor of that tube in Îm

j , and all other
entries in that row of (13.7) are zero. The second constraint is imposed by placing a
1 in the column of Ŷm

i corresponding to the voltage of that conductor of that tube in
V̂m

i , placing a −1 in the column of Ŷm
j corresponding to the voltage of that conductor

of that tube in V̂m
j , placing ẐS in the column of Ẑm

i corresponding to the current of

that conductor of that tube in Îm
i , and placing V̂S in P̂m in the row corresponding

to the equation being written, and all other entries in that row of (13.7) are zero.
Figure 13.8(e) illustrates a parallel connection of an admittance and a lumped current
source. The constraints are that the voltages are equal and the currents are related by
the element relations: [

V̂m
i

]
k
−
[
V̂m

j

]
n

= 0 (13.12a)

[
Îm
i

]
k
+
[
Îm
j

]
n

+ ŶS
[
V̂m

i

]
k

= ÎS (13.12b)

The first constraint is imposed by placing a 1 in the column of Ŷm
i corresponding

to the voltage of that conductor of that tube in V̂m
i and by placing a −1 in the col-

umn of Ŷm
j corresponding to the voltage of that conductor of that tube in V̂m

j , and
all other entries in that row of (13.7) are zero. The second constraint is imposed by
placing a 1 in the column of Ẑm

i corresponding to the current of that conductor of
that tube in Îm

i , placing a 1 in the column of Ẑm
j corresponding to the current of that

conductor of that tube in Îm
j , placing ŶS in the column of Ŷm

i corresponding to the

voltage of that conductor of that tube in V̂m
i , and placing ÎS in P̂m in the row corre-

sponding to the equation being written, and all other entries in that row of (13.7) are
zero.

The final element of the process is the combination of the admittance parameters
of the tubes and the constraint relations imposed by the termination/interconnection
networks. The objective here is to write these termination/interconnection constraints
as a set of simultaneous (complex) equations in terms of only the voltages at the ends
of the tubes that are also the voltages at the ports of the termination/interconnection
networks. Hence, we wish to solve for the termination voltages (versus frequency).
A simple example will illustrate that result. Consider the mth network interconnecting
tubes i, j, and k as shown in Figure 13.7(b), where the ith tube connects to termination
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network p at the other end, the jth tube connects to termination network q at the other
end, and the kth tube connects to termination network r at the other end. The tube
admittance characterizations at the mth end are

Îm
i = ŶSi V̂m

i + ŶMi V̂ p
i + Îm

Si (13.13a)

Îm
j = ŶSj V̂m

j + ŶMj V̂q
j + Îm

Sj (13.13b)

Îm
k = ŶSk V̂m

k + ŶMk V̂r
k + Îm

Sk (13.13c)

The network characterization is given for the mth interconnection network in (13.7a).
Substituting (13.13) into (13.7) gives

[
Ŷm

i + Ẑm
i ŶSi

]
V̂m

i +
[
Ŷm

j + Ẑm
j ŶSj

]
V̂m

j + [
Ŷm

k + Ẑm
k ŶSk

]
V̂m

k

+Ẑm
i ŶMiV̂

p
i + Ẑm

j ŶMjV̂q
j + Ẑm

k ŶMkV̂r
k = P̂m − Ẑm

i Îm
Si − Ẑm

j Îm
Sj − Ẑm

k Îm
Sk

(13.14a)

Similarly, for a termination network such as the pth termination network whose ter-
minal characterization is given in Figure 13.7(b), the result is

[
Ŷ p

i + Ẑ p
i ŶSi

]
V̂ p

i + Ẑ p
i ŶMiV̂m

i = P̂ p − Ẑ p
i Î p

Si (13.14b)

This provides a simple rule for constructing the overall admittance matrix that can be
solved for the voltages at the ends of each tube:


...
...

...
...

...
...

...
...

...
...
[
Ŷm

i + Ẑm
i ŶSi

] [
Ŷm

j + Ẑm
j ŶSj

] [
Ŷm

k
+ Ẑm

k
ŶSk

] ...
[

Ẑm
i ŶMi

] [
Ẑm

j ŶMj

] [
Ẑm

k
ŶMk

] ...

...
...

...
...

...
...

...
...

...




︸ ︷︷ ︸
ŶT

×




...
V̂m

i

V̂m
j

V̂m
k

...
V̂ p

i

V̂q

i

V̂r
i

...




︸ ︷︷ ︸
V̂T

=




...
P̂m − Ẑm

i Îm
Si − Ẑm

j Îm
Sj − Ẑm

k Îm
Sk

...




︸ ︷︷ ︸
P̂T

(13.15)
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As an example, consider the transmission-line network in Figure 13.2 with graph
shown in Figure 13.1(b). The admittance matrix becomes



(

Ŷ1
1 + Ẑ1

1ŶS1

)
Ẑ1

1ŶM1 0 0 0 0

0 0
(

Ŷ2
2 + Ẑ2

2ŶS2

)
Ẑ2

2ŶM2 0 0

0 0 0 0
(

Ŷ3
3 + Ẑ3

3ŶS3

)
Ẑ3

3ŶM3

Ẑ4
1ŶM1

(
Ŷ4

1 + Ẑ4
1ŶS1

)
Ẑ4

2ŶM2

(
Ŷ4

2 + Ẑ4
2ŶS2

)
Ẑ4

3ŶM3

(
Ŷ4

3 + Ẑ4
3ŶS3

)



×




V̂1
1

V̂4
1

V̂2
2

V̂4
2

V̂3
3

V̂4
3


 =


 P̂1

P̂2

P̂3

P̂4




Numbering each conductor of each tube as shown gives the following. First, we
examine termination network # 1. The constraints are[

V̂1
1

]
1

= VS(t) − 50
[
Î1

1

]
1[

V̂1
1

]
2

= −1k
[
Î1

1

]
2[

V̂1
1

]
3

= −500
[
Î1

1

]
3[

V̂1
1

]
4

= −10
[
Î1

1

]
4

Therefore,

Ŷ1
1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Ẑ1

1 =




50 0 0 0
0 1k 0 0
0 0 500 0
0 0 0 10


 , P̂1 =




VS(t)
0
0
0




The number of equations equals the number of conductors incident on this node: 4.
Similarly, termination networks # 2 and # 3 are characterized by

[
V̂2

2

]
1

= −5k
[
Î2

2

]
1[

V̂2
2

]
2

= −50
[
Î2

2

]
2

and [
V̂3

3

]
1

= −100
[
Î3

3

]
1[

V̂3
3

]
2

= −10
[
Î3

3

]
2
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Hence, the termination network characterizations in (13.7b) become

Ŷ2
2 =

[
1 0
0 1

]
, Ẑ2

2 =
[

5k 0
0 50

]
, P̂2 =

[
0
0

]

and

Ŷ3
3 =

[
1 0
0 1

]
, Ẑ3

3 =
[

100 0
0 10

]
, P̂3 =

[
0
0

]

The number of equations equals the number of conductors incident on each node: 2.
Interconnection network # 4 has the following constraints. KVL imposes[

V̂4
1

]
1
−
[
V̂4

2

]
1

= −100
[
Î4

1

]
1[

V̂4
1

]
2

= 0[
V̂4

1

]
3
−
[
V̂4

3

]
2

= 0[
V̂4

1

]
4
−
[
V̂4

3

]
1

= 0

KCL imposes [
Î4

1

]
1
+
[
Î4

2

]
1

= 0

[
Î4

1

]
3
+
[
Î4

3

]
2

= − 1

50

[
V̂4

1

]
3[

Î4
1

]
4
+
[
Î4

3

]
1

= 0[
Î4

2

]
2

= 0

Observe that the total number of constraint equations for network # 4 equals the total
number of conductors incident on that node: 4 + 2 + 2 = 8. This requirement must
always be met for any set of constraint equations for a termination/interconnection
network. The interconnection network characterizations in (13.7a) become

Ŷ4
1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 1/50 0
0 0 0 0
0 0 0 0




, Ẑ4
1 =




100 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0



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Ŷ4
2 =




−1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0




, Ẑ4
2 =




0 0
0 0
0 0
0 0
1 0
0 0
0 0
0 1




Ŷ4
3 =




0 0
0 0
0 −1

−1 0
0 0
0 0
0 0
0 0




, Ẑ4
3 =




0 0
0 0
0 0
0 0
0 0
0 1
1 0
0 0




and

P̂4 =




0
0
0
0
0
0
0
0




The predictions of this model with and without losses are compared for a pulse rise
time of 1 ns in Figure 13.9. The predictions of the TDFD transformation are obtained
by first determining the frequency-domain transfer function with this model at the
spectral harmonics of the input using the above method. The resulting spectral com-
ponents of the output voltage are combined using TIMEFREQ.FOR giving Vout(t).
The predictions of the SPICE model in Figure 13.5 and those for this admittance
parameter characterization using the TDFD conversion to the time domain for a
lossless line are identical. The ramp waveform of Figure 13.3(c) is modeled as
a trapezoidal waveform with identical τr = 1 ns rise and fall times and a 1-MHz
repetition rate. This is decomposed into its spectral components and combined
with the frequency-domain transfer function computed with the above admittance
parameter model at 1000 harmonics. The bandwidth of this pulse is on the order of
BW = 1/τr = 1 GHz. Hence, the excellent correlation with the SPICE results are
expected. The frequency-dependent losses of the conductors were also included in the
transfer function and the results recomputed and shown in Figure 13.9 using 1000 har-
monics. The wire losses have a minor effect on the output voltage waveshape, which is
probably due to the fact that the common ground plane losses are omitted. Figure 13.10
shows the frequency response of the transfer function obtained with this method with
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FIGURE 13.9 Comparison of crosstalk voltage at the termination of conductor # 1 of tube #
3 for the transmission-line network of Figure 13.2 for a rise time of 1 ns using the time-domain
to frequency-domain transformation with and without losses.

and without losses. This further confirms that the wire losses have little effect in this
problem.

The admittance parameters are not, of course, the only way of characterizing the
tubes. The dual is the impedance parameter characterization:

V̂(0) = ẐS Î(0) + ẐM
(−Î(L)

)+ V̂S0 (13.16a)

V̂(L) = ẐM Î(0) + ẐS
(−Î(L)

)+ V̂SL (13.16b)

The chain parameters in (13.1) can be manipulated to yield

ẐS = −�̂−1
21 �̂22 = −�̂11 �̂−1

21

= ẐC T̂I

[
eγ̂ L − e−γ̂ L

]−1 [
eγ̂ L + e−γ̂ L

]
T̂−1

I

(13.17a)

ẐM = −�̂−1
21

= 2ẐC T̂I

[
eγ̂ L − e−γ̂ L

]−1
T̂−1

I

(13.17b)

V̂S0 = ẐM V̂FT (13.17c)

V̂SL = V̂FT + ẐS ÎFT (13.17d)
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FIGURE 13.10 The frequency-domain crosstalk voltage at the termination of conductor
# 1 of tube # 3 for the transmission-line network of Figure 13.2 with and without losses:
(a) magnitude and (b) phase.

The overall matrix to be solved can be obtained by substituting (13.16) for the tubes
connected to node m that is characterized by (13.7) to give

ẐT ÎT = P̂T (13.18)
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This result has the same form as (13.14) and (13.15) with the following substitutions:

Ŷm
i ⇒ Ẑm

i (13.19a)

Ẑm
i ⇒ Ŷm

i (13.19b)

ŶSi ⇒ ẐSi (13.19c)

ŶMi ⇒ ẐMi (13.19d)

Îm
Si ⇒ V̂m

Si (13.19e)

V̂m
i ⇒ Îm

i (13.19f)

With the impedance parameters we solve for the currents incident on the nodes, Îm
i .

