
ELECTROMAGNETIC
SIMULATION USING
THE FDTD METHOD

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board 2013
John Anderson, Editor in Chief

Linda Shafer Saeid Nahavandi George Zobrist
George W. Arnold David Jacobson Tariq Samad
Ekram Hossain Mary Lanzerotti Dmitry Goldgof
Om P. Malik

Kenneth Moore, Director of IEEE Book and Information Services (BIS)

ELECTROMAGNETIC
SIMULATION USING
THE FDTD METHOD

Second Edition

DENNIS M. SULLIVAN

Copyright © 2013 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services or for technical support, please contact
our Customer Care Department within the United States at (800) 762-2974, outside the United
States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our
web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Sullivan, Dennis Michael, 1949-
Electromagnetic simulation using the FDTD method / Dennis M. Sullivan. – Second

edition.
pages cm

Includes bibliographical references and index.
ISBN 978-1-118-45939-3 (cloth)
1. Electromagnetism–Computer simulation. 2. Finite differences. 3. Time-domain

analysis. I. Title.
QC760.S92 2013
537.01–dc23

2012050029

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

To
Sully and Jane

CONTENTS

Preface ix

Guide to the Book xi

1 One-Dimensional Simulation with the FDTD Method 1

1.1 One-Dimensional Free Space Simulation, 1
1.2 Stability and the FDTD Method, 5
1.3 The Absorbing Boundary Condition in One Dimension, 5
1.4 Propagation in a Dielectric Medium, 7
1.5 Simulating Different Sources, 8
1.6 Determining Cell Size, 10
1.7 Propagation in a Lossy Dielectric Medium, 10
1.A Appendix, 13

References, 14

2 More on One-Dimensional Simulation 21

2.1 Reformulation Using the Flux Density, 21
2.2 Calculating the Frequency Domain Output, 24
2.3 Frequency-Dependent Media, 27

2.3.1 Auxiliary Differential Equation Method, 30
2.4 Formulation Using Z Transforms, 32

2.4.1 Simulation of Unmagnetized Plasma, 33
2.5 Formulating a Lorentz Medium, 36

2.5.1 Simulation of Human Muscle Tissue, 39
References, 41

vii

viii CONTENTS

3 Two-Dimensional Simulation 53

3.1 FDTD in Two Dimensions, 53
3.2 The Perfectly Matched Layer (PML), 56
3.3 Total/Scattered Field Formulation, 65

3.3.1 A Plane Wave Impinging on a Dielectric Cylinder, 67
3.3.2 Fourier Analysis, 70
References, 71

4 Three-Dimensional Simulation 85

4.1 Free Space Simulation, 85
4.2 The PML in Three Dimensions, 89
4.3 Total/Scattered Field Formulation in Three Dimensions, 92

4.3.1 A Plane Wave Impinging on a Dielectric Sphere, 92
References, 96

5 Examples of Electromagnetic Simulation Using FDTD 113

5.1 Nonlinear Optical Pulse Simulation, 113
5.2 Finding the Eigenfunctions of a Two-Dimensional EM Cavity, 120
5.3 Simulation of RF Coils, 127

References, 136

6 Quantum Simulation 151

6.1 Simulation of the One-Dimensional, Time-Dependent Schrödinger
Equation, 151

6.2 Tunneling, 156
6.3 Why Semiconductors Have Energy Bands, 157

References, 160

Appendix A The Z Transform 169

A.1 The Sampled Time Domain and the Z Transform, 169
A.1.1 Delay Property, 172
A.1.2 Convolution Property, 172

A.2 Examples, 174
A.3 Approximations in Going from the Fourier to the Z Domain, 176

References, 178

Index 179

PREFACE

The purpose of the second edition of this book remains the same as that of the first
edition: to enable the reader to learn and use the Finite-Difference Time Domain
(FDTD) method in a manageable amount of time. For this reason, the first four
chapters are fundamentally the same. The goal of these four chapters is to take
the reader through one-, two-, and three-dimensional FDTD simulation and, at
the same time, present the techniques for dealing with more complicated media.
In addition, some basic applications of signal processing theory are explained to
enhance the effectiveness of FDTD simulation.

Chapter 5 contains three examples of FDTD simulation. This chapter is by no
means comprehensive and does not include most of the applications for FDTD
that have been found over the years. They are examples from the author’s own
research, which are hopefully representative of the flexibility of the FDTD method
for electromagnetic applications.

Chapter 6 is a very short introduction to the simulation of the Schrödinger
equation using FDTD simulation. The Schrödinger equation is at the heart of
quantum mechanics. FDTD is not yet widely used in quantum simulation, but
compared with the other methods being used in quantum simulation, it is likely
that FDTD will play a substantial role in the future.

ix

GUIDE TO THE BOOK

PURPOSE

This book has one purpose only: it enables the reader or student to learn and
do three-dimensional electromagnetic simulation using the finite-difference time
domain (FDTD) method. It does not attempt to explain the theory of FDTD
simulation in great detail. It is not a survey of all possible approaches to the
FDTD method nor is it a “cookbook” of applications. It is aimed at those who
would like to learn and do FDTD simulation in a reasonable amount of time.

FORMAT

This book is tutorial in nature. Every chapter attempts to address an additional
level of complexity. The text increases in complexity in two major ways:

Dimension of Simulation Type of Material

One-dimensional Free space
Two-dimensional Complex dielectric material
Three-dimensional Frequency-dependent material

The first section of Chapter 1 is one-dimensional simulation in free space.
From there, the chapters progress to more complicated media. In Chapter 2,
the simulation of frequency-dependent media is addressed. Chapter 3 introduces
two-dimensional simulation, including the simulation of plane waves and how to

xi

xii GUIDE TO THE BOOK

implement the perfectly matched layer. Chapter 4 introduces three-dimensional
simulation. Chapter 5 consists of three sections, each with a different example of
FDTD simulation. Chapter 6 is a short introduction to quantum simulation using
the FDTD method.

SPECIFIC CHOICES DEALING WITH SOME TOPICS

There are many ways to handle individual topics having to do with FDTD sim-
ulation. This book does not attempt to address all of them. In most cases, a
single approach is taken and used throughout the book for the sake of clarity.
My philosophy is that when first learning the FDTD method, it is better to learn
one specific approach and learn it well rather than to be confused by switching
to different approaches. In most cases, the approach being taught is the author’s
preference. This does not make it the only approach or even the best; it is just the
approach that this author has found to be effective. In particular, the following
are some of the choices that have been made.

1. The Use of Normalized Units. Maxwell’s equations have been normalized
by substituting

Ẽ =
√

ε0

μ0
E .

This is a system similar to the Gaussian units, which is frequently used by
physicists. The reason for using it here is the simplicity in the formulation.
The E and the H fields have the same order of magnitude. This has an
advantage in formulating the perfectly matched layer (PML), which is a
crucial part of FDTD simulation.

2. Maxwell’s Equations with the Flux Density. There is some leeway in form-
ing the time domain Maxwell’s equations from which the FDTD formula-
tion is developed. The following is used in Chapter 1:

∂E
∂t

= 1

ε0
∇ × H − σ

ε0
E (1)

∂H
∂t

= − 1

μ0
∇ × E . (2)

This is a straightforward formulation and among those commonly used.
However, by Chapter 2, the following formulation using the flux density
is adopted:

∂D
∂t

= 1

ε0
∇ × H , (3)

GUIDE TO THE BOOK xiii

D = εE , (4)

∂H
∂t

= − 1

μ0
∇ × E . (5)

In this formulation, it is assumed that the materials being simulated are nonmag-
netic; that is, H = (1/μ0)B . However, we will be dealing with a broad range of
dielectric properties, so Eq. (4) could be a complicated convolution. There is a
reason for using this formulation: Eq. (3) and Eq. (5) remain the same regardless
of the material; any complicated mathematics stemming from the material lies
in Eq. (4). We will see that the solution of Eq. (4) can be looked upon as a dig-
ital filtering problem. In fact, the use of signal processing techniques in FDTD
simulation will be a recurring theme in this book.

Z TRANSFORMS

As mentioned above, the solution of Eq. (4) for most complicated material can
be viewed as a digital filtering problem. This being the case, the most direct
approach to solve the problem is to take Eq. (4) into the Z domain. Z transforms
are a regular part of electrical engineering education, but not that of physicists,
mathematicians, and others. In teaching a class on FDTD simulation, I teach
a little Z transform theory so when we reach the sections on complicated dis-
persive materials, the student are ready to apply Z transforms. This has two
distinct advantages: (1) Electrical engineering students have another application
of Z transforms to strengthen their understanding of signal processing; and (2)
physics students and others now know and can use Z transforms, something that
had not usually been part of their formal education. Based on my positive experi-
ence, I would encourage anyone using this book when teaching an FDTD course
to consider this approach. However, I have left the option open to simulate dis-
persive methods with other techniques. The sections on Z transforms are optional
and may be skipped. Appendix A on Z transforms is provided.

PROGRAMMING EXERCISES

The philosophy behind this book is that the reader will learn by doing. Therefore,
the majority of exercises involve programming. Each chapter has one or more
FDTD programs written in C. If there is more than one program per chapter, typ-
ically only the first will be a complete program listing. The subsequent programs
will not be complete, but will only show changes as compared to the first pro-
gram. For instance, Section 1.1 describes one-dimensional FDTD simulation in
free space. The program fd1d_1.1.c at the end of the chapter is a simulation of a
pulse in free space. Section 1.3 describes how a simple absorbing boundary con-
dition is implemented. The listing of fd1d_1.2.c is not a complete program, but
shows the changes necessary to fd1d_1.1.c to implement the boundary condition.
Furthermore, important lines of code are highlighted in boldface.

xiv GUIDE TO THE BOOK

PROGRAMMING LANGUAGE

The programs at the end of each chapter are written in the C programming
language, as this was the case in the first edition of this book. The reason for this
is almost universal availability of C compilers on UNIX workstations, and the
fact that most potential readers will at least be able to understand C. Presumably,
if another language is preferred by the reader, it will not be that difficult to
transcribe the given C program to that language. A word of warning: MATLAB
is a very attractive for simulation because of its graphics capability. However, I
have found it to be too slow for anything except one-dimensional simulation. In
contrast, I always use FORTRAN for my own applications. I have found it to be
fastest on any computing platform that I have used.

Dennis M. Sullivan

Professor of Electrical and Computer Engineering
University of Idaho

1
ONE-DIMENSIONAL SIMULATION
WITH THE FDTD METHOD

This chapter is a step-by-step introduction to the FDTD (finite-difference time
domain) method. It begins with the simplest possible problem, the simulation
of a pulse propagating in free space in one dimension. This example is used to
illustrate the FDTD formulation. Subsequent sections lead to formulations for
more complicated media.

1.1 ONE-DIMENSIONAL FREE SPACE SIMULATION

The time-dependent Maxwell’s curl equations for free space are

∂E
∂t

= 1

ε0
∇ × H (1.1a)

∂H
∂t

= − 1

μ0
∇ × E . (1.1b)

E and H are vectors in three dimensions, so in general, Eq. (1.1a) and (1.1b)
represent three equations each. We will start with a simple one-dimensional case
using only Ex and Hy , so Eq. (1.1a) and (1.1b) become

∂Ex

∂t
= − 1

ε0

∂Hy

∂z
(1.2a)

Electromagnetic Simulation Using the FDTD Method, Second Edition. Dennis M. Sullivan.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley & Sons, Inc.

1

2 ONE-DIMENSIONAL SIMULATION WITH THE FDTD METHOD

∂Hy

∂t
= − 1

μ0

∂Ex

∂z
. (1.2b)

These are the equations of a plane wave with the electric field oriented in the x
direction, the magnetic field oriented in the y direction, and the wave traveling
in the z direction.

Taking the central difference approximations for both the temporal and spatial
derivates gives

E
n+1/2
x (k) − E

n−1/2
x (k)

�t
= − 1

ε0

Hn
y

(
k + 1

2

)
− Hn

y

(
k − 1

2

)
�x

(1.3a)

Hn+1
y

(
k + 1

2

)
− Hn

y

(
k + 1

2

)
�t

= − 1

μ0

En+1.2
x (k + 1) − En+1.2

x (k)

�x
. (1.3b)

In these two equations, time is specified by the superscripts, that is, “n” actually
means a time step t = �t · n. Remember, we have to discretize everything for
formulation into the computer. The term n + 1 means one time step later. The
terms in parentheses represent distance, that is, “k” actually means the distance
z = �x · k. (It might seem more sensible to use �z as the incremental step,
because in this case we are going in the z direction. However, we will use �x
because it is so commonly used for a spatial increment.) The formulation of
Eq. (1.3a) and (1.3b) assumes that the E and H fields are interleaved in both
space and time. H uses the arguments k + 1/2 and k − 1/2 to indicate that the
H field values are assumed to be located between the E field values. This is
illustrated in Fig. 1.1. Similarly, the n + 1/2 or n − 1/2 superscript indicates
that it occurs slightly after or before n, respectively. Equation (1.3a) and (1.3b)
can be rearranged in an iterative algorithm:

E
n+1/2
x (k) = E

n−1/2
x (k) − �t

ε0 · �x

[
Hn

y

(
k + 1

2

)
− Hn

y

(
k − 1

2

)]
(1.4a)

Hn+1
y

(
k + 1

2

)
= Hn

y

(
k + 1

2

)
− �t

μ0�x
[En+1.2

x (k + 1) − En+1.2
x (k)]. (1.4b)

Notice that the calculations are interleaved in space and time. In Eq. (1.4a), for
example, the new value of Ex is calculated from the previous value of Ex and
the most recent values of Hy . This is the fundamental paradigm of the FDTD
method (1).

Equation (1.4a) and Equation (1.4b) are very similar, but because ε0 and μ0
differ by several orders of magnitude, Ex and Hy will differ by several orders
of magnitude. This is circumvented by making the following change of variables
(2):

Ẽ =
√

ε0

μ0
E. (1.5)

ONE-DIMENSIONAL FREE SPACE SIMULATION 3

k–2Ex
n–1/2

Ex
n+1/2

Hy
n

k–1 1/2 k+1 1/2 k+2 1/2k–1/2 k+1/2

k–1 k+1 k+2k

k–2 k–1 k+1 k+2k

Figure 1.1 Interleaving of the E and H fields in space and time in the FDTD formu-
lation. To calculate Hy , for instance, the neighboring values of Ex at k and k + 1 are
needed. Similarly, to calculate Ex , the values of Hy at k + 1/2 and k + 11/2 are needed.

Substituting this into Eq. (1.4a) and (1.4b) gives

Ẽ
n+1/2
x (k) = Ẽ

n−1/2
x (k) − �t√

ε0μ0�x

[
Hn

y

(
k + 1

2

)
− Hn

y

(
k − 1

2

)]
(1.6a)

Hn+1
y

(
k + 1

2

)
= Hn

y

(
k + 1

2

)
− �t√

ε0μ0�x

[
Ẽn+1.2

x (k + 1) − Ẽn+1.2
x (k)

]
.

(1.6b)

Once the cell size �x is chosen, then the time step �t is determined by

�t = �x

2 · c0
, (1.7)

where c0 is the speed of light in free space. (The reason for this is explained
later.) Therefore,

�t√
ε0μ0 · �x

= c0

(
�x

2

)
�x

= 1

2
. (1.8)

Rewriting Eq. (1.6a) and (1.6b) in C computer code gives the following:

ex[k]=ex[k]+0.5*(hy[k-1]-hy[k]) (1.9a)

hy[k]=hy[k]+0.5*(ex[k]-ex[k+1}). (1.9b)

Note that the n or n + 1/2 or n − 1/2 in the superscripts is gone. Time is implicit
in the FDTD method. In Eq. (1.9a), the ex on the right-hand side is the previous
value at n − 1/2 and the ex on the left-hand side is the new value, n + 1/2,

4 ONE-DIMENSIONAL SIMULATION WITH THE FDTD METHOD

T = 100

FDTD cells

0

H
y

E
x

20 40 60 80 100 120 140 160 180 200

0

0

−1

1

0

−1

1

20 40 60 80 100 120 140 160 180 200

Figure 1.2 FDTD simulation of a pulse in free space after 100 time steps. The pulse
originated in the center and travels outward.

which is being calculated. Position, however, is explicit. The only difference is
that k + 1/2 and k − 1/2 are rounded off to k and k − 1 in order to specify a
position in an array in the program.

The program fd1d_1.1.c at the end of the chapter is a simple one-dimensional
FDTD program. It generates a Gaussian pulse in the center of the problem space,
and the pulse propagates away in both directions as seen in Fig. 1.2. The Ex

field is positive in both directions, but the Hy field is negative in the negative
directions. The following points are worth noting about the program:

1. The Ex and Hy values are calculated by separate loops and employ the
interleaving described above.

2. After the Ex values are calculated, the source is calculated. This is done
by simply specifying a value of Ex at the point k= kc and overriding what
was previously calculated. This is referred to as a hard source because a
specific value is imposed on the FDTD grid.

PROBLEM SET 1.1

1. Get the program fd1d_1.1c running. What happens when the pulse hits the
end of the array? Why?

2. Modify the program so it has two sources, one at kc -20 and one at kc +20.
(Notice that kc is the center of the problem space.) What happens when the
pulses meet? Explain this from basic EM (electromagnetic) theory.

3. Instead of Ex as the source, use Hy at k= kc as the source. What difference
does it make? Try a two-point magnetic source at kc -1 and kc such that
hy[kc-1]= -hy[kc]. What does this look like? To what does it correspond
physically?

THE ABSORBING BOUNDARY CONDITION IN ONE DIMENSION 5

1.2 STABILITY AND THE FDTD METHOD

Let us return to the discussion of how we determine the time step. An EM
wave propagating in free space cannot go faster than the speed of light. To
propagate a distance of one cell requires a minimum time of �t = �x/c0. With
a two-dimensional simulation, we must allow for the propagation in the diagonal
direction, which brings the requirement to �t = �x/(

√
2c0). Obviously, a three-

dimensional simulation requires �t = �x/(
√

3c0). This is summarized by the
well-known Courant Condition (3, 4):

�t = �x√
nc0

, (1.10)

where n is the dimension of the simulation. Unless otherwise specified, through-
out this book, we will determine �t by

�t = �x

2c0
. (1.11)

This is not necessarily the best formula; we will use it for simplicity.

PROBLEM SET 1.2

1. In fd1d_1.1.c, go to the governing equation, Eq. (1.9a) and (1.9b), and change
the factor 0.5 to 1.0. What happens? Change it to 1.1. Now what happens?
Change it to 0.25 and see what happens.

1.3 THE ABSORBING BOUNDARY CONDITION IN ONE DIMENSION

Absorbing boundary conditions are necessary to keep outgoing E and H fields
from being reflected back into the problem space. Normally, in calculating the E

field, we need to know the surrounding H values; this is a fundamental assump-
tion of the FDTD method. At the edge of the problem space, we will not have
the value of one side. However, we have an advantage because we know that the
fields at the edge must be propagating outward. We will use this fact to estimate
the value at the end by using the value next to it (5).

Suppose we are looking for a boundary condition at the end where k = 0. If
a wave is going toward a boundary in free space, it is traveling at c0, the speed
of light. So in one time step of the FDTD algorithm, it travels

Distance = c0 · �t = c0 · �x

2 · c0
= �x

2
.

6 ONE-DIMENSIONAL SIMULATION WITH THE FDTD METHOD

T = 100

FDTD cells

E
x

20 40 60 80 100 120 140 160 180
0

1

T = 225E
x

20 40 60 80 100 120 140 160 180
0

1

T = 250E
x

20 40 60 80 100 120 140 160 180
0

1

Figure 1.3 Simulation of an FDTD program with absorbing boundary conditions. Notice
that the pulse is absorbed at the edges without reflecting anything back.

This equation basically shows that it takes two time steps for the field to cross
one cell. A commonsense approach tells us that an acceptable boundary condition
might be

En
x (0) = En−2

x (1). (1.12)

It is relatively easy to implement this. Simply store a value of Ex(1) for two
time steps and then put it in Ex(0). Boundary conditions such as these have been
implemented at both ends of the Ex array in the program fd1d_1.2.c. (In the
program fd1d_1.2.c at the end of the chapter, not the entire program but only those
parts that are different from fd1d_1.1.c have been reproduced. Furthermore, key
points are highlighted in boldface.) Figure 1.3 shows the results of a simulation
using fd1d_1.2.c. A pulse that originates in the center propagates outward and is
absorbed without reflecting anything back into the problem space.

PROBLEM SET 1.3

1. The program fd1d_1.2.c has absorbing boundary conditions at both ends. Get
this program running and test it to ensure that the boundary conditions com-
pletely absorb the pulse.

PROPAGATION IN A DIELECTRIC MEDIUM 7

1.4 PROPAGATION IN A DIELECTRIC MEDIUM

In order to simulate a medium with a dielectric constant other than 1, which
corresponds to free space, we have to add the relative dielectric constant εr to
Maxwell’s equations:

∂E
∂t

= 1

εrε0
∇ × H (1.13a)

∂H
∂t

= − 1

μ0
∇ × E . (1.13b)

We will stay with our one-dimensional example and make the change of variables
in Eq. (1.5),

∂Ex

∂t
= − 1

εrε0

∂Hy

∂z
(1.14a)

∂Hy

∂t
= − 1

μ0

∂Ex

∂z
, (1.14b)

and then go to the finite-difference approximations

Ẽ
n+1/2
x (k) = Ẽ

n−1/2
x (k) − (1/2)

εr

[
Hn

y

(
k + 1

2

)
− Hn

y

(
k − 1

2

)]
(1.15a)

Hn+1
y

(
k + 1

2

)
= Hn

y

(
k + 1

2

)
− 1

2
[Ẽn+1.2

x (k + 1) − Ẽn+1.2
x (k)]. (1.15b)

From this we can get the computer equations

ex[k]=ex[k]+cb[k]*(hy[k-1]-hy[k]) (1.16a)

hy[k]=hy[k]+0.5*(ex[k]-ex[k+1}). (1.16b)

where
cb[k] = 0.5/epsilon (1.17)

over those values of k that specify the dielectric material.
The program fd1d_1.3.c simulates the interaction of a pulse traveling in free

space until it strikes a dielectric medium. The medium is specified by the param-
eter cb in Eq. (1.17). Figure 1.4 shows the result of a simulation with a dielectric
medium having a relative dielectric constant of 4. Note that one portion of the
pulse propagates into the medium and the other is reflected, in keeping with basic
EM theory (6).

8 ONE-DIMENSIONAL SIMULATION WITH THE FDTD METHOD

T = 100 Eps = 4

FDTD cells

E
x

20

1

0.5

0

−0.5
40 60 80 100 120 140 160 180 200

T = 220 Eps = 4

E
x

20

1

0.5

0

−0.5
40 60 80 100 120 140 160 180 200

T = 320 Eps = 4

E
x

20

1

0.5

0

−0.5
40 60 80 100 120 140 160 180 200

T = 440 Eps = 4

E
x

20

1

0.5

0

−0.5
40 60 80 100 120 140 160 180 200

Figure 1.4 Simulation of a pulse striking a dielectric material with a dielectric constant
of 4. The source originates at cell number 5.

PROBLEM SET 1.4

1. The program fd1d_1.3.c simulates a problem partly containing free space
and partly dielectric material. Run this program and duplicate the results of
Fig. 1.4.

2. Look at the relative amplitudes of the reflected and transmitted pulses. Are they
correct? Check them by calculating the reflection and transmission coefficients
(Appendix 1.A).

3. Still using a dielectric constant of 4, let the transmitted pulse propagate until
it hits the far right wall. What happens? What could you do to correct this?

1.5 SIMULATING DIFFERENT SOURCES

In the first two programs, a source is assigned as values to Ex , this is referred to
as a hard source. In fd1d_1.3.c, however, a value is added to Ex at a certain point;
this is called a soft source. The reason is that with a hard source, a propagating
pulse will see that value and be reflected, because a hard value of Ex looks like

SIMULATING DIFFERENT SOURCES 9

T = 150 Eps = 4

FDTD cells

E
x 0

1

−1

20 40 60 80 100 120 140 160 180

T = 425 Eps = 4

E
x 0

1

−1

20 40 60 80 100 120 140 160 180

Figure 1.5 Simulation of a propagating sinusoidal wave of 700 MHz striking a medium
with a relative dielectric constant of 4.

a metal wall to FDTD. With the soft source, a propagating pulse will just pass
through.

Until now, we have been using a Gaussian pulse as the source. It is very
easy to switch to a sinusoidal source. Just replace the parameter pulse with the
following:

Pulse = sin[2*pi*freq_in*dt*T]
ex[5] = ex[5] + pulse.

The parameter freq_in determines the frequency of the wave. The source is
used in the program fd1d_1.4.c. Figure 1.5 shows the same dielectric medium
problem with a sinusoidal source. A frequency of 700 MHz is used. Notice that
the simulation was stopped before the wave reached the far right side. Remember
that we have an absorbing boundary condition, but it was only for free space.

In fd1d_1.4.c, the cell size ddx and the time step dt are specified explicitly.
We do this because we need dt in the calculation of pulse. The cell size ddx is
only specified because it is needed to calculate dt from Eq. (1.7).

PROBLEM SET 1.5

1. Modify your program fd1d_1.3.c to simulate the sinusoidal source (see
fid1d_1.4.c).

2. Keep increasing your incident frequency from 700 MHz upward at intervals
of 300 MHz. What happens?

3. Wave packet, a sinusoidal function in a Gaussian envelope, is a type of prop-
agating wave function that is of great interest in areas such as optics. Modify
your program to simulate a wave packet.

10 ONE-DIMENSIONAL SIMULATION WITH THE FDTD METHOD

1.6 DETERMINING CELL SIZE

Choosing the cell size to be used in an FDTD formulation is similar to any
approximation procedure: enough sampling points must be taken to ensure that
an adequate representation is made. The number of points per wavelength is
dependent on many factors (3, 4). However, a good rule of thumb is 10 points
per wavelength. Experience has shown this to be adequate, with inaccuracies
appearing as soon as the sampling drops below this rate.

Naturally, we must use a worst-case scenario. In general, this will involve
looking at the highest frequencies we are simulating and determining the cor-
responding wavelength. For instance, suppose we are running simulations with
400 MHz. In free space, EM energy will propagate at the wavelength

λ0 = c0

400 MHz
= 3 × 108 m/s

4 × 108 s−2
= 0.75 m. (1.18)

If we were only simulating free space, we would choose

�x = λ0

10
= 7.5 cm.

However, if we are simulating EM propagation in biological tissues, for instance,
we must look at the wavelength in the tissue with the highest dielectric constant,
because this will have the corresponding shortest wavelength. For instance, mus-
cle has a relative dielectric constant of about 50 at 400 MHz, so

λ0 =

(
c0√
50

)
400 MHz

= 0.424 × 108 m/s

4 × 108 s−2
= 10.6 cm.

So we would probably select a cell size of 1 cm.

PROBLEM SET 1.6

1. Simulate a 3-GHz sine wave impinging on a material with a dielectric constant
of εr = 20.

1.7 PROPAGATION IN A LOSSY DIELECTRIC MEDIUM

So far, we have simulated EM propagation in free space or in simple media
that are specified by the relative dielectric constant εr. However, there are many
media that also have a loss term specified by the conductivity. This loss term
results in the attenuation of the propagating energy.

PROPAGATION IN A LOSSY DIELECTRIC MEDIUM 11

Once more we will start with the time-dependent Maxwell’s curl equations,
but we will write them in a more general form, which will allow us to simulate
propagation in media that have conductivity:

ε
∂E
∂t

= 1

ε0
∇ × H − J (1.19a)

∂H
∂t

= − 1

μ0
∇ × E . (1.19b)

J is the current density, which can also be written as

J = σE ,

where σ is the conductivity. Putting this into Eq. (1.19a) and dividing by the
dielectric constant we get,

∂E
∂t

= − 1

ε0εr
∇ × H − σ

εrε0
E .

We now revert to our simple one-dimensional equation:

∂Ex(t)

∂t
= − 1

εrε0

∂Hy(t)

∂z
− σ

εrε0
Ex(t)

and make the change of variable in Eq. (1.5), which gives

∂Ẽx(t)

∂t
= − 1

εr
√

μ0ε0

∂Hy(t)

∂z
− σ

εrε0
Ẽx(t) (1.20a)

∂Hy(t)

∂t
= − 1√

μ0ε0

∂Ẽx(t)

∂z
. (1.20b)

Next take the finite-difference approximation for both the temporal and spatial
derivatives similar to Eq. (1.3a)

E
n+1/2
x (k) − E

n−1/2
x (k)

�t
= − 1

εr
√

ε0μ0

Hn
y

(
k + 1

2

)
− Hn

y

(
k − 1

2

)
�x

− σ

εrε0

E
n+1/2
x (k) + E

n−1/2
x (k)

2
.

(1.21)

Notice that the last term in Eq. (1.20a) is approximated as the average across
two time steps in Eq. (1.21). From the previous section,

1√
μ0ε0

�t

�x
= 1

2
,

12 ONE-DIMENSIONAL SIMULATION WITH THE FDTD METHOD

so Eq. (1.21) becomes

E
n+1/2
x (k)

(
1 + �t · σ

2εrε0

)
=

(
1 − �t · σ

2εrε0

)
E

n−1/2
x (k)

−

(
1

2

)
εr

[
Hn

y

(
k + 1

2

)
− Hn

y

(
k − 1

2

)]
or

E
n+1/2
x (k) =

(
1 − �t · σ

2εrε0

)
(

1 + �t · σ

2εrε0

)E
n−1/2
x (k)

−

(
1

2

)

εr

(
1 + �t · σ

2εrε0

) [
Hn

y

(
k + 1

2

)
− Hn

y

(
k − 1

2

)]
.

From these we can get the computer equations

ex[k]=ca[k]*ex[k]+cb[k]*(hy[k-1]-hy[k]) (1.22a)

hy[k]=hy[k]+0.5*(ex[k]-ex[k+1]), (1.22b)

where

eaf=dt*sigma/(2*epsz*epsilon), (1.23a)

ca[k]=(1-eaf)/(1+eaf), (1.23b)

cb[k]=0.5/(epsilon*(1+eaf)). (1.23c)

The program fd1d_1.5.c simulates a sinusoidal wave hitting a lossy medium that
has a dielectric constant of 4 and a conductivity of 0.04. The pulse is generated at
the far left side and propagates to the right (Fig. 1.6). Notice that the waveform

T = 500 Eps = 4

Cond = 0.04

E
x 0

1

−1

20 40 60 80 100 120 140 160 180

FDTD cells

Figure 1.6 Simulation of a propagating sinusoidal wave striking a lossy dielectric mate-
rial with a dielectric constant of 4 and a conductivity of 0.04 (S/m). The source is 700 MHz
and originates at cell number 5.

APPENDIX 13

in the medium is absorbed before it hits the boundary, so we do not have to
worry about absorbing boundary conditions.

PROBLEM SET 1.7

1. Run program fd1d_1.5.c to simulate a complex dielectric material. Duplicate
the results of Fig. 1.6.

2. Verify that your calculation of the sine wave in the lossy dielectric is correct,
that is, it is the correct amplitude going into the slab, and then it attenuates at
the proper rate (Appendix 1.A).

3. How would you write an absorbing boundary condition for a lossy material?

4. Simulate a pulse hitting a metal wall. This is very easy to do, if you remember
that metal has very high conductivity. For the complex dielectric, just use
σ = 1.e6, or any large number. (It does not have to be the correct conductivity
of the metal, just very large.) What does this do to the FDTD parameters ca
and cb? What result does this have for the field parameters Ex and Hy? If you
did not want to specify dielectric parameters, how else would you simulate
metal in an FDTD program?

1.A APPENDIX

When a plane wave traveling in medium 1 strikes medium 2, the fraction that is
reflected is given by the reflection coefficient � and the fraction that is transmitted
into medium 2 is given by the transmission coefficient τ . These are determined
by the intrinsic impedances η1 and η2 of the respective media (6):

� = Eref

Einc
= η2 − η1

η2 + η1
(1.A.1)

τ = Etrans

Einc
= 2η2

η2 + η1
. (1.A.2)

The impedances are given by

η =
√

μ

ε0εr
. (1.A.3)

The complex relative dielectric constant ε∗
r is given by

ε∗
r = εr + σ

jωε0
.

14 ONE-DIMENSIONAL SIMULATION WITH THE FDTD METHOD

For the case where μ = μ0, Eq. (1.A.1) and Eq. (1.A.2) become

� =
1√
ε∗

2
− 1√

ε∗
1

1√
ε∗

2
+ 1√

ε∗
1

=
√

ε∗
1 − √

ε∗
2√

ε∗
1 + √

ε∗
2

(1.A.4)

τ =
2√
ε∗

1

1√
ε∗

2
+ 1√

ε∗
1

= 2
√

ε∗
1√

ε∗
1 + √

ε∗
2

. (1.A.5)

The amplitude of an electric field propagating in the positive z direction in a
lossy dielectric medium is given by

Ex(z) = E0e−kz = e−Re{k}ze−j Im{k}z,

where E0 is the amplitude at z = 0. The wave number k is determined by

k = ω

c0

√
εr. (1.A.6)

REFERENCES

1. K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media, IEEE Trans. Antenn. Propag., vol. 17, 1966, pp. 585–589.

2. A. Taflove and M. Brodwin, Numerical solution of steady state electromagnetic scat-
tering problems using the time-dependent Maxwell’s equations, IEEE Trans. Microw.
Theor. Tech., vol. 23, 1975, pp. 623–730.

3. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain
Method , 3rd Edition, Boston, MA: Artech House, 1995.

4. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Elec-
tromagnetics , Boca Raton, FL: CRC Press, 1993.

5. G. Mur, Absorbing boundary conditions for the finite-difference approximation of the
time domain electromagnetic field equations, IEEE Trans. Electromagn. C., vol. 23,
1981, pp. 377–384.

6. D. K. Cheng, Field and Wave Electromagnetics , Menlo Park, CA: Addison-Wesley,
1992.

C PROGRAMS USED TO GENERATE THE FIGURES IN THE CHAPTER

/* FD1D_1.1.C. 1D FDTD simulation in free space */

include <math.h>
include <stdlib.h>
include <stdio.h>

ONE-DIMENSIONAL SIMULATION WITH THE FDTD METHOD 15

#define KE 200

main ()
{

float ex[KE],hy[KE];
int n,k,kc,ke,NSTEPS;
float ddx,dt,T;
float t0,spread,pulse;
FILE *fp, *fopen();

/* Initialize */
for (k=1; k < KE; k++)
{ ex[k] = 0.;
hy[k] = 0.;
}

kc = KE/2;
t0 = 40.0;
spread = 12;
T = 0;
NSTEPS = 1;

while (NSTEPS > 0) {
printf("NSTEPS --> ");
scanf("%d", &NSTEPS);
printf("%d \n", NSTEPS);
n= 0;

for (n=1; n <=NSTEPS ; n++)
{

T = T + 1;

/* Main FDTD Loop */

/* Calculate the Ex field */
for (k=1; k < KE; k++)
{ ex[k] = ex[k] + .5*(hy[k-1] - hy[k]) ; }

/* Put a Gaussian pulse in the middle */

pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
ex[kc] = pulse;
printf("%5.1f %6.2f\n",t0-T,ex[kc]);

/* Calculate the Hy field */
for (k=0; k < KE-1; k++)
{ hy[k] = hy[k] + .5*(ex[k] - ex[k+1]) ; }

16 ONE-DIMENSIONAL SIMULATION WITH THE FDTD METHOD

}

/* End of the Main FDTD Loop */

/* At the end of the calculation, print out
the Ex and Hy fields */

for (k=1; k <= KE; k++)
{ printf("%3d %6.2f %6.2f\n",k,ex[k],hy[k]); }

/* Write the E field out to a file "Ex" */
fp = fopen("Ex","w");
for (k=1; k <= KE; k++)
{ fprintf(fp," %6.2f \n",ex[k]); }
fclose(fp);

/* Write the H field out to a file "Hy" */
fp = fopen("Hy","w");
for (k=1; k <= KE; k++)
{ fprintf(fp," %6.2f \n",hy[k]); }
fclose(fp);

printf("T = %5.0f\n",T);
}

}

/* FD1D_1.2.C. 1D FDTD simulation in free space */
/* Absorbing Boundary Condition added */

main ()
{

float ex[KE],hy[KE];
float ex_low_m1,ex_low_m2,ex_high_m1,ex_high_m2;

for (n=1; n <=NSTEPS ; n++)
{

T = T + 1;

/* Main FDTD Loop */

/* Calculate the Ex field */
for (k=1; k < KE; k++)
{ ex[k] = ex[k] + .5*(hy[k-1] - hy[k]) ; }

/* Put a Gaussian pulse in the middle */

pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
ex[kc] = ex[kc] + pulse;
printf("%5.1f %6.2f %6.2f\n",t0-T,arg,ex[kc]);

ONE-DIMENSIONAL SIMULATION WITH THE FDTD METHOD 17

/* Absorbing Boundary Conditions */

ex[0] = ex_low_m2;
ex_low_m2 = ex_low_m1;
ex_low_m1 = ex[1];

ex[KE-1] = ex_high_m2;
ex_high_m2 = ex_high_m1;
ex_high_m1 = ex[KE-2];

/* Calculate the Hy field */
for (k=0; k < KE-1; k++)
{ hy[k] = hy[k] + .5*(ex[k] - ex[k+1]) ; }

}

/* End of the Main FDTD Loop */

/* FD1D_1.3.c.
/* Simulation of a pulse hitting a dielectric medium */

main ()
{

float ex[KE],hy[KE];
float cb[KE];
int n,k,kc,ke,kstart,nsteps;
float ddx,dt,T,epsz,epsilon,sigma,eaf;
float t0,spread,pi,pulse;
FILE *fp, *fopen();
float ex_low_m1,ex_low_m2,ex_high_m1,ex_high_m2;

for (k=1; k <= KE; k++) { /* Initialize to free space */
cb[k] = .5;

}
printf("Dielectric starts at --> ");
scanf("%d", &kstart);
printf("Epsilon --> ");
scanf("%f", &epsilon);
printf("%d %6.2f \n", kstart,epsilon);

for (k=kstart; k <= KE; k++) {
cb[k] = .5/epsilon;

}

for (k=1; k <= KE; k++)
{ printf("%2d %4.2f\n",k,cb[k]); }

/* Main part of the program */

18 ONE-DIMENSIONAL SIMULATION WITH THE FDTD METHOD

while (nsteps > 0) {
printf("nsteps --> ");
scanf("%d", &nsteps);
printf("%d \n", nsteps);

for (n=1; n <=nsteps ; n++)
{

T = T + 1;

/* Calculate the Ex field */
for (k=0; k < KE; k++)
{ ex[k] = ex[k] + cb[k]*(hy[k-1] - hy[k]) ; }

/* Put a Gaussian pulse at the low end */

pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
ex[5] = ex[5] + pulse;
printf("%5.1f %6.2f %6.2f\n",T,pulse,ex[5]);

/* FD1D_1.4.c.
/* Simulation of a sinusoidal wave hitting a dielectric
medium */

include <math.h>
include <stdlib.h>
include <stdio.h>

#define KE 200

main ()
{

float ddx,dt;
float freq_in;

ddx = .01; /* Cells size */
dt =ddx/6e8; /* Time steps */

/* These parameters specify the input */
printf("Input freq (MHz)--> ");
scanf("%f", &freq_in);
freq_in = freq_in*1e6;
printf(" %8.0f \n", freq_in);

T = 0;
nsteps = 1;

/* Main part of the program */

ONE-DIMENSIONAL SIMULATION WITH THE FDTD METHOD 19

while (nsteps > 0) {
printf("nsteps --> ");
scanf("%d", &nsteps);
printf("%d \n", nsteps);

for (n=1; n <=nsteps ; n++)
{

T = T + 1;

/* Calculate the Ex field */
for (k=0; k < KE; k++)
{ ex[k] = ex[k] + cb[k]*(hy[k-1] - hy[k]) ; }

/* Put a Gaussian pulse at the low end */

pulse = sin(2*pi*freq_in*dt*T);
ex[5] = ex[5] + pulse;
printf("%5.1f %6.2f %6.2f\n",T,pulse,ex[5]);

/* FD1D_1.5.c. Simulation of a sinusoid hitting a lossy
dielectric medium */

{
float ca[KE],cb[KE];

/* Initialize to free space */
for (k=0; k <= KE; k++) {

ca[k] = 1.;
cb[k] = .5;

}
printf("Dielectric starts at --> ");
scanf("%d", &kstart);
printf("Epsilon --> ");
scanf("%f", &epsilon);
printf("Conductivity --> ");
scanf("%f", &sigma);
printf("%d %6.2f %6.2f \n", kstart,epsilon, sigma);

eaf = dt*sigma/(2*epsz*epsilon);
printf(" %6.4f \n", eaf);

for (k=kstart; k >= KE; k++) {
ca[k] = (1. - eaf)/(1 + eaf) ;
cb[k] = .5/(epsilon*(1 + eaf));

}

/* Main part of the program */

/* Calculate the Ex field */
for (k=0; k < KE; k++)
{ ex[k] = ca[k]*ex[k] + cb[k]*(hy[k-1] - hy[k]) ; }

2
MORE ON ONE-DIMENSIONAL
SIMULATION

Before moving on to two- and three-dimensional problems, we will stay with
one-dimensional simulation to introduce some advanced concepts. First we will
change the formulation slightly and introduce the use of the flux density into the
simulation. This may initially seem like an unnecessary complication. However,
as we get to frequency-dependent materials in Section 2.3, the advantages will
become apparent. Then, in Section 2.2, we introduce the use of the discrete
Fourier transform in FDTD simulation. This is an extremely powerful method to
quantify the output of the simulation.

