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Preface

he pervasive presence of electronic devices and instrumentation in all aspects of engineering design and

analysis is one of the manifestations of the electronic revolution that has characterized the second half of the

20th century. Every aspect of engineering practice, and even of everyday life, has been affected in some way

or another by electrical and electronic devices and instruments. Computers are perhaps the most obvious
manifestations of this presence. However, many other areas of electrical engineering are also important to the
practicing engineer, from mechanical and industrial engineering, to chemical, nuclear, and materials engineering,
to the aerospace and astronautical disciplines, to civil and the emerging field of biomedical engineering. Engineers
today must be able to communicate effectively within the interdisciplinary teams in which they work.

OBJECTIVES

Engineering education and engineering professional practice have seen some rather profound changes in the past
decade. The integration of electronics and computer technologies in all engineering academic disciplines and
the emergence of digital electronics and microcomputers as a central element of many engineering products and
processes have become a common theme since the conception of this book.

The principal objective of the book is to present the principles of electrical, electronic, and electromechanical
engineering to an audience composed of non—electrical engineering majors, and ranging from sophomore students
in their first required introductory electrical engineering course, to seniors, to first-year graduate students enrolled
in more specialized courses in electronics, electromechanics, and mechatronics.

A second objective is to present these principles by focusing on the important results and applications and
presenting the students with the most appropriate analytical and computational toolsto solve a variety of practical
problems.

Finally, a third objective of the book is to illustrate, by way of concrete, fully worked examples, a number of
relevant applications of electrical engineering principles. These examples are drawn from the author’s industrial
research experience and from ideas contributed by practicing engineers and industrial partners.

ORGANIZATION AND CONTENT

The book is divided into three parts, devoted to circuits, electronics, and electromechanics.

Part I: Circuits

The first part of this book presents a basic introduction to circuit analysis (Chapters 2 through 7). The material
includes over 440 homework problems.

Part: Il Electronics

Part I, on electronics (Chapters 8 through 12), contains a chapter on operational amplifiers, one on diodes, two
chapters on transistors—one each on BJTs and FETSs, and one on digital logic circuits. The material contained in
this section is focused on basic applications of these concepts. The chapters include 320 homework problems.

Part Ill: Electromechanics

Part 111, on electromechanics (Chapters 13 and 14), includes basic material on electromechanical transducers and
the basic operation of DC and AC machines. The two chapters include 126 homework problems.
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FEATURES

Pedagogy

This edition contains the following pedagogical features.

vii

- Learning Objectives offer an overview of key chapter ideas. Each chapter opens with a list of major
objectives, and throughout the chapter the learning objective icon indicates targeted references to each

objective.

- Focus on M ethodology sections summarize important methods and procedures for the solution of
common problems and assist the student in developing a methodical approach to problem solving.

- Clearly Illustrated Examplesillustrate relevant applications of electrical engineering principles. The
examples are fully integrated with the “Focus on Methodology” material, and each one is organized

according to a prescribed set of logical steps.

- Check Your Understanding exercises follow each example in the text and allow students to confirm their

mastery of concepts.

- Makethe Connection sidebars present analogies to students to help them see the connection of electrical

engineering concepts to other engineering disciplines.

- Find It on the Web links included throughout the book give students the opportunity to further explore
practical engineering applications of the devices and systems that are described in the text.

Supplements
The book includes a wealth of supplements available in electronic form. These include

- A website accompanies this text to provide students and instructors with
additional resources for teaching and learning. You can find this site at
www.mhhe.com/rizzoni. Resources on this site include

For Students:

- Device Data Sheets
- Learning Objectives

For Instructors:

- Power Point presentation slides of important figures from the text
- Instructor’s Solutions Manual with complete solutions (for instructors
only)

For Instructors and Students:

- Find It on the Web links, which give students the opportunity to explore, in
greater depth, practical engineering applications of the devices and systems
that are described in the text. In addition, several links to tutorial sites extend
the boundaries of the text to recent research developments, late-breaking
science and technology news, learning resources, and study guides to help
you in your studies and research.

FIND IT

ON THE WEB


http://www.mhhe.com/rizzoni
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GUIDEDTOUR

:) Learning Objectives

Learning Objectives offer

an overview of key chapter ideas. 1. Compute the solution of circuits containing linear resistors and independent and

dependent sources by using node analysis, Sections 3.2 and 3.4.

Ea{_:h Ch&,lp:e_r opens with a list of 2. Compute the solution of circuits containing linear resistors and independent and
major objectives and throughout dependent sources by using mesh analysis. Sections 3.3 and 3 4.

the Chapter- The Ieaming Obje{:ﬁve 3. Apply the principle of superposition o linear circuits contuining independent sources,
icon indicates targeted references Section 3.5.

to each objective. 4. Compute Thévenin and Norton equivalent circuits for networks containing linear

resistors and independent and dependent sources. Secrion 3.6,

5. Use equivalent-circuit ideas to compute the mavimum power transfer between a
source and a load. Section 3.7.

6. Use the concept of equivalent circuit to determine voltage, current, and power for
nonlinear loads by using load-line analysis and analytical methods. Section 3.8.

3.1 Network Analysis

The analysis of an electric network consists of determining each of the unknown
branch currents and node voltages. It is therefore important to define all the rele-
vant variables as clearly as possible, and in systematic fashion. Once the known and
unknown variables have been identified. a set of equations relating these variables

1l h

is constructed, and these equations are solved by of sui techniques. The
analysis of electric circuits consists of writing the smallest set of equations sufficient
to solve for all the unknown variables. The procedures required to write these equa-
tions are the subject of Chapter 3 and are very well documented and codified in the
form of simple rules. The analysis of electric circuits is greatly simplified if some
standard conventions are followed.

Example 3.1 defines all the voltages and currents that are associated with a

FOCUSONMETHODOLOGY
COMPUTING THE THEVENIN VOLTAGE
1. Remove the load, leaving the load terminals open-circuited.

Focus on Methodology section

2. Define the open-circuit voltage voc across the open load terminals. summarize important methods and
3. Apply any preferred method (e.g., node analysis) to solve for voc. procedures for the solution of
4. The Thévenin voltage is vy = voc. common problems and assist the

student in developing a methodical
approach to problem solving.

The actual computation of the open-circuit voltage is best illustrated by e
ples; there is no substitute for practice in becoming familiar with these computa
To summarize the main points in the computation of open-circuit voltages, cor
the circuit of Figure 3.36, shown again in Figure 3.44 for convenience. Recall th
equivalent resistance of this circuit was given by Ry = R; + R || R2. To con
vge. we disconnect the load, as shown in Figure 3.45, and immediately observ:
no current flows through R, since there is no closed-circuit connection at that br
Therefore, voc must be equal to the voltage across R, as illustrated in Figure
Since the only closed circuit is the mesh consisting of vs, R, and R;, the answ
are seeking may be obtained by means of a simple voltage divider:

153
Ry + Ry
It is instructive to review the basic concepts outlined in the example by

sidering the original circuit and its Thévenin equivalent side by side, as sho
Figure 3.47. The two circuits of Figure 3.47 are equivalent in the sense that the

Upc = Up2 = Vg




EXAMPLE 3.8 Mesh Analysis
Problem
Write the mesh current equations for the circuit of Figure 3,19,

Clearly lllustrated Examples
illustrate relevant applications of
electrical engineering principles.

Solution
Known Quantities: Source voltages: resistor values.

Find: Mesh current equations.

Circults, and Given Data: V, = 12V, Vo =6 VI Ry = 362

Schematics, Diagrams,

R=8i =6 Ry =40

Analysis: We follow the Focus on Methodology steps.
1. Assume clockwise mesh currents fy, £z, and 5.

2. We e hree ind il i
Tromn mesh 1, we apply KVL 10 obtain
Vi= Riliy = i) = Ratiy —iz) = 0

KVL applied 1o mesh 2 yields

—Raliz =) — Rz — i)+ Va =0
while in mesh 3 we find

=Rty =) = Ryly — Bally — i) =0

since there are no current sources, Starting

The examples are fully integrated
with the "Focus on Methodology"
material, and each one is organized
according to a prescribed set of
common sense steps.

Figure 3.19

Check Your Understanding
exercises follow each example

in the text and allow students to
confirm their mastery of concepts.

Make the Connection sidebars
present analogies to students
to help them see the connection
of electrical engineering
concepts to other engineering
disciplines.

CHECK YOUR UNDERSTANDING

Find the current iy, in the circuit shown on the left, using the node voltage method.

a AAAA AAAA .‘.““.‘.

wae | son In it 09
< < - < <
1amuE  psuE =wov u(:) woTwon
- - - >

Find the voltage v, by the node voltage method for the circuit shown on the right.
Show that the answer to Example 3.3 is correct by applying KCL a1 one or more nodes.

A BI— W LERT'D Saamsuy

equations obtained at nodes a and b (verify this, as an exercise). This observation
confirms the statement made earlier;

In a circuit containing n nodes, we can write at most a — | independent

equations.
Now, in applying the node voltage method, the currents £, iz, and i3 are expressed as Thermal Circuit
functions of v, vy, and v, the independent variables. Ohm's law requires that /1, for ~ Model
example, be given by The conduction resistance
. ... 3.5) of tha shalt is described by
e { the following equation:
LA
since it is the potential difference 1, — v, across &) that causes current §; to flow from 9= T‘ﬂf
node a to node ¢, Similarly, AT L
g S
U = U 4 kA
i where A, Is a cross section-
= (3.6) alareaand L is the distance
- My — U frorm the inher cors 1o the
= suriace, The convection re-
sistance is describad by a
Substituting the expression for the three currents in the nodal equations (equations  similar equation, in which
3.2 and 3.3), we obtain the following relationships: convective heat fiow is da-
scribed by the film coaf-
ry By = fickent of heat transter, k.
=2t A =0
L R2 @ g = bAAT
i
& Fol T
i"..-l'n_li_n=0 (35 - Ay
Ry Ry where Az ls the surlace area
Equations 3.7 and 3.8 may be obtained directly from the circuit, with a little practice. :::::mw':?‘
Note that these equations may be solved for v, and g, assuming that iy, By, Bz, and  pemsl resistance and the
R are known. The same equations may be reformulated as follows: everall cireult mode! of the
cranikshalt quenching
I 1 ( i g PIOCEsS ate shown in the
(E+E)“’+ _R_;] W =1l figures below:
3.9)
( 1 ( 1 " 1 ) 0 " Boms R L
—_— |l =—+= = S—AA—AN—e
R;) Uy g = W s pa— -
4 illuss catis . Thermal resistance
Examples 3.2 through 3.4 further illustrate the application of the method. ~
e —————————— | Recms
4
LO1) EXAMPLE 3.2 Node Analysis ar(® 3 i
Selve for ull unknown currents and voltages in the cireuit of Figure 3.5, :'_




CHAWPTENR

INTRODUCTION TO ELEGTRICAL
ENGINEERING

he aim of this chapter is to introduce electrical engineering. The chapter is

organized to provide the newcomer with a view of the different specialties

making up electrical engineering and to place the intent and organization of

the book into perspective. Perhaps the first question that surfaces in the mind
of the student approaching the subject is, Why electrical engineering? Since this book
is directed at a readership having a mix of engineering backgrounds (including elec-
trical engineering), the question is well justified and deserves some discussion. The
chapter begins by defining the various branches of electrical engineering, showing
some of the interactions among them, and illustrating by means of a practical example
how electrical engineering is intimately connected to many other engineering disci-
plines. Section 1.2 introduces the Engineer-in-Training (EIT) national examination.
In Section 1.3 the fundamental physical quantities and the system of units are defined,
to set the stage for the chapters that follow. Finally, in Section 1.4 the organization of
the book is discussed, to give the student, as well as the teacher, a sense of continuity
in the development of the different subjects covered in Chapters 2 through 14.



2 Chapter 1 Introduction to Electrical Engineering

Table 1.1 Electrical 1.1 ELECTRICAL ENGINEERING

engineering disciplines

Circuit analysis The typical curriculum of an undergraduate electrical engineering student includes

Electromagnetics the subjects listed in Table 1.1. Although the distinction between some of these
Solid-state electronics subjects is not always clear-cut, the table is sufficiently representative to serve our
Electric machines purposes. Figure 1.1 illustrates a possible interconnection between the disciplines
Electric power systems of Table 1.1. The aim of this book is to introduce the non-electrical engineering
Digital logic circuits student to those aspects of electrical engineering that are likely to be most relevant
Computer systems to his or her professional career. Virtually all the topics of Table 1.1 will be
Communication systems touched on in the book, with varying degrees of emphasis. Example 1.1 illustrates

Electro-optics
Instrumentation systems
Control systems

the pervasive presence of electrical, electronic, and electromechanical devices and
systems in a very common application: the automobile. As you read through the
examples, it will be instructive to refer to Figure 1.1 and Table 1.1.

Engineering
applications
Power
/ systems \
Elet.jtric
Mathematical 7| machinery || Physical
foundations / foundations
Network é | [ ,f Andog Electro-
theory electronics \\ magnetics
Logic Digital Solid-state
theory electronics physics
System ™| Ccomputer Optics
=\ e /
\ Control
systems
\ Communication

systems

Instrumentation
systems

Figure 1.1 Electrical engineering disciplines



Chapter 1 Introduction to Electrical Engineering 3

EXAMPLE 1.1 Electrical Systems in a Passenger Automobile

A familiar example illustrates how the seemingly disparate specialties of electrical engineering
actually interact to permit the operation of a very familiar engineering system: the automobile.
Figure 1.2 presents a view of electrical engineering systems in a modern automobile. Even in
older vehicles, the electrical system—in effect, an electric circuit—plays a very important part
in the overall operation. (Chapters 2 and 3 describe the basics of electric circuits.) An inductor
coil generates a sufficiently high voltage to allow a spark to form across the spark plug gap
and to ignite the air-fuel mixture; the coil is supplied by a DC voltage provided by a lead-acid
battery. (Ignition circuits are studied in some detail in Chapter 5.) In addition to providing the
energy for the ignition circuits, the battery supplies power to many other electrical components,
the most obvious of which are the lights, the windshield wipers, and the radio. Electric power
(Chapter 7) is carried from the battery to all these components by means of a wire harness,
which constitutes a rather elaborate electric circuit (see Figure 2.12 for a closer look). In recent
years, the conventional electric ignition system has been supplanted by electronic ignition;
that is, solid-state electronic devices called transistors have replaced the traditional breaker
points. The advantage of transistorized ignition systems over the conventional mechanical ones
is their greater reliability, ease of control, and life span (mechanical breaker points are subject
to wear). You will study transistors and other electronic devices in Chapters 8, 9, and 10.

Other electrical engineering disciplines are fairly obvious in the automobile. The on-board
radio receives electromagnetic waves by means of the antenna, and decodes the communication
signals to reproduce sounds and speech of remote origin; other common communication
systems that exploit electromagnetics are CB radios and the ever more common cellular
phones. But this is not all! The battery is, in effect, a self-contained 12-VDC electric power
system, providing the energy for all the aforementioned functions. In order for the battery to
have a useful lifetime, a charging system, composed of an alternator and of power electronic
devices, is present in every automobile. Electric power systems are covered in Chapter 7
and power electronic devices in Chapter 10. The alternator is an electric machine, as are the
motors that drive the power mirrors, power windows, power seats, and other convenience
features found in luxury cars. Incidentally, the loudspeakers are also electric machines! All
these devices are described in Chapters 13 and 14.

The list does not end here, though. In fact, some of the more interesting applications
of electrical engineering to the automobile have not been discussed yet. Consider computer
systems. Digital circuits are covered in Chapter 12. You are certainly aware that in the last two

Convenience
Climate control
Ergonomics Safety
(seats, steering wheel, mirrors) Air bags and restraints
Navigation Collision warning

Audio/video/ Internet/
\_Wireless communications

Security systems

/ Propulsion
Engine/transmission
Integrated starter/alternator
Electric traction
42-V system
Battery management
\ Traction control

Ride and handling
Active/semiactive suspension
Antilock brakes
Electric power steering
Tire pressure control
Four-wheel steering
Stability control

Figure 1.2 Electrical engineering systems in the automobile



Chapter 1 Introduction to Electrical Engineering

decades, environmental concerns related to exhaust emissions from automobiles have led to
the introduction of sophisticated engine emission control systems. The heart of such control
systems is a type of computer called a microprocessor. The microprocessor receives signals
from devices (called sensors) that measure relevant variables—such as the engine speed, the
concentration of oxygen in the exhaust gases, the position of the throttle valve (i.e., the driver’s
demand for engine power), and the amount of air aspirated by the engine—and subsequently
computes the optimal amount of fuel and the correct timing of the spark to result in the cleanest
combustion possible under the circumstances. As the presence of computers on board becomes
more pervasive—in areas such as antilock braking, electronically controlled suspensions, four-
wheel steering systems, and electronic cruise control—communications among the various
on-board computers will have to occur at faster and faster rates. Someday in the not-so-distant
future, these communications may occur over a fiber-optic network, and electro-optics will
replace the conventional wire harness. Note that electro-optics is already present in some of
the more advanced displays that are part of an automotive instrumentation system.

Finally, today’s vehicles also benefit from the significant advances made in communi-
cation systems. Vehicle navigation systems can include Global Positioning System, or GPS,
technology, as well as a variety of communications and networking technologies, such as wire-
less interfaces (e.g., based on the “Bluetooth” standard) and satellite radio and driver assistance
systems, such as the GM “OnStar” system.

FIND IT

ON THE WEB

1.2 FUNDAMENTALS OF ENGINEERING
EXAM REVIEW

To become a professional engineer it is necessary to satisfy four requirements. The
first is the completion of a B.S. degree in engineering from an accredited college
or university (although it is theoretically possible to be registered without having
completed a degree). The second is the successful completion of the Fundamentals
of Engineering (FE) Examination. This is an eight-hour exam that covers general
undergraduate engineering education. The third requirement is two to four years of
engineering experience after passing the FE exam. Finally, the fourth requirement is
successful completion of the Principles and Practice of Engineering or Professional
Engineer (PE) Examination.

The FE exam is a two-part national examination, administered by the National
Council of Examiners for Engineers and Surveyors (NCEES) and given twice
a year (in April and October). The exam is divided into two four-hour sessions,
consisting of 120 questions in the four-hour morning session, and 60 questions in
the four-hour afternoon session. The morning session covers general background in
12 different areas, one of which is Electricity and Magnetism. The afternoon session
requires the examinee to choose among seven modules—Chemical, Civil, Electrical,
Environmental, Industrial, Mechanical, and Other/General engineering.

One of the aims of this book is to assist you in preparing for the Electricity
and Magnetism part of the morning session. This part of the examination consists of
approximately 9 percent of the morning session, and covers the following topics:

A. Charge, energy, current, voltage, power.

B. Work done in moving a charge in an electric field (relationship between
voltage and work).

C. Force between charges.
. Current and voltage laws (Kirchhoff, Ohm).
E. Equivalent circuits (series, parallel).

O
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F. Capacitance and inductance.
G. Reactance and impedance, susceptance and admittance.
H. AC circuits.

I. Basic complex algebra.

Appendix C (available online) contains review of the electrical circuits portion of the
FE examination, including references to the relevant material in the book. In addition,
Appendix C also contains a collection of sample problems—some including a full
explanation of the solution, some with answers supplied separately. This material has
been derived from the author’s experience in co-teaching the FE exam preparation
course offered to Ohio State University seniors.

1.3 SYSTEM OF UNITS

This book employs the International System of Units (also called Sl, from the French
Systeme International des Unités). Sl units are commonly adhered to by virtually all
engineering professional societies. This section summarizes S| units and will serve
as a useful reference in reading the book.

Sl units are based on six fundamental quantities, listed in Table 1.2. All other
units may be derived in terms of the fundamental units of Table 1.2. Since, in practice,
one often needs to describe quantities that occur in large multiples or small fractions
of a unit, standard prefixes are used to denote powers of 10 of Sl (and derived) units.
These prefixes are listed in Table 1.3. Note that, in general, engineering units are
expressed in powers of 10 that are multiples of 3.

For example, 10~* s would be referred to as 100 x 1076 s, or 100 us (or, less
frequently, 0.1 ms).

Table 1.2 Sl units Table 1.3 Standard prefixes
Quantity Unit Symbol Prefix ~ Symbol  Power
Length Meter m atto a 1018
Mass Kilogram kg femto  f 10-15
Time Second S pico p 10-12
Electric current Ampere A nano n 10-9
Temperature _ Kelvin K micro u 10-6
Luminous intensity ~ Candela cd milli m 10-3

centi c 102
deci d 1071
deka da 10
kilo k 108
mega M 108
giga G 10°
tera T 1012

1.4 SPECIAL FEATURES OF THIS BOOK

This book includes a number of special features designed to make learning easier
and to allow students to explore the subject matter of the book in greater depth, if
so desired, through the use of computer-aided tools and the Internet. The principal
features of the book are described on the next two pages.



Chapter 1 Introduction to Electrical Engineering

:) Learning Objectives

1. The principal learning objectives are clearly identified at the beginning of each
chapter.

2. The symbol = is used to identify definitions and derivations critical to the accom-
plishment of a specific learning objective.

3. Each example is similarly marked.

EXAMPLES

The examples in the book have also been set aside from the main text, so that they can be
easily identified. All examples are solved by following the same basic methodology: A clear
and simple problem statement is given, followed by a solution. The solution consists of several
parts: All known quantities in the problem are summarized, and the problem statement is
translated into a specific objective (e.g., “Find the equivalent resistance R”).

Next, the given data and assumptions are listed, and finally the analysis is presented. The
analysis method is based on the following principle: All problems are solved symbolically first,
to obtain more general solutions that may guide the student in solving homework problems;
the numerical solution is provided at the very end of the analysis. Each problem closes with
comments summarizing the findings and tying the example to other sections of the book.

The solution methodology used in this book can be used as a general guide to problem-
solving techniques well beyond the material taught in the introductory electrical engineering
courses. The examples in this book are intended to help you develop sound problem-solving
habits for the remainder of your engineering career.

MAKE THE
CONNECTION

This feature is devoted to
helping the student make the
connection between electrical
engineering and other
engineering disciplines.
Analogies to other fields of
engineering will be found in
nearly every chapter.

CHECK YOUR UNDERSTANDING

Each example is accompanied by at least one drill exercise.

"3S19J9Xa aU) MoJaq 1B papiroid s Jamsue sy :Jemsuy

FOCUSONMETHODOLOGY

Each chapter, especially the early ones, includes “boxes” titled “Focus on
Methodology.” The content of these boxes (which are set aside from the main
text) summarizes important methods and procedures for the solution of common
problems. They usually consist of step-by-step instructions, and are designed to
assist you in methodically solving problems.
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Find It on the Web!

The use of the Internet as a resource for knowledge and information is becoming
increasingly common. In recognition of this fact, website references have been
included in this book to give you a starting point in the exploration of the world
of electrical engineering. Typical web references give you information on electrical
engineering companies, products, and methods. Some of the sites contain tutorial
material that may supplement the book’s contents.

FIND IT

ON THE WEB

Website

The list of features would not be complete without a reference to the book’s website:
www.mhhe.com/rizzoni. Create a bookmark for this site now! The site is designed
to provide up-to-date additions, examples, errata, and other important information.

HOMEWORK PROBLEMS

1.1 List five applications of electric motors in the 1.3 Electric power systems provide energy in a variety of
common household. commercial and industrial settings. Make a list of

1.2 By analogy with the discussion of electrical systems systems and devices that receive electric power in
in the automobile, list examples of applications of the a. Alarge office building.

electrical engineering disciplines of Table 1.1 for each

of the following engineering systems: b. A factory floor.

. ¢. Aconstruction site.
a. Aship.

b. A commercial passenger aircraft.
c. Your household.

d. A chemical process control plant.


http://www.mhhe.com/rizzoni
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Chapter 3
Chapter 4
Chapter 5
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Chapter 7
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AC Power
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FUNDAMENTALS OF ELECTRIC
CIRCUITS

hapter 2 presents the fundamental laws that govern the behavior of electric

circuits, and it serves as the foundation to the remainder of this book. The chap-

ter begins with a series of definitions to acquaint the reader with electric circuits;

next, the two fundamental laws of circuit analysis are introduced: Kirchhoff’s
current and voltage laws. With the aid of these tools, the concepts of electric power
and the sign convention and methods for describing circuit elements—resistors in
particular—are presented. Following these preliminary topics, the emphasis moves
to basic analysis techniques—voltage and current dividers, and to some applica-
tion examples related to the engineering use of these concepts. Examples include a
description of strain gauges, circuits for the measurements of force and other related
mechanical variables, and of the study of an automotive throttle position sensor. The
chapter closes with a brief discussion of electric measuring instruments. The following
box outlines the principal learning objectives of the chapter.
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MAKE THE
CONNECTION

Mechanical
(Gravitational)
Analog of Voltage
Sources

The role played by a voltage
source in an electric circuit is
equivalent to that played by
the force of gravity. Raising
a mass with respect to a
reference surface increases
its potential energy. This
potential energy can be
converted to kinetic energy
when the object moves to a
lower position relative to the
reference surface. The
voltage, or potential
difference across a voltage
source plays an analogous
role, raising the electrical
potential of the circuit, so that
current can flow, converting
the potential energy within
the voltage source to electric
power.

:) Learning Objectives

1. Identify the principal elements of electric circuits: nodes, loops, meshes, branches,
and voltage and current sources. Section 2.1.

2. Apply Kirchhoff’s laws to simple electric circuits and derive the basic circuit
equations. Sections 2.2 and 2.3.

3. Apply the passive sign convention and compute the power dissipated by circuit
elements. Calculate the power dissipated by a resistor. Section 2.4.

4. Apply the voltage and current divider laws to calculate unknown variables in simple
series, parallel, and series-parallel circuits. Sections 2.5 and 2.6.

5. Understand the rules for connecting electric measuring instruments to electric
circuits for the measurement of voltage, current, and power. Sections 2.7 and 2.8.

2.1 DEFINITIONS

In this section, we formally define some variables and concepts that are used in the
remainder of the chapter. First, we define voltage and current sources; next, we define
the concepts of branch, node, loop, and mesh, which form the basis of circuit analysis.

Intuitively, an ideal source is a source that can provide an arbitrary amount of
energy. Ideal sources are divided into two types: voltage sources and current sources.
Of these, you are probably more familiar with the first, since dry-cell, alkaline, and
lead-acid batteries are all voltage sources (they are not ideal, of course). You might
have to think harder to come up with a physical example that approximates the
behavior of an ideal current source; however, reasonably good approximations of
ideal current sources also exist. For instance, a voltage source connected in series
with a circuit element that has a large resistance to the flow of current from the source
provides a nearly constant—though small—current and therefore acts very nearly as
an ideal current source. A battery charger is another example of a device that can
operate as a current source.

Ideal Voltage Sources

An ideal voltage source is an electric device that generates a prescribed voltage at
its terminals. The ability of an ideal voltage source to generate its output voltage is
not affected by the current it must supply to the other circuit elements. Another way
to phrase the same idea is as follows:

An ideal voltage source provides a prescribed voltage across its terminals
irrespective of the current flowing through it. The amount of current supplied
by the source is determined by the circuit connected to it.

Figure 2.1 depicts various symbols for voltage sources that are employed
throughout this book. Note that the output voltage of an ideal source can be a function
of time. In general, the following notation is employed in this book, unless otherwise
noted. A generic voltage source is denoted by a lowercase v. If it is necessary to
emphasize that the source produces a time-varying voltage, then the notation v(t) is
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+
+

v (7) v(0) Vo =

Circuit Circuit
General symbol A special case: A special case:
for idedl voltage DC voltage sinusoidal
source. Vs (t) source (ideal voltage source,
may be constant battery) vs(t) =V cos mt

(DC source).

Figure 2.1 ldeal voltage sources

employed. Finally, a constant, or direct current, or DC, voltage source is denoted by
the uppercase character V. Note that by convention the direction of positive current
flow out of a voltage source is out of the positive terminal.

The notion of an ideal voltage source is best appreciated within the context of the
source-load representation of electric circuits. Figure 2.2 depicts the connection of an
energy source with a passive circuit (i.e., acircuit that can absorb and dissipate energy).
Three different representations are shown to illustrate the conceptual, symbolic, and
physical significance of this source-load idea.

i .
oo oo
4 bt
Source \Y Load -
’_\ VS \ R s — ~
- Headlight
i - Car battery
Power flow e
(a) Conceptual (b) Symbolic (circuit) (c) Physica
representation representation representation

Figure 2.2 Various representations of an electrical system

In the analysis of electric circuits, we choose to represent the physical reality
of Figure 2.2(c) by means of the approximation provided by ideal circuit elements,
as depicted in Figure 2.2(b).

is, IS ~
Ideal Current Sources
Anideal current source isadevice that can generate a prescribed currentindependent  is |s<> []
of the circuit to which it is connected. To do so, it must be able to generate an arbitrary Circuit
voltage across its terminals. Figure 2.3 depicts the symbol used to represent ideal

current sources. By analogy with the definition of the ideal voltage source just stated,

we write that Figure 2.3 Symbol for
ideal current source

to it. The voltage generated by the source is determined by the circuit connected

Anideal current source provides a prescribed current to any circuit connected
< LO1
to it.



12

MAKE THE
CONNECTION

Hydraulic Analog
of Current
Sources

The role played by a current
source in an electric circuit is
very similar to that of a pump
in a hydraulic circuit. In a
pump, an internal mechanism
(pistons, vanes, or impellers)
forces fluid to be pumped
from a reservoir to a hydraulic
circuit. The volume flow rate
of the fluid g, in cubic meters
per second, in the hydraulic
circuit, is analogous to the
electrical current in the circuit.

Positive Displacement Pump

slip

flow A

Suction
low
pressure

N Zlflow

Discharge
high
pressure

A hydraulic pump

Pump symbols

with two directions
of flow.

Courtesy: Department of
Energy

L eft: Fixed
capacity pump.
Right: Fixed
capacity pump
with two directions
of flow.

L eft: Variable
capacity pump.
Right: Variable
capacity pump

Chapter 2 Fundamentals of Electric Circuits

The same uppercase and lowercase convention used for voltage sources is employed
in denoting current sources.

Dependent (Controlled) Sources

The sources described so far have the capability of generating a prescribed voltage
or current independent of any other element within the circuit. Thus, they are termed
independent sources. There exists another category of sources, however, whose output
(current or voltage) is a function of some other voltage or current in a circuit. These
are called dependent (or controlled) sources. A different symbol, in the shape of
a diamond, is used to represent dependent sources and to distinguish them from
independent sources. The symbols typically used to represent dependent sources are
depicted in Figure 2.4; the table illustrates the relationship between the source voltage
or current and the voltage or current it depends on—uy or iy, respectively—which can
be any voltage or current in the circuit.

Source type | Relationship
Voltage controlled voltage source (VCVS) |  vs= vy
Vs is Current controlled voltage source (CCVS) Vs=riy
Voltage controlled current source (VCCS) is= gv
Current controlled current source (CCCS) is= Bix

Figure 2.4 Symbols for dependent sources

Dependent sources are very useful in describing certain types of electronic
circuits. You will encounter dependent sources again in Chapters 8, 10, and 11, when
electronic amplifiers are discussed.

An electrical network is a collection of elements through which current flows.
The following definitions introduce some important elements of a network.

Branch

Abranch is any portion of a circuit with two terminals connected to it. A branch may
consist of one or more circuit elements (Figure 2.5). In practice, any circuit element
with two terminals connected to it is a branch.

Node

A node is the junction of two or more branches (one often refers to the junction of
only two branches as a trivial node). Figure 2.6 illustrates the concept. In effect,
any connection that can be accomplished by soldering various terminals together is
a node. It is very important to identify nodes properly in the analysis of electrical
networks.

It is sometimes convenient to use the concept of a supernode. A supernode
is obtained by defining a region that encloses more than one node, as shown in the
rightmost circuit of Figure 2.6. Supernodes can be treated in exactly the same way as
nodes.

< LO1

< LO1
< LO1
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a
———O
+ Li
Branch Branch R —
voltage current -
Im
——0
b
A branch Ideal A battery Practical
resistor ammeter
Examples of circuit branches
Figure 2.5 Definition of a branch
Supernode
.., Node a Ry
Node c Node a

. ©

Vs — is
Node VS_l O w
o Node b Rs
Node b

L

Examples of nodesin practical circuits

Figure 2.6 Definitions of node and supernode

Loop

Aloop isany closed connection of branches. Various loop configurations are illustrated LO
in Figure 2.7.

f

Note how two different loops R
in the same circuit may
include some of the same

elements or branches. e
Loop 1 Loop 2 Vs — is Ry R,

1-loop circuit 3-loop circuit
(How many nodesin
this circuit?)

Loop 3

Figure 2.7 Definition of a loop

Mesh

A mesh is a loop that does not contain other loops. Meshes are an important aid to <|_01
certain analysis methods. In Figure 2.7, the circuit with loops 1, 2, and 3 consists of two
meshes: Loops 1 and 2 are meshes, but loop 3 is not a mesh, because it encircles both
loops 1 and 2. The one-loop circuit of Figure 2.7 is also a one-mesh circuit. Figure 2.8
illustrates how meshes are simpler to visualize in complex networks than loops are.

Rs

13
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Charles Coulomb (1736-1806).
Photograph courtesy of French
Embassy, Washington, District of
Columbia.
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AAA3A AAAA
YVVY YVVY
wens
q = ) Mesh
R, S
+ Mesh Mesh =R

How many loops can you -
identify in this four-mesh
circuit? (Answer: 15)

Figure 2.8 Definition of a mesh

Network Analysis

The analysis of an electrical network consists of determining each of the unknown
branch currents and node voltages. It is therefore important to define all the rele-
vant variables as clearly as possible and in systematic fashion. Once the known and
unknown variables have been identified, a set of equations relating these variables is
constructed, and these are solved by means of suitable techniques.

Before introducing methods for the analysis of electrical networks, we must
formally present some important laws of circuit analysis.

2.2 CHARGE, CURRENT, AND KIRCHHOFF’S
CURRENT LAW

The earliest accounts of electricity date from about 2,500 years ago, when it was
discovered that static charge on a piece of amber was capable of attracting very light
objects, such as feathers. The word electricity originated about 600 B.C.; it comes from
elektron, which was the ancient Greek word for amber. The true nature of electricity
was not understood until much later, however. Following the work of Alessandro Volta
and his invention of the copper-zinc battery, it was determined that static electricity
and the current that flows in metal wires connected to a battery are due to the same
fundamental mechanism: the atomic structure of matter, consisting of a nucleus—
neutrons and protons—surrounded by electrons. The fundamental electric quantity
is charge, and the smallest amount of charge that exists is the charge carried by an
electron, equal to

ge = —1.602 x 107 C (2.1)

As you can see, the amount of charge associated with an electron is rather small.
This, of course, has to do with the size of the unit we use to measure charge, the
coulomb (C), named after Charles Coulomb. However, the definition of the coulomb
leads to an appropriate unit when we define electric current, since current consists of
the flow of very large numbers of charge particles. The other charge-carrying particle
in an atom, the proton, is assigned a plus sign and the same magnitude. The charge
of a proton is

=+1.602 x 107 C (2.2)
Op

Electrons and protons are often referred to as elementary charges.
Electric current is defined as the time rate of change of charge passing through
a predetermined area. Typically, this area is the cross-sectional area of a metal
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wire; however, we explore later a number of cases in which the current-carrying
material is not a conducting wire. Figure 2.9 depicts a macroscopic view of the
flow of charge in a wire, where we imagine Aq units of charge flowing through
the cross-sectional area A in At units of time. The resulting current i is then

given by
Current i = dg/dt is generated by
the flow of charge through the
. Aq C 93y Crosssectiond areaAina
= E g ( ' ) conductor.

If we consider the effect of the enormous number of elementary charges actually .—._’
flowing, we can write this relationship in differential form:

i = d—q ¢ (2.4) Figure 2.9 Current flow in
dt S an electric conductor

The units of current are called amperes, where 1 ampere (A) = 1 coulomb/second

(C/s). The name of the unit is a tribute to the French scientist André-Marie Ampére.

The electrical engineering convention states that the positive direction of current flow

is that of positive charges. In metallic conductors, however, current is carried by neg-

ative charges; these charges are the free electrons in the conduction band, which are

only weakly attracted to the atomic structure in metallic elements and are therefore

easily displaced in the presence of electric fields.

EXAMPLE 2.1 Charge and Current in a Conductor

Problem

Find the total charge in a cylindrical conductor (solid wire) and compute the current flowing
in the wire.

Solution
Known Quantities: Conductor geometry, charge density, charge carrier velocity.
Find: Total charge of carriers Q; current in the wire I.

Schematics, Diagrams, Circuits, and Given Data:
Conductor length: L = 1 m.
Conductor diameter: 2r = 2 x 103 m.
Charge density: n = 10%° carriers/m°.
Charge of one electron: g = —1.602 x 107,
Charge carrier velocity: u = 19.9 x 10~¢ m/s.

Assumptions: None.

Analysis: To compute the total charge in the conductor, we first determine the volume of the
conductor:

Volume = length x cross-sectional area

2 x107%)?
V:anrzz(lm)|:n<x2) mz}:nxloem3
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Next, we compute the number of carriers (electrons) in the conductor and the total charge:
Number of carriers = volume x carrier density

carriers .
N=Vxn=(r x10°m?’) (102973) =7 x 103 carriers
Charge = number of carriers x charge/carrier

Q=N x g = (7 x 10® carriers)

x (—1.602 x 10*19#) = —-50.33 x 10° C
carrier

To compute the current, we consider the velocity of the charge carriers and the charge density
per unit length of the conductor:

Current = carrier charge density per unit length x carrier velocity

| = (% %) x (u ?) - (-50.33 x 10° %) (19.9 % 1078 ?) = 1A

Comments: Charge carrier density is a function of material properties. Carrier velocity is a
function of the applied electric field.

i = Current flowing
in closed circuit

—

In order for current to flow, there must exist a closed circuit.

Light- Figure 2.10 depicts a simple circuit, composed of a battery (e.g., a dry-cell or

bub alkaline 1.5-V battery) and a lightbulb.
b';t';y E Note that in the circuit of Figure 2.10, the current i flowing from the battery to
= the lightbulb is equal to the current flowing from the lightbulb to the battery. In other

words, no current (and therefore no charge) is “lost” around the closed circuit. This
- principle was observed by the German scientist G. R. Kirchhoff* and is now known as
[ Kirchhoff’s current law (KCL). Kirchhoff’s current law states that because charge

Figure 2.10 A simple cannot be created but must be conserved, the sum of the currents at a node must equal
electric circuit zero. Formally,
N
: ﬂde% > in=0  Kirchhoff’s current law (2.5)
T | n=1
i | iz i i

@ @ @ The significance of Kirchhoff’s current law is illustrated in Figure 2.11, where the
simple circuit of Figure 2.10 has been augmented by the addition of two lightbulbs
(note how the two nodes that exist in this circuit have been emphasized by the shaded
I — areas). In this illustration, we define currents entering a node as being negative and

Node 2

Illustration of KCL at
nodel: - + i;+i,+i3=0

1Gustav Robert Kirchhoff (1824-1887), a German scientist, published the first systematic description of
Figure 2.11 lllustration of the laws of circuit analysis. His contribution—though not original in terms of its scientific
Kirchhoff’s current law content—forms the basis of all circuit analysis.

< LO2
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currents exiting the node as being positive. Thus, the resulting expression for node 1
of the circuit of Figure 2.11 is

—i4+ii+ip+i3=0

Note that if we had assumed that currents entering the node were positive, the result
would not have changed.

Kirchhoff’s current law is one of the fundamental laws of circuit analysis,
making it possible to express currents in a circuit in terms of one another. KCL is
explored further in Examples 2.2 through 2.4.

EXAMPLE 2.2 Kirchhoff’s Current Law Applied to an Automotive
Electrical Harness

Problem

Figure 2.12 shows an automotive battery connected to a variety of circuits in an automobile.
The circuits include headlights, taillights, starter motor, fan, power locks, and dashboard panel.
The battery must supply enough current to independently satisfy the requirements of each of
the “load” circuits. Apply KCL to the automotive circuits. ON THE WEB

Ihead|  lait|  lstart ltan| liocks| s

AAAA
VVVY
AAAA
VVVY
AAAA
VVVY
AAAA
YVvy
AAAA
YVvy

(b)

Figure 2.12 (a) Automotive circuits; (b) equivalent electric circuit
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Solution

Known Quantities: Components of electrical harness: headlights, taillights, starter motor,
fan, power locks, and dashboard panel.

Find: Expression relating battery current to load currents.
Schematics, Diagrams, Circuits, and Given Data: Figure 2.12.
Assumptions: None.

Analysis: Figure 2.12(b) depicts the equivalent electric circuit, illustrating how the current
supplied by the battery must divide among the various circuits. The application of KCL to the
equivalent circuit of Figure 2.12 requires that

Ibatt — Ihead — ltait — Istart — Ifan — liocks — ldash = 0

EXAMPLE 2.3 Application of KCL

Problem

Determine the unknown currents in the circuit of Figure 2.13.

Figure 2.13 Demonstration
of KCL

Solution
Known Quantities:

Is=5A Ih=2A I, =-3A I3=15A
Find: |y and I,.

Analysis: Two nodes are clearly shown in Figure 2.13 as node a and node b; the third node in the
circuit is the reference (ground) node. In this example we apply KCL at each of the three nodes.

At node a:
lo+lh+1,=0
lg+2—-3=0

lh=1A

Note that the three currents are all defined as flowing away from the node, but one of the
currents has a negative value (i.e., it is actually flowing toward the node).
At node b:

Is—13—1,=0
5-15-1,=0
I, =35A
Note that the current from the battery is defined in a direction opposite to that of the other two
currents (i.e., toward the node instead of away from the node). Thus, in applying KCL, we
have used opposite signs for the first and the latter two currents.
At the reference node: If we use the same convention (positive value for currents entering
the node and negative value for currents exiting the node), we obtain the following equations:
—Is+13+1,=0
—-54+15+1,=0
I, =35A
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Comments: The result obtained at the reference node is exactly the same as we already
calculated at node b. This fact suggests that some redundancy may result when we apply KCL
at each node in a circuit. In Chapter 3 we develop a method called node analysis that ensures
the derivation of the smallest possible set of independent equations.

CHECK YOUR UNDERSTANDING

Repeat the exercise of Example 2.3whenly = 0.5A, 1, =2A, I3 =7A, and I; = —1 A. Find
Iy and Is.

V9 =S|pueyGgz— =T amsuy

EXAMPLE 2.4 Application of KCL <|_02

Problem

Apply KCL to the circuit of Figure 2.14, using the concept of supernode to determine the source SUPHnode\
current Ig;.

Solution
Known Quantities:
I3 =2A Is=0A

Find: |51.

Analysis: Treating the supernode as a simple node, we apply KCL at the supernode to obtain

ls1—1l3—15=0 Figure 2.14 Application of
KCL with a supernode

Iy =3+ 1s = 2A With a sup

Comments: The value of this analysis will become clear when you complete the drill exercise
below.

CHECK YOUR UNDERSTANDING

Use the result of Example 2.4 and the following data to compute the current I, in the circuit
of Figure 2.14.

I, =3A IbL=1A

VT = 5] [lamsuy
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Gustav Robert Kirchhoff (1824-
1887). Photograph courtesy of
Deutsches Museum, Munich.

Illustration of Kirchhoff’s
voltage law: v1 = vp

Figure 2.15 \oltages

around a circuit
L02>
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2.3 VOLTAGE AND KIRCHHOFF’'S VOLTAGE
LAW

Charge moving in an electric circuit gives rise to a current, as stated in Section 2.2.
Naturally, it must take some work, or energy, for the charge to move between two
points in a circuit, say, from point a to point b. The total work per unit charge
associated with the motion of charge between two points is called voltage. Thus,
the units of voltage are those of energy per unit charge; they have been called volts
in honor of Alessandro \olta:

B joule (J)
1volt (V) = 1me(€) (2.6)

The voltage, or potential difference, between two points in a circuit indicates the
energy required to move charge from one point to the other. The role played by a
voltage source in an electric circuit is equivalent to that played by the force of gravity.
Raising a mass with respect to a reference surface increases its potential energy. This
potential energy can be converted to kinetic energy when the object moves to a lower
position relative to the reference surface. The voltage, or potential difference, across a
voltage source plays an analogous role, raising the electrical potential of the circuit, so
that charge can move in the circuit, converting the potential energy within the voltage
source to electric power. As will be presently shown, the direction, or polarity, of
the voltage is closely tied to whether energy is being dissipated or generated in the
process. The seemingly abstract concept of work being done in moving charges can
be directly applied to the analysis of electric circuits; consider again the simple circuit
consisting of a battery and a lightbulb. The circuit is drawn again for convenience in
Figure 2.15, with nodes defined by the letters a and b. Experimental observations led
Kirchhoff to the formulation of the second of his laws, Kirchhoff’s voltage law, or
KVL. The principle underlying KVL is that no energy is lost or created in an electric
circuit; in circuit terms, the sum of all voltages associated with sources must equal
the sum of the load voltages, so that the net voltage around a closed circuit is zero.
If this were not the case, we would need to find a physical explanation for the excess
(or missing) energy not accounted for in the voltages around a circuit. Kirchhoff’s
voltage law may be stated in a form similar to that used for KCL

v =0 Kirchhoff’s voltage law (2.7)

=
|| p=
AN

where the v, are the individual voltages around the closed circuit. To understand this
concept, we must introduce the concept of reference voltage.

In Figure 2.15, the voltage across the lightbulb is the difference between two
node voltages, v, and v,. In a circuit, any one node may be chosen as the refer-
ence node, such that all node voltages may be referenced to this reference voltage.
In Figure 2.15, we could select the voltage at node b as the reference voltage and
observe that the battery’s positive terminal is 1.5 V above the reference voltage. It is
convenient to assign a value of zero to reference voltages, since this simplifies the
voltage assignments around the circuit. With reference to Figure 2.15, and assuming
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that vy, = 0, we can write
V] = 15V
Vp = Ugp =Va— Vp =0y — 0=,

but v, and vy are the same voltage, that is, the voltage at node a (referenced to
node b). Thus

V1 = V2

One may think of the work done in moving a charge from point a to point b and
the work done moving it back from b to a as corresponding directly to the voltages
across individual circuit elements. Let Q be the total charge that moves around the
circuit per unit time, giving rise to current i. Then the work W done in moving Q
from b to a (i.e., across the battery) is

Wpa = Q x 1.5V (2.8)

Similarly, work is done in moving Q from a to b, that is, across the lightbulb. Note
that the word potential is quite appropriate as a synonym of voltage, in that voltage
represents the potential energy between two points in a circuit: If we remove the
lightbulb from its connections to the battery, there still exists a voltage across the (how
disconnected) terminals b and a. This is illustrated in Figure 2.16.

A moment’s reflection upon the significance of voltage should suggest that it
must be necessary to specify a sign for this quantity. Consider, again, the same dry-
cell or alkaline battery where, by virtue of an electrochemically induced separation
of charge, a 1.5-V potential difference is generated. The potential generated by the
battery may be used to move charge in a circuit. The rate at which charge is moved
once a closed circuit is established (i.e., the current drawn by the circuit connected to
the battery) depends now on the circuit element we choose to connect to the battery.
Thus, while the voltage across the battery represents the potential for providing energy
to a circuit, the voltage across the lightbulb indicates the amount of work done in
dissipating energy. In the first case, energy is generated; in the second, it is consumed
(note that energy may also be stored, by suitable circuit elements yet to be introduced).
This fundamental distinction requires attention in defining the sign (or polarity) of
voltages.

We shall, in general, refer to elements that provide energy as sources and to
elements that dissipate energy as loads. Standard symbols for a generalized source-
and-load circuit are shown in Figure 2.17. Formal definitions are given later.

Ground

The concept of reference voltage finds a practical use in the ground voltage of a circuit.
Ground represents a specific reference voltage that is usually a clearly identified point
in a circuit. For example, the ground reference voltage can be identified with the case
or enclosure of an instrument, or with the earth itself. In residential electric circuits,
the ground reference is a large conductor that is physically connected to the earth. It
is convenient to assign a potential of 0 V to the ground voltage reference.

The choice of the word ground is not arbitrary. This point can be illustrated
by a simple analogy with the physics of fluid motion. Consider a tank of water, as
shown in Figure 2.18, located at a certain height above the ground. The potential
energy due to gravity will cause water to flow out of the pipe at a certain flow
rate. The pressure that forces water out of the pipe is directly related to the head

21

The presence of avoltage, vy,
across the open terminalsa and b
indicates the potential energy that
can enable the motion of charge,
once aclosed circuit is established
to allow current to flow.

Figure 2.16 Concept of
voltage as potential difference

A symbolic representation of
the battery—lightbulb circuit
of Figure 2.15.

source(D) [Load]w.

Figure 2.17 Sources and
loads in an electric circuit
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h; — hy in such a way that this pressure is zero when h, = h;. Now the point hs,
corresponding to the ground level, is defined as having zero potential energy. It should
be apparent that the pressure acting on the fluid in the pipe is really caused by the
difference in potential energy (h; — hz) — (h, — hg). It can be seen, then, that it is
not necessary to assign a precise energy level to the height hs; in fact, it would be
extremely cumbersome to do so, since the equations describing the flow of water
would then be different, say, in Denver, Colorado (hs = 1,600 m above sea level),
from those that would apply in Miami, Florida (hs = 0 m above sea level). You see,
then, that it is the relative difference in potential energy that matters in the water tank
problem.

Circuit Circuit
symbol for symbol for

earth ground chassis ground
= 77
Ry

hp » — —

\\\ .

Ve >
Flow of water s _ sziRz

from pipe i 3

h3 W/ zz/zz/Zz7zzzzzZzzz

.||_<

Physical ground

Figure 2.18 Analogy between electrical and earth ground

|_02> EXAMPLE 2.5 Kirchhoff’s Voltage Law—Electric Vehicle Battery
Pack

Problem

Figure 2.19(a) depicts the battery pack in the Smokin’ Buckeye electric race car. In this example
we apply KVL to the series connection of 31 12-V batteries that make up the battery supply
for the electric vehicle.

batt, Vbatt, Vbat, Vbatt2 Vbait,  Vbatty,
L
Rl 20 Y R AFF=lL
.
Power
Vbat, — converter | vy
DC-AC converter o and motor e
(electric drive) -
AC motor
@ (b) ©

Figure 2.19 Electric vehicle battery pack: illustration of KVL (a) Courtesy: David H. Koether Photography.
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Solution
Known Quantities: Nominal characteristics of Optima™ lead-acid batteries. FIND IT

Find: Expression relating battery and electric motor drive voltages.

Schematics, Diagrams, Circuits, and Given Data: Vi = 12 V; Figure 2.19(a), (b), and (c).  [ENRGEE:
Assumptions: None.

Analysis: Figure 2.19(b) depicts the equivalent electric circuit, illustrating how the voltages
supplied by the battery are applied across the electric drive that powers the vehicle’s 150-kW
three-phase induction motor. The application of KV L to the equivalent circuit of Figure 2.19(b)
requires that:

31
Z Vbattn - Vdrive =0

n=1

Thus, the electric drive is nominally supplied by a 31 x 12 = 372-V battery pack. In reality, the
voltage supplied by lead-acid batteries varies depending on the state of charge of the battery.
When fully charged, the battery pack of Figure 2.19(a) is closer to supplying around 400 V
(i.e., around 13V per battery).

EXAMPLE 2.6 Application of KVL <|_02
Problem
Determine the unknown voltage V, by applying KVL to the circuit of Figure 2.20. tV, -
+ Vv - +
Solution \ip A

Known Quantities:

.||_<.

Vs, =12V V=6V V3 =1V
Figure 2.20 Circuit for
Find: V,. Example 2.6

Analysis: Applying KVVL around the simple loop, we write
V52—V1 —V2 —V3 =0
Vo=V —Vi—Vg=12—6—-1=5V

Comments: Note that V, is the voltage across two branches in parallel, and it must be equal
for each of the two elements, since the two elements share the same nodes.

EXAMPLE 2.7 Application of KVL <|_02

Problem

Use KVL to determine the unknown voltages V; and V, in the circuit of Figure 2.21.
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Figure 2.21 Circuit for
Example 2.7
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Solution

Known Quantities:
Vg1 =12V Vsp = —4V V, =2V V=6V Vs =12V
Find: V]_,V4.

Analysis: To determine the unknown voltages, we apply KVL clockwise around each of the
three meshes:

VSl_Vl —V2 —V3 :0
Vo — Vs +Vy =0
V3 —V;—V5=0
Next, we substitute numerical values:

12-V;—-2-6=0

Vi =4V
2—(—4)+Vy=0
Vy=-6V
6—(—6)— Vs =0
Vs =12V

Comments: In Chapter 3 we develop a systematic procedure called mesh analysis to solve
this kind of problem.

CHECK YOUR UNDERSTANDING

Use the outer loop (around the outside perimeter of the circuit) to solve for V;.

9A0Qe Se swes IsMSuy/

2.4 ELECTRIC POWER AND SIGN CONVENTION

The definition of voltage as work per unit charge lends itself very conveniently to
the introduction of power. Recall that power is defined as the work done per unit
time. Thus, the power P either generated or dissipated by a circuit element can be
represented by the following relationship:

work  work charge
time  charge time

Power = = voltage x current (2.9)

Thus,
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The electric power generated by an active element, or that dissipated or stored
by a passive element, is equal to the product of the voltage across the element
and the current flowing through it.

P=VI (2.10)

It is easy to verify that the units of voltage (joules per coulomb) times current
(coulombs per second) are indeed those of power (joules per second, or watts).

It is important to realize that, just like voltage, power is a signed quantity,
and it is necessary to make a distinction between positive and negative power. This
distinction can be understood with reference to Figure 2.22, in which two circuits are
shown side by side. The polarity of the voltage across circuit A and the direction of
the current through it indicate that the circuit is doing work in moving charge from
a lower potential to a higher potential. On the other hand, circuit B is dissipating
energy, because the direction of the current indicates that charge is being displaced
from a higher potential to a lower potential. To avoid confusion with regard to the
sign of power, the electrical engineering community uniformly adopts the passive
sign convention, which simply states that the power dissipated by a load is a positive
quantity (or, conversely, that the power generated by a source is a positive quantity).
Another way of phrasing the same concept is to state that if current flows from a
higher to a lower voltage (plus to minus), the power is dissipated and will be a
positive quantity.

It is important to note also that the actual numerical values of voltages and
currents do not matter: Once the proper reference directions have been established
and the passive sign convention has been applied consistently, the answer will be
correct regardless of the reference direction chosen. Examples 2.8 and 2.9 illustrate
this point.

THE PASSIVE SIGN CONVENTION

1. Choose an arbitrary direction of current flow.
2. Label polarities of all active elements (voltage and current sources).

3. Assign polarities to all passive elements (resistors and other loads); for
passive elements, current always flows into the positive terminal.

4. Compute the power dissipated by each element according to the following
rule: If positive current flows into the positive terminal of an element, then
the power dissipated is positive (i.e., the element absorbs power); if the
current leaves the positive terminal of an element, then the power
dissipated is negative (i.e., the element delivers power).

< LO3

—
+
v Circuit
_ A
Power dissipated =

V(i) = (-v)i =—vi
Power generated = vi

i
—

Circuit \Y
B

Power dissipated = vi
Power generated =
V(=) = (-v)i =—vi

Figure 2.22 The passive

sign convention

< LO3
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LO3 EXAMPLE 2.8 Use of the Passive Sign Convention

|
Load 1
+ ~
VB — -g
=T |
Figure 2.23

vg=12V v1=8V
i=01A v=4V

vg=-12V v1 =-8V
i==01A v,=-4V

(b)
Figure 2.24

Problem

Apply the passive sign convention to the circuit of Figure 2.23.

Solution
Known Quantities: \oltages across each circuit element; current in circuit.
Find: Power dissipated or generated by each element.

Schematics, Diagrams, Circuits, and Given Data: Figure 2.24(a) and (b). The voltage drop
across load 1 is 8 V, that across load 2 is 4 V; the current in the circuit is 0.1 A.

Assumptions: None.

Analysis: Note that the sign convention is independent of the current direction we choose.
We now apply the method twice to the same circuit. Following the passive sign convention,
we first select an arbitrary direction for the current in the circuit; the example will be re-
peated for both possible directions of current flow to demonstrate that the methodology is
sound.

1. Assume clockwise direction of current flow, as shown in Figure 2.24(a).

2. Label polarity of voltage source, as shown in Figure 2.24(a); since the arbitrarily chosen
direction of the current is consistent with the true polarity of the voltage source, the source
voltage will be a positive quantity.

3. Assign polarity to each passive element, as shown in Figure 2.24(a).
4. Compute the power dissipated by each element: Since current flows from — to + through
the battery, the power dissipated by this element will be a negative quantity:
PB = —ug X i=-12Vx01A=-12W

that is, the battery generates 1.2 watts (W). The power dissipated by the two loads will
be a positive quantity in both cases, since current flows from plus to minus:

P1:U1X|:8VX01A:08W
P,=v, xi=4Vx01A=04W

Next, we repeat the analysis, assuming counterclockwise current direction.

1. Assume counterclockwise direction of current flow, as shown in Figure 2.24(b).

2. Label polarity of voltage source, as shown in Figure 2.24(b); since the arbitrarily chosen
direction of the current is not consistent with the true polarity of the voltage source, the
source voltage will be a negative quantity.

3. Assign polarity to each passive element, as shown in Figure 2.24(b).

4. Compute the power dissipated by each element: Since current flows from plus to minus
through the battery, the power dissipated by this element will be a positive quantity;
however, the source voltage is a negative quantity:

Pe=vg xi=(-12V)(0.1A) = -12W

that is, the battery generates 1.2 W, as in the previous case. The power dissipated by the
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two loads will be a positive quantity in both cases, since current flows from plus to minus:
Pi=v1 xi=8Vx01A=08W
P,=v; xi=4Vx01A=04W
Comments: It should be apparent that the most important step in the example is the correct
assignment of source voltage; passive elements will always result in positive power dissipation.

Note also that energy is conserved, as the sum of the power dissipated by source and loads is
zero. In other words: Power supplied always equals power dissipated.

27

EXAMPLE 2.9

Problem

For the circuit shown in Figure 2.25, determine which components are absorbing power and
which are delivering power. Is conservation of power satisfied? Explain your answer.

Solution
Known Quantities: Current through elements D and E; voltage across elements B, C, E.

Find: Which components are absorbing power, which are supplying power; verify the con-
servation of power.

Analysis: By KCL, the current through element B is 5 A, to the right. By KVL,
—v,—3+10+5=0

Therefore, the voltage across element A is
v, =12V (positive at the top)

A supplies (12 V)(5A) = 60 W

B supplies BV)(5A) =15W

C absorbs (5 V)(5A) =25W

D absorbs (10 V)(3A) =30 W

E absorbs (10 V)(2A) =20 W

Total power supplied =60 W + 15W =75 W

Total power absorbed =25W + 30 W + 20 W =75 W

Total power supplied = Total power absorbed, so conservation of power is satisfied

Comments: The procedure described in this example can be easily conducted experimentally,
by performing simple voltage and current measurements. Measuring devices are introduced in
Section 2.8.

2A

[®] 0v[€]

SV+

‘3A

C

Y

Figure 2.25

CHECK YOUR UNDERSTANDING

Compute the current flowing through each of the headlights of Example 2.2 if each headlight
has a power rating of 50 W. How much power is the battery providing?

Determine which circuit element in the following illustration (left) is supplying power and
which is dissipating power. Also determine the amount of power dissipated and supplied.
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Figure 2.26 Generalized
representation of circuit
elements
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+
22A
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If the battery in the accompanying diagram (above, right) supplies a total of 10 mW to the three
elements shown and i; = 2 mA and i, = 1.5 mA, what is the current i;? If i; = 1 mA and
iz = 1.5 mA, whatis i,?

Ywo=7a
YW T— = & M 8'0¢ seredissip g ‘M 8'0€ sa1ddns v "M\ 00T W 2T7 = 91 = 9] :Slemsuy

2.5 CIRCUIT ELEMENTS AND THEIR i-v
CHARACTERISTICS

The relationship between current and voltage at the terminals of a circuit element
defines the behavior of that element within the circuit. In this section we introduce a
graphical means of representing the terminal characteristics of circuit elements. Figure
2.26 depicts the representation that is employed throughout the chapter to denote a
generalized circuit element: The variable i represents the current flowing through the
element, while v is the potential difference, or voltage, across the element.

Suppose now that a known voltage were imposed across a circuit element. The
current that would flow, as a consequence of this voltage, and the voltage itself form a
unique pair of values. If the voltage applied to the element were varied and the resulting
current measured, it would be possible to construct a functional relationship between
voltage and current known as the i-v characteristic (or volt-ampere characteristic).
Such a relationship defines the circuit element, in the sense that if we impose any
prescribed voltage (or current), the resulting current (or voltage) is directly obtainable
from the i-v characteristic. A direct consequence is that the power dissipated (or
generated) by the element may also be determined from the i-v curve.

Figure 2.27 depicts an experiment for empirically determining the i-v charac-
teristic of a tungsten filament lightbulb. A variable voltage source is used to apply
various voltages, and the current flowing through the element is measured for each
applied voltage.

We could certainly express the i-v characteristic of a circuit element in func-
tional form:

i=f) v=g() (2.11)

In some circumstances, however, the graphical representation is more desirable,
especially if there is no simple functional form relating voltage to current. The sim-
plest form of the i-v characteristic for a circuit element is a straight line, that is,

i = kv (2.12)

with k being a constant.
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Figure 2.27 Volt-ampere characteristic of a tungsten lightbulb

We can also relate the graphical i-v representation of circuit elements to the
power dissipated or generated by a circuit element. For example, the graphical
representation of the lightbulb i-v characteristic of Figure 2.27 illustrates that when
a positive current flows through the bulb, the voltage is positive, and conversely,
a negative current flow corresponds to a negative voltage. In both cases the power
dissipated by the device is a positive quantity, as it should be, on the basis of the
discussion of Section 2.4, since the lightbulb is a passive device. Note that the i-v
characteristic appears in only two of the four possible quadrants in the i-v plane. In
the other two quadrants, the product of voltage and current (i.e., power) is negative,
and an i-v curve with a portion in either of these quadrants therefore corresponds to
power generated. This is not possible for a passive load such as a lightbulb; however,
there are electronic devices that can operate, for example, in three of the four quad-
rants of the i-v characteristic and can therefore act as sources of energy for specific
combinations of voltages and currents. An example of this dual behavior is introduced
in Chapter 9, where it is shown that the photodiode can act either in a passive mode
(as a light sensor) or in an active mode (as a solar cell).

The i-v characteristics of ideal current and voltage sources can also be useful in
visually representing their behavior. An ideal voltage source generates a prescribed
voltage independent of the current drawn from the load; thus, its i-v characteristic
is a straight vertical line with a voltage axis intercept corresponding to the source
voltage. Similarly, the i-v characteristic of an ideal current source is a horizontal line
with a current axis intercept corresponding to the source current. Figure 2.28 depicts
these behaviors.

2.6 RESISTANCE AND OHM’S LAW

When electric current flows through a metal wire or through other circuit elements,
it encounters a certain amount of resistance, the magnitude of which depends on
the electrical properties of the material. Resistance to the flow of current may be
undesired—for example, in the case of lead wires and connection cable—or it may

O FPNWAUITONOWO —
T

I N B
345678 v
v characteristic
of a3-A current source

| |
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i-

O FPNWAUITONOO —
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12345678 v
i-v characteristic

of a6-V voltage source

Figure 2.28 i-v
characteristics of ideal
sources
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MAKE THE
CONNECTION

Electric Circuit
Analogs of
Hydraulic
Systems—Fluid
Resistance

A useful analogy can be
made between the flow of
electric current through
electric components and the
flow of incompressible fluids
(e.g., water, oil) through
hydraulic components. The
analogy starts with the
observation that the volume
flow rate of a fluid in a pipe is
analogous to current flow in a
conductor. Similarly, pressure
drop across the pipe is
analogous to voltage drop
across a resistor. The figure
below depicts this
relationship graphically. The
fluid resistance opposed by
the pipe to the fluid flow is
analogous to an electrical
resistance: The pressure
difference between the two
ends of the pipe causes fluid
flow, much as a potential
difference across a resistor
forces a current flow. This
analogy is explored further in
Chapter 4.

R
Vie—AMMW—e V;
—

|

R =T P
Rt

P e—MW—e P
G

Analogy between
electrical and fluid
resistance

Chapter 2 Fundamentals of Electric Circuits

be exploited in an electric circuit in a useful way. Nevertheless, practically all circuit
elements exhibit some resistance; as a consequence, current flowing through an el-
ement will cause energy to be dissipated in the form of heat. An ideal resistor is a
device that exhibits linear resistance properties according to Ohm’s law, which states
that

V =IR Ohm’s law (2.13)

that is, that the voltage across an element is directly proportional to the current flow
through it. The value of the resistance R is measured in units of ohms (£2), where

1Q=1VA (2.14)

The resistance of a material depends on a property called resistivity, denoted by
the symbol p; the inverse of resistivity is called conductivity and is denoted by the
symbol o. For a cylindrical resistance element (shown in Figure 2.29), the resistance
is proportional to the length of the sample | and inversely proportional to its cross-
sectional area A and conductivity o.

R=—

_ (2.15)

Physical resistors i-v characteristic
with resistance R.
Typical materials are

carbon, metal film.

Circuit symbol

Figure 2.29 The resistance element

It is often convenient to define the conductance of a circuit element as the
inverse of its resistance. The symbol used to denote the conductance of an element is
G, where

1
G = R siemens (S) where 1S=1AN (2.16)
Thus, Ohm’s law can be restated in terms of conductance as
| =GV (2.17)

Ohm’s law is an empirical relationship that finds widespread application in
electrical engineering because of its simplicity. It is, however, only an approximation
of the physics of electrically conducting materials. Typically, the linear relationship
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between voltage and current in electrical conductors does not apply at very high
voltages and currents. Further, not all electrically conducting materials exhibit linear
behavior even for small voltages and currents. Itis usually true, however, that for some
range of voltages and currents, most elements display a linear i-v characteristic. Figure
2.30illustrates how the linear resistance concept may apply to elements with nonlinear
i-v characteristics, by graphically defining the linear portion of the i-v characteristic
of two common electrical devices: the lightbulb, which we have already encountered,
and the semiconductor diode, which we study in greater detail in Chapter 9. Table 2.1
lists the conductivity of many common materials.

Table 2.1 Resistivity of common
materials at room temperature

Material Resistivity (£2-m)
Aluminum 2.733 x 1078
Copper 1.725 x 1078
Gold 2.271 x 1078
Iron 9.98 x 108
Nickel 7.20 x 1078
Platinum 10.8 x 1078
Silver 1.629 x 1078
Carbon 35x 1075

The typical construction and the circuit symbol of the resistor are shown in
Figure 2.29. Resistors made of cylindrical sections of carbon (with resistivity
p = 3.5 x 107° Q-m) are very common and are commercially available in a wide
range of values for several power ratings (as explained shortly). Another common
construction technique for resistors employs metal film. A common power rating for
resistors used in electronic circuits (e.g., in most consumer electronic appliances such
as radios and television sets) is % W. Table 2.2 lists the standard values for commonly
used resistors and the color code associated with these values (i.e., the common com-
binations of the digits b;b,b3 as defined in Figure 2.31). For example, if the first three
color bands on a resistor show the colors red (b; = 2), violet (b, = 7), and yellow
(bs = 4), the resistance value can be interpreted as follows:

R = 27 x 10* = 270,000 © = 270 kQ

Table 2.2 Common resistor values (3-, -, 3-, 1-, 2-W rating)

2 Code Q  Multiplier | k& Multiplier | k Multiplier | k€ Multiplier
10 Brn-blk-blk | 100 Brown 1.0 Red 10 Orange 100 Yellow
12 Brn-red-blk | 120 Brown 1.2 Red 12 Orange 120 Yellow
15 Brn-grn-blk | 150 Brown 1.5 Red 15 Orange 150 Yellow
18 Brn-gry-blk | 180 Brown 1.8 Red 18 Orange 180 Yellow
22 Red-red-blk | 220 Brown 2.2 Red 22 Orange 220 Yellow
27 Red-vit-blk 270 Brown 2.7 Red 27 Orange 270 Yellow
33 Org-org-blk | 330 Brown 3.3 Red 33 Orange 330 Yellow
39 Org-wht-blk | 390 Brown 3.9 Red 39 Orange 390 Yellow
47 Ylw-vit-blk | 470 Brown 4.7 Red 47 Orange 470 Yellow
56 Grn-blu-blk | 560 Brown 5.6 Red 56 Orange 560 Yellow
68 Blu-gry-blk | 680 Brown 6.8 Red 68 Orange 680 Yellow
82 Gry-red-blk | 820 Brown 8.2 Red 82 Orange 820 Yellow
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Exponential i-v
characteristic
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Figure 2.30

FIND IT
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Color bands

black 0 blue 6
brown 1 violet 7
red 2 gray 8
orange 3 white 9
yellow 4 silver 10%
green 5 gold 5%

Resistor value = (by bp) x 10%;
by =% tolerancein actud vaue

Figure 2.31 Resistor color
code
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In Table 2.2, the leftmost column represents the complete color code; columns
to the right of it only show the third color, since this is the only one that changes. For
example, a 10-€2 resistor has the code brown-black-black, while a 100-£2 resistor has
the code of brown-black-brown.

In addition to the resistance in ohms, the maximum allowable power dissipation
(or power rating) is typically specified for commercial resistors. Exceeding this
power rating leads to overheating and can cause the resistor to literally burn up. For
a resistor R, the power dissipated can be expressed, with Ohm’s law substituted into
equation 2.10, by

2

P=VI :IZR:\% (2.18)
That is, the power dissipated by a resistor is proportional to the square of the
current flowing through it, as well as the square of the voltage across it. Example
2.10 illustrates how you can make use of the power rating to determine whether a
given resistor will be suitable for a certain application.

FIND IT

ON THE WEB

EXAMPLE 2.10 Using Resistor Power Ratings

Problem

Determine the minimum resistor size that can be connected to a given battery without exceeding
the resistor’s %-W power rating.

Solution
Known Quantities: Resistor power rating = 0.25 W. Battery voltages: 1.5 and 3 V.
Find: The smallest size %-W resistor that can be connected to each battery.

Schematics, Diagrams, Circuits, and Given Data: Figure 2.32, Figure 2.33.

¥ li pd l'
=
+ B Y
15V 5v 2R |
= 3V ?R
Figure 2.32

Figure 2.33

Analysis: We first need to obtain an expression for resistor power dissipation as a function
of its resistance. We know that P = VI and that V = IR. Thus, the power dissipated by any
resistor is

Vv Vv
PR=Vxl=Vx—=—
R R
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Since the maximum allowable power dissipation is 0.25 W, we can write V2/R < 0.25, or
R > V?2/0.25. Thus, fora 1.5-V battery, the minimum size resistor willbe R = 1.52/0.25 = 9 Q.
For a 3-V battery the minimum size resistor will be R = 3%2/0.25 = 36 Q.

Comments: Sizing resistors on the basis of power rating is very important in practice. Note
how the minimum resistor size quadrupled as we doubled the voltage across it. This is because
power increases as the square of the voltage. Remember that exceeding power ratings will
inevitably lead to resistor failure!
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CHECK YOUR UNDERSTANDING

Atypical electronic power supply provides £12 V. What is the size of the smallest %-W resistor
that could be placed across (in parallel with) the power supply? (Hint: You may think of the
supply as a 24-V supply.)

The circuit in the accompanying illustration contains a battery, a resistor, and an unknown
circuit element.

1. If the voltage Vpattery is 1.45 V and i = 5 mA, find power supplied to or by the battery.
2. Repeatpartlifi =—2mA.

The battery in the accompanying circuit supplies power to resistors Ry, R, and Rs. Use KCL
to determine the current ig, and find the power supplied by the battery if Vyaitery = 3 V.

iB
——

Viattery C_) §R1 §R2 §R3

< < <

lip=02mA ||i;=04mA ||iz=12mA
Y Y Y

MW $'G = 8q yw g'T = 9
:(01 panddns) M ¢—0T X 6°¢ = d :(Aq paljddns) M 0T X G2'L = 'd -8 #0E'C ‘SIamsuy

Open and Short Circuits

Two convenient idealizations of the resistance element are provided by the limiting
cases of Ohm’s law as the resistance of a circuit element approaches zero or infinity. A
circuit element with resistance approaching zero is called a short circuit. Intuitively,
we would expect a short circuit to allow for unimpeded flow of current. In fact,
metallic conductors (e.g., short wires of large diameter) approximate the behavior of
a short circuit. Formally, a short circuit is defined as a circuit element across which
the voltage is zero, regardless of the current flowing through it. Figure 2.34 depicts
the circuit symbol for an ideal short circuit.

Physically, any wire or other metallic conductor will exhibit some resistance,
though small. For practical purposes, however, many elements approximate a short
circuit quite accurately under certain conditions. For example, a large-diameter copper
pipe is effectively a short circuit in the context of a residential electric power supply,

Unknown
element

The short circuit:
R=0
v=0foranyi

Figure 2.34 The short

circuit
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\" R—

i=0foranyv

Figure 2.35 The open
circuit

15V

The current i flows through each of
the four series elements. Thus, by
KVL,

15=vi+wn+v3

N series resistors are equivaent to
asingle resistor equal to the sum of
theindividual resistances.

Figure 2.36

i
+ ——
l The open circuit:

Chapter 2 Fundamentals of Electric Circuits

while in a low-power microelectronic circuit (e.g., an FM radio) a short length of
24-gauge wire (refer to Table 2.3 for the resistance of 24-gauge wire) is a more than
adequate short circuit. Table 2.3 summarizes the resistance for a given length of some
commonly used gauges of electrical wire. Additional information on American Wire
Gauge Standards may be found on the Internet.

Table 2.3 Resistance of copper wire

Number of  Diameter per  Resistance per

AWG size  strands strand (in) 1,000 ft (€2)
24 Solid 0.0201 284
24 7 0.0080 28.4
22 Solid 0.0254 18.0
22 7 0.0100 19.0
20 Solid 0.0320 11.3
20 7 0.0126 11.9
18 Solid 0.0403 7.2
18 7 0.0159 7.5
16 Solid 0.0508 45
16 19 0.0113 4.7
14 Solid 0.0641 2.52
12 Solid 0.0808 1.62
10 Solid 0.1019 1.02
8 Solid 0.1285 0.64
6 Solid 0.1620 0.4
4 Solid 0.2043 0.25
2 Solid 0.2576 0.16

Acircuit element whose resistance approaches infinity is called an open circuit.
Intuitively, we would expect no current to flow through an open circuit, since it offers
infinite resistance to any current. In an open circuit, we would expect to see zero
current regardless of the externally applied voltage. Figure 2.35 illustrates this idea.

In practice, it is not too difficult to approximate an open circuit: Any break in
continuity ina conducting path amounts to an open circuit. The idealization of the open
circuit, as defined in Figure 2.35, does not hold, however, for very high voltages. The
insulating material between two insulated terminals will break down at a sufficiently
high voltage. If the insulator is air, ionized particles in the neighborhood of the two
conducting elements may lead to the phenomenon of arcing; in other words, a pulse of
current may be generated that momentarily jumps a gap between conductors (thanks
to this principle, we are able to ignite the air-fuel mixture in a spark-ignition internal
combustion engine by means of spark plugs). The ideal open and short circuits are
useful concepts and find extensive use in circuit analysis.

Series Resistors and the Voltage Divider Rule

Although electric circuits can take rather complicated forms, even the most involved
circuits can be reduced to combinations of circuit elements in parallel and in series.
Thus, it is important that you become acquainted with parallel and series circuits as
early as possible, even before formally approaching the topic of network analysis.
Parallel and series circuits have a direct relationship with Kirchhoff’s laws. The
objective of this section and the next is to illustrate two common circuits based on
series and parallel combinations of resistors: the voltage and current dividers. These
circuits form the basis of all network analysis; it is therefore important to master these
topics as early as possible.

For an example of a series circuit, refer to the circuit of Figure 2.36, where a
battery has been connected to resistors Ry, R,, and R3. The following definition applies:
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Definition

Two or more circuit elements are said to be in series if the current from one
element exclusively flows into the next element. From KCL, it then follows
that all series elements have the same current.

By applying KVL, you can verify that the sum of the voltages across the three resistors
equals the voltage externally provided by the battery

15V =v; 4+ vy + v3

And since, according to Ohm’s law, the separate voltages can be expressed by the
relations

V] = iRl Uy = iR2 U3 = iR3
we can therefore write
15V =i(R; + Ry +Rj3)

This simple result illustrates a very important principle: To the battery, the three series
resistors appear as a single equivalent resistance of value Reg, where

Reg =R1 +R2+R3

The three resistors could thus be replaced by a single resistor of value Rgq without
changing the amount of current required of the battery. From this result we may
extrapolate to the more general relationship defining the equivalent resistance of N
series resistors

N
Req = Z Rn Equivalent series resistance (2.19)
n=1

which is also illustrated in Figure 2.36. A concept very closely tied to series resistors
is that of the voltage divider. This terminology originates from the observation that
the source voltage in the circuit of Figure 2.36 divides among the three resistors
according to KVL. If we now observe that the series current i is given by

15V _ 15V
"~ Reg  Ri+Ry+R;

we can write each of the voltages across the resistors as:

. R
v = iR = R_ElQ(:L5 V)

. R
v = iRy = R_2Q(1.5 V)
E

. Rs3
V3 = |R3 = R_EQ(15 V)

< LO4

35
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That is,
L 04 The voltage across each resistor in a series circuit divides in direct proportion
to the individual series resistances.
An instructive exercise consists of verifying that KVL is still satisfied, by adding the
voltage drops around the circuit and equating their sum to the source voltage:
R R R
A v tuvs= ——1A5V)+ —=15V)+-—>(15V) =15V
REQ REQ REQ
since Reog =R1+R2+R3
Therefore, since KVL is satisfied, we are certain that the voltage divider rule is
consistent with Kirchhoff’s laws. By virtue of the voltage divider rule, then, we can
always determine the proportion in which voltage drops are distributed around a
circuit. This result is useful in reducing complicated circuits to simpler forms. The
general form of the voltage divider rule for a circuit with N series resistors and a
voltage source is
LO4 Rn Voltage divider (2.20)
Uph = v .
"T R tRyt+ - +Rot-+Ry g
LO4> EXAMPLE 2.11 Voltage Divider
Problem
Vs Determine the voltage v3 in the circuit of Figure 2.37.
Rs Vi Solution
+
Known Quantities: Source voltage; resistance values.
+ —
v Find: Unknown voltage vs.
Figure 2.37

Schematics, Diagrams, Circuits, and Given Data: R; =10 Q; R, =6 Q; R; =8 Q;
Vs = 3 V. Figure 2.37.

Analysis: Figure 2.37 indicates a reference direction for the current (dictated by the polarity
of the voltage source). Following the passive sign convention, we label the polarities of the
three resistors, and apply KVL to determine that

Vs—Ul—‘Uz—U3=0
The voltage divider rule tells us that

Rs 8

— =3 x — =1V
R; +R2 +Rs 10+6+8

1)3=V5><
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Comments: Application of the voltage divider rule to a series circuit is very straightforward.
The difficulty usually arises in determining whether a circuit is in fact a series circuit. This
point is explored later in this section, and in Example 2.13.

CHECK YOUR UNDERSTANDING

Repeat Example 2.11 by reversing the reference direction of the current, to show that the same
result is obtained.

Parallel Resistors and the Current Divider Rule

A concept analogous to that of the voltage divider may be developed by applying
Kirchhoff’s current law to a circuit containing only parallel resistances.

Definition

Two or more circuit elements are said to be in parallel if the elements share <|_o4
the same terminals. From KVL, it follows that the elements will have the same
voltage.

Figure 2.38 illustrates the notion of parallel resistors connected to an ideal current
source. Kirchhoff’s current law requires that the sum of the currents into, say, the top
node of the circuit be zero:

is =1i1+i2+1i3

But by virtue of Ohm’s law we may express each current as follows:
i _ v I _ v I _ v
1= R, 2 = R, 3= Rs

since, by definition, the same voltage v appears across each element. Kirchhoff’s
current law may then be restated as follows:

(L L,
STU\R, "R, " R

KCL appii/edatthisnode O [,

.
v [y |y R TR SRy Req
is Ry > R Rs v

N resistorsin parallel are equivalent to a single equivalent
The voltage v appears across each parallel resistor with resistance equal to the inverse of the sum of
element; by KCL, ig=1i1 +ip+i3 the inverse resistances.

AAA

Figure 2.38 Parallel circuits
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Note that this equation can be also written in terms of a single equivalent resistance

i 1
s =Uo—
REQ

1 1 1

where — =—+—+ =
Reo Ri R2 R;3

As illustrated in Figure 2.38, we can generalize this result to an arbitrary number of
resistors connected in parallel by stating that N resistors in parallel act as a single
equivalent resistance Req given by the expression

1 1 1 1
S e T 2.21
REQ Rl R2 RN ( )
1 .
o Reo — eq_uvalent parallel (2.22)
1/Ri+1/Ry+--- 4+ 1/Ry resistance

Very often in the remainder of this book we refer to the parallel combination of two
or more resistors with the notation

Rill Rzl -

where the symbol || signifies “in parallel with.”

From the results shown in equations 2.21 and 2.22, which were obtained directly
from KCL, the current divider rule can be easily derived. Consider, again, the three-
resistor circuit of Figure 2.38. From the expressions already derived from each of the
currents iq, ip, and iz, we can write

i — v i, — v i — v
"R " R, Rs
and since v = Reqis, these currents may be expressed by

Reo. 1/R; . 1/Ry

h=—4"Is= Is = Is
R1 1/Reo 1/R1 +1/Ry + 1/R3

. 1/R, .

I2 = Is
1/R1 +1/R, +1/R3

1/R3

i3 = i

*T1/Ri+1/R, +1/Rs °

We can easily see that the current in a parallel circuit divides in inverse proportion
to the resistances of the individual parallel elements. The general expression for the
current divider for a circuit with N parallel resistors is the following:

B 1/Rn i Current
T 1/Ri+1/Ro+---+1/Ry+---+1/Ry > divider

(2.23)

In

Example 2.12 illustrates the application of the current divider rule.
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EXAMPLE 2.12 Current Divider <|_O4

Problem

Determine the current iy in the circuit of Figure 2.39.

>Ry Is

AAA
V

AAA
W
e

AAA
W
ey

Solution

Known Quantities: Source current; resistance values. Figure 2.39
Find: Unknown current i.

Schematics, Diagrams, Circuits, and Given Data: R, = 10 Q; R, =2 Q; R3 =20 Q;
Is = 4 A. Figure 2.39.

Analysis: Application of the current divider rule yields

1/Rq &
x =4x 1 1 1

ip=ls =0.6154 A

Comments: While application of the current divider rule to a parallel circuit is very straight-
forward, it is sometimes not so obvious whether two or more resistors are actually in parallel.
A method for ensuring that circuit elements are connected in parallel is explored later in this
section, and in Example 2.13.

CHECK YOUR UNDERSTANDING

Verify that KCL is satisfied by the current divider rule and that the source current is divides in
inverse proportion to the parallel resistors Ry, R, and R3 in the circuit of Figure 2.39. (This
should not be a surprise, since we would expect to see more current flow through the smaller
resistance.)

Much of the resistive network analysis that is presented in Chapter 3 is based
on the simple principles of voltage and current dividers introduced in this section.
Unfortunately, practical circuits are rarely composed of only parallel or only series
elements. The following examples and Check Your Understanding exercises illustrate
some simple and slightly more advanced circuits that combine parallel and series
elements.

EXAMPLE 2.13 Series-Parallel Circuit <LO4

Problem

Determine the voltage v in the circuit of Figure 2.40.
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Solution
Known Quantities: Source voltage; resistance values.
Find: Unknown voltage v.

Schematics, Diagrams, Circuits, and Given Data: See Figures 2.40, 2.41.

R -
 MAA Ry Elementsin parallel
vy + MW
+
> < L
Vs ) RV R SRV =R LA
| < < Vs i :; :; <
i Equivalent circuit
Figure 2.40

Figure 2.41

Analysis: The circuit of Figure 2.40 is neither a series nor a parallel circuit because the
following two conditions do not apply:

1. The current through all resistors is the same (series circuit condition).
2. The voltage across all resistors is the same (parallel circuit condition).

The circuit takes a much simpler appearance once it becomes evident that the same voltage
appears across both R, and R; and, therefore, that these elements are in parallel. If these two
resistors are replaced by a single equivalent resistor according to the procedures described in
this section, the circuit of Figure 2.41 is obtained. Note that now the equivalent circuit is a
simple series circuit, and the voltage divider rule can be applied to determine that

v — R2(IR3 vs
Ri +R2[IRs
while the current is found to be
=5
R1 + R2|IR;

Comments: Systematic methods for analyzing arbitrary circuit configurations are explored
in Chapter 3.

CHECK YOUR UNDERSTANDING

Consider the circuit of Figure 2.40, without resistor R3. Calculate the value of the voltage v if
the source voltage isvs =5V and R; = R, = 1 k.

Repeat when resistor R3 is in the circuit and its value is R3 = 1 k2.
Repeat when resistor R3 is in the circuit and its value is R3 = 0.1 k2.

A L9TV0 = A AL9T = a:AQ0GZ = a :SIOMSUY
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EXAMPLE 2.14 The Wheatstone Bridge

Problem

The Wheatstone bridge is a resistive circuit that is frequently encountered in a variety of FIND IT
measurement circuits. The general form of the bridge circuit is shown in Figure 2.42(a), where
R1, Ry, and Rs are known while Ry is an unknown resistance, to be determined. The circuit
may also be redrawn as shown in Figure 2.42(b). The latter circuit is used to demonstrate g
the voltage divider rule in a mixed series-parallel circuit. The objective is to determine the

unknown resistance R.

1. Find the value of the voltage vap, = vag — vpg in terms of the four resistances and the
source voltage vs. Note that since the reference point d is the same for both voltages, we
can also Write vy = vy — vp.

2. IfRi =R, =R3; =1k, vs =12V, and vy = 12 mV, what is the value of R,?

Solution
Known Quantities: Source voltage; resistance values; bridge voltage.
Find: Unknown resistance Ry.

Schematics, Diagrams, Circuits, and Given Data: See Figure 2.42.
R1=R2=R3=1KQ;US =12V, vyp = 12 mV.

Analysis:

1. First we observe that the circuit consists of the parallel combination of three subcircuits:
the voltage source, the series combination of R; and R, and the series combination of R;
and Ry. Since these three subcircuits are in parallel, the same voltage will appear across
each of them, namely, the source voltage vs.

Thus, the source voltage divides between each resistor pair R; — R, and R3 — Ry
according to the voltage divider rule: vy is the fraction of the source voltage appearing
across Ry, while vyq is the voltage appearing across Ry:

RZ Rx

and Vpd = VU
Ri + R, T SRy R,

Figure 2.42 Wheatstone
bridge circuits

Vad = Vs

Finally, the voltage difference between points a and b is given by

(fimmiw)
Uagh = Vad — Upd = V - —
ab ad bd S R1+R2 R3+RX

This result is very useful and quite general.

2. To solve for the unknown resistance, we substitute the numerical values in the preceding
equation to obtain

0.012 =12 (1’000 Re )

2,000 1,000 4 Ry
which may be solved for Ry to yield
Ry =996

Comments: The Wheatstone bridge finds application in many measurement circuits and
instruments.
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CHECK YOUR UNDERSTANDING
Use the results of part 1 of Example 2.14 to find the condition for which the voltage

vap = vy — vp IS equal to zero (this is called the balanced condition for the bridge). Does
this result necessarily require that all four resistors be identical? Why?

€Y%y = XYty uamsuy
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EXAMPLE 2.15 Resistance Strain Gauges

Another common application of the resistance concept to engineering measurements is the
resistance strain gauge. Strain gauges are devices that are bonded to the surface of an object,
and whose resistance varies as a function of the surface strain experienced by the object. Strain
gauges may be used to perform measurements of strain, stress, force, torque, and pressure.
Recall that the resistance of a cylindrical conductor of cross-sectional area A, length L, and
conductivity o is given by the expression
L
T oA

If the conductor is compressed or elongated as a consequence of an external force, its dimen-
sions will change, and with them its resistance. In particular, if the conductor is stretched, its
cross-sectional area decreases and the resistance increases. If the conductor is compressed, its
resistance decreases, since the length L decreases. The relationship between change in resis-
tance and change in length is given by the gauge factor GF, defined by

_ AR/R
T AL/L

And since the strain ¢ is defined as the fractional change in length of an object by the formula

AL
‘=T
the change in resistance due to an applied strain ¢ is given by
AR = RoGFe

where Rg is the resistance of the strain gauge under no strain and is called the zero strain
resistance. The value of GF for resistance strain gauges made of metal foil is usually
about 2.

Figure 2.43 depicts a typical foil strain gauge. The maximum strain that can be measured
by a foil gauge isabout 0.4 to 0.5 percent; thatis, AL/L = 0.004 —0.005. For a 120-2 gauge,this

Thefoil isformed by a photo-
etching process and is less than
0.00002 in thick. Typical resistance
values are 120, 350, and 1,000 Q.
The wide areas are bonding pads
for electrical connections.

Re Circuit symbol for
the strain gauge

Figure 2.43 Metal-foil resistance strain gauge.
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corresponds to a change in resistance on the order of 0.96 to 1.2 2. Although this change in
resistance is very small, it can be detected by means of suitable circuitry. Resistance strain
gauges are usually connected in a circuit called the Wheatstone bridge, which we analyze later
in this chapter.

Comments—Resistance strain gauges find application in many measurement circuits and
instruments. The measurement of force is one such application, shown next.

EXAMPLE 2.16 The Wheatstone Bridge and Force
Measurements

Strain gauges are frequently employed in the measurement of force. One of the simplest ap-
plications of strain gauges is in the measurement of the force applied to a cantilever beam,
as illustrated in Figure 2.44. Four strain gauges are employed in this case, of which two are
bonded to the upper surface of the beam at a distance L from the point where the external force
F is applied and two are bonded on the lower surface, also at a distance L. Under the influence
of the external force, the beam deforms and causes the upper gauges to extend and the lower
gauges to compress. Thus, the resistance of the upper gauges will increase by an amount AR,
and that of the lower gauges will decrease by an equal amount, assuming that the gauges are
symmetrically placed. Let R; and R4 be the upper gauges and R, and R3 the lower gauges.
Thus, under the influence of the external force, we have

Ri=R;=Ro+ AR
R, =R3 =Ro— AR
where Ry is the zero strain resistance of the gauges. It can be shown from elementary statics

that the relationship between the strain € and a force F applied at a distance L for a cantilever
beam is

6LF

€= wh2Y

where h and w are as defined in Figure 2.44 and Y is the beam’s modulus of elasticity.

Ry, Rz bonded
to bottom surface

i

Beam cross section I:I h

<Y T

Figure 2.44 A force-measuring instrument.

In the circuit of Figure 2.44, the currents i, and iy, are given by

T Ri+R;

" Rs+Ry

and i

la
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The bridge output voltage is defined by v, = v, — v, and may be found from the following
expression:

Vo = bRy — ipRy = St VSR

o = IbN4 az—R3+R4 R1—|—R2

_, Ro + AR . Ro — AR

T SRy+AR+Ry— AR °Ry+AR+R;— AR
AR

:vsR—OzvsGFe

where the expression for AR/R, was obtained in Example 2.15. Thus, it is possible to obtain
a relationship between the output voltage of the bridge circuit and the force F as follows:

6LF 6vsGFL
Vo = USGFE = USGFu)}‘TY = WF = kF

where Kk is the calibration constant for this force transducer.

Comments— Strain gauge bridges are commonly used in mechanical, chemical, aerospace,
biomedical, and civil engineering applications (and wherever measurements of
force, pressure, torque, stress, or strain are sought).

CHECK YOUR UNDERSTANDING

Compute the full-scale (i.e., largest) output voltage for the force-measuring apparatus of “Focus
on Measurements: The Wheatstone Bridge and Force Measurements.” Assume that the strain
gauge bridge is to measure forces ranging from 0 to 500 newtons (N), L = 0.3 m, w = 0.05m,
h = 0.01 m, GF = 2, and the modulus of elasticity for the beam is 69 x 10° N/m? (aluminum).
The source voltage is 12 V. What is the calibration constant of this force transducer?

N/AW GZT'0 = X AW 9'29 = (3]3S ||N}) °a 1amsuy

2.7 PRACTICAL VOLTAGE AND CURRENT
SOURCES

The idealized models of voltage and current sources we discussed in Section 2.1
fail to consider the internal resistance of practical voltage and current sources. The
objective of this section is to extend the ideal models to models that are capable of
describing the physical limitations of the voltage and current sources used in practice.
Consider, for example, the model of an ideal voltage source shown in Figure 2.1. As
the load resistance R decreases, the source is required to provide increasing amounts
of current to maintain the voltage vs (t) across its terminals:

vs(t)
R

This circuit suggests that the ideal voltage source is required to provide an infinite
amount of current to the load, in the limit as the load resistance approaches zero.
Naturally, you can see that this is impossible; for example, think about the ratings of
a conventional car battery: 12 V, 450 ampere-hours (A-h). This implies that there is
a limit (albeit a large one) to the amount of current a practical source can deliver to

i(t) =

(2.24)



Part | Circuits

a load. Fortunately, it is not necessary to delve too deeply into the physical nature
of each type of source to describe the behavior of a practical voltage source: The
limitations of practical sources can be approximated quite simply by exploiting the
notion of the internal resistance of a source. Although the models described in this
section are only approximations of the actual behavior of energy sources, they will
provide good insight into the limitations of practical voltage and current sources.
Figure 2.45 depicts a model for a practical voltage source, composed of an ideal
voltage source vs in series with a resistance rs. The resistance rs in effect poses a
limit to the maximum current the voltage source can provide:

i max = > (2.25)

rs

Typically, rs is small. Note, however, that its presence affects the voltage across
the load resistance: Now this voltage is no longer equal to the source voltage. Since
the current provided by the source is

. Us
is = 2.26
* T s 4R (2.26)
the load voltage can be determined to be
. RL
v =lsRe = vs "o (2.27)

Thus, in the limit as the source internal resistance rs approaches zero, the load voltage
v, becomes exactly equal to the source voltage. It should be apparent that a desirable
feature of an ideal voltage source is a very small internal resistance, so that the
current requirements of an arbitrary load may be satisfied. Often, the effective internal
resistance of a voltage source is quoted in the technical specifications for the source,
so that the user may take this parameter into account.

A similar modification of the ideal current source model is useful to describe
the behavior of a practical current source. The circuit illustrated in Figure 2.46 depicts
a simple representation of a practical current source, consisting of an ideal source in
parallel with a resistor. Note that as the load resistance approaches infinity (i.e., an
open circuit), the output voltage of the current source approaches its limit

Us max = IsTs (2.28)

A good current source should be able to approximate the behavior of an ideal current
source. Therefore, a desirable characteristic for the internal resistance of a current
source is that it be as large as possible.

2.8 MEASURING DEVICES

In this section, you should gain a basic understanding of the desirable properties
of practical devices for the measurement of electrical parameters. The measure-
ments most often of interest are those of current, voltage, power, and resistance.
In analogy with the models we have just developed to describe the nonideal behav-
ior of voltage and current sources, we similarly present circuit models for practi-
cal measuring instruments suitable for describing the nonideal properties of these
devices.
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source

The maximum (short circuit)
current which can be supplied
by apractical voltage sourceis

i ==
Smax rs

Figure 2.45 Practical
voltage source
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A model for practical current
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+0O

i
! ]
! I
| I
! ]
! ]
I
! |
q > |
} |s<> s Vs
I =
} I
I
| I
! ]
! I
|

Maximum output
voltage for practical
current source with
open-circuit load:

Vsmax = isl's

Figure 2.46 Practical
current source
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The Ohmmeter

The ohmmeter is a device that when connected across a circuit element, can mea-
sure the resistance of the element. Figure 2.47 depicts the circuit connection of an
ohmmeter to a resistor. One important rule needs to be remembered:

Symbol for  Circuit for the

ohmmeter ~ measurement of The resistance of an element can be measured only when the element is discon-
resistance R nected from any other circuit.

Figure 2.47 Ohmmeter and

measurement of resistance

The Ammeter

The ammeter is a device that when connected in series with a circuit element, can
measure the current flowing through the element. Figure 2.48 illustrates this idea.

From Figure 2.48, two requirements are evident for obtaining a correct measurement
of current:

|_o5> 1. The ammeter must be placed in series with the element whose current is
to be measured (e.g., resistor Ry).
2. The ammeter should not restrict the flow of current (i.e., cause a voltage
drop), or else it will not be measuring the true current flowing in the
circuit. An ideal ammeter has zero internal resistance.

Ry
<>
VS O :; Rz
i
Symbol for A series Circuit for the measurement
ideal ammeter circuit of the current i

Figure 2.48 Measurement of current

The Voltmeter

The voltmeter is a device that can measure the voltage across a circuit element.
Since voltage is the difference in potential between two points in a circuit, the volt-
meter needs to be connected across the element whose voltage we wish to measure.
A voltmeter must also fulfill two requirements:

L05> 1. The voltmeter must be placed in parallel with the element whose voltage
it is measuring.

2. The voltmeter should draw no current away from the element whose
voltage it is measuring, or else it will not be measuring the true voltage
across that element. Thus, an ideal voltmeter has infinite internal
resistance.
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Figure 2.49 illustrates these two points.

Ry
A\
+ +
Vs O Vo EE R, Cv) V2
i _ _
A series Ideal Circuit for the measurement
circuit voltmeter of the voltage v,

Figure 2.49 Measurement of voltage

Once again, the definitions just stated for the ideal voltmeter and ammeter need
to be augmented by considering the practical limitations of the devices. A practical
ammeter will contribute some series resistance to the circuit in which it is measuring
current; a practical voltmeter will not act as an ideal open circuit but will always
draw some current from the measured circuit. The homework problems verify that
these practical restrictions do not necessarily pose a limit to the accuracy of the
measurements obtainable with practical measuring devices, as long as the internal
resistance of the measuring devices is known. Figure 2.50 depicts the circuit models
for the practical ammeter and voltmeter.

