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Preface to Second Edition

THIS is the second edition of the book Data Visualization: Principles and

Practice first published in 2008. Since its first edition, many advances and

developments have been witnessed by the data-visualization field. Several tech-

niques and methods have evolved from the research arena into the practitioner’s

toolset. Other techniques have been improved by new implementations or algo-

rithms that capitalize on the increased computing power available in mainstream

desktop or laptop computers. Different implementation and dissemination tech-

nologies, such as those based on the many facets of the Internet, have become

increasingly important. Finally, existing application areas have gained increas-

ing importance, such as those addressed by information visualization, and new

application areas at the crossroads of several disciplines have emerged.

The second edition of this book provides a revised and refined view on data vi-

sualization principles and practice. The structure of the book in terms of chapters

treating various visualization techniques was kept the same. So was the bottom-

up approach that starts with the representation of discrete data, and continues

with the description of the visualization pipeline, followed by a presentation of

visualization techniques for increasingly complex data types (scalar, vector, ten-

sor, domain modeling, images, volumes, and non-spatial datasets). The second

edition revises and extends the presented material by covering a significant num-

ber of additional visualization algorithms and techniques, as follows. Chapter 1

positions the book in the broad context of scientific visualization, information

visualization, and visual analytics, and also with respect to other books in the

current visualization literature. Chapter 2 completes the transitional overview

from graphics to visualization by listing the complete elements of a simple but

self-contained OpenGL visualization application. Chapter 3 covers the gridless

xi



xii Preface to Second Edition

interpolation of scattered datasets in more detail. Chapter 4 describes the de-

sirable properties of a good visualization mapping in more detail, based on a

concrete example. Chapter 5 discusses colormap design in additional detail, and

also presents the enridged plots technique. Chapter 6 extends the set of vector

visualization techniques discussed with a more detailed discussion of stream ob-

jects, including densely seeded streamlines, streaklines, stream surfaces, streak

surfaces, vector field topology, and illustrative techniques. Chapter 7 introduces

new examples of combined techniques for diffusion tensor imaging (DTI) visu-

alization, and discusses also illustrative fiber track rendering and fiber bundling

techniques. Chapter 8 introduces additional techniques for point-cloud recon-

struction such as non-manifold classification, alpha shapes, ball pivoting, Poisson

reconstruction, and sphere splatting. For mesh refinement, the Loop subdivision

algorithm is discussed. Chapter 9 presents six additional advanced image seg-

mentation algorithms (active contours, graph cuts, mean shift, superpixels, level

sets, and dense skeletons). The shape analysis discussion is further refined by

presenting several recent algorithms for surface and curve skeleton extraction.

Chapter 10 presents several new examples of volume rendering. Chapter 11 has

known arguably the largest expansion, as it covers several additional information

visualization techniques (simplified edge bundles, general graph bundling, visu-

alization of dynamic graphs, diagram visualization, and an expanded treatment

of dimensionality reduction techniques). Finally, the appendix has been updated

to include several important software systems and libraries. Separately, all chap-

ters have been thoroughly revised to correct errors and improve the exposition,

and several new references to relevant literature have been added.

Additionally, the second edition has been complemented by online material,

including exercises, datasets, and source code. This material can serve both to

practice the techniques described in the book, but also as a basis to construct a

practical course in data visualization. Visit the book’s website: http://www.cs.

rug.nl/svcg/DataVisualizationBook.



Chapter 1

Introduction

THIS book is targeted at computer-science, mathematics, and engineering-

sciences students in their last undergraduate years or early postgraduate

phase. A second audience is practitioners in these fields who want to develop

their own data-visualization applications but who have not had extensive expo-

sure to computer graphics or visualization lectures. The book strives to strike

an effective balance between providing enough technical and algorithmic un-

derstanding of the workings and often subtle trade-offs of the most widespread

data-visualization algorithms while allowing the reader to quickly and easily as-

similate the required information. We strive to present visualization algorithms

in a simple-to-complex order that minimizes the time required to get the knowl-

edge needed to proceed with implementation.

Data visualization is an extensive field at the crossroads of mathematics,

computer science, cognitive and perception science, and engineering. Covering

every discipline that shares principles with visualization, ranging from signal

theory to imaging and from computer graphics to statistics, requires in itself at

least one separate book. Our goal is to provide a compact introduction to the

field that allows readers to learn about visualization techniques. Hence, several

more specialized visualization algorithms and techniques have been omitted. On

one hand, we have chosen to focus on those techniques and methods that have a

broad applicability in visualization applications, occur in most practical problems

in various guises, and do not demand a specialized background to be understood.

On the other hand, we have also included a number of less mainstream research-

grade visualization techniques. With these methods, we aim to give the reader

an idea of the large variety of applications of data visualizations, illustrate the

1



2 1. Introduction

range of problems that can be tackled by such methods, and also emphasize the

strong connections between visualization and related disciplines such as imaging

or computer graphics.

Whenever applicable, existing commonalities of structure, principles, or func-

tionality between the presented visualization methods are emphasized. This

should help the reader better understand and remember a number of underly-

ing fundamental principles and design issues that span the visualization field.

First, these principles allow one to design and use visualization applications for

a problem domain or data type much easier than if one had to learn the re-

quired techniques anew. Second, this helps students understand the nature of

such cross-domain principles as sampling, interpolation, and reconstruction, and

design issues such as optimizing the trade-off between speed, memory consump-

tion, and data representation accuracy. We believe this approach of understand-

ing mathematics and software design by seeing their concrete application in a

practical domain may benefit computer-science students, in particular, who have

a less extensive mathematical background.

Throughout the book, we illustrate algorithmic and software design issues by

providing (pseudo)code fragments written in the C++ programming language.

Exercises covering the various topics discussed in the book, including datasets

and source code, are also provided as additional online resources. (See Sec-

tion 1.5.) These can be of help for experimenting with the various techniques

and methods discussed in the main text, but also for organizing educational ma-

terial for courses being taught based on this book. The reader is assumed to

have an average understanding of the C++ language, i.e., be familiar with the

language syntax and have basic knowledge of data structures and object-oriented

programming. Whenever possible, the examples are described in terms of plain

structured programming. Object-oriented notation is used only when it sim-

plifies notation and helps understand the described algorithms. No particular

software toolkit, library, or system is used to support this description. There

is a single exception to this rule: in a few instances, we make use of a small

set of concepts present in the OpenGL programming library, such as graphics

operations and data types, to illustrate some visualization techniques. OpenGL

is one of the best-known and most well-supported graphics libraries in use, has

a quite easy learning curve, and provides a compact and concise way to express

a wide range of graphical operations. Knowledge of OpenGL is not required to

follow the material in this book. However, the provided code fragments should

allow and encourage readers who are interested in implementing several of the

presented techniques to get a quick start. For both a quick start in programming

OpenGL applications as well as an in-depth reference to the library, we strongly
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recommend the classics, also known as the Red Book [Shreiner et al. 03] and the

Blue Book [Shreiner 04].

We have decided to follow a toolkit-independent exposition of visualization

principles and techniques for several reasons. First, we believe that understand-

ing the main principles and working of data-visualization algorithms should not

be intermixed with the arduous process of learning the inevitably specific inter-

faces and assumptions of a software toolkit. Second, we do not assume that all

readers have the extensive programming knowledge typically required to mas-

ter the efficient usage of some visualization software toolkits in use nowadays.

Finally, different users have different requirements and work in different con-

texts, so the choice of a specific toolkit would inevitably limit the scope of the

presentation.

Last but not least, designing a complete visualization system involves many

subtle decisions. When designing a complex, real-world visualization system,

such decisions involve many types of constraints, such as performance, plat-

form (in)dependence, available programming languages and styles, user-interface

toolkits, input/output data format constraints, integration with third-party code,

and more. Although important for the success of a system design, such aspects

are not in the realm of data visualization but of software architecture, design,

and programming. All in all, we believe that presenting the field of data visu-

alization in a manner as independently as possible from a toolkit choice makes

this book accessible to a broader, less specialized audience.

1.1 How Visualization Works
The purpose of visualization is to get insight, by means of interactive graph-

ics, into various aspects related to some process we are interested in, such as a

scientific simulation or some real-world process. There are many definitions of

visualization. Following Williams et al., visualization is “a cognitive process per-

formed by humans in forming a mental image of a domain space. In computer

and information science it is, more specifically, the visual representation of a

domain space using graphics, images, animated sequences, and sound augmenta-

tion to present the data, structure, and dynamic behavior of large, complex data

sets that represent systems, events, processes, objects, and concepts” [Williams

et al. 95].

In most applications, the path from the given process to the final images is

quite complicated and involves a series of elaborate data-processing operations.

Ultimately, however, the visualization process produces one or several images
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visualization targets

specific questions discovering the unknown

quantitative qualitative What is in this dataset?

What is the data's
mimimum/average/
distribution? 

Does the data
answer some
problem X?

Figure 1.1. Types of questions targeted by the visualization process.

that should be able to convey insight into the considered process. In the words

of pioneers in the field, visualization is “the use of computers or techniques for

comprehending data or to extract knowledge from the results of simulations,

computations, or measurements” [McCormick et al. 87].

Visualization and insight. The term “insight” is used very frequently in visualiz-

ation-related disciplines and texts. However, what exactly does insight mean in

this context? Visualization can help obtain several types of insight by answering

several types of questions (see Figure 1.1). In the current context, we use the

word “insight” to describe two types of information we get from a visualization

application:

1. answers to concrete questions about a given problem;

2. facts about a given problem that we were not aware of.

Concrete questions: In the first case, we have some concrete questions about a

given phenomenon, process, or dataset.1 The purpose of visualization in this

context is to answer these questions as well, and as quickly, as possible. Such

questions can be quantitative, e.g., “given a two-dimensional (2D) land map,

how high are the highest points?” In this case we are interested in a measurable

answer on a given scale of reference, e.g., “the highest peak is 2500 meters above

sea level.” A sample list of quantitative questions targeted by visualization

applications includes:

1By dataset, we mean a collection of data values that describe some given phenomenon or
structure. A more formal definition of a dataset is given in Chapter 3.



1.1. How Visualization Works 5

• Which are the minimum, maximum, or outliers of the values in a dataset,

and for which data points do they occur?

• What is the distribution of the values in a dataset?

• Do values of different datasets exhibit correlations, and how much?

• How well do values in a dataset match a given model or pattern?

Quantitative vs. qualitative questions. At this point, readers may ask themselves

why we need visualization to answer concrete questions such as what is the

maximum value of a dataset, when a simple textual display would suffice. There

are, indeed, many cases when this is true and when simple tools such as a

text-based query-and-answer system work the best. However, there are also

many cases when visualization works better for answering concrete, quantitative

questions. In these cases, the answer to the question is not a single number

but typically a set of numbers. For example, while the question “what is the

value of a function f(x) at a given point x” can be answered by printing the

value, the question “what are the values of f(x) for all x in a given interval” is

best answered by plotting the graph of f(x) over that interval. Distributions,

correlations, and trends of a value set are also best understood when depicted

visually. Clearly, in some situations, task performance is better using visual

representations, whereas in others, text-based representations are more efficient.

An early study by Larkin and Simon [Larkin and Simon 87] on the effectiveness

of visual representations on human task performance outlined two ways in which

visual representations can outperform text-based ones:

• by substituting (rapid) perceptual inferences for difficult logical inferences;

• by reducing the search for information required for task completion.

Although not exhaustive, their research gives some theoretical underpinning to

the intuitive appeal of using visualization to comprehend information.2

In addition to quantitative questions, a large number of questions targeted by

visualization are of a qualitative nature, e.g., “given a medical scan of a patient,

are there any anomalies that may indicate clinical problems?” A typical answer

to this question would involve the discovery of patterns that have particular

characteristics in terms of shape, position, or data values, which a human expert

2The title of their work, “Why a diagram is (sometimes) worth 10000 words,” is emblematic
for the well-known saying “A picture is worth a thousand words.”
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such as a medical doctor would classify as anomalous, based on his previous

clinical experience. In such cases, it is quite hard, if not impossible, to answer

the questions using fully automatic means, given the vague definition of the

question and the high variability of the input data. The decisional input of the

human expert, supported by interactive visualizations, is indispensable.

Exact vs. fuzzy questions. In scientific and engineering practice, questions typi-

cally range between extremely precise ones and very vague ones. Visualization

is useful for both types of questions. Although it can be argued that precise

questions can be answered with simple search-like queries that do not need any

visual support, it can also be argued that displaying the answer of such queries in

a visual manner makes them simpler to assimilate. Moreover, the visual support

can provide additional information that may not be explicitly requested by the

question but that can open broader perspectives on the studied problem. For ex-

ample, displaying the highest peak on a land map both by indicating the peak’s

height as a number and also its position on a 3D elevation visualization shows

not only the absolute height value but also how that value relates to the average

height on the map (how high it is compared to the overall landscape, how many

land points are at or close to the maximal height, and so on). This information,

although not directly requested, can help formulate subsequent questions, which

ultimately help the user to acquire a deeper understanding of the data at hand.

This is one of the meanings of the term “insight.”

Discover the unknown: In the second case, we may have no precise questions

about our process at hand. However, we are interested in (literally) looking at,

or examining, the information that this process provides. Why, one might ask,

should we look at some data if we have no concrete questions to ask about it?

There are several reasons for this. First, we may have had similar data in the

past that was interesting, helpful, or critical for a given application, and we may

want to find out if the current data is of the same kind. Second, we may have the

feeling that, by examining a certain piece of data, we can acquire information

on the process that produced it that we simply cannot obtain by other means.

This role of visualization closely matches the perspective of a researcher who is

interested in studying a phenomenon in order to find out novel facts and establish

unexpected correlations. This is a second meaning of the term “insight.”

The two types of questions are not separated in practice but rather serve two

types of complementary scenarios. In the first scenario type, one has a num-

ber of precise questions to answer and is quite familiar with the type of data

and application. This scenario is best targeted by fine-tuned visualizations an-
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swering those precise questions. However, after answering such questions, one

may discover that some fundamental problem is still not solved, because the

questions were too precise. In this situation, switching to the more exploratory,

open-ended visualization scenario is a good continuation. This scenario follows

a typical bottom-up pattern, going from precise to more general queries. In the

second scenario type, the user receives a dataset that he is largely unfamiliar

with. In this case, the best approach is to start with some exploratory visualiza-

tion that presents a general overview of the data. After the general impression

is formed, the user can decide, based on particularities discovered in the general

view, which more specific, detailed visualization to use next, and thus which

more precise question to answer. This scenario follows a top-down pattern,

going from an overview to a detailed investigation. In the visualization field,

this type of investigation is sometimes referred to as the visualization mantra

of “overview, zoom, and details-on-demand,” as coined by Shneiderman [Card

et al. 99, Bederson and Shneiderman 03].

Finally, an important drive for visualizing data is sheer curiosity. Visualiza-

tion methods often produce unexpected and beautiful imagery from many exotic

types of data. Such images are intriguing and interesting to the eye. When

examined in more detail, they can lead researchers to discover unexpected and

valuable things about the processes and datasets at hand.

Examples. Figure 1.2 shows four examples of visualizations, each targeting dif-

ferent types of questions, and illustrating different visualization techniques. Fig-

ure 1.2(a) shows a visualization of average temperature and rainfall data over

Europe in July over the period 1960–1990. Temperature is shown by color (red

for large values, green for low values). Rainfall levels are indicated by the shaded

bumps, with the highest-looking bumps indicating maxima. The central bump

indicated by the arrow answers the question “where is the highest-rainfall re-

gion?” As this bump is green, we see that this region also has a mild tempera-

ture. Red, shallow bumps in the low part of the map show hot and dry regions.

This visualization is discussed next in Chapter 5, Section 5.4.1.

Figure 1.2(b) shows a visualization of fluid flow in a box. Fluid enters through

an inlet in the back, then flows and swirls inside the box, and exits through an

outlet in the front. The drawn tubes indicate paths of different fluid particles

as they advance from the inlet towards the outlet. Tubes are colored by the

flow speed (blue for low speeds, red for high speeds). To answer the question

“where are the fastest flow regions?,” we can look for the red-colored tubes. This

image also allows us to discover a potentially unknown phenomenon: Close to

the outlet, the flow splits into two distinct rotating layers, indicated by the two
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Figure 1.2. Visualization examples targeting different types of questions.

thick spiral-like tube bundles. Such an insight cannot be easily obtained without

actually depicting the flow. This visualization is discussed next in Chapter 6,

Section 6.5.3.

Figure 1.2(c) visualizes the population migration patterns in the United

States. Red dots indicate city locations on an imaginary map. Cities between

which there is some significant population migration are connected by black lines.

Next, lines are “bundled” together so that the coarse-scale population flows be-

tween regions in the country become better visible as thick black bundles. Such

bundles thus address the question “where and which are the main migration

flows?” This insight is hard to convey without a visual representation. This

visualization is discussed in Chapter 11, Section 11.4.2.

Figure 1.2(d) visualizes the changes in the open-source software repository

of the popular Mozilla Firefox browser between 2002 and 2006. Each horizontal

pixel line represents a file in this repository. Files are stacked vertically ordered

by their creation date, with older files at the bottom, and newer files at the

top. Each file pixel-line is cut into several segments, each segment representing
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a different version, or revision, of that file. Versions are colored by the identity

of the software developer who added them to the repository. Looking at the

emerging envelope (shown by the dashed curve), we see that the software grows

in time at a superlinear rate. Assuming the trend holds, we can thus predict

how large the software will be several months in the future. Separately, we see

a dominant green color on most of the files starting from 2004. This shows that

a major part of the contributions have come from a single developer (indicated

by the green color), thus answers the question “which are the most active devel-

oper(s)?” More generally, this visualization lets us correlate developer activity

with time periods and specific files, all in a single image. This visualization is

discussed in Chapter 11, Section 11.6.3.

Subfields of data visualization. Traditionally, data visualization has been struc-

tured along two main fields: scientific visualization and information visualization.

A third, newer field, called visual analytics has emerged in the past several years,

as a bridge between and also an extension of the former two fields. Below we

give a brief overview of these fields.

Scientific visualization: Visualization has emerged as a separate discipline in the

1980s of the last century, as a response to the increasingly large amount of data

generated by computer numerical simulations of various physical processes, such

as fluid flow, heat convection, or material deformations. As such, the attribute

“scientific” associated to its name reflected, at that time, the focus on visual-

ization solutions on providing insight into scientific simulations. Loosely put,

scientific visualization, or scivis for short, can be described as being “primarily

concerned with the visualization of three-dimensional phenomena (architectural,

meteorological, medical, biological, etc.), where the emphasis is on realistic ren-

derings of volumes, surfaces, illumination sources, and so forth, perhaps with a

dynamic (time) component” [Friendly 08]. A salient aspect of scientific visual-

ization is the depiction of datasets that have a natural spatial embedding, i.e.,

datasets whose elements or data points have positions with particular signifi-

cance in space. Figures 1.2(a,b) show two examples of scientific visualization.

In Figure 1.2(a), points represent geographical locations on a 2D map. In Fig-

ure 1.2(b), points represent locations in a 3D flow volume. Given this aspect,

scientific visualization has been, more recently, also known under the name of

spatial data visualization.

Information visualization: Besides spatial data, covered by scientific visualiza-

tion, many other data types exist whose data elements do not have prescribed
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spatial positions. Simple examples are relational datasets, such as trees, graphs,

and networks. Although such datasets require (like any other dataset) some spa-

tial representation in order to be drawn on a piece of paper or computer screen,

the spatial information is assigned to the data elements during the visualization

construction, rather than given by the data elements themselves. These data

types, including also tables, time series, documents, and software source code,

form the object of a separate branch called information visualization, or infovis

for short. The increase in number, size, and types of digital artifacts caused

by the information society in the last decade, sometimes known under the term

“big data,” has been a particular catalyst of the growth of interest in informa-

tion visualization. Figure 1.2(c) illustrates a type of information visualization

technique. The graph being shown can come from a geographical map, like in

our example, but can be also coming from any relational database.

Visual anaytics: Recognizing the need to combine visualization solutions with

data analysis and data mining front-ends, a new discipline has emerged from

the information visualization, scientific visualization, and data-mining commu-

nities: visual analytics. Briefly put, the central goal of visual analytics is to

provide techniques and tools that support end users in their analytical reasoning

by means of interactive visual interfaces [Wong and Thomas 04, Thomas and

Cook 05, Meyer et al. 12]. Although, at the current moment, no clearly de-

fined boundary exists between visual analytics and the more traditional infovis

and scivis fields it has emerged from, several aspects differentiate visual analyt-

ics from its predecessors. First, visual analytics focuses on the entire so-called

sensemaking process that starts with data acquisition, continues through a num-

ber of repeated and refined visualization scenarios (where interaction is heavily

involved to allow users to explore different viewpoints or test and refine different

hypotheses), and ends by presenting the insight acquired by the users on the

underlying phenomena of interest. As such, visual analytics is typically charac-

terized by a tight combination of data analysis, data mining, and visualization

technologies and tools. Separately, visual analytics typically focuses on processes

or datasets which are either too large, or too complex, to be fully understood

by a single (static) image. As such, data mining, multiple views, and interactive

and iterative visual inspection of the data are inseparable components of visual

analytics. Figure 1.2(d) shows a snapshot from a visual analytics process. Here,

the repository 2D view used can be seen as a classical infovis example. However,

to understand, or make sense, of the development process taking place during the

history of the studied software repository, several sorting and coloring options,

interactively chosen by the user, need to be applied.
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Figure 1.3. Conceptual view of the visualization process.

Interactive exploration. A further fundamental feature of visualizations is their

interactive aspect. The visualization process is rarely a static one. In most ap-

plications, there is a need to visualize a large amount of data that would not

directly fit on a single screen, a high-dimensional dataset containing a large num-

ber of independent data values per data point, or both. In such cases, displaying

a static image that contains all the data is not possible. Moreover, even when

this is possible, there usually are many ways of constructing the data-to-image

mapping, which the user might like to try out in order to better understand the

data at hand. All these aspects benefit from the use of interactive visualizations.

Such applications offer the possibility of modifying several parameters, ranging

from the view angle, zoom factor, and color usage to the type of visualization

method used, and observing the changes in the produced image. If the interact-

visualize-observe feedback loop (see Figure 1.3) is performed quickly enough, the

user effectively gets the sensation of “navigating” through the data, a feature

which strongly encourages and supports the exploration process. In particular,

interactive visualizations are a crucial component of the sensemaking loop in

visual analytics.

What type of insight can we expect from a visualization application, and what

should we not expect? How can we measure how much insight a given image

provides us into a certain process? And how can we construct visualization

applications that provide us with the most insight into a problem or dataset

of a given nature? To answer such questions, we must first understand how to

construct a visualization application, how to represent the various types of data

involved in the visualization process, how to set the various parameters of this

process, and how to interpret the results. These are the topics of the following

chapters.
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1.2 Positioning in the Field
Since data visualization knows a long history, and can be taught or approached

from many angles, it is important to position the material covered in this book

with respect to a number of other prominent visualization books in the current

literature. Without being exhaustive, we outline below how this book positions

itself with respect to a number of highly-visible titles in the current visualization

literature.

Interactive Data Visualization: Foundations, Techniques, and Applications. In

this recent book, Ward et al. present a broad overview of interactive data-

visualization techniques, with a strong focus on information visualization, in-

teraction, and design guidelines [Ward et al. 10]. The aims and scope of our

book is also somewhat different. [Ward et al. 10] focuses, for its largest part,

on teaching how to design a (new) visualization application. As such, exten-

sive space is dedicated to explaining the design process and design principles

that are behind the construction of visualization applications. Equal attention

is dedicated to the role and effective usage of interaction in the design of such

applications. Finally, the process of evaluation of visualization applications is

described in detail. Summarizing, [Ward et al. 10] adopts a top-down approach,

starting from the aims of visualization and working out towards the design, im-

plementation, and evaluation details of several techniques and algorithms. In

contrast, the current book positions itself earlier in the teaching and practice

workflow, and also adopts a more bottom-up approach. We focus more on spa-

tial data visualization, also known as scientific visualization (scivis), and less

on information visualization (infovis). Second, while [Ward et al. 10] focuses on

tasks and users, and works it way from there towards introducing algorithms and

techniques, we start by introducing fundamental data structures and algorithms,

and work our way up towards applications. Interaction and evaluation are only

briefly mentioned in our book, as we believe that these are more advanced mech-

anisms, to be studied only after the reader has achieved a good understanding

of the basic algorithms and data structures involved in crafting a visualization

application. Overall, we believe that our book is best positioned as support

for a broad introductory course on data visualization, while [Ward et al. 10]

can be used as support for a more advanced follow-up course on information

visualization.

The Visualization Toolkit. Companion to the immensely successful Visualization

Toolkit (VTK) software library, the fourth edition (2006) of this book represents

the standard guide for developers who wish to integrate VTK into their data-
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visualization applications [Schroeder et al. 06]. The VTK book serves a dual pur-

pose. On the one hand, it introduces the basic principles of data visualization in

terms of algorithms, visualization process pipeline, and dataset representations.

On the other hand, it shows how all these elements map to software implemen-

tations in the VTK library. The VTK book follows a structure largely similar

to our book—a computer graphics primer, data representation, fundamental al-

gorithms for various data types, and image processing. Advanced visualization

algorithms, web visualization, and visualization examples are treated in separate

chapters.

The aims and scope of our current book are different than [Schroeder et al. 06].

First and foremost, our intended audience aims to cover all students and practi-

tioners interested in using existing, and designing new, visualization applications,

whether using the VTK software as a basis or not. There are advantages and

disadvantages to this approach. On the one hand, learning data visualization by

using VTK guarantees a uniform way of designing one’s source code, and also the

availability of a wealth of already-implemented algorithms and data structures

ready to be used. On the other hand, the learning curve of VTK is, at times, far

from being gentle—students are supposed to be familiar with object-orientation

and, more importantly, invest a non-trivial amount of time into learning the

VTK programming interfaces and idioms before being able to design their own

visualization algorithms. In contrast, we emphasize less on code-level implemen-

tation details of visualization algorithms and data structures, but focus more on

the design rationale behind these algorithms, in an implementation-neutral fash-

ion. Overall, we believe that [Schroeder et al. 06] book can be best positioned

as a technical add-on to our book for professionals interested in developing vi-

sualization software based on the VTK toolkit, and partially for students who

need to complete visualization assignments using the same toolkit. Our book

and [Schroeder et al. 06] can be seen as complementary—the former serving as

an introduction to the theory of visualization, and the latter serving as a prac-

tical help for bridging theory and algorithmic concepts with a concrete software

implementation.

The Visualization Handbook. In this book, Hansen and Johnson take the chal-

lenge of presenting several state-of-the-art visualization techniques, with a main

focus on spatial data visualization (scivis) [Hansen and Johnson 05]. The book

follows a structure largely similar to our book, with chapters covering the visu-

alization of scalar, vector, and tensor data, and geometric or domain modeling.

Additional chapters cover large-scale data visualization, virtual environments,

and software frameworks for visualization. Finally, the book covers a set of



14 1. Introduction

selected topics on perception issues and applications of visualization in several

domains.

The book edited by Hansen and Johnson was, at its publication moment,

very well received as a necessary complement to an earlier edition of the VTK

handbook [Schroeder et al. 06]. The current book strives to complement the

more implementation-focused VTK handbook, though from a different perspec-

tive. The book of Hansen and Johnson is aimed at a more advanced public

in terms of visualization and computer graphics background—typically, PhD

students and professionals with basic knowledge of data visualization and an

extensive mathematical background. The focus is also more on research-grade

visualization methods and techniques presented in terms of novel algorithms

and/or refinements of classical algorithms in separate chapters, written by ex-

perts in each visualization subfield. As such, [Hansen and Johnson 05] is a good

example of a collection of “selected topics” in visualization. In contrast, our

book aims broadly at entry-level students and practitioners who are not famil-

iar with data visualization, may have a more limited mathematical background,

and want to first get familiar with the classical algorithms before studying more

involved topics.

Information Visualization Literature. Apart from the above, several books exist

on more focused topics within the visualization field. For information visualiza-

tion, the books of Ware [Ware 04] and Spence [Spence 07], both at their second

edition, give a detailed coverage of the theory, methods, techniques, and applica-

tion examples in the field of information visualization. In the same field, the book

of Card et al. provides an early, but very readable and instructive, overview of in-

formation visualization techniques and applications [Card et al. 99]. In contrast,

our book dedicates a single chapter (Chapter 11) to information visualization.

Also, we dedicate little space to the usage of interaction techniques and per-

ceptual issues. The main reason behind this difference is that the current book

aims to teach its readers to use existing visualization techniques, with a broad

focus on data visualization in general. In contrast, the books listed above focus

mainly on teaching their audience how to design new visualizations, with a more

specific focus on information visualization, and a “design by example” approach

based on case studies.

In the category of information visualization literature, the book of Tufte on

visual display of quantitative information represents a reference point [Tufte 01].

This book, aimed at designers of (new) visualizations, presents both a history of

graphical design from a visualization perspective, and also a set of good design

principles and potential pitfalls that should be considered when designing effec-
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tive visualizations. Although the focus stays mainly on the design of statistical

graphics, which can be seen as a part of information visualization, the discussed

design guidelines and examples are also relevant for scientific visualization at

large. In contrast to Tufte, where the picture design is central, we take in our

book a more data-and-algorithm centric approach, and focus more on data rep-

resentation and visualization algorithm details than on the design of the final

picture.

1.3 Book Structure
The organization of this book follows a bottom-up structure. We assume that

the reader has a minimal familiarity with computer graphics principles and tech-

niques and is interested in starting from this basis and working to understand

and eventually develop visualization methods. We introduce visualization tech-

niques and principles gradually. We start with the simplest ones, which require

just a minimal computer graphics and programming background. As the book

unfolds, more complex mathematical and algorithmic notions are introduced to

help readers understand the workings and trade-offs of advanced visualization

techniques. Each chapter covers one separate visualization topic by presenting

a number of visualization methods and algorithms for that topic. Just as the

chapters themselves, the algorithms in a chapter are introduced in an increasing

level of difficulty and specificity. We conclude several chapters by presenting a

selection of the most recent advances in the field of visualization, in the form of

one specialized, research-level algorithm or method.

Chapter 2. We begin, in Chapter 2, with a simple example that introduces data

visualization to the reader: drawing the graph of a function of two variables using

a height plot. We use this example to introduce several essential ingredients of

data visualization, such as sampling and the dataset concept, and also relate

visualization to computer graphics. These concepts are illustrated by easy-to-

follow C++ code fragments based on OpenGL. This chapter also serves as a

minimal (and thus limited) introduction to OpenGL.

Chapter 3. In Chapter 3, we continue our presentation of the dataset concept

by describing the most frequently used types of datasets in visualization. For

each dataset type, we describe its particular advantages, as well as its specific

requirements. We use the running example of the function height plot visual-

ization introduced in Chapter 2 to illustrate the various differences between the

presented dataset types. For each dataset type, we detail the implementation
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of several fundamental operations: sampling, interpolation, reconstruction, and

computing derivatives. After completing this chapter, the reader should have a

good understanding of the various trade-offs that exist between different dataset

types, be able to choose the right type of dataset for a given visualization prob-

lem at hand, and understand several aspects related to efficiently implementing

datasets in software.

Chapter 4. Chapter 4 presents the visualization pipeline, the popular data-driven

architecture used to construct most visualization applications nowadays. This

chapter has two goals. At a conceptual level, the reader is introduced to the

various data-processing stages that form the visualization process: data acqui-

sition, data filtering or enrichment, data mapping, and rendering. At an imple-

mentation level, the architecture of a visualization application, seen as a set of

data-processing algorithms interconnected by the datasets they read and write,

is explained. After completing this chapter, the reader should understand the

various steps involved in the construction of a particular visualization applica-

tion, ranging from the conceptual data-processing stages up to an actual high-

level software architecture specified in terms of interconnected algorithms and

datasets. Readers interested in implementing visualization applications can use

the practical information provided here as a guideline on how to structure the

high-level architecture of their applications in terms of computational modules

with decoupled functionality.

In the next seven chapters of the book (Chapter 5 up to Chapter 11), we

present the main visualization methods and algorithms that are used in practice

in visualization applications.

Chapters 5–7. The following three chapters (Chapters 5, 6, and 7) discuss visu-

alization methods for the most common data types in the visualization practice,

ordered in increasing level of difficulty, i.e., scalars, vectors, and tensors, respec-

tively.

Chapter 8. Chapter 8 presents domain-modeling techniques, which encompass

those visualization techniques that manipulate both the data attributes and the

underlying domain sampling, or grid, these live on. In particular, we discuss

algorithms for domain resampling, grid-less interpolation, and construction of

sampled representations from unstructured point sets.

Chapter 9. Chapter 9 is an overview of image visualization methods and dis-

cusses the particularities of image data, i.e., scalars sampled on uniform two-
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dimensional grids. Here, specific techniques for image data are discussed, such

as edge detection, histogram normalization, segmentation, and shape represen-

tation and analysis.

Chapter 10. Chapter 10 discusses volume visualization techniques, which target

three-dimensional scalar fields sampled on uniform grids. Although the image

and volume techniques presented in Chapters 9 and 10 can be seen as particular

forms of scalar visualization, we discuss them separately, as image and volume

visualization are, by themselves, vast research and application fields, which have

developed many particular techniques suited to their specific data and goals.

Chapter 11. Chapter 11 switches the focus from the visualization of scientific

datasets, which typically come from the sampling of continuous functions over

compact spatial domains, to the visualization of information, or infovis. The

infovis field targets the visual understanding of more general datasets such as

text, database tables, trees, and graphs. As such, datasets need not be the

result of a sampling process of some continuous signal defined over some spatial

domain, many specific visualization methods have been developed to cope with

the increased level of abstraction of the data. Given the sheer size of this field, as

well as the focus of this book on the visualization of scientific datasets, Chapter 11

provides only a brief incursion in the field of infovis. Several differences between

scientific and information visualization are highlighted in order to give the reader

some insight on the particular challenges that the infovis field is confronted with.

Algorithms for the visualization of tables, trees, static and dynamic graphs,

multivariate data, and program source code text are discussed.

Chapter 12. Chapter 12 concludes the book, outlining current development di-

rections in the field of visualization.

Appendix. The appendix provides an overview of existing popular visualization

software systems. First, we present a classification of the different types of vi-

sualization systems from a software architecture perspective (Section A.1). The

purpose of this classification is to emphasize some important choices that influ-

ence the construction of visualization systems. Next, a selection of representative

visualization software systems is presented in the areas of scientific visualiza-

tion, imaging, and information visualization (Sections A.2–A.5). Although not

exhaustive, this overview should give the interested reader a starting point to

search further for existing software that best matches a given set of requirements

for a given application domain.
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After completing this book, the reader should have a good impression of the

palette of existing techniques for visualizing the various types of datasets present

in the scientific visualization practice, the various trade-offs involved with each

technique, and some of the main issues involved in the efficient implementation

of the presented techniques into actual software. More advanced readers should,

at this point, be able to implement functional, albeit simple, versions of several

of the visualization algorithms discussed in this book. However, this book is

not about implementing visualization algorithms. Readers interested in this

topic should consult the specialized literature describing the design and use of

visualization software toolkits [Schroeder et al. 06, Kitware, Inc. 04]. The aim

of this book is to present an overview of data-visualization methods and teach

the reader about the various trade-offs involved in the design of such methods,

ranging from modeling issues to visual presentation and software design. But

above all, we feel that this book has reached its goal if it inspires the reader to

further study and explore the exciting world of visualization.

1.4 Notation
Throughout the book, we shall use the following notation conventions. Scalars

and position vectors are denoted using italics, e.g., x, y. Direction vectors are

denoted using bold, e.g., p, q. Continuous domains, such as surfaces in 3D,

are denoted by calligraphic letters, e.g., S. Discrete domains, such as datasets

containing data sampled on grids, are denoted by uppercase letters, e.g., S.

Finally, pseudocode and C++ code fragments are written using computer font,

e.g., printf.

1.5 Online Material
This book has an accompanying website:

http://www.cs.rug.nl/svcg/DataVisualizationBook

The website contains exercises, advanced examples, project suggestions, and

practice exam questions (with answers) to expand or test your understanding of

the topics covered in the book. Datasets and source code are provided.

Exercises include “exploration” visualizations that illustrate basic visualiza-

tion techniques discussed in the book. Using the provided ParaView scripts and

additional datasets, one can change parameters to explore various aspects of
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the data and also the visualization algorithms being illustrated. These exercises

are easy to use and require no programming. They can be used for individual

exploration or for additional course material (e.g., tutorials or lab sessions).

More complicated visualization techniques are addressed in advanced exam-

ples that consist of code fragments (in C or C++). These examples require

compilation and possibly some code changes. They can serve as the basis for

laboratory sessions in which students modify and/or extend the presented visu-

alization algorithms.

Potential exam questions (without answers) are also available. Upon request,

solutions will be made available to qualified instructors.

Finally, project proposals describe several larger-scale projects that cover a

combination of visualization algorithms. Each project can form the basis of a

practical assignment used in conjunction with a course, to test the students’ abil-

ities to design, implement, and demonstrate a larger piece of work. In contrast

to the advanced examples, projects do not offer code fragments, and leave more

freedom in terms of design and implementation choices.
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Chapter 2

From Graphics
to Visualization

FOR many readers of this book, data visualization is probably a new subject.

In contrast, computer-graphics techniques, or at least the term “computer

graphics,” should be familiar to most readers. In both visualization and graphics

applications, we take as input some data and, ultimately, produce a picture that

reflects several aspects of the input data. Given these (and other) similarities,

a natural question arises: What are the differences between visualization and

computer graphics? We shall answer this question in detail in Chapter 4. For the

time being, it is probably easier to focus on the similarities between visualization

and computer graphics. This will help us answer the following question: What

is the role of computer graphics techniques in visualization?

This chapter introduces data visualization in an informal manner and from

the perspective of computer graphics. We start with a simple problem that

every reader should be familiar with: plotting the graph of a function of two

variables f(x, y) = z. We illustrate the classical solution of this problem, the

height plot , in full detail. For this, we shall use code fragments written in the

C++ programming language. For the graphics functionality, we use the popular

OpenGL graphics library.

This simple example serves many functions. First, it illustrates the complete

visualization process pipeline, from defining the data to producing a rendered

image of the data. Our simple example introduces several important concepts

of the visualization process, such as datasets, sampling, mapping, and render-

21
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ing. These concepts will be used to build the structure of the following chap-

ters. Second, our example introduces the basics of graphics rendering, such as

polygonal representations, shading, color, texture mapping, and user interaction.

Third, the presented example will make the reader aware of various problems

and design trade-offs that are commonly encountered when constructing real-life

visualization applications. Finally, our example application illustrates the tight

connection between data visualization and computer graphics.

After reading this chapter, the reader should be able to construct a simple vi-

sualization example using just a C++ compiler and the OpenGL graphics library.

This example can serve as a starting point from which the reader can implement

many of the more advanced visualization techniques that are discussed in later

chapters.

2.1 A Simple Example
We start our incursion in the field of data visualization by looking at one of

the simplest and most familiar visualization problems: drawing the graph of a

real-valued function of two variables. This problem is frequently encountered

in all fields of engineering, physics, mathematics, and business. We assume we

have a function f : D → R, defined on a Cartesian product D = X × Y of two

compact intervals X ⊂ R and Y ⊂ R, f(x, y) = z. The graph of the function is

the three-dimensional (3D) surface S ∈ R
3, defined by the points of coordinates

(x, y, z). In plain words, visualizing the function f amounts to drawing this

surface for all values of x ∈ X and y ∈ Y. Intuitively, drawing the surface S can

be seen as warping, or elevating, every point (x, y) inside the two-dimensional

(2D) rectangular area X×Y to a height z = f(x, y) above the xy plane. Hence,

this kind of graph is also known as a warped plot, height plot, or elevation plot.

Most engineering and scientific software packages provide built-in functions to

draw such plots.

However simple, this visualization yields several questions: How should we

represent the function f and the domains X and Y of its variables? How should

we represent the surface S to visualize? How many points are there to be drawn?

What kind of graphics objects should we use to do the drawing? Essentially, all

these questions revolve around the issue of representing continuous data, such

as the function f , surface S, and variable domains X and Y , on a computer.

Strictly speaking, to draw the graph, we should perform the warping of (x, y, 0)

to (x, y, f(x, y)) for all points (x, y) in D. However, a computer algorithm can

perform only a finite number of operations. Moreover, there are only a finite
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Figure 2.1. Elevation plot for the function f(x, y) = e−(x2+y2) drawn using 30 × 30
sample points.

number of pixels on a computer screen to draw. Hence, the natural way to

generate an elevation plot is to draw the surface points (xi, yi, f (xi, yi)) that

correspond to a given finite set of sample points {xi, yi} in the variable domain

D. Figure 2.1 shows the pseudocode of what is probably the most-used method

to draw an elevation plot. We sample the function definition domain X×Y with

a set of Nx points placed at equal distances dx in X, as well as Ny points placed

at equal distances dy in Y. Figure 2.1 shows the elevation plot for the Gaussian

function f(x, y) = e−(x2+y2), defined on X×Y = [−1, 1]× [−1, 1], using Nx = 30,

Ny = 30 sample points. The sample domain is drawn framed in red under the

height plot.

Using equally spaced points, regularly arranged in a rectangular grid, as the

pseudocode in Listing 2.1 does, is an easy solution to quickly create a height

plot. This samples the function domain D uniformly, i.e., uses the same sample

point density everywhere. In addition to its simplicity, the uniform sampling

permits us to approximate the graph of the function, the surface S, with a set

of four-vertex polygons, or quadrilaterals, constructed by consecutive sample

points in the x and y directions, as shown in Listing 2.1. This serves us well, as

every modern graphics library provides fast mechanisms to render such polygons,

also called graphics primitives. Our pseudocode uses a simple C++ class Quad

to encapsulate the rendering functionality. To draw a Quad, we first specify
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f l o a t X min ,X max ; //X = [X min,X max]
f l o a t Y min ,Y max ; //Y = [Y min,Y max]
i n t N x , N y ;
f l o a t dx = (X max−X min )/( N x−1); //x size of a ce l l
f l o a t dy = (Y max−Y min )/( N y−1); //y size of a ce l l
f l o a t f ( f l o a t , f l o a t ) ; //the function to visual ize

f o r ( f l o a t x=X min ; x<=X max−dx ; x+=dx)
f o r ( f l o a t y=Y min ; y<=Y max−dy ; y+=dy)
{

Quad q ;
q . addPoint (x , y , f ( x , y ) ) ;
q . addPoint ( x+dx , y , f ( x+dx , y ) ) ;
q . addPoint ( x+dx , y+dy , f ( x+dx , y+dy ) ) ;
q . addPoint (x , y+dy , f ( x , y+dy ) ) ;
q . draw ( ) ;

}
Listing 2.1. Drawing a height plot.

its four 3D vertices using its addPoint method, and then we draw() it. An

implementation of the Quad class using the OpenGL graphics library is presented

in Section 2.3.

In our visualization, we assumed we could evaluate the function f to visualize

at every desired point in its domain D. However, this assumption might be

too restrictive in practice. For example, the values of f may originate from

experimental data, measurements, simulations, or other data sources that cannot

be or are too expensive to be evaluated during the visualization process. In such

cases, the natural solution is to explicitly store the values of f in a data structure.

This data structure is then passed to the visualization method. For our previous

example, this data structure needs to store only the values of f at our regularly

arranged sample points. For this, we can use a simple data structure: a matrix

of real numbers. The modified visualization method that uses this data structure

as input, instead of the function f , is shown in Listing 2.2.

The data generation, i.e., the construction of the matrix data, and visualiza-

tion, i.e., the algorithm in Listing 2.2, are now clearly decoupled. This allows us

to use our height-plot visualization with any algorithm that produces a matrix

of sample values, as described previously. The matrix data, together with the

extra information needed for drawing, i.e., the values of Xmin, Xmax, Ymin, Ymax,

Nx, and Ny forms a fundamental concept in data visualization, called a dataset.

A dataset represents either a sampling of some originally continuous quantity,

like in the case of our function f(x, y), or some purely discrete quantity. An

example of the latter is a page of text, which can be represented by a vector,
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f l o a t X min ,X max ;
f l o a t Y min ,Y max ;
i n t N x , N y ;
f l o a t dx = (X max−X min )/( N x−1); //x size of a ce l l
f l o a t dy = (Y max−Y min )/( N y−1); //y size of a ce l l
f l o a t data [ N x ] [ N y ] ; //the dataset to visual ize

f o r ( i n t i =0; i<N x−1; i++)
f o r ( i n t j =0; j<N y−1; j++)
{

f l o a t x = X min+i ∗dx , y = Y min+j ∗dy ;
Quad q ;
q . addPoint (x , y , data [ i ] [ j ] ] ) ;
q . addPoint (x+dx , y , data [ i +1] [ j ] ) ;
q . addPoint (x+dx , y+dy , data [ i +1] [ j +1 ] ) ;
q . addPoint (x , y+dy , data [ i ] [ j +1 ] ) ;
q . draw ( ) ;

}
Listing 2.2. Drawing a height plot using a sampled dataset.

or string, of characters, i.e., a char data[N x], a spreadsheet, or a database

table containing, e.g., non-numerical attributes. These attributes can in turn

be represented as a matrix char data[N x][N y] of objects of type T , where T

models the attribute type. Various data types, such as temperature and pressure

fields measured by weather satellites or computed by numerical simulations; 3D

medical images acquired by magnetic resonance imaging (MRI) and computed

tomography (CT) scanners; and multidimensional tables emerging from business

databases are represented by different types of datasets. Datasets form the input

and output of the algorithms used in data visualization, like the function sam-

pling and elevation-plot algorithms discussed in our simple function visualization

example. These aspects are discussed in detail in Chapters 3 and 4.

Let us go back to our elevation plot. The numbers of samples to be used,

i.e., N x and N y, are parameters to be chosen by the user. The question arises:

What are optimal values for these parameters? By using more samples, the

quality of the discrete representation, the data matrix, and subsequently the

quality of the visualization, can only increase, reaching the continuous case in

the limit when N x and N y tend to infinity. However, this poses increasing

storage requirements for the dataset (the data matrix) and computing power

requirements for the visualization method. On the other hand, choosing too few

samples yields a fast, low-memory, but also low-quality visualization. Figure 2.2

illustrates this with a visualization of the same function as before, this time with

N x=10 and N y=10 samples.
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Figure 2.2. Elevation plot for the function f(x, y) = e−(x2+y2). A coarse grid of 10× 10
samples is used.

Comparing this image with the previous one (Figure 2.1), we see that reduc-

ing the sample density yields a worse approximation of the surface S. This is

especially visible close to the center point x = y = 0. Basically, our rendered

surface approximates the continuous one with a set of quadrilaterals determined

by the sample point locations and function values. The quality of this approx-

imation is determined by how close this piecewise bilinear approximation, as

delivered by our set of rendered quadrilaterals, is to the original continuous

surface S. The question is thus how to choose the sample locations so that we

achieve a good approximation with a given sample count, i.e., given memory and

speed constraints. The answer is well known from signal theory [Ambardar 06]:

The sampling density must be proportional to the local frequency of the original

continuous function that we want to approximate. In practice, this means using

a higher sample density in the areas where the function’s higher-order derivatives

have higher values.

To emphasize the importance of choosing a good sampling density, let us

consider now a different function

g(x, y) = sin

(
1

x2 + y2

)
.

The speed of variation, or frequency, of this function increases rapidly as we
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(a) (b)

Figure 2.3. Elevation plot for the function f(x, y) = sin
(

1
x2+y2

)
, rendered using (a) a

uniform grid of 100× 100 samples and (b) an adaptively sampled grid.

approach the origin x = y = 0.1 Figure 2.3(a) shows the elevation plot of this

function constructed from a grid of 100 by 100 samples. Even though this plot

has roughly 10 times more sample points than the one shown in Figure 2.1 for

the Gaussian function, the resulting quality is clearly poor close to the origin.

There are two solutions to alleviate this problem. First, we can increase the

sampling density everywhere on the grid. However, this wastes samples points

in the smooth areas, i.e., far away from the origin.

A better solution is to make the sampling density variable, for example,

inversely proportional to the distance from the origin. Figure 2.3(b) shows the

result of the nonuniform sampling density. Although we use as few samples as

in the low-density, uniform-sampling approach (Figure 2.3(a)), the quality of

the result is now visibly much higher in the central area. However, this quality

comes at a price. It is now no longer possible to determine the sample point

positions from the function domain extents and sample counts, as the density

is nonuniform. Hence, we must explicitly store the sampling point positions

together with the function samples in the dataset.

As we shall see in Chapter 3, several types of datasets permit the creation

of such nonuniformly sampled grids, which offer different trade-offs between the

freedom of specification of the sample positions, the storage costs, and the im-

plementation complexity.

1We shall ignore, for simplicity, the fact that the function is not defined for the point
x = y = 0.
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2.2 Graphics-Rendering Basics

In the next sections, we discuss how we actually render, or draw, the height plot

constructed from our sampled dataset. For this, we first briefly cover the basics

of graphics rendering in this section. Computer graphics is an extensive subject

whose theory and practice deserves to be treated as a separate topic, and in a

separate book. In this section, we shall sketch only the basic techniques used

in a simple computer graphics application. Fortunately, these techniques are

sufficient to illustrate and even implement a large part of the data-visualization

algorithms discussed in this book, starting with our height-plot visualization ex-

ample. In later chapters, we shall introduce several more advanced computer

graphics techniques, such as the use of transparency and textures, when present-

ing specific visualization methods that require them in their implementation.

Rendering equation. Graphics-rendering generates computer images of 3D scenes,

or datasets. The ingredients of this process are a 3D scene (or set of 3D objects),

a set of lights, and a viewpoint. Essentially, the process can be described as the

application of a rendering equation at every point of the given dataset. For a

given point, the rendering equation describes the relationship between the in-

coming light, the outgoing light, and the material properties at that point. In

general, the rendering equation has a complex form [Foley et al. 95]. Solving the

rendering equation computes the outgoing light, or illumination, for every point

of a 3D scene, given the scene, light set, and viewpoint.

In practice, several rendering equations are used, which can approximate

lighting effects to various degrees of realism. Two known approximations are the

radiosity methods, which are good at producing soft shadows [Foley et al. 95,

Sillion 94], and ray-tracing methods, which are good at simulating shiny sur-

faces, mirror-like reflections, and precise shadows [Foley et al. 95, Shirley and

Morley 03]. However, both radiosity and ray-tracing methods are relatively ex-

pensive to compute, even for simple 3D scenes. The reason behind this is that

the rendering equations used by such methods relate the illumination of a given

point to the illumination of several, potentially many, other points in the scene.

For this reason, such methods are also called global illumination methods. Hence,

solving for the complete scene illumination amounts to solving a complex system

of per-point rendering equations.

A more efficient approach is to simplify the rendering equation to relate the

illumination of a given scene point only, and directly, to the light set. Such

approaches are called local illumination methods, since the rendering equation

solves for the illumination locally for every scene point. We shall present a local
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Figure 2.4. The Phong local lighting model.

illumination method that is implemented by the rendering back-ends of most

visualization systems nowadays, such as the OpenGL library. This method, also

known as the Phong lighting method, assumes the scene to be rendered to consist

of opaque objects in void space, illuminated by a point-like light source. Hence,

the lighting has to be computed only for the points on the surfaces of the objects

in the scene. Phong lighting is described by Equation (2.1):

I(p,v,L) = camb + Il (cdiff max(−L · n, 0) + cspecmax(r · v, 0)α) . (2.1)

Here, p is the position vector of the surface point whose lighting we compute,

n is the surface normal at that point, v is the direction vector from p to the

viewpoint we look at the scene from, Il is the intensity of the light, L is the

direction the scene light illuminates p, and r is the reflection vector (see also

Figure 2.4):

r = L− 2(L · n)n. (2.2)

Depending on the light source model, L takes different values. For a light

source placed infinitely far away from the scene objects, also called a directional

light, L is simply a direction vector. For an infinitely small light source located

at some point l, equally shining in all directions, also called a point-like light, L

is the unit-length vector in the direction p− l.

The lighting model in Equation (2.1) is a linear combination of three compo-

nents: ambient, diffuse, and specular, whose contributions are described by the

weighting coefficients camb, cdiff, and cspec, respectively, which are in the range
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[0, 1]. Ambient lighting is essentially a constant value. This is a rough estimate

of the light reflected at the current point that is due to indirect illumination, i.e.,

light reflected onto the current point by all other objects in the scene. Diffuse

lighting, also known as Lambertian reflection, is proportional to the cosine of the

angle between the light direction −L and the surface normal n, or the vector

dot product −L · n. This models the equal scattering of incoming light in all

directions around the surface normal. Diffuse lighting simulates the appearance

of plastic-like, matte surfaces, and does not depend on the viewpoint. Finally,

specular, or mirror-like, lighting is proportional to the cosine of the angle between

the reflected light direction r and view direction v, raised to a specular power

α. This models the scattering of the incoming light in directions close to the

perfect mirror reflection direction r. Specular lighting simulates the appearance

of shiny, or glossy, surfaces, such as polished metal, and is viewpoint-dependent.

There is, so far, no color introduced in the lighting equation (2.1). This

equation describes the interaction of light of a given color, or wavelength, with a

surface. In other words, the factors camb, cdiff, cspec, and Il are all functions of the

color. As we shall see next in Section 2.3, color can be modeled as a set of three

intensities R, G, and B, corresponding to the red, green, and blue wavelengths

respectively. Hence, in practice, Equation (2.1) is applied three times, so each

of its factors will have three values, e.g., cRamb, c
G
amb, c

B
amb, and similarly for the

other factors.

Ideally, the rendering equation should be applied at every point of every

object surface in a given scene. However, as we shall see in the next section, it

might be more practical and/or efficient to evaluate the rendering equation only

at a few surface points and use faster methods to compute the illumination of

the in-between points.

2.3 Rendering the Height Plot
Rendering the datasets discussed in Section 2.1 using the height-plot method

relied upon our Quad class, which draws a 3D quadrilateral, specified by its four

vertices. We can implement this class easily using the OpenGL graphics library,

following the basic rendering model presented in Section 2.2. The implementa-

tion is shown in Listing 2.3.

Flat shading. As explained in Section 2.2, OpenGL applies the rendering equa-

tion at a subset of the points of a given surface and uses the resulting illumination

values to render the complete surface. The simplest, and least expensive, render-
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c l a s s Quad
{
publ i c :

Quad ( )
{ glBegin (GL QUADS} ; }

void addPoint ( f l o a t x , f l o a t y , f l o a t z )
{ g lVer tex3 f (x , y , z ) ; }

void draw ( )
{ glEnd ( ) ; }

} ;
Listing 2.3. Drawing a quadrilateral using OpenGL.

ing model provided by OpenGL is flat shading. Given a polygonal surface, flat

shading applies the lighting model (Equation (2.1)) only once for the complete

polygon, e.g., for the center point, and then uses the resulting color to render the

whole polygon surface. The polygon normal can be computed automatically by

OpenGL from the polygon vertices. The polygon is assumed to be a flat surface,

so its normal is constant. This implies a constant shading result following Equa-

tion (2.1), hence the name “flat shading.” In OpenGL, the flat shading mode is

selected by the function call

glShadeModel (GL FLAT) ;

Several results of flat-shaded height plots using quadrilaterals implemented by

the Quad class were shown in the previous section.

In order to apply Phong lighting (Equation (2.1)), we must specify the am-

bient, diffuse, and specular coefficients camb, cdiff, and cspec. OpenGL offers a

rich set of mechanisms to specify these coefficients, which we shall not detail

here. The simplest way to control the appearance of a drawn object is to set

its material color. If we use the default white light provided by OpenGL, this

is equivalent to setting the diffuse factor cdiff in Equation (2.1). Setting the

material color is accomplished by the function call

g lCo l o r 3 f (r ,g ,b ) ;

where the color is specified by the RGB model using three floating-point val-

ues r, g, b in the range [0, 1]. The RGB color model is described in detail in

Section 3.6.3. Note that the color specified by glColor3f affects all drawing

primitives issued after that moment and until a new color specification is issued.
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Hence, to create the height plot shown in Figure 2.1, it is sufficient to issue a

single glColor3f call before all the quads are drawn. The green color shown in

the figure corresponds to the setting r = 0.3, g = 0.8, b = 0.37.

Besides specifying the object color, we must specify the light intensity and

direction, i.e., the parameters Il and L in Equation (2.1). In OpenGL, lights

are specified by a number of function calls. First, OpenGL must be set up to

use the Phong lighting equation, by enabling the lighting mechanism. OpenGL

supports several light sources (most implementations provide at least eight of

them). The next step is to enable one of the light sources, say the first one.

These two operations are accomplished by the function calls

glEnable (GL LIGHTING ) ;
g lEnable (GL LIGHT0 ) ;

After lighting and the desired light(s) are enabled, we can specify the light

intensity. As explained in the previous section, OpenGL uses a three-component

light model, so the Phong lighting model (Equation (2.1)) is applied three times.

Moreover, OpenGL allows us to separately specify the amount of light that

interacts with the ambient, diffuse, and specular material components. Putting

it all together, the lighting equations used by OpenGL are

IR(p,v,L) = IRambc
R
amb + IRdiffc

R
diffmax(−L · n, 0)

+ IRspecc
R
specmax(r · v, 0)α,

IG(p,v,L) = IGambc
G
amb + IGdiffc

G
diffmax(−L · n, 0)

+ IGspecc
G
specmax(r · v, 0)α,

IB(p,v,L) = IBambc
B
amb + IBdiffc

B
diffmax(−L · n, 0)

+ IBspecc
B
specmax(r · v, 0)α.

(2.3)

Here, the superscripts R, G, and B denote the color components. The triplet

(IRamb, I
G
amb, I

B
amb) specifies the amount (intensity) of light that interacts with the

ambient material component (cRamb, c
G
amb, c

B
amb), and is specified by the function

call

g lL i gh t f v (GL LIGHT0 , GL AMBIENT, I ) ;

Here, I = (IRamb, I
G
amb, I

B
amb) is a vector of three floating-point values. The same

function can be used to specify the diffuse and specular light intensities for all
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lights by replacing GL AMBIENT with GL DIFFUSE and GL SPECULAR, respectively,

and replacing GL LIGHT0 with the desired light name.

Finally, we must specify the direction and position of the light (see Sec-

tion 2.2). This is achieved by the function call

g lL i gh t f v (GL LIGHT0 ,GL POSITION , p ) ;

Here p = (px, py, pz, pw) is a vector of four floating-point values. If the fourth

value pw is zero, the light is directional with the direction L = (px, py, pz). If pw is

not zero, the light is point-like, its position being given by (px/pw, py/pw, pz/pw).

However attractive, this rendering of the surface approximation has several

limitations. Probably the most salient one is the “faceted” surface appearance,

due to its approximation by flat-shaded quadrilaterals. This artifact is visi-

ble even when we use a relatively densely sampled dataset, such as the one in

Figure 2.2. When using flat-shaded polygons, removing this visual artifact com-

pletely for a height plot of an arbitrary function implies rendering polygons with

a size of one pixel. In our setup, this implies, in its turn, using a prohibitively

high sampling density. Just to give an impression of the costs, on a screen of

640 × 480 pixels, this strategy would require rendering over a hundred thou-

sand polygons, and computing and storing a dataset of over a hundred thousand

sample points, i.e., a memory consumption of a few hundred kilobytes, all for a

simple visualization task.

Smooth shading. We can easily improve on this by using Gouraud shaded , or

smoothly shaded, quads. Gouraud shading assumes the surface represented by

the quad to have a non-constant normal—specifically, every quad vertex can

have a distinct normal vector. This is a simple approximation of a real smooth

surface, whose normal would, in general, vary at every surface point. Gouraud

shading applies the lighting model (Equation (2.1)) at every quad vertex, using

the respective vertex normal, yielding potentially four different colors. Next,

all quad pixels are rendered with a color that smoothly varies between the four

vertex colors resulting from the shading, using a technique called interpolation.

Interpolation is described in greater detail in Chapter 3. Figure 2.5 shows the

result of Gouraud shading applied to the same dataset rendered in Figure 2.1

with flat shading. In OpenGL, the smooth shading mode is selected by the

function call

glShadeModel (GL SMOOTH) ;
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Figure 2.5. Elevation plot for the function f(x, y) = e−(x2+y2) (Gouraud shaded).

To perform Gouraud shading, we must add vertex normal information to our

Quad class. This is easily done by adding an extra method to this class:

void Quad : : addNormal ( f l o a t ∗ n)
{ glNormal3f (n [ 0 ] , n [ 1 ] , n [ 2 ] ) ; }

which specifies a normal vector n = (nx, ny, nz) for every quad vertex. In

OpenGL, specifying a vertex normal should be done before the specification

of the vertex itself. In our case, addNormal() should be called right before

addVertex() for that respective vertex.

The next step is to compute the actual vertex normals for our surface. The

computing method depends on how the surface is specified. If the surface is spec-

ified analytically, e.g., by a function, we can proceed as follows. From analysis,

we know that a vector normal to the graph of f , i.e., to our surface, is given by

n =

(
−∂f
∂x
,−∂f

∂y
, 1

)
. (2.4)

The vector n is related to another important mathematical concept called the

gradient . Given a function f : R2 → R, the gradient of f , denoted ∇f , is the

vector

∇f =

(
∂f

∂x
,
∂f

∂y

)
. (2.5)
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f l o a t f ( f l o a t , f l o a t ) ; //the function to visual ize
f l o a t ∗ n( f l o a t , f l o a t ) ; //the normal of f at (x ,y)

f o r ( f l o a t x=X min ; x<=X max−dx ; x+=dx)
f o r ( f l o a t y=Y min ; y<=Y max−dy ; y+=dy)
{

Quad q ;
q . addNormal (n (x , y ) ) ;
q . addPoint (x , y , f (x , y ) ) ;
q . addNormal (n (x+dx , y ) ) ;
q . addPoint (x+dx , y , f ( x+dx , y ) ) ;
q . addNormal (n (x+dx , y+dy ) ) ;
q . addPoint (x+dx , y+dy , f ( x+dx , y+dy ) ) ;
q . addNormal (n (x , y+dy ) ) ;
q . addPoint (x , y+dy , f (x , y+dy ) ) ;
q . draw ( ) ;

}
Listing 2.4. Drawing a Gouraud-shaded height plot.

For functions with more variables, the gradient is defined analogously. Intu-

itively, the gradient of f is a vector that indicates, at every point in the domain

of f , the direction in the domain in which f has the highest increase at that

point. We shall encounter numerous applications of the gradient in the following

chapters.

In our example, f(x, y) = e−(x2+y2), so the vector v = (−2xf,−2yf, 1) has

the same direction as the normal, though not the same length. We can thus

compute the normal n by normalizing v:

n =

(
− 2xf√

4x2f2 + 4y2f2 + 1
,− 2yf√

4x2f2 + 4y2f2 + 1
,

1√
4x2f2 + 4y2f2 + 1

)
.

(2.6)

We can now draw the Gouraud-shaded height plot in Figure 2.5 using the

code in Listing 2.4. Here, n is a function that computes the normal n of the

original function f at a given point (x, y), i.e., implements Equation (2.6).

Computing vertex normals. The normal computation method described previ-

ously works for any function for which we can compute its partial derivatives

analytically, as in Equation (2.4). However, as discussed in Section 2.1, our

function may not be specified analytically, but as a sampled dataset. Still, in

practice, we can perform Gouraud shading of sampled (e.g., polygonal) datasets

using a simple technique called normal averaging. For every sample point pi,

denote by P1..PN all polygons that have pi as a vertex. We define the vertex

normal ni at pi as the average of all polygon normals n(Pj) that have pi as a
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vertex:

ni =

∑
Pj

n(Pj)

N
. (2.7)

Intuitively, Equation (2.7) says that the direction of the vertex normal ni is

somewhere between the normals of the polygons Pj that share that vertex. For

our height-plot example, the resulting Gouraud shading obtained using a nor-

mal vertex computed by averaging is practically identical to the one shown in

Figure 2.5, which uses analytically computed normals.

Sometimes, however, averaging the polygon normals does not produce good

results. The averaging in Equation (2.7) makes every polygon normal n(Pj)

contribute equally to ni. However, some surfaces can contain polygons of highly

variable sizes in the same neighborhood, e.g., sharing the same vertex. In this

case, a more natural shading effect can be obtained by making the influence

of a polygon on the vertex normals, and thus on the Gouraud shading of the

surface, proportional to the polygon size. This can be easily achieved by using

an area-weighted normal averaging, i.e.,

ni =

∑
Pj
A(Pj)n(Pj)∑
Pj
A(Pj)

, (2.8)

where A(Pj) is the area of polygon Pj .

In Section 3.9.1, we shall elaborate further on the connection between normal

averaging and data resampling.

2.4 Texture Mapping
Extra realism can be added to rendered 3D models by using a technique called

texture mapping . The flat-shaded rendering mode described so far assigns a single

color to a polygon. The Gouraud-shaded mode assigns to every polygon pixel a

color that is linearly interpolated from the polygon vertex colors. Such techniques

are limited in conveying the large amount of small-scale detail present in real-

life objects, such as surface ruggedness or fiber structure that are particular to

various materials, such as wood, stone, brick, sand, or textiles. Texture mapping

is an effective technique that can simulate a wide range of appearances of such

materials on the surface of a rendered object. As we shall see later in Chapters 6

and 9, texture mapping is at the core of the implementation of a variety of

visualization techniques.

To illustrate the basic principle of texture mapping, let us look at a simple

example. Figure 2.6(a) shows a 2D texture—in this case, a checkerboard-like
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Figure 2.6. Texture mapping. (a) Texture image. (b) Texture-mapped object.

monochrome image. Figure 2.6(b) shows the effect of mapping the texture onto

the 3D surface of our Gaussian height plot discussed earlier in this chapter. The

texture-mapping process works as follows. First, imagine that the texture image

is defined in a 2D coordinate system (s, t). Usually, s and t range between 0

and 1 and span the complete texture image, as shown in the figure. Hence, we

can describe a monochrome texture as a function tex(s, t) : [0, 1]× [0, 1]→ [0, 1],

where the function value gives the luminance, or brightness, of each texture

pixel. Next, we define, for every vertex of the rendered polygons, two texture

coordinate values s and t. Intuitively, a polygon’s vertex texture coordinates

specify a part of the texture image that is next warped to match the size and

shape of the polygon and finally is drawn on that polygon. When a polygon is

rendered, its vertex texture coordinates are interpolated at every pixel, similarly

to the color interpolation performed by Gouraud shading. The pixel is next

rendered using a combination of the polygon color and texture color tex(s, t).

Putting it all together, we can see the entire texture-mapping procedure as a

function T that maps a pixel from the surface of the rendered object to another

pixel in the texture image tex.

The simple texture-mapping functionality described here and shown in Fig-

ure 2.6 can be implemented in OpenGL by the following steps. First, we must

define a 2D texture. The easiest way to do this is to start from a monochrome

image stored as an array of unsigned chars, which can be, e.g., read from an im-

age file or defined procedurally. The following code fragment creates an OpenGL
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texture from the image image that has width × height pixels. First, we enable

texture mapping in OpenGL. The parameter GL TEXTURE 2D specifies that we

shall use a two-dimensional texture. Next, we use the glTexImage2D OpenGL

function to transfer the width × height bytes of image in the graphics memory

and create a corresponding 2D texture. The GL LUMINANCE parameter specifies

that we define a monochrome texture, also called a luminance texture. The

glTexParameteri function specifies how to treat texture coordinates s, t that

fall outside the range [0, 1], a feature that will be described later in this section.

Finally, we use the glTexEnvf function to specify how the polygon color is going

to be combined with the texture color. Here, we selected the GL MODULATEmode,

which multiplies the two values to yield the final pixel color. After the texture

has been defined, we only have to associate texture coordinates with the vertices

of the rendered polygons, and OpenGL will perform the texture-mapping opera-

tion automatically. To assign texture coordinates, we add a new method to our

Quad class

void Quad : : addTexCoords( f l o a t s , f l o a t t )
{ glTexCoord2f ( s , t ) ; }

To render the texture-mapped height plot, we now simply add texture coordi-

nates to every rendered polygon with the code fragment in Listing 2.6. Here,

we have omitted the addNormal calls present in Listing 2.4 for conciseness. In

this example, the texture coordinates are identical to the height plot’s x, y coor-

dinates scaled to the range [0, 2]. Since we specified GL REPEAT as value for the

GL TEXTURE WRAP S and GL TEXTURE WRAP T OpenGL parameters (Listing 2.5,

lines 6–7), the texture coordinates that fall outside [0, 1] will be “wrapped” on

this range. All in all, this produces the effect shown in Figure 2.6(b), where the

texture seems to be projected from the xy plane to the height-plot surface and

replicated twice in every direction, as visible from counting the checkerboard

squares in the texture image and the textured height plot.

uns igned char ∗ image ; //the image data
i n t width , he i ght ; //the image size

glEnable (GL TEXTURE 2D) ;
glTexImage2D (GL TEXTURE 2D, 0 , GL LUMINANCE, width , height ,

0 , GL LUMINANCE, GL UNSIGNED BYTE, image ) ;
glTexParameter i (GL TEXTURE 2D, GL TEXTURE WRAP S, GL REPEAT) ;
glTexParameter i (GL TEXTURE 2D, GL TEXTURE WRAP T, GL REPEAT) ;
glTexEnvf (GL TEXTURE ENV, GL TEXTURE ENVMODE, GLMODULATE) ;

Listing 2.5. Defining a 2D texture.
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f l o a t f ( f l o a t , f l o a t ) ; //the function to visual ize
f l o a t sx = (X max−X min )/2 ;
f l o a t sy = (Y max−Y min )/2 ;

f o r ( f l o a t x=X min ; x<=X max−dx ; x+=dx)
f o r ( f l o a t y=Y min ; y<=Y max−dy ; y+=dy)
{

Quad q ;
q . addTexture ( x/sx , y/ sy ) ;
q . addPoint (x , y , f (x , y ) ) ;
q . addTexture ( ( x+dx)/ sx , y/ sy ) ;
q . addPoint (x+dx , y , f ( x+dx , y ) ) ;
q . addTexture ( ( x+dx)/ sx , ( y+dy )/ sy ) ;
q . addPoint (x+dx , y+dy , f ( x+dx , y+dy ) ) ;
q . addTexture ( x/sx , ( y+dy)/ sy ) ;
q . addPoint (x , y+dy , f (x , y+dy ) ) ;
q . draw ( ) ;

}
Listing 2.6. Drawing a texture-mapped height plot.

By defining different texture coordinates, a multitude of texture-mapping ef-

fects can be obtained, such as stretching, compressing, or rotating the texture

image in a different way for every rendered polygon. The example presented here

only briefly sketches the many possibilities offered by texture mapping, such as

linear (1D) and volumetric (3D) textures, antialiased texture rendering, color

and transparency textures, and multitexturing. A complete discussion of all

possibilities of texture mapping is not possible here. For more details, as well as

a complete description of the OpenGL texturing machinery and associated ap-

plication programming interface (API), see the OpenGL reference and developer

literature [Shreiner et al. 03, Shreiner 04].

2.5 Transparency and Blending

In the rendering examples discussed so far, we have used only fully opaque shapes.

In many cases, rendering half-transparent (translucent) shapes can add extra

value to a visualization. For instance, in our height-plot running example, we

may be interested in seeing both the gridded domain and the height plot in the

same image and from any viewpoint. We can achieve this effect by first rendering

the grid graphics, followed by rendering the height plot, as described previously,

but using half-transparent primitives.
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Figure 2.7. The height plot in (b) is drawn on top of the current screen contents in
(a) with additive blending to obtain the half-transparent plot result in (c). A black
background is used.

In OpenGL, a large class of transparency-related effects can be achieved by

using a special graphics mode called blending. To use blending, we must first

enable it using the following function call:

glEnable (GL BLEND) ;

Once blending is enabled, OpenGL will combine the pixels of every drawn prim-

itive, such as polygons or lines, with the current values of the frame buffer

(displayed image) at the locations drawn. In OpenGL terminology, the drawn

primitive is called the source, whereas the frame buffer the primitive is drawn on

is called the destination. Blending is performed independently for every source

pixel drawn on a destination. If we denote the colors of the source and desti-

nation pixels by src and dst, respectively, the final value dst′ of the destination

pixel is given by the expression

dst′ = sf ∗ src + df ∗ dst. (2.9)

Equation (2.9) is essentially a weighted combination of the source and destina-

tion colors using the source and destination weight factors sf and df respectively,

which are both real values in the range [0, 1]. This equation is applied indepen-

dently for every color component (R, G, and B). The weights sf and df , also

called blending factors, can be specified in a variety of ways. In the following, we

show how to specify these factors to achieve a simple transparency effect that

combines the grid and plot rendering in our height-plot example. The final result

is shown in Figure 2.7(c). To obtain this result, we proceed as follows. First,
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we clear the screen to black. The reason for using black instead of the usual

white background will become apparent soon. The frame buffer is cleared by the

following sequence of OpenGL function calls:

g lCl earCo lor ( 0 , 0 , 0 , 0 ) ; //specify the clear color
g lC l ea r (GL COLOR BUFFER BIT) ; //clear the frame buffer

Next, we draw the grid structure. We do not use any blending, since we want

the grid itself to be fully opaque. The result is shown in Figure 2.7(a). The final

step is to draw the half-transparent height plot on top of this grid. The height

plot to be drawn is shown, without the actual transparency, in Figure 2.7(b).

For this, we first enable blending, as described previously. Next, we specify the

blending factors sf and df . A half-transparent plot is achieved by using a source

factor sf < 1. To ensure that, at each pixel, the contribution of the grid and

plot objects sums up to one, we use a destination factor df = 1 − sf . This

combination is achieved by the OpenGL code

glBlendFunc (GL SRC ALPHA,GL ONE MINUS SRC ALPHA) ;
g lCo l o r 4 f (r ,g ,b ,sf ) ;

For the result shown in Figure 2.7(c), the colors r,g,b have the same values as

for the example discussed in Section 2.3 and sf has a value of 0.7.

The function glBlendFunc takes two parameters that specify the source and

destination blending factors. These parameters are symbolic constants rather

than being the blending factors themselves, and specify how the actual blending

factors sf and df will be computed. The most commonly used values of these

constants are as follows. The constant GL ONE sets the value of the respective

blending factor to 1. The constant GL SRC ALPHA specifies that the source factor

sf will be taken from the fourth component, also called the alpha component,

of the color of the drawn primitives. Hence, if we next set the color using

glColor4f(r, g, b, sf), sf will be the actual source blending factor used. The

constant GL ONE MINUS SRC ALPHA sets the respective blending factor to 1− sf ,

where sf is the alpha value of the drawn primitives, as specified previously.

These parameters allow us to obtain various transparency effects. Using

glBlendFunc(GL SRC ALPHA,GL ONE) followed by drawing primitives that

have the desired alpha values set via glColor4f starting with a black

frame buffer effectively adds up the primitives’ colors, weighted by their

respective alpha values. We can achieve the same effect by using

glBlendFunc(GL ONE,GL ONE), i.e., setting sf = df = 1, and factoring the

source blending factor in the color by using glColor3f(rsf ,gsf ,bsf). Using
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Figure 2.8. The height plot drawn half-transparently on top of the domain grid using a
white background.

glBlendFunc(GL SRC ALPHA,GL ONE MINUS SRC ALPHA) realizes the convex com-

bination

dst′ = sf ∗ src+ (1− sf ) ∗ dst. (2.10)

The value of dst′ is always clamped to one by OpenGL, so it is a good idea to

use blending factors that will sum up to one when all primitives are drawn. This

is achieved automatically if we use the blending factors as set by the convex

combination in Equation (2.10).

Finally, there is a fourth constant GL ZERO, which sets the respective source

or destination blending factor to zero. Hence, calling the glBlendFunc(GL ONE,

GL ZERO) function is equivalent to having blending disabled, i.e., the source color

will simply overwrite the destination (frame buffer) color.

Figure 2.8 shows the height plot drawn with the same transparency value

of 0.7 on top of the domain grid, this time using a white background, obtained

by setting glClearColor(1,1,1,0). We leave the construction of the actual

OpenGL blending code that achieves this image as an exercise for the reader.

Besides transparency, blending can be used to obtain many other graphical

effects that are useful in visualization applications. Volume visualization, de-

scribed in Chapter 10, fundamentally relies on blending to display volumetric

datasets. Another use of blending is demonstrated in Section 6.6, for the con-

struction of animated flow textures for visualizing vector fields. Yet another
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application of blending is described in Section 9.4.5, for the computation of dis-

tance fields in image data.

2.6 Viewing
All images of our height plot shown so far display the plot as viewed from a

certain angle and position in space. To understand how to specify such viewing

parameters, we need to understand how OpenGL processes 3D vertex coordinates

to create the final image displayed on the screen. This process has several steps,

or transforms, which are described next.

Virtual camera. The first step in specifying how to view a 3D scene is to specify

where from, and in which direction, we want to look at the scene. The easiest

way to picture this is to imagine that we have a virtual photo camera that we

want to point at the scene in a specific way. In OpenGL, such a camera can

be specified by indicating its location (also called the eye position e), a location

towards which the camera is pointing (also called the center position c), and a

vector u indicating how the camera is rotated around the viewing direction c−e

(also called the “up” vector). Figure 2.9 illustrates this. The plane orthogonal

to the viewing direction, on which the final image will appear, is also called the

view plane.

x

y

z

e

c

u

c-e

(c-e)×u

view plane

Figure 2.9. Extrinsic parameters of the OpenGL camera.
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In OpenGL, specifying the eye, center, and up vector values for a camera can

be done using the gluLookAt function2

glMatrixMode (GLMODELVIEW) ;
g lLoadIdent i ty ( ) ;
gluLookAt (ex ,ey ,ez ,cx ,cy ,cz ,ux ,uy ,uz )

The first two function calls (glMatrixMode and glLoadIdentity) ensure that

the subsequent gluLookAt call will modify the extrinsic camera parameters of

OpenGL, rather than intrinsic camera parameters, which are discussed in the

next section. Extrinsic camera parameters are also called modelview parameters

in OpenGL, hence the name GL MODELVIEW. The up vector u should not be

parallel to the viewing direction c−e, otherwise we cannot unambiguously define

the view plane. A simple but effective default setting is to have c equal to the

center of the viewed scene, i.e., the average of all vertex coordinates; u equal to

the y-axis of the 3D space, i.e., u = (0, 1, 0); and e at a distance from c slightly

larger than the size of the scene’s bounding-box. All three vectors e, c, and u

are given in the same coordinate system as the 3D scene to view. These values

are also known as the extrinsic camera parameters, since they do not specify

how the camera is actually constructed, but only its placement in the 3D space.

Projection. After placing the camera in 3D space, we need to specify how the

camera itself operates, or its intrinsic parameters. Following the analogy with

a physical photo camera, which captures perspective projections of a 3D scene

on a planar surface, intrinsic parameters give the focal length, field-of-view, and

aspect ratio of the view area where we wish to capture the image (Figure 2.10).

This view area is a rectangle in the view plane whose center is on the view

direction line c − e and whose axes are parallel to u, respectively (c − e) × u.

The focal length znear gives the distance, along the view direction, from the eye

position e to the view plane. No objects closer to e than znear are “seen” by

the camera. Hence, the view plane is also called the near clipping plane, as it

clips, or removes from viewing, objects in front of it. The field-of-view fov is the

angle formed by the top, respective bottom, borders of the view area with the

eye position e. The aspect ratio aspect gives the ratio of the horizontal to the

vertical size of the view area. Finally, the value zfar gives the distance, along

the view direction, from the eye position e to a plane parallel to, and behind, the

2Strictly, speaking, gluLookAt and all other functions discussed next that start with glu are
part of the Graphics Library Utility (GLU) library and not OpenGL. As virtually any system
which offers OpenGL also offers GLU, we do not make this distinction next.
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Figure 2.10. Intrinsic parameters of the OpenGL camera.

view plane beyond which the camera “sees” no objects. This plane is also called

the far clipping plane, as it clips, or removes from viewing, objects behind it.

Given this configuration, the camera will render only objects located inside

a pyramid frustum delimited by the view area and its corresponding projec-

tion on the far clipping plane. This frustum is drawn in green in Figure 2.10.

Specifying intrinsic camera parameters can be done in OpenGL by using the

gluPerspective function

glMatrixMode (GL PROJECTION) ;
g lLoadIdent i ty ( ) ;
g l uPe r spe c t i v e ( fov , aspect , znear , zfar )

The first two function calls (glMatrixMode and glLoadIdentity) ensure that the

subsequent gluPerspective call will affect the intrinsic, or projection, camera

parameters rather than the extrinsic ones, which were discussed in the previous

section. The constraints for gluPerspective are that both znear and zfar should

be positive values. Also, typically znear < zfar. gluPerspective implements

the perspective projection, as explained above. Good default values are fov

equal to 45 to 90 degrees. Parallel, or orthographic, projections, which do not
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Figure 2.11. OpenGL viewport transform from view area on the view plane to a screen
area.

make objects further away from the view plane appear smaller (an effect also

called foreshortening), are also supported by OpenGL, by using the gluOrtho2D

function

gluOrtho2D (xleft , xright , ybottom , ytop )

The values xleft, xright, ybottom, and ytop define the positions of the four edges of

the view area rectangle on the view plane, with respect to the intersection point

of the view direction with this plane. This effectively creates a parallelepiped-

like view volume instead of a pyramid frustum. Orthographic projections are

less frequently used in visualization applications than perspective projections.

They are useful in cases when we want equal 3D distances to appear as equal

2D distances on the view plane (no foreshortening).

Viewport. The projection transform described above effectively specifies how

3D objects inside the view frustum are projected to a 2D rectangle on the view

plane. The third and final step of viewing is to map this rectangle to a 2D screen

area, called a viewport. This is achieved by the so-called viewport transform. In

OpenGL, this transform is specified by the glViewport function

glViewport (x , y , width , height)

The effect of glViewport is to map the entire view area rectangle to the screen

rectangle whose lower left corner is given by the pixel coordinates x, y and having
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dimensions width and height pixels (Figure 2.11). The mapping is linear, i.e.,

the view area is effectively translated and uniformly stretched or squeezed, along

each individual screen axis, to fit the screen rectangle. Typically, given a screen

window of W × H pixels, we want to fill the entire window with our drawn

scene. Setting x = y = 0 and width = W and height = H fills the entire

window with our view area. However, if the aspect-ratio aspect (from, e.g.,

perspective projection) does not equal W/H , the scene will appear unnaturally

stretched or compressed on the screen, as shown by the example in Figure 2.11.

In other words, the scaling factors from the view area to the screen window are

not equal for the two screen axes. A simple way to fix this is to set aspect to

W/H . However, this changes the view area’s shape depending on the shape

of the screen window, which may clip off interesting portions of our scene. A

better way is to compute width and height as being the values which fit the

largest rectangle of aspect-ratio aspect within the available screen spaceW ×H,

and next compute x and y so that this rectangle is centered within the W ×H

screen space.

2.7 Putting It All Together
We have introduced so far the OpenGL functionality for drawing 3D shapes and

specifying the viewing parameters. We next discuss how all these bits are put

together to create a full OpenGL application.

The structure of such a minimal application, outlined in Listing 2.7, consists

of three main parts:

• the main function (main, lines 1–10);

• a function for setting up the viewing parameters (viewing, lines 12–17);

• a function for doing the actual drawing (draw, lines 19–31).

Initialization. The main function takes care of creating a screen window onto

which OpenGL will draw our scene. For this, we use here the Graphics Utility

Toolkit (GLUT), a simple and easy to use library that provides an uniform in-

terface between the platform-independent OpenGL library and various so-called

windowing systems, such as Windows, OS X, and X Windows.3 The first step

is to initialize GLUT (Listing 2.7, lines 3–4). The second line above tells GLUT

that we want a screen window using RGB colors GLUT RGB), that we will draw

3GLUT is freely available from http://www.opengl.org/resources/libraries/glut.
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1 i n t main ( i n t argc , char ∗∗ argv )
2 {
3 g l u t I n i t (&argc , argv ) ; //In i t i a l i ze GLUT library
4 glutIni tDisplayMode (GLUTRGB | GLUT DOUBLE | GLUTDEPTH) ;
5 glutIni tWindowSize (800 , 600 ) ; //Specify the i n i t i a l window size
6 glutCreateWindow( ” V i s u a l i z a t i o n” ) ; //Create a window with given t i t l e
7 glutDisplayFunc (draw ) ; //Specify function to draw scene
8 glutReshapeFunc ( viewing ) ; //Specify function to set up viewing
9 glutMainLoop ( ) ; //Start the event loop

10 }
11

12 void draw ( ) //Draw the 3D scene
13 {
14 g lC l ea r (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT) ;
15 //Add here code to draw the 3D scene , see , e . g . , Listing 2.4
16 glutSwapBuf fer s ( ) ; //Display the drawn image
17 }
18

19 void viewing ( i n t W , i n t H ) //Set up viewing ( see Section 2.6)
20 {
21 glMatrixMode (GLMODELVIEW) ; //1. Camera (modelview) transform
22 g lLoadIdent i ty ( ) ;
23 gluLookAt (ex ,ey ,ez ,cx ,cy ,cz ,ux ,uy ,uz ) ;
24

25 glMatrixMode (GL PROJECTION) ; //2. Projection transform
26 g lLoadIdent i ty ( ) ;
27 f l o a t aspect = f l o a t (W )/H ;
28 g l uPe r spe c t i v e ( fov ,aspect ,near ,far ) ;
29

30 glViewport (0 , 0 ,W ,H ) ; //3. Viewport transform
31 }

Listing 2.7. OpenGL application structure.

3D shapes where we want to perform hidden surface removal (GLUT DEPTH), and

that we want to use double buffering for this window (GLUT DOUBLE). Hidden

surface removal and double buffering are explained below. Line 5 specifies the

initial size of our upcoming screen window. Line 6 creates the actual window.

We could next proceed by directly adding OpenGL code to set up the viewing

parameters and for drawing the actual scene. This code is provided by our

functions viewing and draw, respectively. However, in a windowing system,

users can manipulate such windows, e.g., by minimizing, maximizing, or resizing

them. In all such cases, our application needs to redraw the window contents.

To do this, GLUT uses an event-based system, where windows are automatically

(re)drawn every time such window changes occur. For this to work, GLUT needs

to know which code to execute when a window’s size changes and when a window

needs to be redrawn, i.e., our viewing and draw functions, respectively. Lines 7
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and 8 connect these two functions to GLUT. The final step of main, line 9, passes

the application control flow to GLUT: From now on, GLUT will automatically

invoke our viewing function whenever our window is resized, and, separately,

the draw function whenever our window needs to be redrawn.

Viewing. The viewing function contains all code required to perform the view-

ing transforms described in Section 2.6. The first step sets up the virtual camera

extrinsic parameters (lines 21–23). Of course, to make the code complete, we

need to specify actual values for the vectors e, c, and u that define our viewpoint

and viewing direction. The second step sets up the projection (lines 25–28). For

illustration, we used here a perspective projection which keeps the same aspect

ratio between the screen window and the view area. As for the camera extrinsic

parameters, we need here to specify actual values for the field-of-view fov and

near and far plane positions near and far. The third and last step specifies the

viewport, which in our case is the entire screen window (line 30). Note that

the width W and height H of the screen window are automatically supplied

by GLUT as parameters to our function viewing. This way, our code knows

about the geometry of this window, and can subsequently adapt the viewing

parameters (view-area aspect-ratio aspect and viewport width and height).

Drawing. The draw function contains all code that draws the actual scene.

GLUT guarantees that this function is always called after viewing has been

called upon a window-geometry change. Hence, our viewing parameters are cor-

rectly set up. The first step in drawing (line 14) is to clear the window’s frame

buffer (GL COLOR BUFFER BIT). In the same time, we also clear the so-called depth

buffer of our window (GL DEPTH BUFFER BIT). The depth buffer, also called a z

buffer, holds, for each pixel (x, y) of a window, a value indicating the distance

from the view plane to the closest pixel of any primitive that covers (x, y). The

depth buffer allows OpenGL to draw primitives in any order, and obtain, in the

frame buffer, a correct “hiding” of primitives lying farther from the view plane

by closer ones, much like the way we do not see in reality objects lying behind

other objects. This process is also known as hidden surface removal. For this,

we first need to clear the depth buffer (line 14, GL DEPTH BUFFER BIT), i.e., set

its values for all pixels to a value larger than the distance between the view and

far clipping plane.

Next, we add our desired scene drawing (line 15). This can be, for instance,

the height plot drawing code in Listing 2.4. Besides the actual primitive draw-

ing, this is the place to set the various other parameters of our drawing, such

as lighting, textures, and blending. As this code draws its various primitives,
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OpenGL will only write to screen pixels (x, y) whose depth-buffer values are

larger than the depth of the current primitive at (x, y).

Drawing a complex scene containing tens or thousands of primitives is not

an instantaneous process, even on modern graphics cards. If the drawing occurs

directly on the visible window surface, the user may notice a certain amount

of flickering, as primitives get incrementally added to the drawing. To remove

this problem, we use a technique called double buffering. Two images are kept

by OpenGL. The first image, called the onscreen buffer, is the image currently

being displayed in the window. The second image, called the offscreen buffer, is

the area where the actual drawing occurs. When the drawing is ready, we simply

let OpenGL “swap” the onscreen and offscreen buffers, so the constructed image

is displayed at once, thereby removing the flickering. This operation is executed

by the glutSwapBuffers call in line 16.

Improvements. Constructing a full-fledged visualization application using Open-

GL is more complicated than the basic blueprint shown in the previous section.

Issues that need to be addressed include management of multiple windows, pro-

cessing input from keyboard and mouse, and integrating user-interface elements

such as buttons and sliders. Such issues are beyond the scope of this book.

For a more extensive introduction to building OpenGL applications, we refer

to the books of [Shirley and Marschner 09, Shreiner et al. 03]. A simple but

effective user-interface toolkit that integrates easily with OpenGL and GLUT

is the OpenGL User Interface C++ library (GLUI).4 While less powerful than

other user-interface toolkits, GLUI enables the addition of user-interface ele-

ments such as buttons, sliders, checkboxes, and menus to an OpenGL application

in a portable and quick-to-learn manner.

2.8 Conclusion
In this chapter, we introduced the basic structure of the visualization process,

using as an example the simple task of visualizing a two-variable real-valued

function. The process can be summarized as follows (see also Figure 2.12):

• acquire the data of interest into a discrete dataset;

• map this dataset to graphics primitives;

• render the primitives to obtain the desired image.

4GLUI is freely available from http://glui.sourceforge.net.
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continuous data

f(x,y)=e-(x2+y2) float data[N_x,N_y] class Quad

discrete dataset geometric object image

mapping renderingacquisition

Figure 2.12. Visualization process steps for the elevation plot.

The presented example can be, and actually is many times, regarded as a

pure graphics application rather than a data-visualization application. How-

ever, if we think of the primary goal of this example, conveying insight to the

user about the values and variation of a real-valued function defined over a two-

dimensional domain, we discover the visualization aspect. Moreover, this simple

example allows us to encounter the fundamental concepts and building bricks

of the visualization process: datasets, mapping, rendering, and the visualization

process, or pipeline. Datasets, the elements used to store and represent data, are

discussed further in Chapter 3 together with their main operations: sampling

and interpolation. Mapping, the process that produces viewable geometric ob-

jects from the abstract datasets, is discussed further in its various guises from

Chapter 5 onwards. Rendering, the process that displays a geometric set of ob-

jects, has been already discussed in this chapter. Finally, the complete chain of

operations and concepts that constitutes the visualization process is discussed

in Chapter 4.
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Chapter 3

Data Representation

IN Chapter 2, we used a simple application, the visualization of a two-variable

function using a height plot, to introduce several main concepts of data vi-

sualization, such as datasets, sampling, and rendering. Our discussion revolved

around the dataset as a key concept for approximating a continuous signal by

means of a discrete representation.

In this chapter, we expand this discussion on discrete data representation

and approximation. First, we detail the notions of continuous data sampling

and reconstruction. We introduce basis functions, discrete meshes, and cells,

as a means of constructing piecewise continuous approximations from sampled

data. These notions are illustrated using the simple example of visualizing a two-

variable function with a height plot, introduced in Chapter 2. Next, we present

the various types of datasets commonly used in the visualization practice and

detail their relative advantages, limitations, and constraints. We also discuss

several aspects related to efficiently implementing the dataset concept. After

completing this chapter, the reader should have a good understanding of the

various trade-offs involved in the choice of a dataset model, and be able to decide

which is the most appropriate dataset for a given visualization application.

3.1 Continuous Data

3.1.1 What Is Continuous Data?

The main goal of visualization is to produce pictures that enable end users get

insight into data that describe various phenomena or processes, including both

53
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natural and human-controlled phenomena. Examples are the circulation of air in

the atmosphere due to weather conditions; the flow of water in oceans and seas;

convection of air in closed spaces such as buildings due to temperature differences

caused by heating and cooling; the deformation, electrostatic charging, vibration,

and heating of mechanical machine parts subjected to operational stress; and the

magnetic and electrostatic fields generated by electrical engines.

Such phenomena are modeled in terms of various physical quantities. These

quantities can be either directly measured or computed by software simulations.

From the point of view of data representation, these quantities can be classified

in two fundamentally different categories: intrinsically continuous and intrinsi-

cally discrete ones. Well-known examples of continuous quantities are pressure,

temperature, position, speed, density, force, color, light intensity, and electro-

magnetic radiation. Examples of intrinsically discrete data are the hypermedia,

e.g., text and image, contents of web pages; software source code; plain text, as

found in documents of various types; and various kinds of database records.

For the sake of brevity, we shall from now on refer to intrinsically continu-

ous data as continuous data and to intrinsically discrete data as discrete data,

respectively. Continuous data are usually manipulated by computers in some

finite approximative form. To avoid confusion, we shall refer to this as sampled

data. Sampled data are also discrete, in the sense that they consist of a finite

set of data elements. However, in contrast to what we call intrinsically discrete

data, sampled data always originates from, and is intended to approximate, a

continuous quantity. As we shall see in Section 3.2, we can always go from sam-

pled data back to a continuous approximation of the original continuous data. In

contrast, what we call intrinsically discrete data has no counterpart in the con-

tinuous world, as is the case of a page of text, for example. This is a fundamental

difference between continuous (or sampled) data and discrete data. As we shall

see throughout this book, this difference causes many, often subtle, constraints

and choices in designing effective and efficient visualization methods.

Intrinsically continuous data, whether coming in its original continuous rep-

resentation or represented by some sampled approximation, is the subject of a

separate branch of data visualization. This branch is traditionally called sci-

entific visualization, or scivis. The name reflects the fact that continuous data

usually measure physical quantities that are studied by various scientific and

engineering disciplines, such as physics, chemistry, mechanics, or engineering.

Intrinsically discrete data, which has no direct continuous counterpart, is the

subject of a relatively younger visualization branch, called information visual-

ization, or infovis. This book mainly focuses on scivis methods and techniques,

with the exception of Chapter 11, which performs a short overview of a few main



3.1. Continuous Data 55

infovis topics. Consequently, the remainder of this chapter will discuss solely the

representation of continuous and sampled (scivis) data.

3.1.2 Mathematical Continuity

Mathematically, continuous data can be modeled as a function

f : D → C,

where D ⊂ R
d is the function domain and C ⊂ R

c is the function codomain,

respectively. In a related terminology, f is called a d-dimensional, or d-variate,

c-value function. In other words, if we write f(x) = y, where x ∈ D and y ∈ C,

this actually means f(x1, . . . , xd) = (y1, . . . , yc). In visualization applications, f

or its sampled counterpart, introduced in Section 3.2, is sometimes called a field.

Mathematically, f is continuous if for every point p ∈ C the following holds:

∀ε > 0, ∃δ > 0 such that if ‖x− p‖ < δ, x ∈ C then ‖f(x)− f(p)‖ < ε. (3.1)

This continuity criterion is known as the Cauchy criterion, after the French

eighteenth-century mathematician who proposed it, or the ε − δ criterion, a

name that follows from its formulation.

What does continuity mean in the intuitive sense? In plain terms, a function

is continuous if the graph of the function is a connected surface without “holes”

or “jumps.” Furthermore, we say that a function f is continuous of order k if

the function itself and all its derivatives up to and including order k are also

continuous in this sense. This is denoted as f ∈ Ck. Figure 3.1 illustrates

the continuity concept for the case of a one-dimensional function f : R → R,

whose graph is displayed in green. The first image (Figure 3.1(a)) shows a

function having a discontinuity at the points x0. Clearly, if we evaluate the

f(x)

xx0

f '(x)

f(x)

xx1 x2

f(x)

xx0

(a) (b) (c)

a

b

f '(x) f '(x)

Figure 3.1. Function continuity. (a) Discontinuous function. (b) First-order C0 contin-
uous function. (c) High-order Ck continuous function.
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jump of f around the point x0, i.e., evaluate f(x0 − δ) and f(x0 + δ), the jump

|f(x0 + δ) − f(x0 − δ)| will always have the fixed value b− a, regardless of how

small the value δ is, i.e., how close we sample the function to the point x0. The

derivative f ′(x) is shown in red in the figure. Note that f ′(x) is not defined for

the discontinuity point x0.
1

Figure 3.1(b) shows a continuous function f ∈ C0. Here, f consists of three

linear components. The graph of f shows no holes or jumps, so clearly Equa-

tion (3.1) holds. In contrast, its first derivative f ′ is of the same type as the

function f shown before in Figure 3.1, i.e., it is discontinuous. However, if we

take the three intervals delimited by the two points x1 and x2 and ignore the

points x1 and x2 themselves, the derivative f ′ is continuous for every interval.

Functions f whose derivatives are continuous on compact intervals as in this ex-

ample are also called piecewise continuously differentiable, piecewise smooth, or

piecewise C∞. Such functions will play an important role in approximating sam-

pled data later in Section 3.2. A final example is shown in Figure 3.1(c). Here,

both the function and its derivative are continuous, so f ∈ Ck, where k ≥ 1.

Some functions, such as the Gaussian used in Chapter 2, are themselves and all

their derivatives continuous. We denote this by f ∈ C∞.

3.1.3 Dimensions: Geometry, Topology, and Attributes

The triplet D = (D,C, f ) defines a continuous dataset. In the following, we shall

use the notation D to refer to a dataset and the notation D to refer to a domain.

The dimension d of the space R
d into which the function domain D is embed-

ded, or contained, is called the geometrical dimension. The dimension s ≤ d of

the function domain D itself is called the topological dimension of the dataset.

Understanding the difference between geometrical and topological dimensions is

easiest by means of an example. If D is a plane or curved surface embedded in

the usual Euclidean space R
3, then we have s = 2 and d = 3. If D is a line or

curve embedded in the Euclidean space R
3, then we have s = 1 and d = 3. You

can think of the topological dimension as the number of independent variables

that we need to represent our domain D. A curved surface in R
3 can actually be

represented by two independent variables, like latitude and longitude for the sur-

face of the Earth. Indeed, we can describe such a surface by an implicit function

f(x, y, z) = 0, which actually says that only two of the three variables x, y, and

z vary independently. Similarly, a curve’s domain can be described implicitly

1Informally, we can say that f ′(x0) is equal to infinity, as it has a finite jump at a point,
which can be seen as an infinitely small interval. However, a numerical function (and hence
its derivatives, too) is usually defined to take finite values, hence we call f not differentiable,
or discontinuous, in x0.
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by two equations f(x, y, z) = 0 and g(x, y, z) = 0, which means that just one of

the variables x, y, and z varies independently. A final concept frequently used

in describing functions and spaces is the codimension. Given the previous no-

tation, the codimension of an object of topological dimension s and geometrical

dimension d is the difference d− s.

To simplify implementation-related aspects, virtually all data-visualization

applications fix the geometrical dimension to d = 3. This makes application code

simple, uniform, yet sufficiently generic. Hence, the only dimension that actually

varies in visualization datasets is the topological dimension s. In practice, s

is one, two, or three, which corresponds to the curve, surface, or volumetric

datasets, respectively. Since the topological dimension is the only variable one,

in practice it is also called the dataset dimension. In the remainder of this book,

when we talk about a dataset’s dimension, we mean its topological dimension,

and implicitly assume that the geometric dimension is always three. Topological

dimension is going to be important when we talk about sampled datasets and

grid cells in Section 3.2.

In practice, dataset dimensions model spatial or temporal components. So,

one may ask, what if we want to model a time-dependent volumetric dataset?