It should become apparent from this chapter how closely signal processing is
linked to time domain EM simulation. This will be obvious in Section 2.4, where
we use Z transforms to simulate complicated media.

2.1 REFORMULATION USING THE FLUX DENSITY

Until now, we have been using the form of Maxwell’s equations given in Eq.
(1.1), which uses only the E and H fields. However, a more general form is

∂D
∂t

= ∇ × H , (2.1a)

D(ω) = ε0 · ε∗
r (ω) · E (ω), (2.1b)

Electromagnetic Simulation Using the FDTD Method, Second Edition. Dennis M. Sullivan.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley & Sons, Inc.

21

22 MORE ON ONE-DIMENSIONAL SIMULATION

∂H
∂t

= − 1

μ0
∇ × E , (2.1c)

where D is the electric flux density. Notice that Eq. (2.1b) is written in the
frequency domain. The reason for this will be explained later. We will begin by
normalizing these equations, using

Ẽ =
√

ε0

μ0
· E (2.2a)

D̃ =
√

1

ε0μ0
· D, (2.2b)

which leads to

∂D̃
∂t

= 1√
ε0μ0

∇ × H̃ , (2.3a)

D̃(ω) = ε∗
r (ω) · Ẽ (ω), (2.3b)

∂H
∂t

= − 1√
ε0μ0

∇ × Ẽ . (2.3c)

We saw in Chapter 1 that the forms of Eq. (2.3a) and (2.3c) lead to the very
simple finite-difference equations, Eq. (1.4a) and (1.4b), respectively. The only
change is the use of D instead of E. However, we still have to get Eq. (2.3b)
into a time domain difference equation for implementation into FDTD. The first
task is to shift from the frequency domain to the time domain. We will assume
we are dealing with a lossy dielectric medium of the form

ε∗
r (ω) = εr + σ

jωε0
(2.4)

and substitute Eq. (2.4) into Eq. (2.3b):

D(ω) = εrE(ω) + σ

jωε0
E(ω). (2.5)

Taking the first term into the time domain is not a problem because it is a
simple multiplication. In the second term, Fourier theory tells us that 1/jω in the
frequency domain is integration in the time domain, so Eq. (2.5) becomes

D(t) = εrE(t) + σ

jωε0

∫ t

0
E(t ′)dt ′.

REFORMULATION USING THE FLUX DENSITY 23

We will want to go to the sampled time domain, so the integral will be approxi-
mated as a summation over the time step �t :

Dn = εrE
n + σ · �t

ε0

n∑
i=0

Ei. (2.6)

Note that E and D are specified at time t = n · �t . There is still one problem:
looking back at Eq. (2.3b), we see that we have to solve for En given the value
Dn. But the value En is needed in the calculation of the summation. We will
circumvent this by separating the En term from the rest of the summation:

Dn = εrE
n + σ · �t

ε0
En + σ · �t

ε0

n−1∑
i=0

Ei.

Now we can calculate En from

En =
Dn − σ · �t

ε0

n−1∑
i=0

Ei

εr + σ · �t

ε0

. (2.7)

We can calculate En, the current value of E, from the current value of D and
previous values of E. It will prove advantageous to define a new parameter for
the summation

In = σ · �t

ε0

n−1∑
i=0

Ei,

so Eq. (2.7) can be reformulated with the following equations:

En = Dn − In−1

εr + σ · �t

ε0

(2.8a)

In = In−1 + σ · �t

ε0

n−1∑
i=0

Ei. (2.8b)

Note that the summation is calculated by Eq. (2.8b), which at every time step n,
simply adds the value En times the constant term to the previous values of the
summation at n − 1. It is not necessary to store all the values of En from 0 to
n. Now the entire FDTD formulation is

dx[k]=dx[k]+0.5*([hyk-1]-hy[k]), (2.9a)

dx[k]=gax[k]*(dx[k]-ix[k]), (2.9b)

24 MORE ON ONE-DIMENSIONAL SIMULATION

ix[k]=ix[k]+gbx[k]*ex[k], (2.9c)

hy[k]=hy[k]+0.5*(ex[k]-ex[k+1]), (2.9d)

where

gax[k]=1/(epsilon+(sigma*dt/epsz)) (2.10a)

gbx[k]=sigma*dt/epsz. (2.10b)

The important point is that all of the information regarding the media is contained
in Eq. (2.9b) and (2.9c). For free space, gax = 1 and gbx = 0 and for lossy
material, gax and gbx are calculated according to Eq. (2.10a) and (2.10b). In
calculating ex[k] at the point k, it uses only values of dx[k] and the previous
values of ex[k] in the time domain. Equation (2.9a) and (2.9d), which contain
the spatial derivatives, do not change regardless of the media.

It may seem as though we have paid a high price for this fancy formulation
compared to the formulation of Chapter 1. We now need Dx as well as Ex and
an auxiliary parameter Ix. The real advantage comes when we deal with more
complicated materials, as we will see in the following sections.

PROBLEM SET 2.1

1. The program fd1d_2.1.c implements the reformulation using the flux density.
Get this program running and repeat the results of problem 1.7.1.

2.2 CALCULATING THE FREQUENCY DOMAIN OUTPUT

Until now, the output of our FDTD programs has been the E field itself, and
we have been content to simply watch a pulse or sine wave propagate through
various media. Needless to say, before any such practical applications can be
implemented, it will be necessary to quantify the results. Suppose now that we
are asked to calculate the E field distribution at every point in a dielectric medium
subject to illumination at various frequencies. One approach would be to use a
sinusoidal source and iterate the FDTD program until a steady state is reached
and determine the resulting amplitude and phase at every point of interest in
the medium. This would work, but then we must repeat the process for every
frequency of interest. According to system theory, we can get the response to
every frequency if we use an impulse as the source. We could go back to using
the Gaussian pulse, which, if it is narrow enough, is a good approximation to
an impulse. We then iterate the FDTD program until the pulse has died out, and
take the Fourier transform of the E fields in the medium. If we have the Fourier
transform of the E field at a point, then we know the amplitude and phase of the
E field that would result from illumination by any sinusoidal source. This, too,

CALCULATING THE FREQUENCY DOMAIN OUTPUT 25

has a serious drawback: the E field for all the time domain data at every point
of interest would have to be stored until the FDTD program is through iterating
so that the Fourier transform of the data could be taken, presumably using a fast
Fourier transform algorithm. This presents a logistical difficulty.

Here is an alternative. Suppose we want to calculate the Fourier transform of
the E field E(t) at a frequency f1. This can be done by the equation

E(f1) =
∫ tT

0
E(t) · e−j2πf1tdt . (2.11)

Notice that the lower limit of the integral is at 0 because the FDTD program
assumes all causal functions. The upper limit is tT , the time at which the FDTD
iteration is halted. Rewrite Eq. (2.11) in a finite-difference form,

E(f1) =
T∑

n=0

E(n · �t) · ej2πf1(n·�t), (2.12)

where T is the number of iterations and �t is the time step, so tT = T · �t .
Equation (2.12) can be divided into its real and imaginary parts

E(f1) =
T∑

n=0

E(n · �t) · cos(2πf1 · �t · n)

− j

T∑
n=0

E(n · �t) · sin(2πf1 · �t · n),

(2.13)

which can be implemented in computer code by

real_pt[m,k]=real_pt[m,k]+ex[k]*cos(2*pi*freq(m)*dt*n) (2.14a)

imag_pt[m,k]=imag_pt[m,k]+ex[k]*sin(2*pi*freq(m)*dt*n).
(2.14b)

For every point k in the region of interest, we require only two computer words
of memory for every frequency of interest fm. At any point k, from the real part,
real_pt[m,k], and the imaginary part, imag_pt[m,k], of E(fm), we can
determine the amplitude and phase at the frequency fm:

amp[m,k]=sqrt(pow(real_pt[m,k],2.)+pow(imag_pt[m,k],2.))
(2.15a)

phase[m,k]= atanw(imag_pt[m,k],real_pt[m,k]). (2.15b)

Note that there is an amplitude and phase associated with every frequency at
each cell (1, 2). The program fd1d_2.2c at the end of the chapter calculates the

26 MORE ON ONE-DIMENSIONAL SIMULATION

E
x

20(a)

Time Domain T = 200

Freq. Domain at 500 MHz

1

0

−1
40 60 80 100 120 140 160 180 200

A
m

p

20

1

0
40 60 80 100 120 140 160 180 200

E
x

20(b)

Time Domain T = 400

Freq. Domain at 500 MHz

1

0

−1
40 60 80 100 120 140 160 180 200

A
m

p

20

1

0
40 60 80 100 120 140 160 180 200

FDTD cells

Figure 2.1 Simulation of a pulse striking a dielectric medium with εr = 4. (a) The pulse
after 200 time steps. Notice that the Fourier amplitude is 1 in that part of the space where
the pulse has traveled, but 0 elsewhere. (b) After 400 time steps, the pulse has struck
the medium, and part of it has been transmitted and the other part reflected. The Fourier
amplitude in the medium is 0.667, which is the percentage that has been transmitted.

frequency response at three frequencies throughout the problem space. Figure 2.1
is a simulation of a pulse hitting a dielectric medium with a dielectric constant
of 4, similar to Fig. 1.4. The frequency response at 500 MHz is also shown.
At T = 200, before the pulse has hit the medium, the frequency response is 1
through the part of the space where the pulse has traveled. After 400 time steps,
the pulse has hit the medium; some of the pulse has penetrated into the medium
and some of it has been reflected. The amplitude of the transmitted pulse is
determined by Eq. (1.A.2)

τ =
√

4 · 1

1 + √
4

= 0.667,

which is the Fourier amplitude in the medium. The Fourier amplitude outside the
medium varies between 1 − 0.333 and 1 + 0.333. This is in keeping with the
pattern formed by the standing wave that is created from a sinusoidal signal,
the reflected wave of which interacts with the original incident wave.

PROBLEM SET 2.2

1. The program fd1d_2.2.c implements the discrete Fourier transform with a
Gaussian pulse as its source. Get this program running. Duplicate the results
in Fig. 2.1.

FREQUENCY-DEPENDENT MEDIA 27

2.3 FREQUENCY-DEPENDENT MEDIA

The dielectric constant and conductivity of most media vary at different frequen-
cies. The pulses we have been using as a source in Chapters 1 and 2 contain a
spectrum of frequencies. In order to simulate frequency-dependent material, we
will need a way to account for this. One of the most significant developments in
the FDTD method is a means to simulate frequency-dependent materials (3).

We will start with a very simple example to illustrate the ideas. Suppose
we have a medium whose dielectric constant and conductivity vary over the
frequency range 10–1000 MHz (Fig. 2.2). A material like this can be adequately
represented by the following formulation:

ε∗
r (ω) = εr + σ

jωε0
+ χ1

1 + jωt0
. (2.16)

This is referred to as the Debye formulation. In this formulation, there is a
dielectric constant εr and a conductivity σ , but there is also a frequency-dependent
term. The following parameters represent the medium of Fig. 2.2:

εr = 2, σ = 0.01, χ1 = 2, t0 = 0.001 μs.

In order to simulate this medium in FDTD, Eq. (2.16) must be put into the
sampled time domain. Let us define the last term times the E field as

S(ω) = χ1

1 + jωt0
E(ω). (2.17)

The inverse Fourier transform of the Debye term is (χ1/t0)e
−(t/t0)u(t), where

u(t) is the rectangular function, which is 0 for t < 0 and 1 thereafter. (Recall
that implicit to FDTD is the fact that all functions are causal, i.e., 0 for t < 0,

101 102
0

2

4

(a) (b)

0

0.02

0.04
Dielectric constant Conductivity

(S
/m

)

Frequency (MHz) Frequency (MHz)

103 101 102 103

Figure 2.2 (a) Relative dielectric constant and (b) conductivity as functions of frequency
for a Debye medium with the following properties: εr = 2, σ = 0.1, χ = 1, and τ =
0.001 μs.

28 MORE ON ONE-DIMENSIONAL SIMULATION

because the computer programs initialize the field values to 0.) Equation (2.17)
in the frequency domain becomes the convolution

S(t) = χ1

t0

∫ t

0
e−(t ′−t)/t0 · E(t ′)dt ′

in the time domain. We now have to approximate this as a summation in the
sampled time domain:

Sn = χ1 · �t

t0

n∑
i=0

e−�t(n−i)/t0 · Ei

= χ1 · �t

t0

[
En +

n−1∑
i=0

e−�t(n−i)/t0 · Ei

]
.

(2.18)

Notice that

Sn−1 = χ1 · �t

t0

n−1∑
i=0

e−�t(n−1−i)/t0 · Ei

= χ1 · e−�/t0
�t

t0

n−1∑
i=0

e−�t(n−i)/t0 · Ei.

Substituting this value into Eq. (2.18) gives

Sn = e−�/t0Sn−1 + χ1 · �t

t0
· En. (2.19)

Similar to the way we handled the lossy dielectric, we can write

Dn = εrE
n + In + Sn

= εrE
n +

[
σ · �t

ε0
En + In

]
+

[
χ1 · �t

t0
En + e−�t/t0 · Sn−1

]
, (2.20)

and solving for En

En = Dn − In−1 − e−�t/t0Sn−1

εr + σ ·�t
ε0

+ χ1 · �t
t0

, (2.21a)

In = In−1 + σ · �t

ε0
En, (2.21b)

Sn = e−�t/t0Sn−1 + χ1 · �t

t0
En. (2.21c)

FREQUENCY-DEPENDENT MEDIA 29

This formulation is implemented by the following computer codes:

dx[k]=dx[k]+.5*(hy[k-1]-hy[k]), (2.22a)

ex[k]=gax[k]+ (dx[k]-ix[k]-del_exp*sx[k]), (2.22b)

ix[k]=ix[k]+gbx[k]*ex[k], (2.22c)

sx[k]=del_exp*sx[k]+gcx[k]*ex[k], (2.22d)

hy[k]=hy[k]+.5*(ex[k]-ex[k+1]). (2.22e)

where

gax[k]=1/(epsr+(sigma*dt/epsz)+(chi1*dt/t0)), (2.23a)

gbx[k]=sigma*dt/epsz, (2.23b)

gbc[k]=chi1*dt/t0, (2.23c)

and
del_exp=exp(-dt/t0).

Once again, note that everything concerning the medium is contained in Eq.
(2.22b), (2.22c), and (2.22d); however, Eq. (2.22a) and (2.22e), the calculation
of the flux density and the magnetic field, respectively, are unchanged.

The program fd1d_2.3.c calculates the frequency domain amplitude and phase
for three frequencies. Figure 2.3 shows the simulation of a pulse going into a
frequency-dependent dielectric material with the properties

εr = 2, σ = 0.01, χ1 = 2, t0 = μs.

This set of parameters has the following effective dielectric constants and con-
ductivities at the three frequencies:

Frequency, MHz εr σ , S/m

50 6.55 0.024
200 3.94 0.047
500 2.46 0.06

Notice that the Fourier amplitude attenuates more rapidly at 200 MHz than at
50 MHz, and more rapidly still at 500 MHz. This is because the conductivity
is higher at these frequencies. At the same time, the higher relative dielectric
constant at the lower frequencies means that the amplitude just inside the medium
is smaller.

30 MORE ON ONE-DIMENSIONAL SIMULATION

E
x

(V
/m

)

20

Time Domain T = 250

1

0.5
(a)

(b)

(c)

0

40 60 80 100 120 140 160 180 200

Freq. Domain at 500 MHz

FDTD cells

Freq. Domain at 50 MHz

Trans coef = 0.48

Trans coef = 0.79

Freq. Domain at 200 MHz
Trans coef = 0.79

A
m

p0

20

2

1

0
40 60 80 100 120 140 160 180 200

A
m

p1

20

2

1

0
40 60 80 100 120 140 160 180 200

A
m

p2

20

2

1

0
40 60 80 100 120 140 160 180 200

E
x

(m
V

/m
)

20

Time Domain T = 1000

2
0

−4
−2

40 60 80 100 120 140 160 180 200

Figure 2.3 Simulation of a pulse striking a frequency-dependent dielectric medium
(Debye medium) with the following properties: εr = 2, σ = 0.1, χ = 2, and τ =
0.001 μs. (a) After 250 time steps, the pulse has struck the medium, and part of it has
been transmitted and part reflected. (b) After 1000 steps (second from top) the pulse has
penetrated into the medium, but has spread. (c) Notice the different percentages of trans-
mittance and the different rates of attenuation within the medium at each frequency due
to the different effective dielectric constants and conductivities.

2.3.1 Auxiliary Differential Equation Method

We could have taken a somewhat different approach to the simulation of the
dispersive medium described by Eq. (2.16), namely, the auxiliary differential
equation (ADE) method (4, 5). Let us look at Eq. (2.17), but rewrite it as

(1 + jωt0)S(ω) = χ1E(ω). (2.24)

Once again, we must find a way to take this to the discrete time domain
for implementation in the FDTD formulation. We will start by going to the
continuous time domain, and Eq. (2.24) becomes

s(t) + t0
ds(t)

dt
= χ1e(t). (2.25)

FREQUENCY-DEPENDENT MEDIA 31

In the sampled time domain, this becomes

Sn + Sn−1

2
+ t0

Sn − Sn−1

�t
= χ1E

n.

Notice that we approximate the s(t) term over two time steps. We did this because
we needed two time steps to approximate the derivatives. As before, we solve
for Sn:

Sn =

(
1 − �t

2 · t0

)
(

1 + �t

2 · t0

)Sn−1 +
�t

t0
· χ1(

1 + �t

2 · t0

)En. (2.26)

We can use this instead of Eq. (2.19) to calculate En in Eq. (2.21). How can we
be sure these will give equivalent answers? You are probably familiar with the
following approximations:

1 − δ ∼= e−δ if δ << 1

1

1 + δ
∼= e−δ if δ << 1.

Putting the two together gives

1 − δ

1 + δ
∼= e−2δ if δ << 1.

In this case,

δ = �t

2 · t0
,

so we have (
1 − �t

2 · t0

)
(

1 + �t

2 · t0

) ∼= e−�t/t0 . (2.27)

This leaves only the following question: how do we know that �t/t0 is small
enough? Recall that the cell size has to be small enough to get about 10 points
per wavelength for the smallest wavelength in the simulation. This is a similar
situation. If the medium that we are trying to simulate has a Debye term with a
time constant of t0, we must be sure that our time steps are small compared to
t0, say �t ≤ t0/10. This insures that Eq. (2.27) is a fairly good approximation.

PROBLEM SET 2.3

1. The program fd1d_2.3.c implements the frequency-dependent formulation. Get
this program running and repeat the results of Fig. 2.3.

32 MORE ON ONE-DIMENSIONAL SIMULATION

2.4 FORMULATION USING Z TRANSFORMS

If you have been studying the Z transform theory in Appendix A, or if you
are already familiar with Z transforms, you will now know the advantage of
using Z transforms for the FDTD formulation of frequency-dependent media (6).
Returning to the problem of calculating the E in a Debye medium, we begin
with our frequency domain equations

D(ω) =
(

εr + σ

jωε0
+ χ1

1 + jωt0

)
E(ω).

We can avoid dealing with troublesome convolution integrals in the time domain
because we will go immediately to the Z domain

D(z) = εrE(z) +
σ · �t

ε0

1 − z−1
E(z) +

χ1 · �t

t0

1 − e−�t/t0z−1
E(z). (2.28)

Notice that the factor �t , which is the time step, had to be added to the last two
terms in going from the time domain to the Z domain. Similar to what we did
earlier, we will define some auxiliary parameters:

I (z) =
σ · �t

ε0

1 − z−1
E(z) = z−1I (z) + σ · �t

ε0
E(z) (2.29a)

S(z) =
χ1 · �t

t0

1 − e−�t/t0z−1
E(z) = e−�t/t0S(z) + χ1 · �t

t0
E(z). (2.29b)

Equation (2.28) then becomes

D(z) = εrE(z) + z−1I (z) + σ · �t

ε0
E(z)

+e−�t/t0z−1S(z) + χ1 · �t

t0
E(z), (2.30)

from which we can solve for E(z) by

E(z) = D(z) − z−1I (z) − e−�t/t0z−1S(z)

εr + σ · �t

ε0
+ χ1 · �t

t0

. (2.31)

FORMULATION USING Z TRANSFORMS 33

The advantage of the Z transform formulation is that to get to the sampled time
domain, replace E(z) with En and z−1E(z) with En−1, and similarly replace the
other parameters in Eq. (2.29a) and (2.29b) and Eq. (2.31). What you get is

En = Dn−1 − In−1 − e−�t/t0Sn−1

εr + σ · �t

ε0
+ χ1 · �t

t0

, (2.32a)

In = In−1 + En, (2.32b)

Sn = e−�t/t0Sn + χ1 · �t

t0
En, (2.32c)

which is exactly what we got in the previous section. The difference is that we
avoided doing anything with integrals and their approximations. As we move to
formulations that are more complicated, the advantage of the Z transform will
become evident.

2.4.1 Simulation of Unmagnetized Plasma

In this section, we will demonstrate the versatility of the methods we have
learned in this chapter by simulating a medium completely different from the
media we have been working with so far. The permittivity of unmagnetized
plasmas is given as (7)

ε∗(ω) = 1 + ω2
p

ω(jνc − ω)
, (2.33)

where

ωp = 2πfp;
fp = the plasma frequency;
νc = the electron collision frequency.

Using the partial fraction expansion, Eq. (2.33) can be written as

ε∗(ω) = 1 +
ω2

p

νc

jω
+

ω2
p

νc

νc + jω
. (2.34)

This is the value we will use for the complex dielectric constant in Eq. (2.3b).
Notice that the form resembles Eq. (2.16), the expression for a lossy material
with a Debye term. There are several ways of approaching this problem, but let
us begin by taking the Z transforms of Eq. (2.34) to obtain

ε∗(z) = 1

�t
+

ω2
p

νc

1 − z−1
−

ω2
p

νc

1 − e−νc·�tz−1
. (2.35)

shoshia
Typewritten text

34 MORE ON ONE-DIMENSIONAL SIMULATION

By the convolution theorem, the Z transform of Eq. (2.3b) is

D(z) = ε∗(z) · E(z) · �t . (2.36)

By inserting Eq. (2.35) into Eq. (2.36), we obtain

D(z) = E(z) + ω2
p�t

νc

[
1

1 − z−1
− 1

1 − e−νc·�tz−1

]
E(z)

= E(z) + ω2
p�t

νc

[(
1 − e−νc·�t

)
z−1

1 − (1 − e−νc·�t)z−1 + e−νc·�tz−2

]
E(z).

Notice that we cross multiplied the term in the brackets. An auxiliary term can
be defined as

S(z) = ω2
p�t

νc

[(
1 − e−νc·�t

)
−νc·�t)z−1 + e−νc·�tz−2

]
E(z).

E(z) can be solved for by

E(z) = D(z) − z−1S(z) (2.37a)

S(z) = (1 − e−νc·�t)z−1S(z) − e−νc·�tz−2S(z) + ω2
p�t

νc
(1 − e−νc·�t)E(z).

(2.37b)

Therefore, the FDTD simulation becomes

ex[k]=dx[k]- sx[k];

sx[k]=(1 + exp(-vc*dt)*smx1[k]

+ exp(-vc*dt)smx2[k]) (2.38a)

+(pow(omega,2.)*dt/vc)*(1-exp(-vc*dt))*ez[k];
(2.38b)

sxm2[k]=sxm1[k]; (2.38c)

sxm1[k]=sx[k]; (2.38d)

Notice from Eq. (2.38b) that we need the two previous values of S in our calcu-
lation. This is accomplished by Eq. (2.38c) and (2.38d).

We will do a simulation of a pulse propagating in free space that comes upon
plasma, which is a very interesting medium. At relatively low frequencies (below
the plasma resonance frequency fp), it looks like a metal, and at higher frequen-
cies (above the plasma resonance frequency fp), it becomes transparent. The
following simulation uses the properties of silver: νc = 57 THz, fp = 2000 THz.

1 − (1 − e

shoshia
Sticky Note
+ unda

shoshia
Sticky Note
+ unda

shoshia
Sticky Note
- unda

FORMULATION USING Z TRANSFORMS 35

E
x

50

T = 500

Plasma
1

0

−1
100 150 200 250 300 350 400 450 500

E
x

50

T = 950

Plasma
1

0

−1
100 150 200 250 300 350 400 450 500

E
x

50

T = 1200

Plasma
1

0

−1
100 150 200 250 300 350 400 450 500

Figure 2.4 Simulation of a wave propagating in free space and striking a plasma
medium. The plasma has the properties of silver: fp = 2000 THz and νc = 57 THz.
The propagating wave has a center frequency of 500 THz. After 1200 time steps, it has
been completely reflected by the plasma.

Of course, since we are simulating much higher frequencies, we will need a
much smaller cell size. In the course of this problem, it will be necessary to
simulate EM waves of 4000 THz (tera = 1012). At this frequency, the free space
wavelength is

λ = 3 × 108

4 × 1015 = 0.75 × 10−7.

In following our rule of thumb of at least 10 points per wavelength, a cell size
of 1 nm, that is, �x = 10−9, will be used. Figure 2.4 shows our first simulation
at 500 THz, well below the plasma frequency. The incident pulse is a sine wave
inside a Gaussian envelope. Notice that the pulse interacts with the plasma almost
as if the plasma were a metal barrier—the pulse is almost completely reflected.
Figure 2.5 is a similar simulation at 4000 THz, well above the plasma frequency.
A small portion of it is reflected, but the majority of the pulse passes right
through.

PROBLEM SET 2.4

1. Modify the program fd1d_2.3.c to simulate plasma and duplicate the results
of Fig. 2.4 and Fig. 2.5. This is much easier than it might look. First change
your cell size to 1 nm. Then replace the calculation of the E field for a lossy
Debye medium with that of Eq. (2.38). After doing the simulations at 500 and
4000 THz, repeat at 2000 THz. What happens?

2. Repeat problem 2.4.1, but use a narrow Gaussian pulse as your input and
calculate the frequency response at 500, 2000, and 4000 THz. Does the result
look the way you would expect. Particularly at 2000 THz?

36 MORE ON ONE-DIMENSIONAL SIMULATION

E
x

50

T = 300

Plasma
1

0

−1
100 150 200 250 300 350 400 450 500

E
x

50

T = 800

1

0

−1
100 150 200 250 300 350 400 450 500

E
x

50

T = 1000

Plasma
1

0

−1
100 150 200 250 300 350 400 450 500

Plasma

Figure 2.5 Simulation of a wave propagating in free space and striking a plasma
medium. The plasma has the properties of silver: fp = 2000 THz and νc = 57 THz.
The propagating wave has a center frequency of 4000 THz. After 1000 time steps, it has
completely passed through the plasma.

2.5 FORMULATING A LORENTZ MEDIUM

The Debye model describes a single-pole frequency dependence. We now move
to the next level, which is a two-pole dependence referred to as the Lorentz
formulation:

ε∗
r (ω) = εr + ε1

1 + j2δ0

(
ω

ω0

)
−

(
ω

ω0

)2 . (2.39)

Figure 2.6 is a graph of the dielectric constant and conductivity of a material with
the following Lorentz parameters: εr = 2, ε1 = 2, f0 = 100 MHz, (ω0 = 2πf0),
and δ0 = 0.25. To simulate a Lorentz medium in the FDTD formulation, we first
put Eq. (2.39) into Eq. (2.3b),

D(ω) = εrE(ω) + ε1

1 + j2δ0

(
ω

ω0

)
−

(
ω

ω0

)2 E(ω)

= εrE(ω) + S(ω), (2.40)

where we have defined again an auxiliary term,

S(ω) = ω2
0ε1

ω2
0 + j2δ0 + (jω)2

E(ω).

We will use the ADE method to move this to the time domain. Start by rewriting
it in the following manner:

[ω2
0 + j2δ0 + (jω)2]S(ω) = ω2

0ε1E(ω).

FORMULATING A LORENTZ MEDIUM 37

Dielectric constant Conductivity

(S
/m

)

Frequency (MHz) Frequency (MHz)

(a) (b)

101
0 0

0.01

0.02

5

102 103 101 102 103

Figure 2.6 (a) Relative dielectric constant and (b) conductivity as functions of fre-
quency for a Lorentz medium with the following properties: εr = 2, ε1 = 2, f0 =
100 MHz, and δ = 0.25.

Finally, we proceed to the finite-difference approximations

ω2
0S

n−1 + 2δ0ω0
Sn − Sn−2

2�t
+ Sn − 2Sn−1 + Sn−2

(�t)2
= ω2

0ε1E
n−1.

A few things are worth noting: the second-order derivative generated a second-
order differencing

d2s(t)

dt2
∼= Sn − 2Sn−1 + Sn−2

(�t)2
.

The first-order derivative is taken over two time steps instead of one:

ds(t)

dt
∼= Sn − Sn−2

2�t
.

This was done because the second-order derivative spanned two time steps. Next,
we solve for the newest value of Sn:

Sn

(
δ0ω0

�t
+ 1

�t2

)
+ Sn−1

(
ω2

0 − 2

�t

)
+ Sn−2

(
−δ0ω0

�t
+ 1

�t2

)
= ω2

0ε1E
n−1,

Sn =

(
ω2

0 − 2

�t

)
(

δ0ω0

�t
+ 1

�t2

)Sn−1 − (1 − �tδ0ω0)

(1 + �tδ0ω0)
Sn−2 + �t2ω2

0ε1(
δ0ω0

�t
+ 1

�t2

)En−1,

Sn = (2 − �t2ω2
0)

(1 + �tδ0ω0)
Sn−1 − (1 − �tδ0ω0)

(1 + �tδ0ω0)
Sn−2 + �t2ω2

0ε1

(1 + �tδ0ω0)
En−1. (2.41)

Now we will return to Eq. (2.40) and take it to the sampled time domain

Dn = εrE
n + Sn,

38 MORE ON ONE-DIMENSIONAL SIMULATION

which we rewrite as

En = Dn − Sn

εr
.

Notice that we already have a solution for Sn in Eq. (2.41). Also, because we
need only the previous value of E, that is, En−1, we are done.

Let us try a different approach. Go back to Eq. (2.39). An alternative form of
the Lorentz formulation is

S(ω) = γβ

(α2 + β2) + jω2α + (jω)2
ε1E(ω), (2.42)

where

γ = ω0√
1 − δ2

0

,

α = δ0ω0,

β = ω0

√
1 − δ2

0 .

At this point, we can go to Table A.1 and look up the corresponding Z transform,
which is

S(z) = e−α·�t · sin(β · �t) · �t · z−1

1 − 2e−α·�t · cos(β · �t) · z−1 + e−2α·�t · z−2
γ ε1E(z).

The corresponding sampled time domain equation is

Sn = e−α·�t · cos(β · �t)Sn−1 −e−2α·�tSn−2

+ e−2α·�t · sin(β ·�t) · �t ·γ ε1E(z). (2.43)

If both methods are correct, they should yield the same answers, which means
the corresponding terms in Eq. (2.41) and Eq. (2.43) should be the same. Let us
see if that is true.

Sn−2 term: We saw earlier that

e−2δ0ω0·�t ∼= 1 − δ0ω0 · �t

1 + δ0ω0 · �t
.

En−1 term: If β · �t � 1, then sin(β · �t) ∼= β · �t , and

e−α·�t sin(β ·�t) · γ · �t = β · �t

1 + α · �t
γ · �t

=
ω0

√
1−δ2

0 ·�t

1+δ0ω0 ·�t

ω0√
1−δ2

0

· �t = ω2
0 · �t2

1+δ0ω0 ·�t
.

FORMULATING A LORENTZ MEDIUM 39

Sn−1 term: By using a Taylor series expansion of the cosine function, we get

2e−α·�t cos(β · �t) · γ · �t = 2

1 + α · �t

[
1 − (β · �t)2

2

]

= 2 − (β · �t)2

1 + α · �t
= 2 − ω2

0 · (1 − δ2
0)�t2

1 + δ0ω0 · �t
.

The last step is perhaps our weakest one. It depends on δ0 being small enough
compared to 1 that δ2

0 will be negligible.

2.5.1 Simulation of Human Muscle Tissue

We will conclude with the simulation of human muscle tissue. Muscle tissue can
be adequately simulated over a frequency range of about two decades with the
following formulation:

ε∗
r (ω) = εr + σ

jωε0
+ ε1

ω0

(ω2
0 + α2) + jαω + ω2

. (2.44)

(Problem 2.5.2 addresses how one determines the specific parameters, but we
will not be concerned with that here.) By inserting Eq. (2.44) into Eq. (2.1b) and
taking the Z transform, we get

D(z) = εrE(z) +
σ · �t

ε0

1 − z−1
E(z)

+ ε1
e−α·�t sin(β · �t) · �t · z−1

1 − 2e−α·�t cos(β · �t) · z−1 + e−2α·�tz−2
E(z). (2.45)

We will define two auxiliary parameters

I (z) =
σ · �t

ε0

1 − z−1
E(z) (2.46a)

S(z) = ε1
e−α·�t sin(β · �t) · �t · z−1

1 − 2e−α·�t cos(β · �t) · z−1 + e−2α·�tz−2
E(z). (2.46b)

Now Eq. (2.45) becomes

D(z) = εrE(z) + I (z) + z−1S(z). (2.47)

40 MORE ON ONE-DIMENSIONAL SIMULATION

Once we have calculated E(z), I (z) and S(z) can be calculated from Eq. (2.46a)
and (2.46b):

E(z) = D(z) − z−1I (z) − z−1S(z)

εr + σ · �t

ε0

, (2.48a)

I (z) = z−1I (z) + σ · �t

ε0
E(z), (2.48b)

S(z) = 2e−α·�t cos(β · �t) · z−1S(z)

− e−2α·�tz−2S(z) + ε1e−α·�t sin(β · �t) · �t · z−1E(z). (2.48c)

PROBLEM SET 2.5

1. Modify fd1d_2.3.c to simulate a Lorentz medium with the properties used in
Fig. 2.6. Calculate the Fourier amplitudes at 50, 100, and 200 MHz. Consid-
ering Fig. 2.6, do you get the results you expect?

2. Quantify the results of problem 2.5.1 by comparing them with analytic cal-
culations of the reflection coefficient and transmission coefficient at the three
frequencies using Appendix 1.A.

3. FDTD simulation has been used extensively to model the effects of elec-
tromagnetic radiation on human tissue for both safety (8) and for thera-
peutic applications (9). Human muscle tissue is highly frequency dependent.
Table 2.1 shows how the dielectric constant and the conductivity of muscle
vary with frequency (10). Other tissues display similar frequency dependence
(11).

Write a program to calculate the values of εr, σ , χ1, and t0 that would give
an adequate Debye representation of the data in Table 2.1. You probably will
not be able to fit the values exactly. (Hint: do not try for a purely analytic
solution; do it by trial and error.)

TABLE 2.1 Properties of Human Muscle

Frequency, MHz Dielectric Constant Conductivity, S/m

10 160 0.625
40 97 0.693

100 72 0.89
200 56.5 1.28
300 54 1.37
433 53 1.43
915 51 1.6

MORE ON ONE-DIMENSIONAL SIMULATION 41

4. Using the parameters found in problem 2.5.3, do a simulation of a pulse
striking a medium of muscle tissue. Calculate the frequency domain results at
50, 100, and 433 MHz.

REFERENCES

1. C. M. Furse, S. P. Mathur, and O. P. Gandhi, Improvements to the finite-difference
time-domain method for calculating the radar cross section of a perfectly conducting
target, IEEE Trans. Microw. Theor. Tech., vol. MTT-38, July 1990, pp. 919–927.

2. D. M. Sullivan, Mathematical methods for treatment planning in deep regional hyper-
thermia, IEEE Trans. Microw. Theor. Tech., vol. MTT-39, May 1991, pp. 862–872.

3. R. Luebbers, F. Hunsberger, K. Kunz, R. Standler, and M. Schneider, S frequency-
dependent finite-difference time-domain formulation for dispersive materials, IEEE
Trans. Electromagn. C., vol. EMC-32, August 1990, pp. 222–227.

4. R. M. Joseph, S.C. Hagness, and A. Taflove, Direct time integration of Maxwell’s
equations in linear dispersive media with absorption for scattering and propagation
of femtosecond electromagnetic pulses, Optic. Lett., vol. 16, September 1991, pp.
1412–1411.

5. O. P. Gandhi, B. Q. Gao, and Y. Y. Chen, A frequency-dependent finite-difference
time-domain formulation for general dispersive media, IEEE Trans. Microw. Theor.
Tech., vol. MTT-41, April 1993, pp. 658–665.

6. D. M. Sullivan, Frequency-dependent FDTD methods using Z transforms, IEEE Trans.
Antenn. Propag., vol. AP-40, October 1992, pp. 1223–1230.

7. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering , Engle-
wood Cliffs, NJ: Prentice Hall, 1991.

8. D. M. Sullivan, Use of the finite-difference time-domain method in calculating EM
absorption in human tissues, IEEE Trans. Biomed. Eng., vol. BME-34, February 1987,
pp. 148–157.

9. D. M. Sullivan, Three dimensional computer simulation in deep regional hyperthermia
using the finite-difference time-domain method, IEEE Trans. Microw. Theor. Tech.,
vol. MTT-38, February 1990, pp. 204–211.

10. C. C. Johnson and A. W. Guy, Nonionizing electromagnetic wave effects in biological
materials and systems, Proc. IEEE , vol. 60, June 1972, pp. 692–718.

11. M. A. Stuchly and S. S. Stuchly, Dielectric properties of biological
substances—tabulated, J. Microw. Power , vol. 15, 1980, pp. 16–19.