All the considerations that pertain to practical ammeters and voltmeters can be
applied to the operation of a wattmeter, an instrument that provides a measurement of
the power dissipated by a circuit element, since the wattmeter is in effect made up of a
combination of a voltmeter and an ammeter. Figure 2.51 depicts the typical connection
of a wattmeter in the same series circuit used in the preceding paragraphs. In effect,
the wattmeter measures the current flowing through the load and, simultaneously, the
voltage across it and multiplies the two to provide a reading of the power dissipated
by the load. The internal power consumption of a practical wattmeter is explored in
the homework problems.

W ®
YVVY

\9,

Measurement of the power Internal wattmeter connections
dissipated in the resistor Ry:
Po=vy i

Figure 2.51 Measurement of power

A
\AAAJ

©

rm:

o
Practical
voltmeter

T

fm

5

Practical
ammeter

Figure 2.50 Models for
practical ammeter and voltmeter
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Conclusion

The objective of this chapter was to introduce the background needed in the following chap-
ters for the analysis of linear resistive circuits. The following outlines the principal learning
objectives of the chapter.

1.

Identify the principal elements of electric circuits: nodes, loops, meshes, branches, and
voltage and current sources. These elements will be common to all electric circuits
analyzed in the book.

Apply Ohm’s and Kirchhoff’s laws to simple electric circuits and derive the basic circuit
equations. Mastery of these laws is essential to writing the correct equations for electric
circuits.

Apply the passive sign convention and compute the power dissipated by circuit elements.
The passive sign convention is a fundamental skill needed to derive the correct equations
for an electric circuit.

Apply the voltage and current divider laws to calculate unknown variables in simple
series, parallel, and series-parallel circuits. The chapter includes examples of practical
circuits to demonstrate the application of these principles.

Understand the rules for connecting electric measuring instruments to electric circuits
for the measurement of voltage, current, and power. Practical engineering measurement
systems are introduced in these sections.

HOMEWORK PROBLEMS

Section 2.1: Definitions

2.1 Anisolated free electron is traveling through an
electric field from some initial point where its

a. The total charge transferred to the battery.
b. The energy transferred to the battery.
Hint: Recall that energy w is the integral of power, or

coulombic potential energy per unit charge (voltage) is P =dw/dt.
17 kJ/C and velocity = 93 Mm/s to some final point

where its coulombic potential energy per unit charge is
6 kJ/C. Determine the change in velocity of the

electron. Neglect gravitational forces. 175V
(0]

2.2 The unit used for voltage is the volt, for current the g 15V
ampere, and for resistance the ohm. Using the Z
definitions of voltage, current, and resistance, express % 125V
each quantity in Sl units. o

1V

2.3 The capacity of a car battery is usually specified in
ampere-hours. A battery rated at, say, 100 A-h should
be able to supply 100 A for 1 h, 50 A for 2 h, 25 A for 0
4 h, 1 Afor 100 h, or any other combination yielding a
product of 100 A-h.

I
I
I
I
I
I
I
I
I
I
i
10h t

&

a. How many coulombs of charge should we be able 3 S0 mA
to draw from a fully charged 100 A-h battery? z oma L
b. How many electrons does your answer to part a 8
|
0 5h 10h 't
2.4 The charge cycle shown in Figure P2.4 is an example Figure P2.4

of a two-rate charge. The current is held constant at
50 mA for 5 h. Then it is switched to 20 mA for the 2.5 Batteries (e.g., lead-acid batteries) store chemical
next 5 h. Find: energy and convert it to electric energy on demand.
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Batteries do not store electric charge or charge carriers. A
Charge carriers (electrons) enter one terminal of the
battery, acquire electrical potential energy, and exit

from the other terminal at a lower voltage. Remember 12
the electron has a negative charge! It is convenient to /
think of positive carriers flowing in the opposite

direction, that is, conventional current, and exiting at a 2 9
higher voltage. All currents in this course, unless z
otherwise stated, are conventional current. (Benjamin T 6
Franklin caused this mess!) For a battery with a rated
voltage = 12 V and a rated capacity = 350 A-h, 3
determine
a. The rated chemical energy stored in the 0 1 2 3 -
battery. t hours
b. The total charge that can be supplied at the rated
voltage. A
2.6 What determines the following? 10
a. How much current is supplied (at a constant
voltage) by an ideal voltage source. 8
1%}
b. How much voltage is supplied (at a constant g
current) by an ideal current source. i 6
2.7 Anautomotive battery is rated at 120 A-h. This h
means that under certain test conditions it can output 4
1 Aat 12 V for 120 h (under other test conditions, the
battery may have other ratings). 2
a. How much total energy is stored in the battery? 0 R 5 3 >
b. If the headlights are left on overnight (8 h), how t hours

much energy will still be stored in the battery in the
morning? (Assume a 150-W total power rating for Figure P2.8
both headlights together.)

2.8 A car hattery kept in storage in the basement needs A

recharging. If the voltage and the current provided by

the charger during a charge cycle are shown in 4

Figure P2.8, B 2

a. Find the total charge transferred to the battery. £ o -

b. Find the total energy transferred to the battery. = , 1 2\3 4 5 6 7 8 9 10
2.9 Suppose the current flowing through a wire is given

by the curve shown in Figure P2.9. -4

a. Find the amount of charge, g, that flows through the Figure P2.9

wire betweent; =0andt, =1s.
b. Repeat partafort; =2,3,4,5,6,7.8,9,and 10ss. maximum of 9V, as shown in Figure P2.10. The battery is
c. Sketchq(t) for0 <t <10s. charged for 6 h. Find:

2.10 The charging scheme used in Figure P2.10 is an a. The total charge delivered to the battery.

example of a constant-voltage charge with current b. The energy transferred to the battery during the
limit. The charger voltage is such that the current into charging cycle.
the battery does not exceed 100 mA, as shown in Hint: Recall that the energy, w, is the integral of power, or

Figure P2.10. The charger’svoltage increases to the P =dw/dt.
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A
‘@ 9V —
E
2 V(t) =6.81+0.19 /082y, 0<t<2h
= V() =9V, t22h
@ 7v
| | | >
2h 4h 6h t
A
100 mA |

i(t)=100mA, 0<t<2h
i(ty=100e (2082 mp t>2h

Battery current

Figure P2.10

2.11 The charging scheme used in Figure P2.11 is an
example of a constant-current charge cycle. The
charger voltage is controlled such that the current into
the battery is held constant at 40 mA, as shown in
Figure P2.11. The battery is charged for 6 h. Find:

a. The total charge delivered to the battery.
b. The energy transferred to the battery during the
charging cycle.

Hint: Recall that the energy, w, is the integral of power, or

P =dwy/dt.

2.12 The charging scheme used in Figure P2.12 is called
a tapered-current charge cycle. The current starts at
the highest level and then decreases with time for the
entire charge cycle, as shown. The battery is charged
for 12 h. Find:

a. The total charge delivered to the battery.

b. The energy transferred to the battery during the
charging cycle.

Hint: Recall that the energy, w, is the integral of power, or
P =dw/dt.
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v(t)=15- 0.3e(t-2hrs)/0.4 hrs

Y

15V

1.2V

0.75V \

- v(t) = 1.2 — 0.45e-1041rs

Battery voltage

| | |
2h 4h 6h t

\j

Battery current

40 mA

2h 4h 6h t
Figure P2.11
Sections 2.2, 2.3: KCL, KVL

2.13 Use Kirchhoff’s current law to determine the
unknown currents in the circuit of Figure P2.13.
Assume that Io = —2A, I; = —4A I =8A, and
Vs =12 V.

2.14 Apply KCL to find the current i in the circuit of
Figure P2.14.

2.15 Apply KCL to find the current | in the circuit of
Figure P2.15.

2.16 Apply KVL to find the voltages v; and v, in Figure
P2.16.

2.17 Use Ohm’s law and KCL to determine the current
11 in the circuit of Figure P2.17.

Section 2.4: Electric Power and
Sign Convention

2.18 Inthe circuits of Figure P2.18, the directions of
current and polarities of voltage have already been
defined. Find the actual values of the indicated currents
and voltages.

2.19 Find the power delivered by each source in the
circuits of Figure P2.19.
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Battery voltage

9V

V(1) = 12 — 3e-5t12 s

/

\J

12h t
A
B
3
%. 1A i(t):e—stllzhrsA
&
o
l >
12h t
Figure P2.12
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\AAAJ
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I,
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Figure P2.13

6A

A

2A

Figure P2.14
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i 6A
N 5A
2A
Figure P2.15
+ 3V - - 10V +
\
+ R *
<+>5v § v, 3A v
_ 1
Figure P2.16
lOA(%) 30Q 15Q Ei I

1

Figure P2.17

2.20 Determine which elements in the circuit of Figure
P2.20 are supplying power and which are dissipating
power. Also determine the amount of power dissipated

and supplied.
2.21

In the circuit of Figure P2.21, determine the power

absorbed by the resistor R and the power delivered by
the current source.
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30Q

AAA
\AAAS

Ve R

20Q
Vi

o

'2% Z 200

A

P +~

v1(i> I, + g 200

30Q

-0.5 A*

©
Figure P2.18

2.22

For the circuit shown in Figure P2.22:

a. Determine which components are absorbing power
and which are delivering power.

b. Is conservation of power satisfied? Explain your

answer.

2.23 For the circuit shown in Figure P2.23, determine
which components are supplying power and which are
dissipating power. Also determine the amount of

power dissipated and supplied.

Fundamentals of Electric Circuits

[,
+
10V Load 2A (D
S
@
°
® =
O
4>
4A
(b)
Figure P2.19
+15V
B
25A
4»
+ -
A -12V 27V ©
= +
Figure P2.20
+ 3V - oV +
AAAA MN—m——M8M—
\A/ \J
+ R +
<+>5V ‘;; v, 3A<D vy

Figure P2.21



Figure P2.22

+ 10V_
4A
— B
¥ [A1a HSA
A . .
] 100V 100V | c ov| E

-10V D

Figure P2.23

2.24 For the circuit shown in Figure P2.24, determine
which components are supplying power and which are
dissipating power. Also determine the amount of
power dissipated and supplied.

+ 2V _

4A¢ 6A T4A

Figure P2.24
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2.25 If an electric heater requires 23 Aat 110V,
determine

a. The power it dissipates as heat or other losses.

b. The energy dissipated by the heater in a 24-h
period.

c. The cost of the energy if the power company
charges at the rate 6 cents/kWh.

2.26 A 24-volt automotive battery is connected to two
headlights, such that the two loads are in parallel; each
of the headlights is intended to be a 75-W load,
however, a 100-W headlight is mistakenly installed.
What is the resistance of each headlight, and what is
the total resistance seen by the battery?

2.27 What is the equivalent resistance seen by the
battery of Problem 2.26 if two 15-W taillights are
added (in parallel) to the two 75-W (each)
headlights?

2.28 Refer to Figure P2.28.
a. Find the total power supplied by the ideal source.

b. Find the power dissipated and lost within the
nonideal source.

¢. What is the power supplied by the source to the
circuit as modeled by the load resistance?

d. Plot the terminal voltage and power supplied to the
circuit as a function of current.

Repeat I+ =0, 5, 10, 20, 30 A.

Ve =12V Rs=03Q

AAA
YVVy

Nonideal source

Figure P2.28

2.29 A GE SoftWhite Longlife lightbulb is rated as
follows:

Pr = rated power = 60 W

Por = rated optical power = 820 lumens (Im) (average)
1

1lumen = &5 W

Operating life = 1,500 h (average)

Vg = rated operating voltage = 115V

The resistance of the filament of the bulb, measured
with a standard multimeter, is 16.7 2. When the bulb
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is connected into a circuit and is operating at the rated
values given above, determine

a. The resistance of the filament.
b. The efficiency of the bulb.

2.30 Anincandescent lightbulb rated at 100 W will
dissipate 100 W as heat and light when connected
across a 110-V ideal voltage source. If three of these
bulbs are connected in series across the same source,
determine the power each bulb will dissipate.

2.31 Anincandescent lightbulb rated at 60 W will
dissipate 60 W as heat and light when connected across
a 100-V ideal voltage source. A 100-W bulb will
dissipate 100 W when connected across the same
source. If the bulbs are connected in series across the
same source, determine the power that either one of the
two bulbs will dissipate.

2.32 A220-V electric heater has two heating coils which
can be switched such that either coil can be used
independently or the two can be connected in series or
parallel, yielding a total of four possible configurations.
If the warmest setting corresponds to 2,000-W power
dissipation and the coolest corresponds to 300 W, find

a. The resistance of each of the two coils.
b. The power dissipation for each of the other two
possible arrangements.

Sections 2.5, 2.6: Circuit Elements and
their i-v Characteristics, Resistance
and Ohm’s Law

2.33 For the circuit shown in Figure P2.33, determine
the power absorbed by the 5-<2 resistor.

5Q
——W——

20V C) § 15Q

Figure P2.33

2.34 In the circuit shown in Figure P2.34, determine the
terminal voltage of the source, the power supplied to
the circuit (or load), and the efficiency of the circuit.
Assume that the only loss is due to the internal
resistance of the source. Efficiency is defined as the

Fundamentals of Electric Circuits

ratio of load power to source power.

Vs =12V Rs =5k R. =7k

Nonideal source

Figure P2.34

2.35 For the circuit shown in Figure P2.35, determine
the power absorbed by the variable resistor R, ranging
from 0 to 20 2. Plot the power absorption as a
function of R.

5Q

S
20V R="

AMA

Figure P2.35

2.36 In the circuit of Figure P2.36, if v; = v/4 and the
power delivered by the source is 40 mW, find R, v, vy,
and i. Given: R; =8 k2, R, =10k, Rz = 12 kQ.

Figure P2.36

2.37 For the circuit shown in Figure P2.37, find

a. The equivalent resistance seen by the source.

b. The currenti.

¢. The power delivered by the source.

d. The voltages v; and v,.
e. The minimum power rating required for R;.
Given: v =24V,Rp =8Q,R; =10Q, R, =2 Q.
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Figure P2.37

2.38 For the circuit shown in Figure P2.38, find
a. The currents iy and i,.

b. The power delivered by the 3-A current source and
by the 12-V voltage source.

c. The total power dissipated by the circuit.

LetR; =25Q,R, =10Q2,R3 =5Q,R, =7, and
express i; and i, as functions of v. (Hint: Apply KCL at the
node between R; and R3.)

AAA AAA

3A () ilT 2R, 12v('_j§

YVVY
N

Figure P2.38

2.39 Determine the power delivered by the dependent
source in the circuit of Figure P2.39.

AAA - AAA

YVvy YVvy .
15Q 7Q I
0 o052 24V 250
<

Figure P2.39

2.40 Consider NiMH hobbyist batteries shown in the
circuit of Figure P2.40.

a. IfV; =120V,R; =0.15Qand R, = 2.55 2,
find the load current I_ and the power dissipated by
the load.

b. If we connect a second battery in parallel with
battery 1 that has voltage V, = 12 Vand
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R, = 0.28 2, will the load current I increase or
decrease? Will the power dissipated by the load
increase or decrease? By how much?

ILL
Ry
RZ
— Vi
Load
Battery #1
°]
P} 1y ILL +
R, Ry L
3RV
—V, _—V;
)
Load
Battery #2 Battery #1

Figure P2.40

2.41 With no load attached, the voltage at the terminals
of a particular power supply is 50.8 V. When a 10-W
load is attached, the voltage drops to 49 V.

a. Determine vg and Rs for this nonideal source.

b. What voltage would be measured at the terminals
in the presence of a 15-$2 load resistor?

¢. How much current could be drawn from this power
supply under short-circuit conditions?

2.42 For the circuits of Figure P2.42, determine the
resistor values (including the power rating) necessary
to achieve the indicated voltages. Resistors are
available in Y-, 14-, 14-, and 1-W ratings.

2.43 For the circuit shown in Figure P2.43, find
a. The equivalent resistance seen by the source.

b. The currenti.

c. The power delivered by the source.

d. The voltages vy, vy.

e. The minimum power rating required for R;.

2.44 Find the equivalent resistance seen by the source in
Figure P2.44, and use result to find i, i1, and v.

2.45 Find the equivalent resistance seen by the source
and the current i in the circuit of Figure P2.45.
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.
+ L
9V<-> 9Q 729‘§ v

Figure P2.44

1Q 4Q

AAA
VVVY¥

AAA
\AAAJ

| Vour=225V 90 Q 8Q
3 o O

- 40

4Q

AAAA
VVV¥

AAAA
A\AAA/

Figure P2.45

2.46 Inthe circuit of Figure P2.46, the power absorbed
by the 15-2 resistor is 15 W. Find R.

110V (‘*‘

4Q
Vour=283V R
—AWA—T— W
R, = 2.7kQ
= 6Q 2
©
Figure P2.42 ) 15503 %0 2
25V — < <
20 60
AW AW 1
—— + A 4Q :: 4Q
I <
6V (i) Ri=4Q Vv,

Figure P2.46

2.47 Find the equivalent resistance between terminals a
Figure P2.43 and b in the circuit of Figure P2.47.
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a o AW
6Q
% 120
40
AWV
4Q L 40 B Y
g g 2Q
2Q
b o : MWW

Figure P2.47

2.48 For the circuit shown in Figure P2.48, find the
equivalent resistance seen by the source. How much
power is delivered by the source?

7Q 4Q 2Q
W W
C_’ 14V §GQ § 3Q <%].Q
5Q
MW

Figure P2.48

2.49 For the circuit shown in Figure P2.49, find
the equivalent resistance, where R; =5 2,
R, =1kQ,R;3 =R; =100Q2,Rs =9.1Q
and Rg = 1 k Q.

Rs
—WWW

R1

R, R3 R4

AMA
VVVy
AAMA
\AAAJ
AAA
A\AAAJ
AMA,
VVVy

e

Figure P2.49

2.50 Cheap resistors are fabricated by depositing a thin
layer of carbon onto a nonconducting cylindrical
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substrate (see Figure P2.50). If such a cylinder has
radius a and length d, determine the thickness of the
film required for a resistance R if

a=1mm R =33k
o:izz.gM— d=9mm
P

Neglect the end surfaces of the cylinder and assume
that the thickness is much smaller than the radius.

Figure P2.50

2.51 The resistive elements of fuses, lightbulbs, heaters,

etc., are significantly nonlinear (i.e., the resistance is
dependent on the current through the element).
Assume the resistance of a fuse (Figure P2.51) is given
by the expression R = Ro[1 + A(T — Ty)] with

T —To=kP; Tp = 25°C; A= 0.7[°C]™%;

k = 0.35°C/W; Ry = 0.11 ; and P is the power
dissipated in the resistive element of the fuse.
Determine the rated current at which the circuit will
melt and open, that is, “blow.” (Hint: The fuse blows
when R becomes infinite.)

Fuse

Figure P2.51

2.52 Use Kirchhoff’s current law and Ohm’s law to

determine the current in each of the resistors R4, Rs,
and Rg in the circuit of Figure P2.52. Vs =10V,
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Ri=20Q,R, =40 Q, Ry = 1022, Ry = Rs
—Reg=15Q.

Ry

Figure P2.52

2.53 With reference to Problem 2.13, use Kirchhoff’s
current law and Ohm’s law to find the resistances Ry,
Rz, Rs, Ry, and Rs if Ry = 2 Q. Assume Ry = £R; and
R, = 1Ry

2.54 AssumingR; =2Q, R, =5Q,R; =4Q,
Ri=1Q,Rs=3Q,1,=4A, and Vs =54V in the
circuit of Figure P2.13, use Kirchhoff’s current law
and Ohm’s law to find

a. lg, Iy, I3, and Is. b. Ro.

2.55 AssumingRy=2Q, Ry =1Q,R, =4/3Q,
R3 =6 €, and Vs = 12 V in the circuit of Figure
P2.55, use Kirchhoff’s voltage law and Ohm’s law to
find
a. g, Iy, and ic.

b. The current through each resistance.

AAAA
VVVY
-
(‘”_'/
AAAA
VVVY
Y

.
G'/
e
AAAA
\AAA

Figure P2.55

2.56 AssumingRp=2Q,R;=2Q,R, =5,
R3 =4 A, and Vs = 24V in the circuit of Figure P2.55,
use Kirchhoff’s voltage law and Ohm’s law to find

a. g, Iy, and ic.

b. The voltage across each resistance.
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2.57 Assume that the voltage source in the circuit of
Figure P2.55 is now replaced by a current source, and
R0=l§2,R1=3§2,R2=29,R3=4A,and
Is = 12 A. Use Kirchhoff’s voltage law and Ohm’s law
to determine the voltage across each resistance.

2.58 The voltage divider network of Figure P2.58 is
expected to provide 5 V at the output. The resistors,
however, may not be exactly the same; that is, their
tolerances are such that the resistances may not be
exactly 5 k.

a. If the resistors have 10 percent tolerance, find the
worst-case output voltages.

b. Find these voltages for tolerances of 5 percent.
Given:V =10V, R; =5k, R, =5kQ.

D

AAAA l AAAA

\AAJ

'O

> +
>
>
S Yout

&

Figure P2.58

2.59 Find the equivalent resistance of the circuit of
Figure P2.59 by combining resistors in series and in
parallel. R =4Q, R, =12Q, R, =8Q,R;3 =2 Q,
Ry, =16 Q2,Rs =5 Q.

Ro R
O
Jﬁsl.’ Rl;%iii%%!!!!% R3
O
Ry
Figure P2.59

2.60 Find the equivalent resistance seen by the source
and the current i in the circuit of Figure P2.60. Given:
Vs =12V,Ry=4Q,R, =2 Q,R, =50 Q,
Rs=8Q,R; =102, Rs =12 Q, Rg =6 Q.

Figure P2.60



2.61 Inthe circuit of Figure P2.61, the power absorbed
by the 20-2 resistor is 20 W. Find R. Given:
Vs =50V,R; =20Q2,R, =5Q,R; =2 Q,
R; =8QR,R; =8, Rg =30 2.

Figure P2.61

2.62 Determine the equivalent resistance of the infinite
network of resistors in the circuit of Figure P2.62.

Figure P2.62

2.63 For the circuit shown in Figure P2.63 find
a. The equivalent resistance seen by the source.

b. The current through and the power absorbed by the
90-Q resistance. Given: Vs = 110V, R; = 90 Q,
R, =50Q,R; =40Q,R; =20, Rs =301,
Re = 10 Q, R; = 60 Q, Rg = 80 Q.

Ry

L
SRR

Re

Figure P2.63

2.64 Inthe circuit of Figure P2.64, find the equivalent
resistance looking in at terminals a and b if terminals ¢
and d are open and again if terminals c and d are
shorted together. Also, find the equivalent resistance
looking in at terminals ¢ and d if terminals a and b are
open and if terminals a and b are shorted together.
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Figure P2.64

2.65 At an engineering site which you are supervising, a
1-horsepower motor must be sited a distance d from a
portable generator (Figure P2.65). Assume the
generator can be modeled as an ideal source with the
voltage given. The nameplate on the motor gives the
following rated voltages and the corresponding
full-load current:

Ve =110V
VMmin =105V — |, p. = 7.10A
VMmax =117V — 1, . = 6.37A

If d = 150 m and the motor must deliver its full-rated
power, determine the minimum AWG conductors
which must be used in a rubber-insulated cable.
Assume that the only losses in the circuit occur in the
wires.

Conductors

Ow ] w0

d

i B

Cable
Figure P2.65

2.66 In the bridge circuit in Figure P2.66, if nodes (or
terminals) C and D are shorted and

R1 =2.2kQ R, = 18 kQ
Rs = 4.7 kQ Ry = 3.3kQ

determine the equivalent resistance between the nodes
or terminals A and B.

Figure P2.66
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2.67 Determine the voltage between nodes A and B in
the circuit shown in Figure P2.67.

Vs =12V
R; = 11 kQ R; = 6.8 kQ
R, = 220 k2 Ry = 0.22 MQ

Figure P2.67

2.68 Determine the voltage between nodes A and B in
the circuit shown in Figure P2.67.

Vs =5V
Ry =22kQ R, =18k
Rs=47kQ Ry =33kQ

2.69 Determine the voltage across R in Figure P2.69.
Vs =12V R =17mQ
R, =3kQ  Ry=10kQ

AAA
VVVy

Ry

O =

AAAA
VVVY
&I
AAAA
VVVY

Figure P2.69

Sections 2.7, 2.8: Practical Voltage and
Current Sources and Measuring
Devices

2.70 Athermistor is a nonlinear device which changes
its terminal resistance value as its surrounding
temperature changes. The resistance and temperature
generally have a relation in the form of

Rin(T) = Roe 7T~

where Ry, = resistance at temperature T,
Ro = resistance at temperature Ty = 298 K,
B = material constant, K~*
T, To = absolute temperature, K

a. IfRy =300 and g8 = —0.01 K1, plot Rn(T) as
a function of the surrounding temperature T for
350 < T < 750.

Fundamentals of Electric Circuits

b. If the thermistor is in parallel with a 250-$2 resistor,
find the expression for the equivalent resistance and
plot Ry, (T) on the same graph for part a.

2.71 A moving-coil meter movement has a meter
resistance ry = 200 €2, and full-scale deflection is
caused by a meter current I, = 10 A. The movement
must be used to indicate pressure measured by the
sensor up to a maximum of 100 kPa. See
Figure P2.71.

a. Draw a circuit required to do this, showing all
appropriate connections between the terminals of
the sensor and meter movement.

b. Determine the value of each component in the
circuit.

c. What is the linear range, that is, the minimum and
maximum pressure that can accurately be

measured?
Rs
+ rM§§
Vs
Sensor Meter
10_.........|........ LI e e e
S ]
E 5F =
= L 4
> C ]
Py Y A I I
0 50 100

P (kPa)
Figure P2.71

2.72 The circuit of Figure P2.72 is used to measure the
internal impedance of a battery. The battery being
tested is a NiMH battery cell.

a. Afresh battery is being tested, and it is found that
the voltage Vout, is 2.28 V with the switch open and
2.27 V with the switch closed. Find the internal
resistance of the battery.

b. The same battery is tested one year later, and Vot is
found to be 2.2 V with the switch open but 0.31 V
with the switch closed. Find the internal resistance
of the battery.



g 10Q
Vout

Battery T { Switch

Figure P2.72

2.73 Consider the practical ammeter, described in
Figure P2.73, consisting of an ideal ammeter in series
with a 1-k€2 resistor. The meter sees a full-scale
deflection when the current through it is 30 A, If we
desire to construct a multirange ammeter reading
full-scale values of 10 mA, 100 mA, and 1 A,
depending on the setting of a rotary switch,
determine appropriate values of Ry, R,

and Rs.
.

o
i Switch
|
|
|
i
|
i R SR =R,
|
R N

o

Figure P2.73

2.74 A circuit that measures the internal resistance of a
practical ammeter is shown in Figure P2.74, where
Rs = 50,000 2, Vs = 12V, and R, is a variable
resistor that can be adjusted at will.

a. Assume that r, <« 50,000 €2. Estimate the current i.

b. If the meter displays a current of 150 ©A when
Ry = 15 , find the internal resistance of the
meter r,.

O

O
29

Figure P2.74
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2.75 Apractical voltmeter has an internal resistance ry,.
What is the value of r,, if the meter reads 11.81 V
when connected as shown in Figure P2.75.

Voltmeter
Rs = 25 kQ
Vs= 12V

Figure P2.75

2.76 Using the circuit of Figure P2.75, find the voltage
that the meter reads if Vs = 24 V and Rs has the
following values:

Rs = 0.2ry,, 0.4ry,, 0.6ry, 1.2ry,, 41y, 61y, and 10r,.
How large (or small) should the internal resistance of
the meter be relative to Rg?

2.77 Avoltmeter is used to determine the voltage across
a resistive element in the circuit of Figure P2.77. The
instrument is modeled by an ideal voltmeter in parallel
with a 120-k€2 resistor, as shown. The meter is placed
to measure the voltage across R4. Assume R; = 8 k2,
R, = 22 k2, Ry = 50 k2, Rs = 125 k€2, and
Is = 120 mA. Find the voltage across R, with and
without the voltmeter in the circuit for the following

values:
a. R, =100 Q
b. Ry =1kQ
c. Ry =10kQ
d. Ry =100 k2
AVAVAVAV
Ry
Rs
'SCD Rs§ R% o 120k
Ry VR,
. o

Figure P2.77

2.78 Anammeter is used as shown in Figure P2.78. The
ammeter model consists of an ideal ammeter in series
with a resistance. The ammeter model is placed in the
branch as shown in the figure. Find the current through
Rs both with and without the ammeter in the circuit for



62 Chapter 2 Fundamentals of Electric Circuits

the following values, assuming that Rs = 20 €2, Ammeter internal model
Ry = 800 Q,R, =600 2, Ry = 1.2 k2, Ry = 150 €,

and Vs = 24 V. o—® W °

a. Rs = 1kQ
b. Rs = 100
c. Rs=10Q
d Re=1Q

Figure P2.78
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RESISTIVE NETWORK ANALYSIS

hapter 3 illustrates the fundamental techniques for the analysis of resistive

circuits. The chapter begins with the definition of network variables and of

network analysis problems. Next, the two most widely applied methods—node

analysis and mesh analysis—are introduced. These are the most generally
applicable circuit solution techniques used to derive the equations of all electric
circuits; their application to resistive circuits in this chapter is intended to acquaint
you with these methods, which are used throughout the book. The second solution
method presented is based on the principle of superposition, which is applicable only
to linear circuits. Next, the concept of Thévenin and Norton equivalent circuits is
explored, which leads to a discussion of maximum power transfer in electric circuits
and facilitates the ensuing discussion of nonlinear loads and load-line analysis. At
the conclusion of the chapter, you should have developed confidence in your ability
to compute numerical solutions for a wide range of resistive circuits. The following
box outlines the principal learning objectives of the chapter.
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:) Learning Objectives

1. Compute the solution of circuits containing linear resistors and independent and
dependent sources by using node analysis. Sections 3.2 and 3.4.

2. Compute the solution of circuits containing linear resistors and independent and
dependent sources by using mesh analysis. Sections 3.3 and 3.4.

3. Applythe principle of superposition to linear circuits containing independent sources.
Section 3.5.

4. Compute Thévenin and Norton equivalent circuits for networks containing linear
resistors and independent and dependent sources. Section 3.6.

5. Use equivalent-circuit ideas to compute the maximum power transfer between a
source and a load. Section 3.7.

6. Use the concept of equivalent circuit to determine voltage, current, and power for
nonlinear loads by using load-line analysis and analytical methods. Section 3.8.

3.1 Network Analysis

The analysis of an electrical network consists of determining each of the unknown
branch currents and node voltages. It is therefore important to define all the rele-
vant variables as clearly as possible, and in systematic fashion. Once the known and
unknown variables have been identified, a set of equations relating these variables
is constructed, and these equations are solved by means of suitable techniques. The
analysis of electric circuits consists of writing the smallest set of equations sufficient
to solve for all the unknown variables. The procedures required to write these equa-
tions are the subject of Chapter 3 and are very well documented and codified in the
form of simple rules. The analysis of electric circuits is greatly simplified if some
standard conventions are followed.

Example 3.1 defines all the voltages and currents that are associated with a
specific circuit.

Figure 3.1

EXAMPLE 3.1

Problem

Identify the branch and node voltages and the loop and mesh currents in the circuit of Figure 3.1.

Solution

The following node voltages may be identified:

Node voltages Branch voltages

va = vs (source voltage) vs = vg —vg = vg
Up = VR, VRy = Va — Up

Ve = VR, URy, =Up — Ud = Up
vg = 0 (ground) VRy = Up — Uc

URy = VUc — Ud = Uc

Comments: Currents i,, iy, and i are loop currents, but only i, and i, are mesh currents.
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In the example, we have identified a total of 9 variables! It should be clear that
some method is needed to organize the wealth of information that can be generated
simply by applying Ohm’s law at each branch in a circuit. What would be desirable at
this point is a means of reducing the number of equations needed to solve a circuit to the
minimum necessary, that is, a method for obtaining N equations in N unknowns. The
remainder of the chapter is devoted to the development of systematic circuit analysis
methods that will greatly simplify the solution of electrical network problems.

3.2 THE NODE VOLTAGE METHOD

Node voltage analysis is the most general method for the analysis of electric circuits.
Inthissection, itsapplication to linear resistive circuits is illustrated. The node voltage
method is based on defining the voltage at each node as an independent variable. One
of the nodes is selected as a reference node (usually—but not necessarily—ground),
and each of the other node voltages is referenced to this node. Once each node voltage
is defined, Ohm’s law may be applied between any two adjacent nodes to determine
the current flowing in each branch. In the node voltage method, each branch current
is expressed in terms of one or more node voltages; thus, currents do not explicitly
enter into the equations. Figure 3.2 illustrates how to define branch currents in this
method. You may recall a similar description given in Chapter 2.

Once each branch current is defined in terms of the node voltages, Kirchhoff’s
current law is applied at each node:

> i=0

Figure 3.3 illustrates this procedure.

(CRY

In the node voltage method, we By KCL: i; —i —i3 = 0. In the node
assign the node voltages v, and vp; voltage method, we express KCL by
the branch current flowing from a Va—Vp Vo=V Vp—Vg _
to b isthen expressed in terms of "R _TZ_TS_O
these node voltages.

_ Va—VW

R

R
VaO—AMWW—O W
—_

i

Figure 3.2 Branch current
formulation in node analysis

Figure 3.3 Use of KCL in
node analysis

The systematic application of this method to a circuit with n nodes leads to
writing n linear equations. However, one of the node voltages is the reference voltage
and is therefore already known, since it is usually assumed to be zero (recall that
the choice of reference voltage is dictated mostly by convenience, as explained in
Chapter 2). Thus, we can write n — 1 independent linear equations in the n — 1 inde-
pendent variables (the node voltages). Node analysis provides the minimum number
of equations required to solve the circuit, since any branch voltage or current may be
determined from knowledge of node voltages.
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Thermal Systems

A useful analogy can be
found between electric
circuits and thermal systems.
The table below illustrates the
correspondence between
electric circuit variables and
thermal system variables,
showing that the difference in
electrical potential is
analogous to the temperature
difference between two
bodies. Whenever there is a
temperature difference
between two bodies,
Newton’s law of cooling
requires that heat flow from
the warmer body to the
cooler one. The flow of heat
is therefore analogous to the
flow of current. Heat flow can
take place based on one of
three mechanisms:

(1) conduction, (2)
convection, and (3) radiation.
In this sidebar we only
consider the first two, for
simplicity.

Electrical Thermal
variable variable
\oltage Temperature
difference difference
v, [V] AT, [°C]
Current Heat flux
i,A a, [W]
Resistance ~ Thermal
R, [Q/m] resistance

Ri [°C/W]
Resistivity ~ Conduction
p, [Q/m] heat-transfer

coefficient

W

[ 2w]
(No exact Convection
electrical heat-transfer
analogy) coefficient, or

film coefficient
of heat transfer

W
[ | a—
=]
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The node analysis method may also be defined as a sequence of steps, as outlined
in the following box:

Thermal
Resistance

To explain thermal resis-
tance, consider a heat treat-
ed engine crankshaft that has
just completed some thermal
treatment. Assume that the
shaft is to be quenched in a
water bath at ambient
temperature (see the figure
below). Heat flows from
within the shaft to the surface
of the shaft, and then from
the shaft surface to the
water. This process
continues until the tempera-
ture of the shaft is equal to
that of the water.

The first mode of heat
transfer in the above descrip-
tion is called conduction, and
it occurs because the thermal
conductivity of steel causes
heat to flow from the higher
temperature inner core to
the lower temperature
surface. The heat-transfer
conduction coefficient k is
analogous to the resistivity p
of an electric conductor.

The second mode of heat
transfer, convection, takes
place at the boundary of
two dissimilar materials (steel
and water here). Heat transfer
between the shaft and water
is dependent on the surface
area of the shaft in contact
with the water A and is de-
termined by the heat transfer
convection coefficient h.

o W

Tenaft Twater

Engine crankshaft
quenched in water bath.

NODE VOLTAGE ANALYSIS METHOD

1. Select a reference node (usually ground). This node usually has most
elements tied to it. All other nodes are referenced to this node.

2. Define the remaining n — 1 node voltages as the independent or dependent
variables. Each of the m voltage sources in the circuit is associated with a
dependent variable. If a node is not connected to a voltage source, then its
voltage is treated as an independent variable.

3. Apply KCL at each node labeled as an independent variable, expressing
each current in terms of the adjacent node voltages.

4. Solve the linear system of n — 1 — m unknowns.

Following the procedure outlined in the box guarantees that the correct solution to a
given circuit will be found, provided that the nodes are properly identified and KCL
is applied consistently. As an illustration of the method, consider the circuit shown in
Figure 3.4. The circuitis shown in two different forms to illustrate equivalent graphical
representations of the same circuit. The circuit on the right leaves no question where
the nodes are. The direction of current flow is selected arbitrarily (assuming that is is
a positive current). Application of KCL at node a yields

is—ip—ip,=0 (3.2)
whereas at node b
ip—i3=0 (3-3)

It is instructive to verify (at least the first time the method is applied) that it is not
necessary to apply KCL at the reference node. The equation obtained at node c,

is not independent of equations 3.2 and 3.3; in fact, it may be obtained by adding the

Nodea p  Nodeb

Figure 3.4 lllustration of node analysis

< LO1
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equations obtained at nodes a and b (verify this, as an exercise). This observation
confirms the statement made earlier:

In a circuit containing n nodes, we can write at most n — 1 independent
equations.

Now, in applying the node voltage method, the currents iy, i, and iz are expressed as
functions of v,, vy, and v, the independent variables. Ohm’s law requires that iy, for
example, be given by
Ua - UC

R1
since it is the potential difference v, — v across R; that causes current iy to flow from
node a to node c. Similarly,

3.5)

ip =

Va — Up

i, =
(3.6)

iy =

Substituting the expression for the three currents in the nodal equations (equations
3.2 and 3.3), we obtain the following relationships:

@7

= 38
R Ry (3.8)

Equations 3.7 and 3.8 may be obtained directly from the circuit, with a little practice.
Note that these equations may be solved for v, and vy, assuming that is, Ry, R, and
R3 are known. The same equations may be reformulated as follows:

S WA S S
R R, Va R, Up =g
1\, (L 1Y) o
R,) 2 "\R, TRy T

Examples 3.2 through 3.4 further illustrate the application of the method.

(3.9)

EXAMPLE 3.2 Node Analysis

Problem

Solve for all unknown currents and voltages in the circuit of Figure 3.5.

Solution

Known Quantities: Source currents resistor values.
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Thermal Circuit
Model
The conduction resistance of

the shaft is described by the
following equation:

kAq
= —AT
U
AT L
Reond = T == @

where A; is a cross-sectional
area and L is the distance
from the inner core to the
surface. The convection
resistance is described by a
similar equation, in which
convective heat flow is
described by the film coef-
ficient of heat transfer, h:

g =hAAT
AT 1
Rconv = T = m

where A; is the surface area
of the shaft in contact with
the water. The equivalent
thermal resistance and the
overall circuit model of the
crankshaft quenching
process are shown in the
figures below.

R(:ond Rconv
Tehatt —"VWW—AMA—® Tyyater
—_—
q
Thermal resistance

representation of quenching
process

ATC’) \D

Electric circuit representing
the quenching process

Reond

RCOHV
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Find: All node voltages and branch currents.

Schematics, Diagrams, Circuits, and Given Data: |, = 10 mA; |, = 50 mA,

Analysis: \We follow the steps outlined in the Focus on Methodology box:

1. The reference (ground) node is chosen to be the node at the bottom of the circuit.

2. The circuit of Figure 3.5 is shown again in Figure 3.6, and two nodes are also shown in
the figure. Thus, there are two independent variables in this circuit: vy, v,.

Rs Node 1 —
AAAA RB
\AAAJ AAAA
TYVVV
> —
AAAA R2
VVVY AAAA
T+,
\
<> <> ? '+
® = O @ rg r:Q
A I l >_ P> o
£ oV
Figure 3.5
— Node 2

AAAA
Yvvy
PAAMS
——
Ry
AAAA

YWY ‘\/
Y

o -

Figure 3.6

3. Applying KCL at nodes 1 and 2, we obtain

1)1—0 V1 — U2 V1 — VU2 0

I, — node 1
TR R, Rs

V1 — V2 V1 — V2 Uz—o
+ - —1,=0 node 2
R, Rs Ra% °
Now we can write the same equations more systematically as a function of the unknown
node voltages, as was done in equation 3.9.

! + ! + ! + ! ! | node 1
—+—+ v —— —— =
Ri R, Rs)" R, Ry 2
1 1 1 1 1
e — 4+ — + = =—I node 2
( R, R3)vl+<R2+R3+R>v2 2

4. We finally solve the system of equations. With some manipulation, the equations finally
lead to the following form:
1.6v; — 0.6v, =10
—0.6v; + 1.1y, = =50
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These equations may be solved simultaneously to obtain

v, = —13.57V
v, = —52.86 V
Knowing the node voltages, we can determine each of the branch currents and voltages

in the circuit. For example, the current through the 10-kS2 resistor is given by

V1 — V2
10,000 — 3.93mA

lioke =

indicating that the initial (arbitrary) choice of direction for this current was the same as
the actual direction of current flow. As another example, consider the current through the
1-k<2 resistor:

= —13.57 mA

. V1
' = 7 000
In this case, the current is negative, indicating that current actually flows from ground
to node 1, as it should, since the voltage at node 1 is negative with respect to ground.
You may continue the branch-by-branch analysis started in this example to verify that the
solution obtained in the example is indeed correct.

Comments: Note that we have chosen to assign a plus sign to currents entering a node and
a minus sign to currents exiting a node; this choice is arbitrary (we could use the opposite
convention), but we shall use it consistently in this book.
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EXAMPLE 3.3 Node Analysis

Problem

Write the nodal equations and solve for the node voltages in the circuit of Figure 3.7.

Solution

Known Quantities: Source currents; resistor values.

Find: All node voltages and branch currents.

Schematics, Diagrams, Circuits, and Given Data: i, = 1 mA; i, = 2 mA; R; = 1kQ;
R, =500 Q; Rz = 2.2 kQ; Ry = 4.7 k.

Analysis: We follow the steps of the Focus on Methodology box.

1.
2.

The reference (ground) node is chosen to be the node at the bottom of the circuit.

See Figure 3.8. Two nodes remain after the selection of the reference node. Let us label
these a and b and define voltages v, and v,. Both nodes are associated with independent
variables.

. We apply KCL at each of nodes a and b:

Va Va — Up

=0 node a
R1 R>

N

A

WW
&L

1

Figure 3.7
Va + R, — Vb
S Wee——
S .
| |
+ ¢ ' L+ +<j ¢
DR rR2@) IR
< =g
ov
Figure 3.8
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and rewrite the equations to obtain a linear system:
1 N 1 N 1 i
—+— v —— )=
Rl Rz a R2 b a

Ly, (L, 1, 1 :
—— v — 4+ — 4+ — =
R,) *"\R, Rs R, " "

4. Substituting the numerical values in these equations, we get

3x10%, —2x10%y, =1 x 103
—2x 10730, +2.67 x 103y, =2 x 1073

or v, — 2, =1
—2v, + 2.67v, =2

The solution v, = 1.667 V, v, = 2 V may then be obtained by solving the system of
equations.

LO1 EXAMPLE 3.4 Solution of Linear System of Equations Using
Cramer’s Rule

Problem

Solve the circuit equations obtained in Example 3.3, using Cramer’s rule (see Appendix A
available online).

Solution
Known Quantities: Linear system of equations.
Find: Node voltages.

Analysis: The system of equations generated in Example 3.3 may also be solved by using
linear algebra methods, by recognizing that the system of equations can be written as

|2 el =]

By using Cramer’s rule (see Appendix A), the solution for the two unknown variables v, and
vp can be written as follows:

- ‘
_ ’ 2 2.67 _ (1)(2.67) — (—2)(2) _E_
- T (367 —(-2)(-2) 4 = Loerv
-2 267
=
o 17221 ®@-20 _8_,,
T 3 2 T (367 - (-2)(-2) 4
-2 2.67

The result is the same as in Example 3.3.

Comments: While Cramer’s rule is an efficient solution method for simple circuits (e.g.,
two nodes), it is customary to use computer-aided methods for larger circuits. Once the nodal
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equations have been set in the general form presented in equation 3.9, a variety of computer
aids may be employed to compute the solution.
CHECK YOUR UNDERSTANDING
Find the current i_ in the circuit shown on the left, using the node voltage method.
- W+
30Q
) 20032003

Find the voltage vy by the node voltage method for the circuit shown on the right.
Show that the answer to Example 3.3 is correct by applying KCL at one or more nodes.

A\ 8T— 1V /G820 SIamsuy
EXAMPLE 3.5 <LOl
Problem
Use the node voltage analysis to determine the voltage v in the circuit of Figure 3.9. Assume Ry
thatR; =2Q,R, =1Q,R3 =4Q,R; =39, 1, =2A,and I, = 3A. MW

2
v sz Vo O V3
+

Solution REE

Known Quantities: Values of the resistors and the current sources.
Find: \ltage across Rs.
Analysis: Once again, we follow the steps outlined in the Focus on Methodology box.

1. The reference node is denoted in Figure 3.9.
2. Next, we define the three node voltages vy, v,, v, as shown in Figure 3.9.

3. Apply KCL at each of the n — 1 nodes, expressing each current in terms of the adjacent
node voltages.

V3 — VU1 V2 — VU1
-1, =0 node 1
) R, !
V1 — U2 U2
——+4+1,=0 node 2
Ro R3+2
7% % _L,=0  node3
R, R4

4. Solve the linear system of n — 1 — m unknowns. Finally, we write the system of equa-
tions resulting from the application of KCL at the three nodes associated with

Figure 3.9 Circuit for
Example 3.5
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independent variables:
(=1—2)v; +2v, +1vz3 =4 node 1
4vy + (=1 — 4)vy + Ovg = —12 node 2
vy + 0vy + (—2 — 3)113 =18 node 3

The resulting system of three equations in three unknowns can now be solved. Starting
with the node 2 and node 3 equations, we write

4v; + 12
vy = 75
3v; — 18
vz = 75

Substituting each of variables v, and vz into the node 1 equation and solving for v, provides
4v, + 12 1. 3v; — 18 _
5 5
After substituting v, into the node 2 and node 3 equations, we obtain
v, =-04V and v3=-57V
Therefore, we find
v=uv,=-04V

—3u +2- 4 = v =-35V

Comments: Note that we have chosen to assign a plus sign to currents entering a node and
a minus sign to currents exiting a node; this choice is arbitrary (the opposite sign convention
could be used), but we shall use it consistently in this book.

CHECK YOUR UNDERSTANDING

Repeat the exercise of Example 3.5 when the direction of the current sources becomes the
opposite. Find v.

A Y0 = a:Jamsuy

Node Analysis with Voltage Sources

In the preceding examples, we considered exclusively circuits containing current
sources. It is natural that one will also encounter circuits containing voltage sources,
in practice. The circuit of Figure 3.10 is used to illustrate how node analysis is applied
to a circuit containing voltage sources. Once again, we follow the steps outlined in
the Focus on Methodology box.

Step 1: Select a reference node (usually ground). This node usually has most
elements tied to it. All other nodes will be referenced to this node.

The reference node is denoted by the ground symbol in Figure 3.10.

Step 2: Define the remaining n — 1 node voltages as the independent or dependent
variables. Each of the m voltage sources in the circuit will be associated with a
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dependent variable. If a node is not connected to a voltage source, then its voltage is
treated as an independent variable.

Next, we define the three node voltages vq, vy, ve, as shown in Figure 3.10. We note
that v, is a dependent voltage. We write a simple equation for this dependent voltage,
noting that v, is equal to the source voltage vs: vy = vs.

Step 3: Apply KCL at each node labeled as an independent variable, expressing
each current in terms of the adjacent node voltages.

We apply KCL at the two nodes associated with the independent variables vy, and v;:
At node b:

Vg — Up v, — 0 Up — V¢

_ _ -0
Re Re Rs (3.10a)
or Us — VUp Up Ub—vc_o .
R1 R2 Ry
At node c:
Vp — Vg Ve .
_ ic =0 3.10b
Rl Re +is ( )

Step 4: Solve the linear system of n — 1 — m unknowns.

Finally, we write the system of equations resulting from the application of KCL at
the two nodes associated with independent variables:

l+1+1 n 1 1
— — — ]V ——— V¢ = —V
Rl R2 R3 b R3 ¢ Rl ;

1 n 1+l i
R Up Rs Ry Ve = ls

The resulting system of two equations in two unknowns can now be solved.

(3.11)
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Va g V% R, Ve

Figure 3.10 Node analysis
with voltage sources

EXAMPLE 3.6

Problem

Use node analysis to determine the current i flowing through the voltage source in the circuit of
Figure 3.11. Assume thatR; =2 Q,R, =2 Q,R3 =4 Q,R;, =3Q, 1 =2A, andV =3 V.

Solution

Known Quantities: Resistance values; current and voltage source values.

Find: The current i through the voltage source.

Analysis: Once again, we follow the steps outlined in the Focus on Methodology box.

1. The reference node is denoted in Figure 3.11.

2. We define the three node voltages vy, v,, and vs, as shown in Figure 3.11. We note that
v, and vs are dependent on each other. One way to represent this dependency is to treat v,

<LOl

Ry
AAAA
YVVY
vi Ry, V Vs
AAAA
VAVVV @_-
—

I
AAAA
WW

Py
L AW

Figure 3.11 Circuit for
Example 3.6
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as an independent voltage and to observe that v = v, + 3 V, since the potential at node
3 must be 3 V higher than at node 2 by virtue of the presence of the voltage source. Note
that since we have an expression for the voltage at node 3 in terms of v,, we will only
need to write two nodal equations to solve this three-node circuit.

3. We apply KCL at the two nodes associated with the independent variables v, and v;:
U3 — U1 V2 — 101
R1 Rz

Ul_UZ_E_iZO node 2
R, Rs

—-1=0 node 1

where i=

V3 — VU1 U3
Ry + Ry
Rearranging the node 2 equation by substituting the value of i yields

V1 — U2 U2 V3 — V1 U3
- —-————-—==0 node 2
R, R3 Ry R4

4. Finally, we write the system of equations resulting from the application of KCL at the two
nodes associated with independent variables:
—2vy +1vy +1vs =4 node 1
12v; + (=9 vy + (—10)v3 =0 node 2

Considering that vz = v, + 3V, we write

—2v; +2v, =1

12v; + (—19)v, = 30
The resulting system of the two equations in two unknowns can now be solved. Solving
the two equations for v; and v, gives

vy = —5.64V and v, =514V
This provides

vy=v,+3V=-214V
Therefore, the current through the voltage source i is

_ 2144564 —2.14
st b +ot — 1.04A

i= =
R1 R4 2 3

Comments: Knowing all the three node voltages, we now can compute the current flowing
through each of the resistances as follows: i; = |vs — v1|/Ry (to left), i, = v, — v1]/R; (t0
left), i3 = |vz|/Rs (upward), and iy = |v3|/R4 (upward).

CHECK YOUR UNDERSTANDING

Repeat the exercise of Example 3.6 when the direction of the current source becomes the
opposite. Find the node voltages and i.

VZET =1PUe ‘ATLY = ATLT = ATZG = T lamsuy
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3.3 THE MESH CURRENT METHOD

The second method of circuit analysis discussed in this chapter employs mesh
currents as the independent variables. The idea is to write the appropriate number of
independent equations, using mesh currents as the independent variables. Subsequent
application of Kirchhoff’s voltage law around each mesh provides the desired system
of equations.

In the mesh current method, we observe that a current flowing through a resistor
in a specified direction defines the polarity of the voltage across the resistor, as illus-
trated in Figure 3.12, and that the sum of the voltages around a closed circuit must
equal zero, by KVL. Once a convention is established regarding the direction of cur-
rent flow around a mesh, simple application of KVL provides the desired equation.
Figure 3.13 illustrates this point.

The number of equations one obtains by this technique is equal to the number of
meshes in the circuit. All branch currents and voltages may subsequently be obtained
from the mesh currents, as will presently be shown. Since meshes are easily identified
in a circuit, this method provides a very efficient and systematic procedure for the
analysis of electric circuits. The following box outlines the procedure used in applying
the mesh current method to a linear circuit.

In mesh analysis, it is important to be consistent in choosing the direction of
current flow. To avoid confusion in writing the circuit equations, unknown mesh cur-
rents are defined exclusively clockwise when we are using this method. To illustrate
the mesh current method, consider the simple two-mesh circuit shown in Figure 3.14.
This circuit is used to generate two equations in the two unknowns, the mesh currents
iy and i,. Itis instructive to first consider each mesh by itself. Beginning with mesh 1,
note that the voltages around the mesh have been assigned in Figure 3.15 accord-
ing to the direction of the mesh current i;. Recall that as long as signs are assigned
consistently, an arbitrary direction may be assumed for any current in a circuit; if
the resulting numerical answer for the current is negative, then the chosen reference
direction is opposite to the direction of actual current flow. Thus, one need not be con-
cerned about the actual direction of current flow in mesh analysis, once the directions
of the mesh currents have been assigned. The correct solution will result, eventually.

According to the sign convention, then, the voltages v; and v, are defined as
shown in Figure 3.15. Now, it is important to observe that while mesh current iy is
equal to the current flowing through resistor R; (and is therefore also the branch current
through R;), it is not equal to the current through R,. The branch current through R,
is the difference between the two mesh currents i; — i. Thus, since the polarity of
voltage v, has already been assigned, according to the convention discussed in the
previous paragraph, it follows that the voltage v, is given by

v = (i1 — i2)R2 (3.12)
Finally, the complete expression for mesh 1 is
vs — 1Ry — (i1 —i2)R, =0 (3.13)

The same line of reasoning applies to the second mesh. Figure 3.16 depicts the
voltage assignment around the second mesh, following the clockwise direction of
mesh current i,. The mesh current iy is also the branch current through resistors Rs
and Ry4; however, the current through the resistor that is shared by the two meshes,
denoted by Ry, is now equal to i, — iy; the voltage across this resistor is

vy = (I — iRy (3.14)
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The current i, defined as flowing

from left to right, establishes the

polarity of the voltage across R.
+ VR -

oO——WW—0

‘j"’ R
Figure 3.12 Basic
principle of mesh analysis

Once the direction of current flow
has been selected, KVL requires
that vy — v, —v3 = 0.

+ Vo —
AAAA
VVRVV
+ 2 +
>
Vi () RZ Vs
i T
A mesh

Figure 3.13 Use of KVL
in mesh analysis

Ry Rs
AMA A
VVWVy

Figure 3.14 A two-mesh
circuit

Mesh 1: KVL requires that
Vs—V; —V, =0, wherev; = i;Ry,
Vo = (i1 —i2)Re.
Ry Rs
AAA
AL A e
1

\
+ > e
- . <> . <>
VS<_> :D v :: RZ @ ::R4
< <

Figure 3.15 Assignment of
currents and voltages around
mesh 1
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Mesh 2: KVL requires that

Vo+Vs+Vv,;=0

where

Vo = (i2—11)Ry

V3 =i5Rs

V4= iRy

Ry R;
AAA AAA
YVVv A A

V3

+
> >
+ . <> . <>
Vs()@ RSV ( 12 RiZ V.
— > >

+ —

~

Figure 3.16 Assignment of
currents and voltages around
mesh 2
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and the complete expression for mesh 2 is
(ip — 1Ry +IR3 + bR =0 (3.15)

Why is the expression for v, obtained in equation 3.14 different from equation
3.12? The reason for this apparent discrepancy is that the voltage assignment for each
mesh was dictated by the (clockwise) mesh current. Thus, since the mesh currents
flow through R, in opposing directions, the voltage assignments for v, in the two
meshes are also opposite. This is perhaps a potential source of confusion in applying
the mesh current method; you should be very careful to carry out the assignment of
the voltages around each mesh separately.

Combining the equations for the two meshes, we obtain the following system
of equations:

(R1 + Rp)is — Roip = vg

. : (3.16)
—Rzi1 + (R2 + R3 + Ry)iz =0

These equations may be solved simultaneously to obtain the desired solution, namely,
the mesh currents i; and i,. You should verify that knowledge of the mesh currents
permits determination of all the other voltages and currents in the circuit. Examples
3.7, 3.8, and 3.9 further illustrate some of the details of this method.

MESH CURRENT ANALYSIS METHOD

1. Define each mesh current consistently. Unknown mesh currents will be
always defined in the clockwise direction; known mesh currents (i.e.,
when a current source is present) will always be defined in the direction of
the current source.

2. In a circuit with n meshes and m current sources, n — m independent
equations will result. The unknown mesh currents are the n —m
independent variables.

3. Apply KVL to each mesh containing an unknown mesh current,
expressing each voltage in terms of one or more mesh currents.

4. Solve the linear system of n — m unknowns.

Figure 3.17

EXAMPLE 3.7 Mesh Analysis

Problem

Find the mesh currents in the circuit of Figure 3.17.

Solution
Known Quantities: Source voltages; resistor values.

Find: Mesh currents.
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Schematics, Diagrams, Circuits, and Given Data: V, =10V;V, =9V;V; =1V,
Ri=5Q;R=10Q2;R;3 =5Q; R, =5Q.

Analysis: \We follow the steps outlined in the Focus on Methodology box.

1. Assume clockwise mesh currents i; and is.
2. The circuit of Figure 3.17 will yield two equations in the two unknowns i; and i,.

3. ltisinstructive to consider each mesh separately in writing the mesh equations; to this end,
Figure 3.18 depicts the appropriate voltage assignments around the two meshes, based
on the assumed directions of the mesh currents. From Figure 3.18, we write the mesh
equations:

Vi —Ryis = Vo —Ry(iy —ip) =0
Ra(iy —i2) + V2 — R3ip — V3 — R4i, =0

Rearranging the linear system of the equation, we obtain
15i; — 10i, =1
—10i; + 20i, =8
4. The equations above can be solved to obtain i; and iy:

ii=05A and i =065A

Comments: Note how the voltage v, across resistor R, has different polarity in Figure 3.18, Analysis of mesh 2
depending on whether we are working in mesh 1 or mesh 2. Figure 3.18
EXAMPLE 3.8 Mesh Analysis <|_02

Problem

Write the mesh current equations for the circuit of Figure 3.19.

. R R
Solution AAA AR

\AAAJ \AAAJ
Known Quantities: Source voltages; resistor values. R, A

Vi
O 2
Find: Mesh current equations. = \D =

Schematics, Diagrams, Circuits, and Given Data: V, =12V;V, =6V;R; =3 Q;

Figure 3.19
Analysis: We follow the Focus on Methodology steps.

1. Assume clockwise mesh currents iy, i, and is.

2. We recognize three independent variables, since there are no current sources. Starting
from mesh 1, we apply KVL to obtain

Vi —Ri(iy —i3) = Ra(iy — i) =0
KVL applied to mesh 2 yields

—Ry(i; —i1) = R3(iz —i3) + Vo, =0
while in mesh 3 we find

—R1(iz — i1) — R4iz — Ra(iz —i2) =0
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These equations can be rearranged in standard form to obtain
(3+8)i; — 8i; —3i3 =12
—8iy + (6 + 8)i, — 6i3 =6
—3i; —6i, + (3+6+4)i3=0

You may verify that KVL holds around any one of the meshes, as a test to check that the
answer is indeed correct.

CHECK YOUR UNDERSTANDING

Find the unknown voltage v, by mesh current analysis in the circuit on the left.

60 120 30
AAAA AAA AAAA
Yvvy YVVy Yvvy
50 +
< s + < +
6003 6Q v, 24v<) 6231 ()15v
< P — > =
15V -

Find the unknown current Iy, using the mesh current method in the circuit on the right.

W 2 ‘A G Slamsuy

|_02> EXAMPLE 3.9 Mesh Analysis

Problem

The circuit of Figure 3.20 is a simplified DC circuit model of a three-wire electrical distribution
service to residential and commercial buildings. The two ideal sources and the resistances Ry
and Rs represent the equivalent circuit of the distribution system; R; and R, represent 110-V
lighting and utility loads of 800 and 300 W, respectively. Resistance Rz represents a 220-V
heating load of about 3 kW. Determine the voltages across the three loads.

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of
Figure 3.20are Vs; = Vs =110V; Ry =Rs =1.3Q; R; =15 Q; R, =40 Q; R3 = 16 Q.

Figure 3.20

Find: v, vy, and vs.
Analysis: We follow the mesh current analysis method.

1. The (three) clockwise unknown mesh currents are shown in Figure 3.20. Next, we write
the mesh equations.

2. No current sources are present; thus we have three independent variables. Applying KVVL
to each mesh containing an unknown mesh current and expressing each voltage in terms
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of one or more mesh currents, we get the following:

Mesh 1:

Vs1 —Raly = Ri(ly — 13) =0
Mesh 2:

Vsa —Ra(l2 —13) = Rsl; =0
Mesh 3:

—Ri(l3 —11) = R3lz —=Ra(I3 — 1) =0
With some rearrangements, we obtain the following system of three equations in three
unknown mesh currents.
—(R1 +R)l +Rylz3 = Vs
—(R2 +Rs)lz + Rzlz = —Vsp
Rili +Ral = (R1 +R2 +R3)lz3 =0

Next, we substitute numerical values for the elements and express the equations in a matrix
form as shown.

-16.3 0 15 Iy ~110
0 —413 40 L | =] —110
15 40 -7 ls 0

which can be expressed as
[RIIIT=[V]

with a solution of
(1= [RIV]

The solution to the matrix problem can then be carried out using manual or numerical
techniques. In this case, we have used MATLAB™ to compute the inverse of the 3 x 3
matrix. Using MATLAB™ to compute the inverse matrix, we obtain

—0.0483 —0.0750 —0.0525

—0.1072 —0.0483 —0.0499
[RI™! =
—0.0499 —0.0525 —0.0542

The value of current in each mesh can now be determined:

—0.1072 —0.0483 —0.0499 —110 17.11
[(1=[RI[V]=| —0.0483 —0.0750 —0.0525 —110 |=| 1357
—0.0499 —0.0525 —0.0542 0 11.26

Therefore, we find
Ip =17.11A I, =1357A I3 =11.26 A
We can now obtain the voltages across the three loads, keeping in mind the ground location:
Vg, =Ri(l1 — 13) =87.75V
Vg, = —Rao(l; — I3) = —92.40 V
Vg, = R3l3 = 180.16 V
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Figure 3.21 Circuit used
to demonstrate mesh analysis
with current sources

Chapter 3 Resistive Network Analysis

CHECK YOUR UNDERSTANDING

Repeat the exercise of Example 3.9, using node voltage analysis instead of the mesh current
analysis.

A9T08T = B\ ‘A 0F'Z6— = A ‘A GL L8 = A [amsuy

Mesh Analysis with Current Sources

In the preceding examples, we considered exclusively circuits containing voltage
sources. It is natural to also encounter circuits containing current sources, in prac-
tice. The circuit of Figure 3.21 illustrates how mesh analysis is applied to a circuit
containing current sources. Once again, we follow the steps outlined in the Focus on
Methodology box.

Step 1: Define each mesh current consistently. Unknown mesh currents are always
defined in the clockwise direction; known mesh currents (i.e., when a current source
is present) are always defined in the direction of the current source.

The mesh currents are shown in Figure 3.21. Note that since a current source defines
the current in mesh 2, this (known) mesh current is in the counterclockwise
direction.

Step 2: In a circuit with n meshes and m current sources, n — m independent
equations will result. The unknown mesh currents are the n — m independent
variables.

In this illustration, the presence of the current source has significantly simplified the
problem: There is only one unknown mesh current, and it is ij.

Step 3: Apply KVL to each mesh containing an unknown mesh current, expressing
each voltage in terms of one or more mesh currents.

We apply KVL around the mesh containing the unknown mesh current:

Vs —Ryit —Rap(i1 +15) =0

. (3.17)
or (R1 4+ Ry)i; = Vs — Ryls
Step 4: Solve the linear system of n — m unknowns.
Vs — Rals
h=—" 3.18
"7 R +R, (3.18)

L02> EXAMPLE 3.10 Mesh Analysis with Current Sources

Problem

Find the mesh currents in the circuit of Figure 3.22.
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= AVAVAVA‘I
Solution
. ia
Known Quantities: Source current and voltage; resistor values. R, 3
AAA AAAA
VVVY \AAA

Find: Mesh currents.

Schematics, Diagrams, Circuits, and Given Data: | =05A;V =6V, R, =3 Q; () Q E§ R, C C_)
I b [P3 T

R, =8 Ry =6Q; Ry = 4.

Analysis: We follow the Focus on Measurements steps.

. . . Figure 3.22
1. Assume clockwise mesh currents iy, i, and is.
2. Starting from mesh 1, we see immediately that the current source forces the mesh current
to be equal to I:
ip=1
3. There is no need to write any further equations around mesh 1, since we already know
the value of the mesh current. Now we turn to meshes 2 and 3 to obtain
—Ra(iz —i1) —Ra(iz —i3) +V =0 mesh 2
—Rl(i3 — |1) — R4i3 — R3(i3 — |2) =0 mesh 3
Rearranging the equations and substituting the known value of i;, we obtain a system of
two equations in two unknowns:
14i, — 6i3 = 10
—6i, + 13i3 = 1.5
4. These can be solved to obtain
i, =095A i3 =055A
As usual, you should verify that the solution is correct by applying KVL.
Comments: Note that the current source has actually simplified the problem by constraining
a mesh current to a fixed value.
CHECK YOUR UNDERSTANDING
Show that the equations given in Example 3.10 are correct, by applying KCL at each node.
EXAMPLE 3.11 Mesh Analysis with Current Sources <|_02

Problem

Find the unknown voltage vy in the circuit of Figure 3.23.

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of
Figure3.23: Vs =10V; Is =2A; Ry =5 Q; R, =2 Q; and R; = 4 Q.
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Find: vy.
Analysis: \We observe that the second mesh current must be equal to the current source:
i;=1ls

le
* Thus, the unknown voltage, vy, can be obtained applying KVL to mesh 2:

(iy —i)Rg —i2R; — vy =0
vy = (i1 —i)Rs — iRy = i1R3 — i3 (R2 + Ry)

Figure 3.23 lllustration of
mesh analysis in the presence of
current sources

To find the current i; we apply KVL to mesh 1:
Vs —itRy — (i1 —i2)Rs =0
Vs + 2R3 = i1 (R1 + Rg)

but sincei, = Ig

. Vs+|5R3 10+2X4
I = = =2A
(Ry +R3) 5+4

Comments: Note that the presence of the current source reduces the number of unknown
mesh currents by one. Thus, we were able to find v, without the need to solve simultaneous
equations.

CHECK YOUR UNDERSTANDING

Find the value of the current iy if the value of the current source is changed to 1 A.

V T.'T :Jemsuy

3.4 NODE AND MESH ANALYSIS WITH
CONTROLLED SOURCES

LO1, |_02> The methods just described also apply, with relatively minor modifications, in the
presence of dependent (controlled) sources. Solution methods that allow for the pres-

ence of controlled sources are particularly useful in the study of transistor amplifiers
in Chapters 8 and 9. Recall from the discussion in Section 2.1 that a dependent source
generates a voltage or current that depends on the value of another voltage or current
in the circuit. When a dependent source is present in a circuit to be analyzed by node
or mesh analysis, we can initially treat it as an ideal source and write the node or mesh
equations accordingly. In addition to the equation obtained in this fashion, there is an
equation relating the dependent source to one of the circuit voltages or currents. This
constraint equation can then be substituted in the set of equations obtained by the
techniques of node and mesh analysis, and the equations can subsequently be solved
for the unknowns.

It is important to remark that once the constraint equation has been substi-
tuted in the initial system of equations, the number of unknowns remains unchanged.
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Node 1 Node 2
i~ =] G i)
i
> ¢< <>
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Figure 3.24 Circuit with dependent source

Consider, for example, the circuit of Figure 3.24, which is a simplified model of a
bipolar transistor amplifier (transistors are introduced in Chapter 9). In the circuit of
Figure 3.24, two nodes are easily recognized, and therefore node analysis is cho-
sen as the preferred method. Applying KCL at node 1, we obtain the following
equation:

1 1
is = — + — A
Ig U1 (Rg + Rb) (3 9)
KCL applied at the second node yields
Bip + 2 =0 (3.20)
Rc

Next, observe that current i, can be determined by means of a simple current divider:

1/Ry . Rs

=1 =1 321
ST/Ro+ 1/Rs SRy +Rs (3:21)

i

This is the constraint equation, which when inserted in equation 3.20, yields a system
of two equations:

i 1+1
= —_— _—
s 1 Rs TRy

R
—Big———— = 2
Rb+Rs Rc

(3.22)

which can be used to solve for v, and v,. Note that, in this particular case, the two
equations are independent of each other. Example 3.12 illustrates a case in which the
resulting equations are not independent.
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EXAMPLE 3.12 Analysis with Dependent Sources

Problem

Find the node voltages in the circuit of Figure 3.25.

Solution

Known Quantities: Source current; resistor values; dependent voltage source relationship.

< LO1, LO2
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Find: Unknown node voltage v.

Schematics, Diagrams, Circuits, and Given Data: | =05A;R; =5Q;R, =2 Q;
Rs = 4 Q. Dependent source relationship: vy = 2 x vs.

Analysis:

1. Assume the reference node is at the bottom of the circuit. Use node analysis.
2. The two independent variables are v and vs.
3. Applying KCL to node v, we find that

Figure 3.25 Uk — +1 V-t =0

R1 R

Applying KCL to node vs, we find

VUV — U3 U3

R, Ry

If we substitute the dependent source relationship into the first equation, we obtain a
system of equations in the two unknowns v and v3:

4. Substituting numerical values, we obtain
0.7v — 0.9v3 = 0.5
—0.50+0.75v3; =0
Solution of the above equations yields v = 5V; v = 3.33 V.

CHECK YOUR UNDERSTANDING

Solve the same circuit if v, = 2.

W ep I p-
A = A = I8MsuyY

LO1, |_02> EXAMPLE 3.13 Mesh Analysis with Dependent Sources

Problem

Determine the voltage “gain” A, = v,/v; in the circuit of Figure 3.26.
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Vi

Figure 3.26 Circuit containing
dependent source

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of
Figure3.26areR; =1 Q2; R, =05Q; R3 =0.25Q; R4, = 0.25Q; Ry = 0.25 Q.

Find: A, = vy/v;.

Analysis: We note first that the two voltages we seek can be expressed as follows:
v = Ry(iy — ip), and v, = Rsiz. Next, we follow the mesh current analysis method.

1. The mesh currents are defined in Figure 3.26.

2. No current sources are present; thus we have three independent variables, the currents iy,
i2, and i3.

3. Apply KVL at each mesh.

For mesh 1:
vy — Ryip = Ra(iy —i2) =0

or rearranging the equation gives
(R1 4+ R2)i1 + (=R2)iz + (O)iz = vy

For mesh 2:
v — R3i2 — R4(i2 — |3) + 2v=0

Rearranging the equation and substituting the expression v = —R; (i, — i1), we obtain
—Ra(iz — i1) — Raiz = Ra(iz — i3) — 2Ra(iz —i1) = 0
(—=3R2)i1 + (3R2 + Rz + Ry)iz — (Ry)iz =0

For mesh 3:
—2v — R4(i3 - |2) - R5i3 =0

substituting the expression for v = R, (i; — i) and rearranging, we obtain
—2Ry(iy — iz) — Ry(is —i2) —Rsiz =0
2Rzi; — (2Rz2 + Ry)iz + (R4 + Rs)i3 =0

Finally, we can write the system of equations

(R1 +Ry2) (—R2) 0 i vy
(—3R2) (BR2 +Rs +Ry) (—R4) i = 0
(2Ry) —(2R2 +Ry) (R4 + Rs) i3 0

85
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which can be written as
[RI[i] = [v]
with solution
[i1 = [RI"*[v]

4. Solve the linear system of n — m unknowns. The system of equations is

1.5 -0.5 0 il U1
-15 2 -0.25 i | = 0
1 -1.25 0.5 i3 0
Thus, to solve for the unknown mesh currents, we must compute the inverse of the matrix

of resistances R. Using MATLAB™ to compute the inverse, we obtain

0.88 0.32 0.16

Rt = 0.64 0.96 0.48
—0.16 1.76 2.88
i vy 0.88 0.32 0.16 v
i |=[R]™*| 0 |= 0.64 096 0.48 0
is 0 —0.16 1.76 2.88 0

and therefore

i]_ = 0.881)1
iz = 0.641)1
i3 = —0.161)1

Observing that v, = Rsiz, we can compute the desired answer:

Uy = R5i3 = R5(—O‘l6v1) = 025(—0161)1)
vz —0.04v,

A=—2=""1=_004
U1 V1

Comments: The MATLAB™ commands required to obtain the inverse of matrix R are listed
below.

R=[1.5 -0.50; -1.52 -0.25; 1 -1.25 0.5];
Ri nv=i nv(R);
The presence of a dependent source did not really affect the solution method. Systematic

application of mesh analysis provided the desired answer. Is mesh analysis the most efficient
solution method? (Hint: See the exercise below.)

CHECK YOUR UNDERSTANDING

Determine the number of independent equations required to solve the circuit of Example 3.13
using node analysis. Which method would you use?

The current source iy is related to the voltage vy in the figure on the left by the relation
Ux
3

Find the voltage across the 8-<2 resistor by node analysis.

Iy =
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+ W - 12Q 3Q
> AAAA ——AAAA AAAA
VVVY \AAA4 VVVY
sos 07 i
ix > < <. RS
8Q< 6Q3 Vx 6Q =iy 15V
> b > —
15V

Find the unknown current iy in the figure on the right, using the mesh current method. The
dependent voltage source is related to current i;, through the 12-Q resistor by vy = 2is,.

V 6ET ‘A ZT ‘OM] :SIaMSUY

Remarks on Node Voltage and Mesh Current Methods

The techniques presented in this section and in Sections 3.2 and 3.3 find use more
generally than just in the analysis of resistive circuits. These methods should be viewed
as general techniques for the analysis of any linear circuit; they provide systematic
and effective means of obtaining the minimum number of equations necessary to
solve a network problem. Since these methods are based on the fundamental laws
of circuit analysis, KVL and KCL, they also apply to electric circuits containing
nonlinear circuit elements, such as those to be introduced later in this chapter.

You should master both methods as early as possible. Proficiency in these circuit
analysis techniques will greatly simplify the learning process for more advanced
concepts.

3.5 THE PRINCIPLE OF SUPERPOSITION

This brief section discusses a concept that is frequently called upon in the analysis
of linear circuits. Rather than a precise analysis technique, like the mesh current and
node voltage methods, the principle of superposition is a conceptual aid that can be
very useful in visualizing the behavior of a circuit containing multiple sources. The
principle of superposition applies to any linear system and for a linear circuit may be
stated as follows:

In a linear circuit containing N sources, each branch voltage and current is the
sum of N voltages and currents, each of which may be computed by setting all
but one source equal to zero and solving the circuit containing that single source.

An elementary illustration of the concept may easily be obtained by simply consid-
ering a circuit with two sources connected in series, as shown in Figure 3.27.
The circuit of Figure 3.27 is more formally analyzed as follows. The current i
flowing in the circuit on the left-hand side of Figure 3.27 may be expressed as
vp1 + U2  UBl | U2

Figure 3.27 also depicts the circuit as being equivalent to the combined effects of

< LO3
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Va2

|
)
AA
YWy
+
)
AA
YWy

The net current through
Risthe sum of the
individual source currents:
i =ig +ig.

Vi1 IB1 IB2

Figure 3.27 The principle of superposition

two circuits, each containing a single source. In each of the two subcircuits, a short
circuit has been substituted for the missing battery. This should appear as a sensible
procedure, since a short circuit, by definition, will always “see” zero voltage across
itself, and therefore this procedure is equivalent to “zeroing” the output of one of the
voltage sources.

If, on the other hand, we wished to cancel the effects of a current source, it
would stand to reason that an open circuit could be substituted for the current source,
since an open circuit is, by definition, a circuit element through which no current can
flow (and which therefore generates zero current). These basic principles are used
frequently in the analysis of circuits and are summarized in Figure 3.28.

LO3 > 1. In order to set a voltage source equal to zero, we replace it with a short circuit.
R; R
. < <
Vs Is =R Is R
<> T <>

A circuit The same circuit with vs=0

2. In order to set a current source equal to zero, we replace it with an open circuit.

R} R
— AAAA
YVVY
V. i s R V. SR
S S :: 2. S T :: 2
A circuit The same circuit withis=0

Figure 3.28 Zeroing voltage and current sources

The principle of superposition can easily be applied to circuits containing mul-
tiple sources and is sometimes an effective solution technique. More often, however,
other methods result in a more efficient solution. Example 3.14 further illustrates
the use of superposition to analyze a simple network. The Check Your Understand-
ing exercises at the end of the section illustrate the fact that superposition is often a
cumbersome solution method.

LO3> EXAMPLE 3.14 Principle of Superposition

Problem

Determine the current i, in the circuit of Figure 3.29(a), using the principle of superposition.
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Solution

Known Quantities: Source voltage and current values; resistor values.
Find: Unknown current i,.

Given Data: Vs =10V; s =2A;Ri =5Q; R, =2Q; R3 =4 Q.
Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Part1: Zerothe currentsource. Once the current source has been set to zero (replaced
by an open circuit), the resulting circuit is a simple series circuit shown in Figure 3.29(b); the
current flowing in this circuit ip_y is the current we seek. Since the total series resistance is
54+2+4 =11, we find thati,_y = 10/11 = 0.909 A.

Part 2: Zero the voltage source. After we zero the voltage source by replacing it with a
short circuit, the resulting circuit consists of three parallel branches shown in Figure 3.29(c):
On the left we have a single 5-2 resistor; in the center we have a —2-A current source (negative
because the source current is shown to flow into the ground node); on the right we have a total
resistance of 2 + 4 = 6 Q. Using the current divider rule, we find that the current flowing in
the right branch i,_, is given by

1

. _ 6 oy
It = 7= 1( 2) = —0.909 A

5 + 6
And, finally, the unknown current i, is found to be

ip =iy +i2.) =0A

Comments: Superposition is not always a very efficient tool. Beginners may find it prefer-
able to rely on more systematic methods, such as node analysis, to solve circuits. Eventually,
experience will suggest the preferred method for any given circuit.

CHECK YOUR UNDERSTANDING

In Example 3.14, verify that the same answer is obtained by mesh or node analysis.
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Figure 3.29 (a) Circuit for
the illustration of the principle
of superposition

Ry Ry

Vs Rs
oR

L

(b)

Figure 3.29 (b) Circuit
with current source set to zero

Figure 3.29 (c)
Circuit with voltage source
set to zero

EXAMPLE 3.15 Principle of Superposition

< LO3

Problem

Determine the voltage across resistor R in the circuit of Figure 3.30.

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of
Figure3.30are lg = 12A; Vg = 12V; Rg =1 Q; Rg = 0.3 Q2; R=0.23 Q.

Find: The voltage across R.

Rg L+
HORE: Ea
3
@

Figure 3.30 (a) Circuit
used to demonstrate the
principle of superposition
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Rg L+
ROX "2V
T

(b)

Figure 3.30 (b) Circuit
obtained by suppressing the

voltage source

©

Figure 3.30 (c) Circuit
obtained by suppressing the

current source

Linear
network

Figure 3.31 One-port

network
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Analysis: Specify a ground node and the polarity of the voltage across R. Suppress the voltage
source by replacing it with a short circuit. Redraw the circuit, as shown in Figure 3.30(b), and
apply KCL:

Veot o Vrar o Vea
-1 ——Ft — 4+ —=0
B+ Re + Re + R

_ ls _ 12 — 138V
Rs+1/Re+ /R _ 1/1+1/03+1/023

VR—I

Suppress the current source by replacing it with an open circuit, draw the resulting circuit, as
shown in Figure 3.30(c), and apply KCL:

VR—V VR_V - VG VR—V
=0
Rg + Re + R

Ve/Re 12/0.3
Vey = = — 461V
RV = 1/Rs +1/Rs + /R 1/1+1/0.3+1/0.23

Finally, we compute the voltage across R as the sum of its two components:
Vg = Vg +Vr_y =5.99V

Comments: Superposition essentially doubles the work required to solve this problem. The
voltage across R can easily be determined by using a single KCL.

CHECK YOUR UNDERSTANDING

In Example 3.15, verify that the same answer can be obtained by a single application of KCL.
Find the voltages v, and vy, for the circuits of Example 3.7 by superposition.

Solve Example 3.7, using superposition.

Solve Example 3.10, using superposition.

3.6 ONE-PORT NETWORKS AND EQUIVALENT
CIRCUITS

You may recall that, in the discussion of ideal sources in Chapter 2, the flow of
energy from a source to a load was described in a very general form, by showing
the connection of two “black boxes” labeled source and load (see Figure 2.2). In the
same figure, two other descriptions were shown: a symbolic one, depicting an ideal
voltage source and an ideal resistor; and a physical representation, in which the load
was represented by a headlight and the source by an automotive battery. Whatever
the form chosen for source-load representation, each block—source or load—may
be viewed as a two-terminal device, described by an i-v characteristic. This general
circuit representation is shown in Figure 3.31. This configuration is called a one-port
network and is particularly useful for introducing the notion of equivalent circuits.
Note that the network of Figure 3.31 is completely described by its i-v characteristic;
this point is best illustrated by Example 3.16.
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EXAMPLE 3.16 Equivalent Resistance Calculation

Problem

Determine the source (load) current i in the circuit of Figure 3.32, using equivalent resistance
ideas.

< +0l_'

Vs

(N

Source Load

Figure 3.32 lllustration of
equivalent-circuit concept

Solution

Known Quantities: Source voltage; resistor values.

Find: Source current.

Given Data: Figures 3.32 and 3.33.

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Insofar as the source is concerned, the three parallel resistors appear identical to a
single equivalent resistance of value

R 1
7 1/R; + 1/R;, + 1/R,

Thus, we can replace the three load resistors with the single equivalent resistor Req, as shown
in Figure 3.33, and calculate
. v
i=—
REQ
Comments: Similarly, insofar as the load is concerned, it would not matter whether the source
consisted, say, of a single 6-V battery or of four 1.5-V batteries connected in series.

< LO4

AAAA
VVVY
P

O
> <
=R sk
>
(e}
Load circuit
Oo—
<>
SReo
o—
Equivalent
load circuit

Figure 3.33 Equivalent
load resistance concept

For the remainder of this section, we focus on developing techniques for com-
puting equivalent representations of linear networks. Such representations are useful
in deriving some simple—yet general—results for linear circuits, as well as analyzing
simple nonlinear circuits.

Thévenin and Norton Equivalent Circuits

This section discusses one of the most important topics in the analysis of electric
circuits: the concept of an equivalent circuit. We show that it is always possible to
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view even a very complicated circuit in terms of much simpler equivalent source and
load circuits, and that the transformations leading to equivalent circuits are easily
managed, with a little practice. In studying node voltage and mesh current analysis,
you may have observed that there is a certain correspondence (called duality) between
current sources and voltage sources, on one hand, and parallel and series circuits, on
the other. This duality appears again very clearly in the analysis of equivalent circuits:
It will shortly be shown that equivalent circuits fall into one of two classes, involving
either voltage or current sources and (respectively) either series or parallel resistors,
reflecting this same principle of duality. The discussion of equivalent circuits begins
with the statement of two very important theorems, summarized in Figures 3.34
and 3.35.

Source Load — = Vr v Load

Ol < +0

Figure 3.34 lllustration of Thévenin theorem

—O——]
Load | — iN@E‘ Load

Figure 3.35 lllustration of Norton theorem

Source

Ol < +0Q

Yvvy
Ol <+

The Thévenin Theorem

When viewed from the load, any network composed of ideal voltage and current
sources, and of linear resistors, may be represented by an equivalent circuit
consisting of an ideal voltage source vt in series with an equivalent resistance
Rr.

The Norton Theorem

When viewed from the load, any network composed of ideal voltage and current
sources, and of linear resistors, may be represented by an equivalent circuit
consisting of an ideal current source iy in parallel with an equivalent resistance
RN

The first obvious question to arise is, How are these equivalent source voltages,
currents, and resistances computed? The next few sections illustrate the computation
of these equivalent circuit parameters, mostly through examples. Asubstantial number
of Check Your Understanding exercises are also provided, with the following caution:
The only way to master the computation of Thévenin and Norton equivalent circuits
is by patient repetition.
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Determination of Norton or Thévenin Equivalent
Resistance

Inthis subsection, we illustrate the calculation of the equivalent resistance of a network
containing only linear resistors and independent sources. The first step in computing
a Thévenin or Norton equivalent circuit consists of finding the equivalent resistance
presented by the circuit at its terminals. This is done by setting all sources in the circuit
equal to zero and computing the effective resistance between terminals. The voltage
and current sources present in the circuit are set to zero by the same technique used
with the principle of superposition: Voltage sources are replaced by short circuits;
current sources, by open circuits. To illustrate the procedure, consider the simple
circuit of Figure 3.36; the objective is to compute the equivalent resistance the load
RL “sees” at port a-b.

To compute the equivalent resistance, we remove the load resistance from the
circuit and replace the voltage source vs by a short circuit. At this point—seen from
the load terminals—the circuit appears as shown in Figure 3.37. You can see that
R; and R, are in parallel, since they are connected between the same two nodes. If
the total resistance between terminals a and b is denoted by Ry, its value can be
determined as follows:

Rr =R3+R1 | Rz (3.24)

An alternative way of viewing Ry is depicted in Figure 3.38, where a hypo-
thetical 1-A current source has been connected to terminals a and b. The voltage
vy appearing across the a-b pair is then numerically equal to Ry (only because is
= 1 Al). With the 1-A source current flowing in the circuit, it should be apparent that
the source current encounters R as a resistor in series with the parallel combination
of Ry and Ry, prior to completing the loop.

Summarizing the procedure, we can produce a set of simple rules as an aid in
the computation of the Thévenin (or Norton) equivalent resistance for a linear resis-
tive circuit that does not contain dependent sources. The case of circuits containing
dependent sources is outlined later in this section.

COMPUTATION OF EQUIVALENT RESISTANCE OF A ONE-PORT
NETWORK THAT DOES NOT CONTAIN DEPENDENT SOURCES
1. Remove the load.
2. Zero all independent voltage and current sources.

3. Compute the total resistance between load terminals, with the load
removed. This resistance is equivalent to that which would be encountered
by a current source connected to the circuit in place of the load.

We note immediately that this procedure yields a result that is independent of
the load. This is a very desirable feature, since once the equivalent resistance has been
identified for a source circuit, the equivalent circuit remains unchanged if we connect
a different load. The following examples further illustrate the procedure.
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Figure 3.36 Computation
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Figure 3.38 An alternative
method of determining the
Thévenin resistance
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|_04> EXAMPLE 3.17 Thévenin Equivalent Resistance

Problem

Find the Thévenin equivalent resistance seen by the load R, in the circuit of Figure 3.39.

Rs Rsa
AAAA AAAA
\AAAJ YVVY
> <> <>
< < <
RS 3R | SR R
< <

Figure 3.39

Solution
Known Quantities: Resistor and current source values.
Find: Thévenin equivalent resistance Rr.

Schematics, Diagrams, Circuits, and Given Data: R, =20Q; R, =20Q;1 =5A;
R; =10Q2; Ry =20Q; Rs = 10 Q2.

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Following the Focus on Methodology box introduced in this section, we first set
Rs R a the current source equal to zero, by replacing it with an open circuit. The resulting circuit is

AAAA AAAA
M o depicted in Figure 3.40. Looking into terminal a-b, we recognize that, starting from the left
RS =R < (away from the load) and moving to the right (toward the load), the equivalent resistance is
iz 2T b3 given by the expression
0 Rr = [((Ru]IR2) +R3) [IR4] + Rs
= [((20]|20) + 10) ||20] + 10 = 20 Q2
Figure 3.40

Comments: Note that the reduction of the circuit started at the farthest point away from the
load.

CHECK YOUR UNDERSTANDING

Find the Thévenin equivalent resistance of the circuit below, as seen by the load resistor R,

.5 kQ a
AAA o
VVVy ©
<>
3kQZ 5kQ
> < <>
5kQ = SR
< < <
2kQ :E 5V

b

Find the Thévenin equivalent resistance seen by the load resistor R._ in the following circuit.
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20
AAA
YVVY
6 Q 50Q a
AAA AAAA AAA O
\AAAd YVVY YVVY ~
> 1OV i > >
O.5A<> 403 303 3R
W 100
b
B L= BAGC = 1Y slamsuy
EXAMPLE 3.18 Thévenin Equivalent Resistance <|_04

Problem

Compute the Thévenin equivalent resistance seen by the load in the circuit of Figure 3.41.

Ry Rs a
——AAAA AAAA O
YVVV YVVY had
<> <> <>
\Y =R | =R, =R
< < <
O
O
b
Figure 3.41

Solution
Known Quantities: Resistor values.
Find: Thévenin equivalent resistance Ry.

Schematics, Diagrams, Circuits, and Given Data: V =5V;R; =2Q;R, =2Q;R;3 =1;
I =1A R, =2Q.

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Following the Thévenin equivalent resistance Focus on Methodology box, we first
set the current source equal to zero, by replacing it with an open circuit, then set the voltage
source equal to zero by replacing it with a short circuit. The resulting circuit is depicted in

Oo

Figure 3.42. Looking into terminal a-b, we recognize that, starting from the left (away from fﬁ
the load) and moving to the right (toward the load), the equivalent resistance is given by the VWYY
expression L L L
RZ 2R B
Rr = ((RulIR2) + Ra) [IR4 T 7 ]

=(@)+DI2=1Q

Comments: Note that the reduction of the circuit started at the farthest point away from the

Figure 3.42
load.

cO
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One-port
network Voc

Figure 3.43 Equiva-
lence of open-circuit and
Thévenin voltage
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CHECK YOUR UNDERSTANDING

For the circuit below, find the Thévenin equivalent resistance seen by the load resistor R, .

kQ 6 kQ 2kQ a
AAA AAAA AN\N_O_
\AA \AAA

<

< > <
1MQZ 20V > 6kQ 3kQ=

] | ]

VVVY
N
=~
©

AAAA

VVVY

AAAA

VVVY
AAAA
VVVY

o O

For the circuit below, find the Thévenin equivalent resistance seen by the load resistor R,

10Q a
AMA O
Wy O

10 L
2100 2003

AAAA
\AAAS

AAAA
VVVY

12V

o O

B90°L = 1Y ‘BN 0Y = LY siemsuy

As a final note, the Thévenin and Norton equivalent resistances are one and the
same quantity:

Rr = Ry (3.25)

Therefore, the preceding discussion holds whether we wish to compute a Norton or
a Thévenin equivalent circuit. From here on, we use the notation Rt exclusively, for
both Thévenin and Norton equivalents.

Computing the Thévenin Voltage

This section describes the computation of the Thévenin equivalent voltage vy for an
arbitrary linear resistive circuit containing independent voltage and current sources
and linear resistors. The Thévenin equivalent voltage is defined as follows:

The equivalent (Thévenin) source voltage is equal to the open-circuit voltage
present at the load terminals (with the load removed).

This states that to compute vy, it is sufficient to remove the load and to compute
the open-circuit voltage at the one-port terminals. Figure 3.43 illustrates that the open-
circuit voltage voc and the Thévenin voltage vt must be the same if the Thévenin
theorem is to hold. This is true because in the circuit consisting of vr and Rr, the
voltage voc must equal v, since no current flows through Ry and therefore the voltage
across Ry is zero. Kirchhoff’s voltage law confirms that

vt = R7(0) + voc = voc (3-26)

< LO4
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COMPUTING THE THEVENIN VOLTAGE

. Remove the load, leaving the load terminals open-circuited.

. Define the open-circuit voltage voc across the open load terminals.
. Apply any preferred method (e.g., node analysis) to solve for voc.
. The Thévenin voltage is vt = voc.

A W DN -

The actual computation of the open-circuit voltage is best illustrated by exam-
ples; there is no substitute for practice in becoming familiar with these computations.
To summarize the main points in the computation of open-circuit voltages, consider
the circuit of Figure 3.36, shown again in Figure 3.44 for convenience. Recall that
the equivalent resistance of this circuit was given by Rt = R3 +R; || R2. To compute
voc, We disconnect the load, as shown in Figure 3.45, and immediately observe that
no current flows through R3, since there is no closed-circuit connection at that branch.
Therefore, voc must be equal to the voltage across Ry, as illustrated in Figure 3.46.
Since the only closed circuit is the mesh consisting of vs, Ry, and Ry, the answer we
are seeking may be obtained by means of a simple voltage divider:

Ro
Ri+R

It is instructive to review the basic concepts outlined in the example by con-
sidering the original circuit and its Thévenin equivalent side by side, as shown in
Figure 3.47. The two circuits of Figure 3.47 are equivalent in the sense that the
current drawn by the load i is the same in both circuits, that current being given by

Rz 1 _ uT
Ri+Rs (Rs+Ri||[R2)+R. Rr+RL

Voc = VR2 = Vs

i, = s (3.27)

Ry Rq Rs+ R [ R,
it it
V. RS vs _Re
s 23 R SR TR R
9 1 2
A circuit Its Thévenin equivalent

Figure 3.47 A circuit and its Thévenin equivalent

The computation of Thévenin equivalent circuits is further illustrated in
Examples 3.19 and 3.20.
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< LO2

Vs Ry

AAAA
YVYVY
2

Figure 3.44

Ry Rs

Vs

AAAA

Figure 3.45

Figure 3.46

EXAMPLE 3.19 Thévenin Equivalent Voltage
(Open-Circuit Voltage)

Problem

Compute the open-circuit voltage voc in the circuit of Figure 3.48.

< LO4
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Solution
Known Quantities: Source voltage; resistor values.
Find: Open-circuit voltage voc.

Schematics, Diagrams, Circuits, and Given Data: V =12V;R; =1Q; R, =10Q;

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Following the Thévenin voltage Focus on Methodology box, first we remove the
load and label the open-circuit voltage voc. Next, we observe that since vy is equal to the
reference voltage (i.e., zero), the node voltage v, will be equal, numerically, to the open-circuit
voltage. If we define the other node voltage to be v, node analysis is the natural technique
for arriving at the solution. Figure 3.48 depicts the original circuit ready for node analysis.
Applying KCL at the two nodes, we obtain the following two equations:

V —v v

vV — U,
R1

Rs

=0

Substituting numerical values gives

12—v v

1 10

V— Vs

=0
10

V—UVa Va
10

~ 5 =

In matrix form we can write

12 v 12
-0.1 v | | O
Solving the above matrix equations yields v =
Voc = Vg — Vp = 7.059 V.

-0.1
0.15

10.588 V and v, = 7.059 V. Thus,

Comments: Note that the determination of the Thévenin voltage is nothing more than the
careful application of the basic circuit analysis methods presented in earlier sections. The only
difference is that we first need to properly identify and define the open-circuit load voltage.

CHECK YOUR UNDERSTANDING

Find the open-circuit voltage voc for the circuit of Figure 3.48 if R; =5 Q.

A 8’1 Jamsuy
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EXAMPLE 3.20 Load Current Calculation by Thévenin LO4
Equivalent Method
Problem
Compute the load current i by the Thévenin equivalent method in the circuit of Figure 3.49. a
w
R, I
Solution | () RZEE R
\Y
Known Quantities: Source voltage, resistor values.
Find: Load currenti. b
Figure 3.49
Schematics, Diagrams, Circuits, and Given Data: V =24V;| =3A;R; =4 Q; 9
a
Assumptions: Assume the reference node is at the bottom of the circuit. O
Analysis: \We first compute the Thévenin equivalent resistance. According to the method pro- RFE R, b3
posed earlier, we zero the two sources by shorting the voltage source and opening the current 3 T
source. The resulting circuit is shown in Figure 3.50. We can clearly see that o
Rr =Ri||IR; = 4(|12 =3 Q. b
Following the Thévenin voltage Focus on Methodology box, first we remove the load ;
Lo - A Figure 3.50
and label the open-circuit voltage voc. The circuit is shown in Figure 3.51. Next, we observe
that since vy is equal to the reference voltage (i.e., zero), the node voltage v, will be equal,
numerically, to the open-circuit voltage. In this circuit, a single nodal equation is required to O\Vy
arrive at the solution: R,
L+
V —v ) >3
SO OJS 2*
R1 R v
Substituting numerical values, we find that v, = voc = vr = 27 V. O Vp
Finally, we assemble the Thévenin equivalent circuit, shown in Figure 3.52, and reconnect =
the load resistor. Now the load current can be easily computed to be Figure 3.51
. 27
=" = L _3A
Rr+R. 3+6 20
Comments: |t may appear that the calculation of load current by the Thévenin equivalent w
method leads to more complex calculations than, say, node voltage analysis (you might wish P 60

to try solving the same circuit by node analysis to verify this). However, there is one major
advantage to equivalent circuit analysis: Should the load change (as is often the case in many
practical engineering situations), the equivalent circuit calculations still hold, and only the
(trivial) last step in the above example needs to be repeated. Thus, knowing the Thévenin
equivalent of a particular circuit can be very useful whenever we need to perform computations Figure 3.52 Thévenin
pertaining to any load quantity. equivalent

CHECK YOUR UNDERSTANDING

With reference to Figure 3.44, find the load current i by mesh analysis if vs = 10V,
R; =R3 =50, R, =100 ©, and R = 150 Q.

Find the Thévenin equivalent circuit seen by the load resistor R for the circuit in the figure on
the left.
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Find the Thévenin equivalent circuit for the circuit in the figure on the right.