13.4 REPRESENTATION WITH THE BLT EQUATIONS

An alternative to the above methods is the use of the scattering parameter represen-
tation of the tubes [1,2,3]. Consider a tube having lumped excitation at some point,
z = τ, along its length illustrated in Figure 13.11. These lumped excitations may
represent point sources such as the direct attachment of a lightning stroke or can be
extended to include distributed incident field excitation, as we will show. The general
frequency-domain solution of the MTL (multiconductor transmission line) equations
for this tube can be written as in Chapter 7 for the tube segments to the left and right
of the sources as

V̂(z) = ẐC T̂I

[
e−γ̂ z Î+

L + eγ̂ z Î−
L

]
(13.20a)

Î(z) = T̂I

[
e−γ̂ z Î+

L − eγ̂ z Î−
L

]
(13.20b)

FIGURE 13.11 Determination of the scattering parameters for a tube having lumped exci-
tation at a point on the tube.
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for 0 ≤ z < τ and

V̂(z) = ẐC T̂I

[
e−γ̂ z Î+

R + eγ̂ z Î−
R

]
(13.21a)

Î(z) = T̂I

[
e−γ̂ z Î+

R − eγ̂ z Î−
R

]
(13.21b)

for τ < z ≤ L. The subscripts on the undetermined constant vectors, L and R, repre-
sent the left and right segments, respectively. The characteristic impedance matrix is
the inverse of the characteristic admittance matrix given in (13.5), and the propagation
matrix is determined as in (13.4). Evaluating these at z = τ yields

−ẐC T̂I

[
e−γ̂ τ Î+

L + eγ̂ τ Î−
L

]
+ ẐC T̂I

[
e−γ̂ τ Î+

R + eγ̂ τ Î−
R

]
= V̂F (13.22a)

−T̂I

[
e−γ̂ τ Î+

L − eγ̂ τ Î−
L

]
+ T̂I

[
e−γ̂ τ Î+

R − eγ̂ τ Î−
R

]
= ÎF (13.22b)

Adding and subtracting these yields

Î+
L − Î+

R = −1

2
eγ̂ τ T̂−1

I Ẑ−1
C

[
V̂F + ẐC ÎF

]
(13.23a)

Î−
L − Î−

R = −1

2
e−γ̂ τ T̂−1

I Ẑ−1
C

[
V̂F − ẐC ÎF

]
(13.23b)

The currents at the line endpoints can be logically decomposed into incident and
reflected waves by evaluating (13.20b) at z = 0 and (13.21b) at z = L as

ÎL = Î(0) = Îr
L + Îi

L (13.24a)

ÎR = −Î(L) = Îi
R + Îr

R (13.24b)

where

Îr
L = T̂I Î+

L (13.25a)

Îi
L = −T̂I Î−

L (13.25b)

Îi
R = −T̂I e−γ̂ L Î+

R (13.25c)

Îr
R = T̂I eγ̂ L Î−

R (13.25d)

where superscripts i and r denote incident and reflected, respectively. This is a sen-
sible designation if we designate the incident wave as the portion incoming at the
termination and the reflected wave as the portion outgoing from the junction and also
observe that a component containing e−γ̂ z is traveling to the right and a component
containing eγ̂ z is traveling to the left. To conform with the results of the previous
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section, the tube currents are directed into the tube at both ends. Combining (13.23)
and (13.25) yields the reflected components in terms of the incident quantities as

Îr
L = −

(
T̂I eγ̂ L T̂−1

I

)
Îi

R − 1

2

(
T̂I eγ̂ τ T̂−1

I

) [
ÎF + Ẑ−1

C V̂F

]
(13.26a)

Îr
R = −

(
T̂I eγ̂ L T̂−1

I

)
Îi

L − 1

2

(
T̂I eγ̂(L−τ) T̂−1

I

) [
ÎF − Ẑ−1

C V̂F

]
(13.26b)

(There are sign differences between these results and those of [1–3] due to our choice
of the total currents as being directed into the tube at both ends.) In matrix notation,
these become [ Îr

L

Îr
R

]
= R̂

[ Îi
L

Îi
R

]
+ ÎT (13.27)

where the tube propagation matrix R̂ is

R̂ =
[

0 �̂

�̂ 0

]
(13.28a)

with entries

�̂ = −T̂I eγ̂ L T̂−1
I (13.28b)

The current source vector due to the lumped sources at z = τ is

ÎT =

 − 1

2

(
T̂I eγ̂ τ T̂−1

I

) [
ÎF + Ẑ−1

C V̂F

]
− 1

2

(
T̂ Ieγ̂(L−τ) T̂−1

I

) [
ÎF − Ẑ−1

C V̂F

]

 (13.29a)

In the case of distributed excitation such as the case for incident field illumination of
the tube, the source vector simply becomes

ÎT =
L∫
0


 − 1

2

(
T̂I eγ̂ τ T̂−1

I

) [
ÎF(τ) + Ẑ−1

C V̂F(τ)
]

− 1

2

(
T̂I eγ̂(L−τ) T̂−1

I

) [
ÎF(τ) − Ẑ−1

C V̂F(τ)
]

 dτ (13.29b)

The total voltages and currents at the left end of the tube become, by evaluating
(13.20) at z = 0 and substituting (13.25a) and (13.25b),

V̂(0) = V̂L = ẐC

(
Îr

L − Îi
L

)
(13.30a)

Î(0) = ÎL = Îr
L + Îi

L (13.30b)
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Similarly, the total voltages and currents at the right end of the tube become, by
evaluating (13.21) at z = L and substituting (13.25c) and (13.25d),

V̂(L) = V̂R = ẐC

(
Îr

R − Îi
R

)
(13.31a)

−Î(L) = ÎR = Îr
R + Îi

R (13.31b)

Observe that, as in the case of the admittance parameters, the total currents are defined
as being directed into the tubes at both ends. The incident components are defined
as being the components traveling out of the tubes or into the network attached to
that end. The reflected components are similarly defined as being the components
traveling into the tubes or out of the network attached to that end. Hence, the origin
of the names incident and reflected, with respect to the network or node at which the
end of the tube is incident.

These results can be derived in an alternative manner from the chain-parameter
matrix representation of the line with incident field illumination. Substituting the
chain-parameter matrix of the line given in (12.25 ) of Chapter 12 into (13.30) and
(13.31), we obtain (13.26). This gives the current source vector in (13.29b) in terms
of the total incident field vectors, ÎFT and V̂FT, developed in Chapter 12 and given in
(12.25 ) as

ÎT =




−1

2
T̂Ieγ̂ L T̂−1

I

[
ÎFT + ŶCV̂FT

]
−1

2

[
ÎFT − ŶCV̂FT

]

 (13.32)

We next form the junction scattering matrix for node m, Ŝm, which relates the
reflected and incident current components at node m as

Îr
m = Ŝm Îi

m (13.33)

The number of equations here equals the total number of conductors incident on
that node. First, consider a termination node where only one tube is incident as
shown in Figure 13.12. Suppose that the network contains no lumped sources and is

FIGURE 13.12 Definitions of incident and scattered waves for determining the scattering
parameters of a termination network.
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characterized by a generalized Thevenin equivalent as

V̂m = −Ẑm Îm

= −Ẑm

[
Îr
m + Îi

m

] (13.34)

(Recall that the total currents are defined as being directed into the tube ends and are
therefore directed out of the termination networks.) The relations for the voltage and
current at the end of the tube that is incident on this node are

V̂m = ẐCm

[
Îr
m − Îi

m

]
(13.35)

Solving (13.34) and (13.35) yields the current scattering matrix:

Ŝm = −(Ẑm + ẐCm

)−1 (
Ẑm − ẐCm

)
(13.36)

This has a direct parallel to the scalar current reflection coefficient for a two-conductor
line [A.1 ].

The next form of the scattering matrix is for an interconnection network wherein
there are two or more tubes incident. In the admittance parameter representation of
the previous section, we characterized these in a general sense as a combination of
generalized Thevenin and generalized Norton equivalents so that series and parallel
impedances and excitation sources could be included. The formulation of the BLT
equations in [1–3] has the excitation sources as lumped or distributed sources along
the tubes due to incident fields. We will derive the BLT equations with that assumption
although we will later modify them for the more general case of lumped sources within
the networks. Thus, the interconnection networks will simply have (1) conductors
directly connected, (2) conductors terminated in short circuits, and (3) conductors
terminated in open circuits as shown in Figure 13.13. First consider the direction
connection of several conductors as shown in Figure 13.13(a). This is characterized
as

CI Îm = 0 (13.37a)

FIGURE 13.13 Interconnection networks: (a) direct connection, (b) open circuit, and (c)
short circuit.
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CV V̂m = 0 (13.37b)

where Îm contains the total currents of the conductors incident on the mth node and
V̂m contains the voltages of those conductors. The first relation in (13.37a) enforces
KCL at the connection so that for each connection a 1 appears in the columns of CI

corresponding to the currents of Îm for the conductors that are connected. The second
condition in (13.37b) enforces KVL at the connection so that for n conductors con-
nected, there are n−1 equations enforcing V̂a − V̂b = 0 for n−1 pairs of the voltages.
Thus, a 1 appears in the column of CV corresponding to the voltage of the pair in
V̂m and a −1 appears in the column of CV corresponding to the other voltage of the
pair in V̂m. The second situation is an open circuit as illustrated in Figure 13.13(b).
Enforcing KCL requires that we place a 1 in the column of CI corresponding to the
current of Îm that is constrained to zero by the open circuit. The third constraint is
a short circuit illustrated in Figure 13.13(c). Enforcing KVL requires that we place
a 1 in the column of CV corresponding to the voltage of V̂m that is constrained to
zero by the short circuit. The sum of the row dimensions of CI and CV must equal
the total number of conductors incident on the node. The scattering matrix for this
interconnection node can now be formulated. Decomposing the total currents and
voltages into their incident and reflected components gives

−CI Îr
m = CI Îi

m (13.38a)

CV ẐCm Îr
m = CV ẐCm Îi

m (13.38b)

where ẐCm contains the characteristic impedance matrices of the tubes incident on the
node on the main diagonal and zeros elsewhere. Solving (13.38) yields the scattering
matrix of the interconnection node as

Ŝm =
[ −CI

CV ẐCm

]−1 [ CI

CV ẐCm

]
(13.39)

Arranging the tube characterizations for all tubes in the network and the scattering
matrix representations for all nodes in the network yields the overall characterization

Îr
T = R̂T Îi

T + ÎTT (13.40a)

Îr
T = ŜT Îi

T (13.40b)

The overall tube propagation matrix R̂T is 2nT × 2nT, where nT is the total number
of conductors in the overall transmission-line network and has the individual tube
characterization matrices given in (13.27) on the main diagonal and zeros elsewhere.
Similarly, the overall junction scattering matrix ŜT is 2nT × 2nT and contains the
individual scattering matrices for the interconnection and termination networks on
the main diagonal and zeros elsewhere. Combining (13.40) gives(

ŜT − R̂T

)
Îi

T = ÎTT (13.41)
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which are referred to as the BLT (Baum, Liu, and Tesche) equations. The total currents
can be obtained by writing

ÎT = Îi
T + Îr

T (13.42)

Solving (13.40) and (13.42) simultaneously gives the total currents as

ÎT =
[
1 + ŜT

] [
ŜT − R̂T

]−1
ÎTT (13.43)

This formulation can be extended to include series and parallel impedances
and lumped sources in the termination/interconnection networks. In order to pro-
vide that extension, consider the general characterization of the mth termina-
tion/interconnection node illustrated in Figure 13.7(b) and given in (13.7a):

Ŷm
i V̂m

i + Ẑm
i Îm

i + Ŷm
j V̂m

j + Ẑm
j Îm

j + Ŷm
k V̂m

k + Ẑm
k Îm

k = P̂m (13.7a)

This can be written in matrix form as

[ Ŷm
i Ŷm

j Ŷm
k ]


 V̂m

i

V̂m
j

V̂m
k


+ [ Ẑm

i Ẑm
j Ẑm

k ]


 Îm

i

Îm
j

Îm
k


 = P̂m (13.44)

The currents and voltages can be decomposed into incident and reflected components
according to (13.31) as

V̂m
i = ẐCi

(
Îmr
i − Îmi

i

)
(13.45a)

Îm
i = Îmr

i + Îmi
i (13.45b)

and likewise for tube j and tube k. Substituting (13.45) into (13.44) yields
 Îmr

i

Îmr
j

Îmr
k


 = Ŝm


 Îmi

i

Îmi
j

Îmi
k


+ Îm

S (13.46)

where

Ŝm = −{[ Ẑm
i Ẑm

j Ẑm
k ] + [ Ŷm

i Ŷm
j Ŷm

k ] ẐCm

}−1

×{
[ Ẑm

i Ẑm
j Ẑm

k ] − [ Ŷm
i Ŷm

j Ŷm
k ] ẐCm

} (13.47a)

and the collection of characteristic impedance matrices of the tubes incident on the
termination/interconnection network is

ẐCm =

 ẐCi 0 0

0 ẐCj 0
0 0 ẐCk


 (13.47b)
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The current source vector is

Îm
S = {

[ Ẑm
i Ẑm

j Ẑm
k ] + [ Ŷm

i Ŷm
j Ŷm

k ] ẐCm

}−1
P̂m (13.47c)

For example, consider the case of a termination network (only one tube incident on
the node) and a generalized Thevenin representation of this network:

1︸︷︷︸
Ŷm

i

V̂m
i + Ẑm︸︷︷︸

Ẑm
i

Îm
i = V̂Sm︸︷︷︸

P̂m

(13.48)

The above representation becomes

Ŝm = −{Ẑm + ẐCi

}−1 {
Ẑm − ẐCi

}
(13.49a)

Îm
S = {

Ẑm + ẐCi

}−1
V̂Sm (13.49b)

Thus, the scattering parameter representation in (13.33) has been modified to in-
clude lumped sources in the termination/interconnection networks. In the case of an
interconnection network containing only short circuits, open circuits, and/or direct
connections, this representation becomes

[ Ŷm
i Ŷm

j Ŷm
k ] =

[
0

CV

]
(13.50)

and

[ Ẑm
i Ẑm

j Ẑm
k ] =

[
CI

0

]
(13.51)

where CV and CI were originally defined in (13.37). Substituting (13.50) and (13.51)
into (13.47a) yields (13.39).

