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Solving DE for LTIC

Now let go back to LTIC system. We got

D̂
n
y + an−1D̂

n−1
y + · · · + a1D̂ydt + a0y(t)

= bmD̂
m

x + bn−1D̂
m−1

x + · · · + b1D̂x + b0x(t)
(1)

or
Q(D̂)y(t) = P (D̂)x(t) (2)

where Q(D̂) is the nth-order differential operator, P (D̂) is the
mth-order differen- tial operator, and the ai and bi are constants.
We know that solution of above differential equation is

y(t) = yzi(t) + yzs(t) (3)

yzi(t) is the zero-input response of the system and yzs(t) is the
zero-state response of the system.
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Solving DE for LTIC

Note that the zero-input component yzi(t) is the response produced
by the system because of the initial conditions (and not due to any
external input), and hence yzi(t) is also known as the natural
response of the system.
For example, the initial conditions may include charges stored in a
capacitor or energy stored in a mechanical spring.
The zero-input response yzi(t) is evaluated by solving a
homogeneous equation obtained by setting the input signal x(t) = 0.
For Eq.(2), the homogeneous equation is given by

Q(D̂)y(t) = 0 (4)

The zero-state response yzs(t) arises due to the input signal and does
not depend on the initial conditions of the system. In calculation
of the zero-state response, the initial conditions of the system are
assumed to be zero.
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Solving DE for LTIC

The zero-state response is also referred to as the forced response of
the system since the zero- state response is forced by the input signal.
For most stable LTIC systems, the zero-input response decays to zero
as t → ∞ since the energy stored in the system decays over time
and eventually becomes zero. The zero-state response, therefore,
defines the steady state value of the output.
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LTIC Example
We go back to example of RLC circuit (See Lecture 11).

Figure 1: RLC circuit

Assume that the inductance L = 0H (i.e. the inductor does not
exist in the circuit), resistance R = 5Ω, and capacitance C = 1/20F .
Determine the output signal y(t) when the input voltage is given
by x(t) = sin(2t) and the initial voltage y(0−) = 2V across the
resistor.
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LTIC Example
Solution:
We got DE for y(t)

L

R

d2y

dt2 + dy(t)
dt

+ 1
RC

y(t) = dx(t)
dt

(5)

Substituting L = 0, R =5, and C = 1/20 here yields
dy(t)

dt
+ 4y(t) = dx(t)

dt
= 2 cos(2t) (6)

Zero-input response of the system: Using the procedure outlined
in Appendix C in textbook, and last two lectures we determine the
characteristic equation for Eq. (6) as
(s + 4) = 0. So, root is s = −4 and he zero-input response is

yzi(t) = Ae−4t (7)
The value of A is obtained from the initial condition y(0−) = 2V .
Substituting y(0−) = 2V in the above equation yields A = 2. The
zero-input response is given by yzi(t) = 2e−4t.
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LTIC Example
Zero-state response of the system:
The zero-state response is calculated by solving Eq. (6) with a zero
initial condition, y(0−) = 0. The homogeneous component of the
zero-state response of Eq. (6) is similar to the zero input response
and is given by

yzi(t) = Ce−4t (8)

where C is a constant. The particular component of the zero-state
response of Eq. (6) for input x(t) = sin(2t) is of the following form:

y(p)
zs = K1 cos(2t) + K2 sin(2t) (9)

Substituting the particular component in Eq.(6) gives K1 = 0.4 and
K2 = 0.2. The overall zero-state response of the system is as
follows:

yzs = Ce−4t + 0.4 cos(2t) + 0.2 sin(2t) (10)
with zero initial condition, i.e. yzs = 0.
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LTIC Example

Substituting the initial condition in the zero-state response yields
C = −0.4. The total response of the system is the sum of the
zero-input and zero-state responses and is given by

y(t) = 1.6e−4t + 0.4 cos(2t) + 0.2 sin(2t) (11)
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LTIC Example

Steady state value of the output:
Let see what happens, when t → ∞

lim
t→∞

y(t) = lim
t→∞

[1.6e−4t + 0.4 cos(2t) + 0.2 sin(2t)]

=0.4 cos(2t) + 0.2 sin(2t)

=
√

0.42 + 0.22 sin(2t + 63.4◦)

(12)

We can verify that we can get steady state solution using circuit
theory (see textbook p. 109)
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Solution of 1st order ODE

The output of a first-order differential equation,
dy

dt
+ f(t)y(t) = r(t) (13)

resulting from input r(t) is given by

y(t) = e−p

[
∫

eprdt + C

]
(14)

where function p is given by

p(t) =
∫

f(t)dt (15)

and C is a constant determined from initial condition. In our
example f(t) = 4. We can verify, that using formulas above we we
get same answer. See textbook p. 108
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LTIC Example 3.3

Lets do another example (Example 3.3 in the textbook) with same
RLC circuit as in previous example

