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PRACTICAL APPLICATIONS

Some of the real-life applications covered in this book are listed in order of appearance.

Applications of electrostatics (Section 4.1)

Electrostatic separation of solids (Example 4.3)

Electrostatic discharge (ESD) (Section 4.11)

Electrostatic shielding (Section 5.9B)

High dielectric constant materials (Section 5.10)

Graphene (Section 5.11) NEW

Electrohydrodynamic pump (Example 6.1)

Xerographic copying machine (Example 6.2)

Parallel-plate capacitor, coaxial capacitor, and spherical capacitor (Section 6.5)
RF MEMS (Section 6.8) (Chapter 12 opener) NEW

Ink-jet printer (Problem 6.52)

Microstrip lines (Sections 6.7, 11.8, and 14.6)

Applications of magnetostatics (Section 7.1)

Coaxial transmission line (Section 7.4C)

Lightning (Section 7.9)

Polywells (Section 7.10) NEW

Magnetic resonant imaging (MRI) (Chapter 8 opener)
Magnetic focusing of a beam of electrons (Example 8.2, Figure 8.2)
Velocity filter for charged particles (Example 8.3, Figure 8.3)
Inductance of common elements (Table 8.3)

Electromagnet (Example 8.16)

Magnetic levitation (Section 8.12)

Hall effect (Section 8.13) NEW

Direct current machine (Section 9.3B)

Menmristor (Section 9.8) NEW

Optical nanocircuits (Section 9.9) NEW

Homopolar generator disk (Problem 9.14)

Microwaves (Section 10.11)

Radar (Sections 10.11 and 13.9)

60 GHz technology (Section 10.12) NEW
Bioelectromagnetics (Chapter 11 opener)

Coaxial, two-line, and planar lines (Figure 11.1, Section 11.2)
Quarter-wave transformer (Section 11.6A)

Data cables (Section 11.8B)

Metamaterials (Section 11.9) NEW

Microwave imaging (Section 11.10) NEW

Optical fiber (Section 12.9)

Cloaking and invisibility (Section 12.10) NEW

Smart antenna (Chapter 13 opener)

Typical antennas (Section 13.1, Figure 13.2)
Electromagnetic interference and compatibility (Section 13.10)
Grounding and filtering (Section 13.10)
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Textile antennas and sensors (Section 13.11) NEW
RFID (Section 13.12) NEW

Commercial EM software—FEKO (Section 14.7) NEW
COMSOL Multiphysics (Section 14.8) NEW

e CST Microwave Studio (Section 14.9) NEW

PHYSICAL CONSTANT:

Approximate
Best Experimental Value for Problem
Quantity (Units) Symbol Value* Work
G e 1070

Permittivity of free space (F/m) £ 8.854 X 10 e

36m
Permeability of free space (H/m) o 4 X 1077 126 X 1077
Intrinsic impedance of free space ({2) 7, 376.6 1207
Speed of light in vacuum (m/s) c 2.998 X 10° 3 x10°
Electron charge (C) e —1.6022 X 107" —-1.6X 107"
Electron mass (kg) m, 9.1093 X 10*' 9.1x 10"
Proton mass (kg) m, 1.6726 X 10777 1.67 X 1077
Neutron mass (kg) m, 1.6749 X 10°% 1.67 X 1077
Boltzmann constant (J/K) K 1.38065 X 107 1.38 X 1072
Avogadro number (/kg-mole) N 6.0221 X 10% 6 X 10%
Planck constant (J - s) h 6.626 X 10 6.62 X 10
Acceleration due to gravity (m/s?) g 9.80665 9.8
Universal constant of gravitation G 6.673 X 107! 6.66 X 107"
N (m/kg)*
Electron-volt (J) eV 1.602176 X 10°" 1.6 X 107"

* Values recommended by CODATA (Committee on Data for Science and Technology, Paris).






ELEMENTS OF
ELECTROMAGNETICS



THE OXFORD SERIES
IN ELECTRICAL AND COMPUTER ENGINEERING

Adel S. Sedra, Series Editor

Allen and Holberg, CMOS Analog Circuit Design, 3rd edition

Bobrow, Elementary Linear Circuit Analysis, 2nd edition

Bobrow, Fundamentals of Electrical Engineering, 2nd edition

Campbell, Fabrication Engineering at the Micro- and Nanoscale, 4th edition
Chen, Digital Signal Processing

Chen, Linear System Theory and Design, 4th edition

Chen, Signals and Systems, 3rd edition

Comer, Digital Logic and State Machine Design, 3rd edition

Comer, Microprocessor-Based System Design

Cooper and McGillem, Probabilistic Methods of Signal and System Analysis, 3rd edition
Dimitrijev, Principles of Semiconductor Devices, 2nd edition

Dimitrijev, Understanding Semiconductor Devices

Fortney, Principles of Electronics: Analog & Digital

Franco, Electric Circuits Fundamentals

Ghausi, Electronic Devices and Circuits: Discrete and Integrated

Guru and Hiziroglu, Electric Machinery and Transformers, 3rd edition

Houts, Signal Analysis in Linear Systems

Jones, Introduction to Optical Fiber Communication Systems

Krein, Elements of Power Electronics

Kuo, Digital Control Systems, 3rd edition

Lathi, Linear Systems and Signals, 2nd edition

Lathi and Ding, Modern Digital and Analog Communication Systems, 4th edition
Lathi, Signal Processing and Linear Systems

Martin, Digital Integrated Circuit Design

Miner, Lines and Electromagnetic Fields for Engineers

Parhami, Computer Architecture

Parhami, Computer Arithmetic, 2nd edition

Roberts and Sedra, SPICE, 2nd edition

Roberts, Taenzler, and Burns, An Introduction to Mixed-Signal IC Test and Measurement,
2nd edition

Roulston, An Introduction to the Physics of Semiconductor Devices

Sadiku, Elements of Electromagnetics, 6th edition

Sarma, Introduction to Electrical Engineering

Schaumann, Xiao, and Van Valkenburg, Design of Analog Filters, 3rd edition
Schwarz and Oldham, Electrical Engineering: An Introduction, 2nd edition

Sedra and Smith, Microelectronic Circuits, 6th edition

Stefani, Shahian, Savant, and Hostetter, Design of Feedback Control Systems, 4th edition
Tsividis, Operation and Modeling of the MOS Transistor, 3rd edition

Van Valkenburg, Analog Filter Design

Warner and Grung, Semiconductor Device Electronics

Wolovich, Automatic Control Systems

Yariv and Yeh, Photonics: Optical Electronics in Modern Communications, 6th edition
Zak, Systems and Control



ELEMENTS OF
ELECTROMAGNETICS

SIXTH EDITION

MATTHEW N. O. SADIKU

Prairie View A&*'M University

New York « Oxford
OXFORD UNIVERSITY PRESS



Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of
excellence in research, scholarship, and education by publishing worldwide.

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi  Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Copyright © 2015, 2010, 2007, 2000 by Oxford University Press.
Previously published by Saunders College Publishing, a division of Holt, Rinehart, & Winston, Inc. 1994, 1989.

For titles covered by Section 112 of the US Higher Education
Opportunity Act, please visit www.oup.com/us/he for the
latest information about pricing and alternate formats.

Published in the United States of America by
Oxford University Press

198 Madison Avenue, New York, NY 10016
http://www.oup.com

Oxford is a registered trade mark of Oxford University Press.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,

without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data

Sadiku, Matthew N. O., author.
Elements of electromagnetics / Matthew N.O. Sadiku, Prairie View A&M University. - Sixth edition.
pages cm.—(The Oxford series in electrical and computer engineering)
Includes bibliographical references and index.
ISBN 978-0-19-932138-4
1. Electromagnetism. 1. Title.
QC760.523 2015
537—dc23

2013033865
Printing number: 9 8 7 6 54 3 2 1
Printed in the United States of America
on acid-free paper



To my wife, Kikelomo



BRIEF TABLE OF CONTENTS )

vi

MATH ASSESSMENT  MA-1

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Index 867

Vector Algebra 3

Coordinate Systems and Transformations 29
Vector Calculus 57

Electrostatic Fields 109

Electric Fields in Material Space 175
Electrostatic Boundary-Value Problems 219
Magnetostatic Fields 287

Magnetic Forces, Materials, and Devices 337
Maxwell’s Equations 407

Electromagnetic Wave Propagation 455
Transmission Lines 535

Waveguides 613

Antennas 671

Numerical Methods 733

Mathematical Formulas 815

Material Constants 824

MATLAB 826

The Complete Smith Chart 839

Answers to Odd-Numbered Problems 840



BB B E 2 b B

BRIEF TABLE OF CONTENTS  vi

PREFACE  xiii

ANOTE TO THE STUDENT  xvi
MATH ASSESSMENT  MA-1

PART 1:

VECTOR ANALYSIS

1 VECTOR ALGEBRA 3

1.1
12
13
1.4
L5
1.6
L7
1.8

Introduction 3

A Preview of the Book 4
Scalars and Vectors 4

Unit Vector 5

Vector Addition and Subtraction 6
Position and Distance Vectors 7
Vector Multiplication 11
Components of a Vector 16
Summary 23

Review Questions 23

Problems 25

2 COORDINATE SYSTEMS AND TRANSFORMATION

3
32
23
24

125

Introduction 29

Cartesian Coordinates (x, y,z) 30

Circular Cylindrical Coordinates (p, ¢, z) 30
Spherical Coordinates (r, 6, ¢) 33
Constant-Coordinate Surfaces 42
Summary 49

Review Questions 50

Problems 52

3  VECTOR CALCULUS 57

3.1
3.2
33

Introduction 57
Differential Length, Area, and Volume 57
Line, Surface, and Volume Integrals 64

29

" Indicates sections that may be skipped, explained briefly, or assigned as homework if the text is covered in one

semester.



vii  CONTENTS

3.4 Del Operator 67
35 Gradient of a Scalar 69
3.6 Divergence of a Vector and Divergence Theorem 73
3.7 Curl of a Vector and Stokes’s Theorem 80
3.8 Laplacian of a Scalar 88
1359 Classification of Vector Fields 90
Summary 95
Review Questions 96
Problems 98

PART 2: ELECTROSTATICS

4 ELECTROSTATIC FIELDS 109

4.1 Introduction 109
4.2 Coulomb’s Law and Field Intensity 110
4.3 Electric Fields Due to Continuous Charge Distributions 117
4.4 Electric Flux Density 128
4.5 Gauss's Law—Maxwell’s Equation 130
4.6 Applications of Gauss’s Law 132
4.7 Electric Potential 139
4.8 Relationship between E and V—Maxwell's Equation 145
4.9 An Electric Dipole and Flux Lines 148
4.10  Energy Density in Electrostatic Fields 152
4.11  Application Note—Electrostatic Discharge 157
Summary 162
Review Questions 165
Problems 166

5 ELECTRIC FIELDS IN MATERIAL SPACE 175

w

[ SV S

Introduction 175
Properties of Materials 175
Convection and Conduction Currents 176
Conductors 179
Polarization in Dielectrics 185
Dielectric Constant and Strength 188
Linear, Isotropic, and Homogeneous Dielectrics 189
Continuity Equation and Relaxation Time 194
Boundary Conditions 196
0 Application Note— Materials with High Dielectric Constant = 205
Application Note—Graphene 206
Summary 210
Review Questions 211
Problems 213

w

TR IS Y]

o

w

S O 4
== ® 4 a

gt g



CONTENTS

6  ELECTROSTATIC BOUNDARY-VALUE PROBLEMS 219

6.1
6.2
6.3
6.4
6.5
6.6
‘6.7
6.8

PART 3:

Introduction 219

Poisson’s and Laplace’s Equations 219

Uniqueness Theorem 221

General Procedures for Solving Poisson's or Laplace’s Equation 222
Resistance and Capacitance 243

Method of Images 260

Application Note—Capacitance of Microstrip Lines 266
Application Note—RF MEMS 269

Summary 272

Review Questions 273

Problems 274

MAGNETOSTATICS

ix

7  MAGNETOSTATIC FIELDS 287

74
79
7.3
7.4
7.5
7.6
7

7.8

7.9

'7.10

Introduction 287

Biot-Savart’s Law 288

Ampere’s Circuit Law—Maxwell’s Equation 299
Applications of Ampeére’s Law 299

Magnetic Flux Density—Maxwell’s Equation 307
Maxwell’s Equations for Static Fields 309
Magnetic Scalar and Vector Potentials 310
Derivation of Biot-Savart’s Law and Ampeére’s Law 316
Application Note—Lightning 318

Application Note—Polywells 319

Summary 323

Review Questions 325

Problems 328

8  MAGNETIC FORCES, MATERIALS, AND DEVICES 337

8.1
8.2
8.3
8.4
8.5

8.6
8.7
8.8
8.9

8.10

8.11

Introduction 337

Forces Due to Magnetic Fields 337
Magnetic Torque and Moment 349
A Magnetic Dipole 351
Magnetization in Materials 356
Classification of Materials 360
Magnetic Boundary Conditions 364
Inductors and Inductances 369
Magnetic Energy 372

Magnetic Circuits 380

Force on Magnetic Materials 382



x CONTENTS

8.12  Application Note—Magnetic Levitation 387
'8.13  Application Note—Hall Effect 389
Summary 392
Review Questions 394
Problems 396

PART 4: WAVES AND APPLICATIONS

9 MAXWELL'S EQUATIONS 407

9.1 Introduction 407
9.2 Faraday’s Law 408
9.3 Transformer and Motional Electromotive Forces 410
9.4 Displacement Current 419
9.5 Maxwell’s Equations in Final Forms 422
'9.6  Time-Varying Potentials 425
9.7 Time-Harmonic Fields 427
9.8 Application Note—Memristor 440
9.9 Application Note—Optical Nanocircuits 441
Summary 444
Review Questions 445
Problems 447

10 ELECTROMAGNETIC WAVE PROPACATION 455

10.1 Introduction 455
"10.2  Waves in General 456
10.3 Wave Propagation in Lossy Dielectrics 462
10.4 Plane Waves in Lossless Dielectrics 469
10.5 Plane Waves in Free Space 469
10.6 Plane Waves in Good Conductors 471
10.7 Wave Polarization 480
10.8 Power and the Poynting Vector 484
10.9 Reflection of a Plane Wave at Normal Incidence 488
"10.10  Reflection of a Plane Wave at Oblique Incidence 499
"10.11  Application Note—Microwaves 511
"10.12  Application Note—60 GHz Technology 516
Summary 519
Review Questions 520
Problems 522

11 TRANSMISSION LINES 535

11.1 Introduction 535
11.2 Transmission Line Parameters 536
11.3 Transmission Line Equations 539



11.4
11.5
11.6
1.7
1.8

"11.9
"11.10

CONTENTS

Input Impedance, Standing Wave Ratio, and Power 546

The Smith Chart 554

Some Applications of Transmission Lines 567

Transients on Transmission Lines 574

Application Note—Microstrip Lines and Characterization
of Data Cables 586

Application Note—Metamaterials 594

Application Note—Microwave Imaging 595

Summary 598

Review Questions 600

Problems 602

12 WAVEGUIDES 613

12.1
12.2
12.3
12.4
125
12.6
"3y
12.8
12,9
"12.10

13  ANTENNAS

13.1
13.2
13.3
13.4
13.5
13.6
13.7
"13.8
"13.9
"13.10

"13.11
"13.12

Introduction 613

Rectangular Waveguides 614

Transverse Magnetic (TM) Modes 618
Transverse Electric (TE) Modes 623

Wave Propagation in the Guide 634

Power Transmission and Attenuation 636
Waveguide Current and Mode Excitation 640
Waveguide Resonators 646

Application Note—Optical Fiber 652
Application Note—Cloaking and Invisibility 658
Summary 660

Review Questions 662

Problems 663

671

Introduction 671

Hertzian Dipole 673

Half-Wave Dipole Antenna 677

Quarter-Wave Monopole Antenna 681

Small-Loop Antenna 682

Antenna Characteristics 687

Antenna Arrays 695

Effective Area and the Friis Equation 705

The Radar Equation 708

Application Note—Electromagnetic Interference and
Compatibility 712

Application Note—Textile Antennas and Sensors 717

Application Note—RFID 719

Summary 722

Review Questions 723

Problems 724

xi



xii CONTENTS

14 NUMERICAL METHODS 733

14.1
*14.2
14.3
14.4
14.5
"14.6
"14.7
"14.8

14,9

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
INDEX 867

Introduction 733

Field Plotting 734

The Finite Difference Method = 742

The Moment Method 755

The Finite Element Method 767

Application Note—Microstrip Lines 786

Application Note—Commercial EM Software—FEKO 794
Application Note—Commercial EM Software—COMSOL
Multiphysics 796

Application Note—Commercial EM Software—CST Microwave
Studio 797

Summary 800

Review Questions 800

Problems 802

Mathematical Formulas 815

Material Constants 824

MATLAB 826

The Complete Smith Chart 839

Answers to Odd-Numbered Problems 840



PREEACE :

Each revision of this book has embodied many changes that make the book better.
However, the core of the subject of electromagnetics never changes. The fundamental
objective of the book remains the same as in the first edition: to present electromagnetics
concepts in a clearer and more interesting manner than other texts do. This objective is
achieved in the following ways:

1. In order to avoid complicating matters by covering electromagnetic and
mathematical concepts simultaneously, vector analysis is covered at the beginning of the
text and applied gradually. This approach avoids breaking in repeatedly with more
background on vector analysis, thereby creating discontinuity in the flow of thought. It also
separates mathematical theorems from physical concepts and makes it easier for the student
to grasp the generality of those theorems.

2. Each chapter opens either with a historical profile of some electromagnetic pioneers
or a discussion of a modern topic related to the chapter. The chapter starts with a brief
introduction that serves as a guide to the whole chapter and also links the chapter to the rest
of the book. The introduction helps the students see the need for the chapter and how it
relates to the previous chapter. Key points are emphasized to draw the readers’ attention.
A brief summary of the major concepts is discussed toward the end of the chapter.

3. To ensure that students clearly understand the subject matter, key terms are defined and
highlighted. Important formulas are boxed to help students identify essential formulas.

4. Each chapter includes a reasonable number of solved examples. Because the exam-
ples are part of the text, they are clearly explained without asking the readers to fill in missing
steps. In writing out the solution, we aim for clarity rather than efficiency. Thoroughly
worked-out examples give students confidence to solve problems themselves and to learn to
apply concepts, which is an integral part of engineering education. Each illustrative example
is followed by a problem in the form of a Practice Exercise, with the answer provided.

5. At the end of each chapter are 10 review questions in the form of multiple-choice
objective items. It has been found that open-ended questions, although intended to be
thought provoking, are ignored by most students. Objective review questions with answers
immediately following them provide encouragement for students to do the problems and
gain immediate feedback. A large number of problems are provided and are presented in the
same order as the material in the main text. Problems of intermediate difficulty are identi-
fied by a single asterisk (*); the most difficult problems are marked with a double asterisk
(**). Enough problems are provided to allow the instructor to choose some as examples and
assign some as homework problems. Answers to odd-numbered problems are provided in
Appendix E.

6. Because most practical applications involve time-varying fields, six chapters are
devoted to such fields. However, static fields are given proper emphasis because they
are special cases of dynamic fields. Ignorance of electrostatics is no longer acceptable

xiii
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PREFACE

because there are large industries, such as copier and computer peripheral manufactur-
ing, that rely on a clear understanding of electrostatics.

7. The last section in each chapter is devoted to applications of the concepts covered in
the chapter. This helps students see how concepts apply to real-life situations.

8. The last chapter covers numerical methods with practical applications and com-
puter programs. This chapter is of paramount importance because most practical problems
are only solvable using numerical techniques.

9. Over 130 illustrative examples and 300 figures are given in the text. Some additional
learning aids such as basic mathematical formulas and identities are included in the
Appendix A. Another guide is a special note to students, which follows this preface.

NEW TO THE SIXTH EDITION:

« Fifteen new Application Notes designed to explain the real-world connections
between the concepts discussed in the text

« A math assessment, for instructors to gauge their students’ mathematical knowl-
edge and preparedness for the course. (Solutions are available in the Instructor’ Solutions
Manual.)

« Coverage of wave polarization (Chapter 10)

« New and updated end-of-chapter problems

Although this book is intended to be self-explanatory and useful for self-instruction,
the personal contact that is always needed in teaching is not forgotten. The actual choice
of course topics, as well as emphasis, depends on the preference of the individual instruc-
tor. For example, the instructor who feels that too much space is devoted to vector analysis
or static fields may skip some of the materials; however, the students may use them as
reference. Also, having covered Chapters 1 to 3, it is possible to explore Chapters 9 to
14. Instructors who disagree with the vector-calculus-first approach may proceed with
Chapter 1 and 2, then skip to Chapter 4 and refer to Chapter 3 as needed. Enough material
is covered for two-semester courses. If the text is to be covered in one semester, cover-
ing Chapters 1 to 9 is recommended; some sections may be skipped, explained briefly, or
assigned as homework. Sections marked with the dagger sign () may be in this category.
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Electromagnetic theory is generally regarded by students as one of the most difficult
courses in physics or the electrical engineering curriculum. But this misconception may
be proved wrong if you take some precautions. From experience, the following ideas are
provided to help you perform to the best of your ability with the aid of this textbook:

1. Pay particular attention to Part 1 on vector analysis, the mathematical tool for this
course. Without a clear understanding of this section, you may have problems with the rest
of the book.

2. Do not attempt to memorize too many formulas. Memorize only the basic ones,
which are usually boxed, and try to derive others from these. Try to understand how formu-
las are related. Obviously, there is nothing like a general formula for solving all problems.
Each formula has some limitations owing to the assumptions made in obtaining it. Be aware
of those assumptions and use the formula accordingly.

3. Try to identify the key words or terms in a given definition or law. Knowing the
meaning of these key words is essential for proper application of the definition or law.

4. Attempt to solve as many problems as you can. Practice is the best way to gain skill.
The best way to understand the formulas and assimilate the material is by solving problems.
It is recommended that you solve at least the problems in the Practice Exercise immediately
following each illustrative example. Sketch a diagram illustrating the problem before
attempting to solve it mathematically. Sketching the diagram not only makes the problem
easier to solve, it also helps you understand the problem by simplifying and organizing your
thinking process. Note that unless otherwise stated, all distances are in meters. For example
(2, —1, 5) actually means (2 m, —1 m, 5 m).

You may use MATLAB to do number crunching and plotting. A brief introduction to
MATLARB is provided in Appendix C.

A list of the powers of 10 and Greek letters commonly used throughout this text is
provided in the tables located on the inside cover. Important formulas in calculus, vectors,
and complex analysis are provided in Appendix A. Answers to odd-numbered problems are
in Appendix E.



MATH ASSESSIMENT

PART 1: VECTOR ANALYSIS

2 5 4
1.1 Find the value of the determinant V= {4 1 6|.
30 1

1.2 A 12 m ladder is made to lean on a wall making an angle of 30° with the horizontal.
Find the distance of its base from the wall and also the height at the point where it
touches the wall.

1.3 What is the distance R between the two points A(3, 5, 1) and B(5, 7, 2)? Also find
1
its reciprocal, —.
B

1.4 What is the distance vector R,; from A(3, 7, 1) to B(8, 19, 2) and a unit vector a
in the direction of R,z?

1.5 Given A = 2a, — 4a, + 3a,and B = a, + 2a, + 5a,, find a unit vector a that is
perpendicular to both A and B.

1.6 There are four charges in space at four points A, B, C, and D, each 1m from every
other. You are asked to make a selection of coordinates for these charges. How do
you place them in space and select their coordinates? There is no unique way.

1.7 A man driving a car starts at point O, drives in the following pattern

15 km northeast to point 4,
20 km southwest to a point B,
25 km north to C,

10 km southeast to D,

15 km west to E, and stops.

How far is he from his starting point, and in what direction?

1.8 A unit vector a, makes angles , 3, and y with the x-, y-, and z-axes, respectively.
Express a, in the rectangular coordinate system. Also express a nonunit vector oP
of length € parallel to a,.

1.9 A vector 6ﬁ makes angles 75.5225° and 64.3411° with the x- and y-axes, respec-
tively. Another vector &j makes 52.2388° with both x- and y-axes equally. Find
the angle between OP and w

1.10 An experiment revealed that the point Q(x', y', z') is 4 m from P(2, 1, 4) and that the

vector QP makes 45.5225° 59.4003°, and 60° with the x-, y-, and z-axes, respectively.

Determine the location of Q.

MA-1



MA-2

MATH ASSESSMENT

1.11

1.1

)

1.13

1.14

1.15

In a certain frame of reference with x-, y-, and z-axes, imagine the first octant to be
a room with a door. Suppose that the height of the door is 4 and its width is p.
The top-right corner P of the door when it is shut has the rectangular coordinates
(p» 0, h). Now if the door is turned by angle ¢, so we can enter the room, what are
the coordinates of P? What is the length of its diagonal r = OP in terms of p and 2?
Suppose the vector OP makes an angle 6 with the z-axis; express p and h in terms
of rand 6.

Consider an ellipse in the xy-plane described by the equation * — xy + y* = 7.
Find a unit normal to the curve (i) at a general point P(x, y) and (ii) at (-1, 2) in
particular.

What is the distance from origin to the plane 2x + 2y — z = 15? (Hint: The unit
\Y

normal to any surface f(x, y, z) = cis given by a, = # The distance from origin

to a given plane then is the dot product a, - r, where r is a vector from the origin to
any point on the plane; that is, it is a position vector of a point on the plane.

Given f = »’y + 3z + 4, find (i) Vf, (ii) V*f, and (ii) a unit normal to f = 0 at (1, —2, 4).

Given A = 2xya, + 3zya, + 5za,and B = sinxa, + 2ya, + 5ya, find (i) V - A,
(ii) V X A, (iii) V- V X A, and (iv) V - (A X B).
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PART 2: ELECTROSTATICS

2.1 Define even and odd functions. Show that

a 2 j flx)dx, ifflx) iseven
_ 0
J_aﬂx)dx o, ifflx) isodd

Juate th IJL o M
2.2 Evaluate the integra VR ]
gl L+ )"

2.3 The cross section of a cylinder of radius 3 is shown in Figure MA-1. A straight
charged wire MM’ is found to pass through it at an angle 6 with the diameter as
shown. Find the length of the wire OF enclosed if 0 = 7/6.

84

FIGURE MA-1 For Problem 2.3

2.4 Show that the ordinary angle subtended by a closed curve lying in a plane at a
point P is 277 radians if P is enclosed by the curve and zero if not.

2.5 Show that the solid angle subtended by a closed surface at a point P is 4 steradians
if P is enclosed by the closed surface and zero if not.

2.6 You are given a vector function A and a closed surface S. Determine the divergence
of A and verify both sides of the divergence theorem on §.

A =2xya, +3zya, + 5za, St 2= p=3d =y <6 =S Es4

2.7 You are given a vector function A and a closed surface S. Determine the divergence
of A and verify both sides of the divergence theorem on §.

A=3psindap+ 6p*ad + 5za, &35psi%s¢s§J5zSS

2.8 Youare given a vector function A and a closed surface S. Determine the divergence
of A and verify both sides of the divergence theorem on §.

IA

0=

0=¢=

w3
N

o
A =2"a +5rsinfcospa; +4cosfa, S:3=r= S'E
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2.9 A sphere of radius a centered at the origin has a total charge of 20 C uniformly
distributed over its entire volume. If all the charge above the plane z = h is removed,
how much charge is left in the sphere? Take a = 10m and h = 6m.

2.10 Consider a vector given by A = (4xy + z)a, + 2x’a, + xa.. Find the line integral
‘B

from A(3,7,1) to B(8,9,2) by (i) evaluating the line integral V,;, = — | E-dlalong
A

o} D B
the line joining A to Band  (ii) evaluating {~‘( Bl i— J E -dl — J E -dl},
A c D

where the stopovers C and D are C(8, 7, 1) and D(8, 9, 1).

2.11 Given a vector A = 3a, — 2a, — 16a,, find its components normal to the plane
2x + 2y — z + 8 = 0 and tangential to it.

2.12 At the interface y = 0 a certain vector field is given by

e¥a, +5a, for y>0
A=
e?a, +3a, for y<o0

Taking the tangential and normal components, state which is continuous and which
is not.

2.13 You are given the plane S with a unit normal a, and passing through M. Describe
the method for finding the image P’ of a point P in § for the particular case in

3a, — 2a, + 6a,
which a, = ——=——=———"and § passes through M(1, 0, 3). Find the coordinates

V3 + 22+ 6

of the image of P(2, 1, 5) in S.
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PART 3: MAGNETOSTATICS

3:1

3.2

3.

w

34

A slant wire in the xy-plane joining the points O(0, 0) and P(6, 8) carries a current
of 5 A from O to P as shown in Figure MA-2. Find the quantities cosa; and cos a,
and the distance MN.

y
P (6.8
" —— P68
\\ a2/
1
N ‘
'N 1
|
SA
/|
o)
‘
]
(0] X

FIGURE MA-2 A slant wire for Problem 3.1.

You are given a vector function A and an open surface S bounded by C. Determine
the curl of each vector function and verify both sides of Stokes’s theorem on S and
along C.

A = 2xya, + 3zya, + 5za, §:i—2=x=34=y=6,z=4

You are given a vector function A and an open surface S bounded by C. Determine
the curl of each vector function and verify both sides of Stokes’s theorem on § and
along C.

A=3psinda,+6p’a, +5za, S:3=p=35,

=¢=

ol
w3
nN
I\
N

You are given a vector function A and an open surface S bounded by C. Determine
the curl of each vector function and verify both sides of Stokes’s theorem on S and
along C.

T T
A =2"a, +5rsinfcosda, + 4cosfay S:r=5,g5053,05¢s

N
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PART 4: WAVES AND APPLICATIONS

4.
4.
4.
4.
4.

4.

4.
4.

4.

4.1

4.1

4.1

4.1

4.1

1
2
3
4
5

6

7
8

9

=]

—

2

3

IS

Show that V-V X A = 0.

Show that V X Viy = 0.

Show that VX VX A =VV - A — V?A.
ShowthatV-AXB=B-VXA—-A-VXB.

Use De Moivre's theorem to prove that cos 36 = cos’ § — 3 cos 6 sin’6:
Determine \/]

Determine \/] using the Euler formula.

Find the phasors for the following field quantities:
(a) E(zt) = E, cos (wt — Bz + ¢) (V/m)

(b) E(z1) = 100e* cos (wt — 5z + r/4) (V/m)
(c) Hyz t) = H, cos (wt + Bz) (A/m)

(d) Hyz 1) = 120me™* cos (wt + Bz + ¢,) (A/m)

Find the instantaneous time domain sinusoidal functions corresponding to the
following phasors:

(a) E2) = Ee® (V/m)

(b) E(z) = 100 *¢ 7% (V/m)

() L(z) =5+ j4(A)

(d) Viz) = j10¢™ (V)

Write the phasor expression I for the following current using a cosine reference.
(a) i(t) = I, cos (wt — 7/6)

(b) i(t) = I, sin (wt + 7/3)

Find the instantaneous V(¢) for the following phasors using a cosine reference.
(a) V, = V™

(b) V, =12 — j5(V)

The unit normal to a plane is given by a,. It also passes through a point S whose
position vector is r,. Determine the equation of the plane.

A voltage source V () = 100 cos (6710°t — 45°) (V) is connected to a series RLC
circuit, as shown in Figure MA-3. Given R = 10 M(), C = 100pF, and L = 1H, use
phasor notation to find the following:

(a) i(t)

(b) V.(1), the voltage across the capacitor

(i) Show that the locus of the points P(x, y) obeying the equation
P2+ 2y +c=0

represents a circle. (i) Express the coordinates of the center and the radius. Use the
following equations of circles to find the centers and radii.
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R JoL

FIGURE MA-3 A series RLC circuit for Problem 4.13.

C+y+8x—4y+11=0
xz+y2-—10x+6y+9=0
225x* + 225y* + 90x — 300y + 28 = 0

4.15 Recall the vector identity V X A = yV X A + Vi X A, where i) is a scalar function
—jkr

and A is a vector point function. Suppose A = A.a,, where A, =
stant. Simplify V X A.

and k is a con-

4.16 Show that the sum of the first N terms in a geometric series $, = 1 + x + Pt +

- 1=
Hh= : and further assuming |x| < 1, show that:
- X
=l+x+x2+S5+--
1 =%
1 3
=l—-x+x—x+—-
1+x

4.17 Show the following series expansion assuming [x| < 1:

1 2 3
s =142+ 3% 4 F -

(1)

4.18 From the binomial expansion of (a + b)", build the Pascal triangle for
n= 01,2, 5 5,
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CODES OF ETHICS

Engineering is a profession that makes significant contributions to the economic and social
well-being of people all over the world. As members of this important profession, engineers are
expected to exhibit the highest standards of honesty and integrity. Unfortunately, the engineering
curriculum is so crowded that there is no room for a course on ethics in most schools. Although
there are over 850 codes of ethics for different professions all over the world, the code of ethics
of the Institute of Electrical and Electronics Engineers (IEEE) is presented here to give students a
flavor of the importance of ethics in engineering professions.

We, the members of the IEEE, in recognition of the importance of our technologies in affecting
the quality of life throughout the world, and in accepting a personal obligation to our profession,
its members and the communities we serve, do hereby commit ourselves to the highest ethical and
professional conduct and agree:

1. to accept responsibility in making engineering decisions consistent with the safety, health,
and welfare of the public, and to disclose promptly factors that might endanger the public
or the environment;

N

. to avoid real or perceived conflicts of interest whenever possible, and to disclose them to
affected parties when they do exist;

. to be honest and realistic in stating claims or estimates based on available data;

. to reject bribery in all its forms;

. to improve the understanding of technology, its appropriate application, and potential
consequences;

. to maintain and improve our technical competence and to undertake technological tasks
for others only if qualified by training or experience, or after full disclosure of pertinent
limitations;

(S R EYY

o

N

- to seek, accept, and offer honest criticism of technical work, to acknowledge and correct
errors, and to credit properly the contributions of others;

. to treat fairly all persons regardless of such factors as race, religion, gender, disability, age, or
national origin;

®

9. to avoid injuring others, their property, reputation, or employment by false or malicious
action;
10. to assist colleagues and co-workers in their professional development and to support them
in following this code of ethics.

—Courtesy of IEEE



CHAPTER

VECTOR ALGEBRA

One machine can do the work of fifty ordinary men. No machine can do the work of

one extraordinary man.
—ELBERT HUBBARD

1.1 INTRODUCTION

Electromagnetics (EM) may be regarded as the study of the interactions between electric
charges at rest and in motion. It entails the analysis, synthesis, physical interpretation, and
application of electric and magnetic fields.

Electromagnetics (EM) is a branch of physics or electrical engineering in which
electric and magnetic phenomena are studied.

EM principles find applications in various allied disciplines such as microwaves, antennas,
electric machines, satellite communications, bioelectromagnetics, plasmas, nuclear research,
fiber optics, electromagnetic interference and compatibility, electromechanical energy conver-
sion, radar meteorology, and remote sensing."” In physical medicine, for example, EM power,
in the form either of shortwaves or microwaves, is used to heat deep tissues and to stimulate
certain physiological responses in order to relieve certain pathological conditions. EM fields
are used in induction heaters for melting, forging, annealing, surface hardening, and soldering
operations. Dielectric heating equipment uses shortwaves to join or seal thin sheets of plastic
materials. EM energy offers many new and exciting possibilities in agriculture. It is used, for
example, to change vegetable taste by reducing acidity.

EM devices include transformers, electric relays, radio/T'V; telephones, electric motors,
transmission lines, waveguides, antennas, optical fibers, radars, and lasers. The design of
these devices requires thorough knowledge of the laws and principles of EM.

'For numerous applications of electrostatics, see J. M. Crowley, Fundq Is of Applied El ics. New
York: John Wiley & Sons, 1986.
2For other areas of applications of EM, see, for example, D. Teplitz, ed., Electromagnetism: Paths to Research.
New York: Plenum Press, 1982.
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1.2 A PREVIEW OF THE BOOK

The subject of electromagnetic phenomena in this book can be summarized in Maxwell’s

equations:
V-D=p,
V:B=10
VxE=-2
at
D
VXH=J+—
at

where V = the vector differential operator
D = the electric flux density
B = the magnetic flux density
E = the electric field intensity
H = the magnetic field intensity
Py
J

= the volume charge density
= the current density

(1.1)

(12)

(1.3)

(1.4)

Maxwell based these equations on previously known results, both experimental and theore-
tical. A quick look at these equations shows that we shall be dealing with vector quantities.
It is consequently logical that we spend some time in Part 1 examining the mathematical
tools required for this course. The derivation of egs. (1.1) to (1.4) for time-invariant condi-
tions and the physical significance of the quantities D, B, E, H, J, and p, will be our aim in
Parts 2 and 3. In Part 4, we shall reexamine the equations for time-varying situations and

apply them in our study of practical EM devices.

1.3 SCALARS AND VECTORS

Vector analysis is a mathematical tool with which electromagnetic concepts are most con-
veniently expressed and best comprehended. We must learn its rules and techniques before
we can confidently apply it. Since most students taking this course have little exposure to
vector analysis, considerable attention is given to it in this and the next two chapters.’ This
chapter introduces the basic concepts of vector algebra in Cartesian coordinates only. The

next chapter builds on this and extends to other coordinate systems.
A quantity can be either a scalar or a vector.

"Indicates sections that may be skipped, explained briefly, or assigned as homework if the text is covered in one

semester.
*The reader who feels no need for review of vector algebra can skip to the next chapter.
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A scalar is a quantity that has only magnitude.

Quantities such as time, mass, distance, temperature, entropy, electric potential, and popu-
lation are scalars.

A vector is a quantity that has both magnitude and direction.

Vector quantities include velocity, force, displacement, and electric field intensity. Another
class of physical quantities is called tensors, of which scalars and vectors are special cases.
For most of the time, we shall be concerned with scalars and vectors.*

To distinguish between a scalar and a vector it is customary to represent a vector by
a letter with an arrow on top of it, such as A and B, or by a letter in boldface type such as
A and B. A scalar is represented simply by a letter—for example, A, B, U, and V.

EM theory is essentially a study of some particular fields.

A field is a function that specifies a particular quantity everywhere in a region.
If the quantity is scalar (or vector), the field is said to be a scalar (or vector) field. Examples
of scalar fields are temperature distribution in a building, sound intensity in a theater, electric

potential in a region, and refractive index of a stratified medium. The gravitational force on
abody in space and the velocity of raindrops in the atmosphere are examples of vector fields.

1.4 UNIT VECTOR

A vector A has both magnitude and direction. The magnitude of A is a scalar written as
A or |Al. A unit vector a, along A is defined as a vector whose magnitude is unity (i.e., 1)
and its direction is along A, that is,

(1.5)
Note that |a,| = 1. Thus we may write A as
A = Aa, (1.6)
which completely specifies A in terms of its magnitude A and its direction a,.
A vector A in Cartesian (or rectangular) coordinates may be represented as
(As 4, 4,) or Aa tAa +Aa, (1.7)

*For an elementary treatment of tensors, see, for example, A. I. Borisenko and I. E. Tarapor, Vector and Tensor
Analysis with Applications. New York: Dover, 1979.
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By

(a) (b)
FIGURE 1.1 (a) Unit vectors a,, a,, and a,, (b) components of A

alonga, a, and a,.

where A,, A, and A, are called the components of A in the x-, y-, and z-directions, respec-
tively; a,, a, and a, are unit vectors in the x-, y-, and z-directions, respectively. For example,
a, is a dimensionless vector of magnitude one in the direction of the increase of the x-axis.
The unit vectors a,, a,, and a, are illustrated in Figure 1.1(a), and the components of A along
the coordinate axes are shown in Figure 1.1(b). The magnitude of vector A is given by

A=VA+ A+ AL (1.8)

and the unit vector along A is given by

Aa,+Aa + Aa,

2 19
1.5 VECTOR ADDITION AND SUBTRACTION
Two vectors A and B can be added together to give another vector C; that is,
C=A+B (1.10)

The vector addition is carried out component by component. Thus, if A = (A, A, A)
and B = (B, B, B,).

C=(A,+BJa, + (A, +B)a, + (4, + B,)a, (1.11)
Vector subtraction is similarly carried out as

D=A-B=A+(-B)

= (A = BJw + (4, — B)s, + (4, — B)e, 2}
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L7 &7

(a) (b)
FIGURE 1.2 Vector addition C = A + B: (a) parallelogram rule,

(b) head-to-tail rule.

FIGURE 1.3 Vector subtraction

B
D = A — B: (a) parallelogram rule,
A D /o (b) head-to-tail rule.
B B

(a) (b)

Graphically, vector addition and subtraction are obtained by either the parallelogram rule
or the head-to-tail rule as portrayed in Figures 1.2 and 1.3, respectively.

The three basic laws of algebra obeyed by any given vectors A, B, and C, are summa-
rized as follows:

Law Addition Multiplication
Commutative.m A +B=B+A kA = Ak
Associative A+(B+C)=(A+B)+C k(€A) = (k6)A
Distributive k(A + B) = kA + kB

where k and ¢ are scalars. Multiplication of a vector with another vector will be discussed
in Section 1.7.

1.6 POSITION AND DISTANCE VECTORS

A point P in Cartesian coordinates may be represented by (x, y, z).

The position vector r, (or radius vector) of point P is defined as the directed dis-
tance from the origin O to P, that is,

rp = OP = xa, + ya, + za, (1.13)
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EXAMPLE 1.1

FIGURE 1.4 |llustration of position vector
rp = 3a, + 4a, = Sa,

P FIGURE 1.5 Distance vector Tpo-

rpQ

The position vector of point P is useful in defining its position in space. Point (3, 4, 5), for
example, and its position vector 3a, + 4a, + 5a_ are shown in Figure 1.4.

The distance vector is the displacement from one point to another.

If two points P and Q are given by (xp, yp, 2p) and (xq, Yo 2q), the distance vector (or
separation vector) is the displacement from P to Q as shown in Figure 1.5; that is,

Ipg =Tp — Ip

= (XQ - xP)ax + (}’Q - yP)ay + (ZQ - ZP)az (1.14)

The difference between a point P and a vector A should be noted. Though both P
and A may be represented in the same manner as (x, y, z) and (A, A, A.), respectively,
the point P is not a vector; only its position vector rp is a vector. Vector A may depend on
point P, however. For example, if A = 2xya, + yzay — xz%a,and Pis (2, —1,4), then A at
P would be —4a, + a, — 32a_. A vector field is said to be constant or uniform if it does
not depend on space variables x, y, and z. For example, vector B = 3a, — 2a, + 10a,is a
uniform vector while vector A = 2xya, + yzay — xZz’a, is not uniform because B is the
same everywhere, whereas A varies from point to point.

IfA = 10a, — 4a, + 6a,and B = 2a, + a,, find (a) the component of A along a,, (b) the
magnitude of 3A — B, (c) a unit vector along A + 2B.
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Solution:
(a) The component of A along a,is A, = —4.
(b) 3A — B = 3(10, —4,6) — (2,1,0)

= (30,-12,18) — (2,1,0)

= (28,-13,18)

Hence,

|3A — B| = V28% + (—13)% + (18)* = V1277

= 3574

(c) LetC= A + 2B = (10, —4,6) + (4,2,0) = (14, —2,6).

A unit vector along C is

(¢! (14, —2,6)

a=—=

CoICl Vig+ (<27 + 6
or
a = 0.9113a, — 0.1302a, + 0.3906a,

Note that |a| = 1 as expected.

9

PRACTICE EXERCISE 1.1

Given vectors A = a, + 3a,and B = 5a, + 2a, — 6a,, determine
(a) |A+B

(b) 5A—B

(c) The component of A along a,

(d) A unit vector parallel to 3A + B

Answer: (a) 7, (b) (0, —2,21), (c) 0, (d) =(0.9117, 0.2279, 0.3419).

Points P and Q are located at (0, 2, 4) and (—3, 1, 5). Calculate
(a) The position of vector rp

(b) The distance vector from P to Q

(c) The distance between P and Q

(d) A vector parallel to PQ with magnitude of 10
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Solution:
(@) rp = 0a, + 2a, + 4a, = 2a, + 4a,
(b) g =r1q —1p=(=3,1,5) — (0,2,4) = (-3,-1,1)

orrp, = —3a, —a, +a,
(c) Since rpqis the distance vector from P to Q, the distance between P and Q is the mag-
nitude of this vector; that is,
d=rpgl =V9+1+1=3317
Alternatively:

d= \/(XQ = xp)* + (yo = yp)* + (29 — z)?
=VI9+1+1=23317

(d) Let the required vector be A, then
A = Aa,

where A = 10 is the magnitude of A. Since A is parallel to PQ, it must have the same unit
vector as rp, or rqp. Hence,

aA = i rPQ = i(__%—) __1)"1)
g 3317
and
10(=3, =1, 1)
A=+———"""=+(-9,045a, — 3.015a, + 3.015a,)
3.317 %

PRACTICE EXERCISE 1.2

Given points P(1, —3, 5), Q(2, 4, 6), and R(0, 3, 8), find (a) the position vectors of P and
R, (b) the distance vector rgp, (c) the distance between Q and R.

Answer: (a) a, — 3a, + 5a,,3a, + 8a,, (b) —2a, —a, + 2a,(c) 3.

A river flows southeast at 10 km/hr and a boat floats upon it with its bow pointed in the
direction of travel. A man walks upon the deck at 2 km/hr in a direction to the right and
perpendicular to the direction of the boat’s movement. Find the velocity of the man with
respect to the earth.

Solution:

Consider Figure 1.6 as illustrating the problem. The velocity of the boat is

u, = 10(cos 45°a, — sin 45°a,)

= 7.07la, — 7.071a, km/hr
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N FIGURE 1.6 For Example 1.3.

The velocity of the man with respect to the boat (relative velocity) is

=2(—cos45°a, — sin45°a)
= —l.4l4a, — l.414aykm/hr

um

|

Thus the absolute velocity of the man is

u,;, = u, +u, = 5.657a, — 8.485a,

luy| = 102/=56.3°

that is, 10.2 km/hr at 56.3° south of east.

PRACTICE EXERCISE 1.3

An airplane has a ground speed of 350 km/hr in the direction due west. If there is a wind
blowing northwest at 40 km/hr, calculate the true air speed and heading of the airplane.

Answer: 379.3 km/hr, 4.275° north of west.

1.7 VECTOR MULTIPLICATION

When two vectors A and B are multiplied, the result is either a scalar or a vector depending
on how they are multiplied. Thus there are two types of vector multiplication:

1. Scalar (or dot) product: A - B
2. Vector (or cross) product: A X B
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Multiplication of three vectors A, B, and C can result in either:
3. Scalar triple product: A - (B X C)
or

4. Vector triple product: A X (B X C)
A. Dot Product

The dot product of two vectors A and B, written as A - B, is defined geometrically
as the product of the magnitudes of A and B and the cosine of the smaller angle
between them when they are drawn tail to tail.

Thus,

A-B = ABcosf, (1.15)

where 6, is the smaller angle between A and B. The result of A - B is called either the scalar
product because it is scalar, or the dot product due to the dot sign. If A = (A,, A, A.) and
= (B, B, B,), then

(1.16)

’ A-B=AB +AB, + AB,

which is obtained by multiplying A and B component by component. Two vectors A and B
are said to be orthogonal (or perpendicular) with each other if A - B = 0.
Note that dot product obeys the following:

(i) Commutative law:

A-B=B-A (1.17)

(ii) Distributive law:
A-(B+C)=A-B+A-C (1.18)

(iii)
A-A=|AlP=47 (1.19)
Also note that

a,-a, =a, =a,ca, =0 (1.20a)
aglay= @ vay=wpta =1 (1.20b)

It is easy to prove the identities in eqs. (1.17) to (1.20) by applying eq. (1.15) or (1.16).
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B. Cross Product

The cross product of two vectors A and B, written as A X B, is a vector quantity
whose magnitude is the area of the parallelogram formed by A and B (see Figure 1.7)
and is in the direction of advance of a right-handed screw as A is turned into B.

A X B = ABsin 6,5, (1.21)

where a, is a unit vector normal to the plane containing A and B. The direction of a, is
taken as the direction of the right thumb when the fingers of the right hand rotate from
A to B as shown in Figure 1.8(a). Alternatively, the direction of a, is taken as that of the
advance of a right-handed screw as A is turned into B as shown in Figure 1.8(b).

The vector multiplication of eq. (1.21) is called cross product owing to the cross
sign; it is also called vector product because the result is a vector. If A = (A,, A, A;) and
B = (B, B, B,), then

Thus,

a, a, a,
AXB=|A, A, A, (1.22a)

B, B, B,
= (A,B, — A;B))a, + (A,B, — AB,)a, + (A,B, — AB,)a, (1.22b)

which is obtained by “crossing” terms in cyclic permutation, hence the name ‘“cross
product”

A

FIGURE 1.7 The cross product of A and B is a vector with magnitude equal
to the area of the parallelogram and direction as indicated.
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AXB AXB

(a) (b)

FIGURE 1.8 Direction of A X B and a, using (a) the right-hand rule and (b) the
right-handed-screw rule.

Note that the cross product has the following basic properties:

(i) It is not commutative:

AXB#BXA (1.23a)
It is anticommutative:
AXB=-BXA (1.23b)
(ii) It is not associative:
AX(BXC)# (AXB)XC (1.24)
(iii) It is distributive:
AX(B+C)=AXB+AXC (1.25)
(iv)
AXA=0 (1.26)

Also note that

a,Xa =a,
a, Xa =a, (1.27)

a, Xa, =a,

which are obtained in cyclic permutation and illustrated in Figure 1.9. The identities in egs.
(1.23) to (1.27) are easily verified by using eq. (1.21) or (1.22). It should be noted that in
obtaining a,, we have used the right-hand or right-handed-screw rule because we want to
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a, a,
a, a 3y —a,
5 \_/ay az\_/av
a —ay
(a) (b)

FIGURE 1.9 Cross product using cyclic permutation. (a) Moving
clockwise leads to positive results. (b) Moving counterclockwise
leads to negative results.

be consistent with our coordinate system illustrated in Figure 1.1, which is right-handed.
A right-handed coordinate system is one in which the right-hand rule is satisfied: that is,
a, X a, = a, is obeyed. In a left-handed system, we follow the left-hand or left-handed
screw rule and a, X a, = —a, is satisfied. Throughout this book, we shall stick to right-
handed coordinate systems.

Just as multiplication of two vectors gives a scalar or vector result, multiplication of
three vectors A, B, and C gives a scalar or vector result, depending on how the vectors are
multiplied. Thus we have a scalar or vector triple product.

C. Scalar Triple Product

Given three vectors A, B, and C, we define the scalar triple product as

A~(BXC):B~(C><A):C~(A><BJ (1.28)

obtained in cyclic permutation. If A = (A,, A, A,), B = (B, B,B,),and C = (e, €,
then A - (B X C) is the volume of a parallelogram having A, B, and C as edges and is easily
obtained by finding the determinant of the 3 X 3 matrix formed by A, B, and C; that is,

A A, A,
A-(BXC)=|B, B, B, (1.29)
C. ¢,

Since the result of this vector multiplication is scalar, eq. (1.28) or (1.29) is called the scalar
triple product.

D. Vector Triple Product

For vectors A, B, and C, we define the vector triple product as

AX(BXC)=B(A-C)—C(A‘ﬂ (1.30)
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which may be remembered as the “bac-cab” rule. It should be noted that

(A-B)C# A(B-C) (1.31)

(A-B)C=C(A-B) (1.32)

1.8 COMPONENTS OF A VECTOR

A direct application of scalar product is its use in determining the projection (or compo-
nent) of a vector in a given direction. The projection can be scalar or vector. Given a vector
A, we define the scalar component Ay of A along vector B as [see Figure 1.10(a)]

Ap = Acosf,; = |Allag| cosO,p

or

ag (1.33)

The vector component A of A along B is simply the scalar component in eq. (1.33) multi-
plied by a unit vector along B; that is,

’ Ap = Agay = (A-ap)a, (1.34)

Both the scalar and vector components of A are illustrated in Figure 1.10. Notice from Figure
1.10(b) that the vector can be resolved into two orthogonal components: one component A par-
allel to B, another (A — Ap) perpendicular to B. In fact, our Cartesian representation of a vector
is essentially resolving the vector into three mutually orthogonal components as in Figure 1.1(b).

We have considered addition, subtraction, and multiplication of vectors. However, divi-
sion of vectors A/B has not been considered because it is undefined except when A and B are
parallel so that A = kB, where k is a constant. Differentiation and integration of vectors will be
considered in Chapter 3.

A A

ai . el

Ag As

(a) (b)

FIGURE 1.10 Components of A along B: (a) scalar component Ag,
(b) vector component Ag.
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RO TEl Givenvectors A = 3a, + 4a, + a,and B = 2a, — 5a,, find the angle between A and B.
Solution:

The angle 6 45 can be found by using either dot product or cross product.

A-B=(3,41)-(0,2 -5)
=0+8-5=3
Al = V3 + 4+ 12=V26
IB| = V02 + 22 + (=5)* = V29
A-B 3
cos 0,5 = = ————— = 0.1092

[AlIB]  \/(26)(29)

0,45 = cos™'0.1092 = 83.73°

Alternatively:

a, a, a,
AXB=1[3 4 1
0 2 -5
=(-20 —2)a, + (0 + 15)a, + (6 — 0)a,
=(-22,15,6)
|A X B| = V(—22)* + 15? + 6* = \/745
_JAxBl Vs

sinf =77 = —F———— =099
B |AlBL T V(26)(29)

0,45 = sin~' 0.994 = 83.73°

PRACTICE EXERCISE 1.4

IfA =a,+ 3a,and B = 5a, + 2a, — 6a,, find 6,5

Answer: 120.6°.

EXAMPLE 1.5 TGS field quantities are given by

P=2a —a,
Q =2a, —a,* 2a,
R =2a, —3a, +a,

Determine

(@ (P+Q) X (P-Q)
(b) Q-RXP

(c) P-QXR
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(d) sin Ogr

(e) PX (QXR)

(f) A unit vector perpendicular to both Q and R
(g) The component of P along Q

Solution:

(a)
P+Qx(P-Q=Px(P-Q+QXx(P-Q)

=PXP-PXQ+QXP-QxQ
=0+QXP+QXP—-0

=2QXP
a, a, a,
=212 =1 2
2 0 =l

=2(1-0)a, +2(4+2)a,+2(0 +2)a,
=2a, +12a, + 4a,

(b) The only way Q- R X P makes sense is
a, a, a
Q (RXP)=(2-1,2)-2 -3 1
2 0 -1
(2,-1,2) - (3,4,6)
6—-4+12=14

Alternatively:
2 —1 2
Q- (RXP)=1]2 -3 1
2 0 =1

To find the determinant of a 3 X 3 matrix, we repeat the first two rows and cross multiply;
when the cross multiplication is from right to left, the result should be negated as shown
diagrammatically here. This technique of finding a determinant applies only to a 3 X 3
matrix. Hence,

Il

Q- (RXP)= _

=+6 +0-2+12-0-2

as obtained before.



1.8 Components of a Vector

(c) From eq. (1.28)

P-(QXR)=Q-(RXP)=14

or

P-(QXR)=(20-1)(52 —4)
=10+0+4
=14
. _IQXR| (5,2, -4)|
@ sinfon = QIR ~ 1 —1,2)[12 =3, 1)]
Vas Vs
= ——=——=0.5976
V14 Ve
() P X (@ X R) =(2,0,~1) X (5,2,—4)
=(2,3,4)

Alternatively, using the bac-cab rule,

PX (QXR)=Q(P'R)—R(P-Q)
=(2,-1,2)4+0-1)—(2,-3,1)(4+0-2)
={3.3,4)

(f) A unit vector perpendicular to both Q and R is given by

_*QXR _ +(5,2,—4)
|Q X R| Vs

= +(0.745,0.298, —0.596)

a

Note that [a] = 1,a-Q = 0 = a R. Any of these can be used to check a.
(g) The component of P along Q is

P, = |P| cos Opqaq

P-
_Ero=2)E—Tn) Z.
T (e+1+4) o> ~12)

= 0.4444a, — 0.2222a, + 0.4444a

19



20 CHAPTER 1 VECTOR ALGEBRA

PRACTICE EXERCISE 1.5
LetE = 3a,+ 4a,and F = 4a, — 10a, + 5a..

(a) Find the component of E along F.
(b) Determine a unit vector perpendicular to both E and F.

Answer: (a) (—0.2837,0.7092, —0.3546), (b) =(0.9398, 0.2734, —0.205).

m Derive the cosine formula

and the sine formula

a?=b"+ & — 2bccos A

sinA _sinB _ sinC
a b ¢

using dot product and cross product, respectively.

Solution:

Consider a triangle as shown in Figure 1.11. From the figure, we notice that
atb+c=0
that is,
b+c=-a
Hence,
a=aa=(b+c)-(b+c)
=b'b+c-ct2b-c
@ =0+ — 2bccos A

where (7 — A) is the angle between b and c.
The area of a triangle is half of the product of its height and base. Hence,

1 1
‘H&Xb‘:‘bec
2 2

1
—<Xa
2
absin C = bcsin A = casin B

Dividing through by abc gives
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FIGURE 1.11 For Example 1.6.

PRACTICE EXERCISE 1.6

Show that vectors a = (4,0, —1), b = (1, 3, 4), and ¢ = (—5, —3, —3) form the sides
of a triangle. Is this a right angle triangle? Calculate the area of the triangle.

Answer: Yes, 10.5.

Show that points P,(5,2, —4), P,(1,1,2), and Py(—3,0,8) all lie on a straight line.
Determine the shortest distance between the line and point P,(3,-1,0).

Solution:
The distance vector rp p, is given by

tpp, = 1p, — 1p = (1,1,2) = (5,2, —4)
=(—4,-1,6)
Similarly,
rpp, = rp — rp = (—3,0,8) — (5,2, —4)
=(-8-212)
tpp, = tp —1p = (3, —1,0) — (5,2, —4)
= [(~2,~3,4)
a, a a,
Epp, KBy, = |4 - =1 6
-8 —2 12
=(0,0,0)

showing that the angle between ry and ryp, is zero (sin & = 0). This implies that P, P,,
and P; lie on a straight line.

Alternatively, the vector equation of the straight line is easily determined from Figure
1.12(a). For any point P on the line joining P, and P,

Tpp = Arpp,
where A is a constant. Hence the position vector ry of the point P must satisfy

l’P)

rp = 1p = A(rp, —
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\s

(a) (b)

FIGURE 1.12 For Example 1.7.
that is,
rp = r1p + A(rp, — 1p)

(5,2, —4) — A(4,1, —6)
rp=(5—4\2— A, —4 +6A)

This is the vector equation of the straight line joining P, and P,. If P, is on this line, the
position vector of P; must satisfy the equation; r; does satisfy the equation when A = 2.

The shortest distance between the line and point P,(3, —1,0) is the perpendicular
distance from the point to the line. From Figure 1.12(b), it is clear that

d=rppsind = |rpp X app|
_1(=2,-3,4) X (=4, -1,6)|

[(—4,-1,6)|
V312
= ——= = 2426

V3

Any point on the line may be used as a reference point. Thus, instead of using P, as a reference
point, we could use P,. If ZP,P; P, = 6’ then

d = lrpp|sin® = [rpp X app|

PRACTICE EXERCISE 1.7
If P, is (1,2, —3) and P, is (—4, 0, 5), find

(a) The distance P,P,
(b) The vector equation of the line P,P,
(c) The shortest distance between the line PP, and point P; (7, —1, 2)

Answer: (a) 9.644, (b) (1 — 5N\)a, + 2(1 — Na, + (8\ — 3)a,, (c) 8.2.
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MATLAB 1.1 % This script allows the user to input two vectors and

% then compute their dot product, cross product, sum,
% and difference
clear
VA = input(‘Enter vector A in the format [x y z]... \n > ‘');
if isempty(vA); VA = [0 0 0]; end % if the input is
% entered incorrectly set the vector to 0

vB = input(‘'Enter vector B in the format [x y z]... \n > ‘');
if isempty(vB); vB = [0 0 0]; end
disp(‘Magnitude of A:’)
disp(norm(vA)) % norm finds the magnitude of a

% multi-dimensional vector

disp(‘'Magnitude of B:’)

disp(norm(vB))

disp('Unit vector in direction of A:’)

disp(vA/norm(vA)) % unit vector is the vector
% divided by its magnitude

disp('Unit vector in direction of B:')

disp(vB/norm(vB))

disp(‘'Sum A+B:’)

disp(vA+vB)

disp(‘Difference A-B:')

disp(VA-VB)

disp('Dot product (A . B):’)

disp(dot(vA,vB)) % dot takes the dot product of vectors
disp('Cross product (A x B):')
disp(cross(vA,vB)) % cross takes cross product of vectors

SUMMARY 1. A field is a function that specifies a quantity in space. For example, A(x, y, z) is a vector
field, whereas V(x, y, 2) is a scalar field.

2. A vector A is uniquely specified by its magnitude and a unit vector along it, that is, A = Aa,,.

3. Multiplying two vectors A and B results in either a scalar A - B = AB cos 6, or a
vector A X B = AB sin 6,5 a,. Multiplying three vectors A, B, and C yields a scalar
A-(B X C)oravector A X (B X C).

4. The scalar projection (or component) of vector A onto Bis Ay = A - ap, whereas vector
projection of A onto B is Ay = Ajap.

1.1 Tell which of the following quantities is not a vector: (a) force, (b) momentum, (c) accelera-
Q tion, (d) work, (e) weight.

1.2 Which of the following is not a scalar field?
(a) Displacement of a mosquito in space

(b) Light intensity in a drawing room

(c) Temperature distribution in your classroom
(d) Atmospheric pressure in a given region

(e) Humidity of a city
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1.3 Of the rectangular coordinate systems shown in Figure 1.13, which are not right handed?
1.4 Which of these is correct?
(a) AXA=|Al? (d) a,-a, = a,
(b) AXB+BXA=0 (e) a, = a, — a, where a; is a unit vector
(c) A‘B-C=B-C-A

1.5 Which of the following identities is not valid?

(a) a(b + ¢) = ab + bc (d) c-(axb)=-b-(axc)
b)ax(b+c)=aXb+aXxXc (€) a, a5 =cosfy
(c)a-b=b-a

1.6 Which of the following statements are meaningless?
(@) A-B+2A=0 () A(A+B)+2=0
(b) A'B+5=2A (d A*A+B-B=0

1.7 Let F = 2a, — 6a, + 10a, and G = a, + Gja, + 5a,. If F and G have the same unit
vector, G, is

(a) 6 (c) 0
B) =3 (d) 6
1.8 Given that A = a, + @a, + a,and B = ca, + a, + a,, if A and B are normal to each
other, o is
() —2 (d 1
(b) —1/2 (e) 2
(c) 0
1.9 The component of 6a, + 2a, — 3a, along 3a, — 4a, is
(@) —12a,— 94, — 33, d) 2
(b) 30a, — 40a, (e) 10
(c) 10/7
¥y X z

(a) (b) (c)

@) (e) ()

FIGURE 1.13 For Review Question 1.3.
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1.10 Given A = —6a, + 3a, + 2a,, the projection of A along a, is
(af ~12 d) 7
(b) —4 (e) 12
(c) 3

Answers: 1.1d, 1.2a, 1.3b,e, 1.4b, 1.5a, 1.6a,b,c, 1.7b, 1.8b, 1.9d, 1.10c.

PROBLEMS

Section 1.4—Unit Vector

1.1 Find the unit vector along the line joining point (2, 4, 4) to point (=3, 2,2).
1.2 Determine the unit vector along the direction OP, where O is the origin and P is
point (4, —5, 1).