The tube characterizations in (13.27) remain unchanged. Thus, the overall repre-
sentation of the network is of the form in (13.40):

Îr
T = R̂T Îi

T + ÎTT (13.52a)

Îr
T = ŜT Îi

T + ÎST (13.52b)

where ŜT is 2nT × 2nT and contains the individual scattering matrices given in
(13.47a) on the main diagonal and zeros elsewhere, and ÎST is 2nT × 1 and con-
tains the Îm

S in (13.47c). In a fashion similar to the earlier derivation, we obtain the
general form of the BLT equations for the total tube currents as

ÎT =
[
1 + ŜT

] [
ŜT − R̂T

]−1
ÎTT − [

1 + R̂T
] [

ŜT − R̂T

]−1
ÎST (13.53)
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For example, consider the two-conductor line shown in Figure 6.1 of Chapter 6
(without incident field illumination). The total tube propagation matrix R̂T is simply
(13.28) since there is only one tube and becomes

R̂T =
[

0 −eγ̂ L

−eγ̂ L 0

]

Writing (13.44) at the source and at the load gives

1︸︷︷︸
ŶS

1

V̂ S
1 + ẐS︸︷︷︸

ẐS
1

ÎS
1 = V̂S︸︷︷︸

P̂S

1︸︷︷︸
ŶL

1

V̂ L
1 + ẐL︸︷︷︸

ẐL
1

ÎL
1 = 0︸︷︷︸

P̂L

Thus, the scattering matrices at the source and the load in (13.47a) become

ŜS = −[ẐS + ẐC
]−1 [

ẐS − ẐC
] = −�̂S

ŜL = −[ẐL + ẐC
]−1 [

ẐL − ẐC
] = −�̂L

where �̂S and �̂L are the voltage reflection coefficients at the source and the load,
respectively. The current reflection coefficients are the negatives of these [A.1]. Thus,
the overall scattering matrix is

ŜT =
[−�̂S 0

0 −�̂L

]

Also, the current source vectors in (13.47c) become

ÎS
S = (ẐS + ẐC)

−1
V̂S

ÎL
S = (ẐL + ẐC)

−1
0

so that the overall current source vector becomes

ÎST =
[

ẐS + ẐC 0

0 ẐL + ẐC

]−1 [ P̂S

P̂L

]
=

 V̂S(

ẐS + ẐC
)

0




Forming the BLT equation in (13.53) for the total currents yields
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[
ÎS

1
ÎL

1

]
= − [

1 + R̂T
] [

ŜT − R̂T

]−1
ÎST

= −
[

1 −eγ̂ L

−eγ̂ L 1

] [−�̂S eγ̂ L

eγ̂ L −�̂L

]−1 [ 1
0

]
V̂S(

ẐS + ẐC
)

= 1

1 − �̂S�̂Le−2γ̂ L

[
1 − �̂Le−2γ̂ L(
�̂L − 1

)
e−γ̂ L

]
V̂S(

ẐS + ẐC
)

Recalling that ÎS
1 = Î(0) and ÎL

1 = −Î(L), these results are identical to those derived
in Chapter 6 and given in Eqs. (6.40b) and (6.41b).

The time-domain solution can be obtained from this formulation by first using
the BLT equations to obtain the frequency-domain transfer function and then using
the TDFD transformation method as before. Again, that technique for obtaining the
time-domain solution assumes linear loads and tubes since superposition is implicitly
used.

13.5 DIRECT TIME-DOMAIN SOLUTIONS IN TERMS
OF TRAVELING WAVES

With the exception of the SPICE solution method, the above solution methods con-
centrated on the frequency-domain solution of transmission-line networks. The time-
domain solution can be obtained from this solution via the TDFD technique, which is
very straightforward and has been used on numerous occasions. Of course, the TDFD
technique requires linear terminations. In this final section, we briefly investigate the
direct time-domain solution via the traveling waves existing on the various tubes of
the network.

To begin the discussion, consider a tandem connection of two-conductor lines
having a discontinuity as shown in Figure 13.14(a). Each line is characterized by a
characteristic impedance ZCi and time delay TDi. Lossless lines and resistive termi-
nations are assumed to simplify the discussion. The frequency-domain solutions on
each line are of the form

V̂i(z) = V̂+
i e−jβi z + V̂−

i ejβi z (13.54a)

Îi(z) = 1

ZCi

V̂+
i e−jβi z − 1

ZCi

V̂−
i ejβi z (13.54b)

in accordance with the general solution of the transmission-line equations for each
tube. The discontinuity may be characterized as before with a form of voltage scat-
tering parameter matrix that relates the incident and reflected voltage waves at that
point as illustrated in Figure 13.14(b). The incident waves are the portions of (13.45a)
that are incoming at the junction, V̂+

1 e−jβ1L1 and V̂−
2 ejβ2L1 . The reflected waves are

the portions of (13.54a) that are outgoing at the junction, V̂−
1 ejβ1L1 and V̂+

2 e−jβ2L1 .
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FIGURE 13.14 Determination of the scattering parameters at the junction of two different
two-conductor lines: (a) line configuration and (b) definition of incident and reflected voltage
waves at the junction.

Hence we may write[
V̂−

1 ejβ1L1

V̂+
2 e−jβ2L1

]
︸ ︷︷ ︸

V̂reflected

=
[

�11 T12

T21 �22

][
V̂+

1 e−jβ1L1

V̂−
2 ejβ2L1

]
︸ ︷︷ ︸

V̂incident

(13.55)

The �ii elements are the voltage reflection coefficients and the Tij elements are the
voltage transmission coefficients. Figure 13.15 illustrates the determination of these
parameters for various discontinuities. Consider the direct connection shown in Fig-
ure 13.15(a). The voltages and currents must be continuous. Equating Eqs. (13.54)
for the left and right sections and putting them in the form of (13.55) yields

�11 = ZC2 − ZC1

ZC2 + ZC1
, T12 = 2ZC1

ZC2 + ZC1
(13.56a)

T21 = 2ZC2

ZC1 + ZC2
, �22 = ZC1 − ZC2

ZC1 + ZC2
(13.56b)

This result is directly analogous to the case of a uniform plane wave incident at an
interface between two media [A.1]. It is a sensible result for the following reason.
In the time domain, the wave incident from line # 1 “sees” an impedance at the
junction equal to the characteristic impedance of line # 2 since it has not arrived
at the termination of line # 2 and therefore line # 2 appears infinite in length. So
the reflection coefficient can be calculated as though line # 1 is terminated in the
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FIGURE 13.15 Illustration of the simplified determination of the scattering parameters for
(a) a direct connection and (b) a resistive interconnection network.

characteristic impedance of line # 2. The transmission coefficient is easily calculated
from the reflection coefficients since the total voltage incident on the junction from
line # 1 is the sum of the incident and reflected waves on that line that, because of the
direct connection, must equal the transmitted voltage or (1 + �11) = T21. In a similar
fashion, (1 + �22) = T12.

The BLT equations can be easily formed for this network although their solution
is best suited to computer implementation. The overall tube propagation matrix is

R̂T =




0 −ejβ1 L1 0 0
−ejβ1 L1 0 0 0

0 0 0 −ejβ2 L2

0 0 −ejβ2 L2 0




Writing (13.7) at the source, the junction, and the load gives

1︸︷︷︸
ŶS

V̂ S
1 + RS︸︷︷︸

ẐS

ÎS
1 = V̂S︸︷︷︸

P̂S[
1 −1
0 0

]
︸ ︷︷ ︸

Ŷm

[
V̂ m

1
V̂ m

2

]
+
[

0 0
1 1

]
︸ ︷︷ ︸

Ẑm

[
Îm

1
Îm

2

]
=

[
0
0

]
︸︷︷︸

P̂m

1︸︷︷︸
ŶL

1

V̂ L
1 + RL︸︷︷︸

ẐL
1

ÎL
1 = 0︸︷︷︸

P̂L

where m designates the “middle node” (the junction). The junction scattering matrices
are obtained from (13.47a) as
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ŜS = −(RS + ZC)−1 (RS − ZC) = −�S ÎS
S = (RS + ZC)−1V̂S

Ŝm = −
{[

0 0
1 1

]
+
[

1 −1
0 0

] [
ZC1 0

0 ZC2

]}−1 {[ 0 0
1 1

]

−
[

1 −1
0 0

] [
ZC1 0

0 ZC2

]}

= −
[

ZC1 −ZC2
1 1

]−1 [−ZC1 ZC2
1 1

]

=
[−�11 −T21

−T12 −�22

]
ŜL = −(RL + ZC)−1 (RL − ZC) = −�L ÎS

S = (RL + ZC)−10

Thus, the overall scattering matrix becomes

ŜT =




−�S 0 0 0
0 −�11 −T21 0
0 −T12 −�22 0
0 0 0 −�L




These reflection and transmission coefficients are the negative of the voltage reflection
and transmission coefficients in (13.56) because we are considering currents and
because of the current directions at the junctions (into the tubes). Additionally, the

current transmission coefficients are
ZC2

ZC1
T12 = T21 and

ZC1

ZC2
T21 = T12 in the same

fashion as uniform plane waves [A.1]. The total current source vector is

ÎST =




1
0
0
0


 V̂S

(RS + ZC)

The BLT equations are then formed from (13.53) with ÎTT = 0 (no incident field
illumination).

Figure 13.15(b) shows a connection consisting of a resistive network. For the above
reasons, we may similarly determine

�11 = R2 − ZC1

R2 + ZC1
, T12 = 2R1

ZC2 + R1

ZC1

RA + ZC1
(13.57a)

T21 = RB ||ZC2

RA + RB ||ZC2

2R2

R2 + ZC1
, �22 = R1 − ZC2

R1 + ZC2
(13.57b)

where

R1 = RB || (RA + ZC1) , R2 = RA + RB ||ZC2 (13.57c)
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Determination of these is very similar to the case of plane waves normally incident
on a boundary [A.1]. The notation A ||B denotes the parallel combination of two
resistances as A ||B = AB/(A + B).

In the time domain, the source initially “sees” a termination of ZC1 so that the
voltage wave sent out is, by voltage division,

V (t) = ZC1

RS + ZC1
VS(t) (13.58)

This wave travels down line # 1 reaching the discontinuity at one time delay of
TD1, where �11V (t − TD1) is reflected and T21V (t − TD1) is transmitted across the
junction. The reflected portion arrives at the source at 2TD1 where a portion of it,
�S�11V (t − 2TD1), is sent back toward the junction where a portion of it is reflected,
�11�S�11V (t − 3TD1), and a portion is transmitted, T21�S�11V (t − 3TD1), and so on.
Meanwhile, the portion of the original wave that was transmitted across the junction,
T21V (t − TD1), arrives at the load where it is reflected as �LT21V (t − TD1 − TD2).
This is sent back to the junction where a portion of it, �22�LT21V (t − TD1 − 2TD2), is
reflected back toward the load and a portion, T12�LT21V (t − TD1 − 2TD2), is trans-
mitted across the junction onto line # 1. This process of continued reflections and
transmissions continues, and the total voltage at any point on either line is the sum
of the total waves at that point and time. Clearly, the line voltages will be linear
combinations of the initial transmitted wave, V (t), delayed in time by various sums
of multiples of the line delays TD1 and TD2. A lattice diagram can be constructed
as described in Chapter 6 to aid in determining these total voltages but the process
is clearly very complicated owing to the multitude of reflections and transmissions.
If either line is terminated in its characteristic impedance, the summation is simpli-
fied considerably, and a series solution can be developed [A.3]. But for completely
mismatched lines, the summation is tedious.