/* FD2D_2.c. 1D FDTD simulation of a dielectric slab */

include <math.h>
include <stdlib.h>
include <stdio.h>

#define KE 200

main ()

42 MORE ON ONE-DIMENSIONAL SIMULATION

{
float dx[KE],ex[KE],hy[KE],ix[KE];
float ga[KE],gb[KE];
int n,k,kc,ke,kstart,nsteps;
float ddx,dt,T,epsz,epsilon,sigma;
float t0,spread,pi,freq_in,arg,pulse;
FILE *fp, *fopen();
float ex_low_m1,ex_low_m2,ex_high_m1,ex_high_m2;

pi = 3.14159;
kc = KE/2; /* Center of the problem space */
ddx = .01; /* Cell size */
dt =ddx/6e8; /* Time steps */
epsz = 8.8e-12;

for (k=0; k < KE; k++) { /* Initialize to free space */
ga[k] = 1.;
gb[k] = 0.;
ex[k] = 0.;
dx[k] = 0.;
hy[k] = 0.;

}
printf("Dielectric starts at --> ");
scanf("%d", &kstart);
printf("Epsilon --> ");
scanf("%f", &epsilon);
printf("Conductivity --> ");
scanf("%f", &sigma);
printf("%d %6.2f %6.2f \n", kstart,epsilon, sigma);

for (k=kstart; k <= KE; k++) {
ga[k] = 1./(epsilon + sigma*dt/epsz) ;
gb[k] = sigma*dt/epsz ;

}

for (k=1; k <= KE; k++)
{ printf("%2d %4.2f %4.2f\n",k,ga[k],gb[k]); }

/* These parameters specify the input pulse */
t0 = 50.0;
spread = 20.0;
T = 0;
nsteps = 1;

/* Main part of the program */

while (nsteps > 0) {
printf("nsteps --> ");
scanf("%d", &nsteps);

MORE ON ONE-DIMENSIONAL SIMULATION 43

printf("%d \n", nsteps);

for (n=1; n <=nsteps ; n++)
{

T = T + 1;

/* Calculate the Dx field */
for (k=1; k < KE; k++)
{ dx[k] = dx[k] + 0.5*(hy[k-1] - hy[k]) ; }

/* Put a Gaussian pulse at the low end */

freq_in = 3e8;
/* pulse = sin(2*pi*freq_in*T*dt); */
pulse = exp(-.5*(pow((t0-T)/spread,2.0)));

dx[kc] = dx[kc] + pulse;
printf("%5.1f %6.2f %6.2f\n",T,pulse,dx[kc]);

/* Calculate Ex from Dx */
for (k=0; k < KE-1; k++)
{ ex[k] = ga[k]*(dx[k] - ix[k]) ;

ix[k] = ix[k] + gb[k]*ex[k] ; }

/* Boundary conditions */
ex[0] = ex_low_m2;
ex_low_m2 = ex_low_m1;
ex_low_m1 = ex[1];

ex[KE-1] = ex_high_m2;
ex_high_m2 = ex_high_m1;
ex_high_m1 = ex[KE-2];

/* Calculate the Hy field */
for (k=0; k < KE-1; k++)
{ hy[k] = hy[k] + .5*(ex[k] - ex[k+1]) ; }

}

for (k=0; k < KE; k++)
{ printf("%2d %6.2f %6.2 \n",k,dx[k],ex[k]); }

/* Write the E field out to a file "Ex" */
fp = fopen("Ex","w");
for (k=0; k < KE; k++)
{ fprintf(fp," %6.3f \n",ex[k]); }
fclose(fp);

printf("%5.1f \n",T);
}

44 MORE ON ONE-DIMENSIONAL SIMULATION

}

/* FD1D_2.2.c. The Fourier Transform has been added.*/

include <math.h>
include <stdlib.h>
include <stdio.h>

#define KE 200

main ()
{

float dx[KE],ex[KE],hy[KE],ix[KE];
float ga[KE],gb[KE];
int n,m,k,kc,ke,kstart,nsteps;
float ddx,dt,T,epsz,epsilon,sigma;
float t0,spread,pi,pulse;
FILE *fp, *fopen();
float ex_low_m1,ex_low_m2,ex_high_m1,ex_high_m2;
float real_pt[5][KE],imag_pt[5][KE];
float freq[5],arg[5],ampn[5][KE],phasen[5][KE];
float real_in[5],imag_in[5],amp_in[5],phase_in[5];
float mag[KE];

kc = KE/2; /* Center of the space */
pi = 3.14159;
epsz = 8.8e-12;
ddx = .01; /* Cells size */
dt = ddx/6e8; /* Time steps */

printf(" %6.4f %10.5e \n",ddx,dt);

for (k=1; k < KE; k++) { /* Initialize to free space */
ga[k] = 1.;
gb[k] = 0.;
dx[k] = 0.;
ex[k] = 0.;
hy[k] = 0.;
ix[k] = 0.;
mag[k] = 0.;

for (m=0; m <= 2; m++) {
real_pt[m][k] = 0.; /* Real and imaginary parts */
imag_pt[m][k] = 0.; /* of the Fourier Transform */
ampn[m][k] = 0.; /* Amplitude and phase of the */
phasen[m][k] = 0.; /* Fourier Transforms */
}

}
for (m=0; m <= 2; m++) {

MORE ON ONE-DIMENSIONAL SIMULATION 45

real_in[m] = 0.; /* Fourier Trans. of input pulse */
imag_in[m] = 0.;

}

ex_low_m1 = 0.;
ex_low_m2 = 0.;
ex_high_m1 = 0.;
ex_high_m2 = 0.;

/* Parameters for the Fourier Transform */

freq[0] = 100.e6;
freq[1] = 200.e6;
freq[2] = 500.e6;

for (n=0; n<= 2; n++)
{ arg[n] = 2*pi*freq[n]*dt;
printf("%2d %6.2f %7.5f \n",n,freq[n]*1e-6,arg[n]);
}

printf("Dielectric starts at --> ");
scanf("%d", &kstart);
printf("Epsilon --> ");
scanf("%f", &epsilon);
printf("Conductivity --> ");
scanf("%f", &sigma);
printf("%d %6.2f %6.2f \n", kstart,epsilon, sigma);

for (k=kstart; k <= KE; k++) {
ga[k] = 1./(epsilon + sigma*dt/epsz) ;
gb[k] = sigma*dt/epsz ;

}

for (k=1; k <= KE; k++)
{ printf("%2d %6.2f %6.4f \n",k,ga[k],gb[k]); }

/* These parameters specify the input pulse */
t0 = 50.0;
spread = 10.0;

T = 0;
nsteps = 1;

/* Main part of the program */

while (nsteps > 0) {
printf("nsteps --> ");
scanf("%d", &nsteps);
printf("%d \n", nsteps);

46 MORE ON ONE-DIMENSIONAL SIMULATION

for (n=1; n <=nsteps ; n++)
{

T = T + 1;

/* Calculate the Dx field */
for (k=0; k < KE; k++)
{ dx[k] = dx[k] + 0.5*(hy[k-1] - hy[k]) ; }

/* Initialize with a pulse */

pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
dx[25] = dx[25] + pulse;
printf("%5.1f %6.2f %6.2f \n",T,pulse,dx[5]);

/* Calculate Ex from Dx */
for (k=0; k < KE-1; k++)
{ ex[k] = ga[k]*(dx[k] - ix[k]) ;

ix[k] = ix[k] + gb[k]*ex[k] ;
}

/* Calculate the Fourier transform of Ex. */
for (k=0; k < KE; k++)

{ mag[k] = mag[k] + pow(ex[k],2.);
for (m=0; m <= 4; m++)

{real_pt[m][k]=real_pt[m][k]+cos(arg[m]*T)*ex[k] ;
imag_pt[m][k]= imag_pt[m]

[k]-sin(arg[m]*T)*ex[k] ; }
}

/* Fourier Transform of the input pulse */
if (T < 100) {

for (m=0; m <= 2 ; m++)
{ real_in[m] = real_in[m] + cos(arg[m]*T)*ex[10] ;
imag_in[m] = imag_in[m] - sin(arg[m]*T)*ex[10] ; }

}

/* Boundary conditions */
ex[0] = ex_low_m2;
ex_low_m2 = ex_low_m1;
ex_low_m1 = ex[1];

ex[KE-1] = ex_high_m2;
ex_high_m2 = ex_high_m1;
ex_high_m1 = ex[KE-2];

/* Calculate the Hy field */
for (k=0; k < KE-1; k++)

MORE ON ONE-DIMENSIONAL SIMULATION 47

{ hy[k] = hy[k] + .5*(ex[k] - ex[k+1]) ; }

}

/* End of the main loop */

/* for (k=0; k < KE; k++)
{ printf("%2d %6.2f %6.2 \n",k,dx[k],ex[k]); } */

/* Write the E field out to a file "Ex" */
fp = fopen("Ex","w");
for (k=0; k < KE; k++)
{ fprintf(fp," %6.3f \n",ex[k]); }
fclose(fp);

/* Calculate the amplitude and phase of each frequency */

/* Amplitude and phase of the input pulse */
for (m=0; m <= 2; m++)
{ amp_in[m] = sqrt(pow(imag_in[m],2.)

+ pow(real_in[m],2.));
phase_in[m] = atan2(imag_in[m],real_in[m]);
printf("%d Input Pulse : %8.4f %8.4f %8.4f %7.2f\n",

m,real_in[m],imag_in[m],amp_in[m],(180.0/pi)*phase_in[m]);

for (k=1; k < KE; k++)
{ampn[m][k] = (1./amp_in[m])*sqrt(pow(real_pt[m][k],2.)

+ pow(imag_pt[m][k],2.));
phasen[m][k]=atan2(imag_pt[m][k],real_pt[m][k])-phase_in[m];

printf("%d %8.4f %8.4f %8.5f %8.2f \n",
k,real_pt[m][k],imag_pt[m][k],ampn[m][k],(180.0/pi)*phasen[m]
[k]) ;

}
}

/* for (k=1; k < KE; k++)
{ printf("%d %6.3f %6.3f %6.3f \n",
k,ampn[0][k]),ampn[1][k],ampn[2][k]; } */

/* Write the amplitude field out to a file "Amp" */
fp = fopen("Amp0","w");
for (k=0; k < KE; k++)

{ fprintf(fp," %8.5f \n",ampn[0][k]); }
fclose(fp);
fp = fopen("Amp1","w");
for (k=0; k < KE; k++)

{ fprintf(fp," %8.5f \n",ampn[1][k]); }
fclose(fp);
fp = fopen("Amp2","w");
for (k=0; k < KE; k++)

{ fprintf(fp," %8.5f \n",ampn[2][k]); }

48 MORE ON ONE-DIMENSIONAL SIMULATION

fclose(fp);
fclose(fp);
fp = fopen("Real0","w");
for (k=0; k < KE; k++)

{ fprintf(fp," %8.5f \n",real_pt[0][k]); }
fclose(fp);
fp = fopen("Imag0","w");
for (k=0; k < KE; k++)

{ fprintf(fp," %8.5f \n",imag_pt[0][k]); }
fclose(fp);

printf("%5.1f \n",T);
}

}

/* FD1D_2.3. 1D FDTD simulation of a frequency dependent material
*/

include <math.h>
include <stdlib.h>
include <stdio.h>

#define KE 200

main ()
{

float dx[KE],ex[KE],hy[KE],ix[KE],sx[KE];
float ga[KE],gb[KE],gc[KE];
int n,m,k,kc,ke,kstart,nsteps;
float ddx,dt,T,epsz,epsilon,sigma;
float t0,spread,pi,pulse;
FILE *fp, *fopen();
float ex_low_m1,ex_low_m2,ex_high_m1,ex_high_m2;
float tau,chi1,del_exp;
float real_pt[5][KE],imag_pt[5][KE];
float freq[5],arg[5],ampn[5][KE],phasen[5][KE];
float real_in[5],imag_in[5],amp_in[5],phase_in[5];
float mag[KE];

kc = KE/2; /* Center of the space */
pi = 3.14159;
epsz = 8.8e-12;
ddx = .01; /* Cells size */
dt = ddx/6e8; /* Time steps */

printf(" %6.4f %10.5e \n",ddx,dt);

for (k=1; k < KE; k++) { /* Initialize to free space */
ga[k] = 1.;

MORE ON ONE-DIMENSIONAL SIMULATION 49

gb[k] = 0.;
gc[k] = 0.;
dx[k] = 0.;
ex[k] = 0.;
hy[k] = 0.;
ix[k] = 0.;
sx[k] = 0.;

for (m=0; m <= 4; m++) {
real_pt[m][k] = 0.; /* Real and imaginary parts */
imag_pt[m][k] = 0.; /* of the Fourier Transform */
ampn[m][k] = 0.; /* Amplitude and phase of the */
phasen[m][k] = 0.; /* Fourier Transforms *
}

}
for (m=0; m <= 4; m++) {

real_in[m] = 0.; /* Fourier Trans. of input pulse */
imag_in[m] = 0.;

}

ex_low_m1 = 0.;
ex_low_m2 = 0.;
ex_high_m1 = 0.;
ex_high_m2 = 0.;

/* Parameters for the Fourier Transform */

freq[0] = 50.e6;
freq[1] = 200.e6;
freq[2] = 500.e6;

for (n=0; n<= 2; n++)
{ arg[n] = 2*pi*freq[n]*dt; printf("%2d %6.2f %7.5f

%12.0f\n",n,freq[n]*1e-6,arg[n],1/arg[n]);
}

printf("Dielectric starts at --> ");
scanf("%d", &kstart);
printf("Epsilon --> ");
scanf("%f", &epsilon);
printf("Conductivity --> ");
scanf("%f", &sigma);
printf("chi1 --> ");
scanf("%f", &chi1);
tau = 1000.; /* Make sure tau is > 0. */
if(chi1 > 0.0001) {
printf("tau (in microseconds) --> ");
scanf("%f", &tau);

del_exp = exp(-dt/tau); }

50 MORE ON ONE-DIMENSIONAL SIMULATION

printf("%d %6.2f %6.2f %6.2f %6.2f\n", kstart,epsilon,
sigma,tau,chi1);

tau = 1.e-6*tau;
{ printf("del_exp = %8.5f \n",del_exp); }

for (k=kstart; k <= KE; k++) {
ga[k] = 1./(epsilon + sigma*dt/epsz + chi1*dt/tau) ;
gb[k] = sigma*dt/epsz ;
gc[k] = chi1*dt/tau ;

}

for (k=1; k <= KE; k++)
{ printf("%2d %6.2f %6.4f %6.4f \n",k,ga[k],gb[k],gc[k]); }

/* These parameters specify the input pulse */
t0 = 50.0;
spread = 10.0;

T = 0;
nsteps = 1;

/* Main part of the program */

while (nsteps > 0) {
printf("nsteps --> ");
scanf("%d", &nsteps);
printf("%d \n", nsteps);

for (n=1; n <=nsteps ; n++)
{

T = T + 1;

/* Calculate the Dx field */
for (k=0; k < KE; k++)
{ dx[k] = dx[k] + 0.5*(hy[k-1] - hy[k]) ; }

/* Initialize with a pulse */

pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
dx[5] = dx[5] + pulse;
printf("%5.1f %6.2f %6.2f \n",T,pulse,dx[5]);

/* Calculate Ex from Dx */
for (k=0; k < KE-1; k++)
{ ex[k] = ga[k]*(dx[k] - ix[k] - sx[k]) ;

ix[k] = ix[k] + gb[k]*ex[k] ;
sx[k] = del_exp*sx[k] + gc[k]*ex[k] ; }

/* Calculate the Fourier transform of Ex. */
for (k=0; k < KE; k++)

MORE ON ONE-DIMENSIONAL SIMULATION 51

{ for (m=0; m <= 2; m++)
{ real_pt[m][k] = real_pt[m][k] + cos(arg[m]*T)*ex[k] ;
imag_pt[m][k] = imag_pt[m][k] - sin(arg[m]*T)*ex[k] ; }

}

/* Fourier Transform of the input pulse */
if (T < 3*t0) {

for (m=0; m <= 2 ; m++)
{ real_in[m] = real_in[m] + cos(arg[m]*T)*ex[10] ;
imag_in[m] = imag_in[m] - sin(arg[m]*T)*ex[10] ; }

}

/* Boundary conditions */
ex[0] = ex_low_m2;
ex_low_m2 = ex_low_m1;
ex_low_m1 = ex[1];

ex[KE-1] = ex_high_m2;
ex_high_m2 = ex_high_m1;
ex_high_m1 = ex[KE-2];

/* Calculate the Hy field */
for (k=0; k < KE-1; k++)
{ hy[k] = hy[k] + .5*(ex[k] - ex[k+1]) ; }

}

/* End of the main loop */

/* for (k=0; k < KE; k++)
{ printf("%2d %6.2f %6.2 \n",k,dx[k],ex[k]); } */

/* Write the E field out to a file "Ex" */
fp = fopen("Ex","w");
for (k=0; k < KE; k++)
{ fprintf(fp," %8.5f \n",ex[k]); }
fclose(fp);

/* Calculate the amplitude and phase of each frequency */

/* Amplitude and phase of the input pulse */
for (m=0; m <= 2; m++)
{ amp_in[m] = sqrt(pow(imag_in[m],2.)

+ pow(real_in[m],2.));
phase_in[m] = atan2(imag_in[m],real_in[m]);

printf("%d Input Pulse : %8.4f %8.4f %8.4f %7.2f\n",
m,real_in[m],imag_in[m],amp_in

[m],(180.0/pi)*phase_in[m]);

52 MORE ON ONE-DIMENSIONAL SIMULATION

for (k=1; k < KE; k++)
{ ampn[m][k] = (1./amp_in[m])*sqrt(pow(real_pt[m][k],2.)

+ pow(imag_pt[m][k],2.));
phasen[m][k]=atan2(imag_pt[m][k],real_pt[m][k])-phase_in[m];

/* printf("%d %8.4f %8.4f %8.5f %8.2f \n",
k,real_pt[m][k],imag_pt[m][k],ampn[m]

[k],(180.0/pi)*phasen[m][k]) ;*/
}

}

/* for (k=kstart; k < KE; k++)
{ printf("%d %6.3f %6.3f %6.3f \n",
k,ampn[1][k]),ampn[2][k],ampn[3][k]; } */

/* Write the amplitude field out to a file "Amp" */
fp = fopen("Amp0","w");
for (k=1; k < KE; k++)

{ fprintf(fp," %6.2f \n",ampn[0][k]); }
fclose(fp);
fp = fopen("Amp1","w");
for (k=1; k < KE; k++)

{ fprintf(fp," %6.2f \n",ampn[1][k]); }
fclose(fp);
fp = fopen("Amp2","w");
for (k=1; k < KE; k++)

{ fprintf(fp," %6.2f \n",ampn[2][k]); }
fclose(fp);

printf("%5.1f \n",T);
}

}

3
TWO-DIMENSIONAL SIMULATION

This chapter introduces two-dimensional simulation. It begins with the basic two-
dimensional formulation in FDTD and a simple example using a point source.
Then the absorbing boundary conditions (ABCs) are described, along with their
implementation into the FDTD program. Finally, the generation of electromag-
netic plane waves using FDTD is described.

3.1 FDTD IN TWO DIMENSIONS

Once again, we will start with the normalized Maxwell’s equations that we used
in Chapter 2:

∂D̃
∂t

= 1√
ε0μ0

∇ × H̃ , (3.1a)

D̃(ω) = ε∗
r (ω) · Ẽ (ω), (3.1b)

∂H
∂t

= − 1√
ε0μ0

∇ × Ẽ . (3.1c)

When we get to three-dimensional simulation, we will wind up dealing with six
different fields: Ẽ x, Ẽ y, Ẽ z, H̃ x, H̃ y , and H̃ z. For two-dimensional simulation,
we choose between one of the two groups of three vectors each: (1) the transverse

Electromagnetic Simulation Using the FDTD Method, Second Edition. Dennis M. Sullivan.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley & Sons, Inc.

53

54 TWO-DIMENSIONAL SIMULATION

magnetic (TM) mode, which is composed of Ẽ z, H̃ x , and H̃ y , or (2) the trans-
verse electric (TE) mode, which is composed of Ẽ x , Ẽ y , and H̃ z. We will work
with the TM mode. Equation (3.1) is now reduced to

∂Dz

∂t
= 1√

ε0μ0

(
∂Hy

∂x
− ∂Hx

∂y

)
, (3.2a)

D(ω) = ε∗
r (ω) · E (ω), (3.2b)

∂Hx

∂t
= − 1√

ε0μ0

∂Ez

∂y
, (3.2c)

∂Hy

∂t
= 1√

ε0μ0

∂Ez

∂x
. (3.2d)

(Once again, we have dropped the tilde over the E and D fields. But it is
understood that we are using the normalized units described in Chapter 1.)

As in one-dimensional simulation, it is important that there is a systematic
interleaving of the fields to be calculated. This is illustrated in Fig. 3.1. Putting
Eq. (3.2a), (3.2c), and (3.2d) into the finite-differencing scheme results in the
following difference equations (1):

D
n+1/2
z (i, j) − D

n−1/2
z (i, j)

�t
= 1√

ε0μ0

⎛⎜⎜⎝Hn
y

(
i + 1

2
, j

)
− Hn

y

(
i − 1

2
, j

)
�x

⎞⎟⎟⎠

− 1√
ε0μ0

⎛⎜⎜⎝Hn
x

(
i, j + 1

2

)
−Hn

x

(
i, j − 1

2

)
�x

⎞⎟⎟⎠ ,

(3.3a)

Hn+1
x

(
i + 1

2
, j

)
− Hn

x

(
i + 1

2
, j

)
�t

= − 1√
ε0μ0

E
n+1/2
z (i, j + 1) − E

n+1/2
z (i, j)

�x
, (3.3b)

Hn+1
y

(
i + 1

2
, j

)
− Hn

y

(
i − 1

2
, j

)
�t

= − 1√
ε0μ0

E
n+1/2
z (i + 1, j) − E

n+1/2
z (i, j)

�x
. (3.3c)

FDTD IN TWO DIMENSIONS 55

Hy

Hx

Ez

i −1

j−1

j

j+1

i +1 i +2i

Figure 3.1 Interleaving of the E and H fields for the two-dimensional TM formulation.

Using the same type of manipulation as in Chapter 1, including

�t = �x

2 · c0
,

we get the equations:

Dz[i][j]=dz[i][j]

+.5*(hy[i][j]-hy[i-i][j]-hx[i][j]+hx[i][j-1]);
(3.4a)

Ez[i][j]=gaz[i][j]*(dz[i][j]-iz[i][j]); (3.4b)

iz[i][j]=iz[i][j]+gbz[i][j]*ez[i][j]; (3.4c)

hx[i][j]=hx[i][j]+.5*(ez[i][j]-ez[i][j+1]); (3.4d)

hy[i][j]=hy[i][j]+.5*(ez[+1][j]-ez[i][j]); (3.4e)

Note that the relationship between Ez and Dz is the same as that for the simple
lossy dielectric in the one-dimensional case. Obviously, the same modification
can be made to include frequency-dependent terms.

The program fd2d_3.1 implements the above equations. It has a simple Gaus-
sian pulse source that is generated in the middle of the problem space. Figure 3.2
presents the results of a simulation for the first 50 time steps.

PROBLEM SET 3.1

1. Get the program fd2d_3.1.c running. Duplicate the results of Fig. 3.2. Let it
run until it hits the boundary. What happens?

56 TWO-DIMENSIONAL SIMULATION

20
40

60

T = 20

20
40

60

T = 30

20
40

60
20

40
60

20
40

60

20
40

60

20
40

60
0

0.5

1

0

0.5

(a)

(c) (d)

(b)

1

0

0.5

1

cm

T = 40

cm

cmcm cmcm

cmcm
20

40
60

0

0.5

1

T = 50
EzEz

EzEz

Figure 3.2 Results of a simulation using the program fd2d_3.1.c. A Gaussian pulse is
initiated in the middle and travels outward. (a) T = 20, (b) T = 30, (c) T = 40, and (d) T
= 50.

3.2 THE PERFECTLY MATCHED LAYER (PML)

Until now, we have only briefly mentioned the issue of ABCs. The size of the
area that can be simulated using FDTD is limited by computer resources. For
instance, in the two-dimensional simulation of the previous section, the program
contains two-dimensional matrices for the values of all the fields, dz, ez, hx,
and hy, as well as matrices to hold the parameters gaz, gbz, and iz.

Suppose we are simulating a wave generated from a point source propagating
in free space as in Fig. 3.2. As the wave propagates outward, it will eventually
come to the edge of the allowable space, which is dictated by how the matrices
have been dimensioned in the program. If nothing were done to address this,
reflections would be generated that propagate inward. There would be no way to
determine the real wave from the reflected junk. This is the reason that ABCs
have been an issue for as long as FDTD has been used. There have been numerous
approaches to this problem (2, 3).

The most flexible and efficient ABC is the perfectly matched layer (PML)
developed by Berenger (4). The basic idea behind the PML is that if a wave is
propagating in medium A and it impinges on medium B, the amount of reflection
is dictated by the intrinsic impedances of the two media as given by the equation

� = ηA − ηB

ηA + ηB
, (3.5)

THE PERFECTLY MATCHED LAYER (PML) 57

where � is the reflection coefficient and ηA and ηB are the impedances of the
media as calculated from the dielectric constants ε and the permeability μ of the
two media:

η =
√

μ

εrε0
. (3.6)

So far, we have assumed that μ was a constant, so when a propagating pulse went
from εr = 1 to εr = 4 as in Fig. 2.1, it saw a change in impedance and reflected
a portion of the pulse, given by Eq. (3.5). However, if μ changed with ε so
that η remained a constant, � would remain constant and no reflection would
occur. This still does not solve our problem because the pulse will continue
propagating in the new medium. What we really want is a medium that is also
lossy so the pulse will die out before it reaches the end of the problem space.
This is accomplished by making both ε and μ complex because the imaginary
part represents the part that causes decay (Appendix 1.A).

Let us go back to Eq. (3.2) but move everything to the Fourier domain. (We
are going to the Fourier domain in time, so d/dt becomes jω. This does not
affect the spatial derivatives.)

jωDz = c0 ·
(

∂Hy

∂x
− ∂Hx

∂y

)
, (3.7a)

Dz(ω) = ε∗
r (ω) · Ez(ω), (3.7b)

jωHx = −c0
∂Ez

∂y
, (3.7c)

jωHy = c0
∂Ez

∂x
. (3.7d)

Remember that we have eliminated ε and μ from the spatial derivatives in Eq.
(3.7a), (3.7c), and (3.7d) for the normalized units. Instead of putting them back
to implement the PML, we will add the fictitious dielectric constants and perme-
abilities ε∗

Fz
, μ∗

Fx
, and μ∗

Fy
(5):

jωDz · ε∗
Fz

(x) · ε∗
Fz

(y) = c0 ·
(

∂Hy

∂x
− ∂Hx

∂y

)
, (3.8a)

Dz(ω) = ε∗
r (ω) · Ez(ω), (3.8b)

jωHx · μ∗
Fx

(x) · μ∗
Fy

(y) = −c0
∂Ez

∂y
, (3.8c)

jωHy · μ∗
Fy

(x) · μ∗
Fy

(y) = c0
∂Ez

∂x
. (3.8d)

A few things are worth noting: (i) the value εF is associated with the flux
density D, not the electric field E and (ii) we have added two values each of εF
in Eq. (3.8a) and μF in Eq. (3.8c) and (3.8d). These fictitious values to implement

58 TWO-DIMENSIONAL SIMULATION

the PML have nothing to do with the real values of ε∗
r (ω), which specify the

medium.
Sacks et al. (6) showed that there are two conditions to form a PML:

1. The impedance going from the background medium to the PML must be
constant,

η0 = ηm =
√

μFx

ε∗
Fx

= 1. (3.9)

The impedance is 1 because of our normalized units.
2. In the direction perpendicular to the boundary (e.g., the x direction), the

relative dielectric constant and relative permeability must be the inverse of
those in the other directions, that is,

ε∗
Fx

= 1

ε∗
Fy

(3.10a)

μ∗
Fx

= 1

μ∗
Fy

. (3.10b)

We will assume that each of these is a complex quantity of the form

ε∗
Fm

= εFm
+ σDm

jωε0
for m = x or y (3.11a)

μ∗
Fm

= μFm
+ σDm

jωμ0
for m = x or y. (3.11b)

The following selection of parameters satisfies Eq. (3.10a) and (3.10b) (7):

εFm
= μFm

= 1 (3.12a)
σDm

ε0
= σHm

μ0
= σD

ε0
. (3.12b)

Substituting Eq. (3.12) into Eq. (3.11), the value in Eq. (3.9) becomes

η0 = ηm =
√

μ∗
Fx

ε∗
Fx

=

√√√√√√√
1 + σ(x)

jωε0

1 + σ(x)

jωε0

= 1.

This fulfills the first requirement mentioned earlier. If σ increases gradually as
it goes into the PML, Eq. (3.8a), (3.8c), and (3.8d) will cause Dz and Hy to be
attenuated.

THE PERFECTLY MATCHED LAYER (PML) 59

We will start by implementing a PML only in the X direction. Therefore, we
will retain only the x-dependent values of ε∗

F and μ∗
F in Eq. (3.8)

jωDz · ε∗
Fz

(x) = c0 ·
(

∂Hy

∂x
− ∂Hx

∂y

)
,

jωHx · μ∗
Fx

(x) = −c0
∂Ez

∂y
,

jωHy · μ∗
Fy

(x) = c0
∂Ez

∂x
,

and use the values of Eq. (3.12):

jω

(
1 + σD (x)

jωε0

)
Dz = c0 ·

(
∂Hy

∂x
− ∂Hx

∂y

)
, (3.13a)

jω

(
1 + σD (x)

jωε0

)−1

Hx = −c0
∂Ez

∂y
, (3.13b)

jω

(
1 + σD (x)

jωε0

)
Hy = c0

∂Ez

∂x
. (3.13c)

Note that the permeability of Hx in Eq. (3.13b) is the inverse of that of Hy in
Eq. (3.13c) in keeping with Eq. (3.10b). Therefore, we have fulfilled the second
requirement for the PML. (Equation (3.10a) is irrelevant for this two-dimensional
case because we only have an E field in the z direction, which is perpendicular
to both x and y, the directions of propagation.)

Now Eq. (3.13) must be put into the FDTD formulation. First, look at the left
side of Eq. (3.13a):

jω

(
1 + σD (x)

jωε0

)
Dz = jωD + σD(x)

ε0
Dz.

Moving to the time domain and taking the finite-difference approximations, we
get the following:

jωDz+
σD(x)

ε0
Dz

∼= D
n+1/2
z (i, j) − D

n−1/2
z

�t
+σD(i)

ε0

D
n+1/2
z (i, j) + D

n−1/2
z (i, j)

2

= D
n+1/2
z (i, j)

1

�t

(
1 + σD (i) · �t

2 · ε0

)
− D

n−1/2
z (i, j)

1

�t

(
1 − σD (i) · �t

2 · ε0

)
.

If we put this into Eq. (3.13a), along with the spatial derivatives, we get

D
n+1/2
z (i, j) = gi3(i) · D

n−1/2
z (i, j)

+ gi2(i) · 0.5 · y[Hn
y (i + 1/2, j) − Hn

y (i − 1/2, j)

− Hn
y (i, j + 1/2) + Hn

y (i, j − 1/2)]. (3.14)

60 TWO-DIMENSIONAL SIMULATION

Once again we have used the fact that

�t

�x
c0 =

(
�x

2c0

)
�x

c0 = 1

2
.

The new parameters gi2 and gi3 are given by

gi2(i) = 1

1 + σD(i) · �t

2ε0

(3.15a)

gi3(i) =
1 − σD(i) · �t

2ε0

1 + σD(i) · �t

2ε0

. (3.15b)

An almost identical treatment of Eq. (3.13c) gives

Hn+1
y

(
i + 1

2
, j

)
= f i3

(
i + 1

2

)
· Hn

y

(
i + 1

2
, j

)
+ gi2

(
i + 1

2

)
· 0.5 · (D

n+1/2
z (i + 1, j)

− D
n+1/2
z (i, j)), (3.16)

where

fi2

(
i + 1

2

)
= 1

1 + σD

(
i + 1

2

)
· �t

2ε0

, (3.17a)

fi3

(
i + 1

2

)
=

1 − σD

(
i + 1

2

)
· �t

2ε0

1 + σD

(
i + 1

2

)
· �t

2ε0

. (3.17b)

Notice that these parameters are calculated at i + 1/2 because of the position of
Hy in the FDTD grid (Fig. 3.1).

Equation (3.13b) will require a somewhat different treatment than the previous
two equations. Start by rewriting it as

jωHx = −c0

(
∂Ez

∂y
+ σD (x)

jωε0

∂Ez

∂y

)
.

THE PERFECTLY MATCHED LAYER (PML) 61

Remember that (1/jω) can be regarded as an integration operator in time and jω
as a derivative in time. The spatial derivative will be written as

∂Ez

∂y
∼= E

n+1/2
z (i, j + 1) − E

n+1/2
z (i, j)

�x
= −curl_x

�x
.

Implementing this into an FDTD formulation gives

Hn+1
x

(
i, j + 1

2

)
− Hn

x

(
i, j + 1

2

)
�t

= −c0

(
−curl_x

�x
− σD (i)

ε0
�t

T∑
n=0

curl_x

�x

)
.

Note the extra �t in front of the summation. This is part of the approximation
of the time domain integral. Finally, we get

Hn+1
x

(
i, j + 1

2

)
= Hn

x

(
i, j + 1

2

)
+ c0 · �t

�x

+ c0 · �t

�x

σD(i)

ε0
I

n+1/2
Hx

(
i, j + 1

2

)
.

Equation (3.13b) is implemented as the following series of equations:

curl_e = (E
n+1/2
z (i, j) − E

n+1/2
z (i, j + 1)), (3.18a)

I
n+1/2
Hx

(
i, j + 1

2

)
= I

n−1/2
Hx

(
i, j + 1

2

)
+ curl_e, (3.18b)

Hn+1
x

(
i, j + 1

2

)
= Hn

x

(
i, j + 1

2

)
+ curl_e

+ f i1(i) · I
n+1/2
x

(
i, j + 1

2

)
, (3.18c)

with

fi1(i) = σ(i) · �t

2ε0
. (3.19)

In calculating the f and g parameters, it is not necessary to actually vary the
conductivities. Instead, we calculate an auxiliary parameter,

xn = σ(i) · �t

2ε0
,

which increases as it goes into the PML. The f and g parameters are then
calculated:

xn(i) = 0.333

(
i

length_pml

)3

i = 1, 2, . . . , length_pml. (3.20)

62 TWO-DIMENSIONAL SIMULATION

fi1(i) = xn, (3.21a)

gi2(i) =
(

1

1 + xn (i)

)
, (3.21b)

gi3(i) =
(

1 − xn (i)

1 + xn(i)

)
. (3.21c)

Notice that the quantity in the parentheses in Eq. (3.20) ranges between 0 and 1.
The factor 0.333 was found empirically to be the largest number that remained
stable. Similarly, the cubic factor in Eq. (3.20) was found empirically to be the
most effective variation. (The parameters fi2 and fi3 are different only because
they are computed at the half intervals, i + 1/2.) The parameters vary in the
following manner:

fi1(i) from 0 to 0.333, (3.22a)

gi2(i) from 1 to 0.75, (3.22b)

gi3(i) from 1 to 0.5. (3.22c)

Throughout the main problem space, fi1 is 0, while gi2 and gi3 are 1. Therefore,
there is a seamless transition from the main part of the program to the PML
(Fig. 3.3).

So far, we have shown the implementation of the PML in the x direction.
Obviously, it must also be done in the y direction. To do this, we must go back
and add the y-dependent terms from Eq. (3.8) that were set aside. So instead of

Decreasing values
of fi1; increasing
values of fi2, fi3,
gi2, and gi3.

Decreasing values of fj1;
increasing values of
fj2, fj3, gj2, and gj3.

The corners are an
overlap of both sets
of parameters

Figure 3.3 Parameters related to the perfectly matched layer (PML).

THE PERFECTLY MATCHED LAYER (PML) 63

Eq. (3.13), we have

jω

(
1 + σD (x)

jωε0

) (
1 + σD (y)

jωε0

)
Dz = c0 ·

(
∂Hy

∂x
− ∂Hx

∂y

)
, (3.23a)

jω

(
1 + σD (x)

jωε0

)−1 (
1 + σD (y)

jωε0

)
Hx = −c0

∂Ez

∂y
, (3.23b)

jω

(
1 + σD (x)

jωε0

) (
1 + σD (y)

jωε0

)−1

Hy = c0
∂Ez

∂x
. (3.23c)

Using the same procedure as before, the following replaces Eq. (3.14):

D
n+1/2
z (i, j) = gi3(i) · gj3(j) · D

n−1/2
z (i, j) + gi2(i) · gj2(j) · 0.5[

Hn
y

(
i + 1

2
, j

)
− Hn

y

(
i − 1

2
, j

)
− Hn

y

(
i, j + 1

2

)
+ Hn

y

(
i, j − 1

2

)]
.

In the Y direction, Hy will require an implementation similar to the one used for
Hx in the X direction giving,

curl_e = (E
n+1/2
z (i + 1, j) − E

n+1/2
z (i, j)), (3.24a)

I
n+1/2
Hy

(
i + 1

2
, j

)
= I

n−1/2
Hy

(
i + 1

2
, j

)
+ curl_e, (3.24b)

Hn+1
y

(
i + 1

2
, j

)
= f i3

(
i + 1

2

)
Hn

y

(
i + 1

2
, j

)
− f i2

(
i + 1

2

)
· 0.5 · curl_e

− fj1(j) · I
n+1/2
Hy

(
i + 1

2
, j

)
. (3.24c)

Finally, the Hx in the x direction becomes

curl_e = (E
n+1/2
z (i, j) − E

n+1/2
z (i, j + 1)),

I
n+1/2
Hx

(
i, j + 1

2

)
= I

n−1/2
Hx

(
i, j + 1

2

)
+ curl_e,

Hn+1
x

(
i, j + 1

2

)
= fj3

(
j + 1

2

)
· Hn

x

(
i, j + 1

2

)
+ fj2

(
i + 1

2

)
· 0.5 · curl_e

+ f i1(i) · I
n+1/2
Hx

(
i, j + 1

2

)
.

64 TWO-DIMENSIONAL SIMULATION

Now the full set of parameters associated with the PML are the following:

fi1(i) and fj1(j) from 0 to 0.333, (3.25a)

fi2(2), gi2(i), fj 2(j), and gj 2(j) from 1 to 0.75, (3.25b)

fi3(i), gi3(i), fj 3(j), and gj 3(j) from 1 to 0.5. (3.25c)

Notice that we could simply turn off the PML in the main part of the prob-
lem space by setting fi1 and fj1 to 0 and the other parameters to 1. They are
only one-dimensional parameters, so they add very little to the memory require-
ments. However, IHx

and IHy
are two-dimensional parameters. Although memory

requirements are not a main issue while we are in two dimensions, when we get
to three dimensions, we will think twice before introducing two new parameters
that are defined throughout the problem space, but are needed only in a small
fraction of the space.

The PML is implemented in the program fd2d_3.2.c. Figure 3.4 illustrates the
effectiveness of an eight-point PML, with the source offset five cells from the
center in both the X and Y directions. Note that the outgoing contours remain

20
40

60
20

40
60

20
40

60

0

0.5

−0.5

0

0.5

−0.5

T = 40

cm

cm cm

cm

Ez

cm

cm

20 40 60

10

20

30

40

50

60

20
40

60

T = 100

20 40 60

10

20

30

40

50

60

Ez

Figure 3.4 Results of a simulation using the program fd2d_3.2.c. A sinusoidal source
is initiated at a point that is offset five cells from the center of the problem space in each
direction. As the wave reaches the perfectly matched layer (PML), which is eight cells on
every side, it is absorbed. The effectiveness of the PML is apparent in the bottom figure
because the contours would not be concentric circles if the outgoing wave was partially
reflected.