This would require s = 4 dimensions, which would in turn ask for d = 4

geometric dimensions. Most visualization applications do not support such

datasets explicitly, since they are relatively infrequent and supporting them

would require working with more than three geometrical dimensions. In practice,

time-dependent volumetric datasets are often represented as sequences of three-

dimensional datasets where the sequence number represents the time dimension.

The function values are usually called dataset attributes . The dimensionality

c of the function codomain C is also called the attribute dimension. The attribute

dimension c usually ranges from 1 to 4. Attribute types are discussed later in

Section 3.6. For the time being, let us assume for the simplicity of the discussion

that c = 1, i.e., our function f is a real-valued function.

3.2 Sampled Data
Scientific visualization aims at displaying various properties of functions, as in-

troduced in the previous section. However, we do not always avail of data in

its continuous, functional, representation. Moreover, several operations on the

data—including processing, such as filtering, simplification, denoising, or anal-

ysis, and rendering—are not easy, nor efficient, to perform on continuous data

representations. For these reasons, the overwhelming majority of visualization
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methods works with sampled data representations, or sampled datasets. Two

operations relate sampled data and continuous data:

• Sampling: Given a continuous dataset, we have to be able to produce

sampled data from it.

• Reconstruction: Given a sampled dataset, we have to be able to recover an

(approximative) version of the original continuous data.

Sampling and reconstruction are intimately connected operations. The re-

construction operation involves specifying the value of the function between its

sample points, using the sample values, using a technique called interpolation.

We have seen, in Chapter 2, a simple illustration of sampling and reconstruction

for a two-dimensional dataset containing a scalar attribute: the surface repre-

senting the graph of a two-variable function. We sampled this dataset using two

strategies, i.e., a uniform and a nonuniform sample point density. Next, we re-

constructed (and rendered) the surface using a set of quadrilaterals determined

by our sample points. This simple example illustrated a correlation between

the sample-point density and distribution and the quality of the result of the

polygon-based surface rendering. The conclusion was that the reconstruction

quality is a function of the amount and distribution of sample points used. In

the following, we shall analyze this relationship for the general case of a dataset

represented as a d-variate, c-value function.

To be useful in practice, a sampled dataset should comply with several

requirements: it should be accurate, minimal, generic, efficient, and simple

[Schroeder et al. 06]. By accurate, we mean that one should be able to con-

trol the production of a sampled dataset Ds from a continuous one Dc such that

Dc can be reconstructed from Ds with an arbitrarily small user-specified error,

if desired. By minimal, we mean that Ds contains the least number of sample

points needed to ensure a reconstruction with the desired error. As we saw in

Chapter 2, minimizing the sample count favors a low memory consumption and

high data processing and rendering speed. By generic, we mean that we can

easily replace the various data-processing operations we had for the continuous

Dc with equivalent counterparts for the sampled Ds. By efficient, we mean that

both the reconstruction operation and the data-processing operations we wish

to perform on Ds can be done efficiently from an algorithmic point of view.

Finally, by simple, we mean that we can design a reasonably simple software

implementation of both Ds and the operations we want to perform on it.

Interpolation. Let us first consider the reconstruction of a continuous approx-

imation from the sampled data. We define reconstruction as follows: given a
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sampled dataset {pi, fi} consisting of a set of N sample points pi ∈ D and sam-

ple values fi ∈ C, we want to produce a continuous function f̃ : D → C that

approximates the original f . The reconstructed function should equal the orig-

inal one at all sample points, i.e., f̃(pi) = f(pi) = fi. One way to define the

reconstructed function that satisfies this property is to set

f̃ =

N∑
i=1

fiφi, (3.2)

where φi : D → C are called basis functions or interpolation functions. In other

words, we have defined the reconstruction operation using a weighted sum of a

given set of basis functions φi, where the weights are exactly our sample values

fi. Since we want that f̃ = fj for all sample points pj , we get

N∑
i=1

fiφi(pj) = fj ,∀j. (3.3)

Equation (3.3) must hold for any function f . Let us consider a function g that

is overall zero, except at pj , where g(pj) = 1. Replacing the expression for g in

Equation (3.3) we obtain that

φi(pj) =

{
1, i = j,
0, i �= j.

(3.4)

Equation (3.4) is sometimes referred to as the orthogonality of basis functions.

Let us now consider the constant function g(x) = 1 for any x ∈ D. Replacing g

in Equation (3.3), we obtain that
∑N

i=1 φ(pj) = 1 for all pj, i.e., the sum of all

basis functions is 1 at all sample points. However, if we enforce that this sum is

1 at all points x ∈ D, i.e.,

N∑
i=1

φi(x) = 1,∀x ∈ D, (3.5)

then we can exactly reconstruct g everywhere in D. The property described in

Equation (3.5) is called the normality of basis functions or, in some other texts,

the partition of unity . Most basis functions used in practice in data approxima-

tion are both orthogonal and normal.

Grids and cells. To reconstruct a sampled function, we can use different basis

functions. These offer different trade-offs between the continuity order of the
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reconstruction, on the one hand, and complexity of the functions, thus the eval-

uation efficiency of Equation (3.3), on the other hand. To be able to explain the

different choices one has for basis functions, we must now introduce the notions

of sample grids and grid cells.

A grid , sometimes also called a mesh, is a subdivision of a given domain

D ∈ R
d into a collection of cells , sometimes also called elements, denoted ci.

The most commonly used cells are sets of connected lines in R (also called poly-

lines), polygons in R
2, polyhedra in R

3, and so on. Moreover, the union of the

cells completely covers the sample domain, i.e.,
⋃

i ci = D, and the cells are

nonoverlapping, i.e., ci ∩ cj = 0,∀i �= j. In other words, a grid is a tiling of the

domain D with cells. The vertices of these cells are usually the sample points

pi ∈ R
d, though this is not required, as we shall see.

We can now define the simplest set of basis functions, the constant basis

functions . For a grid with N cells, we define the basis functions φ0i as follows:

φ0i (x) =

{
1, x ∈ ci,
0, x /∈ ci.

(3.6)

In Equation (3.6), the superscript 0 denotes that our basis functions are

constant, i.e., of zero-order continuity. Clearly, these basis functions are orthog-

onal and normal. If we now imagine our sample points are inside the grid cells,

e.g., at the cell centers, then these basis functions approximate a given function

f̃ =
∑

i fiφ
0
i by the piecewise, per-cell, constant sample values fi. For a simple

grid with equal cells, such as one created by the uniform sampling discussed in

Chapter 2, this interpolation is equivalent to assigning to every point x ∈ D the

sample value of the nearest cell center. For this reason, the piecewise constant

interpolation is also called nearest-neighbor interpolation. As an example, Fig-

ure 3.2 shows the reconstruction of the Gaussian function discussed in Chapter 2

with constant basis functions.

Constant basis functions are simple to implement and have virtually no com-

putational cost. Also, they work with any cell shape and in any dimension.

However, constant basis functions provide a poor, staircase-like approximation

f̃ of the original f . Over every cell i, f̃ is piecewise constant, equal to the sample

value fi in that cell, but has discontinuities at the cell borders, as visible in our

example (see Figure 3.2).

We can provide a better, more continuous reconstruction of the original func-

tion by using higher-order basis functions. The next-simplest basis functions

beyond the constant ones are the linear basis functions. To use these, however,

we need to make some assumptions about the cell types used in the grid. Let

us consider a single quadrilateral cell c having the vertices (v1, v2, v3, v4), where
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Figure 3.2. Gaussian function reconstructed with constant basis functions.

v1 = (0, 0), v2 = (1, 0), v3 = (1, 1), and v4 = (1, 1), i.e., an axis-aligned square

of edge size 1, with the origin as first vertex. We call this the reference cell

in R
2. In the following, to distinguish coordinates given in the reference cell

[0, 1]d from coordinates given in the function domain D ∈ R
d, we denote the

former by r1, . . . , rd (or r, s, t for d = 3) and the latter by x1, . . . , xd (or x, y, z

for d = 3). Coordinates in the reference cell are also called reference coordinates.

For our reference cell, we define now four local basis functions Φ1
1, Φ

1
2, Φ

1
3, and

Φ1
4, Φ

1
i : [0, 1]2 → R as follows (see also Figure 3.3):2

Φ1
1(r, s) = (1− r)(1 − s),

Φ1
2(r, s) = r(1 − s),

Φ1
3(r, s) = rs,

Φ1
4(r, s) = (1− r)s;

(3.7)

We denoted these local basis functions using capital letters (e.g., Φ) to distin-

guish them from global, gridwise ones, which are denoted with lowercase letters

(e.g., φ). These basis functions are indeed orthogonal and normal. For any

point (r, s) in the reference cell, we can now use these basis functions to define

2In the following, for a basis function Φ
j
i , the superscript j denotes the order of the function

(0 = constant, 1 = linear, etc.), and the subscript i denotes the index of the cell vertex to
which this function corresponds.
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Figure 3.3. Basis functions, interpolation, and coordinate transformations for the quad
cell.

a function f̃(r, s) =
∑4

i=1 fiΦ
1
i (r, s), as in Equation (3.2). Since f̃ is a sum of

first-order continuous basis functions, it is a first-order continuous reconstruction

of the four sample values f1, f2, f3, f4 defined at the cell vertices.

We would like now to perform exactly the same reconstruction as previously

for any quadrilateral cell c = (p1, p2, p3, p4) of some arbitrary grid, such as our

height plot. In general, such cells are not axis-aligned unit squares located at

the origin, but arbitrarily quadrilaterals having any position and orientation in

R
3. How can we then use Equation (3.7) on such cells? The answer is relatively

simple: For every such arbitrary quadrilateral cell c, we can define a coordinate

transformation T : [0, 1]2 → R
3 that maps our reference cell to c.

What should such a transformation T look like? First, we want to have a

simple expression for T that works for any cell type. Second, we want to map

the reference cell vertices vi to the corresponding world cell pi, so T (vi) = pi.

Finally, we would like to have, if possible, linear transformation T , for simplicity

and computational efficiency. All this suggests that we can design T using our
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reference basis functions. We do this as follows: Given any cell type having n

vertices p1, . . . , pn in R
3, we define the transformation T that maps from a point

r, s in the reference cell coordinate system to a point x, y, z in the actual cell

to be

(x, y, z) = T (r, s) =

n∑
i=1

piΦ
1
i (r, s). (3.8)

In other words, T is a linear combination of the basis functions Φ1
i of the given

cell, evaluated at the desired location r, s in the reference cell, weighted with

the world cell vertex coordinates pi. If T maps the reference cell to the world

cell then its inverse T−1 maps points x, y, z in the world cell to points r, s in

the reference cell, where our basis functions Φ1
i are defined. Using T−1, we can

rewrite Equation (3.2) for our quad cell c as

f̃(x, y, z) =

4∑
i=1

fiΦ
1
i (T

−1(x, y, z)). (3.9)

To compute the inverse transformation T−1, we must invert the expression given

by Equation (3.8). Since this inversion depends on the actual cell type, we shall

detail the concrete expressions for T−1 later in Section 3.4.

Putting it all together. We now have a way to reconstruct a piecewise C1 function

f̃ from samples on any quad grid: For every cell c in the grid, we simply apply

Equation (3.9). We can now finally define our piecewise C1 reconstruction in

terms of a set of global basis functions φ, just as we did before for the piecewise

constant reconstruction (Equation (3.6)). Given a grid with sample points pi
and quad cells ci, we can define our gridwise basis functions φ1i as follows:

φ1i (x, y, z) =

{
0, if (x, y, z) /∈ cells(pi),
Φ1

j (T
−1(x, y, z)), if (x, y, z) ∈ c = {v1, v2, v3, v4}, where vj = pi,

(3.10)

where cells(pi) denotes the cells that have pi as a vertex.

In other words, Equation (3.10) says that every basis function φ1i , corre-

sponding to sample point pi, equals the transformed local basis function Φ1
j of

the corresponding cell vertex vj = pi, for all points in the cells that have pj
as vertex, and is zero everywhere outside these cells. We can verify that {φ1i }
are orthogonal and normal. Moreover, they are C1 continuous, by definition.

Hence, a reconstruction of a sampled dataset (Equation (3.2)) using these basis

functions is piecewise C1. For our height-plot visualization, using these basis

functions means that we approximate the function graph surface with a set of
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Figure 3.4. Overview of sampling and reconstruction.

C1 surface elements. Hence, all visualizations shown in Section 2.1 that ren-

dered our height plot using a set of quads are nothing else but reconstructions

of the function graph surface with C1 basis functions. Luckily, we do not have

to program this interpolation ourselves when doing rendering. For a number

of cell types, such as lines, triangles, and quads, virtually all rendering engines

nowadays (such as OpenGL) provide efficient interpolation implementations as

rendering primitives.

The complete sampling and reconstruction process is illustrated schematically

in Figure 3.4 for a one-dimensional signal. Sampling the continuous signal f

at the points xi produces a set of samples fi. Let us organize the samples

along a simple grid consisting of line segments—that is, each cell (xi, xi+1) holds

two consecutive samples (fi, fi+1). Performing a cell-wise reconstruction, i.e.,

multiplying the cell samples by the global basis functions φi obtained from the
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constant geometry bilinear geometry

constant lighting staircase shading flat shading
bilinear lighting — Gouraud shading

Table 3.1. Combinations of geometry and lighting interpolation types.

reference basis functions Φ1
1 and Φ2

1 via the transform T , and adding up the

results, we obtain the reconstructed signal f̃ .

The sampling and reconstruction mechanisms described so far can be applied

to more data attributes than surface geometry alone. Let us consider, for ex-

ample, surface shading. Shading, as introduced in Chapter 2, can be seen as a

function s : R3×R
3 → R that yields the light intensity, given a surface point po-

sition p ∈ R
3 and surface normal n ∈ R

3. We have seen how we can approximate

the geometry of a surface given a set of surface sample points, using constant

or C1 basis functions, yielding a staircase (e.g., Figure 3.2) or polygonal (e.g.,

Figure 2.1) representation, respectively. The question is now: Can we apply the

same reconstruction mechanisms for the surface shading too? And if so, what

are the trade-offs?

Using our basis-function machinery, the answer is now simple. Given a polyg-

onal surface rendering, flat shading, introduced in Chapter 2, assigns the inten-

sity value s̃ computed using the lighting equation (Equation (2.1)) at every

polygon center, to all polygon points. Clearly, this is nothing more than inter-

polation of the illumination function s̃ using piecewise basis functions (Equa-

tion (3.6)). Putting it together, a flat-shaded polygonal surface, such as the

height plot in Figure 2.1, is a reconstruction of the original continuous surface

using piecewise bilinear interpolation for the geometry and piecewise constant

interpolation for the illumination. What about the Gouraud, or smooth, shading

introduced in Chapter 2? Recall that Gouraud shading evaluates the lighting

equation (Equation (2.1)) at every polygon vertex vi, using the corresponding

vertex normal. For a quad, for example, this produces four illumination values

si. Next, Gouraud shading produces a “smooth” illumination over the polygon

by interpolating between these values si using piecewise bilinear basis functions.

Putting it together, a Gouraud-shaded polygonal surface, such as the height plot

in Figure 2.5, is a reconstruction of the original continuous surface using piece-

wise bilinear interpolation for both the geometry and illumination. The various

combination possibilities of the geometry and lighting interpolation types are

summarized in Table 3.1. Note that the combination of piecewise constant inter-

polation for geometry and piecewise bilinear interpolation for the lighting does

not make sense, since the interpolated geometry is discontinuous.
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3.3 Discrete Datasets
In the previous sections, we have described how to reconstruct continuous func-

tions from sampled data provided at the vertices of the cells of a given grid. In

brief, we can say that, given

• a grid in terms of a set of cells defined by a set of sample points,

• some sampled values at the cell centers or cell vertices,

• a set of basis functions,

we can define a piecewise continuous reconstruction of the sampled signal on this

grid, and work with it (e.g., compute its derivatives or draw its graph) in similar

ways to what we would have done with the continuous signal the samples came

from.

In Section 3.1, we defined a continuous dataset for a function f : D → C as the

triplet D = (D,C, f). In the discrete case, we replaced the function domain D by

the sampling grid ({pi}, {ci}), and the continuous function f by its piecewise k-

order continuous reconstruction f̃ computed using the grid, the sample values fi,

and a set of basis functions {Φk
i } (Equation (3.2)). Hence, the discrete (sampled)

dataset counterpart of (D,C, f ) is the tuple Ds = ({pi}, {ci}, {fi}, {Φk
i }): grid

points, grid cells, sample values, and reference basis functions. Visualization

deals in the overwhelming majority of situations with discrete data, so discrete

datasets are a fundamental instrument, both in theory and practice. When

talking about datasets in the remainder of this book, we shall always refer to

discrete datasets, as defined here.

In the previous sections, we have shown how to replace a continuous dataset

Dc with its discrete counterpart Ds. We have seen that this replacement means,

from a mathematical point, working with a piecewise k-order continuous function

f̃ instead of a potentially higher-order continuous function f . In this section,

we turn our attention to the implementation aspects of discrete datasets. We

recall the dataset requirements introduced in Section 3.1: A dataset should be

accurate, minimal, generic, efficient, and simple. For a discrete dataset, these re-

quirements translate to constraints on the number and position of sample points

pi, shape of cells ci, type of reference basis functions Φi, and number and type

of sample values fi. These constraints determine specific implementation solu-

tions, as follows. The cell shapes, together with the basis functions, determine

different cell types. These are described next in Section 3.4. The number and

position of sample points determine different grid types. These are described in
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Sections 3.5.1, 3.5.2, 3.5.3, and 3.5.4. Finally, the number and type of sample

values fi determine the attribute types. These are described in Section 3.6.

3.4 Cell Types

As explained in Section 3.2, a grid is a collection of cells ci, whose vertices are

the grid sample points pi. Given some data sampled at the points pi, the cells

are used to define supports for the basis functions φi used to interpolate the data

between the sample points. Hence, the way sample points are connected to form

cells is related to the domain D we want to sample, as well as the type of basis

functions we want to use for the reconstruction.

The dimensionality d of the cells ci has to be the same as the topological

dimension of the sampled domain D, if we want to approximate D by the union

of all cells ∪ici. If D is a curve, we will use line cells. If D is a surface, we will use

planar cells, such as polygons. If D is a volume (d = 3), we must use volumetric

cells, such as tetrahedra. The reference coordinate systems for such cells have d

dimensions, which are denoted next by r, s, and t.

In the following, we shall present the most commonly used cell types in data-

visualization applications. Figure 3.5 shows, for each cell type, the shape of the

cell, its vertices p0, . . . , pn, and the shape of the reference cell in the reference

coordinate system rst. For each cell type, we shall also present the linear basis

functions it supports, as well as the coordinate transformation T−1 that maps

from locations x, y, z in the actual (world) cell to locations r, s, t in the reference

cell.

3.4.1 Vertex

We start with the simplest cell type of dimension d = 0. This cell is essen-

tially identical to its single vertex, c = {v1}. Following the normality property

(Equation (3.5)), it follows that the vertex has a single, constant basis function:

Φ0
1 = 1. (3.11)

Essentially, vertex cells are identical to, and provide nothing beyond, the sample

points themselves. In practice, one does not make any distinction between sample

points and vertex cells, so these cells can be seen more of a modeling abstraction.
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Figure 3.5. Cell types in world (red) and reference (green) coordinate systems.

3.4.2 Line

The cell type of the next dimension is the line segment, or line. Line cells have

dimension d = 1 and two vertices, i.e., c = {v1, v2}. Line cells are used to

interpolate along any kind of curves embedded in any dimension, e.g., planar or

spatial curves. Line cells allow linear interpolation. Given the reference line cell

defined by the points v1 = 0, v2 = 1, the two linear basis functions are

Φ1
1(r) = 1− r,

Φ1
2(r) = r.

(3.12)
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For a point p contained in a line cell (p1, p2), the transformation T−1 is simply

the ratio between the lengths of the segment pp1 and the cell length, that is

T−1
lin (x, y, z) =

‖p− p1‖
‖p2 − p1‖

. (3.13)

3.4.3 Triangle

We move now to the next dimension, d = 2. Here, the simplest cell type is the

triangle, i.e., c = {v1, v2, v3}. Triangles can be used to interpolate along any

kind of surfaces embedded in any dimension, e.g., planar or curved surfaces. We

can do linear interpolation on triangles. Given the reference triangle cell defined

by the points v1 = (0, 0), v2 = (1, 0), v3 = (0, 1), the three linear basis functions

are
Φ1

1(r, s) = 1− r − s,

Φ1
2(r, s) = r,

Φ1
3(r, s) = s.

(3.14)

The transformation T−1 for triangular cells is slightly more complicated than

the one for line cells:

T−1
tri (x, y, z) = (r, s) =

(
‖(p− p1) × (p3 − p1)‖
‖(p2 − p1)× (p3 − p1)‖

,
‖(p− p1)× (p2 − p1)‖
‖(p3 − p1)× (p2 − p1)‖

)
(3.15)

Figure 3.6 explains this intuitively: Take a triangle (p1, p2, p3), in world coordi-

nates, and denote its area by A123. Take a point p in this triangle, and consider

the areas A12 and A13 the areas of the triangles (p, p1, p2) and (p, p1, p3), re-

spectively. These quantities are the so-called barycentric coordinates of p within

our triangle. Consider now the area ratios r = A13/A123 and s = A12/A123,

which are exactly the expressions in Equation 3.15. As p stays within the ini-

tial triangle, both r and s are bounded in [0, 1]. Moreover, when p = p1, we

r

s

p1
p2

p
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1

0
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A
12

A
13

p
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Figure 3.6. Coordinate transformation Ttri explained using barycentric coordinates.
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obtain (r, s) = (0, 0); when p = p2, we get (r, s) = (1, 0); and when p = p3, we

get (r, s) = (0, 1). The values r and s are precisely our desired reference-cell

coordinates.

3.4.4 Quad

Another possibility to interpolate over two-dimensional surfaces is to use quadri-

lateral cells, or quads. We have seen examples of using quads for approxi-

mating curved surfaces since our first visualization example in Chapter 2, the

height plot. Quads are defined by four vertices c = (v0, v1, v2, v3) and have

four corresponding basis functions. The reference quad, defined by the points

v1 = (0, 0), v2 = (1, 0), v3 = (1, 1), v4 = (0, 1), is an axis-aligned square of edge

size 1. On this reference quad, the basis functions are

Φ1
1(r, s) = (1− r)(1 − s),

Φ1
2(r, s) = r(1− s),

Φ1
3(r, s) = rs,

Φ1
4(r, s) = (1− r)s.

(3.16)

A natural question arises whether to use quads or triangles when interpo-

lating on surfaces. The answer is, in most cases, a matter of implementation

convenience. Some operations on triangles with linear basis functions, e.g., com-

puting the intersection between the cell and a line or the distance from a cell to a

line, are relatively simpler (and possibly faster) to implement than on equivalent

quads using bilinear basis functions. However, rendering the same (large) grid

using triangles might be slower than when using quads, since roughly twice as

many primitives have to be sent to the graphics engine. When designing visu-

alization software, a good practice is to use as few cell types as possible. The

same is true for any data-processing operation that has to work on all the cells

in a grid, e.g., computing derivatives. A good trade-off between flexibility and

simplicity is to support quad cells as input data, but transform them internally

into triangle cells, by dividing every quad into two triangles using one of its two

diagonals. This simplifies and streamlines the overall software design, as only

triangle operations have to be further implemented.

The transformation T−1
quad for a general quad cell is, unfortunately, not as

simple as for triangular cells. We cannot invert Equation (3.8) when we deal

with the bilinear basis functions of a quad cell (Equations (3.16)). One solution

for this problem is to numerically solve for r, s as functions of x, y, z [Press

et al. 02].
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If our actual quad cells are rectangular instead of arbitrary quads, like in a

uniform or rectilinear grid, we can do better. In that case, the transformation

T−1
rect consists of two line transformations T−1

lin . Given a quad cell with vertices

p1, p2, p3, p4, we have

T−1
rect(x, y, z) = (r, s) =

(
(p− p1) · (p2 − p1)

‖p2 − p1‖2
,
(p− p1) · (p4 − p1)

‖p4 − p1‖2

)
. (3.17)

3.4.5 Tetrahedron

We now move to the next dimension, d = 3. Here, the simplest cell type is the

tetrahedron, defined by its four vertices c = (v1, v2, v3, v4). On the reference

tetrahedron defined by the points v1 = (0, 0, 0), v2 = (1, 0, 0), v3 = (0, 1, 0), v4 =

(0, 0, 1), the four linear basis functions are

Φ1
1(r, s, t) = 1− r − s− t,

Φ1
2(r, s, t) = r,

Φ1
3(r, s, t) = s,

Φ1
4(r, s, t) = t.

(3.18)

Given a tetrahedral cell with vertices p1, p2, p3, p4, we can deduce the transfor-

mation T−1
tet using the barycentric coordinate idea outlined for T−1

tri (see Sec-

tion 3.4.3). In detail, if T−1
tet (x, y, z) = (r, s, t), then the reference coordinates r,

s, and t of the point p = (x, y, z) can be computed as the ratio of the volumes

of the tetrahedra (p, p1, p3, p4), (p, p1, p2, p4), and (p, p1, p2, p3) to the volume of

(p1, p2, p3, p4). This gives the following formulas for the reference coordinates:

r =
|(p− p4) · ((p1 − p4)× (p3 − p4)) |
|(p1 − p4) · ((p2 − p4) × (p3 − p4)) |

,

s =
|(p− p4) · ((p1 − p4)× (p2 − p4)) |
|(p1 − p4) · ((p2 − p4) × (p3 − p4)) |

,

t =
|(p− p3) · ((p1 − p3)× (p2 − p3)) |
|(p1 − p4) · ((p2 − p4) × (p3 − p4)) |

.

(3.19)

Some applications use also pyramid cells and prism cells to discretize volu-

metric domains (see Figure 3.5). To limit the number of cell types we need to

support in a concrete software implementation, pyramid and prism cells can be

split into tetrahedral cells, similar to the way we split quad cells into two triangle

cells.



72 3. Data Representation

3.4.6 Hexahedron

The next d = 3-dimensional cell type is the hexahedron, or hex, defined by its

eight vertices c = (v1, . . . , v8). The reference hexahedron is the axis-aligned cube

of unit edge length, with v1 at the origin. On this cell, the eight linear basis

functions are
Φ1

1(r, s, t) = (1 − r)(1 − s)(1− t),

Φ1
2(r, s, t) = r(1− s)(1 − t),

Φ1
3(r, s, t) = rs(1− t),

Φ1
4(r, s, t) = (1 − r)s(1 − t),

Φ1
5(r, s, t) = (1 − r)(1 − s)t,

Φ1
6(r, s, t) = r(1− s)t,

Φ1
7(r, s, t) = rst,

Φ1
8(r, s, t) = (1 − r)st.

(3.20)

Just as the tetrahedral cell in 3D is analogous to the triangle cell in 2D,

hex cells are analogous to quad cells. Hence, the pros and cons of using hex

cells instead of tetrahedra are similar to the 2D discussion involving quads and

triangles, and so are the solutions. We can split hexahedral cells into six tetra-

hedra each, and then use only tetrahedra as 3D cell types, simplifying software

implementation and maintenance.

Similar to quad cells, the transformation T−1
hex for hexahedral cells cannot

be computed analytically and must be determined using numerical methods.

However, just as for quad cells again, we can do better in case our actual hex

cells are rectangular solids, or boxes, i.e., their edges are orthogonal on each

other (see Figure 3.5). These cells are also called box cells. In this case, T−1
box can

be computed by combining three instances of the line-cell transformation T−1
lin ,

similarly to the approach we took for rectangular cells (Equation 3.17):

T−1
box(x, y, z) = (r, s, t)

=

(
(p− p1)(p2 − p1)

‖p2 − p1‖2
,
(p− p1)(p4 − p1)

‖p4 − p1‖2
,
(p− p1)(p5 − p1)

‖p5 − p1‖2

)
.

(3.21)

3.4.7 Other Cell Types

We have presented the most commonly used cell types in d ∈ [0, 3] dimensions.

As a closing remark, we mention that various authors and software packages

sometimes offer more cell types, such as squares, pixels, triangle strips, polygons
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in 2D, and cubes and voxels in 3D. Such cells have similar (linear) interpolation

functions and properties to the ones described here. Squares and pixels are

essentially identical to our rectangle cell, except that they have equal-size edges,

and pixels are usually thought to be aligned with the coordinate axes. Triangle

strips [Shreiner et al. 03, Schroeder et al. 06] are not a different type of cell

from an interpolation point of view, but just a more memory-efficient way to

store sequences of triangle cells that share edges, so they can be seen as an

implementation-level optimization. Cubes and voxels play the role in 3D that

squares and pixels respectively have in 2D.

Finally, let us mention that the piecewise constant and linear basis functions,

which we have described so far, are not the only ones used in practice. Some

applications use quadratic cells, which are called so because they can support

quadratic basis functions.3 Quadratic cells are the equivalents of the cells pre-

sented here, but also contain the midpoints of cell edges—shown by the red

points in Figure 3.7 for several cell types. Such cells can support quadratic basis

functions and provide piecewise quadratic (C2), hence smoother, reconstruction

of data, and are often used in numerical applications such as finite element meth-

ods [Reddy 93].4 Figure 3.7 (left) shows the quadratic interpolation f̃quad along

a one-dimensional quadratic cell, which yields a parabola, and the equivalent

linear interpolation f̃lin along the corresponding two linear cells obtained from

splitting the quadratic cell.

However, few visualization applications support such cells natively. In prac-

tice, visualization applications usually convert datasets that contain quadratic

cells to the cell types we described previously by splitting the quadratic cells using

3Do not confuse quadratic cells, which support second-order basis functions, with quadri-
lateral (quad) cells, which are two-dimensional cells having four vertices.

4For a quadratic triangle, for instance, we need six sample points (corners and edge mid-
points), since a quadratic function f(x, y) = ax2+ by2+ cxy+dx+ey+f needs six coefficients
(a..f) to be defined.
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their edge midpoints and/or cell centers into several linear cells (see Figure 3.7

for examples of several 1D and 2D cells), or even simply ignoring the extra mid-

points and their associated data. Besides the added complexity, quadratic cells

cannot be directly rendered by standard OpenGL, which supports only linear

(Gouraud) interpolation of colors over a polygon. Although more recent addi-

tions, such as pixel shaders, allow simple implementations to perform quadratic

color interpolation at every pixel of a polygon, such extensions are not yet com-

monly supported by visualization software.

As a general conclusion, when you have to implement and maintain a specific

visualization application, it is much simpler, faster, and less error prone to sup-

port just the minimal number of cell types that are strictly needed, rather than

all possible variants. In general, you should add new cell types to your appli-

cation data representation only if these allow you to implement some particular

visualization or data-processing algorithms much more easily and/or efficiently

than cell types your software already supports.

3.5 Grid Types
Now that we have presented the cell types, we can describe the various types of

grids we can construct using these cells. Many types of grids exist in the visu-

alization practice. We shall describe the most widely used grid types: uniform

grids, rectilinear grids, structured grids, and unstructured grids.

3.5.1 Uniform Grids

We start with the simplest grid type, the uniform grid. In a uniform grid, the

domain D is an axis-aligned box, e.g., a line segment for d = 1, rectangle for

d = 2, or rectangular solid for d = 3. We can describe this box as a set of d pairs

((m1,M1), . . . , (md,Md)) where (mi,Mi) ∈ R
2,mi < Mi are the coordinates of

the box in the ith dimension. On a uniform grid, sample points pi ∈ D ⊂
R

d are equally spaced along the d axes of the domain D. If we denote by

δ1, . . . , δd ∈ R the spacing, or sampling steps, along the d axes of D then a

sample point on a uniform grid can be written as pi = (m1 + n1δ1, . . . ,md +

ndδd), where n1, . . . , nd ∈ N. There are Ni = 1 + (Mi −mi)/δi sample points

on every axis. Hence, in a uniform grid, a sample point is described by its

d integer coordinates n1, . . . , nd. These integer coordinates are sometimes also

called structured coordinates . A simple example of a uniform grid is a 2D pixel

image, where every pixel pi is located by two integer coordinates. The strong

regularity of the sample points in a uniform grid makes their implementation
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simple and economical. We can uniquely order the sample points pi in the

increasing order of the indices, starting from n1 to nd, i.e.,

i = n1 +
d∑

k=2

(
nk

k−1∏
l=1

Nl

)
. (3.22)

This numbering convention is sometimes called the lexicographic order, since

it corresponds to a lexicographic (alphabetic-like) ordering of the strings nd,

nd−1, . . . , n1 formed by concatenating the index values. If we use this numbering

convention, we do not have to store explicit sample point coordinates for uniform

grids, as these can be computed from the grid sizes and samples per dimension.

Storing a d-dimensional uniform grid amounts, thus, to storing 3d values. For

every dimension, we store (mi,Mi, δi), i.e., the spatial extents and sampling

step. Other schemes are also possible, such as storing the spatial extents and

number of sample points per dimension (mi,Mi, Ni). Moreover, this regular

point ordering allows us to define the grid cells implicitly by using the point

indexes. For example, let us consider a d-dimensional uniform grid using box-

like cells, i.e., lines in 1D, quads in 2D, and hexahedra in 3D. In such a grid, we

can compute the vertex indices v[] of the cell with index c using the function

in Listing 3.1. In Listing 3.1, d is a constant indicating the grid dimension, i.e.,

i n t g e tCe l l ( i n t c , i n t ∗ v )
{

i n t C[ d ] , j ; //stores ce l l coordinates

i n t P =
∏d−1

i=1 (Ni − 1) ;

//compute ce l l coordinates C[0], . . . , C[d− 1]
f o r ( j = d−1; j >0; j−−)
{

C[ j ] = c / P;
c −= C[ j ] ∗ P;
P /= C[ j −1] ;

}
C[ 0 ] = c ;

//now go from ce l l coordinates to vertex coordinates
i n t i [ d ] ;
f o r ( i [ 0 ] = 0 ; i [ 0 ] <2 ; i [0]++)

. . .
f o r ( i [ d−1] = 0 ; i [ d−1]<2; i [ d−1]++)

v [ j++] = l ex (C[0]+ i [ 0 ] , . . . ,C[ d−1]+ i [ d−1 ] ) ;

r e turn d ;
}

Listing 3.1. Computing vertex indices from a cell index.
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Figure 3.8. Uniform grids. 2D rectangular domain (left) and 3D box domain (right).

1, 2, or 3. The idea of the algorithm is simple. First, we pass from the cell index

c to the cell structured coordinates C[]. Next, we pass from cell structured

coordinates to vertex structured coordinates. Finally, we pass from the vertex

structured coordinates to the vertex indices. Here, the function lex(n1, . . . , nd )

implements Equation (3.22). Note, however, that cell vertex indices v[] are not

returned in the same order as denoted in Figure 3.5, but in order of variation of

the vertex structured coordinates. Similar cell index to vertex index translations

are also derivable for other cell shapes, such as triangles in 2D and tetrahedra

in 3D.

Our first visualization example (see Listing 2.1) used a 2D uniform grid to

store the sample values of the two-variable function to be visualized. In the code,

the grid was defined by its spatial extents X min, X max, Y min, and Y max and

by the number of sample points per dimension N x and N y.

Figure 3.8 shows two examples of uniform grids, one for a 2D rectangular

and the other for a 3D box-like domain. The grid edges, that is, the cell edges

whose vertices have one of the integer coordinates equal to zero, are drawn in

red. The grid corners, i.e., the grid vertices whose integer coordinates are either

minimal or maximal, i.e., equal to either 0 or Ni, are drawn in green.

The major advantages of uniform grids are their simple implementation

and practically zero storage requirements. Regardless of its size, storing a d-

dimensional grid itself takes 3d floating-point values, i.e., only 12d bytes of

memory.5 Storing the actual sample values at the grid points takes storage

5We assume in the following that the size of a floating-point number is four bytes, or 32
bits.
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proportional to the number of sample points. For example, storing one scalar

value for each sample point, as in the case of our height-plot visualization, re-

quires
∏d

i=1Ni floating-point values. However, this is an issue concerning the

data attributes themselves, not the grid, as described further in Section 3.6.

3.5.2 Rectilinear Grids

However simple and efficient, uniform grids have limited modeling power. Repre-

senting non–axis-aligned domain shapes requires framing them in an axis-aligned

bounding-box. Since this box is uniformly sampled, we waste memory for the

sample values that fall outside the domain itself. A second problem was already

illustrated in our first visualization example in Chapter 2. To accurately rep-

resent a function with a nonuniform variation rate, such as when drawing the

graph of the function e−(x2+y2), we need either to use a high sampling density on

a uniform grid (as in Figure 2.1), or use a grid with nonuniform sample density

(as in Figure 2.3(b)).

Rectilinear grids are a first step in this direction. They still keep the axis-

aligned, matrix-like point ordering and implicit cell definition used by the uni-

form grids (Equation (3.22) and Listing 3.1), but they relax the constraint of

equal sampling distances for a given axis. Instead, rectilinear grids allow us to

define a separate sample step δij for each row of points that shares a coordinate

ni in every dimension i ∈ [1, d]. A sample point on a rectilinear grid can be

written as pi = (x1, . . . , xd), where xi = mi +
∑ni−1

j=0 δij . Figure 3.9 shows a

rectilinear grid.

Figure 3.9. Rectilinear grids. 2D rectangular domain (left) and 3D box domain (right).
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Implementing a rectilinear grid implies storing the grid origins (mi, Ni) and

sample counts for every dimension d, as for the uniform grid. Additionally,

we must store δij , i ∈ [1, d], j ∈ [1, Ni] sample steps. In total, the storage re-

quirements are 2d+
∑d

i=1Ni values, where we assume floating-point and integer

numbers to have the same storage size in computer memory..

Figure 3.9 shows two examples of rectilinear grids. The grid edges and grid

corners are colored in red and green, respectively, just as for the uniform grids

presented in Section 3.5.1. These grids are similar to the uniform ones shown

in Figure 3.8, except that the distances δij between the sample points are now

not equal along the grid axes. The 2D rectilinear grid (see Figure 3.9 (left)) is

actually a slice extracted from the 3D grid (see Figure 3.9 (right)). Slicing is

discussed in detail in Section 8.1.2.

3.5.3 Structured Grids

However useful, rectilinear grids do not remove the two constraints inherent to

uniform grids. The sampled domain is still a rectangular box. The sample point

density can be changed only one axis at a time. For our height-plot visualization

of the exponential function, for example, rectilinear grids do not allow us to place

more sample points only in the central peak region, where we need them. To do

this, we need to allow a free placement of the sample point locations.

Structured grids serve exactly this purpose. They allow explicit placement

of every sample point pi = (xi1, . . . , xid). The user can freely specify the coordi-

nates xij of all points. At the same time, structured grids preserve the matrix-like

ordering of the sample points, which allows an implicit cell construction from the

point ordering. Intuitively, a structured grid can be seen as the free deformation

of a uniform or rectilinear grid, where the points can take any spatial positions,

but the cells, i.e., grid topology, stay the same. Implementing a structured grid

implies storing the coordinates of all grid sample points pi and the number of

points N1, . . . , Nd per dimension. This requires a storage space of 3
∏d

i=1Ni + d

values.

Structured grids can represent a large set of shapes. Figure 3.10 shows several

examples. As shown in Figure 3.10 (left), structured grids can represent domains

having a smooth, cornerless border, such as the circular domain in the image.

The surface of our familiar function graph introduced in Chapter 2 is also best

represented by a structured grid (see Figure 3.10 (middle)). Figure 3.10 (right)

shows a 3D structured grid that has hexahedral cells. The grid edges and corners

are drawn in red and green, respectively, just as for the uniform and rectilinear

grid examples discussed in the previous sections.
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Figure 3.10. Structured grids. Circular domain (left), curved surface (middle), and
3D volume (right). Structured grid edges and corners are drawn in red and green,
respectively.

3.5.4 Unstructured Grids

Structured grids can be seen as a deformation of uniform grids, where the topo-

logical ordering of the points stays the same, but their geometrical position is

allowed to vary freely. There are, however, shapes that cannot be efficiently

modeled by structured grids. For example, consider a domain consisting of a

square with a circular hole in the middle (see Figure 3.11). We cannot cover this

domain with a structured grid, since we cannot deform a rectangle to match a

rectangle with a hole—the two shapes have different topologies.6 A second lim-

itation of all grid types described so far concerns the specification of grid cells.

For uniform, rectilinear, or structured grids, cells are implicitly specified, e.g.,

by always connecting grid points in the same order. This can be too restrictive

in many cases.

These problems are solved by using unstructured grids. Unstructured grids

are the most general and flexible grid type. They allow us to define both their

sample points and cells explicitly. An unstructured grid can be modeled as a

collection of sample points {pi}, i ∈ [0, N ] and cells {ci = (vi1, . . . , viCi)}. The

values vij ∈ [0, N ] are called cell vertices , and refer to the sample points pvij
used by the cell. A cell is thus an ordered list of sample point indices. This

model allows us to define every cell separately and independently of the other

cells. Also, cells of different type and even dimensionality can be freely mixed in

the same grid, if desired. If cells share the same sample points as their vertices,

this can be directly expressed. This last property is useful in several contexts.

6The two shapes are distinguished by their genus. The plain square is said to be of genus
0, while the square with hole is of genus 1.
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(a) (b)

Figure 3.11. A domain consisting of a square with a hole in the middle cannot be
represented by a structured grid. The domain border, consisting of two separate com-
ponents, is drawn in red. Unstructured grids can easily model such shapes, whether
using (a) a combination of several cell types, such as quads and triangles, or (b) a single
cell type, such as, in this case, triangles.

First, storing an index, usually represented by an integer, is generally cheaper

than storing a d-dimensional coordinate, such as d floating-point values. Second,

we can process the grid geometry, i.e., the positions of the sample points pi,

independently of the grid topology, i.e., the cell definitions.

Implementing an unstructured grid implies first storing the coordinates of all

grid sample points pi, just as for the structured grid, and next storing all vertex

indices for all cells. These indices are usually stored as integer offsets in the grid

sample point list {pi}. If we use different cell types in the grid then we must

either store the cell size, i.e., number of vertices, for every cell, or alternatively

organize the cells in separate lists, where each list contains only cells of a given

type. In practice, it is preferable to use unstructured grids containing a single

cell type, as these are simpler to implement and also can lead to significantly

faster application code. The costs of storing an unstructured grid depend on the

types of cells used and the actual grid. For example, a grid of C d-dimensional

cells with V vertices per cell and N sample points would require dN+CV values.

Figure 3.12 shows several examples of unstructured grids. The first grid (Fig-

ure 3.12 left) shows the same circular domain as in Figure 3.10, but now sampled

on an unstructured grid. The domain boundary is drawn in red. The second

example (Figure 3.12 middle) shows a more complex 2D domain, obtained by

slicing a 3D uniform dataset containing an magnetic resonance imaging (MRI)
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Figure 3.12. Unstructured grids. Circle (left), head slice (middle), and 3D bunny surface
(right).

scan with a plane. Slicing is treated in detail in Section 8.1.2. The boundary of

the domain is drawn in red, for clarity. It is clearly difficult, if not impossible,

to sample domains with such complex and irregular boundaries using struc-

tured grids. The unstructured grid has no problem representing such a domain,

however. The third example (Figure 3.12 right) shows an unstructured grid rep-

resenting a 3D surface of a bunny, with the grid edges drawn in red for clarity.

As in the previous example, unstructured grids can represent such shapes with

no problem.

3.6 Attributes

So far, we have described three of the four ingredients of a discrete dataset

Ds = ({pi}, {ci}, {fi}, {φki }): the grid consisting of sample points pi and cells ci,

and the reference basis functions Φk
i . This section discusses the sample values

fi in more detail.

As we said in the beginning of our discussion on data representation, visual-

ization data can be modeled by some continuous or discrete function with values

in a domain C ∈ R
c. Hence, the sample values fi are c-dimensional points. In

visualization, the set of sample values of a sampled dataset is usually called at-

tribute data. Attribute data can be characterized by their dimension c, as well

as the semantics of the data they represent. This gives rise to several attribute

types . These are described in the following sections.



82 3. Data Representation

3.6.1 Scalar Attributes

Scalar attributes are c = 1 dimensional. These are represented by plain real

numbers. Scalar attributes can encode various physical quantities, such as tem-

perature, concentration, pressure, or density, or geometrical measures, such as

length or height. The latter is the case for our function f : R2 → R visualized

in our elevation plot example.

3.6.2 Vector Attributes

Vector attributes are usually c = 2 or c = 3 dimensional. Vector attributes can

encode position, direction, force, or gradients of scalar functions. Usually, vectors

have an orientation and a magnitude, the latter also called length or norm. If

only the magnitude is relevant then we actually have a scalar, rather than a

vector, attribute. If only the orientation is relevant, we talk about normalized

vectors, i.e., vectors of unit length. When such vectors represent the normalized

gradient of an implicit function whose graph is a 2D curve or 3D surface, these

unit vectors are called also normals, as described in Chapter 2. Some authors

regard vectors and normals as two different attribute types. However, in practice

there is no structural difference between the two in terms of data representation.

In particular, in most visualization software, normals are also stored using the

same number of components as vectors, i.e., c = 2 for 2D curve normals and

c = 3 for 3D surface normals, as this considerably simplifies the data storage

implementation.

3.6.3 Color Attributes

Color attributes are usually c = 3 dimensional and represent the displayable

colors on a computer screen. The three components of a color attribute can

have different meanings, depending on the color system in use. One of the

most-used color systems is the well-known RGB system, where the three color

components specify the amount, or intensity, of red, green, and blue that a

given color contains. Usually, these components range from 0 (no amount of a

given component) to 1 (component is at full brightness). The RGB system is

an additive system. That is, every color is represented as a mix of “pure” red,

green, and blue colors in different amounts. Equal amounts of the three colors

determine gray shades, whereas other combinations determine various hues.

RGB space. The RGB color space is usually represented as a color cube with one

corner at the origin, the diagonally opposite corner at location (1, 1, 1), and the

edges aligned with the R, G, and B axes (see Figure 3.13(a)). Every point inside
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Figure 3.13. Color-space representations. (a) RGB cube. (b) RGB hexagon. (c) HSV
color wheel. (d) HSV color widget (Windows).

the cube represents one of the displayable colors. The cube’s main diagonal

connecting the points (0, 0, 0) and (1, 1, 1) is the locus of all the grayscale values.

Brighter colors are located closer to the cube’s outer faces (visible in the figure)

whereas darker colors are located closer to the origin (hidden in the figure).

RGB color representations are handy from an implementation perspective, as

most graphics software, such as OpenGL and image storage formats, manipulate

colors in this way.

However, manipulating a 3D cube representation of a color space can be

difficult in practice. Moreover, since we cannot see “inside” the RGB cube, it

may be handy to visualize only the outer surface of the cube. If we view the cube
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along the main diagonal using an orthographic projection, we see a 2D hexagon,

as shown in Figure 3.13(b). The cube corners, the primary colors, are shown as

small spheres. As we shall see next, this represents the space of all colors having

a luminance equal to one. Moreover, all other colors situated inside the RGB

cube are just darker versions of these colors.

HSV space. Another popular color representation system is the HSV system,

where the three color components specify the hue, saturation, and value of a given

color. The advantage of the HSV system is that it is more intuitive for the human

user. Hue distinguishes between different colors of different wavelengths, such as

red, yellow, and blue. Saturation represents the color “purity.” Intuitively, this

can be seen as how much the hue is diluted with white or how far the color is

from a primary color. A saturation of 1 corresponds to the pure, undiluted color,

whereas a saturation of 0 corresponds to white. Value represents the brightness,

or luminance, or a given color. A value of 0 is always black, whereas a value of

1 is the brightest color of a given hue and saturation that can be represented on

a given system. For this reason, the HSV system is sometimes also called HSB,

where “B” stands for brightness. The HSV color space is often represented

using a color wheel (see Figure 3.13(c)). Every point p inside the color wheel

represents an HSV color whose hue is given by the angle (scaled to the [0, 1]

range) made by the vector p− o with the horizontal axis, where o is the wheel’s

center, and whose saturation is given by the length ‖p− o‖ of the same vector.

Value is not explicitly represented by the color wheel. Hence, the color wheel

shows all possible hues and saturations for a given value. If value were added,

as a dimension orthogonal to the color wheel space, the entire HSV space would

thus create a cylinder. The HSV color wheel is quite similar to the RGB color

hexagon in terms of color arrangement. Compared to the hexagon, the color

wheel has the advantage that the hue parameter is mapped to a visual attribute

that varies smoothly, i.e., the wheel angle. For example, a curve of constant

saturation is a circle and a hexagon, respectively, in these two representations.

As we shall see next, the value (or luminance) component of an HSV color is

equal to the maximum of the R, G, and B components. Hence, all colors shown

by an HSV color wheel for a given value V ∈ [0, 1] are equivalent to all points

on the outer faces of a cube similar to the whole RGB cube but of edge size V .

Such an equal-value surface for V = 0.5 is shown in Figure 3.14 inside the RGB

cube. As we shall see in Section 5.3, such a constant-value surface is called an

isosurface.

In practice, there exist many other visual representations of color spaces.

For example, the color selector widget in the Windows operating system uses a
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Figure 3.14. Surface in the RGB cube representing colors with the constant value
V = 0.5.

different representation, shown in Figure 3.13(d). This widget is similar to the

HSV color wheel in the sense that it maps the hue and saturation components

to a 2D surface, in this case a square instead of a circle. The value component is

explicitly represented as a separate color bar at the right of the colored square,

and shows all colors having the H and S components specified by the selected

point in the color square and values V ∈ [0, 1]. The color square can be thought

of as a “cut-out” of the color wheel along the horizontal positive half-axis followed

by a stretch of the resulting shape to a square. Whereas the color wheel maps

equal changes of the H and S parameters to unequal changes of position on the

wheel by compressing the colors with low S components into a relatively small

area around the center, the color square maps the HS space isometrically to the

square area. This lets users specify low S colors potentially more easily than

with the color wheel.

Converting between RGB and HSV. Since HSV color specification is often more

convenient for the end user while RGB specification is required by various soft-

ware, it is important to know how to map colors from the HSV to the RGB

space. Listing 3.2 provides a simple C++ function that converts from the RGB

to the HSV space. In this code, both RGB and HSV colors are represented as

arrays of three floating-point values, with the respective color components in

the natural array order. The largest RGB component gives the value, or lu-
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void rgb2hsv ( f l o a t r , f l o a t g , f l o a t b ,
f l o a t& h , f l o a t& s , f l o a t& v )

{
f l o a t M = max( r ,max( g , b ) ) ;
f l o a t m = min( r , min ( g , b ) ) ;
f l o a t d = M−m;
v = M; //value = max(r ,g ,b)
s = (M>0.00001)? d/M: 0 ; //saturation
i f ( s==0) h = 0 ; //achromatic case , hue=0 by convention
e l s e //chromatic case
{

i f ( r==M) h = (g−b)/d ;
e l s e i f ( g==M) h = 2 + (b−r )/d ;
e l s e h = 4 + ( r−g )/d ;
h /= 6 ;
i f (h<0) h += 1 ;

}
}

Listing 3.2. Mapping colors from RGB to the HSV space.

minance. The saturation represents the ratio between the smallest and largest

RGB component (normalized to [0, 1]), i.e., how much the color differs from a

grayscale value. Finally, the hue is given as the difference between the medium

and smallest RGB components. A special case takes place when the saturation

S equals zero. This corresponds to a grayscale, for which the hue H cannot be

determined uniquely. In this case, we set H = 0 by convention.

Listing 3.3 shows the implementation of the inverse mapping from HSV to

RGB. The code distinguishes six cases, which correspond to sectors of 60 degrees

of the color wheel. Within each sector, saturated colors are created as a linear

interpolation between two primary colors, for example red and yellow for the

first sector (H ∈ [0, 1/6]), as a function of H. The final result is produced by

linearly interpolating between the saturated color and white, as a function of S.

Structurally speaking, color attributes can be also seen as vector attributes.

However, color is often thought of, and also implemented as, a separate attribute

in most data-visualization software systems, for a number of reasons. First, op-

erations on color are quite different than operations on general vectors. For

example, it makes sense to decrease the saturation of a color, or compute its

complementary color or its grayscale value, but these operations have no natural

counterpart on vector data. Conversely, computing the angle between two vec-

tors is a far more common operation on vector attributes, although it could be

also performed on colors. Second, the three color components of a color attribute

are usually represented as positive normalized real values in [0, 1] or, in case of
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void hsv2rgb ( f l o a t h , f l o a t s , f l o a t v ,
f l o a t& r , f l o a t& g , f l o a t& b)

{
i n t hueCase = ( i n t ) ( h ∗6 ) ;
f l o a t f r a c = 6∗h−hueCase ;
f l o a t l x = v∗(1 − s ) ;
f l o a t l y = v∗(1 − s∗ f r a c ) ;
f l o a t l z = v∗(1 − s ∗(1 − f r a c ) ) ;
switch ( hueCase )
{

case 0 :
case 6 : r=v ; g=l z ; b=lx ; break ; // 0<hue<1/6
case 1 : r=ly ; g=v ; b=lx ; break ; // 1/6<hue<2/6
case 2 : r=lx ; g=v ; b=l z ; break ; // 2/6<hue<3/6
case 3 : r=lx ; g=ly ; b=v ; break ; // 3/6<hue/4/6
case 4 : r=l z ; g=lx ; b=v ; break ; // 4/6<hue<5/6
case 5 : r=v ; g=lx ; b=ly ; break ; // 5/6<hue<1

}
}

Listing 3.3. Mapping colors from HSV to the RGB space.

a discrete color model, as 8-bit integers in [0, 255], whereas vector components

usually are arbitrary real numbers. All in all, it follows that it is more natural,

less confusing, and also more efficient from an implementation point of view to

represent colors and vectors as different attribute types.

Color perception. The RGB and HSV color spaces are simple and convenient

tools for representing colors in a way which efficiently maps to implementation,

respectively allows a simple and intuitive way for users to select colors. How-

ever, interpreting values such as hue, saturation, and brightness in terms of how

humans actually perceive such color properties is a different matter. Consider

luminance, for example. The HSV luminance value computed by Listing 3.2 is,

indeed, low for colors that we perceive as “dark,” and respectively high for colors

that we perceive as “bright.” However, this value is not proportional with what,

in general, humans would perceive as being the brightness of a given color. For

instance, in the HSV model, both pure blue (R = 0, G = 0, B = 1) and pure

yellow (R = 1, G = 1, B = 0) have the same luminance V = 1. However, most

humans will argue that they perceive pure yellow as being brighter than pure

blue.

To account for such perceptual issues, and also to make the difference of colors

(as represented in a color space) be as close as possible to the perceived differences

of the same colors (as assessed by human subjects visualizing the respective colors

on a given device), many other color representation models, or color spaces,
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have been designed. For example, in the sRGB color representation [ICC 14],

luminance Y of a color is computed as

Y = 0.21R+ 0.72G+ 0.07B. (3.23)

Intuitively, this models the fact that humans perceive green as contributing most

to the brightness of a color, followed by red, and blue as being the least important

contributor.

Besides RGB, HSV, and sRGB, many other color spaces, or color represen-

tations, exist. The theory and practice of color representation is an extensive

subject, which is outside of the scope of this book. For more details, we refer

the interested reader to an excellent field guide on color theory, representation,

and practice [Stone 03].

3.6.4 Tensor Attributes

Tensor attributes are high-dimensional generalizations of vectors and matrices.

Tensor data can most easily be explained by means of an example: Measuring

the curvature of geometric objects.

Curvature as a tensor. Consider first a planar curve C. For every point x0 on

C, let us take a local coordinate system xy such that x is tangent to the curve

and y is normal to the curve in x0. In this system, the curve can be described

as y = f(x) in the neighborhood of x0, where f(x0) = 0. The curvature is then

defined as ∂2f/∂x2(x0). The curvature describes how small movements on C

change the curve’s normal or, alternatively, how much the curve deviates from

the tangent line at a given point. The more the normal changes, the more the

curve differs from its tangent line, and the higher its curvature is.

Consider now a surface S (see Figure 3.15). For every point x0 on S, take

a local coordinate system xyz such that x and y are tangent to the surface and

z coincides with the surface normal n in x0. Around x0, the surface can be

described as z = f(x, y), with f(x0) = 0. Similar to the planar case, curvature

describes how small movements along S result in changes to the surface normal

or, in other words, how the surface deviates, at some given point, from its tangent

plane at that point. However, there is a problem. Whereas movements around

a point on a curve can happen only in two directions, and so can be described

by a single number, movements around a point on a surface can happen in an

infinite number of directions, so they cannot be described by a single number.

To solve this problem, consider the gradient∇f of the function f(x, y). The rate
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Figure 3.15. Curvature of two-dimensional surfaces.

of variation of f in some direction s is

f(x0 + s) = f(x0) +∇f(x0)s, (3.24)

In other words, we can link the directional derivative ∂f/∂s with the gradient by

∂f

∂s
= ∇f · s. (3.25)

Now consider expressing the rate of variation of the gradient in a given di-

rection. If we now differentiate Equation 3.24 with respect to x and separately

to y, and combine the two resulting expressions using vector notation, we obtain

that the rate of variation of ∇f = (∂f/∂x, ∂f/∂y) in some direction s can be

expressed as

∇f(x0 + s) = ∇f(x0) +H(x0)s, (3.26)

where H is a 2 × 2 matrix containing the second-order partial derivatives of

f(x, y) in the local coordinate system, called the Hessian of f :

H =

⎛
⎝ ∂2f

∂x2
∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

⎞
⎠ . (3.27)
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From Equations (3.25–3.27), we can easily obtain that

∂2f

∂s2
(x0) = sTHs. (3.28)

This gives the curvature of our surface at some point x0 in any given direction

s. This value is identical to the curvature of the curve C determined by the

intersection of the surface with a plane that contains the vectors n and s (see

Figure 3.15) and is also known as normal curvature. However, to use Equa-

tion (3.28), we have to build our local coordinate system every time we want to

compute the curvature of some point.

We can simplify this procedure as follows. Consider that our surface S is

given in global coordinates instead of local ones, for example as an implicit

function f(x, y, z) = 0. We can then, after some mathematical manipulations,

express the rate of change of the surface normal at the point x0 as

∂2f

∂s2
(x0) =

sTHs

‖∇f(x0)‖
(3.29)

where H is the 3 × 3 Hessian matrix of partial derivatives of f(x, y, z) in the

global coordinate system:

H =

⎛
⎜⎜⎝

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

⎞
⎟⎟⎠ . (3.30)

Using Equation (3.30), we can compute the curvature of a surface given in global

coordinates, without the need of constructing a local coordinate system. For

details of the derivation of Equation 3.29, see [Hartmann 99].

Summarizing, we can compute the curvature of a planar curve using its second

derivative ∂2f/∂x2, and the curvature of a 3D surface in a given direction using

its Hessian matrix H of partial derivatives. Given this property of the Hessian

matrix, it is also called the curvature tensor of the given surface.

Tensors, vectors, and scalars. Besides curvature, tensors can describe other phys-

ical quantities that depend on direction, such as water diffusivity or stress and

strain in materials. Tensors are characterized by their rank . Scalars are tensors

of rank 0. Vectors are tensors of rank 1. The Hessian curvature tensor is a rank

2 symmetric tensor, since it is expressed by a symmetric, rank 2 matrix. In

general, tensors of rank k are k-dimensional real-valued arrays.
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∇f(x,y)

s
(x,y)

f(x,y)

x y

∇f(x,y)⋅s

e1

e2

f(x,y) ∇f(x,y)⊥

Figure 3.16. Scalar value, gradient vector, and curvature tensor for a function f(x, y).

Table 3.2 summarizes the relationships between the value of a function, its

gradient, and its curvature tensor, for a function of two variables f(x, y). Con-

sider the height plot of such a function, like the half-ellipse in Figure 3.16. Given

a point (x, y), the function itself, f(x, y), gives us the plot height at that point.

Given also a direction s, the gradient ∇f(x, y) and Hessian tensor H(x, y) can

be used to retrieve the slope and the curvature of the plot in that direction, re-

spectively. The gradient is also the direction around (x, y) in which the slope is

maximal, the maximum value being its norm. The vector ∇f(x, y)⊥, orthogonal
to the gradient, is the direction in which the slope is mimimal, the minimum

value being zero. Similarly, for the curvature, we can compute the directions e1
and e2 along which the curvature is maximal, respectively minimal, and the max-

imum and minimum curvature values λ1 and λ2, the latter being the curvatures

at (x, y) of the red, respectively yellow, curves in Figure 3.16. The technique to

compute these quantities, called principal component analysis, is discussed later

on when detailing tensor visualization (Section 7.1).

In the visualization practice, two-dimensional symmetric tensors are the most

common. We shall discuss tensor data in more detail in Chapter 7, when we

present tensor visualization methods.

3.6.5 Non-Numerical Attributes

All the attribute types presented so far were real-valued, i.e., points in some

space R
c. The question arises whether attribute types that are not represented
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Quantity Data Slope Curvature

Value f(x, y) – –
Value in direction s – ∇f(x, y) · s sTH(x, y)s
Maximum direction – ∇f(x, y) e1

Maximum value – ‖∇f(x, y)‖ λ1

Minimum direction – ∇f(x, y)⊥ e2

Minimum value – 0 λ2

Table 3.2. Scalars, gradient vectors, and tensors for a function f(x, y).

by real numbers can be also used. From a purely implementation perspective,

the answer is simple: We can use any data type as an attribute type in a discrete

dataset, by storing the data values, i.e., instances of the desired data type, at

the grid points. Examples of possible non-numerical attribute types are text,

images, file names, or even sound samples.

However, when doing this, an essential question immediately arises: What

is the meaning of such a dataset? We defined a sampled, or discrete, dataset

as the tuple Ds = ({pi}, {ci}, {fi}, {Φk
i }), consisting of grid points pi ∈ D,

grid cells ci, sample values fi ∈ C, and reference basis functions Φk
i : D → R.

The main property for Ds was to permit us to reconstruct some piecewise, k-

order continuous function f̃ : D → C, given its sample values fi ∈ C. If our

attribute types are real values, i.e., C ⊂ R
c, we have seen how to construct our

basis functions to interpolate between the sample values. The situation is quite

different when we use non-numerical attribute types. First, what should the

meaning of the multiplication between sample values fi and real-valued basis

functions Φi and of addition of the sample values in Equation (3.9) be? For

instance, what should multiplication of a string with a real value and addition of

two strings mean? It is, of course, always possible to define such operations for

non-numerical data types such that the reconstruction equation can be applied.

However, the deeper question is: What is the relationship between what we

reconstruct in this way, i.e., our f̃ , and what we had originally sampled into the

fi values, i.e., f?

In many cases, such a relationship is hard to find, or even nonexistent for non-

numerical attributes. Conversely, if the sample values in some discrete dataset

have indeed come from the sampling of a continuous function f , it is always pos-

sible to define its reconstruction f̃ , regardless of the attribute type. It is always

technically possible to store non-numerical attributes in a discrete dataset, such

as at the points on a grid. However, this should only be seen as an implemen-

tation convenience for some particular purpose, and not as defining a sampled

dataset. Remember that the notion of a sampled dataset implies the existence
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of meaningful basis functions on the grid, which can interpolate between the

sample values of a given type. If we cannot interpolate the attribute type in the

sample values, the semantics of the sample points, cells, and sample values in

our discrete dataset is not that of a sampled dataset.

As mentioned in Section 3.1, scientific visualization, or scivis, is the branch of

data visualization that works with sampled datasets, and is the main topic of this

book. Purely discrete datasets, which may include points, cells, and attribute

values, but no basis functions, are the domain of information visualization, or

infovis. Infovis techniques are briefly covered in Chapter 11.

3.6.6 Properties of Attribute Data

The main purpose of attribute data is to allow a reconstruction f̃ of the sampled

information fi (see Equation (3.2)). There are more operations possible on

attribute data. In general, these operations can be associated with manipulations

one wants to do on the reconstructed function f̃ . For example, given a function

v : D → R
3 that represents some vector quantity, and its reconstruction ṽ

using the vector attributes vi, we can compute a reconstruction f̃ of the “vector

magnitude” function f : D → R+, f (x) = ‖v(x)‖ by using the reconstruction ṽ.

That is, we have replaced the “vector magnitude” operation on the continuous

function f with an operation on the sample values vi.

Attribute data in sampled datasets have several general properties, as follows.

Completeness. First, attribute data, i.e., the sample values fi, must be defined

for all sample points pi of a dataset Ds. Indeed, if samples are missing at some

points pj, it is not possible to apply Equation (3.2) over the cells that share

these points pj, i.e., reconstruct f̃ over those cells. In practice, we may, however,

lack sample values fj over some subset of points M ⊂ {pi} of our sampling

domain, for various reasons. In such cases, several solutions are possible. First,

we can completely remove pj from the grid, since we have no data at those

locations. However, this implies repairing the grid, i.e., replacing all cells that

originally used any of the pj by new cells that do not use pj but still represent a

tiling of the domain D (see Section 3.2). This operation can be rather complex

when many points pj lack data, and also can change the grid type from the

uniform, rectilinear, or structured types to the more complex unstructured grid

type (see Sections 3.5.1–3.5.4). A second solution is to define the missing values

fj in some way. The simplest way is to replace them by some special “default”

value, e.g., zero. This is simple to do, and also allows us to distinguish these

points from the regular points in the subsequent visualizations. Finally, we can

define the missing values fj ∈ M using the existing values fi /∈ M using some
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more complex interpolation scheme, as described in Section 3.9. Note that, in

case our grid carries attribute data for which no interpolation scheme is defined

(see Section 3.6.5), we have no constraint that attributes must be defined at all

sample points, since Equation (3.2) does not apply.

Multivariate data. A second property of attribute data is that any cell type can

contain any number of attributes, of any type, as long as these are defined

for all sample points, as discussed previously. Indeed, all cell types presented

in Section 3.4 define their own basis functions and thus allow reconstruction

following Equation (3.2). Datasets having several attributes are usually called

multivariate. If the number of attributes is large, such datasets are sometimes

called high variate. The reader may have noticed that, given c real-valued data

attributes defined over the same domain D, it is possible to think of these either

as a single function f : D → R
c or as c separate functions fi → R for i ∈ [1..c]. In

other words, we can choose whether we want to model our data as a single c-value

dataset or as c one-value datasets. Of course, other combinations are possible,

too. The answer to this choice is to consider all attributes that have a related

meaning as a single higher-dimensional attribute, and to separate attributes

with different meanings. For example, consider a two-dimensional (d = 2) image

dataset, which has an RGB color c = 3 defined at every point in D ⊂ R
2.

We could model this either as a single function f : D → R
3, where the value

of f at some point x yields the color (R,G,B) of that point, f(x) = (R,G,B).

Alternatively, we could use three functions r : D → R, g : D → R, and b : D → R,

where every function yields one color component, i.e., r(x) = R, g(x) = G,

b(x) = B. The first representation is more natural, as the color components

have a related meaning. Moreover, operations on color attributes must consider

all color components simultaneously.

Node vs. cell attributes. Some data visualization applications classify attribute

data into node or vertex attributes and cell attributes. Node attributes are de-

fined at the vertices of the grid cells, hence they correspond to a sampled dataset

that uses linear, or higher-order, basis functions. Cell attributes are defined at

the center points of the grid cells, hence they correspond to a sampled dataset

that uses constant basis functions. Vertex attributes can be converted to cell

attributes and conversely by resampling, as described in Section 3.9.1.

High-variate interpolation. A final word must be said about interpolation of

higher-dimensional attribute data. From the reconstruction formula (see Equa-

tion (3.2)) and the definitions of our basis functions Φi : D → R for all our cell

types (see Section 3.4), it follows that reconstruction of a c-dimensional function
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from a c-dimensional attribute data fi ∈ R
c, where c > 1, is done by recon-

structing all its c components separately from the respective components of fi.

Examples of this situation are reconstructing normal, color, and vector attributes

(c = 3), and rank 2 or rank 3 tensor attributes (c = 4 and c = 9, respectively).

However, the c attribute components are sometimes related by some con-

straint, or invariant. We distinguish the following situations:

Normals: For normal attributes n ∈ R
3, the three components nx,ny,nz are

constrained to yield unit length normals, i.e.,

‖n‖ =
√
n2
x + n2

y + n2
z. (3.31)

Depending on the choice of the basis functions, interpolating the three compo-

nents nx,ny,nz separately as scalar values may not preserve the unit length

property on the interpolated normal n. This is simple to verify when, e.g., using

linear basis functions Φ1. There are several solutions to this problem. The eas-

iest is to interpolate the components separately, using whatever basis functions

we like, and then enforce the desired constraint on the result by normalizing it,

i.e., replacing n with n/‖n‖. This gives good results when the sample values do

not vary too strongly across a grid cell. However, enforcing the constraint on the

interpolated result can fail. For example, imagine a line cell (a, b) having normal

attributes na = (−1, 0, 0) and nb = (1, 0, 0) assigned to its end points. In the

middle of the cell, the normal interpolated by using, e.g., linear basis functions

is the null vector, which cannot be renormalized to unit length. An answer to

this problem is to represent the constraint directly in the data attributes, rather

than enforcing it after interpolation. For normal attribute types, this means

representing 3D normals as two independent orientations, e.g., using two polar

coordinates α, β, instead of using three x, y, z coordinates, which are dependent

via the unit-length constraint. We can now interpolate the normal orientations

α, β using the desired basis functions, to obtain the desired unit-length normal

results.

Vectors: For vector attributes, a similar situation occurs. We can use the “de-

fault” solution, that is, interpolate the three components vx,vy,vz of a vector

v separately as scalar attributes. Alternatively, we can express the vector us-

ing polar coordinates (two angles and one length component), and interpolate

these components. The results, as in the case of our normal attribute example

described above, will be different. However, whereas for normals we had a clear

invariant to enforce, which determined that the polar coordinate solution is bet-

ter than per-component interpolation, the situation for vector attributes is more
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subtle. Here, the suitability of one interpolation scheme versus the other one

depends on the nature of the continuous data that the vector dataset samples.

Knowing how the continuous data actually varies allows selecting the appropriate

interpolation scheme.

Colors: Colors can be interpolated component-wise in the RGB or HSV spaces

(or, for that matter, any other space in which we choose to represent them,

such as sRGB). Just as for vector data, when interpolating colors it is important

to know which invariants (if any) are to be preserved. For instance, linearly

interpolating between pure red and pure green in the RGB space will not yield

yellow along the interpolation path, while performing the same in the HSV space

will do. To visualize this, consider that the interpolation path in RGB space is a

straight line in the color cube shown in Figure 3.13(a). In HSV space, the same

path becomes a circle arc along the color wheel in Figure 3.13(c). The optimal

color space for the desired interpolation, thus, depends on the invariants we wish

to maintain along the interpolation path.

Tensors: Yet a different situation occurs for tensor attributes. Linear component-

wise interpolation of the entries of the tensor matrix is the simplest, and often

most used, solution. For symmetric tensors, this guarantees that the resulting

value will also be a symmetric tensor [Zhukov and Barr 02]. However, in many

applications, we are not directly interested in, or using, these tensor components,

but derived quantities such as eigenvectors and eigenvalues (described further in

Section. 7.1). Linear component-wise interpolation of tensors can create unde-

sired variations in these derived quantities. Since a tensor can be reduced to

three eigenvectors and three scalar eigenvalues, directional interpolation, similar

to the proposal for vector fields based on polar coordinates outlined above, can

be used. However, we now have the problem of matching two sets of three vectors

each, in order to determine how the respective vectors will rotate, or vary, along

the interpolation path. This matching is not trivial, and incorrect matching de-

cisions can lead to wrong results [Kindlmann et al. 00]. For rank 2 symmetric

tensors sampled on triangle grids, an effective interpolation strategy based on

a combination of component-wise interpolation and eigenvector interpolation is

presented in [Hotz et al. 10].

3.7 Computing Derivatives of Sampled Data
For the same polygonal surface, Gouraud shading usually produces better-look-

ing, easier-to-understand results than flat shading. Since both flat and Gouraud
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shading are highly optimized nowadays by rendering engines and graphics cards,

choosing between the two is not really a matter of optimizing performance. We

saw in Chapter 2 that Gouraud shading requires surface normals to be available,

in some way, at the polygon vertices. Also, we saw how to compute surface

normals using the derivatives of the data, in case these are a continuous function.

In this section, we address the problem of computing derivatives when we have

a sampled dataset.

One of the requirements mentioned in the previous section for a sampled

dataset Ds was that it should be generic, i.e., that we can easily replace the

various data-processing operations available for its continuous counterpart Dc

with equivalent operations on the Ds. We saw, also, that computing derivatives

is such an operation. Derivatives of data are needed for a wide range of processing

tasks, ranging from the simple normal computation for Gouraud shading to more

complex data filtering and smoothing and feature detection tasks, as described

in Chapters 5 and 9.

How should we compute data derivatives in case all we have is a sampled

dataset Ds = (pi, ci, fi,Φi)? Since we replaced our continuous signal f with f̃ ,

a logical answer is to compute derivatives of the reconstructed signal f̃ and

use them instead of the derivatives of the original signal f . We know how to

reconstruct f̃ from Ds using a given set of basis functions: f̃ =
∑N

i=1 fiφi (see

Equation (3.2)). Remember, f is a d-dimensional function, i.e., f : D ∈ R
d. We

can now compute the derivative of f̃ with respect to its ith variable xi as

∂f̃

∂xi
=

N∑
j=1

fj
∂φj
∂xi

. (3.32)

This is a linear combination of the derivatives of the basis functions in use.

However, this expression is not very convenient to use, since the actual basis

functions φj are quite complex on a general grid (see Equation (3.10)). We can

simplify the the computation of the derivatives of f̃ using the expressions of the

reference basis functions Φj , since these look the same on all cells of a given type

in a given grid. Using Equations (3.9) and (3.32), we get

∂f̃

∂xi
=

N∑
j=1

fj
∂Φj

∂xi
(r). (3.33)

We now use the derivation chain rule and obtain

∂Φ

∂xi
=

d∑
j=1

∂Φ

∂rj

∂rj
∂xi

(3.34)
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to obtain

∂f̃

∂xi
=

N∑
j=1

fj

d∑
k=1

∂Φj

∂rk

∂rk
∂xi

. (3.35)

Finally, we can rewrite Equation (3.35) in a convenient and easy-to-remember

matrix form, as follows:⎛
⎜⎜⎜⎜⎝

∂f̃
∂x1

∂f̃
∂x2

. . .
∂f̃
∂xd

⎞
⎟⎟⎟⎟⎠ =

N∑
j=1

fj

⎛
⎜⎜⎜⎝

∂r1
∂x1

∂r2
∂x1

. . . ∂rd
∂x1

∂r1
∂x2

∂r2
∂x2

. . . ∂rd
∂x2

. . .
∂r1
∂xd

∂r2
∂xd

. . . ∂rd
∂xd

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
inverse Jacobian matrix J−1

⎛
⎜⎜⎜⎝

∂Φj

∂r1
∂Φj

∂r2
. . .
∂Φj

∂rd

⎞
⎟⎟⎟⎠ . (3.36)

The matrix in Equation (3.36), containing the derivatives of the reference cell

coordinates ri with respect to the global coordinates xj , is called the inverse

Jacobian matrix J−1 = (∂ri/∂xj)ij . As the name suggests, this matrix is in-

deed the inverse of the Jacobian matrix J = (∂xi/∂rj)ij . In Section 3.2, we

introduced a coordinate transform T : [0, 1]d → R
d that maps points from the

reference cell to the actual cells, i.e., T (r1, . . . , rd) = (x1, . . . , xd), and its inverse

T−1(x1, . . . , xd) = (r1, . . . , rd). Section 3.4 presented concrete forms of T−1 for

various cell types. Using T−1, we can rewrite the inverse Jacobian as

J−1 =

(
∂T−1

i (x1, . . . , xd)

∂xj

)
ij

, (3.37)

where T−1
i denotes the ith component of the function T−1.

Putting it all together, we get the formula for computing the partial deriva-

tives of a sampled dataset f̃ with respect to all coordinates xi:(
∂f̃

∂xi

)
i

=
N∑

k=1

fk

(
∂T−1

i

∂xj

)
ij

(
∂Φk

∂ri

)
i

. (3.38)

To use Equation (3.38) in practice, we need to evaluate the derivatives of both

the reference basis functions Φk and the coordinate transform T−1 at the desired

point x. We have analytic expressions or numeric methods to compute Φk and

T−1 for every cell type (see Section 3.4), so the procedure is straightforward.

Alternatively, we can evaluate the Jacobian matrix instead of its inverse, using

the reference-cell to world-cell coordinate transforms T instead of T−1, then

numerically invert J , and finally apply Equation (3.36).
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We can make another important observation. For several cells described in

Section 3.4, such as lines, triangles, and tetrahedra, the coordinate transfor-

mations T−1 are linear functions of the arguments xi, so their derivatives are

constant. Hence, the derivatives of f̃ are of the same order as those of the basis

functions Φk we choose to use.

Let us see what this means for a shaded polygonal surface example using, for

example, triangular cells. We have seen that this is a piecewise linear (order 1)

surface reconstruction. Normals are computed using the surface derivatives (see

Equation (2.4)). Hence, surface normals for this polygonal surface are piecewise

constant, which is exactly what flat shading does. In other words, flat shading

is the mathematically “correct” shading for this polygonal surface.

For uniform and structured datasets, Equation (3.38) for computing par-

tial derivatives is actually quite simple. For example, consider an uniform grid

with cell size (δ1, . . . , δd), as described in Section 3.5.1. For an axis-aligned,

box-like cell having the lower-left corner (p1, . . . , pd) and the upper-right cor-

ner (p1 + δ1, . . . , pd + δd), the coordinate transformation is T−1(x) = ((x1 −
p1)/δ1, . . . , (xd − pd)/δd). Hence, the derivatives of T−1 are(

∂T−1
i

∂xj

)
ij

=

{
1/δi, i = j,
0, i �= j.

(3.39)

Let us now consider some concrete cell and its basis functions, such as the 2D

quad and its bilinear basis functions given in Section 3.4.4. By computing the

derivatives ∂Φi/∂r and ∂Φi/∂s for all the four basis functions Φ1, Φ2, Φ3, and Φ4

and substituting these in Equation (3.39), we get the expression of the derivatives

∂f̃/∂x and ∂f̃/∂y for our reconstructed function f̃ over the given cell

∂f̃
∂x

= (1− s) f2−f1
δ1

+ s f3−f4
δ1

,

∂f̃
∂y = (1− r) f4−f1

δ2
+ r f3−f2

δ2
,

(3.40)

where f1, f2, f3, and f4 are the sample values at the four cell vertices corre-

sponding to basis functions Φ1, Φ2, Φ3, and Φ4. In other words, this means that

the partial derivatives of f̃ inside a given cell are computed by linearly interpo-

lating the 1D derivatives of f̃ along opposite cell edges. A similar result can be

obtained for rectilinear grids, as well as for hexahedral cells.

Computing derivatives of discrete datasets is a delicate process. If the dataset

is noisy, the computed derivatives tend to exhibit an even stronger noise than

the original data. Care must be used when interpreting information contained in

the derivatives. A relatively simple method to limit these problems is to prefilter

the input dataset in order to eliminate high-frequency noise, using methods such
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as the Laplacian smoothing described in Section 8.4. However, one must be

aware that smoothing may also eliminate important information from the dataset

together with the noise.

3.8 Implementation
In this section, we present an implementation of the dataset concept. The pro-

posed implementation follows several of the requirements for datasets introduced

in Section 3.2. First, it allows subsequent application code to treat all dataset

types uniformly, by defining a generic Grid interface that is implemented in par-

ticular ways by the various concrete grid types. Second, it provides a reasonable

balance between implementation simplicity and memory and speed efficiency,

making it useful in practical applications. We stress that this implementation is

not an optimal one. Higher efficiency can be achieved, both in terms of speed

and smart storage schemes that minimize data duplication and copying when

working with multiple datasets. For readers interested in studying an efficient

and effective implementation of the dataset concept, we strongly recommend

a study of [Schroeder et al. 06, Kitware, Inc. 04]. However, describing such a

dataset implementation in detail, with all the design issues involved, is beyond

the scope of this book.

3.8.1 Grid Implementation

We begin by defining a Grid interface that declares all operations all our grid

types should support as shown in Listing 3.4.

The methods numPoints and numCells return the number of grid points

and cells, respectively. In a grid, both points and cells are identified by unique

integer identifiers (IDs). For uniform, rectilinear, and structured grids, these

IDs usually correspond to the lexicographic ordering of the grid elements (see

c l a s s Grid
{
publ i c :

v i r t u a l ˜Grid ( ) {}
v i r t u a l i n t numPoints ( ) = 0 ;
v i r t u a l i n t numCells ( ) = 0 ;
v i r t u a l void getPoint ( int , f l o a t ∗) = 0 ;
v i r t u a l i n t g e tCe l l ( int , i n t ∗) = 0 ;
v i r t u a l i n t f i n dCe l l ( f l o a t ∗) = 0 ;
void wor l d2c e l l ( int , f l o a t ∗ , f l o a t ∗ ) ;

} ;
Listing 3.4. Grid implementation.
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Equation (3.22)). Given an ID, the methods getPoint and getCell return the

point coordinates and the cell vertex IDs for the point or cell specified by the

passed ID argument. The method findCell returns the cell ID for the cell that

contains a given location given in world coordinates, or an invalid cell ID, such

as −1, if the location falls outside the grid. Finally, the method world2cell

implements the inverse transformation from world coordinates to cell paramet-

ric coordinates, i.e., the transform T−1 described in Section 3.4. Specifically,

world2cell(c,world,cell) maps from the 3D world coordinates world to the

3D parametric coordinates cell for the cell with the ID c. In the case of 2D or

1D cells, this method will ignore the extra coordinates. This method does not

depend on the actual grid type but on the cell type, so it can be implemented in

the base class. The world2cellmethod does not check whether the world point

is indeed contained in the given cell—this is the job of the findCell method.

If the world point is in the specified cell then the resulting parametric coordi-

nates are in the [0, 1] range. If not, then at least one of the resulting parametric

coordinates falls outside this range.

Since we are going to subclass Grid, we implement a dummy virtual destruc-

tor. This ensures that application code can safely delete Grid subclasses via

references or pointers—the virtual specifier ensures that the appropriate sub-

class destructor gets invoked [Stroustrup 04]. Next, we implement the different

grid types described in the previous sections by subclassing the Grid interface.

To simplify the presentation, we shall consider only the case of 2D grids with

quad cells. However, the implementation shown here can be easily generalized

to other dimensions and cell types. For the same reasons, we skip the implemen-

tation of the attribute interpolation using basis functions and the coordinate

transformations. These can be programmed by following their description in

Sections 3.4 and 3.6.

Uniform grids. Listing 3.5 shows the implementation of a UniformGrid, which

is a straightforward mapping of the structure presented in Section 3.5.1.

For uniform grids, the implementation of findCell is quite simple, as the

grid topology is regular. Listing 3.6 exemplifies this for 2D uniform grids. First,

we compute the cell coordinates from the point world coordinates. Next, we

compute the cell ID from the cell coordinates.

Rectilinear grids. Let us now consider the rectilinear grid. We can simplify its im-

plementation by subclassing it from UniformGrid. We can inherit most methods

except getPoint(), since rectilinear and uniform grids share the same topology

but not the same geometry.
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c l a s s UniformGrid : pub l i c Grid
{
publ i c :

UniformGrid ( i n t N1 , i n t N2 , f l o a t m1 , f l o a t m2 ,
f l o a t M1, f l o a t M2)

:N1(N1 ) ,N2(N2 ) ,m1(m1 ) ,m2(m2 ) ,
d1 ( (M1−m1)/( N1 −1)) , d2 ( (M2−m2)/( N2 −1)) { }

i n t numPoints ( )
{ r e turn N1∗N2 ; }

i n t numCells ( )
{ r e turn (N1−1)∗(N2−1); }

void getPoint ( i n t i , f l o a t ∗ p)
{ p [0]=m1+( i%N1)∗ d1 ; p [1 ]=m2+( i /N1)∗d2 ; }

i n t g e tCe l l ( i n t i , i n t ∗ c ) ;
//see Listing 3.1

i n t
i n t getDimension1 ( )

{ r e turn N1 ; }
i n t getDimension2 ( )

{ r e turn N2 ; }

protected :

i n t N1 ,N2 ; //Number of points along the x− and y−axes
f l o a t m1,m2; //Minimal coordinate values in this grid

pr i va t e :

f l o a t d1 , d2 ; //Cell s i zes in this grid
} ;

Listing 3.5. Uniform grid implementation.

i n t f i n dCe l l ( f l o a t ∗ p)
{

i n t C [ 2 ] ;

//compute ce l l coordinates C[0 ] ,C[1 ]
C[ 0 ] = f l o o r ( ( p[0]−m1)∗N1/d1 ) ;
C [ 1 ] = f l o o r ( ( p[1]−m2)∗N2/d2 ) ;

//test i f p i s inside the dataset
i f (C[0]<0 | | C[0]>=N1−1 | | C[1]<0 | | C[1]>=N2−1)

r eturn −1;

//go from ce l l coordinates to ce l l index
r e turn C[ 0 ] + C[ 1 ] ∗N1 ;

}
Listing 3.6. Implementing findCell for uniform grids.
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c l a s s Rec t i l i n ea rGr i d : pub l i c UniformGrid
{
publ i c :

R ec t i l i n ea rGr i d ( vector<f l o a t >∗ d , f l o a t m1, f l o a t m2)
: UniformGrid (N1 ,N2 ,m1,m2, 0 , 0 )
{ d [0]= d [ 0 ] ; d [1 ]= d [ 1 ] ; }

void getPoint ( i n t i , f l o a t ∗ p)
{ p [0]=m1+d [ 0 ] [ i%N1 ] ; p [1 ]=m2+d [ 1 ] [ i /N1 ] ; }

pr i va t e :

vector<f l o a t> d [ 2 ] ; //Cell dimensions along the x− and y−axes
} ;

Listing 3.7. Rectilinear grid implementation.

In Listing 3.7, we store the 2D grid point x- and y-coordinates in float arrays

d[0] and d[1] implemented using the Standard Template Library (STL) class

std::vector<float>. Here and in the following, we omit the namespace qual-

ification std:: for brevity. In actual code, either prefix all STL symbols with

this namespace (e.g., write std::vector<float>) or specify using namespace

std; in every file before making use of these symbols. STL provides a versatile

and expressive set of programming building blocks, such as basic data containers

and algorithms. Using STL to implement the various aspects of datasets mas-

sively simplifies the overall implementation and reduces the code size and the

chance for errors such as memory leaks. Moreover, recent STL implementations

are carefully optimized for memory and speed, so using STL containers incurs a

negligible overhead as compared to classical arrays, for example.

For rectilinear grids, implementing findCell is also quite simple. First, we

compute the cell coordinates from the point world coordinates, similar to the

uniform grid. However, this process requires two searches (for 2D grids) in

order to determine in which intervals [d[0][i], d[0][i+1]] (for the x-axis) and

[d[1][j], d[1][j+1]] (for the y-axis) does the target point fall. These intervals

can be found either via linear searches on the two axes, yielding a complexity of

max (O(N1), O(N2)). Or, if we explicitly store the vectors of grid coordinates

(0, d[0][1], . . . ,
∑N1

i=1 d[0][i]) and (0, d[1][1], . . . ,
∑N2

i=1 d[1][i]), we can use a binary

search instead, yielding a complexity of max (O(logN1), O(logN2)). Given its

relative simplicity, we leave the actual implementation as an exercise for the

reader.

Structured grids. Structured grids have the same topology as uniform and rec-

tilinear grids, but a different geometry than rectilinear grids. Hence, we derive

our StructuredGrid class from UniformGrid as seen in Listing 3.8.
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c l a s s StructuredGr id : pub l i c UniformGrid
{
publ i c :

StructuredGr id ( i n t N1 , i n t N2 , f l o a t m1, f l o a t m2,
f l o a t M1, f l o a t M2)

: UniformGrid(N1 ,N2 ,m1,m2,M1,M2)
{ po ints . r e s i z e (2∗N1∗N2 ) ; }

i n t numPoints ( )
{ r e turn po ints . s i z e ( ) / 2 ; }

void getPoint ( i n t i , f l o a t ∗ p)
{ p [0]= po ints [ 2∗ i ] ; p [1 ]= po ints [ 2∗ i +1] ; }

void setPo int ( i n t i , f l o a t ∗ p)
{ po ints [ 2∗ i ]=p [ 0 ] ; po ints [ 2∗ i +1]=p [ 1 ] ; }

pr i va t e :

vector<f l o a t> po ints ; //Coordinates for a l l grid points
} ;

Listing 3.8. Structured grid implementation.

Since structured grids allow us to set the coordinates of every point inde-

pendently, we provide a setPoint method to this end. Finally, structured grids

do not have a regular geometry that can be exploited to implement a fast and

simple version of the findCell method. Since the vertex coordinates can be

arbitrary, findCell must perform an actual search that identifies in which cell

our target point falls. Iterating over all cells is clearly too slow. An acceptable

solution is to use a spatial search structure.

Several types of structures allow fast location of the closest point, or N closest

points, of a given point set to a given candidate point. Such structures typically

subdivide the convex hull, or the easier to compute bounding-box, of the point

set hierarchically in disjoint cells that can be tested quickly. Finding the closest

point(s) to the candidate point is done by traversing the spatial subdivision

tree starting from the root cell (which contains the complete point set, i.e.,

the complete grid in our case) and following the path of cells that contain the

candidate until a leaf cell is reached. If the leaf cell contains several points, a

simple linear search is used to determine the closest one(s). Several spatial search

structures exist. A first notable example is octrees , which use axis-aligned boxes

as cells and split every cell into four (in 2D) or eight (in 3D) smaller cells of equal

size. More efficient examples are kd-trees [Bentley 90, Friedman et al. 77] and

box decomposition trees or bd-trees [Arya et al. 98]. These use also axis-aligned

cells, but every cell is now split into two subcells. The splitting direction and

the splitting line (in 2D) or plane (in 3D) are determined by a number of rules in
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(a) (b)

Figure 3.17. Spatial subdivision of a 2D point cloud using (a) kd-trees and
(b) bd-trees.

order to balance the tree optimally. In addition, kd-trees can split a cell into a

shrunken version of the cell and the space outside, which creates less-deep trees

for highly clustered point sets, hence improving the search time.

A very efficient, simple-to-use open-source software package for spatial search

providing kd-trees and bd-trees is the Approximate Near Neighbors (ANN) pack-

age written in C++ [Mount 06]. ANN works efficiently even beyond 3D, supports

N -nearest-neighbor search with a user-specifiable N , is simple to install and call,

and uses preprocessing time and space linear in the point set size and the dimen-

sion. Another open-source package that offers efficient spatial search structures

such as kd-trees is the Gnu Triangulated Surface (GTS) library [GTS 13]. Fig-

ure 3.17 shows the generated kd-tree (left) and bd-tree (right) respectively for a

2D point set.

Spatial search structures such as octrees, kd-trees, and bd-trees work best

for point sets. To use them for implementing the findCell operation, we insert

the complete set of grid vertices in the data structure and search for the closest

vertex to the given point candidate. Once this is found, we test the cells that

use this vertex to see which one actually contains the candidate. If none does,

which can happen in some special configurations, we search for the second-closest

vertex and repeat the procedure until the containing cell is found. An extra

speed-up that can be used is based on the heuristic that, in practice, application

algorithms search for cells starting from a geometrically coherent set of points.

In other words, consecutive calls to findCell will return the same cell, cells
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that are neighbors, or other cells that are close to each other in the dataset. We

can exploit this in the implementation of findCell by caching the previously

returned cell and, in subsequent calls, first testing whether the searched location

falls in this cell. If so, the function completes without any search. If not, the

existing spatial search structure is used.

One limitation of spatial search structures is that they take relatively long

to build as compared to the search time. This is not a problem in case of a grid

with fixed geometry. If the grid’s geometry changes frequently compared to the

number of searches, it can be faster to use a brute-force linear search instead of

a spatial search structure.

Unstructured grids. We now turn our attention to unstructured grids. Unstruc-

tured grids have the same geometry as structured grids but have a different topol-

ogy. Yet, we cannot derive a UnstructuredGrid class from StructuredGrid,

since the latter also inherits a regular topology from UniformGrid. Hence, we

derive UnstructuredGrid directly from the Grid interface as seen in Listing 3.9.

c l a s s UnstructuredGrid : pub l i c Grid
{
publ i c :

UnstructuredGrid ( i n t P, i n t C)
{ po ints . r e s i z e (2∗P) ; c e l l s . r e s i z e (3∗C) ; }

i n t numCells ( )
{ r e turn c e l l s . s i z e ( ) / 3 ; }

i n t numPoints ( )
{ r e turn po ints . s i z e ( ) / 2 ; }

i n t g e tCe l l ( i n t i , i n t ∗ c )
{

c [0 ]= c e l l s [ 3∗ i ] ; c [1 ]= c e l l s [ 3∗ i +1] ;
c [2 ]= c e l l s [ 3∗ i +2] ; r e turn 4 ;

}
void getPoint ( i n t i , f l o a t ∗ p)

{ p [0]= po ints [ 2∗ i ] ; p [1 ]= po ints [ 2∗ i +1] ; }
void s e tC e l l ( i n t i , i n t ∗ c )

{ c e l l s [ 3∗ i ]=c [ 0 ] ; c e l l s [ 3∗ i +1]=c [ 1 ] ;
c e l l s [ 3∗ i +2]=c [ 2 ] ; }

void setPo int ( i n t i , f l o a t ∗ p)
{ po ints [ 2∗ i ]=p [ 0 ] ; po ints [ 2∗ i +1]=p [ 1 ] ; }

pr i va t e :
vector<int> c e l l s ; //Vertex indices for a l l ( triangle ) ce l l s
vector<f l o a t> po ints ; //Coordinates for a l l sample points

} ;
Listing 3.9. Unstructured grid implementation.
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Unstructured grids allow us to set the vertices that constitute the cells inde-

pendently. To this end, we provide the setCell method. Finally, unstructured

grids can use the same findCell implementation based on spatial search struc-

tures as the structured grids.

3.8.2 Attribute Data Implementation

Now that we have the grid functionality, we must implement the data attributes.

In Section 3.2, we discussed two interpolation methods for attribute data, con-

stant and linear. Both methods work in a piecewise fashion: You provide the

world coordinates xj of a point in a given cell. From these, parametric cell co-

ordinates rj are computed, using the transformation T−1, and these are used to

evaluate the cell’s reference basis functions Φi weighted by the cell’s attribute

values fi at its sample points (see Equation (3.9)).

An ideal interface for a dataset would let us evaluate its reconstruction func-

tion f̃ at any coordinates xj inside the sampled domain, i.e., treat the dataset as

a truly (piecewise) continuous function. However, since we use piecewise recon-

struction, this would imply finding the cell the desired point is in, as described

previously. This is an expensive operation, which can potentially be needed many

times if we need to evaluate f̃ on many cells. Luckily, many data-processing al-

gorithms do not need to evaluate the dataset at purely random locations. In

practice, most data-processing algorithms work on a cell-by-cell basis, instead of

requiring evaluation of the reconstruction function at random locations.

The data attribute evaluation functionality can be easily added to our dataset

class. To do this, we make some design decisions. First, we shall support only

piecewise constant and linear interpolations, both for all cell types. This may

seem restrictive at first. However, the overwhelming majority of visualization ap-

plications use only these interpolation methods, in practice, since they are simple

to implement and quick to compute. Second, we shall enforce that attribute val-

ues fi are defined for all sample points i. As explained in Section 3.6.6, this is

a natural property if we think of reconstructing signals over the whole domain.

Third, we must decide which attribute types of those described in Section 3.6 we

want to store in our dataset, and how many of each type. In general, we would

like to store a user-defined number of each type, and also allow for user-defined

attribute types. In the following sample implementation, however, we shall in-

clude only a single scalar attribute and leave the extension to several instances

of several attribute types as an exercise for the reader. Finally, in the example

presented here, we limit ourselves to 2D grids as in the previous code examples

shown earlier in this section. Extending these examples to 3D grids is a simple

exercise left to the reader.
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publ i c :

f l o a t& getC0Scalar ( i n t c )
{ r e turn c 0 s c a l a r s [ c ] ; }

f l o a t getC0Scalar ( i n t c , f l o a t x , f l o a t y )
{ r e turn getC0Scalar ( c ) ; }

protected :

vector<f l o a t> c 0 s c a l a r s ;

Listing 3.10. Implementing nearest neighbor interpolation for scalar data.

In practice, we need attribute data for all grid types we have defined. Hence,

we shall provide attribute support by adding extra code to the base class Grid,

as follows.

Scalar attributes. Piecewise constant interpolation of scalar attributes is done

with the simple code in Listing 3.10.

Given a cell index c, the first method getCOScalar(int) returns the corre-

sponding cell scalar attribute. Cell attributes are stored as a vector of floats.

The second method getC0Scalar(int,float,float) performs the piecewise

constant interpolation of the scalar data, given a cell index and a location within

that cell. This basically amounts to returning the cell scalar value.

For piecewise linear interpolation of scalar attributes, we add the code shown

in Listing 3.11 to the Grid class. The first method getC1Scalar(int) returns

the sample value stored at a given grid vertex sample point, i.e., implements what

is usually called vertex data. As for the cell data, this function returns a reference,

so one can both read and write the vertex scalar attributes. The second method

getC1Scalar(int,float*) performs the piecewise linear interpolation of the

scalar data, given a cell index c and a world coordinate location p (given as a 2-

float vector) within that cell, i.e., it implements Equation (3.9). In this function,

the MAX CELL SIZE constant represents the maximum number of vertices in a

cell, which is four for all 2D cells, and eight for all 3D cells discussed earlier. The

method world2cell performs the transformation from world coordinates p to

parametric coordinates q. Finally, the function Phi models the per-vertex basis

functions of the considered cell.

Vector attributes. Similar methods can be implemented for vector data. We next

illustrate this for two-dimensional vector attributes. As for the grid type, ex-

tending this to higher-dimensional attributes is a simple exercise. For a dataset

having N cells, one typically allocates a vector<float> c0 vectors having 2N
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publ i c :

f l o a t& getC1Scalar ( i n t v )
{ r e turn c 1 s c a l a r s [ v ] ; }

f l o a t getC1Scalar ( i n t c , f l o a t ∗ p)
{

i n t c e l l [MAX CELL SIZE ] ;
i n t C = ge tCe l l ( c , c e l l ) ;
f l o a t q [ 2 ] , f =0;
wor l d2c e l l ( c , p , q ) ;
f o r ( i n t i =0; i<C; i++)

f += getC1Scalar ( c e l l [ i ] )∗ Phi ( i , q [ 0 ] , q [ 1 ] ) ;
r e turn f ;

}

protected :

vector<f l o a t> c 1 s c a l a r s ;

Listing 3.11. Implementing linear interpolation for scalar data.

float elements such that the vector v = (vx, vy) for cell i is stored at loca-

tions 2i, 2i + 1 in the container. In pure object-oriented fashion, it is tempt-

ing to consider manipulating vectors via some Vector class and thus storing

vector attributes as a vector<Vector> c0 vectors instead of a plain float ar-

ray. However, most visualization application implementations will not use this

model, since it complicates the code significantly. Also, frequent operations on

attributes, such as iteration, creating and copying attribute arrays, and reading

and writing components of such an array will become slower when using the

extra structuring level implied by a Vector class instance.

The implementation of nearest-neighbor interpolation for vector data in List-

ing 3.12 is basically identical to nearest-neighbor interpolation of scalars (List-

ing 3.10).

publ i c :

f l o a t ∗ getC0Vector ( i n t c )
{ r e turn &( c0 vec to r s [ 2∗ c ] ) ; }

f l o a t getC0Vector ( i n t c , f l o a t x , f l o a t y )
{ r e turn getC0Vector ( c ) ; }

protected :

vector<f l o a t> c0 vec to r s ;

Listing 3.12. Implementing nearest neighbor interpolation for vector data.
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publ i c :

f l o a t ∗ getC1Vector ( i n t v )
{ r e turn &( c1 vec to r s [ 2∗ v ] ) ; }

void getC1Vector ( i n t c , f l o a t ∗ p , f l o a t ∗ v )
{

i n t c e l l [MAX CELL SIZE ] ;
i n t C = ge tCe l l ( c , c e l l ) ;
f l o a t q [ 2 ] ;
wo r l d2c e l l ( c , p , q ) ;
v [0 ]=v [ 1 ]=0 ;
f o r ( i n t i =0; i<C; i++)
{

f l o a t ∗ v i = getC1Vector ( c e l l [ i ] ) ;
v [ 0 ] += vi [ 0 ] ∗ Phi ( i , q [ 0 ] , q [ 1 ] ) ;
v [ 1 ] += vi [ 1 ] ∗ Phi ( i , q [ 0 ] , q [ 1 ] ) ;

}
}

protected :

vector<f l o a t> c1 vec to r s ;

Listing 3.13. Implementing linear interpolation for vector attributes.