A symbolic solution can be obtained if we use the time-shift or difference operator
as before:

D±k
i f (t) = f (t ± kTDi)

in the BLT equations of (13.53). Thus,

RT(D) =




0 −D1 0 0
−D1 0 0 0

0 0 0 −D2
0 0 −D2 0




The BLT equations in (13.53) with ÎTT = 0 (no incident field illumination) can be
written as

[RT(D) − ST] [RT(D) + 1]−1IT(t) = IST(t)
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and [RT(D) + 1]−1 is simple to obtain. However, the literal solution of the BLT equa-
tions is very tedious even for this simple case. If we substitute a previously described
SPICE model for each line, the summation of these waves is taken care of and nonresis-
tive loads can be considered. A direct time-domain summation of the traveling waves
was implemented using the scattering parameters of the termination/interconnection
networks in [3] but, once again, keeping track of all the incident/reflected waves on
the line is a very tedious task because of the multiple reflections/transmissions and
the different mode velocities on each tube.

13.6 A SUMMARY OF METHODS FOR ANALYZING
MULTICONDUCTOR TRANSMISSION LINES

If one is willing to forego losses, then the simplest and most accurate solution method
for transmission-line networks is to use SPICEMTL.FOR or SPICEINC.FOR to
build SPICE subcircuit models for the tubes and then imbed them in an overall
SPICE circuit model where the termination networks as well as the interconnec-
tion networks are attached. This method is extraordinarily simple to implement and,
in addition, it will handle nonlinear terminations such as diodes, transistors, and so
on in the termination/interconnection networks. The author strongly recommends
this method of analyzing lossless transmission-line networks. Including losses of
the tubes is the only challenging problem left. However, the admittance parameter
method can be used to incorporate losses and the TDFD method can be used to return
to the time domain. The only disadvantage of this method is that the termination/
interconnection networks must be linear, since superposition is used to return to the
time domain. In addition, the FDTD method using a state-variable characterization
of the termination/interconnection networks can handle transmission-line networks
that have losses as well as nonlinear terminations [B.27, B.29].

These remarks also apply to single tube networks that we studied for the first 12
chapters of this text. This long journey in the study of methods for analyzing MTLs
can therefore be summarized as follows. For lossless lines, the solution process is
virtually trivial: generate SPICE/PSPICE subcircuit models with SPICEMTL.FOR
or SPICEINC.FOR and then imbed these into an overall SPICE program where the
terminations are attached. If losses of the lines (conductor and/or dielectric) must be
included in the analysis, then we have a choice of several methods: (1) The
time-domain to frequency-domain (TDFD) method where losses are included
in the frequency-domain transfer function at the harmonics of the input source,
(2) the finite-difference, time-domain (FDTD) method where losses are included
in the numerical evaluation of the convolution integral via the Prony method, for
example, or (3) for electrically short lines, modeling the line with a lumped-Pi or
lumped-T equivalent circuit but the losses must be frequency-independent. The
lumped-Pi and lumped-T approximate circuit models require that the per-unit-length
resistances and internal inductances of the conductors be their dc values and the
conductance must be frequency independent since frequency-dependent elements
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FIGURE P13.11

are not readily modelable directly in the time domain in lumped circuit models.
There are, however, some equivalent circuits that tend to mimic frequency-dependent
behavior of these elements to some degree. (See Figure 8.50).

PROBLEMS

13.1 Derive the admittance parameters given in (13.3).

13.2 Derive the admittance parameter relation for a transmission-line network given
in (13.15) and for the problem in Figure 13.2.

13.3 Derive the impedance parameters given in (13.17).

13.4 Derive the relations given in (13.26) and (13.27).

13.5 Derive the scattering parameter relation for a termination network given in
(13.36).

13.6 Derive the scattering parameter relation for an interconnection network given
in (13.39).

13.7 Derive the BLT equations given in (13.41) and in (13.43).

13.8 Derive the scattering parameter matrix and current source vector given for the
general case in (13.47).

13.9 Derive the BLT equations for the general case given in (13.53).

13.10 For the tandem connection of two-conductor lines shown in Figure 13.14,
derive series expressions for the time-domain source and load voltages in
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terms of delayed source voltage waveforms for a matched load on line # 2,
that is, RL = ZC2.

13.11 Consider the transmission-line network shown in Figure P13.11. All conduc-
tors are # 20 gauge wires (rw = 16 mils) at a height of 1 cm above a ground
plane. Solve for the voltage Vout(t) where VS(t) is a 10-MHz trapezoidal pulse
train with rise/fall times of 1 ns and 50% duty cycle. Compute this using (a) the
SPICE model, (b) the lumped-Pi model, (c) the admittance parameter model,
(d) the impedance parameter model, and (e) the BLT equations.
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APPENDIX A

DESCRIPTION OF COMPUTER
SOFTWARE

Several FORTRAN computer programs that implement the methods described in this
text have been developed. The codes can be downloaded from the Wiley FTP site at
ftp:\\ftp.wiley.com/public/sci tech med/multiconductor transmission/

This appendix gives a description of those codes. The programs are written in
standard FORTRAN 77 language. A conscious attempt was made to use rudimentary
FORTRAN programming commands so that the codes would be compilable with a
wide variety of FORTRAN compilers on a large number of platforms. The codes use
certain arrays to store information. These array dimensions are determined by the
total number of conductors of the transmission line and other solution properties and
are stored in parameters at the beginning of the code. An example is the parameter
MSIZE:

PARAMETER(MSIZE = 99)

The user needs only to change these parameters for the program to handle larger num-
bers of conductors in the line and can recompile the source code (XXXXX.FOR) to ob-
tain an executable code (XXXXX.EXE). Each uncompiled source code (XXXXX.FOR)
contains at the beginning a brief description of the code, the array dimensions, and
the names and contents of the required input files and the name of the resulting output
file.

The codes fall into two distinct categories: those that compute the per-unit-length
parameters of inductance and capacitance and those that solve the MTL equations
and incorporate the terminal conditions. The codes that determine the per-unit-length

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.
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parameters are WIDESEP.FOR, which implements the wide-separation approx-
imations for wires, RIBBON.FOR for considering ribbon cables, PCB.FOR for
considering lands on printed circuit boards, MSTRP.FOR for considering coupled
microstrip structures, and STRPLINE.FOR for considering coupled stripline
structures. All of these codes require an input file (XXXXX.IN) that contains the
two-dimensional, cross-sectional dimensions and material characteristics of the line.
These files are called WIDESEP.IN, RIBBON.IN, PCB.IN, MSTRP.IN,
and STRPLINE.IN, respectively. The output of all these programs is the file
PUL.DAT. The upper triangle of the per-unit-length parameter inductance, L, and
capacitance, C, matrices are stored by rows in this file with the inductance matrix
given first followed by the capacitance matrix. The input data are printed at the end of
these files but are not read by the programs that subsequently use these per-unit-length
data. When one of these per-unit-length parameter codes is run, its output overwrites
the present contents of PUL.DAT. The sample outputs of each of these codes are
included at the above FTP site and are named XXXXX.OUT. There is no such output
for these per-unit-length parameter programs: the output file PUL.DAT is simply
renamed XXXXX.OUT and as stored as a sample of that program’s PUL.DAT output.

The remaining codes solve the MTL equations and incorporate the terminal con-
ditions to give the solutions for the line voltages and/or currents. These codes are
further subdivided into those for the frequency-domain solution and those for the
time-domain solution. Each of these codes requires one or more input files that are de-
scribed at the beginning of the code listings. For example, the code SPICEMTL.FOR
requires the input files SPICEMTL.IN and PUL.DAT. The file PUL.DAT is the
output of the codes WIDESEP.FOR, RIBBON.FOR, PCB.FOR, MSTRP.FOR, or
STRPLINE.FOR. The user may alternatively provide his/her per-unit-length data
from other sources. The output file of SPICEMTL.FOR is simply SPICEMTL.OUT.
The output files generally contain either the magnitude and phase of the line voltages
and/or currents at each frequency or the line voltages and/or currents at each time step.
There is one exception to this: The programs SPICEMTL.FOR, SPICELPI.FOR,
SPICELC.FOR, and SPICEINC.FOR provide as output a SPICE subcircuit that
models the MTL on a port basis.

The input data for each code appear as one item per line in the appropriate file.
These data are in a free field format. The READ statements in the calling program
are in an unformatted type:

READ(5, ∗)

Each data item appears in a separate line of the input file followed in that line with
several blank spaces and an = sign followed by descriptive remarks. The annotation
(in the input and output files) of = ***** simply describes the data entry preceding
the = sign to the user and is not read by the calling program. In order for this to
function properly, at least one blank space must appear between the data item and
the = sign. This is in the same format in both the input and output files and anticipates
that the subsequent program that may use this output file has unformatted reads such
as READ (5,*).
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A.1 PROGRAMS FOR THE CALCULATION OF THE
PER-UNIT-LENGTH PARAMETERS

In this section, we describe three codes for the calculation of the entries in the per-unit-
length inductance matrix, L, and capacitance matrix, C: WIDESEP.FOR, which
implements the wide-separation approximations for wires, RIBBON.FOR for ribbon
cables, PCB.FOR for printed circuit boards, MSTRP.FOR for coupled microstrip
structures, and STRPLINE.FOR for coupled striplines. The output of these codes
is the file PUL.DAT that contains the upper triangles of these matrices with the
inductance matrix given first followed by the capacitance matrix.

A.1.1 Wide-Separation Approximations for Wires: WIDESEP.FOR

Required input files: WIDESEP.IN
Output file: PUL.DAT

The code computes the entries in the per-unit-length inductance matrix, L, for three
configurations of widely spaced wires in a homogeneous medium described in Sec-
tion 5.2.1 : (a) (n + 1) wires (5.23), (b) n wires above an infinite, perfectly conducting
ground plane (5.25), and (c) n wires within an overall circular, cylindrical shield
(5.26). The per-unit-length capacitance matrix is obtained from C = µ0µrε0εr L−1

where µr and εr are the relative permeability and permittivity, respectively, of
the homogeneous medium surrounding the wires. These structures are depicted in
Figure A.1. The first data parameter in WIDESEP.IN is the number of wires, n (ex-
clusive of the reference conductor). The relative permittivity and relative permeability
of the surrounding homogeneous medium are the next input parameters. The type of
structure is input to WIDESEP.IN by the reference conductor parameter: 1 = wire, 2
= ground plane, and 3 = overall shield. The remaining parameters describe the wire
radii and their cross-sectional positions.

The first case, n wires with another wire as the reference wire, is depicted in
Figure A.1(a). The reference wire is located at the origin of a rectangular coordinate
system. The input data in WIDESEP.IN are (1) the number of wires, n (exclusive
of the reference wire), (2) the reference conductor type (type = 1), (3) the relative
permittivity and permeability of the surrounding homogeneous medium, (4) the radius
of the reference wire (in mils), and (5) the radii of the other wires (in mils) along with
their x coordinates (in meters) and y coordinates (in meters). The last group is input
sequentially for each wire: rw1, x1, y1, rw2, x2, y2, . . . , rwn, xn, yn.