One-port || i
network Y

Figure 3.53 lllustration of
Norton equivalent circuit

Short circuit
replacing the load

Figure 3.54 Computation
of Norton current

100 Q 20 Q 24Q a
- AMAM AAAA
YVYY YVVY
< 1 1 < <
50V 00 EA ZA 200 0ez R
b

‘AY0L0 = ta=90Ca
‘BOT =YY ING = 1 ="20a50¢g = 1Y 'V /58200 = I iSIamsuy

Computing the Norton Current

The computation of the Norton equivalent current is very similar in concept to that
of the Thévenin voltage. The following definition serves as a starting point:

Definition

The Norton equivalent current is equal to the short-circuit current that would
flow if the load were replaced by a short circuit.

An explanation for the definition of the Norton current is easily found by considering,
again, an arbitrary one-port network, as shown in Figure 3.53, where the one-port
network is shown together with its Norton equivalent circuit.

It should be clear that the current isc flowing through the short circuit replacing
the load is exactly the Norton current iy, since all the source current in the circuit of
Figure 3.53 must flow through the short circuit. Consider the circuit of Figure 3.54,
shown with a short circuit in place of the load resistance. Any of the techniques
presented in this chapter could be employed to determine the current isc. In this
particular case, mesh analysis is a convenient tool, once it is recognized that the
short-circuit current is a mesh current. Let i; and i, = igc be the mesh currents in the
circuit of Figure 3.54. Then the following mesh equations can be derived and solved
for the short-circuit current:

(R1 + R2)iy — Raisc = vs

—R2i1 + (R2 + R3)isc =0
An alternative formulation would employ node analysis to derive the equation

Us — v v v

Ri R + R3
leading to

R2R3
=
*RiR; + RoRs + RiR;
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COMPUTING THE NORTON CURRENT

. Replace the load with a short circuit.

. Define the short-circuit current isc to be the Norton equivalent current.
. Apply any preferred method (e.g., node analysis) to solve for igc.

. The Norton current is iy = isc.

A W DN -

Recognizing that isc = v/R3, we can determine the Norton current to be
v _ Us Rz
Rs  RiRs +RyR3 +RiRy

Thus, conceptually, the computation of the Norton current simply requires identifying
the appropriate short-circuit current. Example 3.21 further illustrates this idea.

iN =

101

< LO4

EXAMPLE 3.21 Norton Equivalent Circuit

Problem

Determine the Norton current and the Norton equivalent for the circuit of Figure 3.55.

Solution
Known Quantities: Source voltage and current; resistor values.
Find: Equivalent resistance Rr; Norton current iy = isc.

Schematics, Diagrams, Circuits, and Given Data: V =6V, =2A;R, =6Q;R, =3 Q;
Ry =2 Q.

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: We first compute the Thévenin equivalent resistance. We zero the two sources by
shorting the voltage source and opening the current source. The resulting circuit is shown in
Figure 3.56. We can clearly see that Rt = R;||R, + R3 =6(3+2=4 Q.

Next we compute the Norton current. Following the Norton current Focus on Methodology
box, first we replace the load with a short circuit and label the short-circuit current isc. The
circuit is shown in Figure 3.57 ready for node voltage analysis. Note that we have identified two
node voltages v; and v,, and that the voltage source requires that v, — v; = V. The unknown
current flowing through the voltage source is labeled i.

Now we are ready to apply the node analysis method.

1. The reference node is the ground node in Figure 3.57.

2. The two nodes v; and v, are also identified in the figure; note that the voltage source
imposes the constraint v, = v; + V. Thus only one of the two nodes leads to an indepen-
dent equation. The unknown current i provides the second independent variable, as you
will see in the next step.
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3. Applying KCL at nodes 1 and 2, we obtain the following set of equations:

I—ﬂ—i:O node 1

node 2

Next, we eliminate v; by substituting v; = v, — V in the first equation:
Uy — \Y

1

| — —i=0 node 1

and we rewrite the equations in matrix form, recognizing that the unknowns are i and v,.
Note that the short-circuit current is isc = v,/R3; thus we will seek to solve for v,.

1
1 — \Y
Ry [i]: '+ &
1 1 v2
1 4 0
L R2+R3

Substituting numerical values, we obtain

[ 1 0.1667 i | _ |3

| -1 0.8333 v || 0

and we can numerically solve for the two unknowns to find that i = 2.5 Aand v, = 3 V.
Finally, the Norton or short-circuit current is iy = isc = v,/R3 = 1.5 A.

Comments: In this example it was not obvious whether node analysis, mesh analysis, or
superposition might be the quickest method to arrive at the answer. It would be a very good
exercise to try the other two methods and compare the complexity of the three solutions. The
complete Norton equivalent circuit is shown in Figure 3.58.

LO4 >

CHECK YOUR UNDERSTANDING

Repeat Example 3.21, using mesh analysis. Note that in this case one of the three mesh currents
is known, and therefore the complexity of the solution will be unchanged.

Source Transformations

This section illustrates source transformations, a procedure that may be very useful
in the computation of equivalent circuits, permitting, in some circumstances, replace-
ment of current sources with voltage sources and vice versa. The Norton and Thévenin
theorems state that any one-port network can be represented by a voltage source in
series with a resistance, or by a current source in parallel with a resistance, and that
either of these representations is equivalent to the original circuit, as illustrated in
Figure 3.59.

An extension of this result is that any circuit in Thévenin equivalent form may
be replaced by a circuit in Norton equivalent form, provided that we use the following
relationship:

T = RTiN (328)
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One-port

) 2
V- i SR
network T il =7

Thévenin equivalent Norton equivalent

Figure 3.59 Equivalence of Thévenin and Norton representations

Thus, the subcircuit to the left of the dashed line in Figure 3.60 may be replaced by its filA R,
Norton equivalent, as shown in the figure. Then the computation of isc becomes very o o
straightforward, since the three resistors are in parallel with the current source and | vs 2R isc¢
therefore a simple current divider may be used to compute the short-circuit current. 7

Observe that the short-circuit current is the current flowing through R3; therefore,

1/Rs Us vsR2
~ 1/Ry +1/R; +1/R3R;  RyR3 +R;R3 + RiRy
which is the identical result obtained for the same circuit in the preceding section,
as you may easily verify. This source transformation method can be very useful, if v
employed correctly. Figure 3.61 shows how to recognize subcircuits amenable to R
such source transformations. Example 3.22 is a numerical example illustrating the
procedure.

isc = in (3.29)
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Figure 3.61 Subcircuits amenable to source transformation

EXAMPLE 3.22 Source Transformations <LO4

Problem

Compute the Norton equivalent of the circuit of Figure 3.62 using source transformations.

Solution
Known Quantities: Source voltages and current; resistor values.
Find: Equivalent resistance Rr; Norton current iy = isc.

Schematics, Diagrams, Circuits, and Given Data: V, =50V;| =0.5A;V, =5V,
R; =100 ; R, =100 ; R; = 200 ; R4 = 160 .
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Figure 3.62

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: First, we sketch the circuit again, to take advantage of the source transformation
technique; we emphasize the location of the nodes for this purpose, as shown in Figure 3.63.
Nodes a’ and b’ have been purposely separated from nodes a” and b” even though these are the
same pairs of nodes. We can now replace the branch consisting of V; and R;, which appears
between nodes a” and b”, with an equivalent Norton circuit with Norton current source Vy /R
and equivalent resistance R;. Similarly, the series branch between nodes a’ and b’ is replaced
by an equivalent Norton circuit with Norton current source V,/Rs and equivalent resistance
R3. The result of these manipulations is shown in Figure 3.64. The same circuit is now depicted
in Figure 3.65 with numerical values substituted for each component. Note how easy it is to
visualize the equivalent resistance: If each current source is replaced by an open circuit, we find

Rr = Ru|Rz||Rs|| + R4 = 200/|100]|100 + 160 = 200 €2

Ry a’ a Ry a
> R3
@) 3R R
V,
—  — N
b" -l- b' b
Figure 3.63
a al a
PN AAR;‘A
N 7 YVVY
Vi < A\ :i
HOESEENIOF LI O R
—>
b -L b' b
Figure 3.64
160Q a
AAAA
YVVY
L b

Figure 3.65
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The final step consists of adding the three currents (—0.025 A) and combining the three
parallel resistors into a single 40-$2 resistor. A further source transformation from Norton to
Thévenin permits the addition of the 40-<2 resistor to the 160-<2 resistor. Finally, transforming
back to Norton we have the final value of the Norton current to be —0.005 A. The final circuit
is shown in Figure 3.66.

Comments: It is not always possible to reduce a circuit as easily as was shown in this
example by means of source transformations. However, it may be advantageous to use source
transformation as a means of converting parts of a circuit to a different form, perhaps more
naturally suited to a particular solution method (e.g., node analysis).

0.005 A () 22000

Figure 3.66
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R

Experimental Determination of Thévenin and
Norton Equivalents

The idea of equivalent circuits as a means of representing complex and sometimes
unknown networks is useful not only analytically, but in practical engineering appli-
cations as well. It is very useful to have a measure, for example, of the equivalent
internal resistance of an instrument, so as to have an idea of its power requirements
and limitations. Fortunately, Thévenin and Norton equivalent circuits can also be
evaluated experimentally by means of very simple techniques. The basic idea is that
the Thévenin voltage is an open-circuit voltage and the Norton current is a short-
circuit current. It should therefore be possible to conduct appropriate measurements
to determine these quantities. Once vr and iy are known, we can determine the
Thévenin resistance of the circuit being analyzed according to the relationship

Ry = % (3.30)
IN
How are vt and iy measured, then?

Figure 3.67 illustrates the measurement of the open-circuit voltage and short-
circuit current for an arbitrary network connected to any load and also illustrates that
the procedure requires some special attention, because of the nonideal nature of any
practical measuring instrument. The figure clearly illustrates that in the presence of
finite meter resistance ry,, one must take this quantity into account in the computation
of the short-circuit current and open-circuit voltage; voc and isc appear between
quotation marks in the figure specifically to illustrate that the measured “open-circuit
voltage” and “short-circuit current” are in fact affected by the internal resistance of
the measuring instrument and are not the true quantities.

You should verify that the following expressions for the true short-circuit current
and open-circuit voltage apply (see the material on nonideal measuring instruments
in Section 2.8):

. . I'm
s m
N sc < + RT>

“ o Rr
vr = “voc” [ 1+ —
m

where iy is the ideal Norton current, vt is the Thévenin voltage, and Rt is the true
Thévenin resistance. If you recall the earlier discussion of the properties of ideal
ammeters and voltmeters, you will recall that for an ideal ammeter, rp,, should approach
zero, while in an ideal voltmeter, the internal resistance should approach an open

(3.31)
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Figure 3.67 Measurement of open-circuit voltage
and short-circuit current

circuit (infinity); thus, the two expressions just given permit the determination of
the true Thévenin and Norton equivalent sources from an (imperfect) measurement
of the open-circuit voltage and short-circuit current, provided that the internal meter
resistance rp, is known. Note also that, in practice, the internal resistance of voltmeters
is sufficiently high to be considered infinite relative to the equivalent resistance of
most practical circuits; on the other hand, it is impossible to construct an ammeter that
has zero internal resistance. If the internal ammeter resistance is known, however, a
reasonably accurate measurement of short-circuit current may be obtained.

One last comment is in order concerning the practical measurement of the inter-
nal resistance of a network. In most cases, it is not advisable to actually short circuit
a network by inserting a series ammeter as shown in Figure 3.67; permanent damage
to the circuit or to the ammeter may be a consequence. For example, imagine that
you wanted to estimate the internal resistance of an automotive battery; connecting
a laboratory ammeter between the battery terminals would surely result in immedi-
ate loss of the instrument. Most ammeters are not designed to withstand currents of
such magnitude. Thus, the experimenter should pay attention to the capabilities of
the ammeters and voltmeters used in measurements of this type, as well as to the
(approximate) power ratings of any sources present. However, there are established
techniques especially designed to measure large currents.

3.7 MAXIMUM POWER TRANSFER

The reduction of any linear resistive circuit to its Thévenin or Norton equivalent
form is a very convenient conceptualization, as far as the computation of load-related
quantities is concerned. One such computation is that of the power absorbed by the
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load. The Thévenin and Norton models imply that some of the power generated by
the source will necessarily be dissipated by the internal circuits within the source.
Given this unavoidable power loss, a logical question to ask is, How much power
can be transferred to the load from the source under the most ideal conditions? Or,
alternatively, what is the value of the load resistance that will absorb maximum power
from the source? The answer to these questions is contained in the maximum power
transfer theorem, which is the subject of this section.

The model employed in the discussion of power transfer is illustrated in
Figure 3.68, where a practical source is represented by means of its Thévenin equiva-
lent circuit. The maximum power transfer problem is easily formulated if we consider
that the power absorbed by the load P, is given by

PL=i’RL (3.32)

and that the load current is given by the familiar expression

vt

iL= 3.33
- RL+ Rt (3:33)
Combining the two expressions, we can compute the load power as
v}
Pp=——-R 3.34
L= R R (3.34)

To find the value of R that maximizes the expression for P, (assuming that V+ and
Ry are fixed), the simple maximization problem

dP,
—0 3.35
aR. (3.35)

must be solved. Computing the derivative, we obtain the following expression:

dPL  vf(RL4Rr)? — 205R (RL + Ry)

dRe (RL+ Rr)? (539
which leads to the expression

(RL+R71)>=2R (RL+R7) =0 (3.37)
It is easy to verify that the solution of this equation is

RL =Ry (3.38)

Thus, to transfer maximum power to a load, the equivalent source and load resistances
must be matched, that is, equal to each other. Figure 3.69 depicts a plot of the load
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Figure 3.70 Source
loading effects
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power divided by v% versus the ratio of R to Ry. Note that this value is maximum
when R. =Ry.

Graphical representation of maximum power transfer
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Figure 3.69 Graphical representation of maximum power transfer

This analysis shows that to transfer maximum power to a load, given a fixed
equivalent source resistance, the load resistance must match the equivalent source
resistance. What if we reversed the problem statement and required that the load
resistance be fixed? What would then be the value of source resistance that maximizes
the power transfer in this case? The answer to this question can be easily obtained by
solving the Check Your Understanding exercises at the end of the section.

Aproblem related to power transfer is that of source loading. This phenomenon,
which is illustrated in Figure 3.70, may be explained as follows: When a practical
voltage source is connected to a load, the current that flows from the source to the
load will cause a voltage drop across the internal source resistance vj,; as a conse-
guence, the voltage actually seen by the load will be somewhat lower than the open-
circuit voltage of the source. As stated earlier, the open-circuit voltage is equal to the
Thévenin voltage. The extent of the internal voltage drop within the source depends
on the amount of current drawn by the load. With reference to Figure 3.71, this internal
drop is equal to iRy, and therefore the load voltage will be

UV =0U1 — iRT (339)

It should be apparent that it is desirable to have as small an internal resistance as
possible in a practical voltage source.

In the case of a current source, the internal resistance will draw some current
away from the load because of the presence of the internal source resistance; this
current is denoted by i;, in Figure 3.70. Thus the load will receive only part of the
short-circuit current available from the source (the Norton current):

v

=iy~ (3.40)
T



Part | Circuits

+0O

|
!
I
|
|
!
> !
<
>
< |
SR | W
>
!
!
|
I
!
!

Figure 3.71 A simplified model of an audio system

It is therefore desirable to have a very large internal resistance in a practical current
source. You may wish to refer to the discussion of practical sources to verify that the
earlier interpretation of practical sources can be expanded in light of the more recent
discussion of equivalent circuits.

109

EXAMPLE 3.23 Maximum Power Transfer

Problem

Use the maximum power transfer theorem to determine the increase in power delivered to a
loudspeaker resulting from matching the speaker load resistance to the amplifier equivalent
source resistance.

Solution

Known Quantities: Source equivalent resistance Ry; unmatched speaker load resistance R y;
matched loudspeaker load resistance Ry .

Find: Difference between power delivered to loudspeaker with unmatched and matched loads,
and corresponding percentage increase.

Schematics, Diagrams, Circuits, and Given Data: Rt =8 Q; Ry =16 Q; R vy =8 Q.

Assumptions: The amplifier can be modeled as a linear resistive circuit, for the purposes of
this analysis.

Analysis: Imagine that we have unknowingly connected an 8- amplifier to a 16-2 speaker.
We can compute the power delivered to the speaker as follows. The load voltage is found by
using the voltage divider rule:

Riu 2

—vur

Ny = ——vr =
H Riu + Ry 73

and the load power is then computed to be

2 4 2
Pu= -t = 2T _ 0027802
Ru  9Rw

< LO5
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Let us now repeat the calculation for the case of a matched 8-<2 speaker resistance R . Let
the new load voltage be v,y and the corresponding load power be P . Then

and

2 2
viv _ 1 g

= > =0.0312502
Rim 4 Rum T

The increase in load power is therefore

_0.03125 —0.0278

AP = 100 = 12.5%
0.0278 x °

Comments: Inpractice, an audio amplifier and a speaker are not well represented by the simple
resistive Thévenin equivalent models used in the present example. Circuits that are appropriate
to model amplifiers and loudspeakers are presented in later chapters. The audiophile can find
further information concerning audio circuits in Chapters 8 and 13.

CHECK YOUR UNDERSTANDING

A practical voltage source has an internal resistance of 1.2 2 and generates a 30-V output under
open-circuit conditions. What is the smallest load resistance we can connect to the source if
we do not wish the load voltage to drop by more than 2 percent with respect to the source
open-circuit voltage?

A practical current source has an internal resistance of 12 k2 and generates a 200-mA output
under short-circuit conditions. What percentage drop in load current will be experienced (with
respect to the short-circuit condition) if a 200-Q2 load is connected to the current source?
Repeat the derivation leading to equation 3.38 for the case where the load resistance is fixed
and the source resistance is variable. That is, differentiate the expression for the load power,
P_ with respect to Rs instead of R_. What is the value of Rs that results in maximum power
transfer to the load?

0= 54 ‘%P9'T ‘T 8'8G Slemsuy

3.8 NONLINEAR CIRCUIT ELEMENTS

Until now the focus of this chapter has been on linear circuits, containing ideal voltage
and currentsources, and linear resistors. In effect, one reason for the simplicity of some
of the techniques illustrated earlier is the ability to utilize Ohm’s law as a simple, linear
description of the i-v characteristic of an ideal resistor. In many practical instances,
however, the engineer is faced with elements exhibiting a nonlinear i-v characteristic.
This section explores two methods for analyzing nonlinear circuit elements.

Description of Nonlinear Elements

There are a number of useful cases in which a simple functional relationship exists
between voltage and current in a nonlinear circuit element. For example, Figure 3.72



Part | Circuits

depicts an element with an exponential i-v characteristic, described by the following
equations:

av

i = lge v>0

3.41
i=—lp v<0 ( )

There exists, in fact, a circuit element (the semiconductor diode) that very nearly
satisfies this simple relationship. The difficulty in the i-v relationship of equation
3.41 is that it is not possible, in general, to obtain a closed-form analytical solution,
even for a very simple circuit.

With the knowledge of equivalent circuits you have just acquired, one approach
to analyzing a circuit containing a nonlinear element might be to treat the nonlinear
element as a load and to compute the Thévenin equivalent of the remaining circuit, as
shown in Figure 3.73. Applying KVL, the following equation may then be obtained:

vt = Rriy + vy (3.42)

To obtain the second equation needed to solve for both the unknown voltage vy
and the unknown current iy, it is necessary to resort to the i-v description of the
nonlinear element, namely, equation 3.41. If, for the moment, only positive voltages
are considered, the circuit is completely described by the following system:

Iy = lge*™ v >0
T * (3.43)
vt = Ryly + vy

The two parts of equation 3.43 represent a system of two equations in two unknowns;
however, one of these equations is nonlinear. If we solve for the load voltage and
current, for example, by substituting the expression for iy in the linear equation, we
obtain the following expression:

v = Ryloe®™ + vy (3.44)
or
Uy = vr — Rylge®™ (345)

Equations 3.44 and 3.45 do not have a closed-form solution; that is, they are tran-
scendental equations. How can vy be found? One possibility is to generate a solution
numerically, by guessing an initial value (for example, v, = 0) and iterating until a
sufficiently precise solution is found. This solution is explored further in the home-
work problems. Another method is based on a graphical analysis of the circuit and is
described in the following section.

Graphical (Load-Line) Analysis of Nonlinear Circuits

The nonlinear system of equations of the previous section may be analyzed in a
different light, by considering the graphical representation of equation 3.42, which
may also be written as

= — vy - (3.46)
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Vr

Figure 3.74 Load line
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X RT X RT
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Figure 3.75 Graphical solution of equations 3.44 and 3.45

We notice, first, that equation 3.46 describes the behavior of any load, linear or
nonlinear, since we have made no assumptions regarding the nature of the load voltage
and current. Second, it is the equation of a line in the iyvy plane, with slope —1/Rt
and iy intercept Vr /Rr. This equation is referred to as the load-line equation; its
graphical interpretation is very useful and is shown in Figure 3.74.

The load-line equation is but one of two i-v characteristics we have available,
the other being the nonlinear-device characteristic of equation 3.41. The intersection
of the two curves yields the solution of our nonlinear system of equations. This result
is depicted in Figure 3.75.

Finally, another important point should be emphasized: The linear network
reduction methods introduced in the preceding sections can always be employed to
reduce any circuit containing a single nonlinear element to the Thévenin equivalent
form, as illustrated in Figure 3.76. The key is to identify the nonlinear element and to
treat it as a load. Thus, the equivalent-circuit solution methods developed earlier can
be very useful in simplifying problems in which a nonlinear load is present. Examples
3.24 and 3.25 further illustrate the load-line analysis method.

Ry
—<>—|\v i L
+ +
Linear v, | Nonlinear vy v, | Nonlinear
network load load

Figure 3.76 Transformation of nonlinear circuit of Thévenin equivalent

EXAMPLE 3.24 Nonlinear Load Power Dissipation

Problem

Alinear generator is connected to a nonlinear load in the configuration of Figure 3.76. Determine
the power dissipated by the load.
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Solution

Known Quantities: Generator Thévenin equivalent circuit; load i-v characteristic and load
line.

Find: Power dissipated by load Py.
Schematics, Diagrams, Circuits, and Given Data: Rt = 30 Q; vy =15 V.
Assumptions: None.

Analysis: \We can model the circuit as shown in Figure 3.76. The objective is to determine the
voltage vy and the current iy, using graphical methods. The load-line equation for the circuit is
given by the expression

i = —ivx +or
Rt Rr
or
ix =———U+ 1_5
30 30

This equation represents a line in the iy vy plane, with iy interceptat 0.5 Aand v, interceptat 15 V.
To determine the operating point of the circuit, we superimpose the load line on the device i-v
characteristic, as shown in Figure 3.77, and determine the solution by finding the intersection
of the load line with the device curve. Inspection of the graph reveals that the intersection point
is given approximately by

ix=014A v =11V
and therefore the power dissipated by the nonlinear load is

P, =014 x 11 =154 W
It is important to observe that the result obtained in this example is, in essence, a description
of experimental procedures, indicating that the analytical concepts developed in this chapter
also apply to practical measurements.
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Figure 3.77
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CHECK YOUR UNDERSTANDING

Example 3.24 demonstrates a graphical solution method. Sometimes it is possible to determine
the solution for a nonlinear load by analytical methods. Imagine that the same generator of
Example 3.24 is now connected to a “square law” load, that is, one for which v, = Bi2, with
B = 0.1. Determine the load current iy. (Hint: Assume that only positive solutions are possible,
given the polarity of the generator.)

YV G0 = I :Jamsuy

Load current, A

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

0

L06> EXAMPLE 3.25 Load-Line Analysis

Problem

A temperature sensor has a nonlinear i-v characteristic, shown in the figure on the left. The
load is connected to a circuit represented by its Thévenin equivalent circuit. Determine the
current flowing through the temperature sensor. The circuit connection is identical to that of
Figure 3.76.

Solution
Known Quantities: R = 6.67 Q; V1 = 1.67 V. iy = 0.14 — 0.03v2.
Find: iy.

Analysis: The figure on the left depicts the device i-v characteristic. The figure on the right
depicts a plot of both the device i-v characteristic and the load line obtained from

. 1 uT
Iy=——uvy+ — = —0.150, + 0.25
X RT X RT X
Nonlinear load i-v characteristic 02 Graphical solution by load-line analysis
- I I I I I
\\ |— Nonlinearloadi-vcurvel_
0.18 | —— Loadline
0.16
< 014
o 0.12 AN
3
\ -g 0.1
- 0.08
N\
\ 0.06 \ \‘
0.04 A\
0.02
N\
AN
0 02 04 06 08 1 12 14 16 18 2 00 02 04 06 08 1 12 14 16 18 2
Load voltage, V Load voltage, V

@ (b)
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The solution for v, and i, occurs at the intersection of the device and load-line characteristics:
iy ~012A v, ~09V.
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CHECK YOUR UNDERSTANDING

Knowing that the load i-v characteristic is given exactly by the expression iy = 0.14
—0.03v2, determine the load current iy. (Hint: Assume that only positive solutions are possible,
given the polarity of the generator.)

V OTT'0 = "1 ilamsuy

Conclusion

The objective of this chapter is to provide a practical introduction to the analysis of linear
resistive circuits. The emphasis on examples is important at this stage, since we believe that
familiarity with the basic circuit analysis techniques will greatly ease the task of learning more
advanced ideas in circuits and electronics. In particular, your goal at this point should be to
have mastered six analysis methods, summarized as follows:

1.,2. Node voltage and mesh current analysis. These methods are analogous in concept;
the choice of a preferred method depends on the specific circuit. They are generally
applicable to the circuits we analyze in this book and are amenable to solution by
matrix methods.

3. The principle of superposition. This is primarily a conceptual aid that may simplify the
solution of circuits containing multiple sources. It is usually not an efficient method.

4. Thévenin and Norton equivalents. The notion of equivalent circuits is at the heart of
circuit analysis. Complete mastery of the reduction of linear resistive circuits to either
equivalent form is a must.

5. Maximum Power transfer. Equivalent circuits provide a very clear explanation of how
power is transferred from a source to a load.

6. Numerical and graphical analysis. These methods apply in the case of nonlinear
circuit elements. The load-line analysis method is intuitively appealing and is
employed again in this book to analyze electronic devices.

The material covered in this chapter is essential to the development of more advanced
techniques throughout the remainder of the book.

HOMEWORK PROBLEMS

Sections 3.2 through 3.4:
Node Mesh Analysis

N0,

AAA
\A
w
)

3.1 Use node voltage analysis to find the voltages V; and
V, for the circuit of Figure P3.1.

2Q

AAAA

\AAAS

3.2 Using node voltage analysis, find the voltages V; and
V, for the circuit of Figure P3.2.
Figure P3.1

|||—
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20v(®) 200 g 300 300Q

Figure P3.2

3.3 Using node voltage analysis in the circuit of Figure
P3.3, find the voltage v across the 0.25-ohm resistance.

05Q
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.
<>2A v § 0250 0.339<§
Figure P3.3

3.4 Using node voltage analysis in the circuit of Figure
P3.4, find the current i through the voltage source.

05Q
MW
050 3V
A (.\
\AAAZ u
—_—
i
@) 2A $ o250 0B
Figure P3.4

3.5 Inthe circuit shown in Figure P3.5, the mesh
currents are

Iy =5A I, =3A I3=7A

Determine the branch currents through:
a. Ry. b. R,. c. Rs.

Resistive Network Analysis

Figure P3.5

3.6 In the circuit shown in Figure P3.5, the source and
node voltages are

Vs1 = Vs, =110V
Va =103V Vg = —-107V

Determine the voltage across each of the five resistors.

3.7 Using node voltage analysis in the circuit of Figure
P3.7, find the currentsi; and i». Ry =3 Q; R, =1 Q;

R; =6 Q.
Ry
AAAA
YYVY
< <
1A w;;rel w;;Rg 2A
Figure P3.7

3.8 Use the mesh analysis to determine the currents iy
and i, in the circuit of Figure P3.7.

3.9 Using node voltage analysis in the circuit of Figure
P3.9, find the current i through the voltage source. Let
R; =100 2; R, =5 Q; R3 = 200 2; R4 =50 ;
V=50V;I=02A

Ry
—— WW—————
2R; ([ R:%
Figure P3.9

3.10 Using node voltage analysis in the circuit of Figure
P3.10, find the three indicated node voltages. Let



I =0.2A; Ry =200 Q; R, =75 Q; R =25 Q;
Ry =50Q; Rs =100 Q; V =10 V.

Figure P3.10

3.11 Using node voltage analysis in the circuit of Figure
P3.11, find the current i drawn from the independent
voltage source. LetV =3V; Ry = @ R, = 1 ;

Re=1URi=1 QR =1Q;1=05A

Rl Vl Fh V2 Fh V3

Figure P3.11

3.12 Find the power delivered to the load resistor R, for
the circuit of Figure P3.12, using node voltage
analysis, giventhatR; =2 Q,Ry =R, =R, =4 Q,
Vs =4V,andls =05A.

YOREL £ "o

Figure P3.12

3.13

a. For the circuit of Figure P3.13, write the node equations
necessary to find voltages Vi, V,, and V3. Note that

G = 1/R = conductance. From the results, note the
interesting form that the matrices [G] and [I] have taken in
the equation [G] [V] = [I] where

Part | Circuits 117

g1 Q12 Oz - O L

921 Q22 -+ -+ O I,
[G]l=| 9= K and [I]=| :

Ot On2 Onn I,

b. Write the matrix form of the node voltage equations
again, using the following formulas:

gii = y_ conductances connected to node i

gij = —y_ conductances shared by nodes i and j

Ii = ) all source currents into node i

Figure P3.13

3.14 Using mesh current analysis, find the currents iy
and i, for the circuit of Figure P3.14.

1Q 2Q
AAA A
VVWWy VWy

H
<
i
)
AAAA
VVVY

30 @ =2v

Figure P3.14

3.15 Using mesh current analysis, find the currents 1,
and |, and the voltage across the top 10-2 resistor in
the circuit of Figure P3.15.
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20Q

15Q

40Q

10Q

Figure P3.15

3.16 Using mesh current analysis, find the voltage, v,
across the 3- resistor in the circuit of Figure P3.16.

1Q

Resistive Network Analysis

2Q

1Q

3Q

2Q
Figure P3.17
3.18 Using mesh current analysis, find the voltage, v,
across the source in the circuit of Figure P3.18.
2Q 10 30
AW AW AW
L +

2 VCD § 30 v C) 2A 20

Figure P3.18

3.19 a. For the circuit of Figure P3.19, write the mesh
equations in matrix form. Notice the form of the [R]
and [V] matrices in the [R] [I] = [V], where

T2
fa I

[R] = 31
L i 2

3

1n

on

rnn

\'A
Vs

and [V] =

Vi

b. Write the matrix form of the mesh equations again by
using the following formulas:

rii = > resistances around loop i

rij = —_ resistances shared by loops i and j

+

I <

Vi = ) source voltages around loop i

Figure P3.16

3.17 Using mesh current analysis, find the currents 1y,
I,, and I3 in the circuit of Figure P3.17 (assume
polarity according to I,).

Ry

AAAA

\AAAS

)

AAA
\AAAJ

Ri T)

AMA
\AAAS
ey

2

Figure P3.19



3.20 For the circuit of Figure P3.20, use mesh current
analysis to find the matrices required to solve the
circuit, and solve for the unknown currents. Hint: You
may find source transformations useful.

\A W vV, “‘}v\f}v Vs
40 |
< 3
2a() D 260 D D 80
iy i, av(® E

Figure P3.20

3.21 Inthe circuit in Figure P3.21, assume the source
voltage and source current and all resistances are
known.

a. Write the node equations required to determine the
node voltages.

b. Write the matrix solution for each node voltage in
terms of the known parameters.

Ry
A
|S YVVy

[
Py
AA
YVYVY

Figure P3.21

3.22 For the circuit of Figure P3.22 determine

a. The most efficient way to solve for the voltage
across Rsz. Prove your case.
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b. The voltage across Rs.
V51 = Vs, = 110V

R; = 500 m R, = 167 mS2
R; = 700 mQ
R4 = 200 mQ Rs = 333 mQ

AAAA
VVVY
P

VVVY

Figure P3.22

3.23 In the circuit shown in Figure P3.23, Vs, and R
model a temperature sensor, that is,

Vso = KT k=10V/°C
Vs1 =24V Rs =Ry = 12kQ
R, =3k R; = 10 kQ

Ry = 24 kQ Vrs = —2.524V

The voltage across Rz, which is given, indicates the
temperature. Determine the temperature.

<
R 3
< F%

AAAA
-+ +
V <
(—) = Rs3

VVVY

\AAAJ
*Vrs

VVVY

+)
t

Figure P3.23

3.24 Using KCL, perform node analysis on the circuit
shown in Figure P3.24, and determine the voltage
across R4. Note that one source is a controlled voltage
source! Let Vg =5V; Ay =70; Ry = 2.2 kQ;

R, = 1.8kQ; Ry = 6.8 kQ; Ry =220 Q.
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Figure P3.24

3.25 Using mesh current analysis, find the voltage v
across Ry in the circuit of Figure P3.25. Let
V51 = 12V, Vsz :5V, R1 :509, Rz = R3 :ZOQ,
Ry =10 Q; Rs = 15 Q.

Figure P3.25

3.26 Use mesh current analysis to solve for the voltage
v across the current source in the circuit of Figure
P3.26. LetV =3V; |1 =05A; Ry =20 Q;

R, =30Q; Rz =10 Q2; R4, =30 Q; Rs =20 Q.

<
AMA
W
P2
Py

Figure P3.26

3.27 Use mesh current analysis to find the current i in
the circuit of Figure P3.27. LetV = 5.6 V; Ry =50 ;
R, =1.2kQ2; R3 =330 Q; gn = 0.2S; Ry = 440 Q.

Resistive Network Analysis

Figure P3.27

3.28 Using mesh current analysis, find the current i
through the voltage source in the circuit of Figure P3.9.

3.29 Using mesh current analysis, find the current i in
the circuit of Figure P3.10.

3.30 Using mesh current analysis, find the current i in
the circuit of Figure P3.30.

10

1V4Q 1/3Q

Figure P3.30

3.31 Using mesh current analysis, find the voltage gain
A, = vp/v; in the circuit of Figure P3.31.

Figure P3.31

3.32 In the circuit shown in Figure P3.32:

Vs1 = Vs, =450V

Ry =Rs =0.25Q

R =8Q R, =5Q
R3 =32Q

Determine, using KCL and node analysis, the voltage
across Ry, Ry, and Rs.
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Figure P3.32

3.33 In the circuit shown in Figure P3.33, F; and F, are
fuses. Under normal conditions they are modeled as a
short circuit. However, if excess current flows through
a fuse, its element melts and the fuse “blows” (i.e., it
becomes an open circuit).

Vs1 = Vs, =115V
Ri=R;=5Q
R; = Rg = 200 mQ

R; =10 Q

Normally, the voltages across Ry, R,, and R3 are 106.5,
—106.5, and 213.0 V. If F; now blows, or opens,
determine, using KCL and node analysis, the new
voltages across Ry, Ry, and Rs.

AAAA
\AAAS
P

Figure P3.33

3.34 In the circuit shown in Figure P3.33, F; and F, are
fuses. Under normal conditions they are modeled as a
short circuit. However, if excess current flows through
a fuse, it “blows” and the fuse becomes an open circuit.

Vs; = Vs, = 120V
Ri=R,=2%
R; = Rs = 250 mQ

Rs=8Q

If F; blows, or opens, determine, using KCL and node
analysis, the voltages across Ry, Ry, R3, and F;.

3.35 The circuit shown in Figure P3.35 is a simplified
DC version of an AC three-phase Y-Y electrical
distribution system commonly used to supply
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industrial loads, particularly rotating machines.

Vs = Ve = Vo3 = 170V
Rwi = Rwz =Ry, =0.7 Q
RI=19Q R, =23Q
Ry=11Q

a. Determine the number of unknown node voltages
and mesh currents.

b. Compute the node voltages v}, v;, and vg. With
respect to v;,.

V3 V‘3

Figure P3.35

3.36 The circuit shown in Figure P3.35 is a simplified
DC version of an AC three-phase Y-Y electrical
distribution system commonly used to supply
industrial loads, particularly rotating machines.

Vg1 = Vs = V53 =170V

Rwi =Rw2 =Rw3 =0.7Q

Ri=19¢Q R, =23¢Q

Ry =11Q
Node analysis with KCL and a ground at the terminal
common to the three sources gives the only unknown
node voltage Vy = 28.94 V. If the node voltages in a
circuit are known, all other voltages and currents in the

circuit can be determined. Determine the current
through and voltage across R;.

3.37 The circuit shown in Figure P3.35 is a simplified
DC version of a typical three-wire, three-phase AC
Y-Y distribution system. Write the mesh (or loop)
equations and any additional equations required to
determine the current through R; in the circuit shown.

3.38 Determine the branch currents, using KVL and
loop analysis in the circuit of Figure P3.35.

Vso = Vs3 =110V Vs; =90V
Ri=79Q Ry =Rs3=3.7Q
RWl = RWZ = Rw3 =13Q
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3.39 In the circuit shown in Figure P3.33, F; and F, are
fuses. Under normal conditions they are modeled as a
short circuit. However, if excess current flows through
a fuse, its element melts and the fuse blows (i.e., it
becomes an open circuit).

Vs = Vs, =115V
Ri=R,=5Q
Rs = Rs = 200 mQ2

R; =10 Q

Determine, using KVL and a mesh analysis, the
voltages across Ry, Rz, and Rz under normal conditions
(i.e., no blown fuses).

Section 3.5: The Principle of Super-
position

3.40 With reference to Figure P3.40, determine the
current through R; due only to the source Vsj.

Vg, =110V Vs, =90V
Ri=5602 R,=235kQ
R; =810

Figure P3.40

3.41 Determine, using superposition, the voltage across
R in the circuit of Figure P3.41.

lb=12A Rg=1Q
Vo =12V Rg =039
R=023Q
Re
ONEL RS
-< + <
Ve

Figure P3.41

3.42 Using superposition, determine the voltage across
R, in the circuit of Figure P3.42.

Vs1 = Vs, =12V
Ri=R;=R;=1kQ

Resistive Network Analysis

Ow
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Figure P3.42

3.43 With reference to Figure P3.43, using
superposition, determine the component of the current
through R that is due to Vs;.

Vs1 = Vg, =450V
Ri=7Q R, =5Q
R; =10 Q Ri=Rs=1Q

VVVY

Figure P3.43

3.44 The circuit shown in Figure P3.35 is a simplified
DC version of an AC three-phase electrical distribution
system.

Vs1 = Vs = Vg3 =170V
Rwi =Rw2 =Rwz =0.7Q
Ri=19Q R, =23Q
R;=11Q
To prove how cumbersome and inefficient (although

sometimes necessary) the method is, determine, using
superposition, the current through R;.

3.45 Repeat Problem 3.9, using the principle of
superposition.

3.46 Repeat Problem 3.10, using the principle of
superposition.

3.47 Repeat Problem 3.11, using the principle of
superposition.

3.48 Repeat Problem 3.23, using the principle of
superposition.

3.49 Repeat Problem 3.25, using the principle of
superposition.

3.50 Repeat Problem 3.26, using the principle of
superposition.



Section 3.6: One-Port Networks
and Equivalent Circuits

3.51 Find the Thévenin equivalent circuit as seen by the
3-Q resistor for the circuit of Figure P3.51.

5Q 1Q
—WW AW ———o—

vy
A

C) 36V ‘3 40 30 Z

Figure P3.51

3.52 Find the voltage v across the 3- resistor in the
circuit of Figure P3.52 by replacing the remainder of
the circuit with its Thévenin equivalent.

2Q

MWW
20 3V
) R D
—_ O

YVVy

ZAGD 4Q 3Q

AAMA

Figure P3.52

3.53 Find the Norton equivalent of the circuit to the left
of the 2-Q resistor in the Figure P3.53.

1Q 1Q 3Q

2v(*_') 3Q () 2A 20

Figure P3.53
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3.54 Find the Norton equivalent to the left of terminals
a and b of the circuit shown in Figure P3.54.

5Q
AA
A\
1Q 3Q
A ° A o a
<+> 8V 2Q
o b

Figure P3.54

3.55 Find the Thévenin equivalent circuit that the load
sees for the circuit of Figure P3.55.

1kQ 1Q 3Q

10v(® 1kQ (@) 10mA IR

Figure P3.55

3.56 Find the Thévenin equivalent resistance seen by
the load resistor R, in the circuit of Figure P3.56.

50 Q
—— W——————
50 Q 50 Q
+—W— -

@) ® wo T § R

Figure P3.56

3.57 Find the Thévenin equivalent of the circuit
connected to R, in Figure P3.57.
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8Q 2Q 8Q

2v(® 80 30 R

Figure P3.57

3.58 Find the Thévenin equivalent of the circuit
connected to R, in Figure P3.58, where R; = 10 €,
R,=20Q,R;=01Q,andR, =1 2.

Ry R R, a

15V D Ry

YVVY

R, R

AAAA

Ry Ry Ry

Figure P3.58

3.59 The Wheatstone bridge circuit shown in Figure
P3.59 is used in a number of practical applications.
One traditional use is in determining the value of an
unknown resistor Ry.
Find the value of the voltage Va, = V4 — Vy in terms of
R, Ry, and Vs.
IfR=1kQ, Vs =12V and V, = 12 mV, what is the
value of R,?

Figure P3.59

3.60 It is sometimes useful to compute a Thévenin
equivalent circuit for a Wheatstone bridge. For the
circuit of Figure P3.60,

a. Find the Thévenin equivalent resistance seen by the
load resistor Ry.

Resistive Network Analysis

b. |fV3 =12V,R; =R, = R3 =1 kQ, and Ry is the
resistance found in part b of the previous problem,
use the Thévenin equivalent to compute the power
dissipated by R, , if R, = 500 .

c. Find the power dissipated by the Thévenin
equivalent resistance Ry with R. included in the
circuit.

d. Find the power dissipated by the bridge without the
load resistor in the circuit.

Vg — V, AW o Vp

Figure P3.60

3.61 The circuit shown in Figure P3.61 is in the form of
what is known as a differential amplifier. Find the
expression for v in terms of v, and v, using
Thévenin’s or Norton’s theorem. Assume that the
voltage sources v; and v, do not source any current.

i i

— =
AAAA AAAA
YVVY YVVY

2Q 2Q

Figure P3.61

3.62 Find the Thévenin equivalent resistance seen by
resistor R in the circuit of Figure P3.5. Compute the



Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rj is the load.

3.63 Find the Thévenin equivalent resistance seen by
resistor Rs in the circuit of Figure P3.10. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rs is the load.

3.64 Find the Thévenin equivalent resistance seen by
resistor Rs in the circuit of Figure P3.11. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rs is the load.

3.65 Find the Thévenin equivalent resistance seen by
resistor R in the circuit of Figure P3.23. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rj is the load.

3.66 Find the Thévenin equivalent resistance seen by
resistor R4 in the circuit of Figure P3.25. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when R, is the load.

3.67 Find the Thévenin equivalent resistance seen by
resistor Rs in the circuit of Figure P3.26. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rs is the load.

3.68 Find the Thévenin equivalent resistance seen by
resistor R in the circuit of Figure P3.41. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when R is the load.

3.69 Find the Thévenin equivalent resistance seen by
resistor R in the circuit of Figure P3.43. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when Rj is the load.

3.70 In the circuit shown in Figure P3.70, Vs models the
voltage produced by the generator in a power plant,
and Rs models the losses in the generator, distribution
wire, and transformers. The three resistances model the
various loads connected to the system by a customer.
How much does the voltage across the total load
change when the customer connects the third load Rz
in parallel with the other two loads?

Vg =110V Rs =19 mQ
R; =R, =930 mQ R; = 100 mQ
Rs
2R 3R 3R
+ <> <> <>
Vs
Power Customer
plant

Figure P3.70
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3.71 Inthe circuit shown in Figure P3.71, Vs models the
voltage produced by the generator in a power plant,
and Rs models the losses in the generator, distribution
wire, and transformers. Resistances R, R,, and R3
model the various loads connected by a customer. How
much does the voltage across the total load change
when the customer closes switch Sz and connects the
third load R; in parallel with the other two loads?

Vs =450V Rs =19 mQ
T Rs |
H WW—
] i JK%
: !
1 + !
:( % iZR 3R 3R
A
: !
i :
' :
A Power system

Figure P3.71

3.72 Anonideal voltage source is modeled in Figure
P3.72 as an ideal source in series with a resistance that
models the internal losses, that is, dissipates the same
power as the internal losses. In the circuit shown in
Figure P3.72, with the load resistor removed so that
the current is zero (i.e., no load), the terminal voltage
of the source is measured and is 20 V. Then, with
R = 2.7 k2, the terminal voltage is again measured
and is now 18 V. Determine the internal resistance and
the voltage of the ideal source.

Nonideal source

Figure P3.72

Section 3.7: Maximum Power Transfer

3.73 The equivalent circuit of Figure P3.73 has
Vr =12V Rr=8Q

If the conditions for maximum power transfer exist,
determine
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a. The value of R,.
b. The power developed in R, .

c. The efficiency of the circuit, that is, the ratio of
power absorbed by the load to power supplied by
the source.

Vi R

Figure P3.73

3.74 The equivalent circuit of Figure P3.73 has
Vi =35V Rr =600 @

If the conditions for maximum power transfer exist,
determine

a. The value of R,.
b. The power developed in R,.
c. The efficiency of the circuit.

3.75 Anonideal voltage source can be modeled as an
ideal voltage source in series with a resistance
representing the internal losses of the source, as shown

in Figure P3.75. A load is connected across the
terminals of the nonideal source.

Vs =12V Rs =0.3Q
a. Plot the power dissipated in the load as a function

of the load resistance. What can you conclude from
your plot?

b. Prove, analytically, that your conclusion is valid in
all cases.

Figure P3.75

Section 3.8: Nonlinear Circuit Elements

3.76 \Write the node voltage equations in terms of v; and
v, for the circuit of Figure P3.76. The two nonlinear
resistors are characterized by

ia = ng

ipb = Ug + 10vy

Resistive Network Analysis

Do not solve the resulting equations.

!
1A<> §§1Q Rb|:|:b C)ZGA

Figure P3.76

3.77 We have seen that some devices do not have a
linear current—voltage characteristic for all i and v;
that is, R is not constant for all values of current and
voltage. For many devices, however, we can estimate
the characteristics by piecewise linear approximation.
For a portion of the characteristic curve around an
operating point, the slope of the curve is relatively
constant. The inverse of this slope at the operating
point is defined as incremental resistance Rinc:

v

AV
Rinc = a ~

[Vo.lo] Al [Vo,lol

where [V, lo] is the operating point of the circuit.

a. For the circuit of Figure P3.77, find the operating
point of the element that has the characteristic
curve shown.

b. Find the incremental resistance of the nonlinear
element at the operating point of part a.

c. If V7 isincreased to 20V, find the new operating
point and the new incremental resistance.

Ry

\ () Nonlinear
= element

Vr=15V Rr =200 Q

| =0.0025V 2

Figure P3.77



3.78 The device in the circuit in Figure P3.78 is an
induction motor with the nonlinear i-v characteristic
shown. Determine the current through and the voltage
across the nonlinear device.

Vg =450V R=9Q
607\\\\\\\\\ TT T T T T T 17T TTT1 1T 11 T11]
B STALL ]
40— B -
< | 1
- f 1
— 20 —]
E “E
150 300 450
Vo (V) ——
(€) (b)

Figure P3.78

3.79 The nonlinear device in the circuit shown in Figure

P3.79 has the i-v characteristic given.
Vs =Viy =15V R=Rg=60Q

Determine the voltage across and the current through
the nonlinear device.

@
30:\\\\\\\\\\\\\HH\HHHH:
I |
E ! :
< 1op E

0.5 1.0
Vp (V) ——

(b)

=
&)

Figure P3.79
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3.80 The resistance of the nonlinear device in the circuit
in Figure P3.80 is a nonlinear function of pressure. The
i-v characteristic of the device is shown as a family of
curves for various pressures. Construct the DC load
line. Plot the voltage across the device as a function of
pressure. Determine the current through the device
when P = 30 psig.

Vs =V =25V R=Reg =125Q

@

o

20

N
o
L

ib (MA)—»

10

1.0 2.0
Vp (V) —=

(b)

w
o

Figure P3.80

3.81 The nonlinear device in the circuit shown in Figure
P3.81 has the i-v characteristic

ip = |OevD/VT

lb=10%A Vi =26mV
Vs =Vmy =15V
R =Re =60 Q

Determine an expression for the DC load line. Then
use an iterative technique to determine the voltage
across and current through the nonlinear device.

Figure P3.81
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3.82 The resistance of the nonlinear device in the where, at room temperature,
circuits shown in Figure P3.82 is a nonlinear function
of pressure. The i-v characteristic of the device is lsar = 10°22 A

shown as a family of curves for various pressures. K _ 0.0259 V
Construct the DC load line and determine the current @
through the device when P = 40 psig. a. Given the circuit of Figure P3.83, use graphical
analysis to find the diode current and diode voltage
Vg =Viy =25V R=Re =125Q .
s=Vm=25 « =125 ifRr =22 QandVy =12V,

b. Write a computer program in MATLAB™ (or in
any other programming language) that will find the
diode voltage and current using the flowchart
shown in Figure P3.83.

@ Start

V- _
30 VD1=_2TvVD2_VT

N
o
Ll

1.0 2.0 30
Vp (V) —=
(b)
Figure P3.82
3.83 The voltage-current (ip — vp) relationship of a A °
semiconductor diode may be approximated by the va : v
expression D o

. V|
ip = lsar (EXp { kT[;q} - 1) Figure P3.83
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AC NETWORK ANALYSIS

hapter 4 is dedicated to two main ideas: energy storage (dynamic) circuit

elements and the analysis of AC circuits excited by sinusoidal voltages and

currents. First, dynamic circuit elements, that is, capacitors and inductors, are

defined. These are circuit elements that are described by an i-v characteristic
of differential or integral form. Next, time-dependent signal sources and the concepts
of average and root-mean-square (rms) values are introduced. Special emphasis is
placed on sinusoidal signals, as this class of signals is especially important in the
analysis of electric circuits (think, e.g., of the fact that all electric power for residential
and industrial uses comes in sinusoidal form). Once these basic elements have been
presented, the focus shifts to how to write circuit equations when time-dependent
sourcesanddynamicelementsare present. Theequationsthatresult fromtheapplication
of KVL and KCL take the form of differential equations. The general solution of
these differential equations is covered in Chapter 5. The remainder of the chapter
discusses one particular case: the solution of circuit differential equations when the
excitation is a sinusoidal voltage or current; a very powerful method, phasor anal-
ysis, is introduced along with the related concept of impedance. This methodology
effectively converts the circuit differential equations to algebraic equations in which
complex algebranotation is used to arrive at the solution. Phasor analysis is then used to

129
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MAKE THE
CONNECTION

Fluid (Hydraulic)
Capacitance

We continue the analogy
between electrical and
hydraulic circuits. If a vessel
has some elasticity, energy is
stored in the expansion and
contraction of the vessel
walls (this should remind you
of a mechanical spring). This
phenomenon gives rise to a
fluid capacitance effect very
similar to electrical
capacitance. The energy
stored in the compression
and expansion of the gas is
of the potential energytype.
Figure 4.1 depicts a gas-
bag accumulator: a two-
chamber arrangement that
permits fluid to displace a
membrane separating the
incompressible fluid from a
compressible fluid (e.g., air).
The analogy shown in

Figure 4.1 assumes that the
reference pressure pog is zero
(“ground” or reference
pressure), and that v is
ground. The analog equa-
tions are given below.

dAp dp
=0 — =G =
s s i
. dAv dvy
=Cw TCa
T o
I %
Y
+ +
P
(3 AV Cs Ap
Ot ———
Vo Po

Figure 4.1 Analogy
between electrical and fluid
capacitance

Chapter 4 AC Network Analysis

demonstrate that all the network analysis techniques of Chapter 3 are applicable to the
analysis of dynamic circuits with sinusoidal excitations, and a number of examples are
presented.

:) Learning Objectives

1. Compute currents, voltages, and energy stored in capacitors and inductors.

Section 1.

2. Calculate the average and root-mean-square value of an arbitrary (periodic) signal.
Section 2.

3. Write the differential equation(s) for circuits containing inductors and capacitors.
Section 3.

4.  Convert time-domain sinusoidal voltages and currents to phasor notation, and vice
versa, and represent circuits using impedances. Section 4.

4.1 ENERGY STORAGE (DYNAMIC) CIRCUIT

ELEMENTS

The ideal resistor was introduced through Ohm’s law in Chapter 2 as a useful
idealization of many practical electrical devices. However, in addition to resistance
to the flow of electric current, which is purely a dissipative (i.e., an energy loss)
phenomenon, electric devices may exhibit energy storage properties, much in the same
way as a spring or a flywheel can store mechanical energy. Two distinct mechanisms
for energy storage exist in electric circuits: capacitance and inductance, both of
which lead to the storage of energy in an electromagnetic field. For the purpose
of this discussion, it will not be necessary to enter into a detailed electromagnetic
analysis of these devices. Rather, two ideal circuit elements will be introduced to
represent the ideal properties of capacitive and inductive energy storage: the ideal
capacitor and the ideal inductor. It should be stated clearly that ideal capacitors
and inductors do not exist, strictly speaking; however, just like the ideal resistor,
these “ideal” elements are very useful for understanding the behavior of physical
circuits. In practice, any component of an electric circuit will exhibit some resistance,
some inductance, and some capacitance—that is, some energy dissipation and some
energy storage. The sidebar on hydraulic analogs of electric circuits illustrates that
the concept of capacitance does not just apply to electric circuits.

The Ideal Capacitor

Aphysical capacitor is a device that can store energy in the form of a charge separation
when appropriately polarized by an electric field (i.e., a voltage). The simplest
capacitor configuration consists of two parallel conducting plates of cross-sectional
area A, separated by air (or another dielectrict material, such as mica or Teflon).
Figure 4.2 depicts a typical configuration and the circuit symbol for a capacitor.

1A dielectric material is a material that is not an electrical conductor but contains a large number of
electric dipoles, which become polarized in the presence of an electric field.
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The presence of an insulating material between the conducting plates does not
allow for the flow of DC current; thus, a capacitor acts as an open circuit in the
presence of DC current. However, if the voltage present at the capacitor terminals
changes as a function of time, so will the charge that has accumulated at the two
capacitor plates, since the degree of polarization is a function of the applied electric
field, which is time-varying. In a capacitor, the charge separation caused by the polar-
ization of the dielectric is proportional to the external voltage, that is, to the applied
electric field

Q=CcCv 4.1

where the parameter C is called the capacitance of the element and is a measure of
the ability of the device to accumulate, or store, charge. The unit of capacitance is
coulomb per volt and is called the farad (F). The farad is an unpractically large
unit for many common electronic circuit applications; therefore it is common to
use microfarads (1 uF = 1078 F) or picofarads (1 pF = 102 F). From equa-
tion 4.1 it becomes apparent that if the external voltage applied to the capacitor
plates changes in time, so will the charge that is internally stored by the capaci-
tor:

q(t) = Co(t) (4.2)

Thus, although no current can flow through a capacitor if the voltage across it is
constant, a time-varying voltage will cause charge to vary in time.

The change with time in the stored charge is analogous to a current. You can
easily see this by recalling the definition of current given in Chapter 2, where it was
stated that

- dq
it) = %) 4.3)

that is, electric current corresponds to the time rate of change of charge. Differentiating
equation 4.2, one can obtain a relationship between the current and voltage in a
capacitor:

do(t)
dt

ity =C i-v relation for capacitor (4.9

Equation 4.4 is the defining circuit law for a capacitor. If the differential equation that
defines the i-v relationship for a capacitor is integrated, one can obtain the following
relationship for the voltage across a capacitor:

t
vc (t) = é/ iC (t/)dt, (45)
Equation 4.5 indicates that the capacitor voltage depends on the past current through
the capacitor, up until the present time t. Of course, one does not usually have precise
information regarding the flow of capacitor current for all past time, and so it is useful
to define the initial voltage (or initial condition) for the capacitor according to the
following, where ty is an arbitrary initial time:

to

1 H / /
Vo=vct=1) = 6 / ic(t) dt (46)

—00
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A

o—

Parallel-plate capacitor with air
gap d (air isthe dielectric)

€ = permittivity of air

_ » F
=8.854x 1012 1o

Circuit
symbol

Figure 4.2 Structure of
parallel-plate capacitor
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Figure 4.3 Combining
capacitors in a circuit

Chapter 4 AC Network Analysis

The capacitor voltage is now given by the expression

t
ve(t) = é / ict)dt'+Vy t>1 4.7)
to

The significance of the initial voltage Vg is simply that at time ty some charge is stored
in the capacitor, giving rise to a voltage v¢ (tg), according to the relationship Q = CV.
Knowledge of this initial condition is sufficient to account for the entire history of
the capacitor current.

Capacitors connected in series and parallel can be combined to yield a single
equivalent capacitance. The rule of thumb, which is illustrated in Figure 4.3, is the
following:

Capacitors in parallel add. Capacitors in series combine according to the same
rules used for resistors connected in parallel.

It is very easy to prove that capacitors in series combine as shown in
Figure 4.3, using the definition of equation 4.5. Consider the three capacitors in
series in the circuit of Figure 4.3. Using Kirchhoff’s voltage law and the definition of
the capacitor voltage, we can write

v(t) = v1(D) + vi(t) + vi(D)
1 ‘ Y / 1 ‘ Y / 1 ‘ Y /
za,/;wl(t)dt+€2,/;wl(t)dt+€3,/;wl(t)dt (4.8)

(it /t i(t) dt’
“\C1 G Ci)) o

Thus, the voltage across the three series capacitors is the same as would be seen
across a single equivalent capacitor C.q with 1/C,q = 1/Cy + 1/C, 4+ 1/C3, as
illustrated in Figure 4.3. You can easily use the same method to prove that the
three parallel capacitors in the bottom half of Figure 4.3 combine as do resistors
in series.

FIND IT

ON THE WEB

EXAMPLE 4.1 Charge Separation in Ultracapacitors

Problem

Ultracapacitors are finding application in a variety of fields, including as a replacement or
supplement for batteries in hybrid-electric vehicles. In this example you will make your first
acquaintance with these devices.

An ultracapacitor, or “supercapacitor,” stores energy electrostatically by polarizing an
electrolytic solution. Although itisan electrochemical device (also known as an electrochemical
double-layercapacitor), thereare nochemical reactionsinvolvedinitsenergy storage mechanism.
This mechanism is highly reversible, allowing the ultracapacitor to be charged and discharged
hundreds of thousands of times. An ultracapacitor can be viewed as two nonreactive porous

< LO1
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plates suspended within an electrolyte, with a voltage applied across the plates. The applied
potential on the positive plate attracts the negative ions in the electrolyte, while the potential
on the negative plate attracts the positive ions. This effectively creates two layers of capacitive
storage, one where the charges are separated at the positive plate and another at the negative
plate.

Recall that capacitors store energy in the form of separated electric charge. The greater
the area for storing charge and the closer the separated charges, the greater the capacitance.
A conventional capacitor gets its area from plates of a flat, conductive material. To achieve high
capacitance, this material can be wound in great lengths, and sometimes a texture is imprinted
on it to increase its surface area. A conventional capacitor separates its charged plates with a
dielectric material, sometimes a plastic or paper film, or a ceramic. These dielectrics can be
made only as thin as the available films or applied materials.

An ultracapacitor gets its area from a porous carbon-based electrode material, as shown
in Figure 4.4. The porous structure of this material allows its surface area to approach 2,000
square meters per gram (m?/g), much greater than can be accomplished using flat or tex-
tured films and plates. An ultracapacitor’s charge separation distance is determined by the
size of the ions in the electrolyte, which are attracted to the charged electrode. This charge
separation [less than 10 angstroms (A)] is much smaller than can be achieved using conven-
tional dielectric materials. The combination of enormous surface area and extremely small
charge separation gives the ultracapacitor its outstanding capacitance relative to conventional
capacitors.

Use the data provided to calculate the charge stored in an ultracapacitor, and calculate
how long it will take to discharge the capacitor at the maximum current rate.

Solution

Known Quantities: Technical specifications are as follows:

Capacitance 100 F (—10%/ + 30%)

Series resistance DC 15 mQ (+£25%)
1kHz 7 mQ (£25%)

\oltage Continuous 2.5V, Peak 2.7V

Rated current 25A

Find: Charge separation at nominal voltage and time to complete discharge at maximum
current rate.

Analysis: Based on the definition of charge storage in a capacitor, we calculate
Q=CV=100Fx25V=250C

To calculate how long it would take to discharge the ultracapacitor, we approximate the defining
differential equation (4.4) as follows:
i dg _ Aqg

—_— A —

Tdt At

Since we know that the discharge current is 25 A and the available charge separation is 250 F,
we can calculate the time to complete discharge, assuming a constant 25-A discharge:
_Aq_250C _

At =

— =1
i 25A 0s

Comments: We shall continue our exploration of ultracapacitors in Chapter 5. In particular,
we shall look more closely at the charging and discharging behavior of these devices, taking
into consideration their internal resistance.
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Electrolyte
m——_ Separator

Figure 4.4 Ultracapacitor
structure
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CHECK YOUR UNDERSTANDING
Compare the charge separation achieved in this ultracapacitor with a (similarly sized)

electrolytic capacitor used in power electronics applications, by calculating the charge sep-
aration for a 2,000-u.F electrolytic capacitor rated at 400 V.

D 80 :Jamsuy

EXAMPLE 4.2 Calculating Capacitor Current from Voltage

Problem

Calculate the current through a capacitor from knowledge of its terminal voltage.

Solution

Known Quantities: Capacitor terminal voltage; capacitance value.
Find: Capacitor current.

Assumptions: The initial current through the capacitor is zero.

Schematics, Diagrams, Circuits, and Given Data: v(t) = 5(1 — e~/9°) volts; t > O's;
C = 0.1 uF. The terminal voltage is plotted in Figure 4.5.

Assumptions: The capacitor is initially discharged: v(t = 0) = 0.

Analysis: Using the defining differential relationship for the capacitor, we may obtain the
current by differentiating the voltage:

du(t) — 107 5

0= 10

(") =05 A tz0

A plot of the capacitor current is shown in Figure 4.6. Note how the current jumps to 0.5 A
instantaneously as the voltage rises exponentially: The ability of a capacitor’s current to change
instantaneously is an important property of capacitors.

Comments: As the voltage approaches the constant value 5 V, the capacitor reaches its
maximum charge storage capability for that voltage (since Q = CV) and no more cur-
rent flows through the capacitor. The total charge stored is Q = 0.5 x 108 C. This is a
fairly small amount of charge, but it can produce a substantial amount of current for a brief
time. For example, the fully charged capacitor could provide 100 mA of current for a time
equal to 5 us:

_AQ  05x10°

| 2
At 5x 106

=0.1A

There are many useful applications of this energy storage property of capacitors in practical
circuits.
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CHECK YOUR UNDERSTANDING

The voltage waveform shown below appears across a 1,000-,F capacitor. Plot the capacitor

current ic (t).

v(t) (V)

15
0|
57

t (ms)
61
(0)% Z 0
0
T
e 3
e 2
14
Z'v9|dwex3 Jo} Jua.ind Joyidede) g Jlamsuy

EXAMPLE 4.3 Calculating Capacitor Voltage from Current and

Problem

Calculate the voltage across a capacitor from knowledge of its current and initial state of charge.

Initial Conditions

<LOl
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Solution
Known Quantities: Capacitor current; initial capacitor voltage; capacitance value.
Find: Capacitor voltage.

Schematics, Diagrams, Circuits, and Given Data:

0 t<0s
icHh=1{ 10mA 0<t<l1s
0 t>1s

wet=0=2V  C=1,000uF

The capacitor current is plotted in Figure 4.7(a).

10 12
9 11
8 10
< 7 9
6 > 8
Es =7
< 4 ¥ 6
3 5
2 4
1 3
0 2
-02 0 02 04 06 08 1 12 -02 0 02 04 06 08 1 12
Time () Time ()
@ (b)

Figure 4.7
Assumptions: The capacitor is initially charged such that vc(t =ty =0) =2 V.

Analysis: Using the defining integral relationship for the capacitor, we may obtain the voltage
by integrating the current:

1 [t
ve() = < / ic(t") dt'+vc (to) t>1
C to

1t |

—/ ldt' + Vo= =t+Vy=10t+2V 0<t<ls
CJ C

12V t>1s

Comments: Once the current stops, at t = 1 s, the capacitor voltage cannot develop any
further but remains at the maximum value it reached att = 1s: vc(t = 1) = 12 V. The
final value of the capacitor voltage after the current source has stopped charging the capacitor
depends on two factors: (1) the initial value of the capacitor voltage and (2) the history of the
capacitor current. Figure 4.7(a) and (b) depict the two waveforms.

CHECK YOUR UNDERSTANDING

Find the maximum current through the capacitor of Example 4.3 if the capacitor voltage is
described by vc(t) =5t +3VforO <t <5s.

YW G :lamsuy
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Physical capacitors are rarely constructed of two parallel plates separated by
air, because this configuration yields very low values of capacitance, unless one is
willing to tolerate very large plate areas. To increase the capacitance (i.e., the abil-
ity to store energy), physical capacitors are often made of tightly rolled sheets of
metal film, with a dielectric (paper or Mylar) sandwiched in between. Table 4.1
illustrates typical values, materials, maximum voltage ratings, and useful frequency
ranges for various types of capacitors. The voltage rating is particularly impor-
tant, because any insulator will break down if a sufficiently high voltage is applied
across it.

Table 4.1 Capacitors

Capacitance Maximum voltage  Frequency range
Material range V) (H2)
Mica 1pFto0.1 uF 100-600 103-1010
Ceramic 10pFto 1 uF 50-1,000 10%-10%
Mylar 0.001 uF to 10 uF 50-500 10%-108
Paper 1,000 pF to 50 uF  100-105 102-108
Electrolytic 0.1 uFt0 0.2 F 3-600 10-10*

Energy Storage in Capacitors

You may recall that the capacitor was described earlier in this section as an
energy storage element. An expression for the energy stored in the capacitor W¢ (t)
may be derived easily if we recall that energy is the integral of power, and that the
instantaneous power in a circuit element is equal to the product of voltage and
current:

We () = / Pc(t) dt’
= /Uc(t,)ic(t/) dt/ (49)

dvc (1)
= t"hC dt’
/ we)e =

1
We(t) = ECvé ®) Energy stored in a capacitor (J)

Example 4.4 illustrates the calculation of the energy stored in a capacitor.

FIND IT

ON THE WEB

<LOl
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EXAMPLE 4.4 Energy Storage in Ultracapacitors

Problem

Determine the energy stored in the ultracapacitor of Example 4.1.
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Solution
Known Quantities: See Example 4.1.
Find: Energy stored in capacitor.

Analysis: To calculate the energy, we use equation 4.9:

1 1
We = ECUE = 5(100P)25 V)2 = 3125

FIND IT

ON THE WEB

CHECK YOUR UNDERSTANDING

Compare the energy stored in this ultracapacitor with a (similarly sized) electrolytic capacitor
used in power electronics applications, by calculating the charge separation for a 2,000-uF
electrolytic capacitor rated at 400 V.

£ 09T :Jamsuy

The Ideal Inductor

The ideal inductor is an element that has the ability to store energy in a magnetic field.
Inductors are typically made by winding a coil of wire around a core, which can be an
insulator or a ferromagnetic material, as shown in Figure 4.8. When a current flows
through the coil, a magnetic field is established, as you may recall from early physics
experiments with electromagnets. Just as we found an analogy between electric and
fluid circuits for the capacitor, we can describe a phenomenon similar to inductance in
hydraulic circuits, as explained in the sidebar. In an ideal inductor, the resistance of the
wire is zero so that a constant current through the inductor will flow freely without
causing a voltage drop. In other words, the ideal inductor acts as a short circuit
in the presence of DC. If a time-varying voltage is established across the inductor,
a corresponding current will result, according to the following relationship:

) =L

d';(t) i-v relation for inductor (4.10)

where L is called the inductance of the coil and is measured in henrys (H), where
1H=1V-s/A (4.12)

Henrys are reasonable units for practical inductors; millihenrys (mH) and micro-
henrys (uH) are also used.

Itis instructive to compare equation 4.10, which defines the behavior of an ideal
inductor, with the expression relating capacitor current and voltage:

duc(t)

Ic(t) =C dt

(4.12)



Part | Circuits

—_—
it) ’ g
LEw (=L at'
(&) Circuit symbol
r —»i ———
—
I
(e, i )
d S
. [
qa.r
—1J P
\%_/
Iron-core inductor
Toroidal inductor
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Figure 4.8 Inductance and practical inductors

We note that the roles of voltage and current are reversed in the two elements, but that
both are described by a differential equation of the same form. This duality between
inductors and capacitors can be exploited to derive the same basic results for the
inductor that we already have for the capacitor, simply by replacing the capacitance
parameter C with the inductance L and voltage with current (and vice versa) in

Table 4.2 Analogy between electric and fluid circuits

Electrical element
Property or equation Hydraulic analogy
Potential variable \oltage or potential difference | Pressure difference
Flow variable Current flow Fluid volume flow rate
Resistance Resistor R Fluid resistor Ry
Capacitance Capacitor C Fluid capacitor Cs
Inductance Inductor L Fluid inertor I¢
Power dissipation P =i%R Pr = g?Rs
Potential energy storage | W, = 3Cv? Wp = 1Cip?
Kinetic energy storage | Wy = %Li? Wy = 3l g?
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MAKE THE
CONNECTION

Fluid (Hydraulic)
Inertance

The fluid inertance
parameter is analogous to
inductance in the electric
circuit. Fluid inertance, as the
name suggests, is caused by
the inertial properties, i.e., the
mass, of the fluid in motion.
As you know from physics, a
particle in motion has kinetic
energy associated with it;
fluid in motion consists of a
collection of particles, and it
also therefore must have
kinetic energy storage
properties. (Think of water
flowing out of a fire hose!)
The equations that define the
analogy are given below

dgy
Ap=p1 —po = lf —
p=p1—p2 ot
di
Av:vl—vzzLa

Figure 4.9 depicts the
analogy between electrical
inductance and fluid
inertance. These analogies
and the energy equations
that apply to electrical and
fluid circuit elements are
summarized in Table 4.2.

i —
V1 O_rm\_l-ovz

+ Av —
|
?pz f P1
+ Ap -

Figure 4.9 Analogy
between fluid inertance and
electrical inductance
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the equations we derived for the capacitor. Thus, the inductor current is found by
integrating the voltage across the inductor:

. 1 [t
i) = [/ \UL(t/) dt’

[e¢]

(4.13)

If the current flowing through the inductor at time t = tg is known to be lg, with

1 o
|0 = iL(t = to) = [ / v|_(t') dt’ (414)
then the inductor current can be found according to the equation
1 t
iL(t) = [ / UL('[/) dt’ + g t>1 (415)
to

Series and parallel combinations of inductors behave as resistors, as illustrated in
Figure 4.10, and stated as follows:

Inductors in series add. Inductors in parallel combine according to the same
rules used for resistors connected in parallel.

V(t) LEQ =L+ Lo+ L3

— V2 +

L3
Inductances in series add

Inductances in parallel combine
likeresistorsin parallel

Figure 4.10 Combining inductors in a circuit

Itis very easy to prove that inductors in series combine as shown in Figure 4.10,
using the definition of equation 4.10. Consider the three inductors in series in the
circuit on the left of Figure 4.10. Using Kirchhoff’s voltage law and the definition of
the capacitor voltage, we can write

di(t) ‘L di(t) L di(t)

v(®) = va(t) +v2() +vs(t) = Lo — dt dt

. (4.16)
di(t)
Z(L1+L2+L3)F

Thus, the voltage across the three series inductors is the same that would be seen
across a single equivalent inductor Lo, with Ly = L1 + Ly + Ls, as illustrated in
Figure 4.10. You can easily use the same method to prove that the three parallel
inductors on the right half of Figure 4.10 combine as resistors in parallel do.

LOl>

EXAMPLE 4.5 Calculating Inductor Voltage from Current

Problem

Calculate the voltage across the inductor from knowledge of its current.
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Solution
Known Quantities: Inductor current; inductance value.
Find: Inductor voltage.

Schematics, Diagrams, Circuits, and Given Data:

0mA t<1ms
01 0.1
—— 4+ —t mA 1<t<5ms
4 4
i={ 0.1mA 5<t<9ms
0.1 01
13x — — —t mA 9<t<13ms
4 4
0mA t > 13ms
L=10H

The inductor current is plotted in Figure 4.11.
Assumptions: i (t =0) <0.

Analysis: Using the defining differential relationship for the inductor, we may obtain the
voltage by differentiating the current:

dig (1)
dt
Piecewise differentiating the expression for the inductor current, we obtain

w(t) =L

ov t<1ms
0.25V l<t<b5ms
v (t) = ov 5<t<9ms
—-0.25V 9<t<13ms

ov t> 13 ms

The inductor voltage is plotted in Figure 4.12.

Comments: Note how the inductor voltage has the ability to change instantaneously!

0.1 T 0.3
008l | 0.2} 8
. o1t .
é 0.06 | 1 > 0
€ 004} & 01t ,
= Z 02t 1
0.02 03l |
0 ‘ . 04 : ‘
0 5 10 15 0 5 10
Time (ms) Time (ms)

Figure 4.11 Figure 4.12
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CHECK YOUR UNDERSTANDING

The current waveform shown below flows through a 50-mH inductor. Plot the inductor
voltage v (t).

i(t) (mA)
15

10
5

0 12345678
t (ms)

0] 8
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|_O]_> EXAMPLE 4.6 cCalculating Inductor Current from Voltage

Problem

Calculate the current through the inductor from knowledge of the terminal voltage and of the
initial current.

Solution
Known Quantities: Inductor voltage; initial condition (current at t = 0); inductance value.
Find: Inductor current.

Schematics, Diagrams, Circuits, and Given Data:

ov t<O0s
v(t) =41 —-10mV 0<t<l1s
ov t>1s
L =10 mH; iLlt=0=Ilp=0A

The terminal voltage is plotted in Figure 4.13(a).
Assumptions: i (t=0)=1p,=0.

Analysis: Using the defining integral relationship for the inductor, we may obtain the voltage
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by integrating the current:
1 t
i = —/ v(t) dt’ + i, (to) t>1
L Js

-2

1/(( 10 x 1073y dt'+ | —10 t+0=—tA O0<t<ls
2 (210 - -
_l ik °7 102 ==

-1A t>1s

The inductor current is plotted in Figure 4.13(b).

Comments: Note how the inductor voltage has the ability to change instantaneously!
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CHECK YOUR UNDERSTANDING

Find the maximum voltage across the inductor of Example 4.6 if the inductor current is
described by i (t) = 2t amperes for0 <t < 2s.

AW 07 Jamsuy

Energy Storage in Inductors

The magnetic energy stored inan ideal inductor may be found from a power calculation
by following the same procedure employed for the ideal capacitor. The instantaneous
power in the inductor is given by

. . dip (t d[1 .
PL®) =it () =i(HL (th( ) =@ [ZL'E(U} (4.17)

Integrating the power, we obtain the total energy stored in the inductor, as shown in
the following equation:

/ ! d 1 H / /
W, (t) :/PL(t)dt :/@ [Zuf(t )] dt (4.18)
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1
W (1) = éLif(t) Energy stored in an inductor (J)

Note, once again, the duality with the expression for the energy stored in a capacitor,
in equation 4.9.

LOl>

EXAMPLE 4.7 Energy Storage in an Ignition Coil

Problem

Determine the energy stored in an automotive ignition coil.

Solution
Known Quantities: Inductor current initial condition (current at t = 0); inductance value.
Find: Energy stored in inductor.
Schematics, Diagrams, Circuits, and Given Data: L =10 mH;i_ = 1o = 8A.
Analysis:

1

L, 1
W|_=§L|E=§><10‘2><64=32><10‘2=320mJ

Comments: A more detailed analysis of an automotive ignition coil is presented in Chapter 5
to accompany the discussion of transient voltages and currents.

CHECK YOUR UNDERSTANDING

Calculate and plot the inductor energy and power for a 50-mH inductor subject to the current
waveform shown below. What is the energy stored at t = 3 ms? Assume i(—oco) = 0.

i(t) (mA)

15
10
5

RN
0 12345678
t (ms)

(76g=(Swg=1m

} = (nd

asIMIBYI0 0
sw9>1>¢ (M G21'0—)(35'2 — ¢ 0T X 02)

swo9 <1 9-0T X G290
sw9>1>¢ 60T +3(-0T X G2) —Z95T0 ¢ = (Hm
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4.2 TIME-DEPENDENT SIGNAL SOURCES

In Chapter 2, the general concept of an ideal energy source was introduced. In this
chapter, it will be useful to specifically consider sources that generate time-varying
voltages and currents and, in particular, sinusoidal sources. Figure 4.14 illustrates the
convention that will be employed to denote time-dependent signal sources.

—0

D

—O
Generalized time-dependent sources

v (1) i v (D), i(t)

Sinusoidal source

Figure 4.14 Time-dependent signal sources

One of the most important classes of time-dependent signals is that of periodic
signals. These signals appear frequently in practical applications and are a useful
approximation of many physical phenomena. A periodic signal x(t) is a signal that
satisfies the equation

Xt =xt+nT) n=123,... (4.19)

where T is the period of x(t). Figure 4.15 illustrates a number of periodic waveforms
that are typically encountered in the study of electric circuits. Waveforms such as the
sine, triangle, square, pulse, and sawtooth waves are provided in the form of volt-
ages (or, less frequently, currents) by commercially available signal (or wavefor m)
generators. Such instruments allow for selection of the waveform peak amplitude,
and of its period.

As stated in the introduction, sinusoidal waveforms constitute by far the most
important class of time-dependent signals. Figure 4.16 depicts the relevant parameters

of a sinusoidal waveform. A generalized sinusoid is defined as
X(t) = Acos(wt + ¢) (4.20)

where A is the amplitude, w the radian frequency, and ¢ the phase. Figure 4.16
summarizes the definitions of A, w, and ¢ for the waveforms

X1 (t) = Acos(wt) and X2(t) = Acos(wt + ¢)
where
1
f = natural frequency = — cycles/s, or Hz
w = radian frequency = 2xf rad/s
At 4.21
¢ =21 — rad (4.21)
T
At
=360 — deg
T

The phase shift ¢ permits the representation of an arbitrary sinusoidal signal. Thus, the
choice of the reference cosine function to represent sinusoidal signals—arbitrary as it
may appear at first—does not restrict the ability to representall sinusoids. For example,

x(1)
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MAKE THE
CONNECTION

Why Do We Use
Units of Radians
for the Phase
Angle ¢?

The engineer finds it frequ-
ently more intuitive to refer to
the phase angle in units of
degrees; however, to use
consistent units in the argu-
ment (the quantity in the
parentheses) of the expres-
sion x(t) =A sin(wt + ¢), we
must express ¢ in units of
radians, since the units of wt
are [w] - [t] = (rad/s)-s = rad.
Thus, we will consistently
use units of radians for the
phase angle ¢ in all expres-
sions of the form x(t) =

A sin (wt + ¢). To be
consistent is especially
important when one is
performing numerical
calculations; if one used
units of degrees for ¢ in
calculating the value of

X(t) = Asin(wt + ¢) at a
given t, the answer would
be incorrect.

Chapter 4 AC Network Analysis

one can represent a sine wave in terms of a cosine wave simply by introducing a phase
shift of /2 rad:

Asin(wt) = Acos (wt - %) (4.22)

Although one usually employs the variable w (in units of radians per second)
to denote sinusoidal frequency, it is common to refer to natural frequency f in units
of cycles per second, or hertz (Hz). The reader with some training in music theory
knows that a sinusoid represents what in music is called a pure tone; an A-440,
for example, is a tone at a frequency of 440 Hz. It is important to be aware of the
factor of 2 that differentiates radian frequency (in units of radians per second)
from natural frequency (in units of hertz). The distinction between the two units of
frequency—which are otherwise completely equivalent—is whether one chooses to
define frequency in terms of revolutions around a trigonometric circle (in which case
the resulting units are radians per second) or to interpret frequency as a repetition rate
(cycles per second), in which case the units are hertz. The relationship between the
two is the following:

w = 2rf Radian frequency (4.23)

Why Sinusoids?

By now you should have developed a healthy curiosity about why so much
attention is being devoted to sinusoidal signals. Perhaps the simplest explanation
is that the electric power used for industrial and household applications worldwide
is generated and delivered in the form of either 50- or 60-Hz sinusoidal voltages
and currents. Chapter 7 will provide more details regarding the analysis of elec-
tric power circuits. Note that the methods developed in this section and the subse-
quent sections apply to many engineering systems, not just to electric circuits, and
will be encountered again in the study of dynamic-system modeling and of control
systems.

Average and RMS Values

Now that a number of different signal waveforms have been defined, it is appropriate
to define suitable measurements for quantifying the strength of a time-varying electric
signal. The most common types of measurements are the average (or DC) value of a
signal waveform—uwhich corresponds to just measuring the mean voltage or current
over a period of time—and the root-mean-square (or rms) value, which takes into
account the fluctuations of the signal about its average value. Formally, the operation
of computing the average value of a signal corresponds to integrating the signal
waveform over some (presumably, suitably chosen) period of time. We define the
time-averaged value of a signal x(t) as

.
(X(t)) = _%_/0 X(t') dt’ Average value (4.24)




Part | Circuits 147

where T is the period of integration. Figure 4.17 illustrates how this process does, ()
in fact, correspond to computing the average amplitude of x(t) over a period of T _x()>| - )
seconds.

0 Tt

Figure 4.17 Averaging a
signal waveform

EXAMPLE 4.8 Average Value of Sinusoidal Waveform <|_02

Problem

Compute the average value of the signal x(t) = 10 cos(100t).

Solution
Known Quantities: Functional form of the periodic signal x(t).
Find: Average value of x(t).

Analysis: The signal is periodic with period T = 27 /w = 27/100; thus we need to integrate
over only one period to compute the average value:
100

1 (7 27/100
X)) = = / x(t) dt’ = — / 10 cos(100t) dt
T 0 2 0

= E (sin(2w) —sin(0)) =0
2

Comments: The average value of a sinusoidal signal is zero, independent of its amplitude
and frequency.

CHECK YOUR UNDERSTANDING

Express the voltage v(t) = 155.6sin(377t + 7r/6) in cosine form. You should note that the
radian frequency w = 377 will recur very often, since 377 = 27 (60); that is, 377 is the radian
equivalent of the natural frequency of 60 cycles/s, which is the frequency of the electric power
generated in North America.

Compute the average value of the sawtooth waveform shown in the figure below.

v(®) (V)
5

0 10 20 t(ms)

Compute the average value of the shifted triangle wave shown below.

v () (V)
3]7\A

0 5 10 t(ms)

AGT = (M) AGZ= (M) (g/x —1//€)S03 9°GGT = (Da SlaMsUY
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The result of Example 4.8 can be generalized to state that
(Acos (wt+¢)) =0 (4.25)

a result that might be perplexing at first: If any sinusoidal voltage or current has zero
average value, is its average power equal to zero? Clearly, the answer must be no.
Otherwise, it would be impossible to illuminate households and streets and power
industrial machinery with 60-Hz sinusoidal current! There must be another way, then,
of quantifying the strength of an AC signal.

Very conveniently, a useful measure of the voltage of an AC waveform is the
rms value of the signal x(t), defined as follows:

1 T
Xrms = T / X2(t) dt’ Root-mean-square value (4.26)
0

Note immediately that if x(t) is a voltage, the resulting X,,s will also have units of
volts. If you analyze equation 4.26, you can see that, in effect, the rms value consists
of the square root of the average (or mean) of the square of the signal. Thus, the
notation rms indicates exactly the operations performed on x(t) in order to obtain its
rms value.

The definition of rms value does not help explain why one might be interested
in using this quantity. The usefulness of rms values for AC signals in general, and
for AC voltages and current in particular, can be explained easily with reference to
Figure 4.18. In this figure, the same resistor is connected to two different voltage
sources: a DC source and an AC source. We now ask, What is the effective value
of the current from the DC source such that the average power dissipated by the
resistor in the DC circuit is exactly the same as the average power dissipated by the
same resistor in the AC circuit? The direct current I is called the effective value
of the alternating current, which is denoted by i..(t). To answer this question, we as-
sume that v, (t) and therefore i..(t) are periodic signals with period T. We then use
the definition of average value of a signal given in equation 4.24 to compute the total
energy dissipated by R during one period in the circuit of Figure 4.18(b):

T T
=T =Tipw) = [ ptret = [ RE@) & = 13 (427)
0 0

AAAA
VVVY
Py

+
\@i — lest R quz(zz) ;E;%§>
I L
@ (b)

Figure 4.18 AC and DC circuits used to
illustrate the concept of effective and rms values
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Thus,

-
lot = </ / 2 () dt = L (4.28)
0

That is,

The rms, or effective, value of the current i..(t) is the DC that causes the same
e . LO2
average power (or energy) to be dissipated by the resistor.

From here on we shall use the notation V,y, or V, and I, or I, to refer to the effective
(or rms) value of a voltage or current.

EXAMPLE 4.9 RMS Value of Sinusoidal Waveform <|_02

Problem

Compute the rms value of the sinusoidal current i(t) = | cos(wt).

Solution
Known Quantities: Functional form of the periodic signal i(t).
Find: RMS value of i(t).

Analysis: Applying the definition of rms value in equation 4.26, we compute

1 T 21 /w
ims =/ = / 2ty dt = | 2 / 12 cos?(wt) dt’
T Jo 27 Jo
w (7,711
=.[— 12| = + Z cos2wt) | dt’
\/ano [2+Zcos(w)]

1 w 2n/w|2
= /217+ — — cos(2wt’) dt’
\/2 T ), 7ot

At this point, we recognize that the integral under the square root sign is equal to zero
(see Example 4.8), because we are integrating a sinusoidal waveform over two periods.
Hence,

- |
|rms == E = 0707'

where | is the peak value of the waveform i(t).

Comments: The rms value of a sinusoidal signal is equal to 0.707 times the peak value,
independent of its amplitude and frequency.
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A circuit containing energy-storage
elementsis described by a
differential equation. The
differential equation describing the
series RC circuit shown is

Figure 4.19 Circuit
containing energy storage
element
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CHECK YOUR UNDERSTANDING

Find the rms value of the sawtooth wave of the exercise accompanying Example 4.8.
Find the rms value of the half cosine wave shown in the next figure.

x(t)

1
3 /\5‘
T g T T
-5 0 5 > 2n > ot (rad)

X(t) = cost for;;ka%

=0 for%sa)k%n [0

1
=

A S0 A 68T Slemsuy

Example 4.9 illustrates how the rms value of a sinusoid is proportional to its
peak amplitude. The factor of 0.707 = 1/+/2 is a useful number to remember, since
it applies to any sinusoidal signal. It is not, however, generally applicable to signal
waveforms other than sinusoids, as the Check Your Understanding exercises have
illustrated.

4.3 SOLUTION OF CIRCUITS CONTAINING
ENERGY STORAGE ELEMENTS
(DYNAMIC CIRCUITS)

Sections 4.1 and 4.2 introduced energy storage elements and time-dependent signal
sources. The logical next task is to analyze the behavior of circuits containing such
elements. The major difference between the analysis of the resistive circuits studied in
Chapters 2 and 3 and the circuits we explore in the remainder of this chapter is that now
the equations that result from applying Kirchhoff’s laws are differential equations,
as opposed to the algebraic equations obtained in solving resistive circuits. Consider,
for example, the circuit of Figure 4.19, which consists of the series connection of a
voltage source, a resistor, and a capacitor. Applying KCL at the node connecting the
resistor to the capacitor and using the definition of capacitor current in equation 4.4,
we obtain the following equations:

o us®—ve® o duc(®)

ir(t) = — R - ict)y=C pm (4.29)
or

dvc(t) 1 B 1

Equation 4.30 is a first-order, linear, ordinary differential equation in the variable vc.
Alternatively, we could derive an equivalent relationship by applying KVL around
the circuit of Figure 4.19:

—vs(t) + vr(t) +vc () =0 (4.31)
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Observing that ir(t) = ic (t) and using the capacitor equation 4.5, we can write

t
—vs(t) + Ric(t) + é / ic(t/) dt' =0 (4.32)

—0o0
Equation 4.32 is an integral equation, which may be converted to the more familiar
form of a differential equation by differentiating both sides; recalling that

d t
pm [/ ic(t) dt’} =ic(t) (4.33)
we obtain the first-order, linear, ordinary differential equation
dic(t) 1. o 1 dvs(t)
it TrReCVTR it (439

Equations 4.30 and 4.34 are very similar; the principal differences are the variable in
the differential equation [vc (t) versus ic(t)] and the right-hand side. Solving either
equation for the unknown variable permits the computation of all voltages and currents
in the circuit.

Note to the I nstructor: If so desired, the remainder of this
chapter can be skipped, and the course can continue with
Chapter 5 without any loss of continuity.

Forced Response of Circuits Excited
by Sinusoidal Sources

Consider again the circuit of Figure 4.19, where now the external source produces a
sinusoidal voltage, described by the expression

vs(t) =V cos wt (4.35)

Substituting the expression V cos(wt) in place of the source voltage vs (t) in the differ-
ential equation obtained earlier (equation 4.30), we obtain the following differential
equation:

d 1

1

Since the forcing function is a sinusoid, the solution may also be assumed to be of
the same form. An expression for vc (t) is then

ve (t) = Asin wt + B cos wt (4.37)
which is equivalent to

ve (t) = C cos(wt + ¢) (4.38)
Substituting equation 4.37 in the differential equation for v (t) and solving for the
coefficients A and B yield the expression

. 1 .
Aw cos wt — Bw sin wt + — (A sin wt + B cos wt)
RC (4.39)

1
= —V coswt
RC @
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Figure 4.20 Waveforms for
the AC circuit of Figure 4.19
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and if the coefficients of like terms are grouped, the following equation is obtained:
A . B Vv
<RC — Ba)) sinwt + <Aw + RC RC) coswt =0 (4.40)

The coefficients of sinwt and coswt must both be identically zero in order for
equation 4.40 to hold. Thus,

Ao
RC  ¢7
and (4.41)
BV
A [ —
“+RC T RC

The unknown coefficients A and B may now be determined by solving equation 4.41:

_ VeRC
1+ w?(RC)?
(G (4.42)
5 Vv
1+ w?(RC)2
Thus, the solution for v (t) may be written as follows:
VwRC \
t)y= ———sinwt+ —————— coswt 4.43
ve® =1 2rey M T awey O (443)

This response is plotted in Figure 4.20.

The solution method outlined in the previous paragraphs can become quite
complicated for circuits containing a large number of elements; in particular, one
may need to solve higher-order differential equations if more than one energy storage
element is present in the circuit. A simpler and preferred method for the solution
of AC circuits is presented in Section 4.4. This brief section has provided a simple,
but complete illustration of the key elements of AC circuit analysis. These can be
summarized in the following statement:

In a sinusoidally excited linear circuit, all branch voltages and currents are
sinusoids at the same frequency as the excitation signal. The amplitudes of these
voltages and currents are a scaled version of the excitation amplitude, and the
voltages and currents may be shifted in phase with respect to the excitation
signal.

These observations indicate that three parameters uniquely define a sinusoid:
frequency, amplitude, and phase. But if this is the case, is it necessary to carry the
“excess luggage,” that is, the sinusoidal functions? Might it be possible to simply
keep track of the three parameters just mentioned? Fortunately, the answers to these
two questions are no and yes, respectively. Section 4.4 describes the use of a notation
that, with the aid of complex algebra, eliminates the need for the sinusoidal functions
of time, and for the formulation and solution of differential equations, permitting the
use of simpler algebraic methods.
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4.4 PHASOR SOLUTION OF CIRCUITS WITH
SINUSOIDAL EXCITATION

In this section, we introduce an efficient notation to make it possible to represent
sinusoidal signalsas complex numbers, and to eliminate the need for solving differential
equations. The student who needs a brief review of complex algebra will find a
reasonably complete treatment in Appendix A (available online), including solved
examples and Check Your Understanding exercises. For the remainder of the chapter,
it will be assumed that you are familiar with both the rectangular and the polar forms
of complex number coordinates; with the conversion between these two forms; and
with the basic operations of addition, subtraction, multiplication, and division of
complex numbers.

Euler’s Identity

Named after the Swiss mathematician Leonhard Euler (the last name is pronounced
“Qiler”), Euler’s identity forms the basis of phasor notation. Simply stated, the identity
defines the complex exponential e1? as a point in the complex plane, which may be
represented by real and imaginary components:

el = cosf +jsine (4.44)

Figure 4.21 illustrates how the complex exponential may be visualized as a point
(or vector, if referenced to the origin) in the complex plane. Note immediately that
the magnitude of e1? is equal to 1:

el =1 (4.45)
since

|cos6 +jsind| = vcos26 +sin6 =1 (4.46)

and note also that writing Euler’s identity corresponds to equating the polar form of a
complex number to its rectangular form. For example, consider a vector of length A
making an angle 6 with the real axis. The following equation illustrates the relationship
between the rectangular and polar forms:

Ael? = AcosO + jAsing = ALo (4.47)

In effect, Euler’s identity is simply a trigonometric relationship in the complex plane.

Phasors

To see how complex numbers can be used to represent sinusoidal signals, rewrite the
expression for a generalized sinusoid in light of Euler’s equation:

Acos(wt + 6) = Re (Ael@+9) (4.48)
This equality is easily verified by expanding the right-hand side, as follows:
Re (Ael@*0) — Re [Acos(wt + 0) + jAsin(wt + 6)]
= Acos(wt + 0)

We see, then, that it is possible to express a generalized sinusoid as the real part of
a complex vector whose argument, or angle, is given by wt + 6 and whose length,
or magnitude, is equal to the peak amplitude of the sinusoid. The complex phasor

153

Leonhard Euler (1707-1783).
Photograph courtesy of
Deutsches Museum, Munich.
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el®=cosf +jsino

Figure 4.21 Euler’s
identity
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corresponding to the sinusoidal signal Acos(wt + ) is therefore defined to be the
complex number Ael?:

Ae? = complex phasor notation for Acos(wt + 6) = AZ6 (4.49)

It is important to explicitly point out that this is a definition. Phasor notation arises
from equation 4.48; however, this expression is simplified (for convenience, as will
be promptly shown) by removing the “real part of” operator (Re) and factoring out
and deleting the term /!, Equation 4.50 illustrates the simplification:

Acos(wt +6) = Re (Ae/@+)) = Re (Aelfel®t) (4.50)

The reason for this simplification is simply mathematical convenience, as will become
apparent in the following examples; you will have to remember that the e/* term that
was removed from the complex form of the sinusoid is really still present, indicating
the specific frequency of the sinusoidal signal w. With these caveats, you should now
be prepared to use the newly found phasor to analyze AC circuits. The following
comments summarize the important points developed thus far in the section. Please
note that the concept of phasor has no real physical significance. It is a convenient
mathematical tool that simplifies the solution of AC circuits.

1. Any sinusoidal signal may be mathematically represented in one of two
ways: a time-domain form

v(t) = Acos(wt + 0)
and a frequency-domain (or phasor) form
V(jow) = Ael? = A0

Note the jew in the notation V( jw), indicating the e it dependence of the
phasor. In the remainder of this chapter, bold uppercase quantities indicate
phasor voltages or currents.

2. Aphasor is a complex number, expressed in polar form, consisting of a
magnitude equal to the peak amplitude of the sinusoidal signal and a
phase angle equal to the phase shift of the sinusoidal signal referenced to
a cosine signal.

3. When one is using phasor notation, it is important to note the specific
frequency o of the sinusoidal signal, since this is not explicitly apparent in
the phasor expression.

EXAMPLE 4.10 Addition of Two Sinusoidal Sources in Phasor
Notation

Problem

Compute the phasor voltage resulting from the series connection of two sinusoidal voltage
sources (Figure 4.22).
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Solution

Known Quantities:

v1(t) = 15¢os (377t n %) v

vy(t) = 1505 (377t + %)

Find: Equivalent phasor voltage vs (t).

Analysis: \Write the two voltages in phasor form:

Vi(jw) = 154% Vv

Vy(jo) = 15eim/12 — 154% v

Convert the phasor voltages from polar to rectangular form:
Vi(jw) = 10.61 +j10.61  V
Vy(jw) =14.49 +j3.88 V
Then
Vs(jo) = Vi(jo) + Va(jo) = 25.10 + j14.49 = 28.98e/7/6 — 28.984% v
Now we can convert Vs (jw) to its time-domain form:
b
vs () = 28.98 cos (377t + g) Vv
Comments: Note that we could have obtained the same result by adding the two sinusoids in
the time domain, using trigonometric identities:
v1() = 15¢os (377t + ) = 15cos 7 cos(3770) — 15sin 7 sin(@770) v
4 4 4
T 4 LT
va(t) = 15co0s (377t + E) = 15¢0s 7 COS(3770) — 15sin = sin@77) v
Combining like terms, we obtain
T b . T . T R
vi(t) + v (t) =15 (cos — + C0s —) cos(377t) — 15 (sm 7 + sin ﬁ) sin(377t)

4 12
= 15[1.673 cos(377t) — 0.966sin(377t)]

0.966
15/ ILE78) + 0588« cos 377+ arcan (72 ) |

—15 [1.932 cos (377t n %)] — 28.98 cos (377t n %) v

The above expression is, of course, identical to the one obtained by using phasor notation,
but it required a greater amount of computation. In general, phasor analysis greatly simplifies
calculations related to sinusoidal voltages and currents.

vg(t)

Figure 4.22
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11(t) 12(t) Load

Figure 4.23 Superposition
of AC
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CHECK YOUR UNDERSTANDING

Add the sinusoidal voltages vy (t) = Acos(wt + ¢) and v,(t) = B cos(wt + ) using phasor
notation, and then convert back to time-domain form.

a. A=15V,¢=10°,B=3.2V,0 = 25.
b. A=50V,¢ = —60°,B =24V, 0 =15

(el 2959'0 — 1)s098'09 = 2a + Ta (q)
‘(peJ 92G€°0 + 1@)500 L9y = 2 + Ta (B) :Slemsuy

It should be apparent by now that phasor notation can be a very efficient tech-
nique to solve AC circuit problems. The following sections continue to develop this
new method to build your confidence in using it.