Sections 1.5-1.7—Vector Addition, Subtraction, and Multiplication

1.3 IfA = 4a, — 2a, + 6a,and B = 12a, + 18a, — 8a,, determine:
(a) A— 3B
(b) (2A + 5B)/|B|
(c) a, X A
(d (B xa,)-a,
1.4 Given vectors A = 4a, —6a, + 3a, and B = —a, + 8a, + 5a, find (a) A — 2B,
(b)A-B,(c) A XB.
1.5 Let A = 4a, + 2a,+a,B=3a, + 53 +a,andC=a,—7a,.FindA- (B X C).
1.6 LetA =a, —a,B=a, +a +a,C=a,+2a,find
(a) A-(BXC)
(b) (AXB)-C
() AX (BXC)
d) (AXB)XC
1.7 If the position vectors of points T and S are 3a, — 2a, + a, and 4a, + 6a, + 2a,, respec-
tively, find (a) coordinates of T'and S, (b) the distance vector from T to S, (c) the distance
between T and S.
1.8 Let A = ca, + 3a, — 2a,and B = 4a, + Ba, + 8a,.
(a) Find « and B if A and B are parallel.
(b) Determine the relationship between « and  if B is perpendicular to A.

1.9 (a) Show that
(A-B)* + |A X B|* = (AB)?

(b) Show that
_ aXa _ a,Xa, _ & Xa,

= 4= e
“ aca Xa 7 acaXa  C ara Xa,
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1.10 Given that

1.11

1.12

113

1.14

115

1.16

1.17

1.18

1.19

*1.20

1.2

—

P=2a —a — 2a,
Q = 4a, + 3a, + 2a,
R=—g, +a,+2a

find: (a) [P+ Q—RJ[, (b) P-QXR, (c) QXP-R, (d) (PXQ) (QXR),
(e) (P X Q) X (Q X R),(f) cos O, (g) sin Opq.
IfA = 4a, — 6a, + a,and B = 2a, + 5a,, find:
(a) A-B+2[B?
(b) a unit vector perpendicular to both A and B
Determine the dot product, cross product, and angle between
P =2a, — 6a, + 5a, and Q=3a+a
Show that vectors A = a, — 2a, + 3a,and B = —2a, + 4a, — 6a, are parallel.

Simplify the following expressions:
(a) A X (A X B)
(b) A X [A X (AXB)]

Show that the dot and cross in the triple scalar product may be interchanged, that is,
A (BXC)=(AXB) -C

A right angle triangle has its corners located at P,(5, —3, 1), P,(1, =2, 4), and P5(3, 3, 5).
(a) Which corner is a right angle? (b) Calculate the area of the triangle.

Points P, Q, and R are located at (—1,4,8), (2, —1,3), and (—1,2,3), respectively.
Determine (a) the distance between P and Q, (b) the distance vector from P to R,
(c) the angle between QP and QR, (d) the area of triangle PQR, (e) the perimeter of
triangle PQR.

Two points P(2, 4, —1) and Q(12, 16, 9) form a straight line. Calculate the time taken
for a sonar signal traveling at 300 m/s to get from the origin to the midpoint of PQ.

Find the area of the parallelogram formed by the vectors D = 4a, + a, + 5a.and
E=—a, +2a +3a,

(a) Prove that P = cos f,a, + sin 6,a, and Q = cos 6,a, + sin 6,a, are unit vectors in
the xy-plane, respectively, making angles 6, and 6, with the x-axis.

(b) By means of dot product, obtain the formula for cos(6, — 6,). By similarly formu-
lating P and Q, obtain the formula for cos(6, + 6,).

(c) If 0 is the angle between P and Q, find }|P — Q| in terms of .

Consider a rigid body rotating with a constant angular velocity  radians per second
about a fixed axis through O as in Figure 1.14. Let r be the distance vector from O to P,
the position of a particle in the body. The magnitude of the velocity u of the body at P is
[ul = d|w| = |r|sin@ || oru = @ X r.If the rigid body is rotating at 3 rad/s about
an axis parallel to a, — 2a, + 2a, and passing through point (2, —3, 1), determine the
velocity of the body at (1, 3, 4).

*Single asterisks indicate problems of intermediate difficulty.
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FIGURE 1.14 For Problem 1.21.

o

1.22 A cube of side 1 m has one corner placed at the origin. Determine the angle between the
diagonals of the cube.

1.23 Givenvectors T = 2a, — 6a, + 3a,andS = a, + 2a, + a,,find (a) the scalar projection
of Ton§, (b) the vector projection of Son T, (c) the smaller angle between T and S.

Section 1.8 —Components of a Vector

1.24 Given two vectors A and B, show that the vector component of A perpendicular to B is
A-B
C=A--—"B8B
BB
1.25 IfH = 2xya, — (x + z)ay + Za,, find:
(a) A unit vector parallel to H at P(1,3,-2)
(b) The equation of the surface on which [H| = 10

1.26 Given three vectors

Find: (a) A - (B X C), (b) the vector component of A along B.

1.27 LetG = x’a, — ya, + 2za,and H = yza, + 3a, — xza,. At point (1, =2, 3), (a) calculate
the magnitude of G and H, (b) determine G - H, (c) find the angle between G and H.

1.28 Determine the scalar component of vector H = ya, — xa, at point P(1, 0, 3) that is
directed toward point Q(—2, 1, 4).

1.29 E and F are vector fields given by E = 2xa, + a, + yza, and F = xya, — y’a,+ xyza,.
Determine:

(a) |E|at(1,2,3)
(b) The component of E along F at (1, 2, 3)
(c) A vector perpendicular to both E and F at (0, 1, —3) whose magnitude is unity

1.30 Given two vector fields
D = yza, + xza, + xya,  and E = 5xya, + 6(x* + 3)a, + 8z,
(a) Evaluate C = D + Eat point P(—1, 2, 4). (a) Find the angle C makes with the x-axis at P.
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Criterion A applies directly to electromagnetics. As students, you are expected to study math-
ematics, science, and engineering with the purpose of being able to apply that knowledge to the
solution of engineering problems. The skill needed here is the ability to apply the fundamentals of
EM in solving a problem. The best approach is to attempt as many problems as you can. This will
help you to understand how to use formulas and assimilate the material. Keep nearly all your basic
mathematics, science, and engineering textbooks. You may need to consult them from time to time.



CHAPTER 2

COORDINATE SYSTEMS
AND TRANSFORMATION

A man is in fact three men—what he thinks he is—what others think he is—what
he really is. There is, | think, still a fourth identity—what he tries to be. My hunch
is that what he tries to be fuses all the others and brings the true portrait of the man
into focus.
—DORE SCHARY

2.1 INTRODUCTION

In general, the physical quantities we shall be dealing with in EM are functions of space
and time. In order to describe the spatial variations of the quantities, we must be able to
define all points uniquely in space in a suitable manner. This requires using an appropriate
coordinate system.

A point or vector can be represented in any curvilinear coordinate system, which may
be orthogonal or nonorthogonal.

An orthogonal system is one in which the coordinate surfaces are mutually perpendicular.

Nonorthogonal systems are hard to work with, and they are of little or no practical use.
Examples of orthogonal coordinate systems include the Cartesian (or rectangular), the cir-
cular cylindrical, the spherical, the elliptic cylindrical, the parabolic cylindrical, the conical,
the prolate spheroidal, the oblate spheroidal, and the ellipsoidal.' A considerable amount of
work and time may be saved by choosing a coordinate system that best fits a given problem.
A hard problem in one coordinate system may turn out to be easy in another system.

In this text, we shall restrict ourselves to the three best-known coordinate systems:
the Cartesian, the circular cylindrical, and the spherical. Although we have considered the
Cartesian system in Chapter 1, we shall consider it in detail in this chapter. We should bear
in mind that the concepts covered in Chapter 1 and demonstrated in Cartesian coordinates
are equally applicable to other systems of coordinates. For example, the procedure for find-
ing the dot or cross product of two vectors in a cylindrical system is the same as that used
in the Cartesian system in Chapter 1.

'For an introductory of these coordi systems, see M. R. Spiegel and J. Liu, Mathematical Handbook
of Formulas and Tables. New York: McGraw-Hill, 2nd ed., 1999, pp. 126-130.

29
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Sometimes, it is necessary to transform points and vectors from one coordinate
system to another. The techniques for doing this will be presented and illustrated with
examples.

2.2 CARTESIAN COORDINATES (x, y, z)

As mentioned in Chapter 1, a point P can be represented as (x, y,z) as illustrated in
Figure 1.1. The ranges of the coordinate variables x, y, and z are

- < x < ®©
—0 <y <o (2.1)
—o < z< ®

A vector A in Cartesian (otherwise known as rectangular) coordinates can be written as
(ApALA,) or Aa,+Aa + Aa, 2:2)

where a,, a, and a, are unit vectors along the x-, y-, and z-directions as shown in
Figure 1.1.

2.3 CIRCULAR CYLINDRICAL COORDINATES (p, ¢, z)

The circular cylindrical coordinate system is very convenient whenever we are dealing with
problems having cylindrical symmetry.

A point P in cylindrical coordinates is represented as (p, ¢, z) and is as shown in
Figure 2.1. Observe Figure 2.1 closely and note how we define each space variable: p is the

z FIGURE 2.1 Point P and unit vectors in the
cylindrical coordinate system.

ap
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radius of the cylinder passing through P or the radial distance from the z-axis; ¢, called the
azimuthal angle, is measured from the x-axis in the xy-plane; and z is the same as in the
Cartesian system. The ranges of the variables are

0=p<wx®
0=¢ <2m (2.3)
- < z< ®©

A vector A in cylindrical coordinates can be written as

(A, ApA) or Aa,+ Asa, + Aa, (2.4)

-
where a, a,, and a, are unit vectors in the p-, ¢-, and z-directions as illustrated in
Figure 2.1. Note that a, is not in degrees; it assumes the units of A. For example, if a
force of 10 N acts on a particle in a circular motion, the force may be represented as
= 10a, N. In this case, a,, is in newtons.
The magnitude of A is

[A] = (A% + A} + AD)'? (2.5)
Notice that the unit vectors a,, a,, and a, are mutually perpendicular because our coor-

dinate system is orthogonal; a, points in the direction of increasing p, a, in the direction
of increasing ¢, and a, in the positive z-direction. Thus,

a,ra, =a,ay;=@a,"a,=1 (2.6a)
a,"ay =az-a, =a;a, =0 (2.6b)
a, Xa, =a, (2.6¢)
a, Xa, =a, (2.6d)
a, Xa,=a, (2.6e)

where egs. (2.6¢) to (2.6e) are obtained in cyclic permutation (see Figure 1.9).
The relationships between the variables (x, y, z) of the Cartesian coordinate system
and those of the cylindrical system (p, ¢, z) are easily obtained from Figure 2.2 as

p=Vi+y, (b:tan"%, z=1z (2.7)

or

J x=pcosp, y=psing, z=1z J (2.8)

Whereas eq. (2.7) is for transforming a point from Cartesian (x,y,z) to cylindrical
(p, ¢, z) coordinates, eq. (2.8) is for (p, ¢, z) — (x, y, z) transformation.
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2 FIGURE 2.2 Relationship between (x, y, z) and
(p, $,2).

® Plx,y,2)=P(p,$,2)

The relationships between (a,, a,, a,) and (a,, a4 a,) are obtained geometrically from

Figure 2.3:
a, = cospa, —sinda,
a, =sinda, + cosda, (2.9)
a, = a,

or

a,=cosda, +singa,
a, = —sinda, + cosa, (2.10)
az & aZ

Finally, the relationships between (A, A,, A,) and (A,, A, A,) are obtained by simply
substituting eq. (2.9) into eq. (2.2) and collecting terms. Thus,

a, singa,
-y

(a) (b)

FIGURE 2.3 Unit vector transformation: (a) cylindrical components of a,,
(b) cylindrical components of a,.
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A= (A.cos¢ + Aysind)a, + (—Asing + A, cos p)ay, + Aa, (2.11)

or
A, = Accos¢p + A, sind
Ay = —A;sing + A, cos ¢ (2.12)
A, =A,
In matrix form, we write the transformation of vector A from (A,, A, A,) to
(A, A4 A;) as
A, cos¢ sing 0 || As
Ay | =| —singd cosd 0] A4, (2.13)
A, 0 0 L ]| Az

The inverse of the transformation (A,, A4 A,) — (A, A, A,) is obtained as

A, cos¢ sing 0|7' 4,
A,|=|-sing cos¢p 0 Ay (2.14)
A, 0 0 1] |A,

or directly from eqs. (2.4) and (2.10). Thus,

A, cos¢p —sing 0|4,
A, | =|sing cosdp 0| A, (2.15)
A, 0 0o 1|4,

An alternative way of obtaining eq. (2.13) or (2.15) is by using the dot product. For

example,
A, aca, a-a, a-a| 4
A, | = |8y-0, a,-a; a8l Ay (2.16)
A, a,ra, a,"ay a;'a, || A,

The derivation of this is left as an exercise.
Keep in mind that eqs. (2.7) and (2.8) are for point-to-point transformation, while egs.
(2.13) and (2.15) are for vector-to-vector transformation.

2.4 SPHERICAL COORDINATES (r, 0, ¢)

The spherical coordinate system is most appropriate when one is dealing with problems
having a degree of spherical symmetry. A point P can be represented as (r, 6, $) and is
illustrated in Figure 2.4. From Figure 2.4, we notice that r is defined as the distance from
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the origin to point P or the radius of a sphere centered at the origin and passing through P;
6 (called the colatitude) is the angle between the z-axis and the position vector of P; and ¢ is
measured from the x-axis (the same azimuthal angle in cylindrical coordinates). According
to these definitions, the ranges of the variables are

0=r<w
0=sf6=m (2.17)
0=¢ <2m
A vector A in spherical coordinates may be written as
(A, ApAy) or Aa, + Agay + Asa, (2.18)

where a,, a,, and a, are unit vectors along the r-, f-, and ¢-directions. The magnitude of
Ais

[Al = (A7 + 45 + AJ)" (2.19)

The unit vectors a,, a4, and a, are mutually orthogonal, a, being directed along the
radius or in the direction of increasing r, a, in the direction of increasing 6, and a, in the
direction of increasing ¢. Thus,

aa =ag a; =ag a, =1
a,a; =ag-a, =ag-a =0
a, X a; = ay (2.20)
a; X a, = a,
a, X a, = a,

FIGURE 2.4 Point P and unit
vectors in spherical coordinates.

3

3
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The space variables (= » z) in Cartesian coordinates can be related to variables
(,6, ¢) of a spherical coordinate system. From Figure 2.5 it is easy to notice that

Ve +
r=VXZ+y+72 60=tan"' % = tan“% (2.21)
or
lx=rsin9cosd), y = rsinf sin ¢, z:rcosa| (2.22)

In eq. (2.21), we have (x,y,z) — (r,6, ¢) point transformation and in eq. (2.22), it
is (r,6,¢) — (x,y,2) point transformation.
The unit vectors a,, a,, a, and a,, ay, a, are related as follows:

a, = sinf cospa, + coshcospa, — singa,
a, =sinfsinda, + cosfsinda, + cospa, (2.23)
a, = cosfa, —sinfa,

or
a, =sinfcosga, +sinfsinga, +cosba,
a; = cosflcospa, + cosfsinpa, —sinba, (2.24)
a, = —sinda, + cosa,

The componentsof vector A = (A,, A,, A;)and A = (A, Ay, A,) arerelated by substituting
eq. (2.23) into eq. (2.2) and collecting terms. Thus,

p=rsin 6

# P(x,y,20)=P(r,0,0)=P(p, ¢.2)

z=rcos @

X=pCos @

y=psin g
X

FIGURE 2.5 Relationships between space variables (x, y, z),
(r, 0, b),and (p, ¢, 2,).
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A = (A,sinf cosd + A,sin 6 sind + A, cos 6)a, + (A, cos f cos
+ Aycosfsing — A sinf)a, + (—A,sind + A, cos ¢)a, (2.25)

and from this, we obtain

A, = A;sinfcosd + A sinfsing + A.cosf
Ay = A cosfcos¢p + A,cosfsind — A, sin6 (2.26)
Ay = —Asingd + A cosd

In matrix form, the (A, Ay,AZ) — (A, Ay A,) vector transformation is performed
according to

A, sinf cos ¢ sin O sin ¢ cos 0 || Ax
Ay | = |cosfcosdp cosbsing —sinb || A (2.27)
A, —sin ¢ cos ¢ 0| A,

The inverse transformation (A, Ay, Ay) — (A,, A,, A,) is similarly obtained, or we obtain
it from eq. (2.23). Thus,

A, sinf cos¢ cosfcosp —sing || A
A, | = |sinfsing cosfsing cos || Ay (2.28)
A, cos 6 —sin 0 0 || A,

Alternatively, we may obtain eqs. (2.27) and (2.28) by using the dot product. For
example,

a -a a -a Ar

Ay r*a, Wy
Ag | =|ay-a, ag-a, aga [lA (2.29)
A, a, a, ag-a, aga, || A,

For the sake of completeness, it may be instructive to obtain the point or vector
transformation relationships between cylindrical and spherical coordinates. We shall use
Figures 2.5 and 2.6 (where ¢ is held constant, since it is common to both systems). This
will be left as an exercise (see Problem 2.15). Note that in a point or vector transformation,
the point or vector has not changed; it is only expressed differently. Thus, for example, the
magnitude of a vector will remain the same after the transformation, and this may serve as
a way of checking the result of the transformation.

The distance between two points is usually necessary in EM theory. The distance d
between two points with position vectors r, and r, is generally given by

d=|t, — 1 (2.30)
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2 FIGURE 2.6 Unit vector transformations for
cylindrical and spherical coordinates.
a,
SN
// \\
e \\ar
a, o
S .
///
/
a
[
)
or
& = (x— %)%+ (35— 91)* + (25 —2,)? (Cartesian) (2.31)
& = p3 + pi — 2p\pcos(¢, — ¢,) + (2, = 7)* (cylindrical) (2.32)
&=7r+7—2nryco80,cos0, (233)

— 211, sin 0, sin 6, cos(p, — ¢,) (spherical)

Given point P(—2,6,3) and vector A = ya, + (x+ z)ay, express P and A in cylindrical
and spherical coordinates. Evaluate A at P in the Cartesian, cylindrical, and spherical systems.

Solution:

At point P: x = —2,y = 6,z = 3. Hence,

Thus,

p=V2+y=V4a+36=632

6
¢ = tan i tan”'—— = 108.43°
X =2

z=3

r=VZ+y+2=Va+36+9=7
LVE+y Vo i

6 = tan -——z——:tan T:64462

P(—2,6,3) = P(6.32,108.43% 3) = P(7, 64.62°, 108.43°)

In the Cartesian system, A at P is

A = 6a, +a,
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For vector A, A, = y,A, = x + z, A, = 0. Hence, in the cylindrical system

A, cos¢p sing 0 4
Ay| =] —sing cosp O0f|x+z
A 0 01 0

z

or

A,=ycos¢ + (x + z)sinp
Ay = —ysing + (x + z) cos
A, =0

Butx = pcos ¢,y = psin ¢, and substituting these yields

A= (A,AuA,)=[pcospsing + (pcos + z) sin ¢la,
+ [—psin’p + (pcos + z) cos pa,

AtP
6
p= \/IE, tan¢ = —
Hence,
=2 6
cosp =——, singp =—=
40 40
—2 6 —2 6
A=V T2 (Vi hes) s
10 Vao Vo Vaol”
36 2 ~2
+|=Vao- >+ (\/4—0-—+ 3)-—}\
{ 0 V0 Vaol™
—6
= a, a, = —0.9487a, — 6.008a,
Vao "' Vao !
Similarly, in the spherical system
A, sinfcos¢p sinfsingd cosf b
Ay | = |cos@cosdp cosOsing —sinf || x+ z
Ay —sin ¢ cos d 0 0

or

A, = ysin6 cos ¢ + (x + z)sin 0 sin ¢
Ay = ycosfcosd + (x + z)cos 6 sin ¢
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Ay = —ysingd + (x + z) cos ¢

But x = rsin 6 cos ¢, y = rsin 0 sin ¢, and z = r cos . Substituting these yields

A= (A,44)
= r[sin® @ cos ¢ sin p + (sin O cos ¢ + cos A) sin O sin ¢ Ja,
+ [sin @ cos 0 sin ¢ cos ¢ + (sin O cos ¢ + cos @) cos O sin ¢,
+ r[—sin 6 sin’ ¢ + (sin 6 cos d + cos ) cos Pla,,

AtP
40
r=7, tan¢ =—— tanf =——
Hence,
=2 6 40
cos¢p =——, singg =——, cosf =, sm():£
40 Va0 7
A7[40—2 6 (\/56—2 3)\/@ 6}
T [ e A TRTIN R P a,
49 V10 Vao 7 Vi 77 Vao

Vo3 6 ;u(@ =2 3)_% s]

. +
7 40 7

—6 18 38
= _ﬂr - ’—"HH - _a¢
7 Va0 ' Vao
= —0.8571a, — 0.4066a, — 6.008a,

Note that |A| is the same in the three systems; that is,

[A(x, 3, 2)| = |A(p, &, 2)| = |A(r,0,6)| = 6.083

PRACTICE EXERCISE 2.1

(a) Convert points P(1,3,5), T(0, —4,3), and $(—3, —4, —10) from Cartesian to
cylindrical and spherical coordinates.

(b) Transform vector

o Vo + ya, . yza,
Ve+y+2 VE2+y+2

to cylindrical and spherical coordinates.

(c) Evaluate Q at T in the three coordinate systems.
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Answer: (a) P(3.162,71.56°, 5), P(5.916, 32.31°,71.56°), T(4, 270°, 3),
T(5,53.13% 270°), 8(5,233.1°, - 10), 5(11.18, 153.43°, 233.1°).
p
b) ————
\/p2 + 2

rcos’ 0 sin ¢)a, + sin @ cos §(cos ¢ + rsin 0 sin )a, — sin 6 sin ¢ a,,.

(cosdzap —singa, — zsin ¢ a,), sin O(sin O cos p —

(c) 0.8a, + 2.4a,0.8a, + 2.4a, 1.44a, — 1.92a, + 0.8a,.

PNVl  Express the vector

10
B= Ta,+ rcosfa, + a,

in Cartesian and cylindrical coordinates. Find B(—3, 4, 0) and B(5, 7/2, —2).

Solution:
Using eq. (2.28):

10
B, sinfcos¢ cosfcosdp —sing r
B,| = |sinfsing cosfsing cos¢ || rcost
B, cos 6 —sin 6 0 1

10
B, = TSint)cosd) + rcos’f cos b — sin ¢

10
By=Tsin09in¢+rcoszl?sind)+cosd>
10
B,:Tcosﬂ—rcosﬁsinO
Vil
Butr =V« +y + 22,0 =tan”! yz,andd)=tan"%
Hence,
, p__Vi+y z z
sin =—=——, cosf =-=—F7—7——
T V2+y+2 T Vi+y+ 2
sin ¢ 2 0s ¢ 2
i =< = . cosp ===
P VE+y V2 + y
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Substituting all these gives
o lOVXZ+yZ. x +\/xz+yz+zz‘ Zx B y
@ D) Very @7 D Very Veiry
y

_ 1o - %z B

TR A7 VR AR D VR

B = Ve +y +\/xz+y2+zz. 2y 5. %
V@t y D) VEtry 2yt Vg Vet

_ 10y N yZ N x
Xry+2 VE+PE+y+2) VE+y
10z Vi +

B

THAPIR VR rpa

B = B,a, + Ba, + B.a,

where B,, B, and B, are as just given.
At(—3,4,0),x = =3,y =4,andz = 0, s0

30 4
Bi=——+0-—-=-2
25 5
40 3
B=—+0—==1
25 5

B,=0-0=0

Thus,
B = —2a, +a,

For spherical to cylindrical vector transformation (see Problem 2.15),

_12
B, sin 6 cos 0 r
By | = 0 0 1] rcosé
B; cos) —sinf 0 1

or

10
B, = sin + rcos’ 0
By=1

10
B, = Tcos@ — rsinf cos 6

Butr = \/p2+zzand9=tan_'§
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Thus,
. P z
sinf = , cosf =
Vi + 2 P+ 2
10p Z
= Sk 2 4+ 2.
o 2 b2 P+ P+ 2
10z 7 pz
= = N/ p? o R
B, 2+ 2 L z P+ 2
Hence,

ST N I
AR A A A T
At (5,m/2,-2),p=5¢ =m/2,andz = —2,50

B—<—53+ 4>a + a, +<;20+ 10>a
29 V)P V)

= 2.467a, + ay + 1.167a,

Note that at (—3, 4, 0),

[B(x, 3, 2)| = [B(p, $,2)| = [B(r, 0, )| = 2.907

This may be used to check the correctness of the result whenever possible.

PRACTICE EXERCISE 2.2

Express the following vectors in Cartesian coordinates:
(a) A=pzsinda, +3pcospa, + pcospsinda,
(b) B=r’a, +sinfa,

Answer: (a) A = ﬁ[(xyz — 3xy)a, + (2% + 3x)a, + xya,].

(b) B = {x( + 7 + 2) — yla, +

1
e
ety i 2) txla, 2l kot 2)a )

2.5 CONSTANT-COORDINATE SURFACES

Surfaces in Cartesian, cylindrical, or spherical coordinate systems are easily generated by
keeping one of the coordinate variables constant and allowing the other two to vary. In the
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Cartesian system, if we keep x constant and allow y and z to vary, an infinite plane is gener-
ated. Thus we could have infinite planes

x = constant
y = constant (2.34)
z = constant

which are perpendicular to the x-, y-, and z-axes, respectively, as shown in Figure 2.7. The
intersection of two planes is a line. For example,

x = constant, y = constan (2.35)
is the line RPQ parallel to the z-axis. The intersection of three planes is a point. For example,
Xx = constant, y = constant, z = constar (2.36)

is the point P(x, y, z). Thus we may define point P as the intersection of three orthogonal
infinite planes. If P is (1, =5, 3), then P is the intersection of planes x = 1, y = —5, and
z = 3.

Orthogonal surfaces in cylindrical coordinates can likewise be generated. The
surfaces

constant
constant (2.37)
= constant

p
¢
z

are illustrated in Figure 2.8, where it is easy to observe that p = constant is a circular cylin-
der, ¢ = constant is a semi-infinite plane with its edge along the z-axis, and z = constant
is the same infinite plane as in a Cartesian system. Where two surfaces meet is either a line
or a circle. Thus,

z = constant, p = constant (2.38)
2 FIGURE 2.7 Constant x, y, and z surfaces.
X = constant

R
2 7

ol '

z = constant < I
z 4
/,’ '
/ 0
y = constant
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2 FIGURE 2.8 Constant p, ¢, and z surfaces.
p = constant_

z = constant

¢ = constant
is a circle QPR of radius p, whereas z = constant, ¢ = constant is a semi-infinite line. A
point is an intersection of the three surfaces in eq. (2.37). Thus,
p=2 ¢=60° z=5 (2.39)
is the point P(2, 60°, 5).
The orthogonal nature of the spherical coordinate system is evident by considering

the three surfaces

r = constant
6 = constant (2.40)

¢ = constant
which are shown in Figure 2.9, where we notice that r = constant is a sphere of radius r
with its center at the origin; # = constant is a circular cone with the z-axis as its axis and
the origin as its vertex; ¢ = constant is the semi-infinite plane as in a cylindrical system.

A line is formed by the intersection of two surfaces. For example,

r = constant, ¢ = constant (2.41)

= FIGURE 2.9 Constantr, 6, and ¢ surfaces.

r = constant

¢ = constant
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is a semicircle passing through Q and P. The intersection of three surfaces gives a point.
Thus,

r=5 6=30° ¢=60° (2.42)

is the point P(5, 30° 60°). We notice that in general, a point in three-dimensional space can be
identified as the intersection of three mutually orthogonal surfaces. Also, a unit normal vector
to the surface n = constant is *a,, where n is x, y, z, p, ¢, r, or 6. For example, to the plane
x = 5,a unit normal vector is *a, and to the plane ¢ = 20° a unit normal vector is *a.

Two uniform vector fields are given by E = —5a, + 10a, + 3a, and F =a,+
2a, — 6a,. Calculate
(a) |E X F|

(b) The vector component of E at P(5,m/2,3) parallel to the linex = 2,z =3
(c) The angle that E makes with the surface z = 3 at P

Solution:
a, a, a,
(a) EXF=|-5 10 3
1 2 —6

= (—60 —6)a, + (3 —30)a, + (—10 — 10)a,
= (—66, —27, —20)
|E X E| = V66> + 27* + 20* = 74.06

(b) Line x = 2,z = 3 is parallel to the y-axis, so the component of E parallel to the given
line is

(E-a)a,
But at P(5, 7/2, 3)

a, =sinda, + cosda,
=sinw/2a, + cosm/2a, = a,

Therefore,
(E-a)a, = (E-a,)a, = —5a, (or—5a,)

(c) Since the z-axis is normal to the surface z = 3, we can use the dot product to find the
angle between the z-axis and E, as shown in Figure 2.10:

E-a, = |E[(1) cos 0, = 3 = V134 cos O,

3 ¢
cos O, = ——— = 02592 — 0, = 74.98

V134
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z FIGURE 2.10 For Example 2.3(c).

k:

Hence, the angle between z = 3 and E is

90° — 0, = 15.02°

PRACTICE EXERCISE 2.3
Given the vector field
< 0 S
H = pzcosda, + e sm'2~a¢ + p-a,
at point (1, 7/3, 0), find
(a) H a;
(b) H X a,

(c) The vector component of H normal to surface p = 1
(d) The scalar component of H tangential to the plane z = 0

Answer: (a) —0.0586, (b) —0.06767 a,, (c) 0 a,, (d) 0.06767.

Given a vector field

. 1.
D= rsmd)a,-;smﬁcosd)aﬂ + Pay

determine

(a) D at P(10, 150° 330°)

(b) The component of D tangential to the spherical surface r = 10 at P

(c) A unit vector at P perpendicular to D and tangential to the cone § = 150°
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Solution:
(a) AtP,r= 10,0 = 150° and ¢ = 330°. Hence,
1
D = 10sin 330°a, — Esin 150° cos 330°" a, + 100 a, = (—5,0.043,100)
(b) Any vector D can always be resolved into two orthogonal components:

D=D,+D,

where D, is tangential to a given surface and D, is normal to it. In our case, since a, is
normal to the surface r = 10,

D, =rsinda, = —5a,
Hence,
D, =D — D, = 0.043a, + 100a,

(c) A vector at P perpendicular to D and tangential to the cone § = 150° is the same as the
vector perpendicular to both D and a,. Hence,

a, ay a,
D Xa;=|—5 0.043 100
0 1 0

—100a, — 5a,
A unit vector along this is

—100a, — 5a,
a=——= —0.9988a, — 0.0499a,

V100? + 52

PRACTICE EXERCISE 2.4

IfA = 3a, + 2a, — 6azand B = 4a, + 3a,, determine
(a) A'B

() |A X B|

(c) The vector component of A along a, at (1, /3, 57/4)

Answer: (a) —6, (b) 34.48, (c) —0.116a, + 0.201a,.
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MATLAB 2.1 % This script allows the user to input a coordinate in either

% rectangular, cylindrical, or spherical coordinates and
% retrieve the answer in the other coordinate systems
clear
% prompt the user for the coordinate system
disp(‘Enter the coordinate system of the input coordinate’);
coordisys = anput(? (r, c, or s)... \n > !,!s8/).
% if user entered something other than “r” “c” or “s”
% set default as “r”
if isempty(coord_sys); coord_sys = ‘r’; end
if coord_sys == ‘r’;
% prompt the user for the coordinate
disp(‘Enter the rectangular coordinate in the ‘);
crdi = input(?format [x v z]i. . Xn >4y
% check input to see if empty and set to 0 if so
if isempty(crd); crd = [0 0 0]; end
disp(‘Cylindrical coordinates [rho phi(rad) z]:’)
% display the result... the [ ] and enclose a
% three-dimensional vector
disp([sqrt(crd(1l)”2+crd(2)"2) atan2(crd(2),crd(l)) crd(3)])
disp( ‘Spherical coordinates [r phi(rad) theta(rad]:’)
disp([norm(crd) atan2(crd(2),crd(l)) acos(crd(3)/
norm(crd))])
elseif coord sys == ‘c’; % if not r but c execute this block
disp(‘Enter the cylindrical coordinate in the format’);
erd = input(! f[\rho \phi z]... \n > ‘).
% check input to see if empty and set to 0 if so
if isempty(crd); crd = [0 0 0]; end
disp( ‘Rectangular coordinates [x y z]:')
disp([crd(1l)*cos(crd(2)) crd(l)*sin(crd(2)) crd(3)])
disp(‘Spherical coordinates [r phi(rad) theta(rad]:’)
disp([sqrt(crd(1l)”"2+crd(3)"2) crd(2) crd(3)*cos(crd(3))])

else coord sys == ‘s’; % if not r nor c but s execute this block
disp(‘Enter the spherical coordinate in the’);
crd = input(’format [\rho \phi \theta]... \n > ‘);
if isempty(crd); crd = [0 0 0]; end
disp(‘Rectangular coordinates [x y z]:')
disp([crd(l)*cos(crd(2))*sin(crd(3)) ...

crd(1l)*sin(crd(2))*sin(crd(3)) crd(l)*cos(crd(3))])

disp(‘Cylindrical coordinates [r phi(rad) theta(rad]:’)

disp([crd(l)*sin(crd(3)) crd(2) crd(l)*cos(crd(3))])
end

MATLAB 2.1 % This script allows the user to input a non-variable vector
% in rectangular coordinates and obtain the cylindrical, or
% spherical components. The user must also enter the point
$

location where this transformation occurs; the result
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% depends on the vector’s observation point
clear
% prompt the user for the vectors and check to see if entered
% properly, else set to 0
disp(’Enter the rectangular vector (in the ‘);
v.= input(’' format [x y. =2])... \n'> /ty:
if isempty(v); v = [0 0 0]; end
disp(‘Enter the location of the vector (in the ‘);
p = input(’ format [x'¥y z])..- \n > "4y
if isempty(p); p = [0 O 0]; end
disp(‘Cylindrical components [rho phi(rad) z]:’)
phi = atan2(p(2),p(1));
% Create the transformation matrix
cyl p=[cos(phi) sin(phi) 0; ... % The ellipses allow a single
% command over multiple lines
-sin(phi) cos(phi) 0; ...
0200 1)
disp((cyl_p*v’)’) % the ' denotes a transpose from a row
% vector to a column vector
% The second transpose converts the column
% vector back to a row vector
disp(‘Spherical components [r phi(rad) theta(rad]:’)
phi = atan2(p(3),sqrt(p(1)"2+p(2)72));
theta = atan2(p(2),p(1));
% Create the transformation matrix
sph_p=[sin(theta)*cos(phi) sin(theta)*sin(phi) cos(theta); ...
cos(theta)*cos(phi) cos(theta)*sin(phi) -sin(theta);...
-sin(phi) cos(phi) 0];
disp((sph_p*v’)’)

SUMMARY ]
_ 1. The three common coordinate systems we shall use throughout the text are the
Cartesian (or rectangular), the circular cylindrical, and the spherical.

2. A point P is represented as P(x, y, z), P(p, ¢, z), and P(r, 6, ¢) in the Cartesian, cylin-
drical, and spherical systems, respectively. A vector field A is represented as (A,, A, A,)
orAa, + Aa, + Aa,in the Cartesian system, as (Ap, Ay, A,) or Ap, + Ajay + Aa,
in the cylindrical system, and as (A,, Ay, A,) or A, + Aga, + Aja, in the spherical
system. It is preferable that mathematical operations (addition, subtraction, product,
etc.) be performed in the same coordinate system. Thus, point and vector transforma-
tions should be performed whenever necessary. A summary of point and vector trans-
formations is given in Table 2.1.

3. Fixing one space variable defines a surface; fixing two defines a line; fixing three defines
a point.

4. A unit normal vector to surface n = constantis * a,.
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TABLE 2.1 Relationships between Rectangular, Cylindrical, and Spherical Coordinates

Rectangular to Cylindrical Cylindrical to Rectangular
" X = pcosd p=\2+ 7. y
Variable o sing = ——
change |7~ P" ¢ Variable { ¢ = mn-(z) V£ + 9
2=z change 2 cosdh = ¥
Gomponent A, = Acosd + Aysing z=z 2+
change Ay= —Asing + A cosd = % N y
Ayt N ¥ e Y ey
Comp s g e o B
change & NE+ ¥ ¥ 2+ y
= A
Rectangular to Spherical Spherical to Rectangular
Variable Xx = rsinf cos ¢ (,-=\/,g+y2+,2
change y = rsin@sin¢ 9= z
z=rcosf Variable €o8g = 2+ }} + 2
change Ty
A, = A,sinfcosd + A, sinfsing Ve +y+2 x2+y2
+ A, cosf sinf =
Component ¢ A, = A_cosf cos$p + A, cos 0 sin ¢ ety
change — A,sinf o x
Ay=—A,sing + A cos ¢ - tan"({) V2 +y
A
2+ y
\
_ Ax . Agxz Ay
TRy rZ2 VEA ARy D) Rty
Component i Ay Agyz Agx
= + +
change R B prE NP R R NP
Az AN+

M EipiE Vergrz

Adopted with permission from G. E. Miner, Lines and Electromagnetic Fields for Engineers. New York: Oxford Univ. Press, 1996, p. 263.

REVIEW
2.1 The ranges of 6 and ¢ as given by eq. (2.17) are not the only possible ones. The following

are all alternative ranges of 6 and ¢, except

(@Qo0=s0<2m0s¢=m
b)o=s6<2mo0o=¢<2m

() mr=0=m0=¢d=m

d) —-7m2=60=w/2,0=¢<2m
eo=sb=s=nmn-m=¢<m

f) m=6<m-wm=¢dp<m
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2.2 At Cartesian point (—3, 4, —1), which of these is incorrect?

(@) p=—5 () 8= tzm“f—1
4

(b) r= V26 (d) ¢ = tan"_—3
2.3 Which of these is not valid at point (0, 4, 0)?

(a) a, = —a, (c) a, = 4a,

(b) a, = —a, (d) a, = a,
2.4 A unit normal vector to the cone § = 30° is:

(a) a, (c) a,

(b) a, (d) none of these

2.5 Atevery point in space, a, - ay = 1.
(a) True (b) False

2.6 If H=4a, — 3a, + 5a, at (1,7/2,0) the component of H parallel to surface
p=1is

(a) 4da, (d) —3a, + 5a,
(b) 5a, (e) 5a, + 3a,
(c) —3a,

2.7 Given G = 20a, + 50a, + 40a,, at (1, /2, 7/6) the component of G perpendicular to
surface § = m/2is

(a) 20a, (d) 20a, + 40a,
(b) 50a, (e) —40a, + 20a,
(c) 40a,

2.8 Where surfaces p = 2 and z = 1 intersect is
(a) an infinite plane (d) a cylinder
(b) a semi-infinite plane (e) acone
(c) acircle

2.9 Match the items in the list at the left with those in the list at the right. Each answer can be
used once, more than once, or not at all.

(a) 0 = 7w/4 (i) infinite plane

(b) ¢ =27/3 (i)  semi-infinite plane
() x=-10 (iii) circle

d) r=10=m/3¢=ml2 (iv) semicircle

(&) p=5 (v)  straight line

(f) p=3,¢ =57/3 (vi) cone

(g p=10,z=1 (vii) cylinder
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(h)y r=4,¢6=m/6 (viii) sphere
(i) r=56=mu/3 (ix) cube
(x) point

2.10 A wedge is described by z =0, 30° < ¢ < 60°. Which of the following is
incorrect?
(a) The wedge lies in the xy-plane.
(b) It is infinitely long.
(c) On the wedge, 0 < p < .
(d) A unit normal to the wedge is *a,.
(e) The wedge includes neither the x-axis nor the y-axis.

Answers: 2.1b,f, 2.2a, 2.3c, 2.4b, 2.5b, 2.6d, 2.7b, 2.8¢, 2.9a-(vi), b-(ii), c-(i), d-(x), e-(vii), f-(v),
g-(iii), h-(iv), i-(iii), 2.10b.

Sections 2.3 and 2.4—Cylindrical and Spherical Coordinates

2.1 Express the following points in Cartesian coordinates:
(a) P,(2,30°5)
(b) Py(1,90°, =3)
(c) Py(10, /4, 7/3)
(d) P,(4,30° 60°)
2.2 Express the following points in cylindrical and spherical coordinates:
(a) P(1,~4,-3)
(b) Q(3,0,5)
(c) R(=2,6,0)

2.3 The rectangular coordinates at point P are (x = 2, y = 6, z = —4). (a) What are its
cylindrical coordinates? (b) What are its spherical coordinates?

2.4 The cylindrical coordinates of point Q are p = 5, ¢ = 120° z = 1. Express Q as rectangular
and spherical coordinates.

2.5 Given point T(10, 60°, 30°) in spherical coordinates, express T in Cartesian and cylindrical
coordinates.

2.6 (a) If V.= xz — xy + yz, express V in cylindrical coordinates.
(b) If U = x* + 2y? + 32% express U in spherical coordinates.
2.7 Convert the following vectors to cylindrical and spherical systems:

xa, + ya, + 4a,

F=___——.
L s e e
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b) G = (¥ + e + ) + e
® L f)v¥+f+£ Ve+ty+2 Ve+y+7
95

2.8 Let B= "V« + y’a, + —————a, + za,. Transform B to cylindrical coordinates.
Vi +y

2.9 Given vector A = 2a, + 3a, + 4a, convert A into Cartesian coordinates at point
(2,2, —1).

2.10 Express the following vectors in rectangular coordinates:

(a) A =psinda, + pcosda, — 2za,
(b) B=4rcosca, +ra,

2.11 Express vector G = psin ¢a, — pcos pa, + pa, in rectangular coordinates.
2.12 Express vector H = cos fa, + sin fa, in rectangular coordinates.

2.13 Let B = xa,. Express B in

(a) cylindrical coordinates,
(b) spherical coordinates.
2.14 Prove the following:
(a) a,-a, = cos
a,ra, = —sing
a,-a, =sin¢
a,-a, = cos¢d
(b) a,-a, = sinf cos ¢
a,a; = cosf cos d
a,-a, = sinf sin ¢
(c) a,-a, = cos B sin
a -a, = cosf
a,-a; = —sinf

2.15 (a) Show that point transformation between cylindrical and spherical coordinates is
obtained using

r=Vp:+ 2, 0=tan"§, d=d¢

p=rsinh, z=rcosb, ¢ =¢

(b) Show that vector transformation between cylindrical and spherical coordinates is obtained
using

A, sinf 0 cosf Ap
Ay | =|cos 0 —sinf || A,
Ay 0 1 0 A,
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or
A, sinf cosf O || A
Ayl = 0 0 1] A
A, cosf —sinf 0| A,

(Hint: Make use of Figures 2.5 and 2.6.)

2.16 Show that the vector fields
A = psin ¢da, + p cosda, + pa,
B = psinga, + p cospa, — pa,

are perpendicular to each other at any point.

2.1

N

Given that A = 3a,+ 2a, + a,and B = 5a, — 8a,, find:
(a) A+B, (b)A'B, (c)AXB, (d)theanglebetween A and B.

2.18 LetA = pcosdpa, + pZsinda,

(a) Transform A into rectangular coordinates and calculate its magnitude at point (3,-4,0).
(b) Transform A into spherical system and calculate its magnitude at point (3, —4,0).

2.19 The transformation (A, Ay, A,) = (A, A, A,)in eq. (2.15) is not complete. Complete it
by expressing cos ¢ and sin ¢ in terms of x, y, and z. Do the same thing to the transforma-
tion (A,, Ay, A,t,) - (A, Ay A,)in eq. (2.28).

2.20 In Practice Exercise 2.2, express A in spherical and B in cylindrical coordinates. Evaluate
Aat (10, 7/2,37/4)and B at (2, /6, 1).

22

—

Calculate the distance between the following pairs of points:
(a) (2,1,5) and (6, —1,2)

(b) (3, w/2, —1)and (5, 37/2,5)

(0) (10,7/4,3m/4)and (5, w/6, 7m/4)

2.2

(¥

Given points P(10, 7/4, 0) and Q(4, /2, 7/2), find the distance between P and Q.

2.2

«

Describe the intersection of the following surfaces:
(@ x=2, y=5

b) x=2, y=-1, z=10

(c) r=10, 6 = 30°

d) p=5 do=40°

(e) ¢ =60°%2z =10

(f) r=5 ¢ =90°
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2.24 At point T(2,3, —4), express a, in the spherical system and a, in the rectangular
system.

2.25 Let A = (2z — sind)a, + (4p + 2cosd)ay — 3pza,and B = p cosda, + sinda, + a,.
(a) Find the minimum angle between A and B at (1, 60°, —1).
(b) Determine a unit vector normal to both A and B at (1, 90°, 0).

2.26 Given vectors A = 2a, + 4a, + 10a,and B = —5a, + a, — 3a, find

(a) A + Bat P(0,2, —5)
(b) The angle between A and B at P
(c) The scalar component of A along B at P

2.27 Given that G = 6r”sin ¢ a, + r” a,, find G-a, at (2, =3, 1).

2.28 A vector field in “mixed” coordinate variables is given by
X cos 2yz x
G=v—iax+%ay+ <1 —7>az
P 14 P

Express G completely in the spherical system.

Section 2.5—Constant-Coordinate Surfaces
2.29 IfJ = rsin 6 cos ¢ a, — cos 26 sin ¢ a5 + tan i In ra,at T(2, /2, 37/2), determine the
vector component of J that is: 2
(a) Parallel to a,
(b) Normal to surface ¢ = 37/2
(c) Tangential to the spherical surface r = 2

(d) Parallel to theliney = =2,z =0
2.30 If H = p’cos ¢pa, — psin ¢ay, find H - a, at point P(2, 60°, —1).

2.31 Ifr = xa, + ya, + za, describe the surface defined by:
(a) rrag* roa,=5
(b) |rxa,] =10




George Gabriel Stokes (1819-1903), mathematician and physicist, was one
of Ireland’s preeminent scientists of all time. He made significant contributions
to the fields of fluid dynamics, optics, and mathematical physics.

Born in Sligo, Ireland, as the youngest son of the Reverend Gabriel
Stokes, George Stokes was a religious man. In one of his books, he detailed
his view of God and his relationship to the world.

Although Stokes’s basic field was physics, his most important contribu-
| tion was in fluid mechanics, where he described the motion of viscous fluids.
| These equations are known today as the Navier-Stokes equations and are
consxdered fundamental equations. Stokes was an applied mathematician working in physics, and like
many of his predecessors, he branched out into other areas while continuing to develop his own spe-

cialty. His mathematical and physical papers were published in five volumes. Several discoveries were
named for him. For example, the Stokes’s theorem, to be discussed in this chapter, reduced selected
surface integrals to line integrals.

( Carl Friedrich Gauss (1777-1855), German mathematician, astronomer,
| and physicist, is considered to be one of the leading mathematicians of all
| time because of his wide range of contributions.

Born in Brunswick, Germany, as the only son of uneducated parents,
Gauss was a prodigy of astounding depth. Gauss taught himself reading
and arithmetic by the age of 3. Recognizing the youth’s talent, the Duke of
| Brunswick in 1792 provided him with a stipend to allow him to pursue his
[ education. Before his 25th birthday, he was already famous for his work
L : in mathematics and astronomy. At the age of 30 he went to Géttingen to
become dlrector of the observatory. From there, he worked for 47 years until his death at almost age
78. He found no fellow mathematical collaborators and worked alone for most of his life, engaging

in an amazingly rich scientific activity. He carried on intensive empirical and theoretical research in
many branches of science, including observational astronomy, celestial mechanics, surveying, geode-
sy, capillarity, geomagnetism, electromagnetism, actuarial science, and optics. In 1833 he constructed
the first telegraph. He published over 150 works and did important work in almost every area of
mathematics. For this reason, he is sometimes called the “prince of mathematics” Among the discov-
eries of C. E Gauss are the method of least squares, Gaussian distribution, Gaussian quadrature, the
divergence theorem (to be discussed in this chapter), Gauss’s law (to be discussed in Chapter 4), the
Gauss-Markov theorem, and Gauss-Jordan elimination. Gauss was deeply religious and conserva-
tive. He dominated the mathematical community during and after his lifetime.



CHAPTER 3

VECTOR CALCULUS

Give me a lever long enough and a fulcrum strong enough, and single-handedly | will

move the world.
—ARCHIMEDES

3.1 INTRODUCTION

Chapter 1 has focused mainly on vector addition, subtraction, and multiplication in
Cartesian coordinates, and Chapter 2 extended all these to other coordinate systems. This
chapter deals with vector calculus—integration and differentiation of vectors.

The concepts introduced in this chapter provide a convenient language for expressing
certain fundamental ideas in electromagnetics or mathematics in general. A student may
feel uneasy about these concepts at first—not seeing what they are “good for”” Such a stu-
dent is advised to concentrate simply on learning the mathematical techniques and to wait
for their applications in subsequent chapters.

3.2 DIFFERENTIAL LENGTH, AREA, AND VOLUME

Differential elements in length, area, and volume are useful in vector calculus. They are
defined in the Cartesian, cylindrical, and spherical coordinate systems.

A. Cartesian Coordinate Systems

From Figure 3.1, we notice that the differential displacement dl at point S is the vector from
point S(x, y, z) to point B(x + dx, y + dy, z + dz).

57
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1. Differential displacement is given by

dl =dva, + dya, +dza,| @31

2 FIGURE 3.1 Differential elements in the
right-handed Cartesian coordinate system.

2. Differential normal surface area is given by

dS = dydza,
dxdza, (3.2)
dxdya,

and illustrated in Figure 3.2.

n

o ¥

x

FIGURE 3.2 Differential normal surface areas in Cartesian coordinates:
(a)dS = dydza,, (b) dS = dxdza, (c) dS = dxdya,

3. Differential volume is given by

dv = dxdy dz (3.3)



3.2 Differential Length, Area, and Volume 59

These differential elements are very important as they will be referred to throughout
the book. The student is encouraged not to memorize them, but to learn how to derive
them from Figures 3.1 and 3.2. Notice from eqs. (3.1) to (3.3) that d1 and dS are vectors,
whereas dv is a scalar. Observe from Figure 3.1 that if we move from point P to Q (or Q to
P), for example, dl = dy a, because we are moving in the y-direction, and if we move from
Qto S (orStoQ),dl = dya, + dza_because we have to move dy along y, dz along z, and
dx = 0 (no movement along x). Similarly, to move from D to Q (or Q to D) would mean
that dl = dxa, + dya, + dza,.

The way dS is defined is important. The differential surface (or area) element dS may
generally be defined as

ds = dSa, (3.4)

where dS is the area of the surface element and a, is a unit vector normal to the surface
dS (and directed away from the volume if dS is part of the surface describing a volume). If
we consider surface ABCD in Figure 3.1, for example, dS = dy dz a,, whereas for surface
PQRS, dS = —dy dza, because a, = —a, is normal to PQRS.

What we have to remember at all times about differential elements is d1 and how to get
dS and dv from it. When dlis remembered, dS and dv can easily be found. For example, dS
along a, can be obtained from dl in eq. (3.1) by multiplying the components of dl along a,
and a,; that is, dy dz a,. Similarly, dS along a, is the product of the components of dl along
a, and a; that is dx dy a.. Also, dv can be obtained from dl as the product of the three
components of dl, that is, dx dy dz. The idea developed here for Cartesian coordinates will
now be extended to other coordinate systems.

B. Cylindrical Coordinate Systems

From Figure 3.3, the differential elements in cylindrical coordinates can be found as
follows:

1. Differential displacement is given by

dl=dpa, + pdpa, + dza, (3.5)

2. Differential normal surface area is given by

as = pde dz a,
dpdzay (3.6)
pdpdda,

and illustrated in Figure 3.4.
3. Differential volume is given by

dv = pdpdp dz (3.7)
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4 FIGURE 3.3 Differential elements in

cylindrical coordinates.
/ dp
P

As mentioned in the preceding section on Cartesian coordinates, we need only
remember dl; dS and dv can easily be obtained from dl. For example, dS along a, is the
product of the components of dl along a, and ay, that is, dp p d¢ a.. Also dv is the product
of the three components of dl, that is, dp p d¢ dz.

o

pdo a,
dz
dz
dp
ap
(a)

(b)

a.
ip “ pdo
(c)

e "'

x

FIGURE 3.4 Differential normal surface areas in cylindrical coordinates:
(a)dS = pdddza, (b)dS =dpdza,, (c)dS =pdpdd a,

C. Spherical Coordinate Systems

From Figure 3.5, the differential elements in spherical coordinates can be found as
follows:

1. The differential displacement is

dl=dra, +rdfa, + rsinfdpa, (3.8)
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2 FIGURE 3.5 Differential elements
in the spherical coordinate system.

pd¢ =rsin 0 dp

"’\ rdo

a0

2. The differential normal surface area is

dS = r*sinf df do a,
rsin 0 dr do a, (3.9)
rdrdfa,

and illustrated in Figure 3.6.

&

rsin 6d¢

(@) (b) (c)

X

FIGURE 3.6 Differential normal surface areas in spherical coordinates:
(a) dS = r’sin 0 d6 d a,, (b) dS = r sin 0 dr d a,, (c) dS = r dr d6 a,.

3. The differential volume is

dv = 7 sin 0 dr d6 d¢ (3.10)



62 CHAPTER 3 VECTOR CALCULUS

e

Again, we need to remember only dl, from which dS and dv are easily obtained. For
example, dS along a, is obtained as the product of the components of dl along a, and a,, that is,
dr - rsin 6 de; dv is the product of the three components of dl, that is, dr - r d6 - r sin 6 dé.

Consider the object shown in Figure 3.7. Calculate

(a) The length BC (d) The surface area ABO
(b) The length CD (e) The surface area AOFD
(c) The surface area ABCD (f) The volume ABDCFO
Solution:

Although points A, B, C, and D are given in Cartesian coordinates, it is obvious that the
object has cylindrical symmetry. Hence, we solve the problem in cylindrical coordinates.
The points are transformed from Cartesian to cylindrical coordinates as follows:

A(5,0,0) = A(5,0%0)

m
B(0,5,0) — B(S, = 0>

m
c(0,5,10) — C<S, > 10)
D(5,0,10) — D(5,0° 10)
(a) Along BC, dl = dz; hence,
10
BC=Jd!=j dz =10
L 0

(b) Along CD, dl = pd¢ and p = 5, so

w2 w2
CD:J' pdd =56| =257
0 0
£ FIGURE 3.7 For Example 3.1.
A €(0,5,10)
D(5,0,10)
0 B(0,5,0) :

A(5,0,0)
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(c) For ABCD, dS = pd¢ dz, p = 5. Hence,

w2 10 w2 10
areaABCDtJdS:J J pd¢dz=5[ d(ﬁj dz
N

é=072=0 0 0

= 257
p=5

(d) For ABO,dS = pd¢$ dpandz = 0° so

w2 5
area ABO = J J'

$=07p=0

5

w2 5
pd¢dp=J' dd)f pdp = 6257
0 0

(e) For AOFD, dS = dp dzand ¢ = 0°, so

5 10
area AOFD = J J dp dz = 50
p=072=0
(f) For volume ABDCFO, dv = p d¢ dz dp. Hence,
5 w2 10 10 w2 -
v:Idv:J J' J pd¢dzdp=J dzf quJ' pdp = 62.57
= = 0 0 0 0

v p=07¢=07z=

PRACTICE EXERCISE 3.1

Refer to Figure 3.8; disregard the differential lengths and imagine that the object is part
of a spherical shell. It may be described as 3 = r = 5, 60° = 6 = 90°, 45° = ¢ = 60°
where surface r = 3 is the same as AEHD, surface § = 60° is AEFB, and surface ¢p = 45°
is ABCD. Calculate

(a) The arc length DH (d) The surface area ABDC
(b) The arc length FG (e) The volume of the object
(c) The surface area AEHD

Answer: (a) 0.7854, (b) 2.618, (c) 1.179, (d) 4.189, (e) 4.276.

£ FIGURE 3.8 For Practice Exercise 3.1 (and also

Review Question 3.3).
rdo
1

rsin@ dé

a dr ~
I s
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3.3 LINE, SURFACE, AND VOLUME INTEGRALS

The familiar concept of integration will now be extended to cases in which the integrand
involves a vector. By “line” we mean the path along a curve in space. We shall use terms
such as line, curve, and contour interchangeably.

The line integral [ A - dl s the integral of the tangential component of A along
L

curve L.

Given a vector field A and a curve L, we define the integral

b
JA-dIZJ’ |A| cos 6 di (3.11)
L a

as the line integral of A around L (see Figure 3.9). If the path of integration is a closed curve
such as abca in Figure 3.9, eq. (3.11) becomes a closed contour integral

jg A-dl (3.12)
L

which is called the circulation of A around L.
Given a vector field A, continuous in a region containing the smooth surface S, we
define the surface integral or the flux of A through S (see Figure 3.10) as

‘I’={ \A\cosBdS:JA‘a,,dS
S A3

or simply

‘I':J’A'dS (3.13)
s

FIGURE 3.9 Path of integration of vector field A.
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FIGURE 3.10 The flux of a vector field A
through surface S.

Surface S~

where, at any point on S, a, is the unit normal to S. For a closed surface (defining a volume),
eq. (3.13) becomes

v = §A~d5 (3.14)
s

which is referred to as the net outward flux of A from S. Notice that a closed path defines
an open surface whereas a closed surface defines a volume (see Figures 3.12 and 3.17).
We define the integral

Jv p,dv (3.15)

as the volume integral of the scalar p, over the volume v. The physical meaning of a line,
surface, or volume integral depends on the nature of the physical quantity represented by
A or p,. Note that dl, dS, and dv are all as defined in Section 3.2.

Given that F = x%a, — xza, — ¥*a,, calculate the circulation of F around the (closed) path
shown in Figure 3.11.

Solution:
The circulation of F around path L is given by

£F~dl=(l[®+l[®+J®+L)F-d1

where the path is broken into segments numbered 1 to 4 as shown in Figure 3.11.
For segment(D), y =0 =z

F = x'a, — xza, — y'a,, dl = dxa,

Notice that dl is always taken as along +a, so that the direction on segment (1) is taken care
of by the limits of integration. Also, since dl is in the a,-direction, only the a, component of
vector F will be integrated, owing to the definition of the dot product. Thus,
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2 FIGURE 3.11 For Example 3.2.

0 0
[
1 1 3

For segment (2), x = 0 = z, F = x’a, — xza, — a,, dl = dya, F-dl = 0. Hence,

IOF-dl:O
2

For segment 3), y = 1, F = x’a, — xza, — a,,and dl = dxa, + dza,, so

1

I F-dl =J(x2dx— dz)
(©)
But on (3), z = x; that is, dx = dz. Hence,

J@F-m:jol(f—l)dx:fw

For segment (4), x = 1,50 F = a, — za, — y*a, and dl = dy a, + dza,. Hence,

L\F-d] = j (—zdy — y'dz)

g4

Buton(4), z = y; that is, dz = dy, so

i y_rpe_s
F-dlzj —y—Pdy=-2-2| =2
j@ N R L A ks
By putting all these together, we obtain
1
§F~dl=—l+0—3+§=v—
9 3 376 6
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y FIGURE 3.12 For Practice Exercise 3.2, L is a closed path.

~

PRACTICE EXERCISE 3.2
Calculate the circulation of
A =pcosda, + zsinda,

around the edge L of the wedge defined by 0 < p = 2,0 < ¢ = 60°,z = 0 and shown
in Figure 3.12.

Answer: 1.

3.4 DEL OPERATOR

The del operator, written V, is the vector differential operator. In Cartesian coordinates,

2 d d
il N g

=io—d 3.16
ax * dy 9z ° L

v

This vector differential operator, otherwise known as the gradient operator, is not a vector in
itself, but when it operates on a scalar function, for example, a vector ensues. The operator
is useful in defining

1. The gradient of a scalar V, written as VV/

2. The divergence of a vector A, writtenas V - A
3. The curl of a vector A, writtenas V X A

4. The Laplacian of a scalar V, written as Vv

Each of these will be defined in detail in the subsequent sections. Before we do that, it
is appropriate to obtain expressions for the del operator V in cylindrical and spherical
coordinates. This is easily done by using the transformation formulas of Sections 2.3
and 2.4.



68 CHAPTER 3 VECTOR CALCULUS

To obtain V in terms of p, ¢, and z, we recall from eq. (2.7) that!

p=\/xTyZ, tan¢=z

&

Hence
i} ] sing 9
— = = - — 317
ax Sosi ap p dd ( )
d ) d
B s g g BB (3.18)
dy ap p A

Substituting egs. (3.17) and (3.18) into eq. (3.16) and making use of eq. (2.9), we obtain V
in cylindrical coordinates as

d 1 a d
V=a, tag—ert 8o (3.19)
ap p i dz
Similarly, to obtain V in terms of 7, 6, and ¢, we use
Vi +
r=V2+y + 2, tan0=7yz, tan¢=Z
z %
to obtain
d J cos B cosp 9 sing 9
— =sinfcosp—+——F— — —= 3.20
o Sadeesdn r 8 p o (B20)
a d 0 si a d
D o e pa e S d (321)
ay ar r a0 JT0)
d sinf 9
— =cosf— — = 3.22
S T T a8 o
Substituting egs. (3.20) to (3.22) into eq. (3.16) and using eq. (2.23) results in V in spherical
coordinates:
d 19 1 d
V=a—+a-—ta,———— 3.23
a'ar a"rae ad’rsin()a(b (2.28)

Notice that in egs. (3.19) and (3.23), the unit vectors are placed to the left of the differential
operators because the unit vectors depend on the angles.

! A more general way of deriving V, V - A, V X A, VV, and V?V is by using the curvilinear coordinates.
See, for example, M. R. Spiegel, Vector Analysis and an Introduction to Tensor Analysis. New York: McGraw-Hill,
1959, pp. 135-165.
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3.5 GRADIENT OF A SCALAR

The gradient of a scalar field V is a vector that represents both the magnitude and
the direction of the maximum space rate of increase of V.

A mathematical expression for the gradient can be obtained by evaluating the difference in
the field dV between points P, and P, of Figure 3.13, where V), V,, and V; are contours on
which Vis constant. From calculus,

av av av
dv = ;—dx & ,—)*dy + (sz
x 4 “ (3.24)

v A4 v
= [ a, +=—4, (3.25)
dx ay dz

Then

dV =G-dl = Gcoshdl

or

z FIGURE 3.13 Gradient of a scalar.
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dv

o = Gcosb (3.26)
where dl is the differential displacement from P, to P, and 6 is the angle between G and
dl. From eq. (3.26), we notice that dV/dl is a maximum when 6 = 0, that is, when dl is in
the direction of G. Hence,

@) v 62
dl | dn ’
where dV/dn is the normal derivative. Thus G has its magnitude and direction as those of
the maximum rate of change of V. By definition, G is the gradient of V. Therefore:

v v v
grad Vi =YW= —a, + —a; +——a; (3.28)
ax dy dz

By using eq. (3.28) in conjunction with eqs. (3.16), (3.19), and (3.23), the gradient of V can
be expressed in Cartesian, cylindrical, and spherical coordinates. For Cartesian coordinates

% v v
VV=—a +_—a +—a,
ax dy 7 oz
for cylindrical coordinates,
av 10V A%
vV = +la, (3.29)

e T )
ap " pad ? oz

and for spherical coordinates,

av 10V 1 a9V

vV = -yt ——— 3.30
{ ar T rsin(it')dz% G20}

L

The following computation formulas on gradient, which are easily proved, should be

noted:
(i) W(V+U) =VV+VU (3.31a)
(i) V(VU) = VVU + UVV (3.31b)
14 Uvv - vVU
iii) V|—=|=——F5— 3.31
(iii) [U} 7 (3.31¢)
(iv) VV" = V" 'VV (3.31d)

where U and V are scalars and n is an integer.
Also take note of the following fundamental properties of the gradient of a scalar field V:

1. The magnitude of VV equals the maximum rate of change in V per unit distance.
2. VV points in the direction of the maximum rate of change in V.
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3. VVatany point is perpendicular to the constant V surface that passes through that
point (see points P and Q in Figure 3.13).