The second case, n wires above an infinite ground plane as the reference conductor,
is depicted in Figure A.1(b). The ground plane forms the y coordinate axis (x = 0) of
a rectangular coordinate system. The input data in WIDESEP.IN are (1) the number
of wires, n, (2) the reference conductor type (type = 2), (3) the relative permittivity
and permeability of the surrounding homogeneous medium, and (4) the radii of the
other wires (in mils) along with their x coordinates (height above ground) (in meters)
and y coordinates (in meters). The last group is again input sequentially for each wire:
rw1, h1, y1, rw2, h2, y2, . . . , rwn, hn, yn.
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FIGURE A.1 Cross-sectional configurations of wire lines for the WIDESEP.FOR FOR-
TRAN program input data: (a) n + 1 wires, (b) n wires above a ground plane, and (c) n wires
within a cylindrical shield.
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The last case, n wires within an overall shield of radius rSH as the reference con-
ductor, is depicted in Figure A.1(c). The input data in WIDESEP.IN are (1) the
number of wires, n, (2) the reference conductor type (type = 3), (3) the relative
permittivity and permeability of the surrounding homogeneous medium, (4) the (in-
terior) radius of the shield (in mils), and (5) the radii of the other wires (in mils)
along with their distances from the shield center, di, (in mils) and their angular lo-
cations, θi, (in degrees). The last group is again input sequentially for each wire:
rw1, d1, θ1, rw2, d2, θ2, . . . , rwn, dn, θn.

The entries in the upper triangle of the per-unit-length inductance and capacitance
matrices are output to PUL.DAT. The last items in PUL.DAT simply restate the
input parameters to insure that the correct problem was solved. These are not read by
the subsequent application program.

A.1.2 Ribbon Cables: RIBBON.FOR

Required input files: RIBBON.IN
Output file: PUL.DAT

Consider the general N-wire ribbon cable shown in Figure A.2. The line consists of N
identical, dielectric-insulated wires. The wire radii are denoted in the code as RW, the
insulation thicknesses are denoted by TD, and the identical adjacent wire spacings are
denoted as S. The relative permittivity of the insulation is denoted by ER in the code.
These input data are contained in RIBBON.IN. The results of the computation are
contained in the output file PUL.DAT. The last items in PUL.DAT simply restate
the input parameters to insure that the correct problem was solved. These are not read
by the subsequent application program.

The structure of the main program RIBBON.FOR is as follows. Utilizing
Tables 5.2 and 5.3 , we can write the matrix that satisfies the boundary conditions:
(1) the potentials of a conductor at points on that conductor due to all charge
distributions in the system are set equal to the potential of that conductor, and (2)

FIGURE A.2 Cross-sectional definition of the ribbon cable parameters for the RIBBON.FOR
FORTRAN program input data.
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the components of the electric flux density vector D = ε E that are normal to the
dielectric–free-space boundary at points on that boundary are continuous across the
boundary. This corresponds to the matrix equation (5.44) of Chapter 5 that becomes
of the form

[
D11 D12
D21 D22

] [
A
A′
]

=
[

�

0

]
(A.1)

Expanding these gives

D11A + D12A′ = � (A.2a)

D21A + D22A′ = 0 (A.2b)

The first set in (A.2a) enforces the potentials on the conductors, and the second set in
(A.2b) enforces the continuity of the normal components of the electric flux density
vector across the dielectric–free-space boundary. We will assume that the number of
Fourier expansion functions around the conductor–dielectric boundary and around
the dielectric–free-space boundary is equal. The number of expansion coefficients
around each of these two boundaries is denoted as NF. The (N · NF) × 1 vector A
contains the Fourier expansion coefficients for the free and bound charge around the
conductor–dielectric boundary. Similarly, the (N · NF) × 1 vector A′contains the
Fourier expansion coefficients for the bound charge around the dielectric–free-space
boundary. The (N · NF) × 1 vector � contains the potentials of the conductors
at the matchpoints on those conductors. The (N · NF) × 1 zero vector 0 results
from the satisfaction of the continuity of the normal components of the electric
flux density vector across the dielectric–free-space boundary. The submatrices
D11, D12, D21, and D22 are (N · NF) × (N · NF). Because of the repetitive nature of
the ribbon cable structure, these submatrices have a special form:

D11 =




A1 A2 · · · AN

A−2 A1
. . .

...
...

. . .
. . . A2

A−N · · · A−2 A1


 (A.3)

and D12, D21, and D22 have a similar structure. This simplifies the fill time for
(A.1). In order to avoid a singular solution matrix in (A.1), the matchpoints are
chosen from the following scheme [C.3,C.4]. On each conductor–dielectric interface
and each dielectric–free-space interface, the NF matchpoints are separated by the
angle

θ = 2π

NF
(A.4a)
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FIGURE A.3 Illustration of the scheme for rotating the match points of a ribbon cable to
avoid singular solution matrices.

These are rotated by an angle

� = π

2 NF
(A.4b)

as illustrated in Figure A.3.
The matrix equations in (A.1) or (A.2) are solved as

A =
[
D11 − D12 D−1

22 D21

]−1
� (A.4a)

A′ = −D−1
22 D21 A (A.4b)

Once these are solved, the total free charge on each conductor and the elements of the
generalized capacitance matrix are obtained according to (5.48). The transmission-
line capacitance matrix C is obtained from the generalized capacitance matrix ac-
cording to the algorithm given in (5.21) for the chosen reference conductor. The
generalized capacitance matrix with the dielectric removed is computed by comput-
ing the free charge with the dielectric removed:

A = D−1
11 � (A.5)

and the transmission-line capacitance matrix C0 is computed for the chosen reference
conductor. The transmission-line inductance matrix is computed according to

L = µ0ε0 C−1
0 (A.6)

The upper triangle of C and L are printed out to the file PUL.DAT with L printed first.
Observe the numbering of the conductors illustrated in Figure A.4. The conductors
to the left of the reference conductor are numbered sequentially from left to right and
the remaining conductors to the right of the reference conductor are also numbered
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FIGURE A.4 Illustration of the numbering scheme for determining the transmission-line
capacitance matrix from the generalized capacitance matrix for a ribbon cable.

sequentially. This numbering is critical to observe when one generates the entries
of the matrices and vectors of the terminal characterization as with a generalized
Thevenin equivalent in the programs that use these data.

The inversion of the above real-valued matrices is accomplished with a stan-
dard Gauss–Jordan subroutine, GAUSSJ, which is supplied as a part of the code
RIBBON.FOR. This subroutine was taken with permission from W.H. Press, B.P.
Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes, The Art of Scien-
tific Computing, Cambridge University Press, NY, 1989 ([1]).

A.1.3 Printed Circuit Boards: PCB.FOR

Required input files: PCB.IN
Output file: PUL.DAT

This code determines the entries in the per-unit-length inductance and capacitance
matrices L and C for an N-land PCB illustrated in Figure A.5 and described in Sec-
tion 5.3.1.1 . The problem that is solved is a special case wherein all lands have

FIGURE A.5 Cross-sectional definition of the printed circuit board parameters for the
PCB.FOR FORTRAN program input data.
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FIGURE A.6 Illustration of the numbering scheme for determining the transmission-line
capacitance matrix from the generalized capacitance matrix for a PCB.

the same width of W and identical edge-to-edge separations S. The board has thick-
ness T and relative permittivity εr. The lands are numbered from left to right as
shown. The generalized capacitance matrix for the structure is first solved using the
results for potential given in Section 5.3.1.1 of Chapter 5 . One of the input data
parameters provided in PCB.IN is the number of the desired reference land as il-
lustrated in Figure A.6. The code then solves for the transmission-line capacitance
matrix from the generalized capacitance matrix based on the desired reference con-
ductor. The code first solves for the capacitance matrix with the board removed and
replaced with free space C0 from which the transmission-line inductance matrix is
obtained as L = µ0ε0 C−1

0 . Then the capacitance matrix with the board present, C, is
determined.

The matrix given in (5.60) of Chapter 5 relating the charge distributions over the
land subsections to the potentials of the lands is formed and inverted as in (5.61).
From this result the generalized capacitance matrix is formed as in (5.62). Then the
algorithm in (5.21) is used to obtain the entries in the transmission-line capacitance
matrices C and C0 for the chosen reference land. For both cases, the matrix equation
to be solved has, because of the assumption of identical land widths and edge-to-edge
spacing, the following structure:




A1 A2 · · · AN

At
2 A1

. . .
...

...
. . .

. . . A2
At

N · · · At
2 A1






σ1
σ2
...

σN


 =




�1
�2
...

�N


 (A.7)

where t denotes the transpose of the matrix, σi contains the unknown levels of the
charge distributions (assumed constant) of each subsection of the ith land, and �i

contains the potentials of the subsections of the ith land.
The upper triangle of the per-unit-length inductance matrix is printed to PUL.DAT

followed by the upper triangle of the per-unit-length capacitance matrix. These data
are used by all subsequent analysis codes. Additionally, the per-unit-length capaci-
tance matrix with the board removed, C0, is printed to PUL.DAT but is not used by
the analysis codes. And finally, the problem parameters are printed to PUL.DAT
so that the user can insure that the problem solved is as desired. The inversion
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of (A.7) is again performed using the Gauss–Jordan subroutine that was used in
RIBBON.FOR.

A.1.4 Coupled Microstrip Structures: MSTRP.FOR

Required input files: MSTRP.IN
Output file: PUL.DAT

This code determines the n × n per-unit-length transmission line capacitance and
inductance matrices C and L consisting of n equal-width lands with identical separa-
tions on a dielectric substrate with a ground plane on the opposite side as illustrated
in Figure A.7 and described in Section 5.3.1.2. This code is useful in simulating a
printed circuit board that has one or more inner planes that are buried at various
distances within the board. Essentially, it simulates the surface of the PCB where
the traces are located and the innerplane closest to that surface. Since we assume
a board of infinite width, the remaining innerplanes are of no consequence since
they are isolated in this calculation from the surface lands by the first innerplane.
This code also simulates many other microstrip structures that are used in microwave
circuits.

The construction of this code requires two simple modifications of the previous
code PCB.FOR. The first modification is that the generalized capacitance matrix
computed in the code PCB.FOR is the transmission-line capacitance matrix for the
microstrip structures. This is because the voltages of the n lands of the microstrip
structure are taken with respect to the ground plane. It can be shown that these voltages
are essentially the absolute potentials computed in the generalized capacitance matrix
[B.4 ]. Therefore, the first modification of the code PCB.FOR is to simply remove
the computations that determine the transmission-line capacitance matrices from the
generalized capacitance matrices.

The second modification of the code PCB.FOR is to determine the absolute poten-
tial of a infinitesimal line charge on the surface of an dielectric sheet having a ground
plane on the opposite side. This basic subproblem was solved for the PCB having no
ground plane in Chapter 3 by imaging across the two dielectric surfaces as shown in

FIGURE A.7 Cross-sectional definition of the coupled microstrip line parameters for the
MSTRP.FOR FORTRAN program input data.
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Figure 5.27(b) resulting in

φ(d) = − q

4πε0
(1 − k)ln[d2] − q

4πε0
(1 − k2)

∞∑
n=1

k(2n−1)ln
[
d2 + (2nt)2

]

= − q

4πε0εreff
ln[d2] − q

4πε0εreff
(1 + k)

∞∑
n=1

k(2n−1)ln
[
d2 + (2nt)2

]
(5.76)

In the case of the microstrip structure, we image the line charge across the top dielectric
surface and across the ground plane and obtain in a similar fashion as shown in
Figure 5.33:

φ(d) = − (1 − k)q

4πε0
ln[d2] − (1 − k2)q

4πε0

∞∑
n=1

(−1)nk(n−1)ln
[
d2 + (2nt)2

]

= − q

4πε0εreff
ln[d2] − q

4πε0εreff
(1 + k)

∞∑
n=1

(−1)nk(n−1)ln
[
d2 + (2nt)2

]
(5.84)

Comparing (5.76) and (5.84), we see that the code PCB.FOR can be simply modified
to analyze the microstrip structures by replacing in all summations

∞∑
n=1

k(2n−1)

︸ ︷︷ ︸
PCB.FOR

⇔
∞∑

n=1

(−1)nk(n−1)

︸ ︷︷ ︸
MSTRP.FOR

(A.8)

There is one additional difference. In the case of PCB.FOR with the dielectric removed
(replaced with free space) k = 0 and the summation is zero. In the case of microstrip
structures, MSTRP.FOR, the first term of the summation is nonzero for k = 0, that is,
with the dielectric removed. This term represents the image across the ground plane
and is present even with the dielectric removed.

