Lecture 8: Signal Transforms (Cont.)

Introduction

(1) Decimation
(2) Interpolation

- Example: Decimation \& interpolation
(3) Linear interpolation

4 Combined operations

- Example:Combined Transform
- Example:DT Combined Transform

Decimation

If a sequence $x[k]$ is compressed by a factor c, some data samples of $x[k]$ are lost. For example, if we decimate $x[k]$ by 2 , the decimated function $y[k]=x[2 k]$ retains only the alternate samples given by $x[0], x[2], x[4]$, and so on.
Compression (referred to as decimation for DT sequences) is, therefore, an irreversible process in the DT domain as the original sequence $x[k]$ cannot be recovered precisely from the decimated sequence $y[k]$.

Interpolation

In the DT domain, expansion (also referred to as interpolation) is defined as follows:

$$
x^{(m)}[k]= \begin{cases}x\left[\frac{k}{m}\right] & \text { if } k \text { is a multiple of integer } m \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

The interpolated sequence $x^{(m)}[k]$ inserts $(m-1)$ zeros in between adjacent samples of the DT sequence $x[k]$. Interpolation of the DT sequence $x[k]$ is a reversible process as the original sequence $x[k]$ can be recovered from $x^{(m)}[k]$

Example: Decimation \& interpolation

Example: Decimation \& interpolation

Consider the DT sequence $x[k]$ plotted in Fig. 1(a). Calculate and sketch $p[k]=x[2 k]$ and $q[k]=x[k / 2]$.

(a)

Fig. 1.26. Time scaling of the DT signal in Example 1.17.
(a) Original DT sequence $x[k]$.
(b) Decimated version $x[2 k]$, of $x[k]$. (c) Interpolated version $x[0.5 k]$ of signal $x[k]$.

(b)

(c)

Figure 1: Decimation \& interpolation

Example: Decimation \& interpolation

Solution:

Since $x[k]$ is non-zero for $-5 \leq k \leq 5$, the non-zero values of the decimated sequence $p[k]=x[2 k]$ lie in the range $-3 \leq k \leq 3$. The non-zero values of $p[k]$ are shown in Table 1.2 (see textbook p.42). The waveform for $p[k]$ is plotted in Fig. 1(b). The waveform for the decimated sequence $p[k]$ can be obtained by directly compressing the waveform for $x[k]$ by a factor of 2 about the x -axis.
While performing the compression, the value of $x[k]$ at $k=0$ is retained in $p[k]$. On both sides of the $k=0$ sample, every second sample of $x[k]$ is retained in $p[k]$.

Example: Decimation \& interpolation

To determine $q[k]=x[k / 2]$, we first determine the range over which $x[k / 2]$ is non-zero. The non-zero values of $q[k]=x[k / 2]$ lie in the range $-10 \leq k \leq 10$ and are shown in Table 1.3(see textbook p.42). The waveform for $q[k]$ is plotted in Fig. 1(c). The waveform for the decimated sequence $q[k]$ can be obtained by directly expanding the waveform for $x[k]$ by a factor of 2 about the x -axis. During expansion, the value of $x[k]$ at $k=0$ is retained in $q[k]$. The even-numbered samples, where k is a multiple of 2 , of $\mathrm{q}[\mathrm{k}]$ equal $x[k / 2]$. The odd-numbered samples in $q[k]$ are set to zero.

Linear interpolation

While determining the interpolated sequence $x[m k]$, Eq. (1) inserts ($m-1$) zeros in between adjacent samples of the DT sequence $x[k]$, wherex $[k]$ is not defined. Instead of inserting zeros, we can possibly interpolate the undefined values from the neighboring samples where $x[k]$ is defined. Using linear interpolation, an interpolated sequence can be obtained using the following equation:

$$
x^{(m)}[k]= \begin{cases}x\left[\frac{k}{m}\right] & \text { if } k \text { is a multiple of integer } m \tag{2}\\ (1-\alpha) x\left[\left\lfloor\frac{k}{m}\right\rfloor\right]+\alpha x\left[\left\lceil\frac{k}{m}\right\rceil\right] & \text { otherwise }\end{cases}
$$

Where $\left\lfloor\frac{k}{m}\right\rfloor$ denotes the nearest integer less than or equal to (k / m) ("floor" function), $\left\lceil\frac{k}{m}\right\rceil$ denotes the nearest integer greater than or equal to (k / m) ("ceil" function), and $\alpha=(k m o d m) / m$. Note that mod is the modulo operator that calculates the remainder of the division k / m. We will use Eq. (1);

Combined operations

An arbitrary linear operation that combines the three transformations is expressed as $x(\alpha t+\beta)$, where α is the time-scaling factor and β is the time-shifting factor. If α is negative, the signal is inverted along with the time-scaling and time-shifting operations. By expressing the transformed signal as

$$
\begin{equation*}
x(\alpha t+\beta)=x\left(\alpha\left(t+\frac{\beta}{\alpha}\right)\right) \tag{3}
\end{equation*}
$$

(i)Scale the signal $x(t)$ by $|\alpha|$. The resulting waveform represents $x(|\alpha| t)$.
(ii) If α is negative, invert the scaled signal $x(|\alpha| t)$ with respect to the $t=0$ axis. This step produces the waveform for $x(\alpha t)$. (iii) Shift the waveform for $x(\alpha t)$ obtained in step (ii) by $|\beta / \alpha|$ time units. Shift towards the right-hand side if β / α is negative. Otherwise, shift towards the left-hand side if β / α is positive. The waveform resulting from this step represents $x(\alpha t+\beta)$, which is the required transformation.

Example:Combined Transform

Figure 2: Combined transform

Determine $x(4-2 t)$, where the waveform for the CT signal $x(t)$ is plotted above.

Example:Combined Transform

Solution:

Express $x(4-2 t)=x(-2[t-2])$ and follow steps (i)-(iii) as outlined below.
(i) Compress $x(t)$ by a factor of 2 to obtain $x(2 t)$. The resulting waveform is shown in Fig. 2 (b).
(ii) Time-reverse $x(2 t)$ to obtain $x(-2 t)$. The waveform for $x(-2 t)$ is shown in Fig. 2(c).
(iii) Shift $x(-2 t)$ towards the right-hand side by two time units to obtain $x(-2[t-2])=x(4-2 t)$. The waveform for $x(4-2 t)$ is plotted in Fig. 2(d).

Example:DT Combined Transform

Figure 3: Combined transform

Sketch the waveform for $x[-15-3 k]$ for the DT sequence $x[k]$ plotted in Fig. 3(a).

Example:DT Combined Transform

Solution:

Express $x[-15-3 k]=x[-3(k+5)]$ and follow steps (i)-(iii) as outlined below.
(i) Compress $x[k]$ by a factor of 3 to obtain $x[3 k]$. The resulting waveform is shown in Fig. 3 (b).
(ii) Time-reverse $x[3 k]$ to obtain $x[-3 k]$. The waveform for $x[-3 k]$ is shown in Fig. 3(c).
(iii) Shift $x[-3 k]$ towards the left-hand side by five time units to obtain $x[-3(k+5)]=x[-15-3 k]$. The waveform for $x[-15-3 k]$ is plotted in Fig. 3(d).