4. The projection (or component) of VV in the direction of a unit vector ais VV - a
and is called the directional derivative of V along a. This is the rate of change of V/
in the direction of a. For example, dV/dl in eq. (3.26) is the directional derivative
of V along P,P, in Figure 3.13. Thus the gradient of a scalar function V provides us
with both the direction in which V changes most rapidly and the magnitude of the
maximum directional derivative of V.

5. If A = VV, Vis said to be the scalar potential of A.

Find the gradient of the following scalar fields:
(a) V = e “sin2xcoshy

(b) U = p’zcos2¢

(c) W = 10rsin® 0 cos ¢

Solution:

vV v N4
@ VV=""a+ o a, + —a,
dy 9z

= 2e cos 2x cosh ya, + e “sin 2xsinh ya, — e sin 2x cosh y a,

U 19U oU

b VU—*a =y ok =
® " pab 0z
= 2pzcos2pa, — 2pzsin2(i’>a(b+pZ cos2¢pa,
© YW Iw X 1 BW o 1 oW
(e =—a, g
ar r a0 " reind ap ¢

= 10sin? @ cos ¢ a, + 10 sin 20 cos ¢ a, — 10 sin O sin ¢ a,,

PRACTICE EXERCISE 3.3

Determine the gradient of the following scalar fields:
(@) U=xy+xyz

(b) V = pzsing + 22cos’ ¢ + p?

(c) f=cosOsingplnr+ r’e

Answer: (a) y(2x + 2)a, + x(x + z)a, + xya,

(b) (zsind + 2p)a, + (z cosd — %sin 2¢)a¢ +
(psing + 2zcos’ p)a,

© (coso sin ¢ . 2r¢)a, s 9rsm ) et

t 6
(C—o—— cosplnr + resc 0)a¢
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Given W = x%* + xyz, compute VW and the directional derivative dW/dl in the direction
3a, + 4a, + 12a,at (2, —1,0).
W IwW IW
SR =y
ax dy iz

= (257 + yz)a, + (26 + xz)a, + (xy)a,

Solution: vw

At(2,-1,0): VW = 4a, — 8a, — 2a,
Hence,

aw (3,4,12) 44

—=VW-: = (4,-8,-2)"
di B 4=8-2) 13 13

PRACTICE EXERCISE 3.4

Given @ = xy + yz + xz, find gradient @ at point (1, 2, 3) and the directional deriva-
tive of @ at the same point in the direction toward point (3, 4, 4).

Answer: 5a, + 4a, + 3a,, 7.

Find the angle at which line x = y = 2z intersects the ellipsoid x* + y* + 22 = 10.

Solution:

Let the line and the ellipsoid meet at angle ¢ as shown in Figure 3.14. Online x = y = 2z, for
two unit increments along z, there is a unit increment along x and a unit increment along y.
Thus, the line can be represented by

r(A) = 2Aa, + 21a, + Aa,
where X is a parameter. Where the line and the ellipsoid meet,

A+ (202 + 222 =10 > A = *1

Taking A = 1 (for the moment), the point of intersection is (¥ z) = (2,2.1)..At this
point,r = 2a, + 2a, + a,.

n FIGURE 3.14 For Example 3.5; plane of intersection of a
line with an ellipsoid.

Ellipsoid
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The surface of the ellipsoid is defined by
foypz) =3+ y +22-10
The gradient of fis
Vf = 2xa, + 2ya, + 4za,

At (2,2,1), Vf = 4a, + 4a, + 4a.. Hence, a unit vector normal to the ellipsoid at the
point of intersection is

P vf _ :ax+ay+az

] V3
Taking the positive sign (for the moment), the angle between a, and r is given by
0 QT 24241 5 iny
cos = =T e i

la,-rl V3Ve 33
Hence, ¢y = 74.21°. Because we had choices of + or — for \ and a,, there are actually four
possible angles, given by sin ¢ = +5/(3\/3).

PRACTICE EXERCISE 3.5

Calculate the angle between the normals to the surfaces x’y +z =3 and
xlogz — y> = —4 at the point of intersection (—1,2,1).

Answer: 73.4°.

3.6 DIVERGENCE OF A VECTOR AND DIVERGENCE THEOREM

From Section 3.3, we have noticed that the net outflow of the flux of a vector field A from
a closed surface S is obtained from the integral § A - dS. We now define the divergence of
A as the net outward flow of flux per unit volume over a closed incremental surface.

The divergence of A at a given point P is the outward flux per unit volume as the volume
shrinks about P.

Hence,

A-ds

A S A Tt e :
div A Alvl_rgo A (3.32)
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i
NN

FIGURE 3.15 lllustration of the divergence of a vector field at P: (a) positive
divergence, (b) negative divergence, (c) zero divergence.

(c)

where Av is the volume enclosed by the closed surface S in which P is located. Physically, we
may regard the divergence of the vector field A at a given point as a measure of how much the
field diverges or emanates from that point. Figure 3.15(a) shows that the divergence of a vector
field at point P is positive because the vector diverges (or spreads out) at P. In Figure 3.15(b) a
vector field has negative divergence (or convergence) at P, and in Figure 3.15(c) a vector field
has zero divergence at P. The divergence of a vector field can also be viewed as simply the limit
of the field’s source strength per unit volume (or source density); it is positive at a source point
in the field, and negative at a sink point, or zero where there is neither sink nor source.

We can obtain an expression for V - A in Cartesian coordinates from the definition
in eq. (3.32). Suppose we wish to evaluate the divergence of a vector field A at point
P(xn, Yor Zo); We let the point be enclosed by a differential volume as in Figure 3.16. The
surface integral in eq. (3.32) is obtained from

faas=([[_ Lo+ f[+[[ Jaes oo
S front back left right top bottom.
A three-dimensional Taylor series expansion of A, about P is
0A, A,
A5 32) = Alraran) + (e =) 2|+ =0 2]
X Ip dy e
(3.34)

94,
+ (z = z,)——| + higher-order terms
9z |p

For the front side, x = x, + dx/2 and dS = dy dz a,. Then,

dx 0A,
A-dS =dydz|A(x, yo2) + =
H; 4 Z[ ooz 5

} + higher-order terms
»

For the back side, x = x, — dx/2 and dS = dy dz( —a,). Then,

dx 0A,
2 ox

JJ A-dS = —dydz [Ax(xo, VesiZo) = ] + higher-order terms
back

P
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4 FIGURE 3.16 Evaluation of V - A at point

P(x 25).
Top side (%0, 0, )

= Right side
5

rs

x

Hence,
9A,
JJ A-ds + JJ A-dS = dxdy de\ + higher-order terms  (3.35)
front back ax |p

By taking similar steps, we obtain

J| aas+ff

dA
A-dS =dxdydz 2 ’ + higher-order terms (3.36)
right dy lp

and
A,
Jj A-dS + J'I A-dS =dxdy dzg‘ + higher-order terms  (3.37)
bottom P

top

Substituting eqs. (3.35) to (3.37) into eq. (3.33) and noting that Av = dx dy dz, we get

(A-dS A dA dA,
s il ( s y ) (3.38)

fim ————= —
Av—0 Av dx dy dz

atP

because the higher-order terms will vanish as Av — 0. Thus, the divergence of A at point
Pl Yor zo) in a Cartesian system is given by

A, i 9A, ) dA,

V-A= =
ax dy 9z

(3.39)

Similar expressions for V- A in other coordinate systems can be obtained directly
from eq. (3.32) or by transforming eq. (3.39) into the appropriate coordinate system. In
cylindrical coordinates, substituting egs. (2.15), (3.17), and (3.18) into eq. (3.39) yields

94,
0z

14 1 04,
V-A=——(pA,) + ——+ 3.40
pap(p ) p g el
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Substituting egs. (2.28) and (3.20) to (3.22) into eq. (3.39), we obtain the divergence of A
in spherical coordinates as

1 0A
(Aé, sinf) + i

V-A= rA
( )+ rsinf 06 rsinf d¢p

(3.41)

Note the following properties of the divergence of a vector field:

1. It produces a scalar field (because scalar product is involved).

2.V (A+B)=V-A+V'B

3. V-(VA) = VW-A+A-VV

From the definition of the divergence of A in eq. (3.32), it is not difficult to
expect that

%A-dS=JV-Adv (3.42)
s

v

This is called the divergence theorem, otherwise known as the Gauss-Otrogradsky theorem.

The divergence theorem states that the total outward flux of a vector field A through
the closed surface S is the same as the volume integral of the divergence of A.

To prove the divergence theorem, subdivide volume v into a large number of small
cells. If the kth cell has volume Av, and is bounded by surface S,

f s
%Ads:E%Aus:zs‘iM (3.43)
s 5 Ay

k k

Since the outward flux to one cell is inward to some neighboring cells, there is cancellation
on every interior surface, so the sum of the surface integrals over the S;’s is the same as the
surface integral over the surface S. Taking the limit of the right-hand side of eq. (3.43) and
incorporating eq. (3.32) gives

%A-dS=JV-Adv (3.44)
s v

which is the divergence theorem. The theorem applies to any volume v bounded by the
closed surface S such as that shown in Figure 3.17 provided that A and V - A are con-
tinuous in the region. With a little experience, one comes to understand that the vol-
ume integral on the right-hand side of eq. (3.42) is easier to evaluate than the surface
integral(s) on the left-hand side of the equation. For this reason, to determine the flux



3.6 Divergence of a Vector and Divergence Theorem 77

FIGURE 3.17 Volume v enclosed by surface S.

Volume v
| Closed surface §

of A through a closed surface, we simply find the right-hand side of eq. (3.42) instead
of the left-hand side of the equation.

EXAMPLE 3.6 Determine the divergence of these vector fields:

(a) P = x’yza, + xza,
(b) Q:psinqﬁa,,erzzad,ﬁ—zccosd)aZ
©T= 'zcosea + rsin6 cospa, + cosf a,
Solution:
a d a
(@ V-P=—P, +—P,+ —P,
ax ay ' oz ¢
d d a
= —(u&yz) + —(0) + —
(72 ay() o, (%)
= 2y %
i a J a
b) V-Q= ——Q;+ —
(®) V-Q P —{pQ,) + ¢Qd> HzQz
19 a
Semeam sin o z+*zcos
pap(p in $) pa¢(p) (zcos d)
= 2sin¢ + cos ¢
© VT =321 + =2 (T,sin0) + —— (1)
=5 sin — e
5 7 ar rsinf 99 ° rsinf ap = ¢
19 1 K
= s (cos @) + mae (rsin® 6 cos ¢) + . m004> (cosB)
1
=0+ ———2rsinf cosfcos¢p + 0
rsin 6
= 2cos B cos ¢
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EXAMPLE 3.7

PRACTICE EXERCISE 3.6

Determine the divergence of the following vector fields and evaluate them at the speci-
fied points.

(a) A =yza, + 4xya, + ya,at(1,-2,3)

(b) B = pzsinda, + 3pZ cospayat (5 7/2,1)

(c) C=2rcosfcosca, + r'a,at (1, /6, m/3)

Answer: (a) 4x, 4, (b) (2 — 3z)zsin ¢, —1, (c) 6 cos 0 cos ¢, 2.598.

If G(r) = 10e"*(pa, + a,), determine the flux of G out of the entire surface of the cylin-
der p = 1,0 = z = 1. Confirm the result by using the divergence theorem.

Solution:
If ¥ is the flux of G through the given surface, shown in Figure 3.18, then
V= §G~d5:11f,+l1fb+‘lfﬁ.
where ¥, ¥, and ¥, are the fluxes through the top, bottom, and sides (curved surface) of
the cylinder as in Figure 3.18.

For ¥,z = 1,dS = pdp d¢ a_. Hence,

2|1

1 2w
¥, = J[G - dS = J' J 10e 2p dp dp = 10e *(2m) LA
p=07¢=0 21,

= 10me?

2 FIGURE 3.18 For Example 3.7.
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For ¥,z = 0and dS = p dp dp(—a,). Hence,

0

1 27 2|1
11/,,=JG<dS:J J 108% dp dp = —10(27) &
b p=07¢=0 2
= —10m
For ¥, p = 1and dS = p dzd¢ a,. Hence,

~2%

1 27
f J 106~ dz dp = 10(1)*(27) S—
z=07¢=0 -2

I

‘IIS=JG~dS

s

0

107(1 — e7?)
Thus,
Y=Y+ WV, +¥ =10me?— 10m + 10m(1 — e 2) =0

Alternatively, since S is a closed surface, we can apply the divergence theorem:

V= £G~ds=£(V»G)dv

19 19 9
V-G=——(pG,) + ——G4 + —G
p&p(p p) b3 ¢ 9z

14
= ——(p*10e7%) — 20e7%
pap

1
= —(20pe~%)—20e"% =
p
showing that G has no outward flux. Hence,

xp=[(v-c;)dv=o

v

PRACTICE EXERCISE 3.7

Determine the flux of D = p? cos® ¢ a, + zsin ¢ a,, over the closed surface of the cyl-
inder 0 = z < 1, p = 4. Verify the divergence theorem for this case.

Answer: 641.
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3.7 CURL OF A VECTOR AND STOKES’S THEOREM

In Section 3.3, we defined the circulation of a vector field A around a closed path L as the
integral ¢ A - dl.

The curl of A is an axial (or rotational) vector whose magnitude is the maximum cir-
culation of A per unit area as the area tends to zero and whose direction is the normal
direction of the area when the area is oriented to make the circulation maximum.?

That is,

v $LA- dl)
=VXA= im ————— | a, :
curl A A <A230 AS ” (3.45)

where the area AS is bounded by the curve L and a,, is the unit vector normal to the surface
AS and is determined by using the right-hand rule.

To obtain an expression for V X A from the definition in eq. (3.45), consider the dif-
ferential area in the yz-plane as in Figure 3.19. The line integral in eq. (3.45) is obtained as

ngA ~dl = (J'ub + J'b( + L + L)A -dl (3.46)

We expand the field components in a Taylor series expansion about the center point P(x,, Y,, Z,) as
in eq. (3.34) and evaluate eq. (3.46). On side ab, d1 = dy a,and z = z, — dz/2, 50

dz 04,

Adl=dy| Al y0z,) - 22
A= ay A (raz) - £

] (3.47)
P

On side be, dl = dza.and y = y, + dy/2, so

dy 0A,
A-dl=dz|A(xp Yo 2,) + = (3.48)
be 2 9y le
2 FIGURE 3.19 Contour used in evaluating the

x-component of V X A at point P(x, yo, Z))-

b

-—

dy

? Because of its rotational nature, some authors use rot A instead of curl A.
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On side cd, dl = dya,and z = z, + dz/2, so

dz 0A
f A-dl = —dy [Ay(xo,yo, ) 2 ] (3.49)
od 2 0z |p
Onsside da, dl = dza.and y = y, — dy/2, so
dy 0A,
j A-dl=—dz [Az(xn, Dosizn) = 2 ] (3.50)
da 2 9y |p

Substituting egs. (3.47) to (3.50) into eq. (3.46) and noting that AS = dy dz, we have

. % A-dl _0A,  0A,
lim TR SR
AS—0 J; AS dy 9z
or

0A, 0A
(curlA), = — - (3.51)
ady 0z

The y- and x-components of the curl of A can be found in the same way. We obtain

(curlA), = B (3.52a)

curlA), = e = .52a
A,  0A,

(curlA), = — - (3.52b)
ax dy

The definition of V X A in eq. (3.45) is independent of the coordinate system. In
Cartesian coordinates the curl of A is easily found using

a, a, a,
)

UXA=[— — — (3.53)
ax ay oz
A, A, A,

or
0A, O0A A, A
VXA:[aZ_a_y}* [aX7a_xz}y

B i (3.54)

[6Ay 8AX}

E_ay

By transforming eq. (3.54) using point and vector transformation techniques used in
Chapter 2, we obtain the curl of A in cylindrical coordinates as
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or

a, Pa, a,

a a d

VXA==|— — —

dp dp 0z

Ap pA¢ Az
104, a/ﬂ 94, oA,
XA=|— _ —=lia, e it

VEA [pa¢ az | "7 ez op

a(pAy) B ﬁ] . (3.55)

and in spherical coordinates as

or

a, ra, rsinfa,
=1 |o 8 a
Psin@ [dr 30 9
A, rAy rsinf A,

VXA

V><A:rsinB

1 [a(A¢ sin @) BA,,]
a,

1 a4, a(rA¢)] 1[a(rA,,) aA,} (3:56)
- o 3

1
r[sin() ap ar rlar 00

Note the following properties of the curl:

[ R S

. The curl of a vector field is another vector field.
.VX(A+B)=VXA+VXB

. VX (AXB)=A(V-B) - B(V-A) + (B-V)A - (A-V)B

. VX (VA)=VVXA+VVXA

. The divergence of the curl of a vector field vanishes; thatis, V- (V X A) = 0.
. The curl of the gradient of a scalar field vanishes; that is, V. X VV = 0 or

VXV=o0.

Other properties of the curl are given in Appendix A.6.

The physical significance of the curl of a vector field is evident in eq. (3.45); the curl
provides the maximum value of the circulation of the field per unit area (or circulation
density) and indicates the direction along which this maximum value occurs. The curl of
a vector field A at a point P may be regarded as a measure of the circulation or how much
the field curls around P. For example, Figure 3.20(a) shows that the curl of a vector field
around P is directed out of the page. Figure 3.20(b) shows a vector field with zero curl.
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FIGURE 3.20 lllustration of a curl: (a) curl at P points

¥ A Y out of the page, (b) curl at P is zero.
toer ) o
P
N,
(a) (b)

FIGURE 3.21 Determining the sense of
dl and dS involved in Stokes’s theorem.

Closed path

Surface S

Also, from the definition of the curl of A in eq. (3.45), we may expect that

jﬁA-dl:J(VxA)wis (3.57)
L S

This is called Stokes’s theorem.

Stokes’s theorem states that the circulation of a vector field A around a (closed) path
Lis equal to the surface integral of the curl of A over the open surface S bounded by L
(see Figure 3.21), provided A and V X A are continuousonS.

The proof of Stokes’s theorem is similar to that of the divergence theorem. The surface
§ is subdivided into a large number of cells as in Figure 3.22. If the kth cell has surface area
AS; and is bounded by path L;.
f o
T

j(A~d1:Ej£A-d1:2-‘—Ask (3.58)
L Ti ASk

3 3
As shown in Figure 3.22, there is cancellation on every interior path, so the sum of the
line integrals around the L;s is the same as the line integral around the bounding curve L.

Therefore, taking the limit of the right-hand side of eq. (3.58) as AS, — 0 and incorporat-
ing eq. (3.45) leads to

£A~d1=L(V><A)-dS

which is Stokes’s theorem.
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: FIGURE 3.22 lllustration of Stokes’s theorem.

The direction of dl and dS in eq. (3.57) must be chosen using the right-hand rule or
right-handed-screw rule. Using the right-hand rule, if we let the fingers point in the direc-
tion of d1, the thumb will indicate the direction of dS (see Figure 3.21). Note that whereas
the divergence theorem relates a surface integral to a volume integral, Stokes’s theorem
relates a line integral (circulation) to suface integral.

BNV TET] Determine the curl of each of the vector fields in Example 3.6.
Solution:

ap, 0P, P, 9P, P, 9P,
@ VXP=|———|a+ = ——= g, b | = a,
dy 9z 9z ax ax dy

= (0 —0)a, + (Fy — 2)a, + (0 — ¥’z)a,
= (¥y — 2)a, — ¥’za,

19Q an»] [an Q.
——fe—la;+

pob oz 0z

(b)VXQ:[ o

IRSTER
ay plap PQ¢ o a,
= (%Zsind) - pz> a, + (0 —0)a, + %(3pzz — pcos ¢)a,

1
= 7;(zsin¢ + p*)a, + (3pz — cos ¢)a,

&) VXT= : |:—8~(T«,sin0) -iTﬁ] a,

rsin6 [ 96 ap

1 1 d J 1(9 aJ

e L o Sy s [l — ST
r[sin& 8 el "’)]a” r[ar(' e } .

1 d X d X
= [@(cosﬁsme) s (r51n9cos¢)] a,

19 (cosf)

1
+;[sin0 L) e 5(7‘(2050)}86
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=)

/
/-

/
/

/ \
o Xb

ATy

” 30°

1
(cos 26 + rsin 6 sin¢)a, + P (0 — cos 0)a,

1 . sin 6

+; 2rsm(icos¢+7 a,
cos 20 cos ¢ 1

= —?~+sin¢ a, ——ay+|2cos¢p + 5 |sinfa,
rsin 6 r r

PRACTICE EXERCISE 3.8

3.7 Curl of a Vector and Stokes’s Theorem
q 3 9 (cosh)
— | — (r sin 6 cos el e T
r [ﬂr ( ¢) 0 @
_ 1
rsin 6

Determine the curl of each of the vector fields in Practice Exercise 3.6 and evaluate
the curls at the specified points.

Answer: (a) a, + ya, + (49 — 2z)a, a, — 2a, — lla,

(b) —6pzcosda, + psinda, + (6z— 1)zcospa,, 5a,
cot 6
(]

3

. (2 cotfsin¢ + 2—”5>a9 + 2sin 0 cos ¢ ay,
r r

1.732a, — 4.5a5 + 0.5a,.

Solution:

If A= pcosda,+ sin¢ay, evaluate §A - dl around the path shown in Figure 3.23.
Confirm this by using Stokes’s theorem.
Let

¢

fa-a- Uﬂ'#jﬁjﬁj“],x.dl

b d

where path L has been divided into segments ab, bc, cd, and da as in Figure 3.23.

FIGURE 3.23 For Example 3.9.

F~~_4
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Along ab, p = 2 and dl = p d¢ a,. Hence,

00

b 30° 3
JA-d1=J psinddd = 2(—cosp)| =—-(V3-1)
a $=60" 60°
Along be, ¢ = 30° and dl = dp a,,. Hence,
[ 5 205
5 2aV3
JA-d1=J pcos¢dp=cos30°p— —
b p=2 2, 4
Along cd, p = 5and dl = p d¢ a,. Hence,
d 60° w g
J A~d1=f psinddd = 5(—cosdp)| ==>(V3-1)
c &=30" 30° 2
Along da, ¢ = 60° and dl = dp a,. Hence,
a 2 2 |2
21
J A-dl:j pcosd)dp:c0560°p— ==
d =5 2 s 4

Putting all these together results in

3 5
§A~dl=f\/§+1+21:/+¥—§—ﬂ
L

27
= 7(\/5 - 1) = 4941
From Stokes’s theorem (because L is a closed path),
%A-dl:[ (VX A)-dS
& S

ButdS = pd¢ dp a_and

1o dA
g

104, 0A dA,  0A,
R A ki R R

poap oz 0z op
1
=(0-0)a, + (0 - O)ad,+;(l + p)singa,

Hence:

(VX A)-dS = “r l(l-*-p)simbpdpdd)
5

$=30°Jp=2 P
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60° &

=J sin¢dd>f (1 + p)dp
30° 2

2

60° 2
(+5)
30° 2 2

27
= T(\/S —1) = 4941

= —cos ¢

PRACTICE EXERCISE 3.9

Use Stokes’s theorem to confirm your result in Practice Exercise 3.2.

Answer: 1.

For a vector field A, show explicitly that V- V X A = 0; that is, the divergence of the curl
of any vector field is zero.

Solution:

This vector identity, along with the one in Practice Exercise 3.10, is very useful in EM. For
simplicity, assume that A is in Cartesian coordinates.

a, a, a,

a d a d 4 9

V s V A== — L g f—s et =
dx dy dz dx dy 0z

A; Ay A
9 4 9 0A, 0A, 0A, A\ (04, 9A,
(e (5 -2 (G255
)71(81‘12 B aAX) +i(fﬁ, an>
ay \ ox 0z dz \ dx dy
PA,  PA, PA, A, TA, PA,
dxdy 9dxdz dydx dydz Odzdx T oz ay

=0
A, A,
because —— = , and so on.
dxdy  dydx

PRACTICE EXERCISE 3.10

For a scalar field V, show that V X VV = 0; that is, the curl of the gradient of any scalar
field vanishes.

Answer: Proof.
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3.8 LAPLACIAN OF A SCALAR

For practical reasons, it is expedient to introduce a single operator that is the composite of
gradient and divergence operators. This operator is known as the Laplacian.

The Laplacian of a scalar field V, written as V2V, is the divergence of the gradient of V.

Thus, in Cartesian coordinates,
Laplacian V = V- VV = V2V

J d A% av v
= B | B [ s, (3.59)
dx ay dz ax ay daz
that is,
vV PV PV
VW=-"FS+"—F5+—> 3.60
ot a9 (5:50)

Notice that the Laplacian of a scalar field is another scalar field.
The Laplacian of V in other coordinate systems can be obtained from eq. (3.60) by
transformation. In cylindrical coordinates,

VV=——(p— = (3.61)

1a< aV) 19V Vv
pap\" ap p*agp’ o7

and in spherical coordinates,

1d/(,0V 1 9 % 1 &V
VeiEe | 22 ) —(sing — ) + — 3.62
2 or (r E)r) 7sin 6 06 (Sm ae) 7 sin’ 6 ad’ @62

A scalar field V is said to be harmonic in a given region if its Laplacian vanishes in that
region. In other words, if

YW=0 (3.63)

is satisfied in the region, the solution for V in eq. (3.63) is harmonic (it is of the form of
sine or cosine). Equation (3.63) is called Laplace’s equation. This equation will be solved
in Chapter 6.

We have considered only the Laplacian of a scalar. Since the Laplacian operator V* is
a scalar operator, it is also possible to define the Laplacian of a vector A. In this context,
VA should not be viewed as the divergence of the gradient of A. Rather, V?A is defined
as the gradient of the divergence of A minus the curl of the curl of A. That is,

VPA=V(V-A) - VXVXA (3.64)

This equation can be applied in finding V?A in any coordinate system. In the Cartesian
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system (and only in that system), eq. (3.64) becomes®
VA = V’Aa, + VA, + VA, (3.65)

Find the Laplacian of the scalar fields of Example 3.3; that is,
(a) V = e *sin2xcoshy

(b) U = p’*zcos2¢

(c) W = 10rsin® @ cos ¢

Solution:

The Laplacian in the Cartesian system can be found by taking the first derivative and later
the second derivative.

PV PV |V
VW=—S+-—FS+—
®) a9

ad a
= (2e7% cos 2x cosh y) + 5 (e7*sin 2x sinh y)

d
=g it h
62( e *sin 2x cosh y)
= —4e *sin 2x cosh y + e sin 2x cosh y + e *sin 2x cosh y
= —2e¢ *sin 2x cosh y
193U\ 13U &U
b) VU= ——(p— o
i <p ) P Bsz 02

p ip
14
= ——(2p%2zcos2¢) — 74p zcos2¢ + 0
pap p

= 4z cos 2¢p — 4z cos 2¢

19 ow 1 J oW 1 *W
VW=S5—(r— |+ +
© o ( ) 7 sin 6 00 (smﬁ ) 7 sin® 0 a¢2

(10r sin 26 sin 6 cos ¢)

a 1
=5 (107sin*0
ar ( o ead] 7 sinf 96

_ 107 sin? 6 cos ¢
*sin’ @
20 sin® @ cos ¢ g 20r cos 26 sin 6 cos ¢

7*sin @
o 10r sin 26 cos 6 cos ¢ 10 cos ¢

*sin @ r
(2sin*6 + 2cos 20 + 2cos’f — 1)

_10cos ¢

10 cos
= %(1 + 2cos26)

? For explicit formulas for V?A in cylindrical and spherical coordinates, see M. N. O. Sadiku, Numerical Techniques
in Electromagnetics with MATLAB, 3rd ed. Boca Raton, FL: CRC Press, 2009, p. 647.
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PRACTICE EXERCISE 3.11

Determine the Laplacian of the scalar fields of Practice Exercise 3.3, that is,
(@) U=y + xyz

(b) V= pzsing + Z2cos’ ¢ + p*

(c) f=cosOsindlnr+ ¢

2. 1
Answer: (a) 2y, (b)4 + 2cos’¢ — p—zzz c0s 2¢p, (c) 5 cos@singp (1 — 2Inr

csc?flInr) + 6¢. i

3.9 CLASSIFICATION OF VECTOR FIELDS

A vector field is uniquely characterized by its divergence and curl. Neither the divergenice
nor the curl of a vector field is sufficient to completely describe the field. All vectcor
fields can be classified in terms of their vanishing or nonvanishing divergence or cuurl
as follows:

(@ V-A=0,VXA=0
(b) V-A#0,VXA=0
() V-A=0,VXA#0
(d V-A#0,VXA#0

Figure 3.24 illustrates typical fields in these four categories.

A vector field A is said to be solenoidal (or divergenceless) if V- A = 0

pF

i - ke

e S 7 A e
. ~

= LML K \+\ o AN
—— AN N i e
S ¥ X N
— ' e K st

(a) (b) () (d)
FIGURE 3.24 Typical fields with vanishing and nonvanishing divergence or curl.
(@) A=ka,V-A=0,VXA=0,

(b) A=kr,V-A=3kVXA=0,
(€) A=kX,V-A=0,V X A=2k
(dA=kXr+c,V-A=3,VXA=2k
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Such a field has neither source nor sink of flux. From the divergence theorem,
%A‘dSZJ’V‘Adv=O (3.66)
s v

Hence, flux lines of A entering any closed surface must also leave it. Examples of sole-
noidal fields are incompressible fluids, magnetic fields, and conduction current density
under steady-state conditions. In general, the field of curl F (for any F) is purely solenoidal
because V- (V X F) = 0, as shown in Example 3.10. Thus, a solenoidal field A can always
be expressed in terms of another vector F; that is,

if [v.a=0

(3.67)
then fA'dS=O and A=V XF
S
A vector field A is said to be irrotational (or potential) if V. X A = 0.
That is, a curl-free vector is irrotational." From Stokes’s theorem
J(VXA)‘dszi;A‘dl:O (3.68)
N L

Thus in an irrotational field A, the circulation of A around a closed path is identically
zero. This implies that the line integral of A is independent of the chosen path. Therefore,
an irrotational field is also known as a conservative field. Examples of irrotational fields
include the electrostatic field and the gravitational field. In general, the field of gradient V
(for any scalar V) is purely irrotational, since (see Practice Exercise 3.10)

VX (VV)=0 (3.69)

Thus, an irrotational field A can always be expressed in terms of a scalar field V; that is,

if VXA=0

(3.70)
then fA'dlZO and A =-VV
i3

For this reason, A may be called a potential field and V the scalar potential of A. The nega-
tive sign in eq. (3.70) has been inserted for physical reasons that will become evident in
Chapter 4.

*1In fact, curl was once known as rotation, and curl A is written as rot A in some textbooks. This is one reason
to use the term irrotational.
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EXAMPLE 3.12

A vector A is uniquely prescribed within a region by its divergence and its curl. If we let

V-A=p, (3.71a)

and

V X A= ps (3.71b)
p, can be regarded as the source density of A and p its circulation density. Any vector A
satisfying eq. (3.71) with both p, and p vanishing at infinity can be written as the sum of
two vectors: one irrotational (zero curl), the other solenoidal (zero divergence). This is
called Helmholtz’s theorem. Thus we may write

A=-VV+VXB 3:72)

If we let A; = —VV and A, =V X B, it is evident from Example 3.10 and Practice
Exercise 3.10 that V X A; = 0 and V- A, = 0, showing that A, is irrotational and A, is
solenoidal. Finally, it is evident from egs. (3.64) and (3.71) that any vector field has a
Laplacian that satisfies

V?A =Vp, — V X ps (3.73)
Show that the vector field A is conservative if A possesses one of these two properties:

(a) The line integral of the tangential component of A along a path extending from a point
P to a point Q is independent of the path.
(b) The line integral of the tangential component of A around any closed path is zero.

Solution:
(a) If A is conservative, V X A = 0, so there exists a potential V such that

av A% av
A=-VV=— —ayt ——a,t ——a,
dx dy az

Hence,
Q Q
oV av av
f A-d1=—f |:(fdx+fdy+fdz]
P p LOx dy iz
=,JQ[L"0LX+EQ ﬂqu
p Lixds dyds Iz ds
Q Q
dv
= [ Fa=-[ av
p ds p
or

Q
J A-dl = V(P) — V(Q)
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showing that the line integral depends only on the end points of the curve. Thus, for a
conservative field, fPQA - dlis simply the difference in potential at the end points.

(b) If the path is closed, that is, if P and Q coincide, then

fA ~dl = V(P) — V(P) =0

PRACTICE EXERCISE 3.12

Show that B = (y + z cos x2)a, + xa, + x cos xz a, is conservative, without computing
any integrals.

Answer: Proof.

MATLAB 3.1 % This script allows the user to compute the integral of

% a function using two different methods:
1. the built-in matlab ‘quad’ function
2. user-defined summation

The user must first create a separate file for the function
y = (-1/20) *x"3+(3/5) *x."2-(21/10) *x+4;
The file should be named fun.m and stored in the same
directory as this file, and it should contain the following
two lines:
function y = fun(x)
y = (-1/20)*x.%3+(3/5)*x."2-2.1*%x+4;

We will determine the integral of this function from x = 0
to x = 8

OF O° OF O° o O Of O o0 O O° o° o

Q
=
o
)
Lo

% First we’ll plot the function, creating a vector x and y

x=0:0.01:8;

y=fun (x) ;

figure (1) % create a figure

plot (x,y, ‘LineWidth’, 2) % plot x versus y
axis ([0 10 0 4]) % sets the axis appropriately
xlabel (‘x variable’) % axes labels

ylabel (‘y variable’) % axes labels

% Next we’ll use the built-in Matlab function to find the
% quadrature intregal

Q = quad(@fun,0,8) ; % The @ is an address operator to
% point to fun.m

% Finally we’ll create a custom summation to compute the
% integral quadrature integral
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disp(‘Enter a increment size for the integral, recommended ') ;
disp(® 0.1 to 1 ‘({the smallexr the better, but’);
dx=input (‘smaller requires more computation time)! ... >');

sum=0; % set initial total sum to zero
for x=0:dx:8/

sum=sum+fun (x) *dx; % add the partial sums to the total sum
end

disp (')

disp (‘The computed integrals of the function y(x) between’);
disp(' x = 0 and x = 8 are’)

% The tab %f outputs the floating point number given in the
% variables Q and sum, similar to C/C++

disp(sprintf (' quad integral =');

disp (sprintf (' %f\n custom summation integral = %f’, Q, sum))

% Now plot the function with the sub-areas used in the
% approximation create rectangular patches for each sub-area
figure (2) % create another figure number 2
for x=0:dx:8,
patch([x-dx/2; x-dx/2; x+dx/2; x+dx/2],
[07 fun(x) = fun(x): 6}, 0.5 0.5 0.51)

end

% now plot original function

hold on

%x=0:0.01:8;

y=fun (x) ;

h=plot (x,y, ‘'LineWidth’, 2) % plot x versus y
axis([0 10 0 4]) % sets the axis appropriately
xlabel (‘x variable’) % axes labels

ylabel (‘y variable’) % axes labels

function y = fun(x)
y = (-1/20)*x.%3+(3/5) *x.%2-2.1*x+4;

L MATLAB 3.2

% This script allows the user to find the divergence and curl
% of a vector field given in symbolic form

% It uses the built-in symbolic derivative function

% called diff() to compute the derivatives

clear

syms X y z % declare x,y,z to be symbols (variables)

% Prompt the user to enter the symbolic vector

% For example the user could enter [y*z 4*x*y y]
disp (‘Enter the symbolic vector (in the format ‘');
A = dinput('[ £x(x,y,2) fy(x,v,z) £z(x,y;z)1)... \n > ');

% The divergence of A
% e.g. diff (A(2),z) means the derivative of the




Summary 95

% y-component of vector A with respect to z
divA=diff (A(1) ,x)+...

diff (A(2),y)+...

diff (A(3),z)
% evaluate divergence at point (x,y,z) = (1, -2, 3)
subs (diva, {x,y,z}, {1, -2, 3})

% The curl of A
% e.g. diff(A(2),z) means the derivative of the
% y-component of vector A with respect to z
curlA=[diff (A(3),y)-diff (A(2),2),...

-diff (A(3),x)+diff (A(1),2), ...

diff (A(2),x)-diff (A(1),y)]
% evaluate curl at point (x,y,z) = (1, -2, 3)
subs (curld, {x,y,z}, {1, -2, 3})

SR 1. The differential displacements in the Cartesian, cylindrical, and spherical systems are,
respectively,

dl = dxa, + dya, + dza,
dl=dpa,+ pdpay + dza,
dl =dra, + rdfa, + rsinfdpa,

Note that dl is always taken to be in the positive direction; the direction of the displace-
ment is taken care of by the limits of integration.
2. The differential normal areas in the three systems are, respectively,

dS = dydza,
dxdza,
dxdya,

dS = pdpdza,
dpdza,
pdpdpa,
dS = sinf df do a,
rsin 0 drdeg a,
rdrdfa,
Note that dS can be in the positive or negative direction depending on the surface
under consideration.
3. The differential volumes in the three systems are

dv = dxdydz
dv=pdpdpdz
dv = r*sin 0 drd6 d¢p
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4. The line integral of vector A along a path L is given by f 1 A - dl. If the path is closed,
the line integral becomes the circulation of A around L, that is, §, A - dl.

5. The flux or surface integral of a vector A across a surface S is defined as f sA-dS.
When the surface S is closed, the surface integral becomes the net outward flux of A
across S, that is, §5A - dS.

6. The volume integral of a scalar p, over a volume v is defined as fv p,dv.

7. Vector differentiation is performed by using the vector differential operator V. The
gradient of a scalar field V is denoted by VV, the divergence of a vector field A by
V- A, the curl of Aby V X A, and the Laplacian of V by V*V.

8. The divergence theorem, ;A - dS = [, V- A dv, relates a surface integral over a
closed surface to a volume integral.

9. Stokes’s theorem, §, A - dl = [5(V X A) - ds, relates a line integral over a closed
path to a surface integral.
10. If Laplace’s equation, V2V = 0, is satisfied by a scalar field V in a given region, V is

said to be harmonic in that region.

1. A vector field is solenoidal if V - A = 0; it is irrotational or conservative if V X
A=0.

2. A summary of the vector calculus operations in the three coordinate systems is pro-
vided on the inside back cover of the text.

3. The vector identities V-V X A = 0and V X VV = 0 are very useful in EM. Other
vector identities are in Appendix A.10.

REVIEW
QEESTIONS 3.1 Consider the differential volume of Figure 3.25. Match the items in the left-hand column

with those on the right.

—

—

—

(a) dlfrom A to B (i) dydza,
(b) dlfrom A to D (ii) —dxdza,
(c) dlfrom Ato E (iil) dxdya,
(d) dS for face ABCD (iv) —dxdya.
(e) dS for face AEHD (v) dxa,
(f) dS for face DCGH (vi) dya,
(g) dS for face ABFE (vii) dza,

E F FIGURE 3.25 For Review Question 3.1.

|

A : 7
i dz
i
/’Lli_ _____ 7= G

il o
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3.2 For the differential volume in Figure 3.26, match the items in the left-hand list with those

3.

3;

3.

3.

3.

w

4

5

N

N

|<% ’
p do
dp
a o}

on the right.

(a) dlfrom Eto A (i) —pdpdza,

(b) dlfrom Bto A (ii) —dpdza,

(c) dlfrom Dto A (iii) —pdpdda,

(d) dS for face ABCD (iv) pdpdda,

(e) dS for face AEHD (v) dpa,

(f) dS for face ABFE (vi) pdda,

(g) dS for face DCGH (vii) dza,

Consider the object shown in Figure 3.8. For the volume element, match the items in the
left-hand column with those on the right.

(a) dlfrom A to D (i) —r*sinf do dpa,
(b) dlfrom Eto A (ii) —rsinf drde a,
(c) dlfrom AtoB (iii) rdrdf a,

(d) dS for face EFGH (iv) dra,

(e) dS for face AEHD (v) rdoa,

(f) dS for face ABFE (vi) rsinf doa,

If r = xa, + ya, + za,, the position vector of point (x,y,z) and r = [r|, which of the
following is incorrect?

(a) Vr=r/r (c) V¥(r'r)=6

(b) V-r=1 dVXr=0

Which of the following is a mathematically incorrect expression?

(a) grad div (c) grad curl

(b) div curl (d) curl grad

Which of the following is zero?

(a) grad div (c) curl grad

(b) div grad (d) curl curl

Given field A = 3x’yza, + x’za, + (x’y — 22)a,, it can be said that A is
(a) Harmonic (d) Rotational

(b) Divergenceless (e) Conservative

(c) Solenoidal

E F  FIGURE 3.26 For Review Question 3.2.

dz
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WM )/_/\m\i&\\ )/4":_ FIGURE 3.27 For Review Question 3.5,

NS

3.8 The surface current density J in a rectangular waveguide is plotted in Figure 3.27. It is evi-
dent from the figure that J diverges at the top wall of the guide, whereas it is divergenceless
at the side wall.

(a) True (b) False

3.9 Stokes’s theorem is applicable only when a closed path exists and the vector field and its
derivatives are continuous within the path.

(a) True (c) Not necessarily
(b) False

3.10 If a vector field Q is solenoidal, which of these is true?
(a) $,Q-dl=0 d) VXQ#0
(b) §,Q-ds=0 (&) V'Q=0
©VxXQ=0

Answers: 3.1a-(vi), b-(vii), c-(v), d-(i), e-(ii), f-(iv), g-(iii), 3.2a-(vi), b-(v), c-(vii), d-(ii), e-(i),
f-(iv), g-(iii), 3.3a-(v), b-(vi), c-(iv), d-(iii), e-(i), f-(ii), 3.4b, 3.5¢, 3.6c, 3.7¢, 3.8a,
3.9a, 3.10b.

PROBLEMS ¥ o 3
_ Section 3.2—Differential Length, Area, and Volume

3.1 Using the differential length dI, find the length of each of the following curves:

(a) p=3,m/4 < ¢ < /2, z= constant
(b) r=1,0 = 30°0 < ¢ <60°
(c) r=4,30°<6 <90° ¢ = constant
3.2 Calculate the areas of the following surfaces using the differential surface area dS:
(@ p=20<z<5nB3<d<mu/2
(b)z=1,1<p<30<¢ <4
() r=10,m4 <6 <2m/3,0< ¢ <2m
(d) 0<r<4,60°<6 <90°¢ = constant
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3.3 Use the differential volume dv to determine the volumes of the following regions:
@ o<x<Ll<y<2—3Kz<3
b)2<p<5mB<d<m-1<z<4
© 1<r<3ml2<0<2w3,7wl6<¢<m/2

3.4 Find the length of a path from P\ (4, 0°, 0) to P,(4, 30°, 0).

3.5 Calculate the area of the surface defined by p = 10, 7/4 < ¢ < /2,0 <z < 2.

Sections 3.3—Line, Surface, and Volume Integrals

3.6 Given that H = x’a, + y’a, evaluate fL H - d1, where L is along the curve y = »* from
(0,0) to (1, 1).
3.7 If the integral ff F - dl is regarded as the work done in moving a particle from A to B,
find the work done by the force field
F =2y, + (¥ — 2)a, — 3xz’a,
on a particle that travels from A(0, 0, 0) to B(2, 1, 3) along
(a) The segment (0,0,0) = (0,1,0) — (2,1,0) = (2,1,3)
(b) The straight line (0,0, 0) to (2,1,3)

3.8 A vector field is represented by F = p’a, + za, + cos pa, newtons. Evaluate
the work done or [, F-dl, where L is from P(2,0°0) to Q(2,7/4,3). Assume
that L consists of the arc p =2,0<¢ < 7/4,z=0, followed by the line
p=2¢=m/40<z<3.

B89 If
H=(x—ya, + (& + zy)ay + 5yza,
evaluate [, H - dl along the contour of Figure 3.28.

3.10 Determine the circulation of B = xya, — yza, + xza, around the path L on the x = 1
plane, shown in Figure 3.29.

3.11 LetA = ya, + za, + xa.. Find the flux of A through surfacey = 1,0 <x < 1,0 <z <2.

Z

>
>

0 1 x

FIGURE 3.28 For Problem 3.9. FIGURE 3.29 For Problem 3.10.
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3.12 Find the flux of B = 2xya, + z’ya, + 3x’ya, over the surface defined by z = 1,

0<x<1,0<y<2.

3.13 (a) Evaluate ny dv, where vis defined by 0 <x < 1,0 <y <1,0<z<2.

(b) Determine J pz dv, wherevisboundedbyp=1,p=3,¢ =0, = m,z=0,andz = 2.

3.14 Given that A = r sin ¢a,, find J'A dv, where v is the spherical region r =< 1. Hint:

v
Convert a, to Cartesian coordinates.

Section 3.5—Gradient of a Scalar

3.15 Calculate the gradient of:

3.1

3.1

3.1

3

3.2

3.2

=

7

8

9

3.20

—_

N

(@ Vi=6xy—2xz+2z
b) v, = lOp cos ¢ — pz

(c) V3= vcos )

Determine the gradients of the following fields:
(a) U= e"¥coshz

b) T= 3—Zcos [

© W= m¢+wm¢

Ifr = xa, + ya, + za,is the position vector of point (x, y, z), 7 = |r|, and n is an integer,
show that V7" = nr" ’r.

The temperature in an auditorium is given by T = x* + y* — z. A mosquito located at
(1, 1, 2) in the auditorium desires to fly in such a direction that it will get warm as soon
as possible. In what direction must it fly?

A family of planes is described by F = x — 2y + z. Find a unit normal a, to the planes.

Consider the scalar function T = r sin 6 cos ¢. Determine the magnitude and direction
of the maximum rate of change of T at P(2, 6°, 30°).

Let f = ¥’y — 2xy* + 2. Find the directional derivative of f at point (2, 4, —3) in the
direction of a, + 2a, — a..
(a) Using the gradient concept, prove that the angle between two planes

ax+by+cz=d
ax+By+yz=28

aa + bB + cy
V(@ + b + ) + B+ 7)
(b) Calculate the angle between two places x + 2y + 3z =5and x + y = 0.

1

6 = cos™
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Section 3.6 —Divergence of a Vector and Divergence Theorem

3.23 Evaluate the divergence of the following vector fields:

3.24

3.2

3.2

3.2

3.2

3.2

3.3

33

3.3

5

6

7

8

9

0

—

N

(a) A = xya, + yzay — xza,

(b) B = pzza,, + psin’da, + 2pzsin’Pa,

(¢c) C =ra, + rcos’Qa,

(@) IfA = x’ya, + xa, + 2yza,, find V - A at point (=3, 4, 2).

(b) Given that B = 3p sin ¢a, — Splzad, + 8z cos’ ¢a,, find V - B at point (5, 30° 1).
(c) Let C = r’ cos ¢pa, + 2ra,, find V - Cat point (2, 7/3, m/2).

The heat flow vector H = kVT, where T is the temperature and k is the thermal con-
ductivity. Show that if

. T my
T = 50 sin —— cosh —
SlI‘l2 COSs! 2

then V-H = 0.
(a) Prove that
V-(VA) =VV-A+A-VV

where Vis a scalar field and A is a vector field.
(b) Evaluate V- (VA) when A = 2xa, + 3ya, — 4za,and V = xyz.
Ifr = xa, + ya, + za,and T = 2zya, + xy%a, + x’yza,, determine
(@ (V-r)T
() (r-V)T
(© V-r(r-T)
@ (r-V)7

If A = 2xa, — Z’a, + 3xya,, find the flux of A through a surface defined by p = 2,
0<¢p<7,0<z<1.

Let D = 2pz'a, + p cos’ da,. Evaluate

(a) §,D-dS

(b) [,V-Ddv

over the region definedby2 < p =5 -1=2z=1,0< ¢ < 27.

If H = 10cosba, evaluate fs H-dS over a hemisphere defined by
r=1,0<¢<2m0<6<m/2.

Evaluate both sides of the divergence theorem for the vector field
H =2y, + (& + Z)a, + 2yza,
and the rectangular region defined by 0 < x < 1,1 <y <2,—-1<z<3.

Given that B = pa, + 10za, evaluate both sides of the divergence theorem for the
region definedby0 = p=3,0=¢ =2m0=z=4.
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*3.33 Apply the divergence theorem to evaluate %A - dS, where A = x’a, + y’a, + Z’a,and S
is the surface of the solid bounded by the C)Srlinder p = landplanesz =2and z = 4.

3.34 Verify the divergence theorem for the function A = r’a, + rsin 6 cos ¢ a, over the
surface of a quarter of a hemisphere defined by 0 < r < 3,0 < ¢ < 7/2,0 < 6 < 7/2.

3.35 Calculate the total outward flux of vector
F=p’sinda, + zcospa, + pza,

through the hollow cylinder definedby2 = p =3,0 =z =>5.
Section 3.7—Curl of a Vector and Stokes’s Theorem

3.36 Evaluate the curl of the following vector fields:
(a) A = xya, + y'a, — xza,
(b) B = pz’a, + psin*pa, + 2pzsin’pa,
(c) C=ra, + rcos’ 6 a,
3.37 Evaluate VX Aand V- (V X A) if:
() A = xya, + y'za, — 2xza,
(b) A = p’za, + p’a, + 3pZa,
sin ¢ cos ¢
Py
3.38 Let H = psin ¢a, + p cos pay — pa,; find V X Hand V X V X H.

(c) A=

xa, + ya, + za,
3.39 LetA = m; show that V X A = 0.
*3.40 Given that F = x’ya, — ya, find
(a) fL F - dl where L is shown in Figure 3.30.
(b) fs (V X F) - dS, where S is the area bounded by L.

(c) Is Stokes’s theorem satisfied?

0 1 2

FIGURE 3.30 For Problem 3.40.
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3.41 Let A = psinda, + p’a,; evaluate ¢; A - dlif L is the contour of Figure 3.31.

3.42 If F = 2pza, + 3zsin ¢ a, — 4p cos ¢ a,, verify Stokes’s theorem for the open surface
definedbyz = 1,0 < p < 2,0 < ¢ < 45°.

3.43 Let A = 4x’¢ "a, — 8xe ’a, Determine V X [V(V - A)].

sin 0 cos ¢ .
3.44 LetV = - Determine:
(a) VV, (b)V X VV, (©V-Vv

**3.45 A vector field is given by

e
Q- % (G5 - ylag + (e )]

Evaluate the following integrals:

(a) f 1 Q- dl, where L is the circular edge of the volume in the form of an ice cream cone

shown in Figure 3.32.

(b) fs, (V X Q) - dS, where S, is the top surface of the volume

(c) fsz (V X Q) - dS, where S, is the slanting surface of the volume

@ [5Q-ds

(e) [5,Q-dS

® [,V Qv

How do your results in parts (a) to (f) compare?

0 1 2 *

FIGURE 3.31 For Problem 3.41. FIGURE 3.32 Volume in form of ice cream
cone for Problem 3.45.

**Double asterisks indicate problems of highest difficulty.
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*3.46 A rigid body spins about a fixed axis through its center with angular velocity . If u is
the velocity at any point in the body, show that w = 1/2V X u.

3.47 Find the divergence and curl of

(a) B = pcos da, + p’ sin ¢, — 4za,
(b) F = r*sin ¢a, + 2r cos da,

3.48 For a vector field A and a scalar field V, show in Cartesian coordinates that
(@) V-(VVV)=VVV+ |VV]?
(b) VX (VA)=VVXA+VVXA

3.49 If B = xya, + (22 + y)a, = (y — 2)a,, find
(a V-B
(b) VXB
(c) V(V-B)
(d VXVXB

Section 3.8—Laplacian of a Scalar

3.50 Find V2V for each of the following scalar fields:
@ Vi=2+y+2
(b) V, = pz*sin2¢
(c) V5 =7(1+ cosBsin¢)

3.51 Find the Laplacian of the following scalar fields and compute the value at the specified
point.
(a) U= 2y (1,-1,1)
(b) V = p’z(cos ¢ + sin ), (5, m/6, —2)
(c) W = e "sin6 cos ¢, (1, w/3, 7/6)

3.52 Ifr = xa, + ya, + za, is the position vector of point (x,y,2),r = |r|, show that:

(@) V(nr) = %
(b) V¥(inr) = 2

Y

3.53 Let V = xy’Z’, evaluate VV and V?V at point P(1, 2, 3).

3.54 Given that V = p’z cos ¢, find VV and V?V.
5
355 IfV = %w find: (2) VV, (b) V- VV, () V X VV.

3.56 Let U = 4xyz® + 10yz. Show that V’U = V - VU.
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*3.57 In cylindrical coordinates,

2 04 AP) ( 204, Ad,)
——Ja, + [ V4, + —— Ja, + V?ALa,

Pz A pz P b p2 ad pz 4

IfG = 2psin ¢a, + 4p cos da, + (2 + 1)pa,, find V’G.

3.58 According to eq. (3.64), V X (V X A) = V (V - A) — V?A. Show that

VA = (VZA, —

A = xza, + Z’a, + yza, satisfies this vector identity.
Section 3.9—Classification of Vector Fields

3.59 Consider the following vector fields:
A =xa +ya, + za,
B = 2p cos pa, — 4p sin pa,, + 3a,
C = sin fa, + rsin fa,
Which of these fields are (a) solenoidal, and (b) irrotational?

3.60 Given the vector field
G = (16xy — z)a, + 8x%a, — xa,

(a) Is G irrotational (or conservative)?

(b) Find the net flux of G over the cube 0 < x,y,z < 1.

(c) Determine the circulation of G around the edge of the square z = 0,0 < x,y < 1.
Assume anticlockwise direction.

3.61 Show that the vector field F = yza, + xza, + xya, is both solenoidal and conservative.

10
3.62 A vector field is given by H = Ll Show that fﬂ - dI = 0 for any closed path L.

3.63 Show that if A and B are irrotational, then A X B is divergenceless or solenoidal.
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Charles Augustin de Coulomb (1736-1806), a French physicist, was
famous for his discoveries in the field of electricity and magnetism. He
formulated Coulomb’s law, to be discussed in this chapter.

Coulomb was born in Angouléme, France, to a family of wealth and
social position. His father’s family was well known in the legal profession
and his mother’s family was also quite wealthy. Coulomb was educated in
Paris and chose the profession of military engineer. Upon his retirement in
1789, Coulomb turned his attention to physics and published seven papers
on electricity and magnetism. He was known for his work on electricity,
magnetism, and mechanics. He invented a magnetoscope, a magnetometer,
and a torsion balance that he employed in establishing Coulomb’s law—the law of force between two
charged bodies. Coulomb may be said to have extended Newtonian mechanics to a new realm of
physics. The unit of electric charge, the coulomb, is named after him.




4.1

CHAPTER [l

ELECTROSTATIC FIELDS

An optimist sees an opportunity in every calamity; a pessimist sees a calamity in every

opportunity.
—ANONYMOUS

INTRODUCTION

Having mastered some essential mathematical tools needed for this course, we are now pre-
pared to study the basic concepts of EM. We shall begin with those fundamental concepts
that are applicable to static (or time-invariant) electric fields in free space (or vacuum). An
electrostatic field is produced by a static charge distribution. A typical example of such a
field is found in a cathode-ray tube.

Before we commence our study of electrostatics, it might be helpful to examine briefly
the importance of such a study. Electrostatics is a fascinating subject that has grown up
in diverse areas of application. Electric power transmission, X-ray machines, and light-
ning protection are associated with strong electric fields and will require a knowledge of
electrostatics to understand and design suitable equipment. The devices used in solid-
state electronics are based on electrostatics. These include resistors, capacitors, and active
devices such as bipolar and field effect transistors, which are based on control of electron
motion by electrostatic fields. Almost all computer peripheral devices, with the exception
of magnetic memory, are based on electrostatic fields. Touch pads, capacitance keyboards,
cathode-ray tubes, liquid crystal displays, and electrostatic printers are typical examples. In
medical work, diagnosis is often carried out with the aid of electrostatics, as incorporated
in electrocardiograms, electroencephalograms, and other recordings of the electrical activ-
ity of organs including eyes, ears, and the stomach. In industry, electrostatics is applied in
a variety of forms such as paint spraying, electrodeposition, electrochemical machining,
and separation of fine particles. Electrostatics is used in agriculture to sort seeds, for direct
spraying of plants, to measure the moisture content of crops, to spin cotton, and for speed-
baking bread and smoking meat."?

! For various applications of electrostatics, see J. M. Crowley, Fundamentals of Applied Electrostatics. New York:
John Wiley & Sons, 1999; A. D. Moore, ed., Electrostatics and Its Applications. New York: John Wiley & Sons,
1973; and C. E. Jowett, Electrostatics in the Electronics Environment. New York: John Wiley & Sons, 1976.

? An interesting story on the magic of electrostatics is found in B. Bolton, Elec ism and Its Appli

An Introduction. London: Van Nostrand, 1980, p. 2.

109
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We begin our study of electrostatics by investigating the two fundamental laws gov-
erning electrostatic fields: (1) Coulomb’s law, and (2) Gauss’s law. Both of these laws are
based on experimental studies, and they are interdependent. Although Coulomb’s law is
applicable in finding the electric field due to any charge configuration, it is easier to use
Gauss’s law when charge distribution is symmetrical. Based on Coulomb’s law, the concept
of electric field intensity will be introduced and applied to cases involving point, line,
surface, and volume charges. Special problems that can be solved with much effort using
Coulomb’s law will be solved with ease by applying Gauss's law. Throughout our discussion
in this chapter, we will assume that the electric field is in a vacuum or free space. Electric
fields in material space will be covered in the next chapter.

4.2 COULOMB’S LAW AND FIELD INTENSITY

Coulomb’s law is an experimental law formulated in 1785 by Charles Augustin de Coulomb,
then a colonel in the French army. It deals with the force a point charge exerts on another
point charge. By a point charge we mean a charge that is located on a body whose dimen-
sions are much smaller than other relevant dimensions. For example, a collection of electric
charges on a pinhead may be regarded as a point charge. The polarity of charges may be
positive or negative; like charges repel, while unlike charges attract. Charges are generally
measured in coulombs (C). One coulomb is approximately equivalent to 6 X 10'® elec-
trons; it is a very large unit of charge because one electron charge e = —1.6019 X 107" C.

Coulomb’s law states that the force F between two point charges O, and O, is:

1. Along the line joining them
2. Directly proportional to the product Q,Q, of the charges
3. Inversely proportional to the square of the distance R between them.?

Expressed mathematically,

QI
——
where k is the proportionality constant whose value depends on the choice of system of
units. In SI units, charges Q, and Q, are in coulombs (C), the distance R is in meters (m),
and the force F is in newtons (N) so that k = 1/47e,. The constant g, is known as the
permittivity of free space (in farads per meter) and has the value

F (4.1)

_ oz, A
g, = 8.854 X 10 = EF/m
or 1 (4.2)
k= = 9 X 10°m/F
4me,

* Further details of experimental verification of Coulomb’s law can be found in W. E. Magie, A Source Book in
Physics. Cambridge, MA: Harvard Univ. Press, 1963, pp. 408-420.
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FIGURE 4.1 Coulomb vector force on point
charges Q, and Q,.

Origin

Thus eq. (4.1) becomes

QAQ

T 4me R

(4.3)

If point charges Q, and Q, are located at points having position vectors r, and r,, then
the force F,, on Q, due to Q,, shown in Figure 4.1, is given by

QAQ,
=— 4.4
12 47re(,R2 ag, (4.4)
where
R,=r—-r (4.5a)
R = [R,,| (4.5b)
RlZ
=—= 4.5¢
ag, R ( )
By substituting eq. (4.5) into eq. (4.4), we may write eq. (4.4) as
QQ,
iz = 477; Rz (4.6a)
or
I, = I
F]Z — QIQZ( 2 lz (4.6b)
4me,|r, — 1y
It is worthwhile to note that
1. As shown in Figure 4.1, the force F,, on Q, due to Q, is given by
F, = IFIZ’aRz, = ‘Flz‘(‘aku)
or
Fy = -Fp (4.7)
since

ag, = Ta,
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= e d s t » < FIGURE 4.2 (a), (b) Like charges repel.
(€) Unlike charges attract.
(@ (b) (©
2. Like charges (charges of the same sign) repel each other, while unlike charges
attract. This is illustrated in Figure 4.2.
3. The distance R between the charged bodies Q, and Q, must be large compared
with the linear dimensions of the bodies; that is, Q, and Q, must be point charges.
4. Q, and Q, must be static (at rest).
5. The signs of Q, and Q, must be taken into account in eq. (4.4). For like charges,
Q, Q,> 0. For unlike charges, Q, Q, < 0.

If we have more than two point charges, we can use the principle of superposition to
determine the force on a particular charge. The principle states that if there are N charges
Qi Qy . .., Qy located, respectively, at points with position vectors r), r,, . . . , ry, the
resultant force F on a charge Q located at point r is the vector sum of the forces exerted on
Q by each of the charges Q,, Q,, . . ., Qy. Hence,

QQl(l' = Ei) QQz r— rz) QQN( ry)
"~ 4me|r— 1, 477& [r — r2|3 471'8 e — ryl?
or
Q I Qlr—r)
F= S 4.8
4#80‘2:1 |r — @8
We can now introduce the concept of electric field intensity.
The electric field intensity (or electric fie
positive charge experiences when placed
Thus
E = lim 2 (4.9)
: Q—0Q
or simply
F
E=— (4.10)
Q

For Q > 0, the electric field intensity E is obviously in the direction of the force F and is
measured in newtons per coulomb or volts per meter. The electric field intensity at point r
due to a point charge located at r’ is readily obtained from eqs. (4.6) and (4.10) as

Q _ Q(r -r)

= A
4me RN dme|r — o'

(4.11a)

or simply

=— 4.11b
dme,r # ¢ )
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For N point charges Q;, Q,,. . ., Qylocatedatr, r,,. . ., ry, the electric field inten-
sity at point r is obtained from egs. (4.8) and (4.10) as
_ Ql(r - r]) Qz(r - rz) QN(r - rN)
ame|r — 1> dme|r — n,/? dmey|r — ryl?
or
1 & r =
= _QL___:)_ (4.12)
dme, & e — xl
Point charges 1 mC and —2 mC are located at (3,2, —1) and (=1, —1, 4), respectively.

Calculate the electric force on a 10 nC charge located at (0, 3, 1) and the electric field
intensity at that point.

Solution:

E = 2 QQ, _ QQi(r — 1))

& Ame R? = & Ameg|r — P

. Q { ~[(0,3,1) = (3,2,-1)]  2-107[(0,3,1) — (—1,—1,4)}}
- I(

4me, 0,3, 1) = (3,2, 1) ? [(0,3,1) = (-1, -1,4)]?
_ 107%-10-107%[ (=3,1,2) 2(1,4,-3)
i [(9 +1+4)” (1+16+ 9)”2]
36m

ol (=3,1,2) (=2,-8,6)
= [ Wi | 26V ]

F = —6.512a, — 3.713a, + 7.509a, mN

At that point,

E=

107}
10-107°
E = —651.2a, — 371.3a, + 750.9a,kV/m

E
Q
(—6.512, —3.713, 7.509) -

PRACTICE EXERCISE 4.1
Point charges 5 nC and —2 nC are located at (2, 0, 4) and (—3, 0, 5), respectively.

(a) Determine the force on a 1 nC point charge located at (1, -3,7).
(b) Find the electric field E at (1, —3, 7).

Answer: (a) —1.004a, — 1.284a, + 1.4a,nN.
(b) —1.004a, — 1.284a,+ 1.4a,V/m.




114 CHAPTER 4 ELECTROSTATIC FIELDS

Two point charges of equal mass m, and charge Q are suspended at a common point by two
: threads of negligible mass and length €. Show that at equilibrium the inclination angle « of

each thread to the vertical is given by

Q* = 16m g;mgl? sin’ a tan &

QZ
&= V 16me,mgt?