A.1.5 Coupled Stripline Structures: STRPLINE.FOR

Required input files: STRPLINE.IN
Output file: PUL.DAT

This code determine the n × n per-unit-length transmission line capacitance and in-
ductance matrices C and L for n equal-width lands with identical separations within
a homogeneous, dielectric substrate with ground planes on both sides as illustrated
in Figure A.8 and described in Section 5.3.1.3 . This code is useful in simulating
a printed circuit board that has one or more inner planes that are buried at various
distances within the board. The lands are assumed to be at an equal distance above
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FIGURE A.8 Cross-sectional definition of the coupled stripline parameters for the STR-
PLINE.FOR FORTRAN program input data.

and below the two ground planes. Again, the voltages of the n lands of the microstrip
structure are taken with respect to the ground plane.

A.2 FREQUENCY-DOMAIN ANALYSIS

One code, MTL.FOR, serves to determine the frequency-domain response of an MTL.
Depending on the input data, one can consider lossless or lossy lines as well as ho-
mogeneous media or inhomogeneous media. The lossy description of the conductors
is contained in MTL.IN, and the inhomogeneity of the surrounding medium is deter-
mined by the per-unit-length parameters contained in PUL.DAT.

A.2.1 General: MTL.FOR

Required input files: MTL.IN, PUL.DAT, FREQ.IN
Output file: MTL.OUT

The program forms the per-unit-length impedance and admittance matrices:

Ẑ = R( f ) + jωL (A.9a)

Ŷ = jωC (A.9b)

where the entries in R, L, and C are given in (3.12), (3.11c), and (3.24). The entries
in the upper diagonal of L and C are read from PUL.DAT. The entries in R are input
data from MTL.IN. These are given for each conductor as (1) the dc resistance rdc
and (2) the break frequency f 0 where the resistance transitions to a

√
f skin-effect

frequency dependence as rhf = rdc
√

f/ f 0. The per-unit-length internal inductances
of the conductors are also included in Li and are determined from these data according
to the scheme given in (8.137) in Section 8.2.1.3 assuming that the high-frequency
resistance and internal inductive reactance are equal, rhf = ω li,hf , and that they both
transition at the same frequency, f 0. If no conductor loss is desired, set the dc
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resistance to zero, and if no skin-effect dependence is desired, set f 0 larger than the
largest analysis frequency. The analysis frequencies are read from the file FREQ.IN.
The code determines the eigenvalues γ and eigenvectors T of YZ as in (7.35). The
entries in the generalized Thevenin equivalent characterizations of the terminations as
in (7.87) are read from the file MTL.IN. Incorporating these into the general solution
in (7.86) gives the 2n × 2n matrix to solve (7.90) for the 2n undetermined constants
in the vectors I±

m.
The eigenvectors and eigenvalues of YZ are determined using the International

Mathematical and Statistical Libraries (IMSL) version 9.2 subroutine EIGCC [2].
Equation (7.90) is solved using the IMSL subroutine LEQT1C.

A.3 TIME-DOMAIN ANALYSIS

Four time-domain analysis codes are included. These implement the time-domain
to frequency-domain (TDFD) transformation (TIMEFREQ.FOR), Branin’s recursive
solution method extended (for a homogeneous medium) to MTLs (BRANIN.FOR),
the finite-difference, time-domain (FDTD) method for lossless lines (FINDIF.FOR),
and the finite-difference, time-domain (FDTD) method for lossy lines (FDTD-
LOSS.FOR).

A.3.1 Time-Domain to Frequency-Domain Transformation: TIMEFREQ.FOR

Required input files: TIMEFREQ.IN, MTLFREQ.DAT
Output file: TIMEFREQ.OUT

This code determines the time-domain response of the MTL using the TDFD trans-
formation described in Sections 8.1.7 , 8.2.2 , 9.1.4 , and 9.2.1 . The input signal is
assumed to be a periodic pulse train with trapezoidal pulses. The Fourier series of
this input signal is given by (1.121), and the coefficients are given by (1.126). The
input file TIMEFREQ.IN contains the number of harmonics used, the pulse level,
the repetition frequency of the pulse train, the duty cycle, the pulse rise/fall time, and
the final solution time. In addition, the dc level of the transfer function, H(0), is input
and multiplied by the dc level of the input spectrum, c0, to give the dc level of the out-
put spectrum. The input file MTLFREQ.DAT contains the frequency-domain transfer
function (magnitude and phase) at each of the desired harmonics of the input signal.
These can be computed (a) for a lossless line using PSPICE in the .AC mode and the
lossless transmission-line subcircuit model generated by SPICEMTL.FOR or (b) for
a lossy (or lossless) line using the frequency-domain analysis code MTL.FOR that
was described in the previous section. The program combines these data to compute
the time-domain response according to (1.124).

A.3.2 Branin’s Method Extended to Multiconductor Lines: BRANIN.FOR

Required input files: BRANIN.IN, VSVL.IN, PUL.DAT
Output file: BRANIN.OUT
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This code implements the recursive solution of Branin’s method extended to MTLs
for a homogeneous medium as described in Section 9.1.1. Equations (9.18) are solved
recursively. The source and load voltage waveforms in VS(t) and VL(t) in the gener-
alized Thevenin equivalent representation of the terminations in (9.17) are described
in a piecewise linear fashion in the input file VSVL.IN. The resistive entries in the
matrices RS and RL in (9.17) are input data in the file BRANIN.IN. These are as-
sumed to be symmetric and the upper triangles of these are input. It is implicit in
this method that the surrounding medium is homogeneous (for which L and C were
computed).

A.3.3 Finite Difference-Time Domain Method: FINDIF.FOR

Required input files: FINDIF.IN, VSVL.IN, PUL.DAT
Output file: FINDIF.OUT

This code implements the FDTD method for a lossless line described in Section 9.1.5.
Equations (9.53) and (9.57) are solved recursively. The discretizations of position and
time are contained in FINDIF.IN. The resistive entries in the matrices RS and RL in
the generalized Thevenin equivalent characterizations of the terminations are also the
input data in the file FINDIF.IN. The source and load input voltages are described
versus time in a piecewise linear manner in the input file VSVL.IN.

A.3.4 Finite-Difference-Time-Domain Method: FDTDLOSS.FOR

Required input files: FDTDLOSS.IN, VSVL.IN, PUL.DAT
Output file: FDTDLOSS.OUT

This code implements the FDTD method for lossy lines described in Section 9.2.3.
It is essentially identical to FINDIF.FOR with the addition of the discrete convolu-
tion for the dc and skin-effect losses (resistance and internal inductance) described
in Section 8.2.3. Equations (9.53), (9.57), and (9.80) are solved recursively. The dis-
cretizations of position and time are contained in FDTDLOSS.IN along with the dc
resistance and skin-effect transition frequencies of the conductors according to the
scheme described in Section 8.2.3 of Chapter 8. The resistive entries in the matrices
RS and RL in the generalized Thevenin equivalent characterizations of the termi-
nations are also input data in the file FDTDLOSS.IN. The source and load input
voltages are described in a piecewise linear manner in the input file VSVL.IN.

A.4 SPICE/PSPICE SUBCIRCUIT GENERATION PROGRAMS

This section describes three FORTRAN codes that generate SPICE/PSPICE sub-
circuit models that implement the SPICE method (SPICEMTL.FOR), the lumped-
Pi model (SPICELPI.FOR), and the low-frequency, inductive-capacitive model
(SPICELC.FOR).
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FIGURE A.9 Terminal node numbering scheme for the SPICE subcircuit models generated
by the FORTRAN programs SPICEMTL.FOR and SPICELPI.FOR models.

A.4.1 General Solution, Lossless Lines: SPICEMTL.FOR

Required input files: SPICEMTL.IN, PUL.DAT
Output file: SPICEMTL.OUT

This code implements the exact SPICE model described in Section 9.1.2 . The line
is assumed to be lossless but the surrounding medium may be inhomogeneous as
determined by the per-unit-length parameters in PUL.DAT. The per-unit-length in-
ductance and capacitance matrices are read from PUL.DAT and diagonalized as in
Section 9.1.2 using the subroutines DIAG and JACOBI. A subcircuit model is de-
veloped with the node numbering as 101, 102, . . . , 10n for the nodes of conductors
1,2, . . . , n at z = 0 and 201, 202, . . . , 20n for the nodes of conductors 1,2, . . . , n
at z = L as illustrated in Figure A.9. This subcircuit model can then be incorpo-
rated into a SPICE/PSPICE program. The total number of conductors, n + 1, and the
total line length are specified in the input file SPICEMTL.IN. Note that the result-
ing SPICE/PSPICE code can also handle frequency-domain solutions by replacing
the .TRAN run instruction with the .AC instruction.

A.4.2 Lumped-Pi Circuit, Lossless Lines: SPICELPI.FOR

Required input files: SPICELPI.IN, PUL.DAT
Output file: SPICELPI.OUT

This code implements a SPICE subcircuit for the lumped-Pi model of an MTL de-
scribed in Sections 7.4, 9.1.3 , and 9.2.2. The line is again assumed to be lossless
but the surrounding medium may be inhomogeneous as determined by the per-unit-
length parameters in PUL.DAT. The per-unit-length inductance and capacitance
matrices are read from PUL.DAT. A subcircuit model is again developed with the
node numbering as before as 101, 102, . . . , 10n for the nodes of conductors 1,2, . . . ,
n at z = 0 and 201, 202, . . . , 20n for the nodes of conductors 1,2, . . . , n at z = L
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as is illustrated in Figure A.9. This subcircuit model can then be incorporated into a
SPICE/PSPICE program. The total number of conductors, n + 1, and the total line
length are specified in the input file SPICELPI.IN. Conductor losses can be incor-
porated by adding additional nodes and the appropriate line resistances and internal
inductances or frequency-dependent models for them as described in Section 9.2.2.

A.4.3 Inductive-Capacitive Coupling Model: SPICELC.FOR

Required input files: SPICELC.IN
Output file: SPICELC.OUT

This code implements the low-frequency, inductive-capacitive coupling model de-
scribed in Section 10.1.1 for a three-conductor line. The line is assumed to be lossless
but the surrounding medium may be inhomogeneous as determined by the per-unit-
length mutual inductance and mutual capacitance parameters in SPICELC.IN. This
input file also specifies the total line length. Figure A.10 shows the SPICE model that
is developed. A subcircuit model, shown in Figure A.11, is developed with the node
numbering as S, NE for the two nodes of conductors 1, 2 at z = 0 and L, FE for the
nodes of conductors 1, 2 at z = L. This subcircuit model can then be incorporated
into a SPICE/PSPICE program.

FIGURE A.10 The SPICE subcircuit model generated by the code SPICELC.FOR.
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FIGURE A.11 The node numbering scheme for the SPICE subcircuit model generated by
the code SPICELC.FOR.

A.5 INCIDENT FIELD EXCITATION

A.5.1 Frequency-Domain Program: INCIDENT.FOR

Required input files: INCIDENT.IN, PUL.DAT, FREQ.IN
Output file: INCIDENT.OUT

This code determines the frequency-domain response of a general MTL to a sin-
gle frequency, uniform plane wave. Two types of line structures are provided for:
an n + 1 conductor MTL and n conductors above an infinite, perfectly conducting
ground plane. The terminations are characterized by generalized Thevenin equiva-
lents. Lumped voltage sources can also be included in these terminations. Equations
(12.39) are solved for the vectors of undetermined constants in the general solution,
and the terminal voltages are obtained from equations (12.40). The forcing functions
due to a uniform plane-wave incident field V̂FT(L) and ÎFT(L) are determined from
equations (12.61) –(12.68). Essentially, the program MTL.FOR described earlier was
modified to include the incident field sources.

The code requires the input files INCIDENT.IN, PUL.DAT, and FREQ.IN.
The file PUL.DAT is as before and gives the usual per-unit-length parameters of the
line. The file FREQ.IN is also the same as for the program MTL.FOR and gives the
solution frequencies sequentially. The file INCIDENT.IN describes (in this order) (1)
the total number of conductors n + 1, (2) the total line length, (3) the line type (1 = no
ground plane and 2 = ground plane), (4) the output conductor for the terminal solution
voltages, (5) the incident uniform plane-wave description (Êo, θE, θP, and φP with
reference to Figure A.12), (6) the conductor cross-sectional coordinates (sequentially
according to Figure A.13, (7) the dc resistances and skin-effect break frequencies
(for the reference conductor and sequentially for the other n conductors) as described
for MTL.FOR, and (8) the generalized Thevenin equivalent characterizations for the
terminations as described for MTL.FOR. The output file INCIDENT.OUT gives
the termination solution voltages for the chosen output conductor (with respect to the



INCIDENT FIELD EXCITATION 753

FIGURE A.12 Definition of (a) the angles of incidence and (b) polarization of the electric
field for an incident uniform plane wave for the codes INCIDENT.FOR, SPICEINC.FOR,
and FDTDINC.FOR.

reference conductor) sequentially for each solution frequency in FREQ.IN. These
can be used in the previously described code, TIMEFREQ.FOR to compute the time-
domain response to a uniform plane wave that has a periodic, trapezoidal waveform.