TOTAL/SCATTERED FIELD FORMULATION 65

concentric. Only when the wave gets within eight points of the edge, which is
inside the PML, does distortion begin.

PROBLEM SET 3.2

1. The program fd2d_3.2.c is the same as fd2d_3.1.c, but with the two-
dimensional PML added. Add the PML to your version of fd2d_3.1.c. Offset
each point source by setting ic = IE/2-5 and jc = JE/2-5. Verify the
results in Fig. 3.4.

3.3 TOTAL/SCATTERED FIELD FORMULATION

The simulation of plane waves is often of interest in computational electromag-
netic. Many problems, such as the calculation of radar cross sections (2, 3),
deal with plane waves. Furthermore, after a distance on the order of tens of
wavelengths, the field from most antennas can be approximated as a plane wave.

In order to simulate a plane wave in a two-dimensional FDTD program, the
problem space will be divided into two regions, the total field and the scattered
field (Fig. 3.5). The two primary reasons for doing this are (i) the propagating
plane wave should not interact with the ABCs and (ii) the load on the ABCs
should be minimized. These boundary conditions are not perfect, that is, a cer-
tain portion of the impinging wave is reflected back into the problem space.
By subtracting the incident field, the amount of the radiating field hitting the
boundary is minimized, thereby reducing the amount of error.

Figure 3.5 illustrates how this is accomplished. Note that there is an auxiliary
one-dimensional array called the incident array. Because it is a one-dimensional
array, it is easy to generate a plane wave: a source point is chosen and the incident

Source
point

jb

ja

ia ib

PML

Scattered field

Total field

Y

X

One-dimensional
incident array

Incident plane wave
is generated here

Figure 3.5 Total field/scattered field of the two-dimensional problem space.

66 TWO-DIMENSIONAL SIMULATION

Hx

Total field

Scattered field

Hy

Dz

ia−1

ja−1

ja

ja+1

ja+2

ia+1 ia+2ia

Figure 3.6 Every point is in either the total field or the scattered field.

Ez field is just added at that point. Then a plane wave propagates away in both
directions. Again, because it is a one-dimensional array, the boundary conditions
are perfect.

As illustrated in Fig. 3.6, in the two-dimensional field, every point in the
problem space is either in the total field or it is not; no point lies on the border.
Therefore, if a point is in the total field but it uses points outside to calculate
the spatial derivatives when updating its value, it must be modified. The same
is true of a point lying just outside that uses points inside the total field. This
is the reason for the incident array; it contains the needed values to make these
modifications.

There are three places that must be modified:

1. The Dz value at j = ja or j = jb:

Dz(i, ja) = Dz(i, ja) + 0.5 · Hxinc

(
ja − 1

2

)
(3.26a)

Dz(i, jb) = Dz(i, jb) − 0.5 · Hxinc

(
ja − 1

2

)
. (3.26b)

2. The Hx field just outside at j = ja or j = jb:

Hx

(
i, ja − 1

2

)
= Hx

(
i, ja − 1

2

)
+ 0.5 · Ezinc(ja) (3.27a)

Hx

(
i, jb + 1

2

)
= Hx

(
i, jb + 1

2

)
− 0.5 · Ezinc(jb). (3.27b)

TOTAL/SCATTERED FIELD FORMULATION 67

20
40

6020 40 60

0

0.5

(a) (b)

(c) (d)

−0.5

1

0

0.5

−0.5

1

0

0.5

−0.5

1

0

0.5

−0.5

1

T = 30

cm

cm

E
z

E
z

E
z

E
z

20
40

60

T = 60

20 40 60
cm

20
40

6020 40 60

T = 90

20
40

6020 40 60
cm

T = 115

Figure 3.7 Simulation of a plane wave pulse propagating in free space. The incident
pulse is generated at one end and subtracted at the other end. (a) T = 30, (b) T = 60, (c)
T = 90, and (d) T = 115.

3. Hy just outside at i = ia and i = ib:

Hy

(
ia − 1

2
, j

)
= Hy

(
ia − 1

2
, j

)
− 0.5 · Ezinc(j) (3.28a)

Hy

(
ib − 1

2
, j

)
= Hy

(
ib − 1

2
, j

)
+ 0.5 · Ezinc(j). (3.28b)

Figure 3.7 illustrates the propagation of a Gaussian pulse through the problem
space. Notice how the pulse is generated at one end and completely subtracted
out at the other end.

3.3.1 A Plane Wave Impinging on a Dielectric Cylinder

Now we have the ability to simulate a plane wave. To simulate a plane wave
interacting with an object, we must specify the object according to its electro-
magnetic properties—the dielectric constant and the conductivity. For instance,
suppose we are simulating a plane wave striking a dielectric cylinder 20 cm in
diameter, which has a dielectric constant specified by the parameter epsilon
and a conductivity specified by the parameter sigma. The cylinder is specified
by the following computer code:

for (j=ja; j< jb; j++) }

68 TWO-DIMENSIONAL SIMULATION

for (i=ia; i<ib; i++) {
xdist = (ic-i);
ydist = (jc-j);
dist = sqrt(pow(xdist,2.) + pow(ydist,2.));
if (dist <= radius) {

ga[i][j] = 1./(epsilon + (sigma*dt/epsz));
gb[i][j] = sigma*dt/epsz;

} }

Of course, this assumes that the problem space is initialized to free space. For
every cell, the distance to the center of the problem space is calculated, and if
it is less than the radius, the dielectric constant and conductivity are reset to
epsilon and sigma, respectively. A diagram of the problem space to simulate
a plane wave interacting with a dielectric cylinder is shown in Fig. 3.8.

The weakness of this approach is obvious: because we determined the prop-
erties by a simple “in-or-out” approach, we are left with the “staircasing” at the
edge of the cylinder. It would be better if we had a way to make a smooth
transition from one medium to another. One method is to divide every FDTD
cell up into subcells and then determine the average dielectric properties accord-
ing to the number of subcells in one medium as well as in the other medium.
The following code implements such a procedure. The ability to model multiple
layers of different material has also been added.

for (j=ja; j< jb; j++) {
for (i=ia; i<ib; i++) {
eps = epsilon[0];
cond = sigma[0];
for (jj=-1; jj< 1; j++) {
for (ii=-1; ii< 1; j++) {

xdist = (ic-i) + .333*ii;
ydist = (jc-j) + .333*jj;
dist = sqrt(pow(xdist,2.) + pow(ydist,2.));
if (dist <= radius) {
eps = eps + (1./9.)*(epsilon[n] - epsilon[n-1]);
cond = cond + (1./9.)*(sigma[n] - sigma[n-1]);

} }
ga[i][j] = 1./(eps + (sigma*dt/epsz));
gb[i][j] = cond*dt/epsz;

} }

Each cell is initialized to the values epsilon [0] and sigma [0]. Notice that
each of the inner loops, which are iterated by the parameters ii and jj, move
the distance one-third of a cell length. Thus, the cell has been divided into nine
subcells. Also, notice that as a subcell is determined to be within the radius,
its contribution is added to the total epsilon (epsilon [n]), while subtracting
the previous epsilon (epsilon[n-1]). The above code is valid for an arbitrary
number of layers in the cylinder.

TOTAL/SCATTERED FIELD FORMULATION 69

PML

Plane wave source

Scattering from
the cylander

Center
axis

Figure 3.8 Simulation of a plane wave striking a dielectric cylinder. The fields scattered
from the cylinder are the only fields to leave the total field and strike the PML.

The simulation of a plane wave pulse hitting a dielectric cylinder with εr = 30
and σ = 0.3 is shown in Fig. 3.9. After 25 time steps, the plane wave has started
from the side; after 50 time steps, the pulse is interacting with the cylinder. Some
of the pulse passes through the cylinder, and some of it goes around it. After 100

20
40

6020 40 60

0

(a) (b)

(c) (d)

−0.5

1

0

0.5

−0.5

1

0

0.5

−0.5

1

0

0.5

−0.5

1

T = 25

cm

20 40 60
cm

E
z

E
z

E
z

E
z

20
40

6020 40 60

T = 50

cm

20
40

60

T = 75

20
40

6020 40 60
cm

T = 100

Figure 3.9 Simulation of a plane wave impinging on a dielectric cylinder. The cylinder
is 20 cm in diameter and has a relative dielectric constant of 30 and a conductivity of
0.3 S/m. (a) T = 25, (b) T = 50, (c) T = 75, and (d) T = 100.

70 TWO-DIMENSIONAL SIMULATION

steps, the main part of the propagating pulse is being subtracted from the end of
the total field.

3.3.2 Fourier Analysis

Suppose we want to determine how the EM energy is deposited within the cylin-
der for a plane wave propagating at a specific frequency. Recall that we did
something similar in Section 2.4 where we were able to determine the atten-
uation of the E field at several frequencies by using a pulse for a source and
calculating the discrete Fourier transform at the frequencies of interest. This is
exactly what we will do here. The only difference is that we have a larger num-
ber of points because it is a two-dimensional space. Furthermore, we can use the
Fourier transform of the pulse in the one-dimensional incident buffer to calculate
the amplitude and phase of the incident pulse.

There is a reason why a dielectric cylinder was used as the object: it has an
analytical solution. The fields resulting from a plane wave at a single frequency
interacting with a dielectric cylinder can be calculated through a Bessel func-
tion expansion (8). This gives us an opportunity to check the accuracy of our

0

0

−100

−200

−300

−10 −5 0 5 10 −10 −5 0 5 10

0.5
50 MHz

300 MHz

700 MHz

1

A
m

pl
itu

de

P
ha

se
 (

de
g.

)

0

0

−100

−200

−300

−10 −5 0 5 10 −10 −5 0 5 10

0.5

1

A
m

pl
itu

de

P
ha

se
 (

de
g.

)

0

0

−100

−200

−300

−10 −5 0
cm cm
(a) (b)

5 10 −10 −5 0 5 10

0.5

1

A
m

pl
itu

de

P
ha

se
 (

de
g.

)

Figure 3.10 Comparison of (a) FDTD results with (b) the Bessel function expansion
results along the propagation center axis of a cylinder at three frequencies. The cylinder
is 20 cm in diameter and has a relative dielectric constant of 30 and a conductivity of
0.3 S/m.

REFERENCES 71

simulations. Figure 3.10 is a comparison of the FDTD calculations with the ana-
lytic solutions from the Bessel function expansions along the center axis of the
cylinder in the propagation directions (Fig. 3.8) at 50, 300, and 700 MHz. This
was calculated with the program that averaged the values across the boundaries,
as described earlier. The accuracy is quite good. Remember, we were able to
calculate all three frequencies with one computer run by the impulse response
method.

PROBLEM SET 3.3

1. The program fd2d_3.3.c implements the two-dimensional TM FDTD algo-
rithm with an incident plane wave. Note that Eq. (3.26) is implemented to
give the correct Ez field at the total/scattered field boundary and Eq. (3.27)
is implemented to give the correct Hx field. Why is there no modification of
the Hy field?

2. Get the program fd2d_3.3.c running. You should be able to observe the pulse
that is generated at j=ja, propagates through the problem space, and is sub-
tracted out at j=jb.

3. The program fd2d_3.4.c differs from fd2d_3.3.c because it simulates a plane
wave hitting a dielectric cylinder. It also calculates the frequency response at
three frequencies within the cylinder. Get this running and verify the results
in Fig. 3.10.

4. The cylinder generated in fd2d_3.4.c generates the cylinder by the “in-or-out”
method. Change this to the averaged values and add the ability to generate
layered cylinders, as described in Section 3.3.2.

REFERENCES

1. K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s
equations, in isotropic media, IEEE Trans. Antenn. Propag., vol. AP-17, 1996, pp.
585–589.

2. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain
Method , Boston: Artech House, 1995.

3. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Elec-
tromagnetics , Boca Raton, FL: CRC Press, 1993.

4. J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves,
J. Comput. Phys., vol. 114, 1994, pp. 185–200.

5. D. M. Sullivan, A simplified PML for use with the FDTD method, IEEE Microw.
Guid. Wave Lett., vol. 6, February 1996, pp. 97–99.

6. Z. S. Sacks, D. M. Kingsland, T. Lee, and J. F. Lee, A perfectly matched anisotropic
absorber for use as an absorbing boundary condition, IEEE Trans. Antenn. Propag.,
vol. 43, December 1995, pp. 1460–1463.

72 TWO-DIMENSIONAL SIMULATION

7. D. M. Sullivan, An unsplit step 3D PML for use with the FDTD method, IEEE Microw.
Guid. Wave Lett., vol. 7, February 1997, pp. 184–186.

8. R. Harrington, Time-Harmonic Electromagnetic Fields , New York: McGraw-Hill,
1961.

/* fd2d_3.1.c. 2D TM program */
include <math.h>
include <stdlib.h>
include <stdio.h>

#define IE 60
#define JE 60

main ()
{
float ga[IE][JE],dz[IE][JE],ez[IE][JE];
float hx[IE][JE],hy[IE][JE];
int l,n,i,j,ic,jc,nsteps;
float ddx,dt,T,epsz,pi,epsilon,sigma,eaf;
float t0,spread,pulse;
FILE *fp, *fopen();

ic = IE/2;
jc = JE/2;
ddx = .01; /* Cell size */
dt =ddx/6e8; /* Time steps */
epsz = 8.8e-12;
pi=3.14159;

for (j=0; j < JE; j++) {
printf("%2d ",j);
for (i=0; i < IE; i++) {

dz[i][j] = 0.;
ez[i][j] = 0.;
hx[i][j] = 0.;
hy[i][j] = 0.;
ga[i][j]= 1.0 ;
printf("%5.2f ",ga[i][j]);

}
printf(" \n");

}

t0 = 20.0;
spread = 6.0;
T = 0;
nsteps = 1;

while (nsteps > 0) {
printf("nsteps --> ");

TWO-DIMENSIONAL SIMULATION 73

scanf("%d", &nsteps);
printf("%d \n", nsteps);

for (n=1; n <=nsteps ; n++) {
T = T + 1;

/* ---- Start of the Main FDTD loop ---- */

/* Calculate the Ex field */
for (j=1; j < IE; j++) {

for (i=1; i < IE; i++) {
dz[i][j] = dz[i][j]

+ .5*(hy[i][j] - hy[i-1][j] - hx[i][j] + hx[i]
[j-1]);

}
}

/* Put a Gaussian pulse in the middle */

pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
dz[ic][jc] = pulse;

/* Calculate the Ex field */
for (j=1; j < JE; j++) {

for (i=1; i < IE; i++) {
ez[i][j] = ga[i][j]*dz[i][j] ;

}
}

/* Calculate the Hx field */
for (j=0; j < JE-1; j++) {

for (i=0; i < IE-1; i++) {
hx[i][j] = hx[i][j] + .5*(ez[i][j] - ez[i][j+1]) ;

}

/* Calculate the Hy field */
for (j=0; j < JE-1; j++) {

for (i=0; i <= IE-1; i++) {
hy[i][j] = hy[i][j] + .5*(ez[i+1][j] - ez[i][j]) ;
}

}
}

/* ---- End of the main FDTD loop ---- */

for (j=1; j < jc; j++) {
printf("%2d ",j);
for (i=1; i < ic; i++) {

printf("%5.2f ",ez[2*i][2*j]);
}

74 TWO-DIMENSIONAL SIMULATION

printf(" \n");
}

printf("T = %5.0f \n",T);

/* Write the E field out to a file "Ez" */
fp = fopen("Ez","w");
for (j=0; j < JE; j++) {

for (i=0; i < IE; i++) {
fprintf(fp,"%6.3f ",ez[i][j]);

}
fprintf(fp," \n");

}
fclose(fp);

}

}

/* Fd2d_3.2.c. 2D TM program with the PML */
include <math.h>
include <stdlib.h>
include <stdio.h>

#define IE 60
#define JE 60

main ()
{

float ga[IE][JE],dz[IE][JE],ez[IE][JE],hx[IE][JE],hy[IE]
[JE];

int l,n,i,j,ic,jc,nsteps,npml;
float ddx,dt,T,epsz,pi,epsilon,sigma,eaf;
float xn,xxn,xnum,xd,curl_e;
float t0,spread,pulse;
float gi2[IE],gi3[IE];
float gj2[JE],gj3[IE];
float fi1[IE],fi2[IE],fi3[JE];
float fj1[JE],fj2[JE],fj3[JE];
float ihx[IE][JE],ihy[IE][JE];
FILE *fp, *fopen();

ic = IE/2-10;
jc = JE/2-10;
ddx = .01; /* Cell size */
dt =ddx/6e8; /* Time steps */
epsz = 8.8e-12;
pi=3.14159;

/* Initialize the arrays */

TWO-DIMENSIONAL SIMULATION 75

for (j=0; j < JE; j++) {
printf("%2d ",j);
for (i=0; i < IE; i++) {

dz[i][j]= 0.0 ;
hx[i][j]= 0.0 ;
hy[i][j]= 0.0 ;
ihx[i][j]= 0.0 ;
ihy[i][j]= 0.0 ;
ga[i][j]= 1.0 ;
printf("%5.2f ",ga[i][j]);

}
printf(" \n");

}

/* Calculate the PML parameters */

for (i=0;i< IE; i++) {
gi2[i] = 1.0;
gi3[i] = 1.0;
fi1[i] = 0.0;
fi2[i] = 1.0;
fi3[i] = 1.0;

}
for (j=0;j< IE; j++) {

gj2[j] = 1.0;
gj3[j] = 1.0;
fj1[j] = 0.0;
fj2[j] = 1.0;
fj3[j] = 1.0;

}

printf("Number of PML cells --> ");
scanf("%d", &npml);

for (i=0;i<= npml; i++) {
xnum = npml - i;
xd = npml;
xxn = xnum/xd;
xn = 0.25*pow(xxn,3.0);
printf(" %d %7.4f %7.4f \n",i,xxn,xn);

gi2[i] = 1.0/(1.0+xn);
gi2[IE-1-i] = 1.0/(1.0+xn);
gi3[i] = (1.0 - xn)/(1.0 + xn);
gi3[IE-i-1] = (1.0 - xn)/(1.0 + xn);

xxn = (xnum-.5)/xd;
xn = 0.25*pow(xxn,3.0);

fi1[i] = xn;
fi1[IE-2-i] = xn;
fi2[i] = 1.0/(1.0+xn);

76 TWO-DIMENSIONAL SIMULATION

fi2[IE-2-i] = 1.0/(1.0+xn);
fi3[i] = (1.0 - xn)/(1.0 + xn);
fi3[IE-2-i] = (1.0 - xn)/(1.0 + xn);

}

for (j=0;j<= npml; j++) {
xnum = npml - j;
xd = npml;
xxn = xnum/xd;
xn = 0.25*pow(xxn,3.0);
printf(" %d %7.4f %7.4f \n",i,xxn,xn);

gj2[j] = 1.0/(1.0+xn);
gj2[JE-1-j] = 1.0/(1.0+xn);
gj3[j] = (1.0 - xn)/(1.0 + xn);
gj3[JE-j-1] = (1.0 - xn)/(1.0 + xn);

xxn = (xnum-.5)/xd;
xn = 0.25*pow(xxn,3.0);

fj1[j] = xn;
fj1[JE-2-j] = xn;
fj2[j] = 1.0/(1.0+xn);
fj2[JE-2-j] = 1.0/(1.0+xn);
fj3[j] = (1.0 - xn)/(1.0 + xn);
fj3[JE-2-j] = (1.0 - xn)/(1.0 + xn);

}

printf("gi + fi \n");
for (i=0; i< IE; i++) {

printf("%2d %5.2f %5.2f \n",
i,gi2[i],gi3[i]),

printf(" %5.2f %5.2f %5.2f \n ",
fi1[i],fi2[i],fi3[i]);

}

printf("gj + fj \n");
for (j=0; j< JE; j++) {

printf("%2d %5.2f %5.2f \n",
j,gj2[j],gj3[j]),

printf(" %5.2f %5.2f %5.2f \n ",
fj1[j],fj2[j],fj3[j]);

}

t0 = 40.0;
spread = 12.0;
T = 0;
nsteps = 1;

while (nsteps > 0) {
printf("nsteps --> ");
scanf("%d", &nsteps);
printf("%d \n", nsteps);

TWO-DIMENSIONAL SIMULATION 77

for (n=1; n <=nsteps ; n++) {
T = T + 1;

/* ---- Start of the Main FDTD loop ---- */

/* Calculate the Dz field */
for (j=1; j < IE; j++) {

for (i=1; i < IE; i++) {
dz[i][j] = gi3[i]*gj3[j]*dz[i][j]

+ gi2[i]*gj2[j]*.5*(hy[i][j] - hy[i-1][j]
- hx[i][j] + hx[i][j-1]) ;

}

/* Sinusoidal Source */

/* pulse = sin(2*pi*1500*1e6*dt*T);; */
pulse = exp(-.5*pow((T-t0)/spread,2.));
dz[ic][jc] = pulse;

/* Calculate the Ez field */
/* Leave the Ez edges to 0, as part of the PML */
for (j=1; j < JE-1; j++) {

for (i=1; i < IE-1; i++) {
ez[i][j] = ga[i][j]*dz[i][j] ;

} }

printf("%3f %6.2f \n ",T,ez[ic][jc]);

/* Calculate the Hx field */
for (j=0; j < JE-1; j++) {

for (i=0; i < IE; i++) {
curl_e = ez[i][j] - ez[i][j+1] ;
ihx[i][j] = ihx[i][j] + fi1[i]*curl_e ;
hx[i][j] = fj3[j]*hx[i][j]

+ fj2[j]*.5*(curl_e + ihx[i][j]);
} }

/* Calculate the Hy field */
for (j=0; j <= JE-1; j++) {

for (i=0; i < IE-1; i++) {
curl_e = ez[i+1][j] - ez[i][j];
ihy[i][j] = ihy[i][j] + fj1[j]*curl_e ;
hy[i][j] = fi3[i]*hy[i][j]

+ fi2[i]*.5*(curl_e + ihy[i][j]);
} } }

/* ---- End of the main FDTD loop ---- */
for (j=1; j < JE; j++) {

78 TWO-DIMENSIONAL SIMULATION

printf("%2d ",j);
for (i=1; i <= IE; i++) {

printf("%4.1f",ez[i][j]);
}

printf(" \n");
}

/* Write the E field out to a file "Ez" */
fp = fopen("Ez","w");
for (j=0; j < JE; j++) {

for (i=0; i < IE; i++) {
fprintf(fp,"%6.3f ",ez[i][j]);

}
fprintf(fp," \n");

}

fclose(fp);

printf("T = %6.0f \n ",T);

} }

/* Fd2d_3.3.c. 2D TM program with plane wave source */
include <math.h>
include <stdlib.h>
include <stdio.h>

#define IE 60
#define JE 60

main ()
{

float ez_inc[JE],hx_inc[JE];
float ez_inc_low_m1,ez_inc_low_m2;
float ez_inc_high_m1,ez_inc_high_m2;
int ia,ib,ja,jb;

ic = IE/2;
jc = JE/2;
ia = 7; /* Total/scattered field

boundaries */
ib = IE-ia-1;
ja = 7;
jb = JE-ja-1;
ddx = .01; /* Cell size */
dt =ddx/6e8; /* Time step */
epsz = 8.8e-12;
pi=3.14159;

TWO-DIMENSIONAL SIMULATION 79

t0 = 20.0;
spread = 8.0;
T = 0;
nsteps = 1;

while (nsteps > 0) {
printf("nsteps --> ");
scanf("%d", &nsteps);
printf("%d \n", nsteps);

for (n=1; n <=nsteps ; n++) {
T = T + 1;

/* ---- Start of the Main FDTD loop ---- */

for (j=1; j< JE; j++) {
ez_inc[j] = ez_inc[j] + .5*(hx_inc[j-1]-hx_inc[j]);

}

/* ABC for the incident buffer */
ez_inc[0] = ez_inc_low_m2;
ez_inc_low_m2 = ez_inc_low_m1;
ez_inc_low_m1 = ez_inc[1];

ez_inc[JE-1] = ez_inc_high_m2;
ez_inc_high_m2 = ez_inc_high_m1;
ez_inc_high_m1 = ez_inc[JE-2];

/* Calculate the Dz field */
for (j=1; j < IE; j++) {

for (i=1; i < IE; i++) {
dz[i][j] = gi3[i]*gj3[j]*dz[i][j]

+ gi2[i]*gj2[j]*.5*(hy[i][j] - hy[i-1][j]
- hx[i][j] + hx[i][j-1]) ;

} }

/* Source */

/* pulse = sin(2*pi*400*1e6*dt*T) ; */
pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
ez_inc[3] = pulse;

/* Incident Dz values */

for (i=ia; i<= ib; i++) {
dz[i][ja] = dz[i][ja] + 0.5*hx_inc[ja-1];
dz[i][jb] = dz[i][jb] - 0.5*hx_inc[jb];

}

80 TWO-DIMENSIONAL SIMULATION

/* Calculate the Ez field */
for (j=1; j < JE-1; j++) {

for (i=1; i < IE-1; i++) {
ez[i][j] = ga[i][j]*dz[i][j] ;

} }

printf("%3f.0 %6.2f \n ",T,ez[ic-5][jc-5]);

for (j=0; j< JE; j++) {
hx_inc[j] = hx_inc[j] + .5*(ez_inc[j]-ez_inc[j+1]);

}

/* Calculate the Hx field */
for (j=0; j < JE-1; j++) {

for (i=0; i < IE; i++) {
curl_e = ez[i][j] - ez[i][j+1] ;
ihx[i][j] = ihx[i][j] + fi1[i]*curl_e ;
hx[i][j] = fj3[j]*hx[i][j]

+ fj2[j]*.5*(curl_e + ihx[i][j]);
} }

/* Incident Hx values */

for (i=ia; i<= ib; i++) {
hx[i][ja-1] = hx[i][ja-1] + .5*ez_inc[ja];
hx[i][jb] = hx[i][jb] - .5*ez_inc[jb];

}

/* Calculate the Hy field */
for (j=0; j <= JE-1; j++) {

for (i=0; i < IE-1; i++) {
curl_e = ez[i+1][j] - ez[i][j];
ihy[i][j] = ihy[i][j] + fj1[j]*curl_e ;
hy[i][j] = fi3[i]*hy[i][j]

/* Incident Hy values */
for (j=ja; j<= jb; j++) {

hy[ia-1][j] = hy[ia-1][j] - .5*ez_inc[j];
hy[ib][j] = hy[ib][j] + .5*ez_inc[j];

}

}
/* ---- End of the main FDTD loop ---- */ +

/* Fd2d_3.4.c. 2D TM simulation of a plane
wave source impinging on a dielectric cylinder.
Analysis using Fourier Transforms */

include <math.h>

TWO-DIMENSIONAL SIMULATION 81

include <stdlib.h>
include <stdio.h>

#define IE 50
#define JE 50
#define NFREQS 3

float freq[NFREQS],arg[NFREQS];
float real_pt[NFREQS][IE][JE],imag_pt[NFREQS][IE][JE];
float amp[IE][JE],phase[IE][JE];
float real_in[5],imag_in[5],amp_in[5],phase_in[5];

/* Parameters for the Fourier Transforms */

freq[0] = 50.e6;
freq[1] = 300.e6;
freq[2] = 700.e6;

for (n=0; n < NFREQS; n++)
{ arg[n] = 2*pi*freq[n]*dt;
printf("%d %6.2f %7.5f \n",n,freq[n]*1e-6,arg[n]);
}

/* Specify the dielectric cylinder */

printf("Cylinder radius (cells), epsilon, sigma --> ");
scanf("%f %f %f", &radius, &epsilon, &sigma);
printf("Radius = %5.2f Eps = %6.2f Sigma = %6.2f \n ",

radius,epsilon,sigma);

for (j = ja; j < jb; j++) {
for (i=ia; i < ib; i++) {

xdist = (ic-i);
ydist = (jc-j);
dist = sqrt(pow(xdist,2.) + pow(ydist,2.));
if(dist <= radius) {

ga[i][j] = 1./(epsilon + (sigma*dt/epsz));
gb[i][j] = sigma*dt/epsz;

} } }

/* Write the ga field out to a file "Ga" */
fp = fopen("Ga","w");
printf(" Ga \n");
for (j=ja; j <= jb; j++) {

for (i=ia; i <= ib; i++) {
printf("%5.2f",ga[i][j]);
fprintf(fp,"%6.3f ",ga[i][j]);

}
printf(" \n");

82 TWO-DIMENSIONAL SIMULATION

fprintf(fp," \n");
}

printf(" Gb \n");
for (j=ja; j < jb; j++) {

for (i=ia; i <= ib; i++) {
printf("%5.2f",gb[i][j]);

}
printf(" \n");

}
fclose(fp);

/* ---- Start of the Main FDTD loop ---- */

/* Calculate the incidnet Ez */
for (j=1; j< JE; j++) {

ez_inc[j] = ez_inc[j] + .5*(hx_inc[j-1]-hx_inc[j]);
}

/* Fourier Tramsform of the incident field */
for (m=0; m < NFREQS ; m++)
{ real_in[m] = real_in[m] + cos(arg[m]*T)*ez_inc

[ja-1] ;
imag_in[m] = imag_in[m] - sin(arg[m]*T)*ez_inc

[ja-1] ;
}

/* Calculate the Dz field */
for (j=1; j < IE; j++) {

for (i=1; i < IE; i++) {
dz[i][j] = gi3[i]*gj3[j]*dz[i][j]

+ gi2[i]*gj2[j]*.5*(hy[i][j] - hy[i-1][j]
- hx[i][j] + hx[i][j-1]) ;

} }

/* Source */

/* pulse = sin(2*pi*400*1e6*dt*T) ; */
pulse = exp(-.5*(pow((t0-T)/spread,2.0)));

ez_inc[3] = pulse;
/* dz[ic-5][jc-5] = pulse; */

printf("%3.0f %6.2f \n ",T,ez_inc[3]);
/* Incident Dz values */

for (i=ia; i<= ib; i++) {
dz[i][ja] = dz[i][ja] + 0.5*hx_inc[ja-1];
dz[i][jb] = dz[i][jb] - 0.5*hx_inc[jb];

}

TWO-DIMENSIONAL SIMULATION 83

/* Calculate the Ez field */
for (j=1; j < JE-1; j++) {

for (i=1; i < IE-1; i++) {
ez[i][j] = ga[i][j]*(dz[i][j] - iz[i][j]) ;
iz[i][j] = iz[i][j] + gb[i][j]*ez[i][j] ;

}
}

/* Calculate the Fourier transform of Ex. */
for (j=0; j < JE; j++)
{ for (i=0; i < JE; i++)

{ for (m=0; m < NFREQS; m++)
{real_pt[m][i][j] = real_pt[m][i][j] +

cos(arg[m]*T)*ez[i][j] ;
imag_pt[m][i][j] = imag_pt[m][i][j] +

sin(arg[m]*T)*ez[i][j] ;
} } }

/* Calculate the incident Hx */
for (j=0; j< JE; j++) {

hx_inc[j] = hx_inc[j] + .5*(ez_inc[j]-ez_inc[j+1]);
}

/* Calculate the Hx field */
for (j=0; j < JE-1; j++) {

for (i=0; i < IE; i++) {
curl_e = ez[i][j] - ez[i][j+1] ;
ihx[i][j] = ihx[i][j] + fi1[i]*curl_e ;
hx[i][j] = fj3[j]*hx[i][j]

+ fj2[j]*.5*(curl_e + ihx[i][j]);
}

}
/* Incident Hx values */

for (i=ia; i<= ib; i++) {
hx[i][ja-1] = hx[i][ja-1] + .5*ez_inc[ja];
hx[i][jb] = hx[i][jb] - .5*ez_inc[jb];

}

/* Calculate the Hy field */
for (j=0; j <= JE-1; j++) {

for (i=0; i < IE-1; i++) {
curl_e = ez[i+1][j] - ez[i][j];
ihy[i][j] = ihy[i][j] + fj1[j]*curl_e ;
hy[i][j] = fi3[i]*hy[i][j]

+ fi2[i]*.5*(curl_e + ihy[i][j]);
}

}

84 TWO-DIMENSIONAL SIMULATION

/* Incident Hy values */
for (j=ja; j<= jb; j++) {

hy[ia-1][j] = hy[ia-1][j] - .5*ez_inc[j];
hy[ib][j] = hy[ib][j] + .5*ez_inc[j];

}

}
/* ---- End of the main FDTD loop ---- */

/* Calculate the Fouier amplitude and phase of the
incident pulse */

for (m=0; m < NFREQS; m++)
{ amp_in[m] = sqrt(pow(real_in[m],2.)

+ pow(imag_in[m],2.));
phase_in[m] = atan2(imag_in[m],real_in[m]) ;
printf("%d Input Pulse : %8.4f %8.4f %8.4f

%7.2f\n",
m,real_in[m],imag_in[m],amp_in[m],

(180.0/pi)*phase_in[m]);
}

/* Calculate the Fouier amplitude and phase of the
total field field */

for (m=0; m < NFREQS; m++)
{
if(m == 0) fp = fopen("amp1","w");
else if(m == 1) fp = fopen("amp2","w");
else if(m == 2) fp = fopen("amp3","w");
if(m == 0) fp1 = fopen("phs1","w");
else if(m == 1) fp1 = fopen("phs2","w");
else if(m == 2) fp1 = fopen("phs3","w");
{ printf("%2d %7.2f MHz\n",m,freq[m]*1.e-6);

for (j=ja; j <= jb; j++)
{ if(ga[ic][j] < 1.00)

{ amp[ic][j] = (1./amp_in[m])
*sqrt(pow(real_pt[m][ic][j],2.)

+ pow(imag_pt[m][ic][j],2.));
phase[ic][j] = atan2(imag_pt[m][ic][j],real_pt[m]

[ic][j]) ;
printf("%2d %9.4f \n",jc-j,amp[ic][j]);
fprintf(fp," %9.4f \n",amp[ic][j]);
fprintf(fp1," %9.4f \n",phase[ic][j]);

}
}

}
fclose(fp);
fclose(fp1);
}

4
THREE-DIMENSIONAL SIMULATION

At last we have come to three-dimensional simulation. In actuality, three-
dimensional FDTD simulation is very much like two-dimensional simulation—
only harder. It is harder because of logistical problems: we use all vector fields
and each one is in three dimensions. Nonetheless, paying attention and building
the programs carefully, the process is straightforward.

4.1 FREE SPACE SIMULATION

The original FDTD paradigm was described by the Yee cell (Fig. 4.1), named
after Kane Yee (1). Note that the E and H fields are assumed interleaved around
a cell whose origin is at the locations i, j , and k. Every E field is located half a
cell width from the origin in the direction of its orientation; every H field is
offset half a cell in each direction except that of its orientation.

Not surprisingly, we will start with Maxwell’s equations:

∂D̃
∂t

= 1√
ε0μ0

∇ × H̃ , (4.1a)

D̃(ω) = ε∗
r (ω) · Ẽ (ω), (4.1b)

∂H
∂t

= − 1√
ε0μ0

∇ × Ẽ . (4.1c)

Electromagnetic Simulation Using the FDTD Method, Second Edition. Dennis M. Sullivan.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley & Sons, Inc.

85

86 THREE-DIMENSIONAL SIMULATION

Z

Y

X

Ez

Ey

Hy

Hz

Hx

Ex

(i,j,k+1)

(i,j+1,k)

(i+1,j,k)

(i,j,k)

Figure 4.1 The Yee cell.

Once again, we will drop the notation “∼”, but it will always be assumed that
we are referring to the normalized values.

Equation (4.1a) and (4.1c) produces six scalar equations:

∂Dx

∂t
= 1√

ε0μ0

(
∂Hz

∂y
− ∂Hy

∂z

)
, (4.2a)

∂Dy

∂t
= 1√

ε0μ0

(
∂Hx

∂z
− ∂Hz

∂x

)
, (4.2b)

∂Dz

∂t
= 1√

ε0μ0

(
∂Hy

∂x
− ∂Hx

∂y

)
, (4.2c)

∂Hx

∂t
= 1√

ε0μ0

(
∂Ey

∂z
− ∂Ez

∂y

)
, (4.2d)

∂Hy

∂t
= 1√

ε0μ0

(
∂Ez

∂x
− ∂Ex

∂z

)
, (4.2e)

∂Hz

∂t
= 1√

ε0μ0

(
∂Ex

∂y
− ∂Ey

∂x

)
. (4.2f)

The first step is to take the finite-difference approximations. We will use only
Eq. (4.2c) and (4.2f) as examples:

D
n+1/2
z

(
i, j, k + 1

2

)
= D

n+1/2
z

(
i, j, k + 1

2

)

+ �t

�x · √
ε0μ0

[
Hn

y

(
i + 1

2
, j, k + 1

2

)

FREE SPACE SIMULATION 87

− Hn
y

(
i − 1

2
, j, k + 1

2

)

− Hn+1
x

(
i+1

2
, j+1

2
, k

)
+Hn+1

x

(
i+1

2
, j−1

2
, k

)]
(4.3a)

Hn+1
z

(
i + 1

2
, j + 1

2
, k

)
= Hn+1

z

(
i + 1

2
, j + 1

2
, k

)

+ �t

�x · √
ε0μ0

[
E

n+1/2
x

(
i + 1

2
, j + 1, k

)

+ E
n+1/2
x

(
i + 1

2
, j, k

)

− E
n+1/2
y

(
i+1, j+1

2
, k

)
+E

n+1/2
y

(
i, j+1

2
, k

)]
.

(4.3b)

From the difference equations, the computer equations can be written:

dx[i][j][k] = dx[i][j][k]
+ .5*(hz[i][j][k] - hz[i][j-1][k]
- hy[i][j][k] + hy[i][j][k-1]);

dy[i][j][k] = dz[i][j][k]
+ .5*(hx[i][j][k] - hx[i][j][k-1]
- hz[i][j][k] + hz[i-1][j][k]);

dz[i][j][k] = dz[i][j][k]
+ .5*(hy[i][j][k] - hy[i-1][j][k]
- hx[i][j][k] + hx[i][j-1][k]);

hx[i][j][k] = hx[i][j][k]
+ .5*(ey[i][j][k+1] - ey[i][j][k]
- ez[i][j+1][k] + ez[i][j][k]);

hy[i][j][k] = hy[i][j][k]
+ .5*(ez[i+1][j][k] - ez[i][j][k]
- ex[i][j][k+1] + ex[i][j][k]);

hz[i][j][k] = hz[i][j][k]
+ .5*(ex[i][j+1][k] - ex[i][j][k]
- ey[i+1][j][k] + ey[i][j][k]);

The relationship between E and D, corresponding to Eq. (4.1b), is exactly the
same as the one- or two-dimensional cases, except there will be three dimensions.

88 THREE-DIMENSIONAL SIMULATION

gaz = 0 to specify metal

H fields resulting from the
current in the dipole

The stimulating EZ value is
specified a the gap

Figure 4.2 A dipole antenna. The FDTD program specifies the metal arms of the
dipole by setting gaz = 0. The source is specified by setting the Ez field to a value in
the gap.