Superposition of AC Signals

Example 4.10 explored the combined effect of two sinusoidal sources of different
phase and amplitude, but of the same frequency. It is important to realize that the
simple answer obtained there does not apply to the superposition of two (or more)
sinusoidal sources that are not at the same frequency. In this subsection, the case of
two sinusoidal sources oscillating at different frequencies is used to illustrate how
phasor analysis can deal with this, more general case.

The circuit shown in Figure 4.23 depicts a source excited by two current sources
connected in parallel, where

il(t) = A; cos(wqt)

ir(t) = A, cos(wyt) (4.51)
The load current is equal to the sum of the two source currents; that is,

iL(t) = i1 () +i2(t) (4.52)
or, in phasor form,

lL=11+1; (4.53)

At this point, you might be tempted to write I; and I, in a more explicit phasor
form as

I, = Alejo

I, = Azejo
and to add the two phasors, using the familiar techniques of complex algebra. How-
ever, this approach would be incorrect. Whenever a sinusoidal signal is expressed
in phasor notation, the term eJ*! is implicitly present, where w is the actual radian
frequency of the signal. In our example, the two frequencies are not the same, as can
be verified by writing the phasor currents in the form of equation 4.50:

I; = Re (Ajeifeliont)

I, = Re (Ayeifelioat)

(4.54)

(4.55)

Since phasor notation does not explicitly include the eJ®t factor, this can lead to
serious errors if you are not careful! The two phasors of equation 4.54 cannot be
added, but must be kept separate; thus, the only unambiguous expression for the load
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current in this case is equation 4.52. To complete the analysis of any circuit with
multiple sinusoidal sources at different frequencies using phasors, it is necessary
to solve the circuit separately for each signal and then add the individual answers
obtained for the different excitation sources. Example 4.11 illustrates the response of
a circuit with two separate AC excitations using AC superposition.
EXAMPLE 4.11 AC Superposition < LO4
Problem
This example underscores the importance of the principles of superposition. In the case of
sinusoidal sources at different frequencies, solution by superposition is the only viable method.
Compute the voltages vgr; (t) and vg,(t) in the circuit of Figure 4.24. +VR(®)
AAAA
. VFVQZV
Solution is(t) le(tz 3R v(t)
Known Quantities:

is(t) = 0.5cos[27(100t)] A
vs (t) = 20 cos[2r(1,000t)] \Y

Find: vgy(t) and vgo(t).

Analysis: Since the two sources are at different frequencies, we must compute a separate
solution for each. Consider the current source first, with the voltage source set to zero (short
circuit) as shown in Figure 4.25. The circuit thus obtained is a simple current divider. Write
the source current in phasor notation:

ls(jow) =05e° =050 A  w=27100rad/s

Then
R, 50
Vri(lg) =lg————R; =05 /40 ————— ) 150 = 18.75£0 Vv
ri(ls) SRR (150—1—50)
w = 27(100) rad/s
R, 150
Vro(ls) =1 R, =050 ———— )50 = 18.7520 \Y
r2(ls) SRR, 2 (150—1—50)

w = 27 (100) rad/s

Next, we consider the voltage source, with the current source set to zero (open circuit), as
shown in Figure 4.26. We first write the source voltage in phasor notation:

Vs(jw) = 20e1® = 20,0 \ = 27(1,000) rad/s
Then we apply the voltage divider law, to obtain

R 150
Vri(Vs) =Vs——— =20/0( ——— ) =15/0 V
V) =Vsp TR, (150+50)

w = 27(1,000) rad/s

R
SRy + R,

50

Vro(Vs) = =V D —
r2(Vs) 150 + 50

= —-20£0 ( ) = -5/0=54n \Y

w = 27(1,000) rad/s

R; =150 Q, Ry =50 Q

Figure 4.24

i(t)

=
VR() S R
<

Figure 4.25

£ VR(1) _

+

VR, (1) §

Ry

\AAJ

Ro
vg(t)

Figure 4.26
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Now we can determine the voltage across each resistor by adding the contributions from each
source and converting the phasor form to time-domain representation:
Vr1 = Vri(ls) + Vri(Vs)
vre (1) = 18.75 cos[27 (100t)] + 15 cos[27 (1,000t)] \
and

Vr2 = Vra(ls) + Vr2(Vs)
vro(t) = 18.75 cos[27(100t)] + 5 cos[27(1,000t) + 7] \Y

Comments: Note that it is impossible to simplify the final expression any further because the
two components of each voltage are at different frequencies.

LO4

O +

va(t) i) TR W

+
ve(t) {:}j c v

AC circuits

AC circuitsin
phasor/impedance form

Figure 4.27 The impedance
element

CHECK YOUR UNDERSTANDING

Add the sinusoidal currents i; (t) = Acos(wt + ¢) and i, (t) = B cos(wt + 6) for
a. A=0.09A,¢=72°;B=0.12A, 6 = 20°.
b. A=0.82A, ¢ =-30°;B=0.5A,0 = —36°.

(L£95°0 — 1®)8002€'T = & + "1 (Q) {(EEL°0 + 1@)S006T°0 = ¥l + M1 (B) 'Slamsuy

Impedance

We now analyze the i-v relationship of the three ideal circuit elements in light of
the new phasor notation. The result will be a new formulation in which resistors,
capacitors, and inductors will be described in the same notation. A direct consequence
of this result will be that the circuit theorems of Chapter 3 will be extended to AC
circuits. Inthe context of AC circuits, any one of the three ideal circuit elements defined
so far will be described by a parameter called impedance, which may be viewed as a
complex resistance. The impedance concept is equivalent to stating that capacitors and
inductors act as frequency-dependent resistors, that is, as resistors whose resistance
is a function of the frequency of the sinusoidal excitation. Figure 4.27 depicts the
same circuit represented in conventional form (top) and in phasor-impedance form
(bottom); the latter representation explicitly shows phasor voltages and currents and
treats the circuit element as a generalized “impedance.” It will presently be shown that
each of the three ideal circuit elements may be represented by one such impedance
element.
Let the source voltage in the circuit of Figure 4.27 be defined by

vs(t) =Acoswt  or  Vs(jw) = Ael” =AL0 (4.56)
without loss of generality. Then the current i(t) is defined by the i-v relationship

for each circuit element. Let us examine the frequency-dependent properties of the
resistor, inductor, and capacitor, one at a time.
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The Resistor

Ohm’s law dictates the well-known relationship v = IR. In the case of sinusoidal
sources, then, the current flowing through the resistor of Figure 4.27 may be
expressed as

vs (1) A
= — Ccoswt 457
R R COs® (4.57)
Converting the voltage vs(t) and the current i(t) to phasor notation, we obtain the
following expressions:

Vs (jw) = AL0

i(t) =

_ A (4.58)

The relationship between Vz and | in the complex plane is shown in Figure 4.28.
Finally, the impedance of the resistor is defined as the ratio of the phasor voltage
across the resistor to the phasor current flowing through it, and the symbol Zg is used
to denote it:

Zr(jw) =

I (jw)

Equation 4.59 corresponds to Ohm’s law in phasor form, and the result should be
intuitively appealing: Ohm’s law applies to a resistor independent of the particular
form of the voltages and currents (whether AC or DC, for instance). The ratio of phasor
voltage to phasor current has a very simple form in the case of the resistor. In general,
however, the impedance of an element is a complex function of frequency, as it must
be, since it is the ratio of two phasor quantities, which are frequency-dependent. This
property will become apparent when the impedances of the inductor and capacitor
are defined.

The Inductor

Recall the defining relationships for the ideal inductor (equations 4.10 and 4.13),
repeated here for convenience:

diL(t)
dt

. 1
IiL(t) = L / v (1)

Let vy (t) = ws(t) and i (t) = i(t) in the circuit of Figure 4.27. Then the following
expression may be derived for the inductor current:

v|_(t) =L

(4.60)

H H 1 / /
iL(t) = i(t) = [/vg(t)dt
i) = %/Acos ot dt’ (4.61)

A .
= —sinwt
wlb
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A Imaginary

Figure 4.28 Phasor
voltage and current
relationships for a resistor

Vol
zdo) _p Impedance of a resistor (4.59) < LO4
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Note how a dependence on the radian frequency of the source is clearly present in the
expression for the inductor current. Further, the inductor current is shifted in phase
(by 90°) with respect to the voltage. This fact can be seen by writing the inductor
voltage and current in time-domain form:

vs(t) = v (t) = Acos wt
. _ A w (4.62)
i) =i(t) = ~cos (a)t _ E)

Itis evident that the current is not just a scaled version of the source voltage, as it was
for the resistor. Its magnitude depends on the frequency w, and it is shifted (delayed)
in phase by /2 rad, or 90°. Using phasor notation, equation 4.62 becomes

Vz(jw) = AZ0

. A (4.63)

The relationship between the phasor voltage and current is shown in Figure 4.29.
Thus, the impedance of the inductor is defined as follows:

. Vz(jw) T Impedance of
Z (jo) = Iz(ja)) :wLZE = JoL anFi)nductor

(4.64)

Note that the inductor now appears to behave as a complex frequency-dependent
resistor, and that the magnitude of this complex resistor wL is proportional to the
signal frequency w. Thus, an inductor will “impede” current flow in proportion to the
sinusoidal frequency of the source signal. This means that at low signal frequencies,
an inductor acts somewhat as a short circuit, while at high frequencies it tends to
behave more as an open circuit.

The Capacitor

An analogous procedure may be followed to derive the equivalent result for a
capacitor. Beginning with the defining relationships for the ideal capacitor
duc(t)

dt

ict)=C
: (4.65)
ve (t) = C / ic(t) dt’

with ic = i and vc = vs in Figure 4.27, we can express the capacitor current as
d Uc (t)

ic(®) =C —

d
—C —(A
Cdt( cos wt) (4.66)

= —C(Awsin wt)

= wCAcos (a)t + %)
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so that, in phasor form,

Vz(jw) = AZ0

46
I(jw):wCAA% (4.67)

The relationship between the phasor voltage and current is shown in Figure 4.30. The
impedance of the ideal capacitor Z¢ (jw) is therefore defined as follows:

. Vz(jw) 1 -
Ze(Jo) = — = —L—
l(jo) C 2 Impedance of
. - (4.68)
-1 a capacitor
~ wC  joC
where we have used the fact that 1/j = e #7/2 = —j. Thus, the impedance of a

capacitor is also a frequency-dependent complex quantity, with the impedance of
the capacitor varying as an inverse function of frequency; and so a capacitor acts
as a short circuit at high frequencies, whereas it behaves more as an open circuit at
low frequencies. Figure 4.31 depicts Zc (jw) in the complex plane, alongside Zr (jw)
and Z (jw).

The impedance parameter defined in this section is extremely useful in solving
AC circuit analysis problems, because it will make it possible to take advantage of
most of the network theorems developed for DC circuits by replacing resistances with
complex-valued impedances. Examples 4.12 to 4.14 illustrate how branches contain-
ing series and parallel elements may be reduced to a single equivalent impedance,
much in the same way as resistive circuits were reduced to equivalent forms. It is
important to emphasize that although the impedance of simple circuit elements is
either purely real (for resistors) or purely imaginary (for capacitors and inductors),
the general definition of impedance for an arbitrary circuit must allow for the possi-
bility of having both a real and an imaginary part, since practical circuits are made
up of more or less complex interconnections of different circuit elements. In its most
general form, the impedance of a circuit element is defined as the sum of a real part
and an imaginary part

Z(jw) =R(jo) +j X (jo) (4.69)

where R is the real part of the impedence, sometimes called the AC resistance
and X is the imaginary part of the impedence, also called the reactance. The fre-
quency dependence of R and X has been indicated explicitly, since it is possible for a
circuit to have a frequency-dependent resistance. Note that the reactances of equations
4.64 and 4.68 have units of ohms, and that inductive reactance is always positive,
while capacitive reactance is always negative. Examples 4.12 to 4.14 illustrate how
a complex impedance containing both real and imaginary parts arises in a circuit.
Impedance is another useful mathematical tool that is convenient in solving AC cir-
cuits, but has no real physical significance. Please note that the impedance Z (jw) is
not a phasor, but just a complex number.

A Imaginary

\77/ 2

Redl

Figure 4.30 Phasor
voltage and current
relationships for a

capacitor
Im ZR =R
@ oL
Z
T
2 Z = joL
R
T e
2
Zc
1
. J -1
oC Zc= =

joC
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I

Figure 4.32

EXAMPLE 4.12 Impedance of a Practical Capacitor

Problem

A practical capacitor can be modeled by an ideal capacitor in parallel with a resistor. The
parallel resistance represents leakage losses in the capacitor and is usually quite large. Find
the impedance of a practical capacitor at the radian frequency w = 377 rad/s (60 Hz).
How will the impedance change if the capacitor is used at a much higher frequency, say,
800 kHz?

Solution
Known Quantities: Figure 4.32;C; =0.001 uF =1 x 10 °F;R; = 1 MQ.
Find: The equivalent impedance of the parallel circuit Z;.

Analysis: To determine the equivalent impedance, we combine the two impedances in
parallel.

1 _ Ri/jeCy _ Ry
joCy Ri+1/joCy 14 jwCyiRy

Z; =Ry

Substituting numerical values, we find

108 106
Zi(w = 377) = —
1@ )= 1877 < 10° x 10° — 140377

=9.3571 x 10°£(—0.3605)

The impedance of the capacitor alone at this frequency would be

Zer(w = 377) = = 2.6525 x 10°/ (—%) Q

1
j377 x 10-°
You can easily see that the parallel impedance Z; is quite different from the impedance of the
capacitor alone, Z¢;.

If the frequency is increased to 800 kHz, or 1600 x 10° rad/s—a radio frequency in the
AM range—we can recompute the impedance to be

106
1+j1,6007 x 108 x 10-° x 10

Z1(w = 16007 x 10%)

106
- —108.9/(—1.5706)
1+ 1,600 ( )

The impedance of the capacitor alone at this frequency would be

1

z =1,6007 x 10%) = -
cr@ 7 X100 = 5007 x 10° x 109

—198.9 4(—%) Q

Now, the impedances Z; and Zc; are virtually identical (note that /2 = 1.5708 rad). Thus,
the effect of the parallel resistance is negligible at high frequencies.

Comments: The effect of the parallel resistance at the lower frequency (corresponding to
the well-known 60-Hz AC power frequency) is significant: The effective impedance of the
practical capacitor is substantially different from that of the ideal capacitor. On the other
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hand, at much higher frequency, the parallel resistance has an impedance so much larger
than that of the capacitor that it effectively acts as an open circuit, and there is no difference
between the ideal and practical capacitor impedances. This example suggests that the behavior
of a circuit element depends very much on the frequency of the voltages and currents in the

circuit.
EXAMPLE 4.13 Impedance of a Practical Inductor <LO4
Problem

A practical inductor can be modeled by an ideal inductor in series with a resistor. Figure 4.33
shows a toroidal (doughnut-shaped) inductor. The series resistance represents the resistance
of the coil wire and is usually small. Find the range of frequencies over which the impedance
of this practical inductor is largely inductive (i.e., due to the inductance in the circuit). We
shall consider the impedance to be inductive if the impedance of the inductor in the circuit of Toroid
Figure 4.34 is at least 10 times as large as that of the resistor.

Solution

Known Quantities: L = 0.098 H; lead length = I, = 2 x 10 cm; n = 250 turns; wire is
30-gauge. Resistance of 30-gauge wire = 0.344 Q/m.

. . . . . 0.25cm
Find: The range of frequencies over which the practical inductor acts nearly as an ideal D
05cm

inductor.

Analysis: e first determine the equivalent resistance of the wire used in the practical inductor, Cross section
using the cross section as an indication of the wire length |, in the coil: Figure 4.33 A practical

inductor
l, =250(2 x 0.25+ 2 x 0.5) = 375cm

| = total length =1, + I, = 375 4+ 20 = 395 cm

The total resistance is therefore a
R=0.344 2/m x 0.395m = 0.136 Q2

Thus, we wish to determine the range of radian frequencies, w, over which the magnitude of
jwL is greater than 10 x 0.136 :
136 136 L
L>1.36 or —— = —— =1.39rad/s
== =7 T 0098
Alternatively, the range isf = w/27 > 0.22 Hz. b

. L . . L. Figure 4.34
Comments: Note how the resistance of the coil wire is relatively insignificant. This is true

because the inductor is rather large; wire resistance can become significant for very small
inductance values. At high frequencies, a capacitance should be added to the model because
of the effect of the insulator separating the coil wires.

EXAMPLE 4.14 Impedance of a More Complex Circuit < LO4
Problem

Find the equivalent impedance of the circuit shown in Figure 4.35.
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Solution

Known Quantities: « = 10* rad/s; R; = 100 Q; L = 10 mH; R, =50 Q; C = 10 uF.
Find: The equivalent impedance of the series-parallel circuit.

Analysis: \We determine first the parallel impedance Z;, of the R,-C circuit.

7 —R 1 Ry(1/jwC) Rz
=72 joC ~ R, +1/joC 1+ jwCR,
50 50

—1.92 - j9.62

1+j10°x10x106x50 1+]j5
=9.81/(—1.3734) Q
Next, we determine the equivalent impedance Zeg:
Zeq = Ry + joL + Z;; = 100 + j10* x 1072 + 1.92 — j9.62
= 101.92 4 j90.38 = 136.2£0.723 Q@
Is this impedance inductive or capacitive?

Comments: At the frequency used in this example, the circuit has an inductive impedance,
since the reactance is positive (or, alternatively, the phase angle is positive).

CHECK YOUR UNDERSTANDING

Compute the equivalent impedance of the circuit of Example 4.14 for « = 1,000 and
100,000 rad/s.

Calculate the equivalent series capacitance of the parallel R,C circuit of Example 4.14 at the
frequency w = 10 rad/s.

4%°0=0:62°0 =X ‘666! + 00T = (000°00T)Z :0T[ — O¥T = (000°T) Z :SleMsuyY

Admittance

In Chapter 3, it was suggested that the solution of certain circuit analysis problems
was handled more easily in terms of conductances than resistances. This is true, for
example, when one is using node analysis, or in circuits with many parallel elements,
since conductances in parallel add as resistors in series do. In AC circuit analysis,
an analogous quantity may be defined—the reciprocal of complex impedance. Just as
the conductance G of a resistive element was defined as the inverse of the resistance,
the admittance of a branch is defined as follows:

Y == S 4.70
= (4.70)

Note immediately that whenever Z is purely real, that is, when Z = R + j0,
the admittance Y is identical to the conductance G. In general, however, Y is the
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complex number

Y =G+jB (4.71)
where G is called the AC conductance and B is called the susceptance; the latter
plays a role analogous to that of reactance in the definition of impedance. Clearly, G
and B are related to R and X . However, this relationship is not as simple as an inverse.
Let Z = R 4 jX be an arbitrary impedance. Then the corresponding admittance is

1 1

Z ~ R+jX

(4.72)

To express Y in the form Y = G + jB, we multiply numerator and denominator by
R —jX:

1 R—jX _R-—jX

r= R+jX R—jX RZFX?
o « (4.73)
TRIpxz JREyx2
and conclude that
R
GC=———
R2 4+ X2
+x (4.74)
B= —
R2 + X2

Notice in particular that G is not the reciprocal of R in the general case!
Example 4.15 illustrates the determination of Y for some common circuits.

165
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EXAMPLE 4.15 Admittance

Problem

Find the equivalent admittance of the two circuits shown in Figure 4.36.

Solution
Known Quantities: o = 2w x 10° rad/s; Ry =50 ;L = 16 mH; R, = 100 Q; C = 3 uF.
Find: The equivalent admittance of the two circuits.
Analysis: Circuit (a): First, determine the equivalent impedance of the circuit:
Zypy =Ry +jol
Then compute the inverse of Z,, to obtain the admittance:
1 Ri — jolL

Yap = _
TR +joL R+ (wl)?

Substituting numerical values gives

1 1

= = =3.968 x 107% —j7.976 x 107% S
50 +j27 x 10° x 0.016 _ 50 +j100.5 x J1370 %

Yab

< LO4

a
Ry
Yab —— >
L
b
@
a0———

Yap —»

A
vy
>

bO——mMmMmm——

(b)
Figure 4.36
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Circuit (b): First, determine the equivalent impedance of the circuit:

1 R

Zy=Ro|— = — 2
=2 0C T 1+ jwR,C

Then compute the inverse of Z,, to obtain the admittance:

1+joR,C 1
Yoo =~ _ 2 i0C = 0.014j0.019 S
Rz Ra

Comments: Note that the units of admittance are siemens (S), that is, the same as the units
of conductance.

CHECK YOUR UNDERSTANDING

Compute the equivalent admittance of the circuit of Example 4.14.

¢-0T X T/8'%[ — ¢ 0T X 261°G = O3A Hamsuy

Conclusion

In this chapter we have introduced concepts and tools useful in the analysis of AC circuits.
The importance of AC circuit analysis cannot be overemphasized, for a number of reasons.
First, circuits made up of resistors, inductors, and capacitors constitute reasonable models
for more complex devices, such as transformers, electric motors, and electronic amplifiers.
Second, sinusoidal signals are ever-present in the analysis of many physical systems, not
just circuits. The skills developed in Chapter 4 will be called upon in the remainder of the
book. In particular, they form the basis of Chapters 5 and 6. You should have achieved the
following objectives, upon completion of this chapter.

1. Compute currents, voltages, and energy stored in capacitors and inductors. In addition
to elements that dissipate electric power, there exist electric energy storage elements, the
capacitor and the inductor.

2. Calculate the average and root-mean-square value of an arbitrary (periodic) signal.
Energy storage elements are important whenever the excitation voltages and currents in a
circuit are time-dependent. Average and rms values describe two important properties of
time-dependent signals.

3. Write the differential equation(s) for circuits containing inductors and capacitors.
Circuits excited by time-dependent sources and containing energy storage (dynamic)
circuit elements give rise to differential equations.

4. Convert time-domain sinusoidal voltages and currents to phasor notation, and vice
versa, and represent circuits using impedances. For the special case of sinusoidal
sources, one can use phasor representation to convert sinusoidal voltages and currents
into complex phasors, and use the impedance concept to represent circuit
elements.
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HOMEWORK PROBLEMS

Section 4.1 Energy Storage Circuit
Elements

4.1 The current through a 0.5-H inductor is given by
iL = 2c0s(377t + 7/6). Write the expression for the
voltage across the inductor.

4.2 The voltage across a 100-uF capacitor takes the
following values. Calculate the expression for the
current through the capacitor in each case.

a. vc(t) =40cos(20t — /2) V
b. vc(t) = 20sin 100t V
C. vc(t) = —60sin(80t + 7/6) V
d. vc(t) = 30cos(100t + r/4) V
4.3 The current through a 250-mH inductor takes the

following values. Calculate the expression for the
voltage across the inductor in each case.

a. i (t) =5sin25t A

b. i (t) = —10cos50t A

C. i (t) = 25c0s(100t 4+ r/3) A

d. i (t) =20sin(10t — 7/12) A

4.4 |In the circuit shown in Figure P4.4, let
0 for —co<t<0
it)y=1{t for0 <t <10s

10 forl0s <t < oo

Find the energy stored in the inductor for all time.

1Q

i®) C) 2H

Figure P4.4

4.5 With reference to Problem 4.4, find the energy
delivered by the source for all time.

4.6 In the circuit shown in Figure P4.4 let

0 for —oco<t <0
it) = for0<t <10s
] 20—t for10 <t <20s
0 for20s <t < o0
Find

a. The energy stored in the inductor for all time

b. The energy delivered by the source for all time

4.7 Inthe circuit shown in Figure P4.7, let

0 for —oco<t <0
vt)=4{ t for0<t<10s
10 forl0s <t < o0

Find the energy stored in the capacitor for all time.

v(t) —01F 2Q

Figure P4.7

4.8 With reference to Problem 4.7, find the energy
delivered by the source for all time.

4.9 In the circuit shown in Figure P4.7 let

0 for —oco<t <0
= for0<t<10s
"WTY 20—t for10<t<20s
0 for20s <t < o0

Find

a. The energy stored in the capacitor for all time
b. The energy delivered by the source for all time
4.10 Find the energy stored in each capacitor and

inductor, under steady-state conditions, in the circuit
shown in Figure P4.10.

1F
| L
1T
2Q 2H
\ 1IN
-~ 3F
6V —~ 2F 4Q 8Q
6Q

Figure P4.10

4.11 Find the energy stored in each capacitor and
inductor, under steady-state conditions, in the circuit
shown in Figure P4.11.
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2F
Il A
1H 30
2H L
—T1F — 12V 302 12V —
6Q

Figure P4.11

4.12 The plot of time-dependent voltage is shown in
Figure P4.12. The waveform is piecewise continuous.
If this is the voltage across a capacitor and C = 80 uF,
determine the current through the capacitor. How can
current flow “through” a capacitor?

V(D) (V)
20

10

5 10 15 t(ms)
N

Figure P4.12

4.13 The plot of a time-dependent voltage is shown in
Figure P4.12. The waveform is piecewise continuous.
If this is the voltage across an inductor L = 35 mH,
determine the current through the inductor. Assume the
initial current is i (0) = 0.

4.14 The voltage across an inductor plotted as a function
of time is shown in Figure P4.14. If L = 0.75 mH,
determine the current through the inductor at
t =15 us.

v(t) (V)

35

5 10 15 1 (9
P19

Figure P4.14

4.15 If the waveform shown in Figure P4.15 is the
voltage across a capacitor plotted as a function of time
with

vpk = 20V T =40 us C = 680nF
determine and plot the waveform for the current
through the capacitor as a function of time.

AC Network Analysis

VK | |

| T 2T t

Figure P4.15

4.16 |If the current through a 16-uH inductor is zero at
t = 0 and the voltage across the inductor (shown in
Figure P4.16) is

0 t<0
w()={ 3t 0<t<20pus
1.2nVv t > 20 us

determine the current through the inductor at
t =30 us.

v(t) (nV)

12

| |
20 40 t(u

Figure P4.16

4.17 Determine and plot as a function of time the
current through a component if the voltage across it
has the waveform shown in Figure P4.17 and the
component is a

a. ResistorR=7¢Q
b. Capacitor C = 0.5 uF
c. Inductor L =7 mH

v()) (V)

15 —
10 -

5

|
5 10  t(mg

Figure P4.17

4.18 |If the plots shown in Figure P4.18 are the voltage
across and the current through an ideal capacitor,
determine the capacitance.



v (V)

af \5 / \15
\ /10 ‘(ms)

- 5us
[

s [1 =
|_| 10 t(ms)

Figure P4.18

4.19 |If the plots shown in Figure P4.19 are the voltage
across and the current through an ideal inductor,
determine the inductance.

v(t) (V)

2
l |-
| | |
5 10 15
t (ms)
i(t) (A)
3 -
2 -
1
| | |
° 10 lt5(ms)

Figure P4.19
4.20 The voltage across and the current through a

capacitor are shown in Figure P4.20. Determine the
value of the capacitance.

V() (V)

15}
101 ic(t) (MA)
5F 15
| |

5 10 t(ms) 5 10 t(ms)
Figure P4.20
4.21 The voltage across and the current through a

capacitor are shown in Figure P4.21. Determine the
value of the capacitance.
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Ve (V) ic(MA)

|
| 5 t(ms) 5 t(ms)

Figure P4.21

4.22 The voltage v(t) shown in Figure P4.22 is applied
to a 10-mH inductor. Find the current through the
inductor. Assume i (0) = 0 A.

v ()

5V

1 2 3 4 4 1

-5V

Figure P4.22

4.23 The current waveform shown in Figure P4.23 flows
through a 2-H inductor. Plot the inductor voltage vy (t).

iy may

15~

10 [~

Figure P4.23

4.24 The voltage waveform shown in Figure P4.24
appears across a 100-mH inductor and a 500-u.F
capacitor. Plot the capacitor and inductor currents,
ic(t) and i, (t), assuming i (0) = 0 A.
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A
V() (V)

15

10 [~

Figure P4.24

4.25 In the circuit shown in Figure P4.25, let

0 for —oco<t<0
it) = t for0O<t<1s

—(t—-2) forls<t<2s

0 for2s<t<oo

Find the energy stored in the inductor for all time.

o 2H g

Figure P4.25

4.26 In the circuit shown in Figure P4.26, let

0 for —oco<t <0

2t for0O<t<1s
v(®) = —(2t—4) forl<t<2s

0 for2s<t<oo

Find the energy stored in the capacitor for all time.

w O

o
[
m
)
)
AAAA
VVVY

Figure P4.26

4.27 Use the defining law for a capacitor to find the
current ic (t) corresponding to the voltage shown in
Figure P4.27. Sketch your result.

(1)

+

Ve(t) 0.01F

V
)

Ve(t)
15V
0

1 1
05 1 15 2

Figure P4.27

4.28 Use the defining law for an inductor to find the
current i, (t) corresponding to the voltage shown in
Figure P4.28. Sketch your result.

1002

v, (t)=0.5-0.5¢
/ VL(I) = 0.5-0.5¢'0300

° jio

vi(t) 1H

t(s)

Figure P4.28

Section 4.2 Time-Dependent Signals
Sources

4.29 Find the average and rms value of x(t).

X(t) = 2cos(wt) + 2.5

4.30 A controlled rectifier circuit is generating the
waveform of Figure P4.30 starting from a sinusoidal
voltage of 110 V rms. Find the average and rms

voltage.
Output waveform of controlled rectifier
150 N
/)
100 //
50

% 0 T 270 R
> 0

b50
D100
P150 AN

0 1 2 3 4 5 6
Radians

Figure P4.30



4.31 With reference to Problem 4.30, find the angle 6
that corresponds to delivering exactly one-half of the
total available power in the waveform to a resistive
load.

4.32 Find the ratio between average and rms value of
the waveform of Figure P4.32.

v(t) (V)

0 2 4 6 t(ms)

Figure P4.32

4.33 Given the current waveform shown in
Figure P4.33, find the power dissipated by a 1-

resistor.
it) (A) 10sin%t
10
0 b 2n 3n t(9)

Figure P4.33

4.34 Find the ratio between average and rms value of
the waveform of Figure P4.34.

v(t)

Tnon T

0 — ‘<—T t

T

Figure P4.34

4.35 Find the rms value of the waveform shown in
Figure P4.35.

4.36 Determine the rms (or effective) value of

U(t) = VDC —+ vac = 50 =+ 70.7 COS(377t) V
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Figure P4.35

4.37 Find the phasor form of the following functions:
v(t) = 155 cos (377t — 25°) V

v(t) = 55sin (1,000t — 40°) V

i(t) = 10 cos (10t + 63°) + 15 cos (10t — 42°) A

i(t) = 460 cos (5007t — 25°)
— 220 sin (500t + 15°) A

Q o T o

4.38 Convert the following complex numbers to polar
form:

a. 4+j4
b. -3+j4
C.j+2—j4-3
4.39 Convert the following to polar form and compute

the product. Compare the result with that obtained
using rectangular form.

a. (50 +j10) (4 +j8)

b. (2—2)(4+j5) (2+j7)

4.40 Complete the following exercises in complex
arithmetic.

a. Find the complex conjugate of (4 +j4), (2 —j8),
(—5+j2).

b. Convert the following to polar form by multiplying
the numerator and denominator by the complex
conjugate of the denominator and then performing
the conversion to polar coordinates:

14j7 j4 1
4+j4 2-j8 —54j2°

c. Repeat part b but this time convert to polar
coordinates before performing the division.

4.41 Convert the following expressions to
real-imaginary form: j!, el”.

4.42 Given the two voltages v (t) = 10 cos(wt + 30°)
and v, (t) = 20 cos(wt + 60°), find v(t) = vy (H)+v, (1)
using
a. Trigonometric identities.

b. Phasors.
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Section 4.4: Phasor Solution of Circuits
with Sinusoidal Excitation

4.43 If the current through and the voltage across a
component in an electric circuit are

i(t) = 17 cos(wt — /12) mA
v(t) = 3.5cos(wt + 1.309) V
where w = 628.3 rad/s, determine

a. Whether the component is a resistor, capacitor, or
inductor.

b. The value of the component in ohms, farads, or
henrys.

4.44 Describe the sinusoidal waveform shown in
Figure P4.44, using time-dependent and phasor
notation.

Vv (ot) (V)

/\\

T ot (rad)
2
- -170

Figure P4.44

NIa

4.45 Describe the sinusoidal waveform shown in
Figure P4.45, using time-dependent and phasor
notation.

i (0t) (MA)
8

Tt (rad)

Nlar

-8

|
FNola
T

T=4ms

Figure P4.45

4.46 The current through and the voltage across an
electrical component are

. T
i(t) = 1, cos (a)t + Z> u(t) = V, cos wt

where
l, =3 mA Vo =700 mV w = 6.283 rad/s

a. Is the component inductive or capacitive?

b. Plot the instantaneous power p(t) as a function of
wt over the range 0 < wt < 27.

AC Network Analysis

¢. Determine the average power dissipated as heat in
the component.

d. Repeat parts (b) and (c) if the phase angle of the
current is changed to 0°.

4.47 Determine the equivalent impedance in the circuit
shown in Figure P4.47:

vs(t) = 7cos (3,000t n %) v

R; =2.3kQ R, =1.1kQ
L =190 mH C =55nF
+ Ry R,
O

Figure P4.47

4.48 Determine the equivalent impedance in the circuit
shown in Figure P4.47:

ve(t) = 636 cos (3,000t + 1) v

12
R1 =3.3kQ R, = 22 kQ
L=190H C=6.8nF

4.49 |In the circuit of Figure P4.49,

is(t) = I, cos (wt + %)

lo =13 mA w = 1,000 rad/s

C =05uF
a. State, using phasor notation, the source current.
b. Determine the impedance of the capacitor.

c. Using phasor notation only and showing all work,
determine the voltage across the capacitor,
including its polarity.

® c=—

Figure P4.49
4.50 Determine iz(t) in the circuit shown in
Figure P4.50 if
i1(t) = 141.4 cos(wt + 2.356) mA
i,(t) = 50 sin(wt — 0.927) mA
w = 377 rad/s



S
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Figure P4.50

4.51 Determine the current through Z; in the circuit of
Figure P4.51.

vs1 = vg = 170c0s(377t) \Y
Z; =5.920.122 Q
Z,=23/0%

Z3=17/0.192 Q

"
N
e Vo Z,

Figure P4.51

&l

4.52 Determine the frequency so that the current I; and
the voltage V, in the circuit of of Figure P4.52 are in
phase.

Z, = 13,000 + jow3
R=120Q

L=19mH C =220pF

Vi L

Figure P4.52

4.53 The coil resistor in series with L models the internal
losses of an inductor in the circuit of Figure P4.53.
Determine the current supplied by the source if

vs(t) = V, cos(wt + 0)
Vo=10V w = 6 Mrad/s
R.=40Q L=20uH

Rs =50
C=125nF
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Vs

——

Figure P4.53

4.54 Using phasor techniques, solve for the current in
the circuit shown in Figure P4.54.

30 3H

vg(t) =12 cos 3tV 1U3F

T

4.55 Using phasor techniques, solve for the voltage v in
the circuit shown in Figure P4.55.

Figure P4.54

ig(t) =10 cos2t A 3Q

\AAAS

3HS 1Y3FZ= V()

AAAA

Figure P4.55

4.56 Solve for I in the circuit shown in Figure P4.56.

I

2
=102/ -ZA 20 X H4Q

Figure P4.56

4.57 Solve for V, in the circuit shown in Figure P4.57.
Assume v = 2. 12Q 6H
+v, — .

V =250V 622V,

Figure P4.57

4.58 With reference to Problem 4.55, find the value of w
for which the current through the resistor is maximum.

4.59 Find the current through the resistor in the circuit
shown in Figure P4.59.
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# ir(t)

isﬁ)() 100 uF =< 31000

ig(t) =1 cos (200mt)

Figure P4.59

4.60 Find v,y (t) for the circuit shown in Figure P4.60.

+0O

n
10£ 7 mA X, = 1kQ
Vout

Xc =10k
T

Figure P4.60

4.61 For the circuit shown in Figure P4.61, find the
impedance Z, given o = 4 rad/s.

V4 H

A
YVV¥

Z— V8F 2Q 2

O
Figure P4.61

4.62 Find the sinusoidal steady-state outputs for each of
the circuits shown in Figure P4.62.

+

is(t) (D 10 uF JT e
‘out’

o]

(8 ig(t)=10cos100pt A

Figure P4.62 (Continued)

AC Network Analysis

O
+

is(t) 0.1H

° Vour (9
°

(b) igt) = 20sin10t A
1mH

O

+ l +
Vg (t) 10 uF ,[ )
'out

L o

(¢) vyt =50sin100t V

Figure P4.62

4.63 Determine the voltage across the inductor in the
circuit shown in Figure P4.63.

3mH Vi ()

Vs(t) = 24 cos(1,000t) Q)

4Q

Figure P4.63

4.64 Determine the current through the capacitor in the
circuit shown in Figure P4.64.

i5(t) = 3 cog(100xt)

(D 100uF =<

Figure P4.64

4.65 For the circuit shown in the Figure P4.65, find the
frequency that causes the equivalent impedance to
appear purely resistive.
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Zy c. What is the actual impedance that the source sees

150 1mH with the capacitor included in the circuit?
O AVAVAVAV fm\

4.67 The capacitor model we have used so far has been
1pF =< treated as an ideal circuit element. A more accurate
model for a capacitor is shown in Figure P4.67. The
ideal capacitor, C, has a large “leakage” resistance, Rc,
in parallel with it. Rc models the leakage current
through the capacitor. R; and R, represent the lead
wire resistances, and L; and L, represent the lead wire

O

Figure P4.65

4.66 inductances.

a. Find the equivalent impedance Z,_shown in a IfC =1 uF Re =100 MR, Ry =R, = 1 4 and
Figure P4.6_36(a), as seen by the source, if the L, = L, = 0.1 H, find the equivalent impedance
frequency is 377 rads. seen at the terminals a and b as a function of

b. If we wanted the source to see the load as frequency w.
completely resistive, what value of capacitance b. Find the range of frequencies for which Zy, is

should we place between the terminals a and b as
shown in Figure P4.66(b)? Hint: Find an expression
for the equivalent impedance Z, , and then find C so
that the phase angle of the impedance is zero.

capacitive, i.e., Xap > 10|Rgp.

Hint: Assume that R¢ is is much greater than 1/wC so that
you can replace Rc by an infinite resistance in part b.

y4
- a 10
O yyye a
L 5
Ly
“ ® 3
13.26 mH
<>
SR
O
b
@
z c T~ Re
a 1Q
O A
L
>
Rz
pa — — 13.26 mH
e ® = e g
Lo
e

(b) b
Figure P4.66 Figure P4.67
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TRANSIENT ANALYSIS

he aim of Chapter 5 is to develop a systematic methodology for the solution of
first- and second-order circuits excited by switched DC sources. The chapter
presents a unified approach to determining the transient response of linear
RC, RL, and RLC circuits; and although the methods presented in the chapter
focus only on first- and second-order circuits, the approach to the transient solution
is quite general. Throughout the chapter, practical applications of first- and second-
order circuits are presented, and numerous analogies are introduced to emphasize
the general nature of the solution methods and their applicability to a wide range of
physical systems, including hydraulics, mechanical systems, and thermal systems.

177
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Chapter 5 Transient Analysis

:) Learning Objectives

1. Understand the meaning of transients. Section 1.

2. Write differential equations for circuits containing inductors and capacitors.
Section 2.

3. Determine the DC steady-state solution of circuits containing inductors and capaci-
tors. Section 3.

4. Write the differential equation of first-order circuits in standard form, and deter-
mine the complete solution of first-order circuits excited by switched DC sources.
Section 4.

5. Write the differential equation of second-order circuits in standard form, and
determine the complete solution of second-order circuits excited by switched DC
sources. Section 5.

6. Understand analogies between electric circuits and hydraulic, thermal, and mechan-
ical systems.

5.1 TRANSIENT ANALYSIS

The graphs of Figure 5.1 illustrate the result of the sudden appearance of a
voltage across a hypothetical load [a DC voltage in Figure 5.1(a), an AC voltage in
Figure 5.1(b)]. In the figure, the source voltage is turned on at time t = 0.2 s. The
voltage waveforms of Figure 5.1 can be subdivided into three regions: a steady-state
region for 0 < t < 0.2 s; a transient region for 0.2 < t < 2 s (approximately);
and a new steady-state region for t > 2 s, where the voltage reaches a steady DC
or AC condition. The objective of transient analysis is to describe the behavior of
a voltage or a current during the transition between two distinct steady-state condi-
tions.

006
5 /
>04 /

0.2

0
0 02 04 06 08 10 12 14 16 18 20
t(9)
(a) Transient DC voltage

oo MU
mEain
|

t(s)
(b) Transient sinusoidal voltage

Volts
o

-1

|
|
\
AU 16 18 20

Figure 5.1 Examples of transient response
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The material presented in the remainder of this chapter will provide the tools
necessary to describe the transient response of circuits containing resistors, inductors,
and capacitors. A general example of the type of circuit that is discussed in this section
is shown in Figure 5.2. The switch indicates that we turn the battery power on at time
t = 0. Transient behavior may be expected whenever a source of electrical energy
is switched on or off, whether it be AC or DC. A typical example of the transient
response to a switched DC voltage is what occurs when the ignition circuits in an
automobile are turned on, so that a 12-V battery is suddenly connected to a large
number of electric circuits. The degree of complexity in transient analysis depends
on the number of energy storage elements in the circuit; the analysis can become
quite involved for high-order circuits. In this chapter, we analyze only first- and
second-order circuits, that is, circuits containing one or two energy storage elements,
respectively. In electrical engineering practice, we typically resort to computer-aided
analysis for higher-order circuits.

A convenient starting point in approaching the transient response of electric
circuits is to consider the general model shown in Figure 5.3, where the circuits
in the box consist of a combination of resistors connected to a single energy storage
element, either an inductor or a capacitor. Regardless of how many resistors the circuit
contains, it is a first-order circuit. In general, the response of a first-order circuit to a
switched DC source will appear in one of the two forms shown in Figure 5.4, which
represent, in order, a decaying exponential and a rising exponential waveform. In
the next sections, we will systematically analyze these responses by recognizing that
they are exponential and can be computed very easily once we have the proper form
of the differential equation describing the circuit.
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Switch
— 12V

Figure 5.2 Circuit with
switched DC excitation

_______________

Circuit
—\. containing

RL/RC
combinations

Figure 5.3 A general model
of the transient analysis problem

Decaying exponential waveform Rising exponential waveform
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Figure 5.4 Decaying and rising exponential responses

52 WRITING DIFFERENTIAL EQUATIONS FOR
CIRCUITS CONTAINING INDUCTORS AND
CAPACITORS

The major difference between the analysis of the resistive circuits studied in Chapters 2
and 3 and the circuits we explore in the remainder of this chapter is that now the
equations that result from applying Kirchhoff’s laws are differential equations, as
opposed to the algebraic equations obtained in solving resistive circuits. Consider,
for example, the circuit of Figure 5.5, which consists of the series connection of
a voltage source, a resistor, and a capacitor. Applying KVL around the loop, we may
obtain the following equation:

vs(t) — vr(t) —vc(t) =0 (5.1)

15 2.0

A circuit containing energy storage
elementsis described by a
differential equation. The
differential equation describing the
series RC circuit shown is

dic , 1, _dvs

& "RE'CT @
+VR—
AVAVAVAV

R L
—

+ iR +
vs(t) :) C =< vc(b)

i—

Figure 5.5 Circuit
containing energy storage
element
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MAKE THE
CONNECTION

Thermal LO6

Capacitance

Just as an electrical capacitor
can store energy and a
hydraulic capacitor can
store fluid (see Make the
Connection, “Fluid
Capacitance,” in Chapter 4),
the thermal capacitance Cy,
of an object is related to two
physical properties—mass
and specific heat:

Ct = mc; m = mass [kg]

¢ = specific heat
[J/°C-kg]
Physically, thermal
capacitance is related to the
ability of a mass to store heat,
and describes how much the
temperature of the mass will
rise for a given addition of
heat. If we add heat at the
rate q J/s for time At and the
resulting temperature rise is
AT, then we can define the
thermal capacitance to be
heat added

" temperature rise
At
TOAT
If the temperature rises from
value Ty at time tp to Ty at
time t1, then we can write

t

1 b
T1—To= c q(t) dt
t Jip

or, in differential form,
dT (t)

c
Tt

=4am

Chapter 5 Transient Analysis

Observing that ir = ic, we may combine equation 5.1 with the defining equation for
the capacitor (equation 4.6) to obtain
t

icdt' =0

. 1
s (® ~ Ric(®) — = f (5.2)

—0Q

Equation 5.2 is an integral equation, which may be converted to the more familiar form
of a differential equation by differentiating both sides of the equation and recalling

that
d t
— ic(t)dt' | =ic(t 5.3
dt[/OOIC() ] Ic(t) (5.3)
to obtain the differential equation
dic 1. 1 dUS
E+EIC_§W (5.4)

where the argument t has been dropped for ease of notation.

Observe that in equation 5.4, the independent variable is the series current
flowing in the circuit, and that this is not the only equation that describes the series
RC circuit. If, instead of applying KVL, for example, we had applied KCL at the
node connecting the resistor to the capacitor, we would have obtained the following
relationship:

Vs — Uc dvc

i et = i et (: —_— 5.5
IR R Ic dt (5.5)
or
dvc 1 1
g, — 5.6
dt "RC T RC™ (56)

Note the similarity between equations 5.4 and 5.6. The left-hand side of both equations
is identical, except for the variable, while the right-hand side takes a slightly different
form. The solution of either equation is sufficient, however, to determine all voltages
and currents in the circuit. Example 5.1 illustrates the derivation of the differential
equation for another simple circuit containing an energy storage element.

EXAMPLE 5.1 Writing the Differential Equation of an RL Circuit

Problem

Derive the differential equation of the circuit shown in Figure 5.6.

+VR —
AAA
YVVv

Ry iL

—~—

LA L

W () " ng =
I

Figure 5.6

VVVY

< LO2
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Solution

Known Quantities: Ri =10Q; R, =5Q;L =0.4H.
Find: The differential equation in i (t).
Assumptions: None.

Analysis: Apply KCL at the top node (node analysis) to write the circuit equation. Note that
the top node voltage is the inductor voltage v .

iy — i —irg =0

Vs L d||_ L dlL _
Ri Ry dt Ry dt
di|_ R1R2 R RZ

_ I, = v
dt " LRi+Ry) " LRi+Ry) °

Substituting numerical values, we obtain the following differential equation:

di .
—— +8.33i_ = 0.833us
dt
Comments: Deriving differential equations for dynamic circuits requires the same basic

circuitanalysis skills that were developed in Chapter 3. The only difference is the introduction of
integral or derivative terms originating from the defining relations for capacitors and inductors.

CHECK YOUR UNDERSTANDING

Write the differential equation for each of the circuits shown below.

C
I o ° °
¥ i | WOy s i | ROy "
@0 \ RE w) (D =c Frwy Do gL 3R W
i®
O O O
@ (b) (0
P ¥
S| = T+ =
@sr= MmN D E ©)

WSy = @a+ i 24 (@) ‘@) sa = (3)2 + DY () :slamsuy

Map M2%ap

We can generalize the results presented in the preceding pages by observing
that any circuit containing a single energy storage element can be described by a

MAKE THE
CONNECTION

Thermal \L-O6
System Dynamics

To describe the dynamics of
a thermal system, we write a
differential equation based on
energy balance. The dif-
ference between the heat
added to the mass by an
external source and the heat
leaving the same mass (by
convection or conduction)
must be equal to the heat
stored in the mass:

Qin — Gout = Jstored

An object is internally heated
at the rate gj,, in ambient
temperature T = T,; the
thermal capacitance and
thermal resistance are C and
Rt. From energy balance:
TH-Ta c dT ()

Re U dt

Qin (1) —

dT(t)
dt
7t = RiCy

R¢Ct

+T® =Rtin() + Ta
Kst = Rt

This first-order system is
identical in its form to an
electric RC circuit, as shown
below.

Cout

Thermal system

Ostored T Gout

+
Qin AT

Ta

Equivalent electrical
circuit
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R L

ROT v
L +

@) @ VC(OTC

Figure 5.7 Second-order
circuit

Chapter 5 Transient Analysis

differential equation of the form

ajp % + agx(t) = bof 1) (57)

where x(t) represents the capacitor voltage in the circuit of Figure 5.5 and the in-
ductor current in the circuit of Figure 5.6, and where the constants ag, a;, and bg
consist of combinations of circuit element parameters. Equation 5.7 is a first-order
linear ordinary differential equation with constant coefficients. The equation is
said to be of first order because the highest derivative present is of first order; it is said
to be ordinary because the derivative that appears in it is an ordinary derivative (in
contrast to a partial derivative); and the coefficients of the differential equation are
constant in that they depend only on the values of resistors, capacitors, or inductors
in the circuit, and not, for example, on time, voltage, or current.
Equation 5.7 can be rewritten as

ay dX(t) bo
— — t) = —f(t
2 dt +X(t) % ®
or (5.8)
dx(t) . .
TT + x(t) = Ksf (1) First-order system equation

where the constants T = a;/ag and Ks = bg/a are termed the time constant and
the DC gain, respectively. We shall return to this form when we derive the complete
solution to this first-order differential equation.

Consider now a circuit that contains two energy storage elements, such as that
shown in Figure 5.7. Application of KVL results in the following equation:

. dit (L
_Rl(t)_LT)_E[,wl(t)dt +us(t) =0 (5.9)
Equation 5.9 is called an integrodifferential equation, because it contains both an
integral and a derivative. This equation can be converted to a differential equation by
differentiating both sides, to obtain
di(t) dzity 1. dus(t)
R—=+1L =
& - ae ¢ dt
or, equivalently, by observing that the current flowing in the series circuit is related
to the capacitor voltage by i(t) = C dvc /dt, and that equation 5.9 can be rewritten as
duc(t) d?vc (t)

LC
o T de

Note that although different variables appear in the preceding differential equations,
both equations 5.10 and 5.11 can be rearranged to appear in the same general form,
as follows:

d2x(t) dx(t)

a
dt2 dt

where the general variable x(t) represents either the series current of the circuit of
Figure 5.7 or the capacitor voltage. By analogy with equation 5.8, we call equation 5.12

(5.10)

RC +ue®) = vs(®) (5.11)

a + agX(t) = bp(t) (5.12)
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a second-order linear ordinary differential equation with constant coefficients.
Equation 5.12 can be rewritten as
a, d2(t)  ap dx(t) bo
— +— +x(t) = —f(t
do dt? do dt () do ()
or (5.13) < LO2
1 d2x(t) 2¢ dx(t Second-order
= XU O v =Kt |
wi dt w, dt system equation
where the constants wn, = /ap/az2, ¢ = (a1/2)«/1/apaz, and Ks = by /ag are termed
the natural frequency, the damping ratio, and the DC gain, respectively. We shall
return to this form when we derive the complete solution to this second-order differ-
ential equation.
As the number of energy storage elements in a circuit increases, one can there-
fore expect that higher-order differential equations will result. Computer aids are
often employed to solve differential equations of higher order; some of these soft-
ware packages are specifically targeted at the solution of the equations that result
from the analysis of electric circuits (e.g., Electronics Workbench™).
EXAMPLE 5.2 Writing the Differential Equation of an RLC < LO2
Circuit
Problem
Derive the differential equation of the circuit shown in Figure 5.8. Ri ve® L
AAA
\AAA
iL(t)
Solution vs(t)(D —=C Ry

Known Quantities: R; = 10 kQ; R, =50 Q; L =10mH; C =0.1 uF.
Find: The differential equation in i_(t).
Assumptions: None.

Analysis: Apply KCL at the top node (node analysis) to write the first circuit equation. Note
that the top node voltage is the capacitor voltage vc.

Us — VUc dvc .

—-C——-iL=0

R at  *

Now, we need a second equation to complete the description of the circuit, since the circuit
contains two energy storage elements (second-order circuit). \We can obtain a second equation
in the capacitor voltage vc by applying KVL to the mesh on the right-hand side:

dip .
— —RiL =0
dt 211

U(;—L

di .
Uc = LditL + Roip

Next, we can substitute the above expression for vc into the first equation, to obtain a
second-order differential equation, shown below.

Vs L dipi Ry. d dip . .
777777 —C— (L== +Roi ) —iL=0
R, R, dt R ™" dt( a ’ Z'L) L

Figure 5.8 Second-order
circuit of Example 5.2
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Rearranging the equation, we can obtain the standard form similar to that of equation 5.12:

dzig di, .
RiCL— + (Ri1R:C+L) — + R1 +RpiL=v
1CL e (R1Rz ) it (Re + Ra)iL = vs
Comments: Note that we could have derived an analogous equation by using the capacitor
voltage as an independent variable; either energy storage variable is an acceptable choice. You
might wish to try obtaining a second-order equation in vc as an exercise. In this case, you would
want to substitute an expression for i_ in the first equation into the second equation in vc.

CHECK YOUR UNDERSTANDING

Derive a differential equation in the variable v¢ (t) for the circuit of Example 5.2.

LI
Msap

Ty ( Ta) P < Ta) 2P
+msa==@mo%(1+ =)+ N+ — |+ SEST
W3y = W2 (T 5 ) T @oap \2¥ T 7 ) T (goa p 27 oMY

53 DC STEADY-STATE SOLUTION OF
CIRCUITS CONTAINING INDUCTORS
AND CAPACITORS—INITIAL AND
FINAL CONDITIONS

This section deals with the DC steady-state solution of the differential equations pre-
sented in Section 5.2. In particular, we illustrate simple methods for deriving the initial
and final conditions of circuits that are connected to a switched DC source. These
conditions will be very helpful in obtaining the complete transient solution. Further,
we also show how to compute the initial conditions that are needed to solve the circuit
differential equation, using the principle of continuity of inductor voltage and current.

DC Steady-State Solution

The term DC steady state refers to circuits that have been connected to a DC (voltage
or current) source for a very long time, such that it is reasonable to assume that all
voltages and currents in the circuits have become constant. Ifall variables are constant,
the steady-state solution of the differential equation can be found very easily, since
all derivatives must be equal to zero. For example, consider the differential equation
derived in Example 5.1 (see Figure 5.6):

di () RiR> . Rz
L) =
dt L(R1 +R2) L(R1 +R2)
Rewriting this equation in the general form of equation 5.8, we obtain
L(Ry + Rp) di.(t)
RiR; dt

vs (t) (5.14)

) 1
+iL) = FTl”S(t)

or (5.15)

di (t)
dt

T +iL(t) = Ksus (1)
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where
L(R R 1
_ (R1 +Ry) and Ks = —
Rle Rl
With vs equal to a constant (DC) voltage, after a suitably long time the current in the
circuit is a constant, and the derivative term goes to zero:

L(Ry + Ry) di (t)

. 1
+iL(®) = RTUS(U

RiR; dt
and
. 1
iL= —uvs ast — oo (5.16)
R1
or
i|_ = sts

Note that the steady-state solution is found very easily, and it is determined by the
constant Ks, which we called the DC gain of the circuit. You can see that the general
form of the first-order differential equation (equation 5.8) is very useful in finding the
steady-state solution.

Let us attempt the same method for a second-order circuit, considering the
solution of Example 5.2 (see Figure 5.8):

d2ig (t di (t )
RiCL dth( ) ¢ RiRC + 1) ;E L b Re+ RO = us (D)
or (5.17)
RiCL d?i (t) RiR,C+L dig(t) . 1
t) = t
Ry + Ry dt? R +Ry dt O R1+R2US( )

We can express this differential equation in the general form of equation 5.13, to
find that

1 d?% 2¢ di
L d iL(t) i dl'—(t) + iL(t) = Ksvg (1)

®? dt? w, dt

(5.18)
1 RCL 2t _RiRC+L 1
@ Ri+R.  wn Ri+R T Ri+R

and that, one more time, the steady-state solution, when the derivatives are equal to
zero, is
1 d?igt)  2¢ dig(t)
w? dt? w, dt
and (5.19)

iL = Ksug ast — oo

+iL(t) = Ksws(t)

A different way to arrive at the same result is to start from the defining equation
for the capacitor and inductor and see what happens as t — oo:

doc(b)
dt
ic(t)y - 0 ast — oo Steady-state capacitor current

ic(t) =C

Defining equation for capacitor (5.20)
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and

dip (1)
dt

v () =L Defining equation for inductor

(5.21)

v () —> 0 ast — oo Steady-state inductor voltage

Thus, capacitor currents and the inductor voltages become zero in the DC steady state.
From a circuit analysis standpoint, this means that we can very easily apply circuit
analysis methods from Chapters 2 and 3 to determine the steady-state solution of
any circuit containing capacitors and inductors if we observe that the circuit element
for which the current is always zero is the open circuit, and the circuit element for
which the voltage is always zero is the short circuit. Thus we can make the following
observation:

At DC steady state, all capacitors behave as open circuits and all inductors
behave as short circuits.

Prior to presenting some examples, we make one last important comment.
The DC steady-state condition is usually encountered in one of two cases: before
a switch is first activated, in which case we call the DC steady-state solution the
initial condition, and a long time after a switch has been activated, in which case
we call the DC steady-state solution the final condition. We now introduce the no-
tation x(oco) to denote the value of the variable x(t) ast — oo (final condition)
and the notation x(0) to denote the value of the variable x(t) at t = 0, that is,
just before the switch is activated (initial condition). These ideas are illustrated in
Examples 5.3 and 5.4.

EXAMPLE 5.3 Initial and Final Conditions

Problem

Determine the capacitor voltage in the circuit of Figure 5.9(a) a long time after the switch has
been closed.

tow R

t=0 Ry
Vg — + Rs Vg — . Rs
— T C Vc - T C oVvc
@

(b)

Figure 5.9 (a) Circuit for Example 5.3; (b) same circuit a long time
after the switch is closed
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Solution

Known Quantities: The values of the circuit elements are R; = 100 Q; R, = 75 Q;
R3 =250Q; C=1uF; Vg =12 V.

Analysis: After the switch has been closed for a long time, we treat the capacitor as an open
circuit, as shown in Figure 5.9(b). Now the problem is a simple DC circuit analysis problem.
With the capacitor as an open circuit, no current flows through resistor R,, and therefore we
have a simple voltage divider. Let V3 be the voltage across resistor Vs; then

2
58 (12) = 857V

V3(00) = 350

R3
— Vg =
R; +Rs3
To determine the capacitor voltage, we observe that the voltage across each of the two parallel
branches must be the same, that is, V3(00) = v.(00) + V2(00) where V,(00) is the steady-state
value of the voltage across resistor R,. But V,(c0) is zero, since no current flows through the
resistor, and therefore

ve (00) = V3(o0) = 8.57V

Comments: The voltage vc (00) is the final condition of the circuit of Figure 5.9(a).
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CHECK YOUR UNDERSTANDING

Now suppose that the switch is opened again. What will be the capacitor voltage after a long
time? Why?

"€ pue 2y ybnouyy abaeyasip |jim Jonoeded ayl “A 0 = (00)2a [Jamsuy

EXAMPLE 5.4 Initial and Final Conditions

Problem

Determine the inductor current in the circuit of Figure 5.10(a) just before the switch is opened.

Ry t<o \, Rs

V]__

Figure 5.10 (a) Circuit for Example 5.4; (b) same circuit a long time before
the switch is opened



188

Chapter 5 Transient Analysis

Solution

Known Quantities: The values of the circuit elements are Ry = 1 k2; R, = 5 kQ;
R; =333kQ; L=0.1H; V; =12V; V, =4 V.

Analysis: Before opening, the switch has been closed for a long time. Thus, we have a
steady-state condition, and we treat the inductor as a short circuit, as shown in Figure 5.10(b).
Now it is a simple DC circuit analysis problem that is best approached using node analysis:
Vi—V, V, +V2_Va
Ri R> Rs

1 1 1N\t /vi oV,
==+ =4+ = — 4+ —]1=8.79V
? <R1+R2+R3> (R1+R3>

To determine the inductor current, we observe that

. V, 8.79
= —=——=17 A
iL(0) R, = 5.000 58 m

=0

Comments: The current i, (0) is the initial condition of the circuit of Figure 5.10(a).

CHECK YOUR UNDERSTANDING

Now suppose that the switch is opened. What will be the inductor current after a long time?

SH + ZH
A

YW 8y'0 = = (00) T [lamsuy

Continuity of Inductor Currents and Capacitor
Voltages, and Initial Conditions

As has already been stated, the primary variables employed in the analysis of circuits
containing energy storage elements are capacitor voltages and inductor currents. This
choice stems from the fact that the energy storage process in capacitors and induc-
tors is closely related to these respective variables. The amount of charge stored in
a capacitor is directly related to the voltage present across the capacitor, while the
energy stored in an inductor is related to the current flowing through it. A funda-
mental property of inductor currents and capacitor voltages makes it easy to identify
the initial condition and final value for the differential equation describing a cir-
cuit: Capacitor voltages and inductor currents cannot change instantaneously. An
instantaneous change in either of these variables would require an infinite amount of
power. Since power equals energy per unit time, it follows that a truly instantaneous
change in energy (i.e., a finite change in energy in zero time) would require infinite
power.

Another approach to illustrating the same principle is as follows. Consider the
defining equation for the capacitor

doc ()

ict)=C .
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and assume that the capacitor voltage vc (t) can change instantaneously, say, from0 v ()
to V volts, as shown in Figure 5.11. The value of dvc /dt att = 0 is simply the slope A
of the voltage v (t) att = 0. Since the slope is infinite at that point, because of the v
instantaneous transition, it would require an infinite amount of current for the voltage

across a capacitor to change instantaneously. But this is equivalent to requiring an =0 :
infinite amount of power, since power is the product of voltage and current. A similar
argument holds if we assume a “step” change in inductor current from, say, 0 to |
amperes: An infinite voltage would be required to cause an instantaneous change in
inductor current. This simple fact is extremely useful in determining the response of
a circuit. Its immediate consequence is that

Figure 5.11 Abrupt change
in capacitor voltage

The value of an inductor current or a capacitor voltage just prior to the closing
(or opening) of a switch is equal to the value just after the switch has been
closed (or opened). Formally,

ve(01) = ve (07) (5.22) < LO3

iL(07) =i (07) (5.23)
where the notation 0% signifies “just after t = 0” and 0~ means “just before
t — 0.”
EXAMPLE 5.5 Continuity of Inductor Current LO3
Problem

Find the initial condition and final value of the inductor current in the circuit of Figure 5.12.

t=0
pic
Solution Is % L RS
Known Quantities: Source current lg; inductor and resistor values.

Find: Inductor currentatt = 0" andast — oo.

VVVY

Figure 5.12
Schematics, Diagrams, Circuits, and Given Data: |5 = 10 mA.

Assumptions: The current source has been connected to the circuit for a very long time.

Analysis: Att = 0, since the current source has been connected to the circuit for a very long ) -
time, the inductor acts as a short circuit, and i, (0~) = Is. Since all the current flows through o) gL i) SE VR(t)
the inductor, the voltage across the resistor must be zero. Att = 07, the switch opens and we ~—
can state that

iL(0") =i (07 =1s i(®

because of the continuity of inductor current.

The circuit for t > 0 is shown in Figure 5.13, where the presence of the current i, (0")
denotes the initial condition for the circuit. A qualitative sketch of the current as a function of ~ 10mA
time is also shown in Figure 5.13, indicating that the inductor current eventually becomes zero

ast — oo.

Comments: Note that the direction of the current in the circuit of Figure 5.13 is dictated by
the initial condition, since the inductor current cannot change instantaneously. Thus, the current  Figure 5.13
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MAKE THE

CONNECTION
Hydraulic

L
Tank @

The analogy between electric
and hydraulic circuits
illustrated in earlier chapters
can be applied to the
hydraulic tank shown in
Figure 5.14. The tank is
cylindrical with cross-
sectional area A, and the
liquid contained in the tank
exits the tank through a valve,
which is modeled by a fluid
resistance R. Initially, the
level, or head, of the liquid is
hg. The principle of
conservation of mass can be
applied to the liquid in the
tank of Figure 5.14 to
determine the rate at which
the tank will empty. For mass
to be conserved, the
following equation must
apply:
Qin — Jout = Ustored

In the above equation, the
variable q represents a vol-
umetric flow rate in cubic
meters per second. The flow
rate into the tank is zero in
this particular case, and the
flow rate out is given by the
pressure difference across
the valve, divided by the
resistance:
Ap _ pgh

R R

The expression Ap = pgh
is obtained from basic fluid
mechanics: pgh is the static
pressure at the bottom of the
tank, where p is the density
of the liquid, g is the
acceleration of gravity, and h
is the (changing) liquid level.

Qout =

(Continued)

Chapter 5 Transient Analysis

will flow counterclockwise, and the voltage across the resistor will therefore have the polarity
shown in the figure.

CHECK YOUR UNDERSTANDING

The switch in the circuit of Figure 5.10 (Example 5.4) has been open for a long time, and it is
closed again at t = to. Find the initial condition i, ().

YW gy'o = (-0 = (;0) 7 Jamsuy

5.4 TRANSIENT RESPONSE OF FIRST-ORDER
CIRCUITS

First-order systems occur very frequently in nature: Any system that has the ability
to store energy in one form (potential or kinetic, but not both) and to dissipate this
stored energy is a first-order system. In an electric circuit, we recognize that any
circuit containing a single energy storage element (an inductor or a capacitor) and a
combination of voltage or current sources and resistors is a first-order circuit. We also
encounter first-order systems in other domains. For example, a mechanical system
characterized by mass and damping (e.qg., sliding or viscous friction) but that does not
display any elasticity or compliance is a first-order system. A fluid system displaying
flow resistance and fluid mass storage (fluid capacitance) is also first order; an ex-
ample of a first-order hydraulic system is a liquid-filled tank with a valve (variable
orifice). Thermal systems can also often be modeled as having first-order behavior:
The ability to store and to dissipate heat leads to first-order differential equations.
The heating and cooling of many physical objects can often be approximated in this
fashion. The aim of this section is to help you develop a sound methodology for
the solution of first-order circuits, and to help you make the connection with other
domains and disciplines, so that someday you may apply these same ideas to other
engineering systems.

Elements of the Transient Response

As explained in Section 5.1, the transient response of a circuit consists of three parts:
(1) the steady-state response prior to the transient (in this chapter, we shall only
consider transients caused by the switching on or off of a DC excitation); (2) the
transient response, during which the circuit adjusts to the new excitation; and (3)
the steady-state response following the end of the transient. The steps involved in
computing the complete transient response of a first-order circuit excited by a switched
DC source are outlined in the next Focus on Methodology box. You will observe that
we have already explored each of the steps listed below, and that this methodology
is very straightforward, provided that you correctly identify the proper segments of
the response (before, during, and after the transient).
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FIRST-ORDER TRANSIENT RESPONSE

1. Solve for the steady-state response of the circuit before the switch changes
state (t = 07) and after the transient has died out (t — o0). We shall
generally refer to these responses as x(0~) and x(co).

2. ldentify the initial condition for the circuit x(0™), using continuity of
capacitor voltages and inductor currents [vc = vc(07), iL(0T) =i (07)],
as illustrated in Section 5.3.

3. Write the differential equation of the circuit for t = 0, that is,
immediately after the switch has changed position. The variable x(t) in the
differential equation will be either a capacitor voltage vc (t) or an inductor
current i (t). It is helpful at this time to reduce the circuit to Thévenin or
Norton equivalent form, with the energy storage element (capacitor or
inductor) treated as the load for the Thévenin (Norton) equivalent circuit.
Reduce this equation to standard form (equation 5.8).

4. Solve for the time constant of the circuit: ¢ = Ry C for capacitive circuits,
7 = L/Ry for inductive circuits.

5. Write the complete solution for the circuit in the form
X(t) = x(00) + [X(0) — x(c0)]e™"/"

General Solution of First-Order Circuits

The methodology outlined in the preceding box is illustrated below for the general
form of the first-order system equation (equation 5.8, repeated below for conve-
nience),

& m + x(t) = %f(t)
dg dt =N)

or (5.24)
T ax(t) + x(t) = Ksf (1)

dt

where the constants t = a; /ap and Ks = bg/ag are termed the time constant and the
DC gain, respectively. Consider the special case where f (t) is a DC forcing function,
switched on at time t = 0. Let the initial condition of the system be x(t = 0) = x(0).
Then we seek to solve the differential equation

ax(t) t) = KsF

T at + X(1) = Kg

Asyou may recall from an earlier course in differential equations, this solution consists
of two parts: the natural response (or homogeneous solution), with the forcing
function set equal to zero, and the forced response (or particular solution), in
which we consider the response to the forcing function. The complete response then

t>0 (5.25)
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MAKE THE
CONNECTION

(Concluded)

The flow rate stored is
related to the rate of change
of the fluid volume contained
in the tank (the tank stores
potential energy in the mass
of the fluid):

dh
Ostored = A at
Thus, we can describe the
emptying of the tank by
means of the first-order linear
ordinary differential equation

0 — Qout = Jstored

_ et
R dt
RA dh
— —+h=0
o9 at *
—> ‘[%—‘rhzo
RA
T=—
r9

We know from the content of
the present section that the
solution of the first-order
equation with zero input and
initial condition hg is

h(t) = hge V/*
Thus, the tank will empty
exponentially, with time
constant determined by the
fluid properties, that is, by the
resistance of the valve and by
the area of the tank.

A= aea

?

h
f LR G

e

Figure 5.14 Analogy
between electrical and fluid
capacitance
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consists of the sum of the natural and forced responses. Once the form of the complete
response is known, the initial condition can be applied to obtain the final solution.

Natural Response

The natural response is found by setting the excitation equal to zero. Thus, we solve
the equation

dxy (t
T Xg't() +xn(t) =0
or (5.26)
dxn®  xn(®
at T

Where we use the notation xy (t) to denote the natural response. The solution of this
equation is known to be of exponential form:

t/t

XN (1) = ae™ Natural response (5.27)

The constant « in equation 5.27 depends on the initial condition, and can only be
evaluated once the complete response has been determined. If the system does not
have an external forcing function, then the natural response is equal to the complete
response, and the constant « is equal to the initial condition @ = x(0). The Make the
Connection sidebar “Hydraulic Tank” illustrates this case intuitively by considering
a fluid tank emptying through an orifice. You can see that in the case of the tank, once
the valve (with flow resistance R) is open, the liquid drains at an exponential rate,
starting from the initial liquid level hg, and with a time constant = determined by the
physical properties of the system. You should confirm the fact that if the resistance
of the valve is decreased (i.e., liquid can drain out more easily), the time constant
will become smaller, indicating that the tank will empty more quickly. The concept
of time constant is further explored in Example 5.6.

EXAMPLE 5.6 First-Order Systems and Time Constants

Problem

Create a table illustrating the exponential decay of a voltage or current in a first-order circuit
versus the number of time constants.

Solution

Known Quantities: Exponential decay equation.

Find: Amplitude of voltage or current x(t) att = 0, 7, 27, 3, 47, 57.
Assumptions: The initial condition att = 0 is x(0) = X,.

Analysis: \We know that the exponential decay of x(t) is governed by the equation
X(t) = Xpe ™"



Part | Circuits

Thus, we can create the following table for the ratio x(t)/Xo = e™"/*,n =0, 1,2, ..., ateach
value of t:

X(t)
Xo

1

0.3679
0.1353
0.0498
0.0183
0.0067

aswNDEFE O

Figure 5.15 depicts the five points on the exponential decay curve.

Comments: Note that after three time constants, x has decayed to approximately 5 percent of
the initial value, and after five time constants to less than 1 percent.
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1

0.8 \
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x

%04
02 <

0 I~

0o 1 2 3 4 5
Time constants

Figure 5.15 First-order
exponential decay and time
constants

CHECK YOUR UNDERSTANDING

Find the time tso0, When x(t) has decayed to exactly one-half of the initial value Xo.

1€69°0 = %09 amsuy

Forced Response

For the case of interest to us in this chapter, the forced response of the system is the
solution to the equation
dxg (1)
T
in which the forcing function F is equal to a constant for t = 0. For this special
case, the solution can be found very easily, since the derivative term becomes zero in
response to a constant excitation; thus, the forced response is found as follows:

+xe() =KsF  t>0 (5.28)

Xg () = KsF t>0 Forced response (5.29)

Note that this is exactly the DC steady-state solution described in Section 5.4! We
already knew how to find the forced response of any RLC circuit when the excitation
is a switched DC source. Further, we recognize that the two solutions are identical by
writing

Xg (1) = x(o0) = KsF t>0 (5.29)

Complete Response

The complete response can now be calculated as the sum of the two responses:
X() =xn) +xe () =ae VT + KsF =ae ™" +x(c0) t>0  (5.30)

< LO4
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First-Order
Thermal System

An automotive transmission
generates heat, when
engaged, at the rate

Qin = 2,000 J/s. The thermal
capacitance of the transmis-
sionis C; = mc = 12 kj/°C.
The effective convection
resistance through which
heat is dissipated is

Rt = 0.2°C/W.

1. What is the steady-state
temperature the trans-
mission will reach when
the initial (ambient)
temperature is 5°C?

With reference to the Make
the Connection sidebar on
thermal capacitance, we
write the differential equation
based on energy balance:

dT
RiCy o + T = Rilin

At steady state, the rate of
change of temperature is
zero, hence, T (c0) = RtQin-
Using the numbers given,

T (00) = 0.04 x 2,000 = 80°C.

(Continued)

~|ve(@ =5V

+
_— 12’\m ve() == C

Figure 5.17

Chapter 5 Transient Analysis

To solve for the unknown constant «, we apply the initial condition x(t = 0) = x(0):

X(t =0) =X(0) = o + X(c0)

(5.31)
o = X(0) — x(00)
so that we can finally write the complete response:
X(t) = [X(0) — x(c0)] e V" +x(c0) t=>0 Complete (5.32)
- - response '

Note that this equation is in the same form as that given in the Focus on Methodology
box. Once you have understood this brief derivation, it will be very easy to use
the simple shortcut of writing the solution to a first-order circuit by going through
the simple steps of determining the initial and final conditions and the time constant
of the circuit. This methodology is illustrated in the remainder of this section by a
number of examples.

EXAMPLE 5.7 Complete Solution of First-Order Circuit

Problem

Determine an expression for the capacitor voltage in the circuit of Figure 5.17.

Solution
Known Quantities: Initial capacitor voltage; battery voltage, resistor and capacitor values.
Find: Capacitor voltage as a function of time v (t) for all t.

Schematics, Diagrams, Circuits, and Given Data: vc(t =07) =5V, R =1kQ;
C =470 uF; Vg = 12 V. Figures 5.17 and 5.18.

Assumptions: None.
Analysis:

Step 1: Steady-state response. e first observe that the capacitor had previously been
charged to an initial voltage of 5 V. Thus,

ve(t) =5V t<0 vc(07) =5V
When the switch has been closed for a long time, the capacitor current becomes zero (see
equation 5.20); alternatively, we can replace the capacitor by an open circuit. In either case,

the fact that the current in a simple series circuit must become zero after a suitably long time
tells us that

ve(00) = Vg = 12V

Step 2: Initial condition. We can determine the initial condition for the variable vc (t) by
virtue of the continuity of capacitor voltage (equation 5.22):

vc(0") =vc(07) =5V

and

< LO4

< LO4
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Complete, transient, and steady-state response of RC circuit

15
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Complete, transient, and steady-state response of RC circuit
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Figure 5.18 (a) Complete, transient, and steady-state
responses of the circuit of Figure 5.17;

(b) complete, natural, and forced responses of the circuit
of Figure 5.17.

Step 3: Writing the differential equation. At t = 0 the switch closes, and the circuit is
described by the following differential equation, obtained by application of KVL:

Vg — Ric(t) — ve(t) = Vg — RC d”dct(t) —wet)=0 t>0
RC d”gt(t) foe)=Vg t>0

Step 4: Time constant. In the above equation we recognize the following variables, with
reference to equation 5.22:

x=Ve¢ T1t=RC Ks=1 ft)=Vg t>0
Step 5: Complete solution. From the Focus on Methodology box, we know that the solution
is of the form

X(t) = x(00) + [X(0) — x(c0)]e™"/"
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(Concluded)

2. How long will it take the
transmission to reach
90 percent of the final
temperature?

The general form of the
solution is

T(t) =[T(0) - T(co)le ™"
+ T (c0)
=T(0) + T(c0)
x(1—e 7
=5+80(1—e7)

thus, the transmission
temperature starts out at
5°C, and increases to its final
value of 85°C, as shown in
the plot of Figure 5.16.
Given the final value of

85°C, we calculate 90 per-
cent of the final temperature
to be 76.5°C. To determine
the time required to
reach this temperature, we
solve the following equation
for the argument t:

T (tgow) = 76.5

=5+ 80(1 — e~%0%/T)

715

ST 1 — eteow/T

80
0.10625 = e ~'90%/T =

toos = 2.247 = 1,076 s
= 17.9 min

O Step response of transmission

8 o0 FE
8’60 ~Z | [ T T 1
= == Transmission
£ 40 temperature
B 20 — Final value

g f - - 90% value

% 00 200 600 10001400 1800
= Time ()

Figure 5.16 Temperature
response of automotive
transmission
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Substituting the appropriate variables, we can write

ve (t) = ve (00) 4 [vec (0) — ve (00)]e~RE t>0

ve(t) =124 (5 — 12)e V%47 = vess (t) + ver (1)

with

vess () =12V Steady-state response

ver () = (5 — 12)e /047 v Transient response

Alternatively, we can combine the different terms of the response in the following form:
ve (1) = 5874 4+ 12(1 — e™%4) = wen (1) + ver (1)

with

ven (1) = 5e~ /047 v Natural response

vep (t) = 12(1 — e~ 047y v Forced response

You can see that we can divide the response into two parts either in the form of steady-state
and transient response, or in the form of natural and forced response. The former is the one
more commonly encountered in circuit analysis (and which is used dominantly in this book);
the latter is the description usually found in mathematical analyses of differential equations.
The complete response described by the above equations is shown graphically in Figure 5.18;
part (a) depicts the steady-state and transient components, while part (b) shows the natural
and forced responses. Of course, the complete response is the same in both

cases.

Comments: Note how in Figure 5.18(a) the steady-state response vcss (1) is simply equal to
the battery voltage, while the transient response vcr (t) rises from —7 to 0 V exponentially. In
Figure 5.18(b), on the other hand, we can see that the energy initially stored in the capacitor
decays to zero via its natural response vcy (t), while the external forcing function causes the
capacitor voltage to rise exponentially to 12 V, as shown in the forced response vce (t). The
example just completed, though based on a very simple circuit, illustrates all the steps required
to complete the solution of a first-order circuit.

CHECK YOUR UNDERSTANDING

What happens if the initial condition (capacitor voltage for t < 0) is zero?

(pon-2— 12T = (FOa = (1) °a
"uonnN|os padloy) ayl 01 enba sI UONIN|OS 818]dWO02 8y :Jamsuy/

Energy Storage in Capacitors and Inductors

It is appropriate at this time to recall that capacitors and inductors are energy storage
elements. Consider, first, a capacitor, which accumulates charge according to the
relationship Q = CV. The charge accumulated in the capacitor leads to the storage
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of energy according to the following equation:

1

We = 3

Cvé t) Energy stored in a capacitor (5.33)

To understand the role of stored energy, consider, as an illustration, the simple circuit
of Figure 5.19, where a capacitor is shown to have been connected to a battery Vg for
alongtime. The capacitor voltage is therefore equal to the battery voltage: vc (t) = V.
The charge stored in the capacitor (and the corresponding energy) can be directly
determined by using equation 5.33. Suppose, next, that at t = 0 the capacitor is
disconnected from the battery and connected to a resistor, as shown by the action
of the switches in Figure 5.19. The resulting circuit would be governed by the RC
differential equation described earlier, subject to the initial condition vc (t = 0) = Vp.
Thus, according to the results of Section 5.4, the capacitor voltage would decay
exponentially according to the following equation:

ve (t) = Vge V/RC (5.34)

Physically, this exponential decay signifies that the energy stored in the capacitor at
t = 0 is dissipated by the resistor at a rate determined by the time constant of the
circuit T = RC. Intuitively, the existence of a closed-circuit path allows for the flow
of a current, thus draining the capacitor of its charge. All the energy initially stored
in the capacitor is eventually dissipated by the resistor.

Avery analogous reasoning process explains the behavior of an inductor. Recall
that an inductor stores energy according to the expression

1
W, = éLif(t) Energy stored in an inductor (5.35)

Thus, in an inductor, energy storage is associated with the flow of a current (note the
dual relationship between i_ and vc). Consider the circuit of Figure 5.20, which is
similar to that of Figure 5.19 except that the battery has been replaced with a current
source and the capacitor with an inductor. For t < 0, the source current Ig flows
through the inductor, and energy is thus stored; att = 0, the inductor current is equal
to Ig. At this point, the current source is disconnected by means of the left-hand
switch, and a resistor is simultaneously connected to the inductor, to form a closed
circuit.® The inductor current will now continue to flow through the resistor, which
dissipates the energy stored in the inductor. By the reasoning in the preceding discus-
sion, the inductor current will decay exponentially:

iL(t) = |BeitR/L (5.36)

INote that in theory an ideal current source cannot be connected in series with a switch. For the purpose
of this hypothetical illustration, imagine that upon opening the right-hand side switch, the current source
is instantaneously connected to another load, not shown.
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That is, the inductor current will decay exponentially from its initial condition, with
a time constant t = L/R. Example 5.8 further illustrates the significance of the time
constant in a first-order circuit.
LO4> EXAMPLE 5.8 Charging a Camera Flash—Time Constants
Problem
A capacitor is used to store energy in a camera flash light. The camera operates on a 6-V
battery. Determine the time required for the energy stored to reach 90 percent of the maximum.
Compute this time in seconds and as a multiple of the time constant. The equivalent circuit is
t=0 shown in Figure 5.21.
R
+
Ve — Solution

Figure 5.21 Equivalent
circuit of camera flash charging
circuit

Known Quantities: Battery voltage; capacitor and resistor values.
Find: Time required to reach 90 percent of the total energy storage.
Schematics, Diagrams, Circuits, and Given Data: Vg =6V, C = 1,000 uF; R = 1 kQ.

Assumptions: Charging starts at t = 0, when the flash switch is turned on. The capacitor is
completely discharged at the start.
Analysis: First, we compute the total energy that can be stored in the capacitor:

Eto = 3Cv3 = 3CVZ =18 x 1072
Thus, 90 percent of the total energy will be reached when Ey = 0.9 x 18 x 1073
=16.2 x 1073 J. This corresponds to a voltage calculated from

1Cv2 =16.2 x 1073

2x162x 103
ve = ,/% =569V

Next, we determine the time constant of the circuit: r = RC = 1072 x 10® = 1 s; and we
observe that the capacitor will charge exponentially according to the expression

ve=61-eV)=6(1-e"
Note that the expression for vc (t) is equal to the forced response, since the natural response is

equal to zero (see Example 5.7) when the initial condition in vc (0) = 0. To compute the time
required to reach 90 percent of the energy, we must therefore solve for t in the equation

vc-go% = 5.692 = 6(1 —e™)

0.949=1-¢"

0.051 =e¢™!

t=—1In0.051=2.97s
The result corresponds to a charging time of approximately 3 time constants.
Comments: This example demonstrates the physical connection between the time constant
of a first-order circuit and a practical device. If you wish to practice some of the calculations

related to time constants, you might calculate the number of time constants required to reach
95 and 99 percent of the total energy stored in a capacitor.
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CHECK YOUR UNDERSTANDING

If we wished to double the amount of energy stored in the capacitor, how would the charging
time change?

"2 Buiggnop snyj ‘abJe] se 891M] 8q PINOM D) S ‘B]NOp 0S[e PINOM 1] :IaMSUY
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EXAMPLE 5.9 Starting Transient of DC Motor

Problem

An approximate circuit representation of a DC motor consists of a series RL circuit, shown in
Figure 5.22. Apply the first-order circuit solution methodology just described to this approxi-
mate DC motor equivalent circuit to determine the transient current.

Solution
Known Quantities: Initial motor current; battery voltage; resistor and inductor values.
Find: Inductor current as a function of time iL(t) for all t.

Schematics, Diagrams, Circuits, and Given Data: R =4 Q; L =0.1H; Vg =50V.
Figure 5.22.

Assumptions: None.
Analysis:

Step 1: Steady-state response. The inductor current prior to the closing of the switch must
be zero; thus,

iLt) =0A t<0 and iL0)=0A

When the switch has been closed for a long time, the inductor current becomes a constant and
can be calculated by replacing the inductor with a short circuit:
Vg 50

= — =125A

IL(c0) = R 2

Step 2: Initial condition. \We can determine the initial condition for the variable i, (t) by
virtue of the continuity of inductor current (equation 5.23):

iL(0") =i (07) =0

Step 3: Writing the differential equation. At t = 0 the switch closes, and the circuit is
described by the following differential equation, obtained by application of KVL:

di(t) _

0 t=0
dt =

Vg —Ri (t) — L

L di(t)
R dt

1
+ ||_(t) = ﬁVB t>0

< LO4

+
Py

Figure 5.22 Circuit for
Example 5.9
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Step 4: Time constant. In the equations listed in step 3, we recognize the following
variables, with reference to equation 5.8:

. 1
X=1I fzﬁ Kszﬁ f(t):VB t>0

Step 5: Complete solution. From the Focus on Methodology box, we know that the solution
is of the form

X(t) = X(00) + [X(0) — X(c0)Je ™"
Substituting the appropriate variables, we can write

iL(t) = iL(00) + [iL(0) — iL(c0)]e R/ t>0

=125+ 0 - 12.5)9‘”0'025 = i|_55 (1) + T (t)

with

iss(t) =12.5A Steady-state response

it (1) = (—12.5)e"10025 A Transient response
Alternatively, we can combine the different terms of the response in the following form:

iL(t) =0+ 1251 — e V0% = j\y(t) + i) t>0
with

iw@®) =0A Natural response

e () = 12.5(1 — e /005y A Forced response

The complete response described by the above equations is shown graphically in Figure 5.23.

Comments: Note that in practice it is not a good idea to place a switch in series with an
inductor. As the switch opens, the inductor current is forced to change instantaneously, with

Complete, transient, and steady-state response of RL circuit Complete, transient, and steady-state response of RL circuit
15 15
10 10
/ —_ (1) L~ — (1), iLe(D)
5 /" — iur(®) | 5 / — () |
/ - is(t) y/
5 ;
< L — <
-5 / -5
-10 // -10
15 -15
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time(s) Time (s)
@ (b)

Figure 5.23 Transient response of electric motor: (a) steady-state and transient responses; (b) natural and
forced responses
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the result that di,_/dt, and therefore v, (t), approaches infinity. The large voltage transient
resulting from this inductive kick can damage circuit components.

In the preceding examples we have seen how to systematically determine the
solution of first-order circuits. The solution methodology was applied to two simple
cases, but it applies in general to any first-order circuit, providing that one is careful
to identify a Thévenin (or Norton) equivalent circuit, determined with respect to
the energy storage element (i.e., treating the energy storage element as the load).
Thus the equivalent-circuit methodology for resistive circuits presented in Chapter 3
applies to transient circuits as well. Figure 5.24 depicts the general appearance of a
first-order circuit once the resistive part of the circuit has been reduced to Thévenin
equivalent form.

An important comment must be made before we demonstrate the equivalent-
circuit approach to more complex circuit topologies. Since the circuits that are the
subject of the present discussion usually contain a switch, one must be careful
to determine the equivalent circuits before and after the switch changes position.
In other words, it is possible that the equivalent circuit seen by the load before
activating the switch is different from the circuit seen after the switch changes
position.

To illustrate the procedure, consider the RC circuit of Figure 5.25. The objective
is to determine the capacitor voltage for all time. The switch closesatt = 0.For t < 0,
we recognize that the capacitor has been connected to the battery V, through resistor
R». This circuit is already in Thévenin equivalent form, and we know that the capacitor
must have charged to the battery voltage V,, provided that the switch has been closed
for a sufficient time (we shall assume so). Thus,

ve () = Vo t<0

(5.37)

Ve(07) =Ve(0H) =V,

After the switch closes, the circuit on the left-hand side of Figure 5.25 must be
accounted for. Figure 5.26 depicts the new arrangement, in which we have moved the
capacitor to the far right-hand side, in preparation for the evaluation of the equivalent
circuit. Using the Thévenin-to-Norton source transformation technique (introduced
in Chapter 3), we next obtain the circuit at the top of Figure 5.27, which can be easily
reduced by adding the two current sources and computing the equivalent parallel
resistance of Ry, Ry, and Rs. The last step illustrated in the figure is the conversion
to Thévenin form. Figure 5.28 depicts the final appearance of the equivalent circuit
fort > 0.

t=0
Ry Ry
AVAVAVAV % AVAVAVAV
+
— < . =
Vi— RS Ve ;= C =V
-

Figure 5.25 A more involved RC circuit
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Figure 5.26 The circuit of Figure
522 fort>0

When the switch has been closed for a long time, the capacitor sees the Thévenin
equivalent circuit computed in Figures 5.27 and 5.28. Thus, when the capacitor is re-
placed with an open circuit, vc(co) = Vr. Further, we can determine the initial
condition for the variable vc (t) by virtue of the continuity of capacitor voltage (equa-
tion 5.22): vc(0") = vc(07) = V,. Att = 0 the switch closes, and the circuit is
described by the following differential equation, obtained by application of KVL for
the circuit of Figure 5.28:

. duelt
Vi — Rric(t) — ve(t) = Vr —RrC ”;t()—vc(t)=o t>0
duelt
R:C vdct()—l—vc(t)sz t>0
with
Rt = Ry||R2]|R3

Vi V,
Vi =Ry R_1+R_2

In the above equation we recognize, with reference to equation 5.25, the following
variables and parameters: X = vc; T = RtC; Ks = 1; f(t) = V1 fort > 0. And we
can write the complete solution

ve (1) = ve (00) + [ve (0) — ve (00)]e~Y® t>0

ve(t) = V1 + (V2 — Vr)e V/Rre

The use of Thévenin equivalent circuits to obtain transient responses is emphasized
in the next few examples.

LO4 >

EXAMPLE 5.10 Use of Thévenin Equivalent Circuits in Solving
First-Order Transients

Problem

The circuit of Figure 5.29 includes a switch that can be used to connect and disconnect a battery.
The switch has been open for a very long time. Att = 0 the switch closes, and thenatt = 50 ms
the switch opens again. Determine the capacitor voltage as a function of time.
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Solution
Known Quantities: Battery voltage; resistor and capacitor values.
Find: Capacitor voltage as a function of time vc (t) for all t.

Schematics, Diagrams, Circuits, and Given Data: R, = R, = 1,000 2, Rz = 500 €2, and
C = 25 uF. Figure 5.29.

Assumptions: None.

Analysis:

Part 1— 0<t<50ms

Step 1: Steady-state response. We first observe that any charge stored in the capacitor has
had a discharge path through resistors Rz and R,. Thus, the capacitor must be completely
discharged. Hence,

ve®) =0V t<0 and (@) =0V

To determine the steady-state response, we look at the circuit a long time after the switch has
been closed. At steady state, the capacitor behaves as an open circuit, and we can calculate
the equivalent open circuit (Thévenin) voltage and equivalent resistance to be

R
®R, + R,
—75V

Rr = R + Ry||R, = 1 kQ

Uc(OO) =V

Step 2: Initial condition. \We can determine the initial condition for the variable vc (t) by
virtue of the continuity of capacitor voltage (equation 5.25):

vc(0") =vec(07) =0V

Step 3: Writing the differential equation. To write the differential equation, we use the
Thévenin equivalent circuit for t > 0, with V1 = v.(c0), and we write the resulting
differential equation

doc(t)

VT—RTic(t)—vc(t)IVT—RTC —vc(t)=0 0<t<50ms
duc ()

RrC it

+vc(t) =Vr 0<t<50ms

Step 4: Time constant. In the above equation we recognize, with reference to equation 5.22,
the following variables and parameters:

X = vc; T =R;C =0.025s; Ks =1;
f)=V: =75V 0<t<50ms
Step 5: Complete solution. The complete solution is
ve (1) = ve (00) + [ve (0) — ve (00)]e V" 0<t<50ms

ve) =Vr 4+ (0 —Vp)eVRiC =751 —e¥095)y  0<t<50ms
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Part 2— t > 50ms

As mentioned in the problem statement, at t = 50 ms the switch opens again, and the capacitor
now discharges through the series combination of resistors R3 and R;. Since there is no external
forcing function once the switch is opened, this problem only involves determining the natural
response of the circuit. Recall that the natural response is of the form xy (t) = ae™* (see
equation 5.27). We note two important facts:

1. The constant « is the initial condition at the time when the switch is opened, since that
represents the actual value of the voltage across the capacitor from which the exponential
decay will begin.

2. The time constant of the decay is now the time constant of the circuit with the switch
open, that is, t = (R, + R3)C = 0.0375s.
To determine «, we must calculate the value of the capacitor voltage at the time when the
switch is opened:
o = vc(t =50 ms) = 7.5(1 — e 005/00%) — g 485V
Thus, we can write the capacitor voltage response for t > 50 ms as follows:
ve (t) — 6.48567@70.05)/0,0375

The composite response is plotted below.

Transient response with double switching

Volts
w ESN
e

/ N

2 / N
1
\

0
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Time(s)

T~

Comments: Note that the two parts of the response are based on two different time constants,
and that the rising portion of the response changes faster (shorter time constant) than the
decaying part.

CHECK YOUR UNDERSTANDING

What will the intial condition for the exponential decay be if the switch opens at t = 100 ms?

N €9E’L “Jemsuy
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EXAMPLE 5.11 Turn-Off Transient of DC Motor

Problem

Determine the motor voltage for all time in the simplified electric motor circuit model shown
in Figure 5.30. The motor is represented by the series RL circuit in the shaded box.

Solution
Known Quantities: Battery voltage, resistor, and inductor values.
Find: The voltage across the motor as a function of time.

Schematics, Diagrams, Circuits, and Given Data: Rz = 2 Q; Rs = 20 Q; R, = 0.8 &;
L=3H;Vg=100V.

Assumptions: The switch has been closed for a long time.

Analysis: With the switch closed for a long time, the inductor in the circuit of Figure 5.30
behaves as a short circuit. The current through the motor can then be calculated by the current
divider rule in the modified circuit of Figure 5.31, where the inductor has been replaced with
a short circuit and the Thévenin circuit on the left has been replaced by its Norton equivalent:

o 1/Rn Vg
" 1/Rs +1/Rs + 1/Rn Rs
1/0.8 100

- == —3472A
1/2+1/20+1/0.8 2

This current is the initial condition for the inductor current: i (0) = 34.72 A. Since the motor
inductance is effectively a short circuit, the motor voltage fort < 0 is equal to

Un(t) = inRn = 27.8V t<0

When the switch opens and the motor voltage supply is turned off, the motor sees only the shunt
(parallel) resistance Rs, as depicted in Figure 5.32. Remember now that the inductor current
cannot change instantaneously; thus, the motor (inductor) current i, must continue to flow in the
same direction. Since all that is left isa series RL circuit, with resistance R = Rs+R,,, = 20.8 2,
the inductor current will decay exponentially with time constant t = L/R = 0.1442 s:

iL(t) = im(t) = i (0)e YT = 34.7¢7 /01442 t>0

The motor voltage is then computed by adding the voltage drop across the motor resistance
and inductance:
di (1)

dt

un(t) = Ry () + L

34.7

=0.8 x 34.7e7 V01442 4 3( —
x 9\ 701242

) a—1/0.1442 t>0

= —694.1e/0142 >0
The motor voltage is plotted in Figure 5.33.

Comments: Notice how the motor voltage rapidly changes from the steady-state value of
27.8 V fort < 0 to a large negative value due to the turn-off transient. This inductive kick
is typical of RL circuits, and results from the fact that although the inductor current cannot
change instantaneously, the inductor voltage can and does, as it is proportional to the derivative
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Figure 5.33 Motor voltage transient response

of i_. This example is based on a simplified representation of an electric motor, but illustrates
effectively the need for special starting and stopping circuits in electric motors.

EXAMPLE 5.12 Transient Response of Supercapacitors

Problem

An industrial, uninterruptible power supply (UPS) is intended to provide continuous power
during unexpected power outages. Ultracapacitors can store a significant amount of energy
and release it during transient power outages to ensure delicate or critical electrical/electronic
systems. Assume that we wish to design a UPS that is required to make up for a temporary
power glitch in a permanent power supply for 5 s. The system that is supported by this UPS
operates at a nominal voltage of 50 V and has a maximum nominal voltage of 60 V, but can
function with a supply voltage as low as 25 V. Design a UPS by determining the suitable
number of series and parallel elements required.

Solution

Known Quantities: Maximum, nominal, and minimum voltage; power rating and time re-
quirements; ultracapacitor data (see Example 4.1).

Find: Number of series and parallel ultracapacitor cells needed to satisfy the specifications.

Schematics, Diagrams, Circuits, and Given Data: Figure 5.34. Capacitance of one cell:
Ceenn = 100 F; resistance of one cell: Reey = 15 m€2; nominal cell voltage Ve = 2.5 V. (See
Example 4.1.)

Assumptions: The load can be modeled as a 0.5-Q resistance.

Analysis: The total capacitance of the “stack” required to satisfy the specifications is obtained
by combining capacitors in series and parallel, as illustrated in Figure 5.34(a). Figure 5.34(b)
depicts the electric circuit model of a single cell. First we define some of the important variables
that are to be used in the problem.

The allowable voltage drop in the supply is AV = 25V, since the load can operate with
a supply as low as 25 V and nominally operates at 50 V.