Consider the system of charges as shown in Figure 4.3, where F, is the electric or Coulomb
force, T is the tension in each thread, and myg is the weight of each charge. At A or B

If a is very small, show that

Solution:

Tsina =F,
Tcosa = mg

Hence,

sin a _ F, =L' Q

cosa mg mg 4me,”
But

r=2{sina

Hence,

Q*cosa = 16me,mgt*sin’ a
or

Q* = 16me,mgl*sin’ a tan

as required. When « is very small

FIGURE 4.3 Suspended charged particles;
for Example 4.2.




4.2 Coulomb’s Law and Field Intensity 115

tana = a = sina

and so

Q* = 16me,mgl’a’

_ 3
%= 16me,mgt?

or

PRACTICE EXERCISE 4.2

Three identical small spheres of mass m are suspended from a common point by threads
of negligible masses and equal length €. A charge Q is divided equally among the spheres,
and they come to equilibrium at the corners of a horizontal equilateral triangle whose
sides are d. Show that

dZ =112
Q= 127Teomgd3[€2 = ?]
where g = acceleration due to gravity.

Answer: Proof.

EXAMPLE 4.3 A practical application of electrostatics is in electrostatic separation of solids. For example,
¥ Florida phosphate ore, consisting of small particles of quartz and phosphate rock, can

be separated into its components by applying a uniform electric field as in Figure 4.4.
Assuming zero initial velocity and displacement, determine the separation between the
particles after falling 80 cm. Take E = 500 kV/m and Q/m = 9 uC/kg for both positively
and negatively charged partiles.

¥ FIGURE 4.4 Electrostatic separation of solids;

for Example 4.3.

+0 o
+0 (e]
+o o
+0 [e]
*0 o
+0 )
O+ o +
Phosphate Quartz

-——




116 CHAPTER 4 ELECTROSTATIC FIELDS

Solution:

Ignoring the coulombic force between particles, the electrostatic force is acting horizontally
while the gravitational force (weight) is acting vertically on the particles. Thus,

d*x
E = —_—
QE = m p *

or

#x_Q

¢ m
Integrating twice gives

x=%£t1+clt+cz

where ¢, and ¢, are integration constants. Similarly,

_ &y
MM e
or
dy B
ar~ ¢

Integrating twice, we get
y=—12g2 + st + ¢,
Since the initial displacement is zero,

x(t=0)=0—>62:0
y(t=0)=0—->¢=0

Also, because of zero initial velocity,

dx

—l =0-=¢=0
dt |, “

dy

= . =0 * =0
dt |, ‘-‘

Thus

=9 =3
A= omt* Y= g#
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Wheny = —80cm = —0.8 m
0.8 X 2

18

= 0.1633

I

and

x=1/2X9X107% X 5% 10° X 0.1633 = 0.3673 m

The separation between the particles is 2x = 73.47 cm.

PRACTICE EXERCISE 4.3

An ion rocket emits positive cesium ions from a wedge-shaped electrode into the region
described by x > |y|. The electric field is E = —400a, + 200a, kV/m. The ions have
single electronic charges e = —1.6019 X 107" C and mass m = 2.22 X 10 * kg,
and they travel in a vacuum with zero initial velocity. If the emission is confined to
—40 cm < y < 40 cm, find the largest value of x that can be reached.

Answer: 0.8 m.

4.3 ELECTRIC FIELDS DUE TO CONTINUOUS
CHARGE DISTRIBUTIONS

So far we have considered only forces and electric fields due to point charges, which are
essentially charges occupying very small physical space. It is also possible to have continuous
charge distribution along a line, on a surface, or in a volume, as illustrated in Figure 4.5.

It is customary to denote the line charge density, surface charge density, and volume charge
density by p; (in C/m), ps (in C/m?), and p, (in C/m”), respectively. These must not be confused
with p (without subscript), used for radial distance in cylindrical coordinates.

The charge element dQ and the total charge Q due to these charge distributions are
obtained from Figure 4.5 as

dQ=p,dl >Q= JpL dl (line charge) (4.132)
L
FIGURE 4.5 Various charge distributions
and charge elements.
pi Lt
2w
Point Line Surface Volume

charge charge charge charge
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dQ = psdS —> Q= J psdS  (surface charge) (4.13b)
S

dQ=p,dv > Q= J p,dv  (volume charge) (4.13¢)

The electric field intensity due to each of the charge distributions p;, ps, and p, may be
regarded as the summation of the field contributed by the numerous point charges making
up the charge distribution. Thus by replacing Q in eq. (4.11) with charge element dQ =
py dl, ps dS, or p, dv and integrating, we get

dl
E= J' 4frle o (line charge) (4.14)
14me,
dsS
= I:S o, (surface charge) (4.15)
SATE,
, d
E= J%a,, (volume charge) (4.16)
v 7780

It should be noted that R? and ag vary as the integrals in eqs. (4.14) to (4.16) are evaluated.
We shall now apply these formulas to some specific charge distributions.

A. A Line Charge

Consider a line charge with uniform charge density p; extending from A to B along the
z-axis as shown in Figure 4.6. The charge element dQ associated with element d/ = dz of
the line is

dQ = p,dl = p, dz

FIGURE 4.6 Evaluation of the E field due
to a line charge.

5
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and hence the total charge Q is

0= J prdz (4.17)

The electric field intensity E at an arbitrary point P (x, y, z) can be found by using
eq. (4.14). It is important that we learn to derive and substitute each term in eqs. (4.14) to
(4.16) for a given charge distribution. It is customary to denote the field point* by (x, y, z)
and the source point by (x’, y’, z'). Thus from Figure 4.6,

dl = dz'
R=(xy2) —(0,02z)=1xa +ya+ (z—2)a,

or

R =pa, + (z - 7)a,
R=RP=2+y+(z-2)V=p"+(z-2')
a; R pa, + (z = 2')a,

Substituting all this into eq. (4.14), we get

pa, + (z — 2')a,
= f 2” ’ 2372 24 (4.18)
mre, ) [p* + (z — 2')?]
To evaluate this, it is convenient that we define «, ), and «;, as in Figure 4.6.
R=[p*+ (z—2')?]"* = pseca
z' =0T —ptana, dz’ = —psec’ ada
Hence, eq. (4.18) becomes
Eo P J“l psec’a[cosaa, + sinaa,]da
e, I's sec’ a
_ o [® .
= ep [cosaa, + sinaa,]da (4.19)
Thus for a finite line charge,
— 4::0 [~(sina, — sina,)a, + (cos a, — cos a;)a,] (4.20)

* The field point is the point at which the field is to be evaluated.
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As a special case, for an infinite line charge, point B is at (0, 0, ©) and A at (0, 0, —) so
that @) = 7/2, @y = —m/2; the z-component vanishes and eq. (4.20) becomes

PL
= —= 4.21
2mre p & (421)

Bear in mind that eq. (4.21) is obtained for an infinite line charge along the z-axis so that
p and a, have their usual meaning. If the line is not along the z-axis, p is the perpendicular
distance from the line to the point of interest, and a, is a unit vector along that distance
directed from the line charge to the field point.

B. A Surface Charge

Consider an infinite sheet of charge in the xy-plane with uniform charge density p;. The
charge associated with an elemental area dS is

dQ = pgdS (4.22)

From eq. (4.15), the contribution to the E field at point P(0, 0, h) by the charge dQ on the
elemental surface 1 shown in Figure 4.7 is

_do
4me R

= ap (4.23)
From Figure 4.7,

R =p(-a,) + ha, R=[R|=[p+ K"

R
= dQ=psdS=pspdddp

x

FIGURE 4.7 Evaluation of the E field due to an infinite sheet of charge.
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Substitution of these terms into eq. (4.23) gives

_ pspdpdp[—pa, + ha] o

47TEu[p2 sk hz]3/2 ’
Owing to the symmetry of the charge distribution, for every element 1, there is a corre-
sponding element 2 whose contribution along a, cancels that of element 1, as illustrated in
Figure 4.7. Thus the contributions to E, add up to zero so that E has only z-component. This
can also be shown mathematically by replacing a, with cos ¢ a, + sin ¢ a,. Integration of
cos ¢ or sin ¢ over 0 < ¢ < 27 gives zero. Therefore,

2 = hdd
E=JdEZ_ psj j p dp dp
S

= o,
dme, Jyoolpo [0? + K2 F
psh Jz 2 273 1 2
= 2 +h —d
g | [p 72 d(p)a,
h w
e Psh {_ [Pz + hz]—l/z} a,
2¢, 0
= %az (4.25)

that is, E has only z-component if the charge is in the xy-plane. Equation (4.25) is valid for
h > 0; for h < 0, we would need to replace a, with —a,. In general, for an infinite sheet of
charge

E= ;Tsan (4.26)

where a, is a unit vector normal to the sheet. From eq. (4.25) or (4.26), we notice that
the electric field is normal to the sheet and it is surprisingly independent of the distance
between the sheet and the point of observation P. In a parallel-plate capacitor, the electric
field existing between the two plates having equal and opposite charges is given by

Ps ~Ps Ps
E=_—a +——(-a,) =—"a, 4.27
2g, 2g, ( ) & R

C. A Volume Charge

Next, let us consider a sphere of radius a centered at the origin. Let the volume of the
sphere be filled uniformly with a volume-charge density p, (in C/m’) as shown in
Figure 4.8. The charge dQ associated with the elemental volume dv chosen at (p/, 6, ¢') is

dQ = p,dv
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dvat(r', 6, ¢")

FIGURE 4.8 Evaluation of the E field due to a volume charge
distribution.

and hence the total charge in a sphere of radius a is

Q= J pydv = pvjdv (4.28)

v v

_ dAma®
Py 3

The electric field dE outside the sphere at P(0, 0, z) due to the elementary volume charge is

pydv
a,
4me R2

where ap = cosaa, + sin@a,. Owing to the symmetry of the charge distribution, the
contributions to E, or E, add up to zero. We are left with only E., given by

[ @
EZ=E~al=JdEcosa=LJ&25a (4.29)
s 4me,), R
Again, we need to derive expressions for dv, R? and cos a:
dv = r"?sin 0" dr' do' do’' (4.30)

Applying the cosine rule to Figure 4.8, we have

RP=72+7r?% - 2zr' cos §'

rr2

7+ R* — 2zRcos a
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It is convenient to evaluate the integral in eq. (4.29) in terms of R and r’. Hence we express
cos 0', cos a, and sin @' df' in terms of R and r’, that is,

2+ R —1"?
cosa = BT (4.31a)
o QIS
cosf' = g = (4.31b)
2zr'

Differentiating eq. (4.31b) with respect to 6" and keeping z and ' fixed, we obtain
RdR

sinf'df’ = > (4.32)
r

As @' varies from 0 to , R varies from (z — r') to (z + r') if P is outside the sphere.
Substituting eqgs. (4.30) to (4.32) into eq. (4.29) yields

2 a oz

b RdR Z+ R —1r?1

E,= P J d¢’J J rid——dr i e =
dme, Jy—o gl Res zr 2zR R

;uw[“I”’ { f—wq ,
= +
sme ), i P dRdr

a AR PR
-2 [ [s- 52 e
0

R=z-r

R

z=r

or

B=—= 4.33
4me, = 433

This result is obtained for E at P(0, 0, z). Owing to the symmetry of the charge distribu-
tion, the electric field at P(r, 6, ¢) is readily obtained from eq. (4.33) as

Q

= a,
4me

(4.34)

which is identical to the electric field at the same point due to a point charge Q located at
the origin or the center of the spherical charge distribution. The reason for this will become
obvious as we cover Gauss’s law in Section 4.5.

A circular ring of radius a carries a uniform charge p; C/m and is placed on the xy-plane
with axis the same as the z-axis.

(a) Show that
prah

E(0,0,h) = —X20 4
( ) 2, [k + a*P? £
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(b) What values of h give the maximum value of E?

(c) If the total charge on the ring is Q, find Easa — 0.

Solution:

(a) Consider the system as shown in Figure 4.9. Again the trick in finding E by using

eq. (4.14) is deriving each term in the equation. In this case,

dl=adp, R=a(-a,)+ ha,

R=|R| = [a +W]?, ay=2
R
or
ap R —aa, + ha,
R R|? - [az + h2]3/2
Hence
o r” (—aa, + ha,)
T dme, )y [@+ R2P? adp

By symmetry, the contributions along a, add up to zero. This is evident from the fact that
for every element dI there is a corresponding element diametrically opposite that gives an
equal but opposite dE, so that the two contributions cancel each other. Thus we are left
with the z-component. That is,

po P, f dp =  Puaha:
" dme i+ a2, 21 + "

as required.

FIGURE 4.9 Charged ring; for
Example 4.4.
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(b) 2 2732 3 2 27172
+ @] -= + 2]
dE| _ pa [W + a?P2(1) 5 (h)2h[h* + a*]
dh 2e, (W + a?P
) d|E| e e
For maximum E, dT = 0, which implies that

[ + @2 [ + a = 3] = 0

5 a
@ —2=0 or h=+x—
2
(c) Since the charge is uniformly distributed, the line charge density is
8 y 8 y
o B
P 2ma
so that
Qh
= iy
ame (W + a* PR 7F
Asa — 0
= 7Q a
dmeh?
or in general
S
4are i &

which is the same as that of a point charge, as one would expect.
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PRACTICE EXERCISE 4.4

plane with its axis along the z-axis.
(a) Show that at point (0, 0, k), (h = 0),

sl h
e {1 [n + az]"z}a‘

(c) If a << h, show that E is similar to the field due to a point charge.

Answer: (a) Proof, (b)f:—az, (c) Proof.

A circular disk of radius a is uniformly charged with pg C/m?. The disk lies on thez = 0

(b) From this, derive the E field due to an infinite sheet of charge on the z = 0 plane.
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EXAMPLE 4.5 The finite sheet 0 =x=1, 0=y =1 on the z =0 plane has a charge density
ps = xy(x* + y* + 25)¥? nC/m? Find

(a) The total charge on the sheet
(b) The electric field at (0, 0, 5)
(c) The force experienced by a —1 mC charge located at (0, 0, 5)

Solution:
1p1
@ Q= j psdS = J J xy(x® + y* + 25)** dx dynC
N 0”0

Since x dx = 1/2 d(x*), we now integrate with respect to x* (or change variables: x> = u
so that x dx = du/2).

1 1 1
Q= EL yL (2 + y* + 25)** d(x*) dy nC

- %L YR+ +25) K
| 3102+ 200 = (2 + 291

1

= Lg[(yz e 26)7/2 - ()/2 & 25)7/2}

10 7 )
= 5177 + (25" — 2(26)")
Q =33.15nC
(b) E=jp5dsak :J psdS(r—r")
s 4me,r’ sdme| r—1r'| 3

wherer — r’ = (0,0,5) — (x,y,0) = (—x, —y, 5). Hence,
e J'J’l 107°xy(x* + * + 25)**(—xa, — ya, + 5a,)dx dy
070

4,,,“&—9()(2 + 92+ 25)"
36

1 1 1 1 1 1
=9[—J xzde’ ydyax-J xde Ydya, + SJ xdxj ydya:]
0 0 0 0 0 0

=] =15
=9 —, —,=
<6 6 4)

= (=15, -15,11.25) V/m

() F =¢E = (15,1.5,—11.25) mN
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PRACTICE EXERCISE 4.5

A square plate described by —2=x=2, —2=y=2, z=0 carries a charge
12 |y| mC/m? Find the total charge on the plate and the electric field intensity at (0, 0, 10).

Answer: 192 mC, 16.6 a, MV/m.

Planes x = 2 and y = —3, respectively, carry charges 10 nC/m? and 15 nC/m?’. If the line
x =0, z = 2 carries charge 107 nC/m, calculate E at (1,1, =1) due to the three charge
distributions.

Solution:
Let

E=E, +E, +E,;
where E,, E,, and E; are, respectively, the contributions to E at point (1,1, —1) due to the

infinite sheet 1, infinite sheet 2, and infinite line 3 as shown in Figure 4.10(a). Applying
eqs. (4.26) and (4.21) gives

ps, 10-107°
E = 5, —a,) = _ZITHX = —180ma,
361
_ b, _ Isn 107 _
E, = Tsoay = 2178}, = 270ma,
36m

(a) (b)

FIGURE 4.10 For Example 4.6: (a) three charge distributions,
(b) finding p and a, on planey = 1.
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and

__ P =
T 2mep

/2

where a, (not regular a, but with a similar meaning) is a unit vector along LP perpen-
dicular to the line charge and p is the length LP to be determined from Figure 4.10(b).
Figure 4.10(b) results from Figure 4.10(a) if we consider plane y = 1 on which E; lies.
From Figure 4.10(b), the distance vector from L to P is

R=-3a,+a,

R 1 3
p=IRI=V10, a,=—=——a, - ——a,
"Rl Vo V10
Hence,
107-107° 1
Ey= —————(a, - 3a,
10 1o (& ~ 3a)
e —
36
= 187 (a, — 3a,)

Thus by adding E,, E,, and E;, we obtain the total field as
E = —162ma, + 2707a, — 547a, V/m

Note that to obtain a,, a,ora, which we always need for finding F or E, we must go
from the charge (at position vector r’) to the field point (at position vector r); hence a,, a,,
or a, is a unit vector along r — r'. In addition, r and r’ are defined locally, not globally.
Observe this carefully in Figures 4.6 to 4.10.

PRACTICE EXERCISE 4.6

In Example 4.6 if the line x = 0, z = 2 is rotated through 90° about the point (0, 2, 2)
so that it becomes x = 0,y = 2, find Eat (1,1, —1).

Answer: —282.7a, + 565.5a, V/m.

4.4 ELECTRIC FLUX DENSITY

The flux due to the electric field E can be calculated by using the general definition of flux
in eq. (3.13). For practical reasons, however, this quantity is not usually considered to be
the most useful flux in electrostatics. Also, eqs. (4.11) to (4.16) show that the electric field
intensity is dependent on the medium in which the charge is placed (free space in this
chapter). Suppose a new vector field D is defined by

(4.35)
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We use eq. (3.13) to define electric flux ¥ in terms of D, namely,

V= JD -dS (4.36)
s

In SI units, one line of electric flux emanates from +1 C and terminates on —1C.
Therefore, the electric flux is measured in coulombs. Hence, the vector field D is called the
electric flux density and is measured in coulombs per square meter. For historical reasons,
the electric flux density is also called electric displacement.

From eq. (4.35), it is apparent that all the formulas derived for E from Coulomb’s law
in Sections 4.2 and 4.3 can be used in calculating D, except that we have to multiply those
formulas by &,. For example, for an infinite sheet of charge, egs. (4.26) and (4.35) give

Ps

D=— 437
5 (4.37)

and for a volume charge distribution, egs. (4.16) and (4.35) give

pydv
p=| s (438)

Note from egs. (4.37) and (4.38) that D is a function of charge and position only; it is
independent of the medium.

Determine D at (4, 0, 3) if there is a point charge —57 mC at (4, 0, 0) and a line charge
37 mC/m along the y-axis.

Solution:
Let D = Dy + D, where D and D, are flux densities due to the point charge and line
charge, respectively, as shown in Figure 4.11:

Q Q(r—1r')

s S L
4R * T dmlr -1}

Do = ¢E =

wherer — r’ = (4,0,3) — (4,0,0) = (0,0, 3). Hence,
_ —57-107°(0,0,3)

D, = = —0.139 a, mC/m’
QT T 4r((0,0,3) e
Also
-y
L™ 2mp ™
In this case
(4,0,3) — (0,0,0) _ (4,0,3)
e _

* " 1(40,3) - (0,0,0] 5
p=1(4,0,3) - (0,0,0)| =5
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FIGURE 4.11 Flux density D
due to a point charge and an
infinite line charge.

DLV\I
D, py =3nC/m
0, / L
y

3T

= ——(4a, + 3a,) = 0.24a, + 0.18a, mC/m’
2n(a5y (48 + 38) = 024a, + 0180,

L

Thus
D =D, + D,
= 240a, + 41.1a, uC/m’

PRACTICE EXERCISE 4.7

A point charge of 30 nC is located at the origin, while plane y = 3 carries charge
10 nC/m? Find D at (0, 4, 3).

Answer: 5.076a, + 0.0573a, nC/m’.

4.5 GAUSS’S LAW—MAXWELL’S EQUATION

Gausss® law constitutes one of the fundamental laws of electromagnetism.

Gauss’s law states that the total electric flux ¢ through any closed surface is equal
to the total charge enclosed by that surface.

* The German mathematician Carl Friedrich Gauss (see Chapter 3 opening) developed the divergence theo-
rem of Section 3.6, popularly known by his name. He was the first physicist to measure electric and magnetic
quantities in absolute units. For details on Gauss’s measurements, see W. F. Magie, A Source Book in Physics.
Cambridge, MA: Harvard Univ. Press, 1963, pp. 519-524.
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Thus
¥ = Qu. (439)
that is,
v = f vy = % D-dS
s s
= total charge enclosed Q = J pydv (4.40)
or
Q=§D‘d$=fpvdv (4.41)
s v

By applying divergence theorem to the middle term in eq. (4.41), we have

ng'dS=J'V'DdV (4.42)
s

v

Comparing the two volume integrals in eqgs. (4.41) and (4.42) results in

p,=V-D (4.43)
which is the first of the four Maxwell’s equations to be derived. Equation (4.43) states that
the volume charge density is the same as the divergence of the electric flux density.®

Note that:

1. Equations (4.41) and (4.43) are basically stating Gauss’s law in different ways;
eq. (4.41) is the integral form, whereas eq. (4.43) is the differential or point form of
Gauss’s law.

2. Gauss’s law is an alternative statement of Coulomb’s law; proper application of the
divergence theorem to Coulomb’s law results in Gauss’s law.

3. Gauss’s law provides an easy means of finding E or D for symmetrical charge
distributions such as a point charge, an infinite line charge, an infinite cylindri-
cal surface charge, and a spherical distribution of charge. A continuous charge
distribution has rectangular symmetry if it depends only on x (or y or z), cylindri-
cal symmetry if it depends only on p, or spherical symmetry if it depends only on
r (independent of § and ¢). It must be stressed that whether the charge distribution
is symmetric or not, Gauss’s law always holds. For example, consider the charge

“This should not be surprising to us from the way we defined divergence of a vector in eq. (3.32):

$D-ds
V.p=Im
Av—=>¢  Av

A
, which reduces to —Q‘ =p,



132 CHAPTER 4 ELECTROSTATIC FIELDS

ol 5 FIGURE 4.12 lllustration of
Gauss’s law: flux leaving v, is 5 nC
®15nC  and that leaving v, is 0 C.

©20nC

distribution in Figure 4.12 where v, and v, are closed surfaces (or volumes). The
total flux leaving v, is 10 — 5 = 5 nC because only 10 nC and —5 nC charges are
enclosed by v,. Although charges 20 nC and 15 nC outside v, do contribute to the
flux crossing v, the net flux crossing v,, according to Gauss's law, is irrespective

of those charges outside v,. Similarly, the total flux leaving v, is zero because no
charge is enclosed by v,. Thus we see that Gausss law, ¥ = Q,,, is still obeyed even
though the charge distribution is not symmetric. However, we cannot use the law to
determine E or D when the charge distribution is not symmetric; we must resort to
Coulomb’s law to determine E or D in that case.

4.6 APPLICATIONS OF GAUSS’S LAW

The procedure for applying Gauss’s law to calculate the electric field involves first know-
ing whether symmetry exists. Once it has been found that symmetric charge distribution
exists, we construct a mathematical closed surface (known as a Gaussian surface). The
surface is chosen such that D is normal or tangential to the Gaussian surface. When D is
normal to the surface, D - dS = D dS because D is perpendicular to the surface. When D
is tangential to the surface, D - dS = 0. Thus we must choose a surface that has some of
the symmetry exhibited by the charge distribution. The choice of an appropriate Gaussian
surface, where there is symmetry in the charge distribution comes from intuitive reason-
ing and a slight degree of maturity in the application of Coulomb’ law. We shall now apply
these basic ideas to the following cases.

A. Point Charge

Suppose a point charge Q is located at the origin. To determine D at a point P, it is easy to
see that choosing a spherical surface containing P will satisfy symmetry conditions. Thus,
a spherical surface centered at the origin is the Gaussian surface in this case and is shown
in Figure 4.13.

Since D is everywhere normal to the Gaussian surface, that is, D = D,a,, applying
Gauss's law (¥ = Q,,) gives

Q:§D-dS:D,§d5:D,4mJ (4.44)
S S
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FIGURE 4.13 Gaussian surface about a point charge.

Gaussian surface

where §dS = f{,: N f:: o7 sin 0 df dp = 4mr*is the surface area of the Gaussian surface. Thus

D= ma, (4.45)

as expected from eqs. (4.11) and (4.35).

B. Infinite Line Charge

Suppose the infinite line of uniform charge p; C/m lies along the z-axis. To determine D
at a point P, we choose a cylindrical surface containing P to satisfy the symmetry condi-
tion as shown in Figure 4.14 . The electric flux density D is constant on and normal to
the cylindrical Gaussian surface; that is, D = D,a,. If we apply Gauss’s law to an arbitrary
length € of the line

pt=Q= J D-dS = DPJ ds = D,2mpt (4.46)
S s
where f dS = 2mpl is the surface area of the Gaussian surface. Note that fD - dS evalu-

ated on the top and bottom surfaces of the cylinder is zero, since D has no z-component;
that means that D is tangential to those surfaces. Thus

z FIGURE 4.14 Gaussian surface about an infinite line

__Line charge p, C/m charge.

| Gaussian surface

A=
|
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z FIGURE 4.15 Gaussian surface about
Infinite sheet of an infinite line sheet of charge.
charge pg C/m?

PL
D=— 447
2mp (4.47)

as expected from eqs. (4.21) and (4.35).

C. Infinite Sheet of Charge

Consider an infinite sheet of uniform charge ps C/m” lying on the z = 0 plane. To deter-
mine D at point P, we choose a rectangular box that is cut symmetrically by the sheet of
charge and has two of its faces parallel to the sheet as shown in Figure 4.15. As D is normal
to the sheet, D = D,a,, and applying Gauss’s law gives

Ps LdS =Q= iD'dS = DZU ds + J dei (4.48)

top bottom

Note that D - dS evaluated on the sides of the box is zero because D has no components
along a, and a,. If the top and bottom area of the box, each has area A, eq. (4.48) becomes

psA = D(A + A) (4.49)
and thus
D= &az
2
or
D _ps
o 4.50
E 5 2™ (4.50)

as expected from eq. (4.25).
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D. Uniformly Charged Sphere

135

Consider a sphere of radius a with a uniform charge p, C/m”. To determine D everywhere,
we construct Gaussian surfaces for cases r = a and r = a separately. Since the charge has
spherical symmetry, it is obvious that a spherical surface is an appropriate Gaussian surface.

For r = a, the total charge enclosed by the spherical surface of radius , as shown in

Figure 4.16(a), is

27 ™ r
Qunc = J' p,dv = p(,j dv = pOJ J J 1*sin @ dr df de
v v ¢=070=0"r=0

and

27 k4
\I/:ﬂguds:u,j{;ds:o,f J 7 sin 0 df dep
S N b¢=0"60=0

s

= D.4n7

Hence, ¥ = Q. gives

4mr
D,4nr* = Tpu

or

I
Dngoa, 0<r=a

(4.51)

(4.52)

(4.53)

For r = a, the Gaussian surface is shown in Figure 4.16(b). The charge enclosed by the

surface is the entire charge in this case, that is,

m moca
Qem=Jp‘,dv=pofdv=p0J' J J *sin 0 dr df d¢
v v $=070=07r=0

4
=poy ma (4.54)
Gaussian surface o FIGURE 4.16 Gaussian surface for a uniformly

(a) (b)

charged sphere when (a) r = a and (b) r = a.
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FIGURE 4.17 Sketch of IDI against r for a uniformly
charged sphere.

while

W= % D-dS = D, 477 (4.55)
N
just as in eq. (4.52). Hence,
4 )
D, 4mr? = 37

or

2

D= 3sz(,a,, r=a (4.56)
Thus from egs. (4.53) and (4.56), D everywhere is given by

T
gpoa,, O<r=agqg
D=4 ", (4.57)
a
;poa,, r=n

and |D| is as sketched in Figure 4.17.

Notice from eqs. (4.44), (4.46), (4.48), and (4.52) that the ability to take D out of the
integral sign is the key to finding D using Gauss's law. In other words, D must be constant
on the Gaussan surface.

Given that D = zp cos’p a, C/m?, calculate the charge density at (1, 77/4, 3) and the total
charge enclosed by the cylinder of radius 1 m with =2 =z = 2m.

Solution:

aD.
p,=V-D= 6zz = pcos’
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At (1,7/4,3), p, = 1-cos’(w/4) = 0.5 C/m>. The total charge enclosed by the cylinder
can be found in two different ways.

Method 1: This method is based directly on the definition of the total volume charge.

Q =Jpvdv:Jpcosz¢pd¢dpdz

2 27 1
J dzJ' coszd)d(bj pdp = 4(m)(1/3)
$=0 p=0

z==2

4
E—0
3

Method 2: Alternatively, we can use Gauss’s law

Q:'I/:ngD~dS=US+JI+L

=¥ +¥+V¥,

D-dS

where ¥,, ¥,, and ¥, are the flux through the sides (curved surface), the top surface, and
the bottom surface of the cylinder, respectively (see Figure 3.18). Since D does not have
component along a,, ¥, = 0, for ¥, dS = p d$ dp a, so

1 27 1 2
‘J’,=J J zpcoszd)pdqbdp‘ =2J' pzdpJ cos® ¢ dop
p=09¢=0 0 0

z=2

and for ¥, dS = —pdp dpa,, so

: 3 2w 1 2m
Wb:—J f zpcoszqﬁpd(l)dp‘ =2[ pldpj cos® ¢ do
z=-2 0 0

p=07¢=0

2

3

Thus

w om 4
Q=v=0+—2+T="¢
3 73 3

as obtained earlier.
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PRACTICE EXERCISE 4.8
IfD = (2" + 2)a, + 4xya, + xa, C/m’, find
(a) The volume charge density at (-1, 0, 3)

(b) The flux through the cube definedby0 = x=1,0=y=10=z=1
(c) The total charge enclosed by the cube

Answer: (a) —4 C/m?, (b)2C, (c)2C.

EXAMPLE 4.9 RS charge distribution with spherical symmetry has density

or
p, 0=ir=R
p=9 R

0, ¥z R

Determine E everywhere.

Solution:
The charge distribution is similar to that in Figure 4.16. Since symmetry exists, we can
apply Gauss’s law to find E.

£ jg E-dS = Qe = J pydv
s v

(a) Forr <R
rrmw 2w
eE amr = Q. = ,( J J p,r*sin O do de dr
070 -0
r 4
= f 47773Hdr — Rl
5 R R
or
_ P
N
4g,R
(b) Forr >R,

remw 2w
g, EATY = Qe = J j J p,r* sin 0 d df dr
070 70

R v
J’ %4wﬂdr+f 0- 47 dr

0 R

mp,R®
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or

PR’
=——a,
4g,” "

PRACTICE EXERCISE 4.9

A charge distribution in free space has p, = 2rnC/m’® for 0 < r < 10 m and zero
otherwise. Determine Eat r = 2mand r = 12 m.

Answer: 226a, V/m, 3.927a, kV/m.

4.7 ELECTRIC POTENTIAL

From our discussions in the preceding sections, we can obtain the electric field intensity E
due to a charge distribution from Coulomb’s law in general or, when the charge distribu-
tion is symmetric, from Gauss’s law. Another way of obtaining E is from the electric scalar
potential V, to be defined in this section. In a sense, this way of finding E is easier because
it is easier to handle scalars than vectors.

Suppose we wish to move a point charge Q from point A to point B in an electric field
E as shown in Figure 4.18. From Coulombs law, the force on Q is F = QE so that the work
done in displacing the charge by dl is

dW = —F-dl= —QE-dl (4.58)

The negative sign indicates that the work is being done by an external agent. Thus the total
work done, or the potential energy required, in moving Q from A to B, is

B
We = —QI E-dl (4.59)
A

Dividing W by Q in eq. (4.59) gives the potential energy per unit charge. This quantity,
denoted by V3, is known as the potential difference between points A and B. Thus

W B
Vig=—= —f E-dl (4.60)
A

Note that

1. In determining V 5, A is the initial point while B is the final point.

2. If V5 is negative, there is a loss in potential energy in moving Q from A to B; this
implies that the work is being done by the field. However, if V5 is positive, there is
a gain in potential energy in the movement; an external agent performs the work.

3. V,pis independent of the path taken (to be shown a little later).

4. V,pis measured in joules per coulomb, commonly referred to as volts (V).
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FIGURE 4.18 Displacement of point charge
Q in an electrostatic field E.

As an example, if the E field in Figure 4.18 is due to a point charge Q located at the
origin, then

E=—— 4.61
dme,P e a1)
50 eq. (4.60) becomes
Vag = '«(,\ ﬁa,- dra, (4.62a)
_Q [L - L}
dme, (15 Ta
or
Vap = Vg — Vy (4.62b)

where Vy and V,, are the potentials (or absolute potentials) at B and A, respectively. Thus
the potential difference V5 may be regarded as the potential at B with reference to A. In
problems involving point charges, it is customary to choose infinity as reference; that is,
we assume the potential at infinity is zero. Thus if V, = 0 as r, — % in eq. (4.62), the
potential at any point (r; — r) due to a point charge Q located at the origin is

Y= Q (4.63)
4me,r

Note from eq. (4.62a) that because E points in the radial direction, any contribution from a dis-
placement in the 6 or ¢ direction is wiped out by the dot product E - dl = E cos a dl = E dr,
where a is the angle between E and d1. Hence the potential difference V, is independent of
the path as asserted earlier. In general, vectors whose line integral does not depend on the path
of integration are called conservative. Thus, E is conservative.

The potential at any point is the potential difference between that point and a
chosen point (or reference point) at which the potential is zero.
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In other words, if one assumes zero potential at infinity, the potential at a distance r from
the point charge is the work done per unit charge by an external agent in transferring a test
charge from infinity to that point. Thus

r

V= *J’ E-dl (4.64)

%

If the point charge Q in eq. (4.63) is not located at the origin but at a point whose posi-
tion vector is r’, the potential V(x, y, z) or simply V(r) at r becomes

Q

" dme,|r — 1|

V(r) (4.65)

We have considered the electric potential due to a point charge. The same basic ideas
apply to other types of charge distribution because any charge distribution can be regarded
as consisting of point charges. The superposition principle, which we applied to electric

fields, applies to potentials also. For n point charges Q;, Q,,. . ., Q, located at points with
position vectors r;, r,, . . ., r,, the potential at r is
S N P
dme |r — 1| 4me,|r — 1| 4re,|r — r,|
or
1
V(r) = Q (point charges) (4.66)

4me, (& |r —

For continuous charge distributions, we replace Qj in eq. (4.66) with charge element p; dl,
ps dS, or p, dv and the summation becomes an integration, so the potential at r becomes

1 pris

V(r) = — &(r—),— (line charge) (4.67)
4me, ), [r — 1’|
1 [ ps(x)ds’

V(r) = ——| = (surface charge) (4.68)
dmre, g | —1'|
Vv'

Vir) = LJ' pAe o (volume charge) (4.69)
4me, ), [r —r'|

where the primed coordinates are used customarily to denote source point location and
the unprimed coordinates refer to field point (the point at which V'is to be determined).
The following points should be noted:

1. We recall that in obtaining egs. (4.63) to (4.69), the zero potential (reference)
point has been chosen arbitrarily to be at infinity. If any other point is chosen as
reference, eq. (4.63), for example, becomes
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= Q +:G (4.70)
4me,r

where C is a constant that is determined at the chosen point of reference. The same idea
applies to egs. (4.65) to (4.69).
2. The potential at a point can be determined in two ways depending on whether the
charge distribution or E is known. If the charge distribution is known, we use one of
eqs. (4.65) to (4.70) depending on the charge distribution. If E is known, we simply use

V= —fE-dl-#C (4.71)

The potential difference V5 can be found generally from

B
w
Vg =Vp— VA=~J E-dl=— (4.72)
A Q

Two point charges —4 uC and 5 uC are located at (2, —1, 3) and (0, 4, —2), respectively.
Find the potential at (150,.1); assuming zero potential at infinity.

Solution:

Let

Q = —4pC, Q=5uC
Ql QZ

V(r) = +
ame|r — | 4me,|r — 1,

& &
If V() = 0,C, = 0,

lr—rl=1(1,01) - (2-13)[ = [(-1.1,.-2)| = V6
Ir—nl = 1(1,0,1) = (0,4, -2)| = (1, -4,3)| = V26

Hence
v(1,0,1) = L[;‘*+ j_]
T 1077 '
Y 6 V26
36m

=9 X 10* (—1.633 + 0.9806)
= —5.872kV

PRACTICE EXERCISE 4.10

If point charge 3 uC is located at the origin in addition to the two charges of Example
4.10, find the potential at (—1, 5,2), assuming V() = 0.

Answer: 10.23 kV.
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A point charge of 5 nC is located at (—3,4,0), while line y = 1, z = 1 carries uniform
charge 2 nC/m.

(a) IfV=0Vat0(0,0,0), find Vat A(5,0,1).

(b) If V=100V atB(1,2,1),find Vat C(-2,5,3).
(¢) IfV=-5VatO, find Vy.

Solution:

Let the potential at any point be

V=Vo+

where Vi, and V are the contributions to V at that point due to the point charge and the
line charge, respectively. For the point charge,

v0=~fE~dl=—f

= Q + €
4me,r

——a.+ dra
ame,P "

For the infinite line charge,

P
vV, = —J E-dl = —f e a,"dpa,

RN Inp +C,
so

2
Hence,

v p+ Q
2me, 4me,r

+i@

where C = C, + C, = constant, p is the perpendicular distance from the line y = 1,
z = 1 to the field point, and r is the distance from the point charge to the field point.

(a) IfV =0at0(0,0,0),and Vat A(5,0, 1) is to be determined, we must first determine
the values of p and r at O and A. Finding r is easy; we use eq. (2.31). To find p for any point
(x, , z), we utilize the fact that p is the perpendicular distance from (x, y, z) to line y = 1,
z = 1, which is parallel to the x-axis. Hence p is the distance between (x, y,z) and (x, 1, 1)
because the distance vector between the two points is perpendicular to a,. Thus

p=lxyz) - (L1 =V(-1)+(z-1)
Applying this for p and eq. (2.31) for r at points O and A, we obtain

po=1(0,0,0) = (0,1,1)| = V2
ro = [(0,0,0) — (—3,4,0)| =5
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pa=1(501) - (51,1)] =1
ra = |(5,0,1) — (—3,4,0)| = 9

Hence,
1 1
Vo= Vy= ___‘l_lnfﬁ_%&[*__]
2me,  Pa dme, [T Ta
-2-10° V2, 5:10° [1 1
10 1 10 5 9
24T 4ar -
36m 36
il 1
0-V,=-36InV2+ 45(— - —)
5 8
or

V,=36In\V2—4=28477V

Notice that we have avoided calculating the constant C by subtracting one potential from
another and that it does not matter which one is subtracted from which.

(b) IfV=100at B(1,2,1) and Vat C(—2, 5, 3) is to be determined, we find

ps=1(1,2,1) = (1,1,1)| =1

= 1(1,2,1) - (-3,4,0)] = V21
pc=1(-2,53) = (-2,1,1)| = V20
[(=2,5,3) — (=3,4,0)] =V11

re=

1 1

V(*VB=*LI &+&[777J

2me, P 4me, [ Tc gy
V 100 361\/%-#45{ . ! }
e = =361n gl e
¢ 1 Vi Var

= —=50.175V
or
Ve = 49.825V

(c) To find the potential difference between two points, we do not need a potential refer-
ence if a common reference is assumed.

Ve = Ve — Vy = 49.825 — 100
—50.175'V




4.8 Relationship between E and V—Maxwell's Equation 145

PRACTICE EXERCISE 4.11
A point charge of 5 nC is located at the origin. If V. = 2 V at (0, 6, —8), find

(a) The potential at A(—3,2,6)
(b) The potential at B(1, 5,7)
(c) The potential difference V,,

Answer: (a) 3.929V, (b) 2.696V, (c) —1.233 V.

4.8 RELATIONSHIP BETWEEN E AND V—MAXWELL’'S EQUATION

As shown in the preceding section, the potential difference between points A and B is
independent of the path taken. Hence,

Vea = —Vap
thatis, Vs + Vyp = §,E-dl =0
or

(4.73)

%E dl
L

This shows that the line integral of E along a closed path as shown in Figure 4.19 must be
zero. Physically, this implies that no net work is done in moving a charge along a closed
path in an electrostatic field. Applying Stokes’s theorem to eq. (4.73) gives

ngEdl:L(VXE)-ds:o

or

VXE=0 (4.74)

Any vector field that satisfies eq. (4.73) or (4.74) is said to be conservative, or irrotational,
as discussed in Section 3.9. In other words, vectors whose line integral does not depend on

E FIGURE 4.19 The conservative nature of an
B electrostatic field.
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the path of integration are called conservative vector fields. Thus an electrostatic field is a
conservative field. Equation (4.73) or (4.74) is referred to as Maxwell’s equation (the second
Maxwell’s equation to be derived) for static electric fields. Equation (4.73) is the integral
form, and eq. (4.74) is the differential form; they both depict the conservative nature of an
electrostatic field.
From the way we defined potential, V = — fE - dl, it follows that
dV=—E-dl= —E.dx— E,dy— E,dz

But from calculus of multivariables, a total change in V(x, y, 2) is the sum of partial changes
with respect to x, y, z variables:

v A4 v
dV=—dx+—dy +——dz
ax ay az
Comparing the two expressions for dV, we obtain
Bi=——7, Ey = *—;, Eyi= —— (4.75)

Thus,

(4.76)

that is, the electric field intensity is the gradient of V. The negative sign shows that the
direction of E is opposite to the direction in which V increases; E is directed from higher
to lower levels of V. Since the curl of the gradient of a scalar function is always zero
(V X VV = 0), eq. (4.74) obviously implies that E must be a gradient of some scalar func-
tion. Thus eq. (4.76) could have been obtained from eq. (4.74).

Equation (4.76) shows another way to obtain the E field apart from using Coulomb’s or
Gauss’s law. That is, if the potential field V is known, the E can be found by using eq. (4.76).
One may wonder how one function V can possibly contain all the information that the three
components of E carry. The three components of E are not independent of one another: they
are explicitly interrelated by the condition V X E = 0. The potential formulation exploits
this feature to maximum advantage, reducing a vector problem to a scalar one.

10
Given the potential V' = —sin 6 cos ¢,

’1

(a) Find the electric flux density D at (2, 7/2,0).
(b) Calculate the work done in moving a 10 uC charge from point A(1, 30°, 120°) to
B(4,90°, 60°).

Solution:
(a) D=¢kE
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But
av 1aV 1 v
E = =VV= —=|-——a, b=yt =— ;alb
ar r a6 rsinf d¢
= Q in@ ¢ - B 0 d) + lq 3 ¢
5 sinfcosa, — 5 cosfcospag + 3 sinda,
At (2,7/2,0),

20
D=gE(r=20=m/2,¢=0) = su(?a, — 0ay + Oad,)

2.5¢,a, C/m? = 22.1 a, pC/m’

(b) The work done can be found in two ways, using either E or V.
Method 1:

W= —QJE~d1 or —K=J'E~dl
L Q /i

and because the electrostatic field is conservative, the path of integration is immaterial.
Hence the work done in moving Q from A(1, 30° 120°) to B(4, 90°, 60°) is the same as that
in moving Q from A to A’, from A’ to B', and from B’ to B, where

A(1,30°120°) B(4,90°, 60°)
ldl=dra, dl = rdfa, tdl=rsinfdda,
A'(4,30°120°) 3 B’(4,90° 120°)

That is, instead of being moved directly from A to B, Q is moved from A — A’, A" — B’,
B’ — B, so that only one variable is changed at a time. This makes the line integral much
easier to evaluate. Thus

= 1
TEm T oy (WAA' + Wyp + W)

(JM of Jeea
-1

420 smB cosd)

6=30°, ¢p=120°

900
—10 cos 6

> J cosd)
6=30° 'J

r=4,¢=120°

600 :
10
+J ﬂrm@dd)

$=120° r'i

r=4,0=90°
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-2 )=
IICTI

sin 6
16 2

W_ =75 5 10

Q 32 32 16

4 }
r=1

+ %(1){— cos ¢

30°

or
W= i‘EQ = 28.125 )
16
Method 2:
Since V is known, this method is much easier.
B
W= 7QJ'A E-dl = QVy

= Q(VB - VA)

10 10 .
10 Esm 90° cos 60° — Tsm 30°cos 120° ) - 10

10 -5\
=10(—--—) 10
2 2

28.125 pJ as obtained before

PRACTICE EXERCISE 4.12

Given that E = (3% + y)a, + xa, kV/m, find the work done in moving a —2 uC
charge from (0, 5,0) to (2, —1,0) by taking the straight-line path

(a) (0,5,0) = (2,5,0) = (2,—-1,0)
(b) y=5-3x

Answer: (a) 12 mJ, (b) 12 mJ.

4.9 AN ELECTRIC DIPOLE AND FLUX LINES

An electric dipole is formed when two point charges of equal magnitude but oppo-
site sign are separated by a small distance.

The importance of the field due to a dipole will be evident in the subsequent chapters.
Consider the dipole shown in Figure 4.20. The potential at point P(r, 8, ¢) is given by
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FIGURE 4.20 An electric dipole.

+Q

[~}

d cos 0

1 1 =
T < {—4—} o {u] 4.77)
4me, | N 1 4me, rr,
where r; and r, are the distances between P and +Q and P and —Q, respectively. If r >> d,

r, — r, = dcos, r,r;, = r* and eq. (4.77) becomes

~ Q dcosh
L ame, 1P (4.78)

Since d cos§ = d - a,, where d = da,, if we define
p=0Qd (4.79)

as the dipole moment, eq. (4.78) may be written as

I
4'rrsl,r2

(4.80)

Note that the dipole moment p is directed from —Q to +Q. If the dipole center is not at
the origin but at r’, eq. (4.80) becomes

_p(r=r)
Wie) = 4wso\r —-r? (4.81)

The electric field due to the dipole with center at the origin, shown in Figure 4.20, can
be obtained readily from egs. (4.76) and (4.78) as

v 10V
=W - Yo+ 1 a]

ar " rag
Qd cos 6 Qdsin 6
= ——far + 3
2me s’ 4me,r

ay
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or

Ei= P 5(2cosfa, + sin6a,) (4.82)
4me,r

where p = [p| = Qd.

Notice that a point charge is a monopole and its electric field varies inversely as r* while
its potential field varies inversely as r [see eqs. (4.61) and (4.63)]. From eqs. (4.80) and (4.82),
we notice that the electric field due to a dipole varies inversely as 7*, while its potential varies
inversely as . The electric fields due to successive higher-order multipoles (such as a quad-
rupole consisting of two dipoles or an octupole consisting of two quadrupoles) vary inversely
as ', P, %, . .., while their corresponding potentials vary inversely as P s 4

The idea of electric flux lines (or electric lines of force as they are sometimes called) was
introduced by Michael Faraday (1791-1867) in his experimental investigation as a way of
visualizing the electric field.

An electric flux line is an imaginary path or line drawn in such a way that its direction
at any point is the direction of the electric field at that point.

In other words, they are the lines to which the electric flux density D is tangential at
every point.

Any surface on which the potential is the same throughout is known as an equipoten-
tial surface. The intersection of an equipotential surface and a plane results in a path or
line known as an equipotential line. No work is done in moving a charge from one point to
another along an equipotential line or surface (V, — V;; = 0) and hence

J' E-dl=0 (4.83)
L

on the line or surface. From eq. (4.83), we may conclude that the lines of force or flux
lines (or the direction of E) are always normal to equipotential surfaces. Examples of
equipotential surfaces for point charge and a dipole are shown in Figure 4.21. Note from

Flux line

/
/~Equipotential
surface

Equipotential
surface

(a) v

(b)

FIGURE 4.21 Equipotential surfaces for (a) a point charge and (b) an electric dipole.
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these examples that the direction of E is everywhere normal to the equipotential lines. We
shall see the importance of equipotential surfaces when we discuss conducting bodies in
electric fields; it will suffice to say at this point that such bodies are equipotential volumes.
A typical application of field mapping (flux lines and equipotential surfaces) is found
in the study of the human heart. The human heart beats in response to an electric field
potential difference across it. The heart can be characterized as a dipole with the field map
similar to that of Figure 4.21(b). Such a field map is useful in detecting abnormal heart
position.” In Section 14.2, we will discuss a numerical technique for field mapping.

Two dipoles with dipole moments —5a,nC-m and 9a,nC-m are located at points
(0,0, —2) and (0, 0, 3), respectively. Find the potential at the origin.

Solution:
Px " Tk
V=
kE dmre,n;
1
_ p'n + P n
dme, | n n
where
p= —5a, r=1(0,0,0)—(0,0,-2)=2a, r=|r| =2
p,=9%, 1r=1(0,00)~(0,03)=-3a, r,=|r/=3
Hence,

s st |8 o i
1077 | 2° =

4 -
36m
= —-20.25V

PRACTICE EXERCISE 4.13
An electric dipole of 100 a, pC - m is located at the origin. Find V and E at points

(a) (0,0, 10)
(b) (1,m/3,7/2)

Answer: (a) 9 mV, 1.8a, mV/m, (b) 0.45V, 0.9a, + 0.7794a, V/m.

“For more information on this, see R. Plonsey, Bioelectric Phenomena, New York: McGraw-Hill, 1969.
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4.10 ENERGY DENSITY IN ELECTROSTATIC FIELDS

To determine the energy present in an assembly of charges, we must first determine the
amount of work necessary to assemble them. Suppose we wish to position three point charges
Q,, Q,, and Q; in an initially empty space shown shaded in Figure 4.22. No work is required
to transfer Q, from infinity to P, because the space is initially charge free and there is no
electric field [from eq. (4.59), W = 0]. The work done in transferring Q, from infinity to P,
is equal to the product of Q, and the potential V;, at P, due to Q,. Similarly, the work done
in positioning Q; at P; is equal to Q( V3, + Vj,), where V3, and V3, are the potentials at Py
due to Q, and Q,, respectively. Hence the total work done in positioning the three charges is

We=W, + W, + W,
0+ QVy + Qu(Vy + V) (4.84)

1l

If the charges were positioned in reverse order,

Wg=W;+ W, + W,

0+ QVy + Q(Vy, + Vy3) (4.85)

where V,;is the potential at P, due to Q,, V}, and V; are, respectively, the potentials at P,
due to Q, and Q,. Adding egs. (4.84) and (4.85) gives

2We = Qi(Viy + Vi3) + Qu(Vay + Vi) + Qs(Vyy + Vi)
=QV,+ QV, + Q3

or
1
W = P (QV, + QV, + Q,V3) (4.86)

where V), V,, and V; are total potentials at P,, P,, and Ps, respectively. In general, if there
are n point charges, eq. (4.86) becomes

L
W=7 > Qi | (injoules) (4.87)
k=1

FIGURE 4.22 Assembling of
charges.
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If, instead of point charges, the region has a continuous charge distribution, the sum-
mation in eq. (4.87) becomes integration; that is,

W = %J p Vdl (line charge) (4.88)
L
1
Wg = EJ psVdS  (surface charge) (4.89)
&
1
W, = EJ p,Vdv  (volume charge) (4.90)

Since p, = V - D, eq. (4.90) can be further developed to yield
WE=%J (V-D) Vdv (4.91)

But for any vector A and scalar V, the identity
V-VA=A-VV+ V(V-A)
or
(V-A)V=V-VA—-A-VV (4.92)

holds. Applying the identity in eqs. (4.92) to (4.91), we get
1 1
WE=5J (V-VD)dv—EJ (D-VV)dv (4.93)

By applying divergence theorem to the first term on the right-hand side of this equation,
we have
1 1
WE=ﬂg(VD)-ds—5J(D<VV)dV (4.94)
s v
From Section 4.9, we recall that V varies as 1/r and D as 1/7* for point charges; V varies as
1/ and D as 1/7° for dipoles; and so on. Hence, VD in the first term on the right-hand side

of eq. (4.94) must vary at least as 1/ while dS varies as *. Consequently, the first integral
in eq. (4.94) must tend to zero as the surface S becomes large. Hence, eq. (4.94) reduces to

W, = —H (D-VV) dv = %f (D-E)dv (4.95)

and since E = —VV and D = gE, the electrostatic energy is
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1 1
W = 5{ D-Edv = EJ &,E2 dv (4.96)

v v

From this, we can define electrostatic energy density w;, (in J/m?) as

dwg 1 1 D?
;= =-D-E=_gF =_— 4.97
YET T4 T 2 A E 2g, 0
50 eq. (4.95) may be written as
W = 4( wg dv (4.98)

v

The point charges —1 nC, 4 nC, and 3 nC are located at (0,0,0), (0,0, 1), and (1,0,0),

respectively. Find the energy in the system.

Solution:
Method 1:

W=W, +W,+ W,

0+ lezl + Q}(V31 e V]Z)
Q

4me, |(0,0,1) — (0,0,0)|

Q] |: Ql + QZ
[(1,0,0) — (0,00)]  [(1,0,0) — (0,0,1)]

:Qz.

4me,

Il

' QzQz)
4mre, V2

107’ V2

4
36m

12
=9 —=—7|n] = 13.37n]
(\/E )

<Q1Q2 a5 Q1Q3 +

Method 2:

1 1
W==-3 Q=5 (QVi + QV, + QV3)

Q[ @ & Q }_'_&[ Q i Q
2 4me (1)  4me,(1) 2 L4me,(1)  4me,(V2)
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Q
2

+ Ql QZ }

4me (1) ’ 4me,(V2)

1 Q,Q
R(QIQZ + QIQ} 4 \/i)

12
o == — 7|0 = 13371)
(\/E )

Il

PRACTICE EXERCISE 4.14

Point charges Q, = 1nC, Q, = —2nC, Q; =3nC, and Q, = —4nC are posi-
tioned one at a time and in that order at (0, 0,0), (1,0,0), (0,0, —1), and (0,0, 1),
respectively. Calculate the energy in the system after each charge is positioned.

Answer: 0, —18 nJ, —29.18 nJ, —68.27 nJ.

A charge distribution with spherical symmetry has density

_ | P 0=r=R

P 0, r>R

Determine V everywhere and the energy stored in region r < R.

Solution:
The D field has already been found in Section 4.6D using Gauss’s law.

PR’
3g,r°

(a) Forr = RE=

2

Once E is known, V is determined as

Since V(r = ») = 0,C, = 0.

\)r
(b) Forr = RE= p—a,.
3g,
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Hence,
V= —JE-dl: -3”" jrdr
3 o
L
6g,
RZ
From part (a) V(r = R) = Bet Hence,
3g,
RZ Rl RZ
Boo . ooy g8
3g, 6¢g, 2g,
and
v=Lo R - p)
6g,
Thus from parts (a) and (b)
3
PR -
V= 3g,r
Po 2
—(R*—-1r), r=R

6¢,

o

(c) The energy stored is given by
1 1
W= *J D-Edv = 760J' Edv
2], Z "

Forr = R,

Hence,

1 pz R ™ b2d
W= g—"J J f 7 sin 0 dop db dr
=076=0"d=0

T2 %9e2 ),

0 |} 2mpl R
= dr-—| =

18e, 51 45g,

PRACTICE EXERCISE 4.15

IfV=x—y+axy+2zV, find Eat (1,2,3) and the electrostatic energy stored in a
cube of side 2 m centered at the origin.

Answer: —3a, — 2a,V/m, 0.2358 nJ.
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t4.11 APPLICATION NOTE—ELECTROSTATIC DISCHARGE

Electrostatic discharge (ESD) (or static electricity, as it is commonly known) refers to the
sudden transfer (discharge) of static charge between objects at different electrostatic poten-
tials. A good example is the “zap” one feels after walking on a synthetic carpet and then
touching a metal doorknob.

Electrostatic discharge (ESD) belongs to a family of electrical problems known as
electrical overstress (EOS). Other members of the EOS family include lightning and elec-
tromagnetic pulses (EMPs). ESD poses a serious threat to electronic devices and affects
the operation of the systems that contain those devices. An ESD can destroy an integrated
circuit (IC), shut down a computer system, cause a fuel tank to explode, and so on. ESD is
a rapid-discharge event that transfers a finite amount of charge between two bodies at dif-
ferent potentials. ESD costs industry many billions of dollars annually. The damage to an
IC depends on the current densities and voltage gradients developed during the event. The
harmful effects of ESD are now recognized as a major contributor to poor product yield
and long-term unreliability in many electronic assemblies. Most electronics companies
now regard all semiconductor devices as ESD sensitive. For this reason, a good understand-
ing of ESD is required in industry. It is considered the responsibility of the design engineer
to ensure that electronic systems are designed and protected against damage from ESD.

What causes ESD? Static charge is a result of an unbalanced electrical charge at rest. For
example, it is created by insulator surfaces rubbing together or pulling apart. One surface
gains electrons, while the other loses electrons. If the charge transfer causes an excess of
electrons on an object, the charge is negative. On the other hand, a deficiency of electrons on
the object makes the static charge positive. When a static charge moves from one surface to
another, it becomes ESD. ESD events occur to balance the charge between two objects. The
movement of these charges often occurs rapidly and randomly, leading to high currents.

ESD can occur in one of the following four ways:

« A charged body touches a device such as an IC.

« A charged device touches a grounded surface.

« A charged machine touches a device.

« An electrostatic field induces a voltage across a dielectric that is sufficient to cause
breakdown.

There are two sources of ESD-generated events: people and equipment. ESD from a
person can vary depending on footwear, posture (standing or sitting), and what the person
has in his or her hand (metal or dielectric). The capacitance of a person could double if
the individual were sitting instead of standing. The generated voltage is the driving force
behind the ESD event. For example, walking across a synthetic carpet on a dry day may
generate a potential of 20 kV on the person’s body.

An ESD event takes place in the following four stages.

1. Charge generation: This could be triboelectricity, induction, or conduction.
Triboelectricity requires physical contact between two different materials or the rubbing
together of two materials. For example, a person who walks across a synthetic carpet
becomes charged by the process of triboelectrification. Fundamental electrostatics tells us
that some materials tend to charge positively, while others tend to charge negatively. The
triboelectric series (see Table 4.1) summarizes this propensity. A material near the top of
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TABLE 4.1 The Triboelectric Series

Material Polarity of Charge

Air =+
Human hands A
Rabbit fur
Glass

Mica

Human hair
Fur

Lead

Silk
Aluminum
Paper

Cotton

Steel

Wood

Amber

Wax

Hard rubber
Nickel, copper
Gold
Polyester
Polyethylene
PVC (vinyl)
Silicon

Teflon =

Table 4.1 is charged positively when rubbed by a material below it. For example, comb-
ing your hair with a hard rubber comb leaves your hair positively charged and the comb
negatively charged. Inductive charging takes place when a conducting object comes close
to a charged object and is then removed. Conductive charging, which involves the physical
contact and balancing of voltage between two objects at different potentials, often occurs
during automated testing.

2. Charge transfer: This is the second stage in an ESD event. Charge transfers from the
higher potential body to the lower potential body until the potentials between them are
equal. Charge transfer is characterized by the capacitance of the two bodies involved and
the impedance between them.

3. Device response: At this stage, we analyze how a circuit responds to a pulse and
how it withstands the redistribution of charge. When an ESD event begins, charge starts to
redistribute, and this movement of charge generates currents and induces voltages.

4. Device failure: The last stage involves assessing the kind of failure, if any. This is
when we determine whether the device survived. There are three kinds of failure: hard
failure (i.e., physical destruction), soft failure, and latent failure.

The importance of ESD has led standards organizations to develop guidelines for
control and prevention of ESD. The ESD Association has developed a standard known as
ANSI/ESD $20.20 (2007) to establish and maintain ESD control. The standard identifies
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and describes key measurement processes to qualify a company’s ESD control program.
Here is a short list of dos and don'ts.

« Treat everything as static sensitive.
« Touch something grounded before handling electronic assemblies or components.
o Wear a grounded wrist strap whenever possible (see Figure 4.23).

(a) (b)

FIGURE 4.23 (a) Wrist strap. (b) Foot grounders.

Equipment ground

Power (green wire) Powes
receptacle @ / E receptacle

ESD-protective
work surface

‘Wrist strap

R1

R2 Electrical

equipment

Common point ;

Gl ground bus Ground point

equipment
ground

ESD-protective
floor mat
(optional)

G2 = <— Earth ground

FIGURE 4.24 A typical ESD-protected workstation.
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« Keep the relative humidity at 40% or greater.

« Don't touch any leads, pins, or traces when handling charged devices.
« Don’t move around a lot.

« Don't touch electronic devices if you are getting static discharges.

A static-control wrist strap is an inexpensive way to minimize the risk of ESD. Use of
garments designed to protect electronic component assembly operations from damage due
to static electricity has increased dramatically.

Today, design for ESD protection is critical but difficult owing to the reduction in
device sizes, high operating speeds, factory automation, and uncontrolled user environ-
ments. ESD protection of devices involves minimizing the environmental exposure by
providing means to minimize charge generation and charge transfer. It is applied dur-
ing production, transportation, and handling of most electronic products. A typical
ESD-protected workstation is portrayed in Figure 4.24. Electronic devices are protected
against ESD by a strategy to discharge ESD events that may occur when the device is
exposed to ESD.

MATLAB 4.1 % This script allows the user to input a number of charges

% and compute the electric field at a particular coordinate
% observation point due to these charges
clear

n = input( Enter number of charges in the system... \n > s
if isempty(n); n = 1; end
Q=zeros(n,4); % create a matrix of zeros, with n rows

% and 4 columns

r=input( Enter observation location [x y z]... \n > N
if isempty(r); r = [0 0 0]; end

% loop through all the charges that the user input
% and collect the observation points for each charge
for index=1:n,
disp(sprintf( Enter position of charge number Y));
disp(sprintf( %d in the format [x y 2z]... Yindex));
Q(index,1:3) = input( > Y
disp(sprintf( Enter the charge value of charge Y);
disp(sprintf( humber %d... Y index));
Q(index,4) = input( > N
end

% add the E-field at the observation point due to all charges
Etotal=0; % set the initial total field sum to zero
for index=1l:n,

rtemp=r-Q(index,1:3);

rtemp_unitvector = rtemp/norm(rtemp);
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% electric field due to a charge
Etemp=Q(index,4)/(4*pi*8.86e-12*(norm(rtemp))"2)*rtemp unit-
vector;
Etotal=Etemp+Etotal; % add the partial sums to the total
end
% Display output
disp(sprintf( The total electric field at point [x y z] )
disp(oprintf( ‘= [d %d %d] is v r(l), v(2), £(3)))
Etotal

161

MATLAB 4.2

% This script computes the results of example 4.5 by
% numerical integration

clear

format short % prints only 6 decimal places

% Part (a) Computation of total charge

% prompt user for the integration increment used by the

% summation loop

dx = input( Enter the integration increment dx... \n > Y;
dy = input( Enter the integration increment dy... \n > Y;

% perform the double integral
total charge=0;
for x=0:dx:1, % loop through 0 <= x <= 1
for y=0:dy:1, % loop through 0 <= x <= 1
total_charge=rho_s_fun(x,y)*dx*dy+total charge;
end
end
% Display results
disp(sprintf( The total charge computed by manual double Y));
disp(sprintf( ' integration is %d nC ) total charge))
% Double integral evaluation using the built-in
% function dblquad
% The user must write the integrand function as a
% separate file, in this case rho s_fun
total charge=dblquad(@rho_s_fun, 0, 1, 0, 1);
disp(sprintf( The total charge computed by the functional Y))
disp(sprintf( ' double integration is %d nC ) total charge))
% Part (b) Evaluation of electric field
% perform the double integral
Etotal=0; % initial sum
for x=0:dx:1,
for y=0:dy:1,
rminusrprime=[-x -y 5]; % | r - rprime |
numerator=rho_s_fun(x,y)*1le-9*dx*dy*rminusrprime;
% the le-9 is because the charge is in nC
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denominator=4*pi*le-9/(36*pi)*norm(rminusrprime)”3;
% | r - rprime | * 3
Etotal=Etotal+numerator/denominator;
% add partial sum to initial sum
end
end
% Display results
disp(sprintf( The electric field computed by manual double Y);
disp(sprintf( ' integration is (%d, %d, %d) V/m ...
Etotal(l), Etotal(2), Etotal(3)))

1. The two fundamental laws for electrostatic fields (Coulomb’s and Gauss’s) are pre-
sented in this chapter. Coulomb’s law of force states that

QAQ

= a
4me R R

2. Based on Coulomb’s law, we define the electric field intensity E as the force per unit
charge; that is,

Q

= maR = e (point charge only)

3. For a continuous charge distribution, the total charge is given by

Q= f ppdl for line charge
L

Q= J ps dS for surface charge
s

Q= J p,dv for volume charge
The E field due to a continuous charge distribution is obtained from the formula for
point charge by replacing Q with dQ = p, dI, dQ = pgdS or dQ = p, dv and inte-

grating over the line, surface, or volume, respectively.