Listing 3.13 shows the implementation of linear interpolation for vector at-

tributes. Just as for cell vector attributes, vertex vector attributes are best stored

consecutively component-wise in a float array c1 vectors. The first method

getC1Vector(int) returns a pointer to the first component vx of a vertex’s vec-

tor attribute. The second method getC1Vector(int,float*,float*) performs

the piecewise linear interpolation of the vector data over a cell, similar to the

analogous getC1Scalar method for scalar data, and returns the interpolated

vector in a user-provided float array v.

Storing and interpolating other attribute types than scalars and vectors, such

as normals, colors, and tensors follows the same implementation patterns as

illustrated above, so we leave this also as a (slightly more complex) exercise for

the interested reader.

Storing several attribute instances. In actual production code, a dataset needs

to support several instances of all the attribute types. This is required when

a dataset needs to store a variable number of attributes of a given type, for

instance a pressure and a temperature scalar field. This requires an interface by

which the user can specify which of the instances of a certain attribute type is

to be used. A simple and effective solution is to store the attribute vectors in
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an associative array that can be addressed by a unique name. With STL, this

can be done for scalar attributes by using a map<string,vector<float>*>, for

example. Given an attribute name as a string (for example, “temperature”),

the map class returns a reference to the corresponding vector<float> that stores

the actual data, or null if there is no such attribute. Similar associative arrays

can be constructed for every attribute type.

3.9 Advanced Data Representation
In the preceding sections, we have seen how to reconstruct piecewise constant

and piecewise linear functions from sampled datasets, represented on grids with

various cell types, using constant and linear basis functions. For the vast major-

ity of data visualization applications, these representations are sufficient. How-

ever, there are situations when more advanced forms of data manipulation and

representation are needed. In this section, first, we will describe the task of

data resampling , which is used in the process of converting information between

different types of datasets that have different sample points, cells, or basis func-

tions (Section 3.9.1). Then we will describe the process of interpolating data

provided as a set of scattered points, in case we do not have cell information

(Section 3.9.2).

3.9.1 Data Resampling

In our height-plot visualization example in Chapter 2, we saw several instances

of reconstructing functions from a sampled dataset. We used piecewise linear

interpolation for the polygonal surface itself. We used piecewise constant inter-

polation for the flat shading and piecewise linear interpolation for the Gouraud

shading, respectively. Finally, we used piecewise constant interpolation for the

surface normals. We saw in Chapter 2 that we need normal values at the polygon

vertices, the vertex normals, to do the Gouraud shading of the surface. However,

piecewise constant normals, i.e., the polygon normals themselves, are discontin-

uous at the polygon vertices—actually, over the complete polygon edges—so we

cannot use them as approximations for the vertex normals. How can we compute

vertex normal values from the known polygon normals?

The answer to this question is provided by a more general operation on dis-

crete datasets, called resampling. Consider a source dataset D = ({pi}, {ci},
{fi}, {Φi}) and a target dataset D′ = ({p′i}, {c′i}, {f ′

i}, {Φi}), which approxi-

mate both the same continuous function f : D → C, but where the source grid

({pi}, {ci}) differs from the target grid ({p′i}, {c′i}). Resampling computes the
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f1
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source grid sampling points 
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Figure 3.18. Converting cell to vertex attributes. The vertex value f ′
i equals

A1f1+A2f2
A1+A2

,
the area-weighted average of the cell values using vertex i.

values f ′
i of the target dataset as function of the values fi of the source dataset.

For simplicity, we assume that both datasets use the same set of basis functions

Φi, although this is not a strict requirement.

Cell to vertex resampling. Let us now consider a common resampling operation

in data visualization: converting cell attributes (fi) to vertex attributes (f ′
i ).

Cell attributes imply the use of constant basis functions Φi, as discussed in

Section 3.2. Vertex attributes, in contrast, imply the use of higher-order basis

functions, such as linear ones. On the other hand, we want the sample points

of the target grid cells (which are the target grid vertices) to be identical to the

source cell vertices for the two grids to match, as shown in Figure 3.18 for a

one-dimensional grid.

A desirable property of resampling a function f̃ is that it should lead to a

function f̃ ′ that is close to f̃ over the whole domain D. Mathematically, this can

be expressed as ∫
c′i

(f̃ ′ − f̃)2ds ≈ 0, ∀ cells c′i ∈ D′. (3.41)

That is, the integrals of the original function f̃ and the resampled function f̃ ′

are equal over all cells c′i of the target grid. Using the normality property of the

basis functions (see Equation (3.5)), we obtain after some computations that

f ′
i =

∑
cj∈ cells(pi)

A(cj)fj∑
cj∈ cells(pi)

A(cj)
, (3.42)

where A(cj) is the area of source grid cell cj and cells(pi) are all cells that have
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point pi as vertex. In other words, vertex data is the area-weighted average of

the cell data in the cells that use a given vertex. Equation (3.42) is identical

to Equation (2.8) used in Section 2.2 to compute vertex normals for Gouraud

shading from the polygon normals.

Vertex to cell resampling. Using similar reasoning, we can compute the conver-

sion formula from vertex attributes (f ′
i) to cell attributes (fi) as being

fi =

∑
pj∈ points(ci)

f ′
j

C
, (3.43)

where points(ci) denotes all points pj that are vertices of cell ci and C =

|points(ci)| is the number of vertices of cell ci. In other words, cell attributes are

the average of the cell’s vertex attributes.

In conclusion, we can always convert between cell attributes and vertex at-

tributes. However, this does not mean that a dataset with cell attributes is

identical to one with vertex attributes. As explained previously, cell attributes

imply using piecewise constant interpolation, whereas vertex attributes imply

a higher-order interpolation, such as linear. Resampling data from, e.g., cells

to vertices increases the assumed continuity. If our original sampled data were

indeed continuous of that order, no problem appears. However, if the original

data contained, e.g., zero-order discontinuities, such as jumps or holes, resam-

pling it to a higher-continuity grid also throws away discontinuities which might

have been a feature of the data and not a sampling artifact. An example of this

delicate problem is given in Section 9.4.7. In contrast, resampling from a higher

continuity (e.g., vertex data) to a lower continuity (e.g., cell data) has fewer side

effects—overall, the smoothness of the data decreases globally.

Subsampling and supersampling. Data resampling is not limited to converting

between cell and vertex samples. Two other frequently used resampling oper-

ations are subsampling and supersampling. Subsampling is a resampling oper-

ation that reduces the number of sample points. Subsampling is useful when

we are interested in optimizing the processing speed and memory demands of a

visualization application by working with smaller datasets. In most cases, the

subsampled dataset uses the same basis functions as the original dataset and its

points are actually a subset of the original dataset points. However, this is not

mandatory. After eliminating a certain number of sample points, subsampling

operations can choose to redistribute the remaining points in order to obtain a

better approximation of the original data in terms of the integral criterion de-

fined earlier. Subsampling implementations can take advantage of the dataset
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topology. For example, on uniform, rectilinear, and structured grids, an often-

used subsampling technique is to keep every kth point along every dimension

and discard the remaining ones. This technique, called uniform subsampling, is

simple to implement and quite effective when the original dataset is densely sam-

pled with respect to the data variation. However, uniform subsampling makes

no assumptions about the spatial data variation, so it might discard important

features, such as regions where the data changes rapidly, together with less im-

portant, constant regions. Given the way most interpolation functions (such as

constant and linear) reconstruct the data, a desirable property of subsampling is

to keep most samples in the regions of rapid data variation and cull most samples

from the regions of slow data variation. In Section 8.4, we shall present several

subsampling methods applicable to both structured and unstructured datasets.

Supersampling (also called refinement) is the inverse of subsampling. Here,

more sample points are created from an existing dataset. Similar to subsampling,

the supersampled dataset usually includes all the original dataset points and uses

the same basis functions, although this is not mandatory. Supersampling is use-

ful in several situations when we need to manipulate or create information on

a dataset at a level of detail, or scale, that is below the one captured by the

sampling frequency, or density, of that dataset. In that case, we introduce more

points by supersampling, and then use these to encode the desired detail in-

formation. The counterpart of uniform subsampling is uniform supersampling,

which introduces k points into every cell of the original dataset. Similar to sub-

sampling, an efficient supersampling implementation usually inserts extra points

only in those spatial regions of the dataset where we need to further add extra

information. We shall discuss several supersampling methods in Section 8.4.

3.9.2 Scattered Point Interpolation

So far, our definition of a sampled dataset has been based on a grid of cells

that represent a tiling of the data domain (see Section 3.2). However, there are

situations when we would like to avoid constructing or storing such a grid. Such

a case occurs when you have measured some data at some given points that have

a complex spatial distribution, and you have no explicit cell information that

would connect the points into a tiling of some domain. A classical example is

3D surface scanning, where laser devices are used to measure the position of a

set of points on the surface of a 3D object. For complex object surfaces, this

process delivers a scattered 3D point set, also called a point cloud , with optional

surface normal and surface color per-point attributes. Hence, all the data we

have to work with are the points and their corresponding data values {pi, fi}.
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For the scanning example, the data values fi are the surface normals and/or

colors measured by the scanner device.

Remember, the goal of a dataset is to allow reconstructing some continuous

signal from a sampled representation. In our surface scanning example, how can

we reconstruct a smooth surface S̃ if all we are given is the point set {pi} with

optional normal or color data {fi}? Recalling the reconstruction formula (see

Equation (3.2)), we need to define some basis functions φi at the sample points

pi. There are several ways to do this.

Constructing a grid from scattered points. First, we can construct a grid from the

point set. The way this is done depends on the meaning of the point samples pi.

If these points come from the sampling of some supposedly smooth 3D surface,

we can construct an unstructured grid with 2D cells, e.g., triangles, which have

pi as vertices, and which approximate a smooth surface as much as possible.

Several triangulation methods exist to do this. We shall describe such method

in more detail in Section 8.3. Once we have this grid, we can use the constant

or linear interpolation functions described earlier in this chapter.

Gridless interpolation. A second way is to avoid constructing a grid altogether.

This has several advantages. Constructing unstructured grids from large, com-

plex 3D point clouds can be a delicate process. Storing the grid can be a high

burden for very large datasets. As described in Section 3.5.4, storing the cell

information can double the amount of memory required in the worst case. More-

over, our point set can change in time, because it represents some moving object

or because we would like to process it with geometric modeling operations such

as editing, filtering, or deformations. Triangulating the point set to compute

a grid every time the points change can be a very costly operation. Finally, if

we have a large point set representing a complex 3D surface, visualizing it by

rendering the corresponding triangulation may not be the fastest option. In such

cases, we can do better by using a gridless point representation.

How can we reconstruct a continuous function from a scattered point set

without recurring to an explicit grid? What we need is a set of gridless ba-

sis functions, which should respect the properties in Equations (3.4) and (3.5)

as much as possible. There are several ways to construct such functions. A

frequently used choice for gridless basis functions is radial basis functions , or

RBFs. These are functions Φ : Rd → R+, which depend only on the distance

r = ‖x‖ =

√√√√ d∑
i=1

x2i (3.44)
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between the current point x = (x1, . . . , xd) ∈ R
d and the origin. Moreover, RBFs

Φ(r) smoothly drop from one at their origin (r = 0) to a vanishing value for large

values of the distance r.

In practice, we would like to limit the effect of a basis function to its immedi-

ate neighborhood. This is both computationally efficient and ensures that a data

point p contributes only to the interpolation of its immediate neighborhood, thus

does not unnecessarily smooth out the information present in the data points

which are far away from p. To do this, we specify a radius of influence R, or

support radius, beyond which Φ is equal to zero. In this setup, a common RBF

is the Gaussian function

Φ(r) =

{
e−λr2 , r < R,
0, r ≥ R.

(3.45)

The parameter λ ≥ 0 in Equation (3.45) controls the decay speed, or the shape,

of the radial basis functions. Setting λ = 0 yields constant cylinder-shaped radial

functions, which are equivalent to the constant basis functions we used for grid-

based datasets. Higher values of λ yield faster-decaying functions. For d = 2,

that is, on a 2D domain, the graph of such a radial basis function looks like

our visualization running example introduced in Chapter 2. Besides Gaussian

functions, we can use other radial basis functions too. Another popular choice

are inverse distance functions defined as

Φ(r) =

{
1

1+r2 , r < R,

0, r ≥ R.
(3.46)

In practice, we would like to make the support radius R variable for each sample

point pi. The radius values Ri, i.e., values of R used for all points pi, control the

influence of the sample point pi. Higher values of Ri yield smoother reconstruc-

tions S̃, since more RBFs overlap at a given point. However, this has a higher

computational cost and, as already said, smooths out data more. Lower values

of Ri yield less-smooth reconstructions, but higher performance. In the limit,

setting Ri = 0 for all points yields the scattered point set where S̃ coincides with

the sample point locations pi and is zero everywhere else. For uniformly sampled

point sets, we can set Ri = 1/
√
ρ, where ρ is the surface point density, measured

in points per surface unit area. For nonuniformly sampled point sets, we can set

Ri to the average interpoint distance in the neighborhood of point pi. A simple

heuristic here is to set Ri to the distance from pi to its Kth closest neighbor, for

small values of K. This ensures that any point pi “spreads” its information far

enough as to cover the empty space between itself and its K closest neighbors,

but no further.
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Using the reference RBF Φ and the per-point support radius values Ri, we

can define the global RBFs φi(x) = Φ(T−1
i (x)), just as we did for the grid-based

interpolation. The inverse transform T−1 that maps from the world space to the

reference RBF space is just a translation from the current sample point pi to the

origin and a scaling of the distance r with a factor of R/Ri.

Performance issues. Once we have our global RBFs φi, we can reconstruct our

surface S̃ just as with grid-based approaches (see Equation (3.2)). Given a point

p, we shall sum only those basis functions φk that are nonzero at p. In the case

of a grid-based interpolation, finding these basis functions was trivial, as they

were the functions associated with the vertices of the cell that contained p. In

the case of radial basis functions, we must find all the K nearest sample points

N = {p1, . . . , pj, . . . , pK} to p so that ‖p−pj‖ < Rj , since only the basis functions

φj have a nonzero contribution at p. One way to find N is to store all sample

points pi in a spatial search structure such as a kd-tree [Bentley 75, Samet 90,

Mount 06]. Given next a point p, we search for all neighbors B = {pj} of p so

that ‖p−pj‖ < R(p), eliminate from these the neighbors F = {pj|pj ∈ B} where

‖p− pj‖ > Rj , and use the RBFs φj of the remaining neighbors pj ∈ N = B \F
to evaluate Equation (3.2). Here, R(p) is the distance from p to its farthest

neighbor pj that can influence p. This can be set, conservatively, to the largest

value of Rj over our entire point set. Searching for all neighbors of a point p

located closer than a given distance is also called range search, as opposed to

the K nearest-neighbor search that returns the K closest points to p. However,

a technical problem of range search is that the number K = |B| of nearest

neighbors produced by it is variable per point, and may be very large for points

located in dense areas of our point cloud. A typical solution for this is to trade off

reconstruction accuracy for speed by upper-bounding K by a fixed value Kmax.

Spatial search structures provide efficient retrieval of the nearest neighbors

and range neighbors at any given location. A good, scalable implementation

of such a search structure is provided by the Approximate Nearest Neighbor

(ANN) library [Mount 06]. In some sense, such a data structure plays the role of

a grid, i.e., it lets us find which are the sample points that affect a given spatial

region. Following the analogy, a grid cell is equivalent to the set of K nearest

neighbors of a point. And just as when using grids, we must update our search

data structure when our point set changes by reinserting the sample points that

have moved. This is an operation that can be done efficiently [Mount 06, Clarenz

et al. 04].

Shepard interpolation. Radial basis functions with compact support are an effi-

cient and effective way to smoothly interpolate scattered point data. However,
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unless extra constraints are set on the support radius values Ri and function

shape parameter λ, these functions are not by definition orthogonal and normal,

as the constant and linear basis functions defined on a grid were. This means

that the reconstruction S̃ may not exactly interpolate the points pi. Overly

large values for Ri yield an overestimated S̃ that shows up as an oversmoothed

reconstruction. Conversely, overly small values for Ri yield a good fit between S̃

and the sample points pi, but the signal S̃ may exhibit a characteristic “wavy”

appearance, due to the violation of the partition of unity property (see Equa-

tion (3.5)). For computing RBFs that respect the partition of unity property

and also yield smooth reconstructions, we recommend studying the references at

the end of this section.

A simple solution that offers a second-best alternative to orthogonal and

normal basis functions is to constrain the results of the interpolation to lie in

the range of the sample positions pi, as follows. Given K nearest neighbors

p1, . . . , pK of some point p, where K is a fixed value for all points, we compute

S̃(p) as

S̃(p) =

∑K
i=1 piφi(p)∑K
i=1 φi(p)

. (3.47)

When using the inverse distance basis functions (see Equation (3.46)), this

method is called Shepard’s interpolation method [Shepard 68]. Shepard’s in-

terpolation produces results which are very similar to Gaussian RBF methods.

Figure 3.19 shows an example. The input data consists of a 2D scattered

point cloud, with scalar data values fi located at the points pi. Figure 3.19(a)

shows a naive visualization where each point is colored by its data value, using

a blue-to-green-to-red color mapping. Hence, low value points are rendered with

cold colors (blue hues); intermediate values appear as green, and high values are

rendered with warm colors (orange, yellow, and red).7 Figure 3.19(a) corresponds

to an interpolation f̃ : R2 → R of our data points computed with radius values

Ri = 1 pixel for all points. As visible, we can see the data values fi at the

locations of the data points pi, and we also notice that the point cloud has

a highly nonuniform density. The white space surrounding the colored points

indicates that no interpolation is practically done at other locations.

Figures 3.19(b–d) show the effect of Shepard interpolation computed by

f̃(p ∈ R
2) =

∑
pi∈NR(p)

fie
−λ

( ‖p−pi‖
R(p)

)2

∑
pi∈NR(p)

e
−λ

( ‖p−pi‖
R(p)

)2 . (3.48)

7This technique, called rainbow color mapping, is described in further detail in Section 5.1.
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(a) (b)
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Figure 3.19. Shepard interpolation of a scalar signal from a 2D point cloud.

The value λ is set to 5, ensuring that the Gaussian RBF Φ(r) reaches a near-zero

value for a distance r = 1. The set NR(p) contains all neighbors pi located within

a radius R(p) to the current point p where we want to evaluate f̃ . R(p) is set

to the distance d(p) between p and its closest data point pi plus a small user-

controlled factor ε, i.e., R(p) = d(p)+ε. This way, the interpolation f̃(p) depends

only on the data points pi which are closest to p, or in other words, adapts itself

to the local point density. The parameter ε allows controlling the smoothing

amount present in the interpolation. For additional insight, we visualize the

distance d(p) by modulating the color saturation by a value of 1 − d(p)/Rmax,

where Rmax indicates the maximum distance from the point cloud up to which

we wish to interpolate f̃ . Saturated colors indicate thus locations close to data

points, where it makes sense to compute f̃ . White pixels indicate locations

further away from any input data point than Rmax, thus areas where we do not

want to evaluate f̃ .
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In Figure 3.19(b), ε is set to a distance equivalent to a few pixels. The

colored area in the figure indicates the spatial extent over which we interpolate

f̃ . Since Rmax is larger than the average interpoint distance in the input cloud,

the locations “inside” the point cloud’s extent get all interpolated. We notice

now how f̃ exhibits two low-value zones (dark blue regions in Figure 3.19(b)).

We also notice a few high-value outliers (red spots in Figure 3.19(b)). Given that

ε is small, the interpolated signal f̃ is relatively unsmooth, but in the same time

is able to preserve small-scale detail such as the high-value outliers mentioned

before. Figures 3.19(c,d) show the same interpolation, now using increasingly

larger values for ε. The result f̃ now becomes increasingly smoother, but is less

able to capture small-scale local outliers. The values f̃(pi) at the data points pi
become increasingly different from the input data values fi, due to the smoothing

effect of the larger radius values R(p). For instance, the value of the top-left

outlier point (orange in Figure 3.19(b)) becomes relatively lower, as compared

to its neighbors, in Figures 3.19.

Summarizing, we can represent data purely as scattered point sets {pi} car-

rying optional data attributes {fi}. Some visualization texts call such represen-

tations unstructured point datasets. However, if the function of a dataset is to

provide a (piecewise) continuous reconstruction of its data samples using some

variant of Equation (3.2), we need to specify also a choice for the basis functions

Φi to have a complete dataset (pi, fi,Φi). Several such functions can be used

in practice, such as radial basis functions. To efficiently perform the reconstruc-

tion, search methods are needed that return the sample points pi located in the

neighborhood of a given point p.

Scattered data interpolation and approximation is an extensive subject. More

information on this can be found in specialized references such as the recent book

by Wendland [Wendland 06]. For a shorter, but still rigorous mathematical

treatment of meshless interpolation methods, see [Belytschko et al. 96].

3.10 Conclusion
In this chapter, we have presented the fundamental issues involved in represent-

ing data for visualization applications. Visualization data is produced, in many

cases, by sampling a continuous signal defined over a compact spatial domain.

The combination of the signal sample values, the discrete representation of the

signal domain, and the mechanisms used to reconstruct a (piecewise) continu-

ous approximation of the signal is called a dataset. Virtually all data-processing

operations in the visualization process involve using the discrete representation
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provided by the dataset. Hence, having generic, efficient, and accurate ways to

represent and manipulate datasets is of utmost importance.

In practice, the signal domain is discretized in a grid that contains a set of

cells defined by the sample points. The data samples, also called data attributes,

are stored at these points, and can be of several types. The most used are

numerical types which permit interpolation: scalar, vector, color, and tensor.

Together with these cells, basis functions are provided for signal reconstruction.

The most-used basis functions in practice are constant and linear, given the

simplicity of implementation and direct support in the graphics hardware.

Several types of grids provide different trade-offs between representation flex-

ibility and storage and computational costs. The most-used types in practice are

uniform, rectilinear, structured, and unstructured grids. Finally, gridless inter-

polation methods exist as well. These provide signal reconstruction from the

sample point avoiding the construction and storage of cells altogether. To pro-

vide this extra flexibility, special spatial search data structures are required for

fast location of neighbor points.

Visualization data can also originate from different sources than sampling a

continuous signal. Data attributes such as text, images, or relations are purely

discrete, and often not defined on a spatial domain. Such datasets form the

target of information visualization applications, and are separately described in

Chapter 11.

In the following chapters, we shall see how the various aspects described

in this chapter (sampling and reconstruction, interpolation and basis functions,

grids and cells) will be reflected in the construction of different types of visual-

ization applications.
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Chapter 4

The Visualization Pipeline

IN Chapter 2, we showed the basic steps of a visualization application and also

sketched a simple data representation for the function graphing problem. In

Chapter 3, we described in detail how to represent discrete, sampled data. We

introduced several dataset types that offer different trade-offs between represen-

tation flexibility and storage and implementation requirements. At this point, we

should have a good understanding of how to represent the data we are interested

in visualizing. The focus of this chapter is to present the structure of a complete

visualization application, both from a conceptual and a practical perspective.

We begin our discussion with a conceptual description of the structure of

visualization applications (Section 4.1), which introduces the four main ingre-

dients of such an application: data importing, data filtering and enrichment,

data mapping, and data rendering. Next, we describe several implementation

considerations of this conceptual structure (Section 4.2). Section 4.3 discusses

a classification of the various algorithms used in the visualization process. Fi-

nally, we conclude our analysis on the structure of visualization applications

(Section 4.4).

4.1 Conceptual Perspective
As explained in Chapter 1, the role of visualization is to create images that

convey various types of insight into a given process. The process is illustrated

conceptually in Figure 1.3. The visualization process consists of the sequence of

steps, or operations, that manipulate the data produced by the process under

123
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Figure 4.1. Functional view on the visualization pipeline.

study and ultimately deliver the desired images. On both the conceptual and the

design level, this divide-and-conquer strategy in designing visualizations allows

one to manage the complexity of the whole process. On the implementation

level, this strategy allows us to construct visualizations by assembling reusable

and modular data-processing operations, much as in other fields of software

engineering. Given this modular decomposition, the visualization process can be

seen as a pipeline consisting of several stages, each modeled by a specific data

transformation operation. The input data “flows” through this pipeline, being

transformed in various ways, until it generates the output images. Given this

model, the sequence of data transformations that take place in the visualization

process is often called the visualization pipeline.

The visualization pipeline typically has four stages: data importing, data fil-

tering and enrichment, data mapping, and data rendering. These are illustrated

schematically in Figure 4.1, and are detailed next.

In order to better understand the various operations that take place in the

visualization pipeline, we can use a functional description of this process. Con-

ceptually, we can see the visualization pipeline as a function V is that maps

between DI , the set of all possible types of raw input data, and the set I of

produced images:

V is : DI → I. (4.1)

By (interactively) examining the produced image, users should be able to obtain

insight into the original raw data and answer questions about phenomena cap-

tured by this data. Conceptually, we can also model this process by a function

Insight that maps from the output image to the input data, in inverse direction
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to the V is function:

Insight : I → DI . (4.2)

For simplicity and conciseness, we have described Insight as a function mapping

from images to raw data. In full detail, Insight maps from the produced images

to the actual questions the user has about the raw data, which are not necessarily

one-to-one with the data itself. We shall detail this point further in Section 4.1.3.

For the time being, it is sufficient to understand that the process of getting insight

goes in an inverse direction to the visualization pipeline itself.

The user’s feedback that connects the images with the original problem (the

bottom blue arrow in Figure 4.1) is not limited to insight only. When visually

monitoring a live process that generates data, the user may want to steer the

process on a given path by changing its parameters. Applications that provide

such facilities effectively close the loop between the visualization output and the

application’s inputs. If the complete round trip is executed in (sub)second time,

the user effectively steers the process at hand by means of visual feedback. This

process, called computational steering , is implemented by several visualization

software applications, such as SciRUN [SCIRun 07], CUMULVS [CUMULVS 07,

Geist et al. 97], and CSE [van Liere et al. 12, van Liere and van Wijk 96].

Obviously, not all V is functions of the type sketched in Equation (4.1) are

equally relevant for our goal of getting insight into, or understanding, the desired

aspects of our dataset. Moreover, for real-world, complex application scenarios,

it is quite plausible that we cannot construct the desired visualization function in

a single step. The various steps of the visualization pipeline shown in Figure 4.1

correspond to specific subfunctions, each taking care of a specific concern. The

concatenation, or composition, of these subfunctions yields the desired visual-

ization V is.

Figure 4.2 shows a necessarily simplified view of the actual complex interac-

tions that involve the user, visualization application, input data, and produced

images by this application, as well as the obtained insight. Many other factors

are of importance in establishing qualitative and quantitative dependencies be-

Vis

Insight

Import Filter Map Render
DI D D DV I

Figure 4.2. The visualization process seen as a composition of functions.
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tween these elements, such as the actual domain-specific knowledge of the user;

the way insight builds up by executing the visualization process described in

Figure 4.1 repeatedly for the same, or different, inputs; and the type of user in-

teraction that allows various parameters of this process to be interactively tuned,

to name just a few. Different models for the way visualization works have been

presented, which incorporate these factors up to different extents and in different

ways [Schroeder et al. 06, van Wijk 05].

In the following sections, we shall detail the four steps of the visualization

pipeline presented in Figure 4.1 and, at the same time, discuss the desirable

properties of their corresponding functions.

4.1.1 Importing Data

First, we have to be able to import our input data into the visualization process.

Conceptually, this implies finding a representation of the original information

we want to investigate in terms of a dataset, be it continuous or discrete. In

functional terms, importing the input data maps the raw information DI that is

available at the beginning of the visualization process to a dataset D ∈ D, such

as the ones described in Chapter 3. Here, D represents the set of all supported

datasets of a given visualization process. If we follow the data representations

given in Chapter 3, D consists of uniform, rectilinear, structured, and unstruc-

tured datasets. Importing data can be described by the function

Import : DI → D. (4.3)

Practically, importing data means choosing a specific dataset implementation

and converting the original information DI to the representation implied by the

chosen dataset type D. Ideally, Import is a one-to-one mapping, such as reading

the input data from some external storage, such as a file or a database, or from

a live data source, such as a measuring device, a scanner, or an analog-to-digital

converter. A direct mapping can happen only if the chosen dataset type D can

directly represent the input data DI . In practice, however, data importing can

imply translating between different data storage formats, resampling the data

from the continuous to the discrete domain, like we did in Section 2.1, or from one

resolution and/or grid type to another, as discussed in Section 3.9.1. For our

height-plot example introduced in Section 2.1, our input data is a continuous

function f(x, y) → R, and the import operation involves sampling it on the

desired dataset, such as a regular grid.

The choices made during data importing determine the quality of the result-

ing images, and thus the effectiveness of the visualization. For example, if the
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imported data is incorrect, incomplete, uncertain, of low quality, or the import-

ing method throws away information from the original data, it is in general very

hard (and sometimes impossible) to completely restore the data quality later in

the visualization pipeline. For this reason, the data importing step should try

to preserve as much of the available input information as possible, and make as

few assumptions as possible about what is important and what is not. Concerns

such as simplifying or filtering the data should be addressed in the next steps

of the visualization process. We illustrated these considerations in Chapter 2 by

showing how the quality of the height plot is affected by the choice of the grid

type and sampling density.

4.1.2 Data Filtering and Enrichment

Once we have imported the data, we must decide which are its important as-

pects, or features, we are interested in. In most cases, the imported data is not

one-to-one with the aspects we want to get insight into. This is inherent to our

choice of importing data “as is.” Usually, raw data do not model directly the

aspects targeted by our questions. If it were so, we would not need visualization

at all, as we could just directly query the input data and get the desired answers.

Visualization is useful when the subject of our questions involves more complex

features than directly modeled by the input data. Hence, we must somehow dis-

till our raw dataset into more appropriate representations, also called enriched

datasets, which encode our features of interest in a more appropriate form for

analysis and visualization. This process is called data filtering or data enriching,

since it performs two tasks: On one hand, data is filtered to extract relevant

information. On the other hand, data is enriched with higher-level information

that supports a given task. In the literature, these two operations are typically

not discussed separately, but amalgamated in a single stage of the visualiza-

tion pipeline. Given this, we shall use the terms “filtering” and “enrichment”

interchangeably, unless specified otherwise explicitly in the context.

Data filtering can be described by the function

Filter : D → D. (4.4)

Both the input (domain) and output (codomain) of the filtering function are

datasets, since the filtering function is strictly a data-manipulation operation.

This is in contrast to the data importing function and, as we shall see next, to

the mapping and rendering functions as well.

We next give several example contexts where data filtering is necessary.
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See what is relevant. Often, we are not interested in the properties of the com-

plete input dataset, but only in those of a specific subset of interest that is

relevant for a given task. For example, medical specialists are interested in see-

ing only specific anatomical structures related to a certain condition, which are

a subset of the entire dataset they obtain from scanning devices such as CT or

MRI scanners. Financial analysts may want to focus on the behavior of only a

small subset of companies of interest, given a large set of stock exchange data

containing the stock prices of thousands of companies. Selecting a subset of

interest can be done in the spatial domain, in the attribute value domain, or

in a combination of both. For our height-plot example, computing derivatives

of the sampled dataset, as described in Section 3.7, is an example of a filtering

operation.

Handle large data. Another reason for data filtering is the fact that input datasets

can be overwhelmingly large. This makes efficient processing difficult, which can

be a serious problem when users require interactive visualization applications.

A more fundamental problem related to size is the limited output resolution of

the typical computer screens used by visualization applications. Think of the

simple example of displaying a two-dimensional colored image. This is an in-

stance of visualizing a 2D dataset that has color attributes specified per cell (or

pixel). If the input datasets exceed a certain size, the visualization will produce

output images that no longer fit a given screen. One solution used in practice

is zooming, i.e., subsampling the input image and displaying only a subset of

its pixels that captures the overall characteristics of the complete dataset. The

complementary solution, panning, i.e., selecting a subset of the input image at

its original resolution, can also be seen as a form of data filtering.

Ease of use. A final reason for data filtering is convenience. It is very hard,

if not practically impossible, to describe the entire palette of data-processing

operations involved in the visualization process in terms of a single data rep-

resentation or dataset type. Hence, datasets are usually transformed from one

form to the other during the visualization process, such that they fit the data

representation required by the processing operations we want to apply. Prac-

tically, this implies working with different types of datasets that have different

dimensionalities, cells, grids, interpolation functions, and attribute values. Con-

sider again our height-plot example. If a given visualization package provides

only derivative computation on triangle cells, and our data comes as a quad

grid, we need to convert the quads into triangles in order to be able to use the

respective package.
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4.1.3 Mapping Data

The filtering operation produces an enriched dataset that should directly repre-

sent the features of interest for a specific exploration task. Once we have this

representation, we must map it to the visual domain. We do this by associating

elements of the visual domain with the data elements present in the enriched

dataset. This step of the visualization process is called mapping and can be

modeled by the function

Map : D → DV . (4.5)

This function takes a dataset D ∈ D and maps it to a dataset of visual features

DV . The easiest way to think of visual features is to imagine them as subsets of

a visual domain DV , i.e., DV ∈ DV . The visual domain DV is a multidimensional

space whose axes, or dimensions, are those elements that we perceive as quasi-

independent visual attributes.1 Examples of these axes are shape, position, size,

color, texture, shading, and motion. Clearly, there are cases when these visual

attributes are not independent, but overlap—think of texture, color, and shading,

for instance. However, the principle remains the same. Hence, a visual feature

is a colored, shaded, textured, and animated 2D or 3D shape. In rendering

parlance, a visual feature dataset DV is a 2D or 3D scene and the visual domain

DV is the set of all possible 2D or 3D scenes.

The actual visual features, thus the actual function Map used in a specific

application depend very much on the purpose of the visualization, specifics of the

data, and ultimately on the preference of the designer of that visualization. For

our height-plot example, the mapping operation takes the sampled dataset that

represents our function and constructs a set of polygons that represent a height

surface. In this case, we mapped the actual dataset extent to the xy-coordinates

of a polygonal surface, and the height attribute of the dataset points to the z-

coordinate. The 3D coordinates of the polygonal surface are the visual features

that encode our dataset extent and height-scalar attribute (see Figure 4.3).

Mapping vs. rendering. When reading the above description of the mapping op-

eration, one question arises: Why do not we directly map our dataset D ∈ D

to the final Image ∈ I, i.e., what is the use of the intermediate visual feature

dataset DV ? And yet, this part of the visualization pipeline is usually split in

two steps: mapping (discussed in this section) and rendering (discussed in the

next section). There are several good reasons for this splitting, as follows:

1This relationship is long known. In [Bertin 77], the visualization design (equivalent to our
mapping function) is defined as the linking of the input dataset dimensions to the so-called
visual variables (equivalent to our visual attributes).
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Figure 4.3. The direct and inverse mapping in the visualization process.

• Purpose: Mapping encodes explicit design decisions about what, and how,

we want to visualize. Mapping typically converts “invisible” data to “visi-

ble” representations. In contrast, rendering simulates the physical process

of lighting a “visible” 3D scene. In other words, mapping specifies those

visual attributes that encode actual data, whereas rendering specifies the

remaining visual attributes that users can tune to their taste to exam-

ine the 3D scene. In our height-plot example, the plot’s geometry encodes

data, so it is specified at the mapping stage. However, the color of the plot,

the viewpoint, and the lighting parameters do not encode actual data, so

the user can tune them while examining the 3D scene. This is exactly what

happens when the user rotates the 3D plot to view it from different angles,

for example.

• Modularity: Both mapping and rendering operations are quite complex. In

practice, they consist of numerous substeps that have elaborate implemen-

tations. Separating the two operation types (and their implementations)

modularizes the visualization pipeline and favors a clean design based on

separation of concerns and software reuse. In particular, many graphics

methods and their implementations, such as 3D rendering libraries, can be

readily (re)used in a visualization application once the rendering step is
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separated from the mapping step. Among others, this allows a given vi-

sualization pipeline to use different back-end renderers, such as OpenGL,

DirectX, or render-to-file formats.

Desirable mapping properties. Data mapping is arguably the visualization pipe-

line step that is most characteristic for the visualization process. The other

pipeline steps largely overlap with techniques present in other disciplines as well:

Importing and filtering data can be largely thought of in terms of resampling,

projection, restriction, and various other signal processing operations, at least

in the case of sampled (scivis) datasets. Rendering is basically nothing more

than applying computer graphics techniques, such as coordinate transformations,

lighting, texture mapping, and rasterization. In contrast, data mapping targets

the quite-specific visualization task of making the invisible and multidimensional

data visible and low-dimensional, respectively. To do this, the data mapping

function Map should try to satisfy several desirable properties.

First, Map should preferably be injective. That is, different values x1 �= x2
from the datasetD to be visualized should be mapped to different visual attribute

values Map(x1) �= Map(x2) in the visual feature dataset DV . This property is

essential for the design of an effective visualization. To understand this, think

of how users interpret the images produced by visualization applications. When

we look at such an image, we want to be able to make some judgments about

the original data or parts of it. For example, when we look at the image of

the height plot of a function z = f(x, y), we want to be able to say which is

the height z of any point (x, y) in the function domain. In other words, we

must be able to mentally invert the function V is (or a part of this function)

that encoded the initial data into the image features (see Equation (4.1)). For

this, we must be able to invert some of the components of this function: the

rendering Render, mapping Map, filtering Filter, and data importing Import

operations. In practice, Filter and Import may be not invertible. Moreover,

we may not want to invert these steps, for example when the elements we are

really interested in getting insight into are individualized only after the filtering

step. Still, if Map and Render are invertible, we can make judgments about

the enriched datasets D that model our problem domain, using the rendered

images. However, if neither Map nor Render are invertible, it is hard to make

discriminative judgments about the data looking at the final image.

Let us detail the process of inversion a bit further. For a 3D scene containing

easily recognizable shapes and suitable lighting and viewing parameters, our

human vision system should be able to invert the Render function; that is,

we should be able to recognize which are the 3D visual features DV which are
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rendered in the 2D image. Of course, this requires the visual feature dataset

DV to be rendered appropriately. For example, a 3D scene rendered from a bad

angle and with low lighting will produce an image in which we may not recognize

any of the 3D visual features present in the scene, hence an image which does

not tell us anything insightful.

We are thus left with invertingMap. For this, we should be able to mentally

associate data attribute values xi ∈ D with the visual features DV that we have

recognized in the rendered images. For example, when we see a point with high

elevation on our 3D function plot, we should infer the function has a high value

there (see Figure 4.3). Similarly, when we see a red spot on a weather heat map,

we should infer the temperature is high there. If the function Map is injective,

it is invertible over its whole value range, which is what we want.

Inverting the mapping. Nevertheless, havingMap invertible from a purely math-

ematical point of view is sometimes not enough. We must know how, and be

able, to do the inversion mentally when we look at the pictures. For this, we

must first and foremost know the significance of the visual attributes used in the

rendering. That is, we must know how color, shape, position, texture, and the

other visual attributes used in the mapping relate to data attributes of interest.

This knowledge can be implicit, encoded in well-established conventions that are

assumed to be known by all our users. Examples are visualizations that map

some attribute to an icon orientation, shape, and size, such as weather maps that

use special icons to denote wind speed and direction, sun intensity, and type and

strength of rainfall. Other widely spread conventions include the orientation of

cartographic maps, where the north is usually placed at the top, and the spe-

cific colormaps used to indicate relief forms on these maps, with their typical

shades of blue (water courses and lakes), green (fields), light brown (medium

heights), dark brown (mountains), and white (peaks), and similarly for traffic

signs. This knowledge can be provided also explicitly. For example, most visu-

alizations that map numerical attributes to colors display a color legend, which

shows how colors correspond to values, and effectively assists the user in doing

the mental color-to-value inverse mapping. Colormaps are discussed in detail

further in Chapter 5.

Figure 4.4 illustrates the above. Our input dataset consists of a function

f : M ⊂ R
2 → R

2 which associates to each 2D position on a geographic map

M the amount of rainfall and the temperature recorded at that position. To

visualize this information, we draw the actual map (domain M of f). The color

at each point indicates temperature. The height of the shaded bumps drawn

atop of the map indicates the amount of precipitation. Consider now that the
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Figure 4.4. Inverse mapping for a weather map visualization.

user selects a point in this visualization, indicated by the circle icon in Figure 4.4:

What can we say about the data at that point? To answer this, we must

• know to which point in M the selected point maps. This is easy to do,

since M is mapped one-to-one to our 2D visualization space;

• know how color encodes temperature and be able to map each hue in the

visualization to a different numerical temperature value. For this, we need

an invertible colormap;

• know how height encodes rainfall and be able to map each shade of gray

in the visualization to a different rainfall value.

Distance preservation. A stronger, and equally useful property used in many

visualization applications, is that the function Map tries to preserve distances

when mapping from the data to the visual domain. That is, the distance d(x1, x2)

between any two values x1 and x2 in the dataset D should suggest the distance

d′(Map(x1),Map(x2)) in the visual feature dataset DV . The simplest way to do

this is to use a direct proportionality relationship between the two. This is useful

when we are interested in visually comparing relative values rather than assessing

absolute attribute values. For example, looking at our 3D elevation plot, we can

tell the relative function values of various data points in the domain by visually

comparing their heights in the 3D plot, even though we may have no exact

idea about their absolute values. In practice, visualization applications often

use linear mapping functions to map between some numerical attribute value
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and some visual attribute, such as height, position, luminance, or hue. Linear

functions are quite effective, since they are invertible, simple to understand, and

also preserve distances well between the data and visual spaces. However, linear

functions do not work well when the range of distances to be mapped is very

large and the data values are not uniformly spread over this range, but clustered

in small subranges thereof.

Mapping functions used in visualizations where data is to be measured are

sometimes called measurement mappings [Lanza and Marinescu 06]. Following

measurement theory, a measurement mapping function must fulfill the represen-

tation condition, which states that such a mapping must “map entities into num-

bers and empirical relations into numerical relations in such a way that the em-

pirical relations preserve and are preserved by the numerical relations” [Pfleeger

et al. 05].

In practice, many Map functions are, strictly speaking, not invertible over

their entire range, and also do not preserve distances. For instance, the shading

used in Figure 4.4 to map rainfall values can show only a small number of different

values, since both our visual system and the graphics hardware used to render

that image can distinguish, respectively display, only a limited set of gray shades.

This is not a problem as long as the introduced deviations do not make users

draw incorrect conclusions from what they see. As always, evaluations of the

effectiveness of a mapping function can only be made with respect to a concrete

application domain, task, and user group. To give just a simple example, a

colormap that translates scalar values to hues that works perfectly for most

people may be quite ineffective for colorblind users.

Organization levels. As mentioned earlier, not all visual variables allow equally

well the same types of inverse mapping operations. Table 4.1 lists the most

common visual variables and their so-called “organization levels” [Bertin 77].

These characterize the types of operations that one can visually perform with

ease on such variables. In increasing organization level of detail, a variable

v ∈ DV is said to be

• associative if v allows a categorical attribute mapped by v to be perceived

independently on the presence of other visual variables in the same image.

For instance, “shape” is associative, since we can easily distinguish different

shapes even when colored or positioned differently. A variable that is not

associative is called dissociative;

• selective if v allows a categorical value mapped by v to be (nearly) instanta-

neously perceived as different from other values mapped by v. For instance,



4.1. Conceptual Perspective 135

Visual variable Quantitative Ordinal Selective Associative/Dissociative

Position � � � A
Size � � � D
Brightness � � D
Texture � � A
Color (hue) � A
Orientation � A
Shape � A

Table 4.1. Organization levels of visual variables.

“color” is selective, since we can easily visually select all red shapes in a

set of differently-colored objects;

• ordinal if v allows one to pre-attentively compare different values mapped

by v. For example, “size” is ordinal, since we can easily see if two objects

have the same size or if one object is larger than the other one;

• quantitative if v allows one to visually compute ratios between different

values mapped by v. For example, “size” (seen as length, for instance)

is quantitative by excellence, since we can easily tell how many times an

object is longer (or shorter) than another object.

The properties of the organization levels outlined in Table 4.1 are, of course,

not granted. These are properties that a given visual variable can take, given a

well-designed visualization and taking into account an average use-case and user.

We can clearly find cases when these properties do not hold, due, e.g., to a poor

visualization design, a too-large dataset, a bad display device, or an untrained

or inattentive user. The main value of this classification is to render designers

aware of the inherent limitations that visual variables have. For instance, because

“size” is (typically) quantitative but “color” is not, displaying a data attribute

for which we wish to visually compute and compare ratios should best map this

attribute to size rather than color.

Related to the inversion process is the difference between data and informa-

tion. Following the discussion of Spence [Spence 07], we state that the main task

of visualization is to derive information, i.e., useful facts that lead to conclusions

about a certain problem, from data, i.e., recorded figures such as the signal sam-

ples on a grid. The mapping function should allow retrieval of information, and

not just raw data, from the produced pictures.

Further reading. Designing effective visual mappings is at the core of the success

(or failure) of designing effective visualization applications. Besides the basic
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theory covered in this section, many more aspects contribute to a successful de-

sign: choice of visual encodings as a function of the display medium; accepted

conventions of the targeted user group; usage of interaction mechanisms to fa-

cilitate data exploration; knowledge of perceptual, cognitive, and human vision

factors; and aesthetic principles driving the overall visualization design. More

information on the above topics is available in a variety of places. The recent

book of Ward et al. provides a thorough and balanced coverage of all the above

points, with a focus on interactive visualization and user-centered design [Ward

et al. 10]. The classic book of Tufte provides a lower-level, but equally important,

view on the design of statistical graphics [Tufte 01]. Chapter X in the Visualiza-

tion Handbook of Hansen et al. provides additional insight in perceptual issues in

data visualization [Hansen and Johnson 05]. Finally, the books of Bertin provide

a detailed discussion of the desirable properties of visual variables used in the

design of the mapping function and how these should be used to encode different

types of attributes [Bertin 77, Bertin 83].

4.1.4 Rendering Data

The rendering operation is the final step of the visualization process. Rendering

takes the 3D scene created by the mapping operation, together with several user-

specified viewing parameters such as the viewpoint and lighting, and renders it

to produce the desired images:

Render : DV → I. (4.6)

In typical visualization applications, viewing parameters are considered part of

the rendering operation. This allows users to interactively navigate and examine

the rendered result of a given visualization by rendering the 3D scene without

having to recompute the mapping operation. Indeed, if the viewpoint changes

but the 3D scene produced by the mapping stays the same, all we have to do

is render the scene anew with the new viewing parameters, which is a relatively

cheap operation.

4.2 Implementation Perspective
Putting it all together, we can describe the visualization pipeline as a composition

of functions that have dataset arguments and values. If we denote by D the space

of all our datasets then we have

V is = F1 ◦ F2 ◦ . . . ◦ Fn, where Fi : D → D. (4.7)
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The various functions Fi perform the data rendering, mapping, filtering, and

importing, thus in inverse order of their appearance in the visualization pipeline.

The input of Fn is the application’s raw data, and the output of F1 is the final

image. This model allows us to decompose each of the four stages into as many

subfunctions as we need. This has several purposes. First, it is conceptually eas-

ier to think of complex operations, such as filtering, in terms of a composition

of simple filter-like atomic operations that each address a specific task. Second,

this favors modular, reusable software design and allows us to assemble visual-

ization applications from a set of predefined functional components. In practice,

there is no clear-cut separation as to which functions should be considered in the

data importing, filtering, mapping, and rendering stages. Different visualization

application implementations make different choices here. From a purely imple-

mentation perspective, all data types used in the pipeline (raw data, sampled

datasets, and images) can be considered as datasets, and all pipeline operations

can be modeled as functions that read and write datasets.

The design of a visualization application has two main parts. First, we choose

the right data-processing operations, or functions Fi, that are needed in the visu-

alization pipeline of a given application (see Equation (4.7)). Second, we choose

the right dataset implementations Dj ∈ D to connect the pipeline functions Fi.

We outlined in Chapter 3 how to implement the datasets Dj . We now briefly

discuss how to implement the data-processing operations Fi.

Dataflow design. If we use an object-oriented design, we can implement the

functions Fi as classes that have three properties:

• They read one or more input datasets Dinp
i .

• They write one or more output datasets Dout
j .

• They have an execute() operation that computes Dout
j given Dinp

i .

The choice of letting the function F have several datasets as input (arguments)

and output (results) is purely a practical one. The actual number, type, and

meaning of the inputs and outputs depends on the semantics of the function itself.

In implementation terms, a function F with these properties can be modeled as

a class F with three methods as shown in Listing 4.1. The setInput() and

getOutput() methods are simple accessors to the input and output datasets

Dinp
i and Dout

j , respectively. These are represented by Grid subclasses, such

as uniform or unstructured datasets, which have been detailed in Chapter 3.

In a basic implementation, the accessors would simply store references to the

input and output datasets in the local inputs and outputs vectors of the F
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c l a s s F
{
publ i c :

void set Input (Grid ∗ , i n t ) ;
Grid∗ getOutput (Grid ∗ , i n t ) ;
v i r t u a l void execute ( ) =0;

protected :
vector<Grid∗> i nputs ;
vector<Grid∗> outputs ;

} ;
Listing 4.1. Visualization operation implementation.

class. Concrete visualization operations would inherit from the abstract class F

in Listing 4.1 and implement the actual execute() operation, which would read

the input datasets, perform the actual data-processing operations, and write the

corresponding output datasets present in the inputs and outputs containers of

the base class.

Given this implementation, a visualization application can be seen as a net-

work of function, or operation, objects Fi that are connected with each other by

sharing input and output Grid datasets. Figure 4.5 depicts such a simple appli-

cation consisting of four function objects and four datasets. The first operation

F1 has no input, as it imports the data into the pipeline from an external source.

The operation F4 has no output—we assume this is the rendering operation that

produces the final image. Operations can have multiple inputs or outputs, and

the same dataset can be read by multiple operations. Having the same dataset

written by multiple operations is possible, too, but generally not recommended,

as it complicates substantially both the implementation and the understanding

of the design.

When we input new raw data into the pipeline, the application should first

execute F1, then F2 and F3 (in any order, since they do not depend on each

other), followed by F4. In the general case, consider the graph whose nodes are

the operations Fi and edges are the data dependencies between operations, i.e.,

there is a directed edge Fi to Fj if Fi writes a dataset that is read by Fj . In

Figure 4.5, this graph consists of four nodes F1 . . . F4 and four edges (drawn in

blue). If the application graph is acyclic, the execution is equivalent to calling

the execute() method of all operations Fi in the order of the topological sorting

of the graph [Cormen et al. 01]. This ensures that an operation is executed only

when all its inputs are available and up-to-date. Cyclic application graphs can

also be accommodated but require more complex update mechanisms, for which

reason they are less used in practice. The sequence of operation executions in
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Figure 4.5. Visualization pipeline represented as a network of objects.

this application model follow the “flow” of data from the importing operation

to the final rendering operation. For this reason, this design is often called a

dataflow application model.

Summarizing, a visualization application can be implemented as a network

of operation objects that have dataset objects as inputs and outputs. To exe-

cute the application, the operations are invoked in the dataflow order, starting

with the data importing and ending with the rendering. This model—though

in principle sufficient—needs numerous additions to provide a scalable and ef-

ficient implementation for a visualization framework. Among the most notable

additions, we mention reference counting and automatic memory management

for the dataset and operation objects, typed inputs and outputs that ensure the

dataset-operation compatibility, smart pipeline traversal methods that minimize

the number of performed operation executions upon data changes, paralleliza-

tion and distribution of execution on one or several machines, progressive update

mechanisms that allow users to stop the pipeline execution at any desired mo-

ment, and serialization facilities for both the datasets and the application itself.

Dataflow implementation. Several professional visualization frameworks imple-

ment these features and also provide hundreds of advanced data manipulation,

mapping, and rendering operations.2 Among these, the Visualization Toolkit

(VTK) stands out as being arguably the best known and most used framework

in both academic and industrial contexts [Schroeder et al. 06, Kitware, Inc. 04].

VTK is a professional visualization framework based on the previously discussed

dataflow application model. VTK implements all the preceding advanced mech-

anisms, provides a huge set of visualization operations, has a highly efficient

implementation in C++, and comes with bindings for several interpreted lan-

guages, such as Tcl, Java, and Python. VTK is an open-source product, which

means it can be easily modified and embedded in different development con-

2For more information on actual visualization software, see the appendix.
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texts. As a consequence, VTK is used and continuously improved by a large

developer community. However, the great flexibility, genericity, and efficiency

of the VTK toolkit come with a price in terms of complexity. Learning how to

use VTK to develop visualization applications is an involved task that requires

considerable programming experience and patience. For readers interested in

exploring the possibility of using VTK for their visualization applications, we

refer to the several available books that describe both the principles and design

of the toolkit [Schroeder et al. 06, Kitware, Inc. 04], as well as to the web re-

sources containing the open source VTK software and example datasets [Kitware,

Inc. 13].

The same architectural and design principles are used in the Insight Toolkit

(ITK) [National Library of Medicine 14]. In contrast to VTK, which addresses

general-purpose data visualization, ITK focuses on the more specific field of

image segmentation, processing, and registration. ITK can handle multidimen-

sional images and offers algorithms for thresholding, edge detection, smoothing,

denoising, distance computations, segmentation, and registration. ITK offers

the same wrapper concepts, open-source development model as VTK, but also

shares a similar steep programming-intensive learning curve.

Visual dataflow programming. Building visualization applications is not restricted

to programmers who write source code. Several more advanced methods offer

simpler, more intuitive application construction mechanisms. A popular develop-

ment metaphor during the 1990s was visual application building. This metaphor

has been implemented by several visual programming environments or visual

application builders [AVS, Inc. 06, Walton 04, MeVis Inc. 13, Telea and van

Wijk 99]. In this paradigm, the end user constructs the dataflow application

network by assembling iconic representations of the visualization operations.

Icons describing the operations available in a number of module libraries are

dragged onto a canvas workspace where their inputs and outputs are connected

by means of mouse manipulations. Graphical user interfaces (GUIs) are pro-

vided by the environment to let users interactively control the parameters of the

various visualization operations, thereby achieving the goal of interactive data

exploration. When the user modifies such a parameter, the environment triggers

a dataflow execution engine that updates the complete application network from

the affected operations onward until a new image is rendered in the visualization

window.

Figure 4.6 illustrates these concepts for the by now familiar height-plot ap-

plication in the VISSION environment [Telea and van Wijk 99]. Figure 4.7

shows the same height-plot application in the MeVisLab environment, a recent
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Figure 4.6. The height-plot application in the VISSION application builder [Telea and
van Wijk 99].

{user
interface

{application network

visualization
application

Figure 4.7. The height-plot application in the MeVisLab application builder [MeVis
Inc. 13].
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Figure 4.8. A visualization application in the AVS application builder [AVS, Inc. 06].

powerful visual application builder [MeVis Inc. 13]. Both environments use the

VTK toolkit as underlying implementation to provide the visualization services.

However, the raw VTK functionality is “wrapped” into visual representations,

thereby making it easy to use and learn.

Figure 4.8 shows a snapshot from a different visualization application in the

AVS visualization system [AVS, Inc. 06]. The main design elements, i.e., the

module library, the application dataflow network, the user interfaces, and the

actual visualization window, are easily recognizable. Other similar visual appli-

cation builders exist, such as VisTrails [Bavoil et al. 05] and DeVIDE [Botha 13].

Simplified visual programming. A slightly different type of visual application

builder is illustrated in Figure 4.9 by the ParaView environment [Henderson 04].

Similar to VISSION and MeVisLab in that they all use the VTK library and

its underlying machinery to provide the actual implementation of visualization

operations, ParaView features a more beginner-friendly end-user interface. The

freedom of constructing application networks of fully general graph topology by
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Figure 4.9. The height-plot application in the ParaView application builder [Hender-
son 04].

visual programming (present in MeVisLab, AVS, or VISSION) is traded in Par-

aView for a simpler application-building process using conventional GUI menus

that is easier and faster to learn and use. A similar trade-off of design freedom

for utilization simplicity is used in other toolkits, such as MayaVi [MayaVi 13].

The main attraction of visual programming environments such as the ones

illustrated in Figures 4.6, 4.7, and 4.9 is that they allow rapid prototyping of

visualization applications by users who have virtually no programming skills.

However, such environments are less effective for the production of complex visu-

alization applications. Many real-world visualization applications have typically

hundreds of operations, contain an intricate control flow that cannot be easily

modeled using the dataflow paradigm, and need complex custom code for their

user interfaces. Moreover, the structure of such applications changes rarely after

they have entered their mature development phase. All these factors make vi-

sual programming environments less suited for the creation of final applications,

albeit they remain quite effective for the prototyping phase.



144 4. The Visualization Pipeline

4.3 Algorithm Classification

At this point, we have all the theoretical and practical ingredients needed to start

learning about a number of specific visualization techniques, also called visual-

ization algorithms. The visualization practice of the last 15 years has generated

a large number of visualization algorithms. If we look at any general-purpose

visualization software system, library, or framework, we find hundreds of such

techniques. Clearly, we need a way to organize these techniques so that we can

learn them and refer to them easily. There are several ways to classify visual-

ization techniques. Most existing classifications in use are based in some way

or another on the way the visualization techniques interact with each other as

parts of the same visualization pipeline. Any taxonomy is based on some com-

monality that its elements share. In the case of visualization algorithms, they

share the input and output datasets by means of which they are coupled in the

visualization pipeline, as described earlier in this chapter.

One of the most intuitive and widespread taxonomies of visualization tech-

niques is based on the type of attributes these techniques work with. Following

the attribute terminology introduced in Section 3.6, we talk thus about scalar,

vector, and tensor visualization methods. These methods are discussed in Chap-

ters 5, 6, and 7, respectively. Readers may have noticed that Section 3.6 in-

troduced color attributes as a separate class. Color visualization methods are

essentially either rendering methods, which we do not discuss separately, or im-

age processing methods, which we shall treat separately in Chapter 9. Finally,

the non-numeric attribute types, such as text, graphs, or general data tables, are

targeted by information visualization (infovis) methods, which we shall briefly

overview in Chapter 11.

As in any taxonomy, there are elements that do not easily fit our attribute-

based classification of visualization methods. For example, there are specific

visualization methods that deal with the underlying sampling domain represen-

tation rather than with the attributes. We classify these methods in a special

category called domain modeling methods. Examples of such methods are grid

warping techniques that change the location of the sample points, cutting and

selection techniques that extract a subset of the sampling domain as a separate

dataset, or resampling techniques that change the cells and/or the basis functions

used to reconstruct the data. These methods form the subject of Chapter 8.

Alternative classifications exist as well. Schroeder et al. propose a struc-

tural classification that groups visualization techniques by the type of dataset

ingredient they change. Their classification includes geometric techniques (that

alter the geometry, or locations, of sample points), topological techniques (that
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alter the grid cells), attributes techniques (that alter the attributes only), and

combined techniques (that alter several of a dataset’s ingredients) [Schroeder

et al. 06]. Yet another type of classification was proposed by Marcus et al. in

terms of a five-dimensional model containing the following dimensions [Marcus

et al. 03]:

• Task: What is the task to be completed?

• Audience: Which are the users?

• Target: What is the data to visualize?

• Medium: What is rendering (drawing) support?

• Representation: What are the graphical attributes (shapes, colors, tex-

tures) used?

This classification is useful to describe not only visualization algorithms, but also

entire visualization applications.

Besides the classifications discussed here, in practice, virtually every visu-

alization software framework proposes its own classification that reflects either

some user-centered aspect of the software interface or some implementation-

oriented aspect. However, our practice has shown that many users naturally

think of (scientific) visualization methods in terms of scalar, vector, tensor, and

domain modeling algorithms. Hence, we shall use this classification in our pre-

sentation of the most widely used visualization techniques.

4.4 Conclusion
In this chapter, we have described the structure of the visualization process, or

visualization pipeline, both from a conceptual and an implementation point of

view. In this section, we shall try to draw several conclusions about this process.

First and foremost, although our aim has been to present the structure of a

visualization application from a modular perspective, where every module in the

pipeline has a clearly defined function, the situation in practice is often quite

far from this model. There is no clear-cut separation of the visualization stages

of data importing, filtering, mapping, and rendering. Still, the main separation

point in the visualization pipeline takes place at the moment when the abstract

data becomes potentially visible, i.e., after the mapping stage. This characteristic

is present in all visualization applications. Further pipeline refinements, such

as distinguishing data importing from data filtering, are less obvious. Actual
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applications can separate and structure the pipeline in different ways, depending

on design and implementation considerations that go beyond the topic of this

general discussion.

A second point of interest concerns the desirable properties of a given visual-

ization pipeline structuring. From an implementation point of view, the elements

that are assembled to form the pipeline should meet the usual requirements of

software components: modularity, reusability, simplicity, extensibility, minimal-

ity, and generality. As in any software engineering domain, meeting all these

requirements is clearly a daunting task and is in general not optimally possible,

given the extremely wide range of possible visualization operations and datasets.

A third point of interest concerns the properties of the mapping function. The

effectiveness of a given visualization is critically determined by this function. In

general, the mapping function should be invertible, so we can grasp the data

properties by looking at its visual mapping, and unambiguous, so we do not

doubt about what we see. There is, however, no silver bullet in designing such

mapping functions. Constructing a “good” data-to-image mapping is as much

of a science as an art. From the scientific arena, we can reuse elements of

sampling and signal theory, visual perception, computer vision, and cognitive

sciences. Visualization is also a craft or an art, as such choices are not always

deterministic. In this respect, aesthetics is essential to a good visualization, as

its users must be attracted to spend effort to study and work with it.

In the remaining chapters, we shall present concrete instances of the visualiza-

tion pipeline described in this chapter, in terms of several visualization methods

for scalar, vector, tensor, image, volumetric, and abstract data.



Chapter 5

Scalar Visualization

VISUALIZING scalar data is frequently encountered in science, engineering,

and medicine, but also in daily life. Recalling from Section 3.6, scalar

datasets, or scalar fields, represent functions f : D → R, where D is usually a

subset of R2 or R
3. There exist many scalar visualization techniques, both for

two-dimensional (2D) and three-dimensional (3D) datasets. In this chapter, we

present a number of the most popular scalar visualization techniques: color map-

ping, contouring, and height plots. We start in Section 5.1 with color mapping

and then discuss the design of effective colormaps in Section 5.2. In Section 5.3,

we discuss contouring in two and three dimensions. In Section 5.4, we present

the height plots.

5.1 Color Mapping
Color mapping is probably the most widespread visualization method for scalar

data. Putting it simply, color mapping associates a color with every scalar

value. Using the visualization pipeline terminology introduced in Chapter 4,

color mapping is a mapping function m : D → DV . The geometry of DV is

the same as D, but with a color that depends on the scalar data defined on D.

In other words, this means that color mapping is not concerned with creating

specific shapes to visualize data, but with coloring such shapes on which scalar

data is defined to show the data values. For every point of the domain of interest

D, color mapping applies a function c : R → Colors that assigns to that point a

color c(s) ∈ Colors which depends on the scalar value s at that point.

147
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There are several ways to define such a scalar-to-color function c. We shall

discuss two of the most common forms: color look-up tables and transfer func-

tions. Color look-up tables are the simplest way to implement color mapping.

Simply put, a color look-up table C, also called a colormap, is a uniform sampling

of the color-mapping function c:

C = {ci}i=1..N , where ci = c

(
(N − i)fmin + ifmax

N

)
. (5.1)

In practice, Equation (5.1) is implemented as a table of N colors c1, . . . , cN ,

which are associated with the scalar dataset values f , assumed to be in the

range [fmin, fmax]. Knowing the scalar range is important, as it allows us to

construct a color mapping with a clear and simple meaning: the colors ci with

low indices i in the colormap represent low scalar values close to fmin, whereas

colors with indices close to N in the colormap represent high scalar values close

to fmax. In practice, fmin and fmax can either be determined automatically by

examining the sampled dataset values or be prescribed by the user. In the latter

case, dataset values outside the prescribed range [fmin, fmax] are clamped to this

range to yield valid colors in the given colormap. Scaling the dataset values

to their range works well when we can determine this range in advance of the

visualization. However, imagine an application where we want to visualize a

time-dependent scalar field f(t) with t ∈ [tmin, tmax]. The typical solution is to

visualize the color-mapped values of the scalar field f(t) for consecutive values

of t in [tmin, tmax]. However, if we do not know f(t) for all values t before we

start the visualization, we cannot compute the absolute scalar range [fmin, fmax]

to apply Equation (5.1). Moreover, even when this is possible, we may not want

to do so. If the range [fmin(ti), fmax(ti)] of a time step ti ∈ [tmin, tmax] is much

smaller than the absolute range [fmin, fmax], normalizing f to the absolute range

will show little detail as we look at the individual frames. In such situations, a

better solution might be to normalize the scalar range separately for every time

frame f(t). Of course, this implies drawing different color legends for every time

frame as well.

Besides using a sampled scalar-to-color function to a discrete look-up table,

one can also define the function c analytically, if desired. Since colors are usually

represented as triplets in either the RGB or HSV (hue-saturation-value) color

systems, this is usually done by defining three scalar functions cR : R → R,

cG : R → R, and cB : R → R, whereby c = (cR, cG, cB). The functions cR,

cG, and cB are also called transfer functions . More on transfer functions will be

presented in Chapters 9 and 10 when we discuss image and volume visualization.

In practice, one uses predefined look-up tables when there is no need to change
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the individual colors at runtime and transfer functions when the investigation

goals require dynamically changing the color-mapping function.

5.2 Designing Effective Colormaps
The main challenge for visualizations using color mapping is to design an effective

colormap C. But what does it mean for a colormap to be effective? In terms of

the mapping operation described in Section 4.1.3, a color-mapping visualization

is effective if, by looking at the generated colors, we can easily and accurately

make statements about the original scalar dataset that was color mapped. Dif-

ferent types of statements and analysis goals require different types of colormaps.

Such goals include the following:

1. Absolute values: Tell the absolute data values at all points in the displayed

dataset.

2. Value ordering: Given two points in the displayed dataset, tell which of

the corresponding two data values is greater.

3. Value difference: Given two points in the displayed dataset, tell what is

the difference of data values at these points.

4. Selected values: Given a particular data value finterest, tell which points

in the displayed data take the respective value finterest. A variation of this

goal replaces finterest by a compact interval of data values.

5. Value change: Tell the speed of change, or first derivative, of the data

values at given points in the displayed dataset.

Clearly, some of the above goals are more challenging to realize than others.

For instance, goal 2 only implies that we can tell whether a data value is greater

(or smaller) than another value, but not by how much that is so, nor which are

the absolute data values. Goal 3 implies that we can tell how far apart two data

values are, but not which is the largest and which is the smallest, or in other

words how the data values are ordered. Goal 4 implies that we can tell where in

the dataset a chosen value finterest occurs, but requires little or nothing about

telling anything about points having data values different than finterest (except

that they do not take this value). Goal 5 implies that we can tell how quickly

values change at or around a given point, but not the absolute values of these

data values.
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Designing a colormap that achieves all above goals in equal measure is a

very challenging task. As such, colormap designs typically focus on optimizing a

subset of the above goals at the possible expense of the others. In the following,

we discuss several important design decisions pertaining to the construction of

colormaps, and relate them to the goals mentioned above.

Color legends. Consider our first goal—arguably the most challenging of all.

To achieve this goal, we must be able to mentally invert the color-mapping

function c; that is, look at a color of some point in the visual domain DV and

tell its scalar value f . To be able to do this, we must know the color-mapping

function c. In practice, this is achieved by drawing a so-called color legend . This

is usually a color strip containing all the colors ci in our colormap, annotated

with labels that indicate the values f for all or a number of the depicted colors.

By looking at an actual visualization and comparing its colors with the labeled

colors in the colormap, we are able to infer the scalar values of the depicted

dataset at desired points in the drawn image. Several examples of color legends

are shown later on in this section, see, e.g., Figure 5.2.

However, the color legend mechanism has some conditions to succeed. First,

the color-mapping function c must be invertible, as explained in Section 4.1.3.

This requires the function to be injective, meaning that every scalar value in

the range [fmin, fmax] is associated with a unique color. The colors used must

be unique in the eye of the beholder. It is not sufficient that the colors have

different numerical (e.g., RGB) values. We must also be able to easily perceive

them visually as being different if we want to be able to map them to scalars

using the color legend. Second, the spatial resolution of the visualized dataset

must be high enough as compared to the speed of variation of the scalar data f

that we are able to visually distinguish separate regions having different colors.

Color legends are required for any application of color mapping where we

require to map a color to a data-related quantity. Note that this does not

apply only to goal 1 of our taxonomy. Indeed, if we want to make quantitative

judgments about the ordering of data values (goal 2), a color legend is required

to tell how colors are ordered with respect to the ordering of the data values.

If we want to compare distances between data values (goal 3), we need a color

legend to show which differences are small and which are large. If we want to

tell which data points take a given value of interest (goal 4), we need a color

legend to tell which is the color showing the value of interest. If we want to

tell the speed of data variation (goal 5), and reduce this task to color mapping

the magnitude of the gradient ‖∇f‖ of our scalar signal f , we then need a color

legend for ‖∇f‖.
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Figure 5.1. Construction of rainbow colormap.

Rainbow colormap. Colormap design is also influenced by application or domain-

specific conventions and traditions. For example, many engineering and weather

forecast applications use a blue-to-red colormap, often called the rainbow col-

ormap (see Figure 5.1). This colormap is based on the intuition that blue, a

“cold” color, suggests low values, whereas red, a “hot” color, suggests high val-

ues. We can construct a rainbow colormap using three transfer functions R, G,

B, shown in Figure 5.1. The rainbow colormap is constructed by the code in

Listing 5.1. This constructs three trapezium-shaped transfer functions R, G, and

B, ranging from zero to one. The functions are centered at different locations

on the scalar value (horizontal) axis, which determines the blue-to-red colormap

structure. The functions overlap almost everywhere, which makes the hues in

the colormap vary smoothly. The parameter dx ∈ [0, 1] controls the amount of

pure blue and red used at the beginning and the end of the colormap, respec-

tively, which gives more aesthetically pleasing results than a colormap containing

only mixed hues. In terms of the interpolation theory discussed in Chapter 3,

these transfer functions can be seen as piecewise linear basis functions used to

interpolate between their corresponding primary colors.

Figure 5.2(a) shows the rainbow colormap applied to a 2D slice from a com-

puter tomography (CT) volumetric dataset.1 Data values indicate tissue density,

with high values corresponding to hard structures, such as bones, and low values

corresponding to soft tissues, such as the brain, skin, fat, and muscles. The low-

est data value corresponds to air. Using the rainbow colormap, we can relatively

easily distinguish the harder tissues (color mapped to yellow, orange, and red),

and the air (color mapped to dark blue).

1More on CT and medical visualization will be presented in Chapter 10. Slicing is explained
further in Section 8.1.2.
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void c ( f l o a t f , f l o a t& R, f l o a t& G, f l o a t& B)
{

const f l o a t dx = 0 . 8 ;
f = ( f <0)? 0 : ( f >1)? 1 : f ; //clamp f in [0, 1]
g = (6−2∗dx)∗ f + dx ; //scale f to [dx, 6 − dx]
R = max(0 ,(3− f abs (g−4)− f abs (g−5))/2) ;
G = max(0 ,(4− f abs (g−2)− f abs (g−4))/2) ;
B = max(0 ,(3− f abs (g−1)− f abs (g−2))/2) ;

}
Listing 5.1. Rainbow colormap construction.

Rainbow colormaps are one of the widest used colormap types in data vi-

sualization, and they are included, and often provided as default, in numerous

visualization applications [Borland and Taylor 07]. However, the rainbow col-

ormap has also several important limitations:

• Focus: Perceptually, warm colors arguably attract attention more than

cold colors. In our example in Figure 5.2(a), this means our attention is

attracted more towards the high data values. This can be desirable if these

are our values of interest (goal 4). However, depending on the application,

these may not be the values where we want to focus on.

• Luminance: The construction of the rainbow colormap proposed in Fig-

ure 5.1 and Listing 5.1 states that all generated colors have the same HSV

luminance, i.e., the same maximum of the R, G, and B color components

(see Section 3.6.3, Listing 3.2), except for the “tails” of the colormap, where

the luminance is slightly increasing, respectively slightly decreasing. How-

ever, as explained by Section 3.6.3, Equation 3.23, perceived luminance

and HSV luminance are far from being identical. As such, luminances of

the rainbow colormap entries vary non-monotonically. This leads to users

being potentially attracted more to certain colors than to others, and/or

perceiving certain color contrasts as being more important than others.

The latter issue can create problems for goal 5. This issue can be corrected

by adjusting the rainbow colormap entries so that they use the same hues,

but have maximal luminance as being given by Equation 3.23.

• Context: Hues can have application-dependent semantics. The rainbow

colormap is based on the assumption that “warm” colors, such as yellow

and red, are perceived as being associated with higher data values, whereas

“cold” colors such as blue suggest low values. This assumption is based

on the interpretation of the rainbow colormap as a heat, or temperature,
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map. While this might be a good encoding for visualizing a temperature

dataset, this association is much harder and more unnatural to do in case

of, for example, a medical dataset.

• Ordering: The rainbow colormap assumes that users can easily order hues

from blue to green to yellow to red, such as used by this colormap. While

this ordering can be learned by a sustained use of the rainbow colormap,

we cannot assume that any user will order hues in this particular manner.

When this assumption does not hold, goal 2 is challenged.

• Linearity: Besides the colormap invertibility requirement, visualization ap-

plications often also require a linearity constraint to be satisfied. To explain

this, assume, for example, that we visualize a linear function f(x) = x with

the rainbow colormap. The result of the visualization is actually identi-

cal to the color bar displayed at the bottom of Figure 5.2(a). It can be

argued that this colormap, which essentially maps value to hue, is not lin-

ear. Some users perceive colors to change “faster” per spatial unit in the

higher yellow-to-red range than in the lower blue-to-cyan range. Hence,

a linear signal would be perceived by the user as nonlinear, with possibly

undesirable consequences for goals 3 and 5.

Other colormap designs. Many other colormap designs are possible. Figure 5.2

shows five such colormaps applied to our 2D CT slice, apart from the already

discussed rainbow colormap.

Grayscale: Figure 5.2(b) shows a grayscale colormap. Here, we map data values

f linearly to luminance, or gray value, with fmin corresponding to black and

fmax corresponding to white. Most medical specialists, but also nonspecialists,

would agree that the grayscale produces a much easier-to-follow, less-confusing

visualization on which details are easier to spot than when using the rainbow

colormap in Figure 5.2(a). The grayscale colormap has several advantages. First,

it directly encodes data into luminance, and thus is has no issues regarding the

discrimination of different hues. Second, color ordering is natural (from dark to

bright), which helps goal 2. For medical visualizations, for example, the black-to-

white colormap can be more effective than the rainbow one, as these grayscales

map intuitively to the ones visible in X-ray photographs. Finally, rendering

grayscale images is less sensitive to color reproduction variability issues when

targeting a range of display or print devices. However, on the negative side,

telling differences between two gray values, or addressing goal 3, is harder than

when using hue-based colormaps. A more subtle problem occurs if our dataset
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Figure 5.2. Scalar visualization with various colormaps.

to display does not form a compact domain (such as the 2D slice in Figure 5.2).

Examples of such datasets are scattered 2D point clouds, parallel coordinate

plots, or node-link graph drawings, such as the ones shown in Figures 11.32,

11.29, and 11.23 respectively for information visualization applications (Chap-

ter 11). In such cases, we cannot use the grayscale colormap, or for that matter

any colormap which includes very bright colors, since such colormaps will make

data points appear too similar to the background color, and thus make them

potentially invisible.

Two-hue: Figure 5.2(c) shows a two-hue colormap. The colormap entries are

obtained by linearly interpolating between two user-selected colors, blue and

yellow in our case. The two-hue colormap can be seen as a generalization of

the grayscale colormap, where we interpolate between two colors, rather than

between black and white. If the two colors used for interpolation are perceptually

quite different (such as in our case, where they differ both in hue but also in

perceived luminance), the resulting colormap allows an easy color ordering, and

also produces a perceptually more linear result than the rainbow colormap. Also,

in case none of the two colors that define this colormap is too bright, the result

is suitable to be used for non-compact data displayed on a white background.
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However, a disadvantage of this type of colormap is that it arguably offers less

dynamic range: In general, we can distinguish between more hues (such as in

the case of the rainbow colormap) than between an equal number of mixes of

the same two hues.

The two-hue colormap in Figure 5.2(c) uses both hue and luminance dif-

ferences of its two defining colors to create a higher dynamic range. However,

imagine using this colormap on a 3D shaded surface. In such cases, the lumi-

nance perceived in the final visualization is ambiguous, as it can be due to the

luminance of the colors present in the colormap, the luminance due to the shad-

ing used for the 3D surface, or a combination of both. A simple way to correct

this issue is to use a corrected isoluminant two-hue colormap, where all entries

have the same luminance, similar to the luminance-corrected rainbow colormap

discussed earlier, such as a two-hue colormap generated using red and green as

end colors. The disadvantage of this design is that less colors can be individually

perceived, leading to challenges for goals 1, 4, and 5.

Heat map: Figure 5.2(d) shows a colormap typically known as a heat map, or

heated body colormap. The intuition behind its colors is that they represent the

color of an object heated at increasing temperature values, with black corre-

sponding to low data values, red-orange hues for intermediate data ranges, and

yellow-white hues for the high data values respectively [Borland and Taylor 07,

Moreland 09]. Compared to the rainbow colormap, the heat map uses a smaller

set of hues, but adds luminance as a way to order colors in an intuitive manner.

Compared to the two-hue colormap, the heat map uses more hues, thus allow-

ing one to discriminate between more data values. Eliminating the right end of

the colormap (thus, using yellow rather than white for the highest data value)

allows using this colormap also for non-compact domains displayed on a white

background. However, its strong dependence on luminance makes the heat map

less suitable for color coding data on 3D shaded surfaces, just as the two-hue

nonisoluminant colormaps. Together with the grayscale map, the heat map is a

popular choice for medical data visualization.

Diverging: Figures 5.2(e,f) show two final colormap examples, known under the

name of diverging, or double-ended scale, colormaps. Diverging colormaps are

constructed starting from two typically isoluminant hues, just as the isolu-

minant two-hue colormaps. However, rather than interpolating between the

end colors cmin and cmax, we now add a third color cmid for the data value

fmid = (fmin + fmax)/2 located in the middle of the considered data range

[fmin, fmax], and use two piecewise-linear interpolations between cmin and cmid
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and between cmid and cmax, respectively. Additionally, cmid is chosen so that it

has a considerably higher luminance than cmin and cmax. In Figure 5.2(e), we

used a diverging colormap with cmin = blue, cmax = red, and cmid = white. This

can be interpreted as a temperature colormap, where the average value (white) is

considered neutral, and we want to emphasize points which are “colder,” respec-

tively ’‘warmer,” than this value. In Figure 5.2(f), we used a diverging colormap

with cmin = green, cmax = red, and cmid = brightyellow. Since the maximum

luminance of this colormap is lower than that of pure white, we can use this

colormap also on non-compact data domains. Diverging colormaps effectively

consist of two two-hue colormaps for the left, respectively right, halves of the

considered data range. Diverging colormaps are good for situations where we

want to emphasize the deviation of data values from the average value fmid, and

also effectively support the task of assessing value differences (goal 3).

Zebra colormap: In some applications, we want to emphasize the variations of

the data rather than absolute data values (goal 5 of our initial task taxonomy).

This is useful when we are interested in detecting the dataset regions where data

changes the most quickly or, alternatively, stays constant. For this goal, we

could simply use one of the continuous colormaps presented in Figure 5.2 on the

magnitude of the gradient ‖∇f‖ of our scalar dataset f . However, this solution

implies all the challenges of choosing a “good” continuous colormap which we

previously outlined. Additionally, we can only tell the absolute value of our

data’s rate of change, not the direction in which that rate of change is maximal.

A different solution is to use a colormap on the scalar dataset f containing

two or more alternating colors that are perceptually very different. When the

data values change, the colors change abruptly, yielding easily detectable band-

like patterns in the visualization. Figure 5.3 illustrates this design. In the left

image, we visualize a scalar function f(x, y) = e−10(x4+y4), whose shape is quite

similar to the Gaussian shown in Figure 2.1. Instead of a height plot, we now

use a grayscale colormap that maps the function value range [0, 1] to 30 distinct

shades of gray. The result is a smooth image (see Figure 5.3(a)). Although

we can clearly distinguish low values (shown as black) from high values (shown

as light gray or white), telling how the data changes within the intermediate

data-range region is hard, since we cannot easily tell apart gradients of similar-

grayvalue shades. If we use instead a colormap that maps the same value range to

an alternating pattern of black and white colors, we obtain the zebra-like result

shown in Figure 5.3(b). Thin, dense stripes indicate regions of high variation

speed of the function, whereas the flat areas in the center and at the periphery

of the image indicate regions of slower variation. We can now also see better
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(a) (b)
0.0

1.0

0.0
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Figure 5.3. Visualizing the scalar function e−10(x4+y4) with (a) a luminance colormap
and (b) a zebra colormap. The luminance colormap shows absolute values, whereas
the zebra colormap emphasizes rapid value variations.

which are the regions where the data has similar rates of variation across our

domain.

Interpolation issues. Another important aspect of color mapping is the relation-

ship between the colormap design, scalar data variation speed, and domain sam-

pling frequency.

Figure 5.5 illustrates this by means of an example—a sphere geometry on

which a periodic sine function is visualized with a rainbow colormap. The mesh

is overlaid on top of the visualization to emphasize the sampling frequency. The

periodic band structure of the function is clearly visible in Figure 5.4(a), where

the sphere is sampled at a 64 × 64 resolution. However, the structure starts

getting noisy as we decrease the sampling resolution (Figure 5.4(b), 32 × 32

samples). If the resolution is decreased further, we obtain a completely incorrect

visualization (Figure 5.4(c)) that suggests a completely different function than

the actual one to the unprepared user.

To explain the problem, consider the color-mapping implementation: First,

color mapping (Equation 5.1) is applied at the grid vertices pi yielding one color

attribute c(si) per vertex. Here, si denotes the scalar attribute value stored at

vertex pi. Next, the surface cells are rendered as colored polygons, using the

color interpolation provided by the polygon rendering machinery. Hence, the
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(a) (b) (c)

Figure 5.4. Vertex-based color mapping. The sphere geometry is sampled with (a)
64× 64 points, (b) 32 × 32 points, and (c) 16× 16 points.

color c(p) of a resulting pixel p will be a linear combination

c(p) =
∑
i

c(si)φi(p) (5.2)

of the colors of the vertices of the polygon in which p falls. Here, φi denote

the linear interpolation functions used for the polygonal cell (see Section 3.2).

However, what we would really want to obtain at pixel p is a color mapping of

the interpolated value of our scalar values si, i.e.,

c(p) = c

(∑
i

siφi(p)

)
. (5.3)

The problem we see in Figure 5.4 is due to the fact that color mapping (i.e., the

function c) and interpolation are not commutative operations in general. For

instance, consider c as given by the rainbow colormap, and two scalar values s1
and s2 corresponding to blue, respectively red, defined at two vertices p1 and p2.

For a point situated at equal distance from p1 and p2, Equation 5.2 computes

the color c(s1)+c(s2)
2

, i.e., the average of red and blue, which is purple. This

color is incorrect—it does not even exist in our rainbow colormap. In contrast,

Equation 5.3 would compute the color c( s1+s2
2

), i.e., green. This is the desired

result, as green corresponds indeed to the average of the values s1 and s2 in our

rainbow colormap.

The vertex-based color mapping implemented by Equation 5.2 is probably

the most widespread one due to its simplicity and direct support by even low-

end graphics hardware. However, as seen, the results are suboptimal for dataset
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(a) (b) (c)

Figure 5.5. Texture-based color mapping. The sphere geometry is sampled with (a)
64× 64 points, (b) 32× 32 points, and (c) 16× 16 points.

regions where the data varies too quickly. A better solution is to implement

Equation 5.3. For this, we proceed as follows. First, we store for each vertex

pi the value si−smin

smax−smin
, i.e., our scalar values normalized in a range of [0, 1],

as a texture coordinate. Next, we render our surface cells textured with a 1D

texture containing the colormap. 1D textures work identically to the 2D textures

described in Section 2.4, with the exception that they are described by a single

texture coordinate and they are stored as a 1D image, i.e., a vector of colored

pixels.

Figure 5.5 shows the results of texture-based color mapping. As visible, these

are better, in the sense that no incorrect colors are generated: The resulting

images are a pixel-accurate rendering of the piecewise-linear reconstruction of

our given sampled signal. Indeed, the texture-based method interpolates the

scalar value s, and then applies the color mapping c separately at every rendered

pixel. In contrast, the vertex-based color mapping applies the color mapping at

the vertices only, and then interpolates the mapped colors themselves. Texture-

based color mapping produces reasonable results even for a sparsely sampled

dataset. However, this technique requires rendering texture-based polygons, an

option that may not be available on low-end graphics hardware or in situations

when we want to use the available texture for other purposes.

Color banding. Another important aspect in colormap design is the choice of

the number of colors N . Choosing a small N would inevitably lead to the

color banding effect. This is well-known to any computer user who has tried to

reduce the number of colors in a color image using image-processing programs.

Figure 5.6 demonstrates color banding on a simple scalar dataset. The scalar
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(a) 256 colors (b) 32 colors

(c) 16 colors (d) 8 colors
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Figure 5.6. Color banding caused by a small number of colors in a look-up table.

data ranges between −0.23 and 0.23. The dataset is visualized four times using

the same rainbow look-up table, each time with fewer colors in the look-up table.

As the number of different colors in the look-up table decreases, equal color bands

become visible in both the image and the color legend. Mathematically, color

banding produces artifacts identical to quantizing the scalar signal range. Indeed,

when we use, for example, just 32 colors to visualize the dataset in Figure 5.6(b),

the effect is practically the same as if we first quantized our scalar signal to 5

bits, and then visualized it via a colormap with a high number of colors.

When we visualize a continuous dataset, color banding is usually not desir-

able, as it creates discrete visual artifacts in the rendered image that do not

reflect any discreteness of the input data. As demonstrated in Figure 5.6, color

banding can be avoided by increasing the number of colors in the colormap and

ensuring there are no sharp perceptual transitions in the colormap. The more

quickly the data varies spatially, the smoother the colormap has to be to avoid

color banding. Typical scalar visualization applications would use between 64
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and 256 different colors in a colormap, the preference being for more rather than

fewer colors.

Color banding is related to a different usage of color mapping—visualizing

categorical data. Consider a scalar dataset f which, rather than taking values

in a continuous domain such as R, takes values in a discrete set of values {fi}.
When visualizing f with color mapping, two issues are important. First, we want

to show the identity of each data value, i.e., the category i implied by the data

value fi. Second, if these values imply distinct categories, we cannot interpolate

between the values fi. Categorical datasets emerge naturally in many application

areas—consider for example a geographical dataset where points are labeled with

a data value describing their type, such as roads, houses, agricultural land, forest,

mountains, and lakes. However, categorical datasets can be also created from

continuous datasets by scalar data quantization, also known as binning. For

example, the visualization in Figure 5.6(d) can be thought of having as input a

scalar dataset containing eight categories corresponding to the eight data ranges

displayed. Differences between visualizing continuous and categorical datasets

are discussed separately in Section 11.2.

When visualizing categorical datasets, if we consider the goals listed at the

beginning of Section 5.2, we are typically interested in goals 1 and 4 (and pos-

sibly goal 2 if our categories are ordered), but not goals 3 and 5. Additionally,

the number of different categories plays a crucial role in colormap design. As

such, specific colormaps for categorical datasets have been designed. An excel-

lent online resource that allows choosing a categorical colormap based on data

properties and task types is ColorBrewer [Brewer and Harrower 13].

Additional issues. Selecting an optimal colormap is further influenced by a num-

ber of additional considerations, as follows:

• Geometry: Not all colors are equally strongly perceived when displayed

on surfaces that have the same area. Perceiving a color accurately is

strongly influenced by the colors displayed in neighboring areas [More-

land 09]. Densely packed colors are not perceived separately under a cer-

tain spatial scale, but blended together by the human eye. This becomes

an issue when the areas in question are very small, such as when color

mapping a point cloud (Figure 11.32). In extreme cases, the eye will not

even be able to separate individual colors as such. Whereas this situation

is generally undesirable, a useful application of the limited power of sepa-

ration of human vision is the RGB color-mixing mechanism used by many

devices such as computer displays and TV screens. Here, a large spectrum
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of colors is generated by displaying closely packed, small-scale dots colored

in the primary red, green, and blue hues, with various intensities. A similar

system is used by the dithering processes in the printing technology.

• User group: While most users would feel comfortable with colormaps con-

taining a large variety of hues, 6 to 10 percent of all men would not be able

to correctly separate red from green hues [Stone 03]. This and other forms

of colorblindness should be taken into account when designing colormaps in

critical applications or applications intended to be used by a large public.

• Medium: Another factor in colormap usage is the medium used to present

the visualization. Computer screens (CRT or LCD), printed materials

(matte or glossy), and projectors have quite different ways of reproducing

and displaying color. It is hard to design rich colormaps, containing more

than a dozen colors, that look the same on all these devices. A very com-

mon mistake made in practice is to use hue-based colormaps, such as the

rainbow colormap, and display the resulting visualizations on luminance-

based devices, such as black-and-white printed material. A large amount of

detail immediately disappears in such cases, such as red and green colors,

which look quite different on a computer screen, becoming indistinguish-

able from a luminance point of view on a black-and-white printout.

• Contrast: Color mapping, as described in this section, generates color values

from scalar values by means of a colormap or color transfer function. A

related set of techniques involves modifying the gray values of a grayscale

image, or colors of a color image, in order to emphasize details of interest.

Although such techniques involve some common algorithmic and design

elements with color mapping, they are of a fundamentally different nature,

as they work on the colors of an existing image rather than in the process

of creating colors from scalars. We shall discuss such techniques separately

in the context of image processing (see Section 9.3.1).

Designing effective colormaps is a complex task that is as much a science as

an art. This involves knowledge of the application domain conventions, typical

data distribution, visualization goals, general perception theory, intended out-

put devices, and the user preferences. There is no universally effective colormap.

For a concrete application, the best advice is to use the typical colormaps ac-

cepted in practice for that given domain or industry. Generally, for guidelines

for designing colormaps, we refer to dedicated literature on perception in visu-

alization [Ware 04], color science [Stone 03], and the use of color in information
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visualization [Card et al. 99, Bederson and Shneiderman 03]. A good starting ref-

erence for the various problems and subtleties involved in the process of designing

colormaps for visualizing scalar data is the paper of Bergman et al. [Bergman

et al. 95], which also describes a rule-based mechanism and tool for assisting users

with selecting effective colormaps for different types of datasets. For a discussion

on the use of rainbow, diverging, heat map, and grayscale colormaps in scientific

visualization, we refer to [Borland and Taylor 07, Moreland 09]. For an extensive

discussion of issues involved in color mapping both continuous and categorical

attributes, see the book of Colin Ware on information visualization [Ware 04].

For a general discussion of color science, beyond color mapping in data visual-

ization, a good starting point is Stone’s book on digital color [Stone 03]. For

the design of colormaps that have a few (5–10) different colors, one can use the

ColorBrewer tool resource [Brewer and Harrower 13]. Among other features,

ColorBrewer can generate colormaps tuned for encoding sequential and qualita-

tive value types and optimized for different types of output, such as monochrome

or color printer, projector, laptop, and monitor.

5.3 Contouring
In the previous section, we described how 2D scalar fields can be visualized using

the simple colormap technique. We also discussed how using too few colors in

a colormap leads to undesired color-banding effects (see Figure 5.6). However,

color banding is related to fundamental and widely used visualization technique

called contouring. To understand contouring, think of the meaning of the sharp

color transitions that separate the color bands in Figure 5.7(a).

Consider, for instance, the transition between the yellow and orange bands;

that is, all points in the figure that are on the border separating these two colors.

As can be seen from the associated color legend, points in the yellow band have

scalar values s below 0.11, whereas the points in the orange band have scalar

values s above 0.11 (see also Equation (5.1)). Hence, the points located on the

color border itself have the scalar value s = 0.11. Note that, for this reasoning

to hold, we must assume that our dataset does not exhibit a sudden “jump”

localized exactly on the extent of the border itself. This holds for all datasets

that represent the sampling of a continuous signal.

Points located on such a color border, drawn in black in Figure 5.7(a), are

called a contour line, or isoline. Formally, a contour line C is defined as all

points p in a dataset D that have the same scalar value, or isovalue s(p) = x, or

C(x) = {p ∈ D|s(p) = x}. (5.4)
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s > 0.11 s = 0.11

contour
value

(a) one contour (s=0.11)

value value

s < 0.11

(b) 7 contours (s ∈ [-0.165,0.165])

Figure 5.7. Relationship between color banding and contouring.

The name “isoline” also reflects this definition, as in Greek, isos means “the

same” or “equal.” The name “contour line” stems from one of the first appli-

cations of this technique in cartography. Contour lines are drawn on land maps

to explicitly indicate all points that have the same altitude. Note that Equa-

tion (5.4) can be applied also in higher dimensions than two. For 3D datasets,

contours are 2D surfaces called isosurfaces. Several examples of isosurfaces are

provided later in this section.

In Figure 5.7(b), we show the same scalar dataset as in Figure 5.7(a), visu-

alized with the same rainbow colormap. However, this time the colormap has

256 entries, instead of only eight as in Figure 5.7(a). This is visible in the fact

that the color legend itself exhibits a smoother hue variation as compared to

the one in Figure 5.7(a). The right image is smoother, which is desirable, as it

helps us distinguish more detail than in the left image. Yet, this image does not

help us further if we are interested in easily and quickly distinguishing which are

the points that have a specific scalar value of interest, e.g., s = 0.11. This task

was easily done on the left image, because the colormap used there exhibited a

clear hue transition from dark blue to cyan located precisely at this value. We

can actually combine the advantages of contours and color mapping by simply

drawing contours for all values of interest on top of a color-mapped image that

uses a rich colormap. The result is shown in Figure 5.7(b), where we have drawn

seven contours for scalar values equally spaced in [−0.165, 0.165].

Besides indicating points where the data has specific values, contours can

also tell us something about the data variation itself. Assume that we have a set
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of contours for scalar values that are equally spaced in the scalar domain, such

as in Figure 5.7(b). Clearly, the contours themselves are not equally spaced in

the spatial domain. Areas where contours are closer to each other, such as in

the center of the image, indicate higher variations of the scalar data. Indeed, the

scalar distance between consecutive contours (which is constant) divided by the

spatial distance between the same contours (which is not constant) is exactly

the derivative of the scalar signal.

Contour properties. Contours have a number of important properties. Consider

Figure 5.8, which shows a two-variable function z = f(x, y) with the familiar

elevation plot technique. Over the function graph, three isolines are drawn,

for three different values, v0 (blue), v1 (red), and v2 (yellow). The isolines are

translated on the vertical (z) axis above the xy plane with their corresponding

values v, instead of being drawn in the dataset domain (xy plane) as in Figure 5.7.

In this situation, the isolines correspond with the intersection of the function

graph with horizontal planes z = vi, i ∈ {0, 1, 2}.
Several properties of isolines are noticeable in Figure 5.8. First, isolines

can be either closed curves, such as the yellow isoline, or open curves, such

as the blue and red isolines. Isolines never stop inside the dataset itself—they

either close upon themselves, such as the yellow one, or stop when reaching

the dataset border, such as the blue and red ones. Second, an isoline never

isoline v0

isoline v1

isoline v0
isoline v2

Figure 5.8. Isoline properties.
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Figure 5.9. The gradient of a scalar field is perpendicular on the field’s contours.

intersects (crosses) itself, nor does it intersect an isoline for another scalar value.

Hence, isolines for different values are “nested” inside each other, as we can see

in Figure 5.7. These properties always hold for a (piecewise) continuous dataset

as defined in Section 3.1. In other words, the scalar data does not have “jumps”

between points that are close in the dataset domain. Finally, consider Figure 5.9,

which shows the same scalar function and its isolines as in Figure 5.8, this time

viewed from above along the z-axis. The vector field displayed in the image

shows the gradient of the scalar function. This figure demonstrates an important

property of the contours, namely that they are perpendicular to the gradient

of the contoured function. This property is not surprising: The gradient of a

function is the direction of the function’s maximal variation, whereas contours

are points of equal function value, so the tangent to a contour is the direction

of the function’s minimal (zero) variation. Another example showing how the

gradient of a scalar field is perpendicular to its isolines is given in Section 9.4.7.

Computing contours. How can we compute contours, given a discrete, sampled

dataset D? Since this dataset is defined as a set of cells carrying node or cell

scalar data, plus additional basis functions (Chapter 2), it is natural to try to

construct contours in the same discrete cell space. In the actual construction

technique, presented next, we shall use an important property of isolines. We
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Figure 5.10. Constructing the isoline for the scalar value v = 0.48. The numbers in the
figure indicate scalar values at the grid vertices.

have seen in Section 3.1 that the reconstruction of a sampled dataset with piece-

wise linear basis functions is a piecewise linear function itself. The graph of this

function is piecewise linear, too. Being the intersection of the function graph

with a horizontal plane, the isoline of such a dataset is, therefore, piecewise

linear. Since an isoline has topological dimension 1, this is a polyline.

The basic algorithm for constructing an isoline is quite simple. The principle

is illustrated by the simple 5 × 5 cell grid in Figure 5.10, where we construct the

isoline for the value v = 0.48. For every cell c of the dataset, we test whether the

isoline intersects the respective cell, as follows. For every edge e = (pi, pj) of the

cell c, we test whether the isoline value v is between the scalar vertex attributes

vi and vj corresponding to the edge end points pi and pj. If the test succeeds,

the isoline intersects e at a point

q =
pi(vj − v) + pj(v − vi)

vj − vi
. (5.5)

This result is obtained by expressing q as a linear interpolation of pi and pj
with the same weights used to express v as a linear interpolation of vi and vj .

We repeat the previous procedure for all edges of our current cell and finally

obtain a set of intersection points S = {qi} of the isoline with the cell. For
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Figure 5.11. Contour ambiguity for a quad cell (drawn in red). The isovalue is equal to
0.37. Numbers in the figures indicate the scalar values at the cell vertices.

the sample dataset in Figure 5.10, these points are drawn in purple. The set S

contains at least two points, since an isoline cannot enter a cell without exiting

it, as discussed previously, and at most as many points as cell edges, since the

dataset is linearly interpolated along every cell edge, so there can be at most

one intersection point along every edge. Next, we must connect these points

together to obtain the actual isoline. Since we know that our isoline is piecewise

linear over a cell, we can use line segments to connect these points. These lines

are drawn in white in Figure 5.10. If S contains exactly two points, there is no

problem. However, S can contain more points, as illustrated in Figure 5.11 for

the quad cell marked in red, which has four intersection points.

In this case, exactly two possibilities exist for connecting the four intersection

points, shown in the left and right images in Figure 5.11. Note that the other

connection possibilities are invalid, as they would lead to intersecting contours.

The first possibility (see Figure 5.11(a)) creates two separate contour loops,

whereas the second possibility (see Figure 5.11(b)) creates a single contour loop.

In practice, an implementation may choose either of the connection possibilities

separately for each cell. If one has additional knowledge on the contour topology,

e.g., that it must have a single connected component, this information can be

used to discriminate between the two connection possibilities. When we use a

triangular mesh, such ambiguities do not exist. This may suggest that we could
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eliminate ambiguities from quad meshes by splitting all quad cells into two trian-

gles each. However, the ambiguity is now shifted to the quad-splitting process.

For example, the isoline configuration inside the marked cell in Figure 5.11(a)

would be produced when using two triangles obtained by splitting the quad cell

diagonally from the lower-left to the upper-right vertex. Similarly, the configura-

tion in Figure 5.11(a) would be produced when using two triangles obtained by

splitting the quad cell diagonally from the upper-left to the lower-right vertex.

It is now clear that contouring needs to have at least piecewise linear, C0

datasets as input. This means that we cannot directly contour image data, for

example, which is actually a uniform grid with piecewise constant interpolation,

and thus represents a discontinuous function. Resampling image datasets to

piecewise linear datasets can be easily done, as explained in Section 3.9.1. How-

ever, note that this has the hidden effect of changing the continuity assumptions

on the dataset from piecewise constant to piecewise linear. While this should not

pose problems in many cases, there are situations when such changes in assump-

tions can lead to highly incorrect visualizations. An example of such a situation

is discussed in Section 9.4.7.