A.5.2 SPICE/PSPICE Subcircuit Model: SPICEINC.FOR

Required input files: SPICEINC.IN, PUL.DAT
Output file: SPICEINC.OUT

This code generates a SPICE/PSPICE subcircuit model for an n + 1 conductor MTL
excited by a uniform plane wave. The input file SPICEINC.IN contains the to-
tal number of conductors, the line length, the line type (1 = no ground plane and
2 = ground plane), the incident wave polarization and propagation direction with
reference to Figure A.12 (θE, θp, and φp), and the cross-sectional conductor loca-
tions with reference to Figure A.13 (X(i), Y (i)). The cross-sectional coordinates are
entered sequentially as the last items in this input file. The other input file is the
usual PUL.DAT that contains the per-unit-length parameters. The output file SPI-
CEINC.OUT contains the SPICE subcircuit model. The external nodes are labeled as
in SPICEMTL and are shown in Figure A.14. The code implements the model shown
in Figure 12.8 . The external nodes at z = 0 are denoted as 101, 102, . . . , 10n and the
external nodes at z = L are denoted as 201, 202, . . . , 20n. One additional node 100
is external to which the time waveform source of the incident wave Eo(t) is attached.
The code is restricted to φp positive, that is, components of the propagation vector in
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the +z direction. For propagation directions giving a component in the −z direction,
simply reverse the line.

A.5.3 Finite-Difference, Time-Domain (FDTD) Model: FDTDINC.FOR

Required input files: FDTDINC.IN, PUL.DAT, E0.IN
Output file: FDTDINC.OUT

This code implements the FDTD method contained in equations (12.134) and (12.135)
of Chapter 12. The input file FDTDINC.IN contains the total number of conductors,
the line length, the line type (1 = no ground plane and 2 = ground plane), the in-
cident wave polarization and propagation direction with reference to Figure A.12
(θE, θp, φp), the cross-sectional conductor locations with reference to Figure A.13

FIGURE A.13 Definition of the cross-sectional dimensions for input data to the codes IN-
CIDENT.FOR, SPICEINC.FOR, and FDTDINC.FOR for (a) n + 1 wires and (b) n wires
above a ground plane.
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FIGURE A.14 Node numbering for the SPICE subcircuit model generated by the code
SPICEINC.FOR.

(X(i), Y (i)), the number of line position cells, NDZ, the number of time discretiza-
tions, NDT, the final solution time, the print solution index, the output conductor for
the terminal voltages, and the line terminations in the form of a generalized Thevenin
equivalent without sources (RS, RL, VS = 0, and VL = 0). The input file PUL.DAT
contains the usual per-unit-length parameters. The input file E0.IN contains a piece-
wise linear specification of Eo(t) versus time. The output file FDTDINC.OUT contains
the solution at the discrete time steps at the endpoints of the chosen output conductor.
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APPENDIX B

A SPICE (PSPICE) TUTORIAL

This is a brief summary of the SPICE, or its personal computer version PSPICE,
electric circuit analysis program. SPICE is an acronym for simulation program with
integrated-circuit emphasis. The original SPICE computer program was developed
to analyze complex electric circuits, particularly integrated circuits. It was developed
at the University of California at Berkeley in the early 1970s. Since it was developed
under U.S. government funding, it is not proprietary and can be freely copied, used,
and distributed. We will discuss the most common and widely available SPICE2,
version G6 code, which was written in FORTRAN. This was written for use on large
mainframe computers of the time. In the 1980s, the MicroSim Corporation devel-
oped a personal computer version of SPICE called PSPICE. A number of important
modifications were made particularly in the plotting of data via the .PROBE function.
Since then a number of commercial firms have modified and developed their own
PC versions’ but essentially the core engine is that of the original SPICE code. The
MicroSim version of PSPICE was acquired by the OrCAD Corporation, now Cadence
Design Systems. A windows-based version is available free from www.orcad.com.
The latest is the version 10.0 called OrCAD Capture, which contains the primary
simulation code PSPICE A/D. The OrCAD Capture program was originally called
Schematic in the MicroSim version. A number of books [1–5] detail the use of SPICE
and PSPICE.

There are two methods of entering and executing a PSPICE program. The first
method is the direct method, which is described here, where one enters the program
code using a ASCII text editor (supplied with PSPICE). Then this text file is run using
the PSpice A/D section of the program, and the output is examined with the text editor.

Analysis of Multiconductor Transmission Lines, Second Edition, by Clayton R. Paul
Copyright © 2008 John Wiley & Sons, Inc.
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The second method is the schematic method (now called Capture), where the user
“draws” the circuit diagram directly on the screen and then executes this program. The
direct method is generally the most rapid method of solving a problem. The schematic
(capture) method has the advantage of visually seeing whether the circuit components
are connected as intended but is a bit more time-consuming than the direct method
for the simple problems in this textbook because numerous windows and drop-down
menus must be navigated.

Once the PSPICE program has been installed on your computer, the following is
a description of how you can input your program, run it, and examine the output.
The various selections are underlined. In the following, we will discuss the MicroSim
version 8. The method of accessing PSPICE and inputting data in the OrCAD version
10 is very similar. Although there are several ways of doing this, the simplest way
is to use the design manager. To load this, you click or select the following in this
sequence:

1. Start

2. Programs

3. MicroSim Eval 8

4. Design Manager

The direct method is to simply type in the PSPICE program using the TextEdit
feature. To enter this and prepare the program, we select the following in this
sequence:

1. TextEdit (lower button on the vertical toolbar on the left).

2. Type the program.

3. Save the program as XXX.cir or XXX.in and close it.

4. Select PSpice A/D (second button on the vertical toolbar on the left).

5. Click on file, open, and select the previously stored file. The program will
automatically run and the output will be stored in file XXX.out.

6. Click on File, and run probe in order to plot waveforms.

7. Recall the TextEdit program and select file, open XXX.out. Examine the output,
which is self-explanatory.

B.1 CREATING THE SPICE OR PSPICE PROGRAM

SPICE and PSPICE write the node voltage equations of an electric circuit [1]. One
node, the reference node for the node voltages, is designated the zero (0) node. All
circuits must contain a zero node. The other nodes in the circuit are labeled with
numbers or letters. For example, a node may be labeled 23, or it may be labeled
FRED. The voltages with respect to the reference (zero) node are positive at the node
and denoted as V(N1), V(N2) as shown in Figure B.1. The general structure of any
SPICE or PSPICE program is as follows:
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FIGURE B.1 Node voltage and element voltage notation in the SPICE (PSPICE) circuit
analysis program.

1. Title

2. Circuit Description

3. Execution Statements

4. Output Statements

5. .END

The first line of the SPICE program is the title and is not processed by SPICE. It
is simply written on the output and on any plots. A comment line is started with an
asterisk (*) and is also not processed by the program. A line may be continued with
a plus sign (+) at the beginning of the following line. The next set of lines, circuit
description, describes the circuit elements and their values and tells SPICE how they
are connected together to form the circuit. The next set of lines is the execution state-
ments that tells SPICE what type of analysis is to be run: dc sources (.DC), sinusoidal
steady state or phasor analysis (.AC), or the full time-domain analysis consisting of
the transient and steady-state solution (.TRAN). The next set of statements, output
statements, tells SPICE what output is desired. The results can be printed to a file
with the .PRINT statement or can be plotted with the .PROBE feature. Finally, all
programs must end with the .END statement. Actually, the items 2–4 can appear in
any order in the program, but the program must begin with a title statement and end
with the .END statement.

B.2 CIRCUIT DESCRIPTION

The basic elements and their SPICE descriptions are shown in Figure B.2. Figure B.2a
shows the independent voltage source. It is named starting with the letter V and
then any other letters. For example, a voltage source might be called VFRED. It is
connected between nodes N1 and N2. It is very important to note that the source is
assumed positive at the first-named node. The current through the voltage source
is designated as I(VXXX) and is assumed to flow from the first-named node to the
last-named node. The source type can be either dc for which we append the term
DC magnitude, or a sinusoid for which we append the term AC magnitude phase
(degrees). A time-domain waveform is described by several functions that we will
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FIGURE B.2 Coding convention for (a) the independent voltage source, (b) the independent
current source, (c) the resistor, (d) the inductor, and (e) the capacitor.

describe later and these descriptions are appended (without the word TRAN). The
independent current source is shown in Figure B.2b. Its name starts with the letter I
followed by any other letters. For example, a current source might be designated as
ISAD. The current of the source is assumed to flow from the first-named node to the
last-named mode. The types of sources are the same as for the voltage source.

The resistor is shown in Figure B.2c, and its name starts with the letter R, for
example, RHAPPY. The current through the resistor is designated as I(RXXX) and
is assumed to flow from the first-named node to the last-named node. SPICE does
not allow elements with zero values. Hence, a resistor whose value is 0 � (a short
circuit) may be represented as having a value of 1E8 (1 × 10−8) or any other suitably
small value. Similarly, an open circuit may be designated as a resistor having a value



760 A SPICE (PSPICE) TUTORIAL

of 1E8 or any other suitably large value. SPICE does not allow “floating nodes,” that
is, nodes with no connection. Also, SPICE requires that every node have a dc path to
ground.

The inductor is shown in Figure B.2d and is designated with the letter L, for
example, LTOM. The current through the inductor as well as the initial inductor
current at t = 0+, I(0) is assumed to flow from the first-named node to the last-named
node. The initial condition can be specified at the end of the statement with IC = I(0).
The capacitor is shown in Figure B.2e and is designated by the letter C, for example,
CME. The initial voltage across the capacitor at t = 0+, V(0) can be specified at the
end of the statement with IC = V(0), and this voltage is assumed to be positive at the
first-named node.

All numerical values can be specified in powers of 10 and written in exponential
format, for example, 2 × 10−5 = 2 E − 5 or specified by using standard multipliers
using standard specified engineering notation:

Multiplier SPICE symbol

109 (giga) G
106 (mega) MEG
103 (kilo) K
10−3 (milli) M
10−6 (micro) U
10−9 (nano) N
10−12 (pico) P

For example, 1 m� is written as 1M, 1 k� is written as 1K, 3 mH is written as
3M, 5 �F is written as 5U, 2 nH is written as 2N, and 7 pF is written as 7P. A 3-F
capacitor should not be written as 3F since F stands for femto = 10−15. SPICE makes
no distinction between uppercase and lowercase letters. Hence, we could write 1m,
1k, 3m, 5n, 2n, and 7p.

The four types of controlled sources, G, E, F, and H are shown in Figure B.3
along with their descriptions. The polarities of voltages and the currents through the
elements conform to the previous rules governing these in terms of the first- and
last-named nodes on their description statements. For a current-controlled source F
or H, the controlling current may be through an independent voltage source. Often
we insert a 0-V source to sample the current. Some more recent versions of PSPICE
allow the specification of the current through any element as a controlling current,
but it is always a simple matter to insert a 0-V voltage source.

Figure B.4 shows how to specify mutual inductance. First, the self-inductances
that are coupled are specified as before. The mutual inductance is specified in terms
of its coupling coefficient:

K = M√
L1L2
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FIGURE B.3 Coding convention for (a) the voltage-controlled current source, (b) the
voltage-controlled voltage source, (c) the current-controlled current source, and (d) the current-
controlled voltage source.

In order to keep the polarities correct, define the self-inductances so that the dots are
on the first-named nodes; otherwise, a negative coupling coefficient may need to be
specified.

Figure B.5 shows the last important element, the transmission line (lossless), which
we will use extensively. There are many ways to specify the important parameters
for the line, but the one shown in the figure is the most widely used; specify the
characteristic impedance of the line and the line’s one-way time delay.