4. For an infinite line charge,

__P
=——a
2mep ¥
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and for an infinite sheet of charge,

E= L a,
2¢g,

. The electric flux density D is related to the electric field intensity (in free space) as

D =¢kE

The electric flux through a surface § is

lI’=J.D'alS
s

. Gauss’s law states that the net electric flux penetrating a closed surface is equal to the

total charge enclosed, that is, ¥ = Q. Hence,

= %D'dsz Qenc:JPvdV
s i
or
p, = V-D (first Maxwell equation to be derived)

When charge distribution is symmetric, so that a Gaussian surface (where D = D,a,
is constant) can be found, Gauss’s law is useful in determining Dj that is,

e

Vo8 % dS = Q. or D,
B S

The total work done, or the electric potential energy, to move a point charge Q from
point A to B in an electric field E is

B
W= *Qj E-dl
A

. The potential at r due to a point charge Qat r' is

Q

S
4me,|r — r'|

Vie) =

where C is evaluated at a given reference potential point; for example, C = 0 if
V(r = =) = 0. To determine the potential due to a continuous charge distribu-
tion, we replace Q in the formula for point charge by dQ = p; dl, dQ = p;dS, or
dQ = p, dvand integrate over the line, surface, or volume, respectively.
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9. If the charge distribution is not known, but the field intensity E is given, we find the
potential by using

V= —J' E-dl+C
L
10. The potential difference V5, the potential at B with reference to A, is
B
w
Vig= —J Edl=—=V,-V,
A Q

11. Since an electrostatic field is conservative (the net work done along a closed path in a
static E field is zero),

%E-dl=0
L

or
V X E=0 (second Maxwell equation to be derived)
12. Given the potential field, the corresponding electric field is found by using
E=-VV

13. For an electric dipole centered at r" with dipole moment p, the potential at r is
given by

o] = prile—1t)

Cdme|r — v/

14. The flux density D is tangential to the electric flux lines at every point. An equipoten-
tial surface (or line) is one on which V = constant. At every point, the equipotential
line is orthogonal to the electric flux line.

15. The electrostatic energy due to n point charges is

1a
Wg= 52 QVi
k=1

For a continuous volume charge distribution,

1 1
W = —J D'Edv=—Jsa|Elzdv
2J, 2J,
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16. Electrostatic discharge (ESD) refers to the sudden transfer of static charge
between objects at different electrostatic potentials. Since all semiconductor
devices are regarded as ESD sensitive, a good understandng of ESD is required
in industry.

legquﬂs 4.1 Point charges Q; = 1 nC and Q, = 2 nC are at a distance apart. Which of the following
statements are incorrect?

(a) The force on Q, is repulsive.

(b) The force on Q, is the same in magnitude as that on Q,.

(c) As the distance between them decreases, the force on Q, increases linearly.

(d) The force on Q, is along the line joining them.

(e) A point charge Q; = —3 nC located at the midpoint between Q, and Q, experiences

no net force.
4.2 Plane z = 10 m carries charge 20 nC/m?. The electric field intensity at the origin is
(a) —10a,V/m (¢) —=72ma,V/m
(b) —18ma.V/m (d) —3607 a, V/m

4.3 Point charges 30 nC, —20 nC, and 10 nC are located at (—1, 0, 2), (0,0,0),and (1,5, — 1),
respectively. The total flux leaving a cube of side 6 m centered at the origin is

(a) —20nC (d) 30 nC
(b) 10nC (e) 60 nC
(c) 20 nC

4.4 The electric flux density on a spherical surface r = b is the same for a point charge Q
located at the origin and for charge Q uniformly distributed on surface r = ala <b).
(a) Yes (c) Not necessarily
(b) No

4.5 The work done by the force F = 4a, — 3a, + 2a, N in giving a 1 nC charge a displace-
ment of 10a, + 2a, — 7a,m is
(a) 103 nJ (c) 64nJ
(b) 60 nJ (d) 20 nJ

4.6 By saying that the electrostatic field is conservative, we do not mean that

(a) Itis the gradient of a scalar potential.

(b) Its circulation is identically zero.

(c) Its curl is identically zero.

(d) The work done in a closed path inside the field is zero.
(e) The potential difference between any two points is zero.
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4.7

4.

o

4.

o

4.10

Suppose a uniform electric field exists in the room in which you are working, such that
the lines of force are horizontal and at right angles to one wall. As you walk toward the
wall from which the lines of force emerge into the room, are you walking toward

(a) points of higher potential?

(b) points of lower potential?

(c) points of the same potential (equipotential line)?

A charge Q is uniformly distributed throughout a sphere of radius a. Taking the potential
at infinity as zero, the potential at r = b < a is

b
() —J Qr G

4me,a®

b
Q

b —I d
®) » Ame 4

e - Jb ar
© L 4me,P 2 . dmed’
a
Q
d —J' d
@ » dme,r r
A potential field is given by V = 3x?y — yz. Which of the following is not true?
(a) Atpoint (1,0, —1), V and E vanish.
(b) x’y = 1is an equipotential line on the xy-plane.

(c) The equipotential surface V = —8 passes through point P(2, —1,4).

(d) The electric field at P is 12a, — 8a, — a, V/m.

(e) A unit normal to the equipotential surface V.= —8 at P is —0.83a, + 0.55a,+
0.07a,.

An electric potential field is produced by point charges 1 uC and 4 uC located at

(=2,1,5) and (1, 3, — 1), respectively. The energy stored in the field is

(a) 2.57m] (c) 10.28 mJ

(b) 5.14 m] (d) None of the above

Answers: 4.1ce, 4.2d, 4.3b, 4.4a, 4.5d, 4.6€, 4.7a, 4.8¢, 4.9a, 4.10b.

PROBLEMS . . )
Section 4.2—Coulomb’s Law and Field Intensity

4.1

4.2

Point charges Q, = 5uC and Q, = —4 uC are placed at (3,2,1) and (—4,0,6),
respectively. Determine the force on Q,.

Point charges Q, and Q, are, respectively, located at (4,0, —3) and (2,0,1). If
Q, = 4nC, find Q, such that

(a) The Eat (5,0, 6) has no z-component
(b) The force on a test charge at (5, 0, 6) has no x-component.
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4.3 A charge +Q is located at (0, 0, d), while another charge —Q is located at (0, 0, —d).

4.4

4.5

Determine E: (a) at any point on the x-axis, (b) at any point on the z-axis.

A point Q is located at (a, 0, 0), while another charge —Q is at (—a, 0, 0). Find E at:
(a) (0,0, 0) (b) (0,,0), (c) (a, 0, a).

Determine the electric field intensity required to levitate a body 2 kg in mass and
charged with —4 mC.

Section 4.3—Electric Fields Due to Continuous Charge Distributions

4.6

47

4.8

4.9

4.10

4.11

4.12

0

Determine the total charge
(a) Online 0 < x < 5mif p, = 12x* mC/m
(b) On the cylinder p = 3,0 < z < 4 mif pg = pz> nC/m’

10
rsin 6

(c) Within the sphere r = 4 mif p, = C/m?

A cube is defined by 0 < x < a,0 < y < a,and 0 < z < a. If it is charged with
Py = %, where p, is a constant, calculate the total charge in the cube.

A volume charge with density p, = 5p’z mC/m’ exists in a region defined by 0 < p <
2,0 <z<1,30° < ¢ < 90°. Calculate the total charge in the region.

Given that p, = 6xy C/m’ calculate the total charge on the triangular region in
Figure 4.25.

A charge distribution is given by p, = 6x?)* nC/m”’. Determine the total charge enclosed
by a cube of side 2 m centered at the origin and whose edges are parallel to the axes.

Given that p, = 4p® z cos ¢ nC/m’, find the total charge contained in a wedge defined
by0<p<2,0<¢d<m/4,0<z<l

The spherical shell extending from r = 2 cm to r = 4 cm has a uniform charge density
p, = 5mC/m’. Determine the total charge in the shell.

2

FIGURE 4.25 For Problem 4.9.
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4.13 A uniform charge 12 uC/m is formed on a loop described by x* + y* = 9 on the z = 0
plane. Determine the force exerted on a 4 mC point charge at (0, 0, 4).

4.14 An annular disk of inner radius a and outer radius b is placed on the xy-plane and
centered at the origin. If the disk carries uniform charge with density p,, find E at
(0, 0, h).

4.15 Three infinite sheets located at z = 0, z = 1, and z = 2 carry uniform charge with densi-
ties —10, 5, and 20 nC/m?, respectively. Determine E everywhere.

4.16 Plane x + 2y = 5 carries charge p; = 6 nC/m’. Determine Eat (—1,0, 1).

4.17 Plane x = 0 has a uniform charge density p,, while plane x = a has — p,. Determine the
electric field intensity in regions (a) x < 0, (b) 0 < x < g, (c) x > a.

4.

—

8 Three surface charge distributions are located in free space as follows: 10 uC/m” at
x=2,-20 ;.4,C/m2 aty = —3,and 30 uC/m?at z = 5. Determine E at (a) P (5, —1, 4),
(b) R(0, =2, 1), () Q (3, =4, 10).

4.19 The gravitation force between two bodies of masses m, and m, is

Gmm,

] o

where G = 6.67 X 10" N(m/kg)?. Find the ratio of the electrostatic and gravitational
forces between two electrons.

Section 4.4—Electric Flux Density

*4.20 State Gausss law. Deduce Coulomb’s law from Gauss’s law, thereby affirming that Gauss’s
law is an alternative statement of Coulomb’s law and that Coulomb’s law is implicit in
Maxwell’s equation V- D = p,.

4.21 Three point charges are located in the z = 0 plane: a charge +Q at point (—1, 0), a
charge +Q at point (1, 0), and a charge —2Q at point (0, 1). Determine the electric flux
density at (0, 0).

4.22 A ring placed along y* + 22 = 4, x = 0 carries a uniform charge of 5 £C/m.
(a) Find D at P(3,0,0).
(b) If two identical point charges Q are placed at (0, —3,0) and (0, 3, 0) in addition to
the ring, find the value of Q such that D = 0 at P.
Sections 4.5 and 4.6—Gauss’s Law and Applications

4.23 Determine the charge density due to each of the following electric flux densities:
(a) D = 8xya, + 4x’a, C/m*
(b) D = 4psin¢a, + 2pcos da, + 2z%, C/m’

2cos @ sin 6

() D="—%—a, +—a,C/m’
r 1™
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4.24 Given that D = 2x(1 + z%)a, + 2x’za, nC/m’ (a) find p,, (b) determine the flux crossing
the rectangular region defined by z = 1,0 <x < 2,0 <y < 3.

4.25 If spherical surfaces r = 1 m and r = 2 m, respectively, carry uniform surface charge
densities 8 nC/m* and —6 mC/m’, find D at r = 3 m.

4.26 A sphere of radius a is centered at the origin. If , =
Determine E everywhere.

4.27 LetD = 2xya, + x’a, C/m’ and find

{Sr”z, 0<r<a
0, otherwise

(a) The volume charge density p,.
(b) The flux through surface 0 <x < 1,0 <z<1l,y =1
(c) The total charge contained in the region0 < x < 1,0 <y < 1,0<z<1.

4.28 In a certain region, the electric field is given by
D = 2p(z + 1)cos pa, — p(z + 1)sin ¢ a, + p’ cos pa, uC/m’

(a) Find the charge density.
(b) Calculate the total charge enclosed by the volume 0 <p <2, 0 <d¢ < 7/2,
0<z<4.

(c) Confirm Gauss’s law by finding the net flux through the surface of the volume in (b).
*4.29 The Thomson model of a hydrogen atom is a sphere of positive charge with an electron

(a point charge) at its center. The total positive charge equals the electronic charge e.

Prove that when the electron is at a distance r from the center of the sphere of positive

charge, it is attracted with a force

. _@r

- 4me R®

where R is the radius of the sphere.

4.30 Let
10
— mC/m’, I1<¢<4
p=97
0, r>4

(a) Find the net flux crossing surface r = 2mand r = 6 m.
(b) DetermineDatr = Imandr = 5m.

4.31 A spherical region of radius a has total charge Q. If the charge is uniformly distributed,
apply Gauss's law to find D both inside and outside the sphere.

Sections 4.7 and 4.8—Electric Potential and Relationship with E
4.32 Two point charges Q = 2nC and Q = —4 nC are located at (1, 0, 3) and (-2,1,5),
respectively. Determine the potential at P(1, —2, 3).

4.33 A charge of 8 nC is placed at each of the four corners of a square of sides 4 cm long.
Calculate the electrical potential at the point 3 cm above the center of the square.
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4.34

4.35

4.36
4.37

4.38

4.39

4.40

(a) A total charge Q = 60 uC is split into two equal charges located at 180° intervals
around a circular loop of radius 4 m. Find the potential at the center of the loop.

(b) If Q is split into three equal charges spaced at 120° intervals around the loop, find
the potential at the center.

(c) Ifin the limit p, = g% find the potential at the center.
Three point charges Q, = 1mC, Q, = —2mC, and Q; = 3 mC are, respectively,
located at (0,0,4), (—2,5,1),and (3, —4,6).
(a) Find the potential V, at P(—1,1,2).
(b) Calculate the potential difference Vi if Qis (1,2, 3).
1
A circular disk of radius a carries charge pg = v C/m?. Calculate the potential at (0, 0, k).
V = x*(z + 3) V. Find
(a) Eat (3,4, —6)
(b) the charge within the cube 0 <x < 1,0<y<1,0<z<1.

T =
The volume charge density inside an atomic nucleus of radius a is p, = po( 3 >
a

where p, is a constant.

(a) Calculate the total charge

(b) Determine E and V outside the nucleus.
(c) Determine E and V inside the nucleus.
(d) Prove that E is maximum at r = 0.745a.

Let charge Q be uniformly distributed on a circular ring defined by a < p < b and
shown in Figure 4.26. Find D at (0, 0, h).

IfD = 4xa,— 10}'2ay =+ zzaz C/m?, find the charge density at P(1, 2, 3).

B
L4

FIGURE 4.26 For Problem 4.39.
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4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

4.51

4.52
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A 10 nC charge is uniformly distributed over a spherical shell » = 3 cm and a =5 nC
charge is uniformly distributed over another spherical shell r = 5 cm. Find D for regions
r<3cm3cm<r<5cm,r>5cm.

In free space, an electric field is given by

E= E‘,(p/a)ap, 0<p<a
0, otherwise

Calculate the volume charge density.

The electric field intensity in free space is given by
E = 2xyza, + x’za, + ¥’ya, V/m

Calculate the amount of work necessary to move a 2 uC charge from (2, 1, —1) to (5, 1, 2).

In an electric field E = 20rsin 6 a, + 107 cos 6 a, V/m, calculate the energy expended
in transferring a 10 nC charge

(a) From A(5,30° 0°) to B(5, 90, 0°)

(b) From A to C(10, 30°, 0°)

(c) From A to D(5, 30° 60°)

(d) From A to E(10, 90°, 60°)

10
Let E = —a, V/m. Find V5, where A is (1, 77/4, /2) and B is (5, m, 0).
r

LetE = 2xya, + 2y(x* + 1)a, V/m. Find the work done in transforming a 2 nC charge
from point A(2, 3, —1) to B(8, 0, —1).
In free space, E = 20xa, + 40ya, — 10za, V/m. Calculate the work done in transferring
a 2 mC charge along the arc p = 2,0 < ¢ < 7/2 in the z = 0 plane.
A sheet of charge with density p, = 40 nC/m? occupies the x = 0 plane. Determine the
work done in moving a 10 uC charge from point A(3, 4, —1) to point B(1, 2, 6).
For each of the following potential distributions, find the electric field intensity and the
volume charge distribution:
(@) V=22 + 4y
(b) V = 10p*sin ¢ + 6pz
(¢c) V = 57 cos 8 sin ¢

1
In free space, V = = sin 6 cos ¢. Find D at (1, 30° 60°).

Each of two concentric spherical shells has inner radius a and outer radius b. If the inner
shell carries charge Q, while the outer shell carries charge —Q, determine the potential
difference V,, between the shells.

A uniform surface charge with density p, exists on a hemispherical surface with r = a
and @ = 7/2. Calculate the electric potential at the center.
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4.53

*4.54

*4.55

cos ¢
2p
density. Determine the flux crossingp = 1,0 = ¢ = /4,0 < z < 1.

IfD = 2psin da,— » C/m?, determine whether or not D is a genuine electric flux

(a) Prove that when a particle of constant mass and charge is accelerated from rest in
an electric field, its final velocity is proportional to the square root of the potential
difference through which it is accelerated.

(b) Find the magnitude of the proportionality constant if the particle is an electron.

(c) Through what voltage must an electron be accelerated, assuming no change in its mass,
to require a velocity one-tenth that of light? (At such velocities, the mass of a body
becomes appreciably larger than its “rest mass” and cannot be considered constant.)

An electron is projected with an initial velocity u, = 10’ m/s into the uniform field

between the parallel plates of Figure 4.27. It enters the field at the midway between the

plates. If the electron just misses the upper plate as it emerges from the field,

(a) find the electric field intensity.

(b) calculate the electron’s velocity as it emerges from the field. Neglect edge effects.

Section 4.9—Electric Dipole and Flux Lines

4.56

4.57

4.58

An electric dipole with p = pa, C-m is placed at (x,z) = (0,0). If the potential at
(0, 1 nm) is 9V, find the potential at (1 nm, 1 nm).

Point charges Q and —Q are located at (0,d/2,0) and (0, —d/2,0). Show that at point
(r,0,¢), where r >>d,

Qd sin 6 sin ¢

Ve
dme,’

Find the corresponding E field.
The electrostatic field due to a dipole in free space is given by

_ 20cos® o 10 sin 0

5 wt 5%

Show that V - E = 0, VXE=0

V/m

10 cm

FIGURE 4.27 For Problem 4.55.
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Section 4.10—Energy Density

4.59

4.60

4.61

4.62

4.63

4.64

Determine the amount of work needed to transfer two charges of 40 nC and -50 nC
from infinity to locations (0, 0, 1) and (2, 0, 0), respectively.

If V=2x*+ 6y’ V in free space, find the energy stored in a volume defined by
“Ifg =1, -l l,and =1 =z 1

Find the energy stored in the hemispherical region r = 2m, 0 <0 <7, 0< ¢ < 7
where

E = 2rsinf cosda, + rcos 6 cospa, — rsinda, V/m
exists.

A spherical conductor of radius a carries a surface charge with density p,. Determine the
potential energy in terms of a.

IfE = 3xa, + 5za, V/m, calculate the potential energy stored within the volume defined
by0<x<1,0<y<20<z<3.

In free space, V = pe “sin ¢. (a) Find E. (b) Determine the energy stored in the region
0<p<L0<¢p<2m0<z<2




CAREERS IN ELECTROMAGNETICS

Electromagnetics is the branch of electrical engineering (or physics) that deals with the analysis and
application of electric and magnetic fields. It is necessary for the understanding of all forms of light.
Without an understanding of electromagnetics, there would be no radios, televisions, telephones,
computers, or CD players.

The principles of electromagnetics (EM) are applied in various allied disciplines, such as elec-
tric machines, electromechanical energy conversion, radar meteorology, remote sensing, satellite
communications, bioelectromagnetics, electromagnetic interference and compatibility, plasmas,
and fiber optics. EM devices include electric motors and generators, transformers, electromagnets,
magnetic levitation systems, antennas, radars, microwave ovens, microwave dishes, superconductors,
and electrocardiograms. The design of these devices requires a thorough knowledge of the laws and
principles of EM.

EM is regarded as one of the more difficult disciplines in electrical engineering. One reason is
that EM phenomena are rather abstract. But those who enjoy working with mathematics and are able
to visualize the invisible should consider careers in EM, since few electrical engineers specialize in
this area. To specialize in EM, one should consider taking courses such as Antennas, Microwaves,
Wave Propagation, Electromagnetic Compatibility, and Computational Electromagnetics. Electrical
engineers who specialize in EM are needed in the microwave industry, radio/TV broadcasting sta-
tions, electromagnetic research laboratories, and the communications industry.



5.1

CHAPTER

ELECTRIC FIELDS IN
MATERIAL SPACE

A pessimist is a man who looks both ways before crossing a one-way street.
—LAURENCE J. PETER

INTRODUCTION

In the last chapter, we considered electrostatic fields in free space or a space that has no
materials in it. Thus what we have developed so far under electrostatics may be regarded as
the “vacuum” field theory. By the same token, what we shall develop in this chapter may be
regarded as the theory of electric phenomena in material space. As will soon be evident, most of
the formulas derived in Chapter 4 are still applicable, though some may require modification.
Just as electric fields can exist in free space, they can exist in material media. Materials
are broadly classified in terms of their electrical properties as conductors and nonconduc-
tors. Nonconducting materials are usually referred to as insulators or dielectrics. A brief
discussion of the electrical properties of materials in general will be given to provide a basis
for understanding the concepts of conduction, electric current, and polarization. Further
discussion will be on some properties of dielectric materials such as susceptibility, permit-
tivity, linearity, isotropy, homogeneity, dielectric strength, and relaxation time. The concept
of boundary conditions for electric fields existing in two different media will be introduced.

5.2 PROPERTIES OF MATERIALS

A discussion of the electrical properties of materials may seem out of place in a text of this
kind. But questions such as why an electron does not leave a conductor surface, why a current-
carrying wire remains uncharged, why materials behave differently in an electric field, and
why waves travel with less speed in conductors than in dielectrics are easily answered by con-
sidering the electrical properties of materials. A thorough discussion of this subject is usually
found in texts on physical electronics or electrical engineering. Here, a brief discussion will
suffice to help us understand the mechanism by which materials influence an electric field.
In a broad sense, materials may be classified in terms of their conductivity o, in mhos per
meter (/m) or, more usually siemens per meter (S/m), as conductors and nonconductors,
or technically as metals and insulators (or dielectrics). The conductivity of a material usually

175
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depends on temperature and frequency. A material with high conductivity (o >> 1) is referred
to as a metal, whereas one with low conductivity (0 << 1) is referred to as an insulator. A
material whose conductivity lies somewhere between those of metals and insulators is called
a semiconductor. The values of conductivity of some common materials are shown in Table
B.1 in Appendix B. From this table, it is clear that materials such as copper and aluminum
are metals, silicon and germanium are semiconductors, and glass and rubber are insulators.

The conductivity of metals generally increases with decrease in temperature. At tem-
peratures near absolute zero (T = 0 K), some conductors exhibit infinite conductivity and
are called superconductors. Lead and aluminum are typical examples of such metals. The
conductivity of lead at 4 K is of the order of 10** S/m. The interested reader is referred to
the literature on superconductivity.'

We shall be concerned only with metals and insulators in this text. Microscopically, the
major difference between a metal and an insulator lies in the number of electrons available
for conduction of current. Dielectric materials have few electrons available for conduction
of current, whereas metals have an abundance of free electrons. Further discussion on the
behavior of conductors and dielectrics in an electric field will be given in subsequent sections.

5.3 CONVECTION AND CONDUCTION CURRENTS

Electric voltage (or potential difference) and current are two fundamental quantities in
electrical engineering. We considered potential in the last chapter. Before examining how
the electric field behaves in a conductor or dielectric, it is appropriate to consider electric
current. Electric current is generally caused by the motion of electric charges.

The current (in amperes) :hrough a gwen area is the electnc charge passing through
the area per unit time.

That is,

_4Q
It 6.1

Thus in a current of one ampere, charge is being transferred at a rate of one coulomb per
second.

We now introduce the concept of current density J. If current A flows through a planar
surface AS, the current density is

A
AS

! The August 1989 issue of the Proceedings of IEEE was devoted to “Applications of Superconductivity”
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or
Al = JAS (5.2)

assuming that the current density is perpendicular to the surface. If the current density is
not normal to the surface,

Al =7-AS (5.3)

Thus, the total current flowing through a surface S is

I=J)-d$ (5.4)
s

Depending on how I is produced, there are different kinds of current density: convection
current density, conduction current density, and displacement current density. We will
consider convection and conduction current densities here; displacement current density
will be considered in Chapter 9. What we need to keep in mind is that eq. (5.4) applies to
any kind of current density. Compared with the general definition of flux in eq. (3.13), eq.
(5.4) shows that the current I through S is merely the flux of the current density J.

CASE A: CONVECTION CURRENT

Convection current, as distinct from conduction current, does not involve conductors and
consequently does not satisfy Ohm’s law. It occurs when current flows through an insulat-
ing medium such as liquid, rarefied gas, or a vacuum. A beam of electrons in a vacuum
tube, for example, is a convection current.
Consider a filament of Figure 5.1. If there is a flow of charge, of density p,, at velocity
u=ua, from eq. (5.1), the current through the filament is
_4aQ

AI — o asY s 5.5
=, = PAST = p Sy, 5.5

The current density at a given point |sthecun'ent°thm§@! a aréaatm pmnt.
The y-directed current density J, is given by

Iy = = Pty (5.6)

e x

Ay

FIGURE 5.1 Currentin a filament.
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Hence, in general

(A)

The current I is the convection current and ] is the convection current density in amperes
per square meter (A/m?).

CASE B: CONDUCTION CURRENT

Conduction current requires a conductor. A conductor is characterized by a large number
of free electrons that provide conduction current due to an impressed electric field. When
an electric field E is applied, the force on an electron with charge —e is

F = —¢E (5.8

Since the electron is not in free space, it will not experience an average acceleration
under the influence of the electric field. Rather, it suffers constant collisions with
the atomic lattice and drifts from one atom to another. If an electron with mass m is
moving in an electric field E with an average drift velocity u, according to Newton’s
law, the average change in momentum of the free electron must match the applied

force. Thus,
mu
= —éB (5.9a)
or
er
u= *;E (5.9b)

where 7 is the average time interval between collisions. This indicates that the drift velocity
of the electron is directly proportional to the applied field. If there are n electrons per unit
volume, the electronic charge density is given by

p, = —ne (5.10)
Thus the conduction current density is

2
]=pvu=nfnfTE=0'E

or

where o = ne’r/m is the conductivity of the conductor. As mentioned earlier, the values
of o for common materials are provided in Table B.1 in Appendix B. The relationship in
eq. (5.11) is known as the point form of Ohm’s law.
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5.4 CONDUCTORS

A conductor has an abundance of charge that is free to move. Consider an isolated conduc-
tor, such as shown in Figure 5.2(a). When an external electric field E, is applied, the positive
free charges are pushed along the same direction as the applied field, while the negative free
charges move in the opposite direction. This charge migration takes place very quickly. The
free charges do two things. First, they accumulate on the surface of the conductor and form
an induced surface charge. Second, the induced charges set up an internal induced field E,,
which cancels the externally applied field E,. The result is illustrated in Figure 5.2(b). This
leads to an important property of a conductor:

A perfect conductor (0 = ®) cannot contain an electrostatic field within it.

A conductor is called an equipotential body, implying that the potential is the same every-
where in the conductor. This is based on the fact that E = —VV = 0.

Another way of looking at this is to consider Ohm's law, ] = ¢'E. To maintain a finite
current density J, in a perfect conductor (o — ), requires that the electric field inside
the conductor o = % vanish. In other words, E — 0 because & —  in a perfect con-
ductor. If some charges are introduced in the interior of such a conductor, the charges will
move to the surface and redistribute themselves quickly in such a manner that the field
inside the conductor vanishes. According to Gauss’s law, if E = 0, the charge density p,
must be zero. We conclude again that a perfect conductor cannot contain an electrostatic
field within it. Under static conditions,

E=0, p, =0, V,, = 0inside a conductor (5.12)

where V,, is the potential difference between points a and b in the conductor.

- +
E, - >k
- +
E; - %
-—
- +
E A=0 ——=
3 e
- +
E; - +
- @t E=0
= +
E, - +——>E,
@ (b)

FIGURE 5.2 (a) An isolated conductor under the influence of an applied field. (b) A conductor
has zero electric field under static conditions.
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FIGURE 5.3 A conductor of uniform cross
section under an applied E field.

We now consider a conductor whose ends are maintained at a potential difference V,
as shown in Figure 5.3. Note that in this case, E # 0 inside the conductor, as in Figure 5.2.
What is the difference? There is no static equilibrium in Figure 5.3, since the conductor is
not isolated but is wired to a source of electromotive force, which compels the free charges
to move and prevents the eventual establishment of electrostatic equilibrium. Thus in the
case of Figure 5.3, an electric field must exist inside the conductor to sustain the flow of
current. As the electrons move, they encounter some damping forces called resistance.
Based on Ohm’s law in eq. (5.11), we will derive the resistance of the conducting mate-
rial. Suppose the conductor has a uniform cross section of area S and is of length €. The
direction of the electric field E produced is the same as the direction of the flow of positive
charges or current I. This direction is opposite to the direction of the flow of electrons. The
electric field applied is uniform and its magnitude is given by

E= % (5.13)
Since the conductor has a uniform cross section,
I= 4 (5.14)
N
Substituting egs. (5.11) and (5.13) into eq. (5.14) gives
é =0E= 07‘/ (5.15)
Hence,
R= ¥ = % (5.16)
or
s 2

where p, = 1/0 is the resistivity of the material. Equation (5.16) is useful in determining the
resistance of any conductor of uniform cross section. If the cross section of the conductor
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is not uniform, eq. (5.16) is not applicable. However, the basic definition of resistance R as
the ratio of the potential difference V between the two ends of the conductor to the cur-
rent I through the conductor still applies. Therefore, applying eqs. (4.60) and (5.4) gives the
resistance of a conductor of nonuniform cross section; that is,

(5.17)

Note that the negative sign before V = — fE -dl is dropped in eq. (5.17) because
fE -dl < 0if I > 0. Equation (5.17) will not be utilized until we get to Section 6.5.

Power P (in watts) is defined as the rate of change of energy W (in joules) or force
times velocity. Hence,

P=Jp‘,dvE'u=[E<pvudv
or

P:JEJdv (5.18)

v

which is known as Joule’s law. The power density wp (in W/m’) is given by the integrand
in eq. (5.18); that is,

dp
w,,:E:E-]:a'\E\Z (5.19)

For a conductor with uniform cross section, dv = dS dl, so eq. (5.18) becomes

P:fEdlf]dS:VI
L s

P= 'R (5.20)

which is the more common form of Joule’s law in electric circuit theory.

1
Ify = 7 (2cosfa, + sin @ a,) A/m’ calculate the current passing through

(a) A hemispherical shell of radius 20 cm, 0 < 6 < 7/2,0 < ¢ < 27
(b) A spherical shell of radius 10 cm

Solution:
I=[J-dS, wheredS = r’sin 6 d¢ df a, in this case.
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w2 T
J' J —2cos 0 1*sin 0 dep dO

(@) I=

Jiplyss T r=02
2 w2

= 7217J' sin 6 d(sin )
L3 6=0 r=02
477 sin? 0|

=— = 10m = 314 A
02 2 |

(b) The only difference here is that we have 0 = 6 = 7 instead of 0 = 6 = 7/2 and
r = 0.1 m. Hence,

477 sin” 0™
== =0
01 2 |,

Alternatively, for this case
I=¢§J-dS= [V-Jdv=0

since V - J = 0. We can show this:

i o | 4o Ly | = e Eenst = 0
-J=5—|=cos — —| < sin?@ | = —cos = cosf =
i rsin@ 96 [ r r

PRACTICE EXERCISE 5.1

For the current density ] = 10z sin” ¢ a, A/m’, find the current through the cylindrical
surfacep=2,1=z=5m.

Answer: 754 A.

EXAMPLE 5.2 RS typical example of convective charge transport is found in the Van de Graaff genera-
: tor, where charge is transported on a moving belt from the base to the dome as shown in

Figure 5.4. If a surface charge density 10”7 C/m” is transported by the belt at a velocity of
2 m/s, calculate the charge collected in 5 s. Take the width of the belt as 10 cm.

Solution:

If pg = surface charge density, u = speed of the belt, and w = width of the belt, the
current on the dome is

I = psuw
The total charge collected in t = 55 is

Q=It=puwt =107 X2X 01X 5
=100 nC
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FIGURE 5.4 Van de Graaff generator; for
Charge ,/ Example 5.2.
__—Conducting dome

removal \
\ ’ )
>0

i

__Insulating support

Charge placement

1 __Conducting
base

PRACTICE EXERCISE 5.2

In a Van de Graaff generator, w = 0.1 m, u = 10 m/s, and from the dome to the
ground there are leakage paths having a total resistance of 10" Q. If the belt car-
ries charge 0.5 uC/m? find the potential difference between the dome and the base.
Note: In the steady state, the current through the leakage path is equal to the charge
transported per unit time by the belt.

Answer: 50 mV.

A wire of diameter 1 mm and conductivity 5 X 107 $/m has 10% free electrons per cubic
meter when an electric field of 10 mV/m is applied. Determine

(a) The charge density of free electrons

(b) The current density

(c) The current in the wire

(d) The drift velocity of the electrons (take the electronic chargease = —1.6 X 107" C)

Solution:
(In this particular problem, convection and conduction currents are the same.)
(a) p, = ne = (10")(—1.6 X 107) = —1.6 X 10" C/m’
(b) J=0E = (5X107)(10 X 107) = 500 kA/m’
d’\ 5
() I=JS= (5% 105)<"T> = Tﬂ X 1076 X 10° = 0.393 A

I B0 g
i = =t =" _=3 X
(d) Since] = p,u,u 2.~ 16 X 10° 3.125 X 10" m/s
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EXAMPLE 5.4

PRACTICE EXERCISE 5.3

The free charge density in copper is 1.81 X 10'° C/m’. For a current density of 8 X 10°
A/m?, find the electric field intensity and the drift velocity. Hint: Refer to Table B.1 in
Appendix B.

Answer: 0.138 V/m, 4.42 X 10™* m/s.

Alead (0 = 5 X 10°$/m) bar of square cross section has a hole bored along its length of
4 m so that its cross section becomes that of Figure 5.5. Find the resistance between the
square ends.

FIGURE 5.5 Cross section of the lead bar of Example 5.4.
1 cm‘l; O 3cm

3cm

Solution:

Since the cross section of the bar is uniform, we may apply eq. (5.16); that is,

R—i
)
& 5 3 1Y i
whereS:d'—‘m‘ZS‘—ﬂ'< ) :<9—£>cmi
2 4
Hence,
4

R=——————————=974u()
5% 10%(9 — m/4) X 107* t

PRACTICE EXERCISE 5.4

If the hole in the lead bar of Example 5.4 is completely filled with copper
(o = 5.8 X 107 S/m), determine the resistance of the composite bar.

Answer: 461.7 p().
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5.5 POLARIZATION IN DIELECTRICS

In Section 5.2, we noticed that the main difference between a conductor and a dielectric
lies in the availability of free electrons in the outermost atomic shells to conduct current.
Although the charges in a dielectric are not able to move about freely, they are bound by
finite forces and we may certainly expect a displacement when an external force is applied.

To understand the macroscopic effect of an electric field on a dielectric, consider an
atom of the dielectric as consisting of a negative charge —Q (electron cloud) and a positive
charge +Q (nucleus) as in Figure 5.6(a). A similar picture can be adopted for a dielectric
molecule; we can treat the nuclei in molecules as point charges and the electronic structure
as a single cloud of negative charge. Since we have equal amounts of positive and nega-
tive charge, the whole atom or molecule is electrically neutral. When an electric field E
is applied, the positive charge is displaced from its equilibrium position in the direction
of E by the force F, = QE, while the negative charge is displaced in the opposite direc-
tion by the force F_ = QE. A dipole results from the displacement of the charges, and the
dielectric is said to be polarized. In the polarized state, the electron cloud is distorted by the
applied electric field E. This distorted charge distribution is equivalent, by the principle of
superposition, to the original distribution plus a dipole whose moment is

p=ad (5.21)

where d is the distance vector from —Q to +Q of the dipole as in Figure 5.6(b). If there are
N dipoles in a volume Av of the dielectric, the total dipole moment due to the electric field is

N
Qd; + Qd, + -+ Qudy = E Qidy (5.22)
k=1

As a measure of intensity of the polarization, we define polarization P (in coulombs per
meter squared) as the dipole moment per unit volume of the dielectric; that is,

(5.23)

Thus we conclude that the major effect of the electric field E on a dielectric is the cre-
ation of dipole moments that align themselves in the direction of E. This type of dielectric

E
-Q +Q
= + oo
—
E=0 E
(a) (b)

FIGURE 5.6 Polarization of a nonpolar atom or molecule.
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@ FIGURE 5.7 Polarization of a polar molecule:
(a) permanent dipole (E = 0), (b) alignment
d of permanent dipole (E # 0).

@ e—@

(a) (b)

is said to be nonpolar. Examples of such dielectrics are hydrogen, oxygen, nitrogen, and the
rare gases. Nonpolar dielectric molecules do not possess dipoles until the application of
the electric field as we have noticed. Other types of molecule such as water, sulfur dioxide,
hydrochloric acid, and polystyrene have built-in permanent dipoles that are randomly ori-
ented as shown in Figure 5.7(a) and are said to be polar. When an electric field E is applied
to a polar molecule, the permanent dipole experiences a torque tending to align its dipole
moment parallel with E as in Figure 5.7(b).

Let us now calculate the field due to a polarized dielectric. Consider the dielectric material
shown in Figure 5.8 as consisting of dipoles with dipole moment P per unit volume. According
to eq. (4.80), the potential dV at an exterior point O due to the dipole moment P dv' is

_ Pragdy’

av = 24
47e R? (5-24)

where R* = (x — x')> + (y — y')* + (z — z')*and R s the distance between the volume
element dv’ at (x',y’,z') and the field point O (x, y, z). We can transform eq. (5.24) into
a form that facilitates physical interpretation. It is readily shown (see Section 7.7) that the
gradient of 1/R with respect to the primed coordinates is

1 a,
(-
R R
where V' is the del operator with respect to (x’, y’,z'). Thus,
P-a 1
. R V'(~>
R R

: FIGURE 5.8 A block of dielectric material
with dipole moment P per unit volume.

O(x, y,2)
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Applying the vector identity V' - fA = fV'- A + A-V'f,

P N
Ry <B) TR (5.25)

Substituting this into eq. (5.24) and integrating over the entire volume v' of the dielectric,
we obtain

1 E_ .
V=J Vi Wt E .
ot 47rs,,[ R R P]dv

Applying divergence theorem to the first term leads finally to

P:aj J’ -vV':P
V= L+ 4 3
i’ 4mre R 4 v 4me,R ol ()

where a}, is the outward unit normal to surface §' of the dielectric. Comparing the two
terms on the right side of eq. (5.26) with eqs. (4.68) and (4.69) shows that the two terms
denote the potential due to surface and volume charge distributions with densities (upon
dropping the primes):

Pps =P-a, (5.27a)
pp=-V-P (5.27b)

In other words, eq. (5.26) reveals that where polarization occurs, an equivalent volume
charge density p,, is formed throughout the dielectric, while an equivalent surface charge
density p,, is formed over the surface of the dielectric. We refer to p,, and p,, as bound (or
polarization) surface and volume charge densities, respectively, as distinct from free sur-
face and volume charge densities ps and p,. Bound charges are those that are not free to
move within the dielectric material; they are caused by the displacement that occurs on a
molecular scale during polarization. Free charges are those that are capable of moving over
macroscopic distance, as do electrons in a conductor; they are the stuff we control. The
total positive bound charge on surface S bounding the dielectric is

Q= jcp-ds = fp,,,. ds (5.28)

while the charge that remains inside S is

*Qy=Jppvdv= 7JV-Pdv (5.28b)

If the entire dielectric were electrically neutral prior to application of the electric field and
if we have not added any free charge, the dielectric will remain electrically neutral. Thus
the total charge of the dielectric material remains zero, that is,
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total charge = 7€ PpedS + f ppdv=0Q,—Q, =0
s v

We now consider the case in which the dielectric region contains free charge. If p, is the
volume density of free charge, the total volume charge density p, is given by

p=p,tpp=V-ekE (5.29)
Hence,
pp=V-eE = p,
= V:(gE+ P) (5.30)
=V-D
where

We conclude that the net effect of the dielectric on the electric field E is to increase D
inside it by the amount P. In other words, the application of E to the dielectric material
causes the flux density to be greater than it would be in free space. It should be noted that
the definition of D in eq. (4.35) for free space is a special case of that in eq. (5.31) because
P = 0 in free space.

For some dielectrics, P is proportional to the applied electric field E, and we have

where ,, known as the electric susceptibility of the material, is more or less a measure of
how susceptible (or sensitive) a given dielectric is to electric fields.

5.6 DIELECTRIC CONSTANT AND STRENGTH

By substituting eq. (5.32) into eq. (5.31), we obtain
D = &,(1 + Xx.) E = 5 E (5.33)
or

(5.34)

where

£ = g, (5.35)
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and

&=+ x= (5.36)

o

In egs. (5.33) to (5.36), € is called the permittivity of the dielectric, €, is the permittiv-
ity of free space, defined in eq. (4.2) as approximately 10 */367 F/m, and &, is called the
dielectric constant or relatve permittivity.

The dielectric constant (or relative permittivity) &, is the ratio of the permittivity of
the dielectric to that of free space.

It should also be noticed that &, and x, are dimensionless whereas ¢ and &, are in farads
per meter. The approximate values of the dielectric constants of some common materials
are given in Table B.2 in Appendix B. The values given in Table B.2 are for static or low-
frequency (<1000 Hz) fields; the values may change at high frequencies. Note from the
table that &, is always greater than or equal to unity. For free space &, = 1.

The theory of dielectrics we have discussed so far assumes ideal dielectrics. Practically
speaking, no dielectric is ideal. When the electric field in a dielectric is sufficiently large,
it begins to pull electrons completely out of the molecules, and the dielectric becomes
conducting. Dielectric breakdown is said to have occurred when a dielectric becomes con-
ducting. Dielectric breakdown occurs in all kinds of dielectric materials (gases, liquids, or
solids) and depends on the nature of the material, temperature, humidity, and the amount
of time that the field is applied. The minimum value of the electric field at which dielectric
breakdown occurs is called the dielectric strength of the dielectric material.

The dielectric strength is the maximum electric field that a dielectric can tolerate or
withstand without electrical breakdown. :

Table B.2 also lists the dielectric strength of some common dielectrics. Since our theory

of dielectrics does not apply after dielectric breakdown has taken place, we shall always
assume ideal dielectric and avoid dielectric breakdown.

5.7 LINEAR, ISOTROPIC, AND HOMOGENEOUS DIELECTRICS

A material is said to be linear if D varies linearly with E and nonlinear otherwise. Materials
for which & (or o) does not vary in the region being considered and is therefore the same
at all points (i.e., independent of x, y, z) are said to be homogeneous. They are said to be
inhomogeneous (or nonhomogeneous) when ¢ is dependent on the space coordinates. The
atmosphere is a typical example of an inhomogeneous medium; its permittivity varies with
altitude. Materials for which D and E are in the same direction are said to be isotropic. That is,
isotropic dielectrics are those that have the same properties in all directions. For anisotropic
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EXAMPLE 5.5

(or nonisotropic) materials, D, E, and P are not parallel; € or ¥, has nine components that are
collectively referred to as a tensor. For example, instead of eq. (5.34), we have

D, o &y B || x
D, 1= |8 & Eil||E (5.37)
D, & €y & || E:

for anisotropic materials. Crystalline materials and magnetized plasma are anisotropic.

A dielectric material (in which D = gE applies) is linear if £ does not change with the
applied E field, homogeneous if & does not change from point to point, and isotropic
if & does not change with direction. Although egs. (5.24) to (5.31) are for dielectric
materials in general, eqs. (5.32) to (5.34) are only for linear, isotropic materials.

The same idea holds for a conducting material in which J = o'E applies. The material is
linear if o does not vary with E, homogeneous if o is the same at all points, and isotropic
if o does not vary with direction.

For most of the time, we will be concerned only with linear, isotropic, and homogeneous
media. For such media, all formulas derived in Chapter 4 for free space can be applied by
merely replacing &, with &,&,. Thus Coulomb’s law of eq. (4.4), for example, becomes

. QQ
= 7471'80&}22 ap (5.38)
and eq. (4.96) becomes
1 2
w s e,6,E dv (5.39)

when applied to a dielectric medium.

A dielectric cube of side L and center at the origin has a radial polarization given by
P = ar, where a is a constant and r = xa, + ya, + za.. Find all bound charge densities
and show explicitly that the total bound charge vanishes.

Solution:

For each of the six faces of the cube, there is a surface charge density p,.. For the face located
at x = L/2, for example,

pps = Pra,

The total bound surface charge is
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L2

L2
Q;:Jppst:6J J Ppsdy dz =
N -Lr2

=L2

6al
—L
2

2
= 3al’
The bound volume charge density is given by

pp=-V:-P=—(ata+a)=-3a
and the total bound volume charge is
Q= J Ppydv = —3aJ dv = —3al’
Hence, the total charge is

Q=Q +Q =3al®—3al*=0

PRACTICE EXERCISE 5.5

A thin rod of cross-sectional area A extends along the x-axis from x = 0 to x = L. The
polarization of the rod is along its length and is given by P, = ax’ + b. Calculate p,, and
Pps at each end. Show explicitly that the total bound charge vanishes in this case.

Answer: 0, —2aL, —b, al’ + b, proof.

The electric field intensity in polystyrene (e, = 2.55) filling the space between the
plates of a parallel-plate capacitor is 10 kV/m. The distance between the plates is 1.5 mm.
Calculate:

(a) D

(b) P

(c) The surface charge density of free charge on the plates

(d) The surface density of polarization charge

(e) The potential difference between the plates

Solution:

1077
(a) D=¢ggkE= S X (2.55) X 10* = 225.4 nC/m?

(b) P = x.&E = (1.55) X %1: X 10* = 137 nC/m?
(c) ps=D-a,= =D, = * 2254nC/m?

(d) py=P-a,= *P,= *137nC/m’

(¢) V=Ed=101(15X10"%) =15V
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PRACTICE EXERCISE 5.6

A parallel-plate capacitor with plate separation of 2 mm has a 1 kV voltage applied to
its plates. If the space between its plates is filled with polystyrene (g, = 2.55), find E, P,
and p,.. Assume that the plates are located at x = 0 and x = 2 mm.

Answer: 500a, kV/m, 6.853a, uC/m?, 6.853 pC/m’.

A dielectric sphere (&, = 5.7) of radius 10 cm has a point charge of 2 pC placed at its
center. Calculate:

(a) The surface density of polarization charge on the surface of the sphere
(b) The force exerted by the charge on a —4 pC point charge placed on the sphere

Solution:

(a) Assuming that the point charge is located at the origin, we apply Coulomb’s or Gauss’s
law to obtain

=l e
e e’
X -
ame "
(e, — 1)Q (@47) 2 3107
Pps = B 4 = = —4
4me,” 47r(5.7) 100 X 10

= 13.12 pC/m?

P= xeE=

(b) From Coulomb’s law, we have

_ Qe (=4)@) x10
e’ 107° —
41 X ——(5.7) 100 X 10
36m
= —1.263a, pN

PRACTICE EXERCISE 5.7

i
In a dielectric material, E, = 5 V/mand P = o (3a, — a, + 4a,) nC/m”.
Calculate:

@) X.
(b) E
(c) D

Answer: (a) 2.16, (b) 5a, — 1.67a, + 6.67a, V/m, (c) 139.7a, — 46.6a, +
186.3a, pC/m>.
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Find the force with which the plates of a parallel-plate capacitor attract each other. Also
determine the pressure on the surface of the plate due to the field.
Solution:
From eq. (4.26), the electric field intensity on the surface of each plate is
_ Ps

E=—a,
2e

where a, is a unit normal to the plate and ps is the surface charge density. The total force
on each plate is

2
Ps psS
F=QE=p8:—a= a
Q Ps %™ 2gg M
or
_#s_@
2 28§
Pt
The pressure of force per area is S Notice that the dielectric affects the force or pressure.
£,8,

PRACTICE EXERCISE 5.8

Shown in Figure 5.9 is a potential-measuring device known as an electrometer. It is basi-
cally a parallel-plate capacitor with the guarded plate being suspended from a balance
arm so that the force F on it is measurable in terms of weight. If § is the area of each
plate, show that

2 Fd’l:|l/2

v,—v,=[£s

Answer: Proof.

pa) FIGURE 5.9 An electrometer; for Practice
Exercise 5.8.
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5.8 CONTINUITY EQUATION AND RELAXATION TIME

From the principle of charge conservation, the time rate of decrease of charge within a
given volume must be equal to the net outward current flow through the surface of the
volume. Thus current I, coming out of the closed surface is

_ _ —dQ,
Lo = fg’ as = ar (5.40)

where Q,, is the total charge enclosed by the closed surface. Invoking the divergence
theorem, we write

%]'dS=J'V']dV (5.41)
s v
But
—dQn _ ,EJ - _J 9y
- o vadv =~ % dv (5.42)

Substituting eqs. (5.41) and (5.42) into eq. (5.40) gives

9,
JV-]dv=—J Pt
y , ot

or

ap,
V-y=- 43
J = (5.43)

which is called the continuity of current equation or just continuity equation. It must be
kept in mind that the continuity equation is derived from the principle of conservation
of charge and essentially states that there can be no accumulation of charge at any point.
For steady currents, dp,/dt = 0, and hence V - J = 0, showing that the total charge leav-
ing a volume is the same as the total charge entering it. Kirchhoff’s current law follows
from this.

Having discussed the continuity equation and the properties o and & of materials,
it is appropriate to consider the effect of introducing charge at some interior point of a
given material (conductor or dielectric). We make use of eq. (5.43) in conjunction with
Ohm’s law

J=0E (5.44)

and Gauss’s law
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o (5.45)

£

Substituting eqs. (5.44) and (5.45) into eq. (5.43) yields

ap, ap,
V.0E=_p=Ai
€ at
or
ap, o
+—p, =0 5.46
e T b (5.46)

This is a homogeneous linear ordinary differential equation. By separating variables in
eq. (5.46), we get

= ——ot (5.47)
and integrating both sides gives
ot
Inp,=—-"~+Inp,
where In p,, is a constant of integration. Thus

0, = put™" (5.48)

where

(5.49)

and T, is the time constant in seconds.

In eq. (5.48), p,, is the initial charge density (i.e., p, at t = 0). The equation shows
that the introduction of charge at some interior point of the material results in a decay of
volume charge density p,. Associated with the decay is charge movement from the interior
point at which it was introduced to the surface of the material. The time constant T, is
known as the relaxation time or rearrangement time.

Relaxation time is the time it takes a charge placed in the interior of a material to
droptoe™' (= 36.8%) of its initial value.

Relaxation time is short for good conductors and long for good dielectrics. For example,
for copper o = 5.8 X 107 S/m, €, = 1, and
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&, 107° 1
T, = o 1X —
a 36w 5.8 X 107
=153 X 107"s (5.50)

showing a rapid decay of charge placed inside copper. This implies that for good conduc-
tors, the relaxation time is so short that most of the charge will vanish from any interior
point and appear at the surface (as surface charge) almost instantaneously. On the other
hand, for fused quartz, for instance, o = 1077 8/m, &, = 5.0,

107 1

X =43
36m 10
51.2 days

T 5

(5.51)

showing a very large relaxation time. Thus for good dielectrics, one may consider the
introduced charge to remain wherever placed for times up to days.

5.9 BOUNDARY CONDITIONS

So far, we have considered the existence of the electric field in a homogeneous medium. If
the field exists in a region consisting of two different media, the conditions that the field
must satisfy at the interface separating the media are called boundary conditions. These
conditions are helpful in determining the field on one side of the boundary if the field on
the other side is known. Obviously, the conditions will be dictated by the types of material
the media are made of. We shall consider the boundary conditions at an interface separating

« Dielectric (&,,) and dielectric (&,,)
« Conductor and dielectric
« Conductor and free space

To determine the boundary conditions, we need to use Maxwell’s equations:

%E -dl=0 (5:52)

and

j(D - dS = Qunc (5.53)
S

where Q.. is the free charge enclosed by the surface S. Also we need to decompose the
electric field intensity E into two orthogonal components:

E=E +E, (5.54)

where E, and E, are, respectively, the tangential and normal components of E to the
interface of interest. A similar decomposition can be done for the electric flux density D.
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A. Dielectric-Dielectric Boundary Conditions

Consider the E field existing in a region that consists of two different dielectrics character-
ized by &, = g,¢, and &, = &,¢,, as shown in Figure 5.10(a). The fields E, and E, in media
1 and 2, respectively, can be decomposed as

E, =E;+E, (5.55a)
E,=E, +E,, (5.55b)

We apply eq. (5.52) to the closed path abcda of Figure 5.10(a), assuming that the path is
very small with respect to the spatial variation of E. We obtain

Ah Ah A Ah
0= EyAw = By~ = By — Eylw + EZnTh + Bl (5.56)

Ah
where E, = |E,| and E, = |E,|. The - terms cancel, and eq. (5.56) becomes

0= (E, — Ey)Aw

AsAh — 0, eq. (5.56) becomes
(5:57)

Thus the tangential components of E are the same on the two sides of the boundary. In
other words, E, undergoes no change on the boundary and it is said to be continuous across
the boundary. Since D = ¢E = D, + D,, eq. (5.57) can be written as

D D,
?it =Ej = By = S_Z!
or
D D.
o (5.58)
€ &

(a) (b)

FIGURE 5.10 Dielectric-dielectric boundary: (a) determining E;, = E,,, (b) determining D;, = D,,.
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that is, D, undergoes some change across the interface. Hence D, is said to be discontinuous
across the interface.

Similarly, we apply eq. (5.53) to the pillbox (cylindrical Gaussian surface) of
Figure 5.10(b). The contribution due to the sides vanishes. Allowing Ah — 0 gives

AQ = psAS = Dy, AS — D,,AS

or

(5:59)

where py s the free charge density placed deliberately at the boundary. It should be borne in
mind that eq. (5.59) is based on the assumption that D is directed from region 2 to region
1 and eq. (5.59) must be applied accordingly. If no free charges exist at the interface (i.e.,
charges are not deliberately placed there), ps = 0 and eq. (5.59) becomes

In n (5.60)

Thus the normal component of D is continuous across the interface; that is, D, undergoes
no change at the boundary. Since D = &E, eq. (5.60) can be written as

&k, = &E,, (5.61)

showing that the normal component of E is discontinuous at the boundary. Equations
(5.57) and (5.59), or (5.60) are collectively referred to as boundary conditions; they must be
satisfied by an electric field at the boundary separating two different dielectrics.

As mentioned earlier, the boundary conditions are usually applied in finding the elec-
tric field on one side of the boundary given the field on the other side. Besides this, we can
use the boundary conditions to determine the “refraction” of the electric field across the
interface. Consider D, or E, and D, or E, making angles 6, and 6, with the normal to the
interface as illustrated in Figure 5.11. Using eq. (5.57), we have

E sinf, = E,, = E, = E,sin6,

FIGURE 5.11 Refraction of D or E
at a dielectric-dielectric boundary.
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or
E sinf, = E;sin6, (5.62)
Similarly, by applying eq. (5.60) or (5.61), we get
& E cos, = D,, = D,, = &,E, cos 0,
or
&E, cos 0, = &,E, cos 0, (5.63)
Dividing eq. (5.62) by eq. (5.63) gives

tanf, tan6,

= = (5.64)
Since &, = €,&, and €, = g£,&,, eq. (5.64) becomes
tanf, &,

=— (5.65)
tanf, &,

This is the law of refraction of the electric field at a boundary free of charge (since ps = 0 s
assumed at the interface). Thus, in general, an interface between two dielectrics produces
bending of the flux lines as a result of unequal polarization charges that accumulate on the
opposite sides of the interface.

B. Conductor-Dielectric Boundary Conditions

Figure 5.12 shows the case of conductor-dielectric boundary conditions. The conductor is
assumed to be perfect (i.e., 0 —> @ or p. = 0). Although such a conductor is not realiz-
able for most practical purposes, we may regard conductors such as copper and silver as
though they were perfect conductors.

Dielectric Dielectric

el (6= €480

()
FIGURE 5.12 Conductor-dielectric boundary.
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To determine the boundary conditions for a conductor-dielectric interface, we follow
the same procedure used for the dielectric-dielectric interface except that we incorporate
the fact that E = 0 inside the conductor. Applying eq. (5.52) to the closed path abcda of
Figure 5.12(a) gives

Ah Ah Ah Ah
0=0"Aw+ 0= +E, -~ —E-Aw—E,-= —0-— (5.66)
2 2 2 2

AsAh — 0,
B ) (5.67)

Similarly, by applying eq. (5.53) to the cylindrical pillbox of Figure 5.12(b) and letting
Ah — 0, we get

AQ=D,-AS —0-AS (5.68)

because D = ¢E = 0 inside the conductor. Equation (5.68) may be written as

D, = % = Ps
or
D, = ps (5.69)
Thus under static conditions, the following conclusions can be made about a perfect
conductor:

1. No electric field may exist within a conductor; that is, considering our conclusion
in Section 5.8,

p,=0, E=0 (5.70)

2. Since E = —VV = 0, there can be no potential difference between any two points
in the conductor; that is, a conductor is an equipotential body.

3. An electric field E must be external to the conductor and must be normal to its
surface; that is,

D, = e =0, D,=e,8E, = ps .71

An important application of the fact that E = 0 inside a conductor is in electrostatic screen-
ing or shielding. If conductor A kept at zero potential surrounds conductor B as shown in
Figure 5.13, B is said to be electrically screened by A from other electric circuits, such as
conductor C, outside A. Similarly, conductor C outside A is screened by A from B. Thus
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FIGURE 5.13 Electrostatic screening.

conductor A acts like a screen or shield, and the electrical conditions inside and outside the
screen are completely independent of each other.

C. Conductor-Free Space Boundary Conditions

The conductor-free space boundary conditions, illustrated in Figure 5.14, comprise a
special case of conductor-dielectric conditions. The boundary conditions at the interface
between a conductor and free space can be obtained from eq. (5.71) by replacing &, by 1
(because free space may be regarded as a special dielectric for which &, = 1). The electric
field E must be external to the conductor and normal to its surface. Thus the boundary
conditions are

rD, =eE =0, D,=eFE, =ps (5.72)

It should be noted again that eq. (5.72) implies that the E field must approach the conducting
surface normally.

FIGURE 5.14 Conductor-free space boundary.
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EXAMPLE 5.9

Two extensive homogeneous isotropic dielectrics meet on plane z = 0. For z > 0, &,, = 4
and for z <0, &, = 3. A uniform electric field E, = 5a, — 2a, + 3a.kV/m exists for
z = 0. Find

(a) E,forz=0

(b) The angles E, and E, make with the interface

(c) The energy densities (in J/m®) in both dielectrics

(d) The energy within a cube of side 2 m centered at (3, 4, —5)
Solution:

Let the problem be as illustrated in Figure 5.15.
(a) Since a, is normal to the boundary plane, we obtain the normal components as

E,=E -a,=E -a,=3
E,, = 3a,
E), = (E;-a,)a,

Also
E =E, + E,
Hence,
E, =E, — E;, = 5a, — 2a,
Thus

Ey = E, = 5a, — 2a,

FIGURE 5.15 For Example 5.9.
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Similarly,

D,, =D,, = euE,, = &,E),
or

E, = :—;El = %(3%) = i,
Thus

E, =E, + E,,

= 5a, — 2a, + 4a.kV/m

(b) Let @, and a; be the angles E, and E, they make with the interface while 6, and 6, are
the angles they make with the normal to the interface as shown in Figure 5.15; that is,

@ =90 — 6,
a, =90 — 0,

Since E,, = 3and E;, = V25 + 4 = V29
E, _ V2

tan 6, = - Punler e 1.795 — 6, = 60.9°
Hence,
@ = 29.1°
Alternatively,
E,-a,= |E/| 1-cosb,
or
cosf, = =t 0.4867 — 6, = 60.9°
V38
Similarly,
En=4 Ey=E,=V29
tanf, = % = ? = 1346 — 0, = 53.4°
Hence,

a, = 36.6°
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tanf, &, 9
= — is satisfied.
tan 6, &

Note that

(c) The energy densities are given by

=9

1 ! 10
Wm:ESJEI\ :§X4X o
T

X (25 + 4 +9) x 10°

= 672 wJ/m’

, 1 1072
= RisR
2 36m

1 6
W = EszlEz (25 + 4+ 16) X 10
= 597 uJ/m’
(d) At the center (3,4, —5) of the cube of side 2 m, z = —5 < 0; that is, the cube is in
region2with2 = x<4,3 <y =<5,-6 <z = —4. Hence

- 4 5 4
Wi = J W dv = J J' J Wy, dzdy dz = w,;Z(Z)(Z)(Z)
x=27y=3J2=-¢

597 X 8 uJ = 4.776 m]

PRACTICE EXERCISE 5.9

A homogeneous dielectric (g, = 2.5) fills region 1 (x < 0) while region 2 (x > 0) is

free space.

(a) If D, = 12a, — 10a, + 4a,nC/m’ find D, and 6,.

(b) If E, = 12V/m and 6, = 60° find E, and 6,. Take 6, and 6, as defined in
Example 5.9.

Answer: (a) 12a, — 4a, + 1.6a, nC/m?, 19.75°, (b) 10.67 V/m, 77°.

Region y < 0 consists of a perfect conductor while region y > 0 is a dielectric medium
&;, = 2) as in Figure 5.16. If there is a surface charge of 2 nC/m? on the conductor, deter-
mine E and D at

(a) A(3,-2,2)
(b) B(-4,1,5)
Solution:

(a) Point A(3, —2,2) is in the conductor since y = —2 < 0 at A. Hence,

(b) Point B(—4, 1,5) is in the dielectric medium since y = 1 > 0 at B.

D, = ps = 2nC/m?
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@onductor

FIGURE 5.16 For Example 5.10.

Hence,
D = 2a,nC/m’
and
D 36
E=——=2X107 X " X 10°a, = 367a,
€46 2
=113.1a,V/m

PRACTICE EXERCISE 5.10

It is found that E = 60a, + 20a, — 30a, mV/m at a particular point on the interface
between air and a conducting surface. Find D and pj at that point.

Answer: 0.531a, + 0.177a, — 0.265a, pC/m’, 0.619 pC/m’.

15,10 APPLICATION NOTE—MATERIALS WITH HIGH
DIELECTRIC CONSTANT

This section is included in recognition of the growing importance of high dielectric
constant materials to the semiconductor industry. As we noticed earlier in this chapter,
the dielectric constant of a material is a property that determines its ability to become
electrically polarized. The higher the dielectric constant, the more charge you can store,
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and the smaller you can make electronic circuits. High dielectric constant materials are
increasingly important for pushing the state of the art in semiconductor integrated circuits.
These materials, which find numerous technological applications, are necessary when high
capacitance values are required. For example, to reduce the size of a dielectric resonator
it is necessary to increase the dielectric constant of the material used. This is because at
a fixed frequency, the diameter of the resonator is inversely proportional to the square root
of the dielectric constant. Unfortunately, the higher the dielectric constant of a material, the
higher its dielectric loss, as will be shown in Chapter 10.