A final issue to be considered is the complexity of computing contours. If

we make no specific assumptions about a dataset then a contour for a given

isovalue can pass through every single cell of that dataset. For each cell, we

must test whether the isovalue intersects every cell edge and, if so, compute

the exact intersection location using Equation (5.5). Hence, it is important to

reduce the number of operations done per cell. The most popular method that

accomplishes this is the marching squares method, which works on 2D datasets

with quad cells, and its marching cubes variant, which works on 3D datasets with

hexahedral cells [Lorensen and Cline 87]. These methods are discussed next.

5.3.1 Marching Squares

The marching squares method begins by determining the topological state of

the current cell with respect to the isovalue. A cell’s topological state describes

which of the cell edges are intersected by the contour and how these intersection

points are to be connected with lines to yield the isoline fragments. To simplify

the description, we shall say that a cell vertex pi is inside the isoline if its scalar

value vi is smaller than the isovalue v, and outside the isoline if vi is greater

than v. The situation vi = v can be subsumed by either the inside or outside

case. A quad cell has, thus, 24 = 16 different topological states. The state of

a quad cell can be represented by a 4-bit integer index, where each bit stores

the inside/outside state of a vertex. This integer can be used to index a case
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Figure 5.12. Topological states of a quad cell (marching squares algorithm). Red
indicates “inside” vertices. Bold indices mark ambiguous cases.

table (see Figure 5.12) that holds optimized code for every topological state.

Optimizations include performing the edge-isovalue intersection computations

(see Equation (5.5)) only on those edges that are known to be intersected for a

specific topological state. The states 0101 and 1010 in the case table represent

the ambiguous situations described previously for the example in Figure 5.11.

That is, the method implementation can choose whether to create the full lines

or the dashed ones.

Putting it all together, we obtain the marching squares implementation shown

in Listing 5.2.

The marching squares algorithm constructs independent line segments for

each cell, which are stored in an unstructured dataset type, given that isolines

have no regular structure with respect to the grid they are computed on. An

useful postprocessing step is to merge the coincident end points of line segments

originating from neighbor grid cells that share an edge. Besides decreasing the

f o r each c e l l ci o f the dataset
{

i n t index = 0 ;
f o r ( each ver tex vj o f ci )

s t o r e the i n s i d e / ou t s i d e s ta t e o f vj i n b i t j o f index ;
s e l e c t the optimized code from the case tab l e us ing index ;
f o r ( a l l c e l l edges ej o f the s e l e c t e d case )

i n t e r s e c t ej with i s ova l u e v us ing Equation ˜ ( 5 . 3 ) ;
cons t ruct l i n e segments from these i n t e r s e c t i o n s ;

}
Listing 5.2. Marching squares pseudocode.
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Figure 5.13. Topological states of a hex cell (marching cubes algorithm). “Inside”
vertices are marked in red. Bold indices mark ambiguous cases.

isoline dataset size, this also creates a dataset on which operations such as com-

puting vertex data from cell data via averaging (see Section 3.9.1) is possible.

5.3.2 Marching Cubes

The marching cubes algorithm operates similarly to marching squares, but ac-

cepts 3D instead of 2D scalar datasets and generates 2D isosurfaces instead of

1D isolines. Marching cubes begins just like marching squares does. Since a

hex cell has eight vertices, marching cubes would need to treat 28 = 256 differ-

ent topological cases. In practice, this number is reduced to only 15 by using

symmetry considerations.2 The 15 different topological states used by marching

cubes are sketched in Figure 5.13.

In contrast to marching squares, there are more ambiguous cases for marching

cubes, i.e., cases when the intersection points of a cell can be connected in several

ways with planar components. The six ambiguous cases for marching cubes are

marked by bold indices in Figure 5.13. The ambiguous cases for marching cubes

are cells whose faces are themselves ambiguous cases for marching squares, i.e.,

have two diagonal vertices “inside” and the other two “outside.” There are

several variants in which we can construct contours in these cells, as illustrated

by Figure 5.14.

2The same reduction could be done for the 16 topological cases of marching squares. How-
ever, 15 is already a small number, so there is little need to further reduce the size of the case
table.
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00100001

01010101 00011110

0101001001000011

10100101

Figure 5.14. Ambiguous cases for marching cubes. Each case has two contouring vari-
ants.

Unfortunately, in an ambiguous case, we cannot select the variant to use

independently for every cell, as we did for marching squares. If we did so, there

would be the risk that the constructed isosurface could exhibit artificial cracks.

There are several ways to prevent this. First, we can replace every hex cell

with five or six tetrahedra and use a marching tetrahedra algorithm instead of

marching cubes. Marching tetrahedra has no ambiguous cases, just as marching

triangles. Second, we can still use marching cubes with a small extension, given

the following observation: An ambiguous hex cell has, as already explained, (at

least) an ambiguous quad face. Hence, its hex cell neighbor that shares that

ambiguous face is also ambiguous. We can thus solve the crack problem by

taking care that the variants picked for an ambiguous cell and its ambiguous cell

neighbors solve the shared face ambiguity in the same way.

As it is visible from Figures 5.13 and 5.14, marching cubes generates a set

of polygons for each contoured cell, which includes triangles, quads, pentagons,

and hexagons. For simplicity, most implementations would triangulate these

polygons on the fly, or even directly generate the triangles from the various

cases, and save the resulting 3D isosurface as an unstructured dataset. Just as

for marching squares, a postprocessing pass is needed to merge the coincident

end points of triangles originating from neighbor grid cells that share a face.

An additional step needed for marching cubes is the computation of isosurface

normals. These are needed for smooth shading. Normals can be computed by

normal averaging, as explained in Section 2.3. Alternatively, since isosurfaces

are orthogonal to the scalar data gradient at each point (see Figure 5.9 and

related explanations), normals can be directly computed as being the normalized

gradients of the scalar data.

Interpreting the results of marching cubes must be done with care. Fig-

ure 5.15 shows an isosurface of an MRI scan uniform dataset of 1283 voxels for
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(a) (b)

Figure 5.15. Ringing artifacts on isosurface. (a) Overview.
(b) Detail mesh.

Figure 5.16. Two nested isosurfaces of
a tooth scan dataset.

an isovalue corresponding to the skin tissue. From the given viewpoint, the iso-

surface exhibits a “wavy” pattern that is clearly visible in the area marked in the

image. This pattern is not an actual feature of the data but is caused by subsam-

pling of the original signal on a low-resolution uniform grid. Figure 5.15(b) shows

a zoomed-in view with the isosurface grid overlaid on top of the shaded artifact

area. The relation between the regular structure of the underlying 3D dataset

and the unstructured triangle mesh of the isosurface is visible. Users should be

familiar with their specific application data to avoid confusing the presence of

such artifacts with actual features in the data. This observation applies also to

other artifacts, such as holes in the surface or small disconnected components.

As a general rule, most isosurface details that are under or around the size of

the resolution of the isosurfaced dataset can be either actual data or artifacts,

and should be interpreted with great care.

We can draw more than a single isosurface of the same dataset in one visu-

alization. Figure 5.16 shows two isosurfaces of a tooth scan dataset. The blue

opaque isosurface corresponds to a high isovalue, which denotes a hard material

such as the enamel present on the tooth upper surface. The beige isosurface cor-

responds to a lower isovalue, which denotes the softer dentine material present

inside the tooth. By making the latter isosurface semitransparent, we can see

through it and discover the first opaque isosurface, and also see its internal sur-

face, which corresponds to the tooth nerve chamber. The process of rendering

several nested semitransparent isosurfaces that correspond to a discrete sequence

of isovalues can be generalized to the continuous case, as we shall see with the

volume rendering technique presented in Chapter 10.
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(a) 3D dataset

(b) slice plane (c) isoline

(d) isosurface (e) slice plane

slicing

contouring

contouring

slicing

Figure 5.17. Relationships between isosurfaces, isolines, and slicing.

Isosurfaces and isolines are strongly related, as the following example shows.

Consider the same 3D dataset containing a human head MRI scan as used in

Figure 8.2 (see Section 8.1.2). Figure 5.17(a) illustrates such a 3D dataset. Let

us construct an isosurface of this dataset for the isovalue that corresponds to the

skin tissue (see Figure 5.17(d)). Consider now a 2D slice from the same dataset

(Figure 5.17(b)) on which we construct an isoline for the skin isovalue (drawn

in red in Figure 5.17(c)). Finally, let us slice the isosurface itself with the same

slicing plane we used before. The result is shown in green in Figure 5.17(e). If

we compare Figures 5.17(c) and 5.17(e), we see that the isoline is identical to the

intersection of the slice plane and the 3D isosurface. In other words, we can say

that the slicing and contouring operations are commutative. This observation

is important, as it suggests that 3D isosurfaces (and other similar surfaces) can

be constructed by assembling a set of 2D contours located on a set of parallel

slice planes. If the set is dense, i.e., the slice planes are close to each other, and

the dataset does not exhibit too-sharp variations, we can connect points on an

isoline with the closest points on the isolines from the previous and next slice and

construct the 3D isosurface. This technique can be useful in several situations,

for example when we do not have the original 3D volume to isosurface, but have

a set of 2D contours on consecutive (near) parallel slices.

Marching algorithm variations. The marching squares and marching cubes al-

gorithms have many variations and come in many flavors. In general, these
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variations try to address several requirements, such as genericity in terms of in-

put dataset type, speed of execution, and quality of obtained contours. There

exist similar algorithms to marching squares and marching cubes for all cell

types, such as lines, triangles, and tetrahedra. These algorithms can treat all

grid types, e.g., structured and unstructured, including grids with mixed cell

types, as long as all encountered cell types are supported. All algorithm variants

produce unstructured grids. If the input dataset has more vertex attributes than

just the scalars used to contour, it is possible to interpolate all vertex attributes

at the locations of the contour vertices and save them into the output contour

dataset.

Isosurfaces can be also generated and rendered using point-based techniques.

Point-based techniques exploit the observation that 3D surfaces can be rendered

using large numbers of (shaded) point primitives. When the point density is

high enough, there are no gaps in the rendering and the surface looks realistic.

As we have seen, isosurfaces produced by marching cubes from uniform datasets

have a quasiconstant point density, which makes them well suited for point-based

rendering. On several graphics hardware configurations, point primitives can be

considerably faster, and demand less memory, than polygonal ones. Moreover,

rendering a dense set of points, also called a point cloud, eliminates the often

costly stage of assembling polygonal primitives into a mesh, eliminating dupli-

cate points, and computing vertex normals. Point-based techniques are detailed

further in Section 8.3.2 in the context of scattered points interpolation.

Dividing cubes algorithm. A classical algorithm for generating and rendering

isosurfaces using point clouds is dividing cubes [Cline et al. 88]. Dividing cubes

works for 3D uniform and rectilinear grids, i.e., grids that have box-shaped cells

(see Section 3.5). Similar to marching cubes, dividing cubes iterates over all

dataset cells and detects those intersected by the given isosurface by comparing

the isovalue with the cell vertex values. For dividing cubes, however, it suffices

to detect whether a cell has at least one inside and one outside vertex, which is

cheaper than the full bit-coding done by marching cubes. The cells that pass the

intersection test are next recursively subdivided into a 2×2×2 lattice of smaller

cells. The cell-isosurface intersection test and cell subdivision are recursively

repeated until the cell size falls below a minimal size. The algorithm is similar to

the one used when building octrees or similar spatial subdivision structures. For

all resulting cells, the dividing cubes algorithm draws a shaded point primitive

located at every cell center. In sampling terms, we can say that dividing cubes

approximates the isosurface using constant basis functions, whereas marching

cubes uses linear basis functions (see Chapter 3).
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For dividing cubes, the ideal minimal cell size is that of a screen pixel, in

which case every point primitive is of pixel size and there are no visual gaps

or other rendering artifacts in the rendered isosurface. However, this may be

costly, so the division can be stopped earlier, yielding larger cells. In this case,

larger point primitives can be used, such as splats (see Section 8.3.2), in order to

obtain a gap-free isosurface rendering. To prevent visual gaps when zooming in

an isosurface rendered with dividing cubes, we can either dynamically recompute

the isosurface, i.e., generate more point primitives, a slower but more accurate

option, or simply increase the point primitive size, which is fast but can create

visual artifacts when viewing close-ups.

5.4 Height Plots
Height plots, also called elevation or carpet plots, were introduced by our first

visualization example in Section 2.1. Given a two-dimensional surface Ds ∈
D, part of a scalar dataset D, height plots can be described by the mapping

operation

m : Ds → D, m(x) = x+ s(x)n(x), ∀x ∈ Ds, (5.6)

where s(x) is the scalar value of D at the point x and n(x) is the normal to the

surface Ds at x. In other words, the height-plot mapping operation “warps” a

given surface Ds included in the dataset along the surface normal, with a factor

proportional to the scalar values.

In their most common variant, height plots warp a planar surface Ds. This

type of height plot has been demonstrated several times in this book, starting

with Chapter 2. However, we can produce height plots starting from different

basis surfaces Ds, such as the torus shown in Figure 5.18. The values of the

scalar dataset on the torus surface are shown with a blue-to-red colormap in

(a) (b)

Figure 5.18. (a) Non-planar surface. (b) Height plot over this surface.
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a b

Figure 5.19. (a) Grayscale color mapping of scalar dataset. (b) Height plot of the same
dataset, emphasizing fine-grained data variations.

Figure 5.18(a). Figure 5.18(b) shows the height plot of these scalar values, done

by warping the torus surface with the scalar values along the surface normal.

In this image, both the height and the color encode the scalar value—in other

words, the bumps are red, whereas the valleys are blue. The two visual cues

strengthen each other to convey the scalar value information. If desired, one can

encode two different scalar values with a height plot, one into the plot’s height

and the other into the plot’s color. This scenario is detailed next in Section 5.4.1.

Figure 5.19 shows a different use-case for height plots. The left image shows

a 2D scalar plot of a brain CT slice, displayed with a grayscale colormap. The

image is similar to Figure 5.2(a). Here, scalar values encode tissue density, with

white corresponding to the hardest structures (bone) and black corresponding to

air. Since a linear scalar-to-grayscale colormap was used here, high-contrast bor-

ders between regions of different densities are easily seen. Also, large differences

of absolute data values are easily seen—we can, for instance, locate the hardest

and softest tissues within the given scan by looking for the brightest, respec-

tively darkest, areas in the image. However, small-scale data variations are not

easily visible, since the dynamic range of a grayscale colormap on a typical com-

puter screen has only 256 different values (8 bits of luminance, see Section 3.6.3).

Figure 5.19(b) shows the same dataset, this time displayed using a height plot,

visualized from above, and with a directional light shining from a slightly oblique

direction. By tuning the material specular and diffuse properties of the rendered

3D plot surface, we can now emphasize small-scale data variations much better.

In contrast to Figure 5.19(a), absolute data values are now not visible. However,

we now can much better discern local, relatively small-scale, data variations,
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which map to luminance variations in the plot. Since shading differences do not

depend on absolute, but relative data variations, low-value regions do not suffer

from being obscured (dark), as in the grayscale plot.

Height plots are a particular case of displacement , or warped, plots. Displace-

ment plots are used to visualize vector datasets and are detailed in Section 6.4.

5.4.1 Enridged Plots

The height plots, color mapping, and contouring techniques, introduced in the

previous sections, both address the task of displaying scalar values in different

ways, and have their own strengths and limitations:

• Height plots are easy to learn, are intuitive to understand, generate con-

tinuous images, and show the local gradient of the data in terms of actual

slope or shading of the plot. However, quantitative information can be

hard to extract from such plots—in a complex height plot, it is not easy to

tell which peak is the highest. Also, 3D occlusion effects can occur. Chang-

ing the viewing parameters can alleviate these, but this requires additional

user interaction.

• Color mapping share the advantages of height plots and do not suffer from

3D occlusion problems. However, making quantitative judgments based on

color data can be hard, and requires carefully designed colormaps, which

may be application or even dataset dependent.

• Contour plots are effective in communicating precise quantitative values.

However, such plots are less intuitive to use. Also, they do not create a

dense, continuous, image—information is not shown at all points of the

input dataset.

Combining height plots, contour plots, and color mapping alleviates some,

but not all, of the problems of each plot type. Additionally, combined plots mix

several graphical metaphors (lines, shading, colors, 3D rendering) in a single

image. This means that we cannot use these metaphors for displaying other

information in the same image.

An alternative solution is proposed by enridged contour maps [van Wijk and

Telea 01]. The basic idea is simple: Consider a scalar dataset given by a function

f : D → R, and its height plot given by the mapping z(x, y) = sf(x, y), for all

points (x, y) ∈ D. Here, s > 0 is the plot’s scaling factor. Figure 5.20(a) shows

an example, where we view the height plot from above, looking along the −z-axis,
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a b

c d

Figure 5.20. (a) Height plot. (b–d) Enridged height-plot variations for the same
dataset.

rendered with standard Gouraud shading. Next, instead of the linear mapping

z = sf , we use a non-linear mapping given by

z(x, y) = sf(x, y) + sh g

(
f(x, y) mod h

h

)
(5.7)

where g(u) = au(1−u) is a parabolic function. The resulting enridged plot for a

value of a = 0.6 is shown in Figure 5.20(b). Intuitively, the effect of Equation 5.7

is to add parabolic bumps of height a to consecutive intervals in the range of

f of size h. The parameter a ∈ [0, 1] sets the strength of the bump effect.

The parameter h controls how “thick” the resulting bands are, and is similar in

function to the distance between consecutive contours in isoline plots.

Two observations can be made over Figure 5.20(b). First, enridged plots

combine the appearance of contour plots and height plots. Indeed, the sharp

shading transitions, or ridges, occurring at points where f is a multiple of h are

visually salient and have the same effect as contours. This is explained by the

fact that z, thus its normal too (which is next used for shading) is first-order

discontinuous at these points. Also, the function z in Equation 5.7 is continuous

over D, and is also displayed at each point of the domain D, creating a dense
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highest rainfall, low-mild temperature

highest rainfall, mild temperature

(a) (b)

Figure 5.21. Average rainfall and temperature over Europe for January (a) and July
(b), visualized using enridged plots.

visualization similar to height plots. Second, and more interestingly, the nested

cushion-like shapes that emerge in this type of plot convey a sensation of height

which is much stronger than in classical height plots (Figure 5.20(a)). This

enables us, for example, to easily visually select plot regions which belong to the

same band, and thus have the same scalar value (modulo h).

Enridged plots can be also extended to use a hierarchy of contour levels,

by using two instances of the second right-hand-side term in Equation 5.7, for

two different parameter-pairs (h1, a1) and (h2, a2). Figure 5.20(c) illustrates

this effect. The second parameter-pair (h2, a2) obeys the constraints a2 < a1
and h1 = kh2 (with k being a positive integer). Intuitively, (h1, a1) show large

intervals of the visualized scalar function f , and visually generates what we call

major ridges. In contrast, (h2, a2) model denser contours in the range of f ,

which are depicted by visually subtler transitions, which we call minor ridges.

In Figure 5.20(c), we used a1 = 0.5 and a2 = 0.25, and k = 5, i.e., 5 minor

ridges between every two consecutive major ridges. The overall effect is akin

to a ruler laid out over the range of f : Major ridges correspond to large and

saliently rendered gradations (e.g., centimeters) and minor ridges correspond to

smaller and less saliently rendered gradations (e.g., millimeters).

Enridged plots can be further tuned to emphasize the nesting relationship

between different regions of the scalar domain D, to help users see which do-

main regions have values larger than other regions. For this, we simply replace

the symmetric parabolic profile g(u) = u(1 − u) by an asymmetric one, which

increases sharply close to u = 0 and is relatively flat close to u = 1. To en-

sure continuity of the height z delivered by Equation 5.7, we keep the constraint

g(0) = g(1) = 0. Such an asymmetric profile can be obtained by g(u) = u(1−u)n
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for integer n > 2 values. Figure 5.20(d) shows this effect. Compared to the pre-

vious images in the same figure, we now get a much stronger sense of the nesting

of regions having similar scalar values (modulo h). The image resembles the

structure of a Venn-Euler diagram. As we shall see later in Chapter 11, these

cushion-like nested structures constructed in image space can be useful for visu-

alizing data hierarchies in different contexts, beyond scalar fields.

Figure 5.21 demonstrates the use of enridged plots, with two hierarchy levels,

for the visualization of multivariate scalar data. Here, we show the average

rainfall and temperature over Europe for two year moments (January and July),

averaged over the period 1960–1990, using enridged plots and color mapping,

respectively.3 As visible, color mapping combines quite well with the shading of

the enridged plots, since we use here a hue (blue-to-red), constant-luminance,

colormap for the former, and luminance (shading) for the latter. The visual

nesting effect of the enridged plots let us easily find the highest-rainfall regions

as the “bubbles” which stand out in the images. For January, we see that this

happens over southwest Scandinavia, in an area of low-to-mild temperatures for

that year period. For July, the rainfall bubble occurs across the Alps, in a region

of mild temperatures. We also see that the coldest regions in January occur over

Russia, in areas with lowest rainfall, and the hottest regions in July occur over

the Mediterranean, also in lowest-rainfall zones.

5.5 Conclusion
In this chapter, we have presented a number of fundamental methods for visu-

alizing scalar data: color mapping, contouring, slicing, and height plots. Color

mapping assigns a color as a function of the scalar value at each point of a given

domain. Contouring displays all points within a given two- or three-dimensional

domain that have a given scalar value. Height plots deform the scalar dataset

domain in a given direction as a function of the scalar data. These techniques

work on 1D, 2D, and 3D datasets of arbitrary topology. The main advantages

of these techniques is that they produce intuitive results, easily understood by

the vast majority of users, and they are simple to implement. However, such

techniques have also a number of restrictions.

In their standard form, color mapping, contouring, and height plots take as

input a one- or two-dimensional scalar dataset. This may be restrictive, for

example, when we want to visualize a 3D scalar dataset. Additional techniques

such as slicing can be used to extract a lower-dimensional subset, such as a 2D

3Data obtained from the IRI/LDEO Climate Data Library (www.ldeo.columbia.edu).
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slice from a 3D volume, and display it using the visualization methods presented

in this chapter. Slicing techniques are further elaborated in Chapter 8. In some

other cases, however, we want to visualize the scalar values of all, not just a few,

of the data points of a 3D dataset. Volume-rendering techniques, presented in

Chapter 10, are an answer to this demand.

Besides these fundamental techniques, many different scalar visualization

methods exist. For example, specific methods exist for the visualization of

scalar data defined over images and volumes, i.e., two-dimensional and three-

dimensional uniform grids with scalar attributes, respectively. These methods

are discussed further in more detail in Chapter 9 (image visualization) and Chap-

ter 10 (volume visualization).



Chapter 6

Vector Visualization

VECTOR data is as frequently encountered, and as important, as scalar data.

Strictly put, a vector is a tuple of n scalar components v = (v1, . . . , vn), vi ∈
R. An n-dimensional vector describes, for example, a position, direction, rate of

change, or force in R
n. However, the majority of visualization applications deal

with data that describes physical phenomena in two- or three-dimensional space.

As a consequence, most visualization software defines all vectors to have three

components. 2D vectors are modeled as 3D vectors with the third (z) component

equal to null. Although one could provide separate implementation-level support

for 2D vectors, this would massively complicate the structure of visualization

software, lead to code replication, and ultimately reduce performance.

Recalling from Section 3.6, vector fields are functions f : D → R
3, where D is

usually a subset of R2 or R3. Vector datasets are samplings of vector fields over

discrete spatial domains. In this chapter, we shall discuss a number of popular

visualization methods for vector datasets: vector glyphs, vector color coding,

displacement plots, stream objects, texture-based vector visualization, and the

simplified representation of vector fields.

A very important application domain for vector visualization is computational

fluid dynamics (CFD). CFD simulations are able to predict the time-dependent

behavior of compressible 3D fluid flows consisting of several potentially interact-

ing substances, or species, having different densities and pressures, over complex

spatial geometries. The solution of a CFD simulation consists of several datasets,

each for a different time step. For each time step, several attributes are com-

puted and stored into the solution dataset, such as velocity, pressure, density,

flow divergence, and vorticity. Since divergence and vorticity are fundamental

183
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concepts in understanding the structure of vector fields and are used by many

visualization methods for vector data, we shall detail these notions first.

We begin our discussion by first describing a number of fundamental mathe-

matical operators that are used to analyze vector fields (Section 6.1). Next, we

present vector glyphs, one of the simplest and most popular techniques used to

visualize such fields (Section 6.2). The use of scalar visualization techniques to

depict vector fields is discussed in Section 6.3. We then introduce the displace-

ment plot technique for visualizing vector data (Section 6.4). Section 6.5 presents

stream objects, which use integral techniques to construct paths in vector fields.

Section 6.6 discusses the use of textures for visualizing vector fields. Section 6.7

discusses a number of strategies for simplified representation of vector datasets.

Section 6.8 presents a number of illustrative visualization techniques for vector

fields, which offer an alternative mechanism for simplified representation to the

techniques discussed in Section 6.7. Finally, Section 6.9 concludes this chapter.

6.1 Divergence and Vorticity

Divergence and vorticity are important quantities for vector field visualization,

but also for the visualization and processing of other types of datasets, such as

meshes, images, and scalar and tensor fields.

Divergence. Given a vector field v : R3 → R
3, the divergence of v = (vx, vy, vz)

1

is the scalar quantity

div v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

. (6.1)

Intuitively, if v is a flow field that transports mass, div v characterizes the

increase or loss of mass at a given point p in the vector field in unit time.

• A positive divergence at p denotes that mass would spread from p outward.

Positive divergence points are called sources (see Figure 6.1(b)).

• A negative divergence at p denotes that mass gets sucked into p. Negative

divergence points are called sinks (see Figure 6.1(c)).

• A zero divergence at p denotes that mass is transported without getting

spread or sucked, i.e., without compression or expansion.

1The divergence of a vector field v is also denoted as ∇ · v.
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Figure 6.1. Divergence and curl in 2D. (a) Divergence construction. (b) Source point.
(c) Sink point. (d) Rotor construction. (e) High-vorticity field.

An equivalent definition of the divergence of v at a point p is

div v(p) = lim
Γ→p

1

|Γ|

∫
Γ

(v · nΓ)ds. (6.2)

Here, Γ is a closed hypersurface (a curve for 2D vector fields and a surface for 3D

vector fields) around the current point p, |Γ| is the area (2D) or volume (3D) of

the space enclosed by Γ, and nΓ is the outward normal of Γ (see Figure 6.1(a)).

The integral in Equation (6.2) computes the flux that the vector field transports

through the imaginary boundary Γ. The limit Γ → p describes a curve that

shrinks around the current point p until it becomes infinitesimally short.

Figure 6.2(a) shows the divergence of a 2D flow field using a blue-to-red col-

ormap. The vector field is visualized with arrow glyphs for illustration purposes.

Red areas indicate high positive divergence, or sources. Two such sources are

clearly visible. Blue areas indicate high negative divergence, or sinks. Within the

dark blue area, two pronounced sinks are visible. If we correlate the divergence

and vector glyph visualizations, we get the image of a flow field that emerges

from the sources and ends up in the sinks.

Vorticity. Given a vector field v : R3 → R
3, the vorticity of v, also called the

curl or rotor of v2, is the vector quantity

rot v =

(
∂vz
∂y

− ∂vy
∂z

,
∂vx
∂z

− ∂vz
∂x

,
∂vy
∂x

− ∂vx
∂y

)
. (6.3)

The vorticity rot v of v is a vector field that is locally perpendicular to the plane

of rotation of v and whose magnitude expresses the speed of angular rotation of

v around rot v. Hence, the vorticity vector characterizes the speed and direction

2The curl of a vector field v is also denoted as ∇× v.
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of rotation of a given vector field at every point. In some textbooks, the rotor is

also denoted as curl v.

An equivalent definition of the vorticity of v at a point p is given using line

integrals. If we take any plane Π passing through p, and n is the normal to Π,

and consider a closed curve Γ ⊂ Π around p, then the projection of rot v on n

is given by

(rot v(p)) · n = lim
Γ→p

1

|Γ|

∫
Γ

v · ds. (6.4)

where ds is the infinitesimal oriented displacement on Γ (see also Figure 6.1(d)).

Vorticity signals the presence of vortices in vector fields. An informal defini-

tion of a vortex is a region where the vector field locally circles around a point

called the vortex center. High-vorticity areas (such as in Figure 6.1(e)) indicate

the presence of vortices. High vorticity and high divergence are typically comple-

mentary. For example, the divergence of the high-vorticity field in Figure 6.1(e)

is zero and the vorticity of the high-divergence fields in Figures 6.1(b) and (c)

is also zero. However, this is not always the case: For vector fields that spiral

around a point, i.e., quickly rotate around the point while being in the same time

converging into, or diverging out from, that point, both divergence and vorticity

can be high. Additionally, when combining divergence and curl metrics in the

construction of a visualization, it is useful to recall that div rot v = 0 for any

vector field v.

Figure 6.2(b) shows the absolute value of the vorticity of a velocity field from

a magnetohydrodynamic (MHD) simulation [Brandenburg 03], using a blue-to-

red colormap. The field itself is visualized with arrow-capped stream tubes,

a technique detailed in Section 6.5. Blue areas indicate low-vorticity, laminar

regions. Red areas indicate high-vorticity regions. We can see two types of such

regions. Two small circular red spots indicate localized vortices, which are also

outlined by the circling streamlines. Several elongated thin red strips indicate

areas where the vector field quickly changes direction. Given the shape, these are

not vortices, but separation lines that divide regions where the flow has opposite

directions. If one is interested in locating such high-vorticity areas, a simple

method of reasonable accuracy is to contour the vorticity field for high isovalues

and select the data points inside such a contour.

Figure 6.3 visualizes the vorticity of a more complex turbulent 2D flow. Blue

and red indicate respectively counterclockwise and clockwise spinning vortices.

Green indicates low-vorticity, laminar regions. The image clearly conveys the

high complexity of the flow. A typical pattern for such phenomena, which are

also known as turbulent flows, is the high number of vortices and the alterna-

tion of their spinning directions. Such flows are encountered in the study of
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(a)

b)

sourcesink

(b)

vortex laminar

Figure 6.2. (a) Divergence of a 2D vector field. (b) Absolute value of vorticity of a 2D
vector field.

aerodynamics and fluid dynamics and can exhibit highly complex patterns. Un-

derstanding such patterns is one of the important ongoing challenges of scientific

visualization.

Streamwise vorticity. The streamwise vorticity Ω of a field v is the scalar quantity

equal to the projection of rot v along v itself:

Ω =
v · rot v
‖v‖ . (6.5)

Intuitively, Ω describes how quickly v turns around itself.

Helicity. Another quantity used to characterize vector fields is helicity. Helic-

ity is defined as one-half the scalar product of the velocity and vorticity vec-

tors. Intuitively, helicity describes the extent to which the vector field exhibits a

corkscrew-like local motion. Helicity is a conserved quantity if the flow is inviscid

and homogeneous in density. Helicity is useful in weather studies for understand-

ing severe convective storms and tornadoes, since in strong updrafts, the velocity

and vorticity vectors tend to be aligned, yielding high helicity [Majda et al. 01].
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clockwisecounterclockwise laminar

Figure 6.3. Vorticity of a 2D fluid flow field. Note the alternation between vortices with
opposite spinning directions. (Image courtesy of I. Barosan, Eindhoven University, the
Netherlands.)

To compute divergence and vorticity and related quantities, we need the

partial derivatives of the vector field components. On a discrete dataset, these

can be approximated using the formulas specific for every grid cell type given in

Section 3.7. However, as with all discrete datasets, derivatives can be sensitive

to noise, so the results of such computations must be interpreted carefully.

6.2 Vector Glyphs
Vector glyphs are probably the simplest, and fastest, and most popular technique

for visualizing vector fields. The vector glyph mapping technique essentially as-

sociates a vector glyph, or vector icon, with every sample point of the vector

dataset. Various properties of the icon, such as location, direction, orientation,

size, and color, are adjusted to reflect the value of the vector attribute it rep-

resents. The name glyph, meaning “sign” in Greek, reflects this principle of

associating discrete visual signs with individual vector attributes. Every glyph

is a sign that conveys, by its appearance, properties of the represented vector,

such as direction, orientation, and magnitude.

Line glyphs. There are many variations of this framework for vector glyphs.

Essentially, they propose various trade-offs between sampling density (how many

glyphs we can display on a given screen area) and number of encoded attributes

(how many attributes we can display per glyph). We shall present a number of

vector glyphs, starting with the simplest one: the line. Lines essentially show

the position, direction, and magnitude of a set of vectors. Given a vector dataset
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defined on a sampled domain D, we associate a line l = (x, x+kv(x)) with every

sample point x ∈ D that has a vector attribute v(x). The parameter k represents

the scaling factor used to map the vector magnitudes to the geometric domain.

Oriented line glyphs are sometimes also called hedgehogs, due to the particularly

spiky appearance of the visualization.

Figure 6.4 shows a line glyph, or hedgehog, visualization of a 2D vector field

defined on a square domain. The vector field is the MHD dataset earlier used in

(a) (b)

(c) (d)

Figure 6.4. Hedgehog visualization of a 2D magnetohydrodynamic velocity field. (Data
courtesy of Prof. Martin Rumpf, University of Bonn, Germany.)
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Figure 6.2(b). The original uniform dataset has a resolution of 256× 256 sample

points. The images show the hedgehog visualization of the vector field uniformly

subsampled in both x and y dimensions at a rate of 2 (see Figure 6.4(a)), a rate

of 4 (Figure 6.4(b)), and a rate of 8 (Figure 6.4(c)). In all these images, the

line glyphs are scaled proportionally to the vector field magnitude, the scaling

factor k being proportional to the subsampling rate. In Figure 6.4(d), the vector

field is uniformly subsampled at a rate of 8, but the line glyphs are all scaled

to the same length. The glyphs are colored by color mapping the vector field

magnitude scalar field to blue-to-red colormap. In this way, color cues strengthen

(or replace) length cues to convey information about the vector magnitude. In

many applications, color is used to show other scalar fields related to the vector

field, such as pressure, temperature, or density.

Looking at Figure 6.4, we can make a number of important observations.

First, it is clear that high-resolution vector datasets must be subsampled in

order to be visualized with hedgehogs. Comparing Figures 6.4(a), (b), and (c),

we can argue that it is easier to comprehend the vector field in the last image

than in the first two, as the line glyphs are longer, hence their direction and

orientation are easier to discern. The direction is even easier to follow in the

last image (Figures 6.4(d)), where all glyphs have the same, relatively large,

size. Hence, the clarity of hedgehog visualizations depends strongly on the glyph

scaling factor. Ideally, a glyph should be as large as possible, since larger glyphs

have an easier perceivable direction, but not too large, so it would not intersect

neighboring glyphs. If we scale all glyphs to the same size, as in Figure 6.4(d),

this constraint is easy to obey by scaling each glyph to the average cell size at

its origin. This removes clutter, but eliminates the use of the glyph size (length)

as a visual cue for the vector field magnitude. If we scale the glyphs to reflect

the vector field magnitude, such as in Figures 6.4(a)–(c), eliminating clutter is

more problematic. We could still use a unique glyph scaling factor k so that

all glyphs are locally smaller than the cell size. Another option is to use a

nonlinear term kv, which, e.g., has constrained minimal and maximal values or

has a logarithmic, instead of linear, variation with |v|. This will prevent clutter
and guarantee glyph visibility, but will drop the one-to-one relationship between

vector magnitude and glyph length.

Cone and arrow glyphs. More complex shapes can be used for glyphs besides

lines. Figure 6.5 shows the same 2D vector field as in Figure 6.4, this time visu-

alized with 3D cone and arrow glyphs. Such glyphs have the advantage of being

able to convey a signed direction, whereas lines convey an unsigned direction

only. However, these glyphs also take more space to draw, so they increase the
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(a) (b)

Figure 6.5. Different glyph types. (a) Cones. (b) Arrows.

clutter or require lower-resolution datasets. An interesting compromise between

arrows and lines is to use Gouraud shaded lines. By shading the line glyph

from full color (or full opacity) at the glyph origin to the background color (or

full transparency) at the line tip, a visual effect similar to a thin arrow can be

obtained without the need for extra screen space.

By using even more complex glyph shapes, we can encode more attributes

than the vector field itself. This feature is needed in situations when one has

to analyze not just the relative behavior of a single (vector) field in different

spatial regions, but the correlations between several scalar and vector fields. Such

situations occur frequently in computational fluid dynamics (CFD) simulations.

A 3D CFD solution consisting of flow velocity, vorticity, divergence and material

density, pressure, and temperature offers 3 + 3 + 1 + 1 + 1 + 1 = 10 attributes

per dataset point. To visualize all this information, we would need to design

a glyph with 10 degrees of freedom. Such glyphs have been designed and used

in the visualization of fluid flow [van Walsum et al. 96], albeit with limited

effectiveness.

6.2.1 Vector Glyph Discussion

The trade-off between the power of expression of glyphs, or number of attributes

they can encode, and minimal screen size needed by a glyph is an important

characteristic of glyph-based visualizations. To understand this better, let us

compare these for a moment with the color-mapping visualizations discussed
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in Section 5.1. In both cases, the data attributes are available only at the

discrete sample points of a dataset D. However, color mapping is typically

applied at every point of the dataset D, either via texture-based interpolation

or via the vertex-based color interpolation provided by the polygon rendering

machinery. We say that color mapping produces a dense visualization, where

every pixel represents an (interpolated) data value. In contrast, most glyph-

based visualizations for vector data cannot have this freedom. Since a glyph

takes more space than just a pixel, we cannot draw one glyph at every pixel

of a given dataset. All glyph visualizations share this inherent discreteness, or

sparseness, of the output. This affects the inverse image-to-data mapping (see

Chapter 4) at the core of the visualization process.

Vector glyphs in 2D. Consider a zoomed-in detail showing a hedgehog plot over

a single cell of a 2D vector field (see Figure 6.6). In the first case (see Fig-

ure 6.6(a)), the vector field variation over the displayed cell is quite small. We

can easily interpolate mentally the displayed arrow glyphs and arrive at the con-

clusion that the vector field has an upper-right direction and orientation, and

increases in magnitude in this direction. In the second case (see Figure 6.6(b)),

the situation is more problematic. The vector field varies greatly between the

vertices of the considered cell, so it is harder to mentally interpolate between

these four vector glyphs and get an idea of how the field actually behaves over

the considered surface. Clearly, the interpretation can get very confusing when

we have hundreds of cells in this situation.

This difference between scalar (color-mapped) visualizations and vector

(glyph) visualizations can be explained in sampling terms. Scalar color-mapping

techniques such as the ones discussed in Section 5.1 produce a piecewise lin-

ear visualization. Glyph techniques produce a purely discrete visualization. In

the first case, we do not have to mentally interpolate between drawn pixels, as

(a) (b)

?
actual data

perceived data

Figure 6.6. Visual interpolation of vector glyphs. (a) Small data variations are easily
interpolated. (b) Large data variations create more problems.
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(a) (b)

Figure 6.7. (a) Vector glyphs on a dataset regularly subsampled on a rotated sample
grid. (b) Subsampling artifacts are alleviated by random sampling. Both visualization
display 1200 glyphs.

the graphics hardware has done this task for us. In the second case, we only

have visual indication at the sample points (e.g., cell vertices), so we must do

this interpolation ourselves. When the visualized signal varies smoothly, like in

Figure 6.6(a), this task is relatively easy. When this is not the case, like in Fig-

ure 6.6(b), we have a harder problem. The task is made more difficult when we

have to interpolate between directions and orientations, as in the case of vector

glyphs, since this is apparently not easily done by the human visual system.

Another problem of vector glyph visualizations is caused by the regular pat-

tern of the sample points present in uniform and rectilinear grids. The problem

is visible in the central area of Figures 6.4(c) and (d). In these regions, the

perception of the diagonal orientation of the vector glyphs is weakened by the

regular vertical pattern of the uniformly distributed sampling points. This prob-

lem affects dense visualizations to a much lesser degree. The regular subsampling

problem is present also when the subsampling grid is not aligned with the origi-

nal grid. Figure 6.7(a) shows an arrow glyph visualization of the same 2D vector

field as in Figure 6.4, this time subsampled on a rectilinear grid rotated ap-

proximately 30 degrees with respect to the original dataset grid. The undesired

visual interference between the grid lines and glyph directions is clearly visible.

By subsampling the dataset using a randomly distributed (instead of regularly

arranged) set of points, the problem can be alleviated. This is illustrated in

Figure 6.7(b), where we use the same dataset and subsampling rate as before

but a random point distribution instead of a regular one.
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(a) (b)

(c) (d)

inlet

outlet

Figure 6.8. Glyph-based visualization of a 3D vector field. (Data courtesy of Prof.
Martin Rumpf, University of Bonn, Germany.)

Vector glyphs in 3D. Vector glyphs can be used to visualize 3D vector fields, too.

Figure 6.8 shows an arrow glyph visualization of a 3D vector dataset sampled

on a uniform grid containing 128 × 85 × 42 data points that describes the flow

of water in a box-shaped basin that has an inlet, located upper-right, an outlet,

located lower-left, and two obstacles (not drawn in the figure) that cause the

sinuous behavior of the flow. Visualizing such a dataset with vector glyphs at full

resolution would produce a completely cluttered result. Randomly subsampling

the dataset to 100,000 points and visualizing it with line glyphs produces the

result shown in Figure 6.8(a). Besides the known problems of glyphs in 2D, an
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additional problem of 3D glyph visualization becomes apparent here: occlusion.

Closer glyphs obscure further ones, which makes understanding the flow behavior

deep inside the dataset quite difficult. Note that using arrow instead of line

glyphs only increases the occlusion problem, as arrows have a larger screen area

than lines.

We can alleviate the occlusion problem by further subsampling the dataset

to only 10,000 data points (see Figure 6.8(b)). However, the dataset is now

too sparse to be able to distinguish local details. A different way to tackle

the occlusion problem is to draw the glyphs transparently. Figure 6.8(c) shows

the same visualization as in Figure 6.8(a), but this time using line glyphs with

a transparency of 0.15. Closer glyphs now cause less occlusion, allowing us

to “see” deeper inside the dataset. An interesting visual effect is achieved by

using monochrome, instead of color mapped, transparent line glyphs (see Fig-

ure 6.8(d)). Here, a single color (black) is blended, so the resulting visualization

is easier to interpret. The high velocity “flow core” located at the center of the

fluid flow is now easily visible as a dark region. We shall investigate transparency-

based techniques for visualizing 3D datasets in more detail later in Chapter 10,

when discussing volume visualization methods.

Vector glyphs on 3D surfaces. In addition to 2D (planar) surfaces and 3D vol-

umes, glyph-based visualization can be used on 3D surfaces embedded in volu-

metric datasets. The idea behind this technique is similar to the color-mapping

technique on 3D surfaces presented for scalar fields in Section 5.1. First, we

select a surface of interest from a given 3D dataset. Next, we draw vector glyphs

at the sample points of the surface. Figure 6.9 illustrates this. The surface of

interest is a velocity magnitude isosurface of the vector field itself. The selected

isovalue isolates the flow core, i.e., the region where the velocity magnitude is

equal to about half the maximal velocity over the whole dataset. The square

shapes of the inlet and outlet are now visible. Figure 6.9(a) shows the isosur-

face and line glyphs rendered on the isosurface itself. The glyphs are not color

mapped by velocity magnitude as before, since they all have the same length

given the definition of the supporting surface. Figure 6.9(b) shows a variant of

the previous visualization. Here, the support surface is not shown, which allows

us to see all the vector glyphs that were previously masked by the surface. To

diminish occlusion, we use a transparency of 0.3 for the glyphs.

An important observation about vector glyph visualizations on surfaces is

that the vectors do not have to be tangent to the surface. This condition holds

only for a special type of surfaces called stream surfaces , which are discussed

further in Section 6.5. Glyph visualizations on such surfaces are easier to under-
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(a) (b)

inlet

outlet

Figure 6.9. Glyph-based vector visualization on a 3D velocity isosurface.

stand, since the glyphs tend to stay on the surface, rather than on surfaces on

which the field is not tangent, where the glyphs get visually entangled and cause

more visual clutter.

Summarizing our discussion, the main advantages of glyph-based visualiza-

tion of vector fields are the simple implementation and intuitive interpretation of

glyphs such as arrows. However, as we have seen, these advantages are offset by

several problems, such as occlusion, subsampling artifacts, and potentially diffi-

cult visual interpolation of directions. The interpretation difficulties caused by

these problems can be partially overcome by techniques such as random subsam-

pling, carefully setting glyph lengths, and, in the case of 3D glyph visualizations,

by interactively investigating the result by 3D manipulation. In the following

sections, we shall present several other visualization techniques for vector fields

that try to alleviate these problems.

6.3 Vector Color Coding
As we have seen in the previous section, dense visualizations, such as color-

mapped surfaces, have several advantages compared to sparse visualizations,

such as glyphs. The natural question that arises is whether we can develop

dense visualizations for vector fields, similar to the color-mapped surfaces used

for scalar fields. One of the simplest techniques to produce such visualizations

is vector color coding. Similar to scalar color mapping, vector color coding as-
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(a) (b)

Figure 6.10. Vector color coding. (a) Orientation and magnitude. (b) Orientation only.

sociates a color with every point of a given surface on which we have defined a

vector dataset. The color is used to encode the vector orientation and direction

attributes. Vector color coding can be easiest understood if we represent colors

in the hue-saturation-value (HSV) system introduced in Chapter 2. Colors in

the HSV system can be visualized using a so-called color wheel, such as the one

shown at the right in Figure 6.10. Every distinct hue corresponds to a different

angle of the color wheel: red is 0◦, magenta is 60◦, blue is 120◦, cyan is 180◦,
green is 240◦, and yellow is 300◦. Saturation is represented as the distance from

the wheel center to a given color point. Value is usually represented as a separate

one-dimensional “luminance” parameter, since the color wheel can encode only

two distinct parameters.

Color coding on 2D surfaces. Vector color coding for 2D vector fields proceeds

as follows. Assume we have a color wheel of unit radius and all vectors in the

2D dataset are scaled so that the longest one has unit length. Under these

conditions, every vector is represented by the color it points to if we place it

at the center of the color wheel. The vector orientation is encoded in the hue

and the vector length in the value. The saturation parameter is set to one, i.e.,

we use only fully saturated colors. The color coding process is applied for every

point of the dataset, similarly to the scalar color coding, either via texture or

polygon color interpolation (see Section 5.1).

Figure 6.10(a) shows the vector color coding for the same 2D vector dataset

as was used in the previous section. Clearly, this image does not suffer from the
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sampling problems discussed for glyph visualizations, which is a positive element.

Low-vector-magnitude regions can be easily detected as dark (low value) areas,

whereas high-vector-magnitude regions show up as brightly colored areas. How-

ever, in contrast to the intuitive arrow plots, this visualization is highly abstract.

The inverse mapping from hue to vector orientation takes quite some time to be

learned, so users have to be trained extensively to interpret such images.

Several variations of the basic idea exist. If we are interested only in the

vector orientation and not the magnitude, we can set the value component to one,

and we obtain the visualization shown in Figure 6.10(b). Here, the orientation

patterns of the vector field are easier to distinguish than in Figure 6.10(a), since

the image is brighter. Besides the standard color wheel containing all rainbow

hues, other color wheels can be used to emphasize on certain orientations, similar

to the various colormap manipulations described in Section 5.1 for scalar fields.

Besides the directional color coding, we can also directly encode the vector

components vx, vy, vz into colors. In this setting, a 3D vector field is visualized

by three separate scalar color-mapped fields. Although this method is probably

the simplest way, from a technical perspective, to produce a visualization of a

vector field, it has limited effectiveness. The user must visually correlate the

same locations in three color images to get insight into the vector data at that

location. Even if the user were able to accurately identify the location of the

same spatial point in three different images, mentally performing three separate

color-to-scalar mappings independently is a very hard task. Furthermore, it is

difficult to imagine the direction of a vector just by looking at three scalar fields

representing its components. For a more involved discussion on the reasons to

avoid this type of color coding, see Colin Ware’s book on information visualiza-

tion [Ware 04]. All in all, this method is seldom used, except in cases when users

are very familiar with the vector field structure and domain shape, e.g., due to

a low variability, and want to look for specific outlier-like details.

Color coding on 3D surfaces. Vector color coding can also be applied to 3D

surfaces. However, the mapping of a 3D orientation to hues on the color wheel

is not as simple as in the 2D case. Although such mappings can be done, for

example by using the hue channel to encode the x and y vector components and

the value channel to encode the z component, performing the inverse mapping

from hue to 3D orientation visually is generally a very challenging task. If we

are interested in less than a general mapping, the problem becomes simpler to

tackle. For example, let us again consider the 3D fluid flow dataset discussed

in the previous section, which we have visualized in Figure 6.9 with a velocity

magnitude isosurface. We may be interested in seeing how much the actual
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flow direction differs from the isosurface normal or, in other words, how far this

isosurface is from a stream surface tangent to the flow. For this, we can color-

code the angle α between the surface normal n and the vector data v, which can

be computed as

α = arccos

(
n · v
‖v‖

)
. (6.6)

The result, shown in Figure 6.11, is a scalar field that can be visualized with color

mapping. On top of the colored isosurface, the vector field itself is visualized

with semitransparent line glyphs. The large green areas indicate that the vector

field is close to tangent to a large percentage of the given surface. The dark blue

area in the upper-right part of the image indicates a region where the vector

field “exits” the surface. This is the region where the inflow bounces straight

against the upper obstacle inside the box (drawn in light gray). In contrast, the

red region in the middle of the image indicates a region where the vector field

“enters” the surface. In this area, the flow starts being deflected by the lower

obstacle in the box.

angle

90

180

0

obstacle

obstacle

Figure 6.11. Color coding the tangency of a vector field to a given surface. The angle
between the vector and surface normal is encoded via a rainbow colormap.
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Summarizing, vector color coding solves many of the technical problems that

glyph plots suffer from. However, its lack of intuitiveness makes it not so popular

outside specialized areas.

6.4 Displacement Plots
Vector glyphs, described in the previous section, can be understood in terms of

displaying trajectories. The vector glyph with the origin at some point p can

be seen as the trajectory p would follow in v(p) over a short time interval Δt.

The vector glyph shows both the start and end points of the trajectory, i.e., p

and p + v(p)Δt, respectively. Displacement plots take a different approach by

showing only the end points of such trajectories. Given a surface S ∈ D inside

the domain D of a vector field, where S is discretized as a set of sample points

pi, a displacement plot of S is a new surface S ′ given by the set of sample points

p′i = pi + kv′(pi). (6.7)

In Equation (6.7), v′ is a vector field that controls the displacement of the

surface S and k is the displacement factor (analogous to Δt) that controls how

pronounced the displacement is.

In the simplest case, we can set v′ = v, and displace the surface S in the

direction of the actual vector field itself. Figure 6.12 demonstrates the displace-

ment plot technique for the 3D flow dataset introduced in Section 6.2 for two

planar surfaces orthogonal to the x-axis (Figure 6.12(a)) and y-axis, respectively

(Figure 6.12(b)). Both examples use a displacement factor k = 20. In this

example, the displacement plots are colored by the vector field component on

which the input surface is perpendicular, i.e., |vx| for Figure 6.12(a) and |vy|
for Figure 6.12(b). Blue shows the minimal (negative) displacement, red is the

maximal (positive) displacement, and green indicates a nondisplaced point with

vector value close to zero. The color mapping enhances the information provided

by the displaced surface geometry. To ease the interpretation, the visualization

is enhanced with semitransparent vector glyphs.

A natural interpretation of a displacement plot is to think of it as being the ef-

fect of displacing, or warping, a given surface in the vector field. For this reason,

displacement plots are sometimes also called warped plots. Displacement plots

have the major advantage that they produce a visually continuous result—at

least when they are applied on a continuous input surface. However, displace-

ment plots produce a more abstract, less intuitive visualization than simpler

methods such as vector glyphs. In Figure 6.12(a), for example, the red areas,
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Figure 6.12. Displacement plots of planar surfaces in a 3D vector field.

warped forward in the direction of the x-axis, indicate regions where the fluid

flow strongly follows the inlet-to-outlet direction (see Figure 6.9 for the position

of the flow inlet and outlet). Blue regions are also interesting, as these indicate

a backward flow that goes against the main stream. In such regions, phenomena

such as vortices can occur. Figure 6.12(b) tells a similar story, but now from the

perspective of the y-axis.

Note, however, that the displacement plot technique presented here is not the

same as the height-plot technique described in Section 5.4. Height plots visualize

a scalar field by warping a given surface along its normal, i.e., set the warping

direction to v′ = sn (Equation 6.7), where n is the surface normal and s is some

scalar field that reflects the vector field properties. For instance, we can set s to

‖v‖ to show the magnitude of v, or respectively to v ·n, to show the magnitude

of v in the direction orthogonal to our surface S. In contrast, displacement plots

visualize a vector field by warping a given surface along the vector field itself,

i.e., do not use the surface normals. This is visible in Figure 6.12(b). Here, the

front surface is warped outside the box-shaped flow domain in the area of the

outlet. Similarly, the back surface is warped inside the flow domain in the area of

the inlet. If we used height plots of, e.g., the velocity magnitude, these surfaces

would have been warped in the direction of their normals, which would not have

led to such effects.

Parameter settings. Several elements control the quality of a displacement plot.

First, the displacement factor k in Equation (6.7) must be carefully set. Values

that are too large would warp the input surface too much, which can easily lead

to self-intersecting surfaces. Even when self-intersection does not occur, large
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warped box

warped sphere

Figure 6.13. Displacement plots constructed using a box and a spherical surface.

warp factors shift the displaced surface far away from its actual location. This

conveys incorrect insight to the user, as one will visually associate the warped

surface with the actual location p+ kv(p) where this surface is drawn, and not

with the original location p that the surface should depict. Values that are

too small, on the other hand, do not show the warping effect strongly enough

so that it is recognizable in the visualization and it lets the users map it back

visually to a displacement value. Just as for color mapping, nonlinear scaling and

clamping techniques can be applied to control the mapping of the vector data to

displacement values. A second important parameter is the shape and position of

the surface to be warped. These parameters actually control the set of points at

which we are interested in visualizing the vector field. Planar surfaces are often

a popular choice for displacement plots. Since they are flat, displacement values

are easiest to distinguish on them. However, even when using planar surfaces,

some care is needed. The worst case takes place when the surface is (almost)

tangent to the vector field to be visualized. In this case, the warped surface stays

in the same plane as the original surface, so the actual goal of using the warping

as a visual cue for the vector field is not reached. Moreover, such situations

easily lead to self-intersecting polygons on the surface.

Besides planes, other geometric objects can be used to create displacement

plots. In Figure 6.13, two displacement plots were created using a sphere (left)

and a box (right) surface, both colored by the velocity magnitude. The visual

difference between the expected shape of the original object and the perceived

(deformed) shape serves as a cue for the vector magnitude. In addition to sur-

faces, 1D curves can be used too, if desired. In general, the choice of the object to

deform should be correlated with the expected vector field behavior and mean-
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ing. For example, if we have a force field describing material deformation in the

3D domain of some mechanical assembly, we can use the assembly’s own surface

as input for the displacement plot. The obtained visualization conveys the “nat-

ural” meaning that the assembly’s surface is being deformed by the force acting

on it.

6.5 Stream Objects
Both the vector glyph and displacement plot techniques visually relate the actual

position p of a sample point to its displaced position p+ vΔt in the vector field

v. We can think of vector glyphs as “trajectories” over a short time Δt of imag-

inary particles released in the vector field at some desired locations. Similarly,

displacement plots can be seen as the end points of the trajectory over a short

time Δt of a given input surface. Hence, the natural question arises whether

we could use such trajectories, computed for longer time intervals, to visualize a

given vector field.

Stream objects are the answer to this question. Rather than a single visual-

ization technique, stream objects are more of a family of such techniques, related

by the idea of visualizing the trajectory of some input object in a vector field

over a given time interval.

6.5.1 Streamlines and Their Variations

We shall start exploring the stream objects family with its simplest, and probably

most frequently used, members: the streamline variations.

Before we proceed, we must make a distinction between time-dependent and

time-independent vector fields. Time-dependent vector fields v : D × T are de-

fined over some spatial domain D and time interval T . That is, at the same

spatial position x ∈ D, the vector field v(x, t) can have different values at dif-

ferent time moments t ∈ T . Time-independent, or stationary, vector fields v : D

are defined over a spatial domain D and do not change value in time. The two

types of vector field admit different visualizations, as follows.

Streamlines. For time-independent vector fields, a streamline is a curved path

starting from a given point x0 which is tangent at v. If we model a streamline

as a parametric function Sstream(τ) = x(τ), where τ represents the arc-length

coordinate along the curve, then a streamline obeys the equation

dx(τ)

dτ
× v(x(τ)) = 0 (6.8)
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This says that the streamline point at position x is tangent to the vector field

v(x) at the same position. This can also be expressed in terms of the ordinary

differential equation
dx(τ)

dτ
= v(x(τ)) (6.9)

with initial condition x(τ = 0) = x0 (the streamline must pass through a given

seed point x0) and with the constraint τ ∈ [0, Smax] (the streamline has a length

given by Smax). If we integrate Equation 6.9 over τ , we obtain the streamline

Sstream = {x(τ), τ ∈ [0, Smax]}, x(τ) = x(0) +

∫ τ

s=0

v(x(s))ds,

with x(τ = 0) = x0. (6.10)

Streamlines are defined for time-independent vector fields. However, in various

texts, streamline computation mentions a concept of time. This refers to the

parameters τ and s in the above equations, which can be thought of as integration

time, and should not be confounded with the physical time of a time-dependent

dataset.

Pathlines. In case of time-dependent vector fields v(x, t), several types of curves

can be integrated in the vector field. First and simplest, streamlines can be

computed by fixing, or freezing, the physical time t to a desired value tfixed
and using Equation (6.10) to compute the curves that a particle would follow in

v(x, tfixed).

A second option is to compute the actual path x(t) of a particle in the time-

dependent vector field, given by

dx(t)

dt
= v(x(t), t) (6.11)

starting from a given seed point x(t0) = x0. This is nothing but applying

Equation 6.9 while making the integration time τ run in sync with the physical

time t. The emerging curves Spath = x(t) are called particle traces, or pathlines.

They describe the actual trajectory, over physical time, that a particle released

at x0 follows in the time-dependent vector field.

Streaklines. For time-dependent vector fields, we can define a different type of

curve besides pathlines. Take a fixed initial point x0 in the flow domain D. Over

the considered time interval T , imagine that ink is continuously released from x0.

The ink will get advected in the vector field v(x, t) and yield a time-dependent

curve which is moved with the flow. This curve is called a streakline. Formally,
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denote a streakline at physical time t as a time-dependent curve Sstreak = x(τ, t),

where τ is the arc length coordinate along the streakline for a fixed time t. Then

we have

dx(τ, t)

dt
= v(x(τ, t)) (6.12)

x(τ = t, t) = Spath(τ)

x(0, 0) = x0

In other words, the end point (for τ = t) of a streakline coincides with the end

point of the pathline starting at the same seed point x0 and running for the

time t.

Note that, for stationary vector fields, all above concepts (streamlines, path-

lines, and streaklines) are identical, i.e., they lead to the same curves. In the

following, we shall focus on the computation of stationary streamlines. As such,

and to simplify notation, all further references to “time” denote integration time.

Computing streamlines. For a sampled vector dataset, we must solve Equa-

tion (6.10) using the definition of v given by the reconstruction equation (Equa-

tion (3.2)). In the case of piecewise linear basis functions, we remember that

this reconstruction gives the vector field over every dataset cell as a linear com-

bination of the vector field values at the cell vertices. For contours (defined by

Equation (5.4)), we used this property of the reconstruction to represent con-

tours as a set of piecewise linear primitives (lines or planes), one primitive per

dataset cell. However, we cannot use the same per-cell construction strategy

for streamlines. Since the interpolated vector direction usually changes within

every cell, the streamline segments determined by each cell are not straight lines.

Instead, we shall compute streamlines by discretizing the integration time t.

Several numerical methods solve Equation (6.10) approximately by discretiz-

ing the time t and replacing the integral with a finite sum. The simplest, but

also least accurate, method is the Euler integration, given by∫ T

t=0

v(x(t))dt �
N=T/Δt∑

i=0

v(xi)Δt where xi = xi−1 + vi−1Δt. (6.13)

The points xi sample the streamline starting from the seed point x0. The Euler

integration considers the vector field v to be spatially constant and equal to v(xi)

between every sample point xi and the next one xi+1. Hence, the streamline

will be approximated by a piecewise-linear curve, or polyline (x0, . . . ,xN ).

Figure 6.14 shows a first example of streamlines. Here, we trace 18 ∗ 9 = 162

streamlines in a 2D flow vector field. The seed points, indicated by gray ball
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Figure 6.14. Streamlines in a 2D flow field. The small gray balls indicate the seed
points.

glyphs, are equally spaced in the x and y directions and are obtained by regularly

subsampling the dataset on a grid of 18 by 9 points. The streamlines are colored

by the vector magnitude using a blue (low speed) to red (high speed) colormap.

All streamlines are traced up to the same maximal time T , but have different

lengths, since the vector field has large variations in speed, as indicated by the

streamline colors.

The streamline tracing process is described by Listing 6.1 for a 2D vector

dataset. The code in Listing 6.1 accepts a vector dataset g and traces a single

streamline from a given location p0 using the integration step dt. The streamline

stops when it either exits the dataset, exceeds a maximal length maxL, or exceeds

a maximal time maxT. The streamline is saved as a polyline into an unstructured

grid s. In this example, we use Euler integration and piecewise linear vector

interpolation, but different strategies can be used if desired. In terms of cost,

an important factor is the use of the Grid::findCell method, which returns

the ID of the cell containing the given world point. As explained in Section 3.8,

this operation can be quite costly on structured and unstructured grids, as it

involves searching.

Within a cell, the vector field is interpolated using the Grid::getC1Vector

method described in Section 3.8. To test whether the integration has exited the

current cell, we transform the world coordinates p0 to parametric coordinates

q using the Grid::world2cell method and check whether the parametric co-

ordinates fall outside the [0, 1] range. In actual production code, the search of

the cell containing a given location can be done more efficiently than using the
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void s t r eam l i n e (Grid& g , f l o a t ∗ p0 , f l o a t dt , f l o a t maxT,
f l o a t maxL, UnstructuredGrid& s )

{
f l o a t v [ 3 ] , p [ 3 ] , q [ 3 ] ;
i n t c = g . f i n dCe l l ( p0 ) ; //find starting ce l l
f l o a t t = 0 , l =0;
i n t i = 0 ;

f o r ( ; t+=dt , i++,p [0 ]=p0 [ 0 ] , p [1 ]=p0 [ 1 ] ) //trace streamline
{

i f ( c==−1 | | t>maxT | | l>maxL) //stop cr i ter ia reached?
break ;

s . s e tPo int ( i , p0 ) ; //add streamline point
i f ( i )
{

s . s e tC e l l ( i −1, i −1, i ) ; //add streamline ce l l
l += length (p , p0 ) ; //update length

}
g . getC1Vector ( c , p0 , v ) ;
p0 [ 0 ] += v [ 0 ] ∗ dt ; //Euler integration
p0 [ 1 ] += v [ 1 ] ∗ dt ;
g . wo r l d2c e l l ( c , p0 , q ) ; //exit current ce l l ?
i f ( q [0]<0 | | q [0]>1 | | q [1]<0 | | q [1 ]>1)

c = g . f i n dCe l l ( p0 ) ; //find newly entered ce l l
}

}
Listing 6.1. Streamline tracing.

generic findCell, based on the heuristic that small integration steps potentially

move the current point out of the current cell into one of its (direct) neighbor

cells. Hence, the search can start checking these neighbors first. The setPoint

and setCell methods add a point and a cell, respectively, to the streamline

dataset (see Section 3.8). Specifically, the ith cell of the streamline is formed by

the points i and i+1 of the dataset. Finally, the length function computes the

length of the line segment with end points p and p0.

Parameter setting. Several technical considerations arise when computing stream-

lines.

Accuracy: A first concern regards the accuracy of the integration method used.

Euler integration has an error of O(Δt2), which means that halving the inte-

gration step Δt reduces the integration error by a quarter. However, numerical

integration has the unpleasant property that it accumulates errors as the in-

tegration time T increases, since positions along the streamline are computed

incrementally. This means, in practice, that the “tails” of long streamlines tend
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to deviate from their actual correct locations. The accuracy of integration can be

improved by using higher-order methods. A frequently used replacement for the

Euler integration is the Runge-Kutta method. This method approximates the

vector field v between two sample points xi and xi+1 along a stream object with

the average value
v(xi)+v(xi+1)

2 . This method produces more accurate streamlines

than the Euler method for the same time step Δt. This allows us to increase the

time step Δt and maintain similar accuracy, which in turn decreases computation

time. Many other numerical methods exist for approximating Equation (6.10)

with various trade-offs between accuracy and computational complexity. We

refer for further details to the specialized literature [Press et al. 02].

In contrast, methods such as marching cubes, for example, bound the error

by the size of a cell, since they do not propagate information from cell to cell.

Setting the integration step Δt to small values reduces such errors, but the

integration takes more time.

Finding optimal values for Δt is, in general, a difficult problem. These depend

locally on the dataset cell sizes, vector field magnitude, vector field variation,

desired streamline length, and desired computation speed. By “locally,” we mean

that it is often desirable to adapt Δt as the integration proceeds instead of using

a constant Δt for the complete streamline. Although there is no silver bullet for

setting Δt optimally, there are a few hints in this direction. Using a constant

Δt is equivalent to a uniform sampling of the integration time dimension. For a

vector field of varying magnitude, this obviously produces sample points xi that

are spaced irregularly along the streamline, or a nonuniform sampling of the

spatial dimension. This is often undesirable. Even when using a small Δt, large

vector field values generate large streamline steps ‖v‖Δt that can skip several

dataset cells, hence undersample the vector field. For a rapidly varying vector

field, this can change the streamline direction dramatically, yielding a misleading

visualization. A simple way to alleviate this problem is to adapt Δt locally to the

vector field magnitude so that the spatial integration step ‖v‖Δt has constant

length. Setting Δt so that this length is smaller than the current cell size ensures

that no vector samples are skipped during the integration. In practice, spatial

integration steps of around one-third of a cell size should yield good results for

most vector fields.

Stop criterion: A second issue regards the integration stop criterion. A maximal

time criterion, such as in Equation (6.10), is quite nonintuitive, as the total

streamline length largely depends on the actual vector field values and size of

the domain. A better, more intuitive stop criterion is to set a maximal length for

the streamline, e.g., as a fraction of the domain size. Separately, the integration
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process should be stopped when the vector field magnitude becomes zero, since

the trajectory comes to an end there. In practice, one would stop integrating

when the vector field magnitude ‖v‖ drops under some small value ε.

Geometry: A third issue regards the geometric construction of the streamline.

The sample code in Listing 6.1 adds one streamline point after each integration

time step Δt. However, when using small Δt values (for precision), this would

generate too densely sampled streamlines which can take considerable storage

space and rendering time. An optimal solution would use the distance travelled

so far along the integration path (variable l in Listing 6.1) to determine the

addition of new sample points: Given a user-supplied minimal distance Δl, we

add a new streamline point whenever l has increased with Δl from the last

added point. This way, the time sampling Δt and spatial sampling Δl can be

controlled independently.

Streamline seeding. A separate crucial issue for the effectiveness of streamline

visualizations is the choice of the location and number of seed points. A stream-

line conveys information visually for the points on, or close to, its trajectory.

However, when we choose a seed point, we don’t know in advance which points

of a dataset the streamline will go through. Setting the seed point answers only

the question “show all points that are on the trajectory starting here,” or “show

where this point would be advected by the field.” A variant of this question

is “show all points on the trajectory ending here.” This can be easily achieved

by using negative Δt values, i.e., tracing the streamline upstream. By tracing

both upstream and downstream streamlines, we can answer yet another variant

of our question, i.e., “show all points on the trajectory passing through here.”

One way to use streamlines is to densely sample some area of interest, or “seed

area” in the dataset with seed points and next trace streamlines until some stop

criterion is met. However, even if the seed area is densely sampled, this does

not guarantee the complete dataset will be densely covered by streamlines. De-

pending on the actual field, areas in the dataset can even remain completely

unintersected by streamlines, so the user cannot tell anything about the vector

field there from the visualization. Conversely, other areas can be too densely

covered by streamlines, leading to visual occlusion and clutter.

A different strategy for the seed point distribution is to densely sample the

complete dataset instead of only some given area. The aim of this strategy is

to produce visualizations that answer the question “show the complete dataset

with streamlines.” The resulting visualization should have several properties, as

follows [Verma et al. 00]:
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• Coverage: Every dataset point should be at a minimal (small) distance

from some streamline, so that the user has some visual cue of what the

field looks like close to that point. In a more relaxed setting, we can

require that the streamlines should cover all important flow features. By

important features, we mean all features of the vector field that are of inter-

est for a given user in a given application context. Although task-specific,

and thus hard to ensure in a unique manner, this is an important design

principle. We can restate this also in terms of having streamlines sample

the “feature space” densely enough, so that all items that are considered

relevant features are reflected in the visualization.

• Uniformity: The density of the streamlines in the final image should be

confined between some minimal and maximal values. This translates into

having a bounded streamline sampling density of the image plane. Indeed,

if we have too many streamlines over a given area, cluttering will occur.

If we have too few then undersampling occurs, i.e., we are not able to

tell what the field looks like between two streamlines. This is relatively

simple to ensure for 2D datasets, where the image space coincides with the

geometric (dataset) space. For 3D visualizations, this is harder to do, as

it requires either a view-dependent evaluation of the streamline density in

image space or a more restrictive bounding of the volumetric streamline

density.

• Continuity: Longer streamlines are preferred over short ones, as they pro-

duce less discontinuous, easier to interpret, visualizations. On a more sub-

tle level, visual continuity across a streamline is related to the uniformity

criterion mentioned previously.

Just as for the vector glyphs, several sampling strategies are possible to create

dense streamline visualizations. The simplest solution is to distribute the seed

points regularly or randomly in the domain and trace streamlines of some mini-

mal length. This solution gives good coverage but can easily lead to cluttering.

A better solution is to trace a streamline until it gets closer to any of the already

traced streamlines or itself than a user-specified small distance, thereby mini-

mizing cluttering. We can combine this idea with an iterative insertion of seed

points in the areas of the dataset that are undersampled, thereby maximizing

coverage. Finally, we can discard streamlines that are too short and keep trying

new seed points until the streamline length exceeds the desired threshold, thereby

maximizing the streamline average length. A simple-to-implement and effective

method for creating evenly distributed streamlines based on these ideas was pro-
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posed by Jobard and Lefer in [Jobard and Lefer 97]. This method produces all

streamlines in a single pass, but has the tendency of favoring short streamlines

instead of potentially longer ones, and also does not guarantee a uniform coverage

of the computational domain with streamlines, or uniform streamline density. A

related method based on optimizing a quality energy-like functional based on

the positions of the seed points and streamline characteristics was proposed by

Turk and Banks in [Turk and Banks 96]. This method has been extended to

structured curvilinear grids [Mao et al. 98]. In contrast to the single-pass ap-

proach of Jobard and Lefer, the method of Turk and Banks starts with small

streamline fragments, which are iteratively merged, shortened, lengthened, or

new streamlines are created, until the desired uniform coverage is obtained. As

such, this method generates on average longer streamlines than the approach

of Jobard and Lefer, but is more complex to implement and computationally

slower. Methods that sample the dataset with streamlines that attempt to cover

all topological patterns of interest in the vector field are proposed in [Verma

et al. 00] for 2D fields and in [Ye et al. 05] for 3D fields.

A different method for creating evenly distributed streamlines for 2D vector

fields related to the previous techniques is the “farthest point streamline seeding”

(FPSS) [Mebarki et al. 05]. Similar to the method of Jobard and Lefer, FPSS

adds streamlines iteratively until the desired dense coverage is obtained. How-

ever, in contrast to its counterpart, FPSS starts integrating new streamlines as

far away as possible from the existing ones. The rationale behind this heuristic

is that such streamlines have the greatest chance of achieving maximal length

before getting too close to existing ones, since they start far away from the latter.

The heuristic to find the next best seed is to look for the center of the largest

cavity, or gap, between existing streamlines. For this, FPSS first computes a De-

launay triangulation of all sample points of already added streamlines.3 The key

idea is that the center of the largest circumscribed circle of all these triangles is

a good estimate for the center of the largest existing cavity, thus a good estimate

for the next streamline seed point to place. FPSS starts with a fine discretiza-

tion of the computational domain border, which generates the first Delaunay

triangulation. After this, streamlines are iteratively seeded from using the cav-

ity center heuristic described above, and traced upstream and downstream until

they get closer to any existing streamline than a user-prescribed distance that

controls the target density. After each new streamline is added, the Delaunay

triangulation is recomputed. To speed up the seed finding, triangles are kept

in a priority queue sorted on their circumscribed circle radius. The method is

3Delaunay triangulations are described in detail in Section 8.3.
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(a) (b) (c)

Figure 6.15. Dense 2D streamline seeding using the farthest-seedpoint method.

simple to implement and generates densely seeded streamline images for large

2D vector fields in a matter of seconds on a modern computer.

Figure 6.15 illustrates the FPSS method.4 The first image (Figure 6.15(a))

shows a 2D vector field, visualized with arrow glyphs placed on an uniform grid.

Figures 6.15(b,c) show two results of the dense seeding method, computed for

two different density values. The first density value corresponds to the distance

between neighbor arrow glyphs in Figure 6.15(a). The second density value is

double the first value, thus generates roughly twice as more streamlines. As

visible, the method effectively covers the data domain with long streamlines

and also achieves a nearly uniform streamline density. As an additional display

enhancement, streamlines are rendered using tapering, i.e., thicker close to their

midpoints and thinner close to their start and end points. This achieves a visually

more uniform coverage of the data domain with ink, since streamline midpoints

are, by construction, farthest away from other streamlines.

Evenly-spaced streamline seeding is also applicable to 3D datasets. For 3D

volumetric datasets, generating streamlines which are evenly spaced in the 3D

world space can be done, e.g., by direct adaption of similar 2D methods. How-

ever, this does not guarantee that the rendered streamlines will be evenly spaced

in screen space, leading to possible clutter, occlusion, and hard-to-interpret im-

ages. One approach to improve upon this is to generate seeds on a curved surface

embedded in 3D, backproject these seeds into 3D, and trace streamlines from

these 3D seed positions. Streamlines are next selected for rendering if their

screen-space projections are evenly spaced [Li and Shen 07]. As seed surface,

slice planes, isosurfaces of various flow quantities such as vector field magnitude,

4Images created with the streamline-seeding implementation of [Mebarki et al. 05] publicly
available at http://amebarki.visiondz.info/Streamlines.
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(a) (b)

Figure 6.16. Dense 3D streamline seeding on 3D surfaces. (Images courtesy of
R. Laramee, University of Swansea, UK.)

or stream surfaces can be used. A simpler, and visually more effective, solution

is to work entirely in image space [Spencer et al. 09]: Given a 3D seed surface

S3D, we project the vector field, restricted to S, to the 2D image plane. Next,

we apply the 2D evenly-spaced stream generation of [Jobard and Lefer 97] to

the projected vector field over the 2D projection S2D of S3D. Additional care,

however, needs to be taken to prevent that the generated 2D streamlines stop at

the points of S2D where the depth to the image plane exhibits discontinuities,

so that streamlines do not “jump” between parts of the surface which are close

on S2D but far away on S3D.

Figure 6.16(a) shows the image-based streamline placement of [Spencer et

al. 09] for a flow field atop of the surface of a cooling jacket in a car engine

simulation. As visible, streamlines appear (nearly) evenly spaced from the con-

sidered viewpoint. Figure 6.16(b) refines the basic idea by adapting the inter-

streamline distance and the tapered streamlines’ thickness to the distance to the

image plane. As such, the image exhibits still an uniform ink density, similar

to [Mebarki et al. 05], but the streamline density is an effective cue of the depth.

6.5.2 Stream Tubes

In addition to plain lines, we can use other graphical shapes to visualize the in-

tegral trajectories. A popular choice is stream tubes. These can be constructed

by sweeping a circular cross section along the streamline curve computed as de-
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(a) (b)

Figure 6.17. Stream tubes with arrow heads. The construction can ensure that either
(a) the seed points or (b) the arrow heads are arranged on a regular grid.

scribed previously. At every streamline point, the cross section is kept orthogonal

to the streamline tangent vector. Additionally, we can use a vector glyph at the

downstream end of the stream tube to indicate the vector field direction, which

is not shown by the plain streamlines or stream tubes. Figure 6.17 demonstrates

this technique on our familiar 2D MHD vector field. In both images, around

500 stream tubes capped with vector glyphs are drawn from a set of seed points

obtained by regularly subsampling the domain in both directions. The difference

between the two images relies in the way we cap the tubes.

In Figure 6.17(a), the stream tubes are integrated forward in the vector field

and the caps are, hence, placed at the downstream end of the tubes. In this case,

the tubes begin on a regular (uniform) grid and the arrow glyph ends exhibit

an irregular behavior, subject to the vector field behavior. In Figure 6.17(b),

the stream tubes are integrated backward in the vector field, so the caps are

placed at the upstream end of the tube, i.e., the seed points themselves. The

tubes appear to begin on an irregular grid (the set of end points of the backward

integration trajectories) and they end, with arrow glyphs, on the regular seed

point grid. Depending on the actual visualization task, as well as the aesthetic

preference of the user, one image may be subtly better than the other.

The thickness, or radius, parameter of stream tubes can be also used to convey

some extra information. For example, we can modulate the tube radius to map

a scalar value along the stream tubes, such as temperature, density, viscosity, or
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Figure 6.18. Stream tubes with radius and luminance modulated by normalized tube
length.

pressure, but also flow-related quantities, such as vorticity. However, this degree

of freedom has some limitations. The visual range of the radius is quite small.

There is a lower bound imposed by the difficulty of distinguishing the actual

radius of tubes that are too thin, and there is an upper bound beyond which

stream tubes would take too much space and (self-)intersect, just as the vector

glyphs. An interesting effect can be obtained by modulating both the tube radius

and color as functions of the normalized tube length (see Figure 6.18). We use

here the same 2D flow dataset as our first streamline example (see Figure 6.14).

For every seed point, obtained by regular domain subsampling, we trace a stream

tube whose radius varies linearly from some maximum value Rmax to 0 and

whose luminance varies from black to white. The obtained effect, similar to the

streamline tapering illustrated earlier in Figure 6.15, resembles a set of curved

arrow glyphs. The luminance and radius visual cues enhance each other to

convey an arguably better insight than the plain streamlines of Figure 6.14.

6.5.3 Streamlines and Tubes in 3D Datasets

Choosing an appropriate sampling strategy that solves the coverage, density, and

continuity issues well is more critical when tracing streamlines in 3D datasets as

compared to 2D datasets. Figure 6.19 illustrates several sampling strategies and

parameter settings for a 3D flow dataset. In all cases, we obtain the uniformly

spaced seed points by undersampling the uniform dataset (128× 85× 42 points)

at some given rate in all three dimensions. The streamlines are colored by the

velocity magnitude using a blue-to-red colormap. First, we undersample at a
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(a) undersampling 10 x 10 x10, opacity 1 (b) undersampling 3 x 3 x 3, opacity 1 

(d) undersampling 3 x 3 x 3, opacity 0.3 (c) undersampling 3 x 3 x 3, opacity 0.1 

Figure 6.19. Streamlines in a 3D flow dataset.

rate of 10 × 10 × 10 (see Figure 6.19(a)) and use a maximal streamline length

of 100, which is close to the size of the domain’s length. This avoids cluttering

but creates a sparse visualization that fails to convey insight in many areas. We

can improve coverage by decreasing the undersampling to a rate of 3 × 3 × 3

and use the same maximal length (see Figure 6.19(b)). Due to the increased

streamline density, the flow structure becomes easier to follow, at least in the

outer zones. The relative spatial continuity in velocity magnitude, mapped to

color hue continuity, helps us distinguish coherent flow patterns, such as the

high-speed flow inner core (green) and the maximal speed zone located at the

outflow (red). However, occlusion becomes a problem. We can solve the occlusion

problem as we did for the vector glyphs, i.e., by lowering the transparency of the

streamlines to 0.1 (see Figure 6.19(c)). Finally, as a comparison, we use the same
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outlet

inlet = seed area

Figure 6.20. Stream tubes traced from a seed area placed at the flow inlet.

3×3×3 undersampling rate but now trace streamlines until a maximal time of 100

is reached (see Figure 6.19(d)). In this dataset, the velocity magnitude ranges

between 0 and 2. However, as we see in Figure 6.19(d), we now obtain many

very short streamlines in the low-speed flow areas. This lets us better visualize

the flow’s high-speed inner core. This image can be thought as generalizing the

vector glyph visualization in Figure 6.8(c): The vector glyphs are actually very

short streamlines computed with a single integration step.

Being 3D objects, stream tubes have the extra advantage of providing some

shading and occlusion cues, which allow us to better determine their actual

relative position and orientation in 3D vector visualizations, as compared to

plain streamlines drawn as 1D curves. However, as it is already visible from

Figure 6.19, stream tubes are thicker, so they take more screen space, which

increases cluttering.

In case we are not interested in a dense coverage of the complete domain

with stream objects, choosing the seed area must be done with the same level

of care for 3D datasets as for 2D datasets. Figure 6.20 illustrates this for the

already familiar 3D flow dataset. Here, we densely sample a circular area close

to the flow inlet with 200 stream tubes. The visualization clearly shows how the

flow bounces against the invisible obstacle close to the inlet, gets deflected in all

directions, next bends to avoid a second obstacle, and finally exits the domain
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via the outlet. In the last portion, we also detect a separation of the flow into

two symmetric twisting patterns that get both sucked by the outlet.

6.5.4 Stream Ribbons

In Figure 6.20, we saw how a dense bundle of stream tubes can be used to

gain insight into how a 3D vector field twists around its direction of advection.

The visual cues to look for are stream tubes that twist around each other, yet

stay close to each other. We can get a similar type of insight using a different

visualization technique called stream ribbons. A stream ribbon is created by

launching two streamlines from two seed points close to each other. The surface

created by the lines of minimal length with end points on the two streamlines is

called a stream ribbon. If the two streamlines stay relatively close to each other

then the stream ribbon’s twisting around its center curve gives a measure of the

twisting of the vector field around the direction of advection.

Figure 6.21 shows two examples of stream ribbons. Both examples trace

the ribbons from the inlet region of our familiar 3D flow dataset. In the left

image, two relatively thick ribbons are traced. The left ribbon quickly enters a

region of high vorticity, as indicated by its twisting. In contrast, the right ribbon

stays relatively untwisted until its last portion, where it shows evidence of some

moderate vorticity. Both ribbons are colored with the streamwise vorticity using

a classical blue-to-red colormap. The two streamlines that form the edge of each

ribbon are visualized with stream tubes. As an extra element, vector glyphs

(a) (b)

Figure 6.21. Stream ribbons in a 3D flow dataset. (a) Two thick ribbons. (b) 20 thin
ribbons.
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are added on the central symmetry curve of each ribbon, to show the advancing

direction of the flow.

In the right image, 20 stream ribbons are traced from the same inlet region

as in the previous case. In the first portion, the flow is laminar, so the stream

ribbons stay connected to each other, forming a stream surface, as we shall see in

the next section. This apparent surface is suddenly broken by the impact of the

flow with the invisible obstacle situated in the domain. From this location, every

stream ribbon evolves separately from the others, the complete set of ribbons

being split into two main components. In the last portion, the ribbons exhibit

the same general twist pattern that was shown by the stream tube visualization

in Figure 6.20.

6.5.5 Stream Surfaces

We have seen in the previous section how stream ribbons, densely seeded on

a given curve, can be used to visualize how that curve would be advected in

the vector field. This technique can be generalized to compute so-called stream

surfaces of the vector field. Given a seed curve Γ, a stream surface SΓ is a

surface that contains Γ and is everywhere tangent to the vector field. Given

this definition, both stream ribbons and stream tubes can be seen as particular

cases of stream surfaces. For stream tubes, the seed curve is a small closed

curve such as a circle. For the stream ribbons, the seed curve is a short line

segment. Stream surfaces have the intuitive property that the flow described

by the vector field is always tangent to the surface, i.e., cannot cross it. Hence,

stream surfaces whose seed curves intersect the flow domain boundary or are

closed curves can be used to segment the flow domain into disjoint regions that

exhibit noninterfering flow patterns. Also, when compared to streamlines, stream

surfaces have the additional advantage of being two-dimensional objects, which

are easier to follow visually.

Stream surfaces can be constructed in several ways. A simple approach starts

by tracing densely seeded streamlines from the seed curve. Next, the traced

streamlines are connected to generate the stream surface. This can be done,

for example, by connecting each vertex of the actual polylines that represent

the streamlines with the closest vertex of any other such polyline. A different

approach is to parameterize the streamlines by traveled distance. Points on all

streamlines that have the same traveled distance value are next connected. Both

approaches essentially parameterize the stream surface along two directions, one

tangent to the (advected) seed curve, and one normal to it, in the direction of

the flow. Sampling the two directions allows us to construct a stream surface as

a quad mesh.
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When constructing stream surfaces, one must be careful to correctly treat

regions of high divergence, whether positive or negative. In such regions, the

streamlines do not run parallel to each other. Detecting such regions can be

done, for example, by comparing the distances between the advected seed curve

points that are to be connected with a reference value. If the actual distance

becomes too small, the streamlines converge, so it may be desirable to remove

some of them from the tracing process to prevent too small polygons from being

created, reduce computational costs, and increase performance. If the actual

distance becomes too large then the streamlines diverge. Such a situation is

easily visible in Figure 6.21 at a short distance from the inlet (upper right),

where the flow, and hence the ribbons too, abruptly get split into two separate

sets. In such a case, we must decide whether we want to explicitly model this

as a flow split event or not. If so, then the neighbor streamlines which diverge

should not be further connected past the split event, in order to yield a “tear”

in the stream surface. Note that such streamlines can converge further. In

such a case, they will be reconnected, and this will lead to the appearance of

holes in the stream surface. If we do not want to model such splits then extra

seed points can be added along the advected seed curve segment whose length

exceeds the reference value, in order to maintain a high streamline density, and

the generation of the stream surface is continued as usual.

Figure 6.22 shows an example of stream surfaces, traced in a 3D dataset

which contains a vector field describing the gas flow in an engine combustion

chamber. Color shows vector field magnitude using a rainbow colormap. Fig-

ure 6.22(a) shows 100 stream tubes traced from a uniformly distributed set of

seed points placed along a seed line, displayed in red. As visible, the streamlines

have both convergent and divergent regions. Figure 6.22(b) shows the stream

surface constructed from these streamlines. The stream surface starts relatively

flat close to the seed line. After a while, however, creases appear in the surface,

as streamlines become less parallel to each other, due to the nonuniformities of

the vector field. Close to the streamlines’ ends, i.e., in the lower part of the

figure, splits appear in the stream surface as several neighbor streamlines be-

come highly divergent. These splits, as well as the regular mesh structure of the

stream surface imposed by its construction algorithm, are better visible in the

detail image shown in Figure 6.22(c).

A different stream surface approach that avoids the mesh construction chal-

lenges outlined above is to define the stream surface implicitly [van Wijk 93].

Given a 3D vector field domain Ω ⊂ R
3, we first define a scalar function

f∂Ω : ∂Ω → R on the boundary ∂Ω of Ω. f should be defined so that one

or several isolines over ∂Ω correspond to our seed curve(s) of interest Γ. Next,
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(a) (b) (c)

seed line

Figure 6.22. Stream tubes in a 3D vector field (a). Corresponding stream surface (b)
and zoomed-in surface detail showing tears in the stream surface (c).

from each point x of the discretization of Ω, a streamline S is traced backwards

in the vector field. If S hits ∂Ω at some point y after a given amount of time,

the value f(y) is assigned to all points along it in Ω. After all points of Ω have

been thus visited, we obtain a scalar field fΩ : Ω → R. Next, the desired stream

surface corresponding to Γ can be easily extracted as an isosurface of fΩ cor-

responding to the value that Γ takes over ∂Ω, using for example the marching

cubes algorithm (Section 5.3.2). Although this method is simple to implement,

and delivers at once a family of stream surfaces for different isovalues rather

than a single such surface, it cannot extract stream surfaces which do not pass

through the boundary of the dataset.

6.5.6 Streak Surfaces

For time-dependent vector fields, streak surfaces generalize the notion of streak-

lines in the same way that stream surfaces generalized the notion of streamlines.

Given a seed curve Γ, a streak surface SΓ is a surface that contains all massless

particles that pass through Γ at different time moments, or, in other words, the

(time-dependent) locus of dye advected in the flow that originates at Γ.

Conceptually, streak surfaces can be computed using a similar approach to

stream surfaces: Streaklines are traced in the flow starting from a densely sam-
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seed line Γ

Figure 6.23. Streak surface in a 3D vector field describing fluid flow around an obstacle.
(Image courtesy of R. Laramee, University of Swansea, UK.)

pled representation of the seed curve Γ. The streak surface is then constructed

by connecting streaklines for adjacent seeds to yield a quad mesh. However,

apart from the additional challenges posed by highly divergent and/or conver-

gent flow regions already outlined for stream surfaces, streak surfaces add the

complexity that each surface sampling point needs to be integrated, or advected,

at each time step as the vector field changes. This is computationally much more

demanding than tracing stream surfaces for time-independent vector fields. Ad-

ditionally, due to the high dynamics of streak surfaces, the sampling problems

due to vector field convergence or divergence can occur at any point on the sur-

face, rather than around the advancing front represented by the end points of

the traced streamlines, as is the case for stream surfaces. This requires addi-

tional care in the generation of the mesh representing the streak surface. These

challenges make streak surface implementations to be less frequently found in

flow visualization software.

A relatively simple-to-implement algorithm for constructing streak surfaces

as quad meshes from a set of streaklines, including the robust handling of highly

divergent and convergent flow regions to generate a good quality mesh, is pre-

sented in [McLoughlin et al. 10]. Figure 6.23 shows a streak surface computed

with this method, drawn from a seed line Γ in a time-dependent flow. The sur-

face is colored by the velocity field magnitude using a rainbow colormap. As
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visible, the method can accommodate the computation of the complex emerging

surface that exhibits tearing as the flow moves around the obstacle.

6.6 Texture-Based Vector Visualization

So far, most of the presented vector visualizations used discrete objects, such

as vector glyphs, streamlines, or stream surfaces. By their very nature, discrete

visualizations cannot convey information about every point of a given dataset

domain, as we have seen on several occasions. The interpolation of attributes

between these discrete objects must be done visually by the user. In contrast,

dense visualizations such as color plots present the user with a (piecewise) con-

tinuous signal that can be easier to interpret. The question arises how we can

do this for vector fields.

Texture-based visualizations are an answer. The idea is to create a texture

signal that encodes the direction and magnitude of a vector field in the various

texture parameters such as luminance, graininess, color, and pattern structure.

The main challenge here is how to encode the vector direction in the texture pa-

rameters. An intuitive and effective idea is to use the texture graininess for this.

Since their appearance at the beginning of the 1990s [van Wijk 91, Cabral and

Leedom 93], several methods have used this principle to produce visualizations

of vector fields.

Line integral convolution. To understand the basic principle, consider an input

textureN consisting of small-scale black-and-white noise defined over the domain

of the 2D vector field we want to visualize (see Figure 6.24). For each pixel p

of this domain, we trace a streamline S(p, s) upstream and downstream through

p for some maximal distance L. Here, s parameterizes the streamline. Next,

we set the value T (p) of the output texture T at the current location p to be

the weighted sum of the values of the input noise texture N measured along the

streamline S(p) that passes through p. As a weighting function k(s) : R → R+,

we can use a Gaussian k(s) = e−s2 , or other functions that are 1 at the origin

and decay smoothly and symmetrically from the origin until they reach near-zero

values at the maximal distance L.

The obtained value T (p) is

T (p) =

∫ L

−L
N(S(p, s))k(s)ds∫ L

−L
k(s)ds

. (6.14)
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p

S(p,s)

s = -L

s = L

N

image area

Figure 6.24. Line integral convolution principle. The color T (p) of pixel p is given by
integrating the colors of a noise texture N along the streamline S(p, s) passing through
p. The red color intensity along S shows the magnitude of the weight function k(s).

The denominator in Equation (6.14) normalizes the weight factors for an arbi-

trary value of L.

Intuitively, we can think of this process as blurring, or filtering, the noise

image along the streamlines with a set of filters k(s) that are aligned with the

streamlines. As we shall see in Chapter 9, the filtering operation described by

Equation (6.14) can be seen as a convolution of the noise and filter functions N

and k. Hence, this process is also known in the visualization field as line integral

convolution (LIC) [Cabral and Leedom 93, Rezk-Salama et al. 99].

If we apply Equation (6.14) for all pixels using streamline lengths L of several

tens of pixels, we obtain a texture T whose pixel colors exhibit little variation

along a streamline, due to the strong blurring, but show strong variation between

neighboring streamlines, due to the similar strong variation of the initial noise.

Although they can be used for any vector field, texture-based vector visualization

methods have been mainly developed in the context of visualizing vector fields

describing fluid flows.

Figure 6.25 shows the results of applying the line integral convolution algo-

rithm described above to a simple synthetic vector field.5 The left image shows

the noise texture N used. The right image shows the resulting LIC texture T

for an integration length L equal to 5% of the domain size. Using smaller values

for L creates textures increasingly similar to the input noise. Using larger values

for L increases the length of the perceived snake-like texture patterns.

In addition to the LIC algorithm, many other algorithms use textures to vi-

sualize vector fields. Many of them generate similar textures to the LIC method,

5The C code for generating these images is freely available with the SIGGRAPH ’99 Course
Notes [McReynolds and Blythe 99].
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(a) (b)

Figure 6.25. Line integral convolution visualization. (a) Input noise. (b) The resulting
LIC texture.

which are coherent along various types of flow lines, such as streamlines or streak-

lines, and show a high noise-like variation between neighboring flow lines. This

basic principle set aside, the specific algorithms differ in many respects, such

as the type of vector field they can depict (stationary or time-dependent), the

dimension of the depicted domain (planar, curved surface embedded in 3D, or

volumetric), whether they generate a still or an animated texture, and the actual

implementation used to create the texture. We point the interested reader to a

survey article on this topic [Laramee et al. 04].

6.6.1 IBFV Method

A particularly attractive algorithm for texture-based vector visualization is the

Image Based Flow Visualization method, or IBFV [van Wijk 02a]. IBFV and

its variants [van Wijk 03, Telea and van Wijk 03] produce not just static, but

animated, flow textures in real time, can handle both stationary and instationary

fields defined on domains ranging from planar 2D to volumetric ones, and are

quite simple to implement.

We next detail the IBFV method that operates on 2D planar domains, which

is also the simplest to implement in its class. The principle of the method is

sketched in Figure 6.26. To understand IBFV, consider a time-dependent scalar

property I : D×R+ → R+ such as the image intensity, defined on a 2D domain
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Figure 6.26. Principle of image-based flow visualization (IBFV).

D. The value I(x, t) → [0, 1] describes our property at a given point x ∈ D of

the flow domain D at a time moment t. The advection in time of the property

I in a vector field v : D × R+ → R
2 is given by

I(x+ v(x, t)Δt, t +Δt) = I(x, t). (6.15)

This process is sometimes called forward advection, as it states that the

property I at a location x + v(x, t)Δt downstream and at a future moment

t + Δt is equal to the current property I(x, t) at the current moment t. In

contrast, the backward advection expresses the property I at a location x at

the current moment t as a function of the property at an upstream location

x′ = x − v(x′, t − Δt)Δt at a previous moment t −Δt. The time step Δt dis-

cretizes the time and allows us to solve Equation (6.15) iteratively. As stated

earlier, we would like to advect a noise texture so that we obtain an image with

low contrasts along a pathline and high contrasts across neighboring stream-

lines. However, if we simply advect an initial image I(x, 0) = N(x), where

N : D → [0, 1] is a noise texture like the one shown in Figure 6.26, different

points in the flow domain placed on the same pathline will “overwrite” each

other’s property values I in different ways, depending on the order in which we

solve Equation (6.15) for the different points. Moreover, we would also like to

solve the question of how to create an animated flow texture.
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These goals can be met if we add a so-called injection term to Equation (6.15).

Intuitively, this term can be seen as ink or dye that is injected into the flow

domain at every point x in space and moment t in time. The combined advection

and injection process is described by

I(x+ v(x, t)Δt, t +Δt) = (1− α)I(x, t) + αN(x + v(x, t)Δt, t +Δt). (6.16)

Here, N(x, t) describes the injected property, which is also a function of space

and time. The parameter α ∈ [0, 1] controls the ratio of advection to injection.

A value of α = 1 states that there is no advection, so our property I simply

equals the injected signal N . A value of α = 0 states that there is no injection,

i.e., yields the pure advection Equation (6.15). Setting α to a value between

0 and 1 yields an image that exhibits both local variation (due to the injected

noise) and also coherence along pathlines (due to the advection). Good values

in practice are α ∈ [0, 0.2].

There remains the question of which noise texture N(x, t) to inject. Let us

first consider a time-independent signalN (x). To achieve a high spatial contrast,

neighboring pixels should have different colors. We can achieve this by setting N

to a random signal consisting of black and white dots, as shown in Figure 6.26.

The size d of the dots should be correlated with the velocity magnitude. In

practice, using a dot size d ∈ [2, 10] pixels gives good results.

Applying Equation (6.16) for a few steps results in flow textures such as the

one shown at the right in Figure 6.26. However, we can do better than producing

static flow images. For this, let us take a time-dependent noise texture N ′(x, t)
that is obtained from our original stationary noise texture N(x) as

N ′(x, t) = f((t+N(x)) mod 1). (6.17)

Here, f : R+ → [0, 1] is a periodic function with period 1. Intuitively, Equa-

tion (6.17) says that the intensity of every pixel x of the time-dependent texture

N(x, t) oscillates in time controlled by the periodic function f , but all pixels

have different (random) initial phases controlled by the static noise N (x). This

is illustrated in Figure 6.27 for a one-dimensional time-dependent noise signal

N(x, t) for a sinusoidal function f . Using N ′ instead of N in Equation (6.16)

produces an animated texture that seems to move with the flow, an effect that is

especially suited for visualizing time-dependent vector fields v(x, t). The imple-

mentation of both the stationary and time-dependent IBFV methods is described

later in this section.
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Figure 6.27. Time-dependent noise signal design. The red curves show the periodic
function f shifted by random phase values. A vertical cross section of the grayscale
stripes gives the noise texture N(x, t) at a given moment t.

6.6.2 IBFV Implementation

We have described a method to produce dense flow textures by advecting and

injecting noise textures. We shall now sketch a simple and effective way to im-

plement this process using OpenGL. For a detailed discussion, we refer to the

original IBFV publication [van Wijk 02a]. All notations here and in the imple-

mentation code (see Listing 6.2) refer to the advection-injection Equation (6.15),

which is at the core of the IBFV method.

The implementation uses in total NOISE+1 textures called tex[0], tex[1],

. . . ,tex[NOISE]. The first NOISE textures encode the time sampling of one pe-

riod of the noise signal N (x, t). We use here NOISE = 32 samples, which is

typically enough to capture the periodic behavior of the function f in Equa-

tion (6.17). In the following example, we set f to a simple step function. Other

functions can be used, such as an exponential decay, a sawtooth, or a sine wave.

The last texture tex[NOISE] is a work buffer into which the image I(x) is con-

structed. The complete process consists of an initialization step (function init()

in Listing 6.2) followed by an endless loop consisting of three steps: advection,

noise injection, and construction of the work texture (function run()).

The advection itself (see Equation (6.15)) is implemented using an OpenGL

polygon mesh (function advect()). We consider the 2D flow domain D to be

covered by a set of polygons {Pi}i=1..N that have the 2D vertex coordinates

{xij}j=1..n(i) and {yij}j=1..n(i), where n(i) is the number of vertices of Pi. If

D has a rectangular shape, we can use a uniform grid of quadrilaterals Pi with

equally spaced vertices, in which case n(i) = 4,∀i. Generally, we can use an un-

structured grid, as discussed in Section 3.5.4. The advection is done by drawing

a polygon mesh whose vertices are slightly warped by the vector field v, textured
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with the work texture. This deforms, or warps, the work texture in the vector

field direction and saves the result into the frame buffer.