The program fd3d_4.1.c at the end of this chapter is a very basic three-
dimensional FDTD program with a source in the middle of the problem space.
This is similar to the two-dimensional program fd2d_3.1.c, except that the source
is not a simple point source. In three dimensions, the E field attenuates as the
square of the distance as it propagates out from the point source, so we would
have trouble just seeing it. Instead, we use a dipole antenna as the source. A
simple dipole antenna is illustrated in Fig. 4.2, and it consists of two metal arms.
A dipole antenna functions by having current run through the arms, which results
in radiation. FDTD simulates a dipole in the following manner: the metal of the
arms is specified by setting the gaz parameters to zero in the cells corresponding
to metal (Eq. (2.9) and Eq. (2.10)). This insures that the corresponding Ez field
at this point remains zero, as it would if that point were inside metal. The source
is specified by setting the Ez field in the gap to a certain value. In fd3d_4.1.c,
we specify a Gaussian pulse. (In a real dipole antenna, the Ez field in the gap
would be the result of the current running through the metal arms.) Notice that
we could have specified a current in the following manner: Ampere’s circuital
law says (2) ∫

C

H · dl = I ,

that is, the current through a surface is equal to the line integral of the H field
around the surface. We could specify the current by setting the appropriate H

fields around the gap (Fig. 4.2). We can see that specifying the E field in the
gap is easier.

THE PML IN THREE DIMENSIONS 89

20
40

20
40
0

0.1

0.2

T = 30

cm cm

Ez

20
40

20
40

0

0.05

cm

T = 40

cm

20
40

20
40

0

0.05

cm

T = 50

cm

20
40

20
40

0

0.05

cm

T = 60

cm

 Ez Ez

Ez

Figure 4.3 Ez field radiation from a dipole antenna in a three-dimensional FDTD
program.

Figure 4.3 shows the propagation of the Ez from the dipole in the XY plane
level with the gap of the dipole. Of course, there is radiation in the Z direc-
tion as well. This illustrates a major problem in three-dimensional simulations:
unless one has unusually good graphics, visualizing three dimensions can be
difficult.

PROBLEM SET 4.1

1. Get the program fd3d_4.1.c running. Duplicate the results of Fig. 4.3.
(Remember, there is no PML yet.)

4.2 THE PML IN THREE DIMENSIONS

The development of the PML for three dimensions closely follows the two-
dimensional version. The only difference is that we deal with three dimensions
instead of two (3). For instance, Eq. (3.23a) becomes

jω

[
1 + σx (x)

jωε0

] [
1 + σy (y)

jωε0

] [
1 + σz (z)

jωε0

]−1

Dz = c0 ·
(

∂Hy

∂x
− ∂Hx

∂y

)
.

(4.4)
Implementing it will closely follow the two-dimensional development. Start by
rewriting Eq. (4.4) as

90 THREE-DIMENSIONAL SIMULATION

jω

[
1 + σx (x)

jωε0

] [
1 + σy (y)

jωε0

]
Dz = c0

[
1 + σz (z)

jωε0

]
·
(

∂Hy

∂x
− ∂Hx

∂y

)

= c0 · curl_h + c0
σz(z)

ε0

1

jω
curl_h. (4.5)

We will define

IDz
= 1

jω
curl_h,

which is an integration when it goes to the time domain, so Eq. (4.5) becomes

jω

[
1 + σx (x)

jωε0

] [
1 + σy (y)

jωε0

]
Dz = c0

[
1 + σz (z)

jωε0

]
·
(

∂Hy

∂x
− ∂Hx

∂y

)

= c0 ·
[

curl_h + σz (z)

ε0
IDz

]
.

The implementation of this into FDTD parallels that of the two-dimensional PML,
except the right side contains the integration term IDz

. Therefore, following the
same math we used in Chapter 3, we get

curl_h = Hn
y

(
i + 1

2
, j, k + 1

2

)
− Hn

y

(
i − 1

2
, j, k + 1

2

)

− Hn+1
x

(
i+1

2
, j+1

2
, k

)
+Hn+1

x

(
i+1

2
, j−1

2
, k

)
,

(4.6a)

In
Dz

(
i, j, k + 1

2

)
= In−1

Dz

(
i, j, k + 1

2

)
+ curl_h, (4.6b)

D
n+1/2
z

(
i, j, k + 1

2

)
= gi3(i) · gj3(j) · D

n+1/2
z

(
i, j, k + 1

2

)
+ gi2(i) · gj2(j)

· 0.5 ·
[

curl_h + gk1 (k) · I
n+1/2
z

(
i, j, k + 1

2

)]
.

(4.6c)
The one-dimensional g parameters are defined the same as in Eq. (3.25). The
computer code for Eq. (4.6) is as follows:

for (i=1; i < IE; i++) {
for (j=1; j < JE; j++) {

for (k=0; k < KE; k++) {
curl_h = (hy[i][j][k] - hy[i-1][j][k]

- hx[i][j][k] + hx[i][j-1][k]) ;
idz[i][j][k] = idz[i][j][k] + curl_h;

THE PML IN THREE DIMENSIONS 91

dz[i][j][k] = gi3[i]*gj3[j]*dz[i][j][k]
+ gi2[i]*gj2[j]*.5*(curl_h + gk1[k]*idz[i][j][k]);

} } }

The PML described in this section is a variation of the original by Berenger (3).
The PML was modified to fit the FDTD formulation utilizing a separate calcula-
tion of E from D (4). This version of the PML has proven to be very effective
when the background medium is air, as well as when other media, such as human
tissues, are present and the PML are present in the other media (5). The reader
should be aware that a large number of specialized PMLs have been developed.
Sometimes a specialized PML is necessary when used with a particular medium
or application (6). One of the most popular approaches used in the development
of a PML is the use of stretched coordinates (7). A summary of the diverse
approaches to the PML is given in Reference 8.

PROBLEM SET 4.2

1. Add the PML to your three-dimensional program. The program fd3d_4.2.c at
the end of the chapter has the PML. The program also has the things described
in the next section, but you should be able to pick out those things having to
do with the PML. Duplicate the results of Fig. 4.4.

20
40

T = 50

20
40

20
40

−0.02

0

0.02

−0.02

0

0.02

T = 80

cm cm

20
40

cm cm

Ez

Ez

cm
10 20 30 40

cm
10 20 30 40

10

20

30

40

10

20

30

40

Figure 4.4 Radiation from a dipole antenna in an FDTD program with a seven-point
PML. Contour diagrams on the right illustrate the fact that the fields remain concentric
until they reach the PML.

92 THREE-DIMENSIONAL SIMULATION

4.3 TOTAL/SCATTERED FIELD FORMULATION IN THREE
DIMENSIONS

Generating plane waves in three dimensions is similar to that in two dimensions.
The three-dimensional problem is illustrated in Fig. 4.5. A plane wave is gen-
erated in one plane of the three-dimensional problem space, in this case an XZ
plane, at j = ja and subtracted out at j = jb. Therefore, in free space with no
obstacle in the total field, we should see only Ez and Hx . The plane wave is gen-
erated at one side and subtracted from the other side by adding to D or H fields
that are on the boundary and subtracting from D or H fields that are next to the
boundary. Therefore, Eq. (3.26), Eq. (3.27), and Eq. (3.28) are still used, but they
are imposed on an entire plane instead of simply a line as in two dimensions.
Another difference in three dimensions is the additional surfaces at k = ka and k
= kb. Figure 4.6 illustrates the k = ka boundary. The calculation of Dy(i, j, ka),
which is in the scattered field, requires the values of Hx(i, j, ka), which is in the
total field. The difference between the two is the incident component of the Hx

field. Therefore, beside equations similar to Eq. (3.26), Eq. (3.27), and Eq. (3.28),
the following are necessary:

Dy

(
i, j + 1

2
, ka

)
= Dy

(
i, j + 1

2
, ka

)
− 0.5 · Hx_inc(j) (4.7a)

Dy

(
i, j + 1

2
, kb + 1

)
= Dy

(
i, j + 1

2
, kb + 1

)
− 0.5 · Hx_inc(j). (4.7b)

4.3.1 A Plane Wave Impinging on a Dielectric Sphere

Now that we have a program that generates a plane wave in three dimensions, we
will want to start putting objects in the problem space to see how the plane wave

jbja

ib

kb

X

Z
The plane wave is generated at this wall

Y

Figure 4.5 Total/scattered fields in three dimensions.

TOTAL/SCATTERED FIELD FORMULATION IN THREE DIMENSIONS 93

Total field

Hy
D y(i,j,ka+1)

D y(i,j,ka−1)

H x(i,j,ka−1)

D y(i,j,ka)

H x(i,j,ka) k=ka

Hy

Hy Hy

Hy

Hy

Z

X

Scattered field

Figure 4.6 Total/scattered field boundary at k = ka.

interacts with them. In two dimensions, we chose a cylinder because we had an
analytic solution with which we could check the accuracy of our calculation via
a Bessel function expansion. It turns out that the interaction of a plane wave with
a dielectric sphere can be determined by an expansion of the modified Bessel
functions (9).

Specifying a sphere in three dimensions is similar to specifying a cylinder
in two dimensions. The major difference is that it must be done for all three
electric fields. The following code specifies the parameters needed for the Ez

field calculation:

for (i=ia; i < ib; i++) {
for (j=ja; j<jb; j++) {

for (k=ka; k<kb; k++) {
xdist = (ic-i);
ydist = (jc-j);
zdist = (kc-k-.5);
dist = sqrt(pow(xdis,2.)+pow(ydist,2.)+pow(zdist,2.))
if(dist<= radius) {

gaz[i][j][k] = 1./(epsilon + (sigma*dt/epsz));
gbz[i][j][k] = sigma*dt/epsz;

}
} } }

Besides the obvious differences, for example, three loops instead of two, there
is another difference to be pointed out. The parameter zdist calculates the
distance to the point as if it were half a cell further in the z direction. That is
because it is! As shown in Fig. 4.1, each E field is assumed offset from i, j, and
k by half a cell in its own direction.

94 THREE-DIMENSIONAL SIMULATION

0
−10 −8 −6 −4 −2 0 2

50 MHz

4

V
/m

(a)

(b)

(c)

6 8 10

0.05

0.1

0
−10 −8 −6 −4 −2 0 2

200 MHz

4

V
/m

6 8 10

0.5

0
−10 −8 −6 −4 −2 0 2

500 MHz

cm
4

V
/m

6 8 10

0.5

Figure 4.7 Comparison of the FDTD calculation (circles) with the Bessel function
expansion calculation (lines) along the main axis of a dielectric sphere, 20 cm in diam-
eter, with εr = 30 and σ = 0.3. The program for the FDTD calculation uses the simple
“in-or-out” strategy to determine the parameters. (a) 50, (b) 200, and (c) 500 MHz.

In Fig. 4.7, we show a comparison between FDTD results and the Bessel
function expansion results for a plane wave incident on a dielectric sphere. The
sphere had a diameter of 20 cm, a dielectric constant of 30, and a conductivity
of 0.3. The FDTD program is 50 × 50 × 50 cells and uses a seven-point PML.
Apparently, the “in-and-out method” of determining the parameters such as gaz
and gbz is not as forgiving as it was in two dimensions.

We can do an averaging over subcells to improve efficiency. We might con-
clude that because this means averaging subcells in a plane in two dimensions,
we would have to average subcubes in three dimensions. It turns out that this
is not the case. Figure 4.8 illustrates the calculation of Ez, which uses the sur-
rounding Hx and Hy values. As this calculation is confined to a plane, we may
think of the calculation of Ez as being a two-dimensional problem. Therefore,
in determining the parameters gaz and gbz, we will go by how much area of
the plane containing Hx and Hy is in each of the different media. The following
code averages the properties over nine subcells:

for (k=ka; k<kb; k++) {
for (i=ia; i < ib; i++) {

TOTAL/SCATTERED FIELD FORMULATION IN THREE DIMENSIONS 95

Medium 1

Medium 2

Hx(i,j−1/2,k+1/2)

Hx(i,j+1/2,k+1/2)

Hy(i−1/2,j,k+1/2)

Hy(i+1/2,j,k+1/2)

Ez(i,j,k+1/2)

Figure 4.8 Ez is calculated by the surrounding Hx and Hy values. The parameters used
to calculate Ez are determined by the percentage of subcells in each medium. In this
example, six subcells are in medium 1 and three subcells are in medium 2.

for (j=ja; j<jb; j++) {
eps = epsilon(0);
cond = sigma(0);

for (jj=-1; jj<=1:jj++) {
for (ii=-1; ii <=1; ii++) {
xdist = (ic-i)+.333*ii;
ydist = (jc-j)+.333*jj;
zdist = (kc-k-.5);
dist = sqrt(pow(xdis,2.)+pow(ydist,2.)+pow(zdist,2.))

for (n=1; n <+ numcyl; n++1) {
if(dist <= radius) {

eps = eps + (1/9)*(epsilon[n] - epsilon[n-1]);
cond = cond + (1/9)*(sigma[n] - sigma[n-1]);

} }
}}

gaz[i][j][k] = 1./(epsilon + (sigma*dt/epsz));
gbz[i][j][k] = sigma*dt/epsz;

} } }

Figure 4.9 repeats the FDTD/Bessel comparison, but with the averaged parameter
values. Clearly, it results in an improvement.

PROBLEM SET 4.3

1. Add the plane wave propagation to your three-dimensional FDTD program.
Make sure that it can propagate a wave through and subtract it out the other
end. (See the program fd3d_4.2.c.)

2. The program fd3d_4.2.c creates the spheres by “in-or-out” method. Get this
program running and duplicate the results of Fig. 4.7.

3. Use the averaging technique to get a more accurate calculation of the param-
eters and duplicate the results of Fig. 4.9.

96 THREE-DIMENSIONAL SIMULATION

0
−10 −8 −6 −4 −2 0 2

50 MHz

4

V
/m

(a)

(b)

(c)

6 8 10

0.05

0.1

0
−10 −8 −6 −4 −2 0 2

200 MHz

4

V
/m

6 8 10

0.5

0
−10 −8 −6 −4 −2 0 2

500 MHz

cm
4

V
/m

6 8 10

0.5

Figure 4.9 Comparison of the FDTD calculation (circles) with the Bessel function
expansion calculation (lines) along the main axis of a dielectric sphere, 20 cm in diam-
eter, with εr = 30 and σ = 0.3. The program used for the FDTD calculation averaged
over nine subcells within each cell to determine the parameters. (a) 50, (b) 200, and (c)
500 MHz.

REFERENCES

1. K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media, IEEE Trans. Antenn. Propag., vol. AP-17, 1996, pp.
585–589.

2. D. K. Cheng, Field and Wave Electromagnetics , Menlo Park, CA: Addison-Wesley,
1992.

3. J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves,
J. Comput. Phys., vol. 114, 1994, pp. 185–200.

4. D. M. Sullivan, An unsplit step 3D PML for use with the FDTD Method, IEEE Microw.
Guid. Wave Lett., vol. 7, February. 1997, pp. 184–186.

5. D. M. Sullivan, P. Wust, and J. Nadobny, Accurate FDTD simulation of RF coils for
MRI using the thin-rod approximation, IEEE Trans. Antenn. Propag., vol. 58, August
2003, pp. 1780–1796.

6. D. M. Sullivan, Y. Xia, and D. Butherus, A perfectly matched layer for lossy media
at extremely low frequencies, IEEE Antenn. Wireless Propag. Lett., vol. 8, 2009, pp.
1080–1083.

THREE-DIMENSIONAL SIMULATION 97

7. W. C. Chew and W. H. Weedon, A 3D perfectly matched medium form modified
Maxwell’s equations with stretched coordinates, Microw. Opt. Tech. Lett., vol. 3, 1998,
pp. 559–605.

8. J-P Berenger, Perfectly Matched Layer (PML) for Computational Electromagnetics ,
San Francisco: Morgan & Claypool Publishers, 2007.

9. R. Harrington, Time-Harmonic Electromagnetic Fields , New York: McGraw-Hill,
1961.

/* Fd3d_4.1.c. 3D FDTD. Dipole in free space. */
include <math.h>
include <stdlib.h>
include <stdio.h>

#define IE 50
#define JE 50
#define KE 50

main ()
{

float gax[IE][JE][KE],gay[IE][JE][KE],gaz[IE][JE][KE];
float dx[IE][JE][KE],dy[IE][JE][KE],dz[IE][JE][KE];
float ex[IE][JE][KE],ey[IE][JE][KE],ez[IE][JE][KE];
float hx[IE][JE][KE],hy[IE][JE][KE],hz[IE][JE][KE];
int l,n,i,j,k,ic,jc,kc,nsteps,npml;
float ddx,dt,T,epsz,pi,epsilon,sigma,eaf;
float xn,xxn,xnum,xd,curl_e;
float t0,spread,pulse;
FILE *fp, *fopen();
float Eav;

ic = IE/2;
jc = JE/2;
kc = KE/2;
ddx = .01; /* Cell size */
dt =ddx/6e8; /* Time steps */
epsz = 8.8e-12;
pi=3.14159;

/* Initialize the arrays */
for (k=0; k < KE; k++) {

for (j=0; j < JE; j++) {
for (i=0; i < IE; i++) {
ex[i][j][k]= 0.0 ;
ey[i][j][k]= 0.0 ;
ez[i][j][k]= 0.0 ;
dx[i][j][k]= 0.0 ;
dy[i][j][k]= 0.0 ;
dz[i][j][k]= 0.0 ;

98 THREE-DIMENSIONAL SIMULATION

hx[i][j][k]= 0.0 ;
hy[i][j][k]= 0.0 ;
hz[i][j][k]= 0.0 ;
gax[i][j][k]= 1.0 ;
gay[i][j][k]= 1.0 ;
gaz[i][j][k]= 1.0 ;

} } }

/* Specify the dipole */
for (k=kc-10; k < kc+10; k++) {

gaz[ic][jc][k] = 0.;
}
gaz[ic][jc][kc] = 1.0;

t0 = 20.0;
spread = 6.0;
T = 0;
nsteps = 1;

/* ---- Start of the Main FDTD loop ---- */

/* Calculate the Dx field */
for (i=1; i < IE; i++) {

for (j=1; j < JE; j++) {
for (k=1; k < KE; k++) {

dx[i][j][k] = dx[i][j][k]
+ .5*(hz[i][j][k] - hz[i][j-1][k]

- hy[i][j][k] + hy[i][j][k-1]) ;
} } }

/* Calculate the Dy field */
for (i=1; i < IE; i++) {

for (j=1; j < JE; j++) {
for (k=1; k < KE; k++) {

dy[i][j][k] = dy[i][j][k]
+ .5*(hx[i][j][k] - hx[i][j][k-1]

- hz[i][j][k] + hz[i-1][j][k]) ;
} } }

/* Calculate the Dz field */
for (i=1; i < IE; i++) {

for (j=1; j < JE; j++) {
for (k=1; k < KE; k++) {

dz[i][j][k] = dz[i][j][k]
+ .5*(hy[i][j][k] - hy[i-1][j][k]

- hx[i][j][k] + hx[i][j-1][k]) ;
} } }

THREE-DIMENSIONAL SIMULATION 99

/* Add the source at the gap */
pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
dz[ic][jc][kc] = pulse;

/* Calculate the E from D field */
for (i=1; i < IE-1; i++) {

for (j=1; j < JE-1; j++) {
for (k=1; k < KE-1; k++) {
ex[i][j][k] = gax[i][j][k]*dx[i][j][k];
ey[i][j][k] = gay[i][j][k]*dy[i][j][k];
ez[i][j][k] = gaz[i][j][k]*dz[i][j][k];

} } }

printf("%4.0f %6.2f \n ",T,ez[ic][jc][kc]);

/* Calculate the Hx field */
for (i=1; i < IE; i++) {

for (j=1; j < JE-1; j++) {
for (k=1; k < KE-1; k++) {

hx[i][j][k] = hx[i][j][k]
+ .5*(ey[i][j][k+1] - ey[i][j][k]

- ez[i][j+1][k] + ez[i][j][k]) ;
} } }

/* Calculate the Hy field */
for (i=1; i < IE-1; i++) {

for (j=1; j < JE; j++) {
for (k=1; k < KE-1; k++) {

hy[i][j][k] = hy[i][j][k]
+ .5*(ez[i+1][j][k] - ez[i][j][k]

- ex[i][j][k+1] + ex[i][j][k]) ;
} } }

/* Calculate the Hz field */
for (i=1; i < IE-1; i++) {

for (j=1; j < JE-1; j++) {
for (k=1; k < KE; k++) {

hz[i][j][k] = hz[i][j][k]
+ .5*(ex[i][j+1][k] - ex[i][j][k]

- ey[i+1][j][k] + ey[i][j][k]) ;
} } }

}
/* ---- End of the main FDTD loop ---- */

/* Write the Hy field out to a file "Hyk" */
fp = fopen("Hyk","w");
for (k=0; k < KE; k++) {

100 THREE-DIMENSIONAL SIMULATION

for (i=ic-10; i < ic+10; i++) {
fprintf(fp,"%7.4f ",hy[i][jc][k]);
fprintf(fp,"%7.4f ",hy[i][jc][k]);

}
fprintf(fp," \n");
fprintf(fp," \n");

}
fclose(fp);

/* Write the E field out to a file "Ez" */
fp = fopen("Ez","w");
for (j=0; j < JE; j++) {

for (i=0; i < IE; i++) {
fprintf(fp,"%7.4f ",ez[i][j][kc]);

}
fprintf(fp," \n");

}
fclose(fp);

/* Write the E field out to a file "Ezk" */
fp = fopen("Ezk","w");
for (k=0; k < KE; k++) {

for (i=0; i < IE; i++) {
Eav = (ez[i][jc][k-1] + ez[i][jc][k])/2.;
fprintf(fp,"%7.4f ",Eav);

}
fprintf(fp," \n");

}
fclose(fp);

/* Write the E field out to a file "Exk" */
fp = fopen("Exk","w");
for (k=0; k < KE; k++) {

for (i=0; i < IE; i++) {
Eav = (ex[i-1][jc][k] + ex[i][jc][k])/2.;
fprintf(fp,"%7.4f ",Eav);

}
fprintf(fp," \n");

}
fclose(fp);

printf("T = %4.0f \n ",T);
}
}

/* Fd3d_4.3.c. 3D FDTD, plane wave on a dielectric sphere. */
include <math.h>
include <stdlib.h>
include <stdio.h>

THREE-DIMENSIONAL SIMULATION 101

#define IE 40
#define JE 40
#define KE 40
#define ia 7
#define ja 7
#define ka 7
#define NFREQS 3

main ()
{

float dx[IE][JE][KE],dy[IE][JE][KE],dz[IE][JE][KE];
float ex[IE][JE][KE],ey[IE][JE][KE],ez[IE][JE][KE];
float hx[IE][JE][KE],hy[IE][JE][KE],hz[IE][JE][KE];
float ix[IE][JE][KE],iy[IE][JE][KE],iz[IE][JE][KE];
float gax[IE][JE][KE],gay[IE][JE][KE],gaz[IE][JE][KE];
float gbx[IE][JE][KE],gby[IE][JE][KE],gbz[IE][JE][KE];
int l,m,n,i,j,k,ic,jc,kc,nsteps,n_pml;
float ddx,dt,T,epsz,muz,pi,eaf,npml;
int ib,jb,kb;
float xn,xxn,xnum,xd,curl_e;
float t0,spread,pulse;
FILE *fp, *fopen();
float ez_inc[JE],hx_inc[JE];
float ez_low_m1,ez_low_m2,ez_high_m1,ez_high_m2;

int ixh, jyh, kzh;
float idx[IE][JE][KE], ihx[IE][JE][KE];
float idy[IE][JE][KE], ihy[IE][JE][KE];
float idz[IE][JE][KE], ihz[IE][JE][KE];

float gi1[IE],gi2[IE],gi3[IE];
float gj1[JE],gj2[JE],gj3[JE];
float gk1[KE],gk2[KE],gk3[KE];
float fi1[IE],fi2[IE],fi3[IE];
float fj1[JE],fj2[JE],fj3[JE];
float fk1[KE],fk2[KE],fk3[KE];

float curl_h,curl_d; float
radius[10],epsilon[10],sigma[10],eps,cond;

int ii,jj,kk,numsph;
float dist,xdist,ydist,zdist;

float freq[NFREQS],arg[NFREQS];
float real_pt[NFREQS][IE][JE],imag_pt[NFREQS][IE][JE];
float amp[IE][JE],phase[IE][JE];
float real_in[5],imag_in[5],amp_in[5],phase_in[5];

ic = IE/2 ;
jc = JE/2 ;

102 THREE-DIMENSIONAL SIMULATION

kc = KE/2 ;
ib = IE - ia - 1;
jb = JE - ja - 1;
kb = KE - ka - 1;
pi = 3.14159;
epsz = 8.8e-12;
muz = 4*pi*1.e-7;
ddx = .01; /* Cell size */
dt = ddx/6e8; /* Time steps */

/* Initialize the arrays */
for (j=0; j < JE; j++) {

ez_inc[j] = 0.;
hx_inc[j] = 0.;
for (k=0; k < KE; k++) {

for (i=0; i < IE; i++) {
ex[i][j][k]= 0.0 ;
ey[i][j][k]= 0.0 ;
ez[i][j][k]= 0.0 ;
dx[i][j][k]= 0.0 ;
dy[i][j][k]= 0.0 ;
dz[i][j][k]= 0.0 ;
hx[i][j][k]= 0.0 ;
hy[i][j][k]= 0.0 ;
hz[i][j][k]= 0.0 ;
ix[i][j][k]= 0.0 ;
iy[i][j][k]= 0.0 ;
iz[i][j][k]= 0.0 ;
gax[i][j][k]= 1. ;
gay[i][j][k]= 1. ;
gaz[i][j][k]= 1. ;
gbx[i][j][k]= 0. ;
gby[i][j][k]= 0. ;
gbz[i][j][k]= 0. ;

} } }

for (n=0; i < NFREQS; n++) {
real_in[n] = 0.;
imag_in[n] = 0.;
for (j=0; j < JE; j++) {

for (i=0; i < IE; i++) {
real_pt[n][i][j] = 0.;
imag_pt[n][i][j] = 0.;

} } }

/* Parameters for the Fourier Transforms */

freq[0] = 10.e6;
freq[1] = 100.e6;

THREE-DIMENSIONAL SIMULATION 103

freq[2] = 433.e6;

for (n=0; n < NFREQS; n++)
{arg[n] = 2*pi*freq[n]*dt;
printf("%2d %6.2f %7.5f \n",n,freq[n]*1.e-6,arg[n]);
}

/* Boundary Conditions */

for (i=0; i < IE; i++) {
for (j=0; j < JE; j++) {

for (k=0; k < KE; k++) {
idx[i][j][k] = 0.0;
ihx[i][j][k] = 0.0;
idy[i][j][k] = 0.0;
ihy[i][j][k] = 0.0;
idz[i][j][k] = 0.0;
ihz[i][j][k] = 0.0;

} } }

for (i=0; i < IE; i++) {
gi1[i] = 0.;
fi1[i] = 0.;
gi2[i] = 1.;
fi2[i] = 1.;
gi3[i] = 1.;
fi3[i] = 1.;
}

for (j=0; j < JE; j++) {
gj1[j] = 0.;
fj1[j] = 0.;
gj2[j] = 1.;
fj2[j] = 1.;
gj3[j] = 1.;
fj3[j] = 1.;
}

for (k=0; k < IE; k++) {
gk1[k] = 0.;
fk1[k] = 0.;
gk2[k] = 1.;
fk2[k] = 1.;
gk3[k] = 1.;
fk3[k] = 1.;
}

printf("npml --> "); printf("f \n");
for (i=0; i < IE; i++) {

104 THREE-DIMENSIONAL SIMULATION

printf("%2d %6.4f %6.4f %6.4f %6.4f\n",
i,fi1[i],gi2[i],gi3[i]);

printf(" %6.4f %6.4f %6.4f %6.4f\n",
gi1[i],fi2[i],fi3[i]);

}

for (j=0; j < n_pml; j++) {
xxn = (npml-j)/npml;
xn = .33*pow(xxn,3.);
fj1[j] = xn;
fj1[JE-j-1] = xn;
gj2[j] = 1./(1.+xn);
gj2[JE-j-1] = 1./(1.+xn);
gj3[j] = (1.-xn)/(1.+xn);
gj3[JE-j-1] = (1.-xn)/(1.+xn);

xxn = (npml-j-.5)/npml;
xn = .33*pow(xxn,3.);
gj1[j] = xn;
gj1[JE-j-2] = xn;
fj2[j] = 1./(1.+xn);
fj2[JE-j-2] = 1./(1.+xn);
fj3[j] = (1.-xn)/(1.+xn);
fj3[JE-j-2] = (1.-xn)/(1.+xn);

}

printf("fj & gj \n");
for (j=0; j < JE; j++) {

printf("%2d %6.4f %6.4f %6.4f %6.4f\n",
j,fj1[j],gj2[j],gj3[j]);

printf(" %6.4f %6.4f %6.4f %6.4f\n",
gj1[j],fj2[j],fj3[j]);

}

for (k=0; k < n_pml; k++) {
xxn = (npml-k)/npml;
xn = .33*pow(xxn,3.);
fk1[k] = xn;
fk1[KE-k-1] = xn;
gk2[k] = 1./(1.+xn);
gk2[KE-k-1] = 1./(1.+xn);
gk3[k] = (1.-xn)/(1.+xn);
gk3[KE-k-1] = (1.-xn)/(1.+xn);

xxn = (npml-k-.5)/npml;
xn = .33*pow(xxn,3.);
gk1[k] = xn;
gk1[KE-k-2] = xn;
fk2[k] = 1./(1.+xn);
fk2[KE-k-2] = 1./(1.+xn);
fk3[k] = (1.-xn)/(1.+xn);

THREE-DIMENSIONAL SIMULATION 105

fk3[KE-k-2] = (1.-xn)/(1.+xn);
}
scanf("%f", &npml);
printf("%f \n", npml);
n_pml = npml;

for (i=0; i < n_pml; i++) {
xxn = (npml-i)/npml;
xn = .33*pow(xxn,3.);
printf("%d xn = %8.4f xn = %8.4f \n",

i,xxn,xn);
fi1[i] = xn;
fi1[IE-i-1] = xn;
gi2[i] = 1./(1.+xn);
gi2[IE-i-1] = 1./(1.+xn);
gi3[i] = (1.-xn)/(1.+xn);
gi3[IE-i-1] = (1.-xn)/(1.+xn);

xxn = (npml-i-.5)/npml;
xn = .33*pow(xxn,3.);
gi1[i] = xn;
gi1[IE-i-2] = xn;
fi2[i] = 1./(1.+xn);
fi2[IE-i-2] = 1./(1.+xn);
fi3[i] = (1.-xn)/(1.+xn);
fi3[IE-i-2] = (1.-xn)/(1.+xn);

}

printf("fk & gk \n");
for (k=0; k < JE; k++) {

printf("%2d %6.4f %6.4f %6.4f %6.4f\n",
k,fk1[k],gk2[k],gk3[k]);

printf(" %6.4f %6.4f %6.4f %6.4f\n",
gk1[k],fk2[k],fk3[k]);

}

/* Specify the dielectric sphere */

epsilon[0] = 1.;
sigma[0] = 0;

printf("Number spheres --> ");
scanf("%d", &numsph);

printf("numsph= %d \n ",numsph);

for (n = 1; n <= numsph; n++) {
printf("Sphere radius (cells), epsilon, sigma --> ");
scanf("%f %f %f", &radius[n], &epsilon[n], &sigma[n]);
printf("Radius = %6.2f Eps = %6.2f Sigma = %6.2f \n ",

radius[n],epsilon[n],sigma[n]);

106 THREE-DIMENSIONAL SIMULATION

}

for (n = 0; n <= numsph; n++) {
printf("Radius = %5.2f Eps = %6.2f Sigma = %6.2f \n ",
radius[n],epsilon[n],sigma[n]);

}

/* Calculate gax,gbx */
for (i = ia; i < ib; i++) {
for (j = ja; j < jb; j++) {
for (k = ka; k < kb; k++) {
eps = epsilon[0];
cond = sigma[0];

ydist = (jc-j);
xdist = (ic-i-.5);
zdist = (kc-k);

dist = sqrt(pow(xdist,2.) + pow(ydist,2.)
+ pow(zdist,2.));

for (n=1; n<= numsph; n++) {
if(dist <= radius[n]) {
eps = epsilon[n];
cond = sigma[n] ;
}

}
gax[i][j][k] = 1./(eps + (cond*dt/epsz));
gbx[i][j][k] = cond*dt/epsz;

}}}

/* Calculate gay,gby */
for (i = ia; i < ib; i++) {
for (j = ja; j < jb; j++) {
for (k = ka; k < kb; k++) {
eps = epsilon[0];
cond = sigma[0];

xdist = (ic-i);
ydist = (jc-j-.5);
zdist = (kc-k);

dist = sqrt(pow(xdist,2.) + pow(ydist,2.) + pow(zdist,2.));
for (n=1; n<= numsph; n++) {

if(dist <= radius[n]) {
eps = epsilon[n] ;
cond = sigma[n] ;
}

}
gay[i][j][k] = 1./(eps + (cond*dt/epsz));
gby[i][j][k] = cond*dt/epsz;

}}}

THREE-DIMENSIONAL SIMULATION 107

printf(" Gay \n");
for (j=ja; j <= jb; j++) {

printf("%3d",j);
for (i=ia; i <= ib; i++) {

printf("%5.2f",gay[i][j][kc]);
} printf(" \n");

} fclose(fp);

/* Calculate gaz,gbz */
for (i = ia; i < ib; i++) {
for (j = ja; j < jb; j++) {
for (k = ka; k < kb; k++) {
eps = epsilon[0];
cond = sigma[0];

xdist = (ic-i);
ydist = (jc-j);
zdist = (kc-k-.5);
dist = sqrt(pow(xdist,2.) + pow(ydist,2.) +

pow(zdist,2.));
for (n=1; n<= numsph; n++) {

if(dist <= radius[n]) {
eps = epsilon[n] ;
cond = sigma[n];

} }
gaz[i][j][k] = 1./(eps + (cond*dt/epsz));
gbz[i][j][k] = cond*dt/epsz;

}}}

printf(" Gaz \n");
for (j=ja; j <= jb; j++) {

printf("%3d",j);
for (i=ia; i <= ib; i++) {

printf("%5.2f",gaz[i][j][kc]);
} printf(" \n");

} fclose(fp);

t0 = 40.0;
spread = 10.0;
T = 0;
nsteps = 1;

while (nsteps > 0) {
printf("nsteps --> ");
scanf("%d", &nsteps);
printf("%d \n", nsteps);

for (n=1; n <=nsteps ; n++) {
T = T + 1;

108 THREE-DIMENSIONAL SIMULATION

/* ---- Start of the Main FDTD loop ---- */

/* Calculate the incident buffer */

for (j=1; j < JE; j++) {
ez_inc[j] = ez_inc[j] + .5*(hx_inc[j-1] - hx_inc[j]);

}

/* Fourier Tramsform of the incident field */
for (m=0; m < NFREQS ; m++)
{ real_in[m] = real_in[m] + cos(arg[m]*T)*ez_inc[ja-1] ;

imag_in[m] = imag_in[m] - sin(arg[m]*T)*ez_inc[ja-1] ;
}

/* Source */

/* pulse = sin(2*pi*400*1e6*dt*T); */
pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
ez_inc[3] = pulse;
printf("%4.0f %6.2f \n ",T,pulse);

/* Boundary conditions for the incident buffer*/

ez_inc[0] = ez_low_m2;
ez_low_m2 = ez_low_m1;
ez_low_m1 = ez_inc[1];

ez_inc[JE-1] = ez_high_m2;
ez_high_m2 = ez_high_m1;
ez_high_m1 = ez_inc[JE-2];

/* Calculate the Dx field */

for (i=1; i < IE; i++) {
for (j=1; j < JE; j++) {

for (k=1; k < KE; k++) {
curl_h = (hz[i][j][k] - hz[i][j-1][k]

- hy[i][j][k] + hy[i][j][k-1]) ;
idx[i][j][k] = idx[i][j][k] + curl_h;
dx[i][j][k] = gj3[j]*gk3[k]*dx[i][j][k]

+ gj2[j]*gk2[k]*.5*(curl_h + gi1[i]*idx[i][j][k]);
} } }

/* Calculate the Dy field */

for (i=1; i < IE; i++) {
for (j=1; j < JE; j++) {

for (k=1; k < KE; k++) {
curl_h = (hx[i][j][k] - hx[i][j][k-1]

THREE-DIMENSIONAL SIMULATION 109

- hz[i][j][k] + hz[i-1][j][k]) ;
idy[i][j][k] = idy[i][j][k] + curl_h;
dy[i][j][k] = gi3[i]*gk3[k]*dy[i][j][k]
+ gi2[i]*gk2[k]*.5*(curl_h + gj1[j]*idy[i][j][k]);

} } }

/* Incident Dy */
for (i=ia; i <= ib; i++) {

for (j=ja; j <= jb-1; j++) {
dy[i][j][ka] = dy[i][j][ka] - .5*hx_inc[j];
dy[i][j][kb+1] = dy[i][j][kb+1] + .5*hx_inc[j];

} }

/* Calculate the Dz field */

for (i=1; i < IE; i++) {
for (j=1; j < JE; j++) {

for (k=0; k < KE; k++) {
curl_h = (hy[i][j][k] - hy[i-1][j][k]

- hx[i][j][k] + hx[i][j-1][k]) ;
idz[i][j][k] = idz[i][j][k] + curl_h;
dz[i][j][k] = gi3[i]*gj3[j]*dz[i][j][k]
+ gi2[i]*gj2[j]*.5*(curl_h + gk1[k]*idz[i][j][k]);

} } }

/* Incident Dz */
for (i=ia; i <= ib; i++) {

for (k=ka; k <= kb; k++) {
dz[i][ja][k] = dz[i][ja][k] + .5*hx_inc[ja-1];
dz[i][jb][k] = dz[i][jb][k] - .5*hx_inc[jb];

} }

/* Source */

/* Calculate the E from D field */
/* Remember: part of the PML is E=0 at the edges */
for (i=1; i < IE-1; i++) {

for (j=1; j < JE-1; j++) {
for (k=1; k < KE-1; k++) {
ex[i][j][k] = gax[i][j][k]*(dx[i][j][k] - ix[i][j][k]);
ix[i][j][k] = ix[i][j][k] + gbx[i][j][k]*ex[i][j][k];
ey[i][j][k] = gay[i][j][k]*(dy[i][j][k] - iy[i][j][k]);
iy[i][j][k] = iy[i][j][k] + gby[i][j][k]*ey[i][j][k];
ez[i][j][k] = gaz[i][j][k]*(dz[i][j][k] - iz[i][j][k]);
iz[i][j][k] = iz[i][j][k] + gbz[i][j][k]*ez[i][j][k];

} } }

/* Calculate the Fourier transform of Ex. */
for (j=0; j < JE; j++)

110 THREE-DIMENSIONAL SIMULATION

{ for (i=0; i < JE; i++)
{ for (m=0; m < NFREQS; m++)

{ real_pt[m][i][j] = real_pt[m][i][j] +
cos(arg[m]*T)*ez[i][j][kc] ;

imag_pt[m][i][j] = imag_pt[m][i][j] +
sin(arg[m]*T)*ez[i][j][kc] ;

} } }

/* Calculate the incident field */

for (j=0; j < JE-1; j++) {
hx_inc[j] = hx_inc[j] + .5*(ez_inc[j] - ez_inc[j+1]);

}

/* Calculate the Hx field */
for (i=0; i < IE; i++) {

for (j=0; j < JE-1; j++) {
for (k=0; k < KE-1; k++) {

curl_e = (ey[i][j][k+1] - ey[i][j][k]
- ez[i][j+1][k] + ez[i][j][k]) ;

ihx[i][j][k] = ihx[i][j][k] + curl_e;
hx[i][j][k] = fj3[j]*fk3[k]*hx[i][j][k]

+ fj2[j]*fk2[k]*.5*(curl_e + fi1[i]*ihx[i][j][k]);
} } }

/* Incident Hx */
for (i=ia; i <= ib; i++) {

for (k=ka; k <= kb; k++) {
hx[i][ja-1][k] = hx[i][ja-1][k] + .5*ez_inc[ja];
hx[i][jb][k] = hx[i][jb][k] - .5*ez_inc[jb];

} }

/* Calculate the Hy field */
for (i=0; i < IE-1; i++) {

for (j=0; j < JE; j++) {
for (k=0; k < KE-1; k++) {

curl_e = (ez[i+1][j][k] - ez[i][j][k]
- ex[i][j][k+1] + ex[i][j][k]) ;

ihy[i][j][k] = ihy[i][j][k] + curl_e ;
hy[i][j][k] = fi3[i]*fk3[k]*hy[i][j][k]
+ fi2[i]*fk3[k]*.5*(curl_e + fj1[j]*ihy[i][j][k]);

} } }

/* Incident Hy */

for (j=ja; j <= jb; j++) {
for (k=ka; k <= kb; k++) {

hy[ia-1][j][k] = hy[ia-1][j][k] - .5*ez_inc[j];
hy[ib][j][k] = hy[ib][j][k] + .5*ez_inc[j];

THREE-DIMENSIONAL SIMULATION 111

} }

/* Calculate the Hz field */

for (i=0; i < IE-1; i++) {
for (j=0; j < JE-1; j++) {

for (k=0; k < KE; k++) {
curl_e = (ex[i][j+1][k] - ex[i][j][k]

- ey[i+1][j][k] + ey[i][j][k]);
ihzl[i][j][k] = ihzl[i][j][k] + curl_e;
hz[i][j][k] = fi3[i]*fj3[j]*hz[i][j][k]

+ fi2[i]*fj2[j]*.5*(curl_e + fk1[k]*ihzl[i][j][k]);
} } }

}
/* ---- End of the main FDTD loop ---- */

/* Write the E field out to a file "Ez" */
fp = fopen("Ez","w");
for (j=0; j < JE; j++) {

for (i=0; i < IE; i++) {
fprintf(fp,"%9.6f ",ez[i][j][kc]);

}
fprintf(fp," \n");

}
fclose(fp);

printf("T = %4.0f \n",T);

/* Calculate the Fouier amplitude and phase of the total field */
for (m=0; m < NFREQS; m++)

{
if(m == 0) fp = fopen("amp1","w");
else if(m == 1) fp = fopen("amp2","w");
else if(m == 2) fp = fopen("amp3","w");
{ printf("%2d %7.2f MHz\n",m,freq[m]*1.e-6);

for (j=ja; j <= jb; j++)
{ if(gaz[ic][j][kc] < 1.00)

{ amp[ic][j] = (1./amp_in[m])
*sqrt(pow(real_pt[m][ic][j],2.) +

pow(imag_pt[m][ic][j],2.));
printf("%2d %9.4f \n",jc-j,amp[ic][j]);
fprintf(fp," %9.4f \n",amp[ic][j]);

}
}

}
fclose(fp);

}
}
}

5
EXAMPLES OF ELECTROMAGNETIC
SIMULATION USING FDTD

This chapter presents three examples of electromagnetic simulation that illustrate
the power and flexibility of the FDTD method. Section 5.1 describes a one-
dimensional simulation of an optical pulse in a nonlinear material similar to
material in a nonlinear optical fiber. Section 5.2 describes the use of the FDTD
method in characterizing a two-dimensional electromagnetic structure. Section 5.3
contains a three-dimensional simulation of an LC loop, and describes how signal-
processing techniques can be used in characterizing the loop.