The time interval over which the voltage will drop (but not below the allowable minimum
of 25V) is5s.

The equivalent resistance of the stack consists of n parallel strings of m resistors each;
thus
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Req = cheIIHcheII” .. ||cheII n times
m
Req = HRceII

The equivalent capacitance of the stack can similarly be calculated by recalling that capacitors
in series combine as do resistors in parallel (and vice versa):

Finally, given the equivalent resistance and capacitance of the stack, we can calculate the time
constant to be

m n
T = RegCeq = FRceIIECceII = ReellCeen = 1.5s

The total number of series capacitors can be calculated from the maximum required voltage:

Vimax 60 .
m= = — = 24 series cells
VceII 25

We shall initially assume that n = 1 and see whether the solution is acceptable. Having
established the basic parameters, we now apply KCL to the equivalent circuit of Figure 5.34(c)
to obtain an expression for the stack voltage. Recall that we wish to ensure that the stack voltage
remains greater than the minimum allowable voltage (25 V) for at least 5 s:

dvc(t) ve(t)
C =0
* dt * Req + Rload
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Transient response of UPS load voltage
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Figure 5.35 Transient response of supercapacitor circuit

The initial condition for this circuit assumes that the stack is fully charged to Ve, that is,
ve(07) = vc(0M) = 60 V. Since there is no external excitation, the solution to this first-order
circuit consists of the natural response, with v.(co0) = 0

ve(t) = [vc(0) — v (00)]e™™ + ve (00) t>0
ve(t) = ve (O)e“/’ = 1 (O)E—t/(Req+R|oad)Ceq

— 60e~t/{LM/MRcen-+Rioad 1(N/mM)Ceell} t>0

Since we are actually interested in the load voltage, we can use a voltage divider to relate
the supercapacitor voltage to the load voltage:

RIoad RIoald
Vioad (D) = — = () = ————2° (b))
toad Req + Rload ¢ (m/n)RceII + RIoad ¢

0.5

=— 60 V/{M/MReein+Rioad] (/M) Ceenl}
(m/n)(0.015) + 0.5

This relationship can be used to calculate the appropriate number of parallel strings n
such that the load voltage is above 25 V (the minimum allowable load voltage) att =5s. The
solution could be obtained analytically, by substituting the known values m = 24, R;pq = 0.5,
Ceel = 100 F, Reey = 15 M2, t = 55, and vjeq(t = 5) = 25 V and by solving for the only
unknown, n. We leave this as an exercise. Figure 5.35 plots the transient response of the stack
load system for n = 1 to 5. You can see that for n = 3 the requirement that v;o,g = 25 V for at
least 5 s is satisfied.

CHECK YOUR UNDERSTANDING

Derive the result obtained in Example 5.12 analytically, by solving the transient response for
the unknown value n.

€ = U Jamsuy
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55 TRANSIENT RESPONSE OF
SECOND-ORDER CIRCUITS

In many practical applications, understanding the behavior of first- and second-order
systems is often all that is needed to describe the response of a physical system
to external excitation. In this section, we discuss the solution of the second-order
differential equations that characterize RLC circuits.

Deriving the Differential Equations for Second-Order
Circuits

Asimple way of introducing second-order circuits consists of replacing the box labeled
“Circuit containing RL/RC combinations” in Figure 5.3 with a combination of two
energy storage elements, as shown in Figure 5.36. Note that two different cases are
considered, depending on whether the energy storage elements are connected in series
or in parallel.

Consider the parallel case first, which has been redrawn in Figure 5.37 for clarity.
Practice and experience will eventually suggest the best method for writing the circuit
equations. At this point, the most sensible procedure consists of applying the basic
circuit laws to the circuit of Figure 5.37. Start with KVL around the left-hand loop:

vt (t) — Rris(t) —wvc(t) =0 (5.38)
Then apply KCL to the top node, to obtain

is(t) —ic(t) —iL() =0 (5.39)
Further, KVL applied to the right-hand loop yields

ve(t) = v (b) (5.40)

It should be apparent that we have all the equations we need (in fact, more). Using
the defining relationships for capacitor and inductor, we can express equation 5.39 as

vr () —we®) C doc(t)

R T iL(t)=0 (5.41)
and equation 5.40 becomes
ve() =L d'gft) (5.42)

Substituting equation 5.42 in equation 5.41, we can obtain a differential circuit equa-
tion in terms of the variable i (t):
1 L dicy dZic(t)

—ur () — — LC i (t 5.43
O = o i (5.43)

or
dZip(t)y L di (b

LC

. 1
e Ry dt + I (t) = EUT (5.44)

The solution to this differential equation (which depends, as in the case of
first-order circuits, on the initial conditions and on the forcing function) completely
determines the behavior of the circuit. By now, two questions should have appeared
in your mind:

1. Why is the differential equation expressed in terms of i_ (t)? [Why not vc (1)?]
2. Why did we not use equation 5.38 in deriving equation 5.44?

O v
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Figure 5.36 Second-order

circuits
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Figure 5.37 Parallel case
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In response to the first question, it is instructive to note that, knowing i, (t), we can
certainly derive any one of the voltages and currents in the circuit. For example,

diL(t)

ve®=u®=L—1 (5.45)
C o duc® L dZic()
ic(t) =C—— =LC— (5.46)

To answer the second question, note that equation 5.44 is not the only form the
differential circuit equation can take. By using equation 5.38 in conjunction with
equation 5.39, one could obtain the following equation:

vt () = Rrlic(® +iL®] + ve ) (5.47)

Upon differentiating both sides of the equation and appropriately substituting from
equation 5.41, the following second-order differential equation in vc would be ob-
tained:

d?vc(t) L duc(t) L dur(t)

2 TR da VTR Tw

Note that the left-hand side of the equation is identical to equation 5.44, except that vc
has been substituted for i_. The right-hand side, however, differs substantially from
equation 5.44, because the forcing function is the derivative of the equivalent voltage.

Since all the desired circuit variables may be obtained either as a function of
iL or as a function of vc, the choice of the preferred differential equation depends
on the specific circuit application, and we conclude that there is no unique method
to arrive at the final equation. As a case in point, consider the two circuits depicted
in Figure 5.38. If the objective of the analysis were to determine the output voltage
vout, then for the circuit in Figure 5.38(a), one would choose to write the differential
equation in vc, since vc = vy In the case of Figure 5.38(b), however, the inductor
current would be a better choice, since voyt = Rrigut.

LC

(5.48)

Solution of Second-Order Circuits

Second-order systems also occur very frequently in nature, and are characterized by
the ability of a system to store energy in one of two forms—potential or kinetic—
and to dissipate this stored energy; second-order systems always contain two energy
storage elements. Electric circuits containing two capacitors, two inductors, or one
capacitor and one inductor are usually second-order systems (unless we can combine
the two capacitors or inductors into a single element by virtue of a series or parallel
combination, in which case the system is of first order). Earlier in this chapter we saw
that second-order differential equations can be written in the form of equations 5.12
and 5.13, repeated here for convenience.

d2x(t) dx(t)

ap as + apX(t) = bof (t)

dt? dt
or (5.49)
1 d?x(t) 2¢ dx(b)
= =2 = Ksf
T + e + x(1) = Ksf (1)

In equation 5.48, the constants w, = «/ap/az2, ¢ = (a1/2)/1/apaz, and Ks = by /ag
are termed the natural frequency, the damping ratio, and the DC gain (or static
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Response of second-order system to switched unit input
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Figure 5.39 Response of switched second-order
system with Ks =1, wp =1, and ¢ = 0.1

sensitivity), respectively. Just as we were able to attach a very precise meaning to
the constants T and Ks in the case of first-order circuits, the choice of constants w,,
¢, and Kg is not arbitrary, but represents some very important characteristics of the
response of second-order systems, and of second-order circuits in particular. As an
illustration, let Ks = 1, wy, = 1, and ¢ = 0.2 in the differential equation 5.48, and
let f (t) correspond to a switched input that turns on from zero to unit amplitude? at
t = 0. The response is plotted in Figure 5.39.

We immediately note three important characteristics of the response of
Figure 5.39:

1. The response asymptotically tends to a final value of 1.
2. The response oscillates with a period approximately equal to 6 s.
3. The oscillations decay (and eventually disappear) as time progresses.

Each of these three observations can be explained by one of the three parameters
defined in equation 5.49:

1. The final value of 1 is predicted by the DC gain Ks = 1, which tells us that in
the steady state (when all the derivative terms are zero) x(t) = f (t).

2. The period of oscillation of the response is related to the natural frequency:
wp = 1 leads to the calculation T = 27 /w, = 27 ~ 6.28 s. Thus, the natural
frequency parameter describes the natural frequency of oscillation of the
system.

3. Finally, the reduction in amplitude of the oscillations is governed by the
damping ratio ¢. It is not as easy to visualize the effect of the damping ratio
from a single plot, so we have included the plot of Figure 5.40, illustrating how
the same system is affected by changes in the damping ratio. You can see that as
¢ increases, the amplitude of the initial oscillation becomes increasingly smaller
until, when ¢ = 1, the response no longer overshoots the final value of 1 and
has a response that looks, qualitatively, like that of a first-order system.

2This input is more formally called a unit step, and the response deriving from it is called the unit step
response.
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MAKE THE
CONNECTION

Automotive
Suspension

If we analyze the mechan-
ical system shown in

Figure 5.41(a) using Newton’s
Second Law, ma =) F, we
obtain the equation

d2x(t)
dt?

dx(t)
=F(@t)—b ]~ kx(t)
Comparing this equation with
equation 5.49, we can rewrite
the same equation in the

standard form of a
second-order system:

m d2x(t) " b dx(t)
k dt? k dt

1
+x = O

The series electric circuit of
Figure 5.41(b) can be
obtained by KVL:

. di
US—RIL—vc—LT:=0
. . duc

e =G s
L= € dt
d?vc duc
LC RC —
dt2 + dt
+ vc = vs
(€) F
M
— X
i
(b) R C

Vs@ L

Figure 5.41 Analogy
between electrical and
mechanical systems

(Continued)
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02to4

In the remainder of this chapter we will study solution methods to determine
the response of second-order circuits.

Elements of the Transient Response

The steps involved in computing the complete transient response of a second-order
circuit excited by a switched DC source are, in essence, the same as the steps we
took in solving a first-order circuit: First we determine the initial and final conditions,
using exactly the same techniques used for first-order circuits (see Section 5.4); then
we compute the transient response. The computation of the transient response of a
second-order circuit, however, cannot be simplified quite as much as was done for
first-order circuits. With a little patience you will find that although it takes a little
longer to go through the computations, the methods are the same as those used in
Section 5.5.

The solution of a second-order differential equation also requires that we
consider the natural response (or homogeneous solution), with the forcing function
set equal to zero, and the forced response (or particular solution), in which we con-
sider the response to the forcing function. The complete response then consists of
the sum of the natural and forced responses. Once the form of the complete response
is known, the initial condition can be applied to obtain the final solution.

Natural Response of a Second-Order System

The natural response is found by setting the excitation equal to zero. Thus, we solve
the equation

1 dPxn () | 2¢ dxy (D)
w? dt? w, dt

where we use the notation xy (t) to denote the natural response. Just as in the case of
first-order systems, the solution of this equation is known to be of exponential form:

(5.51)

+xn(t) =0 (5.50)

XN (1) = o™ Natural response
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Substituting this expression into equation 5.50, we obtain the algebraic equation

1 2
—s*ae™ + 2 swet + et = 0 (5.52)
n Wn
Equation 5.52 can be equal to zero only if
$ 2
—2+—§s+1=0 (5.53)
wp wn

This polynomial in the variable s is called the characteristic polynomial of the
differential equation, and it gives rise to two characteristic roots s; and s,. Thus,
the function xy (t) = e is a solution of the homogeneous differential equation only
when s = s; and s = s,. The natural response of the system is a linear combination
of the response associated with each characteristic root, that is,

Xy (1) = ()(1851t + oezeSZt (554)

Now, one can solve for the two characteristic roots simply by finding the roots of
equation 5.53:

S12=—fwn =+ %\/(chnﬂ — 4w} = —fwn T ony§? -1

It is immediately apparent that three possible cases exist for the roots of the natural
solution of a second-order differential equation, as shown in this Focus on
Methodology box.

(5.55)

ROOTS OF SECOND-ORDER SYSTEMS

Case 1: Real and distinct roots. This case occurs when ¢ > 1, since the
term under the square root sign is positive in this case, and the roots
are sy = —Cwp £ wny/¢2 — 1. This leads to an overdamped
response.

Real and repeated roots. This case holds when ¢ = 1, since the
term under the square root is zero in this case, and

S1.2 = —Cwn = —wy. This leads to a critically damped response.
Complex conjugate roots. This case holds when ¢ < 1, since the
term under the square root is negative in this case, and

S1.20 = —Cwn £ jon/1 — ¢2. This leads to an underdamped
response.

Case 2:

Case 3:

As we shall see in the remainder of this section, identifying the roots of the
second-order differential equation is the key to writing the natural solution. Example
5.13 applies these concepts to an electric circuit.

EXAMPLE 5.13 Natural Response of Second-Order Circuit

Problem

Find the natural response of the circuit shown in Figure 5.42.
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MAKE THE
CONNECTION

(Concluded)

If we now compare both
second-order differential
equations to the standard
form of equation 5.49, we
can make the following

observations:
1 %@ | 2¢ dx(t)
»  dt? o dt

+x(t) = Ksf ()

k
wn =,/ —
m

_ben _B /L
Tk 2 2Vkm
Mechanical

S
“n=yic
wn R /C
=RC— =_,/=
4 2 2V L
Electrical

Comparing the expressions
for the natural frequency and
damping ratio in the two
differential equations, we
arrive at the following

analogies:

Mechanical Electrical
system system
Damping

coefficient b Resistance R
Mass m Inductance L

Compliance 1/k  Capacitance C
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Solution
Known Quantities: Circuit elements.

Find: The natural response of the differential equation in i (t) describing the circuit of
Figure 5.42.

Schematics, Diagrams, Circuits, and Given Data: R; = 8 kQ; R, = 8kQ; C = 10 uF;
L=1H.

Assumptions: None.

Analysis: To compute the natural response of the circuit, we set the source equal to zero (short
circuit) and observe that the two resistors are in parallel, and can be replaced by a single resistor
R = Ry||R,. We apply KCL to the resulting parallel RLC circuit, observing that the capacitor
voltage is the top node voltage in the circuit:

Uc duc .
—+C—+i =0
R + at + I
Next, we observe that
di
Vc =V = L ditL
and we substitute the above expression for vc into the first equation to obtain
d%i, L dip .
IC—+—-—+i.=0
@ TrRa Tt

This equation is in the form of equation 5.50, with Ks = 1, w? = 1/LC, and 2¢ /wy, = L/R.
We can therefore compute the roots of the differential equation from the expression

S12=—Cwn £ %,/(Zan)2 — 4wl = —twp w2 -1

It is always instructive to calculate the values of the three parameters first. We can see by
inspection that Ks = 1; w, = 1/+/LC = 1/4/10-% = 316.2 rad/s; and { = Lw,/2R = 0.04.
Since ¢ < 1, the response is underdamped, and the roots will be of the form s;, = —¢wy,
+ jony/1 — ¢2. Substituting numerical values, we have s; , = —12.5 & j316.2, and we can
write the natural response of the circuit as

XN (t) _ (¥1€<7§wn+jwnv 1-¢2)t + a2e<7§wnfjwn\/ 1-¢2)t

= pe("125HBIBD 4\ a(~125-j3162)t

The constants «; and «, can be determined only once the forced response and the initial
conditions have been determined. We shall see more complete examples very shortly.

Comments: Note that once the second-order differential equation is expressed in general
form (equation 5.50) and the values of the three parameters are identified, the task of writing
the natural solution with the aid of the Focus on Methodology box, “Roots of Second-Order
Systems,” is actually very simple.
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CHECK YOUR UNDERSTANDING

For what value of R will the circuit response become critically damped?

O T'8ST = Y Jemsuy

Let us now more formally review each of the three cases of the natural solution
of a second-order system.

1. OVERDAMPED SOLUTION

Real and distinct roots. This case occurs when ¢ > 1, since the term under the
square root sign is positive, and the roots are s; ) = —¢wn & wn+/¢2 — 1. In the case
of an overdamped system, the general form of the solution is

Xy (1) = ;€% + pe%t = ale(itw"ﬂ“"\/{zj)t + a2e<*{wnfwn\/4Tfl)t

= o™/ +ope”V™ (5.56) @

1 1
= ‘[1:
Cwn+wny/2? =1 Cwn —wny/§2 =1

The appearance is that of the sum of two first-order systems, as shown in Figure 5.43.

T2

2. CRITICALLY DAMPED SOLUTION

Real and repeated roots. This case holds when ¢ = 1, since the term under the
square root sign is zero, and $1 2 = —{wy = —wy. This leads to a critically damped

Natural response of overdamped second-order circuit Natural response of critically damped second-order circuit
2 T T T T T 1 1 e —— — —
18 Natural response n 09 le Natural response
' \ o Response due to first root e o Response dueto first term
1.6 \ = Response due to second root (H 0.8 & N Response due to second term
° N
14 \ 0.7 - \
R B 05 oI\
3 o0s AN 304 %
o%:% XXXX%XXXXX
0.6 [— S — 03 % e —N
" I 0r L TN N
* DY x °°<>°° o N
0.2 0.1 - %%O%c s
0 “pes 0 povooc)
0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5
Time () Time (s)
Figure 5.43 Natural response of underdamped Figure 5.44 Natural response of a critically damped

second-order system for ¢y = a2 =1; { =1.5; wp =1 second-order system foray = a2 =1, ¢ =1 on =1
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response. In the case of a critically damped system, the general form of the solution is

Xn () = Oé]_es1t =+ ()(2'1652t = (Xleiw”t + Olzteﬂu"t = Otleit/T =+ Olzteit/r
1 (5.57)

T = —
Wn

Note that the second term is multiplied by t; thus a critically damped system consists

of the sum of a first-order exponential term plus a similar term multiplied by t. The
appearance is that of the sum of two first-order systems, as shown in Figure 5.44.

3. UNDERDAMPED SOLUTION

Complex conjugate roots. This case holds when ¢ < 1, since the term under the

square root sign is negative, and s;» = —Cwn % jony/1 — 2. This leads to an
underdamped response. The general form of the response is
X (1) = agelFortionVI=E) L o(~consiony/1=e2)t (5.58)

To better understand this solution, and the significance of the complex exponential,
let us assume that «; = o = «. Then we can further manipulate equation 5.58 to
obtain

Xn () = e ¢ent <e(j‘””\/m>t + e(*jwn 1{2>t>
= 2ae¢@nt cos (wnm) t

The last step in equation 5.59 made use of Euler’s equation (equation 4.44), and clearly
illustrates the appearance of the underdamped response of a second-order system: The
response oscillates at a frequency wgy, called the damped natural frequency, where
wyg = wny/1 — ¢2. This frequency asymptotically approaches the natural frequency
as ¢ tends to zero. The oscillation is damped by the exponential decay term 2ace ~¢r.
The time constant for the exponential decay is T = 1/¢wy, SO you can see that as ¢
becomes larger (more damping), T becomes smaller and the oscillations decay more
quickly. The two factors that make up the response are plotted in Figure 5.45, along
with their product, which is the natural response.

(5.59)

Forced Response

For the case of interest to us in this chapter, that is, switched DC sources, the forced
response of the system is the solution to the equation

1 dx(t)  2¢ dx(t)

— — —— +x(t) = Ksf (t 5.60

2 dC —i—wn i +X(1) = Ksf (1) (5.60)
in which the forcing function f (t) is equal to a constant F for t > 0. For this special
case, the solution can be found very easily, since the derivative term becomes zero in
response to a constant excitation; thus, the forced response is found as follows:

Xg (1) = KsF t>0 Forced response (5.61)

Note that this is again exactly the DC steady-state solution described in
Section 5.4! We already know how to find the forced response of any RLC cir-
cuit when the excitation is a switched DC source. Further, we recognize that the two
solutions are identical by writing

Xe (D) =x(00) = KsF t>0 (5.62)
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Natural response of underdamped second-order circuit
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Figure 5.45 Natural response of an underdamped
second-order system for g = a2 =1; £ =0.2; wp =1

Complete Response

The complete response can now be calculated as the sum of the two responses,
and it depends on which of the three cases—overdamped, critically damped, or
underdamped—applies to the specific differential equation.

Overdamped case (¢ > 1):

X(®) = o 1)+ X (1) = el VI
(5.63)
+ aze<—(mn—wm/{2—l)t + X(OO) t > O

Critically damped case (¢ = 1):
X(1) = XN (1) + Xe (1) = e + apte ¢t 4 x(00)  t>0 (5.64)
Underdamped case (¢ < 1):

X(0) = X (1) + X (1) = el Ien VA=)
(5.65)
+ aze(_“’"_j(“" Vi) +x(c0) t>0

In each of these cases, to solve for the unknown constants «; and «», we apply the
initial conditions. Since the differential equation is of the second order, two initial
conditions will be required: x(t = 0) = x(0) and dx(t = 0)/dt = x(0). The details of
the procedure vary slightly in each of the three cases, so it is best to present each case
by way of a complete example. The complete procedure is summarized in the Focus
on Methodology box that follows.

< LO5
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MAKE THE
CONNECTION

Automotive
Suspension <|—06
The mechanical system
model described in an earlier
Make the Connection sidebar
can serve as

an approximate represen-
tation of an automotive sus-
pension system. The mass m
represents the vehicle mass,
the spring represents the
suspension strut (or coils),
and the damper models the
shock absorbers. The
differential equation of this
second-order system is given
below.

m d*Xpody (1) b dXpoay (t)
K~ de kK dt

+ Xpody (1)
b dXroad ()

1
= Exroad ®) + K dt

m= 1,500 kg

k =20,000 N/m
brew = 15,000 N-s/m
b0|d =5,000 N-m

Figure 5.46 Automotive
suspension system

(Continued)

SECOND-ORDER TRANSIENT RESPONSE

1. Solve for the steady-state response of the circuit before the switch changes
state (t = 07) and after the transient has died out (t — o0). We shall
generally refer to these responses as x(0~) and x(co).

2. ldentify the initial conditions for the circuit x(0™), and X(0™), using the
continuity of capacitor voltages and inductor currents
[vc(0M) = vc(07), i (07) =i + L(07)] and circuits analysis. This will be
illustrated by examples.

3. Write the differential equation of the circuit for t = 0", that is,
immediately after the switch has changed position. The variable x(t) in the
differential equation will be either a capacitor voltage vc (t) or an inductor
current i (t). Reduce this equation to standard form (equation 5.9 or 5.49).

4. Solve for the parameters of the second-order circuit, w, and ¢.

5. Wirite the complete solution for the circuit in one of the three forms given
below as appropriate:

Overdamped case (¢ > 1):
X(t) = XN (t) + X (t) = g Eemten/2P=D)t
+ aze(_w”_“’" VD) +x(00) t>0
Critically damped case (¢ = 1):
X(t) = Xn (1) + Xe (1) = a8 + apte ™ 4 x(00) >0
Underdamped case (¢ < 1):
KO = o () + (1) = cgelEorHon/ A0
+ a2e<_{w”_j“” Vie) +Xx(0) t=0

6. Apply the initial conditions to solve for the constants «; and ;.

EXAMPLE 5.14 Complete Response of Overdamped
Second-Order Circuit

Problem

Determine the complete response of the circuit shown in Figure 5.48 by solving the differential
equation for the current i (t).

Solution

Known Quantities: Circuit elements.

< LO5
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R=5000Q L=1H C=1puF
Vs=25V

Figure 5.48

Find: The complete response of the differential equation in i (t) describing the circuit of
Figure 5.48.

Schematics, Diagrams, Circuits, and Given Data: Vs = 25V;R =5KkQ; C =1 uF;
L=1H.

Assumptions: The capacitor has been charged (through a separate circuit, not shown) prior
to the switch closing, such that vc (0) =5 V.

Analysis:

Step 1: Steady-state response. Before the switch closes, the current in the circuit must

be zero. We are therefore sure that the inductor current is initially zero: i (07) = 0. We
cannot know, in general, what the state of charge of the capacitor is. The problem statement
tells us that vc (07) = 5 V. This fact will be useful later, when we determine the initial
conditions.

After the switch has been closed for a long time and all the transients have died, the
capacitor becomes an open circuit, and the inductor behaves as a short circuit. Since the open
circuit prevents any current flow, the voltage across the resistor will be zero. Similarly, the
inductor voltage is zero, and therefore the source voltage will appear across the capacitor.
Hence, i, (00) = 0 and ve(00) = 25 V.

Step 2: Initial conditions. Recall that for a second-order circuit, we need to determine two
initial conditions; and recall that, from continuity of inductor voltage and capacitor currents,
we know that i (07) =i (07) = 0 and v (07) = vc(0F) = 5 V. Since the differential
equation is in the variable i_, the two initial conditions we need to determine are i, (07)

and di,(0™)/dt. These can actually be found rather easily by applying KVL att = 0*:

Vs —vc(0%) — RiL(0%) — v (07) =0

i +
VS - Uc(OJr) - R||_(0+) —L % =0
diL(0") Vs vc(0Y) B
=L L =5B-5=20As

Step 3: Differential equation. The differential equation for the series circuit can be obtained
by KVL:

dic®) _
dt

VS — VUc — RlL(t) —L 0

After substituting

1/t
wm=6fnmwv

219
MAKE THE
CONNECTION
(Concluded)

The input to the suspen-
sion system is the road sur-
face profile, which gene-
rates both displacement and
velocity inputs Xroad @nd Xroad-
One objective of the
suspension is to isolate the
body of the car (i.e., the
passengers) from any
vibration caused by
unevenness in the road
surface. Automo-
tive suspension systems are
also very important in guar-
anteeing vehicle stability and
in providing acceptable
handling. In this illustration we
simply consider the re-
sponse of the vehicle to a
sharp step of amplitude
10 cm (see Figure 5.47) for
two cases, corresponding to
new and worn-out shock ab-
sorbers, respectively. Which
ride would you prefer?

-~

0.12 *

—

N T

o
[
.

— New shocks,
006 [f  zeta=1.37
0.04 i . Worn-out shocks,

g 0.02 zeta= 0.46
m O T T T T T
0 051 15 2 25 3
Time(s)

Figure 5.47 “Step”
response of automotive
suspension
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we have the equation

t

di® RCiy (1) +/ iL (1) dt’ = CVs

LC
dt .

which can be differentiated on both sides to obtain

d2i (t) dic(t) . dVs
LC i +RC it +|L(t)_cﬂ_o

Note that the right-hand side (forcing function) of this differential equation is exactly zero.

Step 4: Solve for w, and ¢. If we now compare the second-order differential equations to the
standard form of equation 5.50, we can make the following observations:

/1
o =y1e = 1,000 rad/s

wn R /C
3 2 2V L

Thus, the second-order circuit is overdamped.

Step 5: Write the complete solution. Knowing that the circuit is overdamped, we write the
complete solution for this case:

X(t) =xn () +Xe () = ale(’[‘““*wn«/iz—*l)i

+ aze(*w"*w"wzfl)‘ +x(00) t>0
and since X = X(o0) = 0, the complete solution is identical to the homogeneous solution:

() = iy (1) = agel VI (eI

Step 6: Solve for the constants o; and «,. Finally, we solve for the initial conditions to
evaluate the constants «; and «,. The first initial condition yields

i|_(0+) = a160 + Clzeo
o = —0U

The second initial condition is evaluated as follows:

di;t(t) _ (_;wn + wn\/ﬁ) el -tomtony/F )
+ <_§w” - wn\/é'zi—l) aze(fi‘”"*wn\/lz_fl)t

i (0%) _

o (—{a)n—{—wn,/g’z—l) 16 + (—g‘wn —wm/g‘z—l) a,e’
Substituting «; = —ay, we get

di (0") _

at (—;wn + a)n\/gzi—l) a; — (—{a)n — wn\/{27—1> oy
=2 (wn\/ﬁ) =20

20
2 (o7 1)

oy = —ap = —4.36 x 103

=436 x 1078

o) =
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Complete response of
. x 1078 overdamped second-order circuit
4 000,
3 / hggeesas
2 / Po0000ee,,
<1 s
50—
G-t~
-2 —— Complete response Il
3K o Natural response dueto firstroot ||
Natural response due to second root
-4 - — Forced response M
5 I I I I I
0 1 2 3 4 5 6
Time (s) x 107

Figure 5.49 Complete response of overdamped
second-order circuit

We can finally write the complete solution:
iL(t) = 4.36 x 107%72%7 _4.36 x 107343 >0
A plot of the complete solution and of its components is given in Figure 5.49.

CHECK YOUR UNDERSTANDING

Obtain the differential eqation of the circuit of Figure 5.48 with vc as the independent variable.

1P 2P
SA = O A :
A a + 50p o4+ 50,p D7 lamsuy
EXAMPLE 5.15 Complete Response of Critically Damped LO5
Second-Order Circuit

Problem

Determine the complete response of the circuit shown in Figure 5.50 by solving the differential
equation for the voltage v(t).

v(t) t=0

c
CRE LS R C)Is

Solution +

N \e(t) =
Known Quantities: Circuit elements. T

Find: The complete response of the differential equation in i (t) describing the circuit of ¢ _L
Figure 5.50. L

Schematics, Diagrams, Circuits, and Given Data: |ls =5A; R =500 Q; C =2 uF; Figure 5.50 Circuit for
L=2H. Example 5.15
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Assumptions: None.
Analysis:

Step 1: Steady-state response. With the switch open for a long time, any energy stored in
the capacitor and inductor has had time to be dissipated by the resistor; thus, the currents and
voltages in the circuit are zero: i, (07) =0, vc(07) =v(07) = 0.

After the switch has been closed for a long time and all the transients have died, the
capacitor becomes an open circuit, and the inductor behaves as a short circuit. With the
inductor behaving as a short circuit, all the source current will flow through the inductor, and
iL(00) = Is = 5 A. On the other hand, the current through the resistor is zero, and therefore
ve(00) = v(oo) =0 V.

Step 2: Initial conditions. Recall that for a second-order circuit we need to determine two

initial conditions; and recall that, from continuity of inductor voltage and capacitor currents,

we know that i, (07) =i (07) = 0Aand vc(07) = vc(0%) = 0 V. Since the differential

equation is in the variable vc, the two initial conditions we need to determine are vc (01) and

dvc (0%)/dt. These can actually be found rather easily by applying KCL att = 0*:

v (0F) ve (07) c dvc (07)
Rs

|_
s R dt

iL(0") — 0

Since vc (07) = 0and i (0%) = 0, we can easily determine dvc (07)/dt:

dvc(0%) Is 5 s V
=S o2 _25x100 -
at C = 2x105 22X

Step 3: Differential equation. The differential equation for the series circuit can be obtained
by KCL:

v . vc (1) dvc(®)
lg — — i (t) — R -C at =0 t>0
Knowing that
di (1)
1) = t)y=L
ve () = v (D) pm
we can obtain a relationship
1 t
i) =~ f vt dt
L)
resulting in the integrodifferential equation
v 1! N ve(® dvc(t)
lg — Rs —I/;mvc(t)dt— R -C at =0 t>0
which can be differentiated on both sides to obtain
dvc(t) LRs+R) doc(t) dls
LC H=L— t>0
@ T RRar =L =

Note that the right-hand side (forcing function) of this differential equation is exactly zero.

Step 4: Solve for w, and ¢. If we now compare the second-order differential equations to the
standard form of equation 5.50, we can make the following observations:

1
wn :'/E =500rad/s



Part | Circuits

foLten 1T,
R 2 2ReV C
RRs

® = R+ Rs

Thus, the second-order circuit is critically damped.

Step 5: Write the complete solution. Knowing that the circuit is critically damped (¢ = 1),
we write the complete solution for this case:

X() = Xy () + X (1) = 087" +opte " - x(00) t>0
and, since vcr = vc (00) = 0, the complete solution is identical to the homogeneous solution:
ve (t) = Ven (1) = age ™8 4 aptetont t>0

Step 6: Solve for the constants «; and «y. Finally, we solve for the initial conditions to
evaluate the constants «; and a,. The first initial condition yields

Uc(0+)=a180+(¥2~0-80 =0
06120

The second initial condition is evaluated as follows:

dvc(t
v((j:t( ) — (—fa)n)Otle_Cwnt + (—{a)n)azte_ga’"t -l-()tze_{“’"t
dvc(0™)
CT = (—¢wn)a1€® + a2’ = a,
o = 2.5 x 108

We can finally write the complete solution
ve(t) =2.5x 10%e™  t>0

A plot of the complete solution and of its components is given in Figure 5.51.

Complete response of
) x 103 critically damped second-order circuit
1 8 P s hena Y

1.6 / ‘\"\
a ]
> 12 / \\
g |/ ™
S S

S 08 /] ]
06 / Complete response B
0.4 o Natural response dueto firstterm | |

/ = Natura response due to second term
02 — — Forced response B
0 I 1 I I I
0 1 2 3 4 5 6
Time (s) x 1073

Figure 5.51 Complete response of overdamped
second-order circuit

223




224

Chapter 5 Transient Analysis

CHECK YOUR UNDERSTANDING

Obtain the differential equation of the circuit of Figure 5.50 with i, as the independent variable.

_ P Ry 2P
] Sl=MN"+ — + JJaMmsu
0=1  AI=OUF GRS T e 21V

L05>
O R Vioad
I|_(t

Figure 5.52 Circuit for
Example 5.16

EXAMPLE 5.16 Complete Response of Underdamped
Second-Order Circuit

Problem

Determine the complete response of the circuit shown in Figure 5.52 by solving the differential
equation for the current i (t).

Solution
Known Quantities: Circuit elements.

Find: The complete response of the differential equation in i, (t) describing the circuit of
Figure 5.52.

Schematics, Diagrams, Circuits, and Given Data: Vs = 12 V; R = 200 ; C = 10 uF;
L=05H.

Assumptions: The capacitor had been previously charged (through a separate circuit, not
shown), such that vc (07) = vc(07) =2 V.

Analysis:

Step 1: Steady-state response. Since the inductor current is zero when the switch is open,
iL(07) = 0; on the other hand, we have assumed that vc (07) = v(07) = 2 V. After the switch
has been closed for a long time and all the transients have died, the capacitor becomes an
open circuit, and the inductor behaves as a short circuit. With the capacitor behaving as an
open circuit, all the source voltage will appear across the capacitor, and, of course, the
inductor current is zero: i, (c0) = 0 A, vc(00) = Vs = 12 V.

Step 2: Initial conditions. Recall that for a second-order circuit we need to determine two
initial conditions; and recall that, from continuity of inductor voltage and capacitor currents,
we know that i, (07) =i (07) = 0Aand vc (07) = vc (0%) = 2 V. Since the differential
equation is in the variable i_, the two initial conditions we need to determine are i (0T) and
di, (0™)/dt. The second initial condition can be found by applying KVL att = 0*:

Vs —vc(0%) —Ri (0%) — v (0Y) =0

Vs — e (0) — Ri_ (0% — dchi? ) _o

dil(0") Vs w0 12 2

dt L L ~ 05 05

=20A/s
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Step 3: Differential equation. The differential equation for the series circuit is obtained by
KCL:

—vc() —Ri(t) =0 t>0

Knowing that
dvc (t)
dt
we can obtain the relationship

iL(t) =C

1 t
ve(t) = 6/_ iL(t) dt’

o0
resulting in the integrodifferential equation

H t
di® 1 i(t)dt —RiLt)=0 t>0

Vs — L
s i c /..

which can be differentiated on both sides to obtain

dZig (1) dif(t) . dVs
L R =Cc =
C a2 +RC pm +iLt)=C i t>0

Note that the right-hand side (forcing function) of this differential equation is exactly zero,
since Vs is a constant.

Step 4: Solve for w, and ¢. If we now compare the second-order differential equations to the
standard form of equation 5.50, we can make the following observations:

/1
@ =\1c = 447 rad/s

wn R /C
=RC— = -,/ — =0.447
¢ 2 2V L

Thus, the second-order circuit is underdamped.

Step 5: Write the complete solution. Knowing that the circuit is underdamped (¢ < 1), we
write the complete solution for this case as

X(t) = XN (t) + Xg (t) — ale(*fwn+jwn«/ﬁ>t

+ aze(*[”“*j”“ Vise) X(c0) t>0

and since xg = i.r = i (c0) = 0, the complete solution is identical to the homogeneous
solution:

||_(t) — iLN (t) — ale(*fwnJrJ'wn\/ 1-¢2)t + aze(*iwn*jwn@t t>0

Step 6: Solve for the constants a; and «;. Finally, we solve for the initial conditions to
evaluate the constants «; and «,. The first initial condition yields

iL(0") =1 + e’ =0

o1 = —0
The second initial condition is evaluated as follows:

dlL(t) _ . 2 (—;a)n+jo)n4/l—{2)t
i (—{wn +jony1—¢ )Otle
+ <_Cwn —j%ﬂ) 0‘29(7{[‘”]7]&)n 17[2j[

225
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SR - <_§wn +jwn\/1__§2) s’ + (_Cwn _jwn\/l_—gz) e’

dt
Substituting «; = —ay, We get

di (0" _ (—¢on+ionv/1=22) a1 — (~zon — jony/T— £2) ax = 20 A/s

dt

2 (jwn./l — 42) o =20
o 0
jwn\/l—§2 wny/1—¢2

Oy) = —01 = j0025

—j0.025

(241

We can finally write the complete solution:

i (t) = —j0.025e(~200+i400t 4 jg 025e(-200-j400t >
= 0.025¢ 200t (—jgl400t  je=i400ty — 0 025200 x 2sin 400t
= 0.05e~2% sin 400t t>0

In the above equation, we have used Euler’s identity to obtain the final expression. A plot of
the complete solution and of its components is given in Figure 5.53.

Complete response of underdamped second-order circuit

0.05 : ; I
A Complete response
° o Exponential decay factor
0.0375 «  Cosinusoidal factor
°o°o — — Forced response
0.025 ~X
< / K 7T
& 00125 Q&%% LA
8 ! \‘\ Qllzlhmmm . %
0 N e
-0.0125 2 - ;
~0.025 L St
0 0.005 001 0015 0.02 0.025 0.03
Time (s)

Figure 5.53 Complete response of underdamped
second-order circuit

CHECK YOUR UNDERSTANDING

If the inductance is reduced to one-half of its original value (from 0.5 to 0.25 H), for what
range of values of R will the circuit be underdamped?

B 9TE > Y Jamsuy
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EXAMPLE 5.17 Transient Response of Automotive Ignition
Circuit

Problem

The circuit shown in Figure 5.54 is a simplified but realistic representation of an automotive
ignition system. The circuit includes an automotive battery, a transformer® (ignition coil),
a capacitor (known as condenser in old-fashioned automotive parlance), and a switch. The
switch is usually an electronic switch (e.g., a transistor—see Chapter 10) and can be treated
as an ideal switch. The circuit on the left represents the ignition circuit immediately after the
electronic switch has closed, following a spark discharge. Thus, one can assume that no energy
is stored in the inductor prior to the switch closing, say at t = 0. Furthermore, no energy is
stored in the capacitor, as the short circuit (closed switch) across it would have dissipated any
charge in the capacitor. The primary winding of the ignition coil (left-hand side inductor) is
then given a suitable length of time to build up stored energy, and then the switch opens, say at
t = At, leading to a rapid voltage buildup across the secondary winding of the coil (right-hand
side inductor). The voltage rises to a very high value because of two effects: the inductive
voltage kick described in Example 5.11 and the voltage multiplying effect of the transformer.
The result is a very short high-voltage transient (reaching thousands of volts), which causes a
spark to be generated across the spark plug.

VB ____ VB ____ I¢
C'r_j> §Iplug
Switch
open
1 1
Figure 5.54
Solution

Known Quantities: Battery voltage, resistor, capacitor, inductor values.
Find: The ignition coil current i(t) and the open-circuit voltage across the spark plug voc(t).

Schematics, Diagrams, Circuits, and Given Data: Vg =12V, R, =2 Q; C = 10 uF;
L, =5mH.

Assumptions: The switch has been open for a long time, and it closes at t = 0. The switch
opens again at t = At.

3Transformers are discussed more formally in Chapters 7 and 14; the operation of the transformer in an
ignition coil will be explained ad hoc in this example.

< LO5

FIND IT

ON THE WEB
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Switch Switch
closesatt=0 opensatt = At
Figure 5.55 (a) Figure 5.55 (b)
First-order transient Second-order transient
circuit circuit, following opening
of switch

Analysis: Assume that initially no energy is stored in either the inductor or the capacitor,
and that the switch is closed, as shown in Figure 5.55(a). When the switch is closed, a first-
order circuit is formed by the primary coil inductance and capacitance. The solution of this
circuit will now give us the initial condition that will be in effect when the switch is ready
to open again. This circuit is identical to that analyzed in Example 5.9, and we can directly
borrow the solution obtained from that example, after suitably replacing the final value and time
constant:

iL(t) = iL(00) + [iL(0) —iL(c0)]e V" t>0
iL(t) — 6(1 _ e—t/2.5><10’3) t>0

with
\'

— =6A Final value
Rp

iLss(00) =

L, .
T = R—p =25x10"%s Time constant

p

Let the switch remain closed until t = At = 12.5 ms = 57. At time At, the value of the
inductor current will be

iLt=At)=6(1—e > =596A

that is, the current reaches 99 percent of its final value in five time constants.

Now, when the switch opens att = At, we are faced with a series RLC circuit similar to
that of Example 5.16, except for the fact that the initial condition that is nonzero is the inductor
current (in Example 5.16 you will recall that the capacitor had a nonzero initial condition). We
can therefore borrow the solution to Example 5.16, with some slight modifications because of
the difference in initial conditions, as shown below. Please note that even though the second-
order circuit transient starts at t = 12.5 ms, we have “reset” the time to t = 0 for simplicity in
writing the solution. You should be aware that the solution below actually starts att = 12.5 ms.

Step 1: Steady-state response. Att = At, i, (07) =6 A; vc(07) = v(07) = 0 V. After the
switch has been closed for a long time and all the transients have died, the capacitor becomes
an open circuit, and the inductor behaves as a short circuit. With the capacitor behaving as an
open circuit, all the source voltage will appear across the capacitor, and, of course, the
inductor current is zero: i (c0) = 0 A, vc(00) = Vg =12 V.

Step 2: Initial conditions. Since the differential equation is in the variable i, , the two initial
conditions we need to determine are i (07) and di_(0%)/dt. Now i (07) = i_(0") = 5.96 A.
The second initial condition can be found by applying KVL att = 0+
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di, (0*
Vs — ve(0%) — RiL (07) — L % —0
d||_(0+) _ VB Uc(0+) . N 12
a0t =1 3 —RIL(O)_W—O—ZXS.QG
— 2,388 A/s

Note the very large value of the time derivative of the inductor current!

Step 3: Differential equation. The differential equation for the series circuit can be obtained
by KCL:

d2i, (b) dic(t) . dVs

L,C
P dt

Step 4: Solve for w, and ¢.

1
= [— =4,472rad/s
Wn LpC s /

on Ry |C
¢=R,C— =2 /2 =0.0447
T2 T 2L,

Thus, the ignition circuit is underdamped.

Step 5: Write the complete solution.
H H —¢wn 'wn«/ -2 - wn*'wn«/ —¢2
||_(t) = Iin (t) = Otle( font) =g =+ Otze( ¢ ) =g t> 0

Step 6: Solve for the constants a; and a;. Finally, we solve for the initial conditions to
evaluate the constants «; and «,. The first initial condition yields

iL(0") = a1e® + e = 5.96 A
o] = 5.96 — o
The second initial condition is evaluated as follows:

A - <_{wn +J‘wnm> e’ + (_an B jwnm) e’

dt

Substituting @; = 5.96 — «,, we get

di (0 .
@ _ (—Cwn'Hwn /1_;2) @

dt

+ (—{wn ~jon/T = 42) (5.96 — ay) = 2,388 V

2 <jwnm) o1 +5.96 (—;wn “jon/I= ;2) —2388 V

2,388 — 5.96 (—;wn —jon/1 = ;2)
= Djwny/1 =22

@ =5.96 — oy = 2.98 +j0.4

=2.98 —j0.4

and we can finally write the complete solution, as

229
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iL (1) = (2.98 — jo.4ye(~comHHonv/1=C)t
+ (2,98 + jo.aye(terienV/Im2) o A
i (t) = 2.98e(~¢ent o(Hony/122 - e(’jw"\/ﬁ)?
—j0.4e(-¢ent (e(+jwn\/@)t 3 e(—iwn\/@)t)

— 2.98e(—200)t (e(+j4,463)t + e(—j4,463)t) _ j0.4e(—200)l (e(+j4,463)t _ e(—j4,463)t)

%

= 5.96e(~200t cos(4,463t) + 0.8e(-200t sin(4,463t)
A plot of the inductor current for —10 =t = 50 ms is shown in Figure 5.56. Notice the initial

first-order transient at t = O followed by a second-order transient att = 12.5 ms.

Primary current transient for ignition circuit
6
J /]
2 /

w AVAVAVAVA"""

-2 |

3

Current, A
o

-4

i
-0.01 0 001 002 003 004 005

Time ()

Figure 5.56 Transient current response of ignition
current

To compute the primary voltage, we simply differentiate the inductor current and
multiply by L; to determine the secondary voltage, which is that applied to the spark plug, we
simply remark that a 1:100 transformer increases the voltage by a factor of 100, so that the
secondary voltage is 100 times larger than the primary voltage.* Thus, the expression for the
secondary voltage is

dic(t)

d _
0.5 x — [5.96e %" cos(4,463t) -+ 0.8e 72" sin(4,463t)]

Uspark plug = 100 x L dt

= 0.5 x (5.96(—200)e "2 cos(4,463t) + 5.96e 2" (—4,463) sin(4,463t))

+0.5 x (0.8 (—200)e 2" sin(4,463t) — 0.8e~2°%'4,463 cos(4,463t))

where we have “reset” time to t = 0 for simplicity. We are actually interested in the value of
this voltage at t = 0, since this is what will generate the spark; evaluating the above
expression att = 0, we obtain

Uspark piug (t = 0) = 0.5 x (5.96(—200)) + 0.5 x (0.8 x 4,463) = 1,189.2 V

4The secondary current, on the other hand, will decrease by a factor of 100, so that power is
conserved—see Section 7.3.
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One can clearly see that the result of the switching is a very large (negative) voltage
spike, capable of generating a spark across the plug gap. A plot of the inductor voltage
starting at the time when the switch is opened is shown in Figure 5.57, showing that
approximately 0.3 ms after the switching transient, the secondary voltage reaches
approximately —12,500 V! This value is rather typical of the voltages required to generate a
spark across an automotive plug.

15 X 10* Secondary voltage transient for ignition circuit

Voltage, V
o
o o

o
3]

15 A A A : A A A A A
0 0.002 0.004 0.006 0.008 0.01 0012 0.014 0.016 0.018 0.02

Time, s

Figure 5.57 Secondary ignition voltage response
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Conclusion

Chapter 5 has focused on the solution of first- and second-order differential equations for the
case of DC switched transients, and it has presented a number of analogies between electric
circuits and other physical systems, such as thermal, hydraulic, and mechanical.

While many other forms of excitation exist, turning a DC supply on and off is a very
common occurrence in electrical, electronic, and electromechanical systems. Further, the
methods discussed in this chapter can be readily extended to the solution of more general
problems.

Upon completing this chapter, you should have mastered the following learning
objectives:

1. Write differential equations for circuits containing inductors and capacitors. You have
seen that writing the differential equations of dynamic circuits involves two concepts:
applying Kirchhoff’s laws and using the constitutive differential or integral relationships
for inductors and capacitors. Often, it is convenient to isolate the purely resistive part of
a circuit and reduce it to an equivalent circuit.

2. Determine the DC steady-state solution of circuits containing inductors and capacitors.
You have learned that the DC steady-state solution of any differential equation can be
easily obtained by setting the derivative terms equal to zero. An alternate method for
computing the DC steady-state solution is to recognize that under DC steady-state
conditions, inductors behave as short circuits and capacitors as open circuits.

3. Write the differential equation of first-order circuits in standard form, and determine the
complete solution of first-order circuits excited by switched DC sources. First-order
systems are most commonly described by way of two constants: the DC gain and the
time constant. You have learned how to recognize these constants, how to compute the
initial and final conditions, and how to write the complete solution of all first-order
circuits almost by inspection.
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4. Write the differential equation of second-order circuits in standard form, and determine
the complete solution of second-order circuits excited by switched DC sources.
Second-order circuits are described by three constants: the DC gain, the natural
frequency, and the damping ratio. While the method for obtaining the complete solution

for a second-order circuit is logically the same as that used for a first-order circuit, some

of the details are a little more involved in the second-order case.

5. Understand analogies between electric circuits and hydraulic, thermal, and mechanical
systems. Many physical systems in nature exhibit the same first- and second-order
characteristics as the electric circuits you have studied in this chapter. We have taken a
look at some thermal, hydraulic, and mechanical analogies.

HOMEWORK PROBLEMS

Section 5.2: Writing Differential
Equations for Circuits
Containing Inductors and
Capacitors

5.1 Write the differential equation for t > 0 for the
circuit of Figure P5.21.

5.2 Write the differential equation for t > 0 for the
circuit of Figure P5.23.

5.3 Write the differential equation for t > 0 for the
circuit of Figure P5.27.

5.4 \Write the differential equation for t > 0 for the
circuit of Figure P5.29.

5.5 \Write the differential equation for t > 0 for the
circuit of Figure P5.32.

5.6 \Write the differential equation for t > 0 for the
circuit of Figure P5.34.

5.7 Write the differential equation for t > 0 for the
circuit of Figure P5.41.

5.8 Write the differential equation for t > 0 for the
circuit of Figure P5.47. Assume Vs =9V,
R; = 10 k2, and R, = 20 k<.

5.9 Write the differential equation for t > 0 for the
circuit of Figure P5.49.

5.10 Write the differential equation for t > 0 for the
circuit of Figure P5.52.

Section 5.3: DC Steady-State
Solution of Circuits Containing
Inductors and Capacitors—
Initial and Final Conditions

5.11 Determine the initial and final conditions for the
circuit of Figure P5.21.

5.12 Determine the initial and final conditions for the
circuit of Figure P5.23.

5.13 Determine the initial and final conditions for the
circuit of Figure P5.27.

5.14 Determine the initial and final conditions for the
circuit of Figure P5.29.

5.15 Determine the initial and final conditions for the
circuit of Figure P5.32.

5.16 Determine the initial and final conditions for the
circuit of Figure P5.34.

5.17 Determine the initial and final conditions for the
circuit of Figure P5.41.

5.18 Determine the initial and final conditions for the
circuit of Figure P5.47. Assume Vs =9V,
R; =10 k2, and R, = 20 kQ2.

5.19 Determine the initial and final conditions for the
circuit of Figure P5.49.

5.20 Determine the initial and final conditions for the
circuit of Figure P5.52.

Section 5.4: Transient Response of
First-Order Circuits

5.21 Just before the switch is opened at t = 0, the

current through the inductor is 1.70 mA in the direction

shown in Figure P5.21. Did steady-state conditions
exist just before the switch was opened?

L=09mH Vg =12V
R, =6kQ R, =6 kQ
R =3kQ
t=0 Ry
T AWy
+ IL# +

Vs SR L RsZ\ks

Figure P5.21



5.22 Att < 0, the circuit shown in Figure P5.22 is at
steady state. The switch is changed as shown att = 0.

Vo =35V Vg =130V
C=11uF R, =17kQ
R,=7kQ  Ry=23kQ

Determine at t = 07 the initial current through R just
after the switch is changed.

Figure P5.22

5.23 Determine the current through the capacitor just
before and just after the switch is closed in Figure
P5.23. Assume steady-state conditions fort < 0.

Vi=12V C = 05uF
R; = 0.68 k2 R, =1.8kQ
t=0
Ry

Figure P5.23

5.24 Determine the current through the capacitor just
before and just after the switch is closed in Figure
P5.23. Assume steady-state conditions fort < 0.

V=12V
Ry =400 mQ

C = 150 uF
R, = 2.2kQ

5.25 Just before the switch is opened at t = 0 in Figure
P5.21, the current through the inductor is 1.70 mA in
the direction shown. Determine the voltage across Rz
just after the switch is opened.

L=09mH
R, = 6 kQ

Vs =12V
R; = 6 kQ
Rs = 3kQ
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5.26 Determine the voltage across the inductor just
before and just after the switch is changed in Figure
P5.26. Assume steady-state conditions exist for t < 0.

Vs =12V
Ry = 22 kQ2

R, =0.7Q
L =100 mH

Figure P5.26

5.27 Steady-state conditions exist in the circuit shown in
Figure P5.27 att < 0. The switch is closed att = 0.

V, =12V R, = 0.68 kQ
R, =22KQ  Ry=18KkQ
C = 0.47 uF

Determine the current through the capacitor at t = 0*,
just after the switch is closed.

Figure P5.27

5.28 Fort > 0, the circuit shown in Figure P5.22 is at
steady state. The switch is changed as shown att = 0.

Vs1 =35V Vs, =130V
C=11uF Ry = 17 k2
R, = 7kQ Rs = 23 kQ2

Determine the time constant of the circuit fort > 0.

5.29 Att < 0, the circuit shown in Figure P5.29 is at
steady state. The switch is changed as shown att = 0.

Vg; = 13V Vg, = 13V
L=170mH R, =27
R, =43kQ Ry =29kQ

Determine the time constant of the circuit fort > 0.
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O
t=0
Ry R3
+ L
Vs1 =
Ro
= +
Vesz

Figure P5.29

5.30 Steady-state conditions exist in the circuit shown in
Figure P5.27 for t < 0. The switch is closed at t = 0.

V; =12V C =047 uF
Ri=680Q  R,=22kQ
R; = 1.8k

Determine the time constant of the circuit for t > 0.

5.31 Just before the switch is opened at t = 0 in Figure
P5.21, the current through the inductor is 1.70 mA in
the direction shown.

Vs=12V  L=09mH
Ri=6kQ R,=6k
R; = 3kQ

Determine the time constant of the circuit fort > 0.

5.32 Determine vc (t) fort > 0. The voltage across the
capacitor in Figure P5.32 just before the switch is
changed is given below.

we@)=-7V  l,=17mA C =055 uF
Ry = 7k R, = 3.3kQ
t=0
R
.
b R cIvc(t)

Figure P5.32

5.33 Determine the current through resistor R; for t > 0
in Figure P5.29.

VSl=23V V52=20V
L =23mH R =07Q
R, =13 Q Rz = 330 kR
5.34 Assume DC steady-state conditions exist in the

circuit shown in Figure P5.34 for t < 0. The switch is

changed att = 0 as shown.

Vg1 =17V Voo =11V

R, = 14 kQ R, = 13kQ

R; = 14 kQ C =70nF
Determine

a. V) fort>0

b. The time required, after the switch is operated, for
V (t) to change by 98 percent of its total change in
voltage

Figure P5.34

5.35 The circuit of Figure P5.35 is a simple model of an
automotive ignition system. The switch models the
“points” that switch electric power to the cylinder
when the fuel-air mixture is compressed. And R is the
resistance between the electrodes (i.e., the “gap”) of
the spark plug.

Vo =12V
R =17k

Rc =0.37 @

Determine the value of L and R; so that the voltage
across the spark plug gap just after the switch is
changed is 23 kV and so that this voltage will change
exponentially with a time constant T = 13 ms.

O
Re +
+ Ry R § R
y -
_G L

Figure P5.35

5.36 The inductor L in the circuit shown in Figure P5.36
is the coil of a relay. When the current through the coil
is equal to or greater than +2 mA, the relay functions.
Assume steady-state conditions att < 0. If

Vs =12V

L=109mH R1 =3.1kQ



determine R, so that the relay functions att = 2.3 s.

Figure P5.36

5.37 Determine the current through the capacitor just
before and just after the switch is closed in Figure
P5.37. Assume steady-state conditions for t < 0.

V=12V C = 150 4F
t=0

Figure P5.37

5.38 Determine the voltage across the inductor just
before and just after the switch is changed in Figure
P5.38. Assume steady-state conditions exist for t < 0.

Vs =12V Rs =0.24 Q
R; = 33 kQ L = 100 mH
t=0
Rs
L
"
vs R

Figure P5.38

5.39 Steady-state conditions exist in the circuit shown in
Figure P5.27 for t < 0. The switch is closed at t = 0.

Ry =4 MQ R, = 80 MQ
Ry = 6 MQ

Determine the time constant of the circuit fort > 0.
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5.40 Just before the switch is opened at t = 0 in Figure
P5.21, the current through the inductor is 1.70 mA in
the direction shown.

Vs =12V L =100 mH
Ri1 =400 Q R, =400 Q
R; = 600 Q

Determine the time constant of the circuit fort > 0.

5.41 For the circuit shown in Figure P5.41, assume that
switch S; is always open and that switch S, closes at
t=0.

a. Find the capacitor voltage vc (t) att = 0.
b. Find the time constant  fort > 0.

¢. Find an expression for v (t), and sketch the

function.
d. Find vc (t) for each of the following values of t:

0, t, 21, 57, 107.

R>
St 4Q %
O+ AVAVAVAV XC
Ry
5Q
4 C LG Rs :; Ry :;
e == 4F T 4F 30% 603 () 4A
20V

Figure P5.41

5.42 For the circuit shown in Figure P5.41, assume that
switch S; has been open for a long time and closes at
t = 0. Conversely, switch S, has been closed and
opensatt =0.

a. Find the capacitor voltage vc (t) att = 0.
b. Find the time constant r fort > 0.

c¢. Find an expression for v (t), and sketch the
function.

d. Find vc (t) for each of the following values of t:
0, t, 21, 57, 107.

5.43 For the circuit of Figure P5.41, assume that switch
S, is always open, and that switch S; has been closed
foralong time and opensatt = 0. Att =t; = 3,
switch S; closes again.

a. Find the capacitor voltage vc (t) att = 0.

b. Find an expression for vc (t) fort > 0, and sketch
the function.

5.44 Assume thatS; and S, close at t = 0 in Figure
P5.41.

a. Find the capacitor voltage vc (t) att = 0.
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b. Find the time constant t fort > 0.

c¢. Find an expression for vc (t), and sketch the
function.

d. Find vc(t) for each of the following values of t:
0, 7, 27, 57, 107.
5.45 Inthe circuit of Figure P5.41, S; opens att = 0 and
S, opensatt =48s.
a. Find vc(t =0%).
b. Findr for0 <t <48s.
c¢. Find an expression for v (t) valid for0 <t < 48s.
d. Find z fort > 48s.
e. Find an expression for vc (t) valid fort > 48 s.
f. Plot vc (1) for all time.
5.46 For the circuit shown in Figure P5.41, assume that

switch S; opens at t = 96 s and switch S, opens at
t=0.

a. Find the capacitor voltage att = 0.
b. Find the time constant for0 <t < 96 s.

¢. Find an expression for vc (t) when0 <t < 96's,
and compute vc (t = 96).

d. Find the time constant fort > 96 s.
e. Find an expression for vc(t) whent > 96 s.
f. Plot vc (t) for all time.

5.47 For the circuit of Figure P5.47, determine the value
of resistors R; and R,, knowing that the time constant
before the switch opens is 1.5 ms, and it is 10 ms after

the switch opens. Given: Rs = 15 k2, Rz = 30 k€2,
andC =1 uF

R
i oo
VWy -0
> > >
<> —r <> <>
Vs R]_f; —~C sz: jo:
3 3 P

Figure P5.47

5.48 For the circuit of Figure P5.47, assume Vs
=100V,Rs = 4k2, R; = 2k, R, = Ry = 6 k2,
C =1 uF, and the circuit is in a steady-state condition
before the switch opens. Find the value of vc 2.666 ms
after the switch opens.

5.49 In the circuit of Figure P5.49, the switch changes
position at t = 0. At what time will the current through
the inductor be 5 A? Plot i, (t).

Transient Analysis

1,000 Q
10Q

100v () 503

Figure P5.49

5.50 Consider the circuit of Figure P5.49, and assume
that the mechanical switching action requires 5 ms.
Further assume that during this time, neither switch
position has electrical contact. Find

a. ip(t)for0 <t <5ms

b. The maximum voltage between the contacts during
the 5-ms duration of the switching

Hint: This problem requires solving both a turn-off and a
turn-on transient problem.

5.51 The circuit of Figure P5.51 includes a model of
a voltage-controlled switch. When the voltage across
the capacitors reaches the value vy, , the switch is
closed. When the capacitor voltage reaches the
value vy, , the switch opens. If vy, = 1V and the
period of the capacitor voltage waveform is 200 ms,
find vy, .

Voltage
controlled
switch

10 kQ ;;,

v Ve=<15uF 10Q

Figure P5.51

5.52 Att =0, the switch in the circuit of Figure P5.52
closes. Assume that i, (0) = 0A. Fort > 0, find

a. ||_(t)
b. ULl(t)

5.53 For the circuit of Figure P5.52, assume that the
circuit is at steady state for t < 0. Find the voltage



across the 10-k<2 resistor in parallel with the switch
fort > 0.

ROF

L1=1H L,=5H

Figure P5.52

5.54 e use an analogy between electric circuits and
thermal conduction to analyze the behavior of a pot
heating on an electric stove. We can model the heating
element as shown in the circuit of Figure P5.54. Find
the “heat capacity” of the burner, Cs, if the burner
reaches 90 percent of the desired temperature in
10 seconds.

Cs= heat capacity of burner
Rs = heat loss of burner
=15Q

Figure P5.54

5.55 With a pot placed on the burner of Problem 5.54,
we can model the resulting thermal system with the
circuit shown in Figure P5.55. The thermal loss
between the burner and the pot is modeled by the
series resistance R.. The pot is modeled by a heat
storage (thermal capacitance) element Cp, and a loss
(thermal resistance) element, Rp.

a. Find the final temperature of the water in the pot—
thatis, find v(t) ast — oo —if: Is = 75 A;
Cp=80F;R. =0.8Q; Rp = 2.5, and the burner
is the same as in Problem 5.54.

b. How long will it take for the water to reach
80 percent of its final temperature?

Hint: Neglect Cs since Cs « Cp.
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Figure P5.55

5.56 The circuit of Figure P5.56 is used as a variable
delay in a burglar alarm. The alarm is a siren with
internal resistance of 1 k2. The alarm will not sound
until the current i, exceeds 100 uA. Find the range of
the variable resistor, R, for which the delay is between
1 and 2 s. Assume the capacitor is initially uncharged.
This problem will require a graphical or numerical
solution.

Figure P5.56

5.57 Find the voltage across C; in the circuit of Figure
P5.57 fort > 0. Let C; =5 uF; C, = 10 uF. Assume
the capacitors are initially uncharged.

10 190
——MWW—"F o AW—
t=0
C, =
0V (D
C <
£

Figure P5.57

5.58 The switch in the circuit of Figure P5.58 opens at
t = 0. It closes at t = 10 seconds.

a. What is the time constant for 9 <t < 10 s?
b. What is the time constant fort > 10 s?
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1

kQ
5Q
—WW— 4kQ
200 |
250
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. O 59% %
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Figure P5.58

5.59 The circuit of Figure P5.59 models the charging
circuit of an electronic flash for a camera. As you
know, after the flash is used, it takes some time for it to
recharge.

a. If the light that indicates that the flash is ready
turns on when V¢ =0.99 x 7.5V, how long will
you have to wait before taking another
picture?

b. If the shutter button stays closed for 1/30 s, how
much energy is delivered to the flash bulb,
represented by R,? Assume that the capacitor has
completely charged.

c. If you do not wait till the flash is fully charged and
you take a second picture 3 s after the flash is first
turned on, how much energy is delivered
to Ry?

On/off Shutter

@_| R switch button
O 0 + 0——v‘+ ;
o1 | el L

75V = C=< V. R Z Flash

I -

=

C=1500uF, R =1,000Q,R,=1Q

Figure P5.59

5.60 The ideal current source in the circuit of Figure
P5.60 switches between various current levels, as
shown in the graph. Determine and sketch the voltage
across the inductor, v (t) for t between O and 2 s.

Transient Analysis

You may assume that the current source has been at
zero for a very long time before t = 0.

is(t) (mA)
10
8 L
6
4 L
2 ‘
0 1 1 1
L 05 ! 15 t(9

Figure P5.60

Section 5.5: Transient Response of
Second-Order Circuits

5.61 Inthe circuit shown in Figure P5.61:

Vs =15V Vg, =9V
R =130Q R =290 Q
Ri=11kQ R,=700Q
L=17mH  C=035uF

Assume that DC steady-state conditions exist for

t < 0. Determine the voltage across the capacitor and
the currents through the inductor and R, as t
approaches infinity.

\AAAJ
L)
IKZ<+ ;230

Figure P5.61

5.62 In the circuit shown in Figure P5.61

Vs1 =12V Vs, =12V
Rs; =50 Rs2 =50
Ry =2.2kQ R, = 600 €2
L=78mH C =68 uF

Assume that DC steady-state conditions exist att < 0.
Determine the voltage across the capacitor and the



current through the inductor as t approaches infinity.
Remember to specify the polarity of the voltage and
the direction of the current that you assume for your
solution.

5.63 If the switch in the circuit shown in Figure P5.63 is
closed att = 0 and

Vs =170V Rs =7k
R1 =2.3kQ R, =7k
L=30mH C =130 uF

determine, after the circuit has returned to a steady
state, the currents through the inductor and the
voltages across the capacitor and R;.

Figure P5.63

5.64 If the switch in the circuit shown in Figure P5.64 is
closed att = 0 and

Ve =12V C =130 uF
Ry =23k R, =7kQ
L=30mH

determine the current through the inductor and the
voltage across the capacitor and across R; after the
circuit has returned to a steady state.

ZAl

Figure P5.64

5.65 |If the switch in the circuit shown in Figure P5.65 is
closedatt = 0and

Vs =12V C=05uF
Ry =31kQ R, =22kQ
L=0.9mH
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determine the current through the inductor and the
voltage across the capacitor after the circuit has
returned to a steady state.

YVVY

Vs CoR Re3

Figure P5.65

5.66 Att < 0, the circuit shown in Figure P5.66 is at
steady state, and the voltage across the capacitor is
+7 V. The switch is changed as shown att = 0, and

Vs =12V C = 3,300 uF
Ri=91kQ R, =43k
Rs=43kQ L=16mH

Determine the initial voltage across R, just after the
switch is changed.

YVVV

Figure P5.66

5.67 In the circuit shown in Figure P5.67, assume that
DC steady-state conditions exist for t < 0. Determine
att = 07, just after the switch is opened, the current
through and voltage across the inductor and the
capacitor and the current through Rs;.

Vs; =15V Vg =9V
Rs1 = 130 Rs, =290 @
Ry =1.1kQ R, =700 @
L=17mH C =0.35uF
t=0
Ra CJ— Re
. ogRE L],
Vey Ve

Figure P5.67
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5.68 In the circuit shown in Figure P5.67,

Vg1 =12V Vs, =12V
Rsy =50 Q Rs2 =50
R1 =2.2kQ R, = 600 Q2
L=7.8mH C =68 uF

Assume that DC steady-state conditions exist for

t < 0. Determine the voltage across the capacitor and
the current through the inductor as t approaches
infinity. Remember to specify the polarity of the
voltage and the direction of the current that you
assume for your solution.

5.69 Assume the switch in the circuit of Figure P5.69
has been closed for a very long time. It is suddenly
opened att = 0 and then reclosed att = 5s. Determine
an expression for the inductor current for t > 0.

4F
| L
1\

<
6V 320 5H

Figure P5.69

5.70 For the circuit of Figure P5.70, determine if it is
underdamped or overdamped. Find also the capacitor
value that results in critical damping.

400 Q 10 mH

10V 0.01 uF ,‘\1

Figure P5.70

5.71 Assume the circuit of Figure P5.70 initially stores
no energy. The switch is closed at t — 0. Find

a. Capacitor voltage as t approaches infinity
b. Capacitor voltage after 20 us
¢. Maximum capacitor voltage

5.72 Assume the circuit of Figure P5.72 initially stores
no energy. Switch S; is open and S; is closed. Switch
S;isclosed att = 0, and switch S, isopened att = 5s.

Determine an expression for the capacitor voltage
fort > 0.

Transient Analysis

4F
I L
LAY
t=0
30
O %Vv
S
6V 320 5H
3 t=5s
S

Figure P5.72

5.73 Assume that the circuit shown in Figure P5.73 is
underdamped and that the circuit initially has no
energy stored. It has been observed that after the
switch is closed at t = 0, the capacitor voltage reaches
an initial peak value of 70 V whent = 57 /3 usand a
second peak value of 53.2 VV when t = 57 us, and it
eventually approaches a steady-state value of 50 V. If
C = 1.6 nF, what are the values of R and L?

t=0

V T

Figure P5.73

5.74 Given the information provided in Problem 5.73,
explain how to modify the circuit so that the first peak
occurs at 57 us. Assume that C = 1.6 uF.

5.75 Findifort > 0in the circuit of Figure P5.75 if
i(0O)=0Aandv(0) =10V.

2H

VVVY

103 12FV 40

Figure P5.75

5.76 Find the maximum value of v(t) fort > 0 in the
circuit of Figure P5.76 if the circuit is in steady state at
t=0".

4Q 1H

12V

Figure P5.76



5.77 Fort > 0, determine for what value of ti = 2.5A
in the circuit of Figure P5.77 if the circuit is in steady
stateatt = 0.

a0V 220 30

Figure P5.77

5.78 Fort > 0, determine for what value of ti =6 Ain
the circuit of Figure P5.78 if the circuit is in steady
stateatt =0".

4V 3Q

Figure P5.78

5.79 Fort > 0, determine for what value of t v = 7.5V
in the circuit of Figure P5.79 if the circuit is in steady
stateatt =0".
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Figure P5.79

5.80 The circuit of Figure P5.80 is in steady state at
t = 0. Assume L = 3 H; find the maximum value of v
and the maximum voltage between the contacts of the

switch.
20 3Q
t=0 +
10V VI2F =< v gL

Figure P5.80

5.81 Find v fort > 0 in the circuit of Figure P5.81 if the
circuit is in steady state att = 0.

2Q t=0 3Q
V-
12v 08H 4V

V4F
T

Figure P5.81
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FREQUENCY RESPONSE
AND SYSTEM CONCEPTS

hapter 4 introduced the notions of energy storage elements and dynamic circuit

equations and developed appropriate tools (complex algebra and phasors) for

the solution of AC circuits. In Chapter 5, we explored the solution of first- and

second-order circuits subject to switching transients. The aim of this present
chapter is to exploit AC circuit analysis methods to study the frequency response of
electric circuits.

It is common, in engineering problems, to encounter phenomena that are
frequency-dependent. For example, structures vibrate at a characteristic frequency
when excited by wind forces (some high-rise buildings experience perceptible
oscillation!). The propeller on a ship excites the shaft at a vibration frequency related
to the engine’s speed of rotation and to the number of blades on the propeller. An
internal combustion engine is excited periodically by the combustion events in the
individual cylinder, at a frequency determined by the firing of the cylinders. Wind
blowing across a pipe excites a resonant vibration that is perceived as sound (wind
instruments operate on this principle). Electric circuits are no different from other
dynamic systems in this respect, and a large body of knowledge has been developed
for understanding the frequency response of electric circuits, mostly based on the
ideas behind phasors and impedance. These ideas, and the concept of filtering, will
be explored in this chapter.
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Chapter 6 Frequency Response and System Concepts

The ideas developed in this chapter will also be applied, by analogy, to the anal-
ysis of other physical systems (e.g., mechanical systems), to illustrate the generality
of the concepts.

:) Learning Objectives

1. Understand the physical significance of frequency domain analysis, and compute the
frequency response of circuits using AC circuit analysis tools. Section 6.1.

2. Analyze simple first- and second-order electrical filters, and determine their fre-
quency response and filtering properties. Section 6.2.

3. Compute the frequency response of a circuit and its graphical representation in the
form of a Bode plot. Section 6.3.

6.1 SINUSOIDAL FREQUENCY RESPONSE

The sinusoidal frequency response (or, simply, frequency response) of a circuit pro-
vides a measure of how the circuit responds to sinusoidal inputs of arbitrary frequency.
In other words, given the input signal amplitude, phase, and frequency, knowledge
of the frequency response of a circuit permits the computation of the output signal.
Suppose, for example, that you wanted to determine how the load voltage or current
varied in response to different excitation signal frequencies in the circuit of Figure 6.1.
An analogy could be made, for example, with how a speaker (the load) responds to
the audio signal generated by a CD player (the source) when an amplifier (the circuit)
is placed between the two.* In the circuit of Figure 6.1, the signal source circuitry is
represented by its Thévenin equivalent. Recall that the impedance Zs presented by
the source to the remainder of the circuit is a function of the frequency of the source
signal (Section 4.4). For the purpose of illustration, the amplifier circuit is represented
by the idealized connection of two impedances Z; and Z,, and the load is represented
by an additional impedance Z, . What, then, is the frequency response of this circuit?
The following is a fairly general definition:

The frequency response of a circuit isa measure of the variation of a load-related
voltage or current as a function of the frequency of the excitation signal.

According to this definition, frequency response could be defined in a variety of ways.
For example, we might be interested in determining how the load voltage varies as
a function of the source voltage. Then analysis of the circuit of Figure 6.1 might
proceed as follows.

LIn reality, the circuitry in a high-fidelity stereo system is far more complex than the circuits discussed in
this chapter and in the homework problems. However, from the standpoint of intuition and everyday
experience, the audio analogy provides a useful example; it allows you to build a quick feeling for the
idea of frequency response. Practically everyone has an intuitive idea of bass, midrange, and treble as
coarsely defined frequency regions in the audio spectrum. The material presented in the next few
sections should give you a more rigorous understanding of these concepts.
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Figure 6.1 A circuit model

To express the frequency response of a circuit in terms of variation in output
voltage as a function of source voltage, we use the general formula

Vi (jw)
Vs (jow)

Hy (jo) = (6.1)

One method that allows for representation of the load voltage as a function of the
source voltage (this is, in effect, what the frequency response of a circuit implies)
is to describe the source and attached circuit by means of the Thévenin equivalent
circuit. (This is not the only useful technique; the node voltage or mesh current
equations for the circuit could also be employed.) Figure 6.2 depicts the original
circuit of Figure 6.1 with the load removed, ready for the computation of the Thévenin
equivalent.

Vs (Zs+Z9) | 22

Figure 6.2 Thévenin equivalent source circuit

Next, an expression for the load voltage V| may be found by connecting the
load to the Thévenin equivalent source circuit and by computing the result of a simple
voltage divider, as illustrated in Figure 6.3 and by the following equation:

VA
- 2L+ 277 !
Z|_ ZZ
= : Vs (62) &
2L+ Zs + 2022/ s + 21 +22) Zs+ 21+ 2o ot
2.7,

= Vv
2\ (Zs + 71 + Zo) + (Zs + Z1)Z, s
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Thus, the frequency response of the circuit, as defined in equation 6.1, is given by the
expression
Vi . . VAW,
VS(J ) v(jw) 2\ (Zs + 271 + Zo) + (Zs + Z1)Z, (6:3)
The expression for Hy (jw) is therefore known if the impedances of the circuit ele-
ments are known. Note that Hy ( jw) is a complex quantity (dimensionless, because it
is the ratio of two voltages) and that it therefore follows that
LO 1> V| (jw) is a phase-shifted and amplitude-scaled version of Vs (jw).
If the phasor source voltage and the frequency response of the circuit are known, the
phasor load voltage can be computed as follows:
Vi(jw) = Hy (jo) - Vs(jw) (6.4)
Viel?t = |Hy|el<H . vgelds (6.5)
or
VLei¢L = [Hy |V5ej(4Hr+¢s) (6.6)
where
Vi =[Hv|-Vs
and (6.7)
¢L = ZH, + ¢s
Thus, the effect of inserting a linear circuit between a source and a load is best
understood by considering that, at any given frequency w, the load voltage is a sinusoid
at the same frequency as the source voltage, with amplitude given by V| = |Hy |- Vs
and phase equal to ¢ = ZH, + ¢s, where [Hy| is the magnitude of the fre-
quency response and ZH, is its phase angle. Both |[Hy | and ZH, are functions of
frequency.
LO1 EXAMPLE 6.1 Computing the Frequency Response of a Circuit
by Using Equivalent Circuit Ideas
Problem
Ry ‘ Compute the frequency response Hy ( jw) for the circuit of Figure 6.4.
| +
gl \%
Vs € ! R B Solution
‘ Known Quantities: R, = 1kQ;C = 10 uF; R = 10 k2.
Figure 6.4

Find: The frequency response Hy (jo) = V| (jw)/Vs(jw).

Assumptions: None.
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Analysis: To solve this problem, we use an equivalent circuit approach. Recognizing that R,
is the load resistance, we determine the equivalent circuit representation of the circuit to the
left of the load, using the techniques perfected in Chapters 3 and 4. The Thévenin equivalent
circuit is shown in Figure 6.5. Using the voltage divider rule and the equivalent circuit shown
in the figure, we obtain the following expressions:

— ZL V
L= Zr 7, T
ZL Z;
= VS
VAVAYAVAIS Vo) WANAN k!
= Hy Vs

and

2,7,

\Y )
—_— = H = —-——
v, ) =) = o 7 v 7.z,

The impedances of the circuit elements are Z, = 10° Q, Z, = 1/(jw x 1075 , and
Z, = 10* Q. The resulting frequency response can be calculated to be

10
. j 10-5 100
Hy (jo) = o x 3 = -
10 110 + jo
104 { 108 + - + -
jo x 105 jo x 105
100 100

Z—arctan (%)

= T wzejarctan(%) T /1102 ¥ 2 1

Comments: The use of equivalent circuit ideas is often helpful in deriving frequency response
functions, because it naturally forces us to identify source and load quantities. However, it is
certainly not the only method of solution. For example, node analysis would have yielded the
same results just as easily, by recognizing that the top node voltage is equal to the load voltage
and by solving directly for V| as a function of Vs, without going through the intermediate step
of computing the Thévenin equivalent source circuit.

Figure 6.5
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CHECK YOUR UNDERSTANDING

Compute the magnitude and phase of the frequency response function at the frequencies
w = 10,100, and 1,000 rad/s.

L22L°€8— PUR L€/ Y~
‘Y61 G— = (Seaibep) aseyd ‘y660°0 PUE ‘2229°0 ‘¥S06°0 = apnlubelA :S1emsuy

The importance and usefulness of the frequency response concept lie in its
ability to summarize the response of a circuit in a single function of frequency H ( jw),
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which can predict the load voltage or current at any frequency, given the input. Note
that the frequency response of a circuit can be defined in four different ways:

. Vi (jw) . I (jw)
H = H fr—
v (Je) Vs (jow) (o) Is(jow)
@ Vi (jw) IL(jow) ¢2)
H . _ L{Jjw H . _ L(Jw
z(J) Is(jo) v (j) Vs (jw)

If Hy (jw) and H, (jw) are known, one can directly derive the other two expressions:

Vi) () .
z(jw) = Is (o) —ZL(Jw)IS(jw) =Z (jo)H (jo) (6.9)
Hy(joy = ) 1 Vile) 1 ) (6.10)

Vs(jo)  Zi(jo) Vs(jo)  ZL(jo)

The remainder of the chapter builds on equations (6.8) to give you all the tools
needed to make use of the concept of frequency response.

|_O]_> EXAMPLE 6.2 Computing the Frequency Response of a Circuit

Problem
L Compute the frequency response Hz ( jw) for the circuit of Figure 6.6.
lIL(im)
L +
@DsioFrR REVU®  solution
Known Quantities: Ry = 1kQ;L=2mH; R =4kQ.
Figure 6.6 Find: The frequency response Hz (jw) = VL (jw)/ls(jo).

Assumptions: None.

Analysis: To determine expressions for the load voltage, we recognize that the load current

can be obtained simply by using a current divider between the two branches connected to the

current source, and that the load voltage is simply the product of the load current and R, .
Using the current divider rule, we obtain the following expression for I :

YR +job)
T 1/RL +jol) +1/R; °
T 1+R/Ri+]joL/R; °

L

and

Vi LR
I—L(Jw)=Hz(J£0)= %
S S

RL

T 1+ R/Ri +]joL/Ry
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Substituting numerical values, we obtain

4 % 10%
14+4+j@2x107%w)/10°

Hz (jw) =

_ 0.8 x 10°
T 1404 x 1050

Comments: You should verify that the units of the expression for Hz (jw) are indeed ohms,
as they should be from the definition of H;.
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CHECK YOUR UNDERSTANDING
Compute the magnitude and phase of the frequency response function at the frequencies w = 1,
10, and 100 rad/s.

6.95°88— pue '8£96°'G.—
‘Y108 T¢— = (s9a163p) aseyd :0500°0 PUe ‘G870°0 ‘2G8T°0 = apnuubely :SIamsuy

6.2 FILTERS

There are many practical applications that involve filters of one kind or another. Just to
mention two, filtration systems are used to eliminate impurities from drinking water,
and sunglasses are used to filter out eye-damaging ultraviolet radiation and to reduce
the intensity of sunlight reaching the eyes. An analogous concept applies to electric
circuits: it is possible to attenuate (i.e., reduce in amplitude) or altogether eliminate
signals of unwanted frequencies, such as those that may be caused by electrical
noise or other forms of interference. This section will be devoted to the analysis of
electrical filters.

Low-Pass Filters

Figure 6.7 depicts a simple RC filter and denotes its input and output voltages,
respectively, by V;j and V,. The frequency response for the filter may be obtained by
considering the function
. Vo .
H(jo) = > (jo) (6.11)
I

and noting that the output voltage may be expressed as a function of the input voltage
by means of a voltage divider, as follows:

L /joC . 1
Vo(jw) = V.(Jw)iR T 1/jC V.(Jw)ileijC (6.12)
Thus, the frequency response of the RC filter is
0. 1
= A
v, ¥ = TR (613

RC low-pass filter. The circuit
preserves lower frequencies while
attenuating the frequencies above
the cutoff frequency wo = 1/RC.
The voltages V; and V, are the
filter input and output voltages,
respectively.

+ O_MM,TQ+
Vi c Vo

1

Figure 6.7 Asimple RC
filter
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An immediate observation upon studying this frequency response, is that if the
signal frequency w is zero, the value of the frequency response function is 1. That
is, the filter is passing all the input. Why? To answer this question, we note that at
o = 0, the impedance of the capacitor, 1/jwC, becomes infinite. Thus, the capacitor
acts as an open circuit, and the output voltage equals the input:

Vo(jw =0) = Vi(jo =0) (6.14)

Since a signal at sinusoidal frequency equal to zero is a DC signal, this filter circuit
does not in any way affect DC voltages and currents. As the signal frequency increases,
the magnitude of the frequency response decreases, since the denominator increases
with @. More precisely, equations 6.15 to 6.18 describe the magnitude and phase of
the frequency response of the RC filter:

H(j )—V"(' )=
) =9 Y = T eR
1 el0

= 1+ (WCR)?2 gjarctan(wCR/1) (6.15)

— 1 . e—j arctan(wCR)
Vv 1+ (wCR)?
or
H(jo) = H(jo)[e! "} (6.16)
with
1 1
IH (o)l = = (6.17)
VI+ (@CR)?Z 1+ (w/wp)?
and
/H (jw) = —arctan(wCR) = —arctan @ (6.18)
o)
with
1
_ = 1
w0 = 2 (6.19)

The simplest way to envision the effect of the filter is to think of the phasor voltage
V; = V;e!? scaled by a factor of |H| and shifted by a phase angle ZH by the filter at
each frequency, so that the resultant output is given by the phasor V,e1%, with

Vo = [H| -V
$o = ZH + ¢

and where |[H| and ZH are functions of frequency. The frequency wy is called the
cutoff frequency of the filter and, as will presently be shown, gives an indication of
the filtering characteristics of the circuit.

It is customary to represent H ( jw) in two separate plots, representing |H | and
/H as functions of w. These are shown in Figure 6.8 in normalized form, that is, with
|H| and ZH plotted versus w/wq, corresponding to a cutoff frequency wy = 1 rad/s.
Note that, in the plot, the frequency axis has been scaled logarithmically. This is a
common practice in electrical engineering, because it enables viewing a very broad
range of frequencies on the same plot without excessively compressing the low-
frequency end of the plot. The frequency response plots of Figure 6.8 are commonly

(6.20)
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employed to describe the frequency response of a circuit, since they can provide a
clear idea at a glance of the effect of a filter on an excitation signal. For example,
the RC filter of Figure 6.7 has the property of “passing” signals at low frequencies
(w <« 1/RC) and of filtering out signals at high frequencies (o > 1/RC). This
type of filter is called a low-pass filter. The cutoff frequency « = 1/RC has a
special significance in that it represents—approximately—the point where the filter
begins to filter out the higher-frequency signals. The value of |H (jw)| at the cutoff
frequency is 1/+/2 = 0.707. Note how the cutoff frequency depends exclusively on
the values of R and C. Therefore, one can adjust the filter response as desired simply
by selecting appropriate values for C and R, and therefore one can choose the desired
filtering characteristics.

Magnitude response of RC low-pass filter

1.0
\\
N
0.8 \
2 \
S 06 \
g \
£ 04 \
< N\
0.2 N X
N\
0 S
102 10t 10° 10t 102 108 104
Radian frequency (logarithmic scale)
Phase response of RC low-pass filter
0 =
™N
N
-20 \
\
g \
T 60
N
-80 N ~
1072 10t 10° 10t 102 10° 10*

Radian frequency (logarithmic scale)

Figure 6.8 Magnitude and phase response plots for RC filter
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EXAMPLE 6.3 Frequency Response of RC Filter

Problem

Compute the response of the RC filter of Figure 6.7 to sinusoidal inputs at the frequencies of
60 and 10,000 Hz.

Solution
Known Quantities: R = 1kQ; C = 0.47 uF; vi(t) = 5cos(wt) V.

Find: The output voltage v,(t) at each frequency.

< LO3
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Assumptions: None.

Analysis: In this problem, we know the input signal voltage and the frequency response of
the circuit (equation 6.15), and we need to find the output voltage at two different frequencies.
If we represent the voltages in phasor form, we can use the frequency response to calculate the
desired quantities:

Vo i b (i =
v, ey =mvile) =7 R

Vo(jw) = Hy (jo)Vi(jo) = mVi(jw)
If we recognize that the cutoff frequency of the filter is wg = 1/RC = 2,128 rad/s, we can
write the expression for the frequency response in the form of equations 6.17 and 6.18:

/H (jw) = —arctan (3)

o

1 1
Hy(jow) = ——— Hy (jo)| = —————
v (Jo) 1+ jo/ oo [Hy (Jo)| 11 (@/on)?

Next, we recognize that at w = 1207 rad/s, the ratio w/w, = 0.177, and at @ = 20,0007,
w/wy = 29.5. Thus we compute the output voltage at each frequency as follows:

1
1
V =21 = ——Vj(w =271 = 0.034 /—1.537V
o(w = 2710,000) 171295 i(w = 2710,000) = 0.0345 x 5 53

Magnitude response of RC filter of Example 6.3

10 R
o \
®
g \
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£ 05
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< \\
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Radian frequency, rad/s (logarithmic scale)

Phase response of RC filter of Example 6.3
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Radian frequency, rad/s (logarithmic scale)
Figure 6.9 Response of RC filter of Example 6.3
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And finally, we write the time-domain response for each frequency:

vo(t) = 4.923 cos(2760t — 0.175) V at w = 2760 rad/s
vo(t) = 0.169 cos(27r 10,000t — 1.537) V at w = 210,000 rad/s

The magnitude and phase responses of the filter are plotted in Figure 6.9. It should be evident
from these plots that only the low-frequency components of the signal are passed by the filter.
This low-pass filter would pass only the bass range of the audio spectrum.

Comments: Can you think of a very quick, approximate way of obtaining the answer to this
problem from the magnitude and phase plots of Figure 6.9? Try to multiply the input voltage
amplitude by the magnitude response at each frequency, and determine the phase shift at each
frequency. Your answer should be pretty close to the one computed analytically.

CHECK YOUR UNDERSTANDING
Asimple RC low-pass filter is constructed using a 10-uF capacitor and a 2.2-k<2 resistor. Over

what range of frequencies will the output of the filter be within 1 percent of the input signal
amplitude (i.e., when will V| > 0.99Vs)?

S/pel 87'9 = @ = () LIaMSUY

EXAMPLE 6.4 Frequency Response of RC Low-Pass Filter in a LO?2
More Realistic Circuit

Problem

Compute the response of the RC filter in the circuit of Figure 6.10.

Solution

Known Quantities: Rs = 50 Q; R; =200 Q; R, =500 ; C = 10 uF.
Find: The output voltage v,(t) at each frequency.

Assumptions: None.

Analysis: The circuit shown in this problem is a more realistic representation of a filtering
problem, in that we have inserted the RC filter circuit between source and load circuits (where

Rs Ry
+
. <> .
Vs(jo) ==C RZ [Vilio)
1 T
Source Filter Load

Figure 6.10 RC filter inserted in a circuit
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Figure 6.11 Equivalent
circuit representation of Figure
6.10

Chapter 6 Frequency Response and System Concepts

the source and load are simply represented in equivalent form). To determine the response
of the circuit, we compute the Thévenin equivalent representation of the circuit with respect to
the load, as shown in Figure 6.11. LetR" = Rs + R; and

1 RL
jwC 14 jwCR,
Then the circuit response may be computed as follows:

Z' =R

_ Ri/(1+jwCR)
Rs +Ri +RL/(1 + jwCRL)
R
RL +Rs +R1 + joCRL(Rs + Ry)
_ R/RL+R)
1+ jwCRL|IR

The above expression can be written as follows:
_R/RLHR) K 0667
T 14+ jwCRLIR" T 1+4jwCReq 1+ j(w/600)

H (joo)

Comments: Note the similarity and difference between the above expression and equation
6.13: The numerator is different from 1, because of the voltage divider effect resulting from
the source and load resistances, and the cutoff frequency is given by the expression

1

= ®Re

wo

CHECK YOUR UNDERSTANDING

Connect the filter of Example 6.3 to a 1-V sinusoidal source with internal resistance of 50 ©
to form a circuit similar to that of Figure 6.10. Determine the circuit cutoff frequency wy if the
load resistance is 470 2.

S/pel £'€66°9 = 0® 1Jamsuy

EXAMPLE 6.5 Filter Attenuation

Problem

A low-pass filter has the frequency response given by the function shown below. Determine at
which frequency the output of the filter has magnitude equal to 10 percent of the magnitude of
the input.

K

»
) oo + D(jojs = 1
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Solution
Known Quantities: Frequency response function of a filter.

Find: Frequency wigy at which the output peak amplitude is equal to 10 percent of the input
peak amplitude.

Schematics, Diagrams, Circuits, and Given Data: K = 1; w; = 100; w, = 1,000.
Assumptions: None.

Analysis: The statement of the problem is equivalent to asking for what value of w the
magnitude of the frequency response is equal to 0.1K. Since K = 1, we can formulate the
problem as follows.
K p—
(lo/w1 + D (jo/w +1)|
1 —
V(1 — 0 fo10)? + ? (w1 + 1/w2)?

H(jo)| = 0.1K

Now let Q = w?, and expand the above expression:

2 2
(1_ “ ) +sz<i+i) ~ 100
w17 w1 w2

1 1)\?2
Q%+ |:(a)10)2)2 <— + —) — 2w1w2i| Q —99(w1,)? =0
w1 w?

Substituting numerical values in the expression, we obtain a quadratic equation that can be
solved to obtain the roots @ = —1.6208 x 10° and Q = 0.6108 x 10°. Selecting the positive
root as the only physically possible solution (negative frequencies do not have a physical
meaning), we can then solve for w = +/€ = 782 rad/s. Figure 6.12(a) depicts the magnitude
response of the filter; you can see that around the frequency of 300 rad/s, the magnitude response
is indeed close to 0.1. The phase response is shown in Figure 6.12(b).

Magnitude response of filter Phase response of filter
1.0 0 ..
N
09 N 20
N

0.8 0 N
. 0.7 o 60
= 06
8 05 \ g 80 \
3]
g 0
£ 04 £ 100 X
1S 120
Z 03

0.2 140

\

0.1 160

0 = 180

100 10t 102 108 104 105 100 10t 102 108

Frequency, rad/s Frequency, rad/s
@ (b)

Figure 6.12 Frequency response of filter of Example 6.5. (a) Magnitude response; (b) phase response
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Comments: This type of problem, which recurs in the homework assignments, can be solved
numerically, as done here, or graphically, as illustrated in the next exercise.

RC high-pass filter. The circuit
preserves higher frequencies while
attenuating the frequencies below
the cutoff frequency wo = /RC.

C
+ o] o+

Vi RS Vo

A\AAJ

Figure 6.13 High-pass filter

CHECK YOUR UNDERSTANDING

Use the phase response plot of Figure 6.12(b) to determine at which frequency the phase shift
introduced in the input signal by the filter is equal to —90°.

(Aj91eWIX0AddR) S/PRI 0OE = @ :laMSUY

Much more complex low-pass filters than the simple RC combinations shown
so far can be designed by using appropriate combinations of various circuit elements.
The synthesis of such advanced filter networks is beyond the scope of this book;
however, we discuss the practical implementation of some commonly used filters in
Chapter 8, in connection with the discussion of the operational amplifier. The next
two sections extend the basic ideas introduced in the preceding pages to high-pass
and bandpass filters, that is, to filters that emphasize the higher frequencies or a band
of frequencies, respectively.

High-Pass Filters

Just as you can construct a simple filter that preserves low frequencies and attenuates
higher frequencies, you can easily construct a high-pass filter that passes mainly those
frequencies above a certain cutoff frequency. The analysis of a simple high-pass filter
can be conducted by analogy with the preceding discussion of the low-pass filter. Con-
sider the circuit shown in Figure 6.13. The frequency response for the high-pass filter

. Vo .
H(Jo) = $-(jo)

may be obtained by noting that

. ) R . jwCR
vV =V, — =V — 6.21
o(Jw) IUw)R—Fl/ja)C I(Jw)l+ja)CR (6.21)
Thus, the frequency response of the filter is
Vo R JCL)CR
IVa == 6.22
v = TR (6.22)
which can be expressed in magnitude-and-phase form by
. Vo . jwCR wCRel™/2
H(jw) = - (Jjo) = —— = :
Vj 1+ jwCR /1 + (wCR)2elarctan(@CR/1)
— wCR . ej[rr/zfarctan(wCR)]
V1+ (@CR)?
or (6.23)

H(jw) = |H e}
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with
. wCR
H(jo)| = s
Vv 1+ (wCR)2 (6.24)
/H (jw) = 90° — arctan(wCR)
You can verify by inspection that the amplitude response of the high-pass filter will
be zero at @ = 0 and will asymptotically approach 1 as w approaches infinity, while
the phase shift is 7/2 at @ = 0 and tends to zero for increasing w. Amplitude-and-
phase response curves for the high-pass filter are shown in Figure 6.14. These plots
have been normalized to have the filter cutoff frequency wy = 1 rad/s. Note that, once
again, it is possible to define a cutoff frequency at wy = 1/RC in the same way as
was done for the low-pass filter.
1
08 80
€ 06 g
Boa g 0
g £
0.2 20
0 0
102 101 100 10t 102 103 104 102 10 100 10t 10
Radian frequency (logarithmic scale) Radian frequency (logarithmic scale)

Figure 6.14 Frequency response of a high-pass filter

EXAMPLE 6.6 Frequency Response of RC High-Pass Filter

Problem

Compute the response of the RC filter in the circuit of Figure 6.13. Evaluate the response of
the filter at w = 27 x 100 and 27 x 10,000 rad/s.

Solution

Known Quantities: R =200 ©; C = 0.199 uF.
Find: The frequency response Hy ( jw).
Assumptions: None.

Analysis: We first recognize that the cutoff frequency of the high-pass filter is wy = 1/RC
= 27 x 4,000 rad/s. Next, we write the frequency response as in equation 6.22:

jwCR
1+ jwCR

= $4 (% — arctan <3>>
Y1+ (@/w)? @0

. Vo .
Hy (Jo) = 3~ (Jo) =

< LO2
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We can now evaluate the response at the two frequencies:

100/4,000 (71

——— /| ~ —arctan <£>) = 0.02521.546
/1 + (100/4,000)2 2 4,000

Hy (@ = 27 x 10,000) = —0:000/4.000 (7 oo (20000
/1 + (10,000/4,000)> \ 2 4,000

Hy (& = 27 x 100) =

=0.92920.38

The frequency response plots are shown in Figure 6.15.

=
o
/
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0.8 / 80 N\ \
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S 06 / g \
o4 , g 40
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0 i d 0 \\~
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Radian frequency (logarithmic scale) Radian frequency (logarithmic scale)

Figure 6.15 Response of high-pass filter of Example 6.6

Comments: The effect of this high-pass filter is to preserve the amplitude of the input signal
at frequencies substantially greater than w, while signals at frequencies below wy would be
strongly attenuated. With wy = 27 x 4,000 (that is, 4,000 Hz), this filter would pass only the
treble range of the audio frequency spectrum.

CHECK YOUR UNDERSTANDING

Determine the cutoff frequency for each of the four “prototype” filters shown below. Which
are high-pass and which are low-pass?