After advection, noise injection is implemented by cyclically blending one of

the textures tex[0],. . .,tex[NOISE-1], which encode the time-dependent noise

signalN (x, y), on top of the warped texture (function inject()). This is done by

drawing one large quad with corners (0, 0); (1, 1) that covers the complete frame

buffer, textured with the selected noise frame. The convex combination con-

trolled by the factor α in Equation (6.16) is implemented by enabling OpenGL’s

alpha-blending mechanism (line 28). The α value is encoded in the textures’

alpha channel (line 63) alongside the luminance channel that encodes the noise

signal N (line 62).

After noise injection, the frame buffer contains the image I(x, t+Δt) for the

next time step, i.e., the left side of Equation (6.16). Since we use this image in

the right side of the equation in the next step, we copy it into the work texture

tex[NOISE] (line 80). Next, the animation loop repeats.

Parameters. Finally, let us discuss the various parameters involved. The work

texture and frame buffer are both of size ISIZE×ISIZE pixels. The noise textures

are typically smaller, taking NSIZE × NSIZE pixels where NSIZE < ISIZE,

thereby saving considerable memory. Given this, OpenGL both stretches and

replicates the noise texture to cover the entire frame buffer area. The stretch

factor NSPOT controls the actual size of the noise spots in the visualization.

As explained before, good values are in the range of a few pixels. Similarly,

the warping vΔt of the grid vertices should be small enough so that the grid

polygons are not too badly distorted. On the other hand, the warping should be

large enough so that the advection is visible, i.e., it is at least a few pixels. If we

are not interested in visualizing differences in velocity magnitude across the flow

domain, the simplest solution to the warping issue is to normalize v. If, however,

we allow varying values for |v| on the flow domain, we can clamp vΔt for every

warped point separately. Finally, if we are interested in still flow textures similar

to the ones produced by the LIC method [Cabral and Leedom 93] rather than

animations, we can execute a few tens of iterations of the main loop using a single

noise texture (NOISE = 1) and obtain the desired image in the work texture.

Putting it all together. Listing 6.2 covers less than two pages or under 100 lines

of code and provides an almost fully functional IBFV program. For brevity, we

omit the actual OpenGL implementation of the polygonal mesh {Pi} and various

bits of data scaling and OpenGL initialization code. The implementation of the

IBFV method is described in further detail in [van Wijk 02b].
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1 const i n t ISIZE = 512 ; //image size
2 const i n t NSIZE = 64; //noise texture size
3 const i n t NOISE = 32; //how many noise frames
4 const f l o a t NSPOT = 4 ; //size of noise spots
5 const f l o a t T = ISIZE /(NSPOT∗NSIZE ) ;
6 GLuint tex [NOISE+1] ; //noise and work textures
7 i n t frame = 0 ; //frame counter
8

9 f l o a t f ( i n t t ) //Periodic function
10 { r e turn ( t>127)? 1 : 0 ; }
11

12 void advect ( ) //Advect the work texture
13 {
14 f o r ( i n t i =0; i<N; i++)
15 {
16 glBegin (GL POLYGON) ;
17 f o r ( i n t j =0; j<n( i ) ; j++)
18 {
19 glTexCoord2f (xij ,yij ) ;
20 g lVer tex2 f (xij + v(xij)Δt ,yij + v(yij)Δt ) ;
21 }
22 glEnd ( ) ;
23 }
24 }
25

26 void i n j e c t ( ) //Inject noise
27 {
28 glEnable (GL BLEND) ;
29 glBindTexture ( tex [ frame % NOISE ] ) ;
30 glBegin (GL QUAD) ;
31 glTexCoord2f ( 0 , 0 ) ; g lVer tex2 f ( 0 , 0 ) ;
32 glTexCoord2f (T, 0 ) ; g lVer tex2 f ( 1 , 0 ) ;
33 glTexCoord2f (T,T) ; g lVer tex2 f ( 1 , 1 ) ;
34 glTexCoord2f (0 ,T) ; g lVer tex2 f ( 0 , 1 ) ;
35 glEnd ( ) ;
36 g lD i s ab l e (GL BLEND) ;
37 }
38

39 void i n i t ( f l o a t alpha )
40 {
41 glViewport (0 , 0 , ISIZE , ISIZE ) ; //Select a 1−to−1 mapping of
42 glMatrixMode (GL PROJECTION) ; //the texture to the frame buffer
43 g lT r an s l a t e f (−1 ,−1 ,0);
44 g l S c a l e f ( 2 , 2 , 1 ) ;
45 glEnable (GL TEXTURE 2D) ;
46 glBlendFunc (GL SRC ALPHA,GL ONE MINUS SRC ALPHA) ;
47 glGenTextures (NOISE+1, tex ) ;
48

49 i n t phase [NSIZE ] [ NSIZE ] ;
50 f l o a t no i s e [NSIZE ] [ NSIZE ] [ 2 ] ;

Listing 6.2. IBFV implementation in OpenGL.
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38

39 f o r ( i n t i =0; i<NSIZE ; i++) //Make spatial noise
40 f o r ( i n t j =0; j<NSIZE ; j++)
41 phase [ i ] [ j ] = rand ( ) % 256 ;
42

43 f o r ( i n t k=0;k<NOISE; k++) //Make temporal noise
44 {
45 i n t t = k∗256/NOISE;
46 f o r ( i n t i =0; i<NSIZE ; i++)
47 f o r ( i n t j =0; j<NSIZE ; j++)
48 {
49 no i s e [ i ] [ j ] [ 0 ] = f ( ( t+phase [ i ] [ j ] ) % 256 ) ;
50 no i s e [ i ] [ j ] [ 1 ] = alpha ;
51 }
52 glBindTexture (GL TEXTURE 2D, tex [ k ] ) ;
53 glTexImage2D (GL TEXTURE 2D, 0 ,GL LUMINANCEALPHA,NSIZE ,NSIZE ,
54 0 ,GL LUMINANCEALPHA,GL FLOAT, no i s e ) ;
55 }
56 }
57

58 void run ( )
59 {
60 i n i t ( 0 . 1 0 ) ; // In i t i a l i ze textures
61 f o r ( ; ; frame++)
62 {
63 advect ( ) ; //Advect work texture to frame buffer
64 i n j e c t ( ) ; //Inject noise
65 //Copy frame buffer to work texture
66 glBindTexture (GL TEXTURE 2D, tex [NOISE ] ) ;
67 glCopyTexImage2D (GL TEXTURE 2D, 0 ,GL RGB,0 , 0 , SIZE , SIZE , 0 ) ;
68 }
69 }

Listing 6.2. continued.

6.6.3 IBFV Examples

Figure 6.28 shows two examples of two 2D flow datasets visualized with the IBFV

method. In the left image, the generated flow texture is encoded in the luminance

channel, whereas the hue shows the vector magnitude via a blue-to-red colormap.

In the right image, the luminance of the flow texture is directly modulated by

the vector magnitude, so bright areas indicate high-velocity regions. As we can

see, these static snapshots of the IBFV animation have a quite similar look to

the results of the LIC method (see Figure 6.25(b)).

This example also illustrates more of the possibilities of texture-based visu-

alizations. In addition to the gray noise texture itself, three red, green, and blue

disc-shaped “ink sources” are advected in the flow field. If we implement the
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(a) (b)

Figure 6.28. (a) Texture-based visualization with color-coded velocity magnitude. (b)
Texture-based visualization with luminance-coded velocity magnitude and three ink
sources.

visualization using the IBFV method, the advection of the ink sources is done by

simply drawing them on top of every frame after drawing the noise texture (step

77 in Listing 6.2). The position of the ink sources is shown in the image by white

circles. The trace left by the advected colored ink is the texture-based equivalent

of a dense set of streamlines seeded at the ink sources. However, there are two

differences. Streamline tracing from a finite point seed set would produce a set

of dense, yet distinct geometric primitives of constant opacity. In contrast, the

texture-based ink advection produces a continuous, gradually fading image.

Both methods have their specific strengths and focuses. Streamlines are often

used in exact engineering applications where one wants to accurately determine

the trajectory of a point starting from a precisely specified seed location. Ink

advection is useful in getting insight into how the flow from a given seed area

spreads out over a larger domain. Placing differently colored ink sources at the

sources of a flow field, i.e., the points of high positive divergence (see Section 6.1)

and letting them get advected until the process visually converges will produce

an image showing the flow domain decomposed into several spatial components

colored differently as a function of their corresponding source. The curves that

separate these areas are called separatrices and are important advanced concept

in the study of vector fields.

IBFV on curved surfaces. Texture-based visualizations are not limited to 2D pla-

nar domains. Figure 6.29(a) shows a texture-based visualization on a 3D surface.

The actual surface is an isosurface of the vector magnitude of the 3D flow dataset

presented earlier in this section (see, e.g., Figure 6.19). On this isosurface, we
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(a) (b)

Figure 6.29. Image-based flow visualization for (a) 3D surface and (b) volumetric
datasets.

first project the vector field and next use the same type of texture-based vector

visualization as in the 2D case. Shading is added to the texture on the surface in

order to covey spatial cues about the object geometry. Since this is an isosurface

of the velocity magnitude, it would be useless to color-code the vector magnitude

as we did in the 2D case (see Figure 6.28). However, in practice, other avail-

able scalar attributes can be shown via colors, such as pressure, temperature,

vorticity, or divergence.

IBFV on 3D volumes. Finally, we note that texture-based vector field visual-

izations can be also applied to volumetric datasets. Figure 6.29(b) visualizes

a simple 3D helicoidal flow with the 3D equivalent of the IBFV texture-based

method discussed previously for 2D images [Telea and van Wijk 03]. Similar

to the 2D visualization shown in Figure 6.28(b), several colored ink sources are

used to complement the grayscale noise. The 3D IBFV method follows a similar

advection-injection principle to the method for 2D flat and 3D curved surfaces,

with a few notable differences. First, producing a dense texture-based visualiza-

tion requires using either 3D textures, which are still less widely supported by

graphics cards than their 2D counterparts, or stacks of 2D textures. Second, the

advection step, which is directly supported in OpenGL by drawing warped and

textured polygons for the 2D cases, has no 3D counterpart. Indeed, there is, at

the current moment, no 3D (volumetric) drawing primitive in OpenGL, and this

situation will probably persist for a while. Implementing the advection step in

3D can be done by reducing it to a stack of 2D primitive renderings [Telea and

van Wijk 03]. Finally, to be able to see through a 3D dense flow texture, the

injection step is modified in the 3D case by adding alpha, or transparency, noise
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to the grayscale noise. The alpha noise plays the role of “erasers” injected in the

flow volume, yielding a sparsely filled visualization that lets one see through the

flow domain (see Figure 6.29(b)).

To visualize the result of the 3D IBFVmethod, we have to render the resulting

texture volume, which contains both color and alpha (transparency) values. This

can be done using a visualization technique called texture-based volume rendering,

which is described separately in Section 10.4.

6.7 Simplified Representation of Vector Fields
In the previous section, we saw a number of visualization techniques for vector

fields, ranging from seed-based methods such as vector glyphs and streamlines

to methods that produce dense representations, such as the texture-based tech-

niques. The effectiveness of all these methods depends largely on their ability

to convey the desired insight into a given dataset. In many applications, this

does not mean visualizing all the data points in the same way. Regions that

exhibit important characteristics for an application area, such as vortices, speed

extrema, or separation lines between regions of laminar flow, should be visual-

ized in different ways as compared to the less-important regions, in order to help

users detect their presence in a dataset. Such regions are also called features of

the vector field.

One of the main reasons for this selective visualization of vector fields is the

sheer size of the data. As we have seen in the case of 3D fields, dense visualiza-

tions can be quite hard to interpret due to occlusion. Designing visualizations

that use a simplified version of the vector field is beneficial for large datasets if

the simplification keeps (and emphasizes) the features of interest and removes

a large amount of uninteresting data. Also, if we know in advance where such

features are in a dataset, we can place visualization primitives at those locations,

such as vector glyphs or stream objects, instead of doing a dense sampling of the

whole domain. Several visualization methods exist which take this approach, as

described in the following sections.

6.7.1 Vector Field Topology

Consider the 2D vector field in Figure 6.30(a), displayed using the IBFV tech-

nique. This vector field is synthetically generated by combining the effects of two

sources (shown in red) and two sinks (shown in blue). Similarly to the applica-

tion illustrated in Figure 6.28(b), we ask ourselves: Which are the regions of the

2D flow domain from where the flow is gathered by a sink, respectively which
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source 1
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sink 1
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Figure 6.30. Image-based visualization of vector field topology.

are the regions reached by flow from a source? We could compute such regions

by manually placing ink sources at the locations of the vector field sources, and

using IBFV to display the regions reached by these ink sources. Figure 6.30(b)

illustrates this. We see here how the purple ink, placed at source 1, and the

yellow ink, placed at source 2, get sunk into both sinks. However, this method

does not fully answer our question: First, there are field regions (displayed in

white) which are not reached by any ink source. One of the reasons for this is

that the IBFV computations are restricted to a finite image—that is, ink cannot

exit the computational domain and re-enter it through a different area. Another

reason is that regions can exist which are only sunk into a sink, but not flooded

by any source. The second problem of our proposed solution is that we cannot

differentiate between ink flowing from a given source to two or more different

sinks. In other words, we can show the regions of influence of sources, but not

of sinks.
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We can partially solve this problem by manually adding more ink sources over

the entire flow domain, taking care to use the same ink color for all points which

flow into the same sink and also for all points that emerge from the same source.

Figure 6.30(c) shows the result of this process. In contrast to Figure 6.30(b), we

can now better see the structure, or topology, of the flow. We distinguish four

regions:

• purple points flow from source 1 into sink 1;

• red points flow from source 1 into sink 2;

• yellow points flow from source 2 into sink 1;

• green points flow from source 2 into sink 2.

Within each such region, the flow is uniform, in the sense that it has the same

source and destination (sink). We also notice a particular flow structure around

the point marked with an asterisk: Here, four different flow regions meet, but

we do not have a source nor a sink.

Topology analysis. However, computing such a decomposition of the flow domain

into separate regions by manual ink source placement is, at best, tedious, and is

highly error-prone. Moreover, the borders between flow regions are not explicitly

computed.

We can obtain a similar, but higher-quality, result by analyzing the mathe-

matical topology of the vector flow, as follows. Consider the vector field defined

by a function v : D ⊂ R
2 → R

2. First, we detect all so-called critical points of

the field, i.e., points where the vector field magnitude ‖v‖ is zero. Assuming that

the vector field is continuous, these will include all sources, sinks, and a number

of additional point types, which we discuss next. To discriminate between the

different types of critical points, we compute the Jacobian matrix of the field v

defined as

J =

(
∂vx

∂x
∂vx

∂y

∂vy

∂x
∂vy

∂y

)
(6.18)

J is computed at each point x ∈ D. Next, we evaluate the eigenvalues and

eigenvectors of J . For a detailed description of eigenvalues and eigenvectors and

the way to compute them, we refer further to Section 7.1. It can be shown that,

since J is not a symmetric matrix, its eigenvalues λ1 and λ2 are not necessarily

real numbers. Let us denote these as λ1 = (Re1, Im1) and λ2 = (Re2, Im2),

where Re and Im stand for the real, respectively imaginary, components of the
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Re1 < 0, Re2 < 0
Im1 = 0, Im2 = 0

attracting point (sink) repelling point (source)

Re1 > 0, Re2 > 0
Im1 = 0, Im2 = 0

center point

Re1 = 0, Re2 = 0
Im1 = -Im2  ≠ 0

saddle point attracting focus repelling focus

Re1 < 0, Re2 > 0
Im1 = 0, Im2 = 0

Re1 = Re2 < 0
Im1 = Im2 ≠ 0

Re1 = Re2 > 0
Im1 = -Im2 ≠ 0

Figure 6.31. Classification of critical points for a 2D vector field.

respective complex numbers. It then can be shown that a vector field has the

six types of critical points illustrated in Figure 6.31, which can be discriminated

from each other based on the signs of the real and imaginary parts of λ1 and

λ2 [Helman and Hesselink 89, Helman and Hesselink 91]. Intuitively, we see that

negative values of Re describe attraction, while positive values of Re describe

repulsion, while nonzero values for Im describe rotation.

After having classified critical points, we consider now the small spatial region

surrounding such a critical point c. It can be shown that such a region can be

divided into several compact sectors Si of three types, based on the behavior of

streamlines which pass through that sector:

• Parabolic sectors: Streamlines in Si have one end at c.

• Elliptic sectors: Streamlines in Si have both ends at c.

• Hyperbolic sectors: Streamlines in Si do not pass through c.

The streamlines which separate such sectors, or in other words constitute the

sectors’ borders, are called separatrices. These are precisely the (exact) borders

of the colored regions shown in Figure 6.30(c).
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The next question is how to actually compute these separatrices. To do

this, we first observe that saddle points are a special case of all critical points

shown in Figure 6.31: At a saddle point, exactly four separatrices meet. It

can also be shown that, at a saddle point, separatrices are tangent to the two

eigenvectors of J , and that the outgoing and incoming separatrices are tangent to

the eigenvectors having positive, respectively negative, Re components [Helman

and Hesselink 89].

The algorithm for computing separatrices from a given 2D field thus can

proceed by linking saddle points to other streamline endpoints, as follows:

1. Compute and classify all critical points following Figure 6.31.

2. For all saddle points s, start tracing two streamlines in the directions of

their eigenvectors having positive Re values.

3. Stop tracing when the streamline hits the boundary ofD or another critical

point where ‖v‖ = 0.

4. Merge curves that start and end between the same endpoints.

The output of this algorithm is a graph whose nodes are critical points or points

where streamlines leave the computational domain, and edges are the respec-

tive separatrices. Figure 6.30(d) shows the result for the vector field illustrated

earlier.

Robust implementation of the above algorithm, however, requires several

precautions, as follows.

Interpolation issues: Detecting critical points firstly needs finding locations where

‖v‖ = 0. However, the vector field v is usually point-sampled on a discrete grid.

As such, we must use interpolation of cell vertex values to find the exact points

where the magnitude of v vanishes. To do this, we can use the interpolation

mechanisms presented in Chapter 3. The same interpolation mechanisms must

be used to estimate the components of the Jacobian matrix J at the detected

critical points (see Section 3.7).

Excluding critical points: Several critical points are usually excluded from com-

puting separatrices. First, center points are typically eliminated, since they

do not contribute to global information on the topology of a vector field, but

only describe small-scale local circular (vortex-like) areas. Second, since all our

computations are done using interpolated data, the conditions on the real and

imaginary components of eigenvalues of the Jacobian J (Figure 6.31) are nat-

urally subject to numerical errors. In practice, these conditions are relaxed to
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compare Re and Im with finite-size, nonzero, threshold values. Finally, complex

vector fields can generate hundreds of critical points. Including all of these into

a topological visualization unnecessarily complicates the final result. A straight-

forward way to simplify such visualizations is to cluster, or merge, critical points

which are close to each other within a small spatial distance.

Boundaries: Any sampled vector field will have a domain boundary. This im-

poses two refinements of the separatrix computation algorithm. First, we need

to make sure that streamline tracing stops when hitting such boundaries, as in

the standard streamline tracing algorithm (Section 6.5.1). Second, in certain

datasets such as computational flow dynamics simulations of fluid flow in a ves-

sel, vector field magnitude will be (close to) zero on boundaries (see example

in Figure 6.8 and related figures). These points do not have to be considered

critical points from the perspective of separatrix computation.

Topological visualizations of vector fields are very effective instruments for

reducing the size and complexity of vector datasets to their “essence” expressed

in terms of uniform flow regions bounded by separatrices. However, as we have

seen, computing such simplifications is a delicate process involving several chal-

lenges related to numerical estimations of derivatives of sampled data. For 3D

datasets, separatrices become collections of curves and surfaces which partition

the flow domain, and which require even more involved computation methods.

For non-trivial vector fields, the question whether such abstract representations,

and the associated mathematical background required to understand and use

them, are more effective than classical glyph-based, streamline, or image-based

visualizations is still open. For more information on topological visualizations of

vector fields, we refer the reader to several survey papers in the field [Laramee

et al. 07, Pobitzer et al. 11].

6.7.2 Feature Detection Methods

Feature detection methods reduce the vector field to a set of features of inter-

est, described as a set of parameters, such as feature type, position, extent, and

strength. Features can be defined either analytically by a feature energy-like

function, in which case the detection method tries to find parameter combina-

tions that maximize this function, or as a set of examples or patterns, in which

case the detection method searches for best matches in the dataset of these ex-

amples. One of the features of interest in flow visualization is vortices. Although

for most of us what a vortex looks like is quite intuitive, robustly quantifying
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and detecting one is surprisingly difficult in practice. Many methods for vor-

tex detection have been designed over the last 15 years [Banks and Singer 95,

Jankun-Kelly et al. 06]. For an overview of this topic, we point the reader to

existing review papers [Post et al. 02, Post et al. 03b].

Although feature detection methods can give good results, they do not come

without problems. First, it is hard to define precise numerical criteria to detect

such features. For example, it is difficult to precisely quantify the presence

and/or extent of a vortex. Second, features appear at different spatial scales

in vector fields. In time-dependent fields, there exist also different temporal

scales. Finally, there is often no clear spatial separation between a feature and

a non-feature area or between several features of the same or different types.

6.7.3 Field Decomposition Methods

The third class of methods is formed by field decomposition methods. Such

methods partition the vector dataset into regions of strong intraregion (inter-

nal) similarity and weak interregion similarity. At the core of such methods is

a similarity metric f that defines how similar two regions are. Different simi-

larity metrics lead to different decompositions that model different end goals or

questions. A frequently used similarity metric compares the direction and mag-

nitude of the vector data. Two regions are considered highly similar if the vector

field has the same orientation and magnitude on both regions, and dissimilar

otherwise. After choosing the metric, decomposition methods usually perform

a top-down partitioning or bottom-up agglomerative clustering of the dataset.

In the top-down case, the dataset is recursively split in regions that have the

least similarity. In the bottom-up case, we start with each sample point (or

equivalent small area) being a different region and iteratively cluster the most-

similar regions. Both methods produce a multiscale representation of the vector

dataset that can be seen as a tree with the smallest regions, or data samples,

as leaves and the whole dataset as the root region. A desirable constraint for

decomposition methods is to produce spatially compact regions, since these are

easier to visualize and interpret, and also map well to the “natural” idea of what

a vector field feature is. For top-down methods, this constraint can be added in

the splitting step. For bottom-up methods, the constraint can be added either

in the similarity metric (non-neighboring regions have minimal similarity) or the

merging logic (non-neighboring regions are never merged).

Top-down decomposition. An example of a top-down decomposition method is

the technique by Heckel et al. [Heckel et al. 99]. Initially, all data points bearing

vectors are placed in a single cluster. Next, this cluster is repeatedly subdivided
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using a weighted best-fit plane so that the variance of an error metric over its

two children is minimized. For each cluster, a representative vector is computed

as the average of the vector samples in that cluster. The error of a given split

is defined as the difference between streamlines traced in the original field and

the simplified one given by the representative vectors. This method produces

a vector field simplification that directly encodes elements of the visualization

itself: a “good” simplification is that which produces streamlines close to the

original field.

Bottom-up decomposition. Many bottom-up clustering methods exist, and many

are based on work on discrete and continuous data clustering performed out-

side of the visualization domain [Jain and Murty 99]. A simple bottom-up

strategy is to use a greedy approach. We define a region as the triplet R =

(P (R),v(R), O(R)). Here, P (R) = {pi}i is the set of sample points, or sup-

port, of the region, which is compact from the perspective of the point neighbor

relationship. The simplest way we can represent the vector field over P (R) is

by a single vector v(R) located at an origin O(R) inside the area covered by

P (R). We begin the clustering by defining, for every point pj of the dataset,

a region Rj = (pj ,v(pj), pj) containing the point and its vector attribute that

has the origin at the point itself. The complete region set R = {Ri} is next

simplified iteratively by clustering, at every step, the two most-similar regions

Ra ∈ R, Rb ∈ R to form a new region Rab. This new region contains the

union of all points in Ra and Rb and a vector v(Rab) that should best reflect

the merging of Ra and Rb. A simple way to compute v(Rab) is as the average

of v(Ra) and v(Rb) weighted by the number of points |P (a)| and |P (b)| in the

merged regions. The origin O(Rab) of v(Rab) can be computed similarly to the

computation of v(Rab) by weighted averaging. This technique is also known

as bottom-up agglomerative clustering with average linkage, since a cluster is

represented by, and compared with other clusters with, a single average vector.

Finally, we set Ra and Rb as children of Rab, so that a binary region tree, or

dendrogram, gets constructed during the clustering. The complete algorithm is

described in Listing 6.3.6

From the initial R′, the clustering creates region sets R1, . . . ,RF until reach-

ing a final region set RF that contains a user-specified number of N regions.

6A generic, easy to use, and efficient C implementation of bottom-up hierarchical agglomer-
ative clustering, offering different linkage strategies and user-specified distance metrics, is pro-
vided by the Cluster library, publicly available at http://bonsai.hgc.jp/∼mdehoon/software/
cluster.
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i n i t i a l i z e the s t a r t i n g r eg i on s e t R0 ;

f o r ( i n t i =0; |Ri| > N ; i++)
{

f i nd Ra ∈ Ri , Rb ∈ Ri so that f(Ra, Rb) = min ;

v(Rab) = (v(Ra)|P (Ra)|+ v(Rb)|P (Rb)|)/(|P (Ra)|+ |P (Rb)|) ;

O(Rab) = (O(Ra)|P (Ra)|+ O(Rb)|P (Rb)|)/(|P (Ra)|+ |P (Rb)|) ;

Rab = (P (Ra)
⋃

P (Rb),v(Rab), O(Rab)) ;

Ri+1 = Ri − {Ra
⋃

Rb} ; //eliminate Ra and Rb from Ri+1

Ri+1 = Ri+1
⋃{Rab} ; //add the new Rab to Ri+1

s e t Ra and Rb as ch i l d r en o f Rab ;
}

Listing 6.3. Bottom-up greedy clustering of vector data.

These regions are the roots of several region trees that encode the clustering,

as described previously. We can use these trees to obtain several types of sim-

plified representations of our vector field. A simplified representation, or s-rep,

is a region set R = {R1, . . . , Rk} of k disjoint regions where each Ri is a node

in a different region tree described earlier and whose union
⋂k

i−1Ri covers the

complete dataset.

Having such a s-rep, a visualization of the vector field can be produced by

displaying the representative vectors for all regions, streamlines seeded at the

region origins and clipped by the region boundaries, or the regions themselves

colored in different colors (the last option is effective mainly for 2D domains). By

controlling N , one can answer the question “show a vector field with N curved

arrows.” Figure 6.32 shows such visualizations for 2D and 3D vector fields. The

similarity metric used favors vectors with the same direction and magnitude,

which explains the elongated shapes of the regions shown in Figure 6.32(a). In

Figure 6.32(b), arrow-capped stream tubes are drawn for every region and an

additional horizontal slice plane, textured with a spot noise visualization of the

vector field, is used to provide an extra visual cue.

Several s-reps can be created from the region trees. The easiest is to use any

of the region sets Ri constructed during the clustering. However, choosing which

level i to look at is not very intuitive, as we do not know howmany regionsRi has.

Other options for constructing the s-rep are to take regions at a user-given depth

from the root in the region trees or an s-rep containing a user-specified number

of N regions. Since the decomposition is saved in the region trees, dynamically
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(a) (b)

Figure 6.32. Simplified vector field visualization via bottom-up clustering of (a) a 2D
field and (b) a 3D field.

changing the decomposition level-of-detail and associated visualization can be

done in real time, which encourages interactive exploration.

From a reconstruction perspective, the bottom-up clustering method using

one representative vector per region is roughly equivalent to a piecewise constant

interpolation. Every region support P (Ri) can be thought as the support of a

vector basis function φi = v(Ri) equal to the region’s representative vector over

P (Ri) and zero outside P (Ri). The hierarchy of simplified representations Ri,

1 ≤ i ≤ F can be thought as generating a hierarchy of constant bases Φi =

{φij}j that approximate our vector dataset at various levels of detail. From this

perspective, visualizing the regions with streamlines (instead of displaying the

representative vector) is slightly misleading from the clustering’s approximation

perspective. However, our approach is still logical if we regard the clustering

strictly as a smart technique for seeding streamlines as a function of the data

variation.

Multiscale decomposition. The idea of producing a hierarchy of bases that ap-

proximates a given vector field at several levels of detail can be taken further by

using more sophisticated clustering techniques. One such technique employs a

state-of-the-art mathematical tool called the algebraic multigrid (AMG) [Griebel

et al. 04]. In brief, this method works as follows. Given a vector dataset that

has an underlying grid with n sample points p1, . . . , pn, we define a so-called

coupling matrix M = {mij}1<i,j<n. Given two points pi and pj , the entry mij

essentially encodes the similarity metric f between the vector values v(pi) and



244 6. Vector Visualization

v(pj) as follows:

mij =

⎧⎨
⎩

f(pi, pj), pi, pj are grid neighbors,
1−
∑

k∈neighbors(i)mik, i = j,

0, otherwise.

(6.19)

Intuitively, the entries mij of the symmetric square matrix M can be thought

of as couplings of the grid points in the vector field. Neighboring points that

have similar vectors are strongly coupled; neighbors that have dissimilar vectors

are weakly coupled. Points that are not neighbors are not coupled at all. The

diagonal entries mii describe the so-called self-coupling, which is set so that the

sum of couplings of a point with all other points is 1.

For the more formally and mathematically oriented readers, the preceding

matrix M describes the finite element discretization of an anisotropic diffusion

operator using piecewise linear basis functions. Let us detail this. Given some

domain D ∈ R
n, the equation

∂tu− div(A∇u) = 0 (6.20)

describes the diffusion in time of a scalar function u : D × [0,∞) → R starting

from an initial value u(t = 0). In Equation (6.20), div denotes the divergence

operator defined by Equation (6.1). The speed of diffusion, or diffusivity, can

have different values in different directions in the domain D, a property which is

called anisotropy, and which is described by the tensor A. The discretization of

the operator div(A∇u) produces our matrix M . In finite element terminology,

M is called a stiffness matrix , a term that suggests the metaphor of coupling of

the grid points.

The matrix M encodes the vector field structure on the finest level given by

the dataset grid. Our aim is to simplify this structure in order to visualize the

field at various levels of detail. This can be done using the AMG technique, as

detailed in [Griebel et al. 04]. Given a matrixM , AMG constructs a sequence of

matrices M0 = M,M 1, . . . ,Mk. The size (number of rows or columns) of each

matrix M i is a fraction s of the size of the previous matrix M i−1, starting with

the size S of the matrix M0 until the final matrix Mk, which has size 1, i.e., is

a scalar value. Hence, the sequence has k = logs S levels. This reduction in size

is done by eliminating matrix entries involved in weak couplings and merging

neighboring entries involved in similar strong couplings. This process is similar

to the bottom-up agglomerative clustering described in Listing 6.3. However,

actual implementations of the AMG technique are relatively complex, as these

are capable of producing high-quality clusterings of huge matrices of tens of mil-

lions of entries in minutes on a normal PC. Designing an effective and efficient
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(a) (b)

Figure 6.33. AMG flow-field decomposition. (a) Basis functions. (b) Regions and
streamline-based visualization.

AMG algorithm is difficult, both from the mathematical and implementation

points of view, and this topic is treated extensively by a separate field of re-

search [Trottenberg et al. 01, Griebel and Schweitzer 06]. Luckily, for our vector

field simplification perspective, we can use an existing AMG implementation as

a black box.

Following the finite element paradigm, for every matrix M i produced by the

AMG we can construct a basis Φi containing as many basis functions φij as the

matrix size. At the finest level, the basis functions φ0j are exactly the linear basis

functions implied by the grid cell types (see Section 3.4). Since the simplified

matrices contain couplings that follow the field structure, it can be shown that

the shapes of the basis functions φij on the higher simplification levels follow the

vector field, too. Figure 6.33(a) shows several basis functions on several levels

of the AMG clustering. The function range of [0, 1] is mapped via a blue-to-red

colormap. The vector field decomposition is shown in Figure 6.33(b) with regions

and stream tubes.

We can use these basis functions to visualize the vector field in several ways,

as described next. Given a simplification level 1 < l < k, we can use the basis

Φl = {φli}i to construct several regions Rl
i. Every region Rl

i corresponds to the

points of the grid G where its basis function φli is maximal over Φl:

Rl
i = {p ∈ G|φli(p) > φlj ,∀j �= i}. (6.21)

Since φli is maximal over Rl
i, we can say that Rl

i best approximates the extent

of that vector field feature which is captured by φli. Next, we can visualize these

regions either as colored areas or by using arrow-capped stream tubes, similar

to the discrete clustering visualization in Figure 6.32. Figure 6.34 shows the

regions on three different decomposition levels, ranging from coarse to fine from

left to right, for the already-familiar MHD flow field used by other visualization
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(a) (b) (c)

Figure 6.34. Vector field decomposition using the AMG technique. Three decomposition
levels are visualized.

methods earlier in this chapter. Comparing these images to the vector glyph

visualizations shown in Figures 6.5 and 6.7, we see that the regions clearly re-

flect the symmetric structure of the flow, the presence of two large drop-shaped

vortices, and the existence of two thin layers surrounding and flowing in oppo-

site direction to the vortices. The AMG decomposition technique works also for

curved surfaces or volumetric domains. Figure 6.35(a) shows the region decom-

position of a flow field encoding the wind direction and force over the surface

of the Earth. Figure 6.35(b) depicts the same flow field visualized with arrow-

capped stream tubes overlaid on top of an IBFV texture visualization. The

(a) (b)

Figure 6.35. AMG-based simplified visualization of wind vector field on the surface of
the Earth.
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stream tubes, colored by the velocity magnitude, show a simplified view of the

flow field while the texture shows a detailed, fine-scale visualization of the same

field.

Multiscale IBFV. A second way to use the AMG simplification results for our

aim is to visualize the basis φlj functions themselves. Here, we turn again to

the image-based flow visualization (IBFV) visualization technique presented in

Section 6.6. As we recall, IBFV advects a spatial noise signal whose luminance

changes periodically in time in a given vector field, creating the effect of thin,

contrasting animated streamlines that move with the flow. A limitation of the

original IBFV method was the size, or graininess, of the noise signal. Fine noise

elements produce high-quality flow animations but are limited in conveying the

coarse structure of the vector field. Increasing the size of the noise elements does

not solve this issue, and actually creates strong visible artifacts, since the noise

signal is sampled on a regular image-like grid. What we actually need is a noise

signal on a coarse spatial scale that is coherent with the flow. This is the point

where the AMG basis functions come in.

Consider again the original fine-scale IBFV noise N(x, y, t) that was sampled

on a n × n image. Every pixel of this image can be seen as being represented

by a constant basis function ψi which is 1 over that pixel and zero elsewhere.

Hence, the noise term from Equation (6.16) can be rewritten as

N(x, y, t) =

n2∑
i=1

ψi(x, y)f((t+Ni) mod 1). (6.22)

Here, f(t) is exactly the same periodical function as in Equation (6.17), whereas

Ni is the noise phase of the ith region corresponding to ψi, which is equivalent to

the per-pixel noise phase N(x) in Equation (6.17). An interesting observation is

that now the basis functions ψi are similar to the AMG basis functions φ0i on the

first level that corresponds to the input coupling matrix M0. We can generalize

this observation and define a multiscale noise signal:

N j(x, y, t) =

sj∑
i=1

ψj
i (x, y)p(t+ ri). (6.23)

Here, we use the basis functions on any level 1 < j < k of the AMG decom-

position. As we see in Figure 6.33(a), these functions have shapes that follow

the vector field, so advecting them in the field, as done by the IBFV method,

considerably reduces the appearance of noise-like visual artifacts. In terms of

implementation, Equation (6.23) can be efficiently coded in terms of OpenGL
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imaging operations. The basis functions ψj
i can be stored as luminance OpenGL

textures, and the multiplication with p(t+ri) and summation are easily mapped

to the various OpenGL blending modes. Since N j(x, y, t) is a periodic function,

we can precompute several tens of samples of one period, save them into textures,

and then use these during the IBFV animation to obtain maximum performance.

By replacing the initial fine-scale noise N(x, y, t) with any of the multiscale

noise signalsN j(x, y, t) defined by Equation (6.23), we obtain a multiscale image-

based flow visualization, or MIBFV method. MIBFV keeps all the strong points

of its predecessor (dense field representation, real-time animation, intuitive rep-

resentation, simple implementation) and adds a spatial multiscale aspect that

emphasizes the vector field features at a user-chosen scale k. Figure 6.36 shows

the difference between the fine-scale IBFV (Figure 6.36(a)) and MIBFV on three

coarse scales (Figures 6.36(b–d)). MIBFV can be used also to combine sev-

eral scales in a single visualization. The coarse-scale MIBFV images show less

detail but exhibit a higher contrast than the IBFV visualization, an element

which helps users discern the global coarse scale features of the depicted vec-

tor field. Figure 6.36(c) shows an MIBFV coarse-scale context visualization in

the background blended with four IBFV fine-scale detail visualizations centered

and covering the extents of the four main vortices of the considered flow field.

The centers of the IBFV visualizations are marked by red dots, which indicate

points of interest chosen by the user. This image is a typical example of the use

of focus-and-context techniques in data visualization: high detail is shown over

a focus region, typically specified by the user, surrounded by a context region

showing a low amount of detail.

MIBFV is less suited to visualize time-dependent vector fields than IBFV.

If the vector field changes, we must re-run the AMG decomposition and noise

texture computation (see Equation (6.23)) after every time step. Even a very

efficient AMG implementation still needs seconds to tens of seconds to produce

the multiscale basis functions, so MIBFV cannot provide interactive frame rates

on time-dependent vector fields.

Using the AMG technique to produce simplified representations and visual-

izations of vector fields is an advanced subject that requires an implementation

effort way beyond that of computing streamlines or vector glyphs. However, this

topic provides good insight into the recent possibilities of vector field visualiza-

tion and illustrates once again the mix of different techniques such as mathemat-

ical analysis, imaging, and graphics that are needed to tackle this great challenge

of getting insight in complex, time-dependent vector datasets.

The use of the AMG method for decomposing vector fields for visualization

purposes is a typical example of a number of recent techniques that can be
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(a) (b)

(c) (d)

Figure 6.36. (a) IBFV visualization and (b, c, d) multiscale IBFV visualization on three
different scales of the same field.

used to simplify the massive amount of data present in large vector datasets

in order to create visualizations that emphasize the most salient elements of a

given vector field. Several other techniques take a similar path in clustering,

or merging, similar sample points in a vector field in order to reduce the data

complexity and simplify its visual interpretation. A set of techniques closely

related to the AMG method presented here employs diffusion-based clustering

of vector fields [Preusser and Rumpf 99, Bürkle et al. 01]. These methods solve

the diffusion problem encoded by Equation (6.20) starting with an initial noise

scalar value u(t = 0) similar to the advected noise N(x, t) of the IBFV method.

After a certain time t, small-scale noise patterns get clustered in the direction of

the vector field, while still exhibiting high noise-like contrast in the orthogonal

direction. These methods create vector field visualizations that are very similar

to the MIBFV method (Figure 6.36(b–d)).
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6.8 Illustrative Vector Field Rendering
Simplified visualizations, such as those presented in Section 6.7, can reduce the

amount and complexity of information displayed when visualizing a vector field.

As shown, such techniques can be valuable especially for 3D datasets. However,

as already noted, they can also lead to abstract images which can be hard to

understand by end users. Simpler methods, such as the stream objects described

in Section 6.5, generate images which are easier to recognize, but can be affected

by clutter and overdraw for large datasets.

Illustrative vector field visualizations strike a balance between the two above-

mentioned directions. On the one hand, they use simple, well-understood, visual

metaphors for depicting vector fields. On the other hand, they use various ren-

dering effects to simplify the perceived complexity of the final image, thereby

making it easier to grasp.

Depth-dependent halos One such method is depth-dependent halos [Everts et

al 09].7 The key idea of this method is simple (see Figure 6.37): Given a set of

streamlines, represented as curves, the method creates polygon strips of small

constant width Δ, centered around the individual streamlines. These strips are

similar to stream ribbons (Section 6.5.4). However, in contrast to ribbons, they

are oriented parallel to the viewing plane, using a technique known as billboard-

ing . Also, their depth is modulated linearly from being equal to the depth

coordinates of the visualized streamlines to a slightly lower value. The effect is

similar to constructing a rooftop-like shape that follows the streamlines and is

orthogonal to the viewing direction. Additionally, the strips are textured with a

one-dimensional monochrome texture that assigns a fixed base color (black) to a

narrow band δ around the center (streamline location) and white to the rest (see

Figure 6.37 bottom). When rendering these strips with standard depth-buffering

enabled, the overall effect is that strips which are close to each other than the

value δ get visually merged and appear as a single compact shape rendered in

the base color. Strips which are farther away from each other than δ in terms of

depth, however, will show a distinct “halo,” as strips closer to the viewer visibly

obscure further strips and get delineated by a white border.

Figure 6.37 bottom illustrates the overall effect: Here, seven strips are ren-

dered (A..G). The black rooftop shapes correspond to the base color areas on

their textures, and the gray lines show the white texture areas. The strips A..C

are both close to each other in screen space and close in terms of depth. As

7A software implementation and example datasets of depth-dependent halos are available
at http://tobias.isenberg.cc/VideosAndDemos/Everts2009DDH.
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Figure 6.37. Depth-dependent halos for the visualization of 3D vector fields.

such, they appear on the screen as a single compact black fragment (F1 in the

figure). The strips D..G are also close to each other in both screen and depth

space, so they also appear as a compact fragment (F2 in the figure). However,

the strip group A..C is, seen as a whole, in front of the strip group D..G, so it

creates a white halo around it, which makes it possible to separate it from the

latter group. Changing the viewpoint by standard user interaction considerably

strengthens the separation effect, so that one effectively sees different layers of

streamlines located at different depths.

Figure 6.37 (top) illustrates depth-dependent halos for two 3D vector field

datasets. The left dataset shows the same vector field used in Figure 6.20. The

right dataset shows a vector field describing the air flow in a room due to natural

convection. If we compare this image with, for instance, Figure 6.20, we notice

that depth-dependent halos can show a much larger amount of streamlines, with

limited clutter and good depth perception, even if the rendering is monochrome.

Also, we see in both images in Figure 6.20 how streamlines which are close to

each other get locally merged into thick black “bundles,” thereby creating an

effective image-space simplification and clutter reduction of the rendering. As
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this method only uses two colors, it can be used, in contrast to most methods

described so far in this chapter, for the production of high-quality illustrations

for monochrome print targets. A second application of depth-dependent halos

for the visualization of tensor fields is discussed further in Section 7.7.

6.9 Conclusion
In this chapter, we have presented a number of visualization methods for vector

fields. Given the large variety of techniques, but also the difference in focus and

goal of the many application domains where vector field visualizations are used,

it is hard to provide a simple and uniform classification of these visualization

methods. In terms of both visual and implementation complexity, these meth-

ods range from simple visual representations supported by a straightforward

implementation, such as the vector glyphs, up to multiscale textures animated

in real time, supported by complex implementations that combine advanced

mathematics and graphics, such as the MIBFV method. In recent years, the

increase in computing and graphics-processing power have stimulated the cre-

ation of whole new families of vector field visualization techniques that exploit

animation and dense visual representations, such as textures, as opposed to the

“classical” vector field visualizations that use sparse geometric primitives, such

as glyphs, streamlines, and stream surfaces.

Another classification of vector field visualization methods is based on the

dimensionality of the data domain. Two-dimensional surfaces, whether planar

or curved ones, permit a straightforward mapping to the 2D graphics viewport,

which simplifies the visualization problem. Three-dimensional volumetric vector

fields pose, in contrast, a much more challenging problem, due to the inherent

occlusion of the visualization primitives, especially in the case of dense visual-

izations. When one adds the time dimension, the problem becomes even more

challenging. Animation is an intuitive means of representing the time-dependent

aspect.

Being able to visually follow complex 3D flow animations and discern all

events of interest that take place in such processes is a difficult problem. Mul-

tiscale methods for simplified visual representations of vector fields, which have

become increasingly interesting in the last years, are an effective answer to the

problem of data size and complexity. However, the challenge of creating insightful

visualizations of three-dimensional time-dependent vector fields describing com-

plex phenomena, far from being exhausted, is still an active area of research.



Chapter 7

Tensor Visualization

AS explained in Section 3.6.4, tensor data encode some spatial property that

varies as a function of position and direction, such as the curvature of a

three-dimensional surface at a given point and direction. Most visualization

applications deal with rank 2 symmetric tensors, so in this chapter we shall treat

only the visualization of such tensors. When represented in a global coordinate

system, such tensors are 3 × 3 matrices. Every point in a tensor dataset carries

such a matrix as its attribute data.

Tensor datasets are common in different application domains. Properties of

3D surfaces, such as curvature, can be described by curvature tensors. Material

properties in mechanical engineering, such as stress and strain in 3D volumes,

are described by stress tensors [Reddy 93]. Diffusion of water in tissues can

take place either isotropically, that is, with equal speed in every direction, or

anisotropically, that is, with different speeds in different directions. For example,

in human brain tissue, diffusion is stronger in the direction of the neural fibers

and weaker across the fibers. These fibers, consisting of bundles of axons, are

also known as white matter , given the characteristic color of the myelin layer

covering them. At a given point in the tissue volume, diffusion can be described

by a 3 × 3 diffusion tensor matrix. As diffusion is stronger in the direction of

the fibers, by measuring the diffusion tensor and visualizing, for example, the

direction of strongest diffusion, we can get insight into the complex structure of

neural fibers in the human brain. The measurement of the diffusion of water in

living tissues is done by a set of techniques known as diffusion tensor magnetic

resonance imaging (DT-MRI). The overall process that constructs visualizations

of the anatomical structures of interest starting from the measured diffusion data

253
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is known as diffusion tensor imaging (DTI) and is an active area of research in

scientific visualization and medical imaging. DTI techniques have been used in

the diagnosis and analysis of various types of brain diseases, and in the study

of the connection between the brain structure and functions (functional brain

anatomy).

As we saw in the previous chapter, visualizing 3D vector fields is a difficult

problem, since we have to map three independent values to a graphical repre-

sentation for every data point. In the case of a tensor field, the problem only

becomes more difficult. Now we have to visualize a complete 3 × 3 matrix for ev-

ery data point. We could try to visualize the entries of these matrices as separate

scalar fields using scalar visualization methods such as isosurfaces or color-coded

slice planes. However, this would not help us much in understanding the way the

data encoded by our tensor actually varies as a function of direction. Luckily,

tensor data has an intrinsic structure that we can exploit to produce more useful

visualizations. Computing this structure is done by a technique called principal

component analysis, as explained in the next section.

The structure of this chapter is as follows. We begin by providing in Sec-

tion 7.1 a short overview of principal component analysis. This technique is used

to process a tensor matrix and extract from it information that can directly be

used in its visualization, and forms a fundamental ingredient of many tensor

data processing and visualization algorithms. In Section 7.4, we show how the

results of the principal component analysis can be visualized using the simple

color-mapping techniques introduced in Chapter 5. Next, we show in Section 7.5

how the same data can be visualized using tensor glyphs, following the vector

visualization techniques introduced in Chapter 6. A further elaboration of the

similarities between tensors and vectors is shown in Sections 7.6 and 7.8, which

introduce streamline-like visualization techniques for tensor fields. Finally, Sec-

tion 7.9 concludes this chapter.

7.1 Principal Component Analysis
Let us consider again, for illustration purposes, the curvature tensor of a 3D

surface, which we introduced in Section 3.6.4. Consider a local coordinate system

xyz centered at a point x0 on our surface, where the z-axis coincides with n,

the surface normal at x0, and the x- and y-axes are tangent to the surface at

x0 (see Figure 3.15). Close to x0, our surface can be locally described as some

function z = f(x, y), with f(x0) = 0. We have shown that we can compute

the normal curvature at some point x0 in some direction s in the tangent plane



7.1. Principal Component Analysis 255

as the second derivative ∂2f/∂s2 of f using the two-by-two Hessian matrix of

partial derivatives of f (see Equation (3.28)). For smooth surfaces, the normal

curvature varies smoothly as the direction vector s rotates around the current

point in the tangent plane. In many applications, we are actually interested only

in the extremal (minimal and maximal) values of the curvature as a function of

the direction s. Since these directions depend only on the surface shape at a

given point, they are invariant to the choice of the local coordinate system.

How can we compute these directions? Since s is a unit direction vector, we

can write it as sT = (cosα, sinα), where α is the angle between s and the x-

axis of our local coordinate system, and the superscript T denotes a transposed

column vector. Plugging this into Equation (3.28), we get

∂2f

∂s2
= sTHs = h11 cos

2 α+ (h12 + h21) sinα cosα+ h22 sin
2 α, (7.1)

where hij are the entries of the symmetric Hessian matrix H. This expression is

maximal when its derivative with respect to α is zero. This means

−h11 cosα sinα − h12 + h21
2

(sin2 α− cos2 α) + h22 sinα cosα = 0. (7.2)

It is easy to show that Equation (7.2) is equivalent to the system of equations{
h11 cosα+ h12 sinα = λ cosα,
h21 cosα+ h22 sinα = λ sinα,

(7.3)

where λ is any real value. And Equation (7.3) can be rewritten as

Hs = λs. (7.4)

Summarizing, the directions s in the tangent plane for which the normal curva-

ture has extremal values are the solutions of Equation (7.4). For 2 × 2 matrices,

we can solve Equation (7.4) analytically, obtaining two solutions λ1 and s1 and

λ2 and s2, respectively. For this, we rewrite Hs = λs as (H − λI)s = 0 where I

is the 2 × 2 identity matrix. From linear algebra, we know this is equivalent to

the determinant of H − λI being equal to zero, as we are looking for nontrivial

solutions s �= 0. Hence, we get

det(H − λI) = 0. (7.5)

For a 2 × 2 matrix, Equation (7.5) can be solved analytically and yields our two

solutions λ1 and λ2, as follows. For any 2 × 2 matrix

A =

(
a11 a12
a21 a22

)
, (7.6)
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Figure 7.1. Principal directions of curvature for a surface.

the determinant is det(A) = a11a22 − a12a21. Using this determinant definition,

Equation (7.5) becomes

det(H − λI) = (h11 − λ)(h22 − λ) − h12h21 = 0. (7.7)

Equation (7.7) is nothing but a second-order equation in λ, whose solutions are

our eigenvalues λ1 and λ2. Plugging these into Equation (7.4) immediately yields

the corresponding s1 and s2.

Figure 7.1 shows the principal directions of the curvature tensor for a 3D

surface. The surface (shown in green) has minimal curvature in the direction s1
(shown in yellow) and maximal curvature in the direction s2 (shown in red). A

number of other directions in the tangent plane orthogonal to the surface normal

n at the considered point are shown in black. Along these directions, the surface

curvature takes values between the minimal and maximal ones.

The solutions si of Equation (7.4) are called the principal directions, or eigen-

vectors, of the tensor H. The quantity encoded in the tensor has extremal values

in these directions, equal to λi. These values are also called eigenvalues of the

tensor. Computing the eigenvalues and eigenvectors of a tensor by this technique

is called principal component analysis. One can show that, for an n×n symmetric

matrix, the principal directions are perpendicular to each other. Hence, these

directions form a local coordinate system whose axes are directions in which

the quantity encoded by the tensor, such as curvature in our example, reaches

extremal values.
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This reasoning can also be applied identically for a 3 × 3 tensor. For example,

in the case of a 3D surface given by an implicit function f(x, y, z) = 0 in global

coordinates, we have a 3 × 3 Hessian matrix of partial derivatives, as explained

in Section 3.6.4 (see Equation (3.30)). This matrix has three eigenvalues and

three eigenvectors that we compute by solving Equation (7.4). These can be

computed as follows. Given a 3 × 3 matrix H = (hij), it can be shown that the

determinant det(H − λI) is given by

det(H − λI) = λ3 − J1λ
2 + J2λ− J3, (7.8)

where the quantities J1, J2, and J3 are given by

J1 = h11 + h22 + h33,
J2 = h11h22 + h11h33 + h22h33 − h212 − h223 − h231,
J3 = 2h12h23h31 + h11h22 + h33 − h11h

2
23 − h22h

2
31 − h33h

2
12.

(7.9)

Equation (7.8) is a third-order equation in λ whose solutions are the three eigen-

values λ1, λ2, and λ3 of the tensor H . These can be computed using analytic

formulas for solving Equation (7.8). A better method to use in practice is the Ja-

cobi iteration method, which solves Equation (7.5) numerically for arbitrary-size

n× n real symmetric matrices [Press et al. 02].

If we order the eigenvalues in decreasing order λ1 > λ2 > λ3, the corre-

sponding eigenvectors e1, e2, and e3, also called the major, medium, and minor

eigenvectors, have geometric meaning: In the case of a curvature tensor, e1
and e2 are tangent to the given surface and give the directions of maximal and

minimal normal curvature on the surface, and e3 is equal to the surface normal.

What if, however, several eigenvalues are equal? For a 3 × 3 matrix, there

are three cases, as follows:

1. If λ1 > λ2 = λ3, then we can only determine the major eigenvector e1,

and the eigenvectors e2 and e3 can be any two orthogonal vectors which

are also orthogonal to e1.

2. If λ1 = λ2 > λ3, then we can only determine the minor eigenvector e3,

and the eigenvectors e1 and e2 can be any two orthogonal vectors which

are also orthogonal to e3.

3. If λ1 = λ2 = λ3, the we cannot determine any eigenvector: Any three

orthogonal vectors satisfy Equation (7.4).

Intuitively, when several eigenvalues are equal, one cannot determine prefer-

ential directions of maximal or minimal variations of the quantity encoded by
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λ1 > λ2 > 0 λ1 > 0
λ2 = 0

λ1 = λ2 > 0 λ1 = λ2 = 0
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Figure 7.2. Principal directions of the curvature tensor for various shapes. Cross sections
tangent to the eigenvectors are colored to denote the eigenvalue type. Red denotes
the major eigenvector direction; yellow denotes the minor eigenvector direction. Blue
denotes cases when the eigenvector directions are arbitrary, as eigenvalues are equal.

the tensor. Consider again a 2 × 2 matrix describing a curvature tensor for

several surfaces (see Figure 7.2). The ellipsoid surface in Figure 7.2(a) clearly

admits two orthogonal principal directions (eigenvectors) of maximal and mini-

mal curvature, respectively. In both these directions, the curvature is nonzero.

A cylinder surface also admits two such unique directions (see Figure 7.2(b)).

However, the minimal curvature (eigenvalue) is, in this case, zero. Indeed, the

cross section along this direction is a line. On a spherical surface, however, the

curvature has equal (nonzero) values in all directions, so the eigenvectors can be

any two orthogonal vectors that are tangent to the surface (Figure 7.2(c)). The

same situation happens for a plane, where, in addition, the curvature (eigenval-

ues) is also zero in all directions (Figure 7.2(d)). The same type of situation is

encountered for 3 × 3 tensors, too.

In the following sections, we describe several visualization methods for tensor

datasets. We begin with the simplest method, which visualizes the individual
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components of the tensor matrix (Section 7.2) and next detail more advanced

visualization techniques that use the results of principal component analysis.

7.2 Visualizing Components
The simplest way to visualize a tensor dataset is to treat it as a set of scalar

datasets. Given a 3 × 3 tensor matrix H , we can consider each of its nine

components hij as a separate scalar field. Figure 7.3 shows these components

for a single 2D slice taken from a brain diffusion tensor volumetric dataset.1

Each component of the tensor matrix is visualized using a grayscale colormap

that maps scalar value to luminance. Note that, for the ease of interpretation of

the images, the points that fall outside the actual tissue, i.e., correspond to air

and therefore contain noisy tensor values, have been set to a neutral uniform gray

background color. Also, note that due to the symmetry of the tensor matrix,

there are only six different images in the visualization (i.e., h12 = h21, h13 = h31,

and h23 = h32).

In general, the tensor matrix components encode the second-order partial

derivatives of our tensor-encoded quantity with respect to the global coordinate

system. Often, the orientation of this system has absolutely no deep relation

with the data variation, so these partial derivatives, taken separately, are quite

meaningless. For example, in the case of a DT-MRI dataset, the measured tensor

describes the diffusion strength of water in the brain tissue with respect to the

coordinate frame that describes the position of the patient in the scanner device.

Clearly, this coordinate frame has little to do with the actual orientation of

the anatomical structures of interest that are to be visualized. In contrast,

visualizing the eigenvectors and eigenvalues gives the directions and sizes of

extremal variations of our tensor-encoded quantity, which are independent of any

coordinate system. If extremal variations are meaningful for our problem then

visualizing these eigen-quantities can help. Visualizing the results of the principal

component analysis (PCA) analysis is discussed in the following section.

7.3 Visualizing Scalar PCA Information
A better alternative to visualizing the tensor matrix components is to focus on

data derived from these components that has a more intuitive physical signifi-

cance.

1Brain dataset courtesy of Gordon Kindlmann, Scientific Computing and Imaging Institute,
University of Utah, and Andrew Alexander, W. M. Keck Laboratory for Functional Brain
Imaging and Behavior, University of Wisconsin-Madison.
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(a) hxx (b) hxy (c) hxz

(d) hyx (e) hyy (f) hyz

(g) hzx (h) hzy (i) hzz

Figure 7.3. Visualization of the nine scalar components hij of a 3 × 3 diffusion tensor
from a DT-MRI scan.

Diffusivity. As a first example, we shall use the average of the diagonal entries
1
3
(h11 + h22 + h33). It can be shown that this quantity is equal at each point

to the mean diffusivity measured in the tissue, i.e., the average of the measured
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coronal slice

sagittal slice

axial slice

Figure 7.4. Visualization of the mean diffusivity over sagittal, axial, and coronal slices.
The small image in the lower-right corner displays the brain surface together with the
three slices for orientation purposes.

diffusion over all directions at that point.2 Figure 7.4 visualizes this scalar quan-

tity over three axis-aligned slice planes using a grayscale colormap. Apart from

the particular scalar value visualized here, using three orthogonal slice planes to

get a quick insight in a volumetric dataset is a popular technique. In medical

imaging, these planes bear special names, i.e., the sagittal, axial, and coronal

sections, respectively.

Anisotropy. Further insight can be gained by visualizing the results of principal

component analysis. Recall that the eigenvectors of a tensor give the directions

of extremal variations of the quantity encoded by the tensor in a given point,

and the corresponding eigenvalues given the values of those extremal variations.

In case of diffusion data, the eigenvalues can be used to describe the degree of

anisotropy of the tissue at a point. In an isotropic medium, all directions are

identical. In our particular case, this means the diffusivity has the same value

in all directions around a point. Anisotropic media exhibit different properties

2This quantity is also equal to the mean of the eigenvalues 1/3(λ1 + λ2 + λ3).
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in different directions. In our case, this means different diffusivities in different

directions around a point. Visualizing the anisotropy of a tensor dataset can give

valuable insight into separating the neural fibers, which are highly anisotropic,

from the rest of the tissue.

Several techniques have been proposed to estimate the anisotropy of a dif-

fusion tensor in medical imaging. All use, in one way or another, the results

of PCA on the tensor data. We will now describe a few of the best-known and

simplest-to-compute anisotropy measures.

A first set of metrics proposed by Westin [Westin et al. 97] estimates the

certainties cl, cp, and cs that a tensor has a linear, planar, or spherical shape, re-

spectively. If the tensor’s eigenvalues are λ1 ≥ λ2 ≥ λ3, the respective certainties

are
cl = λ1−λ2

λ1+λ2+λ3
,

cp = 2(λ2−λ3)
λ1+λ2+λ3

,

cs = 3λ3

λ1+λ2+λ3
.

(7.10)

The expressions of the tensor shape certainties in Equation (7.10) describe how

“far off” one eigenvalue is from the smaller ones. The division by the mean

diffusivity λ1 + λ2 + λ3 is used to normalize the estimations and obtain dimen-

sionless numbers. Intuitively, the confidence values suggest how diffusion acts

in the tissue. Imagine a spherical drop of water placed at the current point

and left to diffuse for a while. Its shape will grow faster in the directions of

high anisotropy and slower in the other directions. A visualization method that

directly uses such shapes to show the tensor eigenvalues and eigenvectors is de-

scribed in Section 7.5. For the time being, a simple way to use the anisotropy

metrics proposed previously is to directly visualize the linear certainty cl scalar

signal. High values of this metric indicate regions where the fibers are clearly

delineated. Figure 7.5(a) shows the cl certainty plotted on a 2D axial slice. The

white area in the middle outlines a highly anisotropic region, anatomically known

under the name of corpus callosum, which contains a high density of neural fibers

connecting the right and left brain hemispheres. The gray values indicate regions

of low anisotropy that correspond to the gray matter tissue in the brain.

Another frequently used measure for the anisotropy is the fractional anisotropy

[Pierpaoli and Basser 96], which is defined as

FA =

√
3

2

√∑3
i=1 (λi − μ)2

λ21 + λ22 + λ23
, (7.11)

where μ = 1
3 (λ1 + λ2 + λ3) is the mean diffusivity. Figure 7.5(b) shows the frac-
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(a) cl linear estimator (b) fractional anisotropy (c) relative anisotropy

Figure 7.5. Different anisotropy measures for diffusion tensor data.

tional anisotropy for the same dataset and slice as for the cl certainty discussed

before. Again, the corpus callosum area is clearly visible in this image.

A related measure is the relative anisotropy [Pierpaoli and Basser 96], defined

as

RA =

√
3

2

√∑3
i=1 (λi − μ)2

λ1 + λ2 + λ3
. (7.12)

Figure 7.5(c) shows the relative anisotropy for the previous dataset.

Overall, the methods presented in this section reduce the visualization of

a tensor field to that of one or more scalar quantities, such as the anisotropy,

computed from the PCA analysis performed on the tensor data. These can be

examined using any of the scalar visualization methods presented in Chapter 5,

such as color plots, slice planes, and isosurfaces.

7.4 Visualizing Vector PCA Information
In the previous section, we saw how to visualize various anisotropy metrics com-

puted from the PCA analysis of a tensor field using standard scalar visualization

methods such as color mapping. However, in many cases, we are interested in

visualizing not just the amount of anisotropy, but also the directions in which

this anisotropy takes place.

Let us start with the simpler case when we are interested only in the di-

rection of maximal variation of our tensor-encoded quantity. For this, we can
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x
y

z

Figure 7.6. Major eigenvector visualized with line glyphs colored by direction.

visualize the major eigenvector field using any of the vector visualization meth-

ods presented in Chapter 6. Figure 7.6 illustrates an application of this idea.

Here, we show a hedgehog plot of the major eigenvector over a coronal slice in

the same DT-MRI dataset used in Figure 7.3. Vectors are uniformly seeded at

all points where the accuracy of the diffusion measurements is above a certain

confidence level (similar to Figure 7.3). The hue of the vector coloring indicates

their direction. For this, we use the following simple color-mapping function:

R = |e1 · x|,
G = |e1 · y|,
B = |e1 · z|.

(7.13)

Using this function, eigenvectors along the x-axis are colored in red, vectors along

the y-axis are colored green, and vectors aligned with the z-axis of the dataset

coordinate frame are colored blue, respectively. The icon in the bottom-right

corner of Figure 7.6 illustrates the direction of color mapping. This icon has to be

interpreted as a shaded sphere, where the color of each point maps the direction

of the radial vector at that point. The luminance indicates the measurement

confidence level. Bright vectors indicate high confidence measurement areas,

whereas dark vectors indicate low confidence (noisy) measurements.
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x
y

z

Figure 7.7. Major eigenvector direction color-coded on a slice plane.

In addition to a hedgehog plot, other vector visualization techniques described

in Chapter 6 can be used. A relatively popular technique in this class is to simply

color map the major eigenvector direction. For this, we use Equation (7.13) to

color a slice plane. Figure 7.7 shows the result on a coronal slice of the same

brain dataset discussed previously. As discussed in Chapter 5, the advantage of

this technique is that it produces a relatively more densely sampled visualization

than when using hedgehogs. However, tensor datasets still have at the current

moment a relatively low resolution, typically less than 5123 voxels, which will

be visible in the color-coded slice planes, too. For example, the slice plane in

Figure 7.7 has only 148 × 160 distinct pixels.

However insightful, visualizing a single eigenvector or eigenvalue at a time

may be not enough. In many cases, the ratios of eigenvalues, rather than their

absolute values, are of interest. Consider the surface curvature example. For a

plane, both major and medium eigenvalues are zero. For a cylinder, the major

eigenvalue gives the cylinder curvature, as computed along one of the circular

surface cross sections normal to its axis, whereas the medium eigenvalue is zero,

denoting that the cylinder is flat in the direction of its axis. For a sphere, both

major and medium eigenvalues are equal, but not zero, since the curvature of

all normal cross sections passing through a point on a sphere is the same. How
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can we visualize all eigenvalues and eigenvectors of some tensor dataset together?

Several techniques try to answer this question, by building upon various elements

from the scalar and vector visualization techniques presented in the previous

chapters. These techniques are presented next.

7.5 Tensor Glyphs

The method for visualizing tensor data presented next is a generalization of

the glyph concept used for visualizing vectors (see Section 6.2). We sample the

dataset domain with a number of representative sample points. For each sample

point, we construct a tensor glyph that encodes the eigenvalues and eigenvectors

of the tensor at that point. For a 2 × 2 tensor dataset, this means encoding two

eigenvalues and two eigenvectors per sample point. To do this, we construct a 2D

ellipse whose half axes are oriented in the directions of the two eigenvectors and

scaled by the absolute values of the eigenvalues. For a 3 × 3 tensor dataset, we

construct a 3D ellipsoid that encodes the three eigenvectors and eigenvalues in a

similar manner. In both cases, the overall tensor glyph visualization algorithm

is quite simple. After performing the principal component analysis at a given

sample point, we scale the ellipsoid glyph with the eigenvalues, rotate it using a

matrix that has the eigenvectors as columns, and translate it at that point. We

repeat the process for all sample points where we want to draw tensor ellipsoids.

Figure 7.8(a) illustrates the shapes that the ellipsoid glyph can assume.3

At the triangle corners, the extremal situations are shown, when each of the

linear, planar, and spherical certainties cl, cp, and cs (see Equation (7.10)) has

maximal value of one, and the other two are zero. These situations correspond

to line, disc, and sphere glyph shapes, respectively. The in-between glyph shapes

correspond to different certainty values. Note that the triangular “glyph space”

can be parameterized by cl, cp, and cs, using the fact that cl+ cp+ cs = 1, so we

can see the different glyph shapes as reflecting different values of the certainties

and the corresponding eigenvalue ratios.

Besides ellipsoids, several other shapes can be used to encode the tensor

information, each offering a different trade-off between visual clarity and power

of expressing information. For example, we can use parallelepipeds (also called

sometimes cuboids) or cylinders instead of ellipsoids. Figures 7.8(b,c) show the

shapes such glyphs can assume for different certainties or eigenvalue ratios.

3All figures in this section are generated by the freely available Teem software by Gordon
Kindlmann [Kindlmann 06].
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(a) (b)

(c) (d)

cs=1
λ1≈λ2≈λ3

cl =1
λ1>>λ2≈λ3

cp =1
λ1≈λ2>>λ3

Figure 7.8. Different types of tensor glyphs. (a) Ellipsoids. (b) Cuboids. (c) Cylinders.
(d) Superquadrics.

Figure 7.9 demonstrates the use of various shapes to visualize a DT-MRI dif-

fusion tensor dataset. The figure shows a zoomed-in detail of the corpus callosum

structure (red glyphs). The glyphs are colored by direction, similar to the hedge-

hog visualization used in Figure 7.7. The color saturation is modulated using

the fractional anisotropy. Saturated glyphs indicate regions of high anisotropy,

whereas gray ones indicate low-anisotropy regions. In contrast to the hedgehog

visualization in the previous section, where seeds were distributed over a 2D

slice, the tensor glyphs are here seeded over a 3D region. As we can see from

this figure, smooth glyph shapes like those provided by the ellipsoids provide a

less-distracting picture than shapes with sharp edges, such as the cuboids and

cylinders.

The cuboid, ellipsoid, and cylinder glyphs each have their own advantages

and disadvantages. Cuboids are very good at clearly indicating the eigenvec-

tor directions with their facets, but thereby also fail to convey the directional

ambiguity for eigenvectors corresponding to equal eigenvalues. Cylinders clearly

convey the major eigenvector by their axis, but will brusquely rotate their shape
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(a) (b)

(c) (d)

Figure 7.9. Zoomed-in view of a DT-MRI dataset visualized with (a) ellipsoid,
(b) cuboid, (c) cylinder, and (d) superquadric glyphs.

by 90 degrees upon small eigenvalue changes (see Figure 7.8(c) middle). This

causes confusing discontinuities in the visualization. Ellipsoids do not have any

of these problems, but their two-dimensional projection does not always con-

vey a non-ambiguous 3D orientation when viewed from certain angles. To solve

this problem, superquadric glyphs have been introduced by Kindlmann [Kindl-

mann 04a]. These are defined as superquadric shapes parameterized as functions

of the planar and linear certainty metrics cl and cp, respectively [Kindlmann 04b].

If we express the superquadric shape as an implicit function q(x, y, z) = 0, the

actual superquadric glyph formulations become

q(x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩
(
y2/α + z2/α

)α/β
+ x2/β − 1 = 0, if cl ≥ cp, where

{
α = (1− cp)

γ ,
β = (1− cl)

γ ,(
x2/α + y2/α

)α/β
+ z2/β − 1 = 0, if cl < cp, where

{
α = (1− cl)

γ ,
β = (1− cp)

γ .

(7.14)
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Figure 7.8(d) shows the shapes that the superquadric glyphs can assume for

different values of the certainties. Figure 7.9(d) shows the use of superquadric

glyphs in visualizing the same tensor dataset that was targeted by cuboids,

cylinders, and ellipsoids in the same image.

Yet another tensor glyph used in practice is an axes system, formed by three

vector glyphs that separately encode the three eigenvectors scaled by their corre-

sponding eigenvalues. This is essentially nothing but visualizing three superim-

posed vector fields with vector glyphs, as described in Chapter 6. This method

may be easier to interpret for 2D datasets, where the glyph overlap is controllable

by limiting the glyph size to the distance between sample points. However, for

3D datasets, ellipsoid glyphs tend to work better than axes glyphs. The latter

simply create too much confusion due to the 3D spatial overlap, whereas the

rounded, convex ellipsoid shapes tend to be more distinguishable even when a

small amount of overlap is present. Just as for vector glyphs, scaling the tensor

ellipsoids must be done with care. Eigenvalues can have a large range, so directly

scaling the tensor ellipsoids by their values can easily lead to overlapping and/or

very thin or very flat glyphs. We can solve this problem as we did for the vector

glyphs by imposing a minimal and maximal glyph size, either by clamping or by

using a nonlinear value-to-size mapping function.

Overall, tensor glyphs are a probably one of the simplest ways to visualize

tensor datasets. However, since they produce a sampled, discontinuous image,

tensor glyph visualizations suffer from the same problems as vector glyphs. That

is, they are prone to cluttering and have a limited spatial resolution. Moreover,

in some datasets such as DT-MRI tensor fields, one is interested in specifically

emphasizing certain structures, such as neural fibers, a task that glyphs cannot

do. In the next section, we describe a method that is better suited for the

visualization of such structures.

7.6 Fiber Tracking
The use of tensor glyphs for visualizing tensor fields is analogous to that of

vector glyphs, presented in Section 6.2 for visualizing vector fields. It is therefore

natural to wonder whether one can construct counterparts to other vector field

visualization techniques for visualizing tensor data.

Streamlines are one of the most effective and popular techniques for visualiz-

ing vector fields (see Section 6.5). The question arises whether (and how) we can

use streamlines to get insight into a tensor field. Let us consider, for illustration

purposes, the particular case of a DT-MRI tensor dataset. As explained earlier
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in this chapter, regions of high anisotropy in general, and of high values of the

cl linear certainty metric in particular, correspond to neural fibers aligned with

the major eigenvector e1. If we want to visualize the location and direction of

such fibers, it is natural to think of tracking the direction of this eigenvector over

regions of high anisotropy. In order to do this, we can readily use the streamline

technique previously introduced in the context of vector fields.

A typical method for tracking fibers proceeds as follows. First, a seed region is

identified. This is a region where the fibers should intersect, so it can be detected,

e.g., by thresholding one of the anisotropy metrics presented in Section 7.3.

Second, streamlines are densely seeded in this region and traced (integrated)

both forward and backward in the major eigenvector field e1 until a desired

stop criterion is reached. The stop criterion is, in practice, a combination of

various conditions, each of which describes one desired feature of the resulting

visualization. These can contain, but are not limited to, a minimal value of

the anisotropy metric considered (beyond which the fiber structure becomes less

apparent), the maximal fiber length (just as for vector streamlines), exiting or

entering a predefined region of interest specified by the user (which can describe a

previously segmented anatomical structure), and a maximal distance from other

tracked fibers (beyond which the current fiber “strays” from a potential bundle

structure that is the target of the visualization).

After the fibers are tracked, they can be visualized using the stream tubes

technique (see Section 6.5.2), to further emphasize their geometry. Just as with

vector visualization, the constructed tubes can be colored to show the value of a

relevant scalar field, e.g., the major eigenvalue, anisotropy metric, or some other

quantity scanned along with the tensor data.

The process of tracking fibers in DT-MRI datasets is quite delicate and typ-

ically requires a fair amount of user intervention, mainly during the step of

defining the seed region. In order to assist users in this process, various inte-

grated tools have been designed that allow the interactive visualization of scalar

quantities on slices in the tensor dataset, the computation of anisotropy metrics,

and the definition of regions of interest to be used to seed the fiber tracking

process. Figure 7.10 shows a snapshot from such a tool, called Slicer.4 In the

lower part of the tool snapshot, we see three axial, sagittal, and coronal slices

displaying the fractional anisotropy metric, similar to Figure 7.5(b). The middle

slice shows, in light blue, a region of interest that has been selected by the user

based on the high anisotropy values. This region corresponds to a sagittal cross

4The images in this section have been produced using the open source Slicer 2.6 visualization
software available from National Alliance for Medical Image Computing (NA-MIC) [Slicer 13]
and the sample datasets provided with the software itself.
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Figure 7.10. Fiber tracking from a user-selected region in the corpus callosum con-
structed with the Slicer 3D medical visualization tool.

section through the corpus callosum structure in the brain. The top image in

Figure 7.10 shows again the sagittal slice together with fibers tracked from seed

points densely distributed in the region of interest. The fibers are colored by the

fractional anisotropy metric, using a blue-to-red rainbow colormap, and visual-

ized using stream tubes. The fibers end when the cl linear certainty metric falls

below a value of 0.15.

By removing the slice plane from the fiber visualization, we can analyze the

resulting fiber structure in more detail (see Figure 7.11(a)). We notice here

the symmetric fanning out of the fibers that emerge from the corpus callosum

and “radiate” into the two hemispheres of the brain. Besides these fibers, we

also notice a number of fibers whose directions are close to horizontal, which

correspond to the structure of the corpus callosum itself.

Focus and context. Fiber tracks are most useful when shown in context of the

anatomy of the brain structure being explored. Figure 7.12 illustrates this. The
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(a) (b)

Figure 7.11. (a) Fiber tracking detail of Figure 7.10. (b) Fiber clustering based on the
mean closest-point distance.

two images show two different views of a set of fiber tracks for a DT-MRI scan

of 81 × 106 × 76 voxels. The fibers are seeded densely in the region of the

corpus callosum. Fibers are colored in red and shaded using the Phong lighting

model, in order to better understand their curved positions in space. To better

understand the spatial embedding of the fibers, three elements are added: (a) a

slice plane showing the tissue density, using grayscale color mapping; (b) an

isosurface of the same scalar value, colored in yellow; and (c) ellipsoid tensor

glyphs at all fiber points where the anisotropy exceeds a user-given minimum

slice plane

isosurface

fiber tracks

Figure 7.12. Two views from a focus-and-context DTI visualization showing tensor
ellipsoids, fiber tracks, and a slice plane and isosurface of the anisotropy measure.
(Images courtesy of A. Vilanova, TU Delft, the Netherlands.)
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threshold, colored by the direction of the major eigenvector, using a directional

colormap, similar to the one shown in Figures 7.6 and 7.7. Finally, to diminish

occlusion but still display the context information, the isosurface is shown only

for the part of the dataset located behind the slice plane. The visualization

focus stays on the tensor glyphs (showing the highest-anisotropy fiber points),

in the context of the shaded fiber tracks, which themselves are shown in the

more general context of the brain anatomy provided by the slice and isosurface.

For more details on the implementation of this focus-and-context technique, we

refer to [Peeters et al. 09].

Fiber clustering. However useful, this visualization shows a large number of dis-

joint fibers. In the actual anatomy, fibers are grouped into bundles containing

quasiparallel structures. It can be interesting to construct a visualization that

mimics this behavior, as described in [O’Donnel and Westin 05]. To do this, we

first define the directional similarity of two fibers as follows. Given two fibers a

and b that are described as two 3D parametric curves a = a(t) and b = b(t) with

t ∈ [0, 1], we define the distance

d(a, b) =
1

2N

N∑
i=1

(‖a(i/N), b‖+ ‖b(i/N ), a‖), (7.15)

i.e., as the symmetric mean distance of N of sample points on a fiber to the

(closest points on) other fiber. In Equation (7.15), the expression ‖p(t), q‖ de-

notes the smallest distance between a point p(t) on a fiber and all points on the

fiber q, i.e., minτ∈[0,1] ‖p(t)− q(τ)‖. Fibers that are parallel and closely located

will yield a low distance value. The similarity is defined as the inverse of the

distance. Using this distance, the tracked fibers are next clustered in order of

increasing distance, i.e., from the most to the least similar, until the desired

number of clusters is reached. For this, the simple bottom-up hierarchical ag-

glomerative technique introduced earlier in Section 6.7.3 for vector fields can be

used. Figure 7.11(b) shows this technique of the same set of tracked fibers as in

Figure 7.11(a). Here, five user-selected clusters are shown, using a different color

for the fibers in each cluster. We notice several structures in this visualization

that correspond to fibers emerging from distinct regions of the corpus callosum.

Tracking challenges. Although similar to streamline tracing, fiber tracking poses

a number of specific problems. First, tensor data acquired via the current DT-

MRI scanning technology contains in practice considerable noise and has a sam-

pling frequency that misses several fine-scale details. Given their size, a non-

negligible number of fibers can fall in this category. In contrast, many vector
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fields in the visualization practice come from numerical simulations of physical

processes, where there is no acquisition noise involved. Moreover, tensors are not

directly produced by the scanning device, but obtained via several preprocess-

ing steps, of which principal component analysis is the last one. All these steps

introduce extra inaccuracies in the data, which have to be accounted for. To

give just an example, the PCA estimation of eigenvectors can fail if the tensor

matrices are not close to being symmetric. Even if the PCA works, fiber tracking

needs a strong distinction between the largest eigenvalue and the other two ones,

in order to robustly determine the fiber directions. Such a distinction is missing,

for example, in areas where two or more fiber bundles cross.

Fiber tracking in DT-MRI datasets is an active area of research. New tech-

niques are being designed for better and easier definition of the seed regions, as

well as more robust criteria for stopping the streamlines. New rendering tech-

niques, such as volume rendering with data-driven opacity transfer functions,

are also being developed to better convey the complex structures emerging from

the tracking process. Although fiber tracking, as a term, is mainly encountered

in the medical visualization arena, the techniques presented here can be used

for any tensor dataset, once suitable seeding and stopping criteria have been

defined.

In terms of toolkits, beside Slicer [Slicer 13] mentioned earlier in this section,

the Diffusion Toolkit [Wang et al. 13] offers a powerful suite of utilities for both

tracing fibers and visualizing the trace results from a wide range of DT-MRI

dataset types. In contrast to Slicer, which is a more general framework for

analyzing and visualizing 3D slice-based data volumes, the Diffusion Toolkit

focuses on DT-MRI datasets, and thus offers more extensive and easier to use

options for fiber tracking.

7.7 Illustrative Fiber Rendering
Apart from tracking variations, all visualization methods described in Section 7.6

draw the actual fibers as streamlines or stream tubes. While this approach is

simple to implement and gives a “raw” view on the fiber data, it has several

problems:

• Region structure: Fibers, by definition, are one-dimensional objects. How-

ever, as indicated in Section 7.3, DTI datasets contain both regions of

linear and planar anisotropy. To better understand the structure of the

DTI tensor field, we would like to see the former regions rendered with

fibers, and the latter regions rendered as surfaces.
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(a) (b) (c)

(d) (e)

Figure 7.13. Illustrative rendering of a fiber dataset (a) using alpha blending (b),
anisotropy-based blending (c), sprite textures (d), and depth-dependent-halos (e).

• Simplification: Densely-seeded fiber datasets can become highly cluttered.

This makes it hard to discern the global structure implied by the fibers.

Much like for vector fields (Section 6.7), a simplified visualization of fibers

can be useful. In particular, techniques that help understanding the rela-

tive depths of fibers in a rendering are useful.

• Context: Fibers exist in the context of a volumetric DTI scan. As such,

showing combined visualizations of fibers and tissue density can provide

more insight into the spatial distribution and connectivity patterns implied

by fibers.

We next present a set of simple step-by-step techniques that address the above

goals.

Fiber generation. We start with a DTI volume of 1283 voxels. We next densely

seed this volume and trace 150K fibers, using the Diffusion Toolkit software

[Wang et al. 13]. Each resulting fiber is represented as a polyline consisting

of an ordered set of 3D vertex coordinates. Figure 7.13(a) shows the resulting

fibers, colored with a directional colormap. Although the volume is densely

covered by fiber tracks, we clearly cannot see much structure in this image, due

to occlusion.
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Alpha blending. One simple step to reduce occlusion and see “inside” the fiber

volume is to use additive alpha blending (Section 2.5). However, to get the

expected blending results, fibers need to be sorted back-to-front as seen from

the viewing angle. One simple way to do this efficiently is to transform all

fiber vertices in eye coordinates, i.e., in a coordinate frame where the x- and

y-axes match the screen x- and y-axes, and the z-axis is parallel to the view

vector, and next to sort them based on their z value. Although sorting has to be

implemented on the CPU, e.g., using the standard C++ template library, and it

needs to be executed every time we change the viewing direction, this solution

can deliver interactive frame rates for a few million vertices on a modern PC

computer. Figure 7.13(b) shows the result for an alpha value of 0.05. Compared

to the opaque rendering in Figure 7.13(a), we now see the overall and inner fiber

structure much better.

Anisotropy simplification. Although alpha blending reduces occlusion and bet-

ter shows the fiber-set structure, it also acts in a global manner. We, however,

are specifically interested in regions of high anisotropy. To emphasize such re-

gions, we next modulate the colors of the drawn fiber points by the value of the

combined linear-and-planar anisotropy

ca = cl + cp = 1− cs =
λ1 + λ2 + 2λ3
λ1 + λ2 + λ3

(7.16)

where cl, cp, and cs are the linear, planar, and spherical anisotropy metrics

given by Equation 7.10. Figure 7.13(c) shows the result, where we render fiber

points having ca > 0.2 color-coded by direction, and all other fiber points in

gray. This image shows thus well the fiber subset which passes through regions

of linear and/or planar anisotropy, i.e., separates interesting from less interesting

fibers. Note the difference of this technique of postprocessing fibers to eliminate

uninteresting regions after tracing from the techniques presented in Section 7.6,

where we used anisotropy to select the fiber seed points. The difference is subtle,

but important: Using anisotropy to cull seed points will eliminate entire fibers

seeded in these regions. Using anisotropy to cull fiber fragments after tracing

will eliminate only fiber fragments passing through these regions. In general, the

second option represents a less aggressive culling, thus offers more chances for

meaningful fiber fragments to exist in the final visualization, without having to

be very precise in the selection of the anisotropy threshold used.

Illustrative rendering. A next step towards simplifying the rendering of the re-

sulting fiber dataset is to use various existing rendering techniques for stream-

lines. Figure 7.13(d) shows a first option. Here, we construct stream tube-like
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structures around the rendered fibers. However, instead of using the 3D space

stream tube algorithm presented in Section 6.5.2, we proceed here differently:

We densely sample all fiber polylines, and render each resulting vertex with an

OpenGL sprite primitive [Shreiner 04] that uses a small 2D texture. The tex-

ture encodes the shading profile of a sphere, i.e., is bright at the middle and

dark at the border (see Figure 7.13, top-right). The size of the texture, which is

10 by 10 pixels in Figure 7.13(d), gives the apparent thickness of the emerging

tubes. Compared to stream tubes, the advantage of this technique is that it is

much simpler to implement, and also much faster. Indeed, rather than having to

construct the complex geometry of a 3D tube surrounding each streamline, and

render the resulting set of polygons, we now only render one small 2D texture

per fiber vertex. Compared to stream tubes, the only disadvantage is that this

technique works in image space: If we zoom in, sample points will become more

far apart in screen space, thus the discrete nature of the overlapping sphere tex-

tures will become apparent. However, this problem can be easily countered by

ensuring a dense enough sampling for the visualized fibers, so that the screen-

space distance between two consecutive vertices on a fiber never exceeds half of

the texture size.

A second option for illustrative (simplified) rendering of fiber tracks entails

using the depth-dependent halos method presented for vector field streamlines

in Section 6.8. Since this method only requires a set of 3D polylines, it can

be directly applied to our fiber tracks. Figure 7.13(e) shows the result on our

fiber dataset. As for vector field streamlines, depth-dependent halos effectively

merge dense fiber regions into compact black areas, but separate fibers having

different depth by a thin white halo border. Together with interactive viewpoint

manipulation, this helps users in perceiving the relative depths of different fiber

sets. Depth-dependent halos have several subtle differences as compared to the

sprite-based visualization in Figure 7.13(d). First, halos generate a monochrome

image, while sprites generate a grayscale image, the latter showing the tubular

fiber structure in a more intuitive manner. However, halos effectively merge close

fibers into compact, same-color regions better than sprites, thereby generating

an arguably simpler visualization.

Fiber bundling. Although the illustrative rendering techniques presented above

can improve the perception of depth and apparent structure present in the fiber

set, we still have two problem that we cannot easily visually distinguish regions of

linear and planar anisotropy from each other. This issue is due to the fact, despite

the dense seed sampling used, the local fiber density is not easily controlled by

the user, but determined by the streamline tracing algorithm. A consequence
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hereof is that we cannot visually classify dense fiber regions as being (a) either

thick tubular fiber bundles or (b) planar anisotropy regions covered by fibers.

A first step towards addressing this problem is to geometrically simplify the

structure of the fiber set. For this, we apply a clustering algorithm, as follows:

Given a set of fibers, we first estimate a 3D fiber density field ρ : R3 → R
+, by

convolving the positions of all fiber vertices, or sample points, with a 3D mono-

tonically decaying kernel, such a Gaussian or convex parabolic function. Next,

we advect each sample point upstream in the normalized gradient ∇ρ/‖∇ρ‖ of

the density field, and recompute the density ρ of the new fiber sample points.

Iterating this process 10..20 times effectively shifts the fibers towards their lo-

cal density maxima. In other words, this creates compact “fiber bundles” that

describe groups of fibers which are locally close to each other. The bundling

technique used here is essentially identical to the kernel density estimation edge-

bundling (KDEEB) technique presented further in Section 11.4.2 for the sim-

plified visualization of graph datasets. The only difference is that, for fibers,

we apply the bundling process in 3D space. Figure 7.14(a) shows the bundled

fibers, rendered with directional color-coding, superimposed over the original

unbundled fibers, rendered gray. As visible, the bundled fibers occupy much less

space, thus allow a better perception of the structure of the brain connectivity

pattern they imply. We also see how the bundled fibers are positioned close to

the local density maxima of the unbundled, gray, fibers. An implementation of

fiber bundling is presented in [Böttger et al. 14].

Fiber bundling can be effectively combined with the rendering techniques

presented earlier in this section. Figure 7.14(b) illustrates this by rendering the

bundled fibers with a sprite texture to generate rube-like structures. Here, we

use a kernel of smaller radius for estimating the fiber density ρ. As visible when

compared to the colored fibers in Figure 7.14(a), the bundles exhibit now a more

complex, branching, structure. Still, the amount of empty space between the

bundled fibers and the unbundled ones is quite large, which allows a better view

inside the dataset.

However effective in reducing spatial occlusion and thereby simplifying the

resulting visualization, fiber bundling suffers from two problems. First, planar

anisotropy regions, such as the corpus callosum region that connects the left

and right brain hemispheres, is reduced to a few one-dimensional bundles. This

conveys the wrong impression (when visualizing the bundles) that this region

consists of a few tube-like structures, rather than a 2D surface. Second, and more

importantly, bundling effectively changes the positions of fibers. As such, fiber

bundles should be interpreted with great care, as they illustrate only connectivity

patterns, but have limited geometrical meaning.
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(a)

(c)

(b)

(d)

Figure 7.14. Bundled visualizations of the fiber dataset in Figure 7.13(a). (a) Isotropic
fiber bundles rendered in the context of the original fiber dataset, drawn in gray.
(b) Fiber bundles rendered as tubes. (c) Anisotropic fiber bundling. (d) Fiber bundles
rendered in the context of a volume-rendered CT scan, drawn in gray. (Data courtesy
of T. Isenberg, INRIA, France.)

To address the first problem mentioned above, we can modify the fiber

bundling algorithm as follows. Instead of using an isotropic spherical kernel

to estimate the fiber density, we can use an ellipsoidal kernel, whose axes are ori-

ented along the directions of the eigenvectors of the DTI tensor field, and scaled

by the reciprocals of the eigenvalues of the same field. The shapes of the kernels

used at different spatial points will now coincide with the shapes of the ellipsoid

glyphs used for visualizing DTI fields which were presented in Section 7.5, with

the difference that our kernels are now narrow along large eigenvectors and nar-

row along large eigenvectors. Besides this change, the remainder of the bundling

algorithm stays the same. The effect of this modification are as follows: In linear
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anisotropy regions, fibers will strongly bundle towards the local density center,

but barely shift in their tangent directions. In planar anisotropy regions, fibers

will strongly bundle towards the implicit fiber-plane, but barely shift across this

plane. Additionally, we use the values of cl and cp (Equation 7.10) to render the

above two fiber types differently. For fiber points located in linear anisotropy

regions (cl large), we render point sprites using spherical textures, as used earlier

to render tubes. For fiber points located in planar anisotropy regions (cp large),

we render 2D quads oriented perpendicular to the direction of the eigenvec-

tor corresponding to the smallest eigenvalue, i.e., tangent to the two underlying

fiber-plane. Figure 7.14(c) shows the result. In linear anisotropy regions, located

close to the fiber terminations, we see tube-like structures. In planar anisotropy

regions, such as the corpus callosum, we effectively see a planar-like structure.

Overall, the effect is to simplify the fiber-set in tubular regions, but keep the

planar regions intact.

Fiber bundling is a promising direction for the generation of simplified struc-

tural visualizations of fiber tracts for DTI fields. However, as mentioned, a major

objection is that bundles do not show the actual fiber positions, and thereby po-

tentially convey erroneous anatomical insights on the brain structure. As this

family of techniques is quite new, further field evaluations are required to analyze

the strengths and limitations of such visualizations.

Fibers in context. As already outlined, fibers do not exist in a void, but are

structures that connect parts of an anatomic structure such as a brain. It thus

is natural to augment fiber visualizations by showing the anatomical context in

which fibers exist. Figure 7.14(d) illustrates this. Here, we show fiber bundles

(shown as blue-white structures) with alpha blending together with a volume

rendering of a CT dataset of the same brain (shown in gray). Bundles are now

much easier to place in a spatial context, i.e., we can determine which are the

actual brain regions that fibers connect by correlating the structures visible in

the CT rendering with the displayed fiber bundles. One added value of this

technique is that the geometric distortion caused by bundling is now partially

compensated by showing the original, undistorted, CT scan data.

7.8 Hyperstreamlines
In the previous section, we saw how fiber tracking can be used to visualize

tensor data. Essentially, the principle of fiber tracking is based on integrating

streamlines along the major eigenvector component of the tensor field, using
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various stop criteria determined by other derived quantities from the tensor

data such as, for example, the anisotropy measure in case of DT-MRI datasets.

However, fibers do not visualize directional information from the tensor field

beyond the major eigenvector. As discussed in Section 7.1, this information

is important, as it gives directional insight in how the tensor anisotropy varies

in space. In contrast, tensor glyphs did visualize this information, but lacked,

just as their vector counterparts, the spatial continuity of streamlines. The

question arises whether we can enhance the streamline metaphor to visualize this

additional information, i.e., combine the advantages of streamlines and tensor

glyphs.

Hyperstreamlines provide an answer to this question. Their principle is quite

simple. First, we perform principal component analysis as explained in Sec-

tion 7.1 to decompose the tensor field into three eigenvector fields ei and three

corresponding scalar eigenvalue fields λ1 ≥ λ2 ≥ λ3. Next, we construct stream

tubes in the major eigenvector field e1, just as done for the fiber tracking method

described in Section 7.6. At each point along such a stream tube, we now wish

to visualize the medium and minor eigenvectors e2 and e3. For this, instead of

using a circular cross section of constant size and shape, as we did for the fiber

tracking, we now use an elliptic cross section, whose axes are oriented along the

directions of the medium and minor eigenvectors e2 and e3 and scaled by λ2 and

λ3, respectively.

Figure 7.15 illustrates this process for a hyperstreamline traced between two

points A and B in a tensor field. The local thickness of the hyperstreamlines

A

B

e2
A

e2
B

e3
A

e3
B

e1
A

e1
B

Figure 7.15. Hyperstreamline construction. The major, medium, and minor eigenvec-
tors at the hyperstreamline’s start and end points A and B are depicted in blue, red,
and green, respectively. The streamline of the major eigenvector field e1 is drawn
dashed.
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Figure 7.16. DT-MRI brain dataset visualized with hyperstreamlines colored by direc-
tion. (Image courtesy of A. Vilanova, TU Delft, the Netherlands.)

gives the absolute values of the tensor eigenvalues, whereas the ellipse shape

indicates their relative values as well as the orientation of the eigenvector frame

along a streamline. Circular cross sections indicate that the medium and minor

eigenvalues are equal. If we want to show the value of the major eigenvalue, we

can encode it as color.

Figure 7.16 shows the usage of hyperstreamlines in a diffusion tensor imaging

(DT-MRI) brain dataset. Several hyperstreamlines are seeded at a number of

locations in the dataset, following the techniques described for fiber tracking in

Section 7.6. However, instead of tracing stream tubes of circular cross section,

we now use hyperstreamlines. Color indicates the local direction of the hyper-

streamlines, following the technique discussed in Section 7.4. Tracing the hyper-

streamlines is stopped when the local anisotropy falls below a certain threshold.

This is visible in the fact that some hyperstreamlines end in large, funnel-like,

structures. At these points, the eigenvalues corresponding to the medium and

minor eigenvectors are relatively large, so the anisotropy is low, denoting a less

pronounced fiber structure.

Several variations of this construction are possible. Any of the three eigen-

vectors can be used for the hyperstreamline direction. Besides ellipses, other

shapes can be used for the cross section. For example, we can use a cross whose
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arms are scaled and rotated to represent the medium and minor eigenvectors.

In general, hyperstreamlines provide better visualizations than tensor glyphs.

However, just as for the standard streamlines, appropriate seed points and hy-

perstreamline lengths must be chosen to appropriately cover the domain, which

can be a delicate process. Moreover, scaling the cross sections must be done

with care, in order to avoid overly thick hyperstreamlines that cause occlusion

or even self-intersection. For this, we can use the same size scaling techniques

as for vector and tensor glyphs (see Section 6.2).

7.9 Conclusion
In this chapter, we have presented a number of methods for visualizing tensor

data. Starting from a 2D or 3D dataset containing 2 × 2 or 3 × 3 tensor matrices

at each sample point that typically contains second-order partial derivatives

of some quantity, we use principal component analysis (PCA) to extract the

eigenvectors and eigenvalues of the tensor data. These describe the directions of

extremal variation of the quantity encoded by the tensor. These directions are

independent of the coordinate frame in which the partial derivatives contained

in the tensor matrix have been computed. In many applications, these directions

have a particular meaning, so they are a prime input for the visualization.

Tensor data van be visualized by reducing it to one scalar or vector field,

which is then depicted by specific scalar or vector visualization techniques. These

scalar or vector fields can be the direct outputs of the PCA analysis (eigenval-

ues and eigenvectors) or derived quantities, such as various anisotropy metrics.

Alternatively, tensors can be visualized by displaying several of the PCA results

combined in the same view, such as done by the tensor glyphs or hyperstream-

lines.

Tensor visualization is an active, growing research area. Many visualization

methods have emerged that target particular application areas that have specific

questions, such as clinical investigations of DT-MRI medical datasets. These vi-

sualization methods often integrate more datasets in one single view, apart from

the tensor information, and also provide sophisticated user interaction mecha-

nisms for exploring the datasets, such as selecting regions of interest, adjusting

color transfer functions, and controlling the various parameters of the visual-

ization process. For more detailed information on these tools and techniques,

we refer to the documentation of the tools themselves [Kindlmann 06, Slicer 13,

Schroeder et al. 06, National Library of Medicine 14].
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Chapter 8

Domain-Modeling
Techniques

DOMAIN-MODELING techniques form the last class of visualization techniques.

By domain-modeling techniques, we mean those operations on datasets

that modify the sampling domain representation (e.g., the grid) but not the

sampled data. As we shall see, domain-modeling techniques can modify the ac-

tual values of the data attributes stored on a given grid, for example in the

case of resampling the data on a different grid. However, this modification does

not change the reconstructed function, so the meaning of the data attributes

stays the same, even though their internal representation may change. In this

chapter, we shall present a number of different modeling techniques: cutting

(Section 8.1), selection (Section 8.2), constructing grids from scattered points

(Section 8.3), and grid-processing techniques (Section 8.4).

8.1 Cutting
Cutting methods are domain-modeling techniques that map the data from a

given source domain to a target subdomain. Consider some function f defined

on a domain D. Given a domain D′ ∈ D, how can we compute the restriction of

f to D′? Let us now consider that f on D is represented by a sampled “source”

dataset Ds = ({pi}, {ci}, {fi}, {Φi}), as described in Section 3.3. Cutting the

domain D with the domain D′ means, essentially, resampling f from D to D′.
This implies creating a new “target” dataset D′

s = ({p′i}, {c′i}, {f ′
i}, {Φ′

i}), as

285
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described in Section 3.9.1. The grid points {p′i}, cells {c′i}, and interpolation

functions {Φ′
i} of the target dataset are all user specified, since it is up to the

user to say where to resample the source dataset. The attribute values {f ′
i} are

computed by sampling the reconstructed function f̃ of the source dataset at the

locations p′i of the target dataset, using Equation (3.2). The cutting operation

has several properties. First, the target domain is assumed to be a subset of the

source domain. More exactly, we assume the points {p′i} of the target dataset

to be contained in the cells {ci} of the source dataset. Since we use convex

cells in our datasets (see Section 3.4), this means that all cells {c′i} in the target

dataset are also contained in the cells {ci} of the source dataset. We never

attempt to evaluate the source dataset outside its sampling domain, hence the

name “cutting.” A second property of cutting is that the dimensionality of the

source and target datasets, and hence the interpolation functions Φi and Φ′
i of

the two, need not be the same. The only restriction is that the target dataset

is of equal or lower dimensionality than the source dataset, so that the latter

can be a subset of the former. For example, this means that we can cut a 3D

volume with another three-dimensional (3D) volume, a 2D curved surface, or a

1D curve.

The implementation complexity and efficiency of the cutting operation, how-

ever, depends strongly on the way we wish to define the cutting dataset. We

will now present some of the most widely used variants of the cutting operation:

extracting a brick, slicing, cutting with an implicit function, and generalized

cutting.

8.1.1 Extracting a Brick

Extracting a brick, also called bricking or extracting a volume of interest (VOI),

is a cutting operation that produces a target dataset with the same dimension-

ality as the source dataset. Moreover, the target grid points are a subset of the

source grid points, {p′i} ∈ {pi}. Bricking takes advantage of the regular structure
of sample points in uniform, structured, and rectilinear grids to efficiently imple-

ment the cutting operation. Recall from Section 3.5 that uniform, structured,

and rectilinear grids arrange their sample points in a regular axis-aligned lattice.