Figure 2: RLC circuit

Consider the electrical circuit shown in Fig.2 with the values of
inductance, resistance, and capacitance set to L = 1/12H, R =
7/12Ω, andC = 1F . The circuit is assumed to be open before t = 0,
i.e. no current is initially flowing through the circuit. However, the
capacitor has an initial charge of 5 V.
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LTIC Example 3.3

Determine:
(i) the zero-input response wzi(t) of the system;
(ii) the zero-state response wzs(t) of the system; and
(iii) the overall output w(t)

when the input signal is given by x(t) = 2exp(−t)u(t) and the
output w(t) is measured across capacitor C.
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Solution LTIC Example 3.3
We got DE for w(t) (See lecture notes 11 eq.(19) subsection "x(t)
and w(t)")

LC
d2w

dt2 + RC
dw(t)

dt
+ w(t) = x(t) (16)

Substituting here L, R, and C above yields
d2w

dt2 + 7dw

dt
+ 12w(t) = 12x(t), (17)

and we have initial conditions, w(0−) = 5 and ẇ(0−) = 0, and the
input signal is given by x(t) = 2e−tu(t).
Zero-input response of the system: We can find that
characteristic equation of eq (17) is s2 + 7s + 12 = 0. which has
roots at s = −4, −3. The zero-input response is therefore given by

wzi(t) = (Ae−4t + Be−3t)u(t) (18)

The value of A and B is obtained from the initial condition
w(0−) = 5V and ẇ(0−) = 0.



Solving DE for LTIC LTIC Example Solution of 1st order ODE LTIC Example 3.3 Representation of signals using Dirac delta functions

Solution LTIC Example 3.3
We get following equations.

A + B = 5,

4A + 3B = 0
(19)

which have the solution A = −15 and B = 20. The zero-input
response is therefore given by

wzi(t) = (20e−3t − 15e−4t)u(t) (20)
Zero-state response of the system:
To calculate the zero-state response of the system, the initial con-
ditions are assumed to be zero, i.e. the capacitor is assumed to be
uncharged. Hence, the zero-state response wzs(t) can be calculated
by solving the following differential equation:

d2w

dt2 + 7dw

dt
+ 12w(t) = 12x(t), (21)

with initial conditions, w(0−) = 0 and ẇ(0−) = 0, and input
x(t) = 2exp(−t)u(t).
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Solution LTIC Example 3.3

The homogeneous solution of Eq.(21) above has the same form as
the zero-input response and is given by

w(h)
zs (t) = C1e−4t + C2e−3t (22)

where C1 and C2 are constants.
The particular solution for input x(t) = 2e−tu(t)
is of the form w

(p)
zs (t) = Ke−tu(t). Substituting the particular

solution into Eq.(21) and solving the resulting equation yields
K = 4. The zero-state response of the system is, therefore, given by

wzs = (C1e−4t + C2e−3t + 4e−t)u(t). (23)

Last step is to compute C1 and C2. To do this we need to use
initial conditions for zero-state w(0−) = 0 and ẇ(0−) = 0.
Substituting in this conditions eq.(23) we get
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Solution LTIC Example 3.3

C1 + C2 + 4 = 0,

−4C1 − 3C2 − 4 = 0,
(24)

Solutions are C1 = 8 and C2 = −12. The zero-state solution is,
therefore, given by

wzs = (8e−4t − 12e−3t + 4e−t)u(t). (25)

Overall response of the system The overall response of the
system can be obtained by summing up the zero-input and
zero-state responses, and can be expressed as

w(t) = (−7−4t + 8e−3t + 4e−t)u(t). (26)
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Solution LTIC Example 3.3
wzi, wzs and w are plotted on Fig.3

Figure 3: wzi, wzs and w
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Representation of signals using Dirac delta functions

We now show that any signal can be represented as a linear
combination of time-shifted impulse(δ) functions.
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Representation of signals using Dirac delta functions

To illustrate our result, we define a new function δ∆(t) as follows:

δ∆(t) =
{

1/∆ 0 < t < ∆
0 otherwise

(27)

Then any function x(t) can be approximated as

x̂(t) =
+∞∑

k=−∞
x(k∆)δ∆(t − k∆) · ∆ (28)

Now if we go to limit ∆ → 0, then x̂(t) → x(t), which gives

x(t) = lim
∆→0

x̂(t) = lim
∆→0

+∞∑
k=−∞

x(k∆)δ∆(t − k∆) · [(k + 1)∆ − k∆]

(29)
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Representation of signals using Dirac delta functions

x(t) =
∞
∫

−∞

x(τ)δ(t − τ)dτ (30)

This result shows, that a CT function can be represented as a
weighted superposition of time-shifted impulse functions. We will
use this equation to calculate the output of an LTIC system. (There
is alternate proof of equation (30) in textbook p. 113)
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