R R
_1_ C %L
o 'e} o 0
(a) (b)
C L
e} Il 0 o—mMN—1p——0
< <
2R 2R
< =
o e} o e}

Show that it is possible to obtain a high-pass filter response simply by substituting an inductor
for the capacitor in the circuit of Figure 6.7. Derive the frequency response for the circuit.
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I

Bandpass Filters, Resonance, and Quality Factor

Building on the principles developed in the preceding sections, we can also con-
struct a circuit that acts as a bandpass filter, passing mainly those frequencies
within a certain frequency range. The analysis of a simple second-order bandpass
filter (i.e., a filter with two energy storage elements) can be conducted by analogy
with the preceding discussions of the low-pass and high-pass filters. Consider the
circuit shown in Figure 6.16 and the related frequency response function for the
filter

. Vo .
H(jo) = Vi(Jw)
Noting that

Vo(jo) = Vi(jo) m———————
o(Jw) '(Jw)R+1/ij+ij

(6.25)
V(o) R
— N1 4 jwCR + (jw)2LC
we may write the frequency response of the filter as
Vo . JCL)CR
— = 6.26
v, ¥ = TR + (mpile (6:26)
Equation 6.26 can often be factored into the form
Vo . JAw
T (o) = — . 6.27
Vi Y= Gjor + D(jwjwr + D (627

where w; and w; are the two frequencies that determine the passband (or bandwidth)
of the filter—that is, the frequency range over which the filter “passes” the input
signal—and A is a constant that results from the factoring. An immediate observation
we can make is that if the signal frequency w is zero, the response of the filter is
equal to zero, since at w = 0 the impedance of the capacitor 1/jwC becomes infinite.
Thus, the capacitor acts as an open circuit, and the output voltage equals zero. Further,
we note that the filter output in response to an input signal at sinusoidal frequency
approaching infinity is again equal to zero. This result can be verified by considering
that as w approaches infinity, the impedance of the inductor becomes infinite, that is,
an open circuit. Thus, the filter cannot pass signals at very high frequencies. In an
intermediate band of frequencies, the bandpass filter circuit will provide a variable
attenuation of the input signal, dependent on the frequency of the excitation. This
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RLC bandpass filter. The circuit
preserves frequencies within a
band.
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Figure 6.16 RLC bandpass
filter
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may be verified by taking a closer look at equation 6.27:

H(jo) = & (jo) = — :
V; (Jw/w1 + 1) (Jjw /w2 + 1)
Awelm/2
- \/1 4 (a)/a)l)z\/l + (w/wz)zejarctan(w/wl)ejarctan(w/wz) (6-28)
_ Aw pilr/2-arctan(w/wy) —arctan(w/w2)]
I+ @/on?][1+ @/w)?]
Equation 6.28 is of the form H (jw) = |H|eJ“", with
. Aw
H (o) = - -
VIL+ (@/1)?][1 4 (0/w2)?]
and (6.29)

/H(jw) = T arctan L arctan @
2 w1 w7
The magnitude and phase plots for the frequency response of the bandpass filter of
Figure 6.16 are shown in Figure 6.17. These plots have been normalized to have the
filter passband centered at the frequency w = 1 rad/s.

The frequency response plots of Figure 6.17 suggest that, in some sense, the
bandpass filter acts as a combination of a high-pass and a low-pass filter. As illustrated
in the previous cases, it should be evident that one can adjust the filter response as
desired simply by selecting appropriate values for L, C, and R.

Bandpass filter amplitude response
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Bandpass filter phase response
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Figure 6.17 Frequency responses of RLC bandpass filter
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Resonance and Bandwidth

The response of second-order filters can be explained more generally by rewriting the
frequency response function of the second-order bandpass filter of Figure 6.16 in the
following forms:

JowCR
LC (jw)? + joCR + 1

_ (2¢ Jwn)jow
(jw/wn)? + (22 Jwn)jo + 1

_ (1/an)jw
" (jo/on)? + (1/Qun)jw + 1

with the following definitions:2

/1
wn = c= natural or resonant frequency

1 1 1 /L
Q 2%~ onCR R‘/ ¢ = quality factor (6.31)

_l_R\/E—dam ing ratio
¢=3q T2y Mg

Figure 6.18 depicts the normalized frequency response (magnitude and phase) of
the second-order bandpass filter for w, = 1 and various values of Q (and ¢). The
peak displayed in the frequency response around the frequency wy, is called a res-
onant peak, and w, is the resonant frequency. Note that as the quality factor Q
increases, the sharpness of the resonance increases and the filter becomes increas-
ingly selective (i.e., it has the ability to filter out most frequency components of the
input signals except for a narrow band around the resonant frequency). One measure
of the selectivity of a bandpass filter is its bandwidth. The concept of bandwidth
can be easily visualized in the plot of Figure 6.18(a) by drawing a horizontal line
across the plot (we have chosen to draw it at the amplitude ratio value of 0.707 for
reasons that will be explained shortly). The frequency range between (magnitude) fre-
guency response points intersecting this horizontal line is defined as the half-power
bandwidth of the filter. The name half-power stems from the fact that when the ampli-
tude response is equal to 0.707 (or 1/+/2), the voltage (or current) at the output of the
filter has decreased by the same factor, relative to the maximum value (at the resonant
frequency). Since power in an electric signal is proportional to the square of the volt-
age or current, a drop by a factor 1/+/2 in the output voltage or current corresponds
to the power being reduced by a factor of % Thus, we term the frequencies at which
the intersection of the 0.707 line with the frequency response occurs the half-power
frequencies. Another useful definition of bandwidth B is as follows. We shall make

Vo . o
Vi(Jw)_

(6.30)

21f you have already studied the section on second-order transient response in Chapter 5, you will
recognize the parameters ¢ and wp.

< LO2
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Magnitude response of second-order bandpass filter

Amplitude ratio

Normalized frequency m/wn

€)
0 Phase response of second-order bandpass filter
. T
15 —$ ==
10

Phase angle (rad)
o

-05
-1.0
-1.5
-2.0
107 10 10° 10t 107
Normalized frequency w/wn
(b)

Figure 6.18 (a) Normalized magnitude response of second-order bandpass
filter; (b) normalized phase response of second-order bandpass filter

use of this definition in the following examples. Note that a high-Q filter has a narrow
bandwidth, and a low-Q filter has a wide bandwidth.

|_02> B % Bandwidth (6.32)
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EXAMPLE 6.7 Frequency Response of Bandpass Filter

Problem

Compute the frequency response of the bandpass filter of Figure 6.16 for two sets of component
values.

Solution
Known Quantities:

(@ R=1kQ;C =10 uF;L=5mH.
(b) R=10L;C =10 uF; L =5mH.

Find: The frequency response Hy ( jw).

Assumptions: None.

Analysis: We write the frequency response of the bandpass filter as in equation 6.26:
JwCR

1+ jwCR + (jw)2LC

. Vo .
Hy (jw) = v(]w) =

= @R V4 |:7T arctan ( @R )]
- T _oR
Ja—oe) + wery? L2 1-eAC

We can now evaluate the response for two different values of the series resistance. The frequency
response plots for case a (large series resistance) are shown in Figure 6.19. Those for case b

Broadband filter amplitude response

to /| N
8 o6 / \
g " / \
=3 /
E 04 /
< / \
0.2
0 \\~~~.
10t 102 103 10% 10° 108 107
Radian frequency (logarithmic scale)
Broadband filter phase response
[—
N
\\
50 .\
§ \\\__.
g 0 \.\~.
-50 \\
N
\.~‘--
10t 107 108 10t 10° 108 107
Radian frequency (logarithmic scale)

Figure 6.19 Frequency response of broadband bandpass filter of
Example 6.7

< LO2
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Narrowband filter amplitude response

10
0.8
(]
S 06
3 !
E 04
A /1IN
0.2 /‘
0 R N~
10t 102 103 10% 10° 108 107
Radian frequency (logarithmic scale)
Narrowband filter phase response
\\
50 ‘
g \
: \
-50
\

10t 102 108 104 10° 106 107
Radian frequency (logarithmic scale)

Figure 6.20 Frequency response of narrowband bandpass filter of
Example 6.7

(small series resistance) are shown in Figure 6.20. Let us calculate some quantities for each
case. Since L and C are the same in both cases, the resonant frequency of the two circuits will
be the same:

1
JLC

On the other hand, the quality factor Q will be substantially different:

= 4.47 x 10° rad/s

wp =

1
Qa = x> 0.0224 case a

1
Q= R~ 2.24 case b

Wn

From these values of Q we can calculate the approximate bandwidth of the two filters:

B, = &~ 200,000 rad/s case a
Qa

B, = n 2,000 rad/s case b
Qb

The frequency response plots in Figures 6.19 and 6.20 confirm these observations.

Comments: It should be apparent that while at the higher and lower frequencies most of the
amplitude of the input signal is filtered from the output, at the midband frequency (4,500 rad/s)
most of the input signal amplitude passes through the filter. The first bandpass filter analyzed in
this example would “pass” the midband range of the audio spectrum, while the second would
pass only a very narrow band of frequencies around the center frequency of 4,500 rad/s.
Such narrowband filters find application in tuning circuits, such as those employed in conven-
tional AM radios (although at frequencies much higher than that of the present example). In
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a tuning circuit, a narrowband filter is used to tune in a frequency associated with the carrier
of a radio station (e.g., for a station found at a setting of AM 820, the carrier wave trans-
mitted by the radio station is at a frequency of 820 kHz). By using a variable capacitor, it
is possible to tune in a range of carrier frequencies and therefore select the preferred station.
Other circuits are then used to decode the actual speech or music signal modulated on the
carrier wave.

265

CHECK YOUR UNDERSTANDING

Compute the frequencies w; and w, for the bandpass filter of Example 6.7 (with R = 1 k)

for equating the magnitude of the bandpass filter frequency response to 1/+/2 (this will result
in a quadratic equation in w, which can be solved for the two frequencies). Note that these are
the half-power frequencies.

S/pen} T°00Z = 2 'S/Pel G6'66 = '@ :SIamsuy/

6.3 BODE PLOTS

Frequency response plots of linear systems are often displayed in the form of loga-
rithmic plots, called Bode plots, where the horizontal axis represents frequency on a
logarithmic scale (base 10) and the vertical axis represents the amplitude ratio or phase
of the frequency response function. In Bode plots the amplitude ratio is expressed in
units of decibels (dB), where

Ao

= 201o0g; a (6.33)
i lds Ai
The phase shift is expressed in degrees or radians. Frequency is usually plotted on
a logarithmic (base-10) scale as well. Note that the use of the decibel units implies
that one is measuring a ratio. The use of logarithmic scales enables large ranges to
be covered. Furthermore, as shown subsequently in this section, frequency response
plots of high-order systems may be obtained easily from frequency response plots of
the factors of the overall sinusoidal frequency response function, if logarithmic scales
are used for amplitude ratio plots. Consider, for example, the RC low-pass filter of
Example 6.3 (Figure 6.7). The frequency response of this filter can be written in the
form

Vo juy = L L (2) (6.34)

joloo+1~ iy (w/wp)? wo

where T = RC = 1/wp and wy is the cutoff, or half-power, frequency of the filter.
Figure 6.21 shows the frequency response plots (magnitude and phase) for this
filter; such plots are termed Bode plots, after the mathematician Hendrik W. Bode. The
normalized frequency onthe horizontal axis is wt. One of the great advantages of Bode
plots is that they permit easy straight-line approximations, as illustrated (next page).
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If we express the magnitude frequency response of the first-order filter (Vo /Vi)(jw)
= K/(1 + jw/wp) in units of decibels, we have

dB

VO(.
A Jo)

L+ jo/wg (6.35)

= 201logy,

K w\?
—— =20log,, K — 101log l—i—(—)
V14 (w/wp)? 0 10 |: o
If w/wy < 1, then

V
‘7‘3( jw)| ~20logyy K — 10logy, 1 = 20 log;, K (6.36)
i

dB

Thus, the expression 6.26 is well approximated by a straight line of zero slope at very
low frequencies (equation 6.36). This is the low-frequency asymptotic approximation
of the Bode plot.

If w/wy > 1, we can similarly obtain a high-frequency asymptotic approxima-
tion:

\Y/
‘—o(jw) ~ 2010gy K — 20 logyy —
Vi o

(6.37)

dB

= 201log,q K — 20109,y @ + 20109, wo

Note that equation 6.37 represents a straight line of slope —20 dB per decade (factor-
of-10 increase in frequency). A decade increase in w results in an increase in log w
of unity. Note also that when w equals the cutoff frequency wy, the expression for
|(Vo/Vi)(jw)| given by equation 6.37 equals that given by equation 6.36. In other
words, the low- and high-frequency asymptotes intersect at wp. Thus, the magnitude

Magnitude response of |ow-pass filter 0 Phase angle response of low-pass filter
—— Approximate ~ T QA II_%L&LIE
- - Actud 10 NS ~- Aot
TR \ 20 ‘\
s 8 30
N @ \
()
\ ? 40
\ g \
& 60 A\ \
N 70 LA
\ N \\
80 ﬁ\
90 bk

100 10t 102 103 101 100 10t 102 103
Frequency, rad/s Frequency, rad/s

@ (b)

Figure 6.21 Bode plots for low-pass RC filter; the frequency variable is normalized to w/wq.
(a) Magnitude response; (b) phase response
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response Bode plot of a first-order low-pass filter can be easily approximated by two

straight lines intersecting at wq. Figure 6.21(a) clearly shows the approximation.
Consider now the phase angle of the frequency response function

Z(Vo/Vi)(jw) = —tan~(w/wy). This response can be approximated as follows:

0 when o K wg

b g
—tan71 <2) —Z when o = wo
o

T
3 when o > wy

If we (somewnhat arbitrarily) agree that @ < 0.lwg is equivalent to the condition
w/wg < 1, and that @ > 10wq is equivalent to the condition w/wy > 1, then
these approximations are summarized by three straight lines: one of zero slope (with
phase equal to 0) for o < 0.1wyg, one with slope —x /4 rad/decade between 0.1wy
and 10wq, and one of zero slope (with phase equal to —x/2) for @ > 10wg. These
approximations are illustrated in the plot of Figure 6.21(b). What errors are incurred in
making these approximations? Table 6.1 lists the actual errors. Note that the maximum
magnitude response error at the cutoff frequency is —3 dB; thus the cutoff or half-
power frequency is often called 3-dB frequency.

Table 6.1 Correction factors for asymptotic
approximation of first-order filter

Magnitude response  Phase response

w/wg  error,dB error, deg
0.1 0 -5.7

0.5 -1 4.9

1 -3 0

2 -1 —4.9

10 0 +5.7

If we repeat the analysis done for the low-pass filter for the case of the high-pass
filter (see Figure 6.13), we obtain a very similar approximation:

Vo . joCR j(@/wo)
V(Ja)) = 1. = -
i +JjwCR 1+ j(w/wo)
(w/wo)L(m/2)

(6.38)

- V1 + (0]wy)? £ arctan(w/wg)

= %4 (n — arctan w>
V1+ (w/wy)? \2 wo

Figure 6.22 depicts the Bode plots for equation 6.38, where the horizontal axis
indicates the normalized frequency w/wg. Asymptotic approximations may again
be determined easily at low and high frequencies. The results are exactly the same
as for the first-order low-pass filter case, except for the sign of the slope: in the
magnitude plot approximation, the straight-line approximation for w/wg > 1 has
a slope of +20 dB/decade, and in the phase plot approximation, the slope of the
line between 0.1wy and 10wq is —m/4 rad/decade. You are encouraged to show
that the asymptotic approximations shown in the plots of Figure 6.22 are indeed
correct.
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Magnitude response of high-pass filter Phase angle response of high-pass filter

Figure 6.22 Bode plots for high-pass RC filter. (a) Magnitude response; (b) phase response
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Chapter 6 focuses on the frequency response of linear circuits, and it is a natural extension of the
material covered in Chapter 4. The idea of frequency response extends well beyond electrical
engineering. For example, civil, mechanical, and aeronautical engineering students who study
the vibrations of structures and machinery will find that the same methods are employed in

those fields.

Upon completing this chapter, you should have mastered the following learning

objectives:

1. Understand the physical significance of frequency domain analysis, and compute the
frequency response of circuits by using AC circuit analysis tools. You had already

acquired the necessary tools (phasor analysis and impedance) to compute the frequency
response of circuits in Chapter 4; in the material presented in Section 6.1, these tools are

put to use to determine the frequency response functions of linear circuits.

2. Analyze simple first- and second-order electrical filters, and determine their frequency
response and filtering properties. With the concept of frequency response firmly in hand,
now you can analyze the behavior of electrical filters and study the frequency response

characteristics of the most common types, that is, low-pass, high-pass, and bandpass
filters. Filters are very useful devices and are explored in greater depth in Chapter 8.

3. Compute the frequency response of a circuit and its graphical representation in the form
of a Bode plot. Graphical approximations of Bode plots can be very useful to develop a
quick understanding of the frequency response characteristics of a linear system, almost

by inspection. Bode plots find use in the discipline of automatic control systems,
a subject that is likely to be encountered by most engineering majors.

HOMEWORK PROBLEMS

Section 6.1: Sinusoidal
Frequency Response

6.1

a. Determine the frequency response
Vout(jw)/Vin(jow) for the circuit of Figure P6.1.

b. Plot the magnitude and phase of the circuit for
frequencies between 10 and 107 rad/s on graph
paper, with a linear scale for frequency.

c. Repeat part b, using semilog paper. (Place the
frequency on the logarithmic axis.)



d. Plot the magnitude response on semilog paper with
magnitude in decibels.

05H
o—mj—o
+ +
<>
Vin(t) 200kQ 2 Vout(t)
o o
Figure P6.1

6.2 Repeat Problem 6.1 for the circuit of Figure P6.2.

oL
(e, \AAAL
0

Vin® 5002 200 pF =< Vou(t)

O
Figure P6.2

6.3 Repeat Problem 6.1 for the circuit of Figure P6.3.

O AVAVAVAV i AVAVAVAV O
Q
Vin(D) 22000Q 10pF =% Vou(t)
o o
Figure P6.3

6.4 Repeat Problem 6.1 for the circuit of Figure P6.4.
R1 =500 Q; R, = 1,000 Q; L =2H; C =100 uF.

Figure P6.4

6.5 Determine the frequency response of the circuit of
Figure P6.5, and generate frequency response plots.
R; =20 kQ2; R, = 100 k2; C; = 100 uF; C, =5 uF.
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Cy R

Vi RGOS Vol

Figure P6.5

6.6 In the circuit shown in Figure P6.6, where
C=05uFandR =2k,

a. Determine how the input impedance
Z(jo) = % behaves at extremely high and low
frequencies.

b. Find an expression for the impedance.
c. Show that this expression can be manipulated into
the form Z (jo) = R[1+j-4]-

wRC

d. Determine the frequency w = w¢ for which the
imaginary part of the expression in part c is equal
to 1.

e. Estimate (without computing it) the magnitude
and phase angle of Z(j w) at w = 10 rad/s and w
= 105 rad/s.

(o
+ C
Vi(jo) 3

VVVy
Py

Figure P6.6

6.7 Inthe circuit shown in Figure P6.7, where L = 2 mH
and R = 2 k2,

a. Determine how the input impedance
Z(jw) = % behaves at extremely high and low
frequencies.

b. Find an expression for the impedance.
c. Show that this expression can be manipulated into
the form Z (jo) = R[1+j%].

d. Determine the frequency w = wc for which the
imaginary part of the expression in part ¢ is equal
to 1.

e. Estimate (without computing it) the magnitude and
phase angle of Z( jw) at w = 105 rad/s, 10 rad/s,
and 107 rad/s.
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Figure P6.7

6.8 In the circuit shown in Figure P6.8, if
L=190mH R;=23kQ
C =55nF R, = 1.1kQ
a. Determine how the input impedance behaves at
extremely high or low frequencies.
b. Find an expression for the input impedance in the

form L+ @)
. + i (w
2 =2 e
L
Zo = Rl + Rzic
fi(0) = ®’R;LC —R; — Ry
w(R{R,C +L)
b(w) = w’LC -1
wCR,

c. Determine the four frequencies at which
fi(w) = +1or —1and f,(w) = +1or —1.

d. Plot the impedance (magnitude and phase) versus

frequency.
|\(jw)
O—MWW—y
+ Ry R,
Vi(jo) CT
L
o—
Figure P6.8
6.9 In the circuit of Figure P6.9:
R; =1.3kQ R, =1.9kQ
C =0.5182 uF
Determine:

a. How the voltage transfer function

Vo (jow)
Vi(jw)

Hy (jo) =

behaves at extremes of high and low frequencies.
b. An expression for the voltage transfer function and
show that it can be manipulated into the form

. Ho
H,(jo) = T¥jf (@)
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where
RZ lech
H, = f(w) =
°" Ri+Ry @) Ri +R;
c. The frequency at which f (w) = 1 and the value of
H, in decibels.
li(jo) R, lo(jo)
C}" AVAVAVAV %
+ +
V(o)  CFRZ Ve(ja)
5 _
Figure P6.9

6.10 The circuit shown in Figure P6.10 is a
second-order circuit because it has two reactive
components (L and C). A complete solution will
not be attempted. However, determine:

a. The behavior of the voltage frequency response at
extremely high and low frequencies.

b. The output voltage V, if the input voltage has a

frequency where:
Vi = 7.074% V R =22kQ
R, = 3.8kQ X =5kQ XL =1.25kQ

¢. The output voltage if the frequency of the input
voltage doubles so that

Xc =25kQ XL =2.5kQ

d. The output voltage if the frequency of the input
voltage again doubles so that

Xe =1.25kQ X, =5kQ

Figure P6.10

6.11 Inthe circuit shown in Figure P6.11, determine the
frequency response function in the form

Vo(jw) _ Huo

1) =G T TZit @)

and plot H, (jw).
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Figure P6.11

6.12 The circuit shown in Figure P6.12 has

R, = 100 Q R, = 100
R, =50 Q C =80nF
Compute and plot the frequency response
function.

Figure P6.12

6.13

a. Determine the frequency response
Vout(jo)/Vin(jw) for the circuit of Figure P6.13.

b. Plot the magnitude and phase of the frequency
response for frequencies between 1 and 100 rad/s
on graph paper, with a linear scale for frequency.

c. Repeat part b, using semilog paper. (Place the
frequency on the logarithmic axis.)

d. Plot the magnitude response on semilog paper with
magnitude in dB.

Figure P6.13

6.14 Consider the circuit shown in Figure P6.14.
a. Sketch the amplitude response of Y = 1/Vs.
b. Sketch the amplitude response of V/Vs.
c. Sketch the amplitude response of V,/Vs.
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O v

Figure P6.14

Section 6.2: Filters

6.15 Using a 15-kQ resistance, design an RC high-pass
filter with a breakpoint at 200 kHz.

6.16 Using a 500-2 resistance, design an RC low-pass
filter that would attenuate a 120-Hz sinusoidal voltage
by 20 dB with respect to the DC gain.

6.17 InanRLC circuit, assume w; and w, such that
1(jw1) = 1(jwz) = Imax/+/2 and Aw such that
Aw = wy — w;. In other words, Aw is the width of the
current curve where the current has fallen to
1/+/2 = 0.707 of its maximum value at the resonance
frequency. At these frequencies, the power dissipated
in a resistance becomes one-half of the dissipated
power at the resonance frequency (they are called the
half-power points). In an RLC circuit with a high
quality factor, show that Q = wy/Aw.

6.18 InanRLC circuit with a high quality factor:

a. Show that the impedance at the resonance
frequency becomes a value of Q times the
inductive resistance at the resonance
frequency.

b. Determine the impedance at the resonance
frequency, assuming L = 280 mH, C = 0.1 uF,
R=25Q.

6.19 Compute the frequency at which the phase shift
introduced by the circuit of Example 6.3 is equal
to —10°.

6.20 Compute the frequency at which the output of the
circuit of Example 6.3 is attenuated by 10 percent
(that is, V. = 0.9V5).

6.21 Compute the frequency at which the output of the
circuit of Example 6.7 is attenuated by 10 percent
(that is, V. = 09V5)

6.22 Compute the frequency at which the phase shift
introduced by the circuit of Example 6.7 is equal
to 20°.

6.23 Consider the circuit shown in Figure P6.23.
Determine the resonance frequency and the bandwidth
for the circuit.
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3/4H

Vs 280 —UI6F

Figure P6.23

6.24 Are the filters shown in Figure P6.24 low-pass,
high-pass, bandpass, or bandstop (notch) filters?

o—TT
+ L
.
Vi (jo) CT  R3V%(jo)
o
@
— T ————
+ L C
.
Vi(jo) REVo(jo)
o
(b)

©
Figure P6.24

6.25 Determine if each of the circuits shown in Figure
P6.25 is a low-pass, high-pass, bandpass, or bandstop

(notch) filter.

V,(jo)

(a)
Figure P6.25 (Continued)

ot
2 V(o)

RS 1 2 N
L R2V(jw)
Vi(jw) -
<
©
S 1Lk
Ly
Rs: L+
C== Co= RLEE\_/O(JCO)
Vi(jw)

(d)
Figure P6.25

6.26 For the filter circuit shown in Figure P6.26:

a. Determine if this is a low-pass, high-pass,
bandpass, or bandstop filter.

b. Compute and plot the frequency response

function if
L=11mH C =0.47nF
R1 =2.2kQ R, = 3.8kQ
$ AT ?
Vi(jo) RZ C %(jo)

o
o

Figure P6.26

6.27 In the filter circuit shown in Figure P6.27:

Rs=100Q R, =5kQ
Re=400Q L=1mH
C=05nF

Compute and plot the frequency response function.
What type of filter is this?
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Figure P6.27

6.28 In the filter circuit shown in Figure P6.27:

Rs =100Q2 R, =5k
C=05nF

Compute and plot the frequency response function.
What type of filter is this?

6.29 In the filter circuit shown in Figure P6.29:

Rs =5k C =56nF
R, = 100 k2 L=9uH
Determine:
a. An expression for the voltage frequency response
function
. Vo (jw)
H,(jw) = -
7= Vo

b. The resonant frequency.
c. The half-power frequencies.
d. The bandwidth and Q.

3_ AVg;AV
.
vi(jo) cT L§ RS \i(jo)

Figure P6.29

6.30 In the filter circuit shown in Figure P6.29:

Rs =5k C=05nF
R, = 100 k2 L=1mH
Determine:
a. An expression for the voltage frequency response
function
V(i
Hv(ja)) = 0(!(0)
Vi(jw)
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b. The resonant frequency.
c¢. The half-power frequencies.
d. The bandwidth and Q.

6.31 In the filter circuit shown in Figure P6.31:

Rs =500 © R. =5k
Re = 4kQ L=1mH
C =5pF
Compute and plot the voltage frequency response
function
. Vo (jo)
H(jw) = -
U= Vi)

What type of filter is this?

Figure P6.31

6.32 In the filter circuit shown in Figure P6.32, derive
the equation for the voltage frequency response
function in standard form. Then, if

Rs =500
C =5pF

R. =5k
L=1mH

compute and plot the frequency response function

. Vo(j
() =
C
+ ‘R“S“ ml_
.
vi(jo) RE V(o)

Figure P6.32

6.33 In the filter circuit shown in Figure P6.32, derive
the equation for the voltage frequency response
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function in standard form. Then if

Ry = 500 @ RL. =5k
oy = 12.1278 Mrad/s C =68nF
L=0.1puH

determine the half-power frequencies, bandwidth,
and Q. Plot H (jw).

6.34 In the filter circuit shown in Figure P6.32, derive
the equation for the voltage frequency response
function in standard form. Then if
Ry = 4.4 kQ R. =60k
C =0.8nF L=2uH

w; = 25 Mrad/s

determine the half-power frequencies, bandwidth, and
Q. Plot H (jw).

6.35 In the bandstop (notch) filter shown in Figure
P6.35:

L=04mH R, =100 @
C=1pF R; = R, = 3.8k
Determine:

a. An expression for the voltage frequency response
function in the form

_ Vo) _ |, 14j0(@)
Vi(jo) 1+ jf(0)

H, (jw)

b. The magnitude of the function at high and low
frequencies and at the resonant frequency.

c. The resonant frequency.
d. The half-power frequencies.

+
< )
V(jo) R ZW(j0)

C

ol

=

s
Figure P6.35

6.36 In the filter circuit shown in Figure P6.29:

Rs = 5 kQ
RL = 50 kQ

C=5nF
L=2mH

Determine:

a. An expression for the voltage frequency response
function

Vo (jw)

Hy (jo) = W
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The resonant frequency.
The half-power frequencies.
The bandwidth and Q.

Plot Hy ( jw).

®© 2 0 T

6.37 The function of a loudspeaker crossover network is
to channel frequencies higher than a given crossover
frequency, f., into the high-frequency speaker
(tweeter) and frequencies below f. into the
low-frequency speaker (woofer). Figure P6.37 shows
an approximate equivalent circuit where the amplifier
is represented as a voltage source with zero internal
resistance and each speaker acts as an 8-<2 resistance.
If the crossover frequency is chosen to be 1,200 Hz,
evaluate C and L. Hint: The break frequency would be
a reasonable value to set as the crossover frequency.

10 Vims

Figure P6.37

6.38 What is the frequency response, Vou(w)/Vs(w), for
the circuit of Figure P6.38? Sketch the frequency
response of the circuit (magnitude and phase) if
Rs =R =5,000 2, L =10 uH, and C = 0.1 uF.

R :

AW T 0 o
' 1 +
: a :

() G) L c ag’ w)
: b :
, _ , s
Source E Filter E Load

Figure P6.38

6.39 Many stereo speakers are two-way speaker
systems; that is, they have a woofer for low-frequency
sounds and a tweeter for high-frequency sounds. To
get the proper separation of frequencies going to the
woofer and to the tweeter, crossover circuitry is used.
A crossover circuit is effectively a bandpass, high-pass,
or low-pass filter. The system model is shown in
Figure 6.39.



a.

IfL=2mH, C = 125 uF, and Rs = 4 Q, find the
load impedance as a function of frequency. At what
frequency is maximum power transfer obtained?

Plot the magnitude and phase responses of the
currents through the woofer and tweeter as a
function of frequency.

X2 O
[T ©—~— Twester
Amplifier

@<— Woofer
Speaker
"""""""" [ el i o
Rs Crossover circuitry
MWW

Woofer —— —— Tweeter

Ampli

fier — mmm=e-

Figure P6.39

6.40
the
a.

b.

w )

The same LC values of Problem 6.39 are used in
circuit of Figure P6.40.

Compute the frequency response of this circuit,
Vou(jo)! Vs (jw).

Plot the frequency response of the circuit.

ol

A\

Source Filter

R=R =500Q;L =10 mH; C=0.1uF

Figure P6.40

6.41

It is very common to see interference caused by

power lines, at a frequency of 60 Hz. This problem

out
Fig
aro

lines the design of the notch filter, shown in
ure P6.41, to reject a band of frequencies
und 60 Hz.

Noise: W

6.42
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. Write the impedance function for the filter of

Figure P6.41 (the resistor r_ represents the internal
resistance of a practical inductor).

. For what value of C will the center frequency

of the filter equal 60 Hz if L = 100 mH and
n=5Q7?

. Would the “sharpness,” or selectivity, of the filter

increase or decrease if r_ were to increase?

. Assume that the filter is used to eliminate the 60-Hz

noise from a signal generator with output frequency
of 1 kHz. Evaluate the frequency response
V. /Vin(jw) at both frequencies if:

vg(t) = sin(2r1,000t)V ry =50 Q
vp(t) = 3sin(2760t) R, =300 Q
And if Land C are as in part b.

. Plot the magnitude frequency response ‘\‘,’—IL“(jw)‘d

vs. w on a logarithmic scale and indicate the value
of ‘\\f—; (ja))‘dB at the frequencies 60 Hz and
1,000 Hz on your plot.

Zfilter

The circuit of Figure P6.42 is representative of

an amplifier-speaker connection. The crossover
circuit (filter) is a low-pass filter that is connected
to a woofer. The filter’s topography is known as
a 7 network.

a.
b.

Find the frequency response V,( jo)/Vs( jw).
IfC; =C, =C,Rs =R_ =600, and 1/+/LC
= R/L = 1/RC = 2,000z, plot | Vo (jw)/Vs(jo) |
in dB versus frequency (logarithmic scale) in the
range 100 Hz < f < 10,000 Hz.
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Amplifier i i
i : @4-—Woofer
i | Sede
Rs L
YWW— T b T .
(0 ETQ QT 'R v(t)
E Crossover E
! filter !

Figure P6.42

Section 6.3: Bode Plots
6.43 In the circuit shown in Figure P6.43:

a. Determine the frequency response function

Vou(jo)

H(jo) = V(i)

b. Manually sketch a magnitude and phase Bode plot
of the system, using a five-cycle semilog paper.
Show the factored polynomial and all the steps in
constructing the plot. Clearly show the break
frequencies on the w axis. Hint: To factor the
denominator polynomial, you may find it helpful to
use the MATLAB™ command “roots.”

c. Use MATLAB™ and the Bode command to
generate the same plot, and verify that your answer
is indeed correct. Assume R; = R, = 1 k€2,
Ci=1uF,C,=1mF,L=1H.

Figure P6.43

6.44 Repeat Problem 6.43 for the frequency response
function

lout( jw)

H(jw):V- (jw)

Use the same component values as in Problem 6.43.

Frequency Response and System Concepts

6.45 Repeat Problem 6.43 for the circuit of Figure P6.45
and the frequency response function

. Vou j
H o) = o2

LetR; =R, =1kQ,C=1uF, L=1H.

Ry
MW

in () c=

Figure P6.45

6.46 Repeat Problem 6.43 for the circuit of Figure P6.45
and the frequency response function of

IOUI(W)

HUe) =3 o)

Use the same values as in Problem 6.45.
6.47 Repeat Problem 6.43 for the circuit of Figure P6.47
and the frequency response function
. Vou(jw)
Iin(j“))
Assume that R; = R, = 1k,
C1=1/,LF,C2=1mF.

H (jw)

iin Rl C1:: Cz/‘\voul

Figure P6.47
6.48 Repeat Problem 6.43 for the circuit of Figure P6.47
and the frequency response function

lout ( jo)
lin ( jow)

H (jw) =

Use the same component values as in Problem 6.47.
6.49 With reference to Figure P6.4:
a. Manually sketch a magnitude and phase Bode plot

of the system using semilog paper. Show the
factored polynomial and all the steps in



constructing the plot. Clearly show the break
frequencies on the w axis.

b. Use MATLAB™ and the Bode command to
generate the same plot, and verify that your answer
is indeed correct.

6.50 Repeat Problem 6.49 for the circuit of Figure P6.4,
considering the load voltage v, as a voltage across the
capacitor.

6.51 Repeat Problem 6.49 for the circuit of Figure P6.5.

6.52 Assume in a certain frequency range that the ratio
of output amplitude to input amplitude is proportional
to 1/w3. What is the slope of the Bode plot in this
frequency range, expressed in decibels per decade?

6.53 Assume that the output amplitude of a circuit
depends on frequency according to

Aw + B
+/C + Dw?

Find:
a. The break frequency.

b. The slope of the Bode plot (in decibels per decade)
above the break frequency.

c. The slope of the Bode plot below the break
frequency.

d. The high-frequency limit of V.

6.54 Determine an expression for the circuit of Figure
P6.54(a) for the equivalent impedance in standard
form. Choose the Bode plot from Figure P6.54(b) that
best describes the behavior of the impedance as a
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function of frequency, and describe (a simple one-line

statement with no analysis is sufficient) how you

would obtain the resonant and cutoff frequencies and
the magnitude of the impedance where it is constant

over some frequency range. Label the Bode plot to

indicate which feature you are discussing.

[Z eqlab [Z eqlab

Re

\m

(b)
Figure P6.54






CHAWPTENR

AC POWER

he aim of this chapter is to introduce the student to simple AC power calcu-

lations and to the generation and distribution of electric power. The chapter

builds on the material developed in Chapter 4—namely, phasors and complex

impedance—and paves the way for the material on electric machines in
Chapter 14.

The chapter starts with the definition of AC average and complex power and
illustrates the computation of the power absorbed by a complex load; special attention
is paid to the calculation of the power factor, and to power factor correction. The next
subject is a brief discussion of ideal transformers and of maximum power transfer.
This is followed by an introduction to three-phase power. The chapter ends with a
discussion of electric power generation and distribution.
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i®

0Q

AC circuit
v(t) =V cos(wt — Oy)
i(t) =1 cos(owt —6))

| =1ei®

AC circuit
in phasor form

Figure 7.1 Circuit for
illustration of AC power

Chapter 7 AC Power

:) Learning Objectives

1. Understand the meaning of instantaneous and average power, master AC power
notation, and compute average power for AC circuits. Compute the power factor of
a complex load. Section 7.1.

2. Learn complex power notation; compute apparent, real, and reactive power for com-
plex loads. Draw the power triangle, and compute the capacitor size required to
perform power factor correction on a load. Section 7.2.

3. Analyze the ideal transformer; compute primary and secondary currents and voltages
andturnsratios. Calculate reflected sources and impedances across ideal transformers.
Understand maximum power transfer. Section 7.3.

4.  Learn three-phase AC power notation; compute load currents and voltages for bal-
anced wye and delta loads. Section 7.4.

5. Understand the basic principles of residential electrical wiring and of electrical safety.
Sections 7.5, 7.6.

7.1 POWER IN AC CIRCUITS

The objective of this section is to introduce AC power. As already mentioned in
Chapter 4, 50- or 60-Hz AC electric power constitutes the most common form of
electric power distribution; in this section, the phasor notation developed in Chapter 4
will be employed to analyze the power absorbed by both resistive and complex loads.

Instantaneous and Average Power

From Chapter 4, you already know that when a linear electric circuit is excited by a
sinusoidal source, all voltages and currents in the circuit are also sinusoids of the same
frequency as that of the excitation source. Figure 7.1 depicts the general form of a
linear AC circuit. The most general expressions for the voltage and current delivered
to an arbitrary load are as follows:

v(t) =V cos(wt — 6y)

i(t) =1 cos(wt — 6) (7.1)

where V and | are the peak amplitudes of the sinusoidal voltage and current,
respectively, and 6y and 6, are their phase angles. Two such waveforms are plot-
ted in Figure 7.2, with unit amplitude and with phase angles 6y = 7 /6 and 6, = 7 /3.
The phase shift between source and load is therefore & = 6, — 6,. It will be easier,
for the purpose of this section, to assume that 6, = 0, without any loss of generality,
since all phase angles will be referenced to the source voltage’s phase. In Section 7.2,
where complex power is introduced, you will see that this assumption is not neces-
sary since phasor notation is used. In this section, some of the trigonometry-based
derivations are simpler if the source voltage reference phase is assumed to be zero.

Since the instantaneous power dissipated by a circuit element is given by the
product of the instantaneous voltage and current, it is possible to obtain a general
expression for the power dissipated by an AC circuit element:

pt) = v(t)i(t) = VI cos(wt) cos(wt — ) (7.2)
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Voltage waveforms for unity amplitude,
0° voltage phase angle and 60° current phase angle
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sl A\ \ |/
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05501 002 008 002 005 00\6/007 008 009 0.1

Figure 7.2 Current and voltage waveforms for illustration of AC power

Equation 7.2 can be further simplified with the aid of trigonometric identities to yield
p(t) = % cos(0) + % cos(2wt — 0) (7.3)

where 0 is the difference in phase between voltage and current. Equation 7.3 illustrates
how the instantaneous power dissipated by an AC circuit element is equal to the sum
of an average component %VI cos() and a sinusoidal component %VI cos(2wt — 0),
oscillating at a frequency double that of the original source frequency.

The instantaneous and average power are plotted in Figure 7.3 for the signals
of Figure 7.2. The average power corresponding to the voltage and current signals of
equation 7.1 can be obtained by integrating the instantaneous power over one cycle
of the sinusoidal signal. Let T = 27 /w represent one cycle of the sinusoidal signals.
Then the average power P, is given by the integral of the instantaneous power p(t)

I nstantaneous and average power

1.0
— Instantaneous power
0.8 —A\’/\erage power
0.6
0.4
= 0.2
0
-0.2
-04
0 0.02 004 006 0.08 0.1

Time(s)

Figure 7.3 Instantaneous and average power
dissipation corresponding to the signals plotted in
Figure 7.2
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over one cycle

1 T
Pav = ? /0 p(t) dt (74)
T

1

= /VI cos(@)dt+1/TV|cos(2t 0) dt
7)), 2 T ), 2 .

Vi
Pay=—-C0s(0)  Average power (7.5)

since the second integral is equal to zero and cos(#) is a constant.

As shown in Figure 7.1, the same analysis carried out in equations 7.1 to 7.3
can also be repeated using phasor analysis. In phasor notation, the current and voltage
of equation 7.1 are given by

V(jw) = Vel (7.6)
I(jo) = le7’ (7.7)

Note further that the impedance of the circuit element shown in Figure 7.1 is defined
by the phasor voltage and current of equations 7.6 and 7.7 to be

\VA )
Z= TeW) =[Z]el (7.8)

The expression for the average power obtained in equation 7.4 can therefore also be
represented using phasor notation, as follows:

2

V 1
P, = 12| cosf = 3 12)1Z| cos 6 Average power (7.9)

AC Power Notation

It has already been noted that AC power systems operate at a fixed frequency; in
North America, this frequency is 60 cycles per second, or hertz (Hz), corresponding
to a radian frequency

w = 27 - 60 = 377 rad/s AC power frequency (7.10)

In Europe and most other parts of the world, AC power is generated at a frequency
of 50 Hz (this is the reason why some appliances will not operate under one of the
two systems).

Therefore, for the remainder of this chapter the radian frequency  is fixed at
377 rad/s, unless otherwise noted.
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With knowledge of the radian frequency of all voltages and currents, it will always be
possible to compute the exact magnitude and phase of any impedance in a
circuit.

A second point concerning notation is related to the factor % in equation 7.9. It
is customary in AC power analysis to employ the rms value of the AC voltages and
currents in the circuit (see Section 4.2). Use of the rms value eliminates the factor
% in power expressions and leads to considerable simplification. Thus, the following
expressions will be used in this chapter:

V -
Vrms = E = V (7.11)
| -
lms = —= =1 7.12
V2 (7.12)
1 V2 2
av = = —— C0SH = ——Cosf
212| 121 (7.13)

1 2 12 77
:EI |Z|cosO = 17|Z|cos® = VI cosb

Figure 7.4 illustrates the impedance triangle, which provides a convenient
graphical interpretation of impedance as a vector in the complex plane. From the
figure, it is simple to verify that

R =1Z|cos6 (7.14)
X = |Z|sin6 (7.15)

Finally, the amplitudes of phasor voltages and currents will be denoted through-
out this chapter by means of the rms amplitude. We therefore introduce a slight mod-
ification in the phasor notation of Chapter 4 by defining the following rms phasor
quantities:

V = Vel = Vel =V 6, (7.16)
and
I=lne =Tl =1/0 (7.17)

In other words,

Throughout the remainder of this chapter, the symbols~\7 and~l~ will denote the
rms value of a voltage or a current, and the symbols V and | will denote rms
phasor voltages and currents.

Also recall the use of the symbol £ to represent the complex exponential. Thus,

the sinusoidal waveform corresponding to the phasor current T = 126, corresponds
to the time-domain waveform
i(t) = +/2I cos(wt + 6)) (7.18)

and the sinusoidal form of the phasor voltage V = V 26y is
v(t) = V2V cos(wt + 6y) (7.19)

Py

iX

i

X
R

Figure 7.4 Impedance
triangle

<LOl
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|_01> EXAMPLE 7.1 Computing Average and Instantaneous AC Power

Problem

Compute the average and instantaneous power dissipated by the load of Figure 7.5.

V(t) = 14.14 sin (wt) )
(w =377 rad/s) \=

it) L

Figure 7.5

Solution
Known Quantities: Source voltage and frequency; load resistance and inductance values.
Find: P,, and p(t) for the RL load.

Schematics, Diagrams, Circuits, and Given Data: v(t) = 14.14sin(377t) V; R = 4 Q;
L =8 mH.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: First, we define the phasors and impedances at the frequency of interest in the
problem, w = 377 rad/s:

V =10/ (—%) Z =R+ jol =44 j3="5/0.644

vV 104(—=n/2)
Z 5/0.644
The average power can be computed from the phasor quantities:

Pa = VIcos(f) = 10 x 2 x c0s(0.644) = 16 W
The instantaneous power is given by the expression

p(t) = v(t) x i(t) = V2 x 10sin(377t) x /2 x 2¢0s(377t — 2.215) W

The instantaneous voltage and current waveforms and the instantaneous and average power
are plotted in Figure 7.6.

= 2/(—2.215)

Comments: Please pay attention to the use of rms values in this example: It is very important
to remember that we have defined phasors to have rms amplitude in the power calculation.
This is a standard procedure in electrical engineering practice.

Note that the instantaneous power can be negative for brief periods of time, even though
the average power is positive.

CHECK YOUR UNDERSTANDING

Show that the equalities in equation 7.9 hold when phasor notation is used.
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Voltage and current waveforms for Example 7.1
20
P ol N\ /T\
! Q)
= er=Al _A===N\
< 0 \~-_../* \\--7
| -10 /
> \//
20
0 0005 001 0015 002 0025 003 0035
ts
Instantaneous and average power for Example 7.1
40
w p@//\\ //\ /\\ //\\
20 \
> | \ J \ \ J \
o J P \ ] I\ ] 1\
AVERYERLWY, / |\
N/ \/ \VJ
0 0005 001 0015 002 0025 003 0035
ts
Figure 7.6
EXAMPLE 7.2 Computing Average AC Power <LOl
Problem
Compute the average power dissipated by the load of Figure 7.7. 7
MW _ +
Rs
Solution N L _
_ _ _ )2 S cxw
Known Quantities: Source voltage; internal resistance and frequency; load resistance and R]
inductance values.
Find: P, for the RC load. =377 rads
Figure 7.7

Schematics, Diagrams, Circuits, and Given Data: Vs = 110/0; Rs = 2 Q; R, = 16 ;
C =100 uF.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: First, we compute the load impedance at the frequency of interest in the problem,
w = 377 rad/s:

R B 16
T 1+4+jwCR. ~ 1+40.6032

1
7L =R|l— =13.74£(—0.543) Q
joC
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Next, we compute the load voltage, using the voltage divider rule:

. 2L -~ 13.7/(—0.543)

V= = 11020 = 97.6/(—0.067) V
T Re+2Z ° 2+13.7/(—0543) ( )

Knowing the load voltage, we can compute the average power according to

IV |2 c0s(8) = 97.6°
1Z,] 137

Pw = cos(—0.543) = 595 W
or, alternatively, we can compute the load current and calculate the average power
according to
-V
IL=—--=7.1/0476 A
Z

Pa = [1L12]Z0| cos(8) = 7.12 x 13.7 x cos(—0.543) = 595 W

Comments: Please observe that it is very important to determine load current and/or voltage
before proceeding to the computation of power; the internal source resistance in this problem
causes the source and load voltages to be different.

it

o

(‘:D 155.6 cos (3771)

O
O

1,000 uF

4Q

Figure 7.8

CHECK YOUR UNDERSTANDING

Consider the circuit shown in Figure 7.8. Find the load impedance of the circuit, and compute
the average power dissipated by the load.

MPEOTT = "°d ‘B ceer 887 = Z :SIBMSUY

o

Its complex form

Figure 7.9

EXAMPLE 7.3 Computing Average AC Power

Problem

Compute the average power dissipated by the load of Figure 7.9.

Solution

Known Quantities: Source voltage; internal resistance and frequency; load resistance; capac-
itance and inductance values.

Find: P,, for the complex load.

Schematics, Diagrams, Circuits, and Given Data: \73 =11040V;R=109Q; L =0.05H;
C =470 uF.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: First, we compute the load impedance at the frequency of interest in the problem,
w = 377 rad/s:
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R+ jolL)/jwC
R+ joL + 1/joC
R+ jwL
~ 11— w?LC +jwCR

=7.27/(—-1.41) @

1
2 =R+job)|— =
L (+Jw)lljwC

=1.16 —7.18

Note that the equivalent load impedance consists of a capacitive load at this frequency,
as shown in Figure 7.10. Knowing that the load voltage is equal to the source voltage, we can
compute the average power according to

[V |2 1102

Py = c0s(f) = —— cos(—1.41) = 266 W
v =7 ) 797 ( )

<1

Figure 7.10
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116 Q

-j7.18Q

CHECK YOUR UNDERSTANDING

Compute the power dissipated by the internal source resistance in Example 7.2.

Use the expression Py, = 12|Z| cos(#) to compute the average power dissipated by the load of
Example 7.2.

2’/ 91dwiexg 89S M 9% TOT :Siemsuy

Power Factor

The phase angle of the load impedance plays a very important role in the absorption
of power by a load impedance. As illustrated in equation 7.13 and in the preceding
examples, the average power dissipated by an AC load is dependent on the cosine of
the angle of the impedance. To recognize the importance of this factor in AC power
computations, the term cos(9) is referred to as the power factor (pf). Note that the
power factor is equal to 0 for a purely inductive or capacitive load and equal to 1 for
a purely resistive load; in every other case,

O<pf<l1 (7.20)
Two equivalent expressions for the power factor are given in the following:

av

P
pf = cos(9) = N Power factor (7.21)

where V and T are the rms values of the load voltage and current, respectively.

7.2 COMPLEX POWER

The expression for the instantaneous power given in equation 7.3 may be expanded
to provide further insight into AC power. Using trigonometric identities, we obtain
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the following expressions:
V2
pt) = E[cos@ + €0s 6 cos(2wt) + sin O sin(2wt)]
- i . (7.22)
= 1“]Z|[c0s O + cos O cos(2wt) + sin 6 sin(2wt)]
=121Z| cosO (1 + cos 2wt) + 1%|Z|sin 6 sin(2wt)
Recalling the geometric interpretation of the impedance Z of Figure 7.4, you may
recognize that

|Z]cos® =R

and (7.23)
|Z|sing = X

are the resistive and reactive components of the load impedance, respectively. On the
basis of this fact, it becomes possible to write the instantaneous power as

p(t) = I?R(1 4 cos 2wt) + 12X sin(2wt)

_ _ ~ 7.24
= 1%R 4+ 1?Rcos(2wt) + 12X sin(2wt) (7.24)

The physical interpretation of this expression for the instantaneous power should be
intuitively appealing at this point. As equation 7.24 suggests, the instantaneous power
dissipated by a complex load consists of the following three components:

1. Anaverage component, which is constant; this is called the average
power and is denoted by the symbol P,,:
P, = I°R (7.25)
where R = Re Z.

2. Atime-varying (sinusoidal) component with zero average value that is
contributed by the power fluctuations in the resistive component of the
load and is denoted by pr(t):

pr(t) = 1?R cos 2wt

(7.26)
= P,, €0s 2wt

3. Atime-varying (sinusoidal) component with zero average value, due to
the power fluctuation in the reactive component of the load and denoted
by px (1):
px (t) = 12X sin 2wt
= Qsin 2wt
where X = Im Z and Q is called the reactive power. Note that since

reactive elements can only store energy and not dissipate it, there is no
net average power absorbed by X.

(7.27)
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Since P,, corresponds to the power absorbed by the load resistance, it is also called
the real power, measured in units of watts (W). On the other hand, Q takes the name
of reactive power, since it is associated with the load reactance. Table 7.1 shows the
general methods of calculating P and Q.

The units of Q are volt amperes reactive, or VAR. Note that Q represents an
exchange of energy between the source and the reactive part of the load; thus, no net
power is gained or lost in the process, since the average reactive power is zero. In
general, it is desirable to minimize the reactive power in a load. Example 7.6 will
explain the reason for this statement.

The computation of AC power is greatly simplified by defining a fictitious but
very useful quantity called the complex power S

S=VI*  Complex power (7.28)

where the asterisk denotes the complex conjugate (see Appendix A online). You may
easily verify that this definition leads to the convenient expression

S =VIicosd + jVIsing =1R+ji*>X =1%Z

or (7.29)
S = Pav +JQ

The complex power S may be interpreted graphically as a vector in the complex plane,
as shown in Figure 7.11.

The magnitude of S, denoted by |S|, is measured in units of volt amperes (VA)
and is called the apparent power, because this is the quantity one would compute
by measuring the rms load voltage and currents without regard for the phase angle
of the load. Note that the right triangle of Figure 7.11 is similar to the right triangle
of Figure 7.4, since 0 is the load impedance angle. The complex power may also
be expressed by the product of the square of the rms current through the load and the
complex load impedance:

S=1%2

or (7.30)
IPR+jIX =122

or, equivalently, by the ratio of the square of the rms voltage across the load to the
complex conjugate of the load impedance:

\72

S=—
Z*

(7.31)

The power triangle and complex power greatly simplify load power calcula-
tions, as illustrated in the following examples.
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Table 7.1 Real
and reactive power

Real Reactive
power Pay  power Q
Vicos(@)  Visin()
’R 12X

< LO2

S
9 Q
Pay
IS|= VPaZ+QZ=V T
Pa\,=\7l~cose

Q=Visino

Figure 7.11 The complex
power triangle

N
©
-
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COMPLEX POWER CALCULATION FOR ASINGLE LOAD

1. Compute the load voltage and current in rms phasor form, using the AC
circuit analysis methods presented in Chapter 4 and converting peak
amplitude to rms values.

<

ZLby

V=
=126

-

Compute the complex power S = V1* and setRe S = P,,, ImS = Q.
Draw the power triangle, as shown in Figure 7.11.

If Q is negative, the load is capacitive; if positive, the load is reactive.
Compute the apparent power |S| in volt amperes.

CINEERICO S

L02>

[z ]

Figure 7.12

EXAMPLE 7.4 Complex Power Calculations

Problem

Use the definition of complex power to calculate real and reactive power for the load of
Figure 7.12.

Solution
Known Quantities: Source, load voltage, and current.
Find: S = P,, + jQ for the complex load.

Schematics, Diagrams, Circuits, and Given Data: v(t) = 100 cos(wt + 0.262) V,
i(t) = 2cos(wt — 0.262) A; w = 377 rad/s.

Assumptions: Use rms values for all phasor quantities in the problem.
Analysis: First, we convert the voltage and current to phasor quantities:

- 100 = 2
V =—20262V | = —/(-0.262) A

72 7z

Next, we compute real and reactive power, using the definitions of equation 7.13:
-~ 200
Pa = |V|[l| cos(®) = - c0s(0.524) = 86.6 W

- 200
Q = VIlijsin(9) = =~ sin(0.524) = 50 VAR

Now we apply the definition of complex power (equation 7.28) to repeat the same calculation:

~ 100 2
S=VI"=—/0262 x —~/ —(—0.262) = 100£0.524

V2 V2
=86.6+j50 W
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Therefore
Pa =86.6 W Q =50 VAR

Comments: Note how the definition of complex power yields both quantities at one time.

CHECK YOUR UNDERSTANDING

Use complex power notation to compute the real and reactive power for the load of Example 7.2.

VA 86— = O ‘M £6G = "°d :Slamsuy

EXAMPLE 7.5 Real and Reactive Power Calculations <|_02
Problem

Use the definition of complex power to calculate real and reactive power for the load of
Figure 7.13.

Solution

Known Quantities: Source voltage and resistance; load impedance.

Find: S = P,, + jQ for the complex load.

Schematics, Diagrams, Circuits, and Given Data: \75 =110/0V;Rs =2 Q; R, =5Q;
C = 2,000 uF.

Figure 7.13

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: Define the load impedance
1 .
Z =R+ —= =5-j1.326 = 5.1734(—0.259) ©
joC

Next, compute the load voltage and current:

y Z - 5-j1.32
V|_ = s = A
Rs + ZL 7-j1.326

x 110 = 79.66/(—0.072) V

VL 79.66/(—0.072)

— =" " —1544/0.187 A
Z,  5.173/£(—0.259)

I =

Finally, we compute the complex power, as defined in equation 7.28:

S = V.07 =79.9/(—0.072) x 15.44/(—0.187) = 1,233/(—0.259)
=1,192 - j316 W
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Therefore

Pa =1,192 W Q = —316 VAR

Comments: |s the reactive power capacitive or inductive?

CHECK YOUR UNDERSTANDING

Use complex power notation to compute the real and reactive power for the load of
Figure 7.8.

VAN 6E°T = O ‘M T'Z = "°d :sismsuy

Although the reactive power does not contribute to any average power dissi-
pation in the load, it may have an adverse effect on power consumption, because it
increases the overall rms current flowing in the circuit. Recall from Example 7.2 that
the presence of any source resistance (typically, the resistance of the line wires in AC
power circuits) will cause a loss of power; the power loss due to this line resistance
is unrecoverable and constitutes a net loss for the electric company, since the user
never receives this power. Example 7.6 illustrates quantitatively the effect of such
line losses in an AC circuit.

Figure 7.14

EXAMPLE 7.6 Real Power Transfer for Complex Loads

Problem

Use the definition of complex power to calculate the real and reactive power for the load of
Figure 7.14. Repeat the calculation when the inductor is removed from the load, and compare
the real power transfer between source and load for the two cases.

Solution
Known Quantities: Source voltage and resistance; load impedance.
Find:

1. Sa = Paa + jQ, for the complex load.
2. Sp = Pa + jQy for the real load.
3. Compare P, /Ps for the two cases.

Schematics, Diagrams, Circuits, and Given Data: \75 =110Z0V;Rs =4 Q; R, = 10 ;
XL =j6 Q.

Assumptions: Use rms values for all phasor quantities in the problem.
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Analysis:
1. The inductor is part of the load. Define the load impedance.

10 x j6

=5.145/1.03 2
10 +j6

Z =R |ljoL =

Next, compute the load voltage and current:

g _ Z o _ 5145/109
" T Ret+z. °T 4+5145/1.03

VL 70.920.444
Z,  5.145/1.03

x 110 = 70.9£0.444 V

= 13.84(-0.586) A

I, =

Finally, we compute the complex power, as defined in equation 7.28:

Sa = V. I} = 70.920.444 x 13.8/0.586 = 978./1.03
=503 + j839 W

Therefore

Pava = 503 W Qa = +839 VAR
2. The inductor is removed from the load (Figure 7.15). Define the load impedance:

Z =R =10

Next, compute the load voltage and current:

3 Z - 10
V=" V= x 110 = 78.6/0 V
Rs + 7, 4110
-V, 78640
o= vt _ —7.86/0A
A 10

Finally, we compute the complex power, as defined in equation 7.28:
Sy =V IF =78.6/0 x 7.86/0 = 6170 = 617 W
Therefore
Pab = 617 W Qo =0VAR

3. Compute the percent power transfer in each case. To compute the power transfer we must
first compute the power delivered by the source in each case, Sg = Vsl§. For Case 1:

Y/ V. 110
o= o = "5 _ = 13.8/(—0.586) A
Ztotal RS + Z|_ 4 + 5.145/1.03

Ssa = Vsl = 110 x 13.8/ — (—0.586) = 1,264 + j838 VA = P, + jQsa

and the percent real power transfer is:

P, 503
100 x — = = 39.8%
* Pe,  1.264 0
For Case 2:
Vs \Y/ 110

= =——=786£0A
Ziow  Rs+R. 4+10

Ssp = Vs = 110 x 7.86 = 864 +jOW = P, + jQsp

Is =

Figure 7.15

293
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and the percent real power transfer is:

100 x Py = o7 =71.4%
Ps, 864

Comments: You can see that if it were possible to eliminate the reactive part of the impedance,
the percentage of real power transferred from the source to the load would be significantly
increased! A procedure that accomplishes this goal, called power factor correction, is
discussed next.

L02>

CHECK YOUR UNDERSTANDING

Compute the change in percent of power transfer for the case where the inductance of the load
is one-half of the original value.

jusasad T°/T :lemsuy

Power Factor, Revisited

The power factor, defined earlier as the cosine of the angle of the load impedance,
plays a very important role in AC power. A power factor close to unity signifies an
efficient transfer of energy from the AC source to the load, while a small power factor
corresponds to inefficient use of energy, as illustrated in Example 7.6. It should be
apparent that if a load requires a fixed amount of real power P,,, the source will
be providing the smallest amount of current when the power factor is the greatest,
that is, when cos 6 = 1. If the power factor is less than unity, some additional current
will be drawn from the source, lowering the efficiency of power transfer from the
source to the load. However, it will be shown shortly that it is possible to correct
the power factor of a load by adding an appropriate reactive component to the load
itself.

Since the reactive power Q is related to the reactive part of the load, its sign
depends on whether the load reactance is inductive or capacitive. This leads to the
following important statement:

If the load has an inductive reactance, then 6 is positive and the current lags (or
follows) the voltage. Thus, when 6 and Q are positive, the corresponding power
factor is termed lagging. Conversely, a capacitive load will have a negative Q
and hence a negative 6. This corresponds to a leading power factor, meaning
that the load current leads the load voltage.

Table 7.2 illustrates the concept and summarizes all the important points so far. In the
table, the phasor voltage V has a zero phase angle, and the current phasor is referenced
to the phase of V.
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Table 7.2 Important facts related to complex power
Resistive load Capacitive load Inductive load
Ohm'slaw \7L = ZLTL \7|_ = ZLTL \7L = ZLTL
Complex Z =R ZL =R +jX Z =R +jX
impedance X, <0 X, >0
Phase angle 6=0 6<0 6>0
Im Im _ Im
|
Complex 6=0 - -
plane IV 16/ V \
sketch Re Re N Re
T
Thecurrentisinphase | Thecurrent “leads’ | The current “lags’
Explanation with the voltage. the voltage. the voltage.
Power factor Unity Leading, <1 Lagging, <1
Reactive power | 0 Negative Positive

Circuits 295

< LO2

The following examples illustrate the computation of complex power for a

simple circuit.

EXAMPLE 7.7 Complex Power and Power Triangle

Problem

< LO2

Find the reactive and real power for the load of Figure 7.16. Draw the associated power triangle.

Figure 7.16

Complex load

Solution

Known Quantities: Source voltage; load impedance.

Find: S = P,, + jQ for the complex load.
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Qc
Note: S=Pr+jQc+jQL

Figure 7.17

Chapter 7 AC Power

Schematics, Diagrams, Circuits, and Given Data: Vs = 60/0 V; R = 3 Q; XL =]9 Q;
Xec = —j5 Q.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: First, we compute the load current:

Vi 6020 6040
Z. ~ 3+4j9—j5 5£0.9273

=12/(-0.9273) A

I =

Next, we compute the complex power, as defined in equation 7.28:

S = V.IF =600 x 12/0.9273 = 720/0.9273 = 432 + j576 VA
Therefore

Py =432 W Q =576 VAR

If we observe that the total reactive power must be the sum of the reactive powers in each
of the elements, we can write Q = Q¢ + Q. and compute each of the two quantities as
follows:

Qc = |TL|? x Xc = (144)(=5) = —720 VAR

QL = |TL]% x XL = (144)(9) = 1,296 VAR
and

Q =QL+ Qc =576 VAR

Comments: The power triangle corresponding to this circuit is drawn in Figure 7.17. The
vector diagram shows how the complex power S results from the vector addition of the three
components P, Qc, and Q..

CHECK YOUR UNDERSTANDING

Compute the power factor for the load of Example 7.7 with and without the inductor in the
circuit.

(1 Inoynm) Buipes) ‘GyTG 0 = 4d (un2110 ut 7 yum) Buibbey ‘90 = yd lemsuy

The distinction between leading and lagging power factors made in Table 7.2
is important, because it corresponds to opposite signs of the reactive power: Q is
positive if the load is inductive (¢ > 0) and the power factor is lagging; Q is negative
if the load is capacitive and the power factor is leading (¢ < 0). Itis therefore possible
to improve the power factor of a load according to a procedure called power factor
correction, that is, by placing a suitable reactance in parallel with the load so that the
reactive power component generated by the additional reactance is of opposite sign to
the original load reactive power. Most often the need is to improve the power factor of
an inductive load, because many common industrial loads consist of electric motors,
which are predominantly inductive loads. This improvement may be accomplished
by placing a capacitance in parallel with the load. Example 7.8 illustrates a typical
power factor correction for an industrial load.
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COMPLEX POWER CALCULATION FOR POWER FACTOR <|_02
CORRECTION

1. Compute the load voltage and current in rms phasor form, using the AC
circuit analysis methods presented in Chapter 4 and converting peak
amplitude to rms values.

Compute the complex power S = Vi* and setRe S = P,,, ImS = Q.
Draw the power triangle, for example, as shown in Figure 7.17.

Compute the power factor of the load pf = cos(9).

If the reactive power of the original load is positive (inductive load), then
the power factor can be brought to unity by connecting a parallel capacitor
across the load, such that Qc = —1/wC = —Q, where Q is the reactance
of the inductive load.

ok 0D

EXAMPLE 7.8 Power Factor Correction <|_02

Problem

Calculate the complex power for the circuit of Figure 7.18, and correct the power factor to T
S

unity by connecting a parallel reactance to the load. — .
R
Solution (:)Vs Vi
X
Known Quantities: Source voltage; load impedance.

Find: Figure 7.18
1. S = P, +jQ for the complex load.
2. Value of parallel reactance required for power factor correction resulting in pf = 1.

Schematics, Diagrams, Circuits, and Given Data: \75 =117/0V;R. =50 Q;
jX_ =j86.7 Q.

Assumptions: Use rms values for all phasor quantities in the problem.
Analysis:

1. First, we compute the load impedance:
Z, =R+ jX. =50+j86.7 = 100£1.047

Next, we compute the load current

YA 11720 11720
L= — = - = =1.17/(-1.047) A
YT Z T 50+86.6 100/1.047 ( )

and the complex power, as defined in equation 7.28:
S = VI = 11740 x 1.17/1.047 = 137/1.047 = 68.4 + j118 5 W
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Therefore
Py = 68.4 W Q =118.5 VAR

Im The power triangle corresponding to this circuit is drawn in Figure 7.19. The vector
diagram shows how the complex power S results from the vector addition of the two

Y components P and Q.. To eliminate the reactive power due to the inductance, we will
éa\ need to add an equal and opposite reactive power component —Q,, as described below.
/ —
%) Q=119VAR 2. To compute the reactance needed for the power factor correction, we observe that we need
60°

to contribute a negative reactive power equal to —118.5 VAR. This requires a negative
P=634W Re reactance and therefore a capacitor with Qc = —118.5 VAR. The reactance of such a
capacitor is given by

Figure 7.19
V|2 117)2
Xe = VL :_( ) 150
Qc 118.5
and since
B 1
- a)XC
we have
1 1
C=——=————=231uF

wXe | 377(=115)

Comments: The power factor correction is illustrated in Figure 7.20. You can see that it
is possible to eliminate the reactive part of the impedance, thus significantly increasing the
percentage of real power transferred from the source to the load. Power factor correction is a
very common procedure in electric power systems.

#’ Im
=+
50 Q
” <:> " ‘T QL=119VAR
j86.7Q 5=
- 68.4VA
P= Re
Parallel 68.4 W
capacitor _
for power factor Qc=-119VAR
correction

Figure 7.20 Power factor correction

CHECK YOUR UNDERSTANDING

Compute the magnitude of the current drawn by the source after the power factor correction in
Example 7.8.

Y ¥8G°0 -Jamsuy
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EXAMPLE 7.9 Can a Series Capacitor Be Used for Power Factor
Correction?

Problem
The circuit of Figure 7.21 proposes the use of a series capacitor to perform power factor

correction. Show why this is not a feasible alternative to the parallel capacitor approach demon-
strated in Example 7.8.

Solution
Known Quantities: Source voltage; load impedance.
Find: Load (source) current.

Schematics, Diagrams, Circuits, and Given Data: \75 =117/0V; R, =50 Q;
XL =j86.7 Q; jXc = —]86.7 Q.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: To determine the feasibility of the approach, we compute the load current and
voltage, to observe any differences between the circuit of Figure 7.21 and that of Figure 7.20.
First, we compute the load impedance:

Z =R+ jXL —jXc =50+ j86.7 — j86.7 =50 Q
Next, we compute the load (source) current:

< - V. 11770

=15 = 7= 50 =234A

Comments: Note that a twofold increase in the series current results from the addition of the
series capacitor. This would result in a doubling of the power required by the generator, with
respect to the solution found in Example 7.8. Further, in practice, the parallel connection is
much easier to accomplish, since a parallel element can be added externally, without the need
for breaking the circuit.

< LO2

X

I's iXc
_|
Vs
Figure 7.21

CHECK YOUR UNDERSTANDING

Determine the power factor of the load for each of the following two cases, and whether it is
leading or lagging.

a. v(t) = 540cos(wt + 15°) V, i(t) = 2cos(wt + 47°) A
b. v(t) = 155cos(wt — 15°) V, i(t) = 2cos(wt — 22°) A

Buibbe| ‘Gz66°0 'q Bulpes| ‘8¥8°0 "B :SIaMsuy

The measurementand correction of the power factor for the load are an extremely
important aspect of any engineering application in industry that requires the use of
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substantial quantities of electric power. In particular, industrial plants, construction
sites, heavy machinery, and other heavy users of electric power must be aware of the
power factor that their loads present to the electric utility company. As was already
observed, a low power factor results in greater current draw from the electric utility
and greater line losses. Thus, computations related to the power factor of complex
loads are of great utility to any practicing engineer. To provide you with deeper insight
into calculations related to power factor, a few more advanced examples are given in
the remainder of the section.

O_I
—~

Vs

V|
A

100
pf =

kw
0.7

Figure 7.22

EXAMPLE 7.10 Power Factor Correction

Problem

A capacitor is used to correct the power factor of the load of Figure 7.22. Determine the reactive
power when the capacitor is not in the circuit, and compute the required value of capacitance
for perfect pf correction.

Solution
Known Quantities: Source voltage; load power and power factor.
Find:

1. Q when the capacitor is not in the circuit.
2. Value of capacitor required for power factor correction resulting in pf = 1.

Schematics, Diagrams, Circuits, and Given Data: \75 = 480/0; P = 10° W,
pf = 0.7 lagging.

Assumptions: Use rms values for all phasor quantities in the problem.
Analysis:

1. With reference to the power triangle of Figure 7.11, we can compute the reactive power
of the load from knowledge of the real power and of the power factor, as shown below:

[ P 10°
= =—=£=1.429x105VA
cos(@)  pf 0.7

IS]

Since the power factor is lagging, we know that the reactive power is positive (see
Table 7.2), and we can calculate Q as shown below:

Q = |S]sin(9) 6 = arccos(pf) = 0.795
Q = 1.429 x 10° x sin(0.795) = 102 kVAR

2. To compute the reactance needed for the power factor correction, we observe that we need
to contribute a negative reactive power equal to —102 kVAR. This requires a negative
reactance and therefore a capacitor with Qc = —102 kVAR. The reactance of such a
capacitor is given by

2 (48072

X =
€T Q¢  —102 x 105

= —2.258



and since
_ 1
- ch
we have
1 1
C=——+=—-—-———=1175uF

wXc 377 x (—2.258)
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Comments: Note that it is not necessary to know the load impedance to perform power factor

correction; it is sufficient to know the apparent power and the power factor.

301

CHECK YOUR UNDERSTANDING

Determine if a load is capacitive or inductive, given the following facts:

a
b

c.
d.

. pf=0.87, leading
. pf=0.42, leading
v(t) = 42cos(wt) V, i(t) = 4.2sin(wt) A

u(t) = 10.4 cos(wt — 22°) V, i(t) = 0.4 cos(wt — 22°) A

(annsisal) Jayiiau ‘p ‘dARoNpul 9 ‘BAnIoeded *q aAnIdede) e :SIamsuy

EXAMPLE 7.11 Power Factor Correction

Problem

A second load is added to the circuit of Figure 7.22, as shown in Figure 7.23. Determine the

required value of capacitance for perfect pf correction after the second load is added. Draw
the phasor diagram showing the relationship between the two load currents and the capacitor

current.
Is T
—_— —_—
o i
v A 100 kW 50 kW
S T pf =0.7 pf =0.95
Figure 7.23
Solution
Known Quantities: Source voltage; load power and power factor.
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Find:

1. Power factor correction capacitor.
2. Phasor diagram.

Schematics, Diagrams, Circuits, and Given Data: \73 =48040V; P, = 10° W, pf, = 0.7
lagging; P, = 5 x 10* W; pf, = 0.95 leading; w = 377 rad/s.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis:

1. We first compute the two load currents, using the relationships given in equations 7.28
and 7.29:

P = |Vs|[T{| cos(6:)

- P,
= =———
[Vs| cos(61)
- P, 10°
I =— L— f)=—-—-/— 0.7
1 A arccos(pf,) 280 % 0.7 arccos(0.7)
= 298/(—0.795) A
and similarly
. P, 5 x 10*
I, = — Zarc f,) = ——— Zarccos(0.95
2 A rccos(pf,) 280 < 0.95 arccos(0.95)

= 110/(0.318) A

where we have selected the positive value of arccos (pf;) because pf; is lagging, and the
negative value of arccos (pf,) because pf; is leading. Now we compute the apparent power

at each load:
P P 108
S| = & = — - = =— =1.429 x 10° VA
pf,  cos(6y) 0.7
P P 5 x 10%
Sp) = 2= —2_ 2% _ 5763 x10° VA

pf, — cos(dy)  0.95
and from these values we can calculate Q as shown:

Q1 = |S1]sin(6y) 6, = arccos(pf,) = 0.795

Q; = 1.429 x 10° x sin(0.795) = 102 kVAR

Q. = |S,|sin(6,) 6, = —arccos(pf,) = —0.318
Q, = 5.263 x 10* x sin(—0.318) = —16.43 kVAR

where, once again, 6, is positive because pf; is lagging and 6, is negative because pf; is
leading (see Table 7.2).

The total reactive power is therefore Q = Q; + Q, = 85.6 kVAR.

To compute the reactance needed for the power factor correction, we observe that
we need to contribute a negative reactive power equal to —85.6 k\VAR. This requires a
negative reactance and therefore a capacitor with Qc = —85.6 kVAR. The reactance of
such a capacitor is given by

_ Vsl (4807

X =
€7 Qc  —856x10°

= —2.694
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and since
Im

. 1

- a)Xc
we have

1 1
C=—=————— =0846uF
wXe | 377(—2.692) ’

2. To draw the phasor diagram, we need only to compute the capacitor current, since we
have already computed the other two:

Zc = jXc = —j2.692 Q Figure 7.24
~ \73 T

lc = —==1782/= A

©T Z 2

The total current is Ty = Iy + 1, + Ic = 312.520° A. The phasor diagram corre-
sponding to these three currents is shown in Figure 7.24.

CHECK YOUR UNDERSTANDING

Compute the power factor for an inductive load with L = 100 mH and R = 0.4 Q.

Buibbe| ‘50100 = 4d :Jlamsuy

7.3 TRANSFORMERS

AC circuits are very commonly connected to each other by means of transformers.
Atransformer isadevice that couples two AC circuits magnetically rather than through
any direct conductive connection and permits a “transformation” of the voltage and
current between one circuit and the other (e.g., by matching a high-voltage, low-
current AC output to a circuit requiring a low-voltage, high-current source). Trans-
formers play a major role in electric power engineering and are a necessary part of the
electric power distribution network. The objective of this section is to introduce the
ideal transformer and the concepts of impedance reflection and impedance matching.
The physical operations of practical transformers, and more advanced models, is
discussed in Chapter 14.

The Ideal Transformer

The ideal transformer consists of two coils that are coupled to each other by some
magnetic medium. There is no electrical connection between the coils. The coil on
the input side is termed the primary, and that on the output side the secondary. The
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primary coil is wound so that it has n; turns, while the secondary has n, turns. We
define the turns ratio N as

- (7.32)

Figure 7.25 illustrates the convention by which voltages and currents are usually
assigned at a transformer. The dots in Figure 7.25 are related to the polarity of the
coil voltage: coil terminals marked with a dot have the same polarity.

Since anideal inductor acts as a short circuit in the presence of DC, transformers
do not perform any useful function when the primary voltage is DC. However, when
a time-varying current flows in the primary winding, a corresponding time-varying
voltage is generated in the secondary because of the magnetic coupling between the
two coils. This behavior is due to Faraday’s law, as explained in Chapter 14. The
relationship between primary and secondary current in an ideal transformer is very
simply stated as follows:

Ve

|
=z

Vi
i Ideal transformer (7.33)

—1
N

I
Z| =

An ideal transformer multiplies a sinusoidal input voltage by a factor of N and
divides a sinusoidal input current by a factor of N.

If N is greater than 1, the output voltage is greater than the input voltage and the
transformer is called a step-up transformer. If N is less than 1, then the transformer
is called a step-down transformer, since V5 is now smaller than V1. An ideal trans-
former can be used in either direction (i.e., either of its coils may be viewed as the
input side, or primary). Finally, a transformer with N = 1 is called an isolation
transformer and may perform a very useful function if one needs to electrically iso-
late two circuits from each other; note that any DC at the primary will not appear at
the secondary coil. An important property of ideal transformers is the conservation
of power; one can easily verify that an ideal transformer conserves power, since

=5V, =$; (7.34)

That is, the power on the primary side equals that on the secondary.

In many practical circuits, the secondary is tapped at two different points, giving
rise to two separate output circuits, as shown in Figure 7.26. The most common
configuration is the center-tapped transformer, which splits the secondary voltage
into two equal voltages. The most common occurrence of this type of transformer is
found at the entry of a power line into a household, where a high-voltage primary
(see Figure 7.52) is transformed to 240 V and split into two 120-V lines. Thus, Vs
and Vs in Figure 7.26 are both 120-V lines, and a 240-V line (V, + V3) is also
available.
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EXAMPLE 7.12 Ideal Transformer Turns Ratio < LO3

Problem

We require a transformer to deliver 500 mA at 24 V from a 120-V rms line source. How many
turns are required in the secondary? What is the primary current?

Solution

Known Quantities: Primary and secondary voltages; secondary current; number of turns in
the primary coil.

Find: n, and I;.

Schematics, Diagrams, Circuits, and Given Data: V, = 120 V; V, = 24 V; I, = 500 mA;
n; = 3,000 turns.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: Using equation 7.33, we compute the number of turns in the secondary coil as

follows:
Vi Vs vV, 24
moon, 2T " 120 .

Knowing the number of turns, we can now compute the primary current, also from equ-
ation 7.33:

- - < NMpe 600

Doy = 22 500 = 100 mA
n 27 3,000

Comments: Note that since the transformer does not affect the phase of the voltages and
currents, we could solve the problem by using simply the rms amplitudes.

CHECK YOUR UNDERSTANDING

With reference to Example 7.12, compute the number of primary turns required if n, = 600
but the transformer is required to deliver 1 A. What is the primary current now?

YW 00Z = ] :000°€ = U :SIamsuy

EXAMPLE 7.13 Center-Tapped Transformer <|_03

Problem

Acenter-tapped power transformer has a primary voltage of 4,800 V and two 120-V secondaries
(see Figure 7.26). Three loads (all resistive, i.e., with unity power factor) are connected to
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the transformer. The first load, R;, is connected across the 240-V line (the two outside taps
in Figure 7.26). The second and third loads, R, and R3, are connected across each of the
120-V lines. Compute the current in the primary if the power absorbed by the three loads
is known.

Solution
Known Quantities: Primary and secondary voltages; load power ratings.

Find: lyimary-

Schematics, Diagrams, Circuits, and Given Data: V; = 4,800 V; V, = 120 V; V3 = 120 V;
P, = 5,000 W; P, = 1,000 W; P; = 1,500 W.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: Since we have no information about the number of windings or about the secondary
current, we cannot solve this problem by using equation 7.33. An alternative approach is to
apply conservation of power (equation 7.34). Since the loads all have unity power factor,
the voltages and currents will all be in phase, and we can use the rms amplitudes in our
calculations:

[ Sprimary | = [Sseconcary|
or
Vprimary X Tprimary = Psecondary = P1 + P2 + P3
Thus,
4,800 X Tyyimary = 5,000 + 1,000 + 1,500 = 7,500 W

7,500 W

rprimary == W = 15625 A

Figure 7.27 Operation
of an ideal transformer

CHECK YOUR UNDERSTANDING

If the transformer of Example 7.13 has 300 turns in the secondary coil, how many turns will
the primary require?

000°2T = %U :1amsuy

Impedance Reflection and Power Transfer

As stated in the preceding paragraphs, transformers are commonly used to couple one
AC circuit to another. A very common and rather general situation is that depicted in
Figure 7.27, where an AC source, represented by its Thévenin equivalent, is connected
to an equivalent load impedance by means of a transformer.
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It should be apparent that expressing the circuit in phasor form does not alter
the basic properties of the ideal transformer, as illustrated in the following equations:

N } (7.35)
Vo=NV; = _

These expressions are very useful in determining the equivalent impedance seen by
the source and by the load, on opposite sides of the transformer. At the primary
connection, the equivalent impedance seen by the source must equal the ratio of
Vito Iy

\V;
YA (7.36)
I
which can be written as
V,/N 1V
7= YN _ ==t (7.37)
NI, N2 1,
But the ratio V»/1, is, by definition, the load impedance Z, . Thus,
, 1
Z'= 52 (7.38)

That is, the AC source “sees” the load impedance reduced by a factor of 1/N?2.
The load impedance also sees an equivalent source. The open-circuit voltage is
given by

Voc = NV; = NVs (7.39)

since there is no voltage drop across the source impedance in the circuit of Figure 7.27.
The short-circuit current is given by

~ Vs 1
lge = —— 7.40
©= 7N (7.40)
and the load sees a Thévenin impedance equal to
_ Voe NVs 2

7/ == "5 _ N2z (7.41)

Isc  (Vs/Zs)(1/N)

Thus the load sees the source impedance multiplied by a factor of N2. Figure 7.28
illustrates this impedance reflection across a transformer. It is very important to note
that an ideal transformer changes the magnitude of the load impedance seen by the
source by a factor of 1/N?2. This property naturally leads to the discussion of power
transfer, which we consider next.

Recall that in DC circuits, given a fixed equivalent source, maximum power is
transferred to a resistive load when the latter is equal to the internal resistance of the
source; achieving an analogous maximum power transfer condition in an AC circuit
is referred to as impedance matching. Consider the general form of an AC circuit,
shown in Figure 7.29, and assume that the source impedance Zs is given by

Zs = Rs + jXs (7.42)

The problem of interest is often that of selecting the load resistance and reactance
that will maximize the real (average) power absorbed by the load. Note that the
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Z
7
N2zg=2"
N
L_—2°
Vs z'_% NVs 7
Reflected Ian Reflected sou;ée
impedance circuit impedance circuit
Figure 7.28 Impedance reflection across a transformer
Zs requirement is to maximize the real power absorbed by the load. Thus, the problem
D_C can be restated by expressing the real load power in terms of the impedance of the
source and load. The real power absorbed by the load is
\75 ~> ZL \7L ~ ~ ~ o~
l1 B PL=V.I_cos0 = Re (Vth) (743)
Vs= vsz\;a where
Figure 7.29 The maximum YA 2L -
power transfer problem in AC L= Zs + ZLV (7.44)
circuits
and
. v\ W
Ir = > - s (7.45)
Zs + 7, (Zs +Z.)*
Thus, the complex load power is given by
- Z.Vs Vi V2
S, =V, I = X = z 7.46
NN T vz @+t Zs+alktt (7.40)
and the average (real) power by
. V&
P.=Re (V. .I])= Re{ ———— | Re(Z
L Vilp) Zs 1 72 (Z0)
vé
= Re (Z 7.47
(Rs T RUZ + 0% + X2 0 &Y (7:47)
VZRL

- (Rs + R1)? + (Xs + X0)?

The expression for P is maximized by selecting appropriate values of R and X, ; it

can be shown that the average power is greatest when R

= Rg and X, = —Xg, thatis,
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when the load impedance is equal to the complex conjugate of the source impedance,
as shown in the following equation:

L =128 Maximum power transfer
that is, (7.48)
RL =Rs XL = —Xg

When the load impedance is equal to the complex conjugate of the source
impedance, the load and source impedances are matched and maximum power
is transferred to the load.

In many cases, it may not be possible to select a matched load impedance,
because of physical limitations in the selection of appropriate components. In these
situations, it is possible to use the impedance reflection properties of a transformer to
maximize the transfer of AC power to the load. The circuit of Figure 7.30 illustrates
how the reflected load impedance, as seen by the source, is equal to Z, /N2, so that
maximum power transfer occurs when

z. o,
N2~ S

RL = NRq (7.49)
X, = —N2Xs
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O
Source ? Transformer? Load

Zs

Equivalent circuit referred
to transformer primary

Figure 7.30 Maximum
power transfer in an AC circuit
with a transformer

EXAMPLE 7.14 Use of Transformers to Increase Power Line
Efficiency

Problem

Figure 7.31 illustrates the use of transformers in electric power transmission lines. The practice
of transforming the voltage before and after transmission of electric power over long distances
is very common. This example illustrates the gain in efficiency that can be achieved through
the use of transformers. The example makes use of ideal transformers and assumes simple
resistive circuit models for the generator, transmission line, and load. These simplifications
permit a clearer understanding of the efficiency gains afforded by transformers.

Solution
Known Quantities: Values of circuit elements.
Find: Calculate the power transfer efficiency for the two circuits of Figure 7.31.

Schematics, Diagrams, Circuits, and Given Data: Step-up transformer turns ratio is N;
step-down transformer turns ratioisM = 1/N.

Assumptions: None.

< LO3
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Transmission
Generator line Load
ANV
Rsouroe RIi ne
Rlow
VSJUI’CE
T
77777
@
Transmission
Generator line Load
b—AWW—
Rsource Riine
Rk)aj
V&UI’CG
Step-up Step-down /7J77
transformer transformer
(b)
Reflected
Transmission Reflected transmission  Reflected
Generator line load Generator line load
o A h h Av ] A Av
Rsource RIine F\’source R line "Ioad
R’load —
V&)UI’CE V&)UYCE
P * *
Vo o Step-up 77777 77777 7777
transformer
()
Reflected
Reflected  Transmission Reflected transmission
generator line Load generator line Load
H—AWW—o] —_—
Rine Riine Rioad
Rioad
T hd T
/7777 Step-down 7777 7777 7777
transformer

(d

Figure 7.31 Electric power transmission: (a) direct power transmission; (b) power transmission
with transformers; (c) equivalent circuit seen by generator; (d) equivalent circuit seen by load

Analysis: For the circuit of Figure 7.31(a), we can calculate the power transmission efficiency
as follows, since the load and source currents are equal:

Pioad  Vicadload  Vieas Rioad
I:)source Vsourcelload Vsource Rsource + RIine + RIoad

For the circuit of Figure 7.31(b), we must take into account the effect of the transformers. Using
equation 7.38 and starting from the load side, we can “reflect” the load impedance to the left
of the step-down transformer to obtain

/

load — WRload = NzRIoad
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Now, the source sees the equivalent impedance R;,,4 + Riine across the first transformer. If we
reflect this impedance to the left of the step-up transformer, the equivalent impedance seen by
the source is

ot R| Riine) = R ! R

load = m( load T+ Riine) = Rioad + N2 e
These two steps are depicted in Figure 7.31(c). You can see that the effect of the two transformers
is to reduce the line resistance seen by the source by a factor of 1/N2. The source current is

T VSOUI’CE Vsource

| = =
SO T R source + Riaa  Rsource + (1/N?)Riine + Rioad

and the source power is therefore given by the expression

\72

source

P =
U = et (1/N?)Rjine + Rioad

Now we can repeat the same process, starting from the left and reflecting the source circuit to
the right of the step-up transformer:

7 7 2
V! = NVsource and Réource = N“Rsource

source
Now the circuit to the left of the step-down transformer comprises the series combination of
Viources Reources aNd Riine. I we reflect this to the right of the step-down transformer, we obtain a
series circuit with Veouree = M Viouce = Vsources Reguree = M 2Réource = Rsources Riine =M ZR”ne’

and Ryeag in series. These steps are depicted in Figure 7.31(d). Thus the load voltage and
current are

Vsource

Rsource + (1/N2)Rline + Rload

| load =

and

RIoad
Rsource + (1/N2)Rline + RIoad

and we can calculate the load power as

Vload = Vsource

VszourceR|Oad
2
(Rsource + (1/N2)Rline + RIoad)

PIoald = IIoaldvload =

Finally, the power efficiency can be computed as the ratio of the load to source power:

_ Pload _ \7520urceRIoad Rsource + (1/N 2)Rline + Rload
= = 3 =
Psource (Rsource + (L/N?)Rjine + RIoad) Vszource

_ RIoad
Rsource + (l/N 2)Rline + RIoad

Comparing the expression with the one obtained for the circuit of Figure 7.31(a), we can see
that the power transmission efficiency can be significantly improved by reducing the effect of
the line resistance by a factor of 1/N2.
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CHECK YOUR UNDERSTANDING

Assume that the generator produces a source voltage of 480 VVrms, and that N = 300. Further
assume that the source impedance is 2 €2, the line impedance is also 2 €2, and that the load
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impedance is 8 2. Calculate the efficiency improvement for the circuit of Figure 7.31(b) over
the circuit of Figure 7.31(a).
9%.9 "SA %08 JaMSUY
LO3 EXAMPLE 7.15 Maximum Power Transfer Through a
Transformer
Problem
Find the transformer turns ratio and load reactance that results in maximum power transfer in
the circuit of Figure 7.32.
LN Solution
Ls R Known Quantities: Source voltage, frequency, and impedance; load resistance.
Rs Find: Transformer turns ratio and load reactance.
Schematics, Diagrams, Circuits, and Given Data: \73 =240/0V; Rs = 10 ;
Vs X Ls = 0.1 H; R = 400 Q; » = 377 rad/s.
Assumptions: Use rms values for all phasor quantities in the problem.
Figure 7.32

Analysis: For maximum power transfer, we require that R, = N?Rg (equation 7.48). Thus,

400

NZ = RL_ =40 N =+/40 =6.325

“Rs 10
Further, to cancel the reactive power, we require that X, = —N?2Xs, that is,
Xs =wx0.1=377
and
X, = —40 x 37.7 = —1,508
Thus, the load reactance should be a capacitor with value

1 1
Co e — 176 4F
X (—1,508)(377) ’

CHECK YOUR UNDERSTANDING

The transformer shown in Figure 7.33 is ideal. Find the turns ratio N that will ensure maximum
power transfer to the load. Assume that Zs = 1,800 Q2 and Z, = 8 Q.

The transformer shown in Figure 7.33 is ideal. Find the source impedance Zs that will ensure
maximum power transfer to the load. Assume that N = 5.4and Z, =2 + j10 Q.

6 6270l —9890°0 = SZ:2990°0 = N ‘Slamsuy
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—c}
Zs +
J KR
Vst 1B 2w
L] L] —_
O
1:N
Figure 7.33

7.4 THREE-PHASE POWER

The material presented so far in this chapter has dealt exclusively with single-phase
AC power, that is, with single sinusoidal sources. In fact, most of the AC power used
today is generated and distributed as three-phase power, by means of an arrangement
in which three sinusoidal voltages are generated out of phase with one another. The
primary reason is efficiency: The weight of the conductors and other components
in a three-phase system is much lower than that in a single-phase system delivering
the same amount of power. Further, while the power produced by a single-phase
system has a pulsating nature (recall the results of Section 7.1), a three-phase system
can deliver a steady, constant supply of power. For example, later in this section it
will be shown that a three-phase generator producing three balanced voltages—that
is, voltages of equal amplitude and frequency displaced in phase by 120°—has the
property of delivering constant instantaneous power.

Another important advantage of three-phase power is that, as will be explained
in Chapter 15, three-phase motors have a nonzero starting torque, unlike their single-
phase counterpart. The change to three-phase AC power systems from the early DC
system proposed by Edison was therefore due to a number of reasons: the efficiency
resulting from transforming voltages up and down to minimize transmission losses
over long distances; the ability to deliver constant power (an ability not shared by
single- and two-phase AC systems); a more efficient use of conductors; and the ability
to provide starting torque for industrial motors.

To begin the discussion of three-phase power, consider a three-phase source
connected in the wye (or Y) configuration, as shown in Figure 7.34. Each of the
three voltages is 120° out of phase with the others, so that, using phasor notation,

Figure 7.34 Balanced three-phase AC circuit
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Figure 7.35 Positive, or
abc, sequence for balanced
three-phase voltages
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we may write
\73n == Vanloo
Vion = VpnZ—(120°) Phase voltages (7.50)

\7cn = \7cn4(—240°) = \7an120°

where the quantities Van, Vin, and Ve, are rms values and are equal to each other. To
simplify the notation, it will be assumed from here on that

Van = Von =Ven =V (7.51)

In the circuit of Figure 7.34, the resistive loads are also wye-connected and balanced
(i.e., equal). The three AC sources are all connected together at a node called the
neutral node, denoted by n. The voltages Van, Vpn, and V¢, are called the phase
voltages and form a balanced set in the sense that

\7an + \7bn + \7(:n =0 (7.52)

This last statement is easily verified by sketching the phasor diagram. The sequence
of phasor voltages shown in Figure 7.35 is usually referred to as the positive (or abc)
sequence.

Consider now the “lines” connecting each source to the load, and observe that it
is possible to also define line voltages (also called line-to-line voltages) by considering
the voltages between lines aa’ and bb’, lines aa’ and cc’, and lines bb’ and cc’. Since
the line voltage, say, between aa’ and bb’ is given by

\7ab = \7an + \7nb = \7an - \7bn (7-53)

the line voltages may be computed relative to the phase voltages as follows:

Vap = V 20° — V /(—120°) = +/3V £30°
Ve = V £(=120°) — V £120° = +/3V £(—90°)
Vea = V £120° — V £0° = +/3V £150°

Line

voltages (7.54)

It can be seen, then, that the magnitude of the line voltages is equal to /3 times
the magnitude of the phase voltages. It is instructive, at least once, to point out that
the circuit of Figure 7.34 can be redrawn to have the appearance of the circuit of
Figure 7.36, where it is clear that the three circuits are in parallel.
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One of the important features of a balanced three-phase system is that it does
not require a fourth wire (the neutral connection), since the current T, is identically
zero (for balanced load Z, = Z, = Z. = Z). This can be shown by applying KCL at
the neutral node n:

=T, +1,+ 1,
1 - - -
= Z(Van + Von + Ven) (7.55)

=0

Another, more important characteristic of a balanced three-phase power system
may be illustrated by simplifying the circuits of Figures 7.34 and 7.36 by replacing
the balanced load impedances with three equal resistances R. With this simplified
configuration, one can show that the total power delivered to the balanced load by
the three-phase generator is constant. This is an extremely important result, for a very
practical reason: Delivering power in a smooth fashion (as opposed to the pulsating
nature of single-phase power) reduces the wear and stress on the generating equip-
ment. Although we have not yet discussed the nature of the machines used to generate
power, a useful analogy here is that of a single-cylinder engine versus a perfectly bal-
anced V-8 engine. To show that the total power delivered by the three sources to a
balanced resistive load is constant, consider the instantaneous power delivered by
each source:

V2
pa(t) = ﬁ(l + cos 2wt)
V2
Pp(t) = E[l + cos(2wt — 120°)] (7.56)
V2
pc(t) = E[1 + cos(2wt + 120°)]

The total instantaneous load power is then given by the sum of the three con-
tributions:

PO = Pa(t) + Pu(t) + Pc(t)
VEERVE
= — 4+ —[c0s 2wt + cos(2wt — 120°)
ROR (7.57)
+ cos(2wt 4+ 120°)]
3V?2
= —— = constant!
R

You may wish to verify that the sum of the trigonometric terms inside the brackets is
identically zero.

It is also possible to connect the three AC sources in a three-phase system in
a delta (or A) connection, although in practice this configuration is rarely used.
Figure 7.37 depicts a set of three delta-connected generators.
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Figure 7.36 Balanced
three-phase AC circuit (redrawn)

A delta-connected
three-phase generator
with line voltages
Vab, Ve, Vea

Figure 7.37 Delta-
connected generators



316

Chapter 7 AC Power

Figure 7.38

Figure 7.39 One phase of
the three-phase circuit

EXAMPLE 7.16 Per-Phase Solution of Balanced Wye-Wye
Circuit

Problem

Compute the power delivered to the load by the three-phase generator in the circuit shown in
Figure 7.38.

Solution
Known Quantities: Source voltage; line resistance; load impedance.
Find: Power delivered to the load P, .

Schematics, Diagrams, Circuits, and Given Data: Van = 48020 V;
Vipn = 4804(—27/3) V; Ven = 480£(27/3) V; Zy = 2+ j4 = 4.47/1.107 ;
Riine = 2 €2} Rueurar = 10 Q.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: Since the circuit is balanced, we can use per-phase analysis, and the current through
the neutral line is zero, that s, V,_y = 0. The resulting per-phase circuitis shown in Figure 7.39.
Using phase a for the calculations, we look for the quantity

Pa = |T|ZRL
where
- \Y/ 48020 48020
1 = 2 =‘ : ‘:' —8485A
Zy + Riine 2+j4+2 5.66/(/4)

and P, = (84.85)% x 2 = 14.4 KW. Since the circuit is balanced, the results for phases b and
c are identical, and we have

PL =3P, =43.2kW

Comments: Note that since the circuit is balanced, there is zero voltage across neutrals. This
fact is shown explicitly in Figure 7.39, where n and n’ are connected to each other directly.
Per-phase analysis for balanced circuits turns three-phase power calculations into a very simple
exercise.

CHECK YOUR UNDERSTANDING

Find the power lost in the line resistance in the circuit of Example 7.16.

Compute the power delivered to the balanced load of Example 7.16 if the lines have zero
resistance and Z, =1+ j3 Q.

Show that the voltage across each branch of the wye load is equal to the corresponding phase
voltage (e.g., the voltage across Z, is V,).

Prove that the sum of the instantaneous powers absorbed by the three branches in a balanced
wye-connected load is constant and equal to 3V1 cos 6.

VA L02]+ M 2169 =TS ‘M 2'ey = *d isiemsuy
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Balanced Wye Loads

In the previous section we performed some power computations for a purely resistive
balanced wye load. We now generalize those results for an arbitrary balanced complex
load. Consider again the circuit of Figure 7.34, where now the balanced load consists
of the three complex impedances

Za=2y=2.=2,= 12,20 (7.58)

From the diagram of Figure 7.34, it can be verified that each impedance sees the
corresponding phase voltage across itself; thus, since currents Ty, Ty, and I have the
same rms value I, the phase angles of the currents will differ by £120°. It is therefore
possible to compute the power for each phase by considering the phase voltage (equal
to the load voltage) for each impedance, and the associated line current. Let us denote
the complex power for each phase by S

S = Vi (7.59)
so that
S=PR (7.60)

=VIcosd + jVising

where V and T denote, once again, the rms values of each phase voltage and line
current, respectively. Consequently, the total real power delivered to the balanced
wye load is 3P, and the total reactive power is 3Q. Thus, the total complex power St
is given by

St =Pr +jQr =3P +j3Q
— @Y+ (30128

and the apparent power is

(7.61)

ISt| = ?;\/(VI)2 cos26 + (V1)2sin? 6
= 3VI

and the total real and reactive power may be expressed in terms of the apparent
power:

Pr = |Sr|cos6o

7.62
Qr = [St[sin® (7.62)

Balanced Delta Loads

In addition to a wye connection, it is possible to connect a balanced load in the delta
configuration. A wye-connected generator and a delta-connected load are shown in
Figure 7.40.