5.1 NONLINEAR OPTICAL PULSE SIMULATION

As light is also an electromagnetic wave, it can also be simulated by FDTD. Light
waves are at very high frequencies, in the range of terahertz (THz), or 1012 Hz.
At optical frequencies, materials can have both dispersive and nonlinear proper-
ties. The dispersive properties imply that the dielectric properties are frequency
dependent. Because a pulse in the time domain is composed of frequencies over
a certain range, the different frequencies see different dielectric properties, and
therefore, travel at different speeds (1, 2). For this reason, a pulse of light in an
optical fiber cable, for example, will slowly broaden because of the dispersive
nature of the properties of the optical fiber. However, it has been demonstrated
that the nonlinearities of a material can lead to the formation of a soliton, a pulse
that maintains its amplitude and width (3).

Electromagnetic Simulation Using the FDTD Method, Second Edition. Dennis M. Sullivan.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley & Sons, Inc.

113

114 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

In this section, the simulation of a one-dimensional nonlinear optic pulse is
described. The simulation demonstrates the propagation of a soliton. The for-
mulation of the dispersive and nonlinear properties is once again made more
efficient by the use of Z transforms (4).

We start with the normalized Maxwell’s equations:

∂Dx

∂t
= ∂Hy

∂z
, (5.1a)

Dx = ε∞Ex + PL + PNL, (5.1b)

∂Hy

∂t
= ∂Ex

∂z
. (5.1c)

Note that the relationship between the electric field and the flux density in
Eq. (5.1b) contains two additional terms, the linear polarization PL and the non-
linear polarization PNL.
In the frequency domain, the linear polarization is given by

PL(ω) = (εs − ε∞)

1 + 2δn

(
jω
ωL

)
−

(
ω
ωL

)2 E(ω). (5.2)

It is desirable to transform this into the Z domain for implementation into FDTD.
To do so, we first make the following change of variables:

αL = ωL · δL, (5.3a)

βL = ωL

√
1 − δ2

L, (5.3b)

γL = ωL · (εs − ε∞)√
1 − δ2

L

. (5.3c)

Now Eq. (5.2) can be written as

PL(ω) = γLβL

(α2
L + β2

L) + jω2αL − ω2
E(ω). (5.4)

From Table A.1, the Z transform of Eq. (5.4) is

PL(z) = γLe−αL·	t · sin(βL · 	t)z−1

1 − 2e−αL·	t · cos(βL · 	t)z−1 + e−2αL·	tz−2
	t · E(z). (5.5)

We define a new variable SL(z) related to PL(z):

PL(z) = z−1SL(z).

NONLINEAR OPTICAL PULSE SIMULATION 115

The term SL(z) is calculated by

SL(z) = c1 · z−1SL(z) − c2 · z−2SL(z) + c3E(z), (5.6a)

where

c1 = 2 · e−αL·	t · cos(βL · 	t); (5.6b)

c2 = e−2αL·	t ; (5.6c)

c3 = γL · 	t · e−αL·	t · sin(βL · 	t). (5.6d)

In the sampled time domain, the linear polarization is calculated by

P n
L = Sn−1

L (5.7a)

Sn
L = c1 · Sn−1

L − c2 · Sn−2
L + c3E

n. (5.7b)

The nonlinear polarization is separated into two parts:

PNL = PK + PR. (5.8)

The part PK is known as the Kerr effect, given in the time domain by

PK(t) = χ(3)αE3(t). (5.9a)

The part PR is the Raman scattering, which in the time domain is given by

PR(t) = χ(3)(1 − α)E(t) ·
∫ t

0
gR(t − τ)E2(τ)dτ. (5.9b)

We will start with the Raman scattering. In the frequency domain, gR in the
integral in Eq. (5.9b) is

gR(ω) = 1

1 + 2δNL

(
jω

ωNL

)
−

(
ω

ωNL

)2 . (5.10)

We define an integral

IR(t) = χ(3)(1 − α)

∫ t

0
gR(t − τ)E2(τ)dτ, (5.11)

116 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

which is the same as Eq. (5.9b), except that the term E(t) in front of the integral
has been omitted. We will now make a change of variables similar to that in
Eq. (5.3):

αR = ωNL · δNL, (5.12a)

βR = ωNL ·
√

1 − δ2
NL, (5.12b)

γNL = ωNL · χ(3) · (1 − α)√
1 − δ2

NL

. (5.12c)

Since gR is also a second-order Lorentz term, the Z transform is similar to
Eq. (5.4), so the Z transform of Eq. (5.11) is

IR(z) = γRe−αR·	t · sin(βR · 	t) · z−1

1 − 2e−αR·	t · cos(βR · 	t)z−1 + e−2αR·	tz−2
· 	t · E2(z). (5.13)

At this point, the E2(z) term requires some comment. Z transform theory does
not, in general, cover nonlinear processes. However, if we consider E2(t) to
be a time domain function, there is nothing to stop us from considering the Z
transform of this function.

The z−1 in the numerator of Eq. (5.13) means we would have to store an
E2(z) term to make the calculation; instead, we prefer to calculate SR(z), which
is related to IR(z) by

IR(z) = z−1SR(z).

SR(z) is calculated similarly to SL(z):

SR(z) = d1 · z−1SR(z) − c2 · z−2SR(z) + c3E
2(z), (5.14)

where

d1 = 2 · e−αR·	t · cos(βR · 	t); (5.15a)

d2 = e−2αR·	t ; (5.15b)

d3 = γR · 	t · e−αR·	t · sin(βR · 	t). (5.15c)

The polarization due to the Raman scattering is calculated from

P n
R = En · In

R = En · Sn−1
R (5.16a)

Sn
R = d1 · Sn−1

R − d2 · Sn−2
R + d3(E

2)n. (5.16b)

NONLINEAR OPTICAL PULSE SIMULATION 117

The Kerr effect will require a somewhat different approach. Start by taking a
first-order Taylor series expansion of E3(t) around the point tn−1 and evaluating
it at tn:

E3(tn)
∼= E3(tn−1) + d

dt
(E3(tn−1))(tn − tn−1)

∼= E3(tn−1) + 3 · E2(tn−1)

[
E

(
tn

) − E(tn−1)

tn − tn−1

]
(tn − tn−1)

= E3(tn−1) + 3E2(tn−1)[E(tn) − E(tn−1)]

= 3E2(tn−1) · E(tn) − 2E3(tn−1).

The times tn−1 and tn correspond to times in the FDTD simulation, so we write

(En)3 = 3(En−1)2 · En − 2(En−1)3. (5.17)

Substituting this into Eq. (5.9a), we obtain the Kerr polarization in the sampled
time domain:

P n
K = χ(3)α[3(En−1)2 · En − 2(En−1)3]. (5.18)

Now that we have all the polarization terms in a form suitable for FDTD, we
can look back to Eq. (5.1b) and develop the calculation of Ex from Dx :

ε∞En
x = Dn

x − P n
L − P n

R − P n
K

= Dn
x − Sn−1

L − Sn−1
R En

x − χ(3)α[3(En−1
x)2 · En

x − 2(En−1
x)3].

Collect all the En
x terms on the left side:

ε∞En
x + Sn−1

R En
x + χ(3)α · 3(En−1

x)2 · En
x = Dn

x − Sn−1
L + χ(3)α · 2(En−1

x)3.

Ex is calculated from Dx by the following equations:

En
x = Dn

x − Sn−1
L + χ(3)α · 2(En−1

x)3

ε∞ + Sn−1
R + χ(3)α · 3(En−1

x)2
, (5.19a)

Sn
L = c1 · Sn−1

L − c2 · Sn−2
L + c3E

n, (5.19b)

Sn
R = d1 · Sn−1

R − d2 · Sn−2
R + d3(E

2)n. (5.19c)

The accuracy of Eq. (5.19) was verified by an analytic formulation of the reflec-
tion coefficient from a nonlinear material (4).

Figure 5.1 shows the simulation of a pulse in a nonlinear disper-
sive material. The properties of this material are as follows: ε∞ = 2.25,
εs = 5.25, ωL = 2π × 63.7 THz, δL = 0.00025, χ(3) = 0.07, α = 0.7,

118 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

T = 0.10 ps
E

x
(Z

)
(V

/m
)

(a)

(b)

(c)

0

−0.1

0.1

20 40 60 80 100 120 140 160 180 200

T = 0.67 ps

E
x
(Z

)
(V

/m
)

0

−0.1

0.1

20 40 60 80 100 120 140 160 180 200

T = 1.17 ps

E
x
(Z

)
(V

/m
)

0

−0.1

0.1

20 40 60 80 100
um

120 140 160 180 200

Figure 5.1 Propagation of a pulse in a nonlinear, dispersive medium. The magnitude
of the pulse is not great enough to engage the nonlinearity. As the pulse propagates,
dispersion causes the pulse to broaden. (a) T = 0.10, (b) T = 0.67, and (c) T = 1.17 ps.

ωNL = 2π × 14.8 THz, and δNL = 0.336. The pulse begins with a maximum
amplitude of 0.1 V/m. This is not strong enough to adequately engage the
nonlinear terms. Therefore, the material is predominantly dispersive, and we see
the pulse spread as it propagates through the medium.

Figure 5.2a is a display of the time domain propagation of the pulse of Fig. 5.1
as it passes three different points in the problem space. It is instructive to look
at the Fourier transforms of these waveforms, as shown in Fig. 5.2b. Although
the time domain pulses at 1, 60, and 120 μm look very different, their Fourier
magnitudes appear identical. It is the changes in the phase caused by the linear
polarization that have led to the dispersion, or spreading, of the pulse shape.

Figure 5.3 shows the results of a simulation similar to the one in Fig. 5.1,
except that the amplitude of the pulse begins at 1 V/m. This amplitude is strong
enough to engage the nonlinearity. The result is the formation of a soliton. Notice
that the waveforms at 0.67 and 1.17 ps have about the same shape and amplitude.
Notice also a second pulse of smaller amplitude that has moved ahead of the
main pulse. This is referred to as the daughter soliton, and is also characteristic
of soliton propagation (3).

Figure 5.4a shows the time domain waveforms and the corresponding Fourier
magnitudes, similar to Eq. (5.2). In Fig. 5.4b, we see that as the waveform
propagates, there is a “redshift” in the Fourier spectrum as well as a sharpening
of the spectrum, characteristic of soliton propagation (3).

NONLINEAR OPTICAL PULSE SIMULATION 119

0.1

(i) (ii) (iii)

0

0.5

0
100 125 137 150

THz

(a)

(b)

0 0.5

E
x
(t

)
(V

/m
)

|E
x(

f)
|

at 1 um

ps
1

−0.1

0.1

0

0 0.5

at 60 um

ps
1

−0.1

0.1

0

0 0.5

at 120 um

ps
1

−0.1

1 um
60 um
120 um

Figure 5.2 (a) The time domain Ex field at (i) 1, (ii) 60, and (iii) 120 μm. (b) The
magnitude of the Fourier transforms of the time domain waveforms.

T = 0.10 ps

E
x
(Z

)
(V

/m
)

0

(a)

(b)

(c)

−1

1

20 40 60 80 100 120 140 160 180 200

T = 0.67 ps

E
x
(Z

)
(V

/m
)

0

−1

1

20 40 60 80 100 120 140 160 180 200

T = 1.17 ps

E
x
(Z

)
(V

/m
)

0

−1

1

20 40 60 80

μm

100 120 140 160 180 200

Figure 5.3 Propagation of a pulse in a nonlinear, dispersive medium. In contrast to
Fig. 5.1, the magnitude of the pulse is great enough to engage the nonlinearity. The
nonlinearity causes the formation of a soliton, which maintains its amplitude and width.
Notice the daughter soliton that precedes the main pulse. (a) T = 0.10, (b) T = 0.67, and
(c) T = 1.17 ps.

120 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

(a)

0.1
(i) (ii) (iii)

0

0 0.5

E
x(

t)
 (

V
/m

) at 1 μm

ps
1

−0.1

0.1

0

0 0.5

at 60 μm

ps
1

−0.1

0.1

0

0 0.5

at 120 μm

ps
1

−0.1

5

0
100 125 137 150

THz

(b)

|E
x(

f)
| 1 um

60 um
120 um

Figure 5.4 (a) The time domain E fields at (i) 1, (ii) 60, and (iii) 120 μm. (b) The
magnitudes of the Fourier transforms show a shift caused by the nonlinearity.

This section has presented one-dimensional FDTD simulation of a pulse
in nonlinear, dispersive media. This formulation has been used in the
three-dimensional simulation of a nonlinear optical fiber (5).

PROBLEM SET 5.1

1. Using the program fd1d_nlp.c, find the smallest amplitude that will induce
soliton propagation within the 200-μm problem space.

5.2 FINDING THE EIGENFUNCTIONS OF A TWO-DIMENSIONAL EM
CAVITY

Eigenfunctions and eigenvalues often play a significant role in many branches
of engineering and science. For instance, consider the two-dimensional cavity
in Fig. 5.5. It has metal walls and is filled with air. We might be interested in
knowing which electric fields will oscillate in this cavity. If the dimensions of
the cavity are a in the x direction and b in the y direction, one such group of
fields is given by (6)

Emn
z (x, y) = 1√

ab
sin

(πmx

a

)
sin

(πny

b

)
, (5.20)

FINDING THE EIGENFUNCTIONS OF A TWO-DIMENSIONAL EM CAVITY 121

Metal walls

y
(6

 c
m

)

x (10 cm)

er = 1.

Figure 5.5 A two-dimensional air-filled cavity with metal walls.

where m and n are integers. The resulting Emn
z will oscillate in time at a frequency

given by

fmn = c0

2

√(m

a

)2
+

(n

b

)2
, (5.21)

where c0 is the speed of light in vacuum.
We regard the Emn

z of Eq. (5.20) to be the eigenfunctions, and the frequencies
fmn of Eq. (5.21) to be the eigenfrequencies. (We use the term eigenfrequency
to be a little more specific than eigenvalue.) We can write each eigenfunction
explicitly as a function of space and time:

Emn
z (x, y, t) = 1√

ab
sin

(πmx

a

)
sin

(πny

b

)
ej2πfmn t .

The eigenfunctions of Eq. (5.20) have another very attractive property: they are
orthonormal. This means the following:

∫ a

0

∫ b

0
Emn

z (x, y)Elk
z (x, y)dydx =

{
1 if m = l and n = k,

0 otherwise.

The orthonormal property means that any function inside the cavity can be written
as a superposition of these orthonormal functions.

Ez(x, y) =
∑
m,n

dmnEmn
z (x, y). (5.22)

The dmn are determined by taking the inner product of the function with the
eigenfunctions.

dmn =
∫ a

0

∫ b

0
Ez(x, y)Emn

z (x, y)dydx. (5.23)

122 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

10 cm

4 cm

3 cm

4
cm

6
cm

er = 2.er = 1.

er = 3.

Figure 5.6 A two-dimensional cavity with metal walls, filled with two different dielectric
materials and air.

This process of describing a function in terms of its eigenfunctions plays a
significant role in engineering and science.

The problem comes when we do not know the eigenfunctions and correspond-
ing eigenfrequencies. The determination of the eigenfunctions for Fig. 5.5 was
quite straightforward. However, waveguides can be filled with dielectric materi-
als to achieve various properties (7). Then the calculation is not so easy. In this
section, a method is described to determine the eigenfunctions and eigenfrequen-
cies of a two-dimensional cavity, even when the inside is fairly complicated. We
use as an example the cavity described in Fig. 5.6. This cavity is of no known
practical use, but presents a challenging structure.

We start by initializing a narrow Gaussian field E0
z in the cavity centered at

the points x0 = 6 cm, y0 = 2 cm, as shown in Fig. 5.7. We can write E0
z as an

expansion of the orthonormal eigenfunctions, even if we do not yet know what
the eigenfunctions are.

E0
z (x, y, t) =

∑
n

dnφn(x, y)ej2πfnt . (5.24)

(For simplicity, the eigenfunctions are just labeled with one integer, n.)
First we look for the eigenfrequencies fn. We start the FDTD simulation,

and the Ez field expands out and interacts with the dielectric material and the
metal walls, as shown in Fig. 5.7. However, while the simulation is running, we
monitor the time domain Ez field at x0, y0, which mathematically will have the
following form

E0
z (x0, y0, t) =

∑
n

dnφn(x0, y0)e
j2πfnt .

FINDING THE EIGENFUNCTIONS OF A TWO-DIMENSIONAL EM CAVITY 123

5
10

2
4

6

0

0.5

–0.5

–0.5

–0.5

1

X (cm)Y (cm)

T = 0.12 ps

E
z (

V
/m

)

X (cm)

Y
 (

cm
)

2 4 6 8 10

1

2

3

4

5

6

5
10

2
4

6

0

0.5

1

X (cm)Y (cm)

T = 0.00 ps
E

z (
V

/m
)

X (cm)

Y
 (

cm
)

2 4 6 8 10

1

2

3

4

5

6

5
10

2
4

6

0

0.5

1

X (cm)Y (cm)

T = 0.06 ps

E
z (

V
/m

)

X (cm)

Y
 (

cm
)

2 4 6 8 10

1

2

3

4

5

6

5
10

2
4

6

0

0.5

1

X (cm)Y (cm)

T = 0.23 ps

E
z (

V
/m

)

X (cm)

Y
 (

cm
)

2 4 6 8 10

1

2

3

4

5

6

–0.5

Figure 5.7 At T = 0, a pulse is initialized in the problem space, modeling the two-
dimensional cavity of Fig. 5.6. As time progresses, the waveform spreads and interacts
with the dielectric material and the metal walls. While this is happening, the time domain
Ez at the origin of the pulse at x0 = 6 cm, y0 = 2 cm are saved.

124 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

0.2

0

T
im

e
D

om
ai

n

–0.2
0 5 10 15

(a)
20 25 30

ps

(b)

0.2

0

W
in

do
w

ed

–0.2
0 5 10 15 20 25 30

GHz

(c)

1.5

0.5

1

F
re

qu
en

cy
 D

om
ai

n

0
1 2.42 3.05 4.87

Figure 5.8 (a) The time domain data collected at x0, y0, (b) the same data multiplied
by the Hanning window, and (c) the Fourier transform of the data from (b).

If we take the Fourier transform of this function, we obtain

E0
z (x0, y0, f) =

∑
n

dnφn(x0, y0)δ(f − fn),

that is, a group of delta functions in the frequency domain that reveal the eigen-
frequencies! After 20,000 time steps, we obtain the time domain function shown
in Fig. 5.8a. This stored data is multiplied by the Hanning window,

h(n) = 1

2
− 1

2
cos

(
2πn

N

)
,

where N is the total number of points, in this case, 20,000. The process of
windowing removes artifacts when the Fourier transform is taken (8) (Fig. 5.8b).
We take the Fourier transform of the windowed data by using the fast Fourier
transform. The results are shown in Fig. 5.8c. We assume that the spikes at 2.43,

FINDING THE EIGENFUNCTIONS OF A TWO-DIMENSIONAL EM CAVITY 125

3.05, and 4.87 GHz correspond to eigenfrequencies. (It could be that the smaller
peaks are also eigenfrequencies, but we will just use the biggest peaks for now.)

We now look at the first eigenfrequency f1 to find the corresponding eigen-
function. Go back to our original function, Eq. (5.24) and take the Fourier
Transform at the frequency, f1:

F {E0
z (x, y, t)}f =f1

=
∫ ∞

−∞

(∑
n

dnφn (x, y) ej2πfnt

)
e−jf1tdt

=
∑

n

dnφn(x, y)

∫ ∞

−∞
ej2π(fn−fi)tdt = d1φ1(x, y). (5.25)

This last step results from the fact that

∫ ∞

−∞
ej2π(fn−fi)tdt =

{
1 for n = i,

0 otherwise.

Equation (5.25) says that in order to determine φ1(x, y) we have to take a Fourier
transform at every point, x,y, and then evaluate it at one frequency. That seems
like a prohibitive amount of computation. First, we are not going to integrate
from t = −∞, but begin at t = 0, because that is when an FDTD simulation
begins. Second, we are not going to integrate to t = ∞, but to a time Tmax that
is adequate. Finally, we are going to approximate the integral as a summation:

F {E0
z (x, y, t)}f =f1

=
∫ Tmax

0
E0

z (x, y, t)e−j2πf1tdt

=
Mmax∑
m=1

E0
z (x, y, m × 	t)e−j2πf1m×	t . (5.26)

But we have done this before. In Section 2.2, we showed that the discrete Fourier
transform at one frequency can be determined by two additional lines of code in
Eq. (2.14). Using this method, we can calculate the eigenfunctions corresponding
to the three eigenfrequencies of Fig. 5.8c. These are shown in Fig. 5.9.

We can easily verify that these are indeed eigenfunctions of the two-
dimensional problem space. We can use one of the eigenfunctions to initialize
an FDTD simulation. If it remains stable and returns to its starting position in a
time period dictated by

Tm = 1

fm

,

then it is an eigenfunction. In Fig. 5.10, the FDTD program has been initialized
with Ez values corresponding to the eigenfunction at f3 = 4.87 THz. As the

126 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

0
5

10

0

5

0

0.2

0.4

0.6

0.8

(a) (b)

(c)

X (cm)Y (cm)

f = 2.42 GHz

0
5

10

0

5

0

0.5

–0.5

1

X (cm)Y (cm)

f = 3.05 GHz

0
5

10

0

5

0

1

–1

2

X (cm)Y (cm)

f = 4.87 GHz

Figure 5.9 The eigenfunctions corresponding to the eigenfrequencies (f) at (a) 2.42, (b)
3.05, and (c) 4.87 GHz.

simulation proceeds, the Ez field oscillates, but by 0.2 ps, the time predicted by

T3 = 1

4.87 × 1012 s−1
= 0.205 × 1012 s,

the simulation has returned to its original shape.
The process described in this section has been used to find the eigenfrequen-

cies and corresponding eigenfunctions of the Schrödinger equation in nanoscale
quantum structures (9, 10). The same method can be used for three-dimensional
structures (11). A systematic method of searching for the eigenfunctions and
eigenfrequencies has also been described (12).

PROBLEM SET 5.2

1. Use the program fd2d_eigen.c to determine if one of the smaller peaks in
Fig. 5.8c is also an eigenfunction.

2. Repeat the simulation of Fig. 5.7, but start the Gaussian pulse at a different
point in the problem space, x0 = 4 cm, y0 = 4 cm. Do you find different
eigenfrequencies? If so, explain why.

SIMULATION OF RF COILS 127

5
10

2
4

6

0

1

2

(a)

(c)

(b)

(d)

X (cm)Y (cm)

T = 0.00 ps
E

z (
V

/m
)

5
10

2
4

6

0

1

2

X (cm)Y (cm)

T = 0.07 ps

E
z (

V
/m

)

5
10

2
4

6

0

–1

1

2

X (cm)Y (cm)

T = 0.20 ps

E
z (

V
/m

)

5
10

2
4

6

0

1

2

X (cm)Y (cm)

T = 0.12 ps

E
z (

V
/m

)

–1

–1 –1

Figure 5.10 In the same FDTD program used to calculate the eigenfrequencies and
eigenfunctions, the Ez field is initialized using the eigenfunction corresponding to the
eigenfrequency at 4.87 THz. As the simulation proceeds in time, the Ez field oscillates,
but it returns to its original state in the time dictated by the eigenfrequency. (a) T = 0,
(b) T = 0.07, (c) T = 0.12, and (d) T = 0.20 ps.

5.3 SIMULATION OF RF COILS

In this section, the FDTD simulation of a radio frequency (RF) coil of the
type shown in Fig. 5.11 is described. These coils are the type used in magnetic
resonance imaging (MRI) (13). We will need to model wires with diameters
much less than the size of a cell. For this, we use the thin-rod approximation
(TRA) (14). It will be shown that FDTD can accurately model the inductance
of a metal loop. Furthermore, capacitors in the loop can be modeled using the
FDTD method that has already been described.

The basic FDTD equations remain the same as those previously described
for three-dimensional simulation in Chapter 4. We will not be using frequency-
dependent materials, so in a material with dielectric constant εr and conductivity
σ , Ez is calculated from Dz as in Eq. (2.8):

En
z = Dn

z − In−1
z

εr + σ ·	t
ε0

(5.27a)

In
z = In−1

z + σ · 	t

ε0
. (5.27b)

128 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

C

C

C C

Figure 5.11 An LC resonant loop of the type used in MRI. The inductance is provided
by the wires.

x

Hy (i + 1/2, j, k + 1/2)

Hy (i + 1/2, j, k – 1/2)

Ex (i + 1/2, j, k) Hz (i + 1/2, j + 1/2, k)Hz (i + 1/2, j – 1/2, k)

Figure 5.12 The calculation of the current through a wire using Ampere’s law as approx-
imated by FDTD in Eq. (5.28).

FDTD only models the E and H fields. Therefore, current flowing through a
wire is modeled indirectly through Ampere’s law:∮

H · dl = I .

In FDTD, the current through a wire in the x direction is simulated by

Ix = 	x ·
[

Hz

(
i + 1

2 , j + 1
2 , k

) − Hz

(
i + 1

2 , j − 1
2 , k

)
−Hy

(
i + 1

2 , j, k + 1
2

) + Hy

(
i + 1

2 , j, k − 1
2

)] . (5.28)

This is illustrated in Fig. 5.12.

SIMULATION OF RF COILS 129

Ey (i, j + 1/2, k)

Ex (i + 1/2, j + 1, k)

Ey (i + 1, j + 1/2, k)

Hz (i + 1/2, j + 1/2, k)

Rwire

Figure 5.13 The calculation of Hz is modified by the thin-rod approximation (TRA)
when the field is in close proximity to a wire.

This by itself does not account for different wire diameters. To simulate wires
of different diameters, we employ the TRA (14). This is implemented by an
alteration to the calculation of the H fields in close proximity to the wire, as
illustrated in Fig. 5.13. For instance, the corresponding equation for Hz is

Hn+1
z

(
i + 1

2
, j + 1

2
, k

)
= Hn

z

(
i + 1

2
, j + 1

2
, k

)

+
[
−E

n+1/2
y

(
i + 1, j + 1

2 , k
) + E

n+1/2
y

(
i, j + 1

2 , k
)

−www · E
n+1/2
x

(
i + 1

2 , j + 1, k
)

]
,

(5.29)

and the factor www is calculated by the TRA

www =
(π

2

) 1

ln

(
1

Rwire

) . (5.30)

Rwire is the radius of the wire, given as a fraction of the cell size. The details are
available in the article by Nadobny et al. (14).

Voltage in FDTD is simulated by the E field of a cell times the length of the
cell

V = Ex	x . (5.31)

In an LC loop, the capacitance is provided by individual capacitors, but the
inductance is provided by the wire. Therefore, in order to evaluate the capability

130 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

36
 c

m

36 cm

I

Vin = E x• Δ x

Figure 5.14 Diagram of an inductive rectangular loop. The input Vin is generated by an
Ex field across one cell. The current is determined by Eq. (5.28) and Eq. (5.29).

of FDTD to correctly model the inductance of the wire, we begin with the
simulation of a square wire loop without capacitors, as shown in Fig. 5.14.

The FDTD cells are 1 cm3. One side of the 36 cm × 36 cm loop then requires
36 cells. The problem space in the plane of the loop is 60 × 60 cells. This allows
room for a seven-cell PML on each boundary of the problem space. The problem
space in the direction perpendicular to the plane is 40 cells. The input to the loop,
Vin in Fig. 5.14, is a narrow Gaussian pulse. Figure 5.15 shows the Hz fields in
the plane of the loop at four different times after 175, 245, 305, and 350 time
steps. The time steps are 0.0167 ns. As Hz is one of the fields perpendicular to
the wire, it may be regarded as an indication of the current flow.

The inductance is determined through the standard relationship between cur-
rent and voltage of an inductor:

I (t) = 1

L

∫ t

0
v(τ)dτ . (5.32)

The current is calculated by Eq. (5.28). The integral of the input voltage is very
easily calculated in FDTD by

V n
int = V n−1

int + 	t · V n
in. (5.33)

L can be calculated after a sufficient number of time steps n:

L = 377
V n

int

In
. (5.34)

The impedance of free space (377) is necessary because we are using the nor-
malized units.

SIMULATION OF RF COILS 131

20
40

60
20

40
60

0

0.05

(a)

(c) (d)

(b)

–0.05

Y (cm)

Hz 1.7 ns

X (cm) 20
40

60
20

40
60

0

0.05

Y (cm)

Hz 2.5 ns

X (cm)

20
40

60
20

40
60

0

0.05

Y (cm)

Hz 3.2 ns

X (cm) 20
40

60
20

40
60

0

0.1

Y (cm)

Hz 3.9 ns

X (cm)

–0.05

–0.05
–0.1

Figure 5.15 The Hz field in the plane of the loop at (a) 1.7, (b) 2.5, (c) 3.2, and (d)
3.9 ns after the input voltage has been applied.

As an example, we simulate the 36 cm × 36 cm loop of Fig. 5.14 having
circular wires that are 0.01 mm in diameter. Equation (5.30) then gives

www =
(π

2

) 1

ln
(1

0.005

) = 0.2965.

The results are shown in Fig. 5.16. The ringing that appears in the plot of the
current is simply due to the time that it takes the pulse to circle the loop. We
need the final zero frequency, or direct current (dc), I (t) value that results when
the ringing stops. This could potentially take a long time. Instead, we average the
last 1000 values of I (t) weighted by the Hanning window, as shown in Fig. 5.17.
After 2000 time steps, In = 0.0615 mA and V n

int = 0.0005 V − μs, and so from
Eq. (5.34), L = 3.07 μH.

Fortunately, there is an analytic formula available to check the accuracy of
this calculation (15). For a one-turn square loop with sides of length a and wire
of diameter d, the inductance is given by

Lana = 0.4

[
2d · ln

(
4a2

d

)
− 2d ln(1 +

√
2)d

]
+ 0.4(2

√
2d + a − 4d). (5.35)

132 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

0

0 0.01

diam = 0.0100 mm
Lana = 3.00 uH

LFDTD = 3.07 uH

0.030.02

0
0 0.01 0.02

μs
0.03

0.1

0.2

0.3

0.5

V
in

(t
)

(b)

(a)

I(
t)

1

Figure 5.16 Simulation of the inductive loop illustrated in Fig. 5.14. The Gaussian
voltage plot that is used as the excitation of the loop (a) and the time domain current as
calculated by Eq. (5.28) (b).

0.1

0 500

Time steps

1000

0.0615I(
t)

Figure 5.17 The last 1000 time steps of I (t) are weighted by the Hanning window and
averaged to get the dc value, rather than wait for all the ringing to stop.

Figure 5.18 shows a comparison of the FDTD-calculated values of inductance for
the single-turn rectangular loop of Fig. 5.14 and the analytic values of Eq. (5.35).
The comparison is very good over several orders of magnitude.

We now move to the simulation of a resonant LC loop, as illustrated in
Fig. 5.11. The first task is to add the simulation of the four capacitors. The
addition of lumped elements to an FDTD simulation is not new and there are
different approaches (16–18). A straightforward approach is used here. A capac-
itor is added to an FDTD simulation by assuming that one cell in the FDTD
grid is a parallel-plate capacitor filled with a material with the relative dielectric

SIMULATION OF RF COILS 133

Analytic
FDTD

4

3

L
(u

H
)

2

10–4 10–3 10–2

Wire radius (mm)

10–1 100

Figure 5.18 Comparison of the FDTD-calculated values of inductance and the analytic
values calculated via Eq. (5.39).

constant εr. The capacitance is given by

C = εrε0
Area

Distance
= εrε0

	x2

	x
= εrε0	x . (5.36)

Therefore, to specify a capacitance C1 at an FDTD cell, we set the relative
dielectric constant to

εr = C1

ε0	x
,

and calculate the values of gax in Eq. (2.10) accordingly. In actuality, Fig. 5.11
is an LC circuit with four capacitors in series. Therefore, if a total capacitance
of CT is desired, C1 must be set to C1 = 4CT.

Recall that the goal was to simulate a loop that was resonant at one frequency,
say f0. We know the inductance of the loop for a given wire radius, at least before
we added the capacitors. So a good place to begin is

CT = 1

L(2πf0)
2
. (5.37)

We begin with a wire diameter of 0.01 mm whose inductance we have calcu-
lated as 3.07 μH. If a resonant frequency of f0 = 100 MHz is desired, then a
capacitance of CT = 0.844 pF is required. In fact, the resulting resonance is at
about f0 = 95 MHz. This should not be too surprising. We did nothing to allow
for the fact that out of the 36 cells that make up each arm of the loop, one has
been converted to capacitors. This is bound to have an effect on our original
calculation of inductance. Furthermore, our estimation of the capacitance given
in Eq. (5.37) must be regarded as a first-order approximation. It was found that
CT = 0.75 pF results in a resonant frequency of 100 MHz, as shown in Fig. 5.19.
The Hz field at four different times during the simulation is shown in Fig. 5.20.

134 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

0

0.2

0

0 0.05 0.1 0.15

μS

0.2 0.25

–0.2

1

0.5

0
0 50 100

MHz

150

0 0.05 0.1 0.15 0.2 0.25

0.5V
in

(c)

(b)

(a)

I(
t)

|I
(f

)|

1

diam = 0.010 mm
c = 0.750 pf

Figure 5.19 The impulse response of an LC coil with L = 3 μH and C = 0.75 pF. The
Gaussian excitation voltage (a), the time domain plot of the current (b), and the Fourier
transform of the current, showing that the resonance is around 100 MHz (c).

The last parameter to be calculated is the resistance of the loop. This is neces-
sary to calculate the quality factor Q of the loop. This will be determined simply
by observing the attenuation of the current in the loop, the I (t) plot in Fig. 5.19.
In Fig. 5.21, the positive peaks of the current are shown over a limited range
to better observe the attenuation. The amplitude decreases from 0.16 to 0.1 A
over 0.2 μs. Assuming that the magnitude of the current attenuates as

|I (t)| = e−αt ,

SIMULATION OF RF COILS 135

20
40

60
20

40
60

0

0.1

(a) (b)

(d)(c)

–0.1

X (cm)

Hz 2.5 ns

Y (cm)

20
40

60
20

40
60

0

0.1

X (cm)

Hz 4.2 ns

Y (cm)

20
40

60
20

40
60

0

0.1

X (cm)

Hz 5.5 ns

Y (cm)

20
40

60
20

40
60

0

0.1

X (cm)

Hz 11.5 ns

Y (cm)

–0.1

–0.1–0.1

Figure 5.20 The Hz field in the plane of the LC loop at (a) 2.5, (b) 4.2, (c) 5.5, and
(d) 11.3 ns after the input voltage has been applied.

0.16
alpha = 2.35 × 106 s–1

0.1I(
t)

0
0.05 0.15

μs

0.25

Figure 5.21 The attenuation constant α is determined by observing the attenuation over
the given time period using Eq. (5.38).

the attenuation constant α can be determined by

α = −
ln

(
0.16

0.1

)
0.2 μs

= 0.47

0.2 μs
= 2.35 × 106s−1. (5.38)

136 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

In a series RLC circuit (19),

R = 2αL = 2(2.35 × 106s−1)(3.07 × 10−6H) = 14.4 �.

From this, the Q of the circuit is determined by

Q = 1

R

√
L

C
= 1

14.4

√
3.07 × 10−6

0.75 × 10−12 = 140.3. (5.39)

Remember that the characteristics of the LC loop were determined for free
space. It is very likely that resonant LC loops like the one shown in Fig. 5.11
will be in close proximity to a human body (13). The close proximity of a body
will have a significant influence on the characteristics of the loop. In a previous
paper by Sullivan et al. (20), the effects of the body were easily modeled into the
FDTD simulation to demonstrate the effects on the characteristics of the loop.
The energy deposition in the body due to the loop was also simulated. It has
been demonstrated in the past that FDTD can be used to accurately model an
electromagnetic source of energy and the resulting energy deposition (21). Even
models of specific patients can be developed (22). This is particularly useful in
hyperthermia cancer therapy simulation (23).

PROBLEM SET 5.3

1. Using the program fd3d_LCloop.f, add a dielectric material with the properties
εr = 30, σ = 3, a distance of 5 cm from the plane of the loop. Using the same
wire diameter and the same values of capacitance as in the given example,
repeat the simulation to see if the dielectric material has caused a shift in the
resonant frequency. Tune the value of C to return the resonant frequency to
100 MHz. Has the Q value changed significantly?