High dielectric constants have been discovered in oxides of the type ACu;Ti,O,,. The
most exceptional behavior is exhibited by a perovskite-related oxide containing calcium
(Ca), copper (Cu), titanium (Ti), and oxygen (O) in the formula CaCu;Ti,O,,. This material
is unusual in that it has an extremely high dielectric constant—about 11,000 (measured at
100 kHz). In addition, unlike most dielectric materials, this one retains its enormously high
dielectric constant over a wide range of temperatures, from 100 to 600 degrees kelvin (K)
(or =173 to 327°C), making it ideal for a wide range of applications.

High dielectric constant materials are of great interest for other high-performance
electric devices as well. One technology currently under development uses barium stron-
tium titanate (BST), planned for use in dynamic random access memories (DRAMs).
Although the dielectric constants are considerable, one disadvantage is the need for plati-
num electrodes. Another example occurs in radio frequency identification (RFID) chips,
which require high capacitance to store charge. Frequently these use separate discrete
devices, which are undesirably high in cost and low in yield.”

5.11 APPLICATION NOTE—GRAPHENE

All solid materials are supposed to have three dimensions. But graphene is a
two-dimensional material made up of a single planar array of carbon atoms densely
packed in a honeycomb or chicken-wire fashion, as shown in Figure 5.17. It has the small-
est thickness and yet is one of the strongest of solids. Both the electrical conductivity and
the thermal conductivity of graphene are very very high. Graphene is almost completely
transparent, yet so dense that even the smallest atom, helium, cannot pass through it.
Graphene has drawn enormous curiosity on account of its unusual properties, which have
many potential applications.

Every pencil lead has graphite, and a line drawn by a pencil is a primitive form of
graphene. Around 1947 Philip Wallace first studied the theoretical aspects of graphite as
its thickness was reduced. The name graphene was first coined in 1987 by S. Mouras and
coworkers to describe the graphite layers that had various compounds inserted between
them. In a sense, carbon nanotubes are rolled-up graphene sheets.

Originally, graphene was thought to be unstable in its free form; but in 2003, Andre
Geim and Kostya Novoselov at the University of Manchester succeeded in producing the

? For more information about high dielectric constant materials, see H. S. Nalwa, Handbook of Low and High
Dielectric Constant Materials and Their Applications. San Diego, CA: Academic Press, 1999, vols. 1 and 2.
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FIGURE 5.17 The structure of graphene.

first isolated graphene flakes, and their work was published in 2004. Their groundbreak-
ing experiments, for which they received the 2010 Nobel Prize for Physics, showed how
isolated graphene can be put to use in real-life applications. After the 2004 publication by
Geim and Novoselov, other researchers began studying the properties of graphene. The
Manchester group further showed that graphene at room temperature exhibits the quan-
tum Hall effect, which had not been seen in other materials. The carrier mobility of gra-
phene is very high, and this property can be exploited in making fast electronic devices.
Also graphene could be used as a chemical sensor to detect molecules of adsorption. With
its carbon-carbon bond length of about 0.142 nm, graphene can also be considered as an
indefinitely large aromatic molecule, the limiting case of the family of polycyclic aromatic
hydrocarbons.

Electrodes with a very high surface area and very low electrical resistance can be made
from graphene. Adding graphene to epoxy composites may result in stronger/stiffer com-
ponents than can be made from epoxy composites containing a similar weight of carbon
nanotubes. Graphene appears to bond better to the polymers in the epoxy, allowing more
effective coupling of the graphene into the structure of the composite. This property could
result in the manufacture of components with high strength-to-weight ratio for such uses
as windmill blades or aircraft components.

Today, materials used in making solar cells are expensive, and the required manu-
facturing techniques are complicated. But if graphene is used as an electrode, while
buckyballs and carbon nanotubes are employed to absorb light and generate electrons, it
is possible to make solar cells more efficiently and at lower cost. Other potential applica-
tions of graphene include making high-speed electronic transistors, integrated circuits,
and low-cost display screens for mobile devices. Lithography techniques can be used
to fabricate integrated circuits based on graphene. It is also forecast that graphene can
replace indium-based electrodes in organic light-emitting diodes (OLED), which are
used in electronic device display screens that require low power consumption. The use
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of graphene instead of indium not only reduces the cost but eliminates the use of met-
als in the OLED, which may make devices easier to recycle. In yet another application,
graphene layers are used to increase the binding energy of hydrogen to the graphene
surface in a fuel tank, resulting in more hydrogen storage and therefore a lighter weight
fuel tank. Such a component could be useful in the development of practical hydrogen-

fueled cars.

% This script computes parts (a) and (b) for Example 5.1
% using discrete summation approximation for the integration
clear
% the parameters of the shell
r = 0.2;
% Part (a)
sum=0; % set initial total sum to zero
theta_inc=1/10; % choose a suitably small increment
% for the integral
phi_inc=1/10; % choose a suitably small increment
% for the integral
dtheta=theta inc*pi/2;
dphi=phi_inc*2*pi;
for theta=0:dtheta:pi/2, % outer integral loop
for phi=0:dphi:2*pi, % inner integral loop
% add the partial sums to the total sum
sum=sum + 1/r”3*2*cos(theta)*r”"2*sin(theta)*dtheta*dphi;
end
end
% display the output
disp( v)
disp(sprintf( The total current through the ‘))
disp(sprintf( ® hemispherical shell is %f A’, sum))
% Part (b)
sum=0; % set initial total sum to zero
r.=0.1;
dtheta=theta_inc*pi;
dphi=phi_inc*2*pi;
for theta=0:dtheta:pi, % outer integral loop
for phi=0:dphi:2*pi, % inner integral loop
% add the partial sums to the total sum
sum=sum + 1/r"3*2*cos(theta)*r”2*sin(theta)*dtheta*dphi;
end
end
% display the output
disp( v)
disp(sprintf( The total current through the’))
disp(sprintf( ®' spherical shell is %f A’, sum))
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This script allows the user to enter an electric field
on either side of a dielectric boundary and compute the
electric field on the other side of the boundary

%
%
%
%
% The boundary is assumed to be the plane z=0, with E1l the
% field in
% the region z >=0 and E2 the field in the region z <= 0
%
% inputs: El or E2, erl and er2 (the relative permittivities
% of both media outputs: E1 or E2, the field not input by
% the user
clear
% prompt user for input materials
disp( Enter the relative permittivity in the region Y;
erl = input( ‘'z > 0... \n > Y;
if isempty(erl); erl = 1; elseif erl < 1; erl = 1; end
% check if dielectric is physical
disp( Enter the relative permittivity in the region Y;
er2 = Input( 'z < 0..: \n > Nos
if isempty(er2); er2 = 1; elseif er2 < 1; er2 = 1; end
% check if dielectric is physical
% prompt the user for the region
disp( Enter the side of the interface where the electric Y;
side = input( field is known (given)... \n > Y
% if user entered something other than ¥” ¥” or W&~
% set default as Yt”
if isempty(side); side = 1; elseif side > 2; side = 2; end
% check if dielectric is physical
if side == 1;
% prompt the user for the field
disp( Enter the electric field in side 1 in the Y;
El = input( ® form [Ex Ey Ez]... \n >');:
Eln = E1(3)*[0 0 1]; % normal direction is +z
E2n = Eln*erl/er2; % e-field boundary condition
% for normal component
Elt = E1 - Eln; % tangential component of E1
E2t = Elt; % e-field boundary condition for
% tangential component
E2 = E2t + E2n;
elseif side == 2;
% prompt the user for the field
disp( Enter the electric field in side 2 in the Y);
E2 = input( ‘' form [EX Ey Ez]... \n >');
E2n = E2(3)*[0 0 1]; % normal direction is +z
Eln = E2n*er2/erl; % e-field boundary condition
% for normal component
E2t = E2 - E2n; % tangential component of E2
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Elt = E2t; % e-field boundary condition for
%tangential component

El = Elt + Eln;

else
disp( Invalid specification, please re-try \n’);

end

% Display results

disp (sprintf (‘The electric fields are ‘'));

disp (sprintf(\n E1l = (%d, %d, %d) V/m' El (1), E1(2), E1(3)));

disp(sprintf (*\n E2 = (¥d, %4, $d), V/m/ E2(1), E2(2}, BE2(3)));

SUMMARY

1. Materials can be classified roughly as conductors (o >> 1, &, = 1) and dielectrics
(0 << 1,&, = 1) in terms of their electrical properties o and &,, where o is the con-
ductivity and &, is the dielectric constant or relative permittivity.

2. Electric current is the flux of electric current density through a surface; that is,

I= J J-dS
3. The resistance of a conductor of uniform cross section is
_ 4
a$

4. The macroscopic effect of polarization on a given volume of a dielectric material is to
“paint” its surface with a bound charge Q, = ¢ p,, dS and leave within it an accumu-
lation of bound charge Q, = fvppv dv, where p,, = P-a,and p,, = =V - P.

5. In a dielectric medium, the D and E fields are related as D = €E, where ¢ = g.¢, is
the permittivity of the medium while E and P are related as P = y,¢,E.

6. The electric susceptibility x, (= &, — 1) of a dielectric measures the sensitivity of the
material to an electric field.

7. A dielectric material is linear if D = ¢E holds, that is, if € is independent of E. It is
homogeneous if & is independent of position. It is isotropic if & is a scalar.

8. The principle of charge conservation, the basis of Kirchhoff’s current law, is stated in
the continuity equation

at
9. The relaxation time, T, = &/o, of a material is the time taken by a charge placed in its
interior to decrease by a factor of ¢ ' or to = 37% of its original magnitude.
10. Boundary conditions must be satisfied by an electric field existing in two different
media separated by an interface. For a dielectric-dielectric interface

v+

Ey = Ey
Dy, = Dy, =ps or D, =D, if p;=0
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For a dielectric-conductor interface,
E =0, D,=¢E, = ps
because E = 0 inside the conductor.

11. Materials of high dielectric constant are of great interest for high-performance elec-
tronic devices.

REVIEW
QUESTIONS 5.1 Which is not an example of convection current?

(a) A moving charged belt

(b) Electronic movement in a vacuum tube
(c) An electron beam in a television tube

(d) Electric current flowing in a copper wire

5.2 What happens when a steady potential difference is applied across the ends of a conduct-
ing wire?

(a) All electrons move with a constant velocity.
(b) All electrons move with a constant acceleration.

(¢) The random electronic motion will, on the average, be equivalent to a constant veloc-
ity of each electron.

(d) The random electronic motion will, on the average, be equivalent to a nonzero con-
stant acceleration of each electron.

5.3 The formula R = €/(0S) is for thin wires.
(a) True (c) Not necessarily

(b) False

5.4 Seawater has &, = 80. Its permittivity is
(a) 81 (c) 5.162 X 10" F/m
(b) 79 (d) 7.074 X 10" F/m

5.5 Both ¢, and y, are dimensionless.

(a) True (b) False

56 IfV-D =¢gV-Eand V-] = oV -Ein a given material, the material is said to be
(a) Linear (d) Linear and homogeneous
(b) Homogeneous (e) Linear and isotropic

(c) Isotropic (f) Isotropic and homogeneous
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5.7

5.8

59

The relaxation time of mica (o = 107"*S/m, &, = 6) is

(a) 5% 107"s (d) 10 hr
(b) 10°°s (e) 15hr
(c) 5hr

The uniform fields shown in Figure 5.18 are near a dielectric-dielectric boundary but on
opposite sides of it. Which configurations are correct? Assume that the boundary is charge
free and that &, > &,.

Which of the following statements are incorrect?

(a) The conductivities of conductors and insulators vary with temperature and frequency.

(b) A conductor is an equipotential body in steady state, and E is always tangential to the
conductor.

(c) Nonpolar molecules have no permanent dipoles.
(d) In alinear dielectric, P varies linearly with E.

FIGURE 5.18 For Review Question 5.8.
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The electric conditions (charge and potential) inside and outside an electric screening are
completely independent of one another.

(a) True (b) False

Answers: 5.1d, 5.2¢, 5.3¢, 5.4d, 5.5b, 5.6d, 5.7e, 5.8¢, 5.9b, 5.10a.

P BLEMS P 3 v
Section 5.3—Convection and Conduction Currents

5.1

5.2

5.3

5.4

5.5

Let the current density be ] = ¢ *cos 4 ya, + ¢ *sin 4 ya, A/m’. Determine the current
crossing the surfacex =2, 0 <y <m/3, 0 <z<4.

P : 10 _ip . S 3
In a certain region, ] = — e '"‘a, A/m’. Determine how much current is crossing
surfacer =4matt =2 ms.

10 2 : .
Given that J = —sin ¢a, A/m’, determine the current flowing through the surface
p=20<¢p<m0<z<5m

In a cylindrical conductor of radius 4 mm, the current density is J = 5¢ '%a, A/m’
Find the current through the conductor.

The charge 10~*¢™* C is removed from a sphere through a wire. Find the current in the
wireatt = 0and t = 25s.

Section 5.4—Conductors

5.6

5.7

5.8

59

5.10

5.11

A1 M resistor is formed by a cylinder of graphite—clay mixture having a length of 2 cm
and a radius of 4 mm. Determine the conductivity of the resistor.

If the ends of a cylindrical bar of carbon (o = 3 X 10 $/m) of radius 5 mm and length
8 cm are maintained at a potential difference of 9V, find (a) the resistance of the bar,
(b) the current through the bar, (c) the power dissipated in the bar.

A conducting wire is 2 mm in radius and 100 m in length. When a dc voltage of 9 V
is applied to the wire, it results in a current of 0.3 A. Find: (a) the E-field in the wire,
(b) the conductivity of the wire.

‘Two wires have the same diameter and same resistance. If one is made of copper, and the
other is of silver, which wire is longer?

A 50-m-long brass wire dissipates an average power of 2 kW when 120 V rms at 60 Hz
is applied. If 0 = 1.5 X 107 $/m for brass, find the radius of the wire.

A composite conductor 10 m long consists of an inner core of steel of radius 1.5 cm and
an outer sheath of copper whose thickness is 0.5 cm. Take the resistivities of copper and
steel as 1.77 X 10 ®and 11.8 X 107 () - m, respectively.

(a) Determine the resistance of the conductor.
(b) If the total current in the conductor is 60 A, what current flows in each metal?

(c) Find the resistance of a solid copper conductor of the same length and cross-sectional
areas as the sheath.
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a FIGURE 5.19 For Problem 5.12.
- —
b P
\
c 123
5.12  The cross section of a conductor made with two materials with resistivities p, and p, is

shown in Figure 5.19. Find the resistance of length € of the conductor.

Sections 5.5-5.7—Polarization and Dielectric Constant

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21
5.22

523

5.24

At a particular temperature and pressure, a helium gas contains 5 X 10* atoms/m”’. If a
10 kV/m field applied to the gas causes an average electron cloud shift of 10™* m, find
the dielectric constant of helium.

A dielectric material contains 2 X 10" polar molecules/m’, each of dipole moment
1.8 X 1077 C - m. Assuming that all the dipoles are aligned in the direction of the elec-
tric field E = 10°a, V/m, find P and «,.

In a certain region, D = 420 nC/m?and ¢ = 5.2¢,. Find x,, E, and P.

A 10 mC point charge is embedded in wood, which has & = 4.0. Assuming that the
charge is located at the origin, find P at r = 1 m.

100
In a certain dielectric for which &, = 3.5, given that P = —=a, nC/m?, find E and D at
p=2m g
A cylindrical slab has a polarization given by P = p, pa,. Find the polarization charge
density p,, inside the slab and its surface charge density p,..

A spherical shell has r = 1.2 cm and r = 2.6 cm as inner and outer radii, respectively. If
P = 4ra, pC/m’ determine (a) the total bound surface charge on the inner surface, (b)
the total bound surface charge on the outer surface, (c) the total bound volume charge.

In a slab of Teflon (& = 2.1¢,), E = 6a, + 12a, — 20a, V/m, find D and P.
In a certain region (& = 5¢,), V = 10 pz sin ¢. Find D.

In a dielectric material (¢ = 5¢,), the potential field V = 10x’yz — 5z* V, determine
(a) E, (b) D, (c) P, (d) p,.

Determine the polarization P in a dielectric material with &, = 2.4 and D = 450 a, nC/m’.
Consider Figure 5.20 as a spherical dielectric shell so that & = g,¢,fora < r < b and
& = g,for 0 < r < a.Ifacharge Qs placed at the center of the shell, find

(@) Pfora<r<b

(b) ppfora<r<b

(c) ppatr =aandr=1"b
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FIGURE 5.20 For Problem 5.24.

5.25 Two point charges in free space are separated by distance d and exert a force 2.6 nN on
each other. The force becomes 1.5 nN when the free space is replaced by a homogeneous
dielectric material. Calculate the dielectric constant of the material.

*5.26 A conducting sphere of radius a has a total charge Q uniformly distributed on its surface.

(a) If the sphere is embedded in a medium with permittivity &, find the energy stored.
2
(b) Repeat part (a) if the permittivity varies as & = &, (1 + %) .

5.27 A solid sphere of radius a and dielectric constant &, has a uniform volume charge
density of p,.

(a) At the center of the sphere, show that
P’

y= 2, + 1
6308,(8’ )

(b) Find the potential at the surface of the sphere.

5.28 In an anisotropic medium, D is related to E as

D,
D, | =gy

z

—_—.

1 1
3 1
1 2

1

Find D due to E = E,(a, + a, — a,) V/m.

Section 5.8—Continuity Equation and Relaxation Time

5.29 For static (time-independent) fields, which of the following current densities are

possible?

(@) J = 2xya, + 4x’7a, — 6yza, ) J = xya, + y(z + 1)a, + 2a,
Z sin 0

(c)]=;a,,+zcosd)az (d)]=7a,

5.30 IfJ = e ¥ sin 2xa, + e ¥ cos 2xa, + za, A/m’, find the rate of change of the electric
charge density.
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5.31

5.32

5.33

5.34

5.35

100
K] = —a, A/m? find (a) the time rate of increase in the volume charge density, (b) the
P

total current passing through surface defined by p = 2,0 <z < 1,0 < ¢ < 277,

0.5
In spherical coordinates, ] = —— exp(—10"t)a, A/m?. Determine p,(r, t) assuming that
ast—x,p,— 0. r

The current density is given by J = 0.5 sin 7xa, A/m’. Determine the time rate of
increase of the charge density (i.e., dp,/dt) at point (2, 4, —3).

Determine the relaxation time for each of the following media:

(a) Hard rubber (o0 = 107"°S/m, & = 3.1¢,)

(b) Mica (o = 107" S$/m, & = 6g,)

(c) Distilled water (o = 107*S$/m, & = 80¢,)

Lightning strikes a dielectric sphere of radius 20 mm for which &, = 2.5, o =

5 X 107°S/m and deposits uniformly a charge of 1 C. Determine the initial volume
charge density and the volume charge density 2 us later.

Section 5.9—Boundary Conditions

5.36

5.37

5.38

5.39

5.40

5.41

*5.42

The plane z = 0 separates region 1 (z > 0), which is a dielectric material with
£, = 4, from region 2 (z < 0), which is also a dielectric material with &, = 6.5. If
D, = 16a, + 30a, — 20a, nC/m? find P, and D,.

Given that D = 50a, + 80a, — 30a, nC/m? in region x > 0 where & = 2.1, find D in
region x < 0 where £ = 7.6¢,,.

A dielectric interface is defined by 4x + 3y = 10 m. The region including the origin is
free space, where D, = 2a, — 4a, + 6.5a, nC/m? In the other region, &,, = 2.5. Find D,
and the angle 6, that D, makes with the normal.

Given that E, = 10a, — 6a, + 12a, V/m in Figure 5.21, find (a) P, (b) E, and the angle
E, makes with the y-axis, (c) the energy density in each region.

Two homogeneous dielectric regions 1 (p = 4 cm) and 2 (p = 4 cm) have dielectric
constants 3.5 and 1.5, respectively. If D, = 12a, — 6a, + 9a,nC/m’ calculate (a) E,
and D, (b) P, and p,,,,, () the energy density for each region.

A conducting sphere of radius a is half-embedded in a liquid dielectric medium of
permittivity £, as in Figure 5.22. The region above the liquid is a gas of permittivity
&,. If the total free charge on the sphere is Q, determine the electric field intensity
everywhere.

Two parallel sheets of glass (e, = 8.5) mounted vertically are separated by a uniform
air gap between their inner surface. The sheets, properly sealed, are immersed in oil
(e, = 3.0) as shown in Figure 5.23. A uniform electric field of strength 2 kV/m in
the horizontal direction exists in the oil. Calculate the magnitude and direction of the
electric field in the glass and in the enclosed air gap when (a) the field is normal to the
glass surfaces and (b) the field in the oil makes an angle of 75° with a normal to the glass
surfaces. Ignore edge effects.
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FIGURE 5.21 For Problem 5.39. FIGURE 5.22 For Problem 5.41.

5.43 Atapoint on a conducting surface, E = 30a, — 40a, + 20a, mV/m. Calculate the surface
charge density at that point.

5.44 (a) Given that E = 15a, — 8a,V/m at a point on a conductor surface, what is the
surface charge density at that point? Assume & = &,.

(b) Region y = 2 is occupied by a conductor. If the surface charge on the conductor
is —20 nC/m?, find D just outside the conductor.

5.45 Two planar slabs of equal thickness but with different dielectric constants are shown in

Figure 5.24. E, in air makes an angle of 30° with the z-axis. Calculate the angle that E
makes with the z-axis in each of the two dielectric layers.

Glass

Oil Oil

|

Air

FIGURE 5.23 For Problem 5.42. FIGURE 5.24 For Problem 5.45.




Pierre-Simon de Laplace (1749-1827), a French astronomer and math-
ematician, discovered the Laplace transform and Laplace’s equation, to be
discussed in this chapter. He believed the world was entirely deterministic.
To Laplace, the universe was nothing but a giant problem in calculus.
] Born of humble origins in Beaumont-en-Auge, Normandy, Laplace
| became a professor of mathematics at the age of 20. His mathematical
| abilities inspired the famous mathematician Siméon Poisson, who called
Laplace the Isaac Newton of France. Laplace made important contributions
- SIS in potential theory, probability theory, astronomy, and celestial mechanics.
He was widely known for his work Traité de Mécanique Céleste (Celestial Mechanics), which
supplemented the work of Newton on astronomy. Laplace is one of the few giants in the history of
probability and statistics. He was born and died a Catholic.

L

Siméon-Denis Poisson (1781-1840), a French mathematical physicist
whose name is attached to a wide area of ideas: Poisson’ integral, Poisson’s
equation in potential theory (to be discussed in this chapter), Poisson
brackets in differential equations, Poisson’s ratio in elasticity, the Poisson
distribution in probability theory, and Poisson’s constant in electricity.

Born at Pithviers, south of Paris, the son of a retired soldier, Siméon
Poisson was originally forced to study medicine by his family, but he began
to study mathematics in 1798 at the Ecole Polytechnique at the age of 17.
His abilities excited the interest of his teachers Lagrange and Laplace, whose |
friendship he retained to the end of their lives. A paper on finite differences, written when Poisson
was 18, attracted the attention of Legendre. Poisson’s chief interest lay in the application of mathemat-
ics to physics, especially in electrostatics and magnetism. Poisson made important contributions to
mechanics, theory of elasticity, optics, calculus, differential geometry, and probability theory. He
published between 300 and 400 mathematical works.




CHAPTER

ELECTROSTATIC BOUNDARY-
VALUE PROBLEMS

People can be divided into three groups: those who make things happen; those who

watch things happen; and those who wonder what happened.
—JOHN NEWBERN

6.1 INTRODUCTION

The procedure for determining the electric field E in the preceding chapters has generally
been to use either Coulomb’s law or Gauss’s law when the charge distribution is known, or
E = —VV when the potential V is known throughout the region. In most practical situ-
ations, however, neither the charge distribution nor the potential distribution is known.

In this chapter, we shall consider practical electrostatic problems where only electro-
static conditions (charge and potential) at some boundaries are known and it is desired to
find E and V throughout the region. Such problems are usually tackled using Poisson’s or
Laplace’s equation or the method of images, and they are usually referred to as boundary-
value problems. The concepts of resistance and capacitance will be covered. We shall use
Laplace’s equation in deriving the resistance of an object and the capacitance of a capaci-
tor. Example 6.5 should be given special attention because we will refer to it often in the
remaining part of the text.

6.2 POISSON’S AND LAPLACE’S EQUATIONS

Poisson’s and Laplace’s equations are easily derived from Gauss’s law (for a linear, isotropic
material medium):

V:-D=V-¢E=p, (6.1)
and

E=-VV (6.2)

219
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Substituting eq. (6.2) into eq. (6.1) gives
V- (-eVV) =p, (6.3)

for an inhomogeneous medium. For a homogeneous medium, eq. (6.3) becomes

vy = 2 (6.4)
e

This is known as Poisson’s equation. A special case of this equation occurs when p, = 0
(i.e., for a charge-free region). Equation (6.4) then becomes

which is known as Laplace’s equation. Note that in taking & out of the left-hand side
of eq. (6.3) to obtain eq. (6.4), we have assumed that ¢ is constant throughout the
region in which V is defined; for an inhomogeneous region, ¢ is not constant and
eq. (6.4) does not follow eq. (6.3). Equation (6.3) is Poisson’s equation for an inho-
mogeneous medium; it becomes Laplace’s equation for an inhomogeneous medium
when p, = 0.

Recall that the Laplacian operator V* was derived in Section 3.8. Thus Laplace’s equa-
tion in Cartesian, cylindrical, or spherical coordinates, respectively, is given by

C+ =0 (6.6)

L[ I, AP ey -
pap\Pap) " pag T a2 '
14 ’lav " i 9. eav . 1 &V . 68)
—— —_ == BN e g
?ar\ dr ’sin 6 90 a0 rsin’ 6 d¢’

depending on the coordinate variables used to express V, that is, V(x,y,2), V(p, ¢, 2),
or V(r, 0, ¢). Poisson’s equation in those coordinate systems may be obtained by simply
replacing zero on the right-hand side of eqs. (6.6), (6.7), and (6.8) with —p,/e.

Laplace’s equation is of primary importance in solving electrostatic problems involv-
ing a set of conductors maintained at different potentials. Examples of such problems
include capacitors and vacuum tube diodes. Laplace’s and Poisson’s equations are not
only useful in solving electrostatic field problem; they are used in various other field
problems. For example, V would be interpreted as magnetic potential in magnetostatics,
as temperature in heat conduction, as stress function in fluid flow, and as pressure head
in seepage.
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16.3 UNIQUENESS THEOREM

Since there are several methods (analytical, graphical, numerical, experimental, etc.) of
solving a given problem, we may wonder whether solving Laplace’s equation in differ-
ent ways gives different solutions. Therefore, before we begin to solve Laplace’s equation,
we should answer this question: if a solution of Laplace’s equation satisfies a given set of
boundary conditions, is this the only possible solution? The answer is yes: there is only one
solution. We say that the solution is unique. Thus any solution of Laplace’s equation that
satisfies the same boundary conditions must be the only solution regardless of the method
used. This is known as the uniqueness theorem. The theorem applies to any solution of
Poisson’s or Laplace’s equation in a given region or closed surface.

The theorem is proved by contradiction. We assume that there are two solutions V, and
V, of Laplace’s equation, both of which satisfy the prescribed boundary conditions. Thus

VY, =0, V=10 (6.9a)
V, =V, on theboundary (6.9b)
We consider their difference
V=V, -V, (6.10)
which obeys
V3V, = V2V, — V3V, =0 (6.11a)
V4= 0 on the boundary (6.11b)

according to eq. (6.9). From the divergence theorem

J'V-Adv:§A-dS (6.12)

v S

where § is the surface surrounding volume v and is the boundary of the original problem.
We let A = V, VV, and use a vector identity

V-A=V-(VVV,) = V,V3V, + VV,-VV,
But V2V, = 0 according to eq. (6.11a), so
V-A=VV, VV, (6.13)
Substituting eq. (6.13) into eq. (6.12) gives
j YV, VVudv = fﬁ V,VV,-ds (6.14)
v s

From eqs. (6.9) and (6.11), it is evident that the right-hand side of eq. (6.14) vanishes.



222 CHAPTER 6 ELECTROSTATIC BOUNDARY-VALUE PROBLEMS
Hence,
J [ VV|2dv =0
v
Since the integrand is everywhere positive,
|VVi;=0 (6.15a)

or

V,; =V, — V, = constant everywhere in v (6.15b)

But eq. (6.15) must be consistent with eq. (6.9b). Hence, V, = 0 or V| = V, everywhere,
showing that V, and V, cannot be different solutions of the same problem.

This is the uniqueness theorem: If a solution to Laplace’s equation can be found that
satisfies the boundary conditions, then the solution is unique.

Similar steps can be taken to show that the theorem applies to Poisson’s equation and to
prove the theorem for the case where the electric field (potential gradient) is specified on
the boundary.

Before we begin to solve boundary-value problems, we should bear in mind the three
things that uniquely describe a problem:

1. The appropriate differential equation (Laplace’s or Poisson’s equation in this
chapter)
2. The solution region
3. The prescribed boundary conditions
A problem does not have a unique solution and cannot be solved completely if any of the
three items is missing.

6.4 GENERAL PROCEDURES FOR SOLVING POISSON’S OR
LAPLACE’S EQUATION

The following general procedure may be taken in solving a given boundary-value problem
involving Poisson’s or Laplace’s equation:

1. Solve Laplace’s (if p, = 0) or Poisson’s (if p, # 0) equation using either (a) direct
integration when V'is a function of one variable or (b) separation of variables if V
is a function of more than one variable. The solution at this point is not unique but
is expressed in terms of unknown integration constants to be determined.

2. Apply the boundary conditions to determine a unique solution for V. Imposing
the given boundary conditions makes the solution unique.

3. Having obtained V, find Eusing E = —VV, D from D = ¢E, and J fromJ = oE.



EXAMPLE 6.1

6.4 General Procedures for Solving Poisson’s or Laplace’s Equation 223

4. If required, find the charge Q induced on a conductor using Q = fs ps dS, where
ps = D, and D, is the component of D normal to the conductor. If necessary, the
capacitance of two conductors can be found using C = Q/V or the resistance of an
object can be found by using R = V/I, where I = f\] - dS.

Solving Laplace’s (or Poisson’s) equation, as in step 1, is not always as complicated as
it may seem. In some cases, the solution may be obtained by mere inspection of the prob-
lem. Also a solution may be checked by going backward and finding out if it satisfies both
Laplace’s (or Poisson’s) equation and the prescribed boundary condition.

Current-carrying components in high-voltage power equipment can be cooled to carry
away the heat caused by ohmic losses. A means of pumping is based on the force transmit-
ted to the cooling fluid by charges in an electric field. Electrohydrodynamic (EHD) pump-
ing is modeled in Figure 6.1. The region between the electrodes contains a uniform charge
po» which is generated at the left electrode and collected at the right electrode. Calculate the
pressure of the pump if p, = 25 mC/m*and V, = 22 kV.

Solution:

Since p, # 0, we apply Poisson’s equation

vy = -2

The boundary conditions V(z = 0) = V,and V(z = d) = 0 show that V depends only on
z (there is no p or ¢ dependence). Hence,

&V _
dz’ e
Integrating once gives
dv = —p.z
— = + A
dz €
Integrating again yields
pZ

V= ———+Az+ B
2e

FIGURE 6.1 An electrohydrodynamic pump; for
Example 6.1.

Area S




224 CHAPTER 6 ELECTROSTATIC BOUNDARY-VALUE PROBLEMS

where A and B are integration constants to be determined by applying the boundary condi-
tions. Whenz =0,V =V,

V,=-0+0+B > B=VY,

Whenz=4d,V =0,

dZ
0=-2% 4 ad+ v,
2e
or
A= Ld e &
T2 d
The electric field is given by
dv Wz
E=—Vy= -2ty = (p— = A)az
dz €

The net force is

d
F :Jpﬁdv:pojdsj’ Edz
v z=0
VoZ | Po .
= + =2(2 -
R I
F = p,SV,a,

The force per unit area or pressure is

F = 3 2
p =75 = poVo=25X 107 X 22 X 10° = 550 N/m

PRACTICE EXERCISE 6.1

In a one-dimensional device, the charge density is given by p, = pyx/a. If E = 0 at
x=0and V= 0atx = g, find Vand E.

poX

o s sy P
Answer: e (a ) e
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T
Light
E, %
Alre /}/}///
bttt

Photoconductor:

Recombination

&

FIGURE 6.2 For Example 6.2.

The xerographic copying machine is an important application of electrostatics. The surface
of the photoconductor is initially charged uniformly as in Figure 6.2(a). When light from
the document to be copied is focused on the photoconductor, the charges on the lower
surface combine with those on the upper surface to neutralize each other. The image is
developed by pouring a charged black powder over the surface of the photoconductor. The
electric field attracts the charged powder, which is later transferred to paper and melted
to form a permanent image. We want to determine the electric field below and above the
surface of the photoconductor.

Solution:

Consider the modeled version of Figure 6.2(a) shown in Figure 6.2(b). Since p, = 0 in this
case, we apply Laplace’s equation. Also the potential depends only on x. Thus

v
VW=-—==0
ax’
Integrating twice gives
YV=dx+ B

Let the potentials above and below x = a be V, and V,, respectively:
Vi=Ax+B, x>a (6.2.1a)
V,=Ax+B,, x<a (6.2.1b)
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The boundary conditions at the grounded electrodes are

Vilx=d) =0 (6.2.2a)
Volx =0) =0 (6.2.2b)
At the surface of the photoconductor,
Vilx=a) = Vy(x = a) (6.2.3a)
Dyy = Dy = py (6.2.3b)

x=a

We use the four conditions in egs. (6.2.2) and (6.2.3) to determine the four unknown con-
stants A, A, B), and B,. From egs. (6.2.1) and (6.2.2),

0=Ad+B, > B =—Ad (6.2.42)
0=0+B,—> B, =0 (6.2.4b)

From egs. (6.2.1) and (6.2.3a),

A+ B =Aua (6.2.5)
To apply eq. (6.2.3b), recall that D = ¢E = —¢VV so that
dv, dv,
ps = Dy, = Dy, = &y, — &;E,, = —& d_ + 8y——
% dx
or
ps = —€ A, + &A, (6.2.6)
Solving for A, and A, in egs. (6.2.4) to (6.2.6), we obtain
E = *Alax=——ﬂx—-———, as=x=d
&d &
e{l th = 7]
g a g
d
s\, 1)
E,=-Ap=-——"——"—= 0=x=ua
&d &
N PCTECY
g a g

PRACTICE EXERCISE 6.2

For the model of Figure 6.2(b), if p; = 0 and the upper electrode is maintained at V,,
while the lower electrode is grounded, show that

=V.a V.4
E = oxe "B — 7 oxe
d-—a+—a at+—2d-=2
& £ £

Answer: Proof.
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Semi-infinite conducting planes at ¢ = 0 and ¢ = 7/6 are separated by an infinitesimal
insulating gap as shown in Figure 6.3. If V(¢ = 0) = 0and V(¢ = 7/6) = 100 V, calcu-
late V and E in the region between the planes.

Solution:
Since V depends only on ¢, Laplace’s equation in cylindrical coordinates becomes
1 &V
VV=—s—m=0
o dg?
Since p = 0 is excluded owing to the insulating gap, we can multiply by p* to obtain
& v
So=0
dd
which is integrated twice to give
V=A¢ +B
We apply the boundary conditions to determine constants A and B. When ¢ = 0, V = 0,

0=0+B—=>B=0
Whenp = ¢, V=1V,

VO
Vo= Ag > A=

Hence,

FIGURE 6.3 Potential V(¢) due to
semi-infinite conducting planes.
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and
1dV V,

E=-VV=—-——a,=—"a,
pdd " pp, "

Substituting V,, = 100 and ¢, = 7/6 gives

600 —600
V—Tqb and E = = a,

Check: V'V = 0, V(¢ = 0) = 0, V(¢ = m/6) = 100.

PRACTICE EXERCISE 6.3

Two conducting plates of size 1 X 5 m are inclined at 45° to each other with a gap of
width 4 mm separating them as shown in Figure 6.4. Determine an approximate value
of the charge per plate if the plates are maintained at a potential difference of 50 V.
Assume that the medium between them has e, = 1.5.

Answer: 22.2 nC.

Two conducting cones (6§ = 7/10 and § = 7/6) of infinite extent are separated by an
infinitesimal gap at r = 0. If V(6 = 7/10) = 0 and V(6 = #/6) = 50V, find V and E
between the cones.

Solution:
Consider the coaxial cone of Figure 6.5, where the gap serves as an insulator between the
two conducting cones. Here V depends only on 6, so Laplace’s equation in spherical coor-
dinates becomes
1 d dv
Vs ———giig—| =
rsin 6 df

FIGURE 6.4 For Practice Exercise 6.3.

Gap of width 4 mm
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FIGURE 6.5 Potential V(6) due to conducting cones; for
Example 6.4.

Integrating once gives

or

Integrating this results in

S

j g A J do
sinf 2 cos 6/2 sin 6/2
o J 1/2 sec’ 0/2 do

tan 6/2

4 J d(tan 6/2)
tan 6/2

= Aln(tan 6/2) + B
We now apply the boundary conditions to determine the integration constants A and B.
V(0 =6,)=0—>0=Aln(tan6,/2) + B

or
B = —Aln(tan 6,/2)
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Hence,
V=4 ln[t—a" 9/2}
tan 6,/2
Also
tan 6,/2
Ve =6,)=V, > V,=Al
( ) ° ° n[tan 0,/2]
or
- VD
B tan 6,/2
In| ——
tan 6,/2
Thus
[tan 0/2]
o 1n
_ tan 6,/2
[tan 02/2]
In
tan 6,/2
14V A
E=-VV= —ay=———
do % rsin 6 L
— s V"
. tan 6,/2 %
rsin 6 In
tan 6,/2
Taking 6, = 7/10, §, = /6, and V, = 50 gives
tan 6/2
0 an tan 6/2
V= =951In
ln[tan /12 0.1584
tan /20
and
95.1
= ———a,V/m
rsin 6

Check: V2V = 0, V(6 = 7/10) = 0, V(8 = w/6) =V,
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FIGURE 6.6 For Practice Exercise 6.4.

PRACTICE EXERCISE 6.4

A large conducting cone ( = 45°) is placed on a conducting plane with a tiny gap
separating it from the plane as shown in Figure 6.6. If the cone is connected to a 50 V
source, find Vand E at (—3, 4,2).

Answer: 27.87 V, —11.35a, V/m.

(a) Determine the potential function for the region inside the rectangular trough of infi-
nite length whose cross section is shown in Figure 6.7.
(b) For V, = 100V and b = 2a, find the potential at x = a/2, y = 3a/4.

Solution:
(a) The potential V in this case depends on x and y. Laplace’s equation becomes

92 +W=O (6.5.1)

J

FIGURE 6.7 Potential V(x, y) due to
a conducting rectangular trough; for
Example 6.5.
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We have to solve this equation subject to the following boundary conditions:

Vix =0,0=y<a)=0 (6.5.2a)
Vix =b0=y<a)=0 (6.5.2b)
V0=x=by=0)=0 (6.5.2¢)
V0<x<by=a)=V, (6.5.2d)

We solve eq. (6.5.1) by the method of separation of variables; that is, we seek a product
solution of V. Let

V(x,y) = X(x) Y(y) (6.5.3)

where X is a function of x only and Y is a function of y only. Substituting eq. (6.5.3) into
eq. (6.5.1) yields
XY+ Y'X=0
Dividing through by XY and separating X from Y gives
Xy

X ¥

Since the left-hand side of this equation is a function of x only and the right-hand side is a
function of y only, for the equality to hold, both sides must be equal to a constant A; that is,

(6.5.4a)

X ¥
*7 == 7 = (6.5.4b)
The constant A is known as the separation constant. From eq. (6.5.4b), we obtain
X"+ AX=0 (6.5.5a)
and
Y'—AY=0 (6.5.5b)

Thus the variables have been separated at this point and we refer to eq. (6.5.5) as separated
equations. We can solve for X(x) and Y(y) separately and then substitute our solutions into
eq. (6.5.3). To do this requires that the boundary conditions in eq. (6.5.2) be separated, if
possible. We separate them as follows:

Vv(0,y) = X(0)Y(y) = 0 = X(0) = 0 (6.5.6a)
V(b,y) = X(b)Y(y) =0 = X(b) =0 (6.5.6b)
V(x,0) = X(x)Y(0) =0 = Y(0) =0 (6.5.6¢)
V(x,a) = X(x)Y(a) = V, (inseparable) (6.5.6d)

To solve for X(x) and Y(y) in eq. (6.5.5), we impose the boundary conditions in eq. (6.5.6).
We consider possible values of A that will satisfy both the separated equations in eq. (6.5.5)
and the conditions in eq. (6.5.6).
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CASE 1.
If A = 0, then eq. (6.5.5a) becomes
X"=0 or ﬂ =0
ax
which, upon integrating twice, yields
X=Ax+B (6.5.7)

The boundary conditions in egs. (6.5.6a) and (6.5.6b) imply that
X(x=0)=0—>0=0+B or B=0
and
X(x=b)=0—=>0=Ab+0 or A=0
because b # 0. Hence our solution for X in eq. (6.5.7) becomes
X(x)=0

which makes V = 0 in eq. (6.5.3). Thus we regard X(x) = 0 as a trivial solution and we
conclude that A # 0.

CASE 2.
If A < 0,say A = —a?, then eq. (6.5.5a) becomes
X' —a’X=0 or (’-a)X=0
d
where D = —, that is,
dx
DX = aX (6.5.8)

showing that we have two possible solutions corresponding to the plus and minus signs.
For the plus sign, eq. (6.5.8) becomes

dx dx
—=aX — =
i o —=a dx

Hence,

dx
Jy=Jozdx or InX=ax+InA,

where In A, is a constant of integration. Thus

X =Ae” (6.5.9a)
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¥ FIGURE 6.8 Sketch of cosh x and
sinh x showing that sinh x = 0 if and
only if x = 0; for Case 2 of Example 6.5.

cosh x

sinh x

|
o
=)
o1

Similarly, for the minus sign, solving eq. (6.5.8) gives
X =A™ (6.5.9b)
The total solution consists of what we have in egs. (6.5.9a) and (6.5.9b); that is,
X(x) = Aje™ + A (6.5.10)

Since coshax = (e* + ¢ *)/2 and sinhax = (e™ — e *)/2 or ™ = coshax +
sinh ax and e”** = cosh ax — sinh ax, eq. (6.5.10) can be written as

X(x) = B, cosh ax + B, sinh ax (6.5.11)

where B, = A, + Ayand B, = A| — A,. Inview of the given boundary conditions, we pre-
fer eq. (6.5.11) to eq. (6.5.10) as the solution. Again, eqs. (6.5.6a) and (6.5.6b) require that

X(x=0)=0—>0=8B,-(1)+B,-(0) or B,=0
and
X(x=b)=0—>0=0+ B,sinhab

Since @ # 0 and b # 0, sinh ab cannot be zero. This is due to the fact that sinh x = 0 if
and only if x = 0 as shown in Figure 6.8. Hence B, = 0 and

X(x) = 0

This is also a trivial solution and we conclude that A cannot be less than zero.

CASE 3.
IfA > 0,say A = B2, then eq. (6.5.5a) becomes

X'+ pX=0
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that is,
(D*+B)X=0 or DX=*jBX (6.5.12)

where j = V—1. From egs. (6.5.8) and (6.5.12), we notice that the difference between
Cases 2 and 3 is the replacement of « by jB. By taking the same procedure as in Case 2, we
obtain the solution as

X(x) = e + Ce™ (6.5.13a)
Since e/ = cos Bx + jsin Bxand e ¥ = cos Bx — jsin Bx, eq. (6.5.13a) can be written as
X(x) = g, cos Bx + g sin Bx (6.5.13b)

where g, = C, + C,and g, = j(C, — C)).

In view of the given boundary conditions, we prefer to use eq. (6.5.13b). Imposing the
conditions in egs. (6.5.6a) and (6.5.6b) yields

X(x=0)=0—>0=g,-(1)+0 or g =0

and

X(x=b)=0—>0=0+ g sinBb
Suppose g, # 0 (otherwise we get a trivial solution), then

sinBb =0 = sinnm = Bb=nmw

B= % n=1234... (65.14)

Note that, unlike sinh x, which is zero only when x = 0, sin x is zero at an infinite number
of points as shown in Figure 6.9. It should also be noted that n # 0 because B # 0; we

have already considered the possibility 8 = 0 in Case 1, where we ended up with a triv-
ial solution. Also we do not need to consider n = —1, =2, =3, —4, . . . because A = f*

AN
VAR

FIGURE 6.9 Sketch of sin x showing that sin x = 0 at infinite
number of points; for Case 3 of Example 6.5.
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would remain the same for positive and negative integer values of n. Thus for a given n,
eq. (6.5.13b) becomes

nmwx

X,(x) = g, sin 5 (6.5.15)
Having found X(x) and
A=pg= ";’;2 (6.5.16)
we solve eq. (6.5.5b), which is now
Y —-8Y=0
The solution to this is similar to eq. (6.5.11) obtained in Case 2, that is,
Y(y) = h,cosh By + h, sinh By
The boundary condition in eq. (6.5.6¢) implies that
Yy=0)=0—>0=h-(1)+0 or h,=0
Hence our solution for Y(y) becomes
Y,(y) = h, S (6.5.17)

b

Substituting eqs. (6.5.15) and (6.5.17), which are the solutions to the separated equations
in eq. (6.5.5), into the product solution in eq. (6.5.3) gives
nwx nir
Vo(5y) = gy sin "7 sinh 7Y
b b
This shows that there are many possible solutions V,, V,, V3, V,, and so on, for n =
1,2, 3,4, and so on.
By the superposition theorem, if V|, V,, V, ..., V, are solutions of Laplace’s equation,
the linear combination

V=V, + 6V, +cV, +:-+ ¢V,

(where ¢, ¢, ¢5, . . ., ¢, are constants) is also a solution of Laplace’s equation. Thus the
solution to eq. (6.5.1) is

= nir
V(xy) = > c,sin ﬁ%{ sinh —b—y
n=1

where ¢, = g,h, are the coefficients to be determined from the boundary condition in
eq. (6.5.6d). Imposing this condition gives

(6.5.18)

Vix,y=a)=V, = 2 ¢, sin %sinh % (6.5.19)
n=1
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which is a Fourier series expansion of V,. Multiplying both sides of eq. (6.5.19) by
sin m7rx/b and integrating over 0 < x < b gives

b ®
X nma mmwx  nmwx
j V, sin i dx = 2 ¢, sinh LJ sin —— sin Ll dx (6.5.20)
0 b = b J b b

By the orthogonality property of the sine or cosine function (see Appendix A.9).

J" : ; 0, m#n
sin mx sin nx dx =
i /2, m=n
Incorporating this property in eq. (6.5.20) means that all terms on the right-hand side of
eq. (6.5.20) will vanish except one term in which m = n. Thus eq. (6.5.20) reduces to

b 1 2nmx
-V,—cos—| = ¢,sinh—— 1 — cos
nir b b 2), b
Vob b
——(1 — cos nmw) = c,,sinhﬂ-f
nm b 2
or
2V,
¢, sinh 2OE —2(1 — cos nwr)
nm
4V,
> H= 18,500
= nw
0, n=246,...
that is,
4V, 3 n = odd
c, = nar sinh 2%
" b (6.5.21)
0, n = even

Substituting this into eq. (6.5.18) gives the complete solution as

. hTXx hﬂTf}’
sin ——sinh ——
4V, & b b
Vix,y) = = FIESS o (6.5.22)
L n sinh W

Check: V2V =0,V(x = 0,y) =0 = V(x = b,y) = V(x,y = 0), V(x,y = a) = V,.The
solution in eq. (6.5.22) should not be a surprise; it can be guessed by mere observation
of the potential system in Figure 6.7. From this figure, we notice that along x, V varies
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from 0 (atx = 0) to 0 (atx = b) and only a sine function can satisfy this requirement.
Similarly, along y, V varies from 0 (aty = 0) to V, (aty = a) and only a hyperbolic sine
function can satisfy this. Thus we should expect the solution as in eq. (6.5.22).

To determine the potential for each point (x, y) in the trough, we take the first few terms
of the convergent infinite series in eq. (6.5.22). Taking four or five terms may be sufficient.

(b) Forx = a/2and y = 3a/4, where b = 2a, we have

(g 31) _ 4V, E sin nar/4 sinh 3n/8
2’4

7 {55, nsinhnw/2

_ 4V, {sin 7r/4 sinh 37r/8  sin 37r/4 sinh 97/8

T sinh 77/2 3 sinh 37/2
sin 577/4 sinh 1577/8
5 sinh 577/2
4V,
= = (0.4517 + 0.0725 — 0.01985 — 0.00645 + 0.00229 + - - -)
= 0.6374V,

It is instructive to consider a special case of a = b = 1 mand V, = 100 V. The potentials
at some specific points are calculated by using eq. (6.5.22), and the result is displayed in
Figure 6.10(a). The corresponding flux lines and equipotential lines are shown in Figure
6.10(b). A simple MATLAB program based on eq. (6.5.22) is displayed in Figure 6.11. This
self-explanatory program can be used to calculate V(x, y) at any point within the trough.
In Figure 6.11, V(x = b/4,y = 3a/4) is typically calculated and found to be 43.2 V.

! Equipotential line
100V | veig . Fluxine
1.0 ,/1
A
432 540 432 i
L] L] Ll
0
182 250 182
. . V=0
680 954 6.0
L] L]
0 T o "0 V=0 T g
0
(a) (b)

FIGURE 6.10 For Example 6.5: (a) V(x, y) calculated at some points, (b) sketch of
flux lines and equipotential lines.
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% SOLUTION OF LAPLACE’S EQUATION

THIS PROGRAM SOLVES THE TWO-DIMENSIONAL
BOUNDARY-VALUE PROBLEM DESCRIBED IN FIG. 6.7
a AND b ARE THE DIMENSIONS OF THE TROUGH

% X AND y ARE THE COORDINATES OF THE POINT

% OF INTEREST

o0 o0 o

P=1[1;

Vo = 100.0;
a=1.0;

b = a;

x = b/4;
y= 3.*a/4.;

c = 4.*Vo/pi

sum = 0.0;

for k=1:10
n=2%*% -1
al = sin(n*pi*x/b);
a2 = sinh(n*pi*y/b);
a3 = n*sinh(n*pi*a/b);
sum = sum + c*al*a2/a3;

P = [n, sum]
end
diary test.out
P
diary off

FIGURE 6.11 MATLAB program for Example 6.5.

PRACTICE EXERCISE 6.5
For the problem in Example 6.5, take V, = 100 V, b = 2a = 2 m, and find V and E at

(@) (xy) = (a,a/2)
() (x,y) = (3a/2,a/4)

Answer: (a) 44.51V, —99.25a, V/m, (b) 16.5V, 20.6a, — 70.34a, V/m.

Find the potential distribution in Example 6.5 if V, is not constant but

(@) V,=10sin37x/b,y =a,0=<x<b
1 5
(b) V, = Zsin%-!- ﬁsin%,y= a,0=x=<b
Solution:
(a) In Example 6.5, every step before eq. (6.5.19) remains the same; that is, the solution is
of the form
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> n.
V(x, y) = 2 ¢, sin BT il i
=t b b
in accordance with eq. (6.5.18). But instead of eq. (6.5.19), we now have

3 5
V(y = a) = V, = 10sin CLL - > c,sin BTX sinh 272
b & b b

By equating the coefficients of the sine terms on both sides, we obtain

6=0; n#E3
Forn = 3,
3
10 = ¢; sinh =l
b
or
10
G =
inh 3ma
sinh —
b
Thus the solution in eq. (6.6.1) becomes
3
3 sinh Ty
TX
V(x,y) = 10sin ————
(x,y) sin = i
sinh >

(b) Similarly, instead of eq. (6.5.19), we have
Vo= Viy =a)
or
1 5 :
ZSinzh)—( + Esin% = E 4:,,sin%sinhm
Equating the coefficient of the sine terms:

=0, n#1,5

(6.6.1)
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Forn =1,
2
2= clsinhﬂ or ¢ =
¢ sinh ae
b
Forn =5,
1 ., Sma 1
— =c¢ssinh—— or ¢=—"""
0 b .. 5ma
10 sinh ——
b
Hence,
T 5 57
2sin i sinh iz sin i sinh Elizd
b b b b
V(x, y) = +
inh L 10 sinh ]
sinh b
PRACTICE EXERCISE 6.6
In Example 6.5, suppose everything remains the same except that V, is replaced by
T ;
v sin == 0=x=b,y=a Find V(x,y).
7 7
V, sin —:-{ sinh —ZZ
Answer: :
sinh T
b

Obtain the separated differential equations for potential distribution V(p, ¢,z) in a
charge-free region.

Solution:

This example, like Example 6.5, further illustrates the method of separation of variables.
Since the region is free of charge, we need to solve Laplace’s equation in cylindrical coor-
dinates; that is,

1.9 8y 19’V 9V
VW=——|p—|+55+-5=0 (6.7.1)
pap

We let

V(p, ¢,2) = R(p) ® () Z(2) (67.2)
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where R, @, and Z are, respectively, functions of p, ¢, and z. Substituting eq. (6.7.2) into
eq. (6.7.1) gives

024 (pit) 12d0 07, o
p dp\ dp p* dg? dz w

We divide through by R®Z to obtain

0 A 4 g, 10 -
pR dp \ dp P’ d¢p? Z d? o

The right-hand side of this equation is solely a function of z, whereas the left-hand side
does not depend on z. For the two sides to be equal, they must be constant; that is,

L LR, 1 g
p*d dgp? Z d7

e T = _—
Wi i X (6.7.5)

where —A? is a separation constant. Equation (6.7.5) can be separated into two parts:

1dZ
= = 34 6.7.6
Z dz (676)
or
Zr—=NZ=0 (6.7.7)
and
pd(pdRY ., 1d®_
de<dp>+/\p +<bd¢>270 (6.7.8)

Equation (6.7.8) can be written as

2 0 2,
p~d’R pdR 1 d*®
iz A ekl iahe it (78]

where u? is another separation constant. Equation (6.7.9) is separated as
Q"+ WP =0 (6.7.10)
and

P'R" + pR" + (p’A* — )R =0 (6.7.11)
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Equations (6.7.7), (6.7.10), and (6.7.11) are the required separated differential equations.
Equation (6.7.7) has a solution similar to the solution obtained in Case 2 of Example 6.5;
that is,

Z(z) = ¢, cosh Az + ¢, sinh Az (6.7.12)

The solution to eq. (6.7.10) is similar to the solution obtained in Case 3 of Example 6.5;
that is,

D(p) = c;cos wp + ¢, sin uep (6.7.13)

Equation (6.7.11) is known as the Bessel differential equation and its solution is beyond the
scope of this text.'

PRACTICE EXERCISE 6.7

Repeat Example 6.7 for V(r, 0, ¢).

2
Answer: If V(r,0,¢) = R(r) F(8) D($), ®" + N’& =0, R" + ER’ - %R =0,

F" + cos@ F' + (u’sin@ — A’csch) F = 0. ‘

6.5 RESISTANCE AND CAPACITANCE

In Section 5.4 the concept of resistance was covered and we derived eq. (5.16) for finding
the resistance of a conductor of uniform cross section. If the cross section of the conductor
is not uniform, eq. (5.16) becomes invalid and the resistance is obtained from eq. (5.17):

V_ ILE'dl

e 6.16
I [foE-dS L

The problem of finding the resistance of a conductor of nonuniform cross section can be
treated as a boundary-value problem. Using eq. (6.16), the resistance R (or conductance
G = 1/R) of a given conducting material can be found by following these steps:

1. Choose a suitable coordinate system.

2. Assume V, as the potential difference between conductor terminals.

3. Solve Laplace’s equation V?V = 0 to obtain V. Then determine E fromE = —VV
and find I from I = fS oE - dS.

4. Finally, obtain R as V, /1.

In essence, we assume V,,, find I, and determine R = V,/I. Alternatively, it is possible
to assume current I, find the corresponding potential difference V, and determine R from

! For a complete solution of Laplace’s equation in cylindrical or spherical coordinates, see, for example,
D. T. Paris and E. K. Hurd, Basic Electromagnetic Theory. New York: McGraw-Hill, 1969, pp. 150-159.
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FIGURE 6.12 A two-conductor
capacitor.

3t
=

R = VII,. As will be discussed shortly, the capacitance of a capacitor is obtained using a
similar technique.

Generally speaking, to have a capacitor we must have two (or more) conductors car-
rying equal but opposite charges. This implies that all the flux lines leaving one conduc-
tor must necessarily terminate at the surface of the other conductor. The conductors are
sometimes referred to as the plates of the capacitor. The plates may be separated by free
space or a dielectric.

Consider the two-conductor capacitor of Figure 6.12. The conductors are maintained
at a potential difference V given by

1
V= v,—VZ=—JE-d1 (6.17)
2

where E is the electric field existing between the conductors and conductor 1 is assumed to
carry a positive charge. (Note that the E field is always normal to the conducting surfaces.)

We define the capacitance C of the capacitor as the ratio of the magnitude of the charge
on one of the plates to the potential difference between them; that is,

€ [sE-dS

Cc= L —fg— (6.18)
Vo [E-dl

The negative sign before V = 7]}, E - dl has been dropped because we are interested in

the absolute value of V. The capacitance C is a physical property of the capacitor and is
measured in farads (F). We can use eq. (6.18) to obtain C for any given two-conductor
capacitance by following either of these methods:

1. Assuming Q and determining V in terms of Q (involving Gauss’s law)
2. Assuming V and determining Q in terms of V (involving solving Laplace’s equation)

We shall use the former method here, and the latter method will be illustrated in
Examples 6.10 and 6.11. The former method involves taking the following steps:

1. Choose a suitable coordinate system.
2. Let the two conducting plates carry charges +Q and —Q.
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3. Determine E by using Coulomb’s or Gauss’s law and find V from V = — f L E-dl The
negative sign may be ignored in this case because we are interested in the absolute

value of V.
4. Finally, obtain C from C = Q/V.

We will now apply this mathematically attractive procedure to determine the capaci-
tance of some important two-conductor configurations.

A. Parallel-Plate Capacitor

Consider the parallel-plate capacitor of Figure 6.13(a). Suppose that each of the plates has
an area S and they are separated by a distance d. We assume that plates 1 and 2, respectively,
carry charges +Q and —Q uniformly distributed on them so that

=— 6.19
Ps S ( )

An ideal parallel-plate capacitor is one in which the plate separation d is very small com-
pared with the dimensions of the plate. Assuming such an ideal case, the fringing field

X FIGURE 6.13 (a) Parallel-plate
capacitor. (b) Fringing effect due
to a parallel-plate capacitor.

Dielectric & Plate area S

\

(a)

+Q

(b)
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at the edge of the plates, as illustrated in Figure 6.13(b), can be ignored so that the field
between them is considered uniform. If the space between the plates is filled with a homo-
geneous dielectric with permittivity £ and we ignore flux fringing at the edges of the plates,
from eq. (4.27), D = —pqa, or

i
E=2(-a)
Q
= 6.20
P (6.20)
Hence,
1 e Qd
Vz—J E-dl:—f [——ax]~dxax=f (6.21)
2 ol &8 &S

and thus for a parallel-plate capacitor

G =

% = i (6.22)

This formula offers a means of measuring the dielectric constant &, of a given dielectric.
By measuring the capacitance C of a parallel-plate capacitor with the space between the
plates filled with the dielectric and the capacitance C, with air between the plates, we
find &, from

= 6.23
B = (6.23)

o

Using eq. (4.96), it can be shown that the energy stored in a capacitor is given by

@
2C

1, 1
Wi = ECV . EQy - (6.24)

To verify this for a parallel-plate capacitor, we substitute eq. (6.20) into eq. (4.96) and obtain

1 Q? £Q*Sd
WE‘EJ‘?;@‘”: 205"

@dy @ L
F 2<as>_2c"2Qv

as expected.
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B. Coaxial Capacitor
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FIGURE 6.14 A coaxial capacitor.

A coaxial capacitor is essentially a coaxial cable or coaxial cylindrical capacitor. Consider
length L of two coaxial conductors of inner radius a and outer radius b (b > @) as shown in
Figure 6.14. Let the space between the conductors be filled with a homogeneous dielectric
with permittivity &. We assume that conductors 1 and 2, respectively, carry +Q and —Q
uniformly distributed on them. By applying Gauss’s law to an arbitrary Gaussian cylindrical

surface of radius p (a < p < b), we obtain

Q=c¢ iE -dS = eE2mpL

Hence,

Q

= g
2mepl "

Neglecting flux fringing at the cylinder ends,

Ja[ Q a]'dpa
» L2mepl * 2

given by

1
V= —J' E-dl=—
2
Q b
= n—
2mel  a
Thus the capacitance of a coaxial cylinder is
C = 9
\4

C. Spherical Capacitor

(6.25)

(6.26)

(6.27a)

(6.27b)

(6.28)

A spherical capacitor is the case of two concentric spherical conductors. Consider the inner
sphere of radius a and outer sphere of radius b (b > a) separated by a dielectric medium
with permittivity £ as shown in Figure 6.15. We assume charges +Q and —Q on the inner
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FIGURE 6.15 A spherical capacitor.

Dielectric &

and outer spheres, respectively. By applying Gauss’s law to an arbitrary Gaussian spherical
surface of radius r (a < r < b), we have

Q=¢ ng -dS = eE4mr? (6.29)
N
that is,

= 4‘”7 a, (6.30)

The potential difference between the conductors is

1 a Q
V:—J E-dl:—J { a,]-dra,
2 y Lamer

2 -

:4178 a b

Thus the capacitance of the spherical capacitor is

_Q_ 4me
cC= Vo1 T (6.32)

11
a b

By letting b — %, C = 4mrea, which is the capacitance of a spherical capacitor whose
outer plate is infinitely large. Such is the case of a spherical conductor at a large distance
from other conducting bodies—the isolated sphere. Even an irregularly shaped object of
about the same size as the sphere will have nearly the same capacitance. This fact is useful
in estimating the stray capacitance of an isolated body or piece of equipment.

Recall from network theory that if two capacitors with capacitance C, and C, are in series
(i.e., they have the same charge on them) as shown in Figure 6.16(a), the total capacitance is

1 1
Lol 4
c ¢ G
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FIGURE 6.16 Capacitors (a) in series
and (b) in parallel.

e
G —= =0,
G
(a) (b)
or
GG
= 6.33
Gy +1G, [y

If the capacitors are in parallel (i.e., if they have the same voltage across their plates) as
shown in Figure 6.16(b), the total capacitance is

CG=1G;+G (6.34)

Let us reconsider the expressions for finding the resistance R and the capacitance C of
an electrical system. The expressions were given in egs. (6.16) and (6.18):

v E-dl
R =—= fli (6.16)
I [soE-dS
e $§sE-dS
C = 8. fs— (6.18)
v f (E-dl
The product of these expressions yields
€
RC = = (6.35)

which is the relaxation time T, of the medium separating the conductors. It should be
remarked that eq. (6.35) is valid only when the medium is homogeneous; this is easily
inferred from egs. (6.16) and (6.18). Assuming homogeneous media, the resistance of vari-
ous capacitors mentioned earlier can be readily obtained using eq. (6.35). The following
examples are provided to illustrate this idea.

For a parallel-plate capacitor,

C== -R=— (6.36)
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EXAMPLE 6.8

For a cylindrical capacitor,

S In —
c="= p= (6.37)
2oL
In =
a
For a spherical capacitor,
11
4 a b
c=—"%, R= (6.38)
S ) 4o
a b
And finally for an isolated spherical conductor,
1
C = 4mea, R= (6.39)
4moa

1t should be noted that the resistance R in each of eqgs. (6.35) to (6.39) is not the resistance
of the capacitor plate but the leakage resistance between the plates; therefore, o in those
equations is the conductivity of the dielectric medium separating the plates.