Note immediately that now the corresponding line voltage (not phase voltage)
appears across each impedance. For example, the voltage across Zya is Vea. Thus,
the three load currents are given by
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Figure 7.40 Balanced wye generators with balanced delta load

i Vay _ V3VZ(x/6)

ab =

Zn  |Zal28
i Ve 3V Z(-1/2) (7.63)
bce — 5 — — ————= .
Za NVZ
. & _ N3V /(51/6)
T Zn T 12146

To understand the relationship between delta-connected and wye-connected
loads, it is reasonable to ask the question, For what value of Z, would a delta-
connected load draw the same amount of current as a wye-connected load with
impedance Z, for a given source voltage? This is equivalent to asking what value
of Z, would make the line currents the same in both circuits (compare Figure 7.36
with Figure 7.40).

The line current drawn, say, in phase a by a wye-connected load is

5 Van \%
(Tan)y Z |Zy|4( o) (7.64)

while that drawn by the delta-connected load is

(Ia)A - |ab - Ica

_ VeV

Zn Za
1 - ~ - -

= ?(Van — Vpn — Ven + Van) (7,65)
A

1 - - -
= ?(Zvan - Vbn - Vcn)
A

3V 3V £(—8)
C Zs [Zal
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One can readily verify that the two currents (1) and (Ta)y will be equal if the
magnitude of the delta-connected impedance is 3 times larger than Zy:

Zy =3Z, (7.66)
This result also implies that a delta load will necessarily draw 3 times as much current

(and therefore absorb 3 times as much power) as a wye load with the same branch
impedance.
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EXAMPLE 7.17 Parallel Wye-Delta Load Circuit
Problem

Compute the power delivered to the wye-delta load by the three-phase generator in the circuit
shown in Figure 7.41.

Va , )

() @ e Z
U YVVy Y
% .

n (B e b iz I L
N\ YVVy y
VC R @
(S e ¢ Z
Y YVVy y

Rneutral
AAAA

VVVY

Figure 7.41 AC circuit with delta and wye loads

Solution

Known Quantities: Source voltage; line resistance; load impedance.

Find: Power delivered to the load P, .

Schematics, Diagrams, Circuits, and Given Data: Van = 48020 V:

Vi =4804(—27/3) V; Ve = 480421 /3) V; Zy = 2 + j4 = 4.47/1.107 ©;
Zn =5—j2 =5.4/(—0.381) € Rjine = 2 ; Rneura = 10 2.

Assumptions: Use rms values for all phasor quantities in the problem.

Analysis: \We first convert the balanced delta load to an equivalent wye load, according to
equation 7.66. Figure 7.42 illustrates the effect of this conversion.

z .
Ipny = ?A = 1.667 —j0.667 = 1.8£(—0.381) Q.

Since the circuit is balanced, we can use per-phase analysis, and the current through the neutral
line is zero, that is, V,_y = 0. The resulting per-phase circuit is shown in Figure 7.43. Using

< LO4
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Figure 7.43 Per-phase
circuit

Chapter 7 AC Power

a 'T‘ o
_L =4 P
Zy Zy
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Zy
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Figure 7.42 Conversion of delta load to equivalent wye load

phase a for the calculations, we look for the quantity
Pa = IT°Re
where

Zy X ZA—y

2 =225y = 3

=1.62 —j0.018 = 1.62/(—0.011) &

and the load current is given by

Va

i =
ZL + RIine

=1326 A

B 48020
"~ |1.624j0.018 + 2

and P, = (132.6)%2 x Re (Z.) = 28.5 kW. Since the circuit is balanced, the results for phases
b and c are identical, and we have

P =3P, =85.5 kW

Comments: Note that per-phase analysis for balanced circuits turns three-phase power cal-
culations into a very simple exercise.

CHECK YOUR UNDERSTANDING

Derive an expression for the rms line current of a delta load in terms of the rms line current
of a wye load with the same branch impedances (that is, Zy = Z,) and same source voltage.
Assume Zs = 0.

The equivalent wye load of Example 7.17 is connected in a delta configuration. Compute the
line currents.

V .02T768T = °I 'V (.02T—)768T = 91 'V -0768T = °| :AlE = V| :Slamsuy
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7.5 RESIDENTIAL WIRING; GROUNDING
AND SAFETY

Common residential electric power service consists of a three-wire AC system sup-
plied by the local power company. The three wires originate from a utility pole and
consist of a neutral wire, which is connected to earth ground, and two “hot” wires.
Each of the hot lines supplies 120 V rms to the residential circuits; the two lines are
180° out of phase, for reasons that will become apparent during the course of this
discussion. The phasor line voltages, shown in Figure 7.44, are usually referred to
by means of a subscript convention derived from the color of the insulation on the
different wires: W for white (neutral), B for black (hot), and R for red (hot). This
convention is adhered to uniformly.
The voltages across the hot lines are given by

Vg — Vg = Vir = Vg — (—Vg) = 2V = 240.£0° (7.67)

Thus, the voltage between the hot wires is actually 240 V rms. Appliances such as elec-
tric stoves, air conditioners, and heaters are powered by the 240-V rms arrangement.
On the other hand, lighting and all the electric outlets in the house used for small
appliances are powered by a single 120-V rms line.

The use of 240-V rms service for appliances that require a substantial amount
of power to operate is dictated by power transfer considerations. Consider the two
circuits shown in Figure 7.45. In delivering the necessary power to a load, a lower
line loss will be incurred with the 240-V rms wiring, since the power loss in the
lines (the 12R loss, as it is commonly referred to) is directly related to the current
required by the load. In an effort to minimize line losses, the size of the wires is
increased for the lower-voltage case. This typically reduces the wire resistance by a
factor of 2. In the top circuit, assuming Rs/2 = 0.01 €2, the current required by the
10-kW load is approximately 83.3 A, while in the bottom circuit, with Rs = 0.02 €,
it is approximately one-half as much (41.7 A). (You should be able to verify that the

Hot =
+ L
—_ ——
Vs RTS O
B O Neutral (Z 120V [RZ'
Vi PL=10kW
—O_
Hot ~,
Vw=0Z£0° (Neutral) Rel—o
Vg=120£0°  (Hot)
Vr=120 £180° (Hot)
or Vr=-Vg G) 240V [R]
Figure 7.44 Line voltage PL =10kw
convention for residential —" o
circuits

Figure 7.45 Line losses in
120- and 240-VAC circuits
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approximate 12R losses are 69.4 W in the top circuit and 34.7 W in the bottom circuit.)
Limiting the IR losses is important from the viewpoint of efficiency, besides reducing
the amount of heat generated in the wiring for safety considerations. Figure 7.46 shows
some typical wiring configurations for a home. Note that several circuits are wired
and fused separately.

= Earth ground
20A VGV— Kitchen
v B — (120-V circuit)

15A —L W— Bedroom

N B — (120-V circuit)
20A | — \{3\’_ Washing machine,
v, B — Dryer (120-V circuit)
20A N
A% 5\, or G Electric stove
AV, o] R (240-V circuit)
20A —
v, 0O R
15A o W Outdoor
(IP = W G lighting

Figure 7.46 A typical residential wiring arrangement

CHECK YOUR UNDERSTANDING

Use the circuit of Figure 7.45 to show that the 2R losses will be higher for a 120-V service
appliance than a 240-V service appliance if both have the same power usage rating.

‘Bunel
Jamod awes ay) 1oJ 1IN A-Oz dU1 JO $8SS0| 8Y) 8]gNop Sey NI A-0ZT YL :Jemsuy

Today, most homes have three-wire connections to their outlets. The outlets ap-
pear as sketched in Figure 7.47. Then why are both the ground and neutral connections
needed in an outlet? The answer to this question is safety: The ground connection is
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used to connect the chassis of the appliance to earth ground. Without this provision,
the appliance chassis could be at any potential with respect to ground, possibly even
atthe hot wire’s potential if a segment of the hot wire were to lose some insulation and
come in contact with the inside of the chassis! Poorly grounded appliances can thus
be a significant hazard. Figure 7.48 illustrates schematically how, even though the
chassis is intended to be insulated from the electric circuit, an unintended connection
(represented by the dashed line) may occur, for example, because of corrosion or a
loose mechanical connection. A path to ground might be provided by the body of
a person touching the chassis with a hand. In the figure, such an undesired ground
loop current is indicated by Ig. In this case, the ground current I would flow directly
through the body to ground and could be harmful.

In some cases the danger posed by such undesired ground loops can be great,
leading to death by electric shock. Figure 7.49 describes the effects of electric cur-
rents on an average male when the point of contact is dry skin. Particularly hazardous
conditions are liable to occur whenever the natural resistance to current flow pro-
vided by the skin breaks down, as would happen in the presence of water. Thus, the
danger presented to humans by unsafe electric circuits is very much dependent on
the particular conditions—whenever water or moisture is present, the natural elec-
trical resistance of dry skin, or of dry shoe soles, decreases dramatically, and even
relatively low voltages can lead to fatal currents. Proper grounding procedures, such
as are required by the National Electrical Code, help prevent fatalities due to elec-
tric shock. The ground fault circuit interrupter, labeled GFCI in Figure 7.46,
is a special safety circuit used primarily with outdoor circuits and in bathrooms,

B .
+O Chassis
{ ||
---- AWy -----
120V Load
W { || O +
-© Unknown
potential
G
O O
B .
+0O Chassis
1 I
---- AWy -----
120V Load
W | ||
-0
G
1% ~ TIIZS A7 77777 Earth ground

Figure 7.48 Unintended connection

FIND IT

ON THE WEB

323



324

01f

Amperes

0.01 |

0.001

Severe burns

Respiratory paralysis
Ventricular fibrillation

Severe shock

Extreme breathing
difficulties

Cannot let go
Painful

Mild sensation

Threshold of
perception

Chapter 7 AC Power

PR <A A
/

Figure 7.49 Physiological
effects of electric currents
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Figure 7.50 Outdoor pool

where the risk of death by electric shock is greatest. Its application is best described by
an example.

Consider the case of an outdoor pool surrounded by a metal fence, which uses
an existing light pole for a post, as shown in Figure 7.50. The light pole and the
metal fence can be considered as forming a chassis. If the fence were not prop-
erly grounded all the way around the pool and if the light fixture were poorly
insulated from the pole, a path to ground could easily be created by an unaware swim-
mer reaching, say, for the metal gate. A GFCI provides protection from potentially
lethal ground loops, such as this one, by sensing both the hot-wire (B) and the neu-
tral (W) currents. If the difference between the hot-wire current Ig and the neu-
tral current ly is more than a few milliamperes, then the GFCI disconnects the
circuit nearly instantaneously. Any significant difference between the hot and neu-
tral (return-path) currents means that a second path to ground has been created (by
the unfortunate swimmer, in this example) and a potentially dangerous condition
has arisen. Figure 7.51 illustrates the idea. GFCls are typically resettable circuit
breakers, so that one does not need to replace a fuse every time the GFCI circuit is
enabled.

| 1
+ O——O-I M0 -
I
2oV 1 : @i
W :
Loy M\_-o-

-0

G IR

Figure 7.51 Use of a GFCI in a potentially hazardous setting
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7.6 GENERATION AND DISTRIBUTION
OF AC POWER

We now conclude the discussion of power systems with a brief description of the vari-
ous elements of a power system. Electric power originates from a variety of sources. In
general, electric power may be obtained from hydroelectric, thermoelectric, geother-
mal, wind, solar, and nuclear sources. The choice of a given source is typically dic-
tated by the power requirement for the given application, and by economic and en-
vironmental factors. In this section, the structure of an AC power network, from the
power-generating station to the residential circuits discussed in Section 7.5, is briefly
outlined.

Atypical generator will produce electric power at 18 kV, as shown in the diagram
of Figure 7.52. To minimize losses along the conductors, the output of the generators
is processed through a step-up transformer to achieve line voltages of hundreds of
kilovolts (345 kV, in Figure 7.52). Without this transformation, the majority of the
power generated would be lost in the transmission lines that carry the electric current
from the power station.

The local electric company operates a power-generating plant that is capable of
supplying several hundred megavolt-amperes (MVA) on a three-phase basis. For this
reason, the power company uses a three-phase step-up transformer at the generation
plant to increase the line voltage to around 345 kV. One can immediately see that
at the rated power of the generator (in megavolt-amperes) there will be a significant
reduction of current beyond the step-up transformer.

18 kV
AN /AN
= /)/ 3¢ step-down
transformer
sskv 140 kV
Generator
Generating plant
< a0kV 30 step-down
((( transformer
- 4,800V 3¢ step-down
< | 3$a$n§po?r?1\ievrn tr_ansformer to
(substation) \\\ \\\ \Q)/ industrial or
commercial
T v Y
AV VA Ve
4,800V Center-tap

transformer

A\

i)

120/240 V

= Three-wire service

Figure 7.52 Structure of an AC power distribution network
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Beyond the generation plant, an electric power network distributes energy to
several substations. This network is usually referred to as the power grid. At the
substations, the voltage is stepped down to a lower level (10 to 150 kV, typically).
Some very large loads (e.g., an industrial plant) may be served directly from the power
grid, although most loads are supplied by individual substations in the power grid. At
the local substations (one of which you may have seen in your own neighborhood),
the voltage is stepped down further by a three-phase step-down transformer to 4,800
V. These substations distribute the energy to residential and industrial customers. To
further reduce the line voltage to levels that are safe for residential use, step-down
transformers are mounted on utility poles. These drop the voltage to the 120/240-V
three-wire single-phase residential service discussed in Section 7.5. Industrial and
commercial customers receive 460- and/or 208-V three-phase service.

Conclusion

Chapter 7 introduces the essential elements that permit the analysis of AC power systems. AC
power is essential to all industrial activities, and to the conveniences we are accustomed to in
residential life. Virtually all engineers will be exposed to AC power systems in their careers,
and the material presented in this chapter provides all the necessary tools to understand the
analysis of AC power circuits. Upon completing this chapter, you should have mastered the
following learning objectives:

1. Understand the meaning of instantaneous and average power, master AC power
notation, and compute average power for AC circuits. Compute the power factor of a
complex load. The power dissipated by a load in an AC circuit consists of the sum of an
average and a fluctuating component. In practice, the average power is the quantity of
interest.

2. Learn complex power notation; compute apparent, real, and reactive power for complex
loads. Draw the power triangle, and compute the capacitor size required to perform
power factor correction on a load. AC power can best be analyzed with the aid of
complex notation. Complex power S is defined as the product of the phasor load voltage
and the complex conjugate of the load current. The real part of S is the real power
actually consumed by a load (that for which the user is charged); the imaginary part of S
is called the reactive power and corresponds to energy stored in the circuit—it cannot be
directly used for practical purposes. Reactive power is quantified by a quantity called
the power factor, and it can be minimized through a procedure called power factor
correction.

3. Analyze the ideal transformer; compute primary and secondary currents and voltages
and turns ratios. Calculate reflected sources and impedances across ideal transformers.
Understand maximum power transfer. Transformers find many applications in electrical
engineering. One of the most common is in power transmission and distribution, where
the electric power generated at electric power plants is stepped “up” and “down”
before and after transmission, to improve the overall efficiency of electric power
distribution.

4. Learn three-phase AC power notation; compute load currents and voltages for balanced
wye and delta loads. AC power is generated and distributed in three-phase form.
Residential services are typically single-phase (making use of only one branch of the
three-phase lines), while industrial applications are often served directly by three-phase
power.

5. Understand the basic principles of residential electrical wiring, of electrical safety, and
of the generation and distribution of AC power.
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HOMEWORK PROBLEMS

Section 7.1: Power in AC Circuits

7.1 The heating element in a soldering iron has a
resistance of 30 2. Find the average power dissipated
in the soldering iron if it is connected to a voltage
source of 117 V rms.

7.2 A coffeemaker has a rated power of 1,000 W at 240
V rms. Find the resistance of the heating element.

7.3 Acurrent source i(t) is connected to a 50-S2 resistor.
Find the average power delivered to the resistor, given
that i(t) is
a. 5cos50t A
b. 5cos(50t — 45°) A
c. 5cos50t — 2cos(50t — 0.873) A
d. 5cos50t — 2 A

7.4 Find the rms value of each of the following periodic
currents:

a. i(t) = cos450t + 2 cos450t A
b. i(t) = cosb5t +sin5t A

C. i(t) =cos450t +2A

d. i(t) = cos5t + cos(5t + 7/3) A
e. i(t) = cos 200t + cos400t A

7.5 Acurrent of 4 A flows when a neon light
advertisement is supplied by a 110-V rms power

system. The current lags the voltage by 60°. Find the
power dissipated by the circuit and the power factor.

7.6 Aresidential electric power monitoring system rated
for 120-V rms, 60-Hz source registers power
consumption of 1.2 kW, with a power factor of 0.8.
Find
a. The rms current.

b. The phase angle.
c. The system impedance.
d

. The system resistance.

7.7 Adrilling machine is driven by a single-phase
induction machine connected to a 110-V rms supply.
Assume that the machining operation requires 1 kW,
that the tool machine has 90 percent efficiency, and
that the supply current is 14 A rms with a power factor
of 0.8. Find the AC machine efficiency.

7.8 Given the waveform of a voltage source shown in
Figure P7.8, find:

a. The steady DC voltage that would cause the same
heating effect across a resistance.

b. The average current supplied to a 10-€2 resistor
connected across the voltage source.

c. The average power supplied to a 1-2 resistor
connected across the voltage source.

vs(t), V
1 p—
1 [
ol 1 2\ 3] ] S| q ts
,37
Figure P7.8

7.9 Acurrent source i(t) is connected to a 100-2 resistor.

Find the average power delivered to the resistor, given
that i(t) is:

a. 4 cos 100t A

b. 4 cos (100t — 50°) A

c. 4 cos 100t — 3 cos (100t — 50°) A

d. 4cos 100t —3A

7.10 Find the rms value of each of the following

periodic currents:
a. i(t) =cos 377t + cos 377t A

b. i(t) =cos2t+ sin2t A

C. i(t) =cos 377t + 1A

d. i(t) =cos 2t + cos (2t+ 135°) A
e. i(t) =cos2t+ cos3tA

Section 7.2: Complex Power

7.11 Acurrent of 10 A rms flows when a single-phase

circuit is placed across a 220-V rms source. The
current lags the voltage by 60°. Find the power
dissipated by the circuit and the power factor.

7.12 Asingle-phase circuit is placed across a 120-V

rms, 60-Hz source, with an ammeter, a voltmeter, and a
wattmeter connected. The instruments indicate 12 A,
120V, and 800 W, respectively. Find

a. The power factor.
b. The phase angle.
¢. The impedance.
d. The resistance.

7.13 For the following numeric values, determine the

average power, P, the reactive power, Q, and the
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complex power, S, of the circuit shown in Figure
P7.13. Note: phasor quantities are rms.

a. vs(t) =650 cos (377t) V
iL(t) = 20 cos (377t — 10°) A

b. Vs =4602£0°V
I, =14.14/ — 45° A

c. Vs =100£0°V
I, =864—-86°A

d. Vs =2084 —30°V
I, =23Z-63°A

i®

V(1) Z

Figure P7.13

7.14 For the circuit of Figure P7.13, determine the
power factor for the load and state whether it is leading
or lagging for the following conditions:

a. vs(t) = 540 cos (wt + 15°) V
iL(t) = 20 cos (wt + 47°) A
b. vs(t) = 155 cos (wt — 15°) V
iL(t) = 20 cos (wt — 22°) A
C. vs(t) = 208 cos (wt) V
iL(t) = 1.7 sin (wt 4+ 175°) A
d. Z, = (48 +j16) @
7.15 For the circuit of Figure P7.13, determine whether

the load is capacitive or inductive for the circuit
shown if

a. pf = 0.87 (leading)
b. pf=0.42 (leading)

C. vs(t) =42 cos (wt) V
iL(t) =4.25sin (wt) A

d. vs(t) =10.4 cos (wt — 12°) V
iL(t) = 0.4 cos (wt — 12°) A

7.16 The circuit shown in Figure P7.16 is to be used on
two different sources, each with the same amplitude
but at different frequencies.

a. Find the instantaneous real and reactive power if
vs(t) = 120 cos 377t V (i.e., the frequency is 60 Hz).

b. Find the instantaneous real and reactive power if
vs (t) = 650 cos 314t V (i.e., the frequency is 50 Hz).

L
I

I L

LAY

C

w ©) 3R

T z
C=265uF L=25.55mH R=10Q

Figure P7.16

7.17 Aload impedance, Z, = 10 + j3 , is connected to
a source with line resistance equal to 1 €2, as shown in
Figure P7.17. Calculate the following values:

a. The average power delivered to the load.

The average power absorbed by the line.

The apparent power supplied by the generator.
The power factor of the load.

© 2 o o

The power factor of line plus load.

Is Line
——
I AW
R=1Q
V =23020'V Load

Figure P7.17

7.18 Asingle-phase motor draws 220 W at a power
factor of 80 percent (lagging) when connected across a
200-V, 60-Hz source. A capacitor is connected in
parallel with the load to give a unity power factor, as
shown in Figure P7.18. Find the required capacitance.

© | QEC

Figure P7.18




7.19 |If the circuits shown in Figure P7.19 are to be at

Vs

unity power factor, find Cp and Cs.

O~

[7,

\Cp

\ |

or
L

P . 9

Source

Load Source
R =5Q, X =5Q, v4t) = 100 sin(377t) V

Load

Figure P7.19

7.20 A 1,000-W electric motor is connected to a source

of 120 Vs, 60 Hz, and the result is a lagging pf of 0.8.
To correct the pf to 0.95 lagging, a capacitor is placed
in parallel with the motor. Calculate the current drawn
from the source with and without the capacitor
connected. Determine the value of the capacitor
required to make the correction.

7.21 The motor inside a blender can be modeled as a

resistance in series with an inductance, as shown in
Figure P7.21.

a. What is the average power, Pny, dissipated in the
load?
b. What is the motor’s power factor?

c. What value of capacitor when placed in parallel
with the motor will change the power factor to 0.9

(lagging)?

i 20 i i
i MW ————o—
] ] ] 10Q
i i
i I : 20 mH
Wall Blender
socket motor

Figure P7.21

7.22 For the circuit shown in Figure P7.22,

a. Find the Thévenin equivalent circuit for the source.
b. Find the power dissipated by the load resistor.

[ .
Y
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¢. What value of load impedance would permit

maximum power transfer?

The voltage source is sinusoidal with frequency
60 Hz, and its polarity is such that the current from
the voltage source flows into the 10-2 resistor.

20V
6D

&/

10Q %

MW
100 kQ

Source

j20 260

Figure P7.22

7.23 For the following numerical values, determine the
average power P, the reactive power Q, and the
complex power S of the circuit shown in Figure P7.23.

Note: phasor quantities are rms.
a. vs(t) = 450cos (377t) V
i (t) = 50cos(377t — 0.349) A
b. Vs = 1400V
I, =5.85/(—n/6) A
c. Vs =5020V
IL=19.2/08A
d. Vs = 7404(—n/4) V
I, =10.84(-15) A
iL(t)

_—

O]

Figure P7.23
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7.24 For the circuit of Figure P7.23, determine the
power factor for the load and state whether it is leading
or lagging for the following conditions:

a. vs(t) = 780cos(wt +1.2) V
iL(t) =90 cos(wt + 7/2) A
b. vs(t) = 39 cos(wt + 7/6) V
iL(t) = 12cos(wt — 0.185) A
C. vs(t) = 104 cos(wt) V
iL(t) = 48.7sin(wt + 2.74) A
d ZL=>012+j8) Q
7.25 For the circuit of Figure P7.23, determine whether

the load is capacitive or inductive for the circuit
shown if

a. pf=0.48 (leading)
b. pf=0.17 (leading)
C. vs(t) = 18cos(wt) V
iL(t) = 1.8sin(wt) A
d. vs(t) = 8.3cos(wt — /6) V
iL(t) = 0.6 cos(wt — 1/6) A
7.26 Find the real and reactive power supplied by the

source in the circuit shown in Figure P7.26. Repeat if
the frequency is increased by a factor of 3.

1
2H  18F
Vg(t) = 10 cos 3t V 4Q

Figure P7.26

7.27 Inthe circuit shown in Figure P7.27, the sources
are Vs; = 36/(—m/3) V and Vs, = 2420.644 V. Find

a. The real and imaginary current supplied by each
source.

b. The total real power supplied.

60 -120

8Q
Vay( { ) i6 Q% %\752

Figure P7.27

7.28 The load Z, in the circuit of Figure P7.28 consists
of a 25-<2 resistor in series with a 0.1-mF capacitor.
Assuming f = 60 Hz, find

The source power factor.
The current Ts.

The apparent power delivered to the load.

Qa o T o

The apparent power supplied by the source.
e. The power factor of the load.

(;) Vs=23020° [ | Load

Figure P7.28

7.29 The load Z in the circuit of Figure P7.28 consists
of a 25-Q2 resistor in series with a 0.1-H inductor.
Assuming f = 60 Hz, calculate the following.

a. The apparent power supplied by the source.
b. The apparent power delivered to the load.
¢. The power factor of the load.
7.30 The load Z, in the circuit of Figure P7.28 consists
of a 25-Q resistor in series with a 0.1-mF capacitor and

a 70.35-mH inductor. Assuming f = 60 Hz, calculate
the following.

a. The apparent power delivered to the load.
b. The real power supplied by the source.
¢. The power factor of the load.
7.31 Calculate the apparent power, real power, and

reactive power for the circuit shown in Figure P7.31.
Draw the power triangle. Assume f = 60 Hz.

Is

—

R=20Q

T

(’:)\75=50v

C= 100 uF

Figure P7.31

7.32 Repeat Problem 7.31 for the two cases f = 50 Hz
and f =0 Hz (DC).

7.33 Asingle-phase motor is connected as shown in
Figure P7.33 to a 50-Hz network. The capacitor value
is chosen to obtain unity power factor. If V = 220V,

I =20A, and I; = 25 A, find the capacitor value.
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Figure P7.33

7.34 Suppose that the electricity in your home has gone

out and the power company will not be able to have
you hooked up again for several days. The freezer in
the basement contains several hundred dollars’ worth
of food that you cannot afford to let spoil. You have
also been experiencing very hot, humid weather and
would like to keep one room air-conditioned with a
window air conditioner, as well as run the refrigerator
in your kitchen. When the appliances are on, they draw
the following currents (all values are rms):

Air conditioner: 9.6A@ 120V
pf = 0.90 (lagging)
Freezer: 42A@ 120V
pf = 0.87 (lagging)
Refrigerator: 35A@ 120V
pf = 0.80 (lagging)
In the worst-case scenario, how much power must an
emergency generator supply?

7.35 The French TGV high-speed train absorbs 11 MW

at 300 km/h (186 mi/h). The power supply module is
shown in Figure P7.35. The module consists of two
25-kV single-phase power stations connected at the
same overhead line, one at each end of the module. For
the return circuits, the rail is used. However, the train
is designed to operate at a low speed also with 1.5-kV
DC in railway stations or under the old electrification
lines. The natural (average) power factor in the AC
operation is 0.8 (not depending on the voltage).
Assuming that the overhead line equivalent specific
resistance is 0.2 /km and that the rail resistance could
be neglected, find

a. The equivalent circuit.

b. The locomotive’s current in the condition of a
10 percent voltage drop.

c. The reactive power.

d. The supplied real power, overhead line losses, and
maximum distance between two power stations
supplied in the condition of a 10 percent voltage
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drop when the train is located at the half-distance
between the stations.

e. Overhead line losses in the condition of a
10 percent voltage drop when the train is located at
the half-distance between the stations, assuming
pf = 1. (The French TGV is designed with a
state-of-the-art power compensation system.)

f. The maximum distance between the two power
stations supplied in the condition of a 10 percent
voltage drop when the train is located at the
half-distance between the stations, assuming the
DC (1.5-kV) operation at one-quarter power.

Overhead line

I I

Va1 = 25 kV.£0 Vsz = 25 KV.£0

Rail

L 00 00 b | ¥

AN NN [ NN N [ N N [ NNy

Figure P7.35

7.36 An industrial assembly hall is continuously lighted

by one hundred 40-W mercury vapor lamps supplied
by a 120-V and 60-Hz source with a power factor of
0.65. Due to the low power factor, a 25 percent penalty
is applied at billing. If the average price of 1 kWh is
$0.01 and the capacitor’s average price is $50 per
millifarad, compute after how many days of operation
the penalty billing covers the price of the power factor
correction capacitor. (To avoid penalty, the power
factor must be greater than 0.85.)

7.37 With reference to Problem 7.36, consider that the

current in the cable network is decreasing when power
factor correction is applied. Find

a. The capacitor value for the unity power factor.

b. The maximum number of additional lamps that can
be installed without changing the cable network if a
local compensation capacitor is used.

7.38 If the voltage and current given below are supplied

by a source to a circuit or load, determine

a. The power supplied by the source which is
dissipated as heat or work in the circuit (load).

b. The power stored in reactive components in the
circuit (load).

¢. The power factor angle and the power factor.

Vs =7/0.873V  Is =13/(—0.349) A
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7.39 Determine the time-averaged total power, the
real power dissipated, and the reactive power stored in
each of the impedances in the circuit shown in
Figure P7.39 if

Vs = 170//220V
Vs, = 170/&4% i

o =377 rad/s
b
Z = O'ME Q

Z, = 1.5/0.105 Q
Z;=03+j04Q

Figure P7.39

7.40 If the voltage and current supplied to a circuit or
load by a source are

Vs = 170£(—0.157) V
determine

Is = 1320.28 A

a. The power supplied by the source which is
dissipated as heat or work in the circuit (load).

b. The power stored in reactive components in the
circuit (load).

c. The power factor angle and power factor.

Section 7.3: Transformers

7.41 A center-tapped transformer has the schematic
representation shown in Figure P7.41. The
primary-side voltage is stepped down to two
secondary-side voltages. Assume that each secondary
supplies a 5-kW resistive load and that the primary is
connected to 120 V rms. Find

a. The primary power.
b. The primary current.

n:l

Figure P7.41

7.42 A center-tapped transformer has the schematic
representation shown in Figure P7.41. The
primary-side voltage is stepped down to a
secondary-side voltage Vi by a ratio of n:1. On the
secondary side, Veecs = Ve = 3 Viee.

a. 1f Vpim = 22020° V and n = 11, find Ve, Viect,

and Veeco.

b. What must n be if \7‘,”m = 110£0° V and we desire
[Vsec2| t0 be 5V rms?

7.43 For the circuit shown in Figure P7.43, assume that
vg = 120 V rms. Find

a. The total resistance seen by the voltage source.
b. The primary current.
c. The primary power.

1Q

<
Vg V2:i 16 Q

Figure P7.43

7.44 \With reference to Problem 7.43 and Figure P7.43
find

a. The secondary current.
b. The installation efficiency Poaq/Psource-

¢. The value of the load resistance which can absorb
the maximum power from the given source.

7.45 Anideal transformer is rated to deliver 460 kVA at
380 V to a customer, as shown in Figure P7.45.

a. How much current can the transformer supply to
the customer?

b. If the customer’s load is purely resistive (i.e., if
pf = 1), what is the maximum power that the
customer can receive?

c. If the customer’s power factor is 0.8 (lagging),
what is the maximum usable power the customer
can receive?

d. What is the maximum power if the pf is 0.7
(lagging)?
e. If the customer requires 300 kW to operate, what is

the minimum power factor with the given size
transformer?
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Figure P7.45

7.46 For the ideal transformer shown in Figure P7.46,
consider that vs(t) = 294 cos(377t) V. Find

a. Primary current.

b. vo(t).

c. Secondary power.

d. The installation efficiency Poaq/Psource-

100 Q 251
————0
° ° +
vs(t) ( { ) %% Eizsg Vo(t)
e}

Figure P7.46

7.47 |f the transformer shown in Figure P7.47 is ideal,
find the turns ratio N = 1/n that will provide
maximum power transfer to the load.

R .
v ° " ° +
ve() ( {) % R V)
5

Rs=1800Q R_=8Q

AAAA

Figure P7.47

7.48 Assume the 8- resistor is the load in the circuit
shown in Figure P7.48. Assume vy = 110 V rms and a
variable turns ratio of 1: n. Find

a. The maximum power dissipated by the load.
b. The maximum power absorbed from the source.
c. The power transfer efficiency.
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Figure P7.48

7.49 If we knew that the transformer shown in Figure
P7.49 were to deliver 50 A at 110 V rms with a certain
resistive load, what would the power transfer
efficiency between source and load be?

=1
L]

Figure P7.49

7.50 A method for determining the equivalent circuit of
a transformer consists of two tests: the open-circuit test
and the short-circuit test. The open-circuit test, shown
in Figure P7.50(a), is usually done by applying rated
voltage to the primary side of the transformer while
leaving the secondary side open. The current into the
primary side is measured, as is the power dissipated.

The short-circuit test, shown in Figure P7.50(b),
is performed by increasing the primary voltage until
rated current is going into the transformer while the
secondary side is short-circuited. The current into the
transformer, the applied voltage, and the power
dissipated are measured.

The equivalent circuit of a transformer is shown
in Figure P7.50(c), where r,, and L,, represent the
winding resistance and inductance, respectively, and r,
and L. represent the losses in the core of the
transformer and the inductance of the core. The ideal
transformer is also included in the model.

With the open-circuit test, we may assume that
Tp = Is = 0. Then all the current that is measured is
directed through the parallel combination of r, and L..
We also assume that |r¢|| jwLc| is much greater than
r, + jolL,. Using these assumptions and the
open-circuit test data, we can find the resistance r, and
the inductance L..
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In the short-circuit test, we assume that Vsecondary is
zero, so that the voltage on the primary side of the ideal
transformer is also zero, causing no current flow through the
r. — L¢ parallel combination. Using this assumption with
the short-circuit test data, we are able to find the resistance
r,, and inductance L,,.

Using the following test data, find the equivalent
circuit of the transformer:

Open-circuit test:  V =
]

Short-circuit test: V=
]
P

QD
—-
g
[
w
by
-
=
Qo
(<X
=
4

Both tests were made

. °
0 ol
: O
@
A W :
+ . °
v H
(b)
Iw Lw
O— AWW\—TTT O+
~ e .
NN
A\l Y
fe %E Le % ‘ ‘ % Vsecondary
(e, O—
(©

Figure P7.50

7.51 Using the methods of Problem 7.50 and the
following data, find the equivalent circuit of the
transformer tested:

Open-circuit test:  Vp = 4,600 V
Toc =07A
P =200W

Short-circuittest: P =50W
Vp =52V

The transformer is a 460-kVA transformer, and the
tests are performed at 60 Hz.

7.52 A method of thermal treatment for a steel pipe is to
heat the pipe by the Joule effect, flowing a current
directly in the pipe. In most cases, a low-voltage
high-current transformer is used to deliver the current
through the pipe. In this problem, we consider a
single-phase transformer at 220 V rms, which delivers
1 V. Due to the pipe’s resistance variation with
temperature, a secondary voltage regulation is needed
in the range of 10 percent, as shown in Figure P7.52.
The voltage regulation is obtained with five different
slots in the primary winding (high-voltage regulation).
Assuming that the secondary coil has two turns, find
the number of turns for each slot.

+ 220V -

Sliding contact

Figure P7.52

7.53 With reference to Problem 7.52, assume that the
pipe’s resistance is 0.0002 €2, the secondary resistance
(connections + slide contacts) is 0.00005 €2, and the
primary current is 28.8 A with pf = 0.91 Find

a. The plot number.
b. The secondary reactance.
¢. The power transfer efficiency.

7.54 Asingle-phase transformer used for street lighting
(high-pressure sodium discharge lamps) converts 6 kV
to 230 V (to load) with an efficiency of 0.95. Assuming

pf = 0.8 and the primary apparent power is 30 kVA,
find

a. The secondary current.
b. The transformer’s ratio.



7.55 The transformer shown in Figure P7.55 has several
sets of windings on the secondary side. The windings
have the following turns ratios:

a. :N =115
b. :N=1/4
c. :N =112
d. :N =1/18

If Vpim = 120V, find and draw the connections that will
allow you to construct the following voltage sources:

a. 24.67£0°V
b. 36.67£0°V
c. 18£0°V

d. 54.67£180° V

[ 3 Oa
+
(-]

a

b

Vprim ° b'
E |

o !

Cc

? |
o od

Figure P7.55

7.56 The circuit in Figure P7.56 shows the use of ideal
transformers for impedance matching. You have a
limited choice of turns ratios among available
transformers. Suppose you can find transformers with
turns ratios of 2:1, 7:2, 120:1, 3:2, and 6:1. If Z_is
475/ — 25°Q and Zg, must be 2672 — 25°, find the
combination of transformers that will provide this
impedance. (You may assume that polarities are easily
reversed on these transformers.)
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7.57 The wire that connects an antenna on your roof to
the TV set in your den is a 300-2 wire, as shown in
Figure P7.57(a). This means that the impedance seen
by the connections on your set is 300 2. Your TV,
however, has a 75-2 impedance connection, as shown
in Figure P7.57(b). To achieve maximum power
transfer from the antenna to the television set, you
place an ideal transformer between the antenna and the
TV as shown in Figure P7.57(c). What is the turns
ratio, N = 1/n, needed to obtain maximum power

transfer?
300 N
o || X° N
o
o o L 1

@

Antenna
connections

Rear view of
television
(b)
300 Q

0

n:1
% || 75Q Vgna
0
(©

Section 7.4: Three-Phase Power

V antenna

Figure P7.57

7.58 The magnitude of the phase voltage of a balanced
three-phase wye system is 220 V rms. Express each
phase and line voltage in both polar and rectangular
coordinates.
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7.59 The phase currents in a four-wire wye-connected
load are as follows:

i B} 5
I =10/0A, Ty = 124%A

Determine the current in the neutral wire.

7.60 For the circuit shown in Figure P7.60, we see that
each voltage source has a phase difference of 27/3 in
relation to the others.

a. Find VRW, \7W§, and ViR, where
Vrw = VR - Vw 1~VWB =V — Vg,
and Ver = Vg — V.

b. Repeat part a, using the calculations
\7RW = VR«@Z(—TF/G)
Vs = Vi +/3Z(=7/6)
Ver = Vgv/34(—7/6)

c. Compare the results of part a with the results of
part b.

Figure P7.60

7.61 For the three-phase circuit shown in Figure P7.61,
find the current in the neutral wire and the real power.

Vr= 11020V

Viv= 1104 2n/3 V

Ve =110 4n/3 V

Figure P7.61

Ten = 82£2.88A

7.62 For the circuit shown in Figure P7.62, find the
current in the neutral wire and the real power.

Vr= 22040

Iw

~ — 10Q
V= 2204 2n/3 O——

Ts
Vg =220/ 41/3 O——

)

Figure P7.62

7.63 A three-phase steel-treatment electric oven has a
phase resistance of 10 € and is connected at
three-phase 380-V AC. Compute

a. The current flowing through the resistors in wye
and delta connections.

b. The power of the oven in wye and delta
connections.

7.64 Anaval in-board synchronous generator has an
apparent power of 50 kVVA and supplies a three-phase
network of 380 V. Compute the phase currents, the
active powers, and the reactive powers if

a. The power factor is 0.85.
b. The power factor is 1.

7.65 In the circuit of Figure P7.65:
vs1 = 170 cos(wt) \Y
vs2 = 170 cos(wt + 27/3) \V
vs3 = 170 cos(wt — 277/3) Vv
f =60Hz Z; =0.5£20° Q
Z; = 0.3540° Q Z3 =1.7/(-90°) Q
Determine the current through Z;, using
a. Loop/mesh analysis.
b. Node analysis.
c. Superposition.

Figure P7.65



7.66 Determine the current through R in the circuit of
Figure P7.66:

v, = 170 cos(wt) Vv

v, = 170 cos(wt — 27 /3) \Y
vz = 170 cos(wt + 27r/3) \Y
f =400 Hz R =100 Q
C =0.47 uF L =100 mH

Figure P7.66

7.67 The three sources in the circuit of Figure P7.67 are
connected in wye configuration and the loads in a delta
configuration. Determine the current through each
impedance.

vs; = 170 cos(wt) \Y

vsp = 170 cos(wt + 27/3) \Y

vsg = 170 cos(wt — 27/3) \Y

f =60Hz Z;, =3/0Q
Z,=7/7/2 Z;=0—j11Q

Figure P7.67

7.68 If we model each winding of a three-phase motor
like the circuit shown in Figure P7.68(a) and connect
the windings as shown in Figure P7.68(b), we have the
three-phase circuit shown in Figure P7.68(c). The
motor can be constructed so that R; = R, = R3 and
L; = L, = Ls, as is the usual case. If we connect the
motor as shown in Figure P7.68(c), find the currents
Tr, Tw, Tg, and Ty, assuming that the resistances are
40 2 each and each inductance is 5 mH. The frequency
of each of the sources is 60 Hz.

Part | Circuits 337

Vi Vo V3
Ry Ro
1st winding 2nd winding 3rd winding
Ly Lo
@
Vi Vo Vs
Ry Ro Rs
Ly Lo L3
RS
(b)
4162 -30°
416/ 210°

4162 90°

Rs

L3

Figure P7.68

7.69 With reference to the motor of Problem 7.68,

a. How much power (in watts) is delivered to the
motor?

b. What is the motor’s power factor?

¢. Why is it common in industrial practice not to
connect the ground lead to motors of this type?

7.70 In general, a three-phase induction motor is

designed for wye connection operation. However, for
short-time operation, a delta connection can be used at
the nominal wye voltage. Find the ratio between the
power delivered to the same motor in the wye and
delta connections.
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7.71 Aresidential four-wire system supplies power at

220V rms to the following single-phase appliances:
On the first phase, there are ten 75-W bulbs. On the
second phase, there is a 750-W vacuum cleaner with a
power factor of 0.87. On the third phase, there are ten
40-W fluorescent lamps with power factor of 0.64.
Find

a. The current in the netural wire.

b. The real, reactive, and apparent power for each
phase.

7.72 The electric power company is concerned with the

loading of its transformers. Since it is responsible for a
large number of customers, it must be certain that it
can supply the demands of all customers. The power
company’s transformers will deliver rated k\VVA to the
secondary load. However, if the demand increased to a
point where greater than rated current were required,
the secondary voltage would have to drop below rated
value. Also, the current would increase, and with it the
I°R losses (due to winding resistance), possibly
causing the transformer to overheat. Unreasonable
current demand could be caused, for example, by
excessively low power factors at the load.

The customer, on the other hand, is not greatly
concerned with an inefficient power factor, provided
that sufficient power reaches the load. To make the
customer more aware of power factor considerations,
the power company may install a penalty on the
customer’s bill. A typical penalty—power factor chart is
shown in Table 7.3. Power factors below 0.7 are not
permitted. A 25 percent penalty will be applied to any
billing after two consecutive months in which the
customer’s power factor has remained

below 0.7.

Table 7.3
Power factor Penalty
0.850 and higher ~ None
0.8 t0 0.849 1%
0.7510 0.799 2%
0.7 t0 0.749 3%

Courtesy of Detroit Edison.

The wye-wye circuit shown in Figure P7.72 is
representative of a three-phase motor load. Assume
rms values.

a. Find the total power supplied to the motor.

b. Find the power converted to mechanical energy if
the motor is 80 percent efficient.

c. Find the power factor.

d. Does the company risk facing a power factor
penalty on its next bill if all the motors in the
factory are similar to this one?

Figure P7.72

7.73 To correct the power factor problems of the motor

in Problem 7.72, the company has decided to install
capacitors as shown in Figure P7.73. Assume rms
values.

a. What capacitance must be installed to achieve a
unity power factor if the line frequency is 60 Hz?

b. Repeat part a if the power factor is to be 0.85
(lagging).

§j6Q

Figure P7.73

7.74 Find the apparent power and the real power

delivered to the load in the Y-A circuit shown in Figure
P7.74. What is the power factor? Assume rms values.



Figure P7.74

7.75 The circuit shown in Figure P7.75 is a Y-A-Y
connected three-phase circuit. The primaries of the
transformers are wye-connected, the secondaries are
delta-connected, and the load is wye-connected. Find
the currents Igp, lwp, Igp, Ia, Is, and Ic.

IA
—

4.1
100
” 10Q
I j7Q
wel 70 =
460/120°V S T K Y
||% 70
4:

|
460/0° V o

5
Igp
460/-120° V o—=— - N 10Q
|| 2=
I,
= |ded
transformer

Figure P7.75

7.76 A three-phase motor is modeled by the
wye-connected circuit shown in Figure P7.76. At
t = ty, a line fuse is blown (modeled by the switch).
Find the line currents Ig, ly, and lg and the power
dissipated by the motor in the following conditions:

At tl
b.t>t
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R
120£0°V o

Fuse
120£120° V P

t=t1

B
120£-120°V o

Figure P7.76

7.77 For the circuit shown in Figure P7.77, find the

currents I, Ig, Ic and Iy, and the real power dissipated
by the load.

220-0°

s, 20Q

110£120° V °—|

I Cc
110£-120° V o—=2=

kS —

.

Figure P7.77
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OPERATIONAL AMPLIFIERS

n this chapter we analyze the properties of the ideal amplifier and explore the
features of a general-purpose amplifier circuit known as the operational amplifier
(op-amp). Understanding the gain and frequency response properties of the
operational amplifier is essential for the user of electronic instrumentation. For-
tunately, the availability of operational amplifiers in integrated-circuit form has made
the task of analyzing such circuits quite simple. The models presented in this chapter
are based on concepts that have already been explored at length in earlier chapters,
namely, Thévenin and Norton equivalent circuits and frequency response ideas.
Mastery of operational amplifier fundamentals is essential in any practical
application of electronics. This chapter is aimed at developing your understanding
of the fundamental properties of practical operational amplifiers. A number of useful
applications are introduced in the examples and homework problems.
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Chapter 8 Operational Amplifiers

:) Learning Objectives

1. Understand the properties of ideal amplifiers and the concepts of gain, inputimpedance,
and output impedance. Section 8.1.

2. Understand the difference between open-loop and closed-loop op-amp configura-
tions; and compute the gain of (or complete the design of) simple inverting, nonin-
verting, summing, and differential amplifiers using ideal op-amp analysis. Analyze
more advanced op-amp circuits, using ideal op-amp analysis; and identify important
performance parameters in op-amp data sheets. Section 8.2.

3. Analyze and design simple active filters. Analyze and design ideal integrator and
differentiator circuits. Section 8.3.

4. Understand the principal physical limitations of an op-amp. Section 8.4.

8.1 IDEAL AMPLIFIERS

One of the most important functions in electronic instrumentation is that of amplifi-
cation. The need to amplify low-level electric signals arises frequently in a number
of applications. Perhaps the most familiar use of amplifiers arises in converting the
low-voltage signal from a cassette tape player, a radio receiver, or a compact disk
player to a level suitable for driving a pair of speakers. Figure 8.1 depicts a typical
arrangement. Amplifiers have a number of applications of interest to the non—electrical
engineer, such as the amplification of low-power signals from transducers (e.g., bio-
electrodes, strain gauges, thermistors, and accelerometers) and other, less obvious
functions that will be reviewed in this chapter, for example, filtering and impedance
isolation. We turn first to the general features and characteristics of amplifiers, before
delving into the analysis of the operational amplifier.

@©

| 5 : ©
| oooo @ | Speskers
CD player i ; ‘

Source Amplifier |
I

Figure 8.1 Amplifier in audio system

Ideal Amplifier Characteristics

The simplest model for an amplifier is depicted in Figure 8.2, where a signal vs (1) is
shown being amplified by a constant factor A, called the gain of the amplifier. Ideally,
the load voltage should be given by the expression

v (t) = Avs (t) 8.1)

Note that the source has been modeled as a Thévenin equivalent, and the load as
an equivalent resistance. Thévenin’s theorem guarantees that this picture can be
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representative of more complex circuits. Hence, the equivalent source circuit is the
circuit the amplifier “sees” from its input port; and R, the load, is the equivalent
resistance seen from the output port of the amplifier.

What would happen if the roles were reversed? That is, what does the source see
when it “looks” into the input port of the amplifier, and what does the load see when it
“looks” into the output port of the amplifier? While it is not clear at this point how one
might characterize the internal circuitry of an amplifier (which is rather complex), it
can be presumed that the amplifier will act as an equivalent load with respect to the
source and as an equivalent source with respect to the load. After all, this is a direct
application of Thévenin’s theorem. Figure 8.3 provides a pictorial representation of
this simplified characterization of an amplifier. The “black box” of Figure 8.2 is nhow
represented as an equivalent circuit with the following behavior. The input circuit has
equivalent resistance R;,, so that the input voltage v;, is given by

Rin
= v
RS + Rin

Vin S (82)
The equivalent input voltage seen by the amplifier is then amplified by a constant
factor A. This is represented by the controlled voltage source Av;,. The controlled
source appears in series with an internal resistor R,,, denoting the internal (output)
resistance of the amplifier. Thus, the voltage presented to the load is

R
= Avjp————— 8.3
. o Rout + RL ( )

or, by substituting the equation for v,

Rin RL
v =|A v 8.4
- ( R5+RmRout+RL> ° ®4)

In other words, the load voltage is an amplified version of the source voltage.

Unfortunately, the amplification factor is now dependent on both the source
and load impedances, and on the input and output resistance of the amplifier. Thus, a
given amplifier would perform differently with different loads or sources. What are
the desirable characteristics for a voltage amplifier that would make its performance
relatively independent of source and load impedances? Consider, once again, the
expression for v;,. If the input resistance of the amplifier R;, were very large, the
source voltage vs and the input voltage v;, would be approximately equal:

Vin ~ Vs (85)
since

. l:ein
lim —" _ —1 (8.6)
Rin—00 Rin + RS

By an analogous argument, it can also be seen that the desired output resistance for
the amplifier R, should be very small, since for an amplifier with R, = 0, the load
voltage would be

v = Avj, (8.7)

343
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Combining these two results, we can see that as R;, approaches infinity and R
approaches zero, the ideal amplifier magnifies the source voltage by a factor A

v = Aug (8.8)

just as was indicated in the “black box” amplifier of Figure 8.2.

Thus, two desirable characteristics for a general-purpose voltage amplifier are
avery large input impedance and a very small output impedance. In the next sections
we will show how operational amplifiers provide these desired characteristics.

8.2 THE OPERATIONAL AMPLIFIER

An operational amplifier is an integrated circuit, that is, a large collection of
individual electric and electronic circuits integrated on a single silicon wafer. An
operational amplifier—or op-amp—can perform a great number of operations, such
as addition, filtering, and integration, which are all based on the properties of ideal
amplifiers and of ideal circuit elements. The introduction of the operational ampli-
fier in integrated-circuit (IC) form marked the beginning of a new era in modern
electronics. Since the introduction of the first IC op-amp, the trend in electronic
instrumentation has been to move away from the discrete (individual-component)
design of electronic circuits, toward the use of integrated circuits for a large number
of applications. This statement is particularly true for applications of the type the non—
electrical engineer is likely to encounter: op-amps are found in most measurement
and instrumentation applications, serving as extremely versatile building blocks for
any application that requires the processing of electric signals.

Next, we introduce simple circuit models of the op-amp. The simplicity of the
models will permit the use of the op-amp as a circuit element, or building block, with-
out the need to describe its internal workings in detail. Integrated-circuit technology
has today reached such an advanced stage of development that it can be safely stated
that for the purpose of many instrumentation applications, the op-amp can be treated
as an ideal device.

The Open-Loop Model

The ideal operational amplifier behaves very much as an ideal difference amplifier,
that is, a device that amplifies the difference between two input voltages. Operational
amplifiers are characterized by near-infinite input resistance and very small output
resistance. As shown in Figure 8.4, the output of the op-amp is an amplified version
of the difference between the voltages present at the two inputs:*

Vout = AV(OL)(er - vi) (89)

The input denoted by a plus sign is called the noninverting input (or terminal), while
that represented with a minus sign is termed the inverting input (or terminal). The
amplification factor, or gain, Ay o) is called the open-loop voltage gain and is quite
large by design, typically on the order of 10° to 107; it will soon become apparent
why a large open-loop gain is a desirable characteristic. Together with the high input
resistance and low output resistance, the effect of a large amplifier open-loop voltage
gain Ay o) is such that op-amp circuits can be designed to perform very nearly as

1The amplifier of Figure 8.4 is a voltage amplifier; another type of operational amplifier, called a current
or transconductance amplifier, is described in the homework problems.
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Positive
. power supply
lin o,
+ —> +
Ve Inverting input Vs
+ o—
L Rout
Vin :E Rin MW O
3 + Output
- Av(oL)Vin . O—
1L v Noninverting input _
O 1 = out Vs
_ Negative
i power supply
Op-amp model L Simplified circuit symbol
oVs .
Offset null No connection
} Inverting input
Inverting Noninverting input Output
input in —
Noninverting 4 Output Offset null
input in +
%E HJ_‘ Integrated-circuit operational
1 amplifier (IC op-amp)

o Vs

1C op-amp diagram

Figure 8.4 Operational amplifier model symbols, and circuit diagram

ideal voltage or current amplifiers. In effect, to analyze the performance of an op-amp
circuit, only one assumption will be needed: that the current flowing into the input
circuit of the amplifier is zero, or

i =0 (8.10)

This assumption is justified by the large input resistance and large open-loop gain of
the operational amplifier. The model just introduced will be used to analyze three
amplifier circuits in the next part of this section.

The Operational Amplifier in Closed-Loop Mode

The Inverting Amplifier

One of the more popular circuit configurations of the op-amp, because of its simpli-
city, is the so-called inverting amplifier, shown in Figure 8.5. The input signal to be
amplified is connected to the inverting terminal, while the noninverting terminal is
grounded. It will now be shown how it is possible to choose an (almost) arbitrary

FIND IT

ON THE WEB




346 Chapter 8 Operational Amplifiers

gain for this amplifier by selecting the ratio of two resistors. The analysis is begun by

noting that at the inverting input node, KCL requires that

_Rs is +iF =iy (8.11)
\AAAS

e The current i, which flows back to the inverting terminal from the output, is appro-

Vs priately termed feedback current, because it represents an input to the amplifier that

—is “fed back” from the output. Applying Ohm’s law, we may determine each of the

T O three currents shown in Figure 8.5:

i - ) Vs — U~ ) Vout — U .

Figure 8.5 Inverting Is = > iP= i, =0 (8.12)

amplifier Rs Re

(the last by assumption, as stated earlier). The voltage at the noninverting input v is
easily identified as zero, since it is directly connected to ground: v* = 0. Now, the
open-loop model for the op-amp requires that

Vout = Aviony vt —v7) = —Avoyv” (8.13)

or

_ Vout

Vo= — 8.14

Av ou) (8.19)

Having solved for the voltage present at the inverting input v in terms of v, we

may now compute an expression for the amplifier gain vy, /vs. This quantity is called

the closed-loop gain, because the presence of a feedback connection between the
output and the input constitutes a closed loop.? Combining equations 8.11 and 8.12,

We can write

is = —if (8.15)

and

Us Uout VUout Uout

—t = —— - 8.16

RS AV(OL)RS RF AV(OL)RF ( )

which leads to the expression

Us _ ~ Vour Vout B Vout 8.17)

Rs Re AvouRF  AvopRs .
or
1 1 1
s = —U, + + ) 8.18
(RF/RS AvooRe/Rs | Avion (8.18)

If the open-loop gain of the amplifier Ay, is sufficiently large, the terms
1/(AvoRe/Rs) and 1/Ayo are essentially negligible, compared with
1/(Re/Rs). As stated earlier, typical values of Ay, range from 10° to 107,
and thus it is reasonable to conclude that, to a close approximation, the following
expression describes the closed-loop gain of the inverting amplifier:

:> ou R . - .
LO2 You _ —R—F Inverting amplifier closed-loop gain (8.19)

2This terminology is borrowed from the field of automatic controls, for which the theory of closed-loop
feedback systems forms the foundation.
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Thatis, the closed-loop gain of an inverting amplifier may be selected simply by the ap-
propriate choice of two externally connected resistors. The price for this
extremely simple resultisan inversion of the output with respect to the input—that is, a
minus sign.

Next, we show that by making an additional assumption it is possible to simplify
the analysis considerably. Consider that, as was shown for the inverting amplifier, the
inverting terminal voltage is given by

_ Uout
vo=— 8.20
Av (oL) ( )
Clearly, as Ay o) approaches infinity, the inverting-terminal voltage is going to be
very small (practically, on the order of microvolts). It may then be assumed that in
the inverting amplifier, v— is virtually zero:
v ~0 (8.21)

This assumption prompts an interesting observation (which may not yet appear
obvious at this point):

The effect of the feedback connection from output to inverting input is to force
the voltage at the inverting input to be equal to that at the noninverting input.

This is equivalent to stating that for an op-amp with negative feedback,
vo A v (8.22)

The analysis of the operational amplifier can now be greatly simplified if the following
two assumptions are made:

1. §i;,=0 Assumptions for analysis of ideal

2. v~ =v" op-amp with negative feedback (8.23)

This technique will be tested in the next subsection by analyzing a noninverting
amplifier configuration. Example 8.1 illustrates some simple design considerations.

CHECK YOUR UNDERSTANDING

Consider an op-amp connected in the inverting configuration with a nominal closed-loop gain
—Rg/Rs = —1,000 (this would be the gain if the op-amp had infinite open-loop gain). Derive
an expression for the closed-loop gain that includes the value of the open-loop voltage gain as
aparameter (Hint: Start with equation 8.18, and do not assume that Ay (o) is infinite.); compute
the closed-loop gain for the following values of Ay oy): 107, 105, 10%, 10*. How large should
the open-loop gain be if we desire to achieve the intended closed-loop gain with less than 0.1
percent error?

"50T [enba pjnoys (19)Ay ‘Aaeinage Jusasad T°0 104 “T'606 ‘T°066 ‘0'666 ‘T'666 SIomsuy
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Why Feedback?

Why is such emphasis placed on the notion of an
amplifier with a very large open-loop gain and with
negative feedback? Why not just design an amplifier
with a reasonable gain, say, x10, or x100, and just
use it as such, without using feedback connections?
In these paragraphs, we hope to answer these and
other questions, introducing the concept of negative
feedback in an intuitive fashion.

The fundamental reason for designing an
amplifier with a very large open-loop gain is the flex-
ibility it provides in the design of amplifiers with an
(almost) arbitrary gain; it has already been shown that
the gain of the inverting amplifier is determined by
the choice of two external resistors—undoubtedly a
convenient feature! Negative feedback is the mech-
anism that enables us to enjoy such flexibility in the
design of linear amplifiers.

To understand the role of feedback in the
operational amplifier, consider the internal structure
ofthe op-ampshowninFigure8.4. Thelarge open-loop
gain causes any difference in voltage at the input
terminals to appear greatly amplified at the output.
When a negative feedback connection is provided,
as shown, for example, in the inverting amplifier of
Figure 8.5, the output voltage v, causes a current
ir to flow through the feedback resistance so that
KCL is satisfied at the inverting node. Assume, for a
moment, that the differential voltage

Av=v"—0v~
is identically zero. Then the output voltage will
continue to be such that KCL is satisfied at the
inverting node, that is, such that the current ir is equal
to the current is.

Suppose, now, that a small imbalance in voltage
Avispresentattheinputtothe op-amp. Thenthe output
voltage will be increased by an amount Ay o) Av.
Thus, an incremental current approximately equal
to Ay o) Av/Re will flow from output to input via
the feedback resistor. The effect of this incremental
current is to reduce the voltage difference Av to zero,
so as to restore the original balance in the circuit.
One way of viewing negative feedback, then, is to
consider it a self-balancing mechanism, which allows
the amplifier to preserve zero potential difference
between its input terminals.

A practical example that illustrates a common
application of negative feedback is the thermostat.
This simple temperature control system operates
by comparing the desired ambient temperature and
the temperature measured by a thermometer and
turning a heat source on and off to maintain the
difference between actual and desired temperature
as close to zero as possible. An analogy may be
made with the inverting amplifier if we consider that,
in this case, negative feedback is used to keep the
inverting-terminal voltage as close as possible to the
noninverting-terminal voltage. The latter voltage is
analogous to the desired ambient temperature in your
home, while the former plays a role akin to that of
the actual ambient temperature. The open-loop gain
of the amplifier forces the two voltages to be close to
each other, in much the same way as the furnace raises
the heat in the house to match the desired ambient
temperature.

It is also possible to configure operational
amplifiers in a positive feedback configuration if the
output connection is tied to the noninverting input.

EXAMPLE 8.1

L02>

Problem

Inverting Amplifier Circuit

Determine the voltage gain and output voltage for the inverting amplifier circuit of Figure 8.5.
What will the uncertainty in the gain be if 5 and 10 percent tolerance resistors are used,
respectively?
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Solution
Known Quantities: Feedback and source resistances; source voltage.
Find: Ay = vou/vin; maximum percent change in Ay for 5 and 10 percent tolerance resistors.

Schematics, Diagrams, Circuits, and Given Data: Rs = 1 kQ; R = 10 k2;
vs(t) = Acos(wt); A =0.015V, w = 50 rad/s.

Assumptions: The amplifier behaves ideally; that is, the input current into the op-amp is zero,
and negative feedback forces v = v™.

Analysis: Using equation 8.19, we calculate the output voltage:

R
Vout(t) = Ay X vs(t) = —Ri x vs(t) = —10 x 0.015cos(wt) = —0.15 cos(wt)
S

The input and output waveforms are sketched in Figure 8.6.
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> -0.05 | || 'l || : 1 ,l ' || 'l || l' 1 'l Il out(t)
| | 1
o1l “n 1 ') Vi iy |,l |,' “
015 W \\’ I ‘a LY \U \\.’ I ‘J Y1
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Time, s
Figure 8.6
The nominal gain of the amplifier is Ay ,om = —10. If 5 percent tolerance resistors are
employed, the worst-case error will occur at the extremes:
RE mi 9,500 R 10,500
Ay min = — 11— _ =905 Ay =——% = _ =11.05
RS max 17050 RS min 950

The percentage error is therefore computed as

Avnom — AV mi 10 — 9.05
100 x —Yrom T IVMN _ 00 x " — 9.5%
\/ nom 10
Avnom — A 10 — 11.05
100 x —Yom IV _ 400 x — = — _10.5%
AVnom 10

Thus, the amplifier gain could vary by as much as £10 percent (approximately) when 5 percent
resistors are used. If 10 percent resistors were used, we would calculate a percent error of
approximately + 20 percent, as shown below.

RE min 9,000 RE max 11,000
Ay min = — S —818 Ay = — S =122
Vi R 1,100 VT Re min 900
Avrom — Ay mi 10 — 8.18
100 x —Ymom T IVIN _ 100 x "0 — 18.2%
Avnom 10
Avnom — A 10 — 12.2
100 x —Yom IV _ 100 x — =% — 2220

AV nom 10
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Comments: Note that the worst-case percent error in the amplifier gain is double the resistor
tolerance.

Vsy

Figure 8.7 Summing

amplifier

CHECK YOUR UNDERSTANDING

Calculate the uncertainty in the gain if 1 percent “precision” resistors are used.

1d2Jad 0Z'Zz— 01 86'T+ :Jamsuy

The Summing Amplifier

Auseful op-amp circuit that is based on the inverting amplifier is the op-amp summer,
or summing amplifier. This circuit, shown in Figure 8.7, is used to add signal sources.
The primary advantage of using the op-amp as a summer is that the summation occurs
independently of load and source impedances, so that sources with different internal
impedances will not interact with one another. The operation of the summing amplifier
is best understood by application of KCL at the inverting node: The sum of the N
source currents and the feedback current must equal zero, so that

i1 +ip+ - +iy = —if (8.24)

But each of the source currents is given by

=2  n=12_. ., N (8.25)
Rs,

while the feedback current is

= ot (8.26)

ir =
F Re

Combining equations 8.25 and 8.26, and using equation 8.15, we obtain the following
result:

N
3 ;’jn - _% (8.27)
~ Rs, F
or
YR
Vo =— ) “F s, Summing amplifier (8.28)
n=1 RS"

That is, the output consists of the weighted sum of N input signal sources, with the
weighting factor for each source equal to the ratio of the feedback resistance to the
source resistance.
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The Noninverting Amplifier

To avoid the negative gain (i.e., phase inversion) introduced by the inverting amplifier,
a noninverting amplifier configuration is often employed. A typical noninverting
amplifier isshown in Figure 8.8; note that the input signal is applied to the noninverting
terminal this time.

The noninverting amplifier can be analyzed in much the same way as the
inverting amplifier. Writing KCL at the inverting node yields

i =is +ij, s (8.29)
where

. Vout — V™

_ 8.30
Ig RF ( )

.

i = — 8.31
Is Rs ( )

Now, since i;, = 0, the voltage drop across the source resistance R is equal to zero.
Thus,

v =g (8.32)

and, using equation 8.22, we get

v =vt =g (8.33)
Substituting this result in equations 8.29 and 8.30, we can easily show that
iF =g (8.34)
or
P 705 _ 18 (8.35)
Re Rs
It is easy to manipulate equation 8.35 to obtain the result
Vo _ 4 + Re Noninverting a.mplifier (8.36)
Vs Rs closed-loop gain

which is the closed-loop gain expression for a noninverting amplifier. Note that the
gain of this type of amplifier is always positive and greater than (or equal to) 1.

The same result could have been obtained without making the assumption that
vt = v, at the expense of some additional work. The procedure one would follow
in this latter case is analogous to the derivation carried out earlier for the inverting
amplifier, and it is left as an exercise.

In summary, in the preceding pages it has been shown that by constructing a
nonideal amplifier with very large gain and near-infinite input resistance, it is possible
to design amplifiers that have near-ideal performance and provide a variable range
of gains, easily controlled by the selection of external resistors. The mechanism
that allows this is negative feedback. From here on, unless otherwise noted, it will
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Figure 8.8 Noninverting
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be reasonable and sufficient in analyzing new op-amp configurations to utilize these
two assumptions:

1. i,=0 Approximations used for ideal

8.37
2. v =" op-amps with negative feedback (8:37)

Tjn —=

in
\
out
O

T hd

Figure 8.9 \oltage follower

EXAMPLE 8.2 Voltage Follower

Problem

Determine the closed-loop voltage gain and input resistance of the voltage follower circuit of
Figure 8.9.

Solution
Known Quantities: Feedback and source resistances; source voltage.
Find:

AV = I = -
Us lin

Vin

Assumptions: The amplifier behaves ideally; that is, the input current into the op-amp is zero,
and negative feedback forces v = v™.

Analysis: From the ideal op-amp assumptions, vt = v~. But v™ = vs and v~ = v, thus

Vs = Uout \oltage follower

The name voltage follower derives from the ability of the output voltage to “follow” exactly
the input voltage. To compute the input resistance of this amplifier, we observe that since the
input current is zero,

ri = va — 00

lin

Comments: The input resistance of the voltage follower is the most important property of the
amplifier: The extremely high input resistance of this amplifier (on the order of megohms to
gigohms) permits virtually perfect isolation between source and load and eliminates loading
effects. Voltage followers, or impedance buffers, are commonly packaged in groups of four or
more in integrated-circuit form.

CHECK YOUR UNDERSTANDING

Derive an expression for the closed-loop gain of the voltage follower that includes the value
of the open-loop voltage gain as a parameter. (Hint: Follow the procedure of equations 8.11
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through 8.19 with the appropriate modifications, and do not assume that Ay ) is infinite.)
How large should the open-loop gain be if we desire to achieve the intended closed-loop gain
(unity) with less than 0.1 percent error?

"Aoeanooe Juaoiad 1°Q 10) ,0T [enba pjnoys
(0)Ay snyy :(10Ay /T + T = Ua /1 s urel dooj-pasold ay} Joj UoIssaldxa ay L :Jamsuy

The Differential Amplifier

The third closed-loop model examined in this chapter is a combination of the inverting
and noninverting amplifiers; it finds frequent use in situations where the difference
between two signals needs to be amplified. The basic differential amplifier circuit is
shown in Figure 8.10, where the two sources v; and v, may be independent of each
other or may originate from the same process.

The analysis of the differential amplifier may be approached by various methods;
the one we select to use at this stage consists of

1. Computing the noninverting- and inverting-terminal voltages v* and v™.
2. Equating the inverting and noninverting input voltages: v= = v™.
3. Applying KCL at the inverting node, where i, = —ij.

Since it has been assumed that no current flows into the amplifier, the noninverting-
terminal voltage is given by the following voltage divider:

+ R
= Uz
Ri+R2

(8.38)

If the inverting-terminal voltage is assumed equal to v»™, then the currents i; and i,
are found to be

. v — vt

ip = 8.39

1= (8.39)
and

. Vout — vt

ip= ——— 8.40

2= (8.40)
and since

ip = —iy (8.41)
the following expression for the output voltage is obtained:

—V1 1 RZ
ot = Ro | — + + 8.42
T [ Ri  RitR.~ RiRi+ Rz)vz] (642

Figure 8.10 Differential
amplifier
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R . . o .
Vout = R—Z(vz —v1) Differential amplifier closed-loop gain
1

Thus, the differential amplifier magnifies the difference between the two input signals
by the closed-loop gain Ry /R;.

In practice, it is often necessary to amplify the difference between two signals
that are both corrupted by noise or some other form of interference. In such cases,
the differential amplifier provides an invaluable tool in amplifying the desired signal
while rejecting the noise.

In summary, Table 8.1 provides a quick reference to the basic op-amp circuits
presented in this section.

CHECK YOUR UNDERSTANDING
Derive the result given above for the differential amplifier, using the principle of superposition.

Think of the differential amplifier as the combination of an inverting amplifier with input equal
to v, and a noninverting amplifier with input equal to v;.

T
(fa — Za)z—a = 1"a Jamsuy
d

Table 8.1 Summary of basic op-amp circuits

Closed-loop gain
(under ideal assumptions of

Configuration Circuit diagram equation 8.23)
. - . Re
Inverting amplifier Figure 8.5 Vout = — R—vs
S
. - . R R R
Summing amplifier Figure 8.7 Vout = — V81 — vy — <+ — — g
R1 R2 Rn
. . . . Re
Noninverting amplifier Figure 8.8 vout = | 1+ Re vs
S
\oltage follower Figure 8.9 Vout = Vs
. . . . R
Differential amplifier Figure 8.10 Vout = R—z(vz —v1)
1

EXAMPLE 8.3 Electrocardiogram (EKG) Amplifier FIND IT

This example illustrates the principle behind a two-lead electrocardiogram
(EKG) measurement. The desired cardiac waveform is given by the diff- [ENEr==
erence between the potentials measured by two electrodes suitably placed

on the patient’s chest, as shown in Figure 8.11. A healthy, noise-free EKG

waveform v; — v, is shown in Figure 8.12.
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electrocardiogram
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Electronics

Unfortunately, the presence of electrical equipment powered by the 60-Hz, 110-V AC line
current causes undesired interference at the electrode leads: the lead wires act as antennas and
pick up some of the 60-Hz signal in addition to the desired EKG voltage. In effect, instead of
recording the desired EKG signals v; and v,, the two electrodes provide the following inputs

to the EKG amplifier, shown in Figure 8.13:
Lead 1:

va(t) + vn(t) = va(t) + Vq COS377t + ¢p)

Vn(t)
Lead 2 }
circuit for }
+ lead2 |
I R
Leaj l ] AY‘V‘Y‘Y

[

Vi Equivalent
circuit for EKG
L lead 1

Figure 8.13 EKG amplifier

Lead 2:
v2(t) + vn(t) = v2(t) + Vi cOS(377t + ¢hn)

amplifier

The interference signal V, cos(377t + ¢y) is approximately the same at both leads, because
the electrodes are chosen to be identical (e.g., they have the same lead lengths) and are in
close proximity to each other. Further, the nature of the interference signal is such that it is
common to both leads, since it is a property of the environment in which the EKG instrument
is embedded. On the basis of the analysis presented earlier, then,

R
Vout = R—j{[vl + vn®)] = [v2 + va®]}

or

—RZ( )
Vot = — (v — v
out R 1 2
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Thus, the differential amplifier nullifies the effect of the 60-Hz interference, while amplifying
the desired EKG waveform.

The differential amplifier provides the ability to reject common-mode signal
components (such as noise or undesired DC offsets) while amplifying the differential-
mode components. This is a very desirable feature in instrumentation systems. In
practice, rejection of the common-mode signal is not complete: some of the common-
mode signal component will always appear in the output. This fact gives rise to a figure
of merit called the common-mode rejection ratio, which is discussed in Section 8.6.

Often, to provide impedance isolation between bridge transducers and the
differentialamplifier stage, the signals v; and v, areamplified separately. Thistechnique
gives rise to the instrumentation amplifier (1A), shown in Figure 8.14. Example 8.4
illustrates the calculation of the closed-loop gain for a typical instrumentation
amplifier.

Figure 8.14 Instrumentation amplifier

EXAMPLE 8.4 Instrumentation Amplifier

Problem

Determine the closed-loop voltage gain of the instrumentation amplifier circuit of Figure 8.14.

Solution
Known Quantities: Feedback and source resistances.

Find:
Ay = o (8.43)

Vg — U2

Assumptions: Assume ideal op-amps.

Analysis: We consider the input circuit first. Thanks to the symmetry of the circuit, we can
represent one-half of the circuit as illustrated in Figure 8.15(a), depicting the lower half of the
first stage of the instrumentation amplifier. We next recognize that the circuit of Figure 8.15(a)
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is a noninverting amplifier (see Figure 8.8), and we can directly write the expression for the
closed-loop voltage gain (equation 8.36):

R 2R
2 _q

A=1
+ R1/2 Ry

Each of the two inputs v; and v, is therefore an input to the second stage of the instrumentation
amplifier, shown in Figure 8.15(b). We recognize the second stage to be a differential amplifier
(see Figure 8.10), and can therefore write the output voltage after equation 8.42:

R R 2R
Vout = FF (Av; — Avy) = ?F ( + R—f) (v1 — vp) (8.44)

from which we can compute the closed-loop voltage gain of the instrumentation amplifier:

R 2R . -
Ay = —om _TF (g, Instrumentation amplifier
V1 — Vg R R1

R Re
J:_ sR A2
- 32
>
EE Ry Vout
——O
Vi R
Avy
Re

(€Y (b)

Figure 8.15 Input (a) and output (b) stages of instrumentation amplifier
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Because the instrumentation amplifier has widespread application—and in
order to ensure the best possible match between resistors—the entire circuit of
Figure 8.14 is often packaged as a single integrated circuit. The advantage of this
configuration is that resistors R; and R, can be matched much more precisely in an
integrated circuit than would be possible by using discrete components. A typical,
commercially available integrated-circuit package is the AD625. Data sheets for this
device are provided on the website.

Another simple op-amp circuit that finds widespread application in electronic
instrumentation is the level shifter. Example 8.5 discusses its operation and its
application.
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|_02> EXAMPLE 8.5 Level Shifter
Problem
The level shifter of Figure 8.16 has the ability to add or subtract a DC offset to or from a signal.
MW Analyze the circuit and design it so that it can remove a 1.8-V DC offset from a sensor output
signal.
Vs
Vensor  Rs
9  Solution
out
- Known Quantities: Sensor (input) voltage; feedback and source resistors.
Vref Vs

1

Figure 8.16 Level shifter

R

Vs

—o0
AR
Lo

f

Figure 8.17

Find: Value of Vs required to remove DC bias.

Schematics, Diagrams, Circuits, and Given Data: vs(t) = 1.8 4+ 0.1 cos(wt);
R = 220 k2; Rs = 10 k2.

Assumptions: Assume an ideal op-amp.

Analysis: We first determine the closed-loop voltage gain of the circuit of Figure 8.16. The
output voltage can be computed quite easily if we note that, upon applying the principle of
superposition, the sensor voltage sees an inverting amplifier with gain —Rg/Rs, while the
battery sees a noninverting amplifier with gain 1 + Rg/Rs. Thus, we can write the output
voltage as the sum of two outputs, due to each of the two sources:

R R
Vout = —Rizvsensor + <1 + é) Vet

Substituting the expression for veensor into the equation above, we find that

R R
Vout = ———[1.8 4 0.1cos(wt)] + (1 + —— ) Vier
Rs Rs

Rr Rr Re
= ——J[0.1cos(wt)] — — (1.8 1+ — )V
RS[ (wb)] RS( )+< +Rs) ref
Since the intent of the design is to remove the DC offset, we require that

Re Re
-— (1.8 1+ — | Ver=0
RS( )+( +Rs> ref

or

Ver = 18R g 714y
1+ Re/Rs
Comments: The presence of a precision voltage source in the circuit is undesirable, because
it may add considerable expense to the circuit design and, in the case of a battery, it is not
adjustable. The circuit of Figure 8.17 illustrates how one can generate an adjustable voltage
reference by using the DC supplies already used by the op-amp, two resistors R, and a poten-
tiometer Ry,. The resistors R are included in the circuit to prevent the potentiometer from being
shorted to either supply voltage when the potentiometer is at the extreme positions. Using the
voltage divider rule, we can write the following expression for the reference voltage generated

by the resistive divider:

Viet = m (Vs —Vs)
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If the voltage supplies are symmetric, as is almost always the case, we can further simplify the
expression to

R+ AR

Vi = £0————
ref 2R+Rp

Vs

Note that by adjusting the potentiometer R, we can obtain any value of V,; between the supply
voltages.
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CHECK YOUR UNDERSTANDING

With reference to Example 8.5, find AR if the supply voltages are symmetric at +15 V and a
10-k<2 potentiometer is tied to the two 10-k<2 resistors.

With reference to Example 8.5, find the range of values of V. if the supply voltages are
symmetric at 15 V and a 1-k<2 potentiometer is tied to the two 10-kS2 resistors.

A VTLOF usamiag sl #A 15 1.9 = YV Slamsuy

EXAMPLE 8.6 Temperature Control Using Op-Amps

Problem

One of the most common applications of op-amps is to serve as a building block in
analog control systems. The objective of this example is to illustrate the use of op-amps in
a temperature control circuit. Figure 8.18(a) depicts a system for which we wish to maintain
a constant temperature of 20°C in a variable temperature environment. The temperature of
the system is measured via a thermocouple. Heat can be added to the system by providing
a current to a heater coil, represented in the figure by the resistor Re;. The heat flux thus
generated is given by the quantity gi, = i°Ree;, where i is the current provided by a power
amplifier and R is the resistance of the heater coil. The system is insulated on three sides,
and loses heat to the ambient through convective heat transfer on the fourth side [right-hand
side in Figure 18(a)]. The convective heat loss is represented by an equivalent thermal resis-
tance, R;. The system has mass m, specific heat c, and its thermal capacitance is C; = mc (see
Make the Connection — Thermal Capacitance, p. 180 and Make the Connection — Thermal
System Dynamics, p. 181 in Chapter 5).

Solution

Known Quantities: Sensor (input) voltage; feedback and source resistors; thermal system
component values.

Find: Select desired value of proportional gain, Kp, to achieve automatic temperature control.

Schematics, Diagrams, Circuits, and Given Data: R = 5Q; Ry = 2°C/ W; C; = 50 J/°C;
a = 1V/°C. Figure 8.18 (a), (b), (c), (d).

Assumptions: Assume ideal op-amps.

Analysis: The thermal system is described by the following equation, based on conservation
of energy.

Qin — Jout = Ostored

<L02
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where gi, represents the heat added to the system by the electrical heater, gq.: represents the
heat lost from the system through convection to the surrounding air, and Qsoreq represents the
heat stored in the system through its thermal capacitance. In the system of Figure 8.18(a),
the temperature, T, of the system is measured by a thermocouple that we assume produces a
voltage proportional to temperature: vemp = oT. Further, we assume that the power amplifier
can be simply modeled by a voltage-controlled current source, as shown in the figure, such
that its current is proportional to an external voltage. This error voltage, ve, depends on the
difference between the actual temperature of the system, T, and the reference temperature, Ty,
that is, ve = vrer — Viemp = (Trer —T). With reference to the block diagram of Figure 8.18(b), we
see that to maintain the temperature of the system at the desired level, we can use the difference
voltage v, as an input to the power amplifier [the controlled current source of Figure 8.18(a)].
You should easily convince yourself that a positive v, corresponds to the need for heating
the system, since a positive v, corresponds to a system temperature lower than the reference
temperature. Next, the power amplifier can output a positive current for a positive ve. Thus,
the block diagram shown in Figure 8.18(b) corresponds to an automatic control system that
automatically increases or decreases the heater coil current to maintain the system temperature
at the desired (reference) value. The “Amplifier” block in Figure 8.18(b) gives us the freedom
to decide how much to increase the power amplifier output current to provide the necessary
heating. The proportional gain of the amplifier, Kp, is a design parameter of the circuit that
allows the user to optimize the response of the system for a specific design requirement. For
example, a system specification could require that the automatic temperature control system
be designed so as to maintain the temperature to within 1 degree of the reference temperature
for external temperature disturbances as large as 10 degrees. As you shall see, we can adjust
the response of the system by varying the proportional gain.

The objective of this example is to show how operational amplifiers can be used to pro-
vide two of the functions illustrated in the block diagram of Figure 8.18(b): (1) the summing
amplifier computes the difference between the reference temperature and the system tempera-
ture; and (2) an inverting amplifier implements the proportional gain function that allows the
designer to select the response of the amplifier by choosing an appropriate proportional gain.

Thermal insulation

i Cy=mc
| —— t T
R T~ e
i= —ZVe q
R, R, out
Reoil Gin | o
I +
= Thermocouple /{ Viemp

Figure 8.18 (a) Thermal system

i Thermal system 7

V,
Power Amplifier with Ve —
amplifier I~ (variable) . ( )+

proportional gain Kp

temp

Vref

Figure 8.18 (b) Block diagram of control system
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Figure 8.18(c) depicts the two-stage op-amp circuit that performs these functions. The first
element is an inverting amplifier with unity gain, with the function of changing the sign of .
The second amplifier, and inverting summing amplifier, adds viemp t0 —vrer and inverts the sum
of these two signals, while at the same time amplifying it by the gain R,/R;. Thus, the output
of the circuit of Figure 8.18(c) consists of the quantity Ro/R1 (vrer — viemp) = Kp (Vret — Vtemp)-
In other words, selection of the feedback resistor R, is equivalent to choosing the gain Kp.

To analyze the response of the system for various values of Kp, we must first under-
stand how the system responds in the absence of automatic control. The differential equation
describing the system is:

TO-Ta _ 4T
R U dt

qin(t) -

dT(t)
dt
qin(t) = Rcoili2 (t)

RiCi

+ T(t) = thin(t) + Ta

Rl
A R,
Ry MWW
—AAA _
VVV¥ R1
A
WW -
Vref ‘ —o
+ +
B . o2 Ve
— Viemp — R,

Figure 8.18 (c) Circuit for generating error voltage and proportional gain
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Figure 8.18 (d) Response of thermal system for various values of proportional gain, Kp
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Figure 8.18 (e) Power amplifier output current for various proportional gain, K,

Thus, the thermal system is a first-order system, and its time constant is t = R;{C; = 2°C/W
x 50 J/°C = 100 s. The inputs to the system are the ambient temperature, T,, and the heat
flux, gin, which is proportional to the square of the heater coil current. Imagine now that
the thermal system is suddenly exposed to a 10-degree change in ambient temperature (for
example, a drop from 20°C to 10°C). Figure 8.18(d) depicts the response of the system for
various values of Kp. Kp = 0 corresponds to the case of no automatic control—that is, the open
loop response of the system. In this case, we can clearly see that the temperature of the system
drops exponentially from 20 to 10 degrees with a time constant of 100 s. This is so because no
heating is provided from the power amplifier. As the gain Kp is increased to 1, the difference
or “error” voltage, ve, increases as soon as the temperature drops below the reference value.
Since o = 1, the voltage is numerically equal to the temperature difference. Figure 8.18(d)
shows the temperature response for values of Kp ranging from 1 to 50. You can see that as the
gain increases, the error between the desired and actual temperatures decreases very quickly.
In particular, the error becomes less than 1 degree, which is the intended specification, for
Kp = 5 (in fact, we could probably achieve the specification with a gain slightly less than 5).
To better understand the inner workings of the automatic temperature control system, it is also
helpful to look at the error voltage, which is amplified to provide the power amplifier output
current. With reference to Figure 8.18(e), we can see that when Kp = 1, the current increases
somewhat slowly to a final value of about 2.7 A; as the gain is increased to 5 and 10, the current
response increases more rapidly, and eventually settles to values of 3 and 3.1 A, respectively.
The steady-state value of the current is reached in about 20 s for Kp = 5, and in about 10 s
for Kp = 10.

Comments: Please note that even though the response of the system is satisfactory, the
temperature error is not zero. That is, the automatic control system has a steady-state error.
The design specifications recognized this fact by specifying that a 1°C tolerance was sufficient.
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CHECK YOUR UNDERSTANDING

How much steady-state power, in Watts, will be input to the thermal system of Example 8.6 to
maintain its temperature in the face of a 10°C ambient temperature drop for values of Kp of 1,
5, and 10?

M 87 0T = M M G :G = IM M G'9E T = 9 Slamsuy

Practical Op-Amp Design Considerations < LO2

The results presented in the preceding pages
suggest that operational amplifiers permit the
design of a rather sophisticated circuit in a few very
simple steps, simply by selecting appropriate resistor
values. This is certainly true, provided that the circuit
component selection satisfies certain criteria. Here we
summarize some important practical design criteria
that the designer should keep in mind when selecting
component values for op-amp circuits. Section 8.6
exploresthe practical limitations of op-amps in greater
detail.

1. Usestandard resistor values. While any arbitrary
value of gain can, in principle, be achieved by
selecting the appropriate combination of resis-
tors, the designer is often constrained to the
use of standard 5 percent resistor values (see
Table 2.1). For example, if your design requires
a gain of 25, you might be tempted to select, say,
100- and 4-k<2 resistors to achieve Rg /Rs = 25.
However, inspection of Table 2.1 reveals that
4 k2 is not a standard value; the closest 5 per-
cent tolerance resistor value is 3.9 k2, leading to
a gain of 25.64. Can you find a combination of
standard 5 percent resistors whose ratio is closer
to 25?

2. Ensure that the load current is reasonable
(do not select very small resistor values).
Consider the same example given in step 1.
Suppose that the maximum output voltage is
10 V. The feedback current required by your
design with Rg =100k and Rs =4KkQ
would be I = 10/100,000 = 0.1 mA. Thisis a

very reasonable value for an op-amp, as
explained in section 8.6. If you tried to achieve
the same gain by using, say, a 10-Q feedback
resistor and a 0.39-2 source resistor, the feed-
back current would become as large as 1 A.
This is a value that is generally beyond the ca-
pabilities of a general-purpose op-amp, so the
selection of exceedingly low resistor values is
not acceptable. On the other hand, the selection
of 10-k2 and 390-€2 resistors would still lead
to acceptable values of current, and would be
equally good. As a general rule of thumb, you
should avoid resistor values lower than 100
in practical designs.
Avoidstraycapacitance(donotselectexcessively
large resistor values). The use of exceedingly
large resistor values can cause unwanted signals
to couple into the circuit through a mechanism
known as capacitive coupling. Large resistance
values can also cause other problems. As a
general rule of thumb, avoid resistor values
higher than 1 M in practical designs.
Precision designs may be warranted. If a
certain design requires that the amplifier gain
be set to a very accurate value, it may be
appropriate to use the (more expensive) option
of precision resistors: for example, 1 percent
tolerance resistors are commonly available, ata
premium cost. Some of the examples and home-
work problems explore the variability in gain
due to the use of higher- and lower-tolerance
resistors.
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USING OP-AMP DATA SHEETS @
Here we illustrate use of device data sheets for two commonly used operational amplifiers. The Z00d=) 0

first, the LM741, is a general-purpose (low-cost) amplifier; the second, the LMC6061, is a pre-
cision CMOS high-input-impedance single-supply amplifier. Excerpts from the data sheets are
shown below, with some words of explanation. Later in this chapter we compare the electrical ONAEEWEE
characteristics of these two op-amps in greater detail.

LM741 General Description and Connection Diagrams—This sheet summarizes the general characteristics
of the op-amp. The connection diagrams are shown. Note that the op-amp is available in various packages:
a metal can package, a dual-in-line package (DIP), and two ceramic dual-in-line options. The dual-in-line (or
S.0.) package is the one you are most likely to see in a laboratory. Note that in this configuration the integrated
circuit has eight connections, or pins: two for the voltage supplies (V' and V ~); two inputs (inverting and
noninverting); one output; two offset null connections (to be discussed later in the chapter); and a no-connection
(NC) pin.

LM741 Operational Amplifier

General Description

The LM741 series are general-purpose operational amplifiers which feature improved performance over
industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439,
and 748 in most applications.

The amplifiers offer many features which make their application nearly foolproof: overload protection
on the input and output, no latch-up when the common-mode range is exceeded, as well as freedom from
oscillations.

The LM741C and LM741E are identical to the LM741 and LM741A except that the LM741C and
LM741E have their performance guaranteed over a 0 to +70°C temperature range, instead of
—55 to +125°C.

Ceramic dual-in-line package

Metal can package U
NC NCH1 14 NC
(8) NC+H2 13FNC
o
Offset nuIV +Offset null {3 12| NC
—-In44 11FVv*
Inverting input Output
g input (D } © p +1n45 10 - Out
Noninverting input (3) (5) Offset null V™16 9~ Offset null

@ NCH{7 8 NC

v-

Order number LM7413-14/883*, LM741A J14/883**
Order number LM741H, LM741H/883*, See NS package number J14A

LM741AH/883 or LM741CH q
*a labl JIM38510/10101
See NS package number HO8C i avilablé per M3B510/10102 (Continued)
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Dual-in-line or S.O. package

N\
Offset null {1 8 NC
Inverting input 42 7FV* Ceramic flatpak
1 10
NC —@ ——INC
Noninve_rting 43 6 [ Output + Offset null —]] 8:| NC
T “lnput 3 LM7AIW  ——V*
V™44 5 | Offset null + Input ':5 ——Output
V- — 1 Offset null
Order number LM741J, LM741J/883,
LM741CM, LM741CN or LM741EN Order number LM741W/883
See NS package number JO8A, MO8A or NOSE See NS package number W10A

LMC6061 General Description and Connection Diagrams—The description and diagram below reveal
several similarities between the 741 and 6061 op-amps, but also some differences. The 6061 uses more
advanced technology and is characterized by some very desirable features (e.g., the very low power consump-
tion of CMOS circuits results in typical supply currents of only 20 Al). You can also see from the connection
diagram that pins 1 and 5 (used for offset null connections in the 741) are not used in this IC. We return to this
point later in the chapter.

LMC6061 Precision CMOS Single Micropower Operational Amplifier

General Description

The LMC6061 is a precision single low offset voltage, micropower operational amplifier, capable of precision
single-supply operation. Performance characteristics include ultralow input bias current, high voltage gain,
rail-to-rail output swing, and an input common-mode voltage range that includes ground. These features, plus
its low power consumption, make the LMC6061 ideally suited for battery-powered applications.

Other applications using the LMC6061 include precision full-wave rectifiers, integrators, references,
sample-and-hold circuits, and true instrumentation amplifiers.

This device is built with National’s advanced double-poly silicon-gate CMOS process. For designs that
require higher speed, see the LMC6081 precision single operational amplifier. For a dual or quad operational
amplifier with similar features, see the LMC6062 or LMC6064, respectively.

8-Pin DIP/SO
/
NC L Ene
Inverting input 2 = ave
Noninverting 3 5 6 Output
input
v-4 15 NC

Top view (Continued)
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(Concluded)
Features (typical unless otherwise noted) Applications
e Low offset voltage: 100 uV e Instrumentation amplifier
e Ultralow supply current: 20 nA e Photodiode and infrared detector preamplifier
e Operates from 4.5- to 15-V single supply e Transducer amplifiers
e Ultralow input bias current of 10 fA e Handheld analytic instruments
e Output swing within 10 mV of supply rail, 100-k$2 load e Medical instrumentation
e Input common-mode range includes V- o Digital-to-analog converter
e High voltage gain: 140 dB e Charge amplifier to piezoelectric transducers

Noninverting

Figure 8.19 Op-amp
circuits employing complex

impedances
Ze

(=S T/

i G

—

A

| |

| |
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o+

Vs Vout

Figure 8.20 Active
low-pass filter

e Improved latch-up immunity

8.3 ACTIVE FILTERS

The range of useful applications of an operational amplifier is greatly expanded if
energy storage elements are introduced into the design; the frequency-dependent
properties of these elements, studied in Chapters 4 and 6, will prove useful in the
design of various types of op-amp circuits. In particular, it will be shown that it is
possible to shape the frequency response of an operational amplifier by appropriate
use of complex impedances in the input and feedback circuits. The class of filters one
can obtain by means of op-amp designs is called active filters, because op-amps can
provide amplification (gain) in addition to the filtering effects already studied in
Chapter 6 for passive circuits (i.e., circuits comprising exclusively resistors, capaci-
tors, and inductors).

The easiest way to see how the frequency response of an op-amp can be shaped
(almost) arbitrarily is to replace the resistors Rg and Rs in Figures 8.5 and 8.8 with
impedances Z¢ and Zg, as shown in Figure 8.19. It is a straightforward matter to show
that in the case of the inverting amplifier, the expression for the closed-loop gain is
given by

Vout - ZF
=—— 8.45
Ve (jo) 7 (8.45)
whereas for the noninverting case, the gain is
Vout . ZF
=14+ = 8.46
Ve (jo)=1+ 7 (8.46)

where Z¢ and Zg can be arbitrarily complex impedance functions and where Vs, Vo,
I, and Is are all phasors. Thus, it is possible to shape the frequency response of
an ideal op-amp filter simply by selecting suitable ratios of feedback impedance to
source impedance. By connecting a circuit similar to the low-pass filters studied in
Chapter 6 in the feedback loop of an op-amp, the same filtering effect can be achieved
and, in addition, the signal can be amplified.

The simplest op-amp low-pass filter is shown in Figure 8.20. Its analysis is
quite simple if we take advantage of the fact that the closed-loop gain, as a function
of frequency, is given by

Zg

Ar(jo) = _?S (8.47)



where
1 Re
Ze =R - = -
i Pl joCr 14 jwCeRe

and
Zs =Rg
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(8.48)

(8.49)

Note the similarity between Zg and the low-pass characteristic of the passive RC
circuit! The closed-loop gain A_s(jw) is then computed to be

Z Re /R
Ap(jo) = —== = e/Rs

T TR Low-pass filter (8.50) <|—O3

This expression can be factored into two parts. The first is an amplification factor
analogous to the amplification that would be obtained with a simple inverting amplifier

(i.e., the same circuit as that of Figure 8.20 with the capacitor removed); the second Re

is a low-pass filter, with a cutoff frequency dictated by the parallel combination of . .
Re and Ck in the feedback loop. The filtering effect is completely analogous to what v Cr == Vou
would be attained by the passive circuit shown in Figure 8.21. However, the op-amp - -

filter also provides amplification by a factor of R /Rs.

It should be apparent that the response of this op-amp filter is just an Amplified Figure 8.21 Passive
version of that of the passive filter. Figure 8.22 depicts the amplitude response of the ~ low-pass filter
active low-pass filter (in the figure, Re /Rs = 10 and 1/ReCg = 1) in two different
graphs; the first plots the amplitude ratio V. (jw) versus radian frequency « on a
logarithmic scale, while the second plots the amplitude ratio 20 log Vs (jw) (in units
of decibels), also versus @ on a logarithmic scale. You will recall from Chapter 6
that decibel frequency response plots are encountered very frequently. Note that in
the decibel plot, the slope of the filter response for frequencies is significantly higher

than the cutoff frequency,

Amplitude response of active low-pass filter

N
\w\

\

P>
y -

Amplitude ratio

o N B~ O

N

107! 100 10t 102 108 10* 10°
Radian frequency (logarithmic scale)

Figure 8.22 Normalized response of active low-pass filter

1
"~ ReCr

wo

dB amplitude response of active low-pass filter

\....

107 100 10t 102 108 10* 10°
Radian frequency (logarithmic scale)

(8.51)

is —20 dB/decade, while the slope for frequencies significantly lower than this cutoff
frequency is equal to zero. The value of the response at the cutoff frequency is found

to be, in units of decibel,

A (jwo) s = 2010g; — — 20 log v/2

R
Rs

(8.52)
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where
—20log,yv/2 = —3dB (8.53)

Thus, wy is also called the 3-dB frequency.

Among the advantages of such active low-pass filters is the ease with which the
gain and the bandwidth can be adjusted by controlling the ratios R /Rs and 1/Rg Ck,
respectively.