For a d-dimensional dataset, we can identify every sample point by d integers

n1, . . . , nd, called structured coordinates . Hence, we can easily specify the target

domain as an axis-aligned “brick” contained in the source dataset, defined by

its minimum and maximum integer coordinates (m1,M1), . . . , (md,Md), where

1 < mi < Mi < ni for all i ∈ [1, d]. This set of structured coordinates is called

the brick extent. Implementing bricking is now very simple: Given a dataset
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Figure 8.1. (a) Brick extraction. (b) Selection of cells with scalar value above 50.

that has a uniform, structured, or rectilinear grid, we produce a new dataset

that has the same grid type. In the target dataset, we copy all points, cells, and

corresponding data attributes that fall within the specified brick extent. Note

that when we use this definition of bricking, the extracted object extent is paral-

lel with the dataset extent and not the coordinate axes, and the extracted brick

contains only whole cells. Consider, for example, the case of the structured grids

shown in Figure 3.10.

Figure 8.1(a) shows a brick extracted from a volumetric magnetic resonance

imaging (MRI) scan of a human head. The dataset extent is shown by the

wireframe and the brick surface is color-mapped with the scalar values at the

respective points of the extracted brick.

8.1.2 Slicing in Structured Datasets

Slicing is a cutting operation that is very similar to bricking. Given a uniform,

rectilinear, or structured grid, we define a slice as all grid points that have one

of the structured integer coordinates n1, . . . , nd equal. Extracting a slice can be

seen as a bricking operation where the brick extent (m1,M1), . . . , (md,Md) is

equal to the grid extent for d− 1 of the dimensions, except for the slicing axis s,

where ms = Ms. Slicing a d-dimensional dataset generates a d− 1 dimensional

dataset. As explained in Chapter 3 where we introduced the geometrical and

topological dimensions of a dataset, this means that slicing creates cells of a lower

dimension, but whose vertices are points in the same three-dimensional space as
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Figure 8.2. Slicing with planes perpendicular to the x-axis (left), y-axis (middle), and
z-axis (right).

the source dataset. The most common type of slicing is extracting a set of planar

cells, or a slice, from a volumetric dataset, hence the name “slicing.” Just as

bricking, slicing is simple to implement: We iterate over all the sample points in

the slice, in order of the structured coordinates ni, i �= s that span the slice. Since

our source dataset has a uniform, rectilinear, or structured grid, these integer

coordinates directly correspond to d − 1-dimensional cells on the slice itself. In

the target dataset, we save the sample points and the d − 1-dimensional cells

on the slice plane, as well as their data attributes. In case of cell attributes, we

must create these, since we also created the cells. We can do this easily by using

the method of converting from point to cell attributes presented in Section 3.9.1.

The most common use of slicing is to extract 2D datasets from 3D volumes,

and then visualize the extracted slices by one of the 2D visualization methods,

such as color mapping or isolines for scalar data or streamlines for vector data.

Figure 8.2 shows this technique applied to three slices perpendicular to the x-, y-,

and z-axes of the same MRI scan uniform dataset as the one used in Figure 8.1.

All three slices are taken at the middle of the respective axes of the dataset. In

medical imaging, slices with these orientations are also called sagittal, axial, and

coronal slices.

If desired, slicing can reduce the dimensionality of the dataset by more than

one dimension at a time. For example, by extracting all points that share two

integer coordinates from a structured dataset, we obtain a curve parallel to one

of the integer coordinate axes. Slicing works also in higher dimensions. For

example, extracting a time step from a 4D time-dependent volumetric dataset is

equivalent to slicing the dataset with respect to the time axis.



8.1. Cutting 289

8.1.3 Implicit Function Cutting

Slicing is a powerful and widely used visualization technique, especially when

one wants to quickly browse through a large, high-dimensional dataset, without

having to resort to slower, more complex visualization methods. However, slicing,

as described previously, is limited to structured topology datasets. Moreover,

even for such datasets, slicing limits the extraction to subsets spanned by the

dataset’s integer coordinate axes.

We can generalize the slicing concept that reduces the topological dimension-

ality of a dataset to different subspaces than those spanned by integer coordinates

in structured datasets. One way to do this is to cut an arbitrary dataset with

a given lower-dimensional domain. A simple, yet powerful way to specify the

cutting domain is to use implicit functions. Given some function φ : D → R,

where D is the domain of the source dataset, we define the target, or cutting,

domain as all points p ∈ D for which φ(p) = 0. To cut the source dataset, we now

proceed as follows. First, we compute a scalar dataset Dcut that has the same

grid as the source dataset and that evaluates φ. Second, we compute a contour of

Dcut for the value zero. As explained in Section 5.3, this yields an unstructured

grid. This grid is our sampled representation of the cutting domain. Finally, we

resample the source dataset attributes on this unstructured grid, using one of

the available forms of interpolation (e.g., constant or linear), and we obtain the

desired result.

Cutting with implicit functions generalizes the axis-aligned slicing presented

in Section 8.1.2. Indeed, if we consider the implicit equation of a plane Ax+By+

Cz+D = 0 with appropriate coefficients A, B, C, and D, we immediately obtain

axis-aligned slice planes, at least for uniform and rectilinear grids. By changing

the coefficients, we can obtain slice planes oriented at arbitrary angles with no

added difficulty. Cutting through 3D volumes using more complex surfaces,

such as spheres, cylinders, quadrics, or ellipsoids, is also trivial. Finally, we

can now cut through all types of datasets, including unstructured ones. The

added cost of implicit function slicing resides in the computation of the implicit

function isosurface, which we did not need for the simpler case of slicing uniform

datasets.

8.1.4 Generalized Cutting

We can generalize the cutting technique presented in the previous sections by

allowing a target dataset of arbitrary definition. Instead of using a target dataset

defined by structured coordinates or an implicit function, we can use an arbitrary

grid, as long as its cells are contained in the source dataset. In this case, the
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cutting operation is identical to the last part of the implicit function cutting

procedure described previously. The source attributes are interpolated at the

locations of the target grid vertices (if the target dataset uses linear interpolation)

or target grid cell centers (if the target dataset uses constant interpolation).

8.2 Selection

In contrast to cutting, which projects the values of a source dataset to a target

domain, selection methods extract the data from a source dataset based on data

properties. Cutting enforces various geometrical and/or topological properties

on the target domain, since the target grid is specified by the user, but cannot

explicitly enforce any properties on the data values, as these are fully specified

by the source dataset. In contrast, selection explicitly specifies which data values

we are interested in, but cannot enforce, in general, a certain topology and/or

geometry of the shape or connectivity of the extracted dataset domain.

In the most general case, selection produces just a set of sample points and/or

cells from the source dataset for which the data-based selection criterion holds.

The simplest variant of selection produces a domain D′ that contains just the

sample points whose data values meet the selection criterion

D′ = {p ∈ D|s(p) = true}. (8.1)

Here, s : D → B is a boolean function representing the user-specified selection

operation based on the attributes of the point p.

Selecting cells. If we wish to extract cells, there are several ways to apply the

selection criterion on a cell. A cell can meet the selection criterion if one of its

vertices, all vertices, or its center point meet the selection criterion as defined for

a point. The one-vertex criterion produces more cells, essentially selecting cells

that are neighbors of the ones produced by the all-vertex selection criterion. The

center point criterion is equivalent to applying the one-point selection criterion

on a slightly different sampling grid. If cells are selected in the output dataset,

we assume these to have the same interpolation functions as in the input dataset,

since we just copied them from the input dataset. If only points are selected in

the output dataset, we actually create a scattered dataset (see Section 3.9.2).

Finally, the output dataset is assumed to have the same interpolation functions

as the input dataset, since it is essentially just a subset of the input points and/or

cells.
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Since selection generally yields an arbitrary subset of points and cells from

the input dataset, its output is an unstructured grid. Implementing selection

is relatively simple: Depending on what we want to select (points or cells), we

iterate over all the input dataset’s points or cells, apply the selection criterion,

and copy the elements that pass the criterion to the output dataset, including

their data attributes as well.

Thresholding, segmentation, and contouring. Many types of selection criteria are

used in visualization applications. Selection based on the scalar value matching

a given target value s0 produces results related to the contouring operation, as

explained later. Selection based on the scalar value being larger or equal (or

smaller or equal) than a given threshold s0 produces one (or more, depending on

the data monotonicity) compact subsets of the input dataset, also called threshold

sets. Such an operation is also known as thresholding or segmentation. A variant

of segmentation tests the scalar value against a given value range [smin, smax].

Segmentation is discussed in more detail in Chapter 9 in the context of image-

processing algorithms. In addition to using the scalar values themselves, one

can use their derivatives, too. In the case of scalar values that represent the

luminance, or intensity, of an image, selecting data points based on the derivative

values is related to edge-detection methods (see Section 9.3). Similar selection

methods can be designed that use vector, color, and tensor data attributes,

depending on the data at hand and application type.

Finally, let us mention that selection can also involve other properties than

the data attributes of the current point. Selection methods that implement

Equation (8.1) are essentially local methods, in the sense that they treat each

point or cell of the dataset separately. On one hand, this is advantageous, as

it lets us implement such methods simply by designing different types of local

selection functions s : D → B. Moreover, such selection methods can be easily

parallelized, as they treat all data points independently. However, in some cases,

we are interested in selection criteria that have a quasiglobal or global nature.

This means, on one hand, that the selection criterion needs to check more points

together to determine whether they pass or fail the test. On the other hand, the

selection will output all these points as a set instead of separately.

Such a nonlocal selection function can be described as a function s : D → D,

where s(D) = D′ ⊂ D is the result of the selection applied on the domain

D. Nonlocal selection operations occur when we must enforce the connectivity

of the resulting domain D′. For example, consider the operation “select all

connected components D′
i ⊂ D from an input domain D where the scalar values

exceed some threshold smin and whose size |D′
i| exceeds some minimal size τmin.”
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This operation essentially enhances basic thresholding with a connectivity and

minimal size condition on the resulting subsets. Implementing the minimal-size

connected components operation is described later in Section 9.4.

Figure 8.1(b) shows a selection of all cells from our sample MRI dataset

whose scalar values are greater than or equal to 50. Data values in such an MRI

scan correspond to different types of tissue. In our case, a value of 50 roughly

corresponds to skin tissue, while greater values correspond to denser tissues, such

as muscles or bone, hence the result of the selection shown in the image.

Selection is related to the contouring operation (see Section 5.3). Indeed,

selecting all cells in a dataset whose data values are equal to a given target value

τ is conceptually equivalent to producing a piecewise constant approximation of

the contour at value τ . In other words, the contour is approximated by a set of

cells, which gives it the blocky appearance visible in Figure 8.1(b). The marching

squares and marching cubes algorithms discussed in Section 5.3 will compute the

same isosurface, but use a piecewise linear approximation. In other words, the

contour is approximated by a set of planes (in 3D) or lines (in 2D). Comparing

Figures 8.1(b) and 5.17(d), the difference in quality of the two approximations

is obvious.

8.3 Grid Construction from Scattered Points
In Section 3.9.2, we described the use of scattered point interpolation as an alter-

native to grids for reconstructing a piecewise continuous function from sampled

data. Gridless methods are attractive when one has to manipulate datasets that

contain very large numbers of unstructured point samples, which have a rather

high point density. One of the uses of gridless interpolation is to render surfaces

represented as 3D dense point clouds. However attractive, gridless methods have

also several drawbacks: They trade the grid storage and management for stor-

ing and managing some type of spatial search structure for neighboring sample

points, and they use radial basis functions that are computationally more expen-

sive compared to piecewise linear basis functions. Moreover, most visualization

software packages would require the data to be in a grid-based representation of

one of the standard dataset types (see Section 3.3) before it can be processed by

the available algorithms. Direct support for processing and visualizing data in

gridless representations is not frequent. In such cases, constructing a grid from

the scattered point set is a better alternative.

There are several methods that construct grids from scattered points. These

differ in the assumptions they make about the original signal the sample points
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are coming from, the dimension they work in, and the type of cells they produce.

We will now present several such methods.

8.3.1 Triangulation Methods

Triangulation methods are probably the most-used class of methods for con-

structing grids from scattered points. Given a set of points pi (sometimes also

called sites), a triangulation method produces a grid (pi, ci) by generating a set

of cells ci that have the sample points pi as vertices. The cells ci form a tiling

of the convex hull of the point set {pi}. In other words, triangulation meth-

ods produce a grid that samples a domain D identical to the convex hull of the

triangulated point set.

Delaunay triangulations. The best-known triangulation method is the Delaunay

algorithm [de Berg et al. 00]. This method generates triangular cells ci for a set

of 2D points pi ∈ R
2 and tetrahedra for a set of 3D points pi ∈ R

3. A Delaunay

triangulation of a point set consists of a set of triangles that covers the convex

hull of the point set. An important property of a Delaunay triangulation is that

no point from the input point set {pi} lies in the circumscribed circle of any

triangle in the triangulation. Triangulations that obey this property are called

conforming Delaunay triangulations. Given a set of scattered points with data

values recorded at the point locations, using the Delaunay triangulation is the

most “natural” way to create a C1, piecewise linear, interpolation of the data

values over the convex hull of the points. To do this, we define piecewise linear

basis functions over the triangles contained in the unstructured grid generated by

the Delaunay triangulation, and use these functions to interpolate the vertex data

values, as explained in Section 3.3. Figure 8.3(a) shows a Delaunay triangulation

of a random point cloud containing 600 points. The point density is higher in

the center, which causes the creation of smaller triangles in that area. Another

example of Delauney triangulation is shown in Figure 3.12 (middle).

Voronoi diagrams. For every Delaunay triangulation, there exists an associated

geometric structure called a Voronoi diagram. A Voronoi diagram consists of

a set of convex polygonal cells in 2D and polyhedral cells in 3D, respectively.

The vertices of the Voronoi cells are the centers of the circumscribed circles of

the triangles present in the associated Delaunay triangulation. The edges of the

Voronoi cells are line segments contained in the lines perpendicular to, and pass-

ing through, the midpoints of the edges of the triangles present in the associated

Delaunay triangulation. The centers of the Voronoi cells are the vertices of the

Delaunay triangulation, i.e., the given scattered points. Figure 8.3(b) shows the
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(a) (b)

(c) (d)

Figure 8.3. (a) Delaunay triangulation and (b) Voronoi diagram of a random point
cloud. (c) Angle-constrained and (d) area-constrained Delaunay triangulations.

Voronoi diagram of the same point set whose Delaunay triangulation is given in

Figure 8.3(a).

Every location x in a Voronoi diagram is included in the Voronoi cell that has

as center the closest point p in the input point set {pi}. Hence, Voronoi diagrams

can be used to quickly find the closest point p from a given scattered point set to

a given test location x. Note that the Voronoi cells corresponding to vertices on

the convex hull of the input point set are unbounded, as they contain all points in

the 2D plane that are closest to every point on the input’s convex hull. Voronoi

diagrams are a natural way to create a C0, piecewise constant, interpolation of
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data values sampled at the scattered points, where the supports of the piecewise

constant basis functions are the Voronoi cells themselves. However, Voronoi

diagrams are not frequently used in practice to produce piecewise constant data

approximations, since the Voronoi cells can be n-sided polygons in general, as

compared to the simpler triangles of a Delaunay triangulation.

Variation of the basic techniques. Several variations of the basic Delaunay trian-

gulation idea exist. Angle-constrained triangulations enforce the triangle angles

to lie within a given range [αmin, αmax]. For many applications, the approxi-

mation quality of a triangle grid is directly related to the triangle shapes and,

consequently, to their angles. Triangles with angles close to 60 degrees provide a

higher approximation quality, hence the use of angle-constrained triangles. Fig-

ure 8.3(c) shows a triangulation of the same point set as in Figure 8.3(a), where

all angles lie between 20 and 140 degrees. To satisfy this constraint, 361 extra

points, the Steiner points (drawn in yellow), are added to the original 600 points

(drawn in red).

Area-constrained triangulations enforce a maximum triangle area and are

useful in creating a sampling of a given domain with a user-specified density,

which is in turn useful for representing signals with nonuniform variation with a

minimal number of sample points, as explained in Chapter 3. Figure 8.3(d) shows

the area-constrained triangulation of the same point set as discussed previously.

Similar to the angle constraint, the minimal area constraint forces the creation

of 1272 extra (Steiner) points. The original point set is colored in red, while the

extra points are colored in yellow. In addition to angle and area constraints,

geometric constraints can be used too. For example, the triangulation can be

forced to cover the inside area of a specified convex or concave polygon whose

vertices are part of the input point set, instead of covering the entire convex

hull of the input point set. This triangulation variant is useful in automatically

creating unstructured grids for domains with complex shapes and boundaries.

In the previous examples, we have used only the Euclidean metric to de-

fine the closest-point notion that underlies the construction of Voronoi diagrams

and corresponding Delaunay triangulations. Variants of these diagrams can be

obtained if we use other metrics. The additively weighted Euclidean metric,

where the distance to every site pi is biased by some constant value wi, yields

the Johnson-Mehl diagrams whose cell edges are hyperbolic arcs, describing the

growth of crystal cells from a set of given seed sites [Okabe et al. 92]. The

multiplicatively weighted Euclidean metric, where the distance to every site pi
is multiplied by some constant value wi, yields the Apollonius diagrams whose

cell edges are circle arcs, which are used to model plant cell growth, the tree
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coverage of areas in forests, and areas of best reception for radio transmit-

ters [Sakamoto and Takagi 88]. Voronoi diagrams based on the Manhattan

distance d(p, q) = ‖px − qx‖ + ‖py − qy‖ are used to model coverage areas of

sites such as fire or police stations in cities where the distances are measured on

a Cartesian grid.

Implementation. Delaunay triangulation and Voronoi diagram generation are in-

volved topics, whose details are beyond the scope of this book. For definitions of

and results involving Delaunay triangulations, constrained and conforming ver-

sions thereof, and other aspects of triangular mesh generation, see the excellent

survey by Bern and Eppstein [Bern and Eppstein 92].

Implementing robust, efficient, and scalable algorithms for these mesh gen-

eration methods is a complex task. Fortunately, several high-quality software

implementations for Delaunay triangulation and Voronoi diagram computation

are available in the open-source arena, such as the Triangle mesh generator

[Shewchuk 06, Shewchuk 02]. Triangle provides a rich set of Delaunay trian-

gulation algorithms, including the conforming and area, angle, and geometry

constrained variants, as well as the computation of Voronoi diagrams, and is

capable of triangulating hundreds of thousands of input points in a few seconds

and with high precision on a modern PC. All examples presented in this section

are computed with the Triangle software. Another high-quality open-source li-

brary providing Delaunay triangulation and Voronoi diagram operations is the

Gnu Triangulated Surface Library (GTS) [GTS 13]. The interface of the GTS

library is relatively more complex than that of the Triangle library. However,

the GTS library offers many extra features, such as set operations on surfaces,

multiresolution surface representation capabilities, and kd-trees for fast point

location.

8.3.2 Surface Reconstruction and Rendering

A particular use of scattered-point interpolation is to render a 3D surface that is

sampled by a point cloud. This task consists of two steps. First, we must specify

which is the actual surface that the given point cloud approximates. Second, we

must render this surface. We next discuss both steps briefly.

For every point in the point cloud, we assume we have three pieces of infor-

mation: the point’s location pi, the surface normal ni at that location, and the

average distance Ri to the neighboring points on the surface at that location.

The question is: how to construct a surface S̃ that sufficiently approximates the

original surface S that the point cloud samples? In the following sections, we

describe several approaches for this.
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Using radial basis functions. We approach this goal by first using 3D radial basis

functions (RBFs) to construct a function f̃ : R3 → R

f̃(x) =
∑
i

Φ(T−1
i (x)),∀x ∈ R

3, (8.2)

where Φ is the reference RBF in 3D and T−1
i is the world-to-reference system

coordinate transform for sample point pi. Both Φ and T−1, as well as the concept

of RBFs, are detailed in Section 3.9.2.

If our basis functions φi = Φ(T−1
i (x)) satisfy the partition of unity property

(see Equation (3.5)) over the entire domain defined by S, but not outside this

domain, then the actual surface S is the isosurface f̃(x) = 1 of the function f̃ .

We can reconstruct the surface S̃ by first computing a 3D volumetric dataset

that samples the function f̃ and then extracting and rendering the isosurface

f̃ = 1, using the marching cubes algorithm (see Section 5.3). However, this has

several disadvantages. First, we must explicitly compute, and possibly store,

the 3D dataset that samples f̃ . Second, we must extract the isosurface, using,

e.g., the marching cubes algorithm (see Section 5.3), and store it as a separate

3D unstructured mesh. This is expensive from both computational and memory

viewpoints. Third, the basis functions we use must satisfy the partition of unity

property. As discussed in Section 3.9.2, this is not the case unless the sample

points in the point set are equally spaced or special normalization measures are

taken. The last problem can be alleviated by using different ways to define

the function f̃ whose isosurface we want. A final problem is that the extracted

isosurface will actually give a double surface representation, since our function f̃

in Equation (8.2) is symmetric, i.e., does not distinguish between the inside and

outside of the surface.

Using signed distance functions. A refinement of the previous method is to use

a signed distance function. One of the first methods to do this was proposed by

Hoppe et al. [Hoppe et al. 92] and works as follows. For every point pi in the

point cloud, we compute a tangent plane Ti that approximates our surface S in

the neighborhood of pi. The plane Ti is defined by its center ci and normal ni.

Computing Ti can be done as follows. For every point pi in the point set, we

determine a neighbor set Ni = {pj|kRi ≥ ‖pj − pi‖} that contains all neighbors

of pi closer than a fraction k of the support radius Ri of pi. Next, we compute

Ti as the plane that minimizes the sum of the squared distances
∑

p∈Ni
d(p,Ti)2

to the points in Ni. It can be shown that the center ci is the centroid of the

points in Ni:

ci =

∑
p∈Ni

p

|Ni|
, (8.3)
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Figure 8.4. Scattered point cloud (left) and surface reconstruction with isosurface
(right). (Data courtesy of H. Hoppe [Hoppe et al. 92].)

where |Ni| denotes the number of points in the neighbor set Ni, and the normal

ni of Ti is the eigenvector corresponding to the smallest eigenvalue of the 3 × 3

covariance matrix of the points p ∈ Ni:

A = (ajk) =

⎛
⎝ a11 a12 a13

a21 a22 a23
a31 a32 a33

⎞
⎠ (8.4)

with the elements

ajk =

∑
p∈Ni

(pj − cji )(p
k − cki )

|Ni| − 1
. (8.5)

Here, pj denotes the jth component, or coordinate, of point p. Computing

eigenvalues and eigenvectors of matrices was discussed in Chapter 7.

Once we have the tangent planes Ti, we define a function f̃ : R3 → R+ such

that f̃(x) is the signed distance between a given point x ∈ R
3 and the tangent

plane Ti at the point pi closest to x:

f̃(x) = (x− ci) · ni. (8.6)

Finally, our desired surface S̃ is simply the isosurface f̃ = 0 of the preceding

function. Figure 8.4 illustrates this reconstruction process using signed distance

functions for a point cloud of 12,772 points representing a mannequin head.
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Figure 8.5. Mesh reconstruction from scattered points with local triangulations.

Local triangulations. Another class of methods constructs an unstructured tri-

angle mesh from a scattered point set by performing local 2D Delaunay trian-

gulations [Linsen and Prautzsch 01, Clarenz et al. 04]. These methods work as

follows (see also Figure 8.5). First, we compute a tangent plane Ti for every point

pi, using its neighbor set Ni, as described previously. Next, we project the points

in Ni on Ti and compute the 2D Delaunay triangulation Tri of these projections,
as described earlier in this section. Next, we add to our mesh those triangles

that have pi as a vertex, i.e., the triangle fan around pi. Figure 8.13 shows an

application of this method for two different point clouds. Although this method

is not guaranteed to produce a consistent triangle mesh, since it treats every

point pi separately, it usually produces meshes with no defects such as holes or

intersecting triangles. Also, this method is more memory efficient and compu-

tationally faster than the isosurface-based method first described, as it does not

need to compute a volumetric distance field first. For a point cloud of P points

in total and N points in an average neighbor set Ni, we need to perform P 2D

Delaunay triangulations of N points each. For most point clouds, values of N

ranging between 10 and 50 points give a good compromise between tangent plane

stability and geometric noise elimination (which requires larger neighborhoods)

and surface feature preservation (which requires smaller neighborhoods).

Multiple local triangulations. The local triangulation method presented above

assumes that the point cloud accurately approximates a single surface without

self-intersections. However, this is not always the case. Depending on their

creation process, point clouds may contain outlier noise, or points which do not

actually belong to the sampling of an actual surface. Where present, outliers will

corrupt the estimation of the tangent plane Ti may be inaccurate. Additionally,



300 8. Domain-Modeling Techniques

point clouds may sample a set of intersecting surfaces. In intersection regions,

we need to construct several, rather than a single, tangent plane Ti.
Both above problems can be handled if we allow our algorithm to accommo-

date several surfaces that pass through a point, and in the same time select the

most likely such surfaces. For this, we can proceed as follows. Given a point pi,

we first compute its neighbor set Ni, as described previously. Next, we construct

all triangles T = {ti} that joint points in Ni and have pi as vertex. In contrast

to the earlier triangulation method, this is not guaranteed to produce triangles

that lie in the same plane. Next, we find the most likely orientations of surface

fragments approximated by Ni, by grouping triangles in T that have similar

normals. This can be done by a simple bottom-up hierarchical agglomerative

clustering of the dataset formed by the triangle normal vectors. The emerging

triangle clusters, or patches πi, represent all surfaces that pass through Ni. If, in

this process, a point pi yields only small patches πi containing just a few trian-

gles, then pi is classified as outlier and removed. The resulting large patches πi
are finally joined into whole triangulated surfaces Si by using a flood-fill process

that groups overlapping patches (which share common triangles) in order of their

orientation similarity.

Figure 8.6 shows the results of this method. Black dots in Figure 8.6(a)

show the input point cloud which contains many noisy outliers. The several

surfaces reconstructed by the triangulation method are shown half-transparent.

(a) (b) (c)

Figure 8.6. Segmentation and reconstruction of intersecting surfaces from noisy point
clouds.
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As visible, the method can capture surfaces with complex topologies, such as

the outer and inner (cavity) surfaces shown by our model. Figure 8.6(b) shows

the reconstructed outer surface for the same input cloud. Each color indicates

a different surface component found by the method. As visible, noise points

are excluded from the reconstruction. Figure 8.6(c) shows the reconstruction of

a medial point cloud, or surface skeleton, of a shoulder-blade bone, also called

a scapula (see Section 9.4.8 for a detailed discussion of surface skeletons). As

in the first example, noisy outliers are excluded from the reconstruction, and

several smooth surface components are found. As such, this local triangulation

method can serve not just for surface reconstruction, but also for point cloud

segmentation and noisy outlier removal tasks.

Alpha shapes. Another surface reconstruction method for unoriented point sets

is provided by alpha shapes [Edelsbrunner et al. 83]. The intuition behind alpha

shapes can be best described by Edelsbrunner’s carving analogy: Assume that

the 2D or 3D space containing our point set P is filled up with ice cream,

and we have a spherical spoon of radius α, we first carve out all ice cream we

can without removing, or touching, any point. The resulting shape will have a

boundary composed of spherical pieces (in 3D) or circle arcs (in 2D). The alpha

shape corresponding to P is obtained by straightening out these curved parts

into line segments (in 2D), respectively triangles (in 3D).

Alpha shapes offer a generalization of the notion of hull , or envelope, of a set

of points representing a branching structure. Figure 8.7 illustrates this for a 2D

point set P .1 Here, points are rendered in yellow, and the circles corresponding

(a) (b) (c)

Figure 8.7. Alpha shapes of a 2D point cloud.

1Images generated with the publicly available alpha shape software at http://cgm.cs.mcgill.
ca/∼godfried/teaching/projects97/belair/alpha.html.
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(a) (b)

Figure 8.8. Alpha shapes of a 3D point cloud.

to the closest locations of our “carving spoon” to the point set P are rendered in

blue. For a value of α = ∞, we obtain the result in Figure 8.7(a). The spoon is

now a half-space, thus we cannot carve inside any concavity of P . Consequently,

the obtained alpha shape equals the convex hull of P . As we reduce the circle

radius α, increasingly less shallow concavities are captured by the alpha shape

(Figure 8.7(b). However, as visible, we cannot carve between the closely-located

branches in the top of the shape. Reducing α even further yields the alpha shape

in Figure 8.7(c). The shape now captures most of the concavities visible in P .

However, points on the perceived boundary of the shape implied by P which lie

farther apart than α will also get disconnected, as the circle can pass through

them to the interior. When α = 0, all space between the points can be carved

out, so the corresponding alpha shape is the point set P itself.

Figure 8.8 shows two alpha shapes computed for two different α values from

a point cloud obtained from a 3D scanner. The left image, obtained for a low α

value, gives a good surface reconstruction of the point set. However, as visible

in the zoom-in detail, stitches appear close to concave edges, where the α sphere

cannot penetrate. The right image, obtained for a higher α value, shows clearly

how these stitches fill up a larger part of the point set’s concavities.

Alpha shapes can be an attractive and simple-to-use surface reconstruction

method for unoriented point clouds which have a regular sampling density. Ro-

bust and easy-to-use implementations of 2D and 3D alpha shapes is provided

by the C++ Computational Geometry Algorithms Library (CGAL) [CGAL 13].

Note, however, that not all points in the cloud are guaranteed to be contained in
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the resulting surface (that is, the boundary of the alpha shape). This follows the

hull metaphor provided by alpha shapes, which compute an envelope of the input

points, and not a surface passing through all points. In particular, sharp con-

vexities or concavities can get smoothed out. Also, for nonuniform point clouds,

choosing a suitable α value that yields the desired surface, can be challenging.

However, for situations where we are not interested to compute an exact surface

approximating a point set, but an envelope thereof which captures concavities

better than the convex hull, alpha shapes are a good solution. Such an example

is discussed later in Section 11.4.2.

Ball pivoting. A different technique to reconstruct 3D surfaces from oriented

point clouds is ball pivoting [Bernardini et al. 99]. The principle of the method

is simple: Given an oriented cloud with points X = {xi} and normals N = {ni},
and a fixed radius value ρ, we first find a seed triangle Tseed having points in X

such that a 3D ball Bρ of radius ρ touching these points contains no other data

points. The edges of Tseed are added to a so-called expanding front F and Tseed
is added to the reconstructed mesh M , respectively. Next, we iteratively pivot a

ball Bρ around each edge e = (p1, p2) ∈ F so that Bρ touches p1 and p2. If the

pivoting ball hits another point q ∈ X , we distinguish three cases, as follows.

1. If q /∈M , we grow F and M to include T ′ = (p1, p2, q), i.e., remove e from

F and add (p1, q) and (p2, q) to F and T ′ to M , respectively.

2. If q ∈ M \ F , i.e., q is an interior vertex of M , we skip adding T ′ to

M (otherwise we would create a non-manifold reconstruction at q) and e

becomes a boundary edge for M .

3. If q ∈ F , we perform the operations from case (1), and also check F to

remove identical edges with opposite orientation (if any).

If the pivoting ball does not find any point q as above, then e is marked as a

boundary edge for M . The process is repeated until F is empty or contains

only boundary edges. At this point, we have obtained a connected unstructured

mesh M describing a compact surface component. After this, we repeat the

process finding another seed triangle Tseed whose vertices are not part ofM . This

reconstructs subsequent connected mesh components. The entire reconstruction

stops when we find no Tseed any longer.

Several technical details are worth mentioning. Key to the efficiency of ball

pivoting is finding points within a given radius to a seed point. This can be

efficiently done using spatial search structures such as those described in Sec-

tion 3.8.1. With such techniques, the complexity of ball pivoting is O(N) for
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Figure 8.9. Ball pivoting principle (sketched in 2D). Reconstruction is shown in red.

N input points, which makes it attractive for reconstructing large point clouds.

During the reconstruction, the normal set N is used to orient adjacent trian-

gles consistently in M . In particular, we reject, in case 1, adding triangles

T ′ = (p1, p2, q) whose normal forms an obtuse angle with the point normal at q.

Also, we reject seed triangles Tseed whose normal forms obtuse angles with any

of the vertex normals. These constraints help that the reconstructed surface M

most likely approximates the smooth surface that (X,N) sample. The radius ρ is

typically set to the average interpoint distance in X . However, for highly nonuni-

form point clouds, reconstruction artifacts can occur (see Figure 8.9): Sparsely

sampled areas will create holes in the reconstruction M , whereas concave areas

where the sampled surface’s curvature is higher than 1/ρ will not be included in

the reconstruction. Note that, apart from the above problems, the reconstruc-

tion has no problems in high-curvature convex areas or in nonuniformly sampled

areas. These problems can be partially alleviated by running the ball reconstruc-

tion several times, at each edge, for increasing values of ρ, starting from a small

ρ value.

Figure 8.10(a) shows the surface reconstruction for the point cloud discussed

in Figure 8.8 using ball pivoting. Since the input cloud has a rather uniform

point density, ball pivoting produces a high-quality surface with no holes or

artificial stitches, and which captures the details present in the input cloud. Fig-

ure 8.10(b) shows a more challenging case. Here, the point cloud contains the

sampling of several intersecting manifolds—specifically, the cloud samples a sur-

face skeleton (Section 9.4.8) of a 3D box, which is shown half-transparent in the

figure. The surface skeleton consists of 13 planar manifolds that intersect each
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holes
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Figure 8.10. Ball pivoting reconstruction of a manifold (a) and non-manifold (b) point
cloud.

other in groups of three along straight lines. Here, ball pivoting creates several

“stitches” and small gaps between the mesh reconstructions of these manifolds.

This is not unexpected, since ball pivoting is not designed to treat intersecting

manifolds. Also, ball pivoting can have problems with the consistent orientation

of some faces, in areas that contain noisy point normals. This creates apparent

twists in the resulting mesh. Although ball pivoting has such limitations, it is

still one of the simplest, fastest, and thus best-known surface reconstruction al-

gorithms in data visualization. A C implementation of ball pivoting is available

in the open source mesh processing tool MeshLab [MeshLab 14].

Poisson reconstruction. We can extend the basic idea of using distance functions

to reconstruct surfaces from point clouds presented earlier in this section in sev-

eral ways. One such way is to incorporate normal information, as follows. Given

a point cloud {xi,ni} of point locations xi and normals ni, the reconstructed

surface S can be described implicitly by a function f : R3 → R, so that f is one

inside S and zero outside. It follows that the gradient ∇f of f over f equals

the inward normal of f . Hence, reconstructing S amounts to finding a scalar

function f whose gradient best approximates the point normals ni at the sample

points xi, i.e., finding f so that

∇f � n (8.7)

at xi. If we apply the divergence operator to both sides of Equation 8.7, we

obtain

div ∇f = Δf � div n (8.8)
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(a) (b)

Figure 8.11. Poisson reconstruction of a point cloud.

where Δf is the Laplacian of f (see Section 8.4.4). Solving Equation 8.8 for

f and a given n is fortunately easy and computationally efficient. Given the

solution f , we next extract our desired surface S as the isosurface f = τ , where

τ = 1
N

∑N
i=1 f(xi) is the average value of f at all sample points xi. For imple-

mentation details, including C source code, we refer to [Kazhdan et al. 06].

Figure 8.11 shows the surface reconstruction of an oriented point cloud con-

taining 128,338 points. The left image shows the actual point cloud. The right

image shows the reconstruction result. As visible in the reconstruction image,

the Poisson method can faithfully handle highly nonuniform point samples, such

as the areas around the model’s eye and ear. However, regions where the cloud

contains points sampling intersecting manifolds, such as the hind legs, can be

altogether skipped in the reconstruction. Problems arise also in areas where

the point cloud contains large holes, such as in the case of the sampling of a

surface with boundaries. In such regions, the Poisson method will artificially

close the surface with a smooth component. This cannot be avoided, since the

reconstructed surfaces are computed via isosurfacing (see Section 5.3.2).

Surface splatting. The surface reconstruction methods presented so far produce

a surface represented as a triangular mesh, whether via the marching cubes al-

gorithm or directly by triangulating the point set. However, sometimes we need

a simple-to-implement and fast, albeit possibly less accurate, method to directly

render the surface S from the scattered points, without having to perform any ex-
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Figure 8.12. Radial basis functions for surface reconstruction.

plicit surface reconstruction. To explain how to do this, imagine the restrictions

ψi : R
2 → R of the 3D radial functions φi on our surface S (see Figure 8.12). The

3D RBFs φi have compact supports on the spheres of radii Ri, so the restrictions

ψi also have compact supports, which are the intersections of these spheres with

the surface S. If we assume the surface to be almost flat in a neighborhood of

radius Ri around every pi then the restrictions ψi are actually 2D radial basis

functions defined on the surface.

To display the surface S described by our point set, we can render the 2D

radial basis functions ψi. Just as for the 3D RBFs, the 2D RBFs ψi are trans-

formed versions of a reference 2D radial basis function that we shall call Ψ. If

Φ is a 3D Gaussian then Ψ is a 2D Gaussian, whose graph is the familiar shape

shown in our elevation plot in Chapter 2 (see Figure 2.1, for example). If Φ is a

3D constant RBF, whose support2 would be a sphere of radius R, then Ψ is a 2D

constant RBF, whose support is a disc of radius R. To draw our surface S, we
have to draw the radial domains of ψi, which are nothing but discs of radius Ri,

centered at every sample point pi and oriented in the local tangent plane to S,
which is perpendicular to the surface normal ni at pi. We can do this efficiently

by taking advantage of the rendering primitives offered by modern graphics hard-

ware. First, we regularly sample the 2D radial basis function Φ on a pixel grid

and store it as a 2D transparency texture T , where the value Φ = 1 maps to

a totally opaque pixel T = 1 and a value Φ = 0 maps to a totally transparent

pixel T = 0. The size of the texture T is taken so that T encloses the compact

support of radius R of Φ.

2The support of a function is the set of points where the function has a nonzero value.
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Next, we implement the two-dimensional equivalent of Equation (8.2) by

drawing the texture T mapped onto square polygonal supports centered at the

sample points pi, rotated to be orthogonal to the surface normals ni and scaled

to the radius Ri. For constant RBFs, this actually means drawing an opaque disc

of radius Ri at every point pi. For Gaussian RBFs, this draws a set of textures

of variable opacity. To sum these up as described in Equation (8.2), we turn on

additive alpha blending before rendering the textures. In both cases, we can use

any desired lighting model, such as the Phong model described in Chapter 2,

to compute the actual color to be used on the rendered elements. We compute

the surface lighting at the sample point locations pi only, using the available

surface normals ni at those locations. The texture T that encodes a 2D RBF is

sometimes called a splat or surfel . Hence, the previous surface reconstruction is

also called splatting. We shall encounter splatting in Section 11.4.2 in a different

setting when visualizing graph data.

Splats can encode other surface-information data necessary for the rendering

besides the normal, color, and radius. All in all, a splat is a rendering element

for a 3D surface that is analogous to the pixel, which is the rendering element

for a 2D image. If we use constant RBFs, the splats are fully opaque discs

stored as 2D textures. The splatting process is simple to implement and actually

requires no blending support, but can easily create rendering artifacts. If we use

Gaussian RBFs, the splats are variable-transparency 2D textures. However, we

must ensure that the sum of the splats’ transparencies at every rendered pixel

is exactly one. In case of nonuniform point distributions, this condition does

not hold by default. If this condition is not enforced, this leads to pixels on the

rendered surface that have transparencies below one, an artifact that is visible

as half-transparent “spots” on the surface. More sophisticated definitions of

RBFs and blending mechanisms that guarantee the partition of unity property

are possible [Ohtake et al. 03].

Figure 8.13 shows two examples that illustrate point-based rendering and

surface reconstruction from scattered points. The dragon 3D model, shown in

the lower part of the image, is rendered using both disc splats (left) and a

triangular mesh that has the same points as vertices (right) constructed by the

tangent plane method [Clarenz et al. 04]. Clearly, the two images are very similar.

The tangent plane method produces results similar in quality with ball pivoting

(compare this image with Figure 8.10(a)). The dinosaur 3D model shown in

Figure 8.13 (upper-left) is rendered using a reconstructed triangle mesh from a

scattered point set. The quality of the triangle mesh, as well as the point set

density, is visible in the detail image (Figure 8.13 (upper-right)).
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point-based rendering mesh reconstruction

mesh reconstruction mesh detail 

Figure 8.13. Point-based rendering and surface reconstruction from scattered points.

Sphere splatting. As mentioned in the previous section, surface splatting requires

careful tuning of the shapes of the 2D basis functions φi to ensure that they

satisfy the partition of unity on the surface S. In areas where this condition

does not hold, gaps will become visible in S.
An alternative reconstruction method that avoids such problems is sphere

splatting. The key idea is to compute a function f̃ using Equation 8.2, with 3D

constant RBFs Φ whose graphs are spheres of radii R, i.e., are equal to 1 for

‖x‖ < R and 0 otherwise. The reconstructed surface S is then the boundary of

the volume formed by all points where f̃ ≥ 1. To ensure that S passes through

all points pi of our point cloud, however, we need to center and scale our basis

functions φi differently than in the surface splatting case, or in other words

choose the transforms Ti differently.

To explain the solution to this problem, note that our goal is analogous with

“filling” the space between the points pi with spheres Si so that these spheres

are as large as possible. Each Si is nothing but the set of points where φi = 1.

The centers qi of these spheres and their radii Ri give then the translation,
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Figure 8.14. Sphere splatting for surface reconstruction from oriented point clouds.

respectively the scaling components of our transforms Ti. Such spheres are also

called maximally inscribed, since they are contained (inscribed) inside the point

cloud but do not go outside the cloud points. Consequently, each Si will be

tangent to at least one point pi. For the filling analogy to hold, we must first

be able to define what is “inside,” respectively “outside,” a point cloud. For

oriented point clouds where each pi also has an associated normal ni, a maximally

inscribed sphere Si, which is by definition tangent to pi, is said to be inside the

cloud if the vector pi − qi is parallel to the normal ni.

Luckily, such maximally inscribed spheres can be readily computed: Their

centers qi form the so-called medial surface, or surface skeleton, of the oriented

point cloud (see Equation 9.41). Surface skeleton computation is discussed sep-

arately in Section 9.4.8. Together with the sphere centers qi, the medial surface

also delivers the radii Ri = ‖pi − qi‖ of these spheres.

Having the sphere centers qi and radii Ri, we can now render a reconstruction

of S by rendering triangulated representations of these spheres. However, this

method is computationally quite expensive, since we need finely triangulated

spheres to obtain a high-quality reconstruction. A more efficient method is to

render screen-space representations of such spheres, as follows. For each skeleton

point qi with radius Ri, we build a viewplane-aligned quad Qi, also called a

billboard . We next texture Qi scaled to (Ri, Ri, 1) with a D ×D texture whose
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(a) (b) (c)

Figure 8.15. Sphere splatting for surface reconstruction from oriented point clouds.

texels T (u, v) encode both depth and shading of the sphere. Here, D is set to

a large value to accurately capture the rendering of such spheres, e.g., a few

hundred pixels. One way to encode depth and shading is to use RGBA textures:

The RGB bytes of T (u, v) encode the height at (u/D, v/D) of a half-sphere of

radius 1 centered in the texture (see insets in Figure 8.14). The alpha (A) texture

byte encodes the sphere color computed, e.g., with Phong shading. Next, the

quads Qi are rendered centered at their corresponding skeleton points qi, using

hidden surface removal. During rendering, we use as depth for each pixel the

RGB color value given by its texturing, to which the depth of qi to the view plane

is added. As shading for the current pixel, we use the A (alpha) texture value.

The overall effect is as if we rendered half-sphere profiles, or splats, centered at

the 3D locations qi. For example, the rendering of the two splats corresponding to

the points qi and qj in Figure 8.14 results in the green profile, as if we effectively

rendered two spheres of radii Ri and Rj centered at those points.

Figure 8.15 illustrates this method. Figure 8.15(a) shows a polygonal render-

ing of the scapula bone presented earlier in Figure 8.6(c). For illustration, we

consider the oriented point cloud {pi,ni} obtained from this polygonal mesh by

removing all triangles, keeping their vertices pi, and computing point normals

i by averaging face normals. Figure 8.15(b) shows the medial point cloud {qi}
computed from this oriented point cloud. The original polygonal mesh is shown

half-transparent around the cloud for illustration purposes. Figure 8.15(c) shows

the surface reconstruction using sphere splatting. The result is very similar to

the original polygonal mesh (Figure 8.15(a)). Zooming in, however, we can see

that the reconstructed surface is nothing but a union of rendered spheres—or,

in other words, a piecewise-constant approximation using spherical RBFs.
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The method produces results identical to those we would obtain by splat-

ting volumetric spheres in 3D space. However, we work entirely in screen and z

buffer space, so the computational cost is significantly smaller—basically render-

ing N 2D textured screen-aligned quads for a cloud having N points. When the

viewpoint is changed, the splatting is performed anew in real time, so we effec-

tively obtain a view-dependent reconstruction of S. Another attractive aspect of
sphere splatting is that it works in a fully unstructured way—the splats can be

rendered in any desired order to yield the same reconstruction result. Further

implementation details are given in [Jalba et al. 13].

Surface reconstruction from unorganized point clouds is an advanced field,

where many new algorithms emerge each year. For both theoretical and practical

information on algorithms in this field, including a comprehensive set of software

references, we point the reader to the book of Dey [Dey 06]. A recent survey of

state-of-the-art surface reconstruction methods for various types of point clouds

is given in [Chang et al. 09].

8.4 Grid-Processing Techniques

Grid-processing techniques are methods that change both the grid geometry (lo-

cations of grid sample points) and its topology (grid cells). By “grid-processing

techniques,” we mean those techniques that manipulate the grid itself, and have

no knowledge about data attributes sampled on that grid. Such grid-processing

techniques are used in many application domains besides data visualization, such

as numerical methods and simulations or computer-graphics applications. There

exist a wealth of grid-processing methods. Studying all these methods in depth

would be a standalone subject matter by itself. However, since grid processing

is important for visualization applications, we shall present a selection of some

of the most-used grid-processing methods in data visualization.

8.4.1 Geometric Transformations

Geometric transformations are domain-modeling techniques that change the po-

sition of the sample points, or grid points, but do not modify the underlying

basis functions, cells, or data attributes. These are probably the simplest grid-

processing techniques. Transformations in this class include affine operations

such as translation, rotation, and scaling, but also nonaffine operations, such as

tapering, twisting, and bending. These transformations are relatively straight-

forward, so we are not going to detail them further.
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A second type of geometric transformation changes the position of the sample

points based on the data attributes. We have encountered such techniques in

the form of warping, height plots, and displacement plots, for the visualization

of scalars (see Section 5.4) and vectors (see Section 6.4).

A third type of geometric transformation changes the position of the sample

points based on the characteristics of the grid itself. Grid-smoothing techniques

fall in this class. Given the relative importance and complexity of such tech-

niques, we describe them separately in Section 8.4.4.

8.4.2 Grid Simplification

Many visualization applications produce large datasets that take considerable

time to manipulate and store. Often, one wants to reduce the size of these

datasets, yet keep the data features that are important for the task at hand. In

this section, we discuss several methods that allow us to simplify the underlying

grid of a dataset. By “grid simplification,” we mean situations involving grids

that describe two-dimensional surfaces embedded in 3D, such as isosurfaces or

polygonal models. The more general case of simplifying n-dimensional datasets

by means of reducing the number of sample points (resampling) was discussed

in Section 3.9.1.

We make a second assumption. The simplification criteria we shall look

at here are mainly geometric, i.e., based on the shape of the grid. However,

such criteria can be adapted to include information about the data attributes

stored on the grid itself. An example of this technique is the progressive meshes

method [Hoppe 97, Hoppe 98], which is also described later in this section.

Let us first state the generic problem. Consider a surface S that is sam-

pled on a geometric grid S. As we saw in Chapters 2 and 3, the quality of

the approximation is dependent on the sampling rate, in case we use uniform

sampling. However, uniform sampling uses too many grid points in areas of low

surface curvature that can be approximated well by larger cells, i.e., fewer sample

points. Given a densely sampled grid S, the aim of geometric grid simplification

is to produce a surface S′ that contains fewer points than S but still provides a

good approximation of S. Usually, the points of S′ are a subset of the points of

S obtained by eliminating points from areas that are oversampled with respect

to the desired approximation quality. However, depending on the simplification

method, the points of the simplified model do not have to be a subset of the

original points.
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Many grid-simplification algorithms exist. The field is huge, given the appli-

cability in computer graphics, data compression, mesh storage and transmission,

shape matching, terrain visualization and rendering, and data visualization. It

is, hence, impractical to aim for a comprehensive overview of grid-simplification

methods in the current context. For the interested reader, we point to a number

of survey papers [Luebke 01, Garland 99, Heckbert and Garland 97]. We next

briefly describe a number of the main techniques used in this field, following

the classification given by Luebke: triangle mesh decimation, vertex clustering,

simplification envelopes, and progressive meshes [Luebke 01].

Triangle mesh decimation. Decimation algorithms [Schroeder et al. 92] were

originally designed to reduce the huge number of triangles produced by the

marching-cubes method (see Section 5.3). Given a triangle mesh, the algorithm

does multiple passes over the mesh vertices, checking each vertex for removal. A

vertex (and its triangle fan) are removed if the removal does not change the mesh

topology and if the resulting surface lies within a user-specified distance from

the unsimplified surface. The hole left in the mesh is then retriangulated. Dec-

imation continues until a user-specified reduction factor and/or some maximal

error criterion are met. The decimated model contains a subset of the original

mesh vertices, which is convenient for reusing the vertex information (position,

normals, color, and eventual data attributes). However, this constraint can limit

the decimation accuracy. A variant of the decimation algorithm can also handle

topological changes [Schroeder 97].

Figure 8.16 shows two grid decimation examples produced by the latter al-

gorithm. The bunny geometric model (see Figure 8.16(a)) is simplified to under

10% of the initial 36,000 grid points, yielding the result in Figure 8.16(b). As

visible from the grid rendering, the simplification works adaptively. More trian-

gles are kept in the high-curvature area around the bunny’s ear, marked red in

Figure 8.16(b) in order to preserve the surface shape. In low-curvature areas,

such as the bunny’s back, the simplification reaches its maximum. Figure 8.16(c)

shows an isosurface of the skeleton of a human hand from a CT scan. The in-

put data is a 3D uniform grid, so the marching-cubes algorithm produces an

unstructured triangle mesh with almost constant point density, since the isosur-

face points are always located on the edges of the input grid (see Section 5.3).

The isosurface is simplified to 6536 points, i.e., to less than 2% of the original

isosurface. After the simplification, surface vertex normals are computed by

cell normal averaging (see Chapter 2), which lets us create a rendering of the

isosurface (see Figure 8.16(d)) of comparable quality to the original.
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(a) (b)

(c) (d)

Figure 8.16. Decimation of a surface grid. (a) Original grid with 36,000 points and (b)
decimated grid with 3510 points. (c) Original isosurface with 373,000 points and (b)
decimated version with 6536 points.

Vertex clustering. Several algorithms simplify meshes by clustering (collapsing)

vertices. One such algorithm [Rossignac and Borrel 93] works as follows. Every

vertex gets an importance value. Vertices attached to large polygons and vertices

of high curvature are more important than vertices attached to small polygons

and vertices of low curvature. Next, a 3D grid is overlaid onto the mesh to be

simplified. All vertices within a grid cell are collapsed to a new aggregated vertex

position within that cell. The polygons whose vertices are collapsed together

become degenerate and are removed.

A different clustering algorithm, called floating-cell clustering, works as fol-

lows [Low and Tan 97]. Vertices are sorted in importance order, similar to

Rossignac and Borrel [Rossignac and Borrel 93]. A cell of user-specified size

is centered on the most-important vertex. All vertices within the cell are col-

lapsed to the most-important vertex, which becomes the center of the next cell,

and the process repeats. Different error metrics can be used to reposition this
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most-important vertex in order to ensure a simplified mesh close to the origi-

nal [Garland and Heckbert 97].

Simplification envelopes. Given a surface, we construct its simplification en-

velopes [Cohen et al. 96]. These are two copies of the surface offset at some

small distance ε from the original surface. Conceptually, the simplification en-

velopes are identical to the two components of the distance-function isosurface

described in Section 8.3.2. However, we compute the envelopes here by displac-

ing each surface vertex in the normal direction with a distance of 0.5ε for the

outer envelope and −0.5ε for the inner envelope, respectively. After building

the envelopes, vertices and triangles are iteratively removed from the original

surface, and the holes are retriangulated, similar to the decimation method dis-

cussed previously. The simplification only occurs if the simplified surface stays

between the envelopes, which guarantees that the result never deviates from the

original by more than ε. Yet, these restrictions can sometimes limit the simplifi-

cation. The implementation is quite involved, but is fortunately available to the

public [Cohen et al. 07].

Progressive meshes. A progressive mesh consists of a base mesh, created by a

sequence of edge collapse operations on a polygonal mesh, and a sequence of

vertex split operations [Hoppe 97]. A split is the dual of a collapse, and it

replaces a vertex with two edge-connected vertices, creating an extra vertex and

two extra triangles. The base mesh can be exactly transformed into the original

model via splits, and the model is transformed into the base mesh via collapses.

Intermediate versions correspond to progressive simplifications.

The collapses (simplification) are driven by an energy function. Different

types of energies can model simplifications driven by mesh geometry, normals,

and color, but also additional data attributes [Hoppe 98]. Attributes are clas-

sified as discrete, e.g., material and texture IDs, and scalar, e.g., color, normal,

and texture coordinates. All edges are put into a priority queue in decreasing

order of effect on the energy. The mesh is simplified by collapsing edges in this

order, until topological constraints prevent further simplification. The remaining

edges and triangles form the base mesh, and the (reversed) sequence of collapse

operations become the split operations.

As its name suggests, this method is able to produce a hierarchy of progres-

sively simplified meshes of high quality. Also, from a data-visualization perspec-

tive, this method is additionally attractive, as it is able to drive the simplification

effort as a function of scalar and vector data attributes, not just geometric grid

characteristics [Hoppe 99].
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8.4.3 Grid Refinement

Grid refinement is the opposite of grid simplification. Given a coarse grid G

that approximates some dataset D, refinement produces a grid G′ that also ap-

proximates D but has more sample points than the original grid G. In terms of

sampling, the refined grid G′ can be seen as a supersampling ofD as compared to

the original grid G. Grid refinement has several uses. First, rendering a refined

grid can produce a higher-quality image than rendering a coarse grid, for exam-

ple, by decreasing the banding artifacts caused by the bilinear Gouraud shading.

A second use of refinement is as a preprocessing step before applying other grid

manipulation operations. For example, smoothing, deforming, or free-editing a

refined grid gives better results as compared to performing the same operations

on a coarse grid, as the refined grid has more degrees of freedom to accommodate

the changes. Also, deformations such as strong stretching change an uniformly

sampled grid into a nonuniformly sampled one that exhibits coarsely sampled

areas. Grid refinement can be used to bring such grids back to a densely sampled

version. Finally, grid refinement can be used to (partially) reverse previous grid

simplification operations.

Following this sampling perspective, several grid-refinement methods exist.

In case the dataset D represents a surface, we can first reconstruct the surface

from the original grid G, using radial basis functions, for example, as explained

earlier in this chapter, and then sample the reconstructed surface to a denser

level than G to obtain the refined grid G′. Another approach goes directly from

G to the refined grid G′, avoiding the cost of explicitly reconstructing the dataset

D. In this latter class of methods, several variants exist. For one variant, the

points of the original grid G can be a subset of the points of the refined grid G′.
In the second variant, the points of G′ are obtained from those of G but do not

necessarily need to be a superset of them.

Loop subdivision. Refining a grid by adding extra sample points to the existing

ones is a simple but effective strategy. A simple but effective method in this

class is the Loop subdivision scheme [Loop 87, Stam 98]. For surfaces S ap-

proximated by unstructured triangular grids G, this procedure works as follows.

Each triangle T ∈ G is split into four other triangles, by adding extra vertices

at the midpoints of the edges of T . This delivers the topology of the new grid

G′. Further on, the coordinates of the initial grid’s vertices, as well as the newly

added vertices, are recomputed in order to create a grid G′ that best keeps the
features of the original surface S. Here, we distinguish four cases for a vertex v

(see also Figure 8.17):
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Figure 8.17. Loop subdivision cases.

1. New internal vertex: For a new internal vertex v′ added half-way an edge

e = (v1, v2), where e is not on the boundary of G, v′ is computed by linear

interpolation of the coordinates of v1 and v2 and of the two vertices vA
and vB of the triangles TA and TB from G which share e, as follows (see

also Figure 8.17(a)):

v′ =
3

8
v1 +

3

8
v2 +

1

8
vA +

1

8
vB . (8.9)

2. Existing internal vertex: Existing vertices v which are not on G’s boundary

(Figure 8.17(b)) are moved to a new position v′ by linearly interpolating

the positions of v and of all n vertices vi which are connected to v by

triangle edges in G, as follows:

v′ = (1− nβ)v +

n∑
i=1

βvi. (8.10)

The interpolation factor β is set to 3
8n

if n > 3, and to 3
16
, if n = 3.

3. New boundary vertex: New vertices v′ added on boundary edges e =

(v1, v2) of G (Figure 8.17(c)) are computed simply by averaging the edge’s

endpoints:

v′ =
1

2
v1 +

1

2
v2. (8.11)

4. Existing boundary vertex: Finally, existing vertices v on boundary edges

e = (v1, v2) (Figure 8.17(d)) are moved to new locations v′ via the following
linear interpolation:

v′ =
1

8
v1 +

1

8
v2 +

6

8
v. (8.12)
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(a) (b) (c)

Figure 8.18. Refining an isosurface. (a) Original grid. (b) Simplified grid. (c) Refined
grid. The zoomed-in insets show the grid quality.

Figure 8.18 shows a grid-refinement scenario using Loop subdivision. We

start with an isosurface of a human colon (Figure 8.18(a)) containing 315,600

points. As visible in the image, the isosurface exhibits strong staircasing artifacts

due to some type of nearest-neighbor approximation used at some earlier point

on the input data. We can render this isosurface using fewer data points and yet

achieve a better visual quality. First, we simplify the surface using the decimation

method discussed earlier in this chapter. The simplification yields about 13,000

points but also decreases the visual quality of the surface (see Figure 8.18(b)).

If we refine the simplified surface by Loop subdivision, we obtain a surface with

around 52,200 points and also a visibly better quality (see Figure 8.18(c)). The

final result has a sixth of the points of the initial isosurface and also arguably a

better quality and smoother appearance.

However, Loop subdivision can produce suboptimal results. Consider the tri-

angular grid in Figure 8.19(a), which has 16,031 triangles. This mesh is highly

nonuniform, that is, contains large triangles (where the surface curvature is low)

and small triangles (where the surface is highly curved, thus has more details).

The grid in Figure 8.19(b) shows the result of applying two steps of Loop subdi-

vision. This mesh contains 16, 031∗ 4 ∗ 4 = 256, 496 triangles. Subdivision nicely

refines the coarse areas from the initial mesh, such as the rhinoceros’ flanks.

However, since every triangle is split, this creates many very small-size triangles

in detail areas. These do not bring added value, but make the dataset larger,

thus more costly to store and render. This problem did not occur for the colon

dataset (Figure 8.18), since the initial mesh there was an isosurface extracted

from a uniform grid, hence all its triangles were of relatively similar size.
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(a) (b)

Figure 8.19. (a) Nonuniform surface mesh and (b) result of two Loop subdivision
steps.

Advanced subdivision tools. Just like grid simplification, refinement can also

proceed adaptively by inserting more points where the surface varies more rapidly.

As a measure of surface variation, we can use curvature or any scalar signal de-

fined on the surface. Finally, if data attributes are defined on the original surface,

these can be transferred to the refined surface by interpolation.

A very good tool for simplification and refinement of triangular and quad

grids is the Yams library, implemented in C [Frey 01]. Yams can both simplify

and refine surface meshes constrained by either a user-defined target size of the

resulting cells, or adapting the size to a user-defined scalar signal defined on the

surface. Additionally, Yams can optimize a given mesh, by moving its vertices

so that the result stays close to the input mesh but the resulting triangles are

close to equilateral triangles.

An alternative is the MeshLab open-source package [MeshLab 14]. MeshLab

provides a wide range of surface processing techniques, including but not limited

to grid simplification, refinement, remeshing, surface reconstruction from point

clouds, and mesh cleaning, e.g., removing duplicate vertices, orienting normals

consistently, non-manifold face removal). In contrast to Yams, MeshLab also

provides visualization and interactive user interface options for editing meshes,

and supports a wider range of mesh formats.

8.4.4 Grid Smoothing

Grid-smoothing methods are a separate class of geometric transformations. Grid-

smoothing methods are most often used for grids that represent 2D curved sur-

faces embedded in R
3, although they can be used also for 3D volumetric grids
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or 1D curve grids. Recall that, for such grids, we can reconstruct a piecewise

continuous surface f̃ from the grid sample points xi by using the reconstruction

formula (see Equation (3.2)) on the grid point coordinates themselves. The aim

of a grid-smoothing algorithm is to modify the positions of the grid sample points

such that the surface f̃ reconstructed by the grid becomes smoother. Intuitively,

a smooth surface is a surface that contains mostly blunt creases instead of sharp

ones. Mathematically, this can be described by a surface with a low curvature

(see Section 3.6.4 for a discussion on surface curvature). Grid-smoothing meth-

ods are useful in case the available grids contain geometric noise. This can be

due either to the way the surface was acquired or to some other grid-processing

operations that have been previously applied on the sampled surface.

A simple-to-implement grid smoothing method is the Laplacian smoothing.

At the core of this technique is the diffusion equation

∂u

∂t
− div(k∇u) = 0. (8.13)

If k is constant, this equation can be written as ∂u/∂t = kΔu. Here, Δu is

called the Laplacian of u, hence the name of the diffusion process. If u(x, y, z) is

a 3D scalar field, the Laplacian of u is defined as the sum of the second partial

derivatives of the field with respect to the variables x, y, and z, which is in turn

equal to the divergence of the gradient of the field u:

Δu = div ∇u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
. (8.14)

The simplest way to think about diffusion is as smoothing. Given some initial

signal u0 : D for t = 0, solving the diffusion equation (Equation (8.13)) describes

the smoothing of our signal u0. The time t plays the role of smoothing strength:

higher t values correspond to more smoothing. The constant k describes the

diffusivity, or diffusion strength, of the process: higher k values yield faster

smoothing. The smoothing properties of the diffusion equation are used in many

filtering applications for scalar, vector, and tensor datasets. Putting it simply,

smoothing removes the high-frequency, small-scale variations in the data, such

as small sharp spikes in a mesh or noise grains in an image. Smoothing is useful

as a preprocessing operation for data manipulations that are noise sensitive, such

as computing derivatives (see Section 3.7).

In particular, we can apply smoothing to the signal that represents the ge-

ometric coordinates of the grid. The diffusion process moves the grid vertices

in the direction that smooths out the sharp features of the grid. The diffusion

time t controls the amount of smoothing: the initial value u(t = 0) is equal to
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Figure 8.20. Laplacian smoothing principle for (a) 2D and (b) 3D geometries.

the input grid to be smoothed, whereas high t values produce strongly smoothed

grids.

Using the definitions of the derivatives on a discrete grid presented in Chap-

ter 3, it can be shown that the discrete form of Equation (8.13) on a grid con-

taining the sample points {pi} is

pn+1
i = pni + k

N∑
j=1

(qnj − pni ). (8.15)

Here, (qj)j=1..N denote the neighbors of pi, i.e., those grid points connected to

pi by edges. Equation (8.15) is solved iteratively, the superscript n denoting the

iteration number. We start with the initial grid points p0i , apply Equation (8.15)

n times, and obtain the smoothed grid points pni . Intuitively, this process shifts

every grid point toward the barycenter b = 1
N

∑N
j=1 q

n
j of its neighboring point

set. Figure 8.20(a) illustrates this for the simple case of 2D polyline geometry.

The smoothing process has the effect of flattening both convex and concave point

neighborhoods, as illustrated in Figure 8.20(b) for a 3D triangle mesh. Both the

convex area (marked by red points) and the yellow area (marked by yellow points)

get flattened out as the indicated points are moved toward the barycenter of their

neighbors. This process has the effect of decreasing the object volume, so using

too many smoothing steps must be avoided, as this can excessively shrink the

object. Also, choosing a diffusivity k that is too high can lead to self-intersecting

or other ill-conditioned meshes due to too large displacements of the grid points.

Figure 8.21 shows the Laplacian smoothing in action on an isosurface showing

a femur bone. The number of iterations combined with the diffusivity k can be

used to control the scale of details one wants to remove from a given dataset. In

Figure 8.21(c), small-scale irregularities of the original surface (Figure 8.21(a))
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Figure 8.21. Laplacian smoothing of an isosurface. (a) Original surface. (b) Surface
curvature. (c) Smoothed surface. (d) Comparison of original and smoothed surfaces.

are smoothed out in approximately 100 iterations. If more iterations are applied,

larger-scale details would disappear, which is undesirable in this case. Finally,

Figure 8.21(d) compares the initial object (green, semitransparent) with the

smoothed one (gray, opaque) after 10,000 iterations, by rendering both objects

overlapped in the same image. The smoothed object is visibly smaller than the

original in the green (convex) regions and larger in the gray (concave) ones.

Like other low-pass filtering methods, Laplacian smoothing removes both

noise and small-scale surface details. An undesired effect is that sharp surface

creases, such as the edge of the femur cross section in Figure 8.21, also get

smoothed out. Several advanced smoothing methods exist that prevent this.

For example, one can use weighted diffusion in Equation (8.13). The diffusion

coefficient k is set to be inversely proportional to the surface curvature instead

of a using constant value. Weighted diffusion has the effect of strongly flattening

small-scale noise but maintaining sharp details such as edges and creases. For

this to work, we must use a smoothed (e.g., low-pass filtered) version of the

surface curvature so that small-scale noise details are not visible in this signal.

Figure 8.21(b) shows the smoothed surface curvature for the bone model color-

coded from blue (flat) to red (maximally curved). The edge-preserving effect

can be further improved by forcing the diffusion process to be strong in the
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direction of the surface edges and weak across the edges. Anisotropic techniques

that perform this type of smoothing are an advanced subject and are described

further in specialized literature [Perona and Malik 90, Weickert 98, Bajaj and

Xu 03].

Grid-smoothing and grid-refinement methods can be effectively combined to

produce high-quality grids. A simple way to do this is to first refine the grid,

in order to create enough sample points so that the smoothing can act on a

small spatial scale, and next perform a number of smoothing steps until the

desired surface quality is reached. More efficient implementations can alternate

smoothing and refinement steps and also introduce grid-decimation steps, all in

order to redistribute the points to the optimal locations on the surface in order

to achieve the desired quality.

Grid processing is an extensive topic of research. Polygon mesh processing,

a key ingredient to all domain processing algorithms presented in this chapter,

is covered in great detail by Botsch et al. in [Botsch et al. 10]. A more general

resource for the fundamental computational geometry algorithms that underlie

all the domain processing algorithms outlined above is the book of Overmars et

al. [de Berg et al. 00].

8.5 Conclusion
Grids are a fundamental element of visualization datasets. They provide a dis-

crete representation of a compact spatial domain on which the signals to be

visualized are sampled. Grids can vary in several respects: the type of cells, the

regularity of the discretization, and the types of basis functions used to perform

interpolation on the grid.

In this chapter, we have presented a number of fundamental methods for

grid manipulation and processing. Since grids are used in visualization as a

representation of the underlying domain of a signal, these methods are referred to

as domain-modeling techniques. Cutting techniques extract a lower-dimensional

domain from a higher-dimensional one, such as when slicing a volume with a

surface, or a subdomain with the same dimensionality, such as in the case of

bricking. Selection techniques extract a set of cells or points from a dataset,

based on data properties. These techniques are useful when we are interested in

extracting a specific subset of interest from a larger dataset.

Grids can be constructed from scattered points using triangulation tech-

niques. An alternative is to use gridless techniques, e.g., using radial basis func-

tions. Triangulation has the advantage of producing a cell-based grid, which can
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be further used by all grid-based visualization methods. Gridless methods do

not require the usually complex triangulation step, require less memory because

they do not explicitly store cells, offer fast surface interpolation (rendering) using

splatting, but bear additional computational costs. Either of these techniques

can be used when we need a continuous domain representation, such as a surface,

and all we have is a set of scattered points.

Grids can be processed by a variety of operations, such as simplification,

refinement, and smoothing. These operations are especially useful when the

grid itself is the visualization target, such as when it represents a surface of

interest, e.g., produced by contouring techniques. All in all, domain modeling

techniques are an indispensable element of the visualization process, as grids are

an indispensable ingredient of datasets.
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Chapter 9

Image Visualization

IN this chapter, we give an overview of a number of image-processing tech-

niques. The term image processing refers to methods that input and output

an image. Image-processing methods belong to the earliest developments in com-

puter graphics. In the last decade, a large number of such methods have been

researched and put into practice. Such methods range from simple filtering oper-

ations that remove noise from digital photographs up to complex techniques that

extract and manipulate two-dimensional shapes from video sequences. Given the

sheer size of the field, we shall limit ourselves here to presenting only mainstream

methods that are encountered in a large class of applications, and in particular

those image-processing methods that are frequently encountered in visualization

applications.

We start our overview of image processing by describing how images are

represented in terms of datasets (Section 9.1). Next, we describe the place and

role image processing has in the visualization pipeline (Section 9.2). The main

part of this chapter details a number of image-processing algorithms that are

frequently used in data visualization (Section 9.3). Next, we describe how higher-

level representations from it, such as shapes, can be extracted and analyzed

from image data (Section 9.4). We conclude the chapter with a discussion in

Section 9.5.

9.1 Image Data Representation
2D Images. What is an image? If we start from an implementation perspective,

we shall quickly notice that virtually all computer graphics applications and

327
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graphics toolkits offer one or several data representations of images under several

names, such as bitmaps, pixmaps, textures, or RGB or grayscale images. If we

factor out the various differences related to implementation constraints, we can

say an image is a two-dimensional array, or matrix, of pixels. In the large

majority of cases, pixels have square shapes, i.e., an aspect ratio of 1 to 1. Every

image pixel contains one or several scalar values. Grayscale, or monochrome,

images contain one scalar value per pixel, whereas color images usually contain

three such scalar values, corresponding to a RGB or HSV (hue-saturation-value)

encoding of the pixel color.

In terms of the data representation concepts described in Chapter 2, an image

is thus nothing more than a uniform two-dimensional dataset (see Section 3.5.1).

Monochrome images contain one scalar attribute per pixel, indicating the lumi-

nance, or intensity, of each pixel. Color images contain one color attribute per

pixel. In practice, color is represented as a triplet of scalar attributes, which

correspond to a RGB or HSV color encoding (see Section 3.6.3). Given that the

value of a pixel is typically considered constant over the entire pixel surface, we

can say, following Section 3.2, that images use a piecewise constant interpolation

of luminance or color samples located at the pixel centers.

In practice, however, there are some important differences between repre-

senting an image by a uniform 2D dataset as described in Section 3.5.1 and the

various image implementations provided by different software toolkits or image

file formats. The main difference concerns the attribute resolution. The dataset

attributes, as described in Section 3.6, are essentially floating-point values, which

take four bytes on typical 32-bit computer architectures. Hence, a luminance or

gray value would take four bytes, whereas a RGB color represented as three floats

takes 12 bytes or 96 bits. Most imaging toolkits and image formats encode image

attributes with less precision than a full float. Usually, image formats allocate

one byte per luminance attribute, using fixed point-encoding, or three bytes (24

bits) for a color attribute in full-color images. The reason for allocating less

than a full float per attribute is practical. Given a typical photograph, humans

would not perceive the small luminance or color discretization errors caused by

the limited attribute resolution. When the attribute resolution, or number of

bits per pixel, decreases, however, color quantization errors become apparent to

the human eye.

In addition to full-color images, there exists also a separate class of image

formats called indexed or palette-based image formats. These formats do not

encode the value of the color or luminance attribute of each pixel independently.

Instead, each pixel contains an integer index into a fixed-size color palette. If

we think of this index as a scalar data attribute of each pixel, this mechanism is
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identical to the scalar-to-color mapping technique detailed in Section 5.1, where

the color palette plays the role of a colormap. Indexed image formats trade

storage cost for accuracy. Typical implementations would store an eight-bit

index per pixel into a 256-color palette. This requires three times less memory

than when storing the same image in a full-color RGB format, but provides only

256 different colors instead of 224 different colors.

From a data-visualization perspective, we would like to treat images as any

other scientific dataset. This has two implications. First, we use a full float

resolution to encode each image data attribute, instead of the less-precise 24-bit

or palette-based formats. Having this precision is essential, as we would like

to perform several operations on images without losing accuracy. Second, we

allow images to store any number (and type) of data attributes. Besides lumi-

nance or color, image datasets can store vector or tensor data attributes. This

flexibility is important in order to allow a wide range of processing operations

to take place on image data (see Section 9.3). Finally, representing images as

uniform datasets with floating-point attributes allows us to directly use many

visualization algorithms on images without any modification.

Higher-dimension images. Image datasets and image-processing operations are

not restricted to two dimensions. While two-dimensional (2D) images are still

the most common, the vast majority of image data representations and imaging

algorithms have been extended to three dimensions as well. Three-dimensional

(3D) imaging has become an indispensable tool in medical sciences, especially

in the visualization and analysis of CT and MRI datasets, so that 3D imag-

ing and data visualization have become tightly interconnected disciplines. The

visualization of 3D images, or volumes, is discussed separately in Chapter 10.

9.2 Image Processing and Visualization
Now that we have seen that images can be represented as 2D scalar-attributed

datasets, a further question to answer is: What is the place of image processing

in the visualization pipeline?

Recall the visualization pipeline, i.e., the set of operations performed on

data in order to produce meaningful pictures (see Figure 4.1). The output of

the complete pipeline is an image, which is typically displayed and analyzed

to obtain the desired insight into the visualized data. However, in some cases,

we would like to further enhance this image in order to better understand the

encoded information. Examples of operations that are applied at this stage
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involve contrast enhancement and color adjustment, which are typical image-

processing techniques. Such generic operations can be applied to any type of

image, regardless of the visualization pipeline that has been executed to produce

it. In this scenario, the imaging operations, or imaging pipeline, follow the

visualization pipeline.

However, image-processing operations can be applied also at earlier stages of

the visualization pipeline. Consider, for example, an application that produces a

2D uniform, scalar-attributed dataset at some stage of the filtering process (see

Figure 4.1). This can be, for example, a slice extracted from a medical dataset

(see Figure 5.2), a color-coded height field, or a two-dimensional flow texture

representing a vector dataset (see Figures 6.28 and 6.36). The straightforward

way to visualize such results is to map and render them using a suitable scalar-

to-color mapping. However, imaging operations can be applied at this stage

to enhance the data, e.g., by performing image segmentation (see Section 9.4.1)

followed by shape analysis (see Section 9.4). In this scenario, the imaging pipeline

is integrated as part of the visualization pipeline.

Finally, consider the case when the input data of the visualization pipeline is

an image, such as a 2D slice from a medical dataset. In this case, the visualization

and imaging pipelines become virtually the same.

9.3 Basic Imaging Algorithms
In this section, we present a number of the basic algorithms for image processing.

Although there are many other image-processing algorithms that are applied in

several areas of data visualization, we have chosen the ones included here based

on their widespread applicability and generality. As stated in the title, the focus

of this section is on basic imaging algorithms. By this, we mean those algorithms

which manipulate discretizations of two-dimensional scalar functions f : R2 → R

that are sampled on images or, in visualization terminology, uniform scalar-

valued, two-dimensional datasets. Consequently, the algorithms presented here

will have a strong signal processing flavor. Data is manipulated at the level of

its individual samples or pixels. In the next section, algorithms that manipulate

image data at the higher level of shapes are presented.

We start by presenting the elementary operations that allow enhancing of

the image contrast and brightness by applying simple transfer functions (Sec-

tion 9.3.1). Histogram equalization, a simple but useful technique in the same

class, follows (Section 9.3.2). Next, we present the technique of smoothing im-

ages by applying a Gaussian filtering operation (Section 9.3.3). We conclude this
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section with another basic image-processing operation, the detection of edges

(Section 9.3.4).

9.3.1 Basic Image Processing

In Section 5.1, we presented the color-mapping technique. As illustrated by the

example shown in Figure 5.2, color mapping creates gray values or colors from

a set of scalar values. The design of the transfer function f : R → [0, 1]n, which

maps scalars to gray values (n = 1) or RGB colors (n = 3), is essential to

producing a good visualization.

However, there are cases when we cannot perform all the desired information

extraction and enhancing within such a transfer function. One such case is in

situations when we do not have access to the visualization application that has

produced the datasets to be examined, nor to the datasets themselves. The only

data to work with is an image produced, e.g., by color mapping some scalar

dataset. A second case is when the image itself is the dataset, e.g., in the case

of landscape information acquired by aerial photography, video information ac-

quired by measurement or surveillance cameras, or X-ray photography. In all

these cases, the dataset to work with is the image itself. We shall present sev-

eral basic image-processing operations that are widely used in the visualization

practice. We confine ourselves here to operations that process each image pixel

individually and only affect its gray value or color. Such operations can be de-

scribed by functions f : [0, 1]n → [0, 1]n both for grayscale images (n = 1) and

colors (n = 3). These image-processing operations have similar expressions to

the transfer functions. Hence, there exists an overlap between the purposes and

effects that can be achieved with scalar-to-color transfer functions and color-to-

color image-processing functions. All operations presented in this section can be

used either as standalone image-processing tools or as part of the color-mapping

process.

Transfer functions. The simplest and probably also most used image-enhancement

operation consists in applying a transfer function on the pixel luminance values.

By using different function profiles, one can emphasize certain gray value ranges

or value transitions. Figure 9.1 illustrates this. In the first image (Figure 9.1(a)),

a slice from a CT scan is shown using a one-to-one mapping of the scanned value,

which reflects tissue density, to a linear grayscale ranging from black to white.

The graph under the image (Figure 9.1(a) middle) shows the transfer function

applied to the image luminance. Together with the graph, the image histogram

is shown in gray. The histogram of an image shows, for every luminance value,

the number of image pixels that have that value. In this histogram, we see two
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Figure 9.1. Image contrast enhancement. Images (top), linear histograms (middle), and
logarithmic histograms (bottom). (a) Original image. (b) Contrast-enhanced image
using nonlinear transfer function.

peaks. The leftmost one corresponds to the large number of near-black pixels

showing low intensity. The right one corresponds to the large number of gray

values showing soft tissue. The small-scale histogram variations are too small

to be visible on this graph in comparison with its maxima. Using a logarithmic

scaling of the histogram y-axis, the smaller histogram variations become more

visible (see Figure 9.1(a) bottom).1

For the original image, the transfer function is the identity function f(x) = x.

In this image, bright pixels denote hard tissues, e.g., bone, whereas dark pixels

1All image-processing examples shown in this chapter, except distance transforms and
skeletons, are computed and visualized using the freely available GIMP image-processing
tool [GIMP 14].
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denote soft tissues, e.g., fat. The darkest pixels denote air, which has the lowest

density. Suppose now that we are interested in emphasizing the hard tissues and

we are not interested in seeing the differences between the various types of soft

tissues. We can achieve this by using a transfer function as shown in the graph

in Figure 9.1(b). This function has near-zero values for the soft tissue range,

followed by a rapid transition to high values close to the maximal intensity

of 1 for input pixel intensities corresponding to the hard tissues. The result

(Figure 9.1(b) top) is an image with clearly increased contrast on which bone

tissue are clearly visible.

Different types of transfer functions can be used to address different ques-

tions. High-slope functions enhance the image contrast, while low-slope functions

attenuate it. Step functions essentially perform a selection of pixels with lumi-

nances in a given range, as detailed later in Section 9.4.1. For color images,

transfer functions can be applied separately on each image component, both for

the RGB or HSV systems (see Section 3.6.3).

9.3.2 Histogram Equalization

Images acquired by means of scanning or video technologies often exhibit low con-

trast, which makes distinguishing individual shapes and details difficult. Several

methods allow us to enhance the contrast of an image while keeping the relative

ordering of pixel luminances. The simplest way is to use a linear luminance

normalization: Given an image with effective luminance range [Imin, Imax], the

transfer function f(x) = (x − Imin)/(Imax − Imin) normalizes the luminance in

order to use the entire [0, 1] range. However, in many cases, there are just a few

pixels in an image that have a given luminance value. If such pixels have mini-

mal or maximal luminances, they will determine the outcome of the luminance

normalization while they actually have an insignificant contribution to the image

itself.

A better method to renormalize the image luminance is to use the image

histogram, which was introduced in the previous section. The histogram equal-

ization method computes a transfer function f such that the image I ′(x, y) =

f(I(x, y)) has a near-constant histogram. In other words, the histogram equal-

ization produces an image in which all luminance values cover about the same

number of pixels. This makes the image easier to visualize, as we now have

an equal distribution of luminances to look at as compared, for example, to an

image where just a few pixels would share certain luminance values, and thus be

hardly visible.
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Figure 9.2. Histogram equalization showing images (top) and their logarithmic his-
tograms (bottom). (a) Original image. (b) Image after histogram equalization.

Figure 9.2 illustrates this process for an actual data imaging and visualization

application. In this application, scientists are interested in studying the growth

of the rice plant roots. The roots, grown in a half-transparent jelly, are pho-

tographed with a high-resolution digital camera. The results (see Figure 9.2(a))

need to be analyzed in order to assess various root characteristics, such as num-

ber of branches, length of the main branches, and average length of the small

branches. In Section 9.4.7, we shall present a method that extracts a simplified

representation of the plant’s roots from the image. For this type of analysis, one

often requires the input images to have a high contrast. Histogram equalization

lets us perform this type of enhancement (see Figure 9.2). Comparing the loga-

rithmic scale histograms of the two images (see Figure 9.2(a–b) bottom), we see

that the image luminances, which were confined to a narrow area in the original

image (see Figure 9.2(a)), get spread almost evenly over the complete luminance

range [0, 1] after the equalization (see Figure 9.2(b)). Looking carefully at the

histogram, we notice that the result is not a perfect horizontal line. This is

a hard-to-avoid effect that is due to the fact we are computing histograms of

discrete image.
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i n t image [NX] [NY] ; //The input image

void histogram ( i n t image [NX] [NY] , i n t h [ SIZE ] )
{

f o r ( i n t i =0; i<SIZE ; i++) h [ i ]=0;

f o r ( i n t i =0; i<NX; i++)
f o r ( i n t j =0; i<NY; j++)

h [ image [ i ] [ j ] ]++;
}

void equa l i z e ( i n t input [NX] [NY] , i n t output [NX] [NY] )
{

i n t h [ SIZE ] ; //The histogram
i n t f [ SIZE ] ; //The transfer function

histogram ( input , h ) ; //Compute the histogram

f o r ( i n t i =0; i<SIZE ; i++) //Compute transfer function
{

f [ i ]=0;
f o r ( i n t j =0; j<=i ; j++) f [ i ] += h [ j ] ;
f [ i ] ∗= SIZE−1;

}

f o r ( i n t i =0; i<NX; i++) //Apply transfer function
f o r ( i n t j =0; j<NY; j++)

output [ i ] [ j ] = f [ input [ i ] [ j ] ] ;
}

Listing 9.1. Histogram computation and equalization.

Listing 9.1 sketches the code for computing an image histogram and using

it for histogram equalization. Here, images are represented, for simplicity, as

two-dimensional integer arrays of size NX × NY pixels, where each pixel can

have 0 . . .SIZE − 1 different gray values. The histogram of some input image

is computed and stored in an integer array int h[SIZE]. Next, we use this

histogram to construct the transfer function

f(x) = (SIZE− 1)
x∑

i=0

h[i] (9.1)

that will perform the histogram equalization [Myler and Weeks 93]. Finally, we

apply this function to all pixels of the input image.

Another use of histogram equalization is in applications where we need to

compare similar images taken under slightly different illuminations or with dif-

ferent exposure settings. By equalizing the images, direct luminance comparison

is much easier to do.
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9.3.3 Gaussian Smoothing

Many applications use images that are acquired by scanning, photography, or

video sources. In all these cases, the image data inevitably contains a small

amount of noise. There are several ways to characterize noise. Consider, for

example, a function f : R → R. Noise can be described as rapid variations of high

amplitude, or regions where higher-order derivatives of f have large values. In

signal theory, noise is characterized by its frequency. Every continuous periodic

function f(x) with period T can be written as the sum or superposition of a

potentially infinite set of sine and cosine waves of increasingly higher frequencies

and decreasing amplitudes, or strengths:

f(x) = a0 +

∞∑
n=1

an sin(ωnx) +

∞∑
n=1

bn cos(ωnx), (9.2)

where the coefficients an, bn and the frequencies ωn of the individual wave com-

ponents (n ∈ N) are defined by

ωn = n
2π

T
, (9.3)

an =
2

T

∫ T

0

f(t) sin(ωnt)dt, (9.4)

bn =
2

T

∫ T

0

f(t) cos(ωnt)dt. (9.5)

Equation (9.2) is also called the Fourier series expansion of the function f .

For smooth functions, it can be shown that, as n increases, the amplitudes an
and bn of the waves decrease. Moreover, the more terms (higher n) we use in

the Fourier series, the better we approximate the original function f . This is

illustrated in Figure 9.3. Here, we approximate a square wave f(x) consisting

of increasing, followed by decreasing, blocks by a Fourier series with a finite

number of terms. Clearly, the approximation with n− 24 terms (drawn in red)

gets closer to the original signal (drawn in black) than an approximation using

fewer (n = 10) terms. In both cases, however, the approximation cannot follow

exactly the block-like shape of the original signals. The approximation error is

apparent in the form of small-scale wavy patterns, which are known in signal

processing as ringing artifacts.

Looking at the graphs at the right of Figure 9.3, we notice that the higher

coefficients an and bn have quite small values compared to the first coefficients.
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Figure 9.3. Fourier approximation (drawn in red) of a square pulse signal (drawn in
black). Approximation with n = 10 terms (top) and n = 24 terms (bottom). The
values of the coefficients an and bn are shown in the right images.

Fourier transform. What if the signal is not periodic? Such a signal can be

thought of as having an infinite period T → ∞. This will yield a Fourier rep-

resentation with wave components of extremely densely spaced frequencies ωn

(see Equation (9.3)). In practice, this means that an and bn are no longer

discrete sequences of amplitudes, but will become continuous functions of ω,

e.g., A(ω) and B(ω). This representation, which associates two continuous real-

valued functions A(ω), B(ω) to a given spatial function f(x), is called the Fourier

transform of f(x), and can be denoted compactly as a single two-valued function

F (ω) = (A(ω), B(ω)). In practice, we usually have nonperiodic signals, so the

Fourier transform is used instead of the Fourier series. The Fourier transform is

invertible, i.e., we can use F (ω) to compute f(x). Finally, discrete versions of

both the direct and inverse Fourier transform exist for sampled signals [Ambar-

dar 06]. For efficient, freely available software implementations of these, we refer

the reader to the online resources in [Frigo 14].

The Fourier transform is an extremely useful instrument for understanding,

as well as processing, signals. Generalizing from the previous example, it can

be shown that small-scale, rapidly changing noise corresponds in the frequency

space to nonzero coefficients an or bn for high values of n (for periodic signals),

or equivalently high A(ω) or B(ω) for high ω values (for nonperiodic signals).

Intuitively, this can be explained as small-scale noise corresponding to signals

that have short periods T , which means signals with high frequencies ω.

Now that we understand this, we get an idea of how we can filter, or remove,

noise. Given a signal, removing noise of a frequency within a given frequency
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band [ωmin, ωmax] means removing, or reducing the amplitude of, the Fourier

transform for ω ∈ [ωmin, ωmax]. This can be done by multiplying the Fourier

transform components A,B with a suitable transfer function Φ(ω) → R, which

keeps the values outside the frequency band to filter but damps those in the

band. Given such a frequency transfer function Φ, filtering a function f can be

done by the following algorithm:

1. Compute the Fourier transform F = (A(ω), B(ω)) of f .

2. Multiply F by the transfer function Φ to obtain a new G = F ·Φ.

3. Compute the inverse Fourier transform G−1 to get the filtered version of f .

This method, called frequency filtering , is effective when we have a simple

and compact representation of the desired filtering in the frequency domain in

terms of our frequency transfer function Φ(ω). However, in practice, it is quite

expensive (and complex) to implement filtering in this way, as this involves

one direct and one inverse Fourier transform, which each have a complexity

of N2 logN for a discrete dataset with N samples. In many cases, there is,

luckily, a simpler way to perform filtering. This different method is based on a

fundamental signal processing result called the convolution theorem. We define

the convolution of two continuous signals f(x) and g(x) as a new function

(f ∗ g)(x) =
∫ ∞

−∞
f(t)g(x− t)dt. (9.6)

For discrete datasets {fi} and {gi}, where ≤ i ≤ N , the discrete convolution is

defined similarly as

(f ∗ g)i =
N∑

k=0

fkgN+i−k. (9.7)

Convolution for filtering. If we denote the Fourier transforms of f and g by F and

G, the convolution theorem says that the Fourier transform of the convolution

f ∗ g equals the product F · G of the corresponding Fourier transforms F and

G. Having this result, we immediately see that the filtering operation can now

be implemented much more easily by simply computing the convolution f ∗ φ of

the desired input signal f(x) with the filter function φ(x), which is the inverse

Fourier transform of the frequency transfer function Φ(ω). Using convolutions to

filter signals has the main advantage of computing the filter function φ from the

frequency transfer function Φ only once. After we have φ, we simply convolve

the input signal f with φ to filter it.
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In practice, one can classify such filter functions Φ by the type of frequency

band they damp as

• low-pass filters: increasingly damp frequencies above some maximal ωmax;

• high-pass filters: increasingly damp frequencies below some maximal ωmin;

• band-pass filters: damp frequencies within some band [ωmin, ωmax].

To remove noise, which is of high frequencies, we must use the first type of

filter. One of the most-used low-pass filters has, as a frequency transfer function,

a Gaussian function Φ centered at the origin. It can be shown that its inverse

Fourier transform φ(x) = F−1(Φ(ω)) is also a Gaussian function, or

F (e−ax2

) =

√
π

a
e−π2ω2/a. (9.8)

Hence, we can implement low-pass filtering in order to remove high-frequency

noise artifacts simply by convolving the input signal, e.g., the image, with a

Gaussian function. The width a of the Gaussian filter, in function space, controls

the amount of smoothing. Using a high a value yields a slowly decaying Gaussian

Φ(ω), i.e., performs little or no filtering. Using a low a value yields a sharply

decaying Gaussian Φ(ω), i.e., performs strong filtering. As a practical rule of

thumb, the value 1/a is a good estimate of the size of the noise features that

this filtering removes. In practice, the Gaussian φ(x) will reach very low values

beyond a certain distance x. For efficiency, we simply threshold it to zero at

that distance, hence we limit the number of samples N used to discretize it (see

Equation (9.7)). The more smoothing we want, the slower φ will decay, hence

the larger the filter size N will be. Figure 9.4 illustrates filtering an image using

a Gaussian filter. The left image was corrupted artificially by adding random

noise to it. The size of the noise features is around two pixels. The right image

shows the result after smoothing the image with a Gaussian filter with a width

1/a equal to 10 pixels. Clearly, the added noise is removed successfully, as its size

is smaller than the filter width. However, if we compare the filtered image with

the original image before the addition of noise (see Figure 9.1 (left)), we notice

that small-scale details, such as sharp image edges, have also been smoothed out

together with the noise.

In order to preserve image details but still remove undesired noise, more ad-

vanced filters can be used. A first enhancement to the Gaussian filters described

previously is to modulate the strength of the filtering, i.e., the width a of the

Gaussian function in Equation (9.8), with an estimation of the number of im-

age details at the current point. In this way, image areas containing significant
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(a) (b)

Figure 9.4. (a) Noisy image. (b) Result after filtering with a Gaussian filter.

details will be filtered less, while areas containing fewer details, thus potentially

more noise, will be filtered more. Different ways to estimate the presence of

details in the image exist. A widely used method defines details as the presence

of luminance edges, which can be detected as described next in Section 9.3.4. A

second enhancement of the preceding selective filtering is to bias not only the

filter strength, but also its shape, such that the smoothing is stronger in the direc-

tion of the image edges, and weak across the edges. This technique strengthens

the image edges while, in the same time, removing small-scale noise in relatively

smooth parts of the image. These techniques are known as anisotropic image-

filtering techniques [Perona and Malik 90]. For details on their implementation,

we refer to the specialized literature on image processing [Perona and Malik 90,

Weickert 98].

9.3.4 Edge Detection

Edges are important visual elements in images. Informally speaking, edges in

2D images can be defined as 1D curves that separate image regions of different

luminance, for grayscale images, or hues, for color images. Detecting edges in

images is an important step in the process of extracting shapes from unstructured

image data (see Section 9.4).

To better understand the issues involved in detecting edges, consider the

one-dimensional equivalent of grayscale images (see Figure 9.5). Here, we have a

function f : R → R+ that has constant low and high values except for a narrow
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Figure 9.5. Edge detection using image derivatives. Image (top), first derivative (mid-
dle), and second derivative (bottom). Edges correspond to maxima of the first deriva-
tive or, alternatively, zero-crossings of the second derivative.

band of width δ, which corresponds, in grayscale images, to the region where

edges are localized. This region corresponds to an area where the first derivative

f ′ of the function is maximal. This leads us to the first method of computing

edges in images: Given an image I, compute the image gradient ∇I, which

is equivalent to the first derivative, and select the points where the gradient

magnitude is maximal. In practice, this is implemented by selecting the points

where ‖∇I‖ exceeds a certain lower threshold:

‖∇I(x, y)‖ =

√(
∂I

∂x

)2

+

(
∂I

∂y

)2

. (9.9)

Gradient-based edge detection. Given a discrete image Iij , where (i, j) denote

the integer coordinates of a given pixel, we must be able to estimate the gradient

magnitude. Naturally, this involves a discrete estimation of the image derivatives.

Given that image datasets use piecewise constant interpolation, as explained

earlier in this chapter, the partial derivatives at some pixel center (i, j) can be



342 9. Image Visualization

(a) original (b) gradient magnitude (c) Roberts

(d) Sobel (e) Prewitt (f) Laplace

Figure 9.6. Edge detection. (a) Original image and (b–f) several edge detectors. Edge
strength is mapped to image luminance.

estimated as follows (see Section 3.7):

∂I

∂x
(i, j) = Ii+1j − Iij ,

∂I

∂y
(i, j) = Iij+1 − Iij .

(9.10)

Using the expressions of the partial derivatives from Equation (9.10) and Equa-

tion (9.9), we can directly compute an estimation of the gradient magnitude to

find edges. Figure 9.6(b) demonstrates the gradient-based edge detector for the

rice roots image (Figure 9.6(a)) used to demonstrate the histogram equalization

technique in Section 9.3.2. The strength of the edges is mapped to the image

luminance: white denotes strong edges, while black denotes no edges.
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In practice, many variations exist of edge detectors that use the first deriva-

tive of the image intensity. Several of the most popular first-order derivative

image detectors, sometimes also called edge detection operators, are briefly out-

lined next.

Roberts operator. The Roberts operator computes edges by lower thresholding a

variant of the gradient magnitude given by

R(i, j) =
√
(Ii+1j+1 − Iij)2 + (Ii+1j − Iij+1)2. (9.11)

Essentially, the Roberts operator computes the gradient magnitude estimated

for a coordinate system rotated at 45 degrees with respect to the standard (i, j)

system. Figure 9.6(c) illustrates the Roberts edge detector. Several variations

of the Roberts operator consider the sums of the absolute values of the partial

derivatives [Schalkoff 89] or the maximum of these absolute values.

However simple to implement and efficient to compute, the various versions

of the Roberts operator can be quite sensitive to small-scale image noise, since

they essentially consider only three or four pixels, i.e., two-by-two neighborhoods,

when estimating the value of the edge detector for one given pixel. In practice,

the effects of small-scale image noise manifest themselves in the edge detection

process by having several disconnected, spurious false positives, i.e., pixels that

are erroneously detected as being part of edges, or false negatives, i.e., pixels

that are part of edges but are not found as such. A general-purpose method

for improving the robustness of edge detection, or for that matter of any other

image-processing operation involving derivatives, is to remove small-scale noise.

This corresponds to removing sharp image variations, i.e., high-frequency image

components. This can be done by filtering, or smoothing, the image with a Gaus-

sian filter of small kernel, as explained in Section 9.3.3, prior to the derivative

computation. However, as is usually the case, Gaussian smoothing also removes

small-scale details, which means thin objects with spatially close edges, such as

the thin roots in Figure 9.6, may be discarded.

Sobel operator. A complementary technique for stabilizing edge detection in the

presence of noise is to use larger neighborhoods when estimating first-order

derivatives. One such technique is known as the Sobel operator [Sobel and Feld-

man 73]. This involves estimating the image partial derivatives as

∂I

∂x
(i, j) = Ii+1j−1 + 2Ii+1j + Ii+1j+1 − Ii−1j−1 − 2Ii−1j − Ii−1j+1,

∂I

∂y
(i, j) = Ii+1j+1 + 2Iij+1 + Ii−1j+1 − Ii+1j−1 − 2Iij−1 − Ii−1j−1.

(9.12)
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Just as for the gradient magnitude detectors, the Sobel edge detector can use

either the square root of the partial derivatives estimated using Equations (9.12)

or the maximum of their absolute values. The Sobel operator is illustrated in

Figure 9.6(d).

Prewitt operator. An alternative detector is the Prewitt operator [Prewitt and

Mendelsohn 66], which estimates the image partial derivatives as

∂I

∂x
(i, j) = Ii+1j−1 + Ii+1j + Ii+1j+1 − Ii−1j−1 − Ii−1j − Ii−1j+1,

∂I

∂y
(i, j) = Ii+1j+1 + Iij+1 + Ii−1j+1 − Ii+1j−1 − Iij−1 − Ii−1j−1.

(9.13)

The Prewitt operator is illustrated in Figure 9.6(e).

However, a problem with most of the edge detectors that use first-order

derivatives is the setting of the threshold against which the image gradient mag-

nitude is checked. In most images, edges do not separate regions of equally high

luminance differences, or contrasts. Hence, choosing the threshold to use can be

quite delicate. If we do set the threshold too high, lower maxima corresponding

to weaker edges pass undetected. If we set it too low, we obtain “thick edges”

instead of pixel-thin ones. To help choose such thresholds, histogram techniques

can be used on the gradient magnitude. Another approach in computing image

edges is using higher-order image derivatives, as presented next.

Laplacian-based edge detection. Using higher-order derivatives to detect edges

in images has several advantages as compared to finding the maxima of the image

gradient magnitude. To illustrate this, consider again Figure 9.5. The bottom

image depicts the second derivative f ′′ of the given function. The point of highest

variation speed of the function, i.e., maximum of its first derivative, coincides

with the point where f ′′ = 0, or the zero crossing of the second derivative.

Searching for these zero crossings corresponds to finding the center points of

the original image edges. In the case of two-dimensional images I(x, y), this

corresponds to finding the points where the absolute value of the image Laplacian

|ΔI(x, y)| =
∣∣∣ ∂2I
∂x2 + ∂2I

∂y2

∣∣∣ is equal to zero. Notice that, in contrast to the image

gradient, which is a vector indicating the direction in which the image luminance

has maximal change, the image Laplacian is a scalar value. In practice, finding

edges using the image Laplacian is implemented by selecting the points where

|ΔI(x, y)| exceeds a certain lower threshold.

Just as for the gradient estimation, we must compute the image Laplacian

given a discrete image. For a one-dimensional signal f(x), the second-order
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derivative can be discretely approximated by ∂2f
∂x2 = fi+1 − 2fi + fi−1. It can be

shown that the Laplacian of a discrete image can be approximated by

ΔI(i, j) = 4Iij − Ii+1j − Ii−1j − Iij+1 − Iij−1. (9.14)

Estimating the image Laplacian involves computing second-order derivatives,

which is a more sensitive operation with respect to image noise than comput-

ing first-order derivatives. Indeed, the higher the order of the derivative that

we estimate, the stronger the exacerbation of high frequencies present in the

image. However, if a robust Laplacian estimation is available, finding edges is

easier, since we can now look for its zero crossings. While thresholding the gra-

dient magnitude may skip edge pixels or deliver thick edges, looking for the zero

crossings of the Laplacian yields pixel-thin edges. The Laplacian edge detection

is illustrated in Figure 9.6(f). If we compare this image to the various first-order

derivative edge detectors discussed so far (see Figures 9.6(b–e)), we see that the

former yields thin edges.