A metal bar of conductivity o is bent to form a flat 90° sector of inner radius a, outer radius
b, and thickness  as shown in Figure 6.17. Show that (a) the resistance of the bar between
the vertical curved surfacesat p = aand p = bis

Zlné
a

ot
and (b) the resistance between the two horizontal surfaces at z = 0 and z = t is

4t
om(b?* — a?)

R =

FIGURE 6.17 Bent metal bar
for Example 6.8.
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Solution:

(a) Between the vertical curved ends located at p = a and p = b, the bar has a nonuniform
cross section and hence eq. (5.16) does not apply. We have to use eq. (6.16). Let a poten-
tial difference V, be maintained between the curved surfaces at p = a and p = b so that
V(p =a) =0 and V(p = b) = V,. We solve for V in Laplace’s equation V2V = 0 in
cylindrical coordinates. Since V = V(p),

1d( dv
VY = —— — | =
Pdp<pdp> 0

As p = 0 is excluded, upon multiplying by p and integrating once, this becomes

a_,
p £
or
av_a
dp P
Integrating once again yields
V=Alnp+B

where A and B are constants of integration to be determined from the boundary conditions.

Vip=a)=0 >0=Alna+B or B=—Alna

b V.
V(p=b)=V0—>V0=Alnb+B=Alnb—A1na:Aln; or A= °b
Ini=
a
Hence,
V=AlnpfAlnu=Aln£:LlnB
a b a
In—
a
dv A \%4
E=-Vv= —Eap = —;a,, = *-]—oéap
pln-
] =0E, dS= —pddza,
w2t
tV,
I:J"dszf J T drpdp =T —
s b=0lz=0 ) b 2 lné

a a
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Thus

as required.

(b) Let V, be the potential difference between the two horizontal surfaces so that
V(z=0) =0and V(z = t) = V,. V = V(2), so Laplace’s equation V2V = 0 becomes

v
dz
Integrating twice gives
V. =Az+ B

We apply the boundary conditions to determine A and B:

V(z=0) =0 20 =0+B or B=0

V(z=t) =V, >V, =At or A:T°

Hence,
¥
V=—>"g
t
av V,
E=-VV=——a =—-—"a
dz t
aV,
] =0E= 5 dS = —pdddpa.
b w2 Vg(r
I =|]-dS= ——pdddp
s p=07¢=0 t
Vo m Pt Viom (¥ - )
Tt 22|, 4t
Thus

v, at
T 1 on(b - @)

Alternatively, for this case, the cross section of the bar is uniform between the horizon-
tal surfaces at z = 0 and z = t and eq. (5.16) holds. Hence,
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as required.

PRACTICE EXERCISE 6.8

A disk of thickness ¢ has radius b and a central hole of radius a. Taking the conductivity
of the disk as o, find the resistance between

(a) The hole and the rim of the disk
(b) The two flat sides of the disk

b

In—
Afswer (@)—0 ()t
- 2mto’ om(b? — a*)

A coaxial cable contains an insulating material of conductivity o. If the radius of the central
wire is a and that of the sheath is b, show that the conductance of the cable per unit length
is [see eq. (6.37)]

Solution:

Consider length L of the coaxial cable as shown in Figure 6.14. Let V, be the potential differ-
ence between the inner and outer conductors so that V(p = a) = 0and V(p = b) = V,,
which allows V and E to be found just as in part (a) of Example 6.8. Hence,

=&V,
J=cE= {Tb°a,,, ds = —pdpdza,
pln;
27 L
V.
I=Jl<ds=f f T dzd
s $=0 Z:l’plné
a
_ 2mlaV,
lné
a



254 CHAPTER 6

EXAMPLE 6.10

ELECTROSTATIC BOUNDARY-VALUE PROBLEMS

The resistance of the cable of length is given by

s 1 In;
R=—2.—=
I L 2mo
and the conductance per unit length is
1 270
G=v-=""
R In(y)

as required.

PRACTICE EXERCISE 6.9

A coaxial cable contains an insulating material of conductivity o, in its upper half and
another material of conductivity o, in its lower half (similar to the situation shown later
in Figure 6.19b). If the radius of the central wire is a and that of the sheath is b, show
that the leakage resistance of length € of the cable is

1
R~ |-
(o, + o,) 1

Answer: Proof.

Conducting spherical shells with radii @ = 10 cm and b = 30 cm are maintained at a
potential difference of 100 V such that V(r = b) = 0 and V(r = a) = 100 V. Determine
V and E in the region between the shells. If &, = 2.5 in the region, determine the total
charge induced on the shells and the capacitance of the capacitor.

Solution:

Consider the spherical shells shown in Figure 6.18 and assume that V depends only on r.
Hence Laplace’s equation becomes

FIGURE 6.18 Potential V(r) due to conducting
spherical shells.

3
X
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2 :li[ d_"]=
¥ fzdrrzdr ¢

Since r # 0 in the region of interest, we multiply through by 7* to obtain

d av
;[*;]-0

Integrating once gives

v _
dr
or
av_a
dr 7
Integrating again gives
A
V=-—+B
r

As usual, constants A and B are determined from the boundary conditions.

A A
Whenr:b,V=0—>0=—;+B or B=—

b
Hence,
veall-1
"0
1 I
Alsowhenr:a,v=vo—>VQ:A[E_;]
or
Vo
A=
1 2
b a
Thus
L |
vyt b
I
a b
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T N e e
AT 2o
= VO
. 1]F
'1[;';]
m 27
Q=feE»ds=J J Ve s
s 6=0 4):0’;1_1
a b
_ 4wV,
T Ll
a b

The capacitance is easily determined as

which is the same as we obtained in eq. (6.32); there in Section 6.5, we assumed Q and
found the corresponding V., but here we assumed V, and found the corresponding Q to
determine C. Substitutinga = 0.1 m, b = 0.3 m, V, = 100 V yields

-

r 3 1 10

V=100—=15~——]v
10 — 10/3 o3

Check: V2V = 0, V(r = 0.3 m) = 0, V(r = 0.1 m) = 100.

E= —LO a, = 1—5 Vi,
20— 103]% " A&
107° (2.5) - (100
0= sar. 107 (25)-(100)

36w 10 — 10/3
= +4.167nC

The positive charge is induced on the inner shell; the negative charge is induced on the
outer shell. Also

Q| 4167 x107°
C=-—S =" = 4167pF
v, 100 P
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FIGURE 6.19 For Practice
Exercises 6.9, 6.10, and 6.12.

NS
X S

PRACTICE EXERCISE 6.10

If Figure 6.19 represents the cross sections of two spherical capacitors, determine their
capacitances. Leta = 1 mm, b = 3mm, ¢ = 2mm, 8, = 2.5,and g, = 3.5.

Answer: (a) 0.53 pE (b) 0.5 pE.

In Section 6.5, it was mentioned that the capacitance C = Q/V of a capacitor can be found
by either assuming Q and finding V, as in Section 6.5, or by assuming V and finding Q, as
in Example 6.10. Use the latter method to derive eq. (6.22).

Solution:

Assume that the parallel plates in Figure 6.13 are maintained at a potential difference
V, so that V(x = 0) and V(x = d) = V,. This necessitates solving a one-dimensional
boundary-value problem; that is, we solve Laplace’s equation

&IV
Vv=—5=0
dx<*
Integrating twice gives
V=Ax+B

where A and B are integration constants to be determined from the boundary conditions.
Atx=0,V=0—>0=0+B orB=0,andatx=d, V=V, = V,=Ad + 0 or
A=V/d
Hence,

Ve

V= —

d

Notice that this solution satisfies Laplace’s equation and the boundary conditions.
We have assumed the potential difference between the plates to be V. Our goal is to

find the charge Q on either plate so that we can eventually find the capacitance C = Q/V,,.
The charge on either plate is
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Q= J' ps dS
N
But ps = D -a, = ¢E - a,, where
dv Vo
E—*VV—*dfan—anx— 7 &
On the lower plate, a, = a,, so
eV, eV,S
= —— d = e O
Ps g o Q i
On the upper plate, a, = —a,, so
_ &V, 4 Q= ev,S
Ps g o 4
As expected, Q is equal but opposite on each plate. Thus
lQl _ &S
e 22
V, d
which is in agreement with eq. (6.22).

PRACTICE EXERCISE 6.11

Derive the formula for the capacitance C = Q/V,, of a cylindrical capacitor in eq. (6.28)
by assuming V, and finding Q.

[N iRyl Determine the capacite:nce of each of the capacitors in Figure 6.20. Take €,, = 4, &,, = 6,
d=5mm,S = 30 cm’.

Solution:

(a) Since D and E are normal to the dielectric interface, the capacitor in Figure 6.20(a) can
be treated as consisting of two capacitors C, and C, in series as in Figure 6.16(a).

_ 8EnS _ 28,848 % 2 28,€,8

Gy = >
) d . d
The total capacitor C is given by
GG = 26,8 (enen)
Gy .65 d e, +e,
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(b)

FIGURE 6.20 For Example 6.12.

107° 30X 107" 4X6
36m 5% 1077 10

C = 25.46 pF

(6.12.1)

(b) In this case, D and E are parallel to the dielectric interface. We may treat the capacitor
as consisting of two capacitors C, and C, in parallel (the same voltage across C, and C,) as
in Figure 6.16(b).

o= £,,5/2 _ £,8,S o = £,88

d 77 e
The total capacitance is
£,

C=C+G= i(arl + &n)

107° 30x107*
= 10 (6.12.2)

36m 2-(5%1073%)

C = 26.53 pF

Notice that when ¢,, = &,, = &,, egs. (6.12.1) and (6.12.2) agree with eq. (6.22) as expected.

PRACTICE EXERCISE 6.12

Determine the capacitance of 10 m length of the cylindrical capacitors shown in Figure 6.19.
Takea = 1mm, b = 3mm, ¢ = 2mm, &, = 2.5,and g,, = 3.5.

Answer: (a) 1.54 E (b) 1.52 nE

A cylindrical capacitor has radiia = 1 cmand b = 2.5 cm. If the space between the plates
is filled with an inhomogeneous dielectric with &, = (10 + p)/p, where p is in centimeters,
find the capacitance per meter of the capacitor.
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Solution:
The procedure is the same as that taken in Section 6.5 except that eq. (6.27a) now becomes
a a
d
VZ_J ealll ooty o o M Jiﬂ
b 2me.E,pL 2me L ), (10 &% p)
ol —=
P
— 2 d — a
= QJ’ P _ an(10+p)‘
2we, L )y, 10 + p  2me L b
Q 10+ b
- n
2me, L 10+ a
Thus the capacitance per meter is (L = 1 m)
2 w0 i
T W
\'4 10+ b 36 12.5
n n——
10 + a 11.0
C = 434.6 pF/m

PRACTICE EXERCISE 6.13

A spherical capacitor with a = 1.5 cm, b = 4 cm has an inhomogeneous dielectric of
& = 10g,/r. Calculate the capacitance of the capacitor.

Answer: 1.13 nE

6.6 METHOD OF IMAGES

The method of images, introduced by Lord Kelvin in 1848, is commonly used to determine
V, E, D, and ps due to charges in the presence of conductors. By this method, we avoid
solving Poisson’s or Laplace’s equation but rather utilize the fact that a conducting surface
is an equipotential. Although the method does not apply to all electrostatic problems, it can
reduce a formidable problem to a simple one.

The image theory states that a given charge configuration above an infinite ground-
ed perfect conducting plane may be replaced by the charge configuration itself; its
image, and an equipotential surface in place of the conducting plane.

Typical examples of point, line, and volume charge configurations are portrayed in Figure
6.21(a), and their corresponding image configurations are in Figure 6.21(b).
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P
Qe

Perfectly conducting plane V' =0

(a) (b)

FIGURE 6.21 Image system: (a) charge configurations above a perfectly conducting plane,
(b) image configuration with the conducting plane replaced by equipotential surface.

In applying the image method, two conditions must always be satisfied:

1. The image charge(s) must be located in the conducting region.
2. The image charge(s) must be located such that on the conducting surface(s) the
potential is zero or constant.

The first condition is necessary to satisfy Poisson’s equation, and the second condition
ensures that the boundary conditions are satisfied. Let us now apply the image theory to
two specific problems.

A. A Point Charge above a Grounded Conducting Plane

Consider a point charge Q placed at a distance h from a perfect conducting plane of infinite
extent as in Figure 6.22(a). The image configuration is in Figure 6.22(b). The electric field
in the region above the plane at point P(x, y, z) is given by

n

Px,y,2)

(a)

FIGURE 6.22 (a) Point charge and grounded conducting plane. (b) Image configuration
and field lines.
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E =E + E_ (6.40)
Qr, —Qr,

= <+ 6.41
dAme,ri  Ame,n (641

The distance vectors r, and r; are given by
n=_(xy2 —(0,0h) =(xyz—h) (6.42)
r,=(xy2 —(0,0,—h) = (x,y,z+ k) (6.43)

50 eq. (6.41) becomes
xa, +ya, + (z—h)a, xa,+ya, + (z+ h)a,

Q 'y y (6.44)

T (P Py P e S

It should be noted that when z = 0, E has only the z-component, confirming that E is
normal to the conducting surface.

The potential at P is easily obtained from eq. (6.41) or (6.44) using V = 7f,_ E-dl
Thus

V=V, + V.
Q . .=R

4me,ry,  4megr,

(6.45)

_Q 1 B 1
V= e, {[xz P L Py pes h)Z]m}

for z= 0and V = 0 for z < 0. Note that V(z = 0) = 0.
The surface charge density of the induced charge can also be obtained from eq. (6.44) as

ps = D, = &E,
2=0

—Qh (6.46)
= ety R

The total induced charge on the conducting plane is

= (% —Qhdxdy
a=[ma=| | coisiem (o)

By changing variables, p? = x* + y%, dxdy = p dp d¢, and we have

Q[ (" pdpdd
Q= _E;J; L [0 + K" (6.48)
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: : ) L. :
Integrating over ¢ gives 27, and letting p dp = Ed (p?), we obtain
P -
o= -ZLom| (gt + w1 L)
2w 0 2
Qh i
[p* + W]
=-Q

(6.49)
0

as expected, because all flux lines terminating on the conductor would have terminated on
the image charge if the conductor were absent.

B. A Line Charge above a Grounded Conducting Plane

Consider an infinite line charge with density p; C/m located at a distance h from the
grounded conducting plane at z = 0. The image system of Figure 6.22(b) applies to the
line charge except that Q is replaced by p;. The infinite line charge p; may be assumed to
be at x = 0,z = h, and the image —p; at x = 0,z = —h so that the two are parallel to the
y-axis. The electric field at point P is given (from eq. 4.21) by

E=E; + E. (6.50)
PL —PL

= a a 6.51

27Epy ” 27e,p, ” § !

The distance vectors p, and p, are given by

p=(xy2) — (0,5,h) = (x,0,z— h) (6.52)
p=(xy,2) — (0,y,—h) = (x,0,z + h) (6.53)

s0 eq. (6.51) becomes

_ p [xa +(z—hla, xa + (z+h)a, sist)
e, | B[z K A F ([ LAP &

Again, notice that when z = 0, E has only the z-component, confirming that E is normal
to the conducting surface.

The potential at P is obtained from eq. (6.51) or (6.54) using V = 7fL E - dl. Thus

V=V, +V_
=, P Tug; — —PL e
2me, 2! 2me, pe
R (6.55)

= n
2me, P2
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Substituting p; = |p,| and p, = |p,| in eqgs. (6.52) and (6.53) into eq. (6.55) gives

V=-— PL 1 {M]”Z (6 56)
27rz»:f,n:'cz-!—(z-*—h)Z ’
for z= 0and V = 0 for z < 0. Note that V(z = 0) = 0.
The surface charge induced on the conducting plane is given by
—pih
=D, = gE, S e 6.57
Ps n = €o zz:D ‘IT(XZ T hz) ( )
The induced charge per length on the conducting plane is
_ P J dx
pi= J psdx = W (6.58)
By letting x = h tan a, eq. (6.58) becomes
e J»W/Z i
S (6.59)
=P

as expected.

(RN Il A point charge Q is located at point (a, 0, b) between two semi-infinite conducting planes
intersecting at right angles as in Figure 6.23. Determine the potential at point P(x, y, z) in
region z = 0 and x = 0 and the force on Q.

Solution:
The image configuration is shown in Figure 6.24. Three image charges are necessary to
satisfy the two conditions listed at the beginning of this section. From Figure 6.24(a), the

potential at point P(x, y, z) is the superposition of the potentials at P due to the four point
charges; that is,

Q 1 1 1 1

dme, LN n 1
where

x—a)l+ ¥+ (z— b)P]"

172

= [( ]
=[(x+a)*+ y + (z - b)?]
=[(x+ a)* + y* + (z + b)*]"?
=[(x — a)* + y* + (2 + b)*]"2
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FIGURE 6.23 Point charge between two semi-infinite
conducting planes.

From Figure 6.24(b), the net force on Q is

F

B By FE
Q@ ? 5 Q*(2aa, + 2ba,)
4me,(2b)? # 4me (2a)? % 4mre,[(2a)* + (2b)2]"

Q a 1 b 1

2 iz |t 2 YT
16me, || (a* + b%) a (a® + b%) b
The electric field due to this system can be determined similarly, and the charge induced
on the planes can also be found.

In general, when the method of images is used for a system consisting of a point charge
between two semi-infinite conducting planes inclined at an angle ¢ (in degrees), the number

of images is given by
360°
= (22-1)
¢

z z
| i
:/V: 0 Lo P(x,»,2) II F;
i b | R
. o b
Q 1 0 Q : 0
: I | F
4 | 5
|
b | b :
! V=0 |
|
il Lo | W ——
a—n -~ a—]
+Q -Q +Q -Q

(a) (b)

FIGURE 6.24 Determining (a) the potential at P and (b) the force on charge Q.



266 CHAPTER 6 ELECTROSTATIC BOUNDARY-VALUE PROBLEMS

FIGURE 6.25 Point charge between two semi-
infinite conducting walls inclined at ¢ = 60° to
each other.

+Q

because the charge and its images all lie on a circle. For example, when ¢ = 180°, N = 1as
in the case of Figure 6.22; for ¢ = 90°, N = 3 as in the case of Figure 6.23; and for ¢ = 60°,
we expect N = 5 as shown in Figure 6.25.

PRACTICE EXERCISE 6.14

If the point charge Q = 10 nC in Figure 6.25 is 10 cm away from point O and along the
line bisecting ¢ = 60°, find the magnitude of the force on Q due to the charge induced
on the conducting walls.

Answer: 60.54 uN.

6.7 APPLICATION NOTE—CAPACITANCE OF MICROSTRIP LINES

The increasing application of integrated circuits at microwave frequencies has generated
interest in the use of rectangular and circular microstrip disk capacitors as lumped-element
circuits. The fringing field effects of such capacitors were first observed in 1877 by Kirchhoff,
who used conformal mapping to account for the fringing. But his analysis was limited by
the assumption that the capacitor is air filled. In microstrip applications, the capacitor plates
are separated by a dielectric material instead of free space. Lately, others have come up with
better approximate closed-form solutions to the problem taking into account the presence of
the dielectric material and fringing. We consider only the circular disk capacitor.

The geometry of the circular microstrip capacitor, with radius r and separation dis-
tance d, is shown in Figure 6.26. Again, if disk area S(S = 7*) is very large compared
with the separation distance (i.e., VS >> d), then fringing is minimal and the capacitance
is given by

o8,

C= T (6.60)
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FIGURE 6.26 Circular microstrip capacitor.

a3
Several researchers have attempted to account for the effect of fringing and to obtain a

closed-form solution. We consider the following cases.

CASE 1.

According to Kirchhoff,” the fringing capacitance is

1
AC = ger <log 6d17r = 1) (6.61)

so that the total capacitance is

£,8,71"
=
d

+ g8, (log 16‘;" = 1) (6.62)

It should be noted that Kirchhoff’s approximation is valid only for e, = 1.

CASE 2.

According to Chew and Kong,’ the total capacitance including fringing is

c . e 1+ = (e + (1.41 +177)+g(0268 + 1.65) 6.63
T = n2d Ale, S ;- (0.268¢, ¥ (6.63)

CASE 3.

Wheeler used interpolation to match the three cases of small, medium, and large disk sizes.
According to Wheeler," we first define the following

&mr

C=¢&|4(1 +6,) + (6.64)

?L. D. Landau and E. M. Lifshitz, Electrodynamics of Conti Media. Oxford: P Press, 1960, p. 20.

*W. C. Chew and J. A. Kong, “Effects of fringing fields on the capacitance of circular microstrip disk,” IEEE
Transactions on Microwave Theory and Techniques, vol. 28, no. 2, Feb. 1980, pp. 98-103.

*H. A. Wheeler, “A simple formula for the capacitance of a disc on dielectric on a plane;” IEEE Transactions on
Microwave Theory and Techniques, vol. 30, no. 11, Nov. 1982, pp. 2050-2054.
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250

Chew and Kdng
= Wheeler
Kirchhoff, without fringing

200 |---

g

Capacitance (pF)

50

0 20 40 60 80 100 120 140 160 180 200
Radius (mil)

FIGURE 6.27 Capacitance of the circular microstrip capacitor.

where k = . When k = 1, eq. (6.64) becomes

Gy = sor{S + %} (6.65)
The total capacitance is
=% c +(1-Yega (6.66)
T kLC“ 1 kl ~42\rks 0
where
8 = [8 i gl <1 + 0.8(r/d)?* + (0.31r/d)4>} (667)
=SS g 1+ 0.9(r/d) '
1
G=1-— (6.68)

44260+ 292
d T

k.= 0.37 + 0.63¢, (6.69)

A MATLAB program was developed by using egs. (6.62) to (6.69). With specific values
of d = 10 mil and €, = 74.04, the values of C and C; for 10 < r < 200 mil are plotted in
Figure 6.27 for the three cases. The curve for Kirchhoff’s approximation coincides with the
case without fringing.
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6.8 APPLICATION NOTE—RF MEMS

Radio-frequency microelectromechanical systems (RF MEMS) are electronic devices with
a submillimeter-sized moving part in the form of a beam, comb, disk, or ring, capable of
providing RF functionality. Figure 6.28 shows one example. Another class consists of bulk
or surface micromachined devices, such as thin-film bulk acoustic resonators (FBARs),
which rely on energy transduction from the electrical energy domain to the acoustic energy
domain and vice versa to provide RF functionality. A myriad of devices can be made using
RF MEMS. Examples include RF MEMS switches, switched capacitors, varactors, and
vibrating RE MEMS resonators. Several national laboratories and universities are actively
engaged in developing these devices. Most notably, IBM Research Laboratory, Hughes
Research Laboratories, Northeastern University in cooperation with Analog Devices,
Raytheon, Rockwell Science, Westinghouse Research Laboratories, and the University of
Michigan, Ann Arbor, and a few others are known to pioneer in this area of research.

Modeling RF MEMS devices is a challenge because they exhibit nonlinear behavior
and hysteresis. The electrostatic force in MEMS, which depends on the square of the drive
voltage, causes electrostatic force strengthening. This results in pull-in of the electrodes
and limits the linearity of these devices. Also, residual charge at the interfaces influences
the switching times. The Verilog-A hardware description language (HDL) is well suited for
RF MEMS device modeling by means of nonlinear-physics-based equations. In addition,
simplified empirical equations or model-order-reduced equations can be used to trade
accuracy for feasibility. Device models, that use empirical equations in addition to physics-
based equations are referred to as compact models.

< =
Air gap

Linear spring

Driving voltage

FIGURE 6.28 RF MEMS device.
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MATLAB 6.1

RF MEMS have a deflecting cantilever or fixed-fixed beam and can be classified further
by actuation method (electrostatic, electrothermal, magnetostatic, or piezoelectric), axis of
deflection (lateral or vertical), circuit configuration (series or shunt), suspension (cantilever
or fixed-fixed), or contact interface (capacitive or ohmic). Electrostatically actuated RF
MEMS switches offer low insertion loss and high isolation, good linearity, greater power
handling, and a higher electrical quality factor Q,. A capacitive fixed-fixed beam RF MEMS
switch is a micromachined capacitor with a moving top electrode called the beam. The
beam, which is sometimes perforated, is suspended by springs over a lower electrode, sepa-
rated by an air gap and a dielectric. It is generally connected in shunt with the transmission
line. This type of switch is generally used for the X- to W-band, which lies in the range of 8
to 110 GHz. An ohmic cantilever RF MEMS switch is capacitive in the up-state but makes an
ohmic contact in the down-state. It is an asymmetrical device with the clamp designated as
source, the bias electrode designated as gate, and the contact electrode designated as drain,
analogous to the field effect transistor. An ohmic cantilever switch is generally connected
in series with the transmission line and is used from dc to about 40 GHz into the Ka-band.

A vibrating RE MEMS resonator has a vibrating beam, comb, disk, or ring (wine
glass), which is sufficiently isolated from the surroundings to obtain a high mechanical
quality factor Q,,. Vacuum encapsulation with an ambient pressure P < 10”° mbar results
in negligible air damping. The vibrating RF MEMS resonator is often driven into a weakly
nonlinear regime to increase the energy storage, taking advantage of the reduction in
stored energy that occurs as the size is reduced. Vibrating RF MEMS resonators have a pre-
cise self-referenced oscillation frequency. Reference oscillators are used in local oscillators,
which are implemented as voltage-controlled oscillators (VCOs). RE MEMS are extensively
used in broadband wireless radio communications. Also RF MEMS switches, switched
capacitors, and varactors are applied in electronically scanned arrays, software-defined
radios, reconfigurable antennas, and tunable bandpass filters.

The opening vignette of Chapter 12 provides an additional discussion of RE MEMS.

Consider a trace of thickness t = 15 um, length / = 8 mm, and with exponentially increasing
width from w; = 0.2 mm to w, = 2.5 mm connected to a 10 V source by perfect electric conductor
(PEC) slabs at the ends. Such a shape is commonly encountered around via pads or near impedance
transformers. The trace has conductivity o = 6.5 X 10° S/m. Determine the total resistance of the
trace by integrating the incremental cross-sectional resistance.

Yy

&
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To simplify, we can place the origin between the PEC-trace junction on the wide side of the
trace, at the center of the bottom side.

The incremental resistance is a slab of length dz in the xy-plane given by

dz

= otw(z)

‘We must determine the function w(z). Since the trace tapers according to a known expression,
we can determine the coefficients a, b:

w(z
—(72 = x(2) = ae”
‘We know that
izi= D)= %,x(z= D~ %
So,
Lyl
x(z=0)=a >
And
W, w,
x(z=1) = ge = 2l = —L
2
wel = w,
b= llﬂ o
1 w

This integral can be solved as

1 1 1 1
R=de=j_f£z_“=jL=LjL
5 ootw( 2) wo12x(z)  20tlyx( z)

1 1o lmM,

1w

= Je - dz
w,otl,

Plugging in bers for the g ic p R=1490.

% This script computes the integral of an exponential trace
% a function using two different methods:

% 1. the built-in matlab ‘quad’ function

% 2. user-defined summation

%

% The user must first create a separate file for the function
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w2 = 2.5e-3;

% y = (-1/20)*x"3+(3/5) *x."2- (21/10) *x+4;

% The file should be named fun.m and stored in the same directory
% as this file, and it should contain the following two lines:
% function y = fun(x)

% Yy = (-1/20)*x."3+(3/5)*x.%2-2.1%x+4;

%
%

We will determine the intregral of this function from
¥ x=0+¢tox=28
clear

% the parameters of the trace
wl = 0.2e-3;

cond = 6.5e5; % conductivity
t = 15e-6; % thickness
1 = 8e-3; % length

sum=0; % set initial total sum to zero
dz=1/1000;
for z=0:dz:1
sum=sum+1/ (w2*cond*t) *exp (-1/1*log (wl/w2) *z) *dz;
% add the partial sums to the total sum
end

disp('’)
disp (sprintf (‘The total resistance of the trace is %f’, sum))

1

Boundary-value problems are those in which the potentials or their derivatives at the
boundaries of a region are specified and we are to determine the potential field within
the region. They are solved by using Poisson’s equation if p, # 0 or Laplace’s equation if
p,=0.

. In a nonhomogeneous region, Poisson’s equation is

V-eVV=—p,

For a homogeneous region, ¢ is independent of space variables. Poisson’s equation
becomes

vy = -2

&

In a charge-free region (p, = 0), Poisson’s equation becomes Laplace’s equation;
that is,

ViV =0

We solve the differential equation resulting from Poisson’s or Laplace’s equation by
integrating twice if V depends on one variable or by the method of separation of
variables if V is a function of more than one variable. We then apply the prescribed
boundary conditions to obtain a unique solution.
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4. The uniqueness theorem states that if V satisfies Poisson’s or Laplace’s equation and the
prescribed boundary condition, V is the only possible solution for that problem. This
enables us to find the solution to a given problem via any expedient means because we
are assured of one, and only one, solution.

5. The problem of finding the resistance R of an object or the capacitance C of a
capacitor may be treated as a boundary-value problem. To determine R, we assume a
potential difference V,, between the ends of the object, solve Laplace’s equation, find
1= ISO‘E - dS, and obtain R = V,/I. Similarly, to determine C, we assume a poten-
tial difference of V,, between the plates of the capacitor, solve Laplace’s equation, find
Q = [4¢E - dS, and obtain C = Q/V,,.

6. A boundary-value problem involving an infinite conducting plane or wedge may
be solved by using the method of images. This basically entails replacing the charge
configuration by itself, its image, and an equipotential surface in place of the conduct-
ing plane. Thus the original problem is replaced by “an image problem,” which is solved
by using techniques covered in Chapters 4 and 5.

7. The computation of the capacitance of microstrip lines has become important because
such lines are used in microwave devices. Three formulas for finding the capacitance of
a circular microstrip line have been presented.

REVIEW
QUESTIONS

6.1 Equation V- (—eVV) = p, may be regarded as Poisson’s equation for an inhomogeneous
medium.

(a) True (b) False

6.2 In cylindrical coordinates, the equation

9 19 &
—‘f+——¢+—w+10=0
ap pap 9z

is called
(a) Maxwell’s equation (d) Helmholtzs equation
(b) Laplace’s equation (e) Lorentz’s equation

(c) Poisson’s equation

6.3 Two potential functions V, and V, satisfy Laplace’s equation within a closed region and
assume the same values on its surface. V, must be equal to V,.

(a) True (c) Not necessarily
(b) False
6.4 Which of the following potentials does not satisfy Laplace’s equation?
10
(@) V=2x+5 (d)V=7
(b) V=10xy (e) V=pcos¢ + 10

(c) V=rcosod
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6.5 Which of the following is not true?

(a) —5 cos 3xis a solution to ¢" (x) + 9p(x) = 0

(b) 10 sin 2x is a solution to ¢" (x) — 4¢(x) = 0

(c) —4 cosh 3y is a solution to R"(y) — 9R(y) = 0

(d) sinh 2y is a solution to R”(y) — 4R(y) = 0
g'x) Ky

(e) =

o) = _T}') = flz) = —1 where g(x) = sinxand h(y) = sinhy

6.6 If V, = XY, is a product solution of Laplace’s equation, which of these are not solutions
of Laplace’s equation?
(a) —10X,Y; (d X, + Y,
(b) XY, + 2xy (&) (X, —2)(v, +3)
() X\Y,—x+y

6.7 The capacitance of a capacitor filled by a linear dielectric is independent of the charge on
the plates and the potential difference between the plates.

(a) True (b) False

6.8 A parallel-plate capacitor connected to a battery stores twice as much charge with a
given dielectric as it does with air as dielectric. The susceptibility of the dielectric is

(@) 0 d) 3
(b) 1 (e) 4
(©) 2

6.9 A potential difference V, is applied to a mercury column in a cylindrical container.
The mercury is now poured into another cylindrical container of half the radius and the
same potential difference V,, applied across the ends. As a result of this change of space,
the resistance will be increased

(a) 2 times (c) 8times
(b) 4 times (d) 16 times

6.10 Two conducting plates are inclined at an angle 30° to each other with a point charge
between them. The number of image charges is

(a) 12 [CVRE]
(b) 11 (e) 3
(c) 6

Answers: 6.1a, 6.2¢, 6.3a, 6.4¢, 6.5b, 6.6d,e, 6.7a, 6.8b, 6.9d, 6.10b.

i PROBLEMS . 3 .
_ Section 6.2—Poisson’s and Laplace’s Equations

6.1 Given V = 5x’y’zand & = 2.25¢,, find (a) E at point P(—3, 1, 2), (b) p, at P.

10 0 si
6.2 LetV= %m and & = &,. (a) Find E at point P(1, 60°, 30°). (b) Determine p, at P.
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6.3 Conducting sheets are located at y = 1 and y = 3 planes. The space between them is
filled with a nonuniform charge distribution p, = ﬁ nC/m’and & = 4e,. Assuming that
V(y=1) =0and V(y = 3) = 50V, find V(y = 2).

3¢

sin
6.4 Let V = 5 V in a dielectric material for which & = 2.8 ¢,.

(a) Find E and P at point A(1, 20° 4).
(b) Calculate the volume charge density at A.
6.5 A certain material occupies the space between two conducting slabs located at y =2 cm.

When heated, the material emits electrons such that p, = 50(1 — yl) uC/m?, If the slabs
are both held at 30 kV, find the potential distribution within the slabs. Take & = 3e,.

6.6 Two large flat metal sheets are located at z = 0 and z = d and are maintained at 0 and V,,
respectively. The charge density between the sheets is p,(z) = p,z/d, where p, is a constant.
Determine the potential at all points between the plates.

6.7 In cylindrical coordinates, V.= 0 at p = 2mand V = 60 V at p = 5 m due to charge
10
distribution p, = " pC/m’. If &, = 3.6, find E.

6.8 Determine if each of the following potentials satisfies Laplace’s equation.
(a) V, = e ¥Ysinhx
(b) V, = cos x cos y cos z

(c) V5= (Ap® + Bp>) cos 3¢

5sin 6
@ Vo=
7

6.9 Let U = 3xyz + y — 2°. Show whether or not U satisfies Laplace’s equation.
6.10 Given V = x’y + yz + ¢z, find ¢ such that V satifies Laplace’s equation.

6.11 The potential field V = 2x’yz — y’z exists in a dielectric medium having & = 2s,
(a) Does V satisfy Laplace’s equation? (b) Calculate the total charge within the unit cube
0<x<Im0<y<Im0<z<lm

6.12 In cylindrical coordinates, V = 0 atp = 4 mmand V = V,atp = 12 mm. If E = —6a,
kV/m at p = 8 mm, determine V..

6.13 Consider the conducting plates shown in Figure 6.29. If V(z=10) =0 and
V(z = 2mm) = 50V, determine V, E, and D in the dielectric region (e, = 1.5) between
the plates and ps on the plates.

6.14 The cylindrical capacitor whose cross section is in Figure 6.30 has inner and outer radii
of 5 mm and 15 mm, respectively. If V(p = 5mm) = 100 Vand V(p = 15mm) =0V,
calculate V, E, and D at p = 10 mm and ps on each plate. Take &, = 2.0.

6.15 In cylindrical coordinates, V = 50 V on plane ¢ = 7/2 and V = 0 on plane ¢ = 0.
Assuming that the planes are insulated along the z-axis, determine E between the planes.
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d=2mm l

FIGURE 6.29 For Problem 6.13.

o | —

Viz=0=0

FIGURE 6.30 Cylindrical capacitor of FIGURE 6.31 Conducting cones of
Problem 6.14. Problem 6.20.

*6.16 The potential field in a certain region is V = (c,p* + c,p ?)sin 2¢. (a) Show that V satisfies
Laplace’s equation. (b) Find ¢, and ¢, if V = 50 V and |E| = 100 V/m at point P(1, 45°, 1).

*6.17 (a) Show that V = V,(1—a*/p?) p sin ¢ (where V,, is constant) satisfies Laplace’s equation.
(b) Determine E for p* >> a’.

6.18 Two conducting planes are located at x = 0 and x = 50 mm. The zero voltage reference
is at x = 20 mm. Given that E = —110a, V/m, calculate the conductor voltages.

6.19 The region between concentric spherical conducting shells r = 0.5m and r = 1 m is
charge free. If V(r = 0.5) = =50V and V(r = 1) = 50 V, determine the potential
distribution and the electric field strength in the region between the shells.

6.20 Find V and E at (3, 0,4) due to the two conducting cones of infinite extent shown in
Figure 6.31.

*6.21 The inner and outer electrodes of a diode are coaxial cylinders of radii @ = 0.6 mm and
b = 30 mm, respectively. The inner electrode is maintained at 70 V, while the outer elec-
trode is grounded. (a) Assuming that the length of the electrodes ¢ > a, b and ignoring
the effects of space charge, calculate the potential at p = 15 mm. (b) If an electron is
injected radially through a small hole in the inner electrode with velocity 10" m/s, find its
velocity at p = 15 mm.




Problems 277

FIGURE 6.32 For Problem 6.22.

y y y
a a a
I v=v, \
Y °
___v=0 .
/ T V/‘O/
0 7 b Y0 b S ) il
v=v,
(a) (b) (c)

FIGURE 6.33 For Problem 6.23.

6.22 An electrode with a hyperbolic shape (xy = 4) is placed above a grounded right-angle
corner as in Figure 6.32. Calculate V and E at point (1, 2, 0) when the electrode is con-
nected to a 20 V source.

*6.23 Solve Laplace’s equation for the two-dimensional electrostatic systems of Figure 6.33 and
find the potential V(x, y).

*6.24 Find the potential V(x, y) due to the two-dimensional systems of Figure 6.34.
6.25 A conducting strip is defined as shown in Figure 6.34(b). The potential distribution is

5 (ﬂﬂ)')
4, sin| —

——=exp(— nmwx/a)
& n=20dd n %

Vixy) =

Find the electric field E.

6.26 Figure 6.35 shows the cross-sectional view of an infinitely long rectangular slot. Find the
potential distribution in the slot.
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% y
V=V, V=0
&
a a 7
V=0
V=¥,
- on i 00
X P e
v=v, b D Ny
(a) (b)
]
vV,
a
V=V,
~ PSv=v,
X
b
Py

(c)

FIGURE 6.34 For Problems 6.24 and 6.25.

X=a
)
V="V,sin =
=0
V=0 =b 4
Slot
XT V=0
y+x=0 V=0
-
b

FIGURE 6.35 For Problem 6.26.

6.27 By letting V(p, ¢) = R(p)@(¢) be the solution of Laplace’s equation in a region where
p # 0, show that the separated differential equations for R and @ are

R A
R'+=—-5R=0
PP

and
D" + AP =0

where A is the separation constant.
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FIGURE 6.36 For Problem 6.30.

6.28 A potential in spherical coordinates is a function of r and 6 but not ¢. Assuming that
V(r,8) = R(r)F(#), obtain the separated differential equations for R and F in a region
for which p, = 0.

Section 6.5—Resistance and Capacitance

6.29 Show that the resistance of the bar of Figure 6.17 between the vertical ends located at
¢ =0andd = 7/2is

K

Zm‘lnE
a

*6.30 Show that the resistance of the sector of a spherical shell of conductivity o, with cross
section shown in Figure 6.36 (where 0 = ¢ < 21r), between its base (i.e., from r = a to
r=>b)is

el )
2m0(1 —cosa) la b

6.31 A spherical shell has inner and outer radii a and b, respectively. Assume that the shell has
a uniform conductivity o and that it has copper electrodes plated on the inner and outer

surfaces. Show that
1 [l 1
R=—A--=
47r(r(a b)

*6.32 A hollow conducting hemisphere of radius a is buried with its flat face lying flush with
the earth’s surface, thereby serving as an earthing electrode. If the conductivity of earth
is 0, show that the leakage conductance between the electrode and earth is 27ac.
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6.33 Another method of finding the capacitance of a capacitor is by using energy consider-
ations, that is,
2We 1
C= Vi = nge|E|2dv
Using this approach, derive egs. (6.22), (6.28), and (6.32).

6.34 In an integrated circuit, a capacitor is formed by growing a silicon dioxide layer (&, = 4)
of thickness 1 wm over the conducting silicon substrate and covering it with a metal elec-
trode of area S. Determine S if a capacitance of 2 nF is desired.

6.35 Calculate the capacitance of the parallel-plate capacitor shown in Figure 6.37.

6.36 Evaluate the capacitance of the parallel-plate capacitor with multilayer dielectric shown in
Figure 6.38.

6.37 The parallel-plate capacitor of Figure 6.39 is quarter-filled with mica (&, = 6). Find the
capacitance of the capacitor.

Depth =15 cm
=3 £7=5 2mm
20 cm 20cm 20 cm

FIGURE 6.37 For Problem 6.35.

& =3 I mm

Area =80 cm

FIGURE 6.38 For Problem 6.36.

FIGURE 6.39 For Problem 6.37.
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— FIGURE 6.40 For Problem 6.39.

6.38 To appreciate the physical size of 1 F capacitor, consider a parallel-plate capacitor filled
with air and with separation distance of 1 mm. Find the area of the plates to provide a
capacitance of 1 F.

*6.39 An air-filled parallel plate capacitor of length L, width a, and plate separation d has its
plates maintained at constant potential difference V,. If a dielectric slab of dielectric
constant &, is slid between the plates and is withdrawn until only a length x remains
between the plates as in Figure 6.40, show that the force tending to restore the slab to its
original position is

e ee,—1)aV?
2d

6.40 A parallel-plate capacitor has plate area 200 cm” and plate separation of 3 mm. The
charge density is 1 ©C/m? and air is the dielectric. Find

(a) The capacitance of the capacitor
(b) The voltage between the plates
(c) The force with which the plates attract each other

6.41 The capacitance of a parallel-plate capacitor is 56 uF when the dielectric material is in
place. The capacitance drops to 32 uF when the dielectric material is removed. Calculate
the dielectric constant &, of the material.

6.42 A large parallel-plate capacitor has one plate at z = 0 and maintained at 40 V, while the
other plate at z = 2 mm is maintained at 0 V. Find the potential between the plates.

6.43 A parallel-plate capacitor has a 4 mm plate separation, 0.5 m? surface area per plate, and
a dielectric with &, = 6.8. If the plates are maintained at 9 V potential difference, calculate
(a) the capacitance, (b) the charge density on each plate.

6.44 A parallel-plate capacitor with plate area S and spacing d has a charge Q on each plate.
Assuming that the space between the plates is filled with dielectric &, = &, &,, determine
the energy stored when the plate spacing is (a) doubled, (b) halved.

6.45 A parallel-plate capacitor has separation 5 mm and area 0.4 m’ If the space between
the plates is filled with dielectric with &, = 2.5, 0 < d < 1.5 mm, dielectric with
£,=5.6,1.5mm < d < 3 mm, and dielectric with &,; = 8.1,3 mm < d < 5 mm, calculate
the capacitance.

6.46 The space between spherical conducting shells r = 5 cm and r = 10 cm is filled with a
dielectric material for which & = 2.25¢,. The two shells are maintained at a potential dif-
ference of 80 V. (a) Find the capacitance of the system. (b) Calculate the charge density
on shell r = 5cm.
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Y4
4
0a b x
FIGURE 6.41 For Problem 6.48. FIGURE 6.42 For Problem 6.50.

6.47 A spherical capacitor has inner radius d and outer radius a. Concentric with the spherical
conductors and lying between them is a spherical shell of outer radius ¢ and inner radius
b.If the regions d < r < ¢,c < r < b,and b < r < a are filled with materials with per-
mittivites &, &,, and &, respectively, determine the capacitance of the system.

6.48 Determine the capacitance of a conducting sphere surrounded by a thick spherical shell
as shown in Figure 6.41.

6.49 A coaxial cable has inner radius of 5 mm and outer radius of 8 mm. If the cable is 3 km
long, calculate its capacitance. Assume & = 2.5¢,.

6.50 A capacitor consists of two plates with equal width (b — a), and a length L in the
z-direction. The plates are separated by ¢ = 7/4, as shown in Figure 6.42. Assume that
the plates are separated by a dielectric material (¢ = &,&,) and ignore fringing. Determine
the capacitance.

6.51 Calculate the capacitance of a coaxial cable with inner radius 1 mm, outer radius 3.5 mm,
and length 400 mm. Assume the dielectric has & = 4.2¢,.

*6.52 In an ink-jet printer the drops are charged by surrounding the jet of radius 20 wm with a
concentric cylinder of radius 600 um as in Figure 6.43. Calculate the minimum voltage
required to generate a charge 50 fC on the drop if the length of the jet inside the cylinder
is 100 wm. Take & = &,.

6.53 The cross section of a cable is shown in Figure 6.44. Determine the capacitance per unit
length.

*6.54 A spherical capacitor has an inner conductor of radius a carrying charge Q and is main-
tained at zero potential. If the outer conductor contracts from a radius b to ¢ under internal
forces, prove that the work performed by the electric field as a result of the contraction is

o= =1

8mebc
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Drop

Liquid
reservoir

| 2
©

Liquid jet

FIGURE 6.43 Simplified geometry of an
ink-jet printer; for Problem 6.52. FIGURE 6.44 For Problem 6.53.

*6.55 A parallel-plate capacitor has its plates at x = 0, d and the space between the plates is
filled with an inhomogeneous material with permittivity & = €o<1 + %) If the plate at

x = d is maintained at V, while the plate at x = 0 is grounded, find:
(a) Vand E
(b) P
(c) ppeatx =0,d
(d) the capacitance, assuming that each plate has area §
6.56 Two parallel conducting plates are located at x = d and x = —d. The plate at x = d is held

at V,, while the plate at x = —d is grounded. If the space between the plates is filled with
an inhomogeneous dielectric medium with

find the capacitance. Assume that each plate has an area S.

6.57 A spherical capacitor has inner radius a and outer radius b and is filled with an inhomo-
geneous dielectric with & = &,k/r*. Show that the capacitance of the capacitor is

47e k

" b-a

6.58 If the earth is regarded a spherical capacitor, what is its capacitance? Assume the radius
of the earth to be approximately 6370 km.
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6.59 A capacitor is formed by two coaxial metal cylinders of radii @ = 1 mm and b = 5
mm. If the space between the cylinders is filled with a dielectric having &, = 3(1 + p),
a < p < b, and p is in millimeters, determine the capacitance per meter.

Section 6.6—Method of Images

6.60 A grounded metal sheet is located in the z = 0 plane, while a point charge Q is located at
(0, 0, a). Find the force acting on a point charge —Q placed at (a, 0, a).

6.61 Two point charges of 3nC and —4nC are placed, respectively, at (0,0,1m) and
(0,0,2 m) while an infinite conducting plane is at z = 0. Determine
(a) The total charge induced on the plane
(b) The magnitude of the force of attraction between the charges and the plane
*6.62 A point charge of 10 uC is located at (1, 1, 1), and the positive portions of the coordinate

planes are occupied by three mutually perpendicular plane conductors maintained at zero
potential. Find the force on the charge due to the conductors.

6.63 A point charge Q is placed between two earthed intersecting conducting planes that are
inclined at 45° to each other. Determine the number of image charges and their locations.

6.64 Infinite line x = 3, z =4 carries 16 nC/m and is located in free space above the
conducting plane z = 0. (a) Find E at (2, —2, 3). (b) Calculate the induced surface charge
density on the conducting plane at (5, —6, 0).

6.65 In free space, infinite planes y = 4 and y = 8 carry charges 20 nC/m’ and 30 nC/m?,
respectively. If plane y = 2 is grounded, calculate E at P(0, 0, 0) and Q(—4, 6,2).
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“] Jean-Baptiste Biot (1774-1862), a French physicist and mathematician,
made advances in geometry, astronomy, elasticity, electricity, magnetism,
heat, and optics.

Born in Paris, he studied at the Ecole Polytechnique in Paris, where
he realized his potential. Biot studied a wide range of mathematical topics,
mostly on the applied mathematics. Biot, together with the French physicist

| Felix Savart, discovered that the magnetic field intensity of a current flowing
through a wire varies inversely with the distance from the wire. This rela-

! tion, now known as Biot-Savart’s law, will be covered in this chapter. Biot
dlscovered that when hght passes through some substances, including sugar solutions, the plane of
polarization of the light is rotated by an amount that depends on the color of the light. In addition to
his scientific pursuits, Biot was a prolific writer. He completed over 250 works of various types, the

most renowned of which is his Elementary Treatise on Physical Astronomy (1805).

André-Marie Ampére (1775-1836), a French physicist, mathematician,
and natural philosopher, is best known for defining a way to measure the
flow of current. He has been called the Newton of electricity.

Born at Polemieux, near Lyons, Ampére took a passionate delight in
the pursuit of knowledge from his very infancy. Although André never
attended school, he received an excellent education. His father taught him
Latin, which enabled him to master the works of Euler and Bernouilli.
André poured over his studies of mathematics and soon began to create
his own theories and ideas. His reading embraced a wide range of knowl- -
edge—history, travels, poetry, philosophy, metaphysics, and the natural sciences. As an adult, Ampére
was notoriously absent-minded. He became a professor of mathematics at the Ecole Polytechnique,
and later at the College de France. He developed Oersted’s discovery of the link between electric
and magnetic fields and introduced the concepts of current element and the force between current
elements. Ampére made several contributions to electromagnetism, including the formulation of the
law that bears his name, which will be discussed in this chapter. The ampere unit of electric current
is named after him.
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MAGNETOSTATIC FIELDS

The neurotic builds castles in the air, the psychotic lives in them, and the psychiatrist

collects the rent.
—ANONYMOUS

7.1 INTRODUCTION

In Chapters 4 to 6, we limited our discussions to static electric fields characterized by E or
D. We now focus our attention on static magnetic fields, which are characterized by H or
B. There are similarities and dissimilarities between electric and magnetic fields. As E and
D are related according to D = ¢E for linear, isotropic material space, H and B are related
according to B = uH. Table 7.1 further shows the analogy between electric and magnetic
field quantities. Some of the magnetic field quantities will be introduced later in this
chapter, and others will be presented in the next. The analogy is presented here to show
that most of the equations we have derived for the electric fields may be readily used to
obtain corresponding equations for magnetic fields if the equivalent analogous quantities
are substituted. This way it does not appear as if we are learning new concepts.

A definite link between electric and magnetic fields was established by Oersted' in
1820. As we have noticed, an electrostatic field is produced by static or stationary charges.
If the charges are moving with constant velocity, a static magnetic (or magnetostatic) field
is produced. A magnetostatic field is produced by a constant current flow (or direct cur-
rent). This current flow may be due to magnetization currents as in permanent magnets,
electron-beam currents as in vacuum tubes, or conduction currents as in current-carrying
wires. In this chapter, we consider magnetic fields in free space due to direct current.
Magnetostatic fields in material space are covered in Chapter 8.

Our study of magnetostatics is not a dispensable luxury but an indispensable necessity.
Motors, transformers, microphones, compasses, telephone bell ringers, television focusing
controls, advertising displays, magnetically levitated high-speed vehicles, memory stores,
magnetic separators, and so on, which play an important role in our everyday life,? could
not have been developed without an understanding of magnetic phenomena.

'Hans Christian Oersted (1777-1851), a Danish professor of physics, after 13 years of frustrating efforts discov-
ered that electricity could produce magnetism.

2Various applications of magnetism can be found in J. K. Watson, Applications of Magnetism. New York: John
Wiley & Sons, 1980.

287
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TABLE 7.1 Analogy between Electric and Magnetic Fields*

Term Electric Magnetic
Basic laws .y Q.Q; & b= ol dl >f ap
4me; 4mR*
D dS = Qunc }H‘dl = Lene
Force law F=QE F=QuXB
Source element dQ dQu = Id1
i " v I
Field intensity E= 4 (V/m) H= z (A/m)
Flux densit 4
sy D= %(C/ml) B= % (Wb/m?)
Relationship between fields D =¢E B = uH
Potentials E=-VV H=-Vv,(J=0)
dl [(wIdt
. J P, T J pildb
4meR 4mR
Flux W:J‘D-ds ll/=J‘B-dS
y=Q=CV =1
dv di
P L v=1L%
¢ dt dt
E: (l 1
Energy density we= "D E w, = B-H
2 2
Poisson’s equation vy= =2 VA= -

*A similar analogy can be found in R. S. Elliot, “Electromagnetic theory: a simplified representation;”
IEEE Transactions on Education, vol. E-24, no. 4, Nov. 1981, pp. 294-296.

There are two major laws governing magnetostatic fields: (1) Biot-Savarts law,’ and (2)
Amperes circuit law. Like Coulomb's law, Biot-Savart’s law is the general law of magnetostatics.
Just as Gauss's law is a special case of Coulomb’s law, Ampere’s law is a special case of Biot-Savart’s
law and is easily applied in problems involving symmetrical current distribution. The two laws of
magnetostatics are stated and applied first, with their derivations provided later in the chapter.

7.2 BIOT-SAVART’S LAW

Biot-Savart’s law states that the differential magnetic field intensity dH produced at a
point P, as shown in Figure 7.1, by the differential current element / d/ is proportional
to the product / dl and the sine of the angle a between the element and the line joining
P to the element and is inversely proportional to the square of the distance R between
P and the element.

*The experiments and analyses of the effect of a current element were carried out by Ampere and by
Jean-Baptiste Biot and Felix Savart around 1820.
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FIGURE 7.1 Magnetic field dH at P due to
current element / dl.

dH (inward)
That is,
Idlsin
dH = T (7.1)
or
kI dlsi
am = =250 7.2)
R

where k is the constant of proportionality. In SI units, k = 1/4r, so eq. (7.2) becomes

_ Idlsina

dH = R (7.3)

From the definition of cross product in eq. (1.21), it is easy to notice that eq. (7.3) is
better put in vector form as

IdlXa, IdlXR
T TR 4R @4

where R = |R| and a; = R/R; R and dl are illustrated in Figure 7.1. Thus the direction
of dH can be determined by the right-hand rule with the right-hand thumb pointing in
the direction of the current and the right-hand fingers encircling the wire in the direction
of dH as shown in Figure 7.2(a). Alternatively, we can use the right-handed-screw rule to
determine the direction of dH: with the screw placed along the wire and pointed in the
direction of current flow, the direction of rotation of the screw is the direction of dH as in
Figure 7.2(b).

It is customary to represent the direction of the magnetic field intensity H (or current I)
by a small circle with a dot or cross sign depending on whether H (or I) is out of the page,
or into it respectively, as illustrated in Figure 7.3.

Just as we can have different charge configurations (see Figure 4.5), we can have dif-
ferent current distributions: line current, surface current, and volume current as shown in
Figure 7.4. If we define K as the surface current density in amperes per meter and J as the
volume current density in amperes per meter squared, the source elements are related as

Idl=KdS=]dv 7.5)
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(-) dH dH

H (or /) is out H(or I)isin
(a) (b) (a) (b)
FIGURE 7.2 Determining the direction of FIGURE 7.3 Conventional repre-
dH using (a) the right-hand rule or (b) the sentation of H (or /) (a) out of the
right-handed-screw rule. page and (b) into the page.

Thus in terms of the distributed current sources, the Biot-Savart law as in eq. (7.4) becomes

Idl X a, .
H= T (line current) (7.6)
L
KdS X ag
= | —or (surface current) (7.7)
dv X a
H= J I‘“T—RZR (volume current) (7.8)
v

where ay is a unit vector pointing from the differential element of current to the point of
interest.

As an example, let us apply eq. (7.6) to determine the field due to a straight current-
carrying filamentary conductor of finite length AB as in Figure 7.5. We assume that the

1dl
Jdv

Kds
(a) (b) (c)

FIGURE 7.4 Current distributions: (a) line current,
(b) surface current, (c) volume current.
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FIGURE 7.5 Field at point P due to a straight fila-
mentary conductor.

H (into the page)

conductor is along the z-axis with its upper and lower ends, respectively, subtending angles
a, and «, at P, the point at which H is to be determined. Particular note should be taken of
this assumption, as the formula to be derived will have to be applied accordingly. Note that
current flows from point A, where & = «,, to point B, where @ = w,. If we consider the
contribution dH at P due to an element dl at (0, 0, z),

Idl X R
dH =~ (7.9)
4R
Butdl = dza,and R = pa, — za,, so
dl X R = pdzay (7.10)
Hence,
i = f Ipdz (7.11)
- 47T[pz + Zz}a/z ay .

Letting z = p cota, dz = —pcsc’ ada, [p? + 227 = p’ csc @, and eq. (7.11) becomes

1 f‘” p* s ada
4
1 ”
= ———iay J sin « da
dmp T,

a
pPescda ?

@

or

I
H=-—(cosa, — cosa,)a, (7.12)
41p
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This expression is generally applicable for any straight filamentary conductor. The
conductor need not lie on the z-axis, but it must be straight. Notice from eq. (7.12) that
H is always along the unit vector a, (i.e., along concentric circular paths) irrespective of
the length of the wire or the point of interest P. As a special case, when the conductor is
semi-infinite (with respect to P) so that point A is now at 0(0, 0, 0) while B is at (0,0, =),
a; = 90°, a, = 0° and eq. (7.12) becomes

1
s 7.13
4mp £ ( )

Another special case is found when the conductor is infinite in length. For this case, point
A is at (0,0, —o) while B is at (0,0, ®); a; = 180°, @, = 0°, and eq. (7.12) reduces to

(7.14)

To find unit vector a, in eqs. (7.12) to (7.14) is not always easy. A simple approach is to
determine a, from

a, a, (7.15)
¢

where a, is a unit vector along the line current and a, is a unit vector along the perpendicu-
lar line from the line current to the field point.

The conducting triangular loop in Figure 7.6(a) carries a current of 10 A. Find H at
(0,0, 5) due to side 1 of the loop.

Solution:

This example illustrates how eq. (7.12) is applied to any straight, thin, current-carrying
conductor. The key point to keep in mind in applying eq. (7.12) is figuring out a,, a, p,
and a,. To find H at (0, 0,5) due to side 1 of the loop in Figure 7.6(a), consider Figure
7.6(b), where side 1 is treated as a straight conductor. Notice that we join the point of inter-
est (0,0,5) to the beginning and end of the line current. Observe that «), «,, and p are
assigned in the same manner as in Figure 7.5 on which eq. (7.12) is based:

2
cosa, = cos90° =0, cosa, =——, p=>5
‘ V29
To determine a, is often the hardest part of applying eq. (7.12). According to eq. (7.15),
a, =a,anda, = a, 50

a,=a Xa = —a,
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0 10 A 2
@ (b)

FIGURE 7.6 For Example 7.1: (a) conducting triangular loop, (b) side 1 of the loop.

Hence,

H, = L (cosa, - cosa) —L<L70)<f )
' cos @, — cos a;)a, m(5\Vas a,

= —59.1a,mA/m

PRACTICE EXERCISE 7.1

Find H at (0, 0, 5) due to side 3 of the triangular loop in Figure 7.6(a).

Answer: —30.63a, + 30.63a, mA/m.

EXAMPLE 7.2 Find H at (=3, 4,0) due to the current filament shown in Figure 7.7(a).

Solution:
LetH = H, + H,, where H, and H, are the contributions to the magnetic field intensity at
P(—3,4,0) due to the portions of the filament along x and z, respectively.

1 ( )
H, = —(cosa, — cos ¢, )a,
2 2 1/%

AtP(=3,4,0),p = (9 + 16)'> = 5, @) = 180° a, = 90° and a,, is obtained as a unit vec-
tor along the circular path through P on plane z = 0 as in Figure 7.7(b). The direction of a,,
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To o

Plane z = 0

(b)
FIGURE 7.7 For Example 7.2: (a) current filament along semi-infinite

x- and z-axes, a, and a, for H, only; (b) determining a, for H,.

is determined using the right-handed-screw rule or the right-hand rule. From the geom-
etry in Figure 7.7(b),

4 3
a, =sinfa, + cosfa, = Eax+gay

Alternatively, we can determine a,, from eq. (7.15). At point P, a, and a,, are as illustrated
in Figure 7.7(a) for H,. Hence,

R 4 3
a, = —a —~=a —a, | =—a =4
% J 55T 5 5ET 5

as obtained before. Thus

3 (4a, + 3a,)
(1-0) :

47(5) 5

38.2a, + 28.65a, mA/m

H, =

It should be noted that in this case a, happens to be the negative of the regular a, of cylin-
drical coordinates. H, could have also been obtained in cylindrical coordinates as

3
H, = 4‘”(5)(1 - 0)(*3.»)

= —47.75a, mA/m

Similarly, for H, at P, p = 4,a, = 0°,cosa; = 3/5, and a, = a, or a, = a, X

a,=a Xa =a, Hence,
H 2 1 !
= el Il —=== 1d
' 4ar(4) 5)°F

= 23.87a, mA/m
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Thus
H = H, + H, = 38.2a, + 28.65a, + 23.87a. mA/m
or
H = —47.75a;, + 23.87a, mA/m
Notice that although the current filaments appear to be semi-infinite (they occupy
the positive z- and x-axes), it is only the filament along the z-axis that is semi-infinite with
respect to point P. Thus H, could have been found by using eq. (7.13), but the equation

could not have been used to find H, because the filament along the x-axis is not semi-
infinite with respect to P.

PRACTICE EXERCISE 7.2

The positive y-axis (semi-infinite line with respect to the origin) carries a filamentary
current of 2 A in the —a, direction. Assume it is part of a large circuit. Find H at

(a) A(2,3,0)
(b) B(3,12, —4)

Answer: (a) 145.8a, mA/m, (b) 48.97a, + 36.73a, mA/m.

A circular loop located on x* + y* = 9,z = 0 carries a direct current of 10 A along a,.
Determine H at (0, 0, 4) and (0,0, —4).

Solution:

Consider the circular loop shown in Figure 7.8(a). The magnetic field intensity dH at point
P(0,0, h) contributed by current element I dl is given by Biot-Savart’s law:

Idl X R
dH=—x'
4mR’

where dl = pdda, R = (0,0,h) — (x,5,0) = —pa, + ha, and

a, a, a,
dAIXR=0 pdd 0|=phdpa,+ p’dpa,
-p 0 h

Hence,

dH = (phdda, + p*dba,) = dH,a, + dH,a,

I
amp? + B2
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P(0,0,h)

(a) (b)

FIGURE 7.8 For Example 7.3: (a) circular current loop, (b) flux lines
due to the current loop.

By symmetry, the contributions along a, add up to zero because the radial components
produced by current element pairs 180° apart cancel. This may also be shown math-
ematically by writing a, in rectangular coordinate systems (i.e., a, = cos ¢ a, + sind a,).
Integrating cos ¢ or sin ¢ over 0 = ¢ = 27 gives zero, thereby showing that H, = 0. Thus

2 P 2

Ip*do a, Ip*2mra,
H:Jdeaz:J pz i ;3/2: pz Zzz/z
o 4mlp? + 1] 4m(p* + 1]

Ip*a,

H = z[pZ 4 hZJ3/2

(a) SubstitutingI = 10 A, p = 3, h = 4 gives

10(3)%a,

H(0,0,4) = —————
( ) 2[9 + 16

= 0.36a, A/m

(b) Notice from dl X R in the Biot-Savart law that if  is replaced by —h, the z-component
of dH remains the same while the p-component still adds up to zero due to the axial sym-
metry of the loop. Hence

H(0,0, —4) = H(0,0,4) = 0.36a, A/m

The flux lines due to the circular current loop are sketched in Figure 7.8(b).
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PRACTICE EXERCISE 7.3

A thin ring of radius 5 cm is placed on plane z = 1 cm so that its center is at (0, 0, 1 cm).
If the ring carries 50 mA along a,, find H at

(@) (0,0, —1cm)

(b) (0,0,10cm)

Answer: (a) 400a, mA/m, (b) 57.3a, mA/m.