It is also possible to construct other types of filters by suitably connecting

Figure 8.23 Active resistors and energy storage elements to an op-amp. For example, a high-pass active
high-pass filter filter can easily be obtained by using the circuit shown in Figure 8.23. Observe that
the impedance of the input circuit is
1
Zs =R - 8.54
s s+ jCs (8.54)
and that of the feedback circuit is
Zr =Rf (8.55)
Then the following gain function for the op-amp circuit can be derived:
. Z|: ja)Cs R;: . .
A = = High-pass filter 8.56
L03> we(Jo) Zs 1+ joRsCs gh-p. (8.56)

As w approaches zero, so does the response of the filter, whereas as w approaches
infinity, according to the gain expression of equation 8.56, the gain of the amplifier
approaches a constant:
lim App(jo) = _Re (8.57)
w—> 00 RS
That is, above a certain frequency range, the circuit acts as a linear amplifier. This is
exactly the behavior one would expect of a high-pass filter. The high-pass response
is depicted in Figure 8.24, in both linear and decibel plots (in the figure, Re /Rs = 10
and 1/RsC = 1). Note that in the decibel plot, the slope of the filter response for
frequencies significantly lower than w = 1/RsCs = 1 is 420 dB/decade, while the
slope for frequencies significantly higher than this cutoff (or 3-dB) frequency is equal

to zero.
10 Amplitude response of active high-pass filter 20 dB amplitude response of active high-pass filter
7 .
o P
sy I/ y
0
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/
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10 102 10t 100 10t 102 103 0% 102 10t 100 10t 102 108
Radian frequency (logarithmic scale) Radian frequency (logarithmic scale)

Figure 8.24 Normalized response of active high-pass filter

As a final example of active filters, let us look at a simple active bandpass
filter configuration. This type of response may be realized simply by combining the
high- and low-pass filters we examined earlier. The circuit is shown in Figure 8.25.



Part 11 Electronics 369

The analysis of the bandpass circuit follows the same structure used in previous Re
examples. First we evaluate the feedback and input impedances: AW
1 Rr ¢
Zr =Rg || - = . 8.58
: F ” J(UCF 1 +JC()CF RF ( ) Rs Cs

1 1+ jwCsRs (8.59) Vs + Vout
. i_

Zs =R =
s s + ja)Cs ja)Cs

Next we compute the closed-loop frequency response of the op-amp, as follows: Figure 8.25 Active
bandpass filter

Z jwCsR
Agp(jw) = - Jobshr Bandpass

Zs T (A +jwCeRe)(1+ juCsRs) filter ©60) {03

The form of the op-amp response we just obtained should not be a surprise. It is very
similar (although not identical) to the product of the low-pass and high-pass responses
of equations 8.50 and 8.56. In particular, the denominator of Ags(jw) is exactly the
product of the denominators of Ap(jw) and Ayp( jw). It is particularly enlightening
to rewrite A_p( jw) in aslightly different form, after making the observation that each
RC product corresponds to some “critical” frequency:

1 1 1
TReCs M T ReCe T RGs
It is easy to verify that for the case where

Whp < WLp (8.62)

the response of the op-amp filter may be represented as shown in Figure 8.26
in both linear and decibel plots (in the figure, w1 = 1, wp = 1,000, and
oy = 10). The decibel plot is very revealing, for it shows that, in effect, the
bandpass response is the graphical superposition of the low-pass and high-pass
responses shown earlier. The two 3-dB (or cutoff) frequencies are the same as in
Ap(jw), 1/ReCg; and in Ayp(jw), 1/RsCs. The third frequency, w; = 1/RgCs,
represents the point where the response of the filter crosses the 0-dB axis (rising
slope). Since 0 dB corresponds to a gain of 1, this frequency is called the unity gain
frequency.

(8.61)

w1
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Figure 8.26 Normalized amplitude response of active bandpass filter

The ideas developed thus far can be employed to construct more complex
functions of frequency. In fact, most active filters one encounters in practical
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applications are based on circuits involving more than one or two energy storage
elements. By constructing suitable functions for Zg and Zs, it is possible to realize
filters with greater frequency selectivity (i.e., sharpness of cutoff), as well as flatter
bandpass or band-rejection functions (i.e., filters that either allow or reject signals
in a limited band of frequencies). A few simple applications are investigated in the
homework problems. One remark that should be made in passing, though, pertains to
the exclusive use of capacitors in the circuits analyzed thus far. One of the advantages
of op-amp filters is that it is not necessary to use both capacitors and inductors to
obtain a bandpass response. Suitable connections of capacitors can accomplish that
task in an op-amp. This seemingly minor fact is of great importance in practice,
because inductors are expensive to mass-produce to close tolerances and exact
specifications and are often bulkier than capacitors with equivalent energy storage
capabilities. On the other hand, capacitors are easy to manufacture in a wide variety
of tolerances and values, and in relatively compact packages, including in integrated-
circuit form.

Example 8.7 illustrates how it is possible to construct active filters with greater
frequency selectivity by adding energy storage elements to the design.
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Figure 8.27

EXAMPLE 8.7 Second-Order Low-Pass Filter

Problem

Determine the closed-loop voltage gain as a function of frequency for the op-amp circuit of
Figure 8.27.

Solution
Known Quantities: Feedback and source impedances.
Find:

Vou(jo)

Al = 5 o)

Schematics, Diagrams, Circuits, and Given Data: R,C = L/R; = wy.
Assumptions: Assume an ideal op-amp.

Analysis: The expression for the gain of the filter of Figure 8.27 can be determined by using
equation 8.45:

Vour(jo) _ Ze(jo)

Aljw) = - = — =
U9 =V Go) = Zs(jo)

where

R R
- 1+4jwCRy 1+ jw/wp

1
Ze(jw) = Rol|l —=
F(jw) 2”ij

. . L j
=R +joL =R (1+Jw*> =R <1+Jﬁ>
R1 o
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Thus, the gain of the filter is

Ay = R/ Fjo/)
J9) = R T /o)
_ R2/Ry
(1 + jo/wp)?

Comments: Note the similarity between the expression for the gain of the filter of Figure 8.27
and that given in equation 8.50 for the gain of a (first-order) low-pass filter. Clearly, the circuit
analyzed in this example is also a low-pass filter, of second order (as the quadratic denominator
term suggests). Figure 8.28 compares the two responses in both linear and decibel (Bode)
magnitude plots. The slope of the decibel plot for the second-order filter at higher frequencies
is twice that of the first-order filter (—40 versus —20 dB/decade). We should also remark that
the use of an inductor in the filter design is not recommended in practice, as explained in
the above section, and that we have used it in this example only because of the simplicity
of the resulting gain expressions.

Amplitude ratio

Comparison of active low-pass filters

= = = : Response of filter of Figure 8.19
= : Response of filter of Example 8.6

Comparison of active low-pass filters (dB plot)

= = = Response of filter of Figure 8.19
= Response of filter of Example 8.6

Radian frequency (logarithmic scale)

Figure 8.28 Comparison of first- and second-order active filters
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CHECK YOUR UNDERSTANDING

Design a low-pass filter with closed-loop gain of 100 and cutoff (3-dB) frequency equal to 800
Hz. Assume that only 0.01-uF capacitors are available. Find Rg and Rs.

Repeat the design of the exercise above for a high-pass filter with cutoff frequency of 2,000 Hz.
This time, however, assume that only standard values of resistors are available (see Table 2.1
for a table of standard values). Select the nearest component values, and calculate the percent
error in gain and cutoff frequency with respect to the desired values.

Find the frequency corresponding to attenuation of 1 dB (with respect to the maximum value
of the amplitude response) for the filter of the two previous exercises.

What is the decibel gain for the filter of Example 8.6 at the cutoff frequency wq? Find the
3-dB frequency for this filter in terms of the cutoff frequency wy, and note that the two are
not the same.

0mzy9'0 = 9P € ‘gp 9— ‘zH L0V ‘JuddJad gz = P €@ ‘uadiad
0 = ureb @101 5% 2'8 = SY ‘TN 028 = Y ‘B 66T = SY ‘T 6'6T = Y :slamsuy
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8.4 INTEGRATOR AND DIFFERENTIATOR
CIRCUITS

In the preceding sections, we examined the frequency response of op-amp circuits
for sinusoidal inputs. However, certain op-amp circuits containing energy storage
elements reveal some of their more general properties if we analyze their response
to inputs that are time-varying but not necessarily sinusoidal. Among such circuits
are the commonly used integrator and differentiator; the analysis of these circuits is
presented in the following paragraphs.

The Ideal Integrator

Consider the circuit of Figure 8.29, where vs (1) is an arbitrary function of time (e.g., a
pulse train, a triangular wave, or a square wave). The op-amp circuit shown provides
an output that is proportional to the integral of vs(t). The analysis of the integrator

vou()  circuit is, as always, based on the observation that
Ll ? is(t) = ~ir (© (8.63)
Figure 8.29 Op-amp where
integrator t
is (1) = vs (1) (8.64)
Rs
It is also known that
. d v (t
ie (1) = Cp 2V (8.65)
dt
from the fundamental definition of the capacitor. The source voltage can then be
expressed as a function of the derivative of the output voltage:
1 dvou (t)
vs(t) = — 8.66
RsCr s(t) pm (8.66)
By integrating both sides of equation 8.66, we obtain the following result:
t
LO3> Vour(t) = — / vs (1) dt’ Op-amp integrator (8.67)
RsCr J_
This equation states that the output voltage is the integral of the input voltage.
There are numerous applications of the op-amp integrator, most notably the
analog computer, which is discussed in Section 8.5. Example 8.8 illustrates the
operation of the op-amp integrator.
LO3> EXAMPLE 8.8 Integrating a Square Wave
vs(t) Problem
A _: Determine the output voltage for the integrator circuit of Figure 8.30 if the input is a square
wave of amplitude +A and period T.
0
T T t
2
_Ab Solution

Figure 8.30

Known Quantities: Feedback and source impedances; input waveform characteristics.
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Find: vgy(1).

Schematics, Diagrams, Circuits, and Given Data: T = 10ms; Ck = 1 uF;
Rs = 10 kQ.

Assumptions: Assume an ideal op-amp. The square wave starts at t = 0, and therefore
vout(0) = 0.

Analysis: Following equation 8.67, we write the expression for the output of the integrator:

1 t , , 1 0 t ,
Vou(t) = — Cs/ (Ut = — - U vs(t/)dt/+/ vs(t)dt/]
F —00 F —o© 0

1 ! / /
= - Rr Cs |:v0ut(0) +[) vs (1) dt:|

Next, we note that we can integrate the square wave in a piecewise fashion by observing that
vs(t) =Afor0 <t <T/2and vs(t) = —AforT/2 <t < T.We consider the first half of the
waveform:

1 t t
vout(t) = “ReC. |:vout(0) +/ vs (1) dt/] = -100 <0 +/ Adt,)
F™~S 0 0
T

= —100At 0<t< E
T 1 t T t
t) = — )= t')dt’ = —100A— — 100 —A) dt’
Vout (1) Uout (2) RFCS /T/z vs (1) 2 e ( )
T T T
= —100A + 1004 (t - 5) = —100AT—t) <t<T

Since the waveform is periodic, the above result will repeat with period T, as shown in
Figure 8.31. Note also that the average value of the output voltage is not zero.

Comments: The integral of a square wave is thus a triangular wave. This is a useful fact to
remember. Note that the effect of the initial condition is very important, since it determines the
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Vout(?)
0 L
T T !
2
-50AT

starting point of the triangular wave. Figure 8.31
CHECK YOUR UNDERSTANDING
Plot the frequency response of the ideal integrator in the form of a Bode plot. Determine the
slope of the straight-line segments in decibels per decade. You may assume RsCr = 10.
Re
apeoap/dp 0Z— :Jamsuy Cs ;(T)
alam .
igt)
vg(t) Vout(t)
The Ideal Differentiator e

Using an argument similar to that employed for the integrator, we can derive a result
for the ideal differentiator circuit of Figure 8.32. The relationship between input and
output is obtained by observing that
dus(t)
dt

is () = Cs (8.68)

Figure 8.32 Op-amp
differentiator
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and

. Vout (1)

Ig(t) =

F(D Re
so that the output of the differentiator circuit is proportional to the derivative of the
input:

(8.69)

dvs(t)
dt
Although mathematically attractive, the differentiation property of this op-amp
circuit is seldom used in practice, because differentiation tends to amplify any noise
that may be present in a signal.

vout(t) = _RF CS

Op-amp differentiator (8.70)

CHECK YOUR UNDERSTANDING

Plot the frequency response of the ideal differentiator in the form of a Bode plot. Determine
the slope of the straight-line segments in decibels per decade. You may assume RgCs = 100.

Verify that if the triangular wave of Example 8.8 is the input to the ideal differentiator of
Figure 8.32, that resulting output is a square wave.

apeaap/gp 0z+ :lamsuy

8.5 PHYSICAL LIMITATIONS OF OPERATIONAL
AMPLIFIERS

Thus far, the operational amplifier has been treated as an ideal device, characterized
by infinite input resistance, zero output resistance, and infinite open-loop voltage
gain. Although this model is adequate to represent the behavior of the op-amp in a
large number of applications, practical operational amplifiers are not ideal devices
but exhibit a number of limitations that should be considered in the design of
instrumentation. In particular, in dealing with relatively large voltages and currents,
and in the presence of high-frequency signals, it is important to be aware of the
nonideal properties of the op-amp. In this section, we examine the principal limitations
of the operational amplifier.

Voltage Supply Limits

As indicated in Figure 8.4, operational amplifiers (and all amplifiers, in general) are
powered by external DC voltage supplies Vg™ and Vg, which are usually symmetric
and on the order of 410 to +-20 V. Some op-amps are especially designed to operate
from a single voltage supply; but for the sake of simplicity from here on we shall
consider only symmetric supplies. The effect of limiting supply voltages is that ampli-
fiers are capable of amplifying signals only within the range of their supply voltages;
it would be physically impossible for an amplifier to generate a voltage greater than
V" or less than Vg . This limitation may be stated as follows:

Vg < vou < Vg \oltage supply limitation (8.71)
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For most op-amps, the limit is actually approximately 1.5 V less than the supply
voltages. How does this practically affect the performance of an amplifier circuit? An
example will best illustrate the idea.

EXAMPLE 8.9 Voltage Supply Limits in an Inverting Amplifier

Problem <|—O4

Compute and sketch the output voltage of the inverting amplifier of Figure 8.33.

Solution
Known Quantities: Resistor and supply voltage values; input voltage.
Find: vgu(1).

Schematics, Diagrams, Circuits, and Given Data: Rs = 1 kQ; R = 10 k2;
RL=1kQ; VS =15V; Vg = —15V; vs(t) = 2sin(1,000t). L

Assumptions: Assume a supply voltage—limited op-amp. Figure 8.33

Analysis: For an ideal op-amp the output would be
R . .
Vout(t) = —R—Fvs(t) = —10 x 2sin(1,000t) = —20sin(1,000t)
S

However, the supply voltage is limited to 415 V, and the op-amp output voltage will therefore
saturate before reaching the theoretical peak output value of +20 V. Figure 8.34 depicts the
output voltage waveform.

Vom(t)
20
15
10

5
0
S
-10 Actual response
15 b~ N e oo

ol O so_e
20 == ™~ | deal response: Vou(t) = —20 sin (2,000t)

Figure 8.34 Op-amp output with voltage supply limit

Comments: In a practical op-amp, saturation would be reached at 1.5 V below the supply
voltages, or at approximately £13.5 V.

Note how the voltage supply limit actually causes the peaks of the sine wave
to be clipped in an abrupt fashion. This type of hard nonlinearity changes the charac-
teristics of the signal quite radically, and could lead to significant errors if not taken
into account. Just to give an intuitive idea of how such clipping can affect a signal,
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have you ever wondered why rock guitar has a characteristic sound that is very dif-
ferent from the sound of classical or jazz guitar? The reason is that the “rock sound”
is obtained by overamplifying the signal, attempting to exceed the voltage supply
limits, and causing clipping similar in quality to the distortion introduced by voltage
supply limits in an op-amp. This clipping broadens the spectral content of each tone
and causes the sound to be distorted.

One of the circuits most directly affected by supply voltage limitations is the
op-amp integrator. Example 8.10 illustrates how saturation of an integrator circuit
can lead to severe signal distortion.

. 1

Figure 8.35 Op-amp
integrator

— |deal integrator output
— Integrator output
affected by DC offset
16
1l
12 +
Thl
28
g 4
go
= 2

012345678910
Time, s
Figure 8.36 Effect of DC

offset on integrator

EXAMPLE 8.10 Voltage Supply Limits in an Op-Amp Integrator
Problem

Compute and sketch the output voltage of the integrator of Figure 8.35.

Solution
Known Quantities: Resistor, capacitor, and supply voltage values; input voltage.
Find: vgy(1).

Schematics, Diagrams, Circuits, and Given Data: Rs = 10 kQ2; Cg = 20 uF;
Vs+ =15V, Vg = —15V, vs(t) = 0.54 0.3 cos(10t).

Assumptions: Assume a supply voltage-limited op-amp. The initial condition is vo,(0) = 0.

Analysis: For an ideal op-amp integrator the output would be

Vout(t) = —

1 1t
t)dt = —— 0.5 + 0.3 cos(10t)] dt’
RSCF/ vs(t) 0’2/ [0.5+ 0.3 cos(10t)]

—00 —00

= —2.5t + 1.5sin(10t)

However, the supply voltage is limited to 15V, and the integrator output voltage will therefore
saturate at the lower supply voltage value of —15 V as the term 2.5t increases with time.
Figure 8.36 depicts the output voltage waveform.

Comments: Note that the DC offset in the waveform causes the integrator output voltage to
increase linearly with time. The presence of even a very small DC offset will always cause
integrator saturation. One solution to this problem is to include a large feedback resistor in
parallel with the capacitor; this solution is explored in the homework problems.

CHECK YOUR UNDERSTANDING

How long will it take (approximately) for the integrator of Example 8.10 to saturate if the input
signal has a 0.1-V DC bias [that is, vs(t) = 0.1 + 0.3 cos(10t)]?

S 0GT AjR1ewixoiddy :Jemsuy
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Frequency Response Limits

Another property of all amplifiers that may pose severe limitations to the op-amp is
their finite bandwidth. We have so far assumed, in our ideal op-amp model, that the
open-loop gain is a very large constant. In reality, Ay o) is a function of frequency

and is characterized by a low-pass response. For a typical op-amp, @
A
Avon(jo) = B Finite bandwidth limitation (8.72)
1+ jw/wo

The cutoff frequency of the op-amp open-loop gain wq represents approximately
the point where the amplifier response starts to drop off as a function of frequency,
and is analogous to the cutoff frequencies of the RC and RL circuits of Chapter 6.
Figure 8.37 depicts Ay o) (jw) in both linear and decibel plots for the fairly typi-
cal values Ag = 10°% and wy = 10sx. It should be apparent from Figure 8.37 that
the assumption of a very large open-loop gain becomes less and less accurate for
increasing frequency. Recall the initial derivation of the closed-loop gain for the
inverting amplifier: In obtaining the final result V,./Vs = —Rg /Rs, it was assumed
that Ay o) — oo. This assumption is clearly inadequate at the higher frequencies.
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x 10° Open-loop gain of practical op-amp Open-loop gain of practical op-amp (dB plot)
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Figure 8.37 Open-loop gain of practical op-amp

The finite bandwidth of the practical op-amp results in a fixed gain-bandwidth
product for any given amplifier. The effect of a constant gain-bandwidth product
is that as the closed-loop gain of the amplifier is increased, its 3-dB bandwidth is |Av s
proportionally reduced until, in the limit, if the amplifier were used in the open-loop
mode, its gain would be equal to Ay and its 3-dB bandwidth would be equal to wg. The 20199 Ao
constant gain-bandwidth product is therefore equal to the product of the open-loop 29 jog A,
gain and the open-loop bandwidth of the amplifier: Agwy = K. When the amplifier is
connected in a closed-loop configuration (e.g., as an inverting amplifier), its gain is
typically much less than the open-loop gain and the 3-dB bandwidth of the amplifier is

20 log Az »777,% ,,,,,,

proportionally increased. To explain this further, Figure 8.38 depicts the case in which ®o 1
two different linear amplifiers (achieved through any two different negative feedback

configurations) have been designed for the same op-amp. The first has closed-loop Figure 8.38
gain A, and the second has closed-loop gain A,. The bold line in the figure indicates

the open-loop frequency response, with gain A and cutoff frequency wg. As the gain

decreases from the open-loop gain Ag, to A1, we see that the cutoff frequency increases

from wq to w;y. If we further reduce the gain to A,, we can expect the bandwidth to

increase to w,. Thus,
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The product of gain and bandwidth in any given op-amp is constant. That is,
onwozAlxwlegxwgzK (873)

EXAMPLE 8.11 Gain-Bandwidth Product Limit in an Op-Amp

Problem

Determine the maximum allowable closed-loop voltage gain of an op-amp if the amplifier is
required to have an audio-range bandwidth of 20 kHz.

Solution

Known Quantities: Gain-bandwidth product.

Find: Ay max.

Schematics, Diagrams, Circuits, and Given Data: Ay = 10%; wy = 27 x 5 rad/s.
Assumptions: Assume a gain-bandwidth product limited op-amp.

Analysis: The gain-bandwidth product of the op-amp is

Ao X wo = K =10° x 27 x 5 =7 x 107 rad/s

The desired bandwidth is wma = 27 x 20,000 rad/s, and the maximum allowable gain will
therefore be
K 7 x 107

v
Apax = = 250 —
T omax T x 4 x 104 Y

For any closed-loop voltage gain greater than 250, the amplifier would have reduced bandwidth.

Comments: |f we desired to achieve gains greater than 250 and maintain the same bandwidth,
two options would be available: (1) Use a different op-amp with greater gain-bandwidth prod-
uct, or (2) connect two amplifiers in cascade, each with lower gain and greater bandwidth, such
that the product of the gains would be greater than 250.

To further explore the first option, you may wish to look at the device data sheets for
different op-amps and verify that op-amps can be designed (at a cost!) to have substantially
greater gain-bandwidth product than the amplifier used in this example. The second option is
examined in Example 8.12.

CHECK YOUR UNDERSTANDING

What is the maximum gain that could be achieved by the op-amp of Example 8.11 if the desired
bandwidth is 100 kHz?

05§ = Wy Jamsuy
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EXAMPLE 8.12 Increasing the Gain-Bandwidth Product by
Means of Amplifiers in Cascade

Problem

Determine the overall 3-dB bandwidth of the cascade amplifier of Figure 8.39.

Figure 8.39 Cascade amplifier

Solution
Known Quantities: Gain-bandwidth product and gain of each amplifier.
Find: w34 Of cascade amplifier.

Schematics, Diagrams, Circuits, and Given Data: Aywy = K = 47 x 10° for each amplifier.
Re /Rs = 100 for each amplifier.

Assumptions: Assume gain-bandwidth product limited (otherwise ideal) op-amps.

Analysis: Let A; and w; denote the gain and the 3-dB bandwidth of the first amplifier, respec-
tively, and A, and w, those of the second amplifier.
The 3-dB bandwidth of the first amplifier is

K 47 x 108 , rad
w1=E=T=4ﬂX10 —_—

The second amplifier will also have

K 4 x 108 rad
=— =—"—"""" — 47 x10* —
A, 102 TS

[0F)
Thus, the approximate bandwidth of the cascade amplifier is 47 x 10%, and the gain of the
cascade amplifier is A;A, = 100 x 100 = 10*.
Had we attempted to achieve the same gain with a single-stage amplifier having the
same K, we would have achieved a bandwidth of only

K 4m x 108 rad
= —=_—""" -4 102 —
w3 A3 10° T X
Comments: In practice, the actual 3-dB bandwidth of the cascade amplifier is not quite as
large as that of each of the two stages, because the gain of each amplifier starts decreasing at
frequencies somewhat lower than the nominal cutoff frequency.

< LO4
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CHECK YOUR UNDERSTANDING

In Example 8.12, we implicitly assumed that the gain of each amplifier was constant for
frequencies up to the cutoff frequency. This is, in practice, not true, since the individual
op-amp closed-loop gain starts dropping below the DC gain value according to the equation

AL

AU = T

Thus, the calculations carried out in the example are only approximate. Find an expression for
the closed-loop gain of the cascade amplifier. (Hint: The combined gain is equal to the product
of the individual closed-loop gains.) What is the actual gain in decibels at the cutoff frequency
wy for the cascade amplifier?

What is the 3-dB bandwidth of the cascade amplifier of Example 8.12? (Hint: The gain of
the cascade amplifier is the product of the individual op-amp frequency responses. Compute
the magnitude of this product, set the magnitude of the product of the individual frequency
responses equal to (1/+/2) x 10,000, and then solve for w.)

S/pel 008°2T X xg = P Ew gp ¢/ SIaMsuyY

Input Offset Voltage

Another limitation of practical op-amps results because even in the absence of any
external inputs, it is possible that an offset voltage will be present at the input of an
op-amp. This voltage is usually denoted by 4V, and it is caused by mismatches in
the internal circuitry of the op-amp. The offset voltage appears as a differential input
voltage between the inverting and noninverting input terminals. The presence of an
additional input voltage will cause a DC bias error in the amplifier output, as illustrated
in Example 8.13. Typical and maximum values of V, are quoted in manufacturers’
data sheets. The worst-case effects due to the presence of offset voltages can therefore
be predicted for any given application.

Ry

AAAA

LO4 >

Ry

) Ves

VVVY

—O+
Vout

Figure 8.40 Op-amp input

offset voltage

EXAMPLE 8.13 Effect of Input Offset Voltage on an Amplifier

Problem

Determine the effect of the input offset voltage V,s on the output of the amplifier of
Figure 8.40.

Solution

Known Quantities: Nominal closed-loop voltage gain; input offset voltage.
Find: The offset voltage component in the output voltage voyt os-

Schematics, Diagrams, Circuits, and Given Data: A, = 100; Vs = 1.5 mV.

Assumptions: Assume an input offset voltage—limited (otherwise ideal) op-amp.



Part 11 Electronics

Analysis: The amplifier is connected in a noninverting configuration; thus its gain is

R
Avnom = 100 =1+ -

Rs
The DC offset voltage, represented by an ideal voltage source, is represented as being directly

applied to the noninverting input; thus
Vout,os = AVnomvos = 100V05 = 150 mV
Thus, we should expect the output of the amplifier to be shifted upward by 150 mV.

Comments: The input offset voltage is not, of course, an external source, but it represents a
voltage offset between the inputs of the op-amp. Figure 8.43 depicts how such an offset can be
zeroed.

The worst-case offset voltage is usually listed in the device data sheets (see the data
sheets on the website for an illustration). Typical values are 2 mV for the 741c general-
purpose op-amp and 5 mV for the FET-input TLO81.

381

CHECK YOUR UNDERSTANDING

What is the maximum gain that can be accepted in the op-amp circuit of Example 8.13 if the
offset is not to exceed 50 mV?

£'es = XUAY LIaMsUY

Input Bias Currents

Another nonideal characteristic of op-amps results from the presence of small
input bias currents at the inverting and noninverting terminals. Once again, these
are due to the internal construction of the input stage of an operational amplifier.
Figure 8.41 illustrates the presence of nonzero input bias currents lg going into
an op-amp.

Typical values of Iz depend on the semiconductor technology employed in the
construction of the op-amp. Op-amps with bipolar transistor input stages may see
input bias currents as large as 1 A, while for FET input devices, the input bias
currents are less than 1 nA. Since these currents depend on the internal design of the
op-amp, they are not necessarily equal.

One often designates the input offset current I as

(8.74)
Ios - |B+ - IBf

The latter parameter is sometimes more convenient from the standpoint of analysis.
Example 8.14 illustrates the effect of the nonzero input bias current on a practical
amplifier design.

Ry
——
iy
Vs
Figure 8.41

< LO4
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VVVY

Figure 8.42

EXAMPLE 8.14 Effect of Input Offset Current on an Amplifier

Problem

Determine the effect of the input offset current I, on the output of the amplifier of Figure 8.42.

Solution

Known Quantities: Resistor values; input offset current.

Find: The offset voltage component in the output voltage vy es-

Schematics, Diagrams, Circuits, and Given Data: l,s = 1 uA; R, = 10 kQ.
Assumptions: Assume an input offset current—limited (otherwise ideal) op-amp.

Analysis: \We calculate the inverting and noninverting terminal voltages caused by the offset
current in the absence of an external input:

U+ = R3|B+ vo= U+ = R3|B+

With these values we can apply KCL at the inverting node and write

Vot —v~ vt
L S T
Rz Ry
M . —R3|B+ . —R3|B+ —| ~
R, R, R,  °
1 1
Vout = R2 | —1g+R3 sz + R71 + Ig- | = —Ralgs

Thus, we should expect the output of the amplifier to be shifted downward by R, or
10* x 107% = 10 mV for the data given in this example.

Comments: Usually, the worst-case input offset currents (or input bias currents) are listed
in the device data sheets. Values can range from 100 pA (for CMOS op-amps, for example,
LMC6061) to around 200 nA for a low-cost general-purpose amplifier (for example, nA741c).

Output Offset Adjustment

Both the offset voltage and the input offset current contribute to an output offset
voltage Voues. Some op-amps provide a means for minimizing Voy.s. For example,
the uA741 op-amp provides a connection for this procedure. Figure 8.43 shows a
typical pin configuration for an op-amp in an eight-pin dual-in-line package (DIP)
and the circuit used for nulling the output offset voltage. The variable resistor is
adjusted until vy, reaches a minimum (ideally, 0 V). Nulling the output voltage in this
manner removes the effect of both input offset voltage and current on the output.

Slew Rate Limit

Another important restriction in the performance of a practical op-amp is associated
with rapid changes in voltage. The op-amp can produce only a finite rate of change at
its output. This limit rate is called the slew rate. Consider an ideal step input, where
att = 0 the input voltage is switched from 0 to V volts. Then we would expect the
output to switch from 0 to AV volts, where A is the amplifier gain. However, vy, (t)
can change at only a finite rate; thus,
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Slew rate limitation

:SO

max

(8.75)

d vy (1)
dt

Figure 8.44 shows the response of an op-amp to an ideal step change in input voltage.
Here, So, the slope of v, (t), represents the slew rate.

The slew rate limitation can affect sinusoidal signals, as well as signals that
display abrupt changes, as does the step voltage of Figure 8.44. This may not be
obvious until we examine the sinusoidal response more closely. It should be apparent
that the maximum rate of change for a sinusoid occurs at the zero crossing, as shown
by Figure 8.45. To evaluate the slope of the waveform at the zero crossing, let

v(t) = Asin ot (8.76)
so that
d Z?) — wACos wt (8.77)

The maximum slope of the sinusoidal signal will therefore occuratwt = 0, 7, 2, . . .,
so that

‘dv(t)
dt

Thus, the maximum slope of a sinusoid is proportional to both the signal frequency
and the amplitude. The curve shown by a dashed line in Figure 8.45 should indicate
that as w increases, so does the slope of v(t) at the zero crossings. What is the direct
consequence of this result, then? Example 8.15 gives an illustration of the effects of
this slew rate limit.

—wxA=S (8.78)

max

Maximum slope

Figure 8.45 The maximum slope of a sinusoidal
signal varies with the signal frequency
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EXAMPLE 8.15 Effect of Slew Rate Limit on an Amplifier

Problem

Determine the effect of the slew rate limit Sy on the output of an inverting amplifier for a

sinusoidal input voltage of known amplitude and frequency.

Solution

Known Quantities: Slew rate limit S; amplitude and frequency of sinusoidal input voltage;
amplifier closed-loop gain.

< LO4
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Find: Sketch the theoretically correct output and the actual output of the amplifier in the same
graph.

Schematics, Diagrams, Circuits, and Given Data: Sy = 1 V/us; vs(t) = sin(27 x 10°t);
Ay = 10.
Assumptions: Assume a slew rate—limited (otherwise ideal) op-amp.

Analysis: Given the closed-loop voltage gain of 10, we compute the theoretical output voltage
to be

Vour(t) = —10sin(2 x 10°%t)
The maximum slope of the output voltage is then computed as follows:

A vou(t v
’Uout() = Ao =10 x 27 x 10° = 6.28 —

max M

dt

Clearly, the value calculated above far exceeds the slew rate limit. Figure 8.46 depicts the
approximate appearance of the waveforms that one would measure in an experiment.
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Figure 8.46 Distortion introduced by slew rate limit

Comments: Note that in this example the slew rate limit has been exceeded severely, and the
output waveform is visibly distorted, to the point that it has effectively become a triangular
wave. The effect of the slew rate limit is not always necessarily so dramatic and visible; thus
one needs to pay attention to the specifications of a given op-amp. The slew rate limit is listed
in the device data sheets. Typical values can range from 13 V/us, for the TLO81, to around
0.5 /s for a low-cost general-purpose amplifier (for example, nA741c).

CHECK YOUR UNDERSTANDING

Given the desired peak output amplitude (10 V), what is the maximum frequency that will not
result in violating the slew rate limit for the op-amp of Example 8.15?

ZHY 6°GT = "4} [amsuy

Short-Circuit Output Current

Recall the model for the op-amp introduced in Section 8.2, which represented the
internal circuits of the op-amp in terms of an equivalent input resistance R;, and a
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controlled voltage source Ay vi,. In practice, the internal source is not ideal, because it
cannot provide an infinite amount of current (to the load, to the feedback connection,
or to both). The immediate consequence of this nonideal op-amp characteristic is that
the maximum output current of the amplifier is limited by the so-called short-circuit
output current lsc:

o] < lsc Short-circuit output current limitation (8.79)

To further explain this point, consider that the op-amp needs to provide current to the
feedback path (in order to “zero” the voltage differential at the input) and to whatever
load resistance, R, may be connected to the output. Figure 8.47 illustrates this idea
for the case of an inverting amplifier, where Isc is the load current that would be
provided to a short-circuit load (R, = 0).

Figure 8.47
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EXAMPLE 8.16 Effect of Short-Circuit Current Limit on an
Amplifier

Problem

Determine the effect of the short-circuit limit Isc on the output of an inverting amplifier for a
sinusoidal input voltage of known amplitude.

Solution

Known Quantities: Short-circuit current limit Isc; amplitude of sinusoidal input voltage;
amplifier closed-loop gain.

Find: Compute the maximum allowable load resistance value R min, and sketch the theoretical
and actual output voltage waveforms for resistances smaller than Ri_ min.

Schematics, Diagrams, Circuits, and Given Data: lsc = 50 mA; vs(t) = 0.05sin(wt);
Ay = 100.

Assumptions: Assume a short-circuit current—limited (otherwise ideal) op-amp.

Analysis: Given the closed-loop voltage gain of 100, we compute the theoretical output voltage
to be
vout(t) = —Ayus(t) = —5sin(wt)

To assess the effect of the short-circuit current limit, we calculate the peak value of the output
voltage, since this is the condition that will require the maximum output current from the
op-amp:

Vout peak = 5V
Isc =50 mA

Uoutpeak 5V

= =100
Isc 50 mA

I:QL min =

< LO4
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For any load resistance less than 100 €2, the required load current will be greater than lsc. For
example, if we chose a 75-2 load resistor, we would find that

Vout peak = lsc xRL =375V

That is, the output voltage cannot reach the theoretically correct 5-V peak, and would be
“compressed” to reach a peak voltage of only 3.75 V. This effect is depicted in Figure 8.48.

Comments: The short-circuit current limit is listed in the device data sheets. Typical values
for a low-cost general-purpose amplifier (say, the 741c) are in the tens of milliamperes.

Common-Mode Rejection Ratio (CMRR)

If we define Ay, as the differential-mode gain and A, as the common-mode gain
of the op-amp, the output of an op-amp can then be expressed as follows:

+
Vout = Adm(vz - Ul) + Acm <U2 2 vl) (880)

Under ideal conditions, A, should be exactly zero, since the differential ampli-
fier should completely reject common-mode signals. The departure from this ideal
condition is a figure of merit for a differential amplifier and is measured by defining a
quantity called the common-mode rejection ratio (CMRR). The CMRR is defined
as the ratio of the differential-mode gain to the common-mode gain and should ideally
be infinite:

A L .
CMRR = - Common-mode rejection ratio

The CMRR is often expressed in units of decibels (dB). The common-mode rejection
ratio idea is explored further in the problems at the end of the chapter.

<LO4

Using Op-Amp Data Sheets—Comparison of LM741 and LMC6061

In this box we compare the LM741 and the LMC6061 op-amps that were introduced in an earlier Focus on
Methodology box. Excerpts from the data sheets are shown below, with some words of explanation. You are
encouraged to identify the information given below in the sheets that may be found on the Web.

LM741 Electrical Characteristics—An abridged version of the electrical characteristics of the LM741 is
shown next.

(Continued)
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Offset nulling circuit
w Output
V-
Electrical Characteristics
LM741A/LM741E LM741 LM741C
Parameter Conditions Min | Typ | Max Min | Typ | Max | Min | Typ | Max | Units
Input offset voltage Ta = 25°C
Rs < 10 kQ 1.0 5.0 2.0 6.0 mV
Rs <50 Q 0.8 3.0 mV
Tamin = TA = Tayax
Rs <50 Q 4.0 mvV
Rs < 10 kQ 6.0 7.5 mvV
Average ir]put offset 15 LVI°C
voltage drift
Input offset voltage Ta = 25°C, Vs = £20V +10 +15 +15 mv
adjustment range
Input offset current Ta = 25°C 3.0 30 20 200 20 200 nA
Tayin = Ta < Tayax 70 85 500 300 nA
Average input offset 05 nA/°C
current drift
Input bias current Ta = 25°C 30 80 80 500 80 500 nA
AN = TA = Tayax 0.210 N5 0.8 HA
Input resistance Ta = 25°C, Vs = +£20V 1.0 6.0 0.3 2.0 0.3 2.0 MQ
Tawin = Ta = Tayax 0.5 MQ
Vs = £20V
Input voltage range Ta = 25°C == || ==l \Y
Tavin = Ta = Tayax +12 | +13 v
Large-signal voltage | Ta = 25°C, R > 2 k2
gain Vs =+20V, Vo = +15V | 50 VimV
Vs = +15V, Vo = £10V 50 200 20 200 VimV
Tamin = Ta = Tayax
RL > 2kQ
Vs =+20V, Vo = +15V | 32 VimV
Vs = +15V, Vo = £10V 25 15 VimV
Vs =45V,Vpo =+2V 10 VimV
Output voltage Vs = £20V
swing R. > 10 kQ +16 \Y
RL > 2kQ £l \
Vs = +£15V
R > 10 k2 +12 | +£14 +12 | +14 \%
RL > 2kQ +10 | +13 +10 | +£13 \

(Continued)
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LM741A/LM741E LM741 LM741C
Parameter Conditions Min Typ | Max | Min | Typ | Max | Min | Typ | Max | Units
Output short-circuit | Ta = 25°C 10 25 35 25 25 mA
current Tapn < Ta = TAM AX 10 40 mA
Common-mode Tapin = Ta =< Tayax
rejection ratio Rs < 10k, Vem = £12V 70 90 70 90 dB
Rs <50 Q, Vem = £12V 80 95 dB
Supply voltage Tapn < Ta < Ta
rejection ratio Vs = 4+20VtoVs =45V
Rs <50 @ 86 96 dB
Rs < 10 kQ 77 96 77 96 dB
Transient response Ta = 25°C, unity gain
rise time 0.25 | 0.8 0.3 0.3 s
overshoot 6.0 20 5 5 %
Bandwidth Ta = 25°C 0.437 | 15 MHz
Slew rate Ta = 25°C, unity gain 0.3 0.7 0.5 0.5 Vius
Supply current Tp =253°C 1.7 2.8 1.7 2.8 mA
Power consumption | Ta = 25°C
Vs = £20V 80 150 mw
Vs = £15V 50 85 50 85 mw
LM741A Vs = 420V
Ta = TAMIN 165 mwW
A = Tayax 135 mw
LM741E Vs = £20V
Ta = TAMIN 150 mw
A = Tayax 150 mw
LM741 Vs = £15V
Ta = Tayin 60 100 mw
TA = TAMAX 45 75 mwW

LMC6061 Electrical Characteristics—An abridged version of the electrical characteristics of the LMC6061

is shown below.

DC Electrical Characteristics
Unless otherwise specified, all limits guaranteed for T; = 25°C. Boldface limits apply at the temperature

extremes. VT =5V,V- =0V, Vey = 1.5V, Vo = 2.5V, and R. >1 M unless otherwise specified.

LMC6061AM | LMC6061AI | LMC60611
Symbol | Parameter Conditions Typ | Limit Limit Limit Units
Vos Input offset voltage 100 350 350 800 v
1,200 900 1,300 Max
TCVos Input offse} voltage 1.0 LVIPC
average drift

(Continued)
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DC Electrical Characteristics
LMC6061AM | LMC6061AI | LMC6061I
Symbol | Parameter Conditions Typ Limit Limit Limit Units
Ig Input bias current 0.010 pA
100 4 4 Max
los Input offset current 0.005 pA
100 2 2 Max
Rin Input resistance >10 Tera Q
CMRR Common-mode 0V <Vcm <120V 85 75 75 66 dB
rejection ratio vVt =15V 70 72 63 Min
+PSRR | Positive power supply | 5V <V*+ <15V 85 75 75 66 dB
rejection ratio Vo =25V 70 72 63 Min
—PSRR | Negative power supply | 0OV <V~ <-10V 100 84 84 74 dB
rejection ratio 70 81 71 Min
Vem Input common-mode VT =5Vand 15V -0.4 -0.1 -0.1 -0.1 \Y
voltage range for CMRR > 60 dB 0 0 0 Max
Vt—-19 | vVt -23 v+ -23 v+t -23 \%
v+ —2.6 vt —25 Vvt -25 Min
Ay Large-signal R. =100 k2 | Sourcing | 4,000 400 400 300 VimV
voltage gain 200 300 200 Min
Sinking 3,000 180 180 90 VimV
70 100 60 Min
RL = 25 kQ Sourcing | 3,000 400 400 200 V/imV
150 150 80 Min
Sinking 2,000 100 100 70 VimV
35 50 35 Min
Vo Output swing Vt =5V 4.995 4.990 4.990 4.950 \%
RL =100 k2 to 2.5V 4.970 4.980 4.925 Min
0.005 0.010 0.010 0.050 \%
0.030 0.020 0.075 Max
Vt =5V 4.990 4.975 4.975 4.950 \%
RL. =25kQt025V 4.955 4.965 4.850 Min
0.010 0.020 0.020 0.050 \%
0.045 0.035 0.150 Max
VvVt =15V 14.990 14.975 14.975 14.950 \%
RL. =100kQto 7.5V 14.955 14.965 14.925 Min
0.010 0.025 0.025 0.050 \%
0.050 0.035 0.075 Max
vVt =15V 14.965 14.900 14.900 14.850 \%
RL.=25kQto 7.5V 14.800 14.850 14.800 Min
0.025 0.050 0.050 0.100 \%
0.200 0.150 0.200 Max

(Continued)
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LMC6061AM | LMCG6061Al | LMC60611
Symbol | Parameter Conditions Typ | Limit Limit Limit Units
lo Output current | Sourcing, Vo =0V 22 16 16 13 mA
Vt =5V 8 10 8 Min
Sinking, Vo =5V 21 16 16 16 mA
7 8 8 Min
lo Output current | Sourcing, Vo =0V 25 15 15 15 mA
vVt =15V 9 10 10 Min
Sinking, Vo = 13V 35 24 24 24 mA
7 8 8 Min
Is Supply current | V* =45V, Vo =15V | 20 24 24 32 mA
35 32 40 Max
Vt=415V,Vo =75V | 24 30 30 40 HA
40 38 48 Max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T; = 25°C. Boldface limits apply at the temperature
extremes. VT =5V,V- =0V, Vey = 1.5V, Vo = 2.5V, and R. > 1 MQ unless otherwise specified.

LMC6061AM | LMC6061AI | LMC60611
Symbol | Parameter Conditions Typ Limit Limit Limit Units
SR Slew rate 35 20 20 15 VIms
8 10 7 Min

GBW Gain-bandwidth product 100 kHz
Om Phase margin 50 Deg
en Input-referred voltage noise | F = 1 kHz 83 nV/«/Hz
in Input-referred current noise | F = 1 kHz 0.0002 pA/v/Hz
THD Total harmonic distortion F =1kHz, Ay = -5

RL = 100 k2, Vo = 2Vpp 0.01 %

+5-V supply %
Comparison:

Input offset voltage—Note that the typical input offset voltage in the 6061 is only 100 'V, versus 0.8 mV in
the 741.

Input offset voltage adjustments—The recommended circuit is shown for the 741, and a range of
+15 mV is given. The 6061 does not require offset voltage adjustment.
Input offset current—The 741 sheet reports a typical value of 3 nA (3 x 10~° A); the corresponding value for
the 6061 is 0.005 pA (5 x 10~° A)! This extremely low value is due to the MOS construction of the amplifier.

(Continued)
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(Concluded)

Input resistance— The specifications related to input offset current are mirrored by the input resistance speci-
fications. The 741 has a respectable typical input resistance of 6 M<2; the 6061 has an input resistance greater
than 10 TQ (1 teraohm = 102 Q). Once again, this is the result of MOS construction.
Large-signal voltage gain—The 741 lists a typical value of 50 V/mV (or 5 x 10%) for its open-loop voltage
gain; the 6061 lists values greater than or equal to 2,000 V/mV (or 2 x 10°).
CMRR—The typical common-mode rejection ratio is 95 dB for the 741 and 85 dB for the 6061.
Slew rate—0.7 V//us for the 741 and 35 V/ms for the 6061.
Bandwidth—The bandwidth for the 741 is listed as 1.5 MHz (this would be the unity gain bandwidth), while
the 6061 lists a 100-kHz gain-bandwidth product.
Output short-circuit current—25 mA for both devices.
Note that while the LMC6061 is certainly superior to the LM741 op-amp in a number of categories, there are
certain features (e.g., bandwidth and slew rate) that might cause a designer to prefer the 741 for a specific
application.

Manufacturers generally supply values for the parameters discussed in this section in their device data
specifications. Typical data sheets for common op-amps may be found on the website.

Conclusion

Operational amplifiers constitute the single mostimportant building block in analog electronics.
The contents of this chapter will be frequently referenced in later sections of this book. Upon
completing this chapter, you should have mastered the following learning objectives:

1. Understand the properties of ideal amplifiers and the concepts of gain, input impedance,
and output impedance. Ideal amplifiers represent fundamental building blocks of
electronic instrumentation. With the concept of an ideal amplifier clearly established, one
can design practical amplifiers, filters, integrators, and many other signal processing
circuits. A practical op-amp closely approximates the characteristics of ideal
amplifiers.

2. Understand the difference between open-loop and closed-loop op-amp configuration;
and compute the gain (or complete the design of) simple inverting, noninverting,
summing, and differential amplifiers using ideal op-amp analysis. Analyze more
advanced op-amp circuits, using ideal op-amp analysis, and identify important
performance parameters in op-amp data sheets. Analysis of op-amp circuits is made
easy by a few simplifying assumptions, which are based on the op-amp having a very
large input resistance, a very small output resistance, and a large open-loop gain. The
simple inverting and noninverting amplifier configurations permit the design of very
useful circuits simply by appropriately selecting and placing a few
resistors.

3. Analyze and design simple active filters. The use of capacitors in op-amp circuits extends
the applications of this useful element to include filtering.

4. Understand the principal physical limitations of an op-amp. It is important to understand
that there are limitations in the performance of op-amp circuits that are not predicted by
the simple op-amp models presented in the early sections of the chapter. In practical
designs, issues related to voltage supply limits, bandwidth limits, offsets, slew rate
limits, and output current limits are very important if one is to achieve the design
performance of an op-amp circuit.
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HOMEWORK PROBLEMS

Section 8.1: Ideal Amplifiers

8.1 The circuit shown in Figure P8.1 has a signal source,
two stages of amplification, and a load. Determine, in
decibels, the power gain G = Py/Ps = V,lo/Vsls,

where
Rs = 0.6 kQ R, = 0.6 kQ
Ri1 = 3kQ Ri» = 3k
Ro1 = 2k Ry = 2k
AV(OL) =100 G2 = 350 mS
p— e
Is |0L
Rs + Rgl + +
Vi Ri Vi2 ZRiz GmViz SRz RISV,
Vs ~ AvoouyVis ~ -
Figure P8.1

8.2 Atemperature sensor in a production line under
normal operating conditions produces a no-load (i.e.,
sensor current = 0) voltage:

vs = Vg COS(wt)
Vs = 500 mV

Rs = 400 Q@
w = 6.28 krad/s

The temperature is monitored on a display (the load)
with a vertical line of light-emitting diodes. Normal
conditions are indicated when a string of the
bottommost diodes 2 cm in length is on. This requires
that a voltage be supplied to the display input terminals
where

RL=12kQ Vo=6V

The signal from the sensor must be amplified.
Therefore, a voltage amplifier, shown in Figure P8.2, is
connected between the sensor and CRT with

Ri =2kQ Ro = 3k

Determine the required no-load gain of the amplifier.

vy = Vo COS(wt)

Ry + R, +
Vi Ri Vo RL
Vs ~ AvonVi T
Figure P8.2

8.3 What approximations are usually made about the
voltages and currents shown in Figure P8.3 for the
ideal operational amplifier model?

Ip
—»

< +

o

—

In

Figure P8.3

8.4 What approximations are usually made about the
circuit components and parameters shown in Figure
P8.4 for the ideal op-amp model?

Figure P8.4

Section 8.2: The Operational Amplifier

8.5 Find v, in the circuits of Figure P8.5(a) and (b). Note
how in the circuit of Figure P8.5(b) the op-amp voltage
follower holds v, to the value vy/2, while in the circuit
of Figure P8.5(a) the 3-k2 resistor “loads” the
output.

o
=
o]

AAA

VVWVy

6 kQ

+
<>
3kQ 3V 6 kQ 3k Sy,

o
=
e}

A

VVVy

s 'H

~

@
Figure P8.5



8.6 Find the current i in the circuit of Figure P8.6.

6Q
——WW———
+
T
. _
12V
2Q 3Q
AAAA AAAA
\AAAS YVVy

Figure P8.6

8.7 Find the voltage v, in the circuit of Figure P8.7.

2kQ 6 kQ
\J - o +
£ +
11V () 4 kQ
_ v,

Figure P8.7

8.8 Show that the circuit of Figure P8.8 is a noninverting
summing amplifier.

® [

Figure P8.8
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8.9 Determine an expression for the overall gain

A, = vo/v; for the circuit of Figure P8.9. Find the input
conductance, Gj, = ii/v; seen by the voltage source v;.
Assume that the op-amp is ideal.

N

Q

AAA
A\AAZ

<

3Q

VVVY

AAAA

Figure P8.9

8.10 Differential amplifiers are often used in

conjunction with Wheatstone bridge circuits. Consider
the bridge shown in Figure P8.10, where each resistor
is a temperature sensing element, and its change in
resistance is directly proportion to a change in
temperature—that is, AR = «(£AT), where the sign
is determined by the positive or negative temperature
coefficient of the resistive element.

a. Find the Thévenin equivalent that the amplifier
sees at point a and at point b. Assume that
|AR[?> < Ro.

b. If |AR| = KAT, with K a numerical constant, find
an expression for vy (AT), that is, for vy as a
function of the change in temperature.

out

Figure P8.10

8.11 The circuit shown in Figure P8.11 is called a

negative impedance converter. Determine the
impedance looking in:

Zin = 1, if

Ih
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b 7= k.

Zin =
Figure P8.11

8.12 The circuit of Figure P8.12 demonstrates that
op-amp feedback can be used to create a resonant
circuit without the use of an inductor. Determine the
gain function % Hint: Use node analysis.

Iy R
o - AAAA
VWV
+
—> 1
joC
>
< R
— 4 <
Vl
AAA
VWWy
Zin R
<
R
<
' S —

Figure P8.13

8.14 In the circuit of Figure P8.14, determine the
impedance looking in.

C=(2QF
I
Il
1Q 1Q
W ——W—
%
Vi C=(112Q) F v,

Figure P8.12

8.13 Inductors are difficult to use as components of
integrated circuits due to the need for large coils of

wire. As an alternative, a “solid-state inductor” can be

constructed as in the circuit of Figure P8.13.
a. Determine the impedance looking in Z;, = ‘I’—ll

b. What is the impedance when R = 1, 000 €2 and
C = 0.02 uF?

o MW
+
—>
_j(_ C
l% R

v, ]

[|

Zin | |
C
R

Figure P8.14



8.15 Itis easy to construct a current source using an
inverting amplifier configuration. Verify that the
current in R is independent of the value of R,
assuming that the op-amp stays in its linear operating
region, and find the value of this current.

AAAA
AAAAS

Re

Rs

Figure P8.15

8.16 A “super diode” or “precision diode,” which
eliminates the diode offset voltage, is shown in Figure
P8.16. Determine the output signal for the given input

signal, Vi, (t).
+
A4
Vin
O
+
:; Vout
R <
O O
Vin
1V

\

Figure P8.16
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8.17 Determine the response function % for the circuit
of Figure P8.17.

0.001 F
Il

0.001 F 1,000 Q
Vv, o H AMVY _

—o V,

Figure P8.17

8.18 Time delays are often encountered in engineering
systems. They can be approximated using Euler’s
definition as

N
osT _ lim 1
T~ N-> o 41

If T=1,and N = 1, then the approximation can be
implemented by the circuit of Problem 8.17 (see
Figure P8.17), with the addition of a unity gain
inverting amplifier to eliminate the negative sign.
Modify the circuit of Figure P8.17 as needed and use it
as many times as necessary to design an approximate
time delay for T = 1 and N = 4 in Euler’s definition
of the exponential.

8.19 Show that the circuit of Figure P8.19 is a
noninverting summer.

Ry
AW .
A
R,
©
)V

O

Figure P8.19
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8.20 For the circuit of Figure P8.20, derive the
expression for vy.

Figure P8.20

8.21 Differential amplifiers are often used in

Operational Amplifiers

05 uF
| L
[N

10 kQ

:Vom

Figure P8.22

8.23 Find an expression for the gain of the circuit of

conjunction with the Wheatstone bridge. Consider the
bridge shown in Figure P8.21, where each resistor is a
temperature-sensing element and the change in
resistance is directly proportional to a change in
temperature—that is, AR = o (£AT), where the sign
is determined by the positive or negative temperature
coefficient of the resistive element.

a. Find the Thévenin equivalent that the amplifier sees
at point a and point b. Assume that |AR|* <« R,.

b. If |]AR| = KAT, with K a numerical constant, find

Figure P8.23.
16 F
| L
+ I\ —
Vo
3Q 2Q
Vin O—AWY AWW—2 +
+l —0 Vout
A 16 F

Figure P8.23

an expression for vy (AT), that is voy as a
function of change in temperature.

Figure P8.21

8.22 Consider the circuit of Figure P8.22.

a. If vy — v, = cos (1,000t) V, find the peak
amplitude of vgy.

b. Find the phase shift of voy.
Hint: Use phasor analysis.

0 Vout

8.24 In the circuit of Figure P8.24, it is critical that the
gain remain within 2 percent of its nominal value of
16. Find the resistor R that will accomplish the
nominal gain requirement, and state what the
maximum and minimum values of Rg can be. Will a
standard 5 percent tolerance resistor be adequate to
satisfy this requirement? (See Table 2.1 for resistor
standard values.)

kQ

AAA
VVVY

R

1 Vout

O

Figure P8.24

8.25 An inverting amplifier uses two 10 percent
tolerance resistors: Re = 33 k2 and Rg = 1.2 k.

a. What is the nominal gain of the amplifier?



b. What is the maximum value of |Ay|?
¢. What is the minimum value of |Ay|?

8.26 The circuit of Figure P8.26 will remove the DC
portion of the input voltage v, (t) while amplifying

the AC portion. Let v;(t) = 10 + 10~ 3sin wt V,
Re = 10 k2, and Ve = 20 V.

a. Find Rs such that no DC voltage appears at the
output.

b. What is voy(t), using Rs from part a?

AAAA
YVVY

" >t

Vout (1)

Figure P8.26

8.27 Figure P8.27 shows a simple practical amplifier
that uses the 741 op-amp. Pin numbers are as
indicated. Assume the input resistance is R = 2 M,
the open-loop gain Ay o) = 200,000, and output
resistance R, = 50 . Find the exact gain Ay = v,/v;.

+15V

Vo

10 kQ2

Figure P8.27

8.28 Design an inverting summing amplifier to obtain
the following weighted sum of four different signal
Sources:

Vout = —(2SiN w1t + 48in wyt + 85sin wst + 16 sin wst)

Assume that Re = 5 k€2, and determine the required
source resistors.
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8.29 The amplifier shown in Figure P8.29 has a signal
source, a load, and one stage of amplification with

Rs =2.2kQ
Re =8.7kQ

Ry =1k
RL=20Q

Motorola MC1741C op-amp:

ri =2MQ
1 = 200,000

rh,=25Q

In a first-approximation analysis, the op-amp
parameters given above would be neglected and the
op-amp modeled as an ideal device. In this problem,
include their effects on the input resistance of the
amplifier circuit.

a. Derive an expression for the input resistance v; /i
including the effects of the op-amp.

b. Determine the value of the input resistance
including the effects of the op-amp.

¢. Determine the value of the input resistance
assuming the op-amp is ideal.

Re
AVAVAVAV
fi
L .
Ry ~J
Rs +
VoSSR
Vs = -

Figure P8.29
8.30 In the circuit shown in Figure P8.30, if
Ry = 47 kQ2

R = 220 k2
vs = 0.02 4+ 0.001 cos(wt) \Y

R, = 1.8k

determine
a. An expression for the output voltage.

b. The value of the output voltage.

Figure P8.30
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8.31 If, in the circuit shown in Figure P8.31,
vs = 50 x 1073 4 30 x 1073 cos(wt)
Rs =50 @ R. =200
determine the output voltage.

Rs

+
e Vs VoSSR

Figure P8.31

8.32 In the circuit shown in Figure P8.32,
vs1 = 2.9 x 1073 cos(wt) \%
vsy = 3.1 x 1073 cos(wt) \Y
Ry = 1kQ R, =3.3kQ
Rs = 10kQ R, =18k

Determine an expression for, and numerical value of,
the output voltage.

Figure P8.32

8.33 In the circuit shown in Figure P8.32,

vy = 5mV vs, = 7 mV

Ry = 1k®Q R, = 15 kQ2

Rs = 72 kQ2 Ry = 47 kQ2
Determine the output voltage, analytically and
numerically.

8.34 In the circuit shown in Figure P8.34, if
vsy = vsp = 7 MV
R =2.2kQ Ry =850 Q@
R, = 1.5k
and the MC1741C op-amp has the following

Operational Amplifiers

parameters:
r=2MQ
r,=25Q

determine

u = 200,000

a. An expression for the output voltage.

b. The voltage gain for each of the two input signals.

Figure P8.34

8.35 In the circuit shown in Figure P8.32, the two
voltage sources are temperature sensors with a

response
vs1 = KTy vsy = kT,
where
k =50 mV/°C
R; =11k R, =27 kQ
R; = 33kQ R4 = 68 kQ2

T, =35°C and T, = 100°C. Determine
a. The output voltage.

b. The conditions required for the output voltage to
depend only on the difference between the two
temperatures.

8.36 In adifferential amplifier, if
A, =-20 A, =422
derive expressions for, and then determine the value
of, the common- and differential-mode gains.
8.37 If, in the circuit shown in Figure P8.32,
Vs1 = 1.3V Vs2 = 1.9V
Ri =R, =4.7kQ
R3 = Ry = 10 kQ
determine

R. =18k

a. The output voltage.

b. The common-mode component of the output
voltage.

¢. The differential-mode component of the output
voltage.



8.38 The two voltage sources shown in Figure P8.32 are

pressure sensors where, for each source and with
P = pressure in kilopascals,

vs12 = A+ BP1p
A=0.3V B=0.7 %
Ri =R, =4.7kQ
Rz = Ry = 10 kQ
R. =18k
If P; = 6 kPa and P, = 5 kPa, determine, using

superposition, that part of the output voltage which is
due to the

a. Common-mode input voltage.
b. Differential-mode input voltage.

8.39 Alinear potentiometer (variable resistor) Rp is used

to sense and give a signal voltage v, proportional to the
current y position of an xy plotter. A reference signal
vr is supplied by the software controlling the plotter.
The difference between these voltages must be
amplified and supplied to a motor. The motor turns and
changes the position of the pen and the position of the
“pot” until the signal voltage is equal to the reference
voltage (indicating the pen is in the desired position)
and the motor voltage = 0. For proper operation the
motor voltage must be 10 times the difference between
the signal and reference voltage. For rotation in the
proper direction, the motor voltage must be negative
with respect to the signal voltage for the polarities
shown. An additional requirement is that i, = 0 to
avoid loading the pot and causing an erroneous signal
voltage.

a. Design an op-amp circuit that will achieve the
specifications given. Redraw the circuit shown in
Figure P8.39, replacing the box (drawn with dotted
lines) with your circuit. Be sure to show how the
signal voltage and output voltage are connected in
your circuit.

b. Determine the value of each component in your
circuit. The op-amp is a uA741C.

1
1Ci
[
[
1
Lr
. 1 1
| 1 C
v iiilu: Y
S <><—<).|
Rex+ R
P
2y 40T
L +
VR

Figure P8.39
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8.40 In the circuit shown in Figure P8.32,

vs1 = 13 mV vso = 19 mV

Ry =1k R, = 13k

R; =81k R4 =56 k2
Determine the output voltage.

8.41 Figure P8.41 shows a simple voltage-to-current

converter. Show that the current Iy, through the
light-emitting diode, and therefore its brightness, is
proportional to the source voltage Vs as long as

Vg > 0.

]
A

TAMA P
i |

Figure P8.41

8.42 Figure P8.42 shows a simple current-to-voltage

converter. Show that the voltage V, is proportional to
the current generated by the cadmium sulfide (CdS)
solar cell. Also show that the transimpedance of the
circuit Voye/ls is —R.

Figure P8.42

8.43 An op-amp voltmeter circuit as in Figure P8.43 is

required to measure a maximum input of E = 20 mV.
The op-amp input current is Ig = 0.2 1A, and the
meter circuit has 1, = 100 uA full-scale deflection and
rm = 10 k2. Determine suitable values for R; and R,.

I
——

fo

AAAA
YVVY
L

Rs

AAAA
YVVY

Figure P8.43
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8.44 Find an expression for the output voltage in the
circuit of Figure P8.44.

Rr1

Rs Re2

Re

+

V(
k2 d

Figure P8.44

8.45 Select appropriate components using standard
5 percent resistor values to obtain a gain of magnitude
approximately equal to 1,000 in the circuit of Figure
P8.44.
How closely can you approximate the desired
gain? Compute the error in the gain, assuming that the
5 percent tolerance resistors have the nominal value.

8.46 Repeat Problem 8.45, but use the 45 percent
tolerance range to compute the possible range of gains
for this amplifier.

8.47 The circuit shown in Figure P8.47 can function as a
precision ammeter. Assume that the voltmeter has a
range of 0 to 10 V and a resistance of 20 k2. The
full-scale reading of the ammeter is intended to be
1 mA. Find the resistance R that accomplishes the
desired function.

Voltmeter

Figure P8.47

8.48 Select appropriate components using standard
5 percent resistor values to obtain a gain of magnitude
approximately equal to 200 in the circuit of
Figure P8.30.

How closely can you approximate the desired

gain? Compute the error in the gain, assuming that the
5 percent tolerance resistors have the nominal
value.

8.49 Repeat Problem 8.48, but use the 45 percent
tolerance range to compute the possible range of gains
for this amplifier.

8.50 Select appropriate components using standard 1
percent resistor values to obtain a differential amplifier
gain of magnitude approximately equal to 100 in the
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circuit of Figure P8.32. Assume that R3 = R, and
Rl = Rz.
How closely can you approximate the desired

gain? Compute the error in the gain, assuming that the

1 percent tolerance resistors have the nominal value.
8.51 Repeat Problem 8.50, but use the 41 percent

tolerance range to compute the possible range of gains

for this amplifier. You may assume that R = R4 and

Rl = Rz.

Section 8.3: Active Filters

8.52 The circuit shown in Figure P8.52 is an active filter
with
C=1uF
Determine

R =10k RL=1kQ
a. The gain (in decibels) in the passband.
b. The cutoff frequency.

¢. Whether this is a low- or high-pass filter.

R
A
\AAA

Figure P8.52

8.53 The op-amp circuit shown in Figure P8.53 is used

as a filter.
C=0.1uF RL.=333Q
R; = 1.8kQ R, = 8.2k
Determine

a. Whether the circuit is a low- or high-pass filter.

b. The gain V,/Vs in decibels in the passband, that is,
at the frequencies being passed by the filter.

c. The cutoff frequency.

AAAA
\AAAS

Figure P8.53



8.54 The op-amp circuit shown in Figure P8.53 is used

as a filter.
C = 200 pF RL=1kQ
Ry =10kQ R, = 220 k2
Determine

a. Whether the circuit is a low- or high-pass filter.

b. The gain V,/Vs in decibels in the passband, that is,
at the frequencies being passed by the filter.

c. The cutoff frequency.

8.55 The circuit shown in Figure P8.55 is an active filter

with
Ry =4.7kQ C =100 pF
R, = 68 kQ2 R =220 kQ

Determine the cutoff frequencies and the magnitude of
the voltage frequency response function at very low

and at very high frequencies.
+
RZ Vo(jo)

Figure P8.55

8.56 The circuit shown in Figure P8.56 is an active filter
with

R, = 1kQ R, = 4.7kQ
R; =80 kQ C =20nF
Determine

a. An expression for the voltage frequency response
function in the standard form:

H, (jo) = Vo(jw)

Vi(jw)

R
RS Ve(jo)

= Vi(jo)Vo(jw)

Figure P8.56
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b. The cutoff frequencies.
c. The passbhand gain.
d. The Bode plot.

8.57 The op-amp circuit shown in Figure P8.57 is used

as a filter.
R; =9.1kQ R, =22 kQ
C =047 uF RL=22kQ
Determine

a. Whether the circuit is a low- or high-pass filter.

b. An expression in standard form for the voltage
transfer function.

c. The gain in decibels in the passhand, that is, at the
frequencies being passed by the filter, and the
cutoff frequency.

Figure P8.57

8.58 The op-amp circuit shown in Figure P8.57 is a
low-pass filter with

R =2.2kQ R, = 68 k2
C =047nF R =1k
Determine

a. An expression for the voltage frequency response
function.

b. The gain in decibels in the passband, that is, at the
frequencies being passed by the filter, and the
cutoff frequency.

8.59 The circuit shown in Figure P8.59 is a bandpass
filter. If

Ri =R, =10k
C,=C,=01uF
determine
a. The passhand gain.
b. The resonant frequency.
c¢. The cutoff frequencies.
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d. The circuit Q.
e. The Bode plot.

A\AAS

2

R G C,
o

+
Vi(jo) R%\_/o( jo)

Figure P8.59

8.60 The op-amp circuit shown in Figure P8.60 is a
low-pass filter with

R, =220Q R, = 68 k2
C =0.47nF R. =1k
Determine

a. An expression in standard form for the voltage
frequency response function.

b. The gain in decibels in the passband, that is, at the
frequencies being passed by the filter, and the
cutoff frequency.

>
>
>
>

<

AL

¢}

Figure P8.60

8.61 The circuit shown in Figure P8.61 is a bandpass

filter. If
Ry =22k R, = 100 k2
C,=22uF C,=1nF

determine the passband gain.

R, Ci C,

"
b R%\j/o(iw)

Figure P8.61
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8.62 Compute the frequency response of the circuit
shown in Figure P8.62.

> 2kQ

Figure P8.62

8.63 The inverting amplifier shown in Figure P8.63 can
be used as a low-pass filter.

a. Derive the frequency response of the circuit.

b. If Ry =R, =100k and C = 0.1 uF, compute the
attenuation in decibels at @ = 1,000 rad/s.

c. Compute the gain and phase at @ = 2,500 rad/s.

d. Find the range of frequencies over which the
attenuation is less than 1 decibel.

Ry

Figure P8.63

8.64 Find an expression for the gain of the circuit of

Figure P8.64.

100 uF

I

Y

V2

3kQ 2kQ
Vin O—WW—
4 —O Vout
V1 22100 uF

Figure P8.64

8.65 For the circuit of Figure P8.65, sketch the
amplitude response of V,/Vy, indicating the
half-power frequencies. Assume the op-amp is ideal.
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Figure P8.65

8.66 Determine an analytical expression for the circuit
shown in Figure P8.66. What kind of a filter does this
circuit implement?

Rr1
MW
Ce
I
1<
Rs1
—\WWY -
Vs1 Rsz
o

—O +
Vo
Figure P8.66

8.67 Determine an analytical expression for the circuit
shown in Figure P8.67. What kind of a filter does this
circuit implement?

Figure P8.67

Section 8.4: Integrator and
Differentiator Circuits

8.68 The circuit shown in Figure P8.68(a) will give an
output voltage which is either the integral or the
derivative of the source voltage shown in Figure
P8.68(b) multiplied by some gain. If

C=1uF R =10k R =1k

determine an expression for and plot the output voltage
as a function of time.

Part 11 Electronics 403

C R
[
+
Ve RIV
@
Vi(t), V
3
|
15 |
| t, ms
| 1 | |
25 5 75 10 12(\15_
-15
(b)

Figure P8.68

8.69 The circuit shown in Figure P8.69(a) will give an
output voltage which is either the integral or the
derivative of the supply voltage shown in
Figure P8.69(b) multiplied by some gain.

Determine

a. An expression for the output voltage.

b. The value of the output voltage att = 5, 7.5, 12.5,
15, and 20 ms and a plot of the output voltage as a
function of time if

C—1uF R=10kQ R_=1kQ
—
R C
.
Ve R3V
@
V),V
3
15

| |
25 5 75 10 12‘.§\15_t,m's
-15

(b)
Figure P8.69

8.70 The circuit shown in Figure P8.70 is an integrator.

The capacitor is initially uncharged, and the source
voltage is

vin(t) = 10 x 1072 + sin(2,0007t) V
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a. Att =0, the switch S; is closed. How long
does it take before clipping occurs at the output if
Rs = 10 k2 and Cr = 0.008 1F?

b. At what times does the integration of the DC input
cause the op-amp to saturate fully?

Cr

| L

[AY
15V

S, 2

S
O—-WW—
—QO Vout
Vin t=0

2 - -15V

Figure P8.70

8.71 Apractical integrator is shown in Figure 8.20 in the
text. Note that the resistor in parallel with the feedback
capacitor provides a path for the capacitor to discharge
the DC voltage. Usually, the time constant R Ck is
chosen to be long enough not to interfere with the
integration.

a. If Rs = 10k, R =2 M, C¢ = 0.008 uF, and
vs(t) = 10 V + sin(2,0007t) V, find vy (t), using
phasor analysis.

b. Repeat partaif Re = 200 k2, and if R = 20 k<.

c. Compare the time constants Rg C¢ with the period
of the waveform for parts (a) and (b). What can you
say about the time constant and the ability of the
circuit to integrate?

8.72 The circuit of Figure 8.25 in the text is a practical
differentiator. Assume an ideal op-amp with
vs(t) = 10 x 1073sin(2,0007t) V, Cs = 100 uF,
Cr = 0.008 uF, Re =2 MQ, and Rs = 10 k<2.

a. Determine the frequency response Vo /Vs ().

b. Use superposition to find the actual output voltage
(remember that DC = 0 Hz).

Section 8.5: Physical Limitations of
Operational Amplifiers

8.73 Consider the noninverting amplifier of Figure 8.8
in the text. Find the error introduced in the output
voltage if the op-amp has an input offset voltage
of 2 mV. Assume that the input bias currents are
zero, and that Rg = Rg = 2.2 k2. Assume that the
offset voltage appears as shown in Figure 8.40
in the text.

Operational Amplifiers

8.74 Repeat Problem 8.73, assuming that in addition to
the input offset voltage, the op-amp has an input bias
current of 1 ©A. Assume that the bias current appears
as shown in Figure 8.41 in the text.

8.75 Consider a standard inverting amplifier, as shown
in Figure P8.75. Assume that the offset voltage can be
neglected and that the two input bias currents are
equal. Find the value of R, that eliminates the error in
the output voltage due to the bias currents.

Figure P8.75

8.76 In the circuit of Figure P8.75, the feedback resistor
is 3.3 k2, and the input resistor is 1 k2. If the input
signal is a sinusoid with maximum amplitude of 1.5V,
what is the highest-frequency input that can be used
without exceeding the slew rate limit of 1 \//us?

8.77 An op-amp has the open-loop frequency response
shown in Figure 8.37 in the text. What is the
approximate bandwidth of a circuit that uses the
op-amp with a closed-loop gain of 75? What is the
bandwidth if the gain is 350?

8.78 Consider a differential amplifier. We desire the
common-mode output to be less than 1 percent of the
differential-mode output. Find the minimum decibel
common-mode rejection ratio to fulfill this requirement
if the differential-mode gain Ag,, = 1,000. Let

vy = Sin(2,000xrt) + 0.1sin(1207t) \Y/
v, = Sin(2,000xrt + 180°) 4 0.1sin(1207t) \Y/
vy + V2
2

8.79 Square wave testing can be used with operational
amplifiers to estimate the slew rate, which is defined as
the maximum rate at which the output can change (in
volts per microsecond). Input and output waveforms
for a noninverting op-amp circuit are shown in Figure
P8.79. As indicated, the rise time tg of the output
waveform is defined as the time it takes for that
waveform to increase from 10 to 90 percent of its final
value, or

th=tg —ta = —7(In0.1 — In0.9) = 2.27

Vout = Adm (V1 — v2) + Acm



where t is the circuit time constant. Estimate the slew rate
for the op-amp.

>E
t,us
10 20 30 40
100%4 Y g "o Lo Vm=15V
L e e B ek EEEEEE
100/0 77777777 J\‘ — .Sl T, ; t’ “S
10.1145 30.134.5
ta tg

Figure P8.79

8.80 Consider an inverting amplifier with open-loop
gain 10°. With reference to equation 8.18:

a. IfRs = 10k and Rg = 1 M€, find the voltage
gain Ay -
b. Repeat part a if Rs = 10 k2 and Rg = 10 MQ.
c. Repeat parta if Rs = 10 k2 and R = 100 M.
d. Using the resistor values of part c, find Ay ¢y, if
Ay oL — o0.
8.81

a. If the op-amp of Figure P8.81 has an open-loop
gain of 45 x 10°, find the closed-loop gain for
R = Rs = 7.5 k€, with reference to equation 8.18.

b. Repeat part a if Re = 5Rs = 37,500 €.
Re

Rs

o o

- Vout

T 1

Figure P8.81

8.82 Given the unity-gain bandwidth for an ideal
op-amp equal to 5.0 MHz, find the voltage gain at a
frequency of f = 500 kHz.

8.83 The open-loop gain A of real (nonideal) op-amps is
very large at low frequencies but decreases markedly
as frequency increases. As a result, the closed-loop
gain of op-amp circuits can be strongly dependent on
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frequency. Determine the relationship between a finite
and frequency-dependent open-loop gain Ay o) (@)
and the closed-loop gain Ay c)(w) of an inverting
amplifier as a function of frequency. Plot Ay cy)
versus w. Notice that —Rg /Rs is the low-frequency
closed-loop gain.

8.84 Asinusoidal sound (pressure) wave p(t) impinges
upon a condenser microphone of sensitivity S
(mV/kPa). The voltage output of the microphone vs is
amplified by two cascaded inverting amplifiers to
produce an amplified signal vy. Determine the peak
amplitude of the sound wave (in decibels) if vy =5
VRrwms- Estimate the maximum peak magnitude of the
sound wave in order that vy not contain any saturation
effects of the op-amps.

8.85 If, in the circuit shown in Figure P8.85,
vs1 = 2.8 + 0.01 cos(wt) \Y
vsp = 3.5 — 0.007 cos(wt) \Y
Ay =-13 A, =10 w = 4 krad/s
determine
a. Common- and differential-mode input signals.
b. Common- and differential-mode gains.

¢. Common- and differential-mode components of the
output voltage.

d. Total output voltage.
e. Common-mode rejection ratio.

1S +
Py

Figure P8.85

8.86 If, in the circuit shown in Figure P8.85,
vs; = 3.5+ 0.01 cos(wt) \Y
vsy = 3.5 — 0.01 cos(wt) \Y
A, =10dB Ay =20dB

w =4 x 10°rad/s

determine

a. Common- and differential-mode input voltages.

b. The voltage gains for vs; and vs;.
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c. Common-mode component and differential-mode
component of the output voltage.

d. The common-mode rejection ratio (CMRR) in
decibels.

8.87 In the circuit shown in Figure P8.87, the two

voltage sources are temperature sensors with T =
temperature (Kelvin) and

Vs1 = le Vg2 = kTZ
where
k =120 nVIK
Ri =Rs =Ry, =5kQ
R, = 3k R. = 600 €
if
T, =310K T, =335K
determine
a. The voltage gains for the two input voltages.

b. The common-mode and differential-mode input
voltages.

¢. The common-mode and differential-mode gains.
d. The common-mode component and the

differential-mode component of the output voltage.

e. The common-mode rejection ratio (CMRR) in
decibels.

Figure P8.87

8.88 In the differential amplifier shown in Figure P8.87,

vs; = 13 mV vsp = 9 mV
Vo = Voc + Vod
Vo = 33 MV (common-mode output voltage)
Vog = 18V (differential-mode output voltage)
Determine
a. The common-mode gain.
b. The differential-mode gain.

¢. The common-mode rejection ratio in decibels.



CHAWPTENR

SEMICONDUCTORS
AND DIODES

his chapter introduces a new topic: solid state electronics. You must be
familiar with the marvelous progress that has taken place in this field since the
invention of the transistor. Think of the progress that personal computing alone
has made in the last 50 years! Modern electronic systems are possible because
of individual discrete electronic devices that have been integrated into functioning
as complex systems. Although the use of discrete electronic devices has largely been
replaced by that of integrated circuits (e.g., the operational amplifier of Chapter 8), it
is still important to understand how the individual elements function. The aim of this
and of the next three chapters is to introduce the fundamental operation of semicon-
ductor electronic devices. These include two principal families of elements: diodes
and transistors. The focus of Chapters 9 through 11 is principally on discrete devices,
that is, on analyzing and using individual diodes and transistors in various circuits.
This chapter explains the workings of the semiconductor diode, a device that
finds use in many practical circuits used in electric power systems and in high- and
low-power electronic circuits. The emphasis in the chapter is on using simple models
of the semiconductor devices, and on reducing the resulting circuits to ones that we
can analyze based on the circuit analysis tools introduced in earlier chapters. This is
usually done in two steps: first, the i-v characteristic of the diode is analyzed, and it
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Figure 9.1 Lattice structure
of silicon, with four valence
electrons

Chapter 9 Semiconductors and Diodes

is shown that one can use simple linear circuit elements (ideal resistors, ideal voltage
sources) to describe the operation of the diode by way of circuit models; second, the
circuit models are inserted in a practical circuit in place of the diode, and well-known
circuit analysis methods are employed to analyze the resulting linear circuit. Thus,
once you have understood how to select an appropriate diode model, you will once
again apply the basic circuit analysis principles that you mastered in the first part of
this book.

:) Learning Objectives

1. Understand the basic principles underlying the physics of semiconductor devices in
general and of the pn junction in particular. Become familiar with the diode equation
and i-v characteristic. Sections 9.1, 9.2.

2. Use various circuit models of the semiconductor diode in simple circuits. These are
divided into two classes: large-signal models, useful to study rectifier circuits, and
small-signal models, useful in signal processing applications. Section 9.2.

3. Study practical full-wave rectifier circuits and learn to analyze and determine the
practical specifications of a rectifier by using large-signal diode models. Section 9.3.

4. Understand the basic operation of Zener diodes as voltage references, and use simple
circuit models to analyze elementary voltage regulators. Section 9.4.

9.1 ELECTRICAL CONDUCTION IN
SEMICONDUCTOR DEVICES

This section briefly introduces the mechanism of conduction in a class of materials
called semiconductors. Elemental® or intrinsic semiconductors are materials consist-
ing of elements from group 1V of the periodic table and having electrical properties
falling somewhere between those of conducting and of insulating materials. As an
example, consider the conductivity of three common materials. Copper, a good con-
ductor, has a conductivity of 0.59 x 10° S/cm; glass, a common insulator, may range
between 106 and 10~13 S/cm; and silicon, a semiconductor, has a conductivity that
varies from 1078 to 10~! S/cm. You see, then, that the name semiconductor is an
appropriate one.

A conducting material is characterized by a large number of conduction band
electrons, which have a very weak bond with the basic structure of the material.
Thus, an electric field easily imparts energy to the outer electrons in a conductor and
enables the flow of electric current. In a semiconductor, on the other hand, one needs
to consider the lattice structure of the material, which in this case is characterized
by covalent bonding. Figure 9.1 depicts the lattice arrangement for silicon (Si),
one of the more common semiconductors. At sufficiently high temperatures, thermal
energy causes the atoms in the lattice to vibrate; when sufficient kinetic energy is
present, some of the valence electrons break their bonds with the lattice structure and
become available as conduction electrons. These free electrons enable current flow
in the semiconductor. Note that in a conductor, valence electrons have a very loose

1Semiconductors can also be made of more than one element, in which case the elements are not
necessarily from group IV.
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bond with the nucleus and are therefore available for conduction to a much greater
extent than valence electrons in a semiconductor. One important aspect of this type
of conduction is that the number of charge carriers depends on the amount of thermal
energy present in the structure. Thus, many semiconductor properties are a function
of temperature.

The free valence electrons are not the only mechanism of conduction in a
semiconductor, however. Whenever a free electron leaves the lattice structure, it
creates a corresponding positive charge within the lattice. Figure 9.2 depicts the
situation in which a covalent bond is missing because of the departure of a free elec-
tron from the structure. The vacancy caused by the departure of a free electron is
called a hole. Note that whenever a hole is present, we have, in effect, a positive
charge. The positive charges also contribute to the conduction process, in the sense
that if a valence band electron “jumps” to fill a neighboring hole, thereby neutraliz-
ing a positive charge, it correspondingly creates a new hole at a different location.
Thus, the effect is equivalent to that of a positive charge moving to the right, in the
sketch of Figure 9.2. This phenomenon becomes relevant when an external electric
field is applied to the material. It is important to point out here that the mobility—
that is, the ease with which charge carriers move across the lattice—differs greatly
for the two types of carriers. Free electrons can move far more easily around the
lattice than holes. To appreciate this, consider the fact that a free electron has al-
ready broken the covalent bond, whereas for a hole to travel through the structure,
an electron must overcome the covalent bond each time the hole jumps to a new
position.

According to this relatively simplified view of semiconductor materials, we
can envision a semiconductor as having two types of charge carriers—holes and free
electrons—which travel in opposite directions when the semiconductor is subjected
to an external electric field, giving rise to a net flow of current in the direction of the
electric field. Figure 9.3 illustrates the concept.

An additional phenomenon, called recombination, reduces the number of
charge carriers in a semiconductor. Occasionally, a free electron traveling in the
immediate neighborhood of a hole will recombine with the hole, to form a covalent
bond. Whenever this phenomenon takes place, two charge carriers are lost. However,
in spite of recombination, the net balance is such that a number of free electrons always
exist at a given temperature. These electrons are therefore available for conduction.
The number of free electrons available for a given material is called the intrinsic
concentration n;. For example, at room temperature, silicon has

n = 1.5 x 10%6 electrons/m?® (9.1)

Note that there must be an equivalent number of holes present as well.
Semiconductor technology rarely employs pure, or intrinsic, semiconductors.
To control the number of charge carriers in a semiconductor, the process of doping is
usually employed. Doping consists of adding impurities to the crystalline structure of
the semiconductor. The amount of these impurities is controlled, and the impurities
can be of one of two types. If the dopant is an element from the fifth column of the
periodic table (e.g., arsenic), the end result is that wherever an impurity is present, an
additional free electron is available for conduction. Figure 9.4 illustrates the concept.
The elements providing the impurities are called donors in the case of group V
elements, since they “donate” an additional free electron to the lattice structure. An
equivalent situation arises when group Il elements (e.g., indium) are used to dope
silicon. In this case, however, an additional hole is created by the doping element,
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which is called an acceptor, since it accepts a free electron from the structure and
generates a hole in doing so.

Semiconductors doped with donor elements conduct current predominantly by
means of free electrons and are therefore called n-type semiconductors. When an
acceptor element is used as the dopant, holes constitute the most common carrier, and
the resulting semiconductor is said to be a p-type semiconductor. Doping usually
takes place at such levels that the concentration of carriers due to the dopant is
significantly greater than the intrinsic concentration of the original semiconductor. If
n is the total number of free electrons and p that of holes, then in an n-type doped
semiconductor, we have

n > n (9.2)
and
p < Pi (9.3)

Thus, free electrons are the majority carriers in an n-type material, while holes are
the minority carriers. In a p-type material, the majority and minority carriers are
reversed.

Doping is a standard practice for a number of reasons. Among these are the abil-
ity to control the concentration of charge carriers and the increase in the conductivity
of the material that results from doping.

9.2 THE pn JUNCTION AND THE
SEMICONDUCTOR DIODE

Asimple section of semiconductor material does not in and of itself possess properties
that make it useful for the construction of electronic circuits. However, when a section
of p-type material and a section of n-type material are brought in contact to form a
pn junction, a number of interesting properties arise. The pn junction forms the basis
of the semiconductor diode, a widely used circuit element.

Figure 9.5 depicts an idealized pn junction, where on the p side we see a dom-
inance of positive charge carriers, or holes, and on the n side, the free electrons
dominate. Now, in the neighborhood of the junction, in a small section called the
depletion region, the mobile charge carriers (holes and free electrons) come into
contact with each other and recombine, thus leaving virtually no charge carriers at the
junction. What is left in the depletion region, in the absence of the charge carriers, is
the lattice structure of the n-type material on the right and of the p-type material on the
left. But the n-type material, deprived of the free electrons, which have recombined
with holes in the neighborhood of the junction, is now positively charged. Similarly,

The p-side depletion region is negatively The n-side depletion region is positively
charged because its holes have recombined charged because its free electrons have
with free electrons from the n side recombined with holes from the p side

! Depletion |

| region 3

OFNGC)
®®®

Figure 9.5 A pn junction
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the p-type material at the junction is negatively charged, because holes have been
lost to recombination. The net effect is that while most of the material (p- or n-type)
is charge-neutral because the lattice structure and the charge carriers neutralize each
other (on average), the depletion region sees a separation of charge, giving rise to an
electric field pointing from the n side to the p side. The charge separation therefore
causes a contact potential to exist at the junction. This potential is typically on the
order of a few tenths of a volt and depends on the material (about 0.6 to 0.7 V for
silicon). The contact potential is also called the offset voltage V.

Now, in the n-type materials, holes are the minority carriers; the relatively few
p-type carriers (holes) are thermally generated, and recombine with free electrons.
Some of these holes drift into the depletion region (to the left, in Figure 9.5), and they
are pushed across the junction by the existing electric field. A similar situation exists
in the p-type material, where now electrons drift across the depletion region (to the
right). The net effect is that a small reverse saturation current Is flows through the
junction in the reverse direction (to the left) when the diode is reverse biased [see P
Figure 9.7(a)]. This current is largely independent of the junction voltage and is
mostly determined by thermal carrier generation; that is, it is dependent on tempera-
ture. As the temperature increases, more hole-electron pairs are thermally generated,
and the greater number of minority carriers produce a greater Is [at room temperature, —
I is on the order of nanoamperes (10~° A) in silicon]. This current across the junc-

Electric field

Diffusion
current | ——
4=

Electron
current

tion flows opposite to the drift current and is called diffusion current ly4. Of course, if
a hole from the p side enters the n side, it is quite likely that it will quickly
recombine with one of the n-type carriers on the n side. One way to explain diffusion
current is to visualize the diffusion of a gas in a room: gas molecules naturally tend to
diffuse from a region of higher concentration to one of lower concentration. Similarly,
the p-type material, for example, has a much greater concentration of holes than the
n-type material. Thus, some holes will tend to diffuse into the n-type material across
the junction, although only those that have sufficient (thermal) energy to do so will
succeed. Figure 9.6 illustrates this process for a diode in equilibrium, with no bias
applied.

The phenomena of drift and diffusion help explain how a pn junction behaves
when it is connected to an external energy source. Consider the diagrams of Figure 9.7,
where a battery has been connected to a pn junction in the reverse-biased direc-
tion [Figure 9.7(a)] and in the forward-biased direction [Figure 9.7(b)]. We assume
that some suitable form of contact between the battery wires and the semiconductor
material can be established (this is called an ohmic contact). The effect of a reverse
bias is to increase the contact potential at the junction. Now, the majority carriers
trying to diffuse across the junction need to overcome a greater barrier (a larger
potential) and a wider depletion region. Thus, the diffusion current becomes negligi-
ble. The only current that flows under reverse bias is the very small reverse saturation
current, so that the diode current ip (defined in the figure) is

ip=—lpg=1s (9.4)
while the reverse saturation current above is actually a minority-carrier drift current.
When the pn junction is forward-biased, the contact potential across the junction is
lowered (note that Vg acts in opposition to the contact potential). Now, the diffusion of
majority carriers is aided by the external voltage source; in fact, the diffusion current
increases as a function of the applied voltage, according to equation 9.5

lg = loede/kT (9.5)

Depletion
region
Figure 9.6 Drift and
diffusion currents in a pn
junction

Vb — Vs

iD:—|g

(a) Reverse-biased
pn junction

Vp — VB

ip=lg—lo=lg

(b) Forward-biased
pnjunction

Figure 9.7 Forward-
and reverse-biased pn
junctions
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The arrow in the circuit symbol for
the diode indicates the direction of
current flow when the diode is
forward-biased.

|

Vb
Circuit symbol
p
Ohmic contacts

T

pn junction

Figure 9.9 Semiconductor
diode circuit symbol
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where vp is the voltage across the pn junction, k = 1.381 x 10~ J/K is Boltzmann’s
constant, q is the charge of one electron, and T is the temperature of the material in
kelvins (K). The quantity KT /q is constant at a given temperature and is approximately
equal to 25 mV at room temperature. The net diode current under forward bias is given
by equation 9.6

ip=lg — lg = lp(e%/kT — 1) Diode equation (9.6)

which is known as the diode equation. Figure 9.8 depicts the diode i-v character-
istic described by the diode equation for a fairly typical silicon diode for positive
diode voltages. Since the reverse saturation current ly is typically very small (10~° to
10715 A),

ip = |08qUD/kT (97)

is a good approximation if the diode voltage vp is greater than a few tenths of a volt.

50 Diodei-v curve
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Figure 9.8 Semiconductor diode i-v characteristic

The ability of the pn junction to essentially conduct current in only one
direction—that is, to conduct only when the junction is forward-biased—makes it
valuable in circuit applications. A device having a single pn junction and ohmic
contacts at its terminals, as described in the preceding paragraphs, is called a semi-
conductor diode, or simply diode. As will be shown later in this chapter, it finds use
in many practical circuits. The circuit symbol for the diode is shown in Figure 9.9,
along with a sketch of the pn junction.

Figure 9.10 summarizes the behavior of the semiconductor diode by means of
its i-v characteristic; it will become apparent later that this i-v characteristic plays
an important role in constructing circuit models for the diode. Note that a third re-
gion appears in the diode i-v curve that has not been discussed yet. The reverse
breakdown region to the far left of the curve represents the behavior of the diode
whenasufficiently high reverse biasis applied. Under such a large reverse bias (greater
in magnitude than the voltage Vz, a quantity that will be explained shortly), the diode
conducts current again, this time in the reverse direction. To explain the mechanism
of reverse conduction, one needs to visualize the phenomenon of avalanche break-
down. When a very large negative bias is applied to the pn junction, sufficient energy
is imparted to charge carriers that reverse current can flow, well beyond the normal
reverse saturation current. In addition, because of the large electric field, electrons are
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Figure 9.10 The i-v characteristic of the semiconductor diode

energized to such levels that if they collide with other charge carriers at a lower energy
level, some of their energy is transferred to the carriers with lower energy, and these
can now contribute to the reverse conduction process as well. This process is called
impact ionization. Now, these new carriers may also have enough energy to ener-
gize other low-energy electrons by impact ionization, so that once a sufficiently high
reverse bias is provided, this process of conduction is very much like an avalanche:
a single electron can ionize several others.

The phenomenon of Zener breakdown is related to avalanche breakdown. It
is usually achieved by means of heavily doped regions in the neighborhood of the
metal-semiconductor junction (the ohmic contact). The high density of charge carriers
provides the means for a substantial reverse breakdown current to be sustained, at
anearly constant reverse bias, the Zener voltage Vz. This phenomenon is very useful
in applications where one would like to hold some load voltage constant, for example,
in voltage regulators, which are discussed in a later section.

To summarize the behavior of the semiconductor diode, itis useful to refer to the
sketch of Figure 9.10, observing that when the voltage across the diode vp is greater
than the offset voltage V,,, the diode is said to be forward-biased and acts nearly as
a short circuit, readily conducting current. When vp is between V,, and the Zener
breakdown voltage —V7, the diode acts very much as an open circuit, conducting
a small reverse current lp of the order of only nanoamperes (nA). Finally, if the
voltage vp is more negative than the Zener voltage —Vz, the diode conducts again,
this time in the reverse direction.

9.3 CIRCUIT MODELS FORTHE
SEMICONDUCTOR DIODE

From the viewpoint of a user of electronic circuits (as opposed to a designer), it is
often sufficient to characterize a device in terms of its i-v characteristic, using either
load-line analysis or appropriate circuit models to determine the operating currents
and voltages. This section shows how it is possible to use the i-v characteristics of
the semiconductor diode to construct simple yet useful circuit models. Depending on
the desired level of detail, it is possible to construct large-signal models of the diode,
which describe the gross behavior of the device in the presence of relatively large
voltages and currents; or small-signal models, which are capable of describing the

<LOl

413



414

MAKE THE
CONNECTION

FIND IT

Hydraulic
Check
Valves

ON THE WEB

To understand the operation
of the semiconductor diode
intuitively, we make reference
to a very common hydraulic
device that finds application
whenever one wishes to
restrict the flow of a fluid to a
single direction and to
prevent (check) reverse flow.
Hydraulic check valves
perform this task in a number
of ways. We illustrate a few
examples in this box.

Figure 1 depicts a swing
check valve. In this design,
flow from left to right is
permitted, as the greater fluid
pressure on the left side of
the valve forces the swing
“door” to open. If flow were
to reverse, the reversal of
fluid pressure (greater
pressure on the right) would
cause the swing door to shut.

Figure 1

Figure 2 depicts a flapper
check valve. The principle is
similar to that described
above for the

(Continued)
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behavior of the diode in finer detail and, in particular, the response of the diode to
small changes in the average diode voltage and current. From the user’s standpoint,
these circuit models greatly simplify the analysis of diode circuits and make it possible
to effectively analyze relatively “difficult” circuits simply by using the familiar circuit
analysis tools of Chapter 3. The first two major divisions of this section describe
different diode models and the assumptions under which they are obtained, to provide
the knowledge you will need to select and use the appropriate model for a given
application.

Large-Signal Diode Models

Ideal Diode Model

Our first large-signal model treats the diode as a simple on/off device (much like
acheck valve in hydraulic circuits; see the “Make The Connection” sidebar “Hydraulic
Check Valves”).

Figure 9.11 illustrates how, on a large scale, the i-v characteristic of a typical
diode may be approximated by an open circuit when vp < 0 and by a short circuit
when vp > 0 (recall the i-v curves of the ideal short and open circuits presented in
Chapter 2). The analysis of a circuit containing a diode may be greatly simplified
by using the short-circuit-open-circuit model. From here on, this diode model will
be known as the ideal diode model. In spite of its simplicity, the ideal diode model
(indicated by the symbol shown in Figure 9.11) can be very useful in analyzing diode
circuits.

In the remainder of the chapter, ideal diodes will always be represented by the
filled (black) triangle symbol shown in Figure 9.11.

Consider the circuit shown in Figure 9.12, which contains a 1.5-V battery, an
ideal diode, and a 1-k<2 resistor. A technique will now be developed to determine
whether the diode is conducting or not, with the aid of the ideal diode model.

Assume first that the diode is conducting (or, equivalently, that vp > 0). This
enables us to substitute a short circuit in place of the diode, as shown in Figure 9.13,
since the diode is now represented by a short circuit, vp = 0. This is consistent with
the initial assumption (i.e., diode “on”), since the diode is assumed to conduct for

ip, MA
151 Actual diode
characteristic + g
A + Vb —
Vb —
10H = — g
Appr.oxi mati on <LO 2
(thick line) Circuit models for
5H Vp > 0 (short) and fo\/mbo_l for
vp < 0 (open) ideal diode
\ \ \
0 5 10 15 v,V

Figure 9.11 Large-signal on/off diode model
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Figure 9.14 Circuit of
Figure 9.12, assuming that
the ideal diode does not
conduct

Figure 9.13 Circuit of
Figure 9.12, assuming that
the ideal diode conducts

vp > 0 and since vp = 0 does not contradict the assumption. The series current in
the circuit (and through the diode) is ip = 1.5/1,000 = 1.5 mA. To summarize, the
assumption that the diode is on in the circuit of Figure 9.13 allows us to assume a
positive (clockwise) current in the circuit. Since the direction of the current and the
diode voltage are consistent with the assumption that the diode ison (vp > 0, ip > 0),
it must be concluded that the diode is indeed conducting.

Suppose, now, that the diode had been assumed to be off. In this case, the diode
would be represented by an open circuit, as shown in Figure 9.14. Applying KVL to
the circuit of Figure 9.14 reveals that the voltage vp must equal the battery voltage,
or vp = 1.5V, since the diode is assumed to be an open circuit and no current flows
through the circuit. Equation 9.8 must then apply.

1.5 = vp 4+ 1,000ip = vp (9.8)
But the result vp = 1.5V is contrary to the initial assumption (that is, vp < 0). Thus,
assuming that the diode is off leads to an inconsistent answer. Clearly, the assumption
must be incorrect, and therefore the diode must be conducting.

This method can be very useful in more involved circuits, where it is not quite
so obvious whether a diode is seeing a positive or a negative bias. The method is
particularly effective in these cases, since one can make an educated guess whether
the diode is on or off and can solve the resulting circuit to verify the correctness of the
initial assumption. Some solved examples are perhaps the best way to illustrate the
concept.

DETERMINING THE CONDUCTION STATE OF AN IDEAL DIODE

1. Assume a diode conduction state (on or off).

2. Substitute ideal circuit model into circuit (short circuit if “on,” open
circuit if “off”).

3. Solve for diode current and voltage, using linear circuit analysis
techniques.

4. If the solution is consistent wi