A last remark concerns the size of the neighborhoods involved in the various

edge estimators discussed so far. The Sobel and Prewitt operators use 3 × 3

pixel neighborhoods to estimate first-order image derivatives, which are more

stable compared to the 2 × 2 neighborhoods used by the Roberts operator. In

terms of signal processing, it can be shown that the Sobel and Prewitt operators

correspond to estimating derivatives on smoothed versions of the original im-

age [Jain et al. 95]. In contrast, the Laplace operator uses a 3 × 3 neighborhood

too, but this does imply signal smoothing: Estimating second-order derivatives

requires larger neighborhoods by definition. If we want to perform additional

smoothing when using Laplacian edge estimators, this involves using neighbor-

hoods of a size exceeding 3 × 3. An example is the Marr-Hildreth operator,

which is equivalent to computing the Laplacian of an image presmoothed with

a Gaussian filter [Jain et al. 95], which uses a 5 × 5 pixel neighborhood. Since

Gaussian smoothing eliminates high-frequency information, this type of operator

yields more stable edge detection than directly applying the Laplacian.

9.4 Shape Representation and Analysis
So far, we have treated images as uniform 2D datasets with scalar, color, and

vector data attributes. As we saw in the previous section, this representation

suitably supports a wide range of image-processing operations, such as image de-

noising, filtering, edge detection, and contrast manipulation. However, in many

applications, we want to manipulate the information present in images at a higher



346 9. Image Visualization

level than pixels. We can explain this best by means of an example. Consider

an image that contains a 2D slice from a 3D volumetric medical dataset, such

as the one shown in Figure 5.2. On such images, we can describe and identify

areas of interest in terms of their scalar value. For example, certain anatomical

structures share the same scalar value, or values located within a specific scalar

range. In the first instance, we can try to extract such structures or shapes

from image data using algorithms such as contouring and thresholding (see Sec-

tions 5.3 and 8.2). However, this scenario is of limited flexibility in two respects.

First, local algorithms such as contouring and thresholding cannot detect and

extract shapes that are based on complex, nonlocal definitions. Second, some

applications require shape descriptions that are richer than just the set of cells

contained in an unstructured grid created by a selection operation.

Shape representation and analysis is a research field concerned with models

and methods for representing, extracting, and analyzing shapes. This field is

situated at the crossroads of digital imaging, perception, computer vision, and

computer graphics. In our discussion, a shape is defined to be a usually compact

subset of a given 2D image that globally exhibits some properties. Typical prop-

erties include the shape geometry (form, aspect ratio, roundness, or squareness),

the shape topology (genus, number, and ramification of the boundary protru-

sions), and the shape texture (color, luminance, shading). Shapes are usually

characterized by a boundary and an interior. If we consider all pixels located

inside a shape as having a boolean attribute value of true and all pixels located

outside as having a value of false respectively, then we can define boundary pixels

as being those interior pixels that have at least one neighboring exterior pixel.

Interior and exterior pixels are also called foreground and background pixels, re-

spectively. Such images having a boolean attribute value per pixel are also called

binary images.

Binary images can be created from other representation types, such as closed

polygonal meshes or implicit functions, by a process known as voxelization.

Given a uniform grid representing the image space, voxelization assigns a fore-

ground or background value to each voxel depending on whether the correspond-

ing point is located inside, respectively outside the given input surface. Since the

above test can be done in parallel for all voxels, this process can be massively

accelerated using graphics hardware. A well-known and easy-to-use open-source

tool for producing voxel models of polygonal meshes using OpenGL acceleration

is binvox [Nooruddin and Turk 03].

The pipeline of a typical application using shape analysis is shown in Fig-

ure 9.7. First, images are acquired, e.g., using scanning or photographic tech-

nology. Next, low-level imaging operations such as the ones described in Sec-
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Figure 9.7. Imaging and shape analysis pipeline.

tion 9.3 are applied to remove noise and prepare the image for shape extraction.

In the shape extraction step, various properties of the shape (geometry, topol-

ogy, texture) are used to detect and separate one or several shapes from the

raw 2D image. Finally, these shapes are further analyzed to extract high-level,

application-specific information. Figure 9.7 illustrates this for a computer-vision

application used to analyze human silhouettes. Images acquired from a video

camera are processed with an edge-detector operation to separate sharp lumi-

nance transitions that correspond to silhouettes projected on a dull background.

Next, a segmentation algorithm uses these edges to extract the largest region

in the image that corresponds to these edges (see Section 9.4.1). Finally, the

extracted region is reduced to a 1D structure called a skeleton, which can be

further analyzed to detect whether the silhouette corresponds to a human figure

(see Section 9.4.6).

Shape representation and analysis is an increasingly important research area

of data visualization. Given the complexity of datasets and represented phenom-

ena and the growing amounts of data, visualization applications are increasingly

designed to be capable of filtering high-volume, low-level, unstructured datasets

into low-volume datasets containing high amounts of information. In many cases,

this filtering corresponds precisely to a process of detecting and analyzing pat-

terns and shapes in the data. For example, in medical applications, vascular

structures are segmented from MRI images, analyzed, and simplified to yield

a tree-like representation. In other applications, anatomical shapes are auto-

matically extracted from similar images. Further shape classification is used to

detect, e.g., whether these shapes are healthy or not. In flow visualization, shape

analysis can be used to detect and classify vortex structures.

In the following sections, we describe several frequently used techniques in

the process of extracting and analyzing shapes from 2D images.
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9.4.1 Basic Segmentation

As explained at the beginning of Section 9.4, one of the first operations in shape

analysis is the extraction of shapes from a given input image. The first step in

extracting such shapes is to segment or classify the image pixels into those be-

longing to the shapes of interest, also called foreground pixels, and the remainder,

also called background pixels.

Segmentation is strongly related to the operation of selection, which selects

certain dataset points or cells based on their properties (see Section 8.2).2 Seg-

mentation can be thought of as a dataset operation that creates a new boolean

data attribute that has the value true for foreground pixels and false for back-

ground ones. The segmentation criterion has to encode domain-specific knowl-

edge. For example, if we know that our foreground shapes have a certain lumi-

nance, we segment the image using a luminance threshold or, for better robust-

ness, a luminance range. Hue can be used if we know the shapes we are looking for

have specific hues. Many other information types can be used for segmentation.

Edge detection (see Section 9.3.4) can be used to find the foreground-background

boundaries, followed by a flood-fill operation to identify pixels enclosed by these

boundaries. In addition to hue and luminance, other attributes can be used to

discriminate foreground from background pixels, such as type of texture, shad-

ing, or the values of additional datasets defined on the same domain.

In this section, we shall detail luminance-based segmentation, which is a

widely used segmentation method used in practice. An important question is

how to set the threshold parameters in order to obtain an accurate segmenta-

tion. This is a very difficult problem in practice, since shapes in acquired images

often have soft, fuzzy borders and a nonuniform luminance and hue. A useful

tool in setting the thresholds is the image histogram, introduced in Section 9.3.2.

For a grayscale image, for example, the histogram shows the number of image

pixels that have a certain luminance. Histogram peaks indicate high numbers

of pixels with similar luminances, which can in turn indicate the presence of

particular structures in the image. Figure 9.8 demonstrates this. The top row

shows three grayscale images of an MRI scan slice having values between 0 and

255. The middle row shows the luminance histogram. The bottom row shows

the same luminance histogram, this time normalized on a logarithmic scale to

emphasize small values. The left image (Figure 9.8(a) top) shows the original

image. We see here a large number of gray pixels of average luminance that

correspond to soft tissues such as skin and muscles. In the histogram (Fig-

ure 9.8(a) bottom), these correspond to the pronounced peak in the middle of

2In some sense, selection can be seen as a tool that helps in the segmentation task.
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(a) (b) (c)
0 255 0 255 0 25570 90 180

Figure 9.8. Histogram-based image thresholding. The red rectangles on the histograms
indicate the selected value range.

the image. Selecting pixels with grayscale values in the range [70, 90] produces

the image in Figure 9.8(b) top, which shows the soft tissues. Selecting pixels

with grayscale values above some higher threshold, e.g., 180, produces the im-

age in Figure 9.8(c) top, which corresponds to the hard (bone) tissue. In the

previous example, we used the image histogram as a visual guide for setting the

segmentation thresholds. This procedure still requires a fair amount of trial-

and-error, being far from automated. Several more advanced methods analyze

the histogram in order to automatically detect segmentation thresholds that are

optimal from several points of view, e.g., entropy minimization [Jansing et al. 99,

Tobias and Seara 02]. For images which we assume that contain two classes of

pixels, distinguished by luminance, or in other words whose luminance histogram

has two well-separated modes or peaks, Otsu’s thresholding method is frequently

used to separate the two classes [Otsu 79, Gonzalez and Woods 02]. This method

iterates through all allowed threshold values, and selects the one which separates

pixels (above, respectively below, the threshold) into two groups having minimal

intraclass variance. For more information on thresholding images, see Fisher et

al. [Fisher et al. 96]. Finally, let us mention that similar segmentation methods

are used for extracting volumetric structures from three-dimensional datasets.

For example, anatomical structures consisting of mainly one type of tissue can

be extracted by analyzing the density values obtained from a CT or MRI scan.
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9.4.2 Advanced Segmentation

Apart from the simple threshold-based image segmentation presented in Sec-

tion 9.4.1, many more advanced segmentation techniques have been developed,

for both 2D and 3D images. In this section we give an overview of several types of

such methods. Although limited in scope, this overview introduces several alter-

natives to threshold-based segmentation, and also outlines the relative strengths

and limitations of these techniques.

To introduce these methods, let us consider the following practical problem

grounded in the medical-imaging domain. Melanoma is one of the most lethal

forms of skin cancer, with growing incidence throughout the world [Christensen

et al. 10]. Malignant melanocytic lesions emerge from benign naevi, more pop-

ularly known as skin moles, due to a set of growth and environmental factors.

Early detection of naevi which potentially grow into melanoma is key to an ef-

ficient and effective treatment of the disease [Devita et al. 01]. Typically, this

procedure involves the acquisition of high-resolution dermatoscopic skin images

of the lesions, and manual analysis and diagnosis of the structures present in

the acquired images. This highly time-consuming process can be partially au-

tomated by computer-based tools that (a) accurately segment the skin lesion

from surrounding skin tissue, and (b) analyze the segmented image to classify

the structure into benign (thus not requiring further manual examination) or

potentially malignant (thus requiring specialist attention).

For such an automated process to succeed, the accuracy and speed of the first

segmentation step is of crucial importance. Figure 9.9(a) shows a typical skin

image (1936 by 2592 pixels) acquired with a portable Handyscope dermatoscopic

microscope during routine clinical screening. Figure 9.9(b) shows a manual seg-

mentation which can be used as input for further semiautomatic diagnosis tools.

Creating this segmentation took a few minutes to a trained medical specialist.

Challenges for both manual and automatic segmentation reside in the fuzzy (im-

precise) lesion contours, nonuniform image hue and luminance over the lesion,

and the several occluding hairs present in the image. Figures 9.9(c–f) illustrate

the results produced by seven different automatic image segmentation methods

on the input image. These methods are described below.

Snakes. An intuitive way to delimit a shape from a surrounding image is to

construct a closed contour that tightly wraps around the shape. Such contours,

also called snakes or active contours, can be constructed as follows. First, we

initialize a 1D curve C that certainly surrounds the target shape—for instance,

by constructing the curve to follow the boundary of the input image. The curve
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(a) input image (b) manual segmentation (c) GVF snakes (d) graph cut

(e) mean shift (f) IFT superpixels (h) skeletons(g) level sets

Figure 9.9. Examples (c–h) of advanced segmentation methods applied to a dermato-
scopic skin image (a). Image (b) shows a manual segmentation. (Data and lesion anal-
ysis courtesy of D. Boda and A. Diaconeasa, University “Carol Davila,” Bucharest,
Romania.)

C, and its change in time, are represented parametrically, i.e., as a function

C(s, t) : [0, 1]× [0,∞) → R
2. The parameter s describes the position along the

curve. The parameter t describes the curve evolution in time. This snake model

is called explicit or parametric, in contrast to the implicit or geometric model

described later in Section 9.4.2.

Next, we move C to minimize an energy functional E : R2 → R defined over

the spatial extent of the input image I, by solving the equation

∂C(s, t)
∂t

= −∇E · n(s, t). (9.15)

Here, n(s, t) gives the inward normal of C at (s, t). Equation 9.15 is solved by dis-

cretizing C and next iteratively moving all resulting sample points as indicated.

The motion stops when E reaches a minimum point, i.e., when the snake posi-

tions at two consecutive iterations are very close to each other. During advection,

snakes need to be resampled to ensure a uniform fine-scale discretization of C
that, in turn, is needed to capture small-scale details. By projecting the steep-

est descent ∇E along n, we ensure that, as the curve shrinks, we have as little

tangential motion as possible. This in turn decreases the need for resampling.

The energy E typically contains an internal component, which further can

be split into several terms that ensure that the curve (a) is sufficiently smooth,
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(b) does not stretch too much, (c) does not have self-intersections, and (c) it

encloses a surface whose area is within a given range [Kass et al. 88]. The second

energy term is an external component that attracts the curve to edges, or similar

features, that appear on the boundary of the target shape. For grayscale images,

the external energy can be expressed as −‖∇I‖2.
One challenge of snake models is the design of an external energy that attracts

snakes being far away from the targeted edge features. To achieve this, the

gradient field −‖∇I‖2 can be diffused over the entire image, thus making each

image points “see” its closest edge. This method, called the gradient vector flow

(GVF) [Xu and Prince 97], ensures that snake initialization far away from the

segmentation target is not critical, and also enables snakes to follow concavities

of the edge map, which is required when we want to segment non-convex shapes,

such as in our case in Figure 9.9. An additional useful step is to preprocess

the input image by Gaussian filter, in order to remove small-scale image noise

that creates local energy minima which, in turn, adversely affect the snake’s

convergence.

Figure 9.9(a) shows the result of the GVF method applied by using an edge

map computed using the wavelet transform [Parolin et al. 10]. As visible, the

red snake contour captures the lesion extent quite well. However, the method

requires sensitive tuning for images that exhibit both fuzzy and sharp borders.

Also, the Gaussian filtering done as preprocessing removes small-scale image

details, making the resulting segment border potentially too smooth. Finally, if

we wish to segment N > 1 shapes in an image, the method requires us to know

N , and also to correctly initialize each snake to surround each of the N shapes

before executing the segmentation.

Normalized cuts. Another approach to image segmentation that partitions the

input image into N segments, where N is a known value, is provided by normal-

ized cuts [Shi and Malik 00]. This method also works in a top-down fashion. The

image I is reduced to a graph G = (V,E). For each image pixel, we construct a

graph vertex v ∈ V . Edges e = (u ∈ V, v ∈ V ) ∈ E encode the likelihood that

two pixels u, v are in the same edge segment, or the similarity of the two pixels.

To model this, this, we set for each edge (u, v) a weight

w(u, v) = eK‖F(u)−F(v)‖2 ∗
{
eK‖X(u)−X(v)‖2

if ‖X(u)−X(v)‖ < r

0 otherwise.
(9.16)

Here, X represent the 2D positions of the pixels corresponding to the graph

nodes. F are the image components of the pixels, such as intensity (for grayscale

images) or RGB or HSV color components for color images. The threshold r,
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typically set to a few pixels, indicates that only pixels close to each other are

linked by edges. As pixels get further apart from each other, either in 2D space

or in feature (intensity or color) space, their similarity decreases.

After constructing the graph G, we aim to partition, or cut, it into parts

which are highly similar internally but highly dissimilar with respect to each

other. To measure the quality of a cut that partitions G into two parts A,B (so

that A ∪ B = G,A ∩ B = ∅) that satisfy our similarity requirements outlined

above, we use the normalized cut metric given by

Ncut(A,B) =

∑
u∈A,v∈B w(u, v)∑
u∈A,v∈V w(u, v)

+

∑
u∈A,v∈B w(u, v)∑
u∈B,v∈V w(u, v)

. (9.17)

The numerator of the two terms expresses how similar are the two partsA and B.

The denominators normalize the metric, thus preventing cuts which “chop off”

small graph parts from larger parts to which they are highly similar. Finding the

partition (A,B) that minimizes Ncut given by Equation 9.17 can be efficiently

done by eigenanalysis methods, for which we refer to [Shi and Malik 00]. Once

such a cut is found, the graph (and thus image) is split into two parts. Next, the

algorithm can be recursively applied on each resulting part until the resulting

parts are either too small, a maximum user-prescribed value of Ncut is reached,

or a user-given number of segments N has been obtained.

Figure 9.9(d) shows the result of the normalized cut method on our skin

image.3 To compare pixels, we used luminance similarity, as shown by the back-

ground image. We notice that the method does not constrain in any way the

shapes (and thus noisiness) of the segment borders, unlike the snakes method.

However, the fuzziness of the lesion-skin boundary poses visible challenges to

this method. We also see that the method is quite sensitive to small-scale de-

tails such as the hairs present in the image—the segment borders snap to these

details, rather than crossing them. Finally, tuning the method’s parameters

(number of segments N in our case) can separate the lesion as one block from

the surrounding skin, but in the same time oversegments the skin area.

Normalized cuts is an attractive method when we have less constraints on

the number, shapes, and boundary smoothness of the resulting segments, and

when the segment borders are clearly reflected by the pixel-feature-wise similarity

distance. Also, the method is effective when we want to compute a hierarchical

top-down segmentation of the image into progressively smaller segments, rather

than a single-level segmentation.

3Segmentation produced with the open-source normalized cut software implementation
available at http://www.cis.upenn.edu/∼jshi/software.
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Mean shift. Yet another image representation is proposed by the mean shift seg-

mentation method [Comaniciu and Meer 02]. Given an image I of n pixels having

d color components c1, . . . , cd per pixel (x, y), we regard the image as a d + 2

dimensional point cloud P = {(x, y, c1, . . . , cd)i}i. Next, we estimate the density

ρ : Rd+2 → R+ of P as

ρ(x ∈ R
d+2) =

n∑
i=1

k

(∥∥∥∥x− xi

h

∥∥∥∥2
)
. (9.18)

That is, we convolve the point positions xi with a parabolic radial kernel

k(x) =

{
1− x if 0 ≤ x ≤ 1

0 x > 1.
(9.19)

Having the density ρ, we next iteratively shift the points xi in the direction of the

gradient ∇ρ, and recompute the density ρ following Equation 9.18. Repeating

the process for several tens of iterations effectively makes the points xi converge

into their local density maxima. Finally, we cluster the final point set delivered

by the mean shift procedure by grouping all points xi that are closer to each

other than a user-prescribed small distance. Each point cluster will represent a

segment of our input image I. Since the identities of the points do not change

during the mean shift, we can trace back from points in a cluster to their original

positions in 2D, and retrieve the spatial cluster extent. The cluster value in color

space gives us the average segment color, if desired.

Figure 9.9(e) shows the mean shift segmentation applied to our skin image.

Segment borders are shown in white. For each segment, we also show its average

color. As visible, segment borders are highly detailed, similar to those produced

by the normalized cuts method. However, just as for normalized cuts, borders

that pass through low-contrast image areas tend to be quite arbitrary, so mean

shift tends to work better for images where segments are separated by high-

contrast edges. This is due to the fact that such points are half-way between

several density maxima in the d + 2 dimensional density space. Thus, small

color changes will perturb the density and thus pull points closely located in the

density space into different clusters. Another challenge is controlling the number

of clusters. While this can be done by tuning the kernel bandwidth h (larger

kernels generate less clusters), the mean shift algorithm does not prescribe the

segment count, in contrast to, e.g., normalized cuts.

Mean shift can be efficiently implemented for low dimensional spaces (d +

2 ≤ 3, e.g., for segmenting grayscale 2D images), by evaluating both its most

expensive component, the density estimation (Equation 9.18), and the relatively
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cheaper mean shift itself, in parallel using GPU programming. Such an example

is presented later in Section 11.4.2 for the task of simplified graph visualization

by edge bundling.

Image foresting transform. Another segmentation method that treats the input

image as a graph is the image foresting transform (IFT) method [Falcão et al. 04].

The method starts by constructing a graph G = (V,E) where each image pixel

is a node, and pixel neighborhood relations create edges. The edges (u,v) ∈ E

carry weights w(u,v) which encode the Euclidean distance between their colors.

Next, assume we can compute, for any path π ⊂ G, a positive cost f(π). We

define an optimal path ending at a node v ∈ V as being the minimal-cost path

from all possible paths over G that end at v. The IFT then computes an optimal

path forest, or set of disjoint trees, that covers all nodes in G, so that each path

in this forest is optimal in the above sense. Intuitively, the IFT partitions G into

several disjoint subsets. Each subset has a root node (the root of each forest’s

trees) so that all nodes in that subset are closer to the root than to any other

root.

The above general IFT framework can be effectively used for image segmen-

tation as follows. First, we select a few pixels xi ∈ I in the input image I, which

we label by distinct-valued labels L(i) = i. All other pixels are labeled with a

value L = 0. Next, for all trivial paths consisting of a single pixel x we use as

cost function

f(x) =

{
0 if L(x) �= 0

∞ if L(x) = 0.
(9.20)

The cost of a path π = (v1, . . . ,vn) to which we concatenate a node x to yield

the path π′ = (v1, . . . ,vn,x) is next defined as

f(π′) = max
(
f(π), w(vn,x)

)
. (9.21)

Running the IFT on an image having a few labeled pixels will partition the

image into disjoint segments whose pixels are similar with the labeled pixels.

For details on the IFT implementation, which is nothing but a modified form of

Dijkstra’s shortest path algorithm, we refer to [Rauber et al. 13]. The labeled

pixels are also the roots of the trees produced by the IFT. The segments can be

found by assigning, to each unlabeled pixel, the label of the root of its optimal

path delivered by the IFT. Intuitively, we can think of the IFT operation as

finding minimal-cost paths, in terms of the image colors, that link all pixels with

the labeled pixels. Segment borders occur naturally along curves along which

the image color differences, encoded by the graph weights w, are highest. Given



356 9. Image Visualization

that for P -labeled pixels we have exactly P trees in the IFT, we are guaranteed

to obtain exactly P segments.

The IFT method can be further accelerated by using so-called superpix-

els [Rauber et al. 13]. These are small-size image patches which contain similar-

color pixels, and which form a partition of the input image. Images can be

reduced to superpixels by a variety of methods, such as applying mean-shift

segmentation with a small kernel bandwidth or performing a bottom-up ag-

glomerative clustering of similar-color neighbor pixels until small-size clusters

are formed. The advantage of using superpixels is that the cost of the IFT de-

creases significantly, making interactive segmentations of images of a thousand

pixel-squared sizes possible.

Figure 9.9(f) shows the result of the IFT segmentation on our skin image.

To run this method, we need to label two pixels, one inside the skin tumor, and

one outside it. The result shows a segmentation which is both very similar to

the manually drawn one (like the GVF method’s result) and also has a high level

of local detail (like the mean shift result). By construction, since we have two

labels, we always get exactly two segments. These are always compact since all

pixels in a segment are connected to its root by contiguous paths. In contrast to

the normalized cuts method, hair details do not create spurious segment borders,

since the path cost function is cumulative, so it penalizes too long paths. The

label assignment can be potentially automated. For instance, if we know that

the tumor is always surrounded by normal skin, we can select one label as being

close to the image boundary, and the second label as being a dark-colored pixel

far away from the boundary.

Level sets. Level set methods pose an efficient and effective alternative to the

parametric snake formulation described earlier in Section 9.4.2. The idea is to

replace the explicit snake description as a function C(s, t) by the locus of zero

values, or zero level set, of a function φ : R2 → R. In other words, C(s, t) =

{(x, y) ∈ R
2|φ(x, y, t) = 0}. If we choose φ so that it is always negative outside C

and positive inside, the outward-pointing curve normal is thus n = −∇φ/‖∇φ‖.
Given this, the snake motion (Equation 9.15) can be rewritten as

∂φ

∂t
= ‖∇E‖‖∇φ‖. (9.22)

Equation 9.22 is also called the level set evolution equation, since it describes the

evolution in time of the level sets of function φ. Solving this partial differential

equation with initial conditions given by the function φ(x, y, t = 0) whose zero

level-set describes the initial contour C(s, t = 0) yields the snake motion towards

the minimization of the desired energy E.



9.4. Shape Representation and Analysis 357

Curves described by Equation 9.22 are also called implicit, or geometric,

active contours—in contrast to the parametric, or explicit, active contours de-

scribed earlier. Implicit active contours have several advantages: They can de-

scribe complex contour shapes, including contours consisting of multiple sep-

arate connected components. Topology changes during evolution, such as the

appearance, disappearance, merging, or splitting or contours are captured trans-

parently. There is no need for explicit contour resampling, as the contours are

discretized implicitly by the spatial sampling of φ (usually, done on a uniform

grid). However, solving Equation 9.22 robustly and efficiently poses several sub-

tle challenges, such as numerical stability and ensuring that φ is always negative

outside, respectively positive, inside its evolving contours. Solving such chal-

lenges is an advanced topic, for which we refer to [Li et al. 10].

Figure 9.9(g) shows the result of a level-set segmentation of our skin image,

using the method described in [Li et al. 10].4 The resulting contour has a similar

level-of-detail to the ones created by mean shift and the IFT. Similar to the GVF

snakes, the method can be sensitive to local image edges such as those created

by the occluding hairs.

Level set methods are very powerful image processing tools, used for more ap-

plications than segmentation. Later in this chapter we present additional level set

applications for the efficient computation of distance transforms (Section 9.4.5)

and shape skeletons (Section 9.4.6).

Threshold sets. The final segmentation method we present uses threshold sets.

Given a grayscale image I : R2 → R+, and a gray value τ > 0, we define its

threshold set

TI(τ) = {(x, y) ∈ R
2|I(x, y) ≥ τ}. (9.23)

That is, the threshold set TI(τ) contains all image pixels of grayvalue equal or

larger to τ . By construction, threshold sets for higher τ values thus include

threshold sets for lower τ values. Given an 8-bit grayscale image I, the thresh-

old sets {TI(0), . . . , TI(255)} represent a lossless encoding of the entire image.

Indeed, we can reconstruct I by drawing all threshold sets TI(τ), in increasing

order of τ , and coloring pixels in each threshold set by its gray value τ .

We can now model segmentation as a lossy image encoding problem. Given

a threshold set decomposition of an image I, we first define the relevance of

a threshold set TI(τ) as the difference ‖I − Ĩ‖ between I and the image Ĩ re-

constructed using all threshold sets except TI(τ). By sorting threshold sets in

decreasing relevance order, we next select the most relevant ones. These will

4Segmentation produced with the open source implementation of [Li et al. 10] available at
http://www.engr.uconn.edu/∼cmli/DRLSE.
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deliver an implicit segmentation of I into its most relevant, or visually salient,

segments [van der Zwan et al. 13].

Figure 9.9(h) shows the threshold-set segmentation of our skin image. Here,

we selected the three most relevant segments. The largest segment corresponds

to the background, or normal skin, area. The remaining two segments give us

two segmentations of the skin tumor. The light gray segment captures well

the outer boundary of the tumor, or the brown region in Figure 9.9(a). The

dark gray segment captures the inner low-luminance tumor area. In contrast to

most methods presented earlier, the threshold-set segmentation is quite simple

to implement, but is quite sensitive to small-scale image noise. For instance, we

see in Figure 9.9(h) how both tumor segments are disconnected by the bright

hair details located on a dark background.

9.4.3 Connected Components

In some applications, we must enforce several nonlocal properties on the pixels

that constitute the result of a segmentation operation. If such pixels are to

represent a shape, it is natural, in many applications, that they form a connected

component. Moreover, it is desirable to enforce the additional constraint that

the area of such a component be above a minimal threshold. This constraint

eliminates small-scale spurious components that appear due to thresholding a

noisy image.

Connected-component detection proceeds as follows. First, a segmentation

operation separates the image into foreground and background pixels, as ex-

plained in Section 9.4.1. Let us, for simplicity, assume that the segmenta-

tion creates an integer attribute comp for the image dataset, where the back-

ground and foreground pixels are marked by the reserved values BACKGROUND

and FOREGROUND, respectively. To hold the identifier of the next component to

be found, we use an integer variable C, which we initialize to zero. Next, we

scan the image, e.g., row by row. When we find the first FOREGROUND pixel, we

set its comp value and that of all its direct and indirect FOREGROUND neighbors

to C, increment C, and repeat the scanning until all FOREGROUND pixels are ex-

hausted. At the core of the algorithm is the process of finding all FOREGROUND

pixels that are direct or indirect neighbors to a given pixel. This operation, also

known as flood fill in computer graphics, can be easily implemented using a stack

data structure holding pixel coordinates. The code of the connected components

algorithm is sketched in Listing 9.2. The floodFill function assumes pixels

are connected, i.e., part of the same component, if they have the FOREGROUND

value and are vertical or horizontal neighbors of a pixel already in the consid-
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const i n t FOREGROUND = −1;
const i n t BACKGROUND = −2;
const i n t NX,NY; //image s izes

void connectedComponents ( i n t comp [NX] [NY] )
{

i n t C=0;
f o r ( ; ; ) //process a l l foreground pixels
{

bool cont = true ;
f o r ( i n t i =0; i<NX && cont ; i++)

f o r ( i n t j =0; j<NY && cont ; j++)
i f (comp [ i ] [ j ]==FOREGROUND)
{

f l o o d F i l l ( comp , i , j ,C) ;
C++; cont=f a l s e ;

}
i f ( cont ) break ; // a l l foreground pixels processed

}
}

void f l o o d F i l l ( i n t comp [NX] [NY] , i n t i , i n t j , i n t C)
{

stack<pai r<int , int> > s ;
s . push ( make pair ( i , j ) ) ;

whi l e ( s . s i z e ( ) ) //flood f i l l from ( i , j )
{

i n t i = s . top ( ) . f i r s t ;
i n t j = s . top ( ) . second ;
s . pop ( ) ;
i f ( image [ i ] [ j ] !=FOREGROUND) continue ;
image [ i ] [ j ]=C;
s . push ( make pair ( i −1, j ) ) ;
s . push ( make pair ( i +1, j ) ) ;
s . push ( make pair ( i , j −1)) ;
s . push ( make pair ( i , j +1)) ;

}
}

Listing 9.2. Connected components detection.

ered component. This choice would not identify diagonally neighboring pixels

as being connected, and would place them in different components. If we want

components to be diagonally connected as well, we have to add four more push

statements to the floodFill function, corresponding to the diagonal neighbors

i − 1, j − 1; i − 1, j + 1; i + 1, j − 1; and i + 1, j + 1 of the current pixel i, j.

It is also noteworthy to add that several speed and space optimizations can be

applied to Listing 9.2 that have been omitted here for conciseness. For example,
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Figure 9.10. Connected components.

the test image[i][j]!=FOREGROUND in floodFill can be more efficiently exe-

cuted before pushing each new element on the stack than when popping it. This

can significantly decrease the stack size.

After the function connectedComponents returns, the array comp contains

every pixel marked by the nonnegative identifier of its connected component or

the BACKGROUND value. Figure 9.10 shows the connected components for the seg-

mented bone structures shown in Figure 9.8(c). Each component is color-coded

by a different hue. We can now easily distinguish the largest component, marked

in red, which corresponds to the cranial bone. If desired, we can now filter the

components based on size. For this, we count the number of pixels in every con-

nected component, e.g., using a scan-line traversal of the image or a flood fill from

the first pixel belonging to that component, and next mark components whose

size is below the desired threshold by the BACKGROUND value. Removing small

connected components is also known as island removal [Schroeder et al. 06].

9.4.4 Morphological Operations

As we saw in the previous section, computing connected components and eventu-

ally removing the small ones that correspond to discretization noise is a powerful

tool for extracting shape information from image data. However, noise can have

another unpleasant effect that is not addressed by the small-size component

removal. Figure 9.11 illustrates this. In this application, scientists are inter-

ested in studying the growth of the rice plant roots. The roots, grown in a

half-transparent jelly, are photographed. The results (Figure 9.11(a)) needs to

be analyzed in order to assess various root characteristics, such as number of

branches, length of the main branches, and average length of the small branches.
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(a) (b)

(c) (d)

Figure 9.11. Morphological operators. The image in (a) is segmented in (b). (c) Dilation
and erosion are used to close holes. (d) The largest connected component is selected.
(Data courtesy of R. Peikert, ETH Zürich.)

To accomplish this, we must extract the shape of the root using image-processing

methods.

The first extraction step is a histogram-based segmentation using the image

luminance (see Section 9.4.1). The result (see Figure 9.11(b)) shows many small

disconnected components, corresponding to the fine branches, as well as two

large round components in the upper part of the image, corresponding to impu-

rities in the jelly. Directly applying connected-component analysis to extract the
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root structure is tempting, but problematic. The segmentation has created nu-

merous small holes in the root structure that both separate the small branches

from the stem but also fragment the main branches themselves. Extracting

size-thresholded connected components will remove many important small com-

ponents, yield a disconnected root structure, and also leave the two undesired

large round structures.

We can solve these problems using a number ofmorphological image-processing

operations. These operations involve a so-called structuring element, or foot-

print. For 2D images, this is also a 2D image. Given a structuring element e and

binary image I, a morphological operation produces a new image I ′ by trans-

lating the structuring element e over the pixels of I.5 The resulting image I ′ is
generated as a function of the position of the structuring element with respect

to the foreground pixels of I.

Dilation and erosion. Several types of morphological operations exist. We de-

scribe here two of the most important ones, called dilation and erosion. Dilation

translates the structuring element over each pixel p of I. If the intersection be-

tween the element e translated at p, Tp(e), and the foreground F (I) of I is not

empty then p is marked as foreground; otherwise p remains background. The

dilation of an image I using a structuring element e thus contains the foreground

pixels given by

De(I) = {p ∈ I|Tp(e) ∩ F (I) �= �}. (9.24)

Of course, the result depends on the structuring element e. If we want to dilate

an image isotropically, i.e., equally in all directions, we can use a disc with radius

R as a structuring element. The dilation will then “inflate” the boundary of I’s

foreground at every point in a normal direction with a distance R. As a net

effect, dilation thickens thin foreground regions, and also fills holes and closes

background gaps that have a size smaller than the element size R.

Erosion is the opposite of dilation, and can also be thought of as translating a

structuring element e over each pixel p of an image I. If the translated element at

p, Tp(e) is completely contained in the image foreground F (I) then p is marked

as the foreground; otherwise p becomes the background. The erosion of an image

I using a structuring element e yields thus the foreground pixels given by

Ee(I) = {p ∈ I|Tp(e) ⊂ F (I)}. (9.25)

Just as for dilation, a frequently used erosion element is a disc of radius R. The

erosion of an image with such an element has the net effect of thinning the image

5This process is closely related to the convolution operation (see Section 9.3.3).
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foreground, removing small connected components that have a diameter smaller

than R, and also potentially breaking connected components into several parts

at points where these are thinner than R.

Figure 9.11(c) shows the effect of dilation and erosion applied on the seg-

mented binary image in Figure 9.11(b). First, a dilation with a disc structuring

element of radius R = 15 pixels is done, followed by an erosion with a disc ele-

ment of radius R = 5 pixels. Next, we remove all connected components except

the largest one. The dilation has the desirable effect of inflating the thin root

branches and also closing the small gaps between various branch components,

yielding a far less-fragmented shape than after segmentation. The erosion has

the effect of thinning branches that were excessively thickened by dilation. After

these operations, the root structure is essentially a single connected component,

which also has the largest area. Hence, the size-based connected component fil-

tering removes all remaining spurious small-scale elements that have not been

connected to the main structure by the inflation because of being too far away

from it, and also removes the two large undesired round structures. At the end,

we are left with a single connected component that captures well the shape of

the plant roots (see Figure 9.11(d)). We shall discuss later in Section 9.4.7 how

this shape can be processed further to obtain more information.

The combination of a dilation followed by an erosion operation is called mor-

phological closing, and is used in practice to remove small background holes in

binary images. The converse combination of an erosion followed by a dilation

operation is called morphological opening, and is used in practice to remove

small islands, or foreground components, from binary images. As in our ex-

ample, both operations are usually part of more complex imaging pipelines in

real-world applications.

9.4.5 Distance Transforms

As explained in the previous section, the dilation and erosion operations using

a disc structuring element have the net effect of “shifting” the boundary of a

binary image with a distance R outward or inward in a direction normal to the

boundary itself. The concept of deforming a shape by shifting its boundary in

a normal direction is closely related to another fundamental operation in image

processing: distance transforms.

The distance transform DT of a binary image I is a scalar field that contains,

at every pixel p of I, the minimal distance to the boundary of the foreground

of I:

DT (p) = min
q∈F (I)

‖p− q‖. (9.26)
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Different distance metrics can be used in Equation (9.26), such as the Euclidean

or Manhattan, or farthest-point distance, leading to different types of distance

transforms. The most-used metric, in practice, is the Euclidean distance.

The distance transform can be thought of in a broader context than discrete

binary images. Given any shape Ω ∈ R
n that has a boundary ∂Ω, the distance

transform DT of Ω associates to every point p ∈ R
n the minimal distance to ∂Ω.

Hence, DT of Ω is a scalar field defined over a domain embedded in R
n:

DT (p) = min
q∈∂Ω

‖p− q‖. (9.27)

Distance transforms can also be computed in the signed variant. The signed

distance transform is identical to the unsigned one defined by Equation (9.27),

but has positive values outside the object Ω and negative values inside. To com-

pute the signed distance transform, the surface ∂Ω must be closed and orientable.

A related quantity is the feature transform [Cuisenaire and Macq 97]. Given

a shape Ω, the feature transform FT associates to every point p ∈ R
n the set of

closest boundary points q ∈ ∂Ω to p:

FT (p) = {q ∈ ∂Ω|‖p− q‖ = DT (p)} = argmin
q∈∂Ω

‖p− q‖. (9.28)

Figure 9.12 illustrates the distance transform. Consider the binary image of a

leaf. The shape Ω is shown in gray, its boundary ∂Ω is marked in black, and

the background points are white (Figure 9.12(a)). Consider two points a and

p, respectively outside and inside the leaf shape. The feature transform FT (a)

of a is the point b ∈ ∂Ω that is the closest boundary point to a. The feature

transform FT (p) is the set of two points {q1, q2} that are the equally closest

boundary points to p. The distance transforms of a and p are the lengths of

the segments ab and pq1 or pq2, respectively. The vectors connecting a point

with all its feature points, e.g., p − q1 and p − q2 for p, are also called feature

vectors. Feature vectors are always parallel with the gradient of the distance

transform ∇DT , as both indicate shortest paths from the boundary ∂Ω to some

given location inside Ω.

Figure 9.12(b) shows the (unsigned) distance transform of the leaf shape

with a grayscale colormap, where black indicates the minimal (zero) distance

and white the maximal distance to the leaf. Figure 9.12(c) shows the same dis-

tance transform, this time color-coded with a rainbow colormap, and only for the

foreground image points. Figures 9.12(e–h) show the distance transform of the

shape depicted in Figure 9.12(e), which represents a 3D scan of a shoulder blade

bone (see also Section 8.3.2). Computing 3D distance transforms follows the
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Figure 9.12. Distance and feature transforms of a 2D shape (a–c) and a 3D shape
(d–h).

same definition given in Equation 9.27. However, visualizing them is more com-

plicated, since we now have a 3D scalar field, or scalar volume. Figures 9.12(f–h)

show three planar slices from our 3D distance transform, parallel to the axes

xy, yz, and xz and located roughly in the middle of the object. Distance values

are shown by a rainbow colormap, similarly to Figure 9.12(c). Object points

located on the slice plane are indicated by white dots. As visible, especially

in Figure 9.12(h), the values of the 3D distance transform along axis-aligned

slices is not equal to the 2D distance transform of the shape points located in
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such slices. Figure 9.12(e) shows the entire 3D distance transform rendered as a

half-transparent volume, using the same rainbow colormap, by the compositing

volume rendering technique discussed later in Chapter 10, Section 10.2.6.

Distance transform properties. Distance and feature transforms have a multitude

of applications in graphics and visualization. The feature transform can be used

to find the closest points, or closest objects, to a given spatial point, which is

useful when placing shapes in a space populated with several given objects, such

as in path-planning applications. Distance transforms are closely related to the

morphological operations of dilation and erosion. Consider the contour C(δ) of

a signed distance transform for some value δ, i.e., the set of points

C(δ) = {p ∈ R
n|DT (p) = δ}. (9.29)

The contours C for positive values δ > 0 correspond to inflations of the shape Ω

with a disc structuring element of radius δ. Similarly, the contours C for negative

values δ < 0 correspond to erosions of the shape Ω with a disc structuring

element of radius −δ. These contours are also known in many applications as

level sets [Sethian 96].

Figure 9.13 illustrates the concept of level sets. Given the binary shape in

Figure 9.13(a), we compute its distance transform. Figure 9.13(b) shows several

isolines Ck = {p|DT (p) = kδ, k ∈ N} of the distance transform for equally

spaced values 0, δ, kδ, . . . . Figure 9.13(c) shows an elevation plot of the distance

transform. Note that the isolines in Figure 9.13(b) are also equally spaced in

the (x, y) plane. This is an important property that will be exploited later when

designing efficient computation methods for distance transforms.

(a) (b) (c)

x

y

DT(x,y)

Figure 9.13. Level sets of the distance transform of a 2D shape. (a) Shape, (b) level
sets, and (c) elevation plot of the distance transform.
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Computing contours of the distance transform is useful when we want to

inflate or shrink a geometric shape by a certain distance δ while keeping its

overall appearance and aspect ratio (see for example Figure 9.13(b)). An im-

portant property of the level sets of distance transforms is that they naturally

allow the inflated or shrunk shape to change topology without having to consider

any special precautions. In contrast, if we were to perform the same inflation

or shrinking operations, e.g., by translating the vertices of a sampled version of

the shape boundary ∂Ω in normal direction, many problems appear. First, the

surface can easily self-intersect for too large translations. Second, an evenly sam-

pled surface quickly becomes nonuniformly sampled as points spread in convex

surface areas and get closer in concave areas, an effect that adversely affects the

representation quality. Finally, topological changes must be tracked and handled

explicitly, which is a complex operation.

Distance and feature transforms can also be used to compare sets of shapes.

Consider, for example, two shapes with boundaries ∂Ω1 and ∂Ω2 embedded in

R
n. To measure the difference between the two boundaries, we can use the

metric

”diff (∂Ω1, ∂Ω2) =

∑
x∈∂Ω2

DT1(x)

‖∂Ω2‖
+

∑
x∈∂Ω1

DT2(x)

‖∂Ω1‖
∈ R

+. (9.30)

Here, DT1 and DT2 denote the distance transforms of the boundaries ∂Ω1 and

∂Ω2, respectively. The function diff is zero only when the two boundaries are

identical, i.e., ∂Ω1 = ∂Ω2, and takes progressively larger values for increasingly

different boundaries. The normalization by the boundary lengths ‖∂Ω1‖ and

‖∂Ω2‖ ensures that the difference is scale-invariant, i.e., depends only on the

relative positions and shapes of the two boundaries. Similarly, if we have two

boundaries and we are interested to find the minimal distance (between their

closest points), we can use

min(∂Ω1, ∂Ω2) = min
x∈∂Ω1

DT1(x) = min
x∈∂Ω2

DT2(x) ∈ R
+. (9.31)

Finding the closest points x1 ∈ ∂Ω1 and x2 ∈ ∂Ω2 which correspond to the

minimal distance can be easily done using the features transforms of the two

shapes. Similar designs can be used to find the furthest point in a shape from

another given shape.

A related, and often-used metric, for comparing two shapes is the Hausdorff

distance [de Berg et al. 00]. Given two shapes Ω1 and Ω2, the Haudsorff distance

dH between them is defined as

dH(Ω1,Ω2) = max

(
max
x∈Ω1

min
y∈Ω2

‖x− y‖,max
y∈Ω2

min
x∈Ω1

‖x− y‖
)
. (9.32)
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Intuitively, dH gives the maximum distance between the two shapes Ω1 and Ω2.

Using our distance transforms, we can easily compute dH as

dH(Ω1,Ω2) = max

(
max
x∈Ω1

DT2(x),max
y∈Ω2

DT1(y)

)
. (9.33)

Intuitively, the first term in Equation 9.33 gives the furthest point of Ω1 from

Ω2, while the second term gives the furthest point of Ω2 from Ω1. Compared to

the metric given in Equation 9.30, the Hausdorff distance is more sensitive to

extrema, i.e., yields higher values when two boundaries have even a few points

which are far away from each other. In contrast, the diff metric given by

Equation 9.30 delivers a smoother, more averaged, and less sensitive to outliers,

distance between the two shapes.

Distance and feature transforms can be computed by many algorithms. In

practice, however, there are several, often subtle trade-offs between the various

algorithms. These trade-offs involve the type of computed information, grid

type, result accuracy, computation speed, and memory consumption. We shall

describe next three such algorithms. These algorithms take as input a binary

image, obtained, e.g., by segmenting a grayscale or color image. As output, they

produce a floating-point image containing the values of DT (q), such as those

visualized in Figures 9.12(b) and (c).

Brute-force implementation. The simplest way to compute an exact distance

transform is to iterate through all image pixels and compute, for each one, the

minimal distance to all the boundary pixels. The code for this algorithm is

shown in Listing 9.3. First, we identify all boundary pixels, as explained at the

beginning of Section 9.4, and store them in a separate Boundary data structure

for quick access. Next, we iterate over all image pixels and compute the minimal

distance to the Boundary pixels.

For an image of N pixels having a foreground with B pixels on its boundary,

the brute-force method takes O(NB) steps. In practice, this method is, however,

too slow to be used in interactive applications that need to compute distance

transforms of large images in subsecond time.

Distance transforms using OpenGL. An interesting approach is to use the high

parallelism of graphics processing units (GPUs) to implement an efficient version

of the simple distance-transform algorithm sketched previously. We shall next

sketch an implementation of a GPU-based distance-transform algorithm using

OpenGL. We proceed by constructing a distance splat or footprint. This is a

2D square luminance texture of size S2 pixels, where S is an odd number. The
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const i n t NX,NY; //image dimensions

void dt ( bool image [NX] [NY] , f l o a t dt [NX] [NY] )
{

typede f set<pai r<int , int> > Boundary ;
Boundary b ; //stores the image boundary
const i n t MAX DIST = NX+NY;

f o r ( i n t i =0; i<NX; i++) //extract the image boundary
f o r ( i n t j =0; i<NY; j++)
{

i f ( boundary ( image , i , j ) )
b . i n s e r t ( make pair ( i , j ) ) ;

dt [ i ] [ j ] = MAX DIST;
}

f o r (Boundary : : i t e r a t o r i=b . begin ( ) ; i !=b . end ( ) ; i++)
f o r ( i n t i =0; i<NX; i++) //compute DT of boundary
f o r ( i n t j =0; i<NY; j++)
{

i n t b i = (∗ i t ) . f i r s t ;
i n t bj = (∗ i t ) . second ;
f l o a t d i s t=sq r t ( ( bi−i )∗( bi−i )+( bj−j )∗ ( bj−j ) ) ;
i f ( d i s t<dt [ i ] [ j ] ) dt [ i ] [ j ]= d i s t ;

}
}

bool boundary ( i n t i , i n t j , bool image [NX] [NY] )
//Returns true i f ( i , j ) i s a boundary pixel
{

r e turn image [ i ] [ j ] && ( ! image [ i −1] [ j ] | |
! image [ i +1] [ j ] | | ! image [ i ] [ j −1] | | ! image [ i ] [ j +1 ] ) ;

}
Listing 9.3. Brute-force distance transform.

luminance value at pixel (i, j) in this texture is equal to the distance between

that pixel and the texture’s center (see Figure 9.14(a)).

Having this texture, we iterate in the outer loop in Listing 9.3 over all the

boundary points. At every point, we draw the texture centered at that point,

using a special OpenGL blending operation called GL MIN. Blending in OpenGL

was discussed in Section 2.5. A first application of blending in visualization was

presented in Section 6.6 for the texture-based visualization of vector fields. In

these previous examples, we used the standard OpenGL blending described by

Equation (2.9), which adds the drawn primitive, or source, to the frame buffer,

or destination, weighted by optional blending factors. To achieve our distance

transform computation, we now use a different blending equation:

dst′ = min(dst, src). (9.34)



370 9. Image Visualization

We enable this blending equation using the OpenGL call

glBlendEquation (GL MIN ) ;

In contrast, the default OpenGL blending, as described by Equation (2.9), also

called additive blending, is specified by

glBlendEquation (GL ADD) ;

When blending is enabled using the GL MIN operation, the graphics engine

will retain the minimal value at every pixel between the drawn splat and the

current frame-buffer value. This essentially implements the double for loop

over the image pixels from Listing 9.3 with a single OpenGL function call that

draws a texture. Figure 9.14(b) shows the result of splatting the shape contour

shown in Figure 9.14(a) with a distance texture. We obtain the shape’s distance

transform encoded as luminance values in the frame buffer.

The code for the GPU-based distance-transform algorithm is sketched in

Listing 9.4. The entry point is the function compute dt, which receives the

object boundary stored as an STL set of pixels. The algorithm proceeds as

follows. First, we construct the splat in the make splat function and store it

as an OpenGL luminance texture called splat. Next, we enable the appropri-

ate blending mode and draw the splat centered at every boundary pixel. The

resulting distance transform is available in the frame buffer.

(a) (b)

Figure 9.14. Computing distance transforms by texture splatting. (a) Contour and
overlaid distance splat and (b) resulting distance transform.
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s t r u c t P ixe l { i n t x , y ; } ;
const i n t S = 256 ; //Splat diameter
const i n t R = S/2 ; //Splat radius
GLuint sp l a t ; //Splat texture name

void make splat ( ) //Constructs splat texture
{

f l o a t dt [ S ] [ S ] ; //Stores splat before passing
f o r ( i n t i =0; i<S ; i++) // i t to OpenGL

f o r ( i n t j =0; j<S ; j++)
{

f l o a t dst = sq r t ( ( i−R)∗( i−R)+( j−R)∗ ( j−R) ) ;
i f ( dst>R) dst=R;
dt [ i ] [ j ] = dst /R; //dt must be in range [ 0 . . 1 ]

}

glEnable (GL TEXTURE 2D) ;
glGenTextures (1 ,& sp l a t ) ; //We need one texture
glBindTexture (GL TEXTURE 2D, sp l a t ) ;
glTexEnvf (GL TEXTURE ENV,GL TEXTURE ENVMODE,GL REPLACE) ;
glTexImage2D (GL TEXTURE 2D, 0 ,GL LUMINANCE,DIM,DIM, 0 ,

GL LUMINANCE,GL FLOAT, dt ) ;
}

void draw sp lat ( const Point& p) //Draws splat centered at p
{

glBegin (GL QUADS) ;
glTexCoord2f ( 0 , 0 ) ; g lVe r t ex2 i (x−R, y−R) ;
glTexCoord2f ( 0 , 1 ) ; g lVe r t ex2 i (x−R, y+R) ;
glTexCoord2f ( 1 , 1 ) ; g lVe r t ex2 i (x+R, y+R) ;
glTexCoord2f ( 1 , 0 ) ; g lVe r t ex2 i (x+R, y−R) ;
glEnd ( ) ;

}

void compute dt ( set<Pixel>& boundary ) //Computes DT of boundary
{

make splat ( ) ; //First , make the splat texture

glEnable (GL BLEND) ; //Enable the desired blend mode
glBlendEquation (GL MIN ) ;
glBlendFunc (GL ONE,GL ONE) ;

f o r ( set<Pixel > : : i t e r a t o r i=boundary . begin ( ) ;
i !=boundary . end ( ) ; i++)

{
const P ixe l& p = ∗ i ; //Draw splat centered at every
draw sp lat (p ) ; //boundary pixel p

}
}

Listing 9.4. Computing distance transforms using hardware splatting.
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Several observations are to be made for this technique. First, the size S of the

splat texture must be large enough so that it reaches the “deepest” pixel inside

the object. In the worst case, for an object boundary whose bounding-box has

M by N pixels, this means setting S to 1
2
min(M,N). Second, the frame buffer

used must have a bits-per-pixel resolution high enough to accommodate the

complete distance range. Related to this, we must use a texture and frame-buffer

pixel format that allows us to exactly encode all possible real-valued distances

0, 1,
√
2, 2,

√
5, . . . , S that can occur on a pixel grid up to distance S. This can be

done using fixed-point techniques and classic 32-bit RGBA textures. An easier

and also more elegant way is to use the newer floating-point texture formats

supported by OpenGL, combined with a minimization operation written as a

fragment program or pixel shader [GPGPU 14]. For complete implementation

details, we refer to Strzodka and Telea [Strzodka and Telea 04].

Fast Marching Method. As explained earlier in this section, the contours or level

sets of the distance transform correspond to progressively inflated or shrunken

versions of the shape boundary ∂Ω. Consider two consecutive contours C(d)

and C(d + ε) of the DT for some small value ε > 0. The gradient ∇DT at

point p on contour C(d) is, by definition, normal to C(d), and has the length

(DT (q)−DT (p))/‖q−p‖. However, the difference DT (q)−DT (p) is by definition

equal to the distance ‖q − p‖, so the gradient ∇DT has unit magnitude. It can

be shown that the distance transform DT of the boundary ∂Ω is the solution of

the equation

‖∇DT‖ = 1 (9.35)

with initial condition DT = 0 on ∂Ω. Equation (9.35) is also known as the

Eikonal equation.

An efficient method to solve Equation (9.35) is the Fast Marching Method

introduced by Sethian [Sethian 96]. The Fast Marching Method is based on

the following observation. Imagine that we have computed the distances of all

points up to some value DT0. The distances DT > DT0 of the remaining points

can be computed considering only the points on the contour DT0. In more

general terms, the DT value of a pixel can be affected only by pixels that have

strictly lower DT values. The fast marching methods use this observation by

maintaining a narrowband containing the pixels being updated, i.e., the direct

neighbors of the known pixels. The method initializes the narrowband to the

boundary ∂Ω and next visits all image points and updates their DT values in

strictly increasing distance order. During this process, pixels are in one of the

following three states:
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Known Band Unknown Minimal distance Update targets Update sources

1) Select pixel with
minimal DT

2) Make pixel known 3) Add all unknown
neighbors to band

4) Update DT of 
neighbors

Additions to band

Figure 9.15. Fast Marching Method algorithm.

• Known: DT (p) is already computed (p is outside the narrowband).

• Band: The DT of p is being updated (p is in the narrowband).

• Unknown: p is inside the narrowband.

The algorithm maintains three data structures: the distance transform array

DT; the narrowband containing pixels under update, sorted in increasing distance

order; and an array state holding the state of all pixels. With these structures,

the algorithm proceeds as sketched in Listing 9.5 (see also Figure 9.15). First,

the narrowband, state, and DT data structures are initialized. The distance

transform DT gets initialized to 0 on the boundary and background, and to

some value MAX VALUE larger than any possible distance on the considered grid

on the foreground. After that, the DT of the narrowband pixel p that has the

lowest distance gets fixed, and the pixel is marked as Known. Since this pixel

has changed its state, we must update all its still updateable, i.e., non-Known,

neighbors, which we gather in a set nbs. We now update each such neighbor n

using the DT values of its own Known neighbors. This action is described by the

function update and deserves special attention.

How do we update the distance of a pixel n to some boundary if we know the

distances of (some) of its neighbors? First, note that n may have Known, Band,

and Unknown neighbors. Due to the way the narrowband advances from the

outside toward the interior of the foreground object and the fact that pixels are

updated in strictly increasing distance-to-boundary order, the Unknown neighbors

will always have a larger distance value than the point n itself, so they cannot

influence the distance of n. The Band neighbors also have larger distances than

the Known ones, so the distance of n is determined first by the Known neighbors.

We use only these values in update. The point n can have between one and four

Known neighbors. We split these into four quadrants, compute the distance of n
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Figure 9.16. Distance computation in the Fast Marching Method.

determined by each quadrant, and retain the minimal value of these possibilities

as the value of DT of n. By using a quadrant at a time, we in fact compute

the distance of n to a piecewise linear interpolation of the boundary of the

discrete foreground object, i.e., the distance to the line set that connects the

centers of all consecutive, neighboring pixels on this boundary. This is, for many

applications, a more accurate estimation of the distance transform of the original

shape captured by the binary image than if we computed the distance to the set

of boundary pixel centers.

The distance computation performed by the function update is illustrated

in Figure 9.16. As explained previously, the red pixels p and q will get their

distances updated from the Known pixels marked in blue, i.e., a and a, b, respec-

tively (Figure 9.16(a)). The distance value of p is clearly nothing more than the

distance value of a plus 1, since p is one pixel “deeper” inside the shape than a

(Figure 9.16(b)), i.e.,

DT (p) = DT (a) + 1. (9.36)

Consider now the point q (see Figure 9.16(c)). Imagine two circles of radii

DT (a) and DT (b) centered at the pixels a and b. A line tangent to these circles

in points A and B, respectively, would be a good local approximation of the

boundary. There are two such tangent lines corresponding to the configurations

in Figures 9.16(c) and (d). Let us consider the configuration in Figure 9.16(c)

first. The distance of q to the boundary is approximated by the distance of q to

AB, realized in a point called Q. Now construct a rectangle R = ABq′a′ so that

q ∈ q′a′ and a segment bb′ parallel to AB with q ∈ R. From the triangle bb′a′,
we get that bb′ =

√
2− (DT (a)−DT (b))2 = AB, since ab =

√
2. The area of R
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is the sum of the area of the trapezoids bBAa and aa′q′b, i.e.,

AB ∗DT (q) = AB

(
DT (a) +DT (b)

2

)
+ AB

(
aa′ + bq′

2

)
. (9.37)

Since triangles qa′a and bq′q are equal, it follows that aa′ + bq′ = a′q + qq′ =
a′q′ = AB. Replacing this in Equation (9.37), we get that

DT (q) =
DT (a) +DT (b) +

√
2− (DT (a)−DT (b))2

2
. (9.38)

If we consider the second possible tangent line to the two circles described earlier,

we obtain the configuration in Figure 9.16(d). By following a similar reasoning

to the one used earlier, we obtain

DT (q) =
DT (a) +DT (b)−

√
2− (DT (a)−DT (b))2

2
. (9.39)

In practice, we compute the distances given by both Equations (9.38) and (9.39)

and use the smallest value of the two that exceeds DT (a) and DT (b) as result for

DT (q). Combining all the preceding elements, we obtain the function update in

Listing 9.5.

enum State { Known, Band , Unknown } ;
s t r u c t P ixe l { i n t i , j ; } ;
State s t a t e [NX] [NY] ;
bool image [NX] [NY] ;
f l o a t DT[NX] [NY] ;
Narrowband narrowband ;
const f l o a t MAXVALUE=NX+NY;

f o r ( i n t i =0; i<NX; i++) //1. Ini t ia l i zat ion

f o r ( i n t j =0; i<NY; j++)
i f ( boundary ( image , i , j ) )
{

s t a t e [ i ] [ j ]=Band ; DT[ i ] [ j ]=0;
narrowband . i n s e r t (DT[ i ] [ j ] , P ixe l ( i , j ) ) ;

}
e l s e i f ( image [ i ] [ j ]==FOREGROUND)
{

s t a t e [ i ] [ j ]=Unknown ; DT[ i ] [ j ]=MAXVALUE;
}

Listing 9.5. Fast Marching Method algorithm.
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e l s e // (image[ i ] [ j]==BACKGROUND)
{

s t a t e [ i ] [ j ]=Known; DT[ i ] [ j ]=0;
}

whi le ( ! narrowband . empty ( ) ) //2. March the narrowband
{

Pixe l p = narrowband . getSmal l e s t ( ) ;
s t a t e [ p . i ] [ p . j ] = Known ;

set<Pixel> nbs ; //3. Get non−Known neighbors of p
f o r ( a l l P i x e l s n ne i ghbor s o f p )
{

i f ( s t a t e [ n . i ] [ n . j ]==Known) continue ;
nbs . i n s e r t (n ) ;
i f ( s t a t e [ n . i ] [ n . j ] !=Band)
{

s t a t e [ n . i ] [ n . j ]=Band ;
narrowband . i n s e r t (DT[ n . i ] [ n . j ] , n ) ;

}
}

f o r ( a l l P i x e l s n in nbs )
{ //4. Compute DT of neighbors of p

f l o a t d=DT[ n . i ] [ n . j ] ;
d = min (d , update (n . i −1,n . i , n . j , n . j −1)) ;
d = min (d , update (n . i +1,n . i , n . j , n . j −1)) ;
d = min (d , update (n . i −1,n . i , n . j , n . j +1)) ;
d = min (d , update (n . i +1,n . i , n . j , n . j +1)) ;
i f (d!=DT[ n . i ] [ n . j ] )
{

r e i n s e r t n in narrowband in order o f d ;
DT[ n . i ] [ n . j ] = d ;

}
}

}

f l o a t update ( i n t l r , i n t i , i n t j , i n t tb )
//3. Find distance of ( i , j ) to i t s neighbors ( lr , j ) and ( i , tb)
{

Pixe l a=( l r , j ) , b=( i , tb ) , q=(i , j ) ;
i f ( s t a t e [ l r ] [ j ]==Known)

i f ( s t a t e [ i ] [ tb]==Known)
{

f l o a t D1 = d i s t ance from Equation (9.38) ;
f l o a t D2 = d i s t ance from Equation (9.39) ;
i f (D2>DT[ l r ] [ j ] && D2>DT[ i ] [ tb ] ) r e turn D2 ;
i f (D1>DT[ l r ] [ j ] && D1>DT[ i ] [ tb ] ) r e turn D1 ;
r e turn DT[ i ] [ j ] ;

}

Listing 9.5. continued.
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e l s e
r e turn 1+DT[ l r ] [ j ] ; //Equation (9.23)

e l s e
i f ( s t a t e [ i ] [ tb]==Known)

r eturn 1+DT[ i ] [ tb ] ; //Equation (9.23)
r e turn DT[ i ] [ j ] ;

}
Listing 9.5. continued.

After computing the DT of a point n, the final step of the Fast March-

ing Method is to reinsert n in order of the new value DT (n) in the narrow-

band. Strictly speaking, this is not necessary if we design the narrowband’s

getSmallest method to search the point of minimal distance every time. How-

ever, this repeated search is costly, so it is more efficient to maintain the nar-

rowband sorted ascendingly on distance, i.e., reinsert points in it whenever they

get their distances updated.

We can implement the fast marching algorithm easily as follows. For the

narrowband, we use a multimap<float,Pixel> STL container that keeps pixels

sorted in increasing order of their DT . The method getSmallest will thus sim-

ply remove the first element, an operation of O(1) cost. Reinserting a point into

the narrowband upon distance update is a bit more delicate. For this, we need

to quickly locate the point’s position in the narrowband. We can do this effi-

ciently by maintaining an additional data structure multimap<float,Pixel>::

iterator pos[NX][NY], i.e., an array of iterators to the narrowband positions

of every pixel. When pixels are inserted in the narrowband, we also insert the

corresponding position iterator in the pos location of that pixel. To reinsert a

pixel p in the narrowband, we simply erase the iterator pos[p.i][p.j] from the

narrowband and next reinsert p with its new distance value.

The complexity of the preceding implementation is O(N logB) for an image

of N foreground pixels having a boundary of B pixels. The log factor is the cost

of (re)inserting an element in the sorted narrowband, which would typically be

done internally using a hash or tree structure. Clearly, this cost can be more

than one order of magnitude lower than for the brute-force method described

in the previous section. Using this implementation, 2D distance transforms of

large images can be computed in subsecond time on current PC computers [Telea

and van Wijk 02, Telea 04, Telea and Vilanova 03]. To compute 3D distance

transforms, a similar implementation can be designed. The main difference is

the design of the update function, which will have to consider eight octants. 3D

distance transforms are useful, among others, in computing simplified represen-

tations of 3D shapes, such as curve skeletons, a subject discussed later in this

chapter in Section 9.4.6.
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Finally, let us mention that the Fast Marching Method presented here is not

limited to computing distance transforms. In the general case, this method can

solve in n dimensions equations of the form

‖∇T‖ = f, (9.40)

where f : Rn → R+ is a speed function, with the boundary condition T (∂Ω) =

0. This equation describes the deformation, or evolution in time, of the shape

boundary ∂Ω under normal speed. The Eikonal equation, whose solution is the

distance transform of ∂Ω, is a particular case of Equation (9.40) for unit speed.

By setting the speed function f to depend on the position in space or other

data attributes such as, e.g., the surface curvature, a large class of problems

can be solved with applications in shape modeling, smoothing, filtering, and

computer vision. For more insight into this topic as well as a more detailed

mathematical treatment thereof, we point the reader to the reference book by

Sethian [Sethian 96].

Other distance transform algorithms. The brute-force, GPU-based, and fast march-

ing methods are not the only methods to compute distance transforms on binary

images. Many other methods have been developed. The main differences be-

tween these methods concern the following aspects:

• Precision: Is the method exact? If not, what is its error?

• Metric: Are other distance metrics than Euclidean supported?

• Dimension: Does the method work in 2D, 3D, or nD?

• Speed: What is the complexity of the method?

• Simplicity: How easy is it to implement the method?

Chamfer-based methods were among the first methods used to compute dis-

tance transforms [Thiel and Montanevert 92]. They are quite easy to implement

and relatively fast, but compute only approximative distance transforms. Given

the existence of several modern methods that are both exact and efficient, this

class of methods has become less interesting in recent years. Graph-search-based

methods consider the pixel neighboring graph and implement distance compu-

tation as search operations on this graph [Lotufo et al. 00]. Raster-scanning

methods traverse the image pixels in row and column order and compute the

distance transform [Danielsson 80, Mullikin 92]. Efficient implementations de-

compose the distance computation in one component per spatial dimension and
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implement the distance transform as several passes, one per dimension [Meijster

et al. 00]. Such methods are very efficient, being able to compute exact dis-

tance transforms in O(N ) steps for an image with N pixels. Open-source GPU

implementations of such methods can deliver distance transforms of images of

thousands of pixels squared in tens of milliseconds on modern computers, and are

as such the solution of choice for any application requiring 2D and 3D distance

field computations [Cao et al. 10b].

Overall, all these methods are relatively simpler to implement than the Fast

Marching Method presented in the previous section. However, as already ex-

plained, the Fast Marching Method has the important advantage that it allows

one to specify the speed function, i.e., the gradient of the distance metric, differ-

ently at each point of the domain. This allows one to easily implement complex

space-dependent and anisotropic distance metrics, a feature that is not supported

in general by the other methods listed in this section. A second advantage of

the Fast Marching Method is that it processes the image pixels in increasing

distance order. This allows one to stop the distance computation when, e.g., a

certain maximal distance has been reached. This feature is not supported by

other methods such as the raster scanning class.

9.4.6 Skeletonization

As explained earlier in this chapter, many imaging applications have as a goal

the analysis of the properties exhibited by certain shapes present in image data.

We have seen that the first step in this process is segmentation, which separates

the pixels contained by the shapes of interest from the remaining ones, called the

background. However, the question remains: How should we analyze the shape

formed by these pixels?

In the shape analysis field, there are many classes of methods used to char-

acterize digital shapes. These methods address different goals:

• geometric analysis: the analysis of the geometric properties of the shape,

such as aspect ratio, eccentricity, boundary curvature, thickness, and elon-

gation;

• topological analysis: the analysis of the topological properties of the shape,
such as genus and part-whole structure;

• retrieval: given a source shape and a set of target shapes, find the target

shape most resembling to the source;
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• classification: given several shapes and/or several shape classes, partition

the shapes into self-similar classes or distribute the shapes in the given

classes;

• matching: given two or more shapes, find geometrical and/or topological

correspondences between the two.

To be able to process the shape data, most methods in the preceding classes

first reduce a given shape to a set of (numerical) attributes, or a shape vec-

tor. This vector holds shape properties relevant for a given application area,

which are extracted from the pixel representation. For example, among such

simple properties are the shape area, aspect ratio, diameter, and average bound-

ary curvature. However, such aggregated properties are clearly not enough to

characterize a complex shape.

Skeletons , also known as medial axes, are a well-known, long-standing shape-

representation instrument. In this section, we shall describe skeletons and their

properties; present an efficient, robust, and simple-to-implement algorithm to

compute skeletons; and give several examples of their usefulness in data visual-

ization.

Skeletons were first introduced by Blum [Blum 67]. Given a 2D shape Ω,

the original definition of the skeleton S(Ω) was the set of points p ∈ Ω that

are centers of maximally inscribed discs in Ω, i.e., discs fully contained in Ω

that are not included by larger discs in the same set. An equivalent definition

defines skeletons as the sets of points situated at equal distance from at least

two boundary points of the given shape, i.e.,

S(Ω) = {p ∈ Ω|∃q, r ∈ ∂Ω, q �= r, ‖p− q‖ = ‖p− r‖}. (9.41)

Note that this definition holds for shapes of Ω ∈ R
n embedded in any spatial

dimension.

Figure 9.17 shows examples of skeletons for several 2D shapes. These ex-

amples reveal several of the useful properties of skeletons. These properties are

discussed next.

Centeredness. The main property of skeletons is that they are centered with re-

spect to the shape boundary. In 2D, the skeleton consists of a set of curves, in

the generic case. The nongeneric case is the skeleton of a circle, which consists

of a single point, being its center. The centeredness of the skeleton is important.

Several studies have shown that humans visually perceive symmetry as one of

the most important shape attributes. Symmetry-related properties of a shape
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 9.17. Examples of skeletons of 2D shapes. The skeleton is the one-dimensional
structure located inside the shape’s closed boundary.

can be tested on the shape skeleton, which makes the latter a useful charac-

terization instrument. For example, long, low-twisting, uninterrupted skeleton

branches indicate symmetric shape components, e.g., the lobes of the leaf in

Figure 9.17(b).

Structural and topological encoding. Skeletons have a strong ability to describe

the structure of shapes. Intuitively, every skeleton branch corresponds to a shape

component, and every skeleton junction, or intersection of several branches, cor-

responds to one part where several shape components are joined with each other.

By analyzing the graph structure of a 2D skeleton, we can make several high-level

statements about the shape’s structure. For example, by analyzing a combina-

tion of elements including the number of branch end points, branch intersections,

and disposition of branches in the skeletal graph, we can infer that the shape

in Figure 9.17(b) has eight lobes distributed radially around a center, where

they all meet. A similar analysis on the hand and horse shapes reveals infor-

mation characterizing the number of fingers of the hand and limbs of the horse,

respectively.
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The skeleton also encodes the topological genus of its shape. Indeed, every

hole in the shape corresponds to a loop in the skeleton graph. A skeleton of a

shape without holes, i.e., of genus 0, is a tree. The skeleton of the shape with

five holes in Figure 9.17(h) is a graph with five loops. Similarly, the skeleton of

the shape with two holes in Figure 9.17(i) is a graph with two loops. Note also

that the skeleton of a compact shape is compact, i.e., connected.

Geometrical encoding. Together with structure and symmetry, skeletons also

encode the shape geometry. Equation (9.41) states that for each skeleton point

p, we have at least two different boundary points at equal distance from p. In the

terminology introduced in Section 9.4.5, these are the feature points of p. The

distance between any of these points and the skeleton point p is equal to the value

of the distance transform DT of the shape Ω evaluated at p. This distance gives

a good estimation of the “local thickness” of the shape at p. A small distance

indicates a locally thin shape, such as if we consider any of the points on the

twigs of the leafs in Figure 9.17(b–d). High values indicate points deep inside the

object, such as any of the points on the central branch of the double-Y skeleton of

the rectangles in Figure 9.17(f–g). A large number of feature points of a skeleton

point p, or in the terminology introduced in Section 9.4.5 a high cardinality of

the shape’s feature transform FT evaluated at p, indicates the existence of circle

arc segments on the boundary. For example, every branch end point for the

five skeleton branches of the fingers of the hand shape in Figure 9.17(a) has a

multitude of feature points located on the corresponding round fingertip. Note

that this property usually holds for branch end points.

The combination {S(Ω), DTS(Ω)}, that is, the skeleton of a shape plus the

shape’s distance transform restricted to the skeleton points, is called the medial

axis transform or MAT. An MAT uniquely and fully encodes a shape. Indeed,

given the MAT we can reconstruct the shape’s boundary as the hull of the

boundaries of discs with radii DTS(p) centered at all points p of the skeleton

S. In a discrete setting, an easy-to-implement reconstruction method can be

implemented by drawing full discs having the respective radii using a given color

on a background of a different color.

Multiscale shape encoding. The skeleton provides a multiscale representation of

the boundary of a shape. In essence, every skeleton branch containing a free end

point corresponds to a convex “bump” on the boundary, or a positive local max-

imum of the boundary curvature. If we remove such a terminal skeleton branch,

that is, a branch that would not disconnect the skeleton tree, and reconstruct

the object using the MAT, we obtain a shape similar to the original one, but
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where the bump corresponding to the removed branch has been replaced with

a circle arc. This is a very important property of skeletons, as it lets one sim-

plify complex boundaries in a controlled way. This mechanism can be used in

many applications, such as hierarchical shape matching [Cornea et al. 05], shape

compression, and shape denoising. For example, consider the two identical leafs

in Figure 9.17(c) and (d). The left image shows a simplified skeleton, whereas

the right image shows the “full” skeleton, where every small boundary bump

produces a separate skeleton branch. Similarly, Figure 9.17(f) and (g) show a

noisy and exact rectangle, respectively. If we simplify the skeleton of the noisy

rectangle, as shown in the left image, we obtain a smooth structure that is very

similar to the skeleton of the “clean” rectangle. Hence, we can use such simpli-

fied skeletons to describe the essence of a shape ignoring its small-scale details,

or to compare or match shapes modulo small-scale noise.

This multiscale representation power of skeletons is related to one of their

much-discussed weaknesses. Namely, consider a perfect rectangle that includes

a very small bump or dent on the boundary. This deformation causes the ap-

parition of a full skeleton branch connecting it with the main skeleton structure.

No matter how small the bump size ε is, the length of this branch will never

drop under a sizeable value δ. Hence, the skeleton function S(Ω) is continuous

in the Cauchy sense (see Section 3.1). Such long branches caused by relatively

short boundary details are also called ligature branches [Costa and Cesar 01].

We shall present in Section 9.4.7 a simple and effective way to make skeletons

robust and continuous under small boundary perturbations.

Applications. Apart from the shape characterization metrics outlined above, 2D

skeletons can be used in several other ways in data visualization. In Chapter 11,

we show how skeletons can be used to create pseudo-3D shaded cushions atop of

various 2D shapes in a visualization (Sections 11.4.2, 11.4.3, and 11.5.7). In the

same chapter, we also use skeletons to create simplified visualizations of large

graphs (Section 11.4.2).

9.4.7 Skeleton Computation in 2D

Recall the definition of a skeleton as the set of shape points situated at equal

distance from at least two boundary points (Equation (9.41)). If we have a fea-

ture transform of our shape (see Equation (9.28)), we can compute the skeleton

by simply selecting those points whose feature transform contains more than

two boundary points. However, there is a practical problem with this idea. The

definitions of the feature transform and skeleton (Equations (9.28) and (9.41))

hold, strictly speaking, in the continuous space only. Simply using the same
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computed skeleton pixels
missed skeleton pixels

(a) (b)

10 pixels

Figure 9.18. Skeleton sampling issues. (a) Continuous skeleton and (b) its counterpart
as computed on a discrete grid of even pixel width. The discrete skeleton misses the
central branch (marked in gray in the right image).

definitions in the discrete space of image pixels does not lead to the expected

results. The reason for this is that distances on a discrete grid do not take all

possible values as they do in the continuous space, as explained earlier.

Figure 9.18 illustrates the problem. The left image shows the skeleton of a

rectangular shape in the continuous R2 space. The right image shows a sampling

of the rectangle on a discrete pixel grid of an even pixel width. Using the

definitions from Equations (9.28) and (9.41) will miss the central skeleton axis,

as there are no pixels in this area that are situated at equal distances from the

vertical rectangle edges. Relaxing the distance equality criterion in the skeleton

definition is also not a good solution. This makes the definition too permissive,

which generates a large number of spurious, false skeleton points or thickens the

correct skeleton branches unnecessarily.

We next present two classes of methods for computing skeletons of binary

shapes.

Using distance field singularities. By definition, the skeleton points are situated

at equal distance from several boundary points. Consider the distance transform

of a binary shape, such as shown by the elevation plot in Figure 9.13. Points

at equal distance from more than one boundary point are by definition local

maxima of the distance transform. These correspond visually to the “ridges” of

the distance transform graph. Detecting such ridges is equivalent to finding the

skeleton of the shape. In a luminance plot of the distance transform, such as the

one shown in Figure 9.14, these ridges correspond to local luminance maxima.
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weak skeleton branches 

Figure 9.19. Computing the skeleton using image-processing operations.

One class of skeletonization methods uses image- or signal-processing meth-

ods to detect such points. Remember that the distance transform is the solution

of the Eikonal equation ‖∇DT ‖ = 1 (Equation (9.35)). Hence, the gradient of

the luminance of all pixels in Figure 9.14(b) should be one, except for the skeleton

ones. To find these, we can compute the gradient magnitude of the DT image

and then threshold it to find low gradient magnitude points. Figure 9.19 shows

the application of a Sobel filter on the DT image from Figure 9.14(b) (masked

with the shape itself), which produces an approximation of the gradient magni-

tude in the input image. The interpretation of the result is simple: White pixels

in Figure 9.19 correspond to nonskeleton areas, where ‖∇DT ‖ equals one. Black

pixels inside the white area correspond to skeleton points, where ‖∇DT‖ has low

values.

Although simple to implement, skeleton detection based on the distance field

singularities has several problems. First, it relies on computing derivatives of

discrete signals, an operation that is inherently noise-sensitive. Stabilizing such

computations by, e.g., filtering the distance transform signal with Gaussian fil-

ters can be done, but this implicitly removes skeleton details. Second, singularity

detection is a typically local operation, which cannot guarantee by itself a con-

nected skeleton. Consider, for example, Figure 9.19. Look at those parts of the

skeleton branches corresponding to the horse legs that are close to the main rump

branch. We notice that these branch parts are less pronounced than the remain-

der of the leg branches. In general, we notice that those skeleton points with

nearly opposite feature vectors are well detected, whereas the skeleton points
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whose feature vectors make a small angle are weakly detected. Indeed, the first

kind of points are situated on a constant-height ridge of the distance transform,

corresponding to shape areas of local constant diameter, hence they have a low

DT gradient value. The second kind of points are situated on an ascending or

descending ridge of the distance transform, corresponding to shape areas of vary-

ing local diameter, hence they have a larger DT gradient value. Several methods

alleviate these skeleton detection problems, for example performing an explicit

reconnection of the detected DT local maxima or combining maxima detection

with morphological erosion algorithms. For a detailed review of skeleton detec-

tion methods using the distance transform singularities, see, for example, Ge and

Fitzpatrick [Ge and Fitzpatrick 96].

Using boundary collapse metric. We present next a simple method that cir-

cumvents the preceding problems and is able to deliver connected and robust

skeletons for any 2D binary shapes. The new method has three steps, as fol-

lows. In the first step, we augment the Fast Marching Method for computing

distance transforms presented in Section 9.4.5 with the capability of computing

a one-point feature transform. This is a feature transform FT following the defi-

nition in Equation (9.27) with the simplification that it computes a single closest

point, i.e., |FT (p)| = 1, ∀p ∈ Ω. The one-point feature transform is stored in an

additional array int FT[NX][NY]. Assuming that every boundary pixel has an

unique integer ID, the value FT[i][j] gives the ID of the closest boundary pixel

to a given pixel (i, j) in the shape. We make the convention that point IDs are

consecutive positive integers starting from zero. Next to the one-point feature

transform FT, we store also an array Pixel from[B] of B elements, where B is

the boundary length. For every boundary point ID, from gives the 2D location

of that point.

We start computing the one-point FT by first initializing from and FT on

the boundary. Next, we compute FT by adding the code in Listing 9.6 to the

Fast Marching Method in Listing 9.5, when a new point is added to the nar-

rowband, i.e., right after the call to narrowband.insert. Basically, this code

keeps propagating the ID of the closest boundary point, found by minimizing

the distance-to-boundary among the Known neighbors of the newly added point

to the narrowband, while the narrowband advances inside the domain Ω.

Now that we have the one-point feature transform, in the second step we

compute the skeleton by identifying points that have different features than their

neighbors. Comparing the single feature of a point with its neighbors solves the

pixel grid discretization problem explained previously (see Figure 9.18). Indeed,
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. . .
narrowband . i n s e r t (DT[ n . i ] [ n . j ] , n ) ;

//Compute one−point feature transform
f l o a t dmin = DIST MAX∗DIST MAX;
f o r ( a l l Points q ne i ghbor s o f n)
{

i f ( s t a t e [ q . i ] [ q . j ]==Known) continue ;
Point c = from [FT[ q . i ] [ q . j ] ] ;
i n t d = ( c . i−n . i )∗ ( c . i−n . i )+( c . j−n . j )∗ ( c . j−n . j ) ;
i f (d>=dmin) cont inue ;
dmin=d ; FT[ n . i ] [ n . j ]=FT[ c . i ] [ c . j ] ;

}
. . .

Listing 9.6. One-point feature transform.

a pixel close to or on the skeleton will always have a different feature point than

its neighbors. In order to prevent computing a two-pixel-thick skeleton, we only

consider the right and lower neighbors nR, nL (or the upper and left ones) instead

of all four.

The third and final step in the skeleton computation is to build in a multiscale

representation of the shape. For a skeleton pixel p, we notice that the further

apart two features fi, fj ∈ {FT (p), FT (nR), FT (nL)} are, the more central to

the skeleton the position of p is. Hence, we can define the importance ρ(p) as

ρ(p) = max
[
dist(u(FT (nR)), u(FT (p))), dist(u(FT (nL)), u(FT (p)))

]
, (9.42)

where u : ∂Ω → R+ is an arc-length boundary parameterization and dist(a, b) =

min
(
|a− b|, |∂Ω|

2

)
is the shortest distance along the boundary between two

points. Implementing the complete skeletonization method starting from the

fast marching code (see Listing 9.5), the one-point feature transform addition

(see Listing 9.6) and the skeleton detector and importance measure ρ (Equa-

tion (9.42)) are left as an exercise for the reader.

The measure ρ in Equation (9.42) defines the importance of a skeleton point

as being the maximal shortest distance along the boundary ∂Ω between two fea-

ture points of p. Note that this importance measure only holds for shapes of

genus zero; that is, shapes without holes. For example, the importance of the

skeleton point p in Figure 9.12(a) equals the length of the upper leaf lobe delim-

ited by the boundary points q1 and q2. If we want to compare the importances of

skeletons of different objects, we can normalize ρ in the range [0, 1] by dividing

it by half the boundary length |∂Ω|/2.
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This measure also has an intuitive explanation. Imagine a level set evolution,

such as the narrowband motion in the Fast Marching Method, that carries along

the initial boundary ∂Ω, collapsing it gradually as the narrowband shrinks. At

each skeleton point, the importance ρ will equal the length of the collapsed

boundary, i.e., the piece of the original ∂Ω that has been shrunk to that point

during the evolution. An important fact is that Equation (9.42) does not actually

distinguish between skeleton and nonskeleton points. Indeed, nonskeleton points

will always get an importance ρ = 1. Implementing the importance measure from

Equation (9.42) is the second step of the skeletonization algorithm, and can be

easily done in a single pass over all image pixels.

The preceding importance measure is known to have several desirable prop-

erties [Ogniewicz and Kubler 95, Costa and Cesar 01, Telea and van Wijk 02]:

• Monotonicity: For genus 0 object whose skeleton is a tree, ρ(p) increases

as p moves from a branch end point to the skeleton root.

• Geometry encoding: Skeleton branches corresponding to short boundary

pieces have a low importance, even if they are long (the ligatures).

All in all, the skeleton importance implemented via the Fast Marching Method

provides a skeletonization tool that fully satisfies all our earlier requirements: ro-

bustness against shape noise and discretization resolution, connected pixel-thin

exact skeletons, and a simple and intuitive geometric scale parameter. Once we

have the importance, defining a simplified skeleton S(Ω, τ) means just thresh-

olding the importance τ :

S(Ω, τ) = {p ∈ Ω|ρ(p) ≥ τ}. (9.43)

This thresholding is the third and last step of the skeletonization pipeline, and

is also implemented as a pass over all image pixels. Further implementation

details, e.g., for shapes with holes, are discussed in Costa and Cesar as well as

Telea and van Wijk [Costa and Cesar 01, Telea and van Wijk 02].

Figure 9.20 illustrates the complete skeletonization pipeline for the leaf shape

shown earlier. First, we compute the one-point feature transform of the bound-

ary. Recall that this one-point feature transform assigns to the ID of any interior

point the ID of the closest boundary point. Figure 9.20(a) shows this by color-

coding the boundary point IDs, which run clockwise and in increasing order

along the boundary starting from the tip of the leaf twig (bottom-most shape

point). Figure 9.20(b) shows the importance field ρ. We see now how the skeleton

branches corresponding to small boundary details are dark blue, i.e., unimpor-

tant, and how the importance gradually increases as we approach the skeleton
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(a) (b) (c)

Figure 9.20. Skeletonization algorithm. (a) One-point feature transform. (b) Impor-
tance given by collapsed arc length metric. (c) Simplified skeleton.

center, or root (colored in red). The final image, Figure 9.20(c), shows the same

skeleton as in Figure 9.17(c), which is the simplified version S(Ω, τ = 10) of the

full skeleton shown in Figure 9.17(d). Note that, in general, the lowest value

τ can practically have is 2 pixels. Lower values essentially produce touching

skeleton branches in the image, which are not very useful. The highest value,

τ = |∂Ω|/2, simplifies the skeleton to a single point, the root. Remark that this

is not the same as the deepest point inside the object, at least not for concave

shapes.

Let us examine Figure 9.20(a) in a bit more detail. This image shows how the

fast marching process essentially transports the boundary IDs inside the object

in distance order. Indeed, the isolines of this field, i.e., lines of constant ID value

(thus same color in the image) are identical to the streamlines of the distance

transform’s gradient ∇DT , or the lines along which the IDs are transported

from the boundary inward. These lines, as discussed in the previous section, are

normal to the boundary. Figure 9.21 demonstrates this, showing a set of such

isolines, equally spaced at 5 units, overlaid on the color-coded boundary ID field.

Hence, in this image there is a black isoline starting from every fifth boundary

pixel. On top of this, we show also several isolines of the distance transform,

equally spaced at 5 units in distance value. We see how the two sets of iso-

lines are orthogonal to each other—except along the skeleton branches, shown

as thick black lines. This is actually a problem of combining the assumptions of

the marching squares algorithm used to extract the boundary ID isolines with

the data representation. As explained earlier and visible from Figure 9.20(a),
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Figure 9.21. Isolines for the boundary ID field (orthogonal to the boundary) and the
distance transform field (parallel to the boundary), equally spaced at 5 units. Note
how the two isoline sets are orthogonal to each other, except along the skeleton.

the boundary ID field has strong zero-order discontinuities along the skeleton,

where IDs from different parts of the boundary meet. This is not a problem

when we represent this data as a pixel image, which is identical to a piecewise

constant interpolation based on samples taken at the pixel centers (see Sec-

tion 3.5.1). However, we cannot actually contour such a dataset. As explained

in Section 5.3, the marching square algorithm assumes by definition that the

input field to contour is at least C0 continuous over all its data cells. To contour

the image, we must first convert it from the cell-based (C0) to a vertex-based

(C1) representation, as explained in Section 3.9.1. However, besides changing the

grid type, data resampling has the silent effect of also changing the interpolation

type and continuity assumptions on the data! In our case, the boundary ID field

is not assumed to be piecewise linear. The net effect is that discontinuities are

assimilated with rapid data variations. Hence, the result is that the boundary

ID isolines get gathered along the discontinuity (skeleton) lines, which is actually

wrong. In practice, one should be aware of such aspects which, if ignored, can

easily lead to misinterpreting the visualization. Besides this technical aspect,

however, this image is a typical example of how classical visualization methods,

such as colormaps and isolines, can help us understand mathematical datasets

such as the gradient and distance fields computed by the Fast Marching Method.
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(a) (b)

(c) (d)

Figure 9.22. Skeletonization examples. (a,b) Rice plant roots. (c,d) Neural cell.

Applications. Two-dimensional skeletons have many applications in imaging and

data visualization. Figure 9.22(a–b) shows an application of 2D skeletons for the

problem of visualization of rice roots introduced earlier in Section 9.4.4. From

the segmented root image (Figure 9.22(a)), we obtain the skeleton shown in

Figure 9.22(b). Since from this structure it is quite easy to extract a 1D graph

of pixel lines, we can directly perform topological and geometrical measurements

and analyses on this dataset. A similar example is shown in Figure 9.22(c–d).

Here, we visualize the skeleton of a neural cell, which has been segmented in

a similar manner to the rice root from a grayscale photograph. Analysis of

the cell skeleton graph is useful to reveal several properties of the cell, such as

number and length of dendrites, or to compare this cell with a given reference cell

stored in a database. Both skeletons in this image have been produced with the

algorithm described in this section. Further on, Section 11.4.2 shows a different
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application of 2D skeletons for the task of creating simplified visualizations of

large graphs by edge bundling.

9.4.8 Skeleton Computation in 3D

As explained earlier, skeletons are not restricted to two dimensions. Three-

dimensional skeletons are also a useful instrument for shape representation in

data visualization.

Surface skeletons. Whereas the skeleton of a 2D shape Ω is a set of 1D curves,

or a point in the degenerate case of a disc, the so-called surface skeleton of a 3D

shape following the definition given by Equation (9.41) is a set of intersecting

manifolds, or surface sheets. Figure 9.23 shows the surface skeletons of several

3D shapes. We easily see that the skeletal structure of these shapes is much

more complex than in the case of two-dimensional objects of relatively compa-

rable complexity. When the 3D shape has local circular symmetry, such as a

tubular structure, for example, the 3D skeleton is the one-dimensional curve lo-

cally centered in the middle of the shape. Finally, there is also the degenerate

case of a ball having a point as a skeleton. In general, the dimension of the

skeleton is one lower than the space in which the original shape is embedded.

Computing surface skeletons for large and complex 3D shapes is quite chal-

lenging. One approach to do this is to extend the boundary collapse metric in-

troduced in Section 9.4.7 for 2D images to 3D voxel volumes [Reniers et al. 08].

Figures 9.23(a,b) show two surface skeletons computed by this method. Although

this method can compute accurate, connected, and noise-free surface skeletons,

it requires a fine volumetric discretization of the input 3D shape, which is expen-

sive computationally and memory-wise. A more efficient method is to compute

the surface skeleton directly from a mesh discretization of the shape boundary

∂Ω. For this, we first consider the mesh vertices pi together with their vertex

normals ni as an oriented point cloud. We next create a 3D sphere Si tangent

at each pi and with the center qi = pi−Rini located on the line passing through

pi and having the direction ni, at a positive distance Ri from pi. We shrink Si,

by iteratively decreasing Ri, until Si is tangent to exactly another cloud point p′i
besides pi, and does not contain any other cloud points. At that moment, Si is

maximally inscribed in the cloud point, so its center qi is the location of a surface

skeleton point by definition (Equation 9.41). The two contact points pi and p
′
i

of Si with the point cloud are the feature points of the skeleton point qi. Since

all cloud points pi can be treated independently, this method is highly paral-

lelizable, and can be efficiently implemented in GPUs to yield surface skeletons
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(a) (b)

(c) (d)

(e) (f)

Figure 9.23. Skeletons of three-dimensional shapes. The shape is rendered transparent.

of mesh shapes of millions of vertices in subsecond times on modern graphics

cards [Ma et al. 12, Jalba et al. 13].

Figures 9.23(c,d) show two surface skeleton point clouds computed by the

sphere shrinking method described above. Skeleton points are colored by bound-

ary-collapse importance using a rainbow colormap. We see here how peripheral

skeleton areas (dark blue points) have a lower importance. Upper thresholding

such points delivers, just as in the 2D case (Section 9.4.7), a clean noise-free

skeleton.
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However efficient to compute for high-resolution shapes, point-cloud skeleton

representations do not fully model the 3D skeleton which, as stated earlier, con-

sists of a set of manifolds, rather than unorganized points. To construct such

manifolds, we could use the general-purpose surface reconstruction methods pre-

sented in Section 8.3.2. However, a much faster, and also more accurate approach

is to use the knowledge that these clouds encode skeletal manifolds. Specifically,

we know, for each skeleton point qi, its closest feature points pi and p′i on the

input surface ∂Ω. The feature vectors qi − pi and qi − p′i are parallel to the gra-

dient of the distance transform of ∂Ω which can be shown to be divergence-free

outside the surface skeleton. Hence, small areas on ∂Ω project, via the feature

vectors, to distinct areas on the surface skeleton. Given a mesh discretization

of ∂Ω, we can thus construct a meshed representation of the surface skeleton

simply by connecting all skeleton points whose corresponding surface points (via

the feature vectors) fall in the same mesh cells. This effectively “projects” the

mesh of ∂Ω to the skeleton cloud via the feature vector field [Telea and Jalba 12].

Figures 9.23(e,f) show the mesh reconstructions of our two surface skeletons

computed by the above method. As visible, the surface skeletons are accurately

computed, even in their fine details. Compared to the voxel-based method shown

in Figures 9.23(a,b), the mesh-based surface skeletons are of a much higher

resolution, and, as outlined above, require much less computational effort.

Curve skeletons. Computing robust surface skeletons for volumetric shapes is,

however, much more complicated than in 2D. Moreover, although surface skele-

tons can be used to perform various operations on 3D shapes, such as com-

pression, matching, and analysis, they may not reduce the complexity of the

original shape. For example, if we look at the skeletons of the shapes shown in

Figure 9.23, we can even argue that they have a more complex structure than

the shape itself. A more interesting route to take is to reduce 3D shapes to

one-dimensional skeletal structures. This direction turns out to be very useful

in practice. One-dimensional skeletons of 3D shapes, also called curve skeletons,

can be directly computed from a volumetric, voxel-based, shape description, di-

rectly bypassing the more complex surface skeleton. Intuitively, curve skeletons

of 3D shapes can be described as one-dimensional sets of curves that are locally

centered with respect to the shape surface. Figure 9.24 shows the curve skele-

tons of the three-dimensional shapes presented earlier in Figure 9.23. Clearly,

the structure of the curve skeletons is much simpler than that of the correspond-

ing surface skeletons. Curve skeletons have a topological structure similar to

the skeletons of two-dimensional shapes, so they can be easily used to perform

various shape analysis operations, e.g., identify the shape parts, compare and
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Figure 9.24. Curve skeletons of the 3D shapes shown in Figure 9.23.

match different shapes, or study the topology of the shape. Just as surface

skeletons, curve skeletons should obey a set of quality requirements to be useful

and effective in practice [Cornea et al. 07].

Curve skeletons are especially useful in the visualization of shapes that have

an elongated, tubular structure. Such shapes are frequently encountered in med-

ical datasets such as CT and MRI scans. An application of curve skeletons in

visualization is the extraction and analysis of the coronary arterial tree from

multiple two-dimensional images of arteries [Chen and Carroll 00]. Curve skele-

tons have also been used in virtual colonoscopy [Wan et al. 01]. Colonoscopy

is used in medical practice to examine the interior of the human colon using a

miniature video camera, in search of potential lesions or polyps that have the

potential to develop into malignant structures leading to colon cancer. Detecting

and diagnosing such structures in an early stage can lead to surgical interven-

tions in an early phase, which is beneficial for the patients. However effective,

in-vivo colonoscopy is an invasive intervention that can be quite unpleasant for

the patients. Virtual colonoscopy is a noninvasive alternative. Here, the colon

structure is extracted from a CT scan of the patient, e.g., using an isosurface

technique (see Section 5.3). After extraction, the curve skeleton of this isosur-

face is computed. Given the tubular structure of the colon, its curve skeleton

is essentially a single curve. Such curve skeletons, which do not have branch-

ing points, are also called centerlines. This curve can be used as the path of

a virtual camera to help the specialist navigate inside the isosurface in order

to visualize the colon walls and detect potential lesions, polyps, or other struc-

tures.6 Figure 9.25 shows the centerlines of two such isosurfaces. The left image

6We must note for completeness that the visual examination of the colon cannot be used,
only by itself, to diagnose the presence or absence of malignant structures.
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(b)(a)

Figure 9.25. Centerlines of a human colon isosurface (a) in the original position and (b)
in an unfolded position.

(Figure 9.25(a)) shows the centerline of the colon isosurface corresponding to the

original folded geometry of this organ in the human body. Given the relatively

complex folding and twisting of the colon shape, the centerline is a helpful aid in

guiding a virtual navigation by, e.g., constraining the 3D position of the camera

close to the centerline and the camera orientation to the tangent direction to

this centerline [Wan et al. 01]. The right image (Figure 9.25(b)) shows a simi-

lar colon isosurface and the corresponding centerline, this time computed from

an unfolded colon after a dissection. Although the colon surface has a complex

structure with many small-scale creases and folds, the centerline captures the

main organ structure.

Besides providing simplified representations of anatomical structures, curve

skeletons can be used to encode also other types of visualization datasets. For

example, in flow visualization, regions of high vorticity correspond often to fea-

tures of interest that need detailed study. Such regions can be segmented from

the rest of the flow volume, e.g., using threshold-based criteria. In many cases,

these regions consist of several elongated, tubular structures that split and/or

merge at various points. This type of structure can be visualized using an iso-

surface, but also lends itself well to a curve skeleton description. By reducing

the segmented structures to their curve skeletons, one can perform several anal-

yses, e.g., in order to identify the type of flow and the number and kind of split

and merge points. A second use of curve skeletons is to construct a simplified
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visualization of the flow. Both types of applications are described in detail in

Reinders et al. [Reinders et al. 99, Reinders et al. 00].

How can we compute one-dimensional curve skeletons from three-dimensional

shapes? Similar to the 2D case, we would like to have a method that guaran-

tees a number of requirements on the computed structure, such as connectivity,

one-voxel thinness, and centeredness with respect to the original shape. A par-

ticular requirement is robustness to noise. We would like to obtain a simple

one-dimensional curve skeleton consisting of several connected, possibly smooth,

curves that captures the main structure of the considered shape and ignores

small-scale surface details. For example, for the virtual colonoscopy application,

we want to obtain a single curve that is relatively smooth and centered in the

same time, so we can use it to control the path of the virtual camera.

Several methods exist for computing curve skeletons. The most used methods

in practice can be classified into four categories: thinning methods, distance field-

based methods, geodesic methods, and mesh contraction methods. We overview

each class next.

Thinning methods. Thinning methods proceed as follows. First, a binary rep-

resentation of the 3D shape is computed. Given a 3D volume, the shape is

represented as a set of foreground voxels, whereas the voxels falling outside the

shape are marked as background. This representation can be stored as a 3D uni-

form dataset having boolean attributes. Such representations can be computed

from, e.g., CT or MRI scans using various value-based segmentation methods

on the scanned density values, similar to the process described for grayscale im-

ages in Section 9.4.1, or by voxelizing 3D surface mesh representations. After

the binary volume has been obtained, voxels are iteratively removed, or marked

as background, from the foreground boundary, in a process known as thinning.

Intuitively, this process can be thought of as peeling off those voxels from the

boundary whose removal does not alter the object topology. Such voxels are

also called simple points. Discriminating the simple points that can be removed

from the points that must be kept, i.e., the curve skeleton points, is done by

checking against a set of precomputed templates.7 These are usually small, 3× 3

neighborhoods that capture all possible configurations in which foreground and

background voxels can occur.

By using different sets of templates in the iterative thinning, both surface and

curve skeletons can be computed [Manzanera et al. 99, Palagyi and Kuba 99].

Moreover, voxels can be removed in increasing order of the distance-to-boundary,

e.g., by first computing a distance transform of the foreground voxels, using

7Templates are similar to the structuring elements described in Section 9.4.4.
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one of the methods presented earlier in Section 9.4.5. However, in order to

achieve higher speeds, several thinning algorithms do not compute an accurate

distance transform to drive the removal order. For example, the parallel thinning

algorithms achieve high speeds by deleting a whole set of such points at a time,

e.g., by iteratively scanning the 3D volume in a set of left-right, bottom-top,

back-front passes [Manzanera et al. 99, Palagyi and Kuba 99, Vilanova et al. 99].