Figure B.6 shows how to specify the important time-domain waveforms.
Figure B.6a shows the PWL (piecewise-linear) waveform where straight lines are
drawn between pairs of points that are specified by their time location and their value.
Observe that the function holds the last specified value, V4 in the figure.
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FIGURE B.4 Coding convention for mutual inductance between two coupled inductors.

Figure B.6b shows the periodic pulse waveform. The function specifies a trape-
zoidal waveform that repeats periodically with period PER (the reciprocal is the
fundamental frequency of the waveform). Note that the pulse width Pw is not spec-
ified between the 50% points of the pulse as convention. The sinusoidal function is
specified by

SIN (V0 Va [[Freq [[Td [[Df [[Phase]]]]]]]])

which gives the waveform

x(t) = V0 + Va sin

(
2π

(
Freq(time − Td) + Phase

360

))
e−(time−Td)Df

Hence, to specify the general sinusoidal waveform

x(t) = A sin(nω0t + θ)

we would write

SIN(0 A nf 0 0 � )

FIGURE B.5 Coding convention for the two-conductor lossless transmission line.
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FIGURE B.6 Coding convention for the important source waveforms: (a) the piecewise-
linear waveform and (b) the pulse source waveform (periodic).

B.3 EXECUTION STATEMENTS

There are three types of solutions: dc, sinusoidal steady state or phasor, and the full
time-domain solution (so-called transient, although it contains both the transient and
the steady-state parts of the solution).

The dc solution is specified by

.DC V,IXXX start_value end_value increment

where V,IXXX is the name of a dc voltage or current source in the circuit whose value
is to be swept. For example, to sweep the value of a dc voltage source VFRED from
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1 to 10 V in increments of 2 V and solve the circuit for each of these source values,
we would write

.DC VFRED 1 10 2

If no sweeping of any source is desired, then we simply choose one dc source in the
circuit and iterate its value from the actual value (5 V) to the actual value and use any
nonzero increment. For example

.DC VFRED 5 5 1

The sinusoidal steady-state or phasor solution is specified by

.AC {LIN, DEC, OCT} points start_frequency end_frequency

where LIN denotes a linear frequency sweep from start frequency to end frequency,
and points is the total number of frequency points. DEC denotes a log sweep of the
frequency where the frequency is swept logarithmically from the start frequency to
the end frequency and points is the number of frequency points per decade. OCT
is a log sweep by octaves where points is the number of frequency points per
octave.

The time-domain solution is obtained by specifying

.TRAN print_step end_time [no_print_time

[step_ceiling]] [UIC]

SPICE solves the time-domain differential equations of the circuit by discretizing
the time variable and solving the equations in a bootstrapping manner. The first item
print step governs when an output is requested. Suppose that the discretization used
in the solution is every 2 ms. We might not want to see (in the output generated by the
.PRINT statement) an output at every 2 ms but only at every 5 ms. Hence, we might
set the print step time as 5M. The end time is the final time for which the solution is
obtained. The remaining parameters are optional. The analysis always starts at t = 0.
But we may not wish to see a printout of the solution (in the output generated by
the .PRINT statement) until after some time has elapsed. If so, we would set the
no print time to this starting time. SPICE and PSPICE have a very sophisticated
algorithm for determining the minimum time step size �t for discretization of the
differential equations in order to get a valid solution. The default maximum step
size is end time/50. However, there are some cases where we want the step size to be
smaller than what SPICE would allow in order to increase the accuracy of the solution.
This is frequently the case when we use SPICE in the analysis of transmission lines.
The step ceiling is the maximum time step size that will be used. Although this gives
longer run times, there are cases where we need to do this to generate the required
accuracy. The last item UIC means that SPICE is to use the initial capacitor voltage
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or inductor current specified on these element lines with the IC = command. In a
transient analysis, SPICE will compute the initial conditions. If some other initial
conditions are required, then we should set these and specify UIC on the .TRAN
statement. For example

.TRAN 0.1N 20N 0 0.01N

would command SPICE to do a time-domain (transient analysis) for times from 0 to
20 ns, print out a solution at every 0.1 ns, start printing the output file at t = 0, and
use a time discretization time step no larger than 0.01 ns.

B.4 OUTPUT STATEMENTS

The output statements are either for printing a file with the .PRINT statement or
producing a plotted graph of any waveform with the .PROBE statement. The .PRINT
statement has three forms depending on the type of analysis being run. For a DC
analysis

.PRINT DC V(X) I(R)

prints the dc solution for the voltage of node X with respect to the reference node,
and I(R) prints the dc solution for current through resistor R (defined from the first-
named node to the last-named node on the specification statement for resistor R). For
a sinusoidal steady-state analysis (phasor solution)

.PRINT AC VM(NI) VP(NI) IM(RFRED) IP(RFRED)

prints the magnitude and phase of node voltages and currents, where the magnitude
and phase of the node voltage at node NI are VM(NI) and VP(NI), respectively.
For the currents through a resistor RFRED, the magnitude is IM(RFRED) and the
phase is IP(RFRED). For the time domain or the so-called transient analysis, the print
statement is

.PRINT TRAN V(NI) I(RFRED)

and prints the solutions at all print solution time points for the voltage at node NI
with respect to the reference node and the current through resistor RFRED (defined
from the first-named node to the last-named node on the specification statement for
resistor RFRED).

In addition, the .FOUR statement computes the expansion coefficients for the
(one-sided) complex exponential form of the Fourier series (magnitude and phase):

.FOUR f0 [output_variable(s)]
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The .FOUR command can be used only in a .TRAN analysis. The fundamental fre-
quency of the periodic waveform to be analyzed is denoted as f0 = 1/P where P is
the period of the waveform. The output variable(s) are the desired voltage or cur-
rent waveforms to be analyzed, for example, V(2), I(R1). The phase results are with
reference to a sine form of the series:

x(t) = c0 +
∞∑

n=1

2|cn|sin(nω0t + � cn + 90◦)

Hence, when one compares the coefficients cn = |cn|� cn computed by hand to those
computed with .FOUR, one must add 90◦ to the hand-calculated phases. There is
an important consideration in using the .FOUR command. The portion of the wave-
form that is analyzed to give the Fourier expansion coefficients is the last portion of
the solution time of length one period 1/f0 = P . In other words, SPICE determines
the coefficients from the waveform between end time–[1/f0] and end time. Hence,
end time on the .TRAN command should be at least one period long. In situations
where the solution has a transient portion at the beginning of the solution interval
and we want to determine the Fourier coefficients for the steady-state solution, we
would run the analysis for several periods to ensure that the solution has gotten into
steady state. For example, consider an input signal that is periodic with a period of
2 ns or a fundamental frequency of 500 MHz. An output voltage at, for example, node
4 would also have this periodicity but would have a transient period of some five time
constants, say, 5 ns. The following commands would be used to obtain the Fourier
coefficients of the steady-state response of the node voltage at node 4:

.TRAN 0.1N 20N

.FOUR 500MEG V(4)

This would compute the solution for the voltage waveform at node 4 from t = 0 to
t = 20 ns. Since the period (the inverse of 500 MHz) is specified as 2 ns, the portion
of the waveform from 18 to 20 ns would be used to compute the Fourier coefficients
for the waveform. If we wanted to compute the Fourier coefficients for the initial part
of the waveform including the transient, we would specify

.TRAN 0.1N 2N

which would run for only one period.
All printed output statements are directed to a file named XXXX.OUT if the

input file is named XXXX.IN or XXXX.CIR. Plotting waveforms is the greatest
enhancement of PSPICE over the original SPICE. This is invoked by simply placing
the .PROBE statement in the list. No additional parameters are required. PSPICE
stores all variables at all solution timepoints and waits for the user to specify which
to plot.
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FIGURE B.7 Example B.1.

B.5 EXAMPLES

In this brief tutorial, we have shown the basic commands that one can use to solve
the vast majority of electric circuit analysis problems. We have conscientiously tried
to minimize the detail and purposely not shown all the possible options in order to
simplify the learning. However, there are a myriad of options that can simplify many
computations and the reader should consult the references.

Example B.1 Use PSPICE to compute the voltage Vout and the current I in the circuit
of Figure B.7.

Solution: The PSPICE coding diagram with nodes numbered is shown in Figure B.7.
Zero-volt voltage sources are inserted to sample the current ix and I. The PSPICE
program is

EXAMPLE B.1
VS 1 0 DC 5
R1 1 2 500
R2 2 3 1K
R3 3 4 2K
VTEST1 4 0 DC 0
HSOURCE 3 5 VTEST1 500
R4 5 6 500
VTEST2 6 0 DC 0
.DC VS 5 5 1
*THE CURRENT I IS I (VTEST2) AND THE VOLTAGE VOUT IS
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+V(3) OR V(3,4)
.PRINT DC V(3) I(VTEST2)
.END

The result is I = I (VTEST2) = 1.875E-3 and the voltage vout = V (3) = 1.250E0.
Example B.2 Use PSPICE to plot the frequency response of the band-pass filter
shown in Figure B.8a.

Solution: The nodes are numbered on the circuit diagram, and the PSPICE program is

EXAMPLE B.2
VS 1 0 AC 1 0
RES 3 0 100
LIND 1 2 159U
CAP 2 3 1.6P
.AC DEC 50 1MEG 100MEG
.PROBE
*THE MAGNITUDE OF THE OUTPUT IS VM(3) AND THE PHASE
+IS VP(3)
.END

FIGURE B.8 Example B.2.
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The magnitude of the voltage is plotted in Figure B.8b in decibels using VDB(3),
which means

VDB(3) = 20log10VM(3)

Figure B.8c shows what we get if we request VM(3): the data are highly compressed
outside the band-pass region. The phase is plotted in Figure B.8d. The resonant
frequency is 10 MHz. The phase is +90◦ below the resonant frequency because of the
dominance of the capacitor in this range and is −90◦ above the resonant frequency,
due to the dominance of the inductor in this range.

Example B.3 Use PSPICE to plot the inductor current for t > 0 in the circuit of
Figure B.9a. The circuit immediately before the switch opens, that is, at t = 0−,
shown in Figure B.9b, from which we compute the initial voltage of the capacitor as
4 V and the initial current of the inductor as 2 mA. The PSPICE diagram with nodes
numbered is shown in Figure B.9c, and the PSPICE program is

Example B.3
IS 0 1 DC 10M
R 1 2 2K
VTEST 2 3
L 3 0 10M IC=2M
C 1 0 100P IC=4
.TRAN .05U 50U 0 .05U UIC
*THE INDUCTOR CURRENT IS I(VTEST) OR I(L)
.PROBE
.END

We have chosen to solve the circuit out to 50 �s and have directed PSPICE to use a
solution time step no larger that 0.05 �s as well as to use the initial conditions given
for the inductor and capacitor. The result is plotted using PROBE in Figure B.9e.
The result starts at 2 mA, the initial inductor current, and eventually converges to the
steady-state value of 10 mA, which can be confirmed by replacing the inductor with
a short circuit and the capacitor with an open circuit in the t > 0 circuit as shown in
Figure B.9d.

B.6 THE SUBCIRCUIT MODEL

SPICE (PSPICE) has a handy way of utilizing models of devices in several places in
a SPICE program without having to redescribe these models at every place of usage.
This is similar to the subroutine in FORTRAN. It is called the SUBCKT model. For
example, suppose we have developed an extensive model of, say, an Op Amp or an
MTL. The model might have, for example, four external nodes that we have named
101, 102, 201, and 202, as illustrated in Figure B.10. The nodes internal to the model
are unique to this model and bear no resemblance to the nodes of the SPICE program
into which this model is to be imbedded (perhaps at several locations). However, the
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FIGURE B.9 Example B.3.

zero (0) or universal ground node is the only node that is common with the main
program. The subcircuit model description is

.SUBCKT MTL 101 102 201 202

....

....

.ENDS MTL
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FIGURE B.10 Definition of terminal nodes for a subcircuit model.

where MTL is the name of the subcircuit, and its external nodes are denoted as 101, 102,
201, and 202. The subcircuit model ends with .ENDS and the name of the subcircuit
model, MTL. These node numbers are unique to the subcircuit, but their ordering is
important. The call statement in the SPICE program is formatted as

XMTL S NE L FE MTL

Hence, the nodes of the subcircuit are attached to the external nodes of the main
SPICE model as S = 101, NE = 102, L = 201, and FE = 202. The subcircuit must end
with the statement

.ENDS MTL
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