REFERENCES

1. R. M. Joseph, S. C. Hagness, and A. Taflove, Direct time integration of Maxwell’s
equations in linear dispersive media with absorption of scattering and propagation of
femtosecond electromagnetic pulses, Optic. Lett., vol. 17, 1991, pp. 1412–1414.

2. P. M. Goorjian and A. Talfove, Direct time integration of Maxwell’s equations in non-
linear dispersive media with absorption of scattering and propagation of femtosecond
electromagnetic pulses, Optic. Lett., vol. 17, 1992, pp. 180–181.

3. P. M. Goorjian, A. Taflove, R. M. Joseph, and S. C. Hagness, Computational modeling
of femtosecond optical solitons from Maxwell’s equations, IEEE J. Quant. Electron.,
vol. 28, 1992, pp. 2415–2422.

4. D. M. Sullivan, Nonlinear FDTD formulations using Z transforms, IEEE Trans.
Microw. Theor. Tech., vol. 43, March 1995, pp. 676–682.

REFERENCES 137

5. D. M. Sullivan, J. Jiu, and M. Kuzyk, Three-dimensional optical pulse simulation
using the FDTD method, IEEE Trans. Microw. Theor. Tech., vol. 48, 2000, pp.
1127–1133.

6. D. K. Cheng, Fields and Wave Electromagnetics , Menlow Park, CA: Addison-Wesley,
1992.

7. R. E. Collin, Field Theory of Guided Waves , New York, NY: IEEE Press, 1991.

8. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing , Englewood Cliffs,
NJ: Prentice Hall, 1973.

9. D. M. Sullivan and D. S. Citrin, Determination of the eigenfunctions of arbitrary
nanostructures using time domain simulation, J. Appl. Phys., vol. 91, 2002, p. 3219.

10. D. M. Sullivan, Quantum Mechanics for Electrical Engineers , New York, NY: IEEE
Press, 2012.

11. D. M. Sullivan and D. S. Citrin, Determining quantum eigenfunctions in three-
dimensional nanoscale structures, J. Appl. Phys., vol. 97, 2005, p. 104305.

12. D. M. Sullivan and D. S. Citrin, Determining a complete three-dimensional set of
quantum eigenfunctions for nanoscale structure analysis, J. Appl. Phys., vol. 98, 2005,
p. 084311.

13. J. Juanming, Electromagnetic Analysis and Design in Magnetic Resonance Imaging ,
Boca Raton, FL: CRC Press, 1999.

14. J. Nadobny, R. Pontalti, D. M. Sullivan, W. Wlodarczk, A. Vaccari, P. Deuflhard, and
P. Wust, A thin-rod approximation for the improved modeling of bare and insulated
cylindrical antennas using the FDTD method, IEEE Trans. Antenn. Propag., vol. 51,
August 2003, pp. 1780–1796.

15. F. E. Terman, Radio Engineers’ Handbook , 1st Edition, London: McGraw-Hill,
September 1950.

16. W. Sui, D. A. Christiansen, and D. H. Durney, Extending the two-dimensional FDTD
method to hybrid electromagnetic systems with active and passive lumped elements,
IEEE Trans. Microw. Theor. Tech., vol. 40, April 1992, pp. 724–730.

17. J. A. Pereda, F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, A new algo-
rithm for the incorporation of arbitrary linear lumped networks into FDTD simulators,
IEEE Trans. Microw. Theor. Tech., vol. 47, June 1999, pp. 943–949.

18. J. Lee, J. Lee, and H. Jung, Linear lumped loads in the FDTD method using piecewise
linear recursive convolution method, IEEE Microw. Wireless Compon. Lett., vol. 16,
April 2006, pp. 158–160.

19. C. Paul, Fundamentals of Electric Circuit Analysis , New York, NY: John Wiley &
Sons, Inc., 2001.

20. D. M. Sullivan, P. Wust, and J. Nadobny, Accurate FDTD simulation of RF coils for
MRI using the thin-rod approximation, IEEE Trans. Antenn. Propag., vol. 58, August
2003, pp. 1780–1796.

21. D. M. Sullivan, Three-dimensional computer simulation in deep regional hyperthermia
using the FDTD method, IEEE Trans. Microw. Theor. Tech., vol. 38, June 1990, pp.
943–949.

22. B. J. James and D. M. Sullivan, Direct use of CT scans for hyperthermia treatment
planning, IEEE Trans. Biomed. Eng., vol. 39, February 1992, pp. 845–851.

138 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

23. R. Ben-Yosef and D. M. Sullivan, Peripheral neuropathy and myonecrosis following
hyperthermia and radiation therapy for recurrent prostatic cancer: correlation damage
with predicted SAR pattern, Int. J. Hyperther., vol. 8, 1992, pp. 173–185.

/* FD1D_nlp.c. Nonlinear pulse */

include <math.h>
include <stdlib.h>
include <stdio.h>

#define KE 20000

main ()
{

float dx[KE],ex[KE],hy[KE];
float ga[KE],gb[KE],gc[KE];
float sx[KE],sxm1[KE],sxm2[KE];
float snlx[KE],snlxm1[KE],snlxm2[KE];
int n,m,k,kc,ke,kstart,kend,nsteps;
float ddx,dt,T,epsz,epsilon,sigma;
float t0,spread,Amp,pi,pulse;
FILE *fp, *fopen();
float ex_low_m1,ex_low_m2,ex_high_m1,ex_high_m2;
float tau,chi1,del_exp;
float freq_in;
float mag,pos,ratio;
float eps_inf,eps_s,wL,delta_L,alpha_L,beta_L,gamma_L;
float c1,c2,c3;
float chi_3, alpha_R, beta_R,delta_NL,wNL,gamma_R,alpha;
float d1,d2,d3;
float arg;
int npml,iT;
float etime1[100000],etime2[100000];
float etime3[100000],stime1[100000];

kc = KE/2; /* Center of the space */
pi = 3.14159;
epsz = 8.8e-12;
ddx = 0.01e-6; /* Cell size */
dt = ddx/6e8; /* Time steps */

printf(" %6.4f %10.5e \n",ddx,dt);

for (k=0; k < KE; k++) { /* Initialize to free space */
ga[k] = 1.;
gb[k] = 0.;
gc[k] = 0.;
dx[k] = 0.;
ex[k] = 0.;
hy[k] = 0.;

EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD 139

sx[k] = 0.;
sxm1[k] = 0.;
sxm2[k] = 0.;
snlx[k] = 0.;
snlxm1[k] = 0.;
snlxm2[k] = 0.;

}

/* The Lorentz dispersion */

eps_inf = 2.25;
eps_s = 5.25;
wL = 2*pi*63.7e12;
delta_L = 0.00025;

alpha_L = wL*delta_L;
beta_L = wL*sqrt(1 - pow(delta_L,2.0));
gamma_L = wL*(eps_s - eps_inf)/sqrt(1. - pow(delta_L,2.));

printf("alpha_L = %12.5e beta_L = %12.5e ",alpha_L,beta_L);
printf(" gamma_L = %12.5e \n", gamma_L);

c1 = 2*exp(-alpha_L*dt)*cos(beta_L*dt);
c2 = exp(-2*alpha_L*dt);
c3 = gamma_L*dt*exp(-alpha_L*dt)*sin(beta_L*dt);

printf("c1 = %8.6f c2 = %8.6f c3 = %8.6f \n",c1,c2,c3);

/* Nonlinear polarization */

alpha = .7;
chi_3 = 0.07;

printf("alpha = %6.3f chi_3 = %6.3f ",alpha,chi_3);

/* The Raman Scattering */

delta_NL = 0.336;
wNL = 2*pi*14.8e12;

printf(" delta_NL = %6.3f wNL = %12.5e \n",delta_NL,wNL);

alpha_R = wNL*delta_NL;
beta_R = wNL*sqrt(1. - pow(delta_NL,2.));
gamma_R = wNL*chi_3*(1. - alpha);

printf("alpha_R = %12.5e beta_R = %12.5e ",alpha_R,beta_R);
printf(" gamma_R = %12.5e \n", gamma_R);

140 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

d1 = 2*exp(-alpha_R*dt)*cos(beta_R*dt);
d2 = exp(-2*alpha_R*dt);
d3 = gamma_R*dt*exp(-alpha_R*dt)*sin(beta_R*dt);

printf("d1 = %8.6f d2 = %8.6f d3 = %12.5e \n",d1,d2,d3);

/* These parameters specify the input pulse */

spread = 1000;
t0 = 3000;
Amp = .7;

/* Use Amp = .07 for dispersive, Amp= .7 for NL */
freq_in = 137;
printf("%f6.2 THz\n", freq_in);
freq_in = freq_in*1.e12;
arg = 2*pi*freq_in*dt;
printf("%f \n", arg);

T = 0;
iT = 0;
nsteps = 1;

/* Main part of the program */

while (nsteps > 0) {
printf("nsteps --> ");
scanf("%d", nsteps);
printf("%d \n", nsteps);

for (n=1; n <=nsteps ; n++)
{

T = T + 1;
iT = iT + 1;

/* Calculate the Dx field */
for (k=0; k < KE; k++)
{ dx[k] = dx[k] + 0.5*(hy[k-1] - hy[k]) ; }

/* Initialize with a pulse */

pulse = Amp*cos(arg*(T-t0))*exp(-.5*(pow((T-t0)/spread,2.0)));
dx[1] = eps_inf*pulse; /* Start the pulse at the low end */

/* Calculate Ex from Dx */
pos = 0.;
mag = 0.;
sigma = 0.;
for (k=1; k < KE-1; k++)
{ ex[k] = (dx[k] - sx[k] + chi_3*alpha*2*pow(ex[k],3.))

EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD 141

/(eps_inf + snlx[k] + chi_3*alpha*3*pow(ex[k],2.));
sx[k] = c1*sxm1[k] - c2*sxm2[k] + c3*ex[k];
sxm2[k] = sxm1[k];
sxm1[k] = sx[k];

snlx[k] = d1*snlxm1[k] - d2*snlxm2[k] + d3*pow(ex[k],2.);
snlxm2[k] = snlxm1[k];
snlxm1[k] = snlx[k];

}

etime1[iT] = ex[100];
etime2[iT] = ex[6000];
etime3[iT] = ex[12000];
stime1[iT] = sx[100];

/* Calculate the Hy field */
for (k=0; k < KE-1; k++)
{ hy[k] = hy[k] + .5*(ex[k] - ex[k+1]) ; }

}

/* End of the main loop */

/* Write the E field out to a file "Ex" */
fp = fopen("Ex","w");
for (k=0; k < KE; k++)
{ fprintf(fp," %8.5f \n",ex[k]); }
fclose(fp);

/* Write the Etime1 to a file "Etime1" */
fp = fopen("Etime1","w");
for (n=0; n < iT; n++)
{ fprintf(fp," %8.5f \n",etime1[n]); }
fclose(fp);

/* Write the Etime2 to a file "Etime2" */
fp = fopen("Etime2","w");
for (n=0; n < iT; n++)
{ fprintf(fp," %8.5f \n",etime2[n]); }
fclose(fp);

/* Write the Etime3 to a file "Etime3" */
fp = fopen("Etime3","w");
for (n=0; n < iT; n++)
{ fprintf(fp," %8.5f \n",etime3[n]); }
fclose(fp);

/* Write the time in (ps) to a file "Time" */
fp = fopen("Time","w");
{ fprintf(fp," %8.5f \n",1e12*dt*T); }
fclose(fp);

142 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

printf("T = %5.1f pulse = %6.2f ",T,pulse);
}
}

/* Fd2d_eigen.c 2D program to find TM eigenfunctions */
include <math.h>
include <stdlib.h>
include <stdio.h>>

#define IE 102
#define JE 62

main ()
{

float ga[IE][JE],dz[IE][JE],ez[IE][JE],hx[IE][JE],hy[IE][JE];
float real_pt[IE][JE],imag_pt[IE][JE],amp[IE][JE],phase[IE][JE];
float eps[IE][JE];
float han[30000];
int l,n,i,j,ic,jc,nsteps,Nhan,isource,jsource,III;
float ddx,dt,T,epsz,pi,epsilon,sigma,eaf;
float t0,spread,pulse;
float xdist,ydist,dist;
float freq,fc,arg,cosarg,sinarg;
FILE *fp, *fp1, *fp2, *fopen();

ic = IE/2;
jc = JE/2;
ddx = .001; /* Cell size */
dt = ddx/6e8; /* Time steps */
epsz = 8.8e-12;
pi=3.14159;

for (j=0; j < JE; j++) {
for (i=0; i < IE; i++) {

dz[i][j] = 0.;
ez[i][j] = 0.;
hx[i][j] = 0.;
hy[i][j] = 0.;
ga[i][j]= 1.0 ;
eps[i][j] = 1.;
real_pt[i][j] = 0.;
imag_pt[i][j] = 0.;

} }

/* Specify the dielectric in the waveguide*/

for (j=0; j < 40; j++) {
for (i=0; i < 30; i++) {

EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD 143

eps[i][j] = 3.0;
ga[i][j] = 1./eps[i][j];

} }
for (i=60; i < IE; i++) {

for (j= 40; j < JE; j++) {
eps[i][j] = 2.0;
ga[i][j] = 1./eps[i][j];

} }

/* Write the eps field out to a file "eps" */
fp = fopen("eps","w");
for (j=1; j < JE-1; j++) {

for (i=1; i < IE-1; i++) {
fprintf(fp,"%6.3f ",eps[i][j]);

}
fprintf(fp," \n");

}
fclose(fp);

/* Initialize the test function */

spread = 7.0;
for (j=1; j < JE; j++) {

for (i=1; i < IE; i++) {
isource = ic+10-i;
jsource = jc-10-j;
xdist = isource;
ydist = jsource;
dist = sqrt(pow(xdist,2.) + pow(ydist,2.));
dz[i][j] = exp(-.5*(pow((dist/spread),2.)));

} }

/* Use Nhan = 20000 to find the eigenfrequencies and
Nhan = 5000 to find the eigenfunctions. */

printf("N Hanning --> ");
scanf("%d", &Nhan);

for (n=1; n < Nhan; n++) {
han[n] = .5*(1 - cos(2*pi*n/Nhan));

}

printf("fc (Ghz) --> ");
scanf("%f", &fc);
freq = fc;
fc = fc*1e9;
printf(" %f \n", fc);
arg = 2*pi*dt*fc;
printf(" arg = %f \n", arg);
printf(" 1/arg = %f \n", 1/arg);

144 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

fp = fopen("freq","w");
fprintf(fp,"%7.3f ",freq);
fprintf(fp," \n");

fclose(fp);

t0 = 30.0;
T = 0;
nsteps = 1;

fp1 = fopen("Ez_time","w");

while (nsteps > 0) {
printf("nsteps --> ");
scanf("%d", &nsteps);
printf("%d \n", nsteps);

for (n=1; n <=nsteps ; n++) {
T = T + 1;

/* ---- Start of the Main FDTD loop ---- */

/* Calculate the Dz field */
for (j=1; j < JE; j++) {

for (i=1; i < IE; i++) {
dz[i][j] = dz[i][j]

+ .5*(hy[i][j] - hy[i-1][j] - hx[i][j]
+ hx[i][j-1]) ;

} }

/* Calculate the Ez field */
/* The field is truncated to simulate metal boundaries */
for (j=2; j < JE-1; j++) {

for (i=2; i < IE-1; i++) {
ez[i][j] = ga[i][j]*dz[i][j] ;

} }

printf("%5.2f \n",ez[isource][jsource]);

fprintf(fp1,"%6.3f ",ez[isource][jsource]);
fprintf(fp1," \n");

cosarg = cos(arg*T);
sinarg = cos(arg*T);

for (j=2; j < JE-1; j++) {
for (i=2; i < IE-1; i++) {

real_pt[i][j] = real_pt[i][j] + han[n]*cosarg*ez[i][j];
imag_pt[i][j] = imag_pt[i][j] + han[n]*sinarg*ez[i][j];

} }

EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD 145

/* Calculate the Hx field */
for (j=0; j < JE-1; j++) {

for (i=0; i < IE-1; i++) {
hx[i][j] = hx[i][j] + .5*(ez[i][j] - ez[i][j+1]) ;

} }

/* Calculate the Hy field */
for (j=0; j < JE-1; j++) {

for (i=0; i <= IE-1; i++) {
hy[i][j] = hy[i][j] + .5*(ez[i+1][j] - ez[i][j]) ;

} } }

/* ---- End of the main FDTD loop ---- */

/* for (j=1; j < jc; j++) {
printf("%2d ",j);
for (i=1; i < ic; i++) {

printf("%5.2f ",ez[2*i][2*j]);
}

printf(" \n");
}
*/

/* Write the E field out to a file "Ez"
/* Find the magnitude of the constructed function*/
fp = fopen("Amp","w");
fp2 = fopen("Phase","w");
for (j=1; j < JE-1; j++) {

for (i=1; i < IE-1; i++) {
amp[i][j] = .01*sqrt(pow(real_pt[i][j],2.)

+ pow(imag_pt[i][j],2.));
phase[i][j] = atan2(imag_pt[i][j],real_pt[i][j]);
fprintf(fp,"%6.3f ",amp[i][j]);
fprintf(fp2,"%6.3f ",phase[i][j]);

}
fprintf(fp," \n");
fprintf(fp2," \n");

}
fclose(fp);
fclose(fp2);

fp = fopen("Amp_rl","w");
for (j=1; j < JE-1; j++) {

for (i=1; i < IE-1; i++) {
amp[i][j] = amp[i][j]*cos(phase[i][j]);

fprintf(fp,"%7.3f ",amp[i][j]);
}

fprintf(fp," \n");
}
fclose(fp);

146 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

printf("T = %5.0f \n",T);

fp = fopen("Time","w");
fprintf(fp,"%10.5f \n",1.e9*dt*T);

fclose(fp);
printf("T = %10.5f ps\n",1e9*dt*T);

printf("Initialize with the eigenfunction (1 = YES)
--> ");

scanf("%d", &III);
printf("III = %d \n", III);

if (III > 0) {
printf("Replace E \n");

for (j=1; j < JE-1; j++) {
for (i=1; i < IE-1; i++) {

ez[i][j] = amp[i][j];
dz[i][j] = ez[i][j]/ga[i][j];
hx[i][j] = 0.;
hy[i][j] = 0.;

}
}
T = 0;

}
}

fclose(fp1);

fp = fopen("Ez","w");
for (j=1; j < JE-1; j++) {

for (i=1; i < IE-1; i++) {
fprintf(fp,"%6.3f ",ez[i][j]);

}
fprintf(fp," \n");

}
fclose(fp);

/* Fd3d_LCloop.c */
/* WARNING: The chapter describes the loop in the XY plane.

However, this program constructs a loop in the XZ plane. */

/* Specify the loop */

loop_size = 36;
lp2 = loop_size/2;

printf("wire_diam (mm) --> ");
scanf("%f", &wire_diam);

wire_radius = 0.5*(1.e-3*wire_diam/ddx);
www = (pi/2.)/log(1./wire_radius);

EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD 147

for (k=kc-lp2; k <= kc+lp2-1; k++) {
gaz[ic-lp2][jc][k] = 0.;
gaz[ic+lp2][jc][k] = 0.;

wyi[ic-lp2][jc][k] = www;
wyi[ic-lp2-1][jc][k] = www;
wxj[ic-lp2][jc][k] = www;
wxj[ic-lp2][jc-1][k] = www;

wyi[ic+lp2][jc][k] = www;
wyi[ic+lp2-1][jc][k] = www;
wxj[ic+lp2][jc][k] = www;
wxj[ic+lp2][jc-1][k] = www;

}

for (i=ic-lp2; i <= ic+lp2-1; i++) {
gax[i][jc][kc-lp2] = 0.;
gax[i][jc][kc+lp2] = 0.;

wzj[i][jc][kc-lp2] = www;
wzj[i][jc-1][kc-lp2] = www;
wyk[i][jc][kc-lp2] = www;
wyk[i][jc][kc-lp2-1] = www;

wzj[i][jc][kc+lp2] = www;
wzj[i][jc-1][kc+lp2] = www;
wyk[i][jc][kc+lp2] = www;
wyk[i][jc][kc+lp2-1] = www;

}

/* Add the capacitors */

printf(" C total (pf)--> ");
scanf("%f", &c_tot);

eps_c = 4.*c_tot*1e-12/(epsz*ddx);

gaz[ic-lp2][jc][kc] = 1/eps_c;
gaz[ic+lp2][jc][kc] = 1/eps_c;
gax[ic][jc][kc-lp2] = 1/eps_c;
gax[ic][jc][kc+lp2] = 1/eps_c;

/* ---- Start of the Main FDTD loop ---- */

/* Calculate the Dx field */

for (i=1; i < IE; i++) {
for (j=1; j < JE; j++) {

for (k=1; k < KE; k++) {

148 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

curl_h = (hz[i][j][k] - hz[i][j-1][k]
- hy[i][j][k] + hy[i][j][k-1]) ;

idx[i][j][k] = idx[i][j][k] + gi0[i]*curl_h;
dx[i][j][k] = gj3[j]*gk3[k]*dx[i][j][k]

+ gj2[j]*gk2[k]*.5*(curl_h + gi1[i]*idx[i][j][k]);
} } }

/* Calculate the Dy field */

for (i=1; i < IE; i++) {
for (j=1; j < JE; j++) {

for (k=1; k < KE; k++) {
curl_h = (hx[i][j][k] - hx[i][j][k-1]

- hz[i][j][k] + hz[i-1][j][k]) ;
idy[i][j][k] = idy[i][j][k] + gj0[j]*curl_h;
dy[i][j][k] = gi3[i]*gk3[k]*dy[i][j][k]
+ gi2[i]*gk2[k]*.5*(curl_h + gj1[j]*idy[i][j][k]);

} } }

/* Calculate the Dz field */

for (i=1; i < IE; i++) {
for (j=1; j < JE; j++) {

for (k=0; k < KE; k++) {
curl_h = (hy[i][j][k] - hy[i-1][j][k]

- hx[i][j][k] + hx[i][j-1][k]) ;
idz[i][j][k] = idz[i][j][k] + gk0[k]*curl_h;
dz[i][j][k] = gi3[i]*gj3[j]*dz[i][j][k]
+ .5*gi2[i]*gj2[j]*(curl_h + gk1[k]*idz[i][j][k]);

} } }

/* Calculate the E from D field */
for (i=1; i < IE-1; i++) {

for (j=1; j < JE-1; j++) {
for (k=1; k < KE-1; k++) {
ex[i][j][k] = gax[i][j][k]*dx[i][j][k] ;
ey[i][j][k] = gay[i][j][k]*dy[i][j][k] ;
ez[i][j][k] = gaz[i][j][k]*dz[i][j][k] ;

} } }

/* Source */

i = ic-lp2;
j = jc;
k = kc+5; /* Moved to accomodate the capacitor */

pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
ez[i][j][k] = pulse;

EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD 149

Vtime[iT] = ez[i][j][k];

k = kc;
H_current = (hy[i][j][k] - hy[i-1][j][k]

- hx[i][j][k] + hx[i][j-1][k]) ;
Itime[iT] = H_current;

/* Calculate the Hx field */

for (i=0; i < IE; i++) {
for (j=0; j < JE-1; j++) {

for (k=0; k < KE-1; k++) {
curl_e = (ey[i][j][k+1] - ey[i][j][k])

+ wxj[i][j][k]*(-ez[i][j+1][k] + ez[i][j][k]);
ihx[i][j][k] = ihx[i][j][k] + fi0[i]*curl_e;
hx[i][j][k] = fj3[j]*fk3[k]*hx[i][j][k]

+ fj2[j]*fk2[k]*.5*(curl_e + fi1[i]*ihx[i][j][k]);
} } }

/* Calculate the Hy field */

for (i=0; i < IE-1; i++) {
for (j=0; j < JE; j++) {

for (k=0; k < KE-1; k++) {
curl_e = wyi[i][j][k]*(ez[i+1][j][k] - ez[i][j][k])

+ wyk[i][j][k]*(-ex[i][j][k+1] + ex[i][j][k]);
ihy[i][j][k] = ihy[i][j][k] + fj0[j]*curl_e ;
hy[i][j][k] = fi3[i]*fk3[k]*hy[i][j][k]

+ fi2[i]*fk3[k]*.5*(curl_e + fj1[j]*ihy[i][j][k]);
} } }

/* Calculate the Hz field */

for (i=0; i < IE-1; i++) {
for (j=0; j < JE-1; j++) {

for (k=0; k < KE; k++) {
curl_e = wzj[i][j][k]*(ex[i][j+1][k] - ex[i][j][k])

+ (-ey[i+1][j][k] + ey[i][j][k]);
ihz[i][j][k] = ihz[i][j][k] + fk0[k]*curl_e;
hz[i][j][k] = fi3[i]*fj3[j]*hz[i][j][k]

+ .5*fi2[i]*fj2[j]*(curl_e + fk1[k]*ihz[i][j][k]);
} } }

}
/* ---- End of the main FDTD loop ---- */

/* Write out Vtime */

fp = fopen("Vtime","w");

150 EXAMPLES OF ELECTROMAGNETIC SIMULATION USING FDTD

for (i=0; i < iT; i++) {
fprintf(fp,"%8.5f \n",Vtime[i]);

}
fclose(fp);

/* Write out Itime */

fp = fopen("Itime","w");
for (i=0; i < iT; i++) {

fprintf(fp,"%10.7f \n",Itime[i]);
}

fclose(fp);

6
QUANTUM SIMULATION

The Schrödinger equation (6.1) is at the heart of quantum mechanics. This chapter
provides a brief introduction to quantum simulation using FDTD. The same
basic methods used to simulate Maxwell’s equations can be used to simulate the
Schrödinger equation (6.2).

6.1 SIMULATION OF THE ONE-DIMENSIONAL, TIME-DEPENDENT
SCHRÖDINGER EQUATION

The time-dependent Schrödinger equation is

i�
∂ψ(x, t)

∂t
= − �

2

2me
∇2ψ(x, t) + V (x)ψ(x, t). (6.1)

The parameter ψ(x, t) is a state variable. It has no direct physical meaning, but
all relevant physical parameters can be determined from it. In general, ψ(x, t) is a
function of both space and time, and its values are complex. V (x) is the potential
and has the unit of energy, which we usually describe in electronvolts (eV)
for our applications (1eV = 1.6 × 10−19J). � is Planck’s constant (� = 1.054 ×
10−34J s = 6.58 × 10−16eV s). me is the mass of the particle being represented
by the Schrödinger equation. For this discussion, we will assume the mass of an

Electromagnetic Simulation Using the FDTD Method, Second Edition. Dennis M. Sullivan.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley & Sons, Inc.

151

152 QUANTUM SIMULATION

electron, which is me = 9.109 × 10−31kg.We begin by rewriting the Schrödinger
equation in one dimension as

∂ψ

∂t
= i

�

2me

∂2ψ(x, t)

∂x2
− i

�
V (x)ψ(x, t). (6.2)

To avoid using complex numbers, we will split ψ(x, t) into its real and imaginary
components:

ψ(x, t) = ψreal(x, t) + i · ψimag(x, t).

Inserting this into Eq. (6.2) and separating into the real and imaginary parts
results in two coupled equations:

∂ψreal(x, t)

∂t
= − �

2me

∂2ψimag(x, t)

∂x2
+ 1

�
V (x)ψimag(x, t) (6.3a)

∂ψimag(x, t)

∂t
= �

2me

∂2ψreal(x, t)

∂x2
− 1

�
V (x)ψreal(x, t). (6.3b)

To enter these equations into a computer, we will use the finite-difference approx-
imations. The time derivative is approximated by

∂ψreal(x, t)

∂t
∼= ψreal(x, (m + 1) · �t) − ψreal(x, (m) · �t)

�t
, (6.4a)

where �t is the time step. The Laplacian is approximated by

∂2ψimag(x, t)

∂x2

∼= ψimag(�x · (n+1), m·�t)−2ψimag(�x ·n, m·�t)+ψimag(�x · (n−1), m · �t)

(�x)2
,

(6.4b)

where �x is the size of the cells being used for the simulation. For simplicity,
we will use the following notation

ψ(n · �x , m · �t) = ψm(n), (6.5)

where the superscript m indicates the time in units of time steps (t = m · �t)
and n indicates the position in units of cells (x = n · �x). Now Eq. (6.3a) can
be written as

ψm+1
real (n) − ψm

real(n)

�t
= − �

2m

ψ
m+1/2
imag (n + 1) − 2ψ

m+1/2
imag (n) + ψ

m+1/2
imag (n − 1)

(�x)2

+ 1

�
V (n)ψ

m+1/2
imag (n),

SIMULATION OF THE ONE-DIMENSIONAL 153

which we can rewrite as

ψm+1
real (n) = ψm

real(n)

− �

2me

�t

(�x)2
[ψm+1/2

imag (n + 1) − 2ψ
m+1/2
imag (n) + ψ

m+1/2
imag (n − 1)]

+ �t

�
V (n)ψ

m+1/2
imag (n). (6.6a)

A similar procedure converts the imaginary part to the same form

ψ
m+3/2
imag (n) = ψ

m+1/2
imag (n)

+ �

2me

�t

(�x)2
[ψm+1

real (n + 1) − 2ψm+1
real (n) + ψm+1

real (n − 1)]

− �t

�
V (n)ψm+1

real (n). (6.6b)

According to Eq. (6.6a) and (6.6b), we can get the value of ψ at time (m + 1)�t
from the previous value and the surrounding values. Notice that the real values of
ψ in Eq. (6.6a) are calculated at integer values of m, while the imaginary values
of ψ are calculated at the half integer values of m. This is the leapfrogging
technique between the real and imaginary terms similar to the E and H fields in
FDTD EM simulation.

We will take the cell size as �x = 0.2 nm. We still have to choose �t . Look
at Eq. (6.6). We will define a new parameter to combine all the terms in front of
the parentheses

ra ≡ �

2me

�t

(�x)2
. (6.7)

To maintain stability, this term must be small, no greater than approximately
0.15. All of the terms in Eq. (6.7) have been specified except �t . Actually, �t
must also be small enough so that the term �t/�[V (n)] is also fairly small. We
still set ra = 1/8 and calculate �t from Eq. (6.7).

Figure 6.1 illustrates the simulation of an electron in a potential of V (x) =
0 eV in close proximity to an area with a potential of V (x) = 0.2 eV. A jump in
potential like this is the type of interface a particle might encounter at the junction
of two semiconductors that are doped differently (3). The particle is traveling to
the right in the positive x direction. This is indicated by the fact that the imaginary
part of ψ(x), the dashed line, leads the real part, the solid line. The simulation is
initialized at time T = 0. The amplitude of ψ(x) is determined by normalization,∫ ∞

−∞
ψ∗(x)ψ(x)dx = 1. (6.8)

This basically states that the probability of the particle being somewhere is 1.
Notice that the kinetic energy is 0.365 eV. The particle has no potential energy,

because it is at zero potential. After 200 iterations, which represents a time of

154 QUANTUM SIMULATION

0.3

0.2

0.1

(a)

(b)

(c)

0

–0.1

–0.2

0 5

T = 0.00 ps KE = 0.365 eV PE = 0.000 eV

P2 = 0.00P1 = 1.00

10 15 20 25 30 35 40

0.3

0.2

0.1

0

–0.1

–0.2

0 5

T = 0.02 ps KE = 0.348 eV PE = 0.017 eV

P2 = 0.09P1 = 0.92

10 15 20 25 30 35 40

0.3

0.2

0.1

0

–0.1

–0.2

0 5

T = 0.05 ps KE = 0.179 eV PE = 0.186 eV

P2 = 0.93P1 = 0.07

10 15 20

nm

25 30 35 40

Figure 6.1 (a,b,c) A particle propagating in free space. The solid line represents the real
part of ψ and the dashed line represents the imaginary part.

0.02 ps, we see the electron has moved about 5 nm and has begun to interact
with the potential. By T = 0.5 ps, part of the particle has entered the potential
and part of it is moving in the negative direction. This does not mean that the
particle has split into two, but that there exists a probability of the particle being
reflected by the potential, as well as a probability that it is transmitted into the
potential. The respective probabilities are determined by

P1 =
∫ 20 nm

0 nm
ψ∗(x)ψ(x)dx

SIMULATION OF THE ONE-DIMENSIONAL 155

P2 =
∫ 40 nm

20 nm
ψ∗(x)ψ(x)dx.

Note also that some of the kinetic energy has been exchanged for potential energy
because part of the waveform is in the area with the potential. The total energy
remains the same because no energy has been put into or taken out of the system.

Figure 6.1 indicates that the particle being simulated has 0.365 eV of kinetic
energy. In quantum mechanics, momentum is related to wavelength through
Planck’s constant

p = h

λ
. (6.9)

(h is another version of Planck’s constant. The versions are related by h = 2π�.)
We can calculate kinetic energy by

KE = 1

2
mev

2 = p2

2me
= 1

2me

(
h

λ

)2

. (6.10)

In Fig. 6.1, the wavelength appears to be 2 nm. The mass of an electron in free
space is 9.1 × 10−31 kg.

KE = 1

2(9.1 × 10−31 kg)

(
6.625 × 10−34 Js

2 × 10−9m

)2

= 1

2(9.1 × 10−31 kg)
(1.656 × 10−24 Js/m)2 = 4.39 × 10−50 J2s2

18.2 × 10−31 kg m2

= 6.03 × 10−20 J

(
1 eV

1.6 × 10−19 J

)
= 0.379 eV.

The FDTD program actually calculates the kinetic energy as the expectation value
of the kinetic energy operator. This kinetic energy operator is

KE = − �
2

2me

∂2

∂x2
.

The expectation value of the kinetic energy operator is

〈KE〉 =
∫ ∞

−∞
ψ∗(x)

[
− �

2

2me

∂2

∂x2
ψ (x)

]
dx.

The potential energy is calculated according to the fraction of the energy that is
at the higher potential

PE =
∫ 40 nm

20 nm
ψ∗(x)ψ(x)V (x)dx.

156 QUANTUM SIMULATION

We know that the fraction of the particle transmitted into the potential of 0.2 eV
is 0.93, so

PE = 0.93 × 0.2 eV = 0.186 eV.

Details about the expectation values of operators are given in Reference 1. A
description of how they are calculated in FDTD is provided in Reference 2.

It is interesting to stop and consider what this simulation tells us. A particle
starts by moving left to right with a kinetic energy of 0.365 eV. After the collision
with the 0.2-eV potential, there is a 7% chance that the particle is reflected. If
that is the case, the reflected particle must also have 0.365 eV of kinetic energy.
There is a 93% chance that the particle is transmitted into the potential. If that is
the case, this transmitted particle will have a potential of 0.2 eV because it will
be located at that potential. It will also have a kinetic energy of 0.365 − 0.2 eV
= 0.165 eV because energy must be conserved.

More details on FDTD simulation of the Schrödinger equation are given in
the book by Sullivan (4).

PROBLEM SET 6.1

1. Using the program se1d.c, repeat the results of Fig. 6.1. Change the potential
to 4 eV. What happens?

6.2 TUNNELING

Tunneling is a purely quantum mechanical phenomenon. It is the ability of a parti-
cle such as an electron to pass through an energy barrier that would be impossible
in classical physics (Fig. 6.2). Once again we have initialized a waveform rep-
resenting that of an electron with a kinetic energy of 0.365 eV around 10 nm.
Between 18 and 22 nm is a barrier with a potential of 0.4 eV. By 0.3 ps, the
particle has reached the barrier and part of the waveform is in the barrier. Notice
that it attenuates very rapidly. This is characteristic of a particle in a poten-
tial of higher energy (1). However, by 0.5 ps, most of the waveform has been
reflected from the barrier, but about 19% has managed to tunnel through. Notice
that the portion of the waveform that has tunneled through is at the same wave-
length as the original waveform, which means it must have the same kinetic
energy. Tunneling plays a significant role in many modern electronic devices
(5–8).

PROBLEM SET 6.2

1. Still using the program se1d.c, repeat the results of the tunneling in Fig. 6.2.
Make the barrier half as wide. What is the difference?

WHY SEMICONDUCTORS HAVE ENERGY BANDS 157

0.4

0.2

(a)

(b)

(c)

0

0 5 10 15 20 25 30

PE = 0.000 eVKE = 0.365 eV

P2 = 0.00P1 = 1.00

T = 0.00 ps

35 40

–0.2

0.4

0.2

0

0 5 10 15 20 25 30

PE = 0.160 eVKE = 0.199 eV

P2 = 0.02P1 = 0.96

T = 0.03 ps

35 40

–0.2

0.4

0.2

0

0 5 10 15 20

nm

25 30

PE = 0.044 eVKE = 0.319 eV

P2 = 0.19P1 = 0.81

T = 0.05 ps

35 40

–0.2

Figure 6.2 (a,b,c) A particle tunneling through a barrier.

6.3 WHY SEMICONDUCTORS HAVE ENERGY BANDS

Semiconductors are crystals. This means that the atoms that compose the semi-
conductors are in highly specific patterns. An example is given in Fig. 6.3a. A
particle traveling in a certain direction in this semiconductor is bound to see a
periodic change in the potential due to coulomb interactions with the atoms of
the crystal. So if a particle was traveling in the direction shown by the arrow in
Fig. 6.3a, it may see a periodic potential like the one shown if Fig. 6.3b.

158 QUANTUM SIMULATION

(a)

(b)

X (nm)

V (eV)

Figure 6.3 (a) An illustration of how atoms might be arranged in a crystal. (b)
The potential seen by a particle moving along the direction indicated by the arrow
in (a).

Figure 6.4 shows the waveform of an electron in a periodic potential. This
potential consists of spikes of amplitude −0.1 eV spaced at intervals of 2 nm.
This is intended to mimic the periodic potential in a semiconductor crystal. The
waveform has a center wavelength of 2.5 nm and a kinetic energy of 0.239 eV.
Classically, one would expect that this particle would just skip over this periodic
potential. As shown in Fig. 6.4b at 0.08 ps, this is nearly what happens.

Figure 6.5 shows a similar simulation for a particle with a wavelength of
2 nm and a higher kinetic energy of 0.371 eV. However, when this particle
starts to move in the potential, it is clearly leaving part of the waveform behind.
Obviously, this particle cannot propagate over any substantial distance. To get a
feel of what is happening, consider Fig. 6.6.

Figure 6.6 is a diagram of one interval in the periodic potential that we are
using to model a semiconductor. Any wavelength related to the interval d by the
equation

λn =
(

d

2

)
n, n = 1, 2, 3, . . . (6.11)

WHY SEMICONDUCTORS HAVE ENERGY BANDS 159

–0.1

0 10 20

Spacing = 2.0 nm lambda = 2.50 nm

30 40 50 60 70 80 90 100

–0.05

0(a)

(b)

0.05

0.1

0.15

T = 0.00 ps KE = 0.239 eV

–0.1

0 10 20

Spacing = 2.0 nm lambda = 2.50 nm

30 40 50

nm

60 70 80 90 100

–0.05

0

0.05

0.1

0.15

T = 0.08 ps KE = 0.239 eV

Figure 6.4 (a,b) A particle with wavelength of 2.5 nm is initialized in a periodic lattice.
It apparently propagates with no interference from the lattice.

will tend to stay between the potential spikes of this one interval. This will
happen at every interval. In other words, the waveform will lose some amplitude
as it goes through the interval.

We learned earlier that kinetic energy is related to wavelength by Eq. (6.10).So
if Eq. (6.11) gives the forbidden wavelengths, then the forbidden energies are

En = h2

2me

[(
d

2

)
n

]2 = 2h2

med
2

1

n2
. (6.12)

Any electron trying to propagate through the lattice must have a kinetic energy
between the forbidden energies given by Eq. (6.12) (1, 5). Classically, these
allowed energy bands are often calculated by the Kronig–Penney model (3).