A solenoid of length ¢ and radius a consists of N turns of wire carrying current I. Show
that at point P along its axis,

1
H= n?(cos 6, — cos6,)a,

where n = N/{, 6, and 6, are the angles subtended at P by the end turns as illustrated in
Figure 7.9. Also show that if £ >> g, at the center of the solenoid,

H = nla,

Solution:

Consider the cross section of the solenoid as shown in Figure 7.9. Since the solenoid con-
sists of circular loops, we apply the result of Example 7.3. The contribution to the magnetic
field H at P by an element of the solenoid of length dz is

= ldla  Id'ndz
T o+ 272 2 + 27

where dl = ndz = (N/{) dz. From Figure 7.9, tan § = a/z; that s,

[ZZ s aZ]J/Z

dz = —acsc’0df = ——————sin6 df
a
x FIGURE 7.9 For Example 7.4; cross
de section of a solenoid.
% 0
1 () 02
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Hence,
1
dH, = f;sine do
or
I
H, = _n_J sin 6 df
2 Jg,
Thus

1
H= %(cos 6, — cosf,)a,
as required. Substituting n = N/{ gives

NI
H= g(cos 0, — cosf))a,

At the center of the solenoid,

£n

o802 = T ]

—cos 0,

and

_ Int a
2[a® + €44]"2

If¢>>aorf, =0°%6, = 180°

PRACTICE EXERCISE 7.4

The solenoid of Figure 7.9 has 2000 turns, a length of 75 cm, and a radius of 5 cm. If it
carries a current of 50 mA along a,, find H at

(@ (0,0,0)

(b) (0,0,75cm)

(c) (0,0,50cm)

Answer: (a) 66.52a, A/m, (b) 66.52a, A/m, (c) 131.7a, A/m.
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7.3 AMPERE’S CIRCUIT LAW—MAXWELL’S EQUATION

Ampere’s circuit law states that the line integral of H around a closed path is the
same as the net current /,,. enclosed by the path.

In other words, the circulation of H equals I, that is,

3( H-dl = I, (7.16)
z

Ampere’s law is similar to Gausss law, since Ampere’s law is easily applied to determine
H when the current distribution is symmetrical. It should be noted that eq. (7.16) always
holds regardless of whether the current distribution is symmetrical, but we can use the
equation to determine H only when a symmetrical current distribution exists. Ampeére’s
law is a special case of Biot-Savart’s law; the former may be derived from the latter.

By applying Stokes’s theorem to the left-hand side of eq. (7.16), we obtain

Ly = 3€H-dl=J (VX H)-dS (7.17)
; !

s

Lope = f J-dS (7.18)
N

Comparing the surface integrals in eqs. (7.17) and (7.18) clearly reveals that

(7.19)

This is the third Maxwell equation to be derived; it is essentially Ampere’s law in differential
(or point) form, whereas eq. (7.16) is the integral form. From eq. (7.19), we should observe
that V. X H = J # 0; that is, a magnetostatic field is not conservative.

7.4 APPLICATIONS OF AMPERE’S LAW

We now apply Ampere’s circuit law to determine H for some symmetrical current distri-
butions as we did for Gauss’s law. We will consider an infinite line current, an infinite
sheet of current, and an infinitely long coaxial transmission line. In each case, we apply
¢ ,H-dl = I, For symmetrical current distribution, H is either parallel or perpendicular
to dl. When H is parallel to dl, [H| = constant.
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A. Infinite Line Current

Consider an infinitely long filamentary current I along the z-axis as in Figure 7.10. To
determine H at an observation point P, we allow a closed path to pass through P. This path,
on which Ampére’s law is to be applied, is known as an Amperian path (analogous to the
term “Gaussian surface”). We choose a concentric circle as the Amperian path in view of
eq. (7.14), which shows that H is constant provided p is constant. Since this path encloses
the whole current I, according to Ampere’s law,

L = J Hya, - pdda, = Hd;J’ pdd = Hy - 2mp

or

H==——ay (7.20)
2mp

as expected from eq. (7.14).

B. Infinite Sheet of Current

Consider an infinite current sheet in the z = 0 plane. If the sheet has a uniform current
density K = K,a, A/m as shown in Figure 7.11, applying Ampére’s law to the rectangular
closed path 1-2-3-4-1 (Amperian path) gives

%H “dl =1, = Kb (7.21a)

To evaluate the integral, we first need to have an idea of what H is like. To achieve this, we
regard the infinite sheet as comprising of filaments; dH above or below the sheet due to
a pair of filamentary currents can be found by using eqs. (7.14) and (7.15). As evident in
Figure 7.11(b), the resultant 4H has only an x-component. Also, H on one side of the sheet
is the negative of that on the other side. Owing to the infinite extent of the sheet, the sheet

FIGURE 7.10 Ampere’s law applied to an infinite fila-
mentary line current.

Amperian path

dl
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Amperian path

(a)

FIGURE 7.11 Application of Ampére’s law to an infinite sheet: (a) closed path 1-2-3-4-1, (b)
symmetrical pair of current filaments with current along a,.

can be regarded as consisting of such filamentary pairs so that the characteristics of H for
a pair are the same for the infinite current sheet, that is,

_ JHa, z>0
H= {*Hoa, o (7.21b)

where H,, is yet to be determined. Evaluating the line integral of H in eq. (7.21a) along the
closed path in Figure 7.11(a) gives

fua(]+ [+ +])u-a
=0(—a) + (—H,)(=b) + 0(a) + H,(b) (7.21¢)
=2H,b

1
From egs. (7.21a) and (7.21c), we obtain H, = 5 K. Substituting H,, in eq. (7.21b) gives

1
5 Ka, z2>0

H= i (7.22)
—5 Kyax, z<0

In general, for an infinite sheet of current density K A/m,

1
H=_KXa, (7.23)

where a,, is a unit normal vector directed from the current sheet to the point of interest.
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Amperian paths  FIGURE 7.12 Cross section of
the transmission line; the positive
z-direction is out of the page.

C. Infinitely Long Coaxial Transmission Line

Consider an infinitely long transmission line consisting of two concentric cylinders hav-
ing their axes along the z-axis. The cross section of the line is shown in Figure 7.12, where
the z-axis is out of the page. The inner conductor has radius a and carries current I, while
the outer conductor has inner radius b and thickness ¢ and carries return current —I.
We want to determine H everywhere, assuming that current is uniformly distributed in
both conductors. Since the current distribution is symmetrical, we apply Ampere’s law
along the Amperian path for each of the four possible regions: 0 = p <a,a =p = b,
b=p=b+tandp=b+t
For region 0 = p = a, we apply Ampére’s law to path L,, giving

){; H-dl=1, = J J-ds (7.24)
I s
Since the current is uniformly distributed over the cross section,

I
J= _—;a, dS=pdbdpa,
ma

. T I’
J pdpdp = ——mpt =,
p=0 a X

a

. [
Lo = ‘ I‘dS=7ZJ
Jg wa

$=0

Hence eq. (7.24) becomes

Ip*
Hy | dl = Hy2mp = —
L a
or
__ I
2ma’

H, (7.25)
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For region a = p = b, we use path L, as the Amperian path,

§ H-dl=1I,=1
L

Hy2mp =1
or

Hy=—— (7.26)

since the whole current I is enclosed by L,. Notice that eq. (7.26) is the same as eq. (7.14),
and it is independent of a. For region b =< p = b + t, we use path L;, getting

§ H:dl = Hy2mp'= Ly (7.27a)
Ly

where
L= L% f}-dS

and J in this case is the current density (current per unit area) of the outer conductor and
is along —a,, that is,

I
I =e+o-m"
Thus
I 2 p
e i
Al + 07 = 8] )yeg s P

B _pz_bz]
'I[l £+ 2bt

Substituting this in eq. (7.27a), we have

H, —AI—[1—pz'th (7.27b)
¢ 2mp £+ 2bt b

For region p = b + t, we use path L,, getting

§H~dl=1—l=0
Iy
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H, FIGURE 7.13 Plot of H, against p.

or

Hy=0 (7.28)

Putting eqs. (7.25) to (7.28) together gives

Ip
Zr*a;a,b, 0=p=a
I
A== = =
H= 27Tpa¢) VL
(7.29)
2 5
Ll_u}% b<p=<b+t
2mp £+ 2bt
0, pEb+t

The magnitude of H is sketched in Figure 7.13.

From these examples, it can be observed that the ability to take H from under the
integral sign is the key to using Ampére’s law to determine H. In other words, Ampére’s law
can be used to find H only due to symmetric current distributions for which it is possible
to find a closed path over which H is constant in magnitude.

Planes z = 0 and z = 4 carry current K = —10a, A/m and K = 10a, A/m, respectively.
Determine H at

(a) (1,1,1)
(b) (0, -3, 10)

Solution:

The parallel current sheets are shown in Figure 7.14. Let

H=H, + H,
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z=4 FIGURE 7.14 For Example 7.5: par-

\ W2 B T AR A VA, TR, T, B » 2
allel infinite current sheets.

z

L

where H, and H, are the contributions due to the current sheets z = 0 and z = 4, respec-
tively. We make use of eq. (7.23).

(a) At (1,1, 1), which is between the plates (0 < z =1 < 4),
H, = 1/2K X a, = 1/2(~10a,) X a, = 5a,A/m
H, = 1/2K X a, = 1/2(10a,) X (-a,) = 5a,A/m

Hence,
H = 10a, A/m

(b) At (0, —3,10), which is above the two sheets (z = 10 > 4 > 0),

H,
H,

1/2(—10a,) X a, = 5a, A/m

1/2(10a,) X a, = —5a, A/m

Hence,
H=0A/m

PRACTICE EXERCISE 7.5

Plane y = 1 carries current K = 50a, mA/m. Find H at

(@ (0,0,0)
(b) @5 —3)

Answer: (a) 25a, mA/m, (b) —25a, mA/m.

A toroid whose dimensions are shown in Figure 7.15 has N turns and carries current I.
Determine H inside and outside the toroid.

Solution:

We apply Ampeére’s circuit law to the Amperian path, which is a circle of radius p shown
dashed in Figure 7.15. Since N wires cut through this path each carrying current I, the net
current enclosed by the Amperian path is NI. Hence,
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FIGURE 7.15 For Example 7.6: a toroid with a circular cross

section.
fH-dl =1I, = H-2mp = NI
or
NI
=— forp,—a<p<p,+a
2mp

where p, is the mean radius of the toroid as shown in Figure 7.15. An approximate value of H is

NI _ NI

H =— =
2@p, ¢

approx

Notice that this is the same as the formula obtained for H for points well inside a very
long solenoid (¢ >> a). Thus a straight solenoid may be regarded as a special toroidal
coil for which p, — . Outside the toroid, the current enclosed by an Amperian path is
NI — NI = 0 and hence H = 0.

PRACTICE EXERCISE 7.6

A toroid of circular cross section whose center is at the origin and axis the same as the
z-axis has 1000 turns with p, = 10 cm, @ = 1 cm. If the toroid carries a 100 mA cur-
rent, find |H| at

(@) (3cm, —4cm,0)

(b) (6.cm,9cm,0)

Answer: (a) 0, (b) 147.1 A/m.
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7.5 MAGNETIC FLUX DENSITY—MAXWELLS EQUATION

The magnetic flux density B is similar to the electric flux density D. As D = ¢,E in free
space, the magnetic flux density B is related to the magnetic field intensity H according to

(7.30)

where p, is a constant known as the permeability of free space. The constant is in henrys
per meter (H/m) and has the value of

o = 47 X 107 H/m (7.31)

The precise definition of the magnetic flux density B, in terms of the magnetic force, will
be given in the next chapter.
The magnetic flux through a surface S is given by

= J B-dS (7.32)
S

where the magnetic flux ¥ is in webers (Wb) and the magnetic flux density is in webers per
square meter (Wb/m?) or teslas (T).

A magnetic flux line is a path to which B is tangential at every point on the line. It is
a line along which the needle of a magnetic compass will orient itself if placed in the pres-
ence of a magnetic field. For example, the magnetic flux lines due to a straight long wire are
shown in Figure 7.16. The flux lines are determined by using the same principle followed
in Section 4.10 for the electric flux lines. The direction of B is taken as that indicated as
“north” by the needle of the magnetic compass. Notice that each flux line is closed and has
no beginning or end. Though Figure 7.16 is for a straight, current-carrying conductor, it is
generally true that magnetic flux lines are closed and do not cross each other regardless of
the current distribution.

FIGURE 7.16 Magnetic flux lines due to a
Magnetic flux lines  straight wire with current coming out of the page.
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Closed surface, ¥ = Q

Closed surface, ¥ = 0

(O
(>

(a) (b)

FIGURE 7.17 Flux leaving a closed surface due to (a) isolated eletric
charge s = $;D - dS = Q, (b) magnetic charge, y = §B-dS =0.

In an electrostatic field, the flux passing through a clostd surface is the same as the
charge enclosed; that is, ¥ = f D - dS = Q. Thus it is possibe to have an isolated electric
charge as shown in Figure 7.17(a), which also reveals that ele:tric flux lines are not neces-
sarily closed. Unlike electric flux lines, magnetic flux lines aways close upon themselves
as in Figure 7.17(b). This is because it is not possible to haw isolated magnetic pcles (or
magnetic charges). For example, if we desire to have an isolat:d magnetic pole by dividing
a magnetic bar successively into two, we end up with pieces :ach having north and south
poles as illustrated in Figure 7.18. We find it impossible to :eparate the north pole from
the south pole.

An isolated magnetic charge does not exist.

Thus the total flux through a closed surface in a magnetic fied must be zero; that is,

% B-dS=0 (7.33)
les |

N N N
S
N

5 LS ]

N o
S
N
S S S

FIGURE 7.18 Successive division of a bar magnet results in piects
with north and south poles, showing that magnetic poles cannot
be isolated.
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This equation is referred to as the law of conservation of magnetic flux or Gausss law for
magnetostatic fields, just as § D -dS = Q is Gauss’s law for electrostatic fields. Although
the magnetostatic field is not conservative, magnetic flux is conserved.

By applying the divergence theorem to eq. (7.33), we obtain

fB'dS:J'V-de:()
s

v

or

(7.34)

This equation is the fourth Maxwell’s equation to be derived. Equation (7.33) or (7.34)
shows that magnetostatic fields have no sources or sinks. Equation (7.34) suggests that
magnetic field lines are always continuous.

7.6 MAXWELL’S EQUATIONS FOR STATIC FIELDS

Having derived Maxwell’s four equations for static fields, we may take a moment to put
them together as in Table 7.2. From the table, we notice that the order in which the equa-
tions are presented differs from the order in which they were derived. This was done for
the sake of clarity.

The choice between differential and integral forms of the equations depends on a given
problem. It is evident from Table 7.2 that a vector field is defined completely by specify-
ing its curl and its divergence. A field can be electric or magnetic only if it satisfies the
corresponding Maxwell equations (see Problems 7.37 and 7.38). It should be noted that
Maxwell’s equations as in Table 7.2 are only for static electric and magnetic fields. As will
be discussed in Chapter 9, the divergence equations will remain the same for time-varying
EM fields, but the curl equations will have to be modified.

TABLE 7.2 Maxwell’s Equations for Static Electric and Magnetic Fields

Differential (or Point) Form Integral Form Remarks
V:D =p, j( D-dS = J podv Gauss’s law
s v
V:-B=0 B-dS =0 Nonexistence of magnetic monopole

VXE=0 Conservative nature of electrostatic field

0
VXH=] ﬁ“'l“:J]'ds Ampeére’s law
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7.7 MAGNETIC SCALAR AND VECTOR POTENTIALS

We recall that some electrostatic field problems were simplified by relating the electric
potential V to the electric field intensity E(E = —VV). Similarly, we can define a potential
associated with magnetostatic field B. In fact, the magnetic potential could be scalar V,, or

vector A. To define V,, and A involves recalling two important identities (see Example 3.10
and Practice Exercise 3.10):

VX (VV)=0 (7.35a)
V- (VXA)=0 (7.35b)
which must always hold for any scalar field V and vector field A.

Just as E = —VV, we define the magnetic scalar potential V,, (in amperes) as related
to H according to

Vi if] =0 (7.36)

The condition attached to this equation is important and will be explained. Combining
eq. (7.36) and eq. (7.19) gives

J=VXH=VX(-VV,) =0 (7.37)
since V,, must satisfy the condition in eq. (7.35a). Thus the magnetic scalar potential V,, is
only defined in a region where J = 0 as in eq. (7.36). We should also note that V,, satisfies
Laplace’s equation just as V does for electrostatic fields; hence,

V¥V, =0, (J=0) (7.38)
We know that for a magnetostatic field, V- B = 0 as stated in eq. (7.34). To satisfy

eqs. (7.34) and (7.35b) simultaneously, we can define the vector magnetic potential A (in
Wb/m) such that

Just as we defined

[ _do
v= J 4me R (7:48)

we can define

ol dl
A= J L il for line current (7.41)
i

4mR
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w K ds
A= for surface current (7.42)
s 4mR
dv
A= j Kol for volume current (7.43)
, 4mR

Rather than obtaining eqs. (7.41) to (7.43) from eq. (7.40), an alternative approach
would be to obtain eqs. (7.41) to (7.43) from eqs. (7.6) to (7.8). For example, we can derive
eq. (7.41) from eq. (7.6) in conjunction with eq. (7.39). To do this, we write eq. (7.6) as

_ﬁjldl'XR

= 7.44
), PR (245

where R is the distance vector from the line element dl’ at the source point (x', ', z") to
the field point (x, y, z) as shown in Figure 7.19 and R = |R|, that is,

R=lr—r|=[(x-xV+-y)P+(-2)" (7.45)
Hence,
1y G-xa+(-yla+(z-2) R
V(R) & (x—x)P+(—y)+(z—2 )P TR
or

% = —V(%) (= %) (7.46)

where the differentiation is with respect to x, y, and z. Substituting this into eq. (7.44), we
obtain

B= —ﬁf 1dr x V(l> (7.47)
4 )y R

FIGURE 7.19 lllustration of the source point
(x',y',2') and the field point (x, y, 2).

(x, y,2)
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We apply the vector identity
V X (fF) =fV XF+ (Vf) XF (7.48)

where fis a scalar field and F is a vector field. Taking f = 1/Rand F = dI’, we have

drxvc)=1der~VX(ﬂ)
R R R

Since V operates with respect to (x, y, z) while d1’ is a function of (x', y',z'), V X dl’ = 0.

Hence,
1 dr’
FREVI =) =% E— ;
dl V(R) = (7.49)
With this equation, eq. (7.47) reduces to
1dl’
B=VXJ&¥* (750)
. 4mR

Comparing eq. (7.50) with eq. (7.39) shows that

A= J’ wol dl’
. 4mR

verifying eq. (7.41).
By substituting eq. (7.39) into eq. (7.32) and applying Stokes’s theorem, we obtain

WZJB'dSZJ(VXA)‘dSZfA'd]
s s L

or

v = % A-dl (7.51)
L

Thus the magnetic flux through a given area can be found by using either eq. (7.32)
or (7.51). Also, the magnetic field can be determined by using either V,, or A; the
choice is dictated by the nature of the given problem except that V,, can be used only
in a source-free region. The use of the magnetic vector potential provides a powerful,
elegant approach to solving EM problems, particularly those relating to antennas. As we
shall notice in Chapter 13, it is more convenient to find B by first finding A in antenna
problems.
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Given the magnetic vector potential A = —p*/4 a, Wb/m, calculate the total magnetic flux
crossing the surfacep = m/2,1 = p=2m,0=z=5m.

Solution:
We can solve this problem in two different ways: using eq. (7.32) or eq. (7.51).

Method 1:

dA, P
B:VXA:—apad,=Ea¢, dS = dpdza,
Hence,
1(° [ 1, 15
'I’=JB-dS=—[ J pdpdz==p*| (5) = —
s 2 )m0p 4 |, 4
¥ = 3.75 Wb
Method 2:
We use

1I’=j£A~d1=‘I/l+1If2+II/3+1P4
L
where L is the path bounding surface S; ¥,, ¥,, ¥3, and ¥, are, respectively, the evalua-

tions of f,_A - d1 along the segments of L labeled 1 to 4 in Figure 7.20. Since A has only a
z-component,

A FIGURE 7.20 For Example 7.7.
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EXAMPLE 7.8

That is,

V=, + W, = ﬂ(l) J'Sdz-%— z)zf: J

1 15
=96 =7

= 3.75Wb

as obtained by Method 1. Note that the direction of the path L must agree with that of dS.

PRACTICE EXERCISE 7.7

A current distribution gives rise to the vector magnetic potential A = x’ya, +
y’xa, — 4xyza, Wb/m. Calculate the following:

(a) Bat(-1,2,5)
(b) The flux through the surface definedbyz = 1,0=x=1,-1=y=4

Answer: (a) 20a, + 40a, + 3a, Wb/m’, (b) 20 Wb.

If plane z = 0 carries uniform current K = Ka,

u = [12Ka, z2>0
-12Ka, z<0

This was obtained in Section 7.4 by using Ampére’s law. Obtain this by using the concept
of vector magnetic potential.

Solution:

Consider the current sheet as in Figure 7.21. From eq. (7.42),

_ pKdS
"~ 4mR

In this problem, K = K, dS = dx'dy’, and for z > 0,
R = [R[ =[(0,0,2) = (x',5',0)]
= [+ ) + 21" e
where the primed coordinates are for the source point while the unprimed coordinates

are for the field point. It is necessary (and customary) to distinguish between the two
points to avoid confusion (see Figure 7.19). Hence
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FIGURE 7.21 For Example 7.8: infi-
nite current sheet.

oK, dx' dy' a,
Can[(x)? + () + 2]
d
dB =V XdA=—-_—dAa,
0z

dA

Kz dx' dy' a,
- 47[()(/)2 i (yr)2 + 22]3/2

B—"°Kﬂaxr° r dx’ dy' 782
- e . 4[(}(/)2 + (y')2 & Zz}s/z ( a2 )

In the integrand, we may change coordinates from Cartesian to cylindrical for convenience
so that

5 p.oKyza,J’ Jzn o' dd’ dp’
=0

am Jyeodyo [0 + 217

HoKjza, =
= B 0 [ 0 + 21 v2dl(or )
4 0
 oKyza, -1 =
2 [(p')? + 2] i
HoKia,
2
Hence
B K,
H:*=‘{ax, forz >0
Mo 2

By simply replacing z by —z in eq. (7.8.2) and following the same procedure, we obtain

K}/
H= - forz <0
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PRACTICE EXERCISE 7.8

Repeat Example 7.8 by using Biot-Savart’s law to determine H at points (0,0, h) and
(0,0, —h).

7.8 DERIVATION OF BIOT-SAVART’S LAW AND AMPERE’S LAW

Both Biot-Savart’s law and Ampere’s law may be derived by using the concept of magnetic
vector potential. The derivation will involve the use of the vector identities in eq. (7.48) and

VXVXA=V(V-A) - VA (7.52)

Since Biot-Savart’s law as given in eq. (7.4) is defined in terms of line current, we begin our
derivation with egs. (7.39) and (7.41); that is,

Tl 1
B=v><3€“ i jEVdel' (7.53)
. 4mR 4 |, R

where R is as defined in eq. (7.45). If the vector identity in eq. (7.48) is applied by letting
F = dl" and f = 1/R, eq. (7.53) becomes

ol 1 1
B = =V xdl' + V=) xdl' (7.54)
4m |, R R
Since V operates with respect to (x, y, z) and d1’ is a function of (x', y',2'), V X dl' = 0.
Also
1 21-112
==+ =y P+ (=P (7.55)

V{l] (e —x")a, + (p —9"a, + (2~ 2')a; _ & —
R [(x — x')z 4 ()’ _ y')z + (z — Zr)z],z/z o R? s

where a, is a unit vector from the source point to the field point. Thus eq. (7.54) (upon
dropping the prime in d1’) becomes

I [ dlx
Ao #3 Ex (7.57)
L

4w R?

which is Biot-Savart’s law.
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Using the identity in eq. (7.52) with eq. (7.39), we obtain
VXB=V(V-A) - VA (7.58)
For reasons that will be obvious in Chapter 9, we choose

which is called Coulombs gauge. Upon replacing B with u,H and using eq. (7.19),
eq. (7.58) becomes

(7.59)

VA = —u VXH
or

z

which is called the vector Poisson equation. It is similar to Poissons equation (V2V = —p,/e)
in electrostatics. In Cartesian coordinates, eq. (7.60) may be decomposed into three scalar
equations:

VA, = —uo,
VA, = —pJ, (7.61)
VA, = —u,

which may be regarded as the scalar Poisson equations.
It can also be shown that Ampere’s circuit law is consistent with our definition of the
magnetic vector potential. From Stokes’s theorem and eq. (7.39),

fﬂ-dl:fomds
5 i (7.62)
:~JV><(V><A)-dS

I

07s

From egs. (7.52), (7.59), and (7.60),

VXVXA=-VA=ypu]

Substituting this into eq. (7.62) yields

%H-dl:II'dS
7 s

Il
—

which is Ampere’s circuit law.



318 CHAPTER 7 MAGNETOSTATIC FIELDS

7.9 APPLICATION NOTE—LIGHTNING

Lightning is the discharge of static electricity generated in clouds by natural processes

Lightning may also be regarded as a transient, high-current electric discharge. It is a major
natural source of electromagnetic radiation that interferes with modern electronics and
communication systems. Lightning strikes somewhere on the surface of the earth abour 100
times every second. Lightning, the thunderbolt from mythology, has long been feared 1s an
atmospheric flash of supernatural origins: the great weapon of the gods. Today, scieatific
rather than mystical techniques are used to explain lightning, with experimental procedures
replacing intuitive concepts. Yet, we remain in awe of lightning, which still shines wih its
mystery, and rightly so. Deaths and injuries to livestock and other animals, thousands of
forest and brush fires, as well as millions of dollars in damage to buildings, communications
systems, power lines, and electrical systems are among the results of lightning.

Since lightning can reach from clouds to the ground or to other clouds, lightning may
be classified into two types: (1) cloud-to-cloud and (2) cloud-to-ground. A typical cloud-to-
ground lighting in shown in Figure 7.22. The cloud-to-cloud discharge is more common and
is important for aircraft in flight. However, cloud-to-ground lightning has been studied more
extensively because of its practical interest (e.g., as the cause of injuries and death, disturbinces
in power and communication systems). A typical cloud-to-ground lightning carries abcut 10
C to 20 C at an average height of 5 km above the ground. The portion of the cloud-to-giound
discharge that produces physical damage at ground level by virtue of its high current is :alled
the return stroke. The current in a return stroke is typically 10 kA but can be as high as 2(0 kA.

Under good weather conditions, an electric field of the order 100 V/m exists near
the earth’s surface. Movements inside a cloud cause the cloud to become an el:ctric
dipole, with negative charges in the lower part and positive charges in the upper part.

FIGURE 7.22 A cloud-to-ground lightning.
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The approach of the negatively charged particles to the ground induces more positive
charges, especially on tall, sharp structures. A lightning bolt follows the path of least
resistance at the moment of initiation; this is rarely a straight line, and it is unique for
each strike. However, if we assume that lightning strokes arrive in the vertical direction,
we can estimate the striking distance as a function of the amplitude of the current of the
return stroke. The base striking distance D in meters, and the current I, in kiloamperes,
are related as

D = 101°%* (7.63)

Humans and animals within the striking distance may be hurt.

A common way to protect people, buildings, and other structures from lightning is to
use lightning rods. Originally developed by Benjamin Franklin, a lightning rod is a pointed
metal rod attached to the roof of a building. It is connected to a copper or aluminum wire,
and the wire is connected to a conductive grid buried in the ground nearby. Lightning rods
provide a low-resistance path to ground that can be used to conduct the enormous electrical
currents when lightning strikes occur. When lightning strikes, the system attempts to carry
the harmful electrical current away from the structure and safely to ground.

7.10 APPLICATION NOTE—POLYWELLS

A polywell is a polyhedral group of metal rings; inside each ring is a coil, which produces a
magnetic field. As schematically illustrated in Figure 7.23, the position of each of the rings,
and the direction of current flow in each coil, are set to create a null magnetic field at the

FIGURE 7.23 Coils in a polywell.




320 CHAPTER 7 MAGNETOSTATIC FIELDS

center of the cube. On two opposing sides of the cube a stream of electrons is injected
through the rings. These injected electrons are pushed by the magnetic field toward the
(magnetically null) center of the cube, forming a cloud of electrons. When this cloud of
electrons is large enough, it will create what is known as an electrostatic potential well.
The polywell’s name come from its polyhedral shape and the electrostatic potential well it
produces.

In a nuclear fusion reactor two lighter atomic particles fuse together to form a heavier
particle, releasing large amounts of energy. The normal activity inside a nuclear fusion
reactor is as follows: Two spherically concentic, gridded electrodes create a radial electric
field that acts as an electrostatic potential well. Then the radial electric field accelerates ions
to fusion-revelant energies and confines them in the central grid region.

The fusion reactor system, however, suffers from substantial energy loss due to colli-
sions between the grid itself and the ions. The polywell overcomes this problem by replac-
ing the physical cathode with a virtual cathode, the electron cloud. In the polywell the ion
streams are injected into the polyhedron through the remaining four rings. These ions are
attracted to the electron cloud and are accelerated to the energy at which fusion can occur.

All these parts—the polywell and the electron and ion guns—are encapsulated in a
collection sphere, with all of this inside a vacuum chamber. This collection sphere captures
the energy released from the fusion process in the form of alpha particles, which come
from the fusion, inside the electron cloud, of boron and hydrogen ions. The use of boron
and hydrogen in nuclear fusion is becoming more popular than the use of deuterium
and tritium as fuel. Unlike the fusion of deuterium and tritium, the fusion of boron and
hydrogen produces little to no radiation and, since the only by-product is helium, there is
no radioactive waste.

MATLAB 7.1 y
y=2

P(-0.5,0.5, 0)
®

Suppose a 0.5 mA segment of current travels along the parabola y = x* between a = (0, 0, 0) and
b = (1, 1, 0) cm. Using the Biot-Savart law, determine the magnetic field at point P(-0.5, 0.5, 0) due
to the segment.




7.10 Application Note—Polywells 321

We will find the general solution and evaluate at the observation point. The Biot-Savart law to obtain
the magnetic field at point P:

L J’IleaR
L 4mR*

The unit vector from the incremental current filament at (x’, ', 0) to the observation point P
(x, 3, 2) is

(= x)a. & =y)a ) za
ap = R

R=Vilx —x )ty y)+2
the incremental current element is given by

IdL = I(dx'a, + dy'a,)
The cross product is
(x—x)a. + 0y +
N ARG G

IdL X a; = I(dx'a, + dy'a)) X

Thus

. J’IdL Xag LJ"’[(}' —y)dx' - (x- x)dyla, - zdxia, + zdy'a,
"l 4R 4nm), [x—x'P+(y—y)+ 2]

This integral is numerically evaluated as 0.85I; thus the magnetic field at P is given by:
mA
H = 19437a—
m

clear
I=0.5e-3; % the current value

% prompt for observation point
disp( Enter the observation point (in the Y;
p0 = input( format [Xx y 2Z])... \n > ik

if isempty(p0); p0 = [0 0 0]; end

xpstart = 0; xpend = le-2; % start and end points for
$integration variable x prime
dxp=le-7; % integration variable increment dx

H = [0, 0, 0]; % initial field values before integration sum
zp = 0; % current lies only in the xy-plane

for xp=xpstart:dxp:xpend, % begin integration loop
yp=xp~2*le2; % make substitution for y prime in terms
% of x prime
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in space
dyp=2*X*dxp;
% of dx prime

end

H=H*I/(4*pi);

% display the output

disp( V)

disp( The magnetic field at );

p0(1), p0(2), pO(2), H(1), H(2), H(3)))

% the le2 is to offset the le-2 squared
% term which relates x prime and y prime
%
%

make substitution for dy prime in terms

num = [(p0(3)-2zp)*dyp,-(p0(3)-2p)*dxp, ((P0(2)-yp)*dxp-...
(p0(1)-xp)*dyp)]; % numerator
den = ((p0(1)-xp)”~2+(p0(2)-yp)~2)"(3/2); % denominator

H = H + num/den; % total field including all three coordinates

disp(sprintf( ‘' (%f, %f, %f) cm \nis (%f %f %f) A/m’, ...

MATLAB 7.2

9 0P 0P 0P 0P 0P 0P 0P

outputs: the magnetic field vector plot
clear

% prompt user for input materials
disp( Enter the graph limits Y;

dx=(plotlim(2)-plotlim(1))/10;
dy=(plotlim(4)-plotlim(3))/10;
xrange=plotlim(1l):dx:plotlim(2);
yrange=plotlim(3):dy:plotlim(4);

[X,Y]=meshgrid(xrange,yrange);
U=zeros(length(xrange), length(yrange));
V=zeros(length(xrange), length(yrange));
for x=1:length(xrange)

This script allows the user to specify a current

directed out of the page (+z direction) that lies on the origin,
is assumed infinite, and points in the z direction

and plot the vector magnetic field in the xy-plane

inputs: I (value of the current), x and y limits of the plot

plotlim = input( ' [xmin xmax ymin ymax]... \n > Y:
if isempty(plotlim); plotlim = [-1 1 -1 1]; end
% check if entered
correctly
I = input( Enter the current in Amperes... \n > N
if isempty(I); I = 1; end % check if current is entered
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for y=1l:length(yrange)
r=sqrt(xrange(x)“2+yrange(y)"2);
% the distance from the current
phiuvector=[-yrange(y),xrange(x)]/r;
% the unit vector in the phi direction
H=I/(2*pi*r)*phiuvector;
% Ampere’s law for an infinite current
% fill matrices which contain the vector
% components in x and y direction
U(y, x)=H(1); %
V(y, x)=H(2); %
end

vector x corresponds to columns
vector x corresponds to columns

end

% Display results

figure

quiver (xrange,yrange,U,V)

axis square

axis(plotlim)

xlabel( X location (m)’)

ylabel( Y location (m)’)

disp( Value of first vector to the right of’);
disp(sprintf( ®origin = %f A/m’,I/(2*pi*dx)))

Y 8 S ol ; :
SoMMA 1. The basic laws (Biot-Savart's and Ampere’s) that govern magnetostatic fields are discussed.
Biot-Savart’s law, which is similar to Coulomb’s law, states that the magnetic field intensity

dH at r due to current element I dl atr’ is

_Id1XR

dH = P (in A/m)

where R = r — r"and R = |R|. For surface or volume current distribution, we replace
I dl with K dS or J dv, respectively; that is,

Idl=KdS =Jdv

2. Ampere’s circuit law, which is similar to Gauss’s law, states that the circulation of H
around a closed path is equal to the current enclosed by the path; that is,

jﬂH'dl=Iw=Jl-dS
L N
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or
V X H =] (third Maxwell equation to be derived)

When current distribution is symmetric so that an Amperian path (on which H = Hya,
is constant) can be found, Ampére’s law is useful in determining H; that is,

L,
H¢§d1=1,nc or H4,=Tj“
L

3. The magnetic flux through a surface S is given by
‘I’=J B-dS (in Wb)
s
where B is the magnetic flux density (in Wb/m?). In free space,
B = uH

where u, = 47 X 1077 H/m = permeability of free space.

4. Since an isolated or free magnetic monopole does not exist, the net magnetic flux
through a closed surface is zero:
v = { B-dS=0
S
or
V-B =0 (fourth Maxwell equation to be derived)
5. At this point, all four Maxwell equations for static EM fields have been derived, namely:
VD =p,
V-B=0
VXE=0
VXH=]

6. The magnetic scalar potential V,,, is defined as
H=-VV,, ifJ=0
and the magnetic vector potential A as
B=VXA

where V- A = 0. With the definition of A, the magnetic flux through a surface S can
be found from

‘I’=§A-dl
L
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where L is the closed path defining surface S (see Figure 3.21). Rather than using Biot-
Savart’s law, the magnetic field due to a current distribution may be found by using A, a
powerful approach that is particularly useful in antenna theory. For a current element I
dlatr’, the magnetic vector potential at r is

Idl
AZJ"ULO , R=|r—1r'|
4mR
7. Elements of similarity between electric and magnetic fields exist. Some of these are
listed in Table 7.1. Corresponding to Poisson’s equation V2V = —p, /e, for example, is
VA = —pJ

8. Lightning may be regarded as a transient, high-current electric discharge. A common way
to protect people, buildings, and other structures from lightning is to use lightning rods.

REVIEW
QUESTIONS 7.1 One of the following is not a source of magnetostatic fields:

(a) A dc current in a wire

(b) A permanent magnet

(c) An accelerated charge

(d) An electric field linearly changing with time
(e) A charged disk rotating at uniform speed

7.2 Identify the configuration in Figure 7.24 that is not a correct representation of I
and H.

7.3 Consider points A, B, C, D, and E on a circle of radius 2 as shown in Figure 7.25. The items
in the right-hand list are the values of a, at different points on the circle. Match these items
with the points in the list on the left.

(@) A (i) a,

(b) B (i) —a,

() C (iii) a
(d) D (iv) —a,

(a)
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¥ FIGURE 7.25 For Review Question 7.3.

a, +a,
(e) E (v) v
s TR
“
L Tata
(vii) —\/E_
o O 9y
(viii) \/i

7.4 The z-axis carries filamentary current of 107 A along a,. Which of these is incorrect?
(a) H= —a,A/mat (0,5,0)
(b) H=a, A/mat (5,7/4,0)
(c) H= —0.8a, — 0.6a,at (-3,4,0)
(d) H = —azat (5,37/2,0)
7.5 Plane y = 0 carries a uniform current of 30a, mA/m. At (1,10, —=2), the magnetic field
intensity is
(a) —15a, mA/m (d) 18.85a, nA/m
(b) 15a, mA/m (e) None of the above
(c) 477.5a, uA/m
7.6 For the currents and closed paths of Figure 7.26, calculate the value of fl_ H-dlL
7.7 Which of these statements is not characteristic of a static magnetic field?
(a) It is solenoidal.
(b) It is conservative.
(c) It has no sinks or sources.
(d) Magnetic flux lines are always closed.

(e) The total number of flux lines entering a given region is equal to the total number of
flux lines leaving the region.
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FIGURE 7.26 For Review Question 7.6.
L
10A 10A
®© L 0]
®30A ®30A
(a) (b)

7.8

10A Z L] 10a

® ®
®@30A ® 30A

(d)

(c)

Two identical coaxial circular coils carry the same current I but in opposite directions. The
magnitude of the magnetic field B at a point on the axis midway between the coils is

(a) Zero

(b) The same as that produced by one coil

(c) Twice that produced by one coil

(d) Half that produced by one coil.

Which one of these equations is not Maxwell’s equation for a static electromagnetic field
in a linear homogeneous medium?

(@ V-B=0 (d) #sD-dS=Q

b)) VXD=0 (e) V’A = p,J

(c) $1B-dl=p,I

Two bar magnets with their north poles having strength Q,, =20A-m and
Q,.» = 10 A - m (magnetic charges) are placed inside a volume as shown in Figure 7.27.
The magnetic flux leaving the volume is

(a) 200 Wb (d) 0 Wb
(b) 30 Wb (e) —10 Wb
(c) 10 Wb

Answers: 7.1c, 7.2¢, 7.3 (a)-(ii), (b)-(vi), (c)-(i), (d)-(v), (e)-(iii), 7.4d, 7.5a, 7.6 (a) 10 A, (b)

—20 A, (c) 0, (d) —10 A, 7.7b, 7.8a, 7.9¢, 7.10d.

FIGURE 7.27 For Review Question 7.10.
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PROBLEMS

Section 7.2—Biot-Savart's Law

7.1 (a) State Biot-Savart’s law.
(b) The y- and z-axes, respectively, carry filamentary currents 10 A along a, and 20 A
along —a,. Find Hat (3,4, 5).
7.2 A current filament lies along the entire z-axis and carries 12 A in the —a, direction.
Determine H at (3, 4, —1).

7.3 Two infinitely long wires, placed parallel to the z-axis, carry currents 10 A in opposite
directions as shown in Figure 7.28. Find H at point P.

7.4 A current element I dl = 4a, A - m is located at the origin. Determine its contribution to
the magnetic field intensity at (a) (1, 0, 0), (b) (0, 1, 0), (c) (0, 0, 1), (d) (1, 1, 1).

7.5 A conducting filament carries current I from point A(0, 0, a) to point B(0, 0, b). Show
that at point P(x, , 0),
Hie 1 [ b B a :
VRVt Ve vy ral !

7.6 Consider AB in Figure 7.29 as part of an electric circuit. Find H at the origin due to AB.
7.7 Linex = 0,y = 0,0 = z = 10 m carries current 2 A along a,. Calculate H at points
(a) (5,0,0) (o) (5,15,0)
(®) (5,5,0) (@) (5,-15,0)
*7.8 (a) Find H at (0, 0, 5) due to side 2 of the triangular loop in Figure 7.6(a).
(b) Find H at (0,0, 5) due to the entire loop.

i & 7 B
Al 2 3 4 5  x 0 1

FIGURE 7.28 For Problem 7.3. FIGURE 7.29 For Problem 7.6.



Problems 329

FIGURE 7.30 Current filament for Problem 7.9.

-

SA

7.9 An infinitely long conductor is bent into an L shape as shown in Figure 7.30. If a direct
current of 5 A flows in the conductor, find the magnetic field intensity at (a) (2,2, 0), (b)
(0, —2,0), and (c) (0,0, 2).
7.10 Find H at the center C of an equilateral triangular loop of side 4 m carrying 5 A of current
as in Figure 7.31.

7.11 A rectangular loop carrying 10 A of current is placed on z = 0 plane as shown in
Figure 7.32. Evaluate H at
(@) (2,2,0) (b) (4,2,0)

(c) (4,8,0) (d) (0,0,2)

7.12 A square conducting loop of side 4 cm lies on the z = 0 plane and is centered at the
origin. If it carries a current 5 mA in the counterclockwise direction, find H at the center
of the loop.

*7.13(a) A filamentary loop carrying current I is bent to assume the shape of a regular polygon

of n sides. Show that at the center of the polygon
nl
S—4ifi—
2or - n
where r is the radius of the circle circumscribed by the polygon.
(b) Apply this for the cases of n = 3 and n = 4 and see if your results agree with those for
the triangular loop of Problem 7.10.

z ¥
a2
10A
SA
¢ Ry
0 4 8
60° 60°
) 0 2 # FIGURE 7.32 Rectangular loop

of Problem 7.11.
FIGURE 7.31 Equilateral triangular
loop for Problem 7.10.
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4cm 10A

o 100 cm

10A

FIGURE 7.33 Filamentary loop of Problem 7.14 (not drawn to scale).

(c) As n becomes large, show that the result of part (a) becomes that of the circular loop
of Example 7.3.

7.14 For the filamentary loop shown in Figure 7.33, find the magnetic field strength at O.

7.15 Two identical current loops have their centers at (0, 0,0) and (0,0, 4) and their axes the
same as the z-axis (so that the “Helmholtz coil” is formed). If each loop has a radius of 2 m
and carries a current of 5 A in a,, calculate H at

(@ (0,0,0)
() (0,0,2)

7.16 A solenoid of radius 4 mm and length 2 cm has 150 turns/m and carries a current of
500 mA. Find (a) |H| at the center, (b) |H| at the ends of the solenoid.

7.17 Plane x = 10 carries a current of 100 mA/m along a,, while line x = 1, y = —2 carries a
filamentary current of 2077 mA along a,. Determine H at (4,3,2).

Section 7.3—Ampére’s Circuit Law

7.18 (a) State Ampeére’s circuit law.

(b) A hollow conducting cylinder has inner radius a and outer radius b and carries cur-
rent I along the positive z-direction. Find H everywhere.

7.19 Current sheets of 20a, A/m and —20a, A/m are located at y = 1 and y = —1, respectively.
Find H in region —1 <y < 1.

7.20 The z = 0 plane carries current K = 10a, A/m, while current filament situated at
y = 0,z = 6 carries current ] along a,. Find I such that H(0,0,3) = 0.

7.21 (a) Aninfinitely long solid conductor of radius a is placed along the z-axis. If the conduc-
tor carries current I in the +z direction, show that

Ip
H=—a
2ma® " ?

within the conductor. Find the corresponding current density.

(b) IfI = 3Aanda = 2 cmin part (a), find Hat (0, 1 cm, 0) and (0, 4 cm, 0).
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(O]

f 10cm -

FIGURE 7.34 Two-wire line of Problem 7.27. d a

7.22

7.23

7.24
7.25

7.2

N

7.2

N

7.28

FIGURE 7.35 For Problem 7.29.

An infinitely long cylindrical conductor of radius a is placed along the z-axis. If the

current density is ] = —uaz, where J, is constant, find H everywhere.
LetH = k(,(%)ad,, p < a,wherek, is a constant. (a) Find J for p < a. (b) Find H forp > a.

LetH = y’a, + x’a, A/m. Find J at (1, —4,7).
Assume a conductor, H = IOJpZaa, A/m. (a) Find J. (b) Calculate the current through the
surface 0<p<2,0<¢ <2mz=0.

An infinitely long filamentary wire carries a current of 2 A along the z-axis in the
+z-direction. Calculate the following:

(a) Bat (—3,4,7)

(b) The flux through the square loop described by 2 = p = 6,0 = z = 4, ¢ = 90°.
Consider the two-wire transmission line whose cross section is illustrated in Figure 7.34. Each

wire is of radius 2 cm, and the wires are separated 10 cm. The wire centered at (0, 0) carries a
current of 5 A while the other centered at (10 cm, 0) carries the return current. Find H at

(@) (5cm,0)
(b) (10 cm,5cm)
An electron beam forms a current of density
.
- {Ho s,
0, p>a

p<a

(a) Determine the total current.
(b) Find the magnetic field intensity everywhere.

Section 7.5—Magnetic Flux Density

7.29

7.30

Determine the magnetic flux through a rectangular loop (a X b) due to an infinitely long
conductor carrying current I as shown in Figure 7.35. The loop and the straight conduc-
tors are separated by distance d.

A semicircular loop of radius a in free space carries a current I. Determine the magnetic
flux density at the center of the loop.
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FIGURE 7.36 Cross section
of a brass ring enclosing a
1 long straight wire; for
Problem 7.32.

Brass ring

7.31 In free space, the magnetic flux density is

B = y’a, + Z'a, + x’a, Wb/m’

(a) Show that B is a magnetic field
(b) Find the magnetic flux throughx = 1,0 <y < 1,1 <z < 4.
(c) CalculateJ.
*7.32 A brass ring with triangular cross section encircles a very long straight wire concentrically

as in Figure 7.36. If the wire carries a current I, show that the total number of magnetic
flux lines in the ring is

Calculate ¥ ifa = 30cm, b = 10cm, h = 5cm,and I = 10 A.

7.33 The electric motor shown in Figure 7.37 has field
H= 1706sin 2¢a, A/m
Calculate the flux per pole passing through the air gap if the axial length of the pole is 20 cm.
7.34 In free space, B = @sinz ¢a, Wb/m”. Determine the magnetic flux crossing the strip
z2=0,1<p<2m,0<d¢ <m/4

2 1
7.35 If B = a0 fa, + Fsin 6a, Wb/m?, find the magnetic flux through the spherical cap

r=1,0<mw/3.

7.36 In a hydrogen atom, an electron revolves at velocity 2.2 X 10° m/s. Calculate the magnetic
flux density at the center of the electron’s orbit. Assume that the radius of the orbit is
R=53X10"m.

Section 7.6—Maxwell’s Equations

7.37 Consider the following arbitrary fields. Find out which of them can possibly represent an
electrostatic or magnetostatic field in free space.
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¥
Y
a
41
P
Armature
o a 28 %
FIGURE 7.37 Electric motor pole of >
Problem 7.33.

FIGURE 7.38 For Problem 7.40.

(a) A =ycosaxa, + (y + e ¥)a,
20
(b) B= ?a‘,
() C= rlsiné)a‘,
7.38 Reconsider Problem 7.37 for the following fields.
(a) D = y’za, + 2(x + l)yzay —(x + 1)Za,

(b) E= (Z-:%l)cosd:ap oL

az

(c) F=%(2c050a,+ sin 6 a,)

Section 7.7—Magnetic Scalar and Vector Potentials

7.39 A current element of length L carries current I in the z direction. Show that at a very
distant point,

L
A= ﬁaz
4mr

Find B.

7.40 A square loop of side 2a carries current I and lies in the xy-plane as shown in Figure 7.38.
Find A at point P(24, 0, 0).

7.41 In free space, A = 10 sin7 ya, + (4 + cos7 x)a, Wb/m. Find H and J.
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7.42 In a certain region (u = p,), the magnetic vector potential is
A= —pk( + y")a, Wb/m

where k is a constant. Determine the magnetic field intensity H.

7.43 For a current distribution in free space,
A = (24 + yz)a, + (x* — x2')a, — (6xyz — 24%)%)a, Wb/m

(a) Calculate B.
(b) Find the magnetic flux through a loop described by x = 1,0 <y < 2,0 <z < 2.
(c) ShowthatV-A =0andV-B = 0.

7.44 Given the following two magnetic vector potentials
A, = (sinx + xsin y)ay
A, = cos ya, + sin xa,
show that they give the same magnetic flux density B. Show that B is solenoidal.

7.45 The magnetic vector potential of a current distribution in free space is given by
A = 15¢ "sin ¢ a, Wb/m
Find H at (3, 7/4, —10). Calculate the flux through p = 5,0 = ¢ = 7/2,0 = z < 10.

10
7.46 Given that A = Tsin 6a, Wb/m find H at point (4, 60°, 30°).

7.47 Aninfinitely long conductor of radius a carries a uniform current with J = ], a,. Show that
the magnetic vector potential for p < a is

1 2
A % —ZMJOP a,

7.48 Find the B field corresponding to the magnetic vector potential

o Xy
A = sin—cos——a,
2 2

7.49 The magnetic vector potential at a distant point from a small circular loop is given by

A,
A= 7sin fa, Wb/m

where A, is a constant. Determine the magnetic flux density B.

7.50 The magnetic field intensity in a certain conducting medium is

H = xy’a, + x’za, — y’za, A/m
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7.53

7.54

7.5

a
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(a) Calculate the current density at point P(2, —1, 3).
ap,
(b) Whatis 0—‘;@“ P

Let A = 10p’a, uWb/m.

(a) Find Hand J
(b) Determine the total current crossing the surfacez = 1,0 <p <2,0 < ¢ = 2m.

Prove that the magnetic scalar potential at (0,0, z) due to a circular loop of radius a
shown in Figure 7.8(a) is

I @
Vpy=-|1- 5
m 5] { [ZZ + aZ]l/Z]
The z-axis carries a filamentary current 12 A along a,. Calculate V,, at (4, 30°, —2)
if V,,=0 at (10, 60°, 7).
Plane z = —2 carries a current of 50a, A/m. If V,, = 0 at the origin, find V,, at

(a) (=2,0,5)
(b) (10,3,1)

Prove in cylindrical coordinates that

(@ VX (VV)=0
(b) V- (VXA)=0

IfR =r — r’'and R = |R|, show that

1
s = i
R R R

where V and V' are del operators with respect to (x, y,z) and (x', y', z'), respectively.




MAGNETIC RESONANCE IMAGING (MRI)

Magnetic resonance imaging (MRI), an exciting technique for probing the human body, was intro-
duced into clinical practice by the early 1980s. In less than 10 years, it became a primary diagnostic
tool in several clinical areas such as neurology and orthopedics. Improvements in MRI technology
and in computer technology have led to continued growth in the clinical capabilities of the technique.
No other technique has proven to be so uniquely flexible and dynamic.

What is MRI? When placed in a static magnetic field, certain atomic nuclei assume one of two states:
one has a higher energy level and the other has a lower energy level. The energy difference between the
two states is linearly proportional to the strength of the applied magnetic field. (This is called Zeeman
effect.) Thus, the MRI signals received by a probe can be analyzed to study the properties of the nuclei
and their environment. MRI stems from the application of nuclear magnetic resonance (NMR) to radio-
logical imaging. Unlike other imaging techniques, such as X-ray computed tomography, MRI does not
require exposure of the subject to ionizing radiation and hence is considered safe. It provides more infor-
mation than other imaging techniques because MRI signals are sensitive to several tissue parameters.

An MRI machine consists of a magnet and a giant cube 7 feet tall by 7 feet wide by 10 feet long
(2m X 2m X 3 m), although new models are rapidly shrinking. There is a horizontal tube running
through the magnet from front to back. The magnets in use today in MRI machines are in the range
of 0.5 T to 2 T. (There is no scientific evidence that fields in that range produce harmful effects in
humans.) The patient, lying on his or her back, slides into the tube on a special table. Once the body
part to be scanned is in the exact center of the magnetic field, the scan can begin.

MRI has changed from a curiosity to the technique of choice for a wide variety of diseases in
various regions of the human body. It has been lauded as a technique that represents a breakthrough
in medical diagnosis. Today, an estimated 60 million MRI scans are performed annually to visualize
patients’ internal structures and diagnose a number of conditions including tumors, stroke damage,
heart and brain diseases, and back probiems.




CHAPTER 8

MAGNETIC FORCES, MATERIALS,
AND DEVICES

If I don’t practice one day, | know it: two days, the critics know it: three days,

the public knows it.
—JASCHA HEIFETZ

8.1 INTRODUCTION

Having considered the basic laws and techniques commonly used in calculating magnetic
field B due to current-carrying elements, we are prepared to study the force a magnetic
field exerts on charged particles, current elements, and loops. Such a study is important to
problems on electrical devices such as ammeters, voltmeters, galvanometers, cyclotrons,
plasmas, motors, and magnetohydrodynamic generators. The precise definition of the
magnetic field, deliberately sidestepped in the preceding chapter, will be given here. The
concepts of magnetic moments and dipole will also be considered.

Furthermore, we will consider magnetic fields in material media, as opposed to the mag-
netic fields in vacuum or free space examined in the preceding chapter. The results of Chapter
7 need only some modification to account for the presence of materials in a magnetic field.
Further discussions will cover inductors, inductances, magnetic energy, and magnetic circuits.

8.2 FORCES DUE TO MAGNETIC FIELDS

There are at least three ways in which force due to magnetic fields can be experienced. The
force can be (a) due to a moving charged particle in a B field, (b) on a current element in
an external B field, or (c) between two current elements.

A. Force on a Charged Particle

According to our discussion in Chapter 4, the electric force F, on a stationary or moving
electric charge Q in an electric field is given by Coulomb’s experimental law and is related
to the electric field intensity E as

F. = QE (.1)

This shows that if Q is positive, F, and E have the same direction.
337
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A magnetic field can exert force only on a moving charge. From experiments, it is
found that the magnetic force F,, experienced by a charge Q moving with a velocity u in a
magnetic field B is

F,=QuXB (8.2)

This clearly shows that F,, is perpendicular to both u and B.

From egs. (8.1) and (8.2), a comparison between the electric force F, and the magnetic
force F,, can be made. We see that F, is independent of the velocity of the charge and can
perform work on the charge and change its kinetic energy. Unlike F,, F,, depends on the
charge velocity and is normal to it. However, F,, cannot perform work because it is at right
angles to the direction of motion of the charge (F,, - d1 = 0); it does not cause an increase
in kinetic energy of the charge. The magnitude of F,, is generally small in comparison to
F, except at high velocities.

For a moving charge Q in the presence of both electric and magnetic fields, the total
force on the charge is given by

F=F, +F,

or

F=Q(E+uXxB) (8.3)

This is known as the Lorentz force equation." It relates mechanical force to electrical
force. If the mass of the charged particle moving in E and B fields is m, by Newton’s second
law of motion.

du
F=mI=Q(E+uXB) (8:4)
The solution to this equation is important in determining the motion of charged particles
in E and B fields. We should bear in mind that in such fields, energy can be transferred
only by means of the electric field. A summary on the force exerted on a charged particle
is given in Table 8.1.
Since eq. (8.2) is closely parallel to eq. (8.1), which defines the electric field, some
authors and instructors prefer to begin their discussions on magnetostatics from eq. (8.2),
just as discussions on electrostatics usually begin with Coulomb’s force law.

B. Force on a Current Element

To determine the force on a current element I dl of a current-carrying conductor due to the
magnetic field B, we modify eq. (8.2) using the fact that for convection current [see eq. (5.7)]:

J=pu (8.5)

! After Hendrik Lorentz (1853-1928), who first applied the equation of motion in electric fields.
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TABLE 8.1 Force on a Charged Particle

State of Particle E Field B Field Combined E and B Fields
Stationary QE — QE
Moving QE Qu X B Q(E + u X B)

From eq. (7.5), we recall the relationship between current elements:
Idl =KdS =Jdv (8.6)
Combining egs. (8.5) and (8.6) yields

Idl = pudv=dQu

d dl
Alternatively, I dl = ‘T?dl = dQ; =dQu

Hence,

Idl = dQu (8.7)

This shows that an elemental charge dQ moving with velocity u (thereby producing con-
vection current element dQ u) is equivalent to a conduction current element I d1. Thus
the force on a current element I dl in a magnetic field B is found from eq. (8.2) by merely
replacing Qu by I dI; that is,

dF =1dl X B (8.8)

If the current I is through a closed path L or circuit, the force on the circuit is given by

F=§;1dl><B (8.9)
L

In using eq. (8.8) or (8.9), we should keep in mind that the magnetic field produced by
the current element I dl does not exert force on the element itself, just as a point charge
does not exert force on itself. The B field that exerts force on I d1 must be due to another
element. In other words, the B field in eq. (8.8) or (8.9) is external to the current element
I dl. If instead of the line current element I dl, we have surface current elements K dS
or a volume current element J dv, we simply make use of eq. (8.6) so that eq. (8.8) becomes

dF =KdSXB or dF=JdvXB (8.8")

while eq. (8.9) becomes

F=deS><B or F=JJdv><B (8.9")

S
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From eq. (8.8)

The magnetic field B is defined as the force per unit current element.

Alternatively, B may be defined from eq. (8.2) as the vector that satisfies F,/q = u X B,
just as we defined electric field E as the force per unit charge, F,/q. Both these definitions
of B show that B describes the force properties of a magnetic field.

C. Force between Two Current Elements

Let us now consider the force between two elements I, dl; and I, dl,. According to Biot-
Savart’s law, both current elements produce magnetic fields. So we may find the force
d(dF,) on element I, dl, due to the field dB, produced by element I, dl, as shown in
Figure 8.1. From eq. (8.8),

d(d¥F,) = I, dl, X dB, (8.10)
But from Biot-Savart’s law,

I, dl, X a
dB7=IL°z 2 Ry,

8.11
b 4R}, ( )

Hence,

woly dly X (I dl, X ag,)

d(dF)) = o (8.12)
21

This equation is essentially the law of force between two current elements and is analogous
to Coulomb’s law, which expresses the force between two stationary charges. From eq. (8.12),
we obtain the total force F, on current loop 1 due to current loop 2 shown in Figure 8.1 as

(8.13)

1

A % f dl, X (dl, X ag,)
T 4m L L

2
Ry

FIGURE 8.1 Force between two current
loops.
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Although this equation appears complicated, we should remember that it is based on
eq. (8.10). It is eq. (8.9) or (8.10) that is of fundamental importance.

The force F, on loop 2 due to the magnetic field B, from loop 1 is obtained from
eq. (8.13) by interchanging subscripts 1 and 2. It can be shown that F, = —F; thus F, and
F, obey Newton’s third law that action and reaction are equal and opposite. It is worthwhile
to mention that eq. (8.13) was experimentally established by Oersted and Ampére; Biot and
Savart (Ampere’s colleagues) actually based their law on it.

A charged particle of mass 2 kg and charge 3 C starts at point (1, —2,0) with velocity
4a, + 3a.m/sin an electric field 12a, + 10a, V/m. At time ¢ = 15, determine

(a) The acceleration of the particle
(b) Its velocity

(c) Its kinetic energy

(d) Its position

Solution:

(a) This is an initial-value problem because initial values are given. According to Newton’s
second law of motion,

F = ma = QE

where a is the acceleration of the particle. Hence,

E 3
a= % = E(lZaX + 10a,) = 18a, + 15a, m/s’
du d
a=—= ;(u,, u,u,) = 18a, + 15a,

(b) Equating components and then integrating, we obtain

By 18— = 19+ ®.1.1)
dt *

du,

=15 u =15t 4B 8.1.2)
B oy S in B 8.13)
dt : £

where A, B, and C are integration constants. But at t = 0, u = 4a, + 3a,. Hence,
u(t=0)=4—>4=0+A or A=4
u(t=0)=0—=>0=0+B or B=0
u(t=0)=3—->3=¢C
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Substituting the values of A, B, and C into egs. (8.1.1) to (8.1.3) gives
u(t) = (u, u,u;) = (18t + 4,15t 3)
Hence

u(t =1s) = 22a, + 15a, + 3a,m/s

1 1
(c) Kinetic energy (K.E.) = om lul? = 5(2)(22z + 152 + 32)
= 718]
dl d
=2 = Z(xy,2) = (18t + 4,15,
(d) u T dt(xyz) (18t + 4, 15t,3)

Equating components yields

d
d—’;=ux=18:+4—»x=9r2+4t+A, (8.1.4)
d
d—yt: u, =15t = y =757 + B, (8.1.5)
d
£=uz=3—>z=3t+cl (8.1.6)

Att =0, (xy2) = (1, —2,0); hence,

x(t=0)=1—1 =0+A4, or A =1
y(t=0)=-2—> -2=0+B, or B =-2
Ht=0)=0=0 =0+ or C =0

Substituting the values of A,, B, and C, into egs. (8.1.4) to (8.1.6), we obtain
(x,3,2) = (92 + 4t + 1,7.5¢ — 2,3t) (8.1.7)
Hence,att = 1, (x,y,z) = (14,5.5,3).

By eliminating t in eq. (8.1.7), the motion of the particle may be described in terms
of x, y,and z.

PRACTICE EXERCISE 8.1

A charged particle of mass 1 kg and charge 2 C starts at the origin with zero initial
velocity in a region where E = 3a, V/m. Find the following:

(a) The force on the particle
(b) The time it takes to reach point P(0, 0, 12 m)
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(c) Its velocity and acceleration at P
(d) ItsK.E.at P

Answer: (a)6a,N, (b)2s, (c) 12a, m/s, 6a, m/s

8.2 Forces Due to Magnetic Fields

2L (d)72]

343

A charged particle of mass 2 kg and 1 C starts at the origin with velocity 3a, m/s and travels
in a region of uniform magnetic field B = 10a, Wb/m” At t = 43, do the following.

(a) Calculate the velocity and acceleration of the p
(b) Calculate the magnetic force on it.

(¢) Determine its K.E. and location.

(d) Find the particles trajectory by eliminating t.
(e) Show that its K.E. remains constant.

Solution:

(a) F=m%‘=Qu><B

article.

u,| = 5(ua, — ua,)

=B 9y
at m
Hence
NEE”
d—(uxax + ua, +ua,) = Sl w
0 0
By equating components, we get
du, g
L
dt 2
du
y
— = —5u
dt S
du,
i 0= u,=C,

(8.2.1)

(8.2.2)

(8.2.3)

We can eliminate u, or u, in eqgs. (8.2.1) and (8.2.2) by taking second derivatives of one

equation and making use of the other. Thus

du, du,
=52=-25
ae T .
or
du,
+ 25u, =0

ar
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which is a linear differential equation with solution (see Case 3 of Example 6.5)

u, = C, cos 5t + C, sin 5t (8.2.4)
From egs. (8.2.1) and (8.2.4),
5u, = ‘Z‘t‘ = —5C, sin 5t + 5C, cos 5t (8.2.5)
or
u, = —C, sin 5t + C, cos 5t

We now determine constants C,, C,, and C, using the initial conditions. At t = 0,u = 3a,.
Hence,
u,=0—->0=C-1+GC-0—>C =0
u=3>3=-C-0+GC'1—>C=3
G

u,=0—0

Substituting the values of C,, C,, and C, into egs. (8.2.3) to (8.2.5) gives

u = (u, u,u,) = (3sin5t,3 cos 5t,0) (8.2.6)
Hence,
u(t = 4) = (3sin 20, 3