More detailed analysis of the use of FDTD simulation to determine forbidden
and allowed bands is provided in the book by Sullivan (4).

PROBLEM SET 6.3

1. Equation (6.11) indicates that the smallest forbidden wavelength is λ1 = d/2.
If d = 2 nm, as in Fig. 6.5, to what energy does λ1 = d/2 correspond? (Hint:
you can deduct this from Fig. 6.5 without using a lot of math.)

160 QUANTUM SIMULATION

0.15

0.1

0.05

(a)

(b)

0

–0.05

–0.1

0 10 20

T = 0.00 ps

Spacing = 2.0 nm lambda = 2.00 nm

KE = 0.371 eV

30 40 50 60 70 80 90 100

0.15

0.1

0.05

0

–0.05

–0.1

0 10 20

T = 0.08 ps

Spacing = 2.0 nm lambda = 2.00 nm

KE = 0.371 eV

30 40 50

nm

60 70 80 90 100

Figure 6.5 (a,b) A particle with a wavelength of 2 nm is initialized in a periodic lattice.
Apparently, it cannot propagate because it is leaving part of the waveform behind.

V(x)

–0.1 eV

d

Figure 6.6 One interval in the periodic potential. Any waveform with an integer half-
wavelength will tend to stay between the potential spikes.

2. Using the program se_lat.c, repeat the simulation of Fig. 6.3 using λ1 = 4 nm.
What happens? Change to λ = 6 nm. What happens?

REFERENCES

1. D. J. Griffiths, Introduction to Quantum Mechanics , Englewood Cliffs, NJ: Prentice
Hall, 1994.

QUANTUM SIMULATION 161

2. D. M. Sullivan and D. S. Citrin, Time-domain simulation of two electrons in a quantum
dot, J. Appl. Phys., vol. 89, pp. 3841–3846, April 2001.

3. D. A. Neamen, Semiconductor Physics and Devices—Basic Principles , 3rd Edition,
New York, NY: McGraw-Hill, 2003.

4. D. M. Sullivan, Quantum Mechanics for Electrical Engineers , New, York, NY: IEEE
Press, 2012.

5. S. Datta, Quantum Transport—Atom to Transistor , Cambridge, UK: Cambridge Uni-
versity Press, 2005.

6. G. W. Neudec and R.F. Pierret, Advanced Semiconductor Fundamentals , Englewood
Cliffs, NJ: Prentice Hall, 2003.

7. S. M. Sze, Semiconductor Devices—Physics and Technology , New York, NY: John
Wiley & Sons, Inc., 2002.

8. J. Singh, Semiconductor Devices—Basic Principles , New York, NY: John Wiley &
Sons, Inc., 2001.

/* Se1d.c. 1D FDTD Schroedinger simulation */
include <math.h>
include <stdlib.h>
include <stdio.h>

#define KE 200

main ()
{

float psi_rl[KE],psi_im[KE];
float Vpot,vp[KE];
int n,k,kc,ke,kstart,kcenter,NSTEPS,n_pml;
float pi,melec,hbar,eV2J,J2eV;
float lambda,sigma,ptot1,ptot2;
float ddx,dt,ra,T;
float pulse,xn,xxn;
FILE *fp, *fopen();
float lap_rl,lap_im,ke_rl,ke_im,kine,PE;
float gam_rl[KE],gam_im[KE],sig[KE],RR,sig0;
float del_rl[KE],del_im[KE],drl,dim,denom;
int npml,redge,ledge;

pi = 3.14159;
melec = 9.2e-31; /* Mass of an electron */
hbar = 1.055e-34; /* Plank’s constant */
eV2J = 1.6e-19; /* Convert eV to J */
J2eV = 1./1.6e-19; /* Convert J to eV */

ddx = .2e-9; /* Cell size */
ra = 1./8.;

printf("ra = %e \n",ra);
dt = .25*(melec/hbar)*pow(ddx,2.);

162 QUANTUM SIMULATION

printf(" dt = %e \n",dt);

/* Initialize */
for (k=0; k < KE; k++)
{ psi_rl[k] = 0.;

psi_im[k] = 0.;
gam_rl[k] = 1.;
gam_im[k] = 0.;
del_rl[k] = 0.;
del_im[k] = 0.;
sig[k] = 0.;
vp[k] = 0.;

}

/* ZPML */

sig0 = .002;
sig0 = .02;
npml = 20;

/* Left side */
ledge = npml;
for (k=0; k < ledge; k++) {

sig[k] = sig0*pow((ledge-k),2.);
drl = 1. + 0.707*sig[k];
dim = -0.707*sig[k] - pow(sig[k],2.);
denom = pow(drl,2.) + pow(dim,2.);
gam_rl[k] = drl/denom;
gam_im[k] = dim/denom;

printf("%2d %12.5e %8.5f %8.5f
\n",k,sig[k],gam_rl[k],gam_im[k]);

}

/* Right side */
redge = KE - npml;
for (k=redge; k < KE; k++) {

sig[k] = sig0*pow((k - redge),2.);
drl = 1. + 0.707*sig[k];
dim = -0.707*sig[k] - pow(sig[k],2.);
denom = pow(drl,2.) + pow(dim,2.);
gam_rl[k] = drl/denom;
gam_im[k] = dim/denom;
printf("%2d %12.5e %8.5f %8.5f

\n",k,sig[k],gam_rl[k],gam_im[k]);
}

/* Add the Potential */

kstart = 100;

QUANTUM SIMULATION 163

/* Dielectric step */
Vpot = 0.2;

/* for (k=kstart; k < KE; k++)
{ vp[k] = Vpot*1.602e-19 ; }*/ /* Convert eV to Joules */

/* Tunneling Barrier */
Vpot = 0.4;
for (k=kstart-10; k < kstart+10; k++)
{ vp[k] = Vpot*1.602e-19 ; } /* Convert eV to Joules */

/* Initialize the pulse */

/* printf("Initialize to pulse at --> ");
scanf("%d", &kcenter); */
kcenter = 50;
printf("kcenter = %3d \n",kcenter);

/* printf("lambda,sigma --> ");
scanf("%f ",&lambda);
scanf("%f", &sigma); */
lambda = 10;
sigma = 10;
ptot1 = 0.;

for (k=1; k < kstart; k++)
{ psi_rl[k] = cos(2*pi*(k-kcenter)/lambda)

* exp(-.5*pow((k-kcenter)/sigma,2.));
psi_im[k] = sin(2*pi*(k-kcenter)/lambda)

* exp(-.5*pow((k-kcenter)/sigma,2.));
ptot1 = ptot1 + pow(psi_rl[k],2.) + pow(psi_im[k],2.);

}

printf(" ptot1= %f \n",ptot1);

/* Normalize the waveform */
for (k=1; k < kstart; k++)
{ psi_rl[k] = psi_rl[k]/sqrt(ptot1);

psi_im[k] = psi_im[k]/sqrt(ptot1); }

kc = KE/2;
T = 0;
NSTEPS = 1;

while (NSTEPS > 0) {
printf("NSTEPS --> ");
scanf("%d", &NSTEPS);
printf("%d \n", NSTEPS);
n= 0;

for (n=1; n <=NSTEPS ; n++)

164 QUANTUM SIMULATION

{
T = T + 1;

/* Main FDTD Loop */

/* Calculate the Real part */

for (k=1; k < KE-1; k++)
{ del_im[k] = psi_im[k+1] - 2.*psi_im[k] + psi_im[k-1];

psi_rl[k] = psi_rl[k]
+ ra*(-gam_rl[k]*del_im[k] - gam_im[k]*del_rl[k])
+ (dt/hbar)*vp[k]*psi_im[k] ;

}

/* Calculate the imaginary part */

for (k=1; k < KE-1; k++)
{ del_rl[k] = psi_rl[k+1] - 2.*psi_rl[k] + psi_rl[k-1] ;

psi_im[k] = psi_im[k]
+ ra*(gam_rl[k]*del_rl[k] - gam_im[k]*del_im[k])
- (dt/hbar)*vp[k]*psi_rl[k] ;

} }

/* End of the Main FDTD Loop */

ptot1 = 0.;
for (k=1; k < kstart; k++)
{ ptot1 = ptot1 + pow(psi_rl[k],2.)

+ pow(psi_im[k],2.); }

ptot2 = 0.;
for (k=kstart; k < KE; k++)
{ ptot2 = ptot2 + pow(psi_rl[k],2.)

+ pow(psi_im[k],2.); }

/* Print out the real and imaginary parts */
for (k=0; k < KE; k++)
{ printf("%3d %9.5f %9.5f\n",k,psi_rl[k],psi_im[k]); }

/* Write the real part to a file "prl" */
fp = fopen("prl","w");
for (k=0; k < KE; k++)
{ fprintf(fp," %8.4f \n",psi_rl[k]); }
fclose(fp);

/* Write the imaginary part to a file "pim" */
fp = fopen("pim","w");
for (k=0; k < KE; k++)
{ fprintf(fp," %8.4f \n",psi_im[k]); }

QUANTUM SIMULATION 165

fclose(fp);

/* Calculate the KE and PE */

ke_rl = 0.;
ke_im = 0.;
PE = 0.;

for (k=0; k < KE; k++) {lap_rl = psi_rl[k+1] -
2.*psi_rl[k] + psi_rl[k-1] ; /* Laplacian */

lap_im = psi_im[k+1] - 2.*psi_im[k] + psi_im[k-1] ;
ke_rl = ke_rl + psi_rl[k]*lap_rl + psi_im[k]*lap_im;
ke_im = ke_im + psi_rl[k]*lap_im - psi_im[k]*lap_rl;
PE = PE + vp[k]*(pow(psi_rl[k],2.) + pow(psi_im[k],2.));

}
kine = .5*(hbar/melec)*(hbar/pow(ddx,2.))

*sqrt(pow(ke_rl,2.) + pow(ke_im,2.));
printf(" ptot1 = %6.3f \n",ptot1);
printf(" ke = %10.6f eV \n",J2eV*kine); /* convert J to

eV */
printf(" pe = %10.6f eV \n",J2eV*PE);
printf(" E = %10.6f eV \n",J2eV*(PE+kine));

fp = fopen("E","w");
fprintf(fp," %8.4f %8.4f %6.2f %7.4f %7.4f \n",
J2eV*kine,J2eV*PE,1e12*T*dt,ptot1,ptot2);
fclose(fp);

printf("T = %5.0f\n",T);
}
}

/* Se_lat.c. Particle in a lattice.*/

/* The crystal lattice */

nspace = 20; /* Spacing of the spikes. */
V0 = -.1; /* Magnitude of the spikes. */

for (k=0; k < 50; k++) {
k_space = nspace*k + 10;
vp[k_space] = V0*eV2J ;

}

kstart = 400;

/* Initialize the pulse */
sigma = 40;
printf("lambda --> ");

166 QUANTUM SIMULATION

scanf("%f", &lambda);
ptot = 0.;
for (k=1; k < KE-1; k++)

{ psi_rl[k] = cos(2*pi*(k-kstart)/lambda)
* exp(-.5*pow((k-kstart)/sigma,2.));

psi_im[k] = sin(2*pi*(k-kstart)/lambda)
* exp(-.5*pow((k-kstart)/sigma,2.)) ;

ptot = ptot + pow(psi_rl[k],2.) + pow(psi_im[k],2.);
}

T = 0;
NSTEPS = 1;

while (NSTEPS > 0) {
printf("NSTEPS --> ");
scanf("%d", &NSTEPS);
printf("%d \n", NSTEPS);
n= 0;

for (n=1; n <=NSTEPS ; n++)
{

T = T + 1;

/* Main FDTD Loop */

/* Real part */

psi_rl[0]=psi_rl[0]-ra*(psi_im[KE-2]-2.*psi_im[0]+ psi_im[1])
+ (dt/hbar)*vp[0]*psi_im[0];

psi_rl[KE-1] = psi_rl[0];

for (k=1; k < KE-1; k++)
{ psi_rl[k] = psi_rl[k]

- ra*(psi_im[k+1] - 2.*psi_im[k] + psi_im[k-1])
+ (dt/hbar)*vp[k]*psi_im[k] ;

}

/* Imaginary part */

psi_im[0]=psi_im[0]
+ra*(psi_rl[KE-2]-2.*psi_rl[0] + psi_rl[1])

- (dt/hbar)*vp[0]*psi_rl[0];
psi_im[KE-1] = psi_im[0];

for (k=1; k < KE-1; k++)
{ psi_im[k] = psi_im[k]

+ ra*(psi_rl[k+1] - 2.*psi_rl[k] + psi_rl[k-1])
- (dt/hbar)*vp[k]*psi_rl[k] ;

}

QUANTUM SIMULATION 167

}

/* End of the Main FDTD Loop */

/* Write the real part to a file "prl" */
fp = fopen("prl","w");
for (k=0; k < KE; k++)
{ fprintf(fp," %7.3f \n",psi_rl[k]); }
fclose(fp);

/* Write the imaginary part to a file "pim" */
fp = fopen("pim","w");
for (k=0; k < KE; k++)
{ fprintf(fp," %6.2f \n",psi_im[k]); }
fclose(fp);

/* Calculate the KE and PE */

ke_rl = 0.;
ke_im = 0.;
PE = 0.;
ptot = 0.;
for (k=0; k < KE-2; k++) {

ptot = ptot + pow(psi_rl[k],2.) + pow(psi_im[k],2.);
}
printf(" ptot = %6.3f \n",ptot);

for (k=1; k < KE-2; k++) {
lap_rl = psi_rl[k+1] - 2.*psi_rl[k] + psi_rl[k-1] ;

lap_im = psi_im[k+1] - 2.*psi_im[k] + psi_im[k-1] ;
ke_rl = ke_rl + psi_rl[k]*lap_rl + psi_im[k]*lap_im;
ke_im = ke_im + psi_rl[k]*lap_im - psi_im[k]*lap_rl;
PE = PE + vp[k]*(pow(psi_rl[k],2.) + pow(psi_im[k],2.));

}
kine = .5*(hbar/melec)*(hbar/pow(ddx,2.))

*sqrt(pow(ke_rl,2.) + pow(ke_im,2.));
printf(" ke = %7.4f eV \n",J2eV*kine);
printf(" pe = %7.4f eV \n",J2eV*PE);

fp = fopen("E","w");
fprintf(fp," %8.3f %8.4f %6.2f %5.3f %5.2f %5.2f\n",
J2eV*kine,J2eV*PE,1e12*T*dt,ptot,lambda*ddx*1e9,nspace*dd

x*1e9);
fclose(fp);

printf("T = %5.0f\n",T);
}

}

APPENDIX A

THE Z TRANSFORM

One of the most useful techniques in engineering or scientific analysis is trans-
forming a problem from the time domain to the frequency domain (1–3). Using
a Fourier or Laplace transform, differential equations are changed to algebraic
equations and convolution integrals are changed to multiplication. When using
discrete time domain functions, that is, those only defined at points on a specific
interval, we use Z transforms (4, 5).

Many engineers, particularly electrical engineers, are familiar with the Z trans-
form, which is generally used when dealing with digital signals. While using it
for FDTD simulation, we have to remember that we are implicitly sampling con-
tinuous time signals at a specific interval �t . This presents some differences in
the use of Z transforms, particularly in the convolution theorem where an extra
�t is present. We begin with a little mathematical background that will explain
these differences.

A.1 THE SAMPLED TIME DOMAIN AND THE Z TRANSFORM

The Dirac delta function δ(t) has its value at one point only, at t = 0, and its
amplitude is such that

∫ ∞

−∞
δ(t)dt =

∫ 0+

0−
δ(t)dt = 1, (A.1)

Electromagnetic Simulation Using the FDTD Method, Second Edition. Dennis M. Sullivan.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley & Sons, Inc.

169

170 THE Z TRANSFORM

that is, integrating over δ(t) returns the value 1. Similarly, δ(t − t0) is defined
only at t0 and integrating it through t0 produces the value 1. This brings us to
the sifting theorem given by

∫ ∞

−∞
f (t)δ(t − t0)dt = f (t0). (A.2)

Note that the Fourier transform of a function multiplied by a delta function is

∫ ∞

−∞
f (t)δ(t − t0)e

−jωt dt = f (t0)e
−jωt0 .

If we have a continuous, causal signal x(t) and we sample it at an interval �t ,
we get the following discrete time signal

x[n] =
∞∑

n=0

x(t)δ(t − n · �t). (A.3)

The Fourier transform of this discrete time function is

X(ω) = x[0] + x[1]e−jω·�t + x[2]e−j2ω·�t + · · · (A.4)

It is useful to define a parameter

z = ejω·�t . (A.5)

The quantity ω · �t is radian frequency times time, so ω · �t is an angle. As
long as the time interval �t is chosen to be much smaller than any frequency ω

associated with the problem, then 0 < ω · �t < 2π. The parameter z is a complex
parameter with magnitude 1 and angle ω · �t .

The Z transform of a discrete signal is defined as

X(z) =
∞∑

n=0

x[n]z−n = x[0] + x[1]z−1 + x[2]z−2 + · · · (A.6)

This is obviously the same as Eq. (A.4) using Eq. (A.5).
For example, let us start with the time domain function

x(t) = e−αtu(t) α ≥ 0.

If this function is sampled at an interval �t , then it becomes

x[n] = (e−α·�t)nu[n] n = 0, 1, 2, . . .

THE SAMPLED TIME DOMAIN AND THE Z TRANSFORM 171

The Z transform of this function is

X(z) =
∞∑

n=0

x[n]z−n =
∞∑

n=0

(e−α·�t)nz−n =
∞∑

n=0

(e−α·�tz−1)n. (A.7)

The following summation series will prove useful (6):

∞∑
n=0

qn = 1

1 − q
if |q| < 1. (A.8)

In Eq. (A.7) as long as e−α·�t < 1, the absolute values of the terms in parentheses
will also be less than 1. Using Eq. (A.8), Eq. (A.7) becomes

X(z) =
∞∑

n=0

(e−α·�tz−1)n = 1

1 − e−α·�tz−1
. (A.9)

Note that in the limit as α goes to 0, e−α·�t goes to 1, so

Z{u[n]} = 1

1 − z−1
. (A.10)

Another important Z transform is that of the decaying sinusoid:

f [n] = e−α·�t ·n sin(β·�t·n)u[n] =
(

e−α·�t ·n ejβ·�t ·n − e−jβ·�t ·n

2j

)
u[n]

= 1

2j
(e−(α−jβ)·�t ·n − e−(α+jβ)·�t ·n)u[n].

Extrapolating from Eq. (A.9), we get,

F(z) = 1

2j

(
1

1 − e−α·�t e jβ·�t · �z−1
− 1

1 − e−α·�t e−jβ·�t · �z−1

)

= e−α·�t sin(β · �t)z−1

1 − 2e−α·�t cos(β · �t)z−1 + e−2α·�tz−2
. (A.11)

Finally, we want to know the Z transform of the Dirac delta function that was
defined in Eq. (A.1). The discrete time version of the delta function is δ[n]. It
maintains the value 1 over an interval �t , unlike Eq. (A.1), which implies that
δ(t) is infinitely narrow. Therefore, we say that the Z transform of this function
is

Z{δ[n]} = 1

�t
. (A.12)

The 1/�t term is necessary for mathematical consistency.
Table A.1 summarizes Eq. (A.9), Eq. (A.10), Eq. (A.11), and Eq. (A.12).

These are four of the most commonly used Z transforms.

172 THE Z TRANSFORM

TABLE A.1 Some Z Transforms

Time
Domain

Frequency
Domain

Sampled Time
Domain Z Domain

δ(t) 1 δ[n]
1

�t

u(t)
1

jω
u[n]

1

1 − z−1

e−αtu(t)
1

jω + α
e−α·�t ·nu[n]

1

1 − e−α·�tz−1

e−αt sin(βt)u(t)
β

(α2 + β2) + jω2α − ω2
e−α·�t sin(β · �t · n)

e−α·�t sin(β · �t)z−1

1 − 2e−α·�t cos(β · �t)z−1 + e−2α·�t z−2

A.1.1 Delay Property

We know that the Z transform of a function x[n] is given by X(z) in Eq. (A.7).
It is also important to know the Z transform of that same function delayed by m

time steps. This is determined directly from the definition:

Z{x[n − m]} =
∞∑

n=m

x[n − m]z−n.

The index on the summation has been changed because we assume x[n] is causal,
values of x[n − m] are zero until n = m. We change the variables to i = n − m,
which gives

Z{x[n − m]} =
∞∑
i=0

x[i]z−(i+m) = z−m

∞∑
i=0

x[i]z−i = z−mX(z). (A.13)

A.1.2 Convolution Property

Often, we are given information about a system in the frequency domain. For
instance, if the transfer function of a system is H(ω) and the Fourier transform
of the input is X(ω), the output in the frequency domain is

Y (ω) = H(ω)X(ω). (A.14)

If H and X are both causal functions, the above multiplication in the frequency
domain becomes a convolution in the time domain (1):

y(t) =
∫ t

0
h(t − τ)x(τ)dτ .

THE SAMPLED TIME DOMAIN AND THE Z TRANSFORM 173

If we replace x(t) with the sampled time domain function of Eq. (A.3), then

y(t) =
∫ t

0
h(t − τ)

∞∑
n=0

x(τ)δ(τ − n · �t)dτ .

We know that delta functions only have values at the interval �t , so we can use
the sifting theorem to write the integral as a summation times �t ,

y(t) = �t
∞∑

n=0

h(t − n · �t)x(n · �t),

giving the discrete time function

y[m] = �t
∞∑

n=0

h[m − n]x[n].

We assume that t has been replaced by �t · m and τ has been replaced by �t × n.
Taking the Z transform,

Y (z) =
∞∑

m=0

y[m]z−m = �t ·
∞∑

m=0

z−m

n∑
n=0

h[m − n]x[n],

and making the following change of variables

i = m − n, m = i + n,

we get

Y (z) = �t ·
∞∑

i=−n

z−iz−n

n∑
n=0

h[i]x[n]

= �t ·
∞∑

i=−n

h[i]z−i

n∑
n=0

x[n]z−n = �t · H(z)X(z). (A.15)

The summation over i was truncated to begin at zero because h[i] is a causal
function. The extra factor �t in Eq. (A.15) is the difference in this version of
the Z transform convolution and what is usually seen in an introductory text
containing Z transforms.

Note that if we calculate the convolution of a discrete time function x[n] with
the delta function δ[n] in the Z domain

Y (z) = �t · X(z) · 1

�t
= X(z),

we get back the original function, as we should. These properties are summarized
in Table A.2.

174 THE Z TRANSFORM

TABLE A.2 Properties of Fourier Transforms

Property Time Domain Z Domain

Definition x[n] X(ω)

Time shift x[n − m] z−mX(ω)

Convolution y[m] = �t
∞∑

n=0

h[m − n]x[n] �t · H(ω)X(ω)

A.2 EXAMPLES

As an example, suppose we are to develop a computer program to calculate the
convolution of the function x(t) with a low pass filter given by

H(ω) = ω1

jω + ω1
. (A.16)

If y(t) is the output, then

Y (ω) = ω1

jω + ω1
X(ω)

is the frequency domain. This filter has a cutoff frequency of ω1 =
2π × 103 rad/s, so a sampling time of 0.01 ms should be adequate. Looking at
Table A.1, the function H in the Z domain is

H(z) = ω1

1 − e−ω1·�tz−1
.

(Note that ω1 · �t = 0.0628, so e−ω1·�t = 0.9391.) The Z transform of the input
x(t) is X(z), and that of the output is Y (z). Therefore, by the convolution
theorem, the Z transform of the output is

Y (z) = �t · ω1

1 − e−ω1·�tz−1
X(z). (A.17)

We can write this as

(1 − e−ω1·�tz−1)Y (z) = ω1 · �t · X(z)

or
Y (z) = e−ω1·�tz−1Y (z) + ω1 · �t · X(z).

If we go to the sampled time domain, the above Z domain equation becomes

y[n] = e−ω1·�t · y[n − 1] + ω1 · �t · x[n]. (A.18)

EXAMPLES 175

This is calculated by the following C computer code:

y[1] = omega*dt*x[n];
for n=2; n< NN; n++) {

y[n] = exp(-omega*dt)*y[n-1] + omega*dt*x[n]
}

The response to a step function is shown in Fig. A.1. Analytically, the step
response to a filter of the form in Eq. (A.16) should be

y(t) = (1 − e−ω1t)u(t).

We can see that y[n] in Fig. A.1 levels off at about 1.03. The accuracy can be
improved by a smaller sampling rate (See problem A.1).

Suppose our low pass filter were a two-pole low pass filter with the following
transfer function:

H(ω) = β

(α2 + β2) + jαω − ω2
.

The output for an input X(ω) in the Z domain is

Y (z) = �t · e−α·�t sin(β · �t)z−1

1 − 2e−α·�t cos(β · �t)z−1 + e−2α·�tz−2
X(z).

The corresponding sampled time domain function is

y[n] = 2e−α·�t cos(β · �t) · y[n − 1]

− e−2α·�ty[n − 2] + e−α·�t sin(β · �t) · �t · x[n − 1].

In these examples, we proceeded directly from the frequency domain to the
Z domain because the one- and two-pole low pass filters are terms listed in

Figure A.1 The response of Eq. (A.18) to a step function input, that is, x[n] = u[n].

176 THE Z TRANSFORM

Table A.1. If the frequency domain function is a higher order function that is not
in the table, it may be possible to break the function into terms that are in the
table by the method of partial fraction expansion (1).

A.3 APPROXIMATIONS IN GOING FROM THE FOURIER TO THE Z
DOMAIN

In going from the frequency to the Z domain, there are times when it is difficult
to break the frequency domain function into separate terms that can be found in
a table like Table A.1. There are methods to directly go from ω to z, but they
are approximations.

It can be shown (1) that if

F {f (t)} = F(ω)

then

F

{
df (t)

dt

}
= jωF (ω).

A derivative can be approximated by

df (t)

dt
∼= f (t) − f (t − �t)

�t
,

as long as �t is small compared to how fast f (t) is changing. As these may be
thought of as two discrete points, we can take the Z transform

Z

{
f (t) − f (t − �t)

�t

}
= F(z) − z−1F(z)

�t
= 1 − z−1

�t
F(z).

So at least as an approximation, we can say that jω in the frequency domain
becomes (1 − z−1)/�t in the Z domain. This is known as the backward rectan-
gular approximation (4).

As an example, look back at the low pass filter in Eq. (A.16). Applying the
backward linear approximation gives

H(z) = 103

1 − z−1

�t
+ 103

= 103 · �t

1 + 103 · �t − z−1
=

103 �t

(1 + 103 · �t)

1 − (1 + 103 · �t)−1z−1
.

If we use this to calculate the convolution of x[n] with h[n], we get the Z domain
function similar to Eq. (A.17), which leads to the following sampled time domain
function similar to Eq. (A.18):

y[n] = 1

1 + 103 · �t
y[n − 1] + 103 · �t

1 + 103 · �t
x[n]. (A.19)

APPROXIMATIONS IN GOING FROM THE FOURIER TO THE Z DOMAIN 177

Notice that as long as �t � 103,

103 · �t

1 + 103 · �t
∼= 103 · �t

and
1

1 + 103 · �t
∼= e−103·�t .

Therefore, Eq. (A.19) is almost the same as Eq. (A.18).
The following transform is the equivalent of using a trapezoidal approximation

to a derivative (4):

jω = 2

�t

1 − z−1

1 + z−1
. (A.20)

Since it takes a linear approximation over two time steps, it is more accurate
than the backward rectangular approximation. Again, starting with Eq. (A.16),
by using Eq. (A.20) we get

H(z) = 103

2

�t

1 − z−1

1 + z−1
+ 103

= 103 · �t(1 + z−1)

2(1 − z−1) + 103 · �t(1 + z−1)

= 103·�t(2+103·�t)−1(1+z−1)

1 −

⎛
⎜⎝

1 − 103 · �t

2

1 + 103 · �t

2

⎞
⎟⎠ z−1

∼= 103·�t

2

(1 + z−1)

1 − (1 − 103 · �t)z−1
.

(A.21)

The FDTD equation comparable to Eq. (A.19) is

y[n] = (1 − 103 · �t)y[n − 1] + 103 · �t

2
(x[n] − x[n − 1]),

which basically says that the input x[n] is averaged over two time steps.

PROBLEM SET A

1. Write a program that can duplicate the results of Fig. (A.1). Change the time
step from 0.01 to 0.001 ms. Is it more accurate?

2. Rewrite the program from problem A.1 using the backward linear approx-
imation that results in Eq. (A.19). Do this for both time steps of 0.1 and
0.01 ms.

178 THE Z TRANSFORM

3. Rewrite the program from problem A.2 using the bilateral transform of Eq.
(A.21). How large a time step can you use and still get fairly accurate results?

REFERENCES

1. Z. Gajic, Linear Dynamic Systems and Signals , Upper Saddle River, NJ: Prentice Hall,
2003.

2. C. L. Phillips, J. M. Parr, and E. A. Riskin, Signals, System, and Transforms , Upper
Saddle River, NJ: Prentice Hall, 2008.

3. P. D. Chan and J. I. Moliner, Fundamentals of Signals and Systems , Cambridge, UK:
Cambridge Press, 2006.

4. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing , Englewood Cliffs,
NJ: Prentice Hall, 1975.

5. S. K. Mitra, Digital Signal Processing—A Computer-Based Approach , 4th Edition,
New York, NY: McGraw-Hill, 2001.

6. E. Kreyszic, Advanced Engineering Mathematics , 6th Edition, New York, NY: John
Wiley & Sons, Inc., 1988.

7. D. M. Sullivan, A frequency-dependent FDTD method using Z transforms, IEEE Trans.
Antenn. Propag., vol. 40, October 1992, pp. 1223–1230.

8. D. M. Sullivan, Z transform theory and the FDTD method, IEEE Trans. Antenn.
Propag., vol. 44, October 1999, pp. 28–34.

INDEX

(Note: Page numbers in italics refer to Figures; those in bold to Tables.)

Auxiliary differential equation (ADE) method,
30–31

Courant condition, 5

Debye formulation, 27
Dielectric medium, one-dimensional

simulation
cell size determination, 10
C programming, 17–18
finite-difference approximations, 7
flux density, 22
frequency-dependent media, 29, 30
frequency domain output, 26
hard source, 8–9
impedances, 13
lossy dielectric medium

amplitude of electric field, 14
conductivity and current density, 11
finite-difference approximation, 11–12
sinusoidal wave, 13, 19

pulse generation, dielectric constant, 7, 8
reflection coefficient, 13, 14
sinusoidal wave, 9, 9, 18–19
soft source, 8

Electromagnetic Simulation Using the FDTD Method, Second Edition. Dennis M. Sullivan.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley & Sons, Inc.

transmission coefficient, 13, 14
Dipole antenna

Ampere’s law, 88
C programming, 97–100
Ez field radiation, 89
PML, 91

Eigen frequency
equation, 121
fast Fourier transform, 124–5
FDTD simulation, 122
f1 evaluation, 125
Hanning window, 124
time domain function, 124

Eigen functions
and corresponding eigenfrequency, 125, 126
discrete Fourier transform, 125
equation, 120
FDTD simulation and time period, 125–7
orthonormal property, 121
pulse initialization, 122, 123

Energy bands, 157–9

Finite-difference approximation
free-space simulation, 86–7

179

180 INDEX

Finite-difference approximation (Continued)
one-dimensional simulation

dielectric medium, 7
flux density, 22
frequency domain output, 25
lorentz medium, 37
lossy dielectric medium, 11–12

Schrödinger equation, 152
two-dimensional simulation, 59

Forbidden energy, 159
Free-space simulation

one-dimensional
absorbing boundary conditions, 5–6, 6,

16–17
cell size, 3
central difference approximations, 2
C programming, 14–16
plane wave, 1–2
pulse generation, 3–4, 4
sinusoidal source, 9
space and time, 2, 3
stability, 5
time-dependent Maxwell’s curl equation,

1–2
three dimentional

computer equation, 87
dipole antenna, 88–9
finite-difference approximation, 86–7
Maxwell equation, 85
scalar equation, 86
Yee cell, 85, 86

Kerr polarization, 117

Leapfrogging technique, 153
Lorentz formulation

ADE method, 36–7
alternative form, 38
auxiliary term, 36
dielectric constant and conductivity, 36,

37
FDTD formulation, 36
finite-difference approximations, 37
human muscle tissue simulation, 39–40
sampled time domain equation, 38–9
second-order derivative, 37
two-pole dependence, 36

Maxwell’s equations
flux density, 21–2
free-space simulation

one-dimensional, 1–2
three dimentional, 85

nonlinear optical pulse simulation, 114
two-dimensional simulation, 53

Nonlinear optical pulse simulation
C programming, 138–42
dispersive material, 113

daughter soliton propagation, 118, 119
Fourier spectrum, 118, 120
linear polaration vs. pulse shape, 118, 119
pulse broadening, 117–18, 118

linear polarization
frequency domain, 114–15
time domain, 115

nonlinear polarization
Kerr effect, 117
Raman scattering, 115–16

normalized Maxwell’s equations, 114
Normalized Maxwell’s equations

two-dimensional simulation, 53

One-dimensional simulation
dielectric medium

cell size determination, 10
C programming, 17–18
finite-difference approximations, 7
hard source, 8–9
impedances, 13
pulse generation, dielectric constant, 7, 8
reflection coefficient, 13, 14
sinusoidal wave, 9, 9, 18–19
soft source, 8
transmission coefficient, 13, 14

dielectric slab, 41–43
flux density

FDTD formulation, 23–4
finite-difference equations, 22
free space, 24
lossy dielectric medium, 22
Maxwell’s equations, 21–2
time domain difference equation, 22

Fourier transform, 44–48
free space

absorbing boundary conditions, 5–6, 6,
16–17

cell size, 3
central difference approximations, 2
C programming, 14–16
plane wave, 1–2
pulse generation, 3–4, 4
sinusoidal source, 9
space and time, 2, 3
stability, 5
time-dependent Maxwell’s curl equation,

1–2
frequency-dependent media

auxiliary differential equation method,
30–31

INDEX 181

computer codes, 29
Debye formulation, 27, 27–8
dielectric constants and conductivities, 29
FDTD simulation, 48–52
frequency-dependent dielectric medium,

29, 30
lossy dielectric, 28

frequency domain output
computer code, 25
dielectric medium, 26
finite-difference form, 25
Fourier amplitude, 26
Fourier transform, 25
frequency of interest, 25
sinusoidal source, 24–5

lorentz medium
ADE method, 36–7
alternative form, 38
auxiliary term, 36
dielectric constant and conductivity, 36, 37
FDTD formulation, 36
finite-difference approximations, 37
human muscle tissue simulation, 39–40
sampled time domain equation, 38–9
second-order derivative, 37
two-pole dependence, 36

lossy dielectric medium
amplitude of electric field, 14
conductivity and current density, 11
finite-difference approximation, 11–12
sinusoidal wave, 13, 19

Z transforms
advantage, 33
auxiliary parameters, 32
convolution integrals, 32
frequency domain equations, 32
unmagnetized plasma, 33–5

Perfectly matched layer (PML)
three-dimensional simulation, 89–91
two-dimensional simulation

auxiliary parameter, 61–2
constant impedance, 58
C programming, 64, 64–5
dielectric constant and relative permeability,

58–9
FDTD formulation, 61
finite-difference approximation, 59
Fourier domain, 57
impedances of media, 57
parameters, 62, 62–4
permeability, 57
reflection, 56
spatial derivatives, 57, 59–61

time domain integral approximation, 61
Periodic potential, 158, 159–60

Quantum simulation
Schrödinger equation simulation (see

Schrödinger equation)
semiconductor

atom arrangement, 157, 158
C programming, 165–7
forbidden energy, 159
particle potential, 157, 158
periodic potential, 158, 159–60

tunneling, 156, 157

Radiofrequency coils
Ampere’s law, 128
analytic values of inductance, 131–3
capacitor included

attenuation constant α, 134–5
capacitance, 133
dielectric constant, 133
Hz field, 133, 135
impulse response, 133, 134
quality factor Q, 136

C programming, 146–50
current through wire, 128
Gausian voltage plot, 131, 132
Hz calculation, 129
Hz field after applied input voltage,

130–131
inductance, 129–30
LC resonant loop in MRI, 127, 128
time domain current, 131, 132
www factor, 129, 131

Raman scattering, 115–16

Schrödinger equation
C programming, 161–5
electron simulation

kinetic energy of particle, 155
potential energy of particle, 155–6
probability of particle, 153–5

finite-difference approximation, 152
one-dimension equation, 152
real and imaginary components, 152–3
time-dependent equation, 151

Sinusoidal wave, one-dimensional simulation
dielectric medium, 9, 9, 18–19
free space, 9
frequency domain output, 24–5
lossy dielectric medium, 13, 19

Thin-rod approximation (TRA), 127, 129
Three-dimensional simulation

free-space simulation

182 INDEX

Three-dimensional simulation (Continued)
computer equation, 87
C programming, 97–100
dipole antenna, 88–9
finite-difference approximation, 86–7
Maxwell equation, 85
scalar equation, 86
Yee cell, 85, 86

perfectly matched layer, 89–91
total/scattered field formulation
C programming, 100–111
Ez field calculation, 93–5
FDTD calculation vs. Bessel function

expansion, 94, 96
k = ka boundary, 92, 93
plane wave-dielectric sphere interaction,

92–3
plane wave generation, 92

Time-dependent Maxwell’s curl equation, 1–2
Total/scattered field formulation

dielectric sphere
C programming, 100–111
Ez field calculation, 93–5
FDTD calculation vs. Bessel function

expansion, 94, 96
plane wave interaction, 92–3

k = ka boundary, 92, 93
plane wave generation, 92

Transverse electric (TE) mode, 54
Transverse magnetic (TM) mode, 53–4
Tunneling, 156, 157
Two-dimensional electromagnetic cavity

C programming, 142–6
eigenfrequency

equation, 121
fast Fourier transform, 124–5
FDTD simulation, 122
f1 evaluation, 125
Hanning window, 124
time domain function, 124

eigenfunctions
and corresponding eigenfrequency, 125,

126
discrete Fourier transform, 125
equation, 120
FDTD simulation and time period, 125–7
orthonormal property, 121
pulse initialization, 122, 123

Two-dimensional simulation
normalized Maxwell’s equations, 53

perfectly matched layer
auxiliary parameter, 61–2
constant impedance, 58
C programming, 64, 64–5, 74–8
dielectric constant and relative permeability,

58–9
FDTD formulation, 61
finite-difference approximation, 59
Fourier domain, 57
impedances of media, 57
parameters, 62, 62–4
permeability, 57
reflection, 56
spatial derivatives, 57, 59–61
time domain integral approximation, 61

transverse electric (TE) mode, 54
transverse magnetic (TM) mode

C programming, 55, 56, 72–4
E and H fields, 55
finite-differencing scheme results, 54
plane wave source, 78–84

Yee cell, 85, 86

Z transform
advantage, 33
auxiliary parameters, 32
backward linear approximation, 176
backward rectangular approximation, 176
convolution integrals, 32
convolution property, 172–4, 174
decaying sinusoid, 171
delay property, 172
Dirac delta function, 169
discrete time function, 170
Fourier approximation, 176
frequency domain, 172
frequency domain equations, 32
sifting theorem, 170
time domain function, 170, 172, 174–5
trapezoidal approximation, 177
two-pole low pass filters, 175
unmagnetized plasma

auxiliary term, 34
convolution theorem, 34
FDTD simulation, 34
free space, 34–5
partial fraction expansion, 33
permittivity, 33

Z domain, 172