Thinning methods can produce one-dimensional curve skeletons of 3D shapes

with guaranteed connectivity and one-voxel thickness, and can easily handle

shapes of arbitrary genus, thereby delivering curve skeletons with correspond-

ingly many loops and branching points. Also, parallel thinning methods trade

off-centeredness for speed. More importantly, thinning noisy shapes typically

leads to noisy curve skeletons. Although subsequent pruning of the curve skele-

ton voxel graph, e.g., by removing voxels close to branch end points, can deliver

less-noisy structures, curve skeletons produced by thinning methods are overall

characterized by a fair amount of noise. To remove such noise, thinning can be

adapted to keep, in the final curve skeleton, only voxels which contribute to the

description of a significant component of the input shape [Liu et al. 10]. For

a state-of-the-art overview of thinning methods for curve skeleton computation,

we refer to [Arcelli et al. 11]. A starting point for experimenting with thinning

algorithms is thinvox [Nooruddin and Turk 03], an open-source implementation

of the thinning algorithm described in [Palagyi and Kuba 99].

Distance field methods. In contrast to thinning methods, which take a local ap-

proach based on connectivity templates to define the curve skeletons, distance

field methods take a more global approach. These methods compute the bound-

ary’s distance transform (DT ) and define the curve skeleton based on the DT ’s

local maxima or “ridges,” similar to the computation of 2D skeletons from the

DT singularities discussed earlier in Section 9.4.6. Alternatively, these ridges can

be found by detecting the points where the gradient of the distance transform

(∇DT ) has high negative divergence values [Siddiqi et al. 02]. However, detect-

ing such maxima using a discrete 3D distance transform usually yields a set of

disconnected points, just as in the 2D case. This process is also quite sensitive to

small-scale noise or details present on the shape boundary. In order to produce

a connected, noise-free curve skeleton, several strategies can be further applied.

First, the extracted (disconnected) DT maxima can be explicitly connected by

one-dimensional curves that are forced by construction to locally follow the DT

ridges and also have the desired smoothness [Zhou et al. 98, Zhou and Toga 99].

Another approach is to thin the input shape until the curve-skeleton locations

(DT ridges or low divergence points of ∇DT ) are reached. This ensures that

the obtained curve skeleton has the same topology as the input shape.
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Another class of distance-based methods extracts single-curve centerlines, i.e.,

curve skeletons without branches, by computing the distance transform gradient

and finding voxels on and close to the centerline by analyzing the gradient’s local

variations, followed by reconnection of these voxels [Bitter et al. 00]. The final

centerline is computed by applying various cost-based path-tracing methods on

the connected set of extracted voxels. Essentially, this class of methods can be

thought of as fitting a curve model of the centerline in the three-dimensional

space such that various cost functions encoding the curve’s centeredness with

respect of the shape boundary and local curve smoothness are globally mini-

mized. Such centerlines have the desired properties for, e.g., virtual camera path

planning in medical applications such as virtual colonoscopy. However, such al-

gorithms cannot produce the correct curve skeletons with multiple branches that

appear in case of objects with holes, i.e., with genus higher than zero.

Geodesic methods. The third class of curve skeleton methods attempts to give a

more formal, geometrically based definition of the curve skeleton. Indeed, many

thinning and distance field-based methods such as the ones outlined previously do

not explicitly reflect, in their definition, the local circular symmetry that curve

skeletons are supposed to capture. This type of symmetry can be captured

as follows. Consider a curve skeleton point p ∈ Ω ⊂ R
3. Since p is a curve

skeleton point, it is also a surface skeleton point following the definition given

by Equation (9.41). Hence, there exist at least two different feature points

f1 �= f2 ∈ ∂Ω that are at equal distance from p. We can use these points to

express local symmetry by requiring that, if p is a curve skeleton point, there

exist two different shortest-path, or geodesic, curves γA �= γB ⊂ ∂Ω that connect

f1 and f2 and stay on the surface of the considered shape, and have the same

length, i.e., ‖γA‖ = ‖γB‖. It can be shown that this condition is equivalent

to requiring that p is locally centered inside the surface skeleton S(Ω) [Reniers

et al. 08]. As sketched in Figure 9.26, the geodesic-based criterion captures the

local centeredness of a point with respect to the shape surface.

Geodesic-based curve skeletons have several advantages. They can be eas-

ily computed on voxel surfaces, e.g., using Dijkstra’s shortest-path algorithm to

find the shortest geodesics [Cormen et al. 01]. If needed, however, they can be

computed also for polygonal surfaces using a piecewise-linear approximation of

geodesics [Dey and Sun 06]. Being defined based on the existence of two different

feature points, these curve skeletons are naturally part of the surface skeleton.

Yet, their computation involves tracing geodesics on the shape surface and com-

paring their lengths, an operation that is of integral nature, hence stable and

robust with respect to the shape discretization, as compared, e.g., to finding local
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Figure 9.26. Defining curve skeletons using geodesics between feature points. Point p
has two equal-length shortest geodesics ‖γA‖ = ‖γB‖ (the red and blue dotted curves)
between its feature points f1 and f2, so it is on the curve skeleton C.

maxima of the distance transform. Finally, we can use the geodesics defining the

curve skeletons to compute an importance for the curve skeleton points. We pro-

ceed similarly to the collapsed boundary importance introduced in Section 9.4.7

for defining the importance of skeletal points of two-dimensional shapes. Specif-

ically, if a point p belongs to the curve skeleton, as defined by the geodesic-based

criterion explained previously, we notice that the two geodesics γA ∪ γB form a

closed loop which, in case of genus zero shapes, divides the shape surface ∂Ω into

two parts. We define the importance of p as the area of the smallest of these two

parts. Note the analogy to the importance ρ used for two-dimensional skeletons

given by Equation (9.42). Just as for 2D skeletons, we can now remove spurious

curve skeleton branches corresponding to small surface bumps by lower thresh-

olding the importance measure. This area-based importance measure for curve

skeletons is color-coded in Figure 9.24: blue points correspond to less-important

curve skeleton parts, while the red points indicate the most-important curve

skeleton points corresponding to the shape “core.”

Mesh contraction methods. A final class of curve skeleton computation methods

is formed by mesh contraction methods. The main idea is to iteratively displace

a mesh representation of the input surface ∂Ω inwards. This effectively shrinks,

or contracts, the mesh towards its surface skeleton. However, if during this

contraction we also constrain the maximal values of its positive curvature, or

equivalently minimize the area of the meshed surface while shrinking it, then the

mesh further contracts from the surface skeleton towards its curve skeleton.
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Several implementation points are important for mesh contraction. First,

the contraction direction should approximate as well as possible the shrinking of

the input surface towards its surface skeleton. This direction can be estimated

using the gradient ∇DT of the distance transform of the input surface ∂Ω or,

equivalently, in the directions of the feature vectors of the points in Ω. However,

this requires a volumetric computation of the distance transform field, which is

relatively expensive in processing power and also memory-wise, even when using

GPU algorithms (see Section 9.4.5). An alternative option is to contract the mesh

inwards in the direction of its local surface normals. This delivers a good and

fast-to-compute local approximation of the field ∇DT . Yet another alternative

is to contract the surface skeleton towards its center, computed as the average

of the feature vectors of its points [Telea and Jalba 12]. Second, we need to

contract the mesh further from the surface skeleton towards its one-dimensional

curve skeleton. This can be done by enforcing the area, or alternatively, the

volume of the contracting surface to shrink to zero. One way to do this is

to apply a Laplacian filter on the mesh, thereby removing its high-curvature

regions [Au et al. 08]. This idea is extended to extract curve skeletons from point

clouds, besides connected surface meshes [Cao et al. 10a]. Another alternative

definition of the curve skeleton is the locus of points inside the shape Ω which

minimize the variance between the planes normal and ∂Ω normals along the

plane-∂Ω intersection curve [Tagliasacchi et al. 09]. Finally, the mesh needs to

be resampled as it shrinks. This serves the purposes of speeding up computations

and making these computations more robust as the sizes of the mesh cells become

increasingly smaller. Mesh-contraction methods can efficiently compute smooth,

high-accuracy curve skeletons for large and complex shapes and are currently

among the best methods to compute curve skeletons. A recent overview of mesh

contraction methods is given in [Sobiecki et al. 13].

Curve skeleton comparison. Given that many different methods exist for com-

puting curve skeletons, several questions arise: Which method computes the

“true” curve skeleton of a given shape? Which method should one use, in prac-

tice, to guarantee several desirable curve skeleton properties such as connectivity,

centeredness, smoothness, and limited noise?

Figure 9.27 addresses such questions by showing a qualitative comparison

of eight such methods from three of the classes discussed above (thinning, dis-

tance field, and mesh contraction.8 The main observation to be made from this

comparison is that, while all computed curve skeletons have the same general ap-

8Adding to this comparison the result in Figure 9.24, computed by the geodesic method
in [Reniers et al. 08], covers all four method classes.
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(a) Au et al. (b) Telea and Jalba (c) Cao et al. (d) Tagliasacchi et al.

(e) Thinvox (f) Arcelli et al. (g) Siddiqi et al. (h) Liu et al.

Figure 9.27. Curve skeletons computed by eight methods. Top row: mesh contraction
methods. Bottom row: voxel-based methods.

pearance, many differences in centeredness, smoothness, captured level-of-detail,

and presence of noise branches are clearly visible. As such, finding the “right”

method to compute curve skeletons suitable for a given application context is

highly dependent on how important each criterion is for the respective context,

as no current method fully and uniformly satisfies all such criteria. For the first

question, the answer is that no generally accepted unique formal definition exists

so far. However, since most methods in existence deliver similar curve skeletons,

it seems very plausible that such a unifying definition does exist. Formalizing this

definition and showing how existing curve skeletonization methods approximate

it is an interesting and challenging topic for future research.

9.5 Conclusion

Image-processing techniques are an important and indispensable part of the vi-

sualization pipeline. First, such techniques can be used in visualization ap-

plications that work on image data to preprocess the input images in order to

improve their suitability for further filtering operations, for example by removing

noise. Imaging techniques are also useful for postprocessing the images output

by visualization applications to help their clarity, e.g., by adjusting contrast and

luminance. Finally, image processing can be used as part of the data-enrichment

component of the visualization pipeline in order to extract higher-level infor-
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mation content from basic image data. Connected component detection and

skeletonization operations fall within this class.

Image processing is a vast field with a long history. For a better overview

and understanding of this domain, the reader is advised to study the specialized

literature in this domain. A good starting point is provided by the book by

Anil Jain [Jain 89], which offers a survey of many imaging techniques used in

practice. A comprehensive overview of digital image processing illustrated with

examples in MATLAB is provided by the two-book series by Gonzalez, Woods,

and Eddins [Gonzalez and Woods 02, Gonzalez et al. 04].

The book by Kenneth Castleman [Castleman 96] offers an easily accessible

introduction to image processing that requires a less-extensive mathematical

background. For an introduction to image processing illustrated with pseudocode

examples and with a particular focus on shape representation and classification,

we recommend the book by Costa and Cesar [Costa and Cesar 01].

Finally, let us mention just a few of the many image-processing tools avail-

able. For the end user, the freely available GIMP program offers a large number

of imaging operations that can be extended by user-written plug-ins [GIMP 14].

More flexible and functionality-rich than GIMP, ImageJ software tool [ImageJ 13]

offers a wide set of image processing operations, ranging from simple local filters

to more advanced segmentation and shape analysis. Additional image processing

techniques are provided to ImageJ as by several hundreds of third-party plug-ins.

This offers an open-source alternative to MATLAB as an easy way to experi-

ment with image processing. For the experienced programmer, the Visualization

Toolkit (VTK) [Schroeder et al. 06] and the Insight Registration and Segmenta-

tion Toolkit (ITK) [National Library of Medicine 14] offer hundreds of imaging

algorithms in terms of object-oriented libraries usable via several programming

languages such as C++, Python, and Java. The OpenCV open-source library

provides a rich set of both image-processing and low-level computational geome-

try algorithms geared toward computer-vision applications, but also easily usable

in a general context [OpenCV 14]. In the commercial arena, MATLAB [Math-

Works, Inc. 14] and Mathematica [Wolfram Research, Inc. 14] provide sophisti-

cated environments for both interactive manipulation and visualization of images

as well as programming imaging algorithms.
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Chapter 10

Volume Visualization

IN Chapter 5, we presented a number of techniques for visualizing scalar fields.

Three-dimensional (volumetric) scalar fields are a particular case that poses

additional problems and difficulties for visualization. Such datasets are common

in many application domains. In particular, in medical sciences, there are sev-

eral types of data-acquisition processes that generate volumetric datasets, such as

computed tomography (CT), magnetic resonance imaging (MRI), positron emis-

sion tomography (PET), single photon emission computed tomography (SPECT),

and ultrasound scans. Such techniques can be used to record anatomical infor-

mation, such as the shape and composition of various tissues in the human body,

but also functional information, such as the concentration of various substances

in living tissues (functional MRI). Moreover, these techniques can be used to

record still, time-independent scans as well as scans that reveal the dynamic

processes in the human body, such as the flow of blood or motion of muscles.

As we have seen, such three-dimensional scalar fields can be visualized using

techniques such as slice planes and isosurfaces. However, such techniques are

limited in showing only a subset of the entire scalar volume.

In this chapter, we shall present a separate class of visualization techniques for

volumetric scalar fields. Known in practice under several names, such as volume

rendering and volume visualization, these techniques attempt to produce images

of an entire three-dimensional scalar volume, as opposed to techniques such as

slice planes and isosurfaces, which visualize only a subset of the data. Visualizing

an entire volume brings additional insight and lets users discover aspects of the

data that are not easily possible with the techniques presented so far. However,

volume visualization techniques are confronted with additional difficulties, such

405
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as how to show an entire three-dimensional dataset on a two-dimensional im-

age plane, and how to perform this operation efficiently for datasets containing

millions of samples.

We begin our exposition by examining the need for volume visualization tech-

niques (Section 10.1). Next, we present the fundamentals of volume visualization

techniques (Section 10.2). The next two sections detail the two main classes of

volume visualization techniques, called image-order techniques (Section 10.3)

and object-order techniques (Section 10.4). Section 10.5 discusses volume vi-

sualization techniques, as opposed to their counterparts, which use polygonal

geometries. Finally, Section 10.6 concludes the chapter.

10.1 Motivation
Let us consider again the task of visualizing a three-dimensional scalar dataset.

For illustration, we consider the same dataset as was used to create the visual-

izations in Figures 8.1 and 8.2. This is a CT scan of a human head stored as a

uniform grid of resolution 1283 voxels. Each voxel contains a scalar value in the

range 0..255. Low values indicate soft tissues, such as skin, whereas high values

indicate hard tissues, such as bone. Figure 10.1 illustrates three of the scalar visu-

alization methods discussed in Chapter 5 on this dataset. First, we visualize the

boundary of the dataset as a color-mapped surface (see Figure 10.1(a)). Clearly,

this visualization is not very useful, as it does not reveal any of the structures

contained within the volume. A second option is to reduce the dataset dimen-

sionality from 3 to 2 by slicing the volume with a color-mapped slice plane (see

Figure 10.1(b)). This image shows detailed information on the considered 2D

slice plane, but ignores all other points of the volume. Finally, we can extract

an isosurface for some scalar value of interest (see Figure 10.1(c)). This reveals

an interesting structure, in this case the skin surface, which corresponds to the

selected isovalue, but again ignores all volume points that have other values.

Essentially, all three methods illustrated in Figure 10.1 reduce the data di-

mensionality from 3D to 2D by displaying a particular 2D surface embedded in

the 3D volume: the dataset boundary (Figure 10.1(a)), all points that have the

same y-coordinate (Figure 10.1(b)), and all points that have the scalar value

65 (Figure 10.1(c)), respectively. Such visualizations are useful if we want to

focus on a two-dimensional structure in the volume, we know in advance which

that structure is, and we can map that structure to some particular condition on

the sample point coordinates and/or values. However, in many cases we do not

know which two-dimensional subset we would like to extract and examine, or the
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(a) (b) (c)

0 28 2080
isovalue = 65

Figure 10.1. Visualizing a 3D scalar dataset. (a) Surface plot. (b) Slice plane. (c)
Isosurface.

structures we are interested in are simply not to be reduced to two-dimensional

surfaces. In such cases, volume-visualization techniques are a good candidate.

To introduce the concept of volume visualization, let us consider two exam-

ples based on techniques we have presented so far: isosurfaces and slice planes.

Figure 10.2 shows two isosurfaces for the head CT scan dataset corresponding

to the skin (isovalue = 65) and bone (isovalue = 127) materials, respectively.

The isosurfaces are rendered using different colors. Also, the skin isosurface has

a high transparency, and the bone isosurface has a low transparency. Compared

to Figure 10.1(c), this visualization shows more information, i.e., the location in

space of two structures (skin and bone) compared to a single structure (skin).

We could generalize this idea by adding more isosurfaces for other scalar values

corresponding to other anatomical structures, each with a different color and

transparency.

As a second example, we could generalize the slice plane technique by vi-

sualizing several half-transparent slice planes in the same image. Figure 10.3

illustrates this idea. In Figure 10.3(a), 30 color-mapped slices are rendered that

are orthogonal to, and at equal distances along, the y-axis. The transparency

of each slice is roughly 1/30, where 0 denotes full transparency and 1 full opac-

ity. In the middle of the translucent structure created by the blending of the

half-transparent slices, we see a structure emerging in the shape of the human

head. Figure 10.3(b) illustrates a second variation on the half-transparent slices

technique. Here, 30 slices are rendered, this time being orthogonal to, and at

equal distances along, the viewing direction. This visualization uses a grayscale

colormap. We see a similar structure emerging from the slice blending, where

the amount of white reflects the amount of material density at each pixel along

the viewing direction.
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isovalue = 65

isovalue = 127

Figure 10.2. Visualization consisting of two isosurfaces.

The two examples shown in Figure 10.3 are coarse approximations of the

volume-rendering technique. Although such visualizations are definitely of too

low quality to be usable in practice, they illustrate the main ideas behind the

volume-rendering technique. In the following section, we shall see how we can

extend and perfect the idea of blending half-transparent colored structures to

create insightful visualizations of 3D scalar datasets.

(a)

2550 2550

(b)

Figure 10.3. Visualization of scalar volume using (a) volume-aligned slices and (b) view
direction-aligned slices.
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p

q0

q1

view ray r

dataset D

image I

Figure 10.4. Conceptual principle of volume visualization.

10.2 Volume Visualization Basics
The basic idea behind volume rendering is simple: create a two-dimensional

image that reflects, at every pixel, the scalar data within a given 3D dataset

along a ray parallel to the viewing direction passing through that pixel. The

main power of volume visualization is in the choice of the function that maps

an entire set of scalar values, corresponding to the voxels along such a ray, to a

single pixel in the resulting 2D image. Appropriate choices for this function let

us convey a wide range of insights into volumetric scalar datasets.

Figure 10.4 illustrates the conceptual idea. Consider a rectangular image area

I in the viewing plane and a scalar signal s : D → R defined on a volumetric

domain D. For simplicity, let us first consider that D is a uniform dataset

consisting of equally sized cubic voxels. For every pixel p of the image I, we

trace a ray r perpendicular to the image plane, which will intersect the volume

D in the points q0 and q1, respectively. The value I(p) of the pixel p is going

to be a function of the data values along the ray r between q0 and q1. We can

express this by parameterizing the position of the ray points q between q0 and

q1 as q(t) =
(
1− t

T

)
q0 +

t
T
q1 with t ∈ [0, T ], where T = ‖q0 − q1‖ is the length

of the ray segment contained in D. The parameter t thus indicates the distance

along the ray to the “entry” point q0 of the ray in D. We denote the scalar

values s(q(t)) of these points by s(t). Putting it all together, we can express the

value of the image pixel p as

I(p) = F (s, T ), s : [0, T ] → R. (10.1)
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In Equation 10.1, F : F × R+ → R
3 is the so-called ray function. As input,

F has a scalar-valued function s ∈ F defined on [0, T ], where F is the space of

scalar functions s : R+ → R, and the length T of the ray segment. As output,

F produces a color. In other words, F synthesizes the RGB color of the pixel p

from the scalar values along the ray r corresponding to p. Different types of ray

functions implement different visualization scenarios focusing on various aspects

of a volume dataset. A number of ray functions frequently met in practice are

discussed in the next sections.

10.2.1 Classification

At the core of every ray function, there is a common mechanism that maps the

information from every point q(t) along the ray to a color and opacity (RGBA)

value. This mechanism is called a transfer function, and is identical to the

concept of the same name that we introduced in Chapter 5 when we discussed the

scalar-to-color mapping technique. The most commonly used transfer functions

map scalar values to colors and opacities. Hence, we can denote a transfer

function by f : R → [0, 1]4, or alternatively by its four components fR, fG, fB,

and fA, each taking values in the [0, 1] interval.

The transfer functions f are used in volume rendering to associate a color

and opacity with desired scalar values or value ranges. The ray function F is

used to combine the scalar values along a ray, together with the application

of the transfer function f , and produce a single RGBA value per ray. Since

such values typically correspond to different materials in the dataset, choosing

suitable transfer functions enables us to create visualizations in which different

materials will look different. Note that the same ray function F can be (and

typically is) used with different transfer functions f . Indeed, while the transfer

function specifies how a single scalar value is mapped to a single color, the

ray function specifies how all the information along a given ray is mapped to

a single pixel color. The process of designing and applying transfer functions

to visually separate different types of materials based on their scalar values is

known as classification. Choosing the right transfer functions, ray function, and

additional visualization parameters to create a good classification is a difficult

process that is crucial to obtaining effective visualizations.

Although the most common volumetric transfer functions map material den-

sity, or scalar value, to color and opacity, many other possibilities for classifying

volume data exist. For example, one can use the gradient of the recorded scalar

field to distinguish between different types of tissues [Levoy 88]. Using the gra-

dient is essentially equivalent to an edge-detection operation performed on the
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volume data. This is useful when we want to focus on the sharp transitions of

the data, i.e., borders between different materials, and ignore (large) homoge-

neous regions of near-constant values. For datasets where several scalar fields

have been recorded over the same volume, combinations of the values of different

fields, or their gradients, can be used. For example, some applications use an

opacity transfer function that is the product of a scalar opacity function and a

scalar gradient opacity function.

Classification can also be done as a separate preprocessing step prior to vol-

ume visualization. In this case, the output of the classification stage is a scalar

volume dataset c : D → R that encodes the type of tissue at every voxel in a

scalar value c. The selection technique discussed in Section 8.2 that produces

a binary signal encoding selected voxels is a simple example of classification.

Many additional sources of information, besides the scalar values, can be used to

perform classification, such as distinguishing between tissues based on position

information. When available, the transfer functions can use such a preclassified

volume to map the classification information to visual appearance.

In the following sections, we shall present some of the most-used ray functions

in volume visualization. At the same time, we shall detail the construction of

transfer functions used for classification of materials based on their scalar values.

10.2.2 Maximum Intensity Projection Function

One of the simplest ray functions used in volume rendering is the maximum

intensity projection (MIP). For a pixel p, the MIP function first computes the

maximum scalar value along the ray r of p, and then maps this value via the

chosen transfer function f to the color of pixel p. Using the parameterized ray

notation we can express the MIP ray function as

I(p) = f

(
max
t∈[0,T ]

s(t)

)
. (10.2)

A second variant of the MIP function computes the maximum opacity along

the ray instead of the maximum scalar value. For this, opacities for all points

along the ray are computed using the opacity transfer function fA. The ray pixel

will finally take the color of the ray point that has the maximum opacity. In

other words,

I(p) = f(sm), fA(sm) = max
t∈[0,T ]

fA(s(t)). (10.3)

This variant of the MIP function is useful if we want to emphasize in the rendering

the presence of a given material. To do this, we can design an opacity function

fA that is maximal for that material, together with corresponding color transfer
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(a) (b)

Figure 10.5. Maximum intensity projection rendering.

functions fR, fG, fB. With this design, the material of interest will show up in

the rendering with the chosen colors, even if its scalar value is not necessarily

maximal. A third variant of the MIP function assigns to the current pixel the

maximum of the intensities (luminances) of all pixels computed along the viewing

ray. This function emphasizes the “brightest” pixels.

As we see in Equation (10.2), the MIP function first reduces the scalars along

the entire ray to a single (maximum) value, and then applies the transfer func-

tion f to this value. The MIP ray function is useful to extract high-intensity

structures from volumetric data. One typical usage of MIP is to extract vascular

structures from medical MRI datasets, e.g., in angiography applications. How-

ever, MIP-rendered volumes fail to convey depth information. In other words,

we see what the maximum intensity along a ray is, but not at what position

(depth) along the ray that value occurs. Figure 10.5 shows two volume-rendered

images of a human head CT dataset. Here, the transfer function used associates

a gray value proportional to the scalar value, where white corresponds to the

lowest scalar value (air) and black to the highest value (hard bone). The left

image is easier to interpret than the right image, since it is taken from an angle

where the lack of depth information is not so disturbing. One solution used in

practice to compensate for the lack of depth information in MIP images is to

animate the viewpoint and visualize the entire sequence of MIP renderings taken

from several angles with close values.
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(a) (b)

Figure 10.6. Average intensity rendering.

10.2.3 Average Intensity Function

A second simple ray function is the average intensity. Similar to the maximal

intensity projection, we compute the average intensity, or scalar value, along a

given ray, and then map this value to a color using the desired transfer function.

We can express this function as

I(p) = f

(∫ T

t=0
s(t)dt

T

)
. (10.4)

In contrast to the MIP function, the average intensity function shows the

average scalar value along a ray rather than the presence of a maximal value.

Figure 10.6 shows a rendering of the dataset in Figure 10.5 using the average

intensity ray function. If we further omit division by T in Equation 10.4, we

obtain a ray function which shows the exact accumulation of scalar values along

a ray. This produces volume renderings which are analogous to an X-ray image

of the considered dataset.

10.2.4 Distance to Value Function

The third considered ray function is the distance to value. Given a fixed scalar

value σ, this function computes for each pixel the distance along the viewing ray
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to the first point where the scalar value is at least σ and maps this distance via

the transfer function

I(p) = f

(
min

t∈[0,T ],s(t)≥σ
t

)
. (10.5)

This function is useful in revealing the minimal depth, within the volumetric

dataset as seen from the current viewing direction, where a certain value σ is

exceeded. Note that, in contrast to the previous ray functions, the focus is now

on the position (depth) where a certain scalar value is met, not on the scalar

value itself.

10.2.5 Isosurface Function

Ray functions can also be used to construct familiar isosurface structures. In

order to construct the isosurface for a given scalar value σ, we must detect the

presence, along a ray, of at least one point with the value σ. If such a point is

found, the ray’s pixel gets the color corresponding to the isovalue σ. If not, the

pixel is assigned a “background” color I0. This is expressed by the ray function

I(p) =

{
f(σ), ∃t ∈ [0, T ], s(t) = σ,
I0, otherwise.

(10.6)

If we directly apply this ray function, we only obtain a “binary” image consist-

ing of two colors, i.e., f(σ) and I0, which is identical to rendering the desired

isosurface with ambient color f(σ) but without any shading. Of course, such a

visualization is not directly useful. In practice, the isosurface ray function be-

comes useful when combined with volumetric shading, a topic which is further

described in Section 10.2.7.

Figure 10.7 shows an isosurface of the tooth volume dataset computed using

several methods. In particular, we see that the isosurface computed with the

marching cubes method (Figure 10.7(a)) and the isosurface ray function (Fig-

ure 10.7(b)) are very similar.

10.2.6 Compositing Function

The previous ray functions can be seen as particular instances of a more general

ray function called the compositing function. To explain the compositing func-

tion, we shall consider a simple volumetric illumination model. In this model,

we assume that each pixel q(t) along the ray r(p) emits light uniformly in all di-

rections with an intensity equal to its color c(t).1 Moreover, we assume that the

1Colors can be represented here as RGB triplets.
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(a) (b) (c)

(d) (e) (f)

Figure 10.7. Different isosurface techniques. (a) Marching cubes. (b) Isosurface ray
function, software ray casting. (c) Graphics hardware ray casting. (d–f) Compositing
with box opacity function, different integration step sizes.

emitted light gets attenuated by the material inside the data volume as it travels

through it. Considering the view ray r(p), we denote by C(u, t) the amount

of light emitted from location q(t) which has arrived at location q(u). In this

notation, thus, c(t) = C(t, t). The amount of light emitted from t that reaches

the view plane is thus C(0, t).

Hence, the color color H(p) of a given pixel p is a superposition of the contri-

butions C(0, t) of all points q(t) along the ray r(p) corresponding to the pixel p:

H(p) =

∫ T

t=0

C(0, t)dt. (10.7)

To evaluate H(p) from Equation 10.7, we need to compute the contribution

C(0, t) of q(t) to the pixel p. Let us consider how the light c(t) emitted at
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view plane

0 Tt

C(t,t)=c(t)

attenuating points

view ray
C(0,t)

pixel p with
color H(p)

u-Δu u

C(u-Δu,t)
C(u,t)

contribution of
c(t) to H(p)

Figure 10.8. Volumetric illumination model: color c(t) emitted at position t along a
view ray gets attenuated by the values τ (u) of the points u situated between t and the
view plane to yield the contribution C(0, t) of c(t) to the view plane.

location t travels to reach the view plane. Consider a point at location u along

our view ray. We can then express the decrease of intensity from location u to

the nearby location u−Δu of the light emitted at t > u as

C(u −Δu, t) = C(u, t)− C(u, t)τ(u)Δu. (10.8)

Here, τ(u) ≥ 0 is the attenuation factor that describes how light reaching position

u emerging from position t, or C(u, t), is absorbed at position u before reaching

position u−Δu (see also Figure 10.8). In this setup, the attenuation can also be

thought of in terms of material opacity. We can rewrite the above equation as

dC(u, t)

C(u, t)
= τ(u)du. (10.9)

By integrating Equation (10.9) along the viewing ray from u = 0 to the

position of the current point u = t, we obtain the contribution C(0, t) of the

point q(t) to the final pixel color H(p) as:

C(0, t) = c(t)e−
∫

t
0
τ(u)du. (10.10)

Intuitively, Equation (10.10) states that a point’s contribution on the view plane

exponentially decreases with the integral (cumulative value) of the attenuations

from the view plane until the respective point. If we now substitute C(0, t) from

Equation (10.10) into the superposition of contributions (Equation (10.7)), we

obtain an integral illumination model:

H(p) =

∫ T

t=0

c(t)e−
∫

t
0
τ(u)dudt. (10.11)
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The illumination model implemented by Equation (10.11) neglects several

effects such as light scattering or shadows. Nevertheless, this model is capable

of producing high-quality images of volumetric datasets. The ray function im-

plementing the previous illumination model is called a compositing function, as

it superimposes, or composes, the intensities of all voxels along a given ray. Just

as for the ray functions presented previously, the color c and attenuation τ for

the composite ray function are computed using transfer functions based on the

scalar value s(t) along the ray.

Transfer functions. Several choices are available when evaluating the composite

ray function. Just as for the other ray functions, the color and opacity (attenua-

tion) transfer functions control the material classification process. In contrast to

the other ray functions, the composite ray function applies the transfer functions

at every point along the ray and then combines their color and opacity results.

Using appropriate transfer functions, this allows several materials along a ray to

become visible in the final rendered image.

Figure 10.9(a) shows a first example of a composite ray function used to

volume render the head dataset.2 Here, we designed the transfer functions in

such a way as to emphasize three types of tissues. In order of material density,

or scalar value, these are skin and soft tissue, soft bone (present in the skull

tissue), and hard bone (present in the teeth). We emphasize these three tissues

using high-opacity values for their corresponding density ranges, as shown by

the transfer function fA (see Figure 10.9(b)). For the remaining density ranges,

i.e., soft tissue such as muscles, and hard tissue ranging between the soft bone

and hard bone values, we use low-opacity values. Next to this, we design the

color transfer functions fR, fG, and fB so that skin is rendered in dark brown,

soft bone in light yellow, and hard bone in bright white, respectively, as shown

by the color bar in Figure 10.9(b).

The design of appropriate color and opacity transfer functions is crucial for

an effective material classification based on the scalar value. Several observations

can be made here. First, in most cases, there is no hard border that separates

different tissues in volumetric scanned datasets, but rather a (narrow) transition

area where one type of tissue smoothly changes into another. Hence, the transfer

and opacity functions used to visually separate different tissues should also have

smooth variations across the transition area rather than abrupt, step-like jumps

(see Figure 10.9(b)). This design also helps reduce the number of visual artifacts

in case of noisy, coarsely sampled datasets.

2The images in Figures 10.9 and 10.11 are produced by the freely available volume rendering
software of Klaus Engel [Engel 02].
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Figure 10.9. (a) Volume rendering of head dataset. (b) The transfer function used
emphasizes skin, soft bone, and hard bone.

Integration issues. A second choice regards the evaluation of the rendering inte-

gral given by Equation (10.11). An accurate, but slower, method is to evaluate

the integral by taking samples along the ray in front-to-back order (see Sec-

tion 10.3). A different approach approximates the rendering integral using back-

to-front blending of textured polygons in graphics hardware (see Section 10.4).

In both cases, the choice of the volume-sampling strategy is essential to obtain-

ing high-quality renderings. Finally, let us note that several of the previously

described ray functions can be seen as particular cases of the composite ray func-

tion, although this does not mean they are implemented in practice using the

composite function. For example, the isosurface ray function would use a zero at-

tenuation τ = 0 everywhere and a zero emission c(t) = 0 except for the isovalue

t0. This is how the isosurface in Figures 10.7(d–f) are computed. The result

is clearly very similar to the geometric isosurface computed by marching cubes

(see Figure 10.7(a)) and the one computed using the isosurface ray function (see

Figure 10.7(b)).
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Figure 10.10. (a) Volume rendering of flow field velocity magnitude and (b) correspond-
ing transfer functions.

Examples. Let us note that volume rendering can also be applied to other datasets

than scanned datasets containing material density values. Figure 10.10 illus-

trates this. In Figure 10.10(a), we visualize the velocity magnitude scalar field

of the 3D flow field used in several of the visualization examples from Chapter 6

(e.g., Figure 6.8). The transfer functions fR, fG, fB , and fA that are used to

map the scalar range [0, smax] to color and opacity respectively are shown in

Figure 10.10(b). The opacity function has quite low values, thereby creating

a half-transparent visualization that allows us to distinguish the deeper-nested,

high-velocity flow structures. Using these functions, transparent, red areas in-

dicate low-velocity points, whereas opaque, cold-colored (green and blue) areas

indicate the high-velocity flow core. Compare this result with the visualization

shown in Figure 6.9, where the flow core is displayed using an isosurface.

Although volume renderings of any scalar fields are possible, such as shown in

Figure 10.10, the results can sometimes be harder to interpret than when volume

rendering anatomical structures encoded in density fields. There are two reasons

for this. First, CT and MRI datasets show structures that often are, by their

own nature, easier to interpret than arbitrary volumetric scalar fields, when using

the appropriate color and/or opacity transfer functions. Second, some volume

datasets, such as the velocity magnitude field in Figure 10.10, exhibit no natural

boundaries between regions with different scalar values. In contrast, in MRI and

CT datasets, different tissues having different densities create such separations.
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10.2.7 Volumetric Shading

As mentioned previously, shading is an important additional cue that can sig-

nificantly increase the quality of volume renderings. In the case of isosurfaces

(see Section 10.2.5), for example, shading is an indispensable element. Shading

can be easily combined with the volume illumination integral given by Equa-

tion (10.11). Instead of directly using the colors c(t) = f(s(t)) delivered by the

application of the color transfer function f on the scalar values s(t) along the

ray in the volume integral, we can use instead an illumination function

I(t) = camb + cdiff(t)max(−L · n(t), 0) + cspec(t)max(r · v, 0)α. (10.12)

This is nothing more than the application of the Phong lighting model (see Equa-

tion (2.1)) to an imaginary surface located at the current point t along the ray,

having the normal n. Here, camb is the ambient lighting factor, which is constant

for the entire volume. cdiff(t) and cspec(t) are the diffuse and specular lighting

factors, respectively, which are typically functions of position t. In a simple ap-

proximation, we can set cdiff(t) = cspec(t) = c(t). The vectors L, r, and v have

the same meaning as in the original Phong lighting model (Equation (2.1)).

To apply the preceding lighting model, we need to estimate a surface normal

n(t). For most locations in a volume dataset, we cannot actually speak about the

existence of a physical surface. However, we can define such a surface as being

the isosurface for the isovalue s(t), which exists for every point. As explained

in Section 5.3, the gradient of a function is normal to the function’s contours.

Hence, we can estimate the normal n(t) by computing the gradient vector of the

scalar signal s

∇s(t) =
(
∂s(t)

∂x
,
∂s(t)

∂y
,
∂s(t)

∂z

)
(10.13)

and normalizing the result to unit length. The partial derivatives of s with

respect to the coordinate axes x, y, z can be computed as described in Section 3.7

by interpolating the discrete partial derivatives evaluated at the voxel corners.

Although this solution is possible, it can deliver noisy results in practice, as

the gradient is quite sensitive to small-scale noise in the sampled dataset. This

translates into small-scale wavy artifacts in the final shading, which are quite

disturbing, especially if specular lighting is used. To enhance the robustness of

the gradient estimation, we can apply several of the filtering techniques discussed

for image processing in Chapter 9, such as the Sobel or Prewitt operators, or

prefilter the scalar dataset prior to the gradient estimation.

Figure 10.11 illustrates the effects of volumetric lighting on a dataset ren-

dered with a composite ray function. The transfer functions emphasize the hard
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(a) (b) (c)

Figure 10.11. Volumetric lighting. (a) No lighting. (b) Diffuse lighting. (c) Specular
lighting.

tooth enamel (white, opaque) and the softer dentine material (brown, semi-

transparent). The first image (Figure 10.11(a)) does not use volumetric light-

ing. Although we can observe the internal structure of the tooth, due to the

low opacity, the actual material separation surfaces are hard to grasp from this

static image. The middle image (Figure 10.11(b)), which uses volumetric diffuse

lighting, is significantly easier to understand due to the shading cues. The right

image (Figure 10.11(c)), which uses specular lighting, is similar to the middle

image. The added value of volumetric shading is also visible if we compare Fig-

ure 10.9, produced without lighting, with Figure 10.13, which uses a combination

of diffuse and specular lighting.

All in all, volume visualization techniques offer a rich set of possibilities in

terms of the transfer functions, shading model, and material properties used.

These allow us to create insightful, but also aesthetically pleasing renderings of

volumetric datasets. Figure 10.12 shows a collection of visualizations of a variety

of datasets created using different volume-rendering techniques and settings.3 In

the first example (Figure 10.12(a)), the electron density distribution in a complex

molecule is visualized. The second example (Figure 10.12(b)) shows an engine

block. Using an appropriate opacity map exposes the inner details of the engine

structure to the viewer. The third example (Figure 10.12(c)) shows a bonsai

tree. The fourth example (Figure 10.12(d)) shows a carp fish with the opacity

transfer function set to emphasize the skeletal structure.

3The datasets in Figure 10.12 are from the public Volume Library [Roettger 06]. The
volume visualization software is the freely available Versatile Volume Viewer by Stefan
Roettger [Roettger 08].



422 10. Volume Visualization

(a) (b)

(c) (d)

Figure 10.12. Examples of volume rendering. (a) Electron density. (b) Engine block.
(c) Bonsai tree. (d) Carp fish.

10.3 Image Order Techniques

The most straightforward way to implement Equation (10.11) is to evaluate the

rendering integral by taking samples along the viewing rays. Given the way it

works, this algorithm is also known as volumetric ray casting. The entire volume-

rendering algorithm reduces to a sequence of nested for loops as illustrated in

the following pseudocode:

f o r ( a l l p i x e l s p i n the image plane I )
{

v = ray perpend i cu l ar to I pas s ing through p ;
q0, q1 = in t e r s e c t i o n s o f v with the volume ;
H(p) = (0, 0, 0) ; // in i t i a l i z e color of pixel p to black
f o r ( f l o a t t=0;t<T; t+=Δt)
{
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q =
(
1− t

T

)
q0 + t

T
q1 ;

H(p)+ = c(t)e−
∫ t
0 τ(u)duΔt ;

}
}

Since the algorithm processes the image pixels one by one, it falls into a more

general class of methods called image-order or image-based techniques. Another

image-based technique discussed in Chapter 6 was the image-based flow visu-

alization (IBFV) method, which generates textured views of vector fields (see

Section 6.6).

Several acceleration strategies can be applied to the basic algorithm presented

here. The inner integral
∫ t

0
τ(u)du can be evaluated incrementally during the

evaluation of the outer integral, i.e., during the front-to-back ray traversal. The

same can be done if we evaluate the ray integral back-to-front, i.e., summing up

the voxels’ contributions from the furthest to the closest one to the view plane.

If we discretize the ray using uniform steps of length δ, the volume integral in

Equation (10.11) can be written as

H(p) =
N∑
i=1

c(iδ)e−
∑i−1

j=0 τ(jδ)δδ. (10.14)

By replacing the inner exponential term with a product of exponents of each

term of the inner sum, we obtain

H(p) =

N∑
i=1

c(iδ)

⎛
⎝i−1∏

j=0

e−τ(jδ)δ

⎞
⎠ δ. (10.15)

Here, N = D/δ is the number of sample points taken along the ray. Now, for

small step sizes δ, we can approximate the exponential terms of the inner sum

using the first term of a Taylor expansion, i.e., e−t ≈ 1− t for small values of t.

Substituting this in Equation (10.15), we obtain

H(p) =

N∑
i=1

c(iδ)

⎛
⎝i−1∏

j=0

(1− τ(jδ)δ)

⎞
⎠ δ. (10.16)

Let us now denote ci = c(iδ)δ and τj = τ(jδ)δ. We obtain

H(p) =

N∑
i=1

ci

⎛
⎝i−1∏

j=0

(1− τj)

⎞
⎠ . (10.17)
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We can evaluate Equation (10.17) in back-to-front order, i.e., from higher to

lower indices. If we denote by Hi the accumulated color at position i due to the

contributions of the sample points i..N , we notice that

HN = cN ,
HN−1 = cN−1 + (1− τN−1)HN ,

...
H(p) = H0 = c0 + (1− τ0)c1 + (1− τ0)(1 − τ1)c2 + ... .

(10.18)

These equations state that we can evaluate the composite ray function of a pixel

by the back-to-front evaluation of a simple expression at every sample point i

along the ray

Hi = ci + (1− τi)Hi+1. (10.19)

This is nothing more than the back-to-front blending of the colors ci multiplied

by the opacities τi. Indeed, it states that the color accumulated at sample point

i equals the emission ci of sample point i itself plus the contribution Hi+1 of

the points i..N times the transparency 1 − τi of point i. Hence, evaluating the

composite ray function can be seen as a particular case of alpha blending. In

Section 10.4, we shall show how Equation (10.19) can be efficiently evaluated

using the alpha blending provided by graphics hardware.

A similar expression to Equation (10.19) can be deduced for the front-to-back

ray traversal. In this case, together with the accumulated color Hi over the sam-

ples 0..i, we can also compute the accumulated opacity. Once the accumulated

opacity reaches a value close to the maximum of 1, e.g., 0.95, we can stop tracing

the ray further on the volume, as deeper points will have practically no influ-

ence on the final pixel color H(p). This strategy, called early ray termination,

can save substantial computational time, e.g., for datasets containing numerous

high-opacity voxels.

10.3.1 Sampling and Interpolation Issues

The quality of a volume-rendered image depends on the accuracy of evaluating

the discretized integral in Equation (10.14). Two main issues are involved here:

• the choice of the step size δ;

• the interpolation of color c and opacity τ along the ray.

As expected, smaller step sizes δ give better results, but increase the computation

time. A better strategy is to correlate the step size with the data variation,

i.e., take smaller steps where the data changes rapidly and larger steps over
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opacity

scalar

color transfer function

Figure 10.13. Volume rendering of head dataset for different values of the integration
step size (in voxels). Trilinear interpolation of scalar values is used. The color and
opacity transfer functions used are shown at the bottom of the image.

near-constant data regions. Since both c and τ are dependent on the choice

of the transfer functions used, the choice of the step size should involve the

characteristics of these functions as well. In practice, a good starting estimate

is to set δ to values in the range of the voxel size, to ensure at least that every

voxel contributes to the result.

Since the sample points i along a ray will, in general, not coincide with voxel

centers, interpolation must be performed to evaluate ci and τi. The simplest

choice here is to use nearest-neighbor interpolation, i.e., use the color and opacity

values respectively of the nearest voxel centers to every sample point i. This

is also the computationally most efficient solution. As explained in Chapter 3,

nearest-neighbor interpolation yields discontinuous signals, which translates into

low-quality images.

A better solution is to use trilinear interpolation. This method produces

smoother images for the same sampling resolution, albeit at a slightly higher

computational cost. Figure 10.13 shows a volume rendering of the head dataset
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(a) δ = 0.1 (b) δ = 1.0

Figure 10.14. Volume rendering of head dataset for two step size values. Nearest-
neighbor interpolation is used.

using a composite transfer function for several values of the step size δ, using

trilinear interpolation. Strong color-banding artifacts alternating between dark

yellow and red appear for step sizes larger than δ = 1 voxel. In contrast, the

image quality for the δ = 0.5 and δ = 0.1 step sizes looks almost identical.

Figure 10.14 shows the head dataset rendered with the same transfer func-

tions for the step sizes δ = 0.1 and δ = 1.0, this time using the nearest-neighbor

interpolation. The individual voxels become more apparent in these render-

ings as compared with the equivalent ones using linear interpolation (Figure

10.13(a–b)).

The banding artifacts due to low sampling rates δ can be partially alleviated

by using a small random jitter factor Δδ added to the step size δ while evaluating

the ray integrals. Figure 10.15 illustrates this. Figure 10.13(a), created with

trilinear interpolation, uses a fixed value δ = 1 voxel, and exhibits similar color

banding as shown in Figure 10.13(d). Figure 10.13(b) uses the same δ value,

but with jittering. The color banding largely disappears. The large δ value

manifests itself now by a fine-grained noise pattern. This pattern is especially

visible in areas where thin distinct tissue layers exist, such as the red soft-tissue

layer located between the skin and the thick white-colored skull bone area. Noise

“blocks” in this pattern are typically of pixel size, in contrast to the thicker bands

seen before, given that sample points along rays for neighbor screen pixels are

now not placed in equal-depth “fronts” from the view plane. Decreasing δ to

a value of 0.2 voxels, while keeping the jittering on, produces the high-quality

image in Figure 10.13(c).
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(a) (b) (c)

Figure 10.15. Sample step jittering for color banding artifacts removal. (a) Banding
caused by δ = 1. (b) Banding alleviated by using jittering, δ = 1. (c) High-quality
image, δ = 0.2.

10.3.2 Classification and Interpolation Order

If trilinear interpolation along the ray is used, we have two choices with respect

to the order of classification, i.e., evaluation of the color and opacity transfer

functions, and interpolation. These are as follows:

• preclassification: first classify, then interpolate;

• postclassification: first interpolate, then classify.

In general, preclassification produces coarser-looking images, especially for color

and opacity transfer functions that exhibit sharp variations. Moreover, color in-

terpolation can sometimes produce wrong results. Interpolating between colors

can create, for example, colors that never occur in the color transfer function

codomain (colormap). In contrast, postclassification produces smoother images

that only contain valid colors from the corresponding colormap. However, post-

classification does interpolate the scalars, which uses the implicit assumption

that the original signal is piecewise continuous between the voxel centers. Hence,

scalar interpolation may yield values that correspond to nonexistent materials

at points where the sampled dataset exhibits inherent discontinuities. A similar

phenomenon was discussed for image data in Section 9.4.7 (see Figure 9.21). For

smoothly varying datasets and transfer functions, the results of preclassification

and postclassification look very similar.

Figure 10.16 demonstrates the differences between pre- and postclassification.

The left image shows the postclassification order, which is also the usual one in

most applications. The image looks quite crisp. The right image shows the same
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(a) (b)

Figure 10.16. Comparison of (a) postclassification and (b) preclassification techniques.
The insets show a zoomed-in detail region from the large image.

dataset rendered with the preclassification strategy. The result looks significantly

more blurred.

10.4 Object Order Techniques
A second class of volume rendering implementations is formed by object-order

techniques. In contrast to image-order techniques, which traverse all pixels of the

view plane once and evaluate the ray function for each pixel separately, object-

order techniques traverse each object voxel once, and evaluate its contribution

to the image pixel whose ray intersects that voxel. Hence, whereas image-order

techniques visit every pixel once, object-order techniques visit the same image

pixel multiple times, as a function of the number of voxels that contribute to its

final color.

One of the most popular object-order methods is volume rendering using tex-

tures accelerated by graphics hardware. The main idea of this method is simple:

evaluate the composite ray integral in back-to-front order, as described by Equa-

tions (10.18) and (10.19), using the high-speed texture-rendering capabilities of

graphics hardware. Depending on the actual type of textures supported by the

graphics hardware, two subclasses of methods exist, as follows.
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2D texture methods. Two-dimensional texture methods assume only the sup-

port of 2D textures by the graphics hardware. To render a dataset, 2D texture

methods slice the 3D volume with a set of planes orthogonal to the volume

axis that is the most parallel to the viewing direction. This yields a set of

parallel rectangles, typically equally spaced along the slicing axis. The rectan-

gles are next textured with the corresponding voxels that they slice from the

volume. Each rectangle gets an RGBA texture whose RGB and A values are

given by the color and opacity transfer functions c and τ respectively, applied

on the sliced voxel scalar values. Finally, the textured rectangles are rendered in

back-to-front order with alpha blending enabled. To reproduce the compositing

Equation (10.19), we would use in OpenGL additive blending with the blend-

ing function glBlendFunc(GL ONE,GL ONE MINUS SRC ALPHA). OpenGL additive

blending was discussed in more detail in Section 6.6 in the implementation of

the IBFV method. Also, let us note that the volume-rendering technique using

2D textures sketched here was used by the 3D IBFV method to create the dense

visualizations of 3D flow fields discussed in Section 6.6 (see, e.g., Figure 6.29).

Volume rendering using 2D textures is quite simple to implement, as illus-

trated by the preceding pseudocode; is considerably faster than the front-to-back

software-based ray casting discussed in the previous section; and requires only

the support of 2D textures in graphics hardware, which should be available on

most current graphics card. However, this method also has several limitations.

The most visible is that the image quality is influenced by the viewing angle.

Indeed, as we change the viewpoint, the distance between the viewing plane

changes, from a minimal value δ reached when we look parallel to one of the vol-

ume axes, to a maximum of δ
√
3 when we look along the volume diagonal. This

distance is equivalent to the sampling step size used by the software ray-casting

method described in Section 10.3. To prevent this distance from increasing fur-

ther, which would cause a decrease in quality of the visualization, the volume is

resliced anew once the axis most parallel with the view direction changes. This

limits the quality decrease, but also creates a visible performance drop when the

reslicing occurs, as a new set of 2D textures has to be re-created from the volume

data and loaded into the graphics memory.

3D texture methods. A better option for volume rendering is to use 3D textures,

if these are supported by the available graphics hardware. In this case, the 3D

texture is first initialized with the results of the color and opacity transfer func-

tions applied on the entire dataset, and subsequently loaded onto the graphics

card. Next, the 3D dataset is sliced with a set of planes perpendicular to the

viewing direction. This delivers a set of polygons of various shapes, e.g., tri-



430 10. Volume Visualization

angles, quads, pentagons, and hexagons. Finally, the polygons are rendered in

back-to-front order, textured with the 3D texture, and blended using the same

equation as described earlier for the 2D texture method. The result is function-

ally the same as for the 2D texture method, but of a higher quality. Indeed,

the slice planes are now always parallel to the view plane, and data interpolation

both across the view plane as well as along the viewing (slicing) direction is done

by the texturing hardware. A second advantage of the 3D texture method is that

it does not require regeneration of the texture during the interactive viewpoint

manipulation, which significantly increases interactivity.

However much faster than the software ray-casting method, the 2D and 3D

texture methods described here also have some important limitations. First, the

maximal dataset that can be rendered is limited by the texture memory available

to the graphics card. For example, a graphics card with 256 MB of memory

would be able to hold no more than a 3D RGBA texture of 512 × 512 × 256

texels, or equivalently 256 2D textures of 5122 texels, if we account for one byte

per color or opacity component. Second, the straightforward implementation

sketched here would only support preclassification. Postclassification can also be

achieved, but this requires the use of more-sophisticated pixel-shader techniques

and loading the scalar data volume into a floating-point texture on the graphics

card. Finally, if we use the frame buffer to accumulate the alpha blending of the

textured slices, the accuracy of the result is limited by the frame buffer precision,

which is typically eight bits per pixel per color component. This limits both the

number of slice planes that can be drawn as well as the resolution of the color

and alpha values that can be stored on each slice. In practice, this means that

subtle opacity and/or color variations may become hardly visible.

Higher precision can be achieved using modern techniques such as render-to-

texture extensions, pixel shaders, and parallel programming of the GPU. A good

starting point to study such implementations is the open-source volume rendering

sample code which is included as part of the CUDA software development kit

offered by Nvidia.4 This code, roughly 1000 lines of C, provides a full image-

order volume renderer application. The actual volume renderer code is under

200 lines. The image shown in Figure 9.12(e), Chapter 9, was created by using

this renderer.

10.5 Volume Rendering vs. Geometric Rendering
The volume-rendering techniques discussed in this chapter have many aspects

in common with the geometric (polygonal) rendering techniques discussed in

4See http://docs.nvidia.com/cuda/cuda-samples, Volumetric rendering sample.
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previous chapters. However, there are also a number of important differences

between the two. In this section, we provide a brief comparison of the two types

of techniques.

Aims. First, the aim of both types of techniques is often very similar: producing

an image of a volumetric dataset that gives insight into the scalar values within.

As we have seen, this leads in some cases to identical visualizations that are

produced in different ways by volume rendering and geometric techniques. An

example is isosurfaces, which can be computed using polygonal marching cubes

or volumetric ray casting using an isosurface ray function (see Figure 10.7). Ren-

dering several translucent isosurfaces also creates images that are similar to those

produced by composite ray casting techniques using step-wise opacity transfer

functions (compare, e.g., Figure 5.16 with Figure 10.11). However, as stated

in Section 10.1, the main motivation and advantage of volumetric techniques

is that they convey, at each pixel in the final image, insight into more than

a few discrete data values. Moreover, whereas geometric rendering techniques

always use sharp, clearly delineated primitives, volume rendering is capable of

generating softer images, where the data values blend into each other without ex-

hibiting sharp borders. This can better suit datasets where there is no clear-cut

separation between different structures.

Complexity. A second observation concerns the complexity of the two types of

techniques. For this, let us consider a given visualization method, e.g., computing

isosurfaces, implemented using ray casting versus a marching cubes implementa-

tion. Both implementations, in general, scale linearly with the number of dataset

cells. However, marching cubes first computes the isosurface as an unstructured

polygon mesh, which is then rendered from the desired viewpoint. In contrast,

ray-casting techniques would typically need to traverse the volume anew when

the viewpoint gets changed. Moreover, geometric techniques such as marching

cubes typically compute and render a single geometry regardless of the screen

resolution or number of pixels in the rendering window. Their performance is

thus not influenced by the window size. In contrast, the performance of ray-

casting techniques heavily depends on the number of rays, i.e., the rendering

window size. The performance penalty incurred by ray casting tends to decrease

in modern implementations that use pixel shaders or similar parallel GPU im-

plementations to evaluate the ray function, yielding near–real-time performance

even for large volumes and window sizes.

Mixed methods. Volume-rendering techniques using (3D) texture-mapping hard-

ware fall somewhere between purely geometric and purely ray casting methods.
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They render a stack of texture-mapped polygons, and their performance is less

dependent on the rendering window size than in the case of software ray casting,

due to the parallel execution of the pixel-rendering operations on the texture-

mapped polygons in graphics hardware. Hence, 3D texture volume-rendering

methods are in this respect similar to geometric methods. However, they must

first compute a 3D texture volume, and also are viewpoint-dependent, as they

must recompute the texture-mapped polygons whenever the viewpoint changes.

These are typical attributes of ray-casting methods.

10.6 Conclusion
In this chapter, we have provided an introduction to the field of volume visualiza-

tion. Volume visualization, also known as volume graphics and volumetric ren-

dering, encompasses the set of techniques aimed at visualizing three-dimensional

datasets stored as uniform (voxel) grids. Such techniques are mainly used to

visualize scalar datasets. Such datasets occur frequently in medical practice and

are acquired by various imaging technologies such as computed tomography and

magnetic resonance imaging. However, volume visualization has been used also

to depict other types of data attributes, such as vectors and tensors, and also on

different grid types beyond the uniform ones.

Volume graphics, just as image processing, is a field that has its own evolu-

tion. As such, this chapter cannot and does not claim to provide more than a

brief overview of the advances, results, and challenges encountered in the volume-

visualization practice. From a data-visualization perspective, the key element

of volume visualization, however, is simple: By rendering a three-dimensional

dataset using appropriate per-voxel transfer functions that map data attributes

to opacity and color, we can achieve a better, more global, and quicker, un-

derstanding of complex volumetric structures than when using other techniques

such as slicing and isosurfaces. However, as is often the case, volume visualiza-

tion does not work best only itself, but in combination with other techniques.

In practice, volume rendering is typically combined in applications with slicing,

probing, glyphs, and isosurfaces. Separately, the effectiveness of volume-rendered

images is strongly dependent on the design and choice of the transfer functions

used to map individual scalar values to color and opacity values.

Further information on volume visualization and its uses can be sought in the

proceedings of the Volume Graphics workshop, published by IEEE Press. The

book by Chen et al. on volume graphics provides a state-of-the-art overview

of technological developments in the field [Chen et al. 00]. A different book,
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authored by Lichtenbelt et al., provides a practical presentation of volume ren-

dering, from the perspective of the practitioner, and also includes software to sup-

port the material and datasets to start experimenting with [Lichtenbelt et al. 98].

The book can be used as a hands-on guide to learn volume rendering by doing

it, but provides also an extensive list of compiled references of this field. For

an incursion into the field of medical visualization, with a focus on volumet-

ric techniques, a highlight is the recent book of Preim and Bartz [Preim and

Bartz 07].
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Chapter 11

Information Visualization

IN the previous chapters of this book, we have concentrated our attention on the

visualization of datasets that essentially contain the sampling of continuous

quantities over compact domains of Rn. We have seen that such datasets occur

in many fields, ranging from engineering and computational fluid mechanics and

mathematics to medical and Earth sciences. The field that studies the visual-

ization of these data types and targets the aforementioned application domains

is known as scientific visualization (scivis). In this chapter, we shall discuss the

visualization of a different, more abstract type of data. Examples of such data

range from generic graphs and trees to database tables, text, and computer soft-

ware. The nature of such data, as well as that of the application fields where it

is used, generate additional, but also different, requirements and constraints to

the visualization process.

The field that studies the visual representation of such data is known as

information visualization (infovis). This name is often used to distinguish it from

the scivis field. In this chapter, we present a succinct overview of infovis methods

and techniques. The ambition of this chapter is far from being a comprehensive

presentation of the infovis field. For such a task, an entire book would be more

appropriate. The aim of the current presentation is to make the reader aware of

the existence of a wealth of visualization techniques and applications which do

not directly fall within the focus of scientific visualization. On the other hand,

many of the goals of infovis applications and its underlying techniques have

interesting overlaps with the corresponding ones in the scivis field. Becoming

aware of where the differences and similarities are is important for a deeper and

more-nuanced understanding of the visualization discipline.

435
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In Section 11.1, we give a brief characterization of the infovis field from the

point of view of its goals, which serves as a starting point in our discussion. In

Section 11.2, we discuss the similarities and differences between the scivis and

infovis fields from a technical perspective. The following sections detail several

of the data types and visualization methods that commonly occur in infovis

applications. As illustration, several applications are used, mainly from the

field of software engineering. We start in Section 11.3 with the visualization of

database tables. Section 11.4 continues with the visualization of relational data,

among which we look at trees, graphs, and diagrams. Section 11.5 overviews the

visualization of multivariate data. Section 11.6 discusses the visualization of text

documents, including software source code. Finally, we conclude our incursion

into the field of information visualization in Section 11.7.

11.1 What Is Infovis?
Information visualization is arguably the fastest-growing branch of the visualiza-

tion discipline in the last decade. This rapid and sustained growth is visible both

in the various industry branches that make use of infovis applications, ranging

from banking, telecom, and the information technology (IT) field to the logis-

tics and administrative departments of large companies. In all of these cases,

the challenge is the same: The various activities performed by the respective

industry generate a huge amount of data. The question that infovis applications

attempt to answer is

How can we assist users in understanding all that abstract data?

The dictionary definition of visualization, as quoted from Robert Spence’s

book on information visualization [Spence 07], says that to visualize is to “form

a mental model or mental image of something.” A broad definition of infovis is

“visualization applied to abstract quantities and relations in order to get insight

in the data” [Chi 02]. We see, thus, that the goals of scivis and infovis are quite

similar.

However, infovis applications attempt to visualize a wider (and different)

spectrum of data types than scivis applications, as we shall see in more detail

in the next section. Scivis applications mainly focus on so-called physical data,

which has an inherent spatial placement, such as the flow of water in a 3D con-

tainer (see Chapter 6) or a medical scan of a patient limb (see Chapter 10). In

such cases, the user already has a mental image of what the flow container or the

limb looks like. Most importantly, the mental and the physical images overlap
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considerably—when we are asked to think of what the given limb or flow con-

tainer looks like, our mental image will most probably bear a strong resemblance

to an actual 3D rendering of the respective dataset. This considerably simplifies

the visualization task.

In contrast, many infovis applications attempt to help users form a mental

image about data that has no inherent physical, or spatial, placement. Informa-

tion has no “innate shape and color” [Koike 93], so its visualization has a purely

abstract character. Information visualization covers areas such as visual reason-

ing, visual data modeling, visual programming, visual information retrieval and

browsing, visualization of program execution, visual languages, visual interface

design, and spatial reasoning [Morse et al. 02].

Examples of infovis data, also called abstract data, are everywhere in the

information society: computer file systems, databases, documents from archives,

and stock exchange courses. Clearly, such data have no physical representation.1

Hence, infovis must cope with the added challenge of finding appropriate visual

representations for such data. After these are found, they must be adequately

presented to the user, possibly in an interactive setup. These three elements—

representation, presentation, and interaction—form the fundamental ingredients

of an infovis application [Spence 07].

As we have seen in the previous chapters, many of the users of scivis ap-

plications have a scientific or engineering background. These users can easily

work with concepts such as data fields, resampling, isosurfaces, and stream-

lines. Exposing such elements in the user interfaces of scivis applications, and

using three-dimensional graphics for the visualization itself, are thus reasonable

and natural options. In contrast, infovis applications target a larger audience,

which often includes individuals who have limited mathematical or engineering

training. As such, the design of the presentation and interaction components

of many infovis applications should be tuned to make them usable for the tar-

geted user group. This can have several consequences on the user-interaction

design. For example, financial users are very familiar with data tables and bar

and pie charts. Software developers often do most of their work within an In-

tegrated Development Environment (IDE), where most graphics and interaction

is two-dimensional. As a general rule, the design of infovis applications for any

particular field should

• follow the conventions accepted by that field;

• integrate with other tools-of-the-trade of the field.

1One may argue that printed documents do have one. However, as we shall see in Sec-
tion 11.2, it is the actual information in these documents that we want to understand.
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Following these two design principles maximizes the chance for the infovis appli-

cation to be accepted by its users, and also speeds up the learning process.

Just as for scivis, different types of taxonomies, or classifications, have emerged

for infovis applications. In his book, Spence classifies visualization applications

into scivis applications, which address physical data; infovis applications, which

address abstract data which lacks a spatial placement; and geovisualization (geo-

vis) applications, which address a field between the two, where potentially ab-

stract data is depicted in a spatial setting. A different taxonomy based on

how the user derives a mental model from the data was proposed by Tory and

Möller [Tory and Möller 04]. Yet another taxonomy, proposed by Chi [Chi 00],

groups infovis techniques based on the data types and operations that are inher-

ent to each visualization technique.

11.2 Infovis vs. Scivis: A Technical Comparison
Since the material presented so far in this book was about scivis, it is useful to see

how infovis is similar to, and also how it differs from, scivis. In this section, we

compare scivis and infovis from the technical perspective of data representation

and manipulation.

First, let us briefly recall our discussion on the dataset concept that underlies

the structure of the visualization pipeline (see Chapter 3). Datasets are contain-

ers that store application information which is to be processed and ultimately

mapped to visual representations by the various algorithmic steps in the visual-

ization pipeline (see Chapter 4). The dataset should, thus, accurately model the

properties of the actual application-specific information, and, at the same time,

lend itself to an efficient and scalable software implementation.

11.2.1 Dataset

The dataset model described in Chapter 3 was based on a number of assumptions,

as follows:

• The domain is a compact subset of R
n, discretized in a set of simple

piecewise-linear primitives, such as lines in 1D, triangles in 2D, and tetra-

hedra in 3D. The discretization, consisting of the location of the primitives’

vertices together with the connectivity information that describes the prim-

itives themselves, is stored in a grid.

• The data consists of sample values of some numerical quantity of dimension

m taken at the sample points. Scalar data has dimension m = 1, vector
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Figure 11.1. Examples of (a) scivis and (b) infovis datasets.

data has m = 2 or m = 3, and tensor data has m = 4 or m = 9 (or

m = 3, m = 6, respectively, for symmetric tensors). The sample points are

typically either the primitive vertices or the primitive centers, depending

on the type of interpolation used.

• The interpolation functions serve to reconstruct a piecewise continuous

signal from the data samples, across the primitives’ extents. Constant and

linear interpolation are the most common forms in use.

The preceding is summarized in the sampling and reconstruction process sketched

in Figure 3.4.

As explained in Chapter 3, the scivis dataset model is well suited to describe

functions of the type f : Rn → R
m. Data coming from numerical simulations

and measurements of physical quantities over spatial regions fit this model well.

Figure 11.1(a) sketches a simple scivis dataset having an unstructured grid em-

bedded in R
3 that has a color and a vector attribute at each sample point pi.

The scientific visualization methods described in Chapters 5 up to Chapter 10 are

designed to offer various ways to get insight in datasets that follow this model.

We can, however, find many examples of data that do not, nor cannot be

easily brought to, fit this model. Let us give two examples. Consider first the

information stored in this book. This consists of an amount of text, which

can be described, at the lowest level, as a sequence of characters from the ASCII

character set. At a higher level of organization, the text is structured into words,

sentences, paragraphs, subsections, sections, and chapters. Besides the textual

information, there are also images, which can be described using the dataset

model in Chapter 9. Apart from the previous, there are also cross references in
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the text, such as the numbers that point to sections, figures, and bibliographic

references.

The simplest form of visualizing text is by printing it in the actual form

and layout this book has. Besides reading the physical book, the text can be

visualized using interactive viewers for various electronic document formats such

as Adobe’s Portable Document Format (PDF) or PostScript. However effective

for tasks such as reading the document and searching for the occurrence of

certain text patterns, the visualization model provided by such viewers does

not support the user in performing other tasks. Among these, the following are

worth mentioning:

• Get an overview of the global document structure.

• Identify similar textual patterns at several levels of detail (word, sentence,

paragraph, chapter).

• Compare two or several text documents and see the similarities and differ-

ences.

• Get insight into the global cross reference structure.

• Understand how the usage of images is spread throughout the document.

• Observe how the structure and contents of a document have changed in

time.

As a second example, consider the information stored during the development

of a software project. This consists of the actual source code files, which con-

tain program text usually structured, from high to low level, as a set of classes,

functions, and individual statements. Besides the source code, other data items

can be present, such as requirements, architectural and design diagrams, devel-

opment log files, and bug traces. Figure 11.1(b) sketches an example of a simple

dataset containing information about a software project. This dataset contains

four data elements, or tuples. Tuples p1 and p2 describe two classes A and B,

the first written in Java and the second in C++, and having 300 and 500 lines

of code, respectively. Tuples p3 and p4 describe two functions foo and bar, the

first having 50 and the second 100 lines of code, respectively. The dataset ad-

ditionally contains four relations, describing the fact that class A contains the

function foo, class B contains the function bar, and that foo calls bar. These

relations are indicated by the four arrows drawn in Figure 11.1(b).

Software developers and project managers want to accomplish a number of

tasks on this kind of information, including the following:
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• Get an overview of the structure of the software project.

• Understand the dependencies between the various software building blocks,

such as functions, classes, and packages.

• Compare the structure of two software systems and/or two different re-

leases of the same system.

• Get insight in the coding style of various developers.

• Get insight into how the bug reports and fixes correlate with the project

structure.

The preceding tasks are targeted by a branch of information visualization called

software visualization. A definition of software visualization is “the use of the

crafts of typographic, graphic design, animation, and cinematography with mod-

ern human-computer interaction and computer graphics technology to facilitate

both the human understanding and effective use of computer software” [Stasko

et al. 98]. Depending on the type of targeted data, software visualization can

be further subdivided into several domains: program structure visualization, be-

havior visualization, and program evolution visualization [Diehl 07]. We shall

present several examples of software visualization methods and applications in

the remainder of this chapter.

For the text and software data types given previously, two questions arise,

just as for scivis datasets:

• How can we design a dataset model that stores this information?

• How can we design visualization methods that allow us to get insight in

this data?

This information cannot be naturally mapped to the scivis dataset model

consisting of a grid of sample points, numerical sample values, and interpolation

functions. Let us detail each of these elements in turn.

11.2.2 Data Domain

The domain of a scivis dataset typically describes a compact region of Rn sampled

at several locations. The resulting grid structure consists of sample points and

cells. Cells are used to reconstruct a piecewise continuous signal from its sampled

values at the cell vertices using interpolation (see Section 3.2). In contrast, infovis

datasets often do not contain spatial information (sample points), nor do they
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contain cells having the function of interpolation. Let us examine these two

properties in turn.

A first observation we can make for the book contents and software project

data examples is that these do not have an inherent spatial location. Of course,

we could try to model a book as a set of 2D pages stacked on top of each other in

3D, i.e., regard it as a kind of tridimensional dataset. The sample points of such

a grid would, probably, be taken at the locations of the graphical elements in the

book such as text letters and illustrations. The sampled data could consist of

the actual text characters and image pixels. Although it is technically possible

to store a book in such a dataset format, this would create more problems than

it solves. First and foremost, the spatial 3D layout of the actual book is, in many

cases, of little relevance for the content and the questions targeting this content.

Such a dataset would represent the physical book itself, and not the information

that the book stores. In the case of the software project data, there is simply no

“natural” spatial structure to describe the data over.

As we shall see in the next sections, some infovis attribute types do not

support interpolation. Hence, we cannot use cells for signal reconstruction pur-

poses such as in scivis. There is no direct equivalent in infovis to the notion

and purpose of cells, such as defined in scivis datasets. As we shall see later

in Section 11.4, there is a somewhat similar notion of cells in infovis datasets,

which are relationships between sets of data tuples. For example, the call and

containment relations shown in Figure 11.1(b) can be thought of as cells that

connect the four data points p1, . . . , p4. Although superficially similar to the

scivis cell concept, this cell notion serves a different purpose.

11.2.3 Data Attributes

The sample values, or attribute values, stored at the grid points describe the

actual data stored by the dataset. One important difference between scivis and

infovis data that is easy to spot is that infovis data values are of more types

than numerical values. In the previous examples, we can note elements such as

text, syntactic entities (classes and functions), cross references in a text and call

relations in a software project, and bug information. All these data types go

beyond the semantics of numerical values, and also exhibit different properties

than numerical data.

As discussed in Chapter 3, scivis data types are classified by their dimension

into scalar, vector, and tensor data. For infovis data, there exist several classi-

fications. One way to classify attribute data types is based on the kind of scale

within which the values of a parameter might be given [InfoWiki 14]. Following
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Data type Attribute domain Operations Examples

nominal unordered set comparison text, references,
(=, �=) syntax elements

ordinal ordered set ordering ratings (e.g., bad,
(=, �=, <, >) average, good)

discrete integers (Z,N) integer arithmetic lines of code

continuous reals (R) real arithmetic code metrics

Table 11.1. Attribute data types in infovis.

this classification, attributes can be classified into nominal (also called categori-

cal), ordinal, discrete, and continuous. These attribute types, together with the

domains the respective attributes take value in and their supported operations,

are summarized in Table 11.1.

Another classification of attribute data types groups these into qualitative,

quantitative, and categorical types. Nominal and ordinal attributes are said

to be qualitative, as they do not allow arithmetic operations such as addition

and multiplication. As we shall see next in Section 11.2.4, these operations are

mandatory for performing attribute interpolation. In contrast, discrete and con-

tinuous data types are said to be quantitative, as they allow arithmetic operations

and, therefore, also interpolation. Finally, nominal, ordinal, and discrete types

are said to be categorical when these attributes describe the fact that a data

item belongs to a category rather than the value of a quantity.

Scivis attributes belong chiefly to the last category of continuous types. This

is natural, when we recall that they describe physical measured or simulated

quantities. Infovis attributes cover the whole spectrum of data types, and there-

fore cannot always support operations such as interpolation. A second important

property of many infovis datasets is that they do not define attribute values for

every data tuple. In the example in Figure 11.1, only the functions (p3 and p4)

have the “calls” attribute, whereas the “contains method” attribute is present

only in the class tuples (p1 and p2). Moreover, infovis attributes pose different

requirements on dataset implementation. As described in Section 3.8.2, scivis

attributes are implemented basically as several floating-point arrays with one

value per grid point or cell. Infovis datasets may need to choose a different stor-

age strategy, since the size of a single attribute is variable, e.g., in the case of

text strings, and since one must cope with missing values.

Yet another classification of attribute data types proposes eight types: linear,

planar, volumetric, temporal, multidimensional, tree, network, and workspace

[Shneiderman 96, Card et al. 99]. This classification combines both scivis and

infovis attribute types and features, in the sense that both the spatiality of the
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attributes (e.g., linear, planar, volumetric, temporal, and multidimensional) and

the relational aspect thereof (e.g., tree, network, and workspace) are present.

Together with these eight data types, seven interaction functions an infovis ap-

plication may provide are named: overview, zoom, filter, details-on-demand,

relate, history, and extract. These functions can be related to the main steps of

the visualization pipeline: filtering, mapping, and rendering. These two dimen-

sions (data types and interaction types) create a matrix of possibilities within

which a visualization application can locate its functionality.

The last classification of infovis data types we discuss here is into values

and relations. All examples of data types listed previously, with the exception of

references, fall in the value category. Value types contain their information within

the data type itself. Relation types contain the information in the association, or

relation, between two or more data values. As we shall see later in this chapter,

relational data pose particular challenges to visualization.

11.2.4 Interpolation

As stated several times so far, continuous attributes such as used in scivis

datasets admit interpolation. For example, we can easily interpolate the color or

normal attributes of the vertices p1, . . . , p4 over the quad cell in Figure 11.1(a).

However, it does not make sense to consider interpolating any of the attributes of

the software dataset shown in Figure 11.1(b), i.e., the class and function names

(text), programming language (nominal), call and containment relations (rela-

tional), and lines of code (discrete). For the first three attributes, this statement

is obvious. For the integer-valued lines of code attribute, one could, technically

speaking, perform interpolation. However, this does not make much sense, as

function and class data tuples are not part of a continuous space. For this reason,

we can call the infovis data inherently discrete, in contrast to scivis data, which

consists of samples of originally continuous quantities.

This distinction is very important. Together with the lack of inherent spatial

placement, this influences the way the visualization methods for infovis data are

designed, as we shall see next.

Table 11.2 summarizes the differences between scivis and infovis datasets.

These differences sketch an image of the “generic” infovis dataset that is quite

similar to the data model used in relational databases or entity-relationship

graphs. Data consists of several tuples of variable length, each having several

data elements. These elements can be of virtually any type besides numeric ones.

The tuples participate in various relations with each other. The “structure” of

the dataset is precisely the graph-like network of tuples connected by relations.
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Scivis Infovis

Data domain spatial ⊂ R
n abstract, nonspatial

Attribute types numeric ⊂ R
m any data types

Data points samples of attributes tuples of attributes
over domain without spatial location

Cells support interpolation describe relations

Interpolation piecewise continuous can be nonexistent

Table 11.2. Comparison of dataset notions in scivis and infovis.

In scivis datasets, this structure was relatively fixed, i.e., consisted of uniform,

rectilinear, structured, and unstructured grids (Section 3.5), and encoded typi-

cally just spatial and sampling density information. In contrast, infovis datasets

can have very complex network-like relational structures, which encode a wide

range of domain-specific semantics. If we consider all the previous facts, we can

conclude that infovis datasets pose considerable challenges to an effective and

efficient implementation.

Simplifying the discourse, since an infovis “sample point” is basically a data

tuple, it means that we can, technically, represent any infovis dataset as a table

whose rows are the data tuples and columns are the data attributes of the re-

spective tuples. This is, indeed possible. Any types of infovis datasets, including

trees, graphs, and text can be represented in this way. This data model is used

by several infovis applications, such as the well-known ManyEyes visualization

portal [Viegas et al. 07], and several software visualization applications [Reniers

et al. 14]. However simple and generic, this tabular model is not always the most

effective way to represent certain datasets, such as relational data, as we shall

see next.

In practice, there exist many applications where scivis and infovis datasets

are tightly mixed. For example, inherently spatial domains can carry both quan-

titative (real-valued) and qualitative (nominal) attributes, such as a map with

height information and names of localities, road signs, and other discrete an-

notations. Conversely, scivis attributes can be completely decoupled from their

spatial context, such as in the case of a database containing tables with phys-

ical measurement values but no measurement locations. What is important to

remember from the discussion in this section are which characteristics distin-

guish infovis from scivis datasets, as these influence the choice and design of

visualization methods.

As discussed in Chapter 4, a visualization application is structured as a

pipeline of data acquisition, data filtering and enrichment, mapping, and ren-

dering algorithms that process datasets. This structure is common in infovis
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applications as well, as are the main goals of getting insight into data, fact

discovery, and hypothesis confirmation are common to both scivis and infovis

applications. However, the mapping stage of the infovis visualization pipeline

has a relatively more difficult task to accomplish than the same step in scivis

pipelines. As we recall, this step converts a generic dataset to a spatial, usu-

ally two- or three-dimensional, representation, which is next fed to the rendering

step (Section 4.1.3). As discussed previously, infovis data often has no inherent

spatial placement. Hence, the mapping step must cope with the added difficulty

of creating a suitable spatial representation for abstract high dimensional data.

The effectiveness of many infovis visualization methods is highly determined by

the design choices made in the mapping step, as we shall see next.

In the following sections, we present a number of visualization methods for

several types of datasets that fall into the generic infovis category described

above: database tables, trees, graphs, and text.

11.3 Table Visualization
The first type of infovis data is the table. Most readers should be already famil-

iar with data tables from different application areas. Consider, for example, a

database. This consists usually of a set of tables, each being a two-dimensional

array of rows and columns. Each column typically describes a separate at-

tribute, which is instantiated on each row. The table cells can contain all the

attribute types discussed in Section 11.2.3. Actual databases typically classify

attributes into numerical, text, date and time, and references to other database

cells. Databases are usually managed by means of interactive front-ends that al-

low users to perform query and editing operations on the tables as well as draw

the contents of their tables in a two-dimensional grid of textual cell values. The

actual data querying and modifications on the database contents are expressed in

dedicated database languages. Of these, the Structured Query Language (SQL)

is one of the most popular [Chamberlin and Boyce 74, SQL 14], and is imple-

mented by a large number of database management systems (DBMSs) in use,

both commercial, such as Oracle and Microsoft SQL Server, and open-source,

such as PostgreSQL and MySQL.

Printing the contents. The simplest way to visualize a data table is to print

its contents. While this allows detailed inspection of the actual table values,

there are several limitations to this approach. First, printing cannot show more

than a few tens of rows and columns simultaneously. Figure 11.2 shows a table
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Figure 11.2. Textual visualization of a database table containing stock exchange data.

containing stock exchange data.2 Every table row contains information recorded

about the trading of a share during a certain time interval. The information is

saved for several time intervals during each trading day for a period of three years

(2003 to 2005) for a few hundred traded stocks. Each table row contains, from

left to right: the integer ID of the respective row in the database, the industry

category the stock is in and name of the stock, the date and time when the

stock’s value was recorded, the value at the beginning and end of the recording

interval (open and close respectively), and the high and low values the stock

reached during the respective interval. The table visualization can be scrolled to

examine all the data rows, in this case over 45,000.

Stock brokers are interested in analyzing this data in order to find trends, out-

liers, and correlations between the various recorded items, such as share prices,

periods, and companies. It is easy to see that the preceding visualization cannot

assist such tasks to a great extent. One of the problems is that the data is not

presented in a way that supports the considered tasks. For example, the table

rows are not listed in an order that supports any task, but in the order they

appear in the database.

2Data from the Romanian Stock Exchange, courtesy of C. Micu, Intercapital Invest., Roma-
nia. The visualizations of this dataset are created with the TableVision tool, openly available
at http://www.cs.rug.nl/svcg/SoftVis/TableVision (see also [Telea 06]).
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Several simple improvements can be brought to this visualization to make

it more effective. A first improvement is to sort the columns by their attribute

value. This is useful to find out the range of the attribute, by examining the

beginning and end of a sorted column. Simple queries can be answered in this

way, such as “What is the monitored period?” or “What are the earliest and

latest intraday trading moments monitored?” Sorting the names column also

allows us to quickly locate the data rows corresponding to a given share of

interest, by scrolling to that name. However useful, simple sorting does not

directly support tasks such as “show the evolution in time of the price of a given

share.” We can accomplish this task using three sort operations. First, we sort

the table rows by name, which groups together the records (rows) corresponding

to the same share. Next, we sort the same-name row groups by date. Finally, we

sort the same-date row groups created by the second sort operation by time. The

three sort operations create a table visualization that lists the shares ordered by

name and then by date and time. Following the price evolution in time of one

share, e.g., SNP, is now much easier (see Figure 11.3).

Figure 11.3 shows three other enhancements besides the multiple sorting

technique. The first enhancement helps us see how many intraday samples the

dataset has. To do this, we draw the background of the table cells using alter-

nating colors (light blue and white) that change between row groups belonging

to different dates. We can now easily see that most trading days have four or

five intraday samples. A second use of this visual cue is to facilitate focusing on

the first and last intraday samples, which are important to assess a day’s gains

or losses, and also to compare the close of a day with the open of the next day.

Mapping values. The second enhancement helps us follow the evolutions of the

cell values without having to read them. To do this, we blend each cell’s back-

ground with a colored bar graph showing the actual cell value. The bar lengths

are normalized over each entire column: Short bars indicate small values, whereas

a bar of the entire cell’s length indicates the maximum value over the respective

column. The date, time of day, and high course columns are rendered using

bar graphs in Figure 11.3. The bar graphs help us discover several interesting

facts. First, we notice a jump in the bar graph of the date column. Upon closer

inspection of the text in the cells, we discover that there is a gap in the recorded

data from the 16th of January 2004 until the 29th of July in the same year. The

time column shows a different, sawtooth-like, evolution pattern. This pattern

says that the intraday samples are relatively uniformly spaced between the same

start time (11:00) and end time (15:00) for the considered data. However, we also

discover an outlier: on the 29th of July 2004, the first day after the seven-month
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Figure 11.3. Table visualization enhanced using multiple sorting, evolution icons, bar
graphs, and same-value (date) row cues.

information gap, there are only two samples at 14:00 and 15:00. Finally, the

high column bar graph shows two flat lines separated by an abrupt jump. This

signals that the course of the respective share has not changed significantly in

the monitored periods, but has exhibited a major increase during the gap period

for which we lack information.

The third enhancement helps us follow the course variations during the moni-

tored intervals. To do this, we display small icons, or glyphs, in the open column

that indicate the difference between this column’s value and the closed column.

A green upward-pointing arrow indicates a course increase, a red downward-

pointing arrow shows a course decrease, and a blue equal-sign icon shows an

unchanged course. These glyphs are essentially an indicator of the sign of the

course derivative.
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Sampling issues. A different problem of the text-based table visualization dis-

cussed so far is its limited scalability. Although we can scroll the table both

vertically and horizontally, this does not offer an overview of the entire data.

Also, scrolling a table that has tens of thousands of rows or more is quite cum-

bersome. To solve this problem, we reduce the level of detail at which the table

is shown, by zooming out the table visualization. This technique was originally

introduced by Rao et al. as the table lens [Rao and Card 94]. When the text

size becomes too small to be readable, we drop displaying text and the same-

value row cues and evolution icons, and only show the bar graphs. This allows

us to “zoom out” the table visualization until each row is rendered by a single

horizontal pixel line.

Figure 11.4 shows the entire stock dataset of over 45,000 rows visualized using

the table lens technique, sorted by industry category, share name, and sampling

time. In order to display this many rows on a display window of under 1000

pixels in height, the bar graphs in each column need to be undersampled by

a factor of roughly 45 to 1. Note that this is not the same as undersampling

the actual cell values. As explained in Section 11.2.4, interpolation (and, thus,

undersampling too) of qualitative and categorical attributes can be challenging.

However, the bar graphs map these attributes to a numerical value, which can be

easily resampled. Different colormaps are used for the bar graphs in this image.

The category column (nominal type) uses different brown hues to show the four

industry categories present in the dataset, which are shown by the four different

bar sizes (the first one, banking, has a zero width). The vertical bar sizes indicate

the relative sizes of the industries in terms of monitored shares. The date column

(discrete type) uses a luminance colormap, where dark indicates early dates and

bright late dates in the monitored period. The open course column (continuous

type) uses the by-now-familiar blue-to-red rainbow colormap. From Figure 11.4,

we immediately see that the BRD stock has the highest, and increasing, open

courses. In the same industry category of banking, there is a second share

TLV that has a much lower, and rather constant, open course. A comparable

course level to BRD is reached only for a very short period of time by another

company in another industry category, as outlined by the narrow warm-colored

spike halfway down the open column.

The previous visualization maximizes the information density. All pixels are

used to convey a separate piece of data, so that overviews of large datasets are

possible on a single screen without using interactive navigation techniques such

as zooming and panning. Such visualizations are known generically as dense

pixel displays or space filling displays. We shall encounter dense pixel display

techniques further in this chapter.
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Figure 11.4. The table lens technique allows us to create overviews of large tables as
well as show context information.

The table lens technique can combine the overview visualization with detailed

textual context information similar to the one shown in Figure 11.3. For this,

we display detailed information for a few rows centered at a given focus point

placed somewhere in the row range. The effect is similar to placing a lens on top

of the overview visualization. Moving the focus point interactively, e.g., with the

mouse, allows us to get detailed information at any point of the overview picture.

This is a good example of the widely used visualization principle of focus and

context .
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11.4 Visualization of Relations
As discussed in Section 11.2.1, relational data are an important type of infovis

data. Loosely defined, a relation is an association between two or more items.

Relational data is fundamentally different from value data, as the information

is located not in a single data value, but in the fact that several such values are

associated, or related, in some way.

Relational datasets are ubiquitous in many application domains. Examples

are as diverse as computers communicating with each other in networks, web

pages referring to each other in the World Wide Web, cities connected by roads

on maps, suppliers and customers connected in a logistics network, and software

components depending on each other in a software system architecture. Given

this widespread presence of relation datasets, many methods have been designed

for visualizing such datasets. In this section, we shall focus on the visualization

of several types of relational datasets that are frequently encountered in practice:

trees, graphs, and Venn-Euler diagrams.

11.4.1 Tree Visualization

Trees are a particular type of relational data. Formally, a tree T = (N,E) is

defined as a set of nodes N = {ni} (also called vertices) and a set of edges

E = {ei}, where every edge ei = (nj , nk) is a pair of nodes nj ∈ N and nk ∈ N .

An essential property of a tree is that there is a unique path, defined as a set of

nodes connected by edges, between any two nodes in the tree. Putting it simply,

a tree is a network of connected nodes where there are no loops.

In practice, the node pair that defines an edge in a tree is ordered to encode

application-specific semantics. In such cases, for an edge ei = (nj , nk), the

first node (nj) is called the parent of nk and the second one (nk) is called the

child of nj . Hence, a tree can be seen as a hierarchical structure of parent and

child nodes. In this model, a parent node may have any number of children,

but a child node can have only one parent. Given that all nodes in a tree are

connected, we deduce that there is a single node in a tree that has no parents.

This node is called the tree root, and represents the top level of the hierarchy

encoded by the tree. Symmetrically, there are several nodes in a tree that have

no children. These nodes are called leaves, and represent the bottom-most level

of the hierarchy encoded by the tree. Finally, the depth of a tree is the length

of the longest path (number of nodes) that connects a leaf to the root.

As already mentioned, trees encode different types of hierarchical relations.

One such relation is containment, where parent nodes are seen as containers of

child nodes. Examples of containment tree hierarchies are computer file systems
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(files in folders), the structure of software source code (statements in functions

in classes in files), and the logical map of a store (products in boxes in shelves

in storage rooms). Another hierarchical relation is subordination, where par-

ent nodes are seen as controllers of their children. Examples of subordination

tree hierarchies are the structures of organizations (employees, managers, execu-

tives), the control structure of mechanical assemblies (driven parts connected to

controllers), or the electrical network in a house (devices, power sockets, central

electricity meter).

How can we visualize tree datasets? Since a tree is a particular example of

an entity-relationship structure (nodes connected by edges), the answer implies

that we must visualize the nodes and the edges. Besides visualizing the structure,

we should provide ways to visualize the additional data attributes that may be

associated with both nodes and edges. In the following, we present two different

methods for visualizing trees: node-link drawings and treemaps.

Node-link visualization. The node-link visualization, also known as ball-and-

stick visualization, is probably the most widespread method of visualizing tree

data structures. As its name suggests, this method maps the tree nodes to typ-

ically round glyphs,3 and the edges to line or curve-like shapes that connect the

related nodes. Node-link displays of trees are also known as node and link dia-

grams. This representation leaves two main degrees of freedom for both nodes

and edges:

• the positions of the glyphs;

• the appearance (shape, color, texture, lighting, annotation) of the glyphs.

Many choices are possible for both degrees of freedom. However, a commonly

used strategy is to assign position to the node glyphs only, draw edges as straight

lines, and modulate the appearance of both nodes and edges to reflect the values

of their various attributes. With this strategy, it is possible to decouple the tree-

drawing problem into a geometric placement step that assigns coordinates to the

nodes, followed by a mapping step that assigns appearance to the already-placed

node glyphs.

The geometric placement step is commonly referred to as layout. There are

many requirements that make a tree layout effective. These include, but are not

limited, to the following:

• Nodes and edges should ideally not overlap or the amount of overlap should

be minimal.

3The concept of glyph was introduced for the visualization of vector data in Section 6.2.
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• Edges should not be unnecessarily long or, when curved edges are used,

unnecessarily bent.

• The layout aspect ratio should be balanced, i.e., not too far off unity.

• The hierarchical root-to-leaves tree structure should be easily discernable

from the visualization.

• The relative structures, sizes, and depths of the various subtrees of a given

tree (or of different but related trees) should be easy to compare.

• The layout should be scalable, both in terms of clarity of the produced

visualization and in terms of computational resources needed to create it.

As there are many ways in which these and other related requirements can be

satisfied, many tree-layout algorithms have been developed. For a comprehensive

discussion of the problematics and implementation details of tree drawing, we

refer to the book by Di Battista et al. [Di Battista et al. 99]. For a discussion

on the aesthetics of tree layouts, see Bloesch [Bloesch 93].

To give a feeling of the different choices that can be made when computing the

layout of a graph, we will illustrate these choices for the problem of understanding

the structure of a file hierarchy. The example we consider is the distribution of

the open-source FFmpeg software video codec [Bellard 06]. This distribution

contains 785 files in 42 folders nested five levels deep. Several file types are

included: source code, video, audio, binary (libraries and object code), images,

hypertext, and plain-text documentation.

Rooted tree layout. Figure 11.5 shows one of the most-frequently-used tree lay-

outs, called the rooted-tree layout.4 Here, all children nodes of the same parent

have the same y-coordinate. Their position on the x-axis is used to reflect a

certain ordering. Here, the order in which files appear in a listing of their con-

taining folder is used. Moreover, the placement of the children on the x-axis is

done so that the horizontal extent of the entire subtree of a given parent node is

centered with respect to the parent’s x-coordinate. The appearance of the nodes

reflects several attributes. The node glyphs and color show the file level in the

hierarchy: a green square for the root, blue rings for the first-level folders, yellow

balls for the second-level folders, and red squares for the remaining folders and

files. The node glyph sizes reflect the size of the corresponding files or folders.

However, these sizes range from a few tens of bytes for the smallest ones to over

4The tree visualizations in Figures 11.5, 11.6, 11.7, and 11.8 are created using the Tulip
open-source graph visualization software [Auber 07].
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root 
level 2 
level 3 
others 

Figure 11.5. File hierarchy of the FFmpeg software distribution visualized using a
rooted tree.

a hundred megabytes for the root folder. Making the glyph sizes directly propor-

tional to the file sizes would render most files practically invisible when we scale

the root glyph size to fit the image. To prevent this, we lower clamp the smallest

glyph size to 1/20 of the largest (root) glyph size. This makes the smaller file

glyphs visible, but their size does not exactly reflect their corresponding files’

size any longer. Additionally, we display the folder names for some of the largest

folders in the distribution. Finally, the edges are drawn as straight lines with a

color that interpolates the colors of their two nodes, using the same technique

described for Gouraud shading (see Chapter 2). This technique makes the color

change smoothly from node to node, thereby creating a visualization with less-

sharp transitions. Another advantage is that some very small nodes, which may

not be visible at all, will convey their color to the relatively long edges, thereby

making their presence visible in the final image.

The visualization in Figure 11.5 shows several aspects of the FFmpeg software

distribution. We see that the FFmpeg root directory has seven subdirectories.

Of these, tests has the largest size (largest glyph). One of the nicest features

of this layout is that it maps the hierarchy levels to distinct parallel horizontal

layers. This lets us easily see, for example, that the entire distribution is five

levels deep. The horizontal width of the triangular “fans” consisting of a parent
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and its children shows the size, in number of files, of each folder. For example,

we see that libavcodec has the largest number of files within (largest subtree

drawing). Another useful property of this layout is that it reflects the “balancing”

of the hierarchy, i.e., the distribution of number of files and subtree depths across

the entire structure. Looking at Figure 11.5, we assert that this file hierarchy is

well balanced. Indeed, there are no extreme depth or file count variations across

the displayed subtrees.

The preceding layout works well for relatively well-balanced trees. However,

“fat” trees that have parents with many children and few levels or very deep trees

with few children per parent can yield layouts with poor aspect ratios. Tuning

the distance between consecutive layers and the distance between consecutive

children in the same layer can partially alleviate this problem.

Radial tree layout. A similar assessment of the file hierarchy structure can be

obtained using the so-called radial tree layout shown in Figure 11.6. Here, the

root is placed at the center of the image and its children are distributed in

root 
level 2 
level 3 
others 

Figure 11.6. Radial-tree layout for the same file hierarchy as in Figure 11.5.
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clockwise order along a circle centered at the root. Nodes on deeper levels are

laid out on correspondingly wider circles. The (x, y) coordinate system used for

the layout in Figure 11.5 is now replaced with a polar ρ, α coordinate system,

hence the name radial . The advantage of the radial layout is that it always has a

one-to-one aspect ratio, since the entire picture always fits in a circle. Moreover,

more space is allocated, relatively speaking, to the deeper levels in the tree than

in the previous layout. This is visible if we compare the space allocated to the

leaves of the tests folder, drawn in red in Figures 11.5 and 11.6. In contrast,

there is less space allocated to the upper levels of the tree. This can create

problems when these nodes need more space to be drawn, as in the case of the

first level of our example, whose nodes have large icons and also display textual

annotations.

Bubble tree layout. Figure 11.7 shows a different layout that uses the idea of cir-

cular node placement. In contrast to the radial layout, where a subtree occupies

a pie sector of the entire layout, in this new layout a subtree always occupies

an entire circle centered at the subtree’s root. The entire layout can be seen

as a placement of circles inside other larger circles, hence this layout is known

root
level 2
level 3
others

Figure 11.7. Bubble-tree layout for the same file hierarchy as in Figure 11.5.
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as bubble, or balloon, layout [Boardman 00, Grivet et al. 04]. In contrast to

the rooted and radial layout, the bubble layout offers a better visual separation

of the subtrees. Additionally, this layout also keeps the tight aspect ratio of

the radial layout. A difference between the two previous layouts is that edges

have now considerably different lengths—subtrees with fewer children will have

shorter edges, since their bubbles will have smaller radii. This makes the visual

size of the subtrees reflect their number of children more strongly than for the

rooted and radial layouts.

Cone tree layout. A related tree layout to the bubble layout is the cone layout

(see Figure 11.8). Here, the nodes are arranged in three dimensions, rather than

two dimensions as in the three layouts discussed so far. Whereas a subtree was

laid out in a circle in the bubble layout, it is now laid out as a cone with the

subtree root placed at the apex [Robertson et al. 91]. The advantage of the

cone layout is that its 2D rendering may be more compact than other layouts,

when viewed from an optimal angle. Also, the visual separation of different

subtrees may be easier when interactively rotating the viewpoint around the

cone layout. Nevertheless, the cone layout inherits the typical problems of most

root
level 2
level 3
others

Figure 11.8. Cone-tree layout for the same file hierarchy as in Figure 11.5.
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3D visualizations of discrete entities: occlusion, the chance of “getting lost” in

the 3D space during interactive viewing, and the potential confusion created by

the foreshortening of the perspective projection.

In conclusion, node-link visualizations of trees are a powerful instrument

for getting insight into the structure and attributes of tree relational datasets.

Their main attractions are being simple and efficient to compute and familiar

and intuitive for the majority of users. The latter is an extremely important

advantage that one should exploit, and that several other infovis techniques for

visualizing abstract data do not have.

Treemaps. However intuitive, node-link visualizations of trees have a serious lim-

itation: they take a considerable amount of space. This becomes critical when

one wants to visualize trees that have tens of thousands of nodes or more. Al-

though it is technically possible to compute and render such a layout, it simply

takes too much screen or paper space to display it to be effective in practice.

Visualization practitioners often say that such layouts “waste” the white space

that resides between the node and edge glyphs. When the data amounts to be

visualized increase and the screen space stays constant, one often hears of screen

space as being a rendering “real estate,” which has to be used sparingly.

Treemaps are a different layout for tree structures that use virtually every

pixel of display space to convey information [Johnson and Shneiderman 91]. The

basic idea behind the treemap layout is simple: Every subtree is represented

by a rectangle that is partitioned into smaller rectangles which correspond to

its children. The basic treemap layout algorithm is straightforward. Given a

start rectangle that corresponds to the tree root, slice it into as many smaller

rectangles as its number of children by drawing lines along the shortest rectangle

edge (vertical or horizontal). The exact position of the slicing lines determines

the relative sizes of the child rectangles, which can be used to convey a scalar node

attribute. For every child, repeat the slicing recursively, swapping the slicing

direction from vertical to horizontal or conversely as we go one level deeper. The

complete result is a nested sequence of rectangles that depict the tree leaves.

This algorithm is known as slice-and-dice treemap layout [Shneiderman 92].

Intermediate (non-leaf) nodes are not shown explicitly in this layout. If one

wants to allocate screen space to these nodes, e.g., to show some attributes,

this can be done by making every child slightly smaller. This will create a

border between the child and its parent, which can be used to show parent

information by means of color or annotations and/or to select such parent nodes

by, e.g., mouse clicking. However, this solution can significantly decrease the

area available to draw leaf nodes for deep trees.
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Figure 11.9. Treemap layout for the same file hierarchy as in Figure 11.5. Colors
indicate file types; rectangle areas indicate file sizes.

Figure 11.9 shows a treemap visualization for the same file hierarchy as dis-

cussed in the previous section.5 Here, rectangle sizes map to file sizes, and

rectangle colors indicate file types. The rectangles have black borders in order

to allow the visual separation of same-color neighbors. This visualization is more

compact than the node-link visualizations shown in the previous section for the

same data. Also, the nesting of the rectangles carries the strong suggestion of

containment, which is exactly the type of relation we want to encode. However,

this visualization has two problems. First, the aspect ratios of the rectangles

can become quite far from unity. Thin, skinny rectangles are not good, as they

are hard to separate visually. More seriously, given the finite resolution of a

pixel display and the wide range of file sizes, some thin rectangles will have a

subpixel width or height, which will make them show up only as borders, i.e.,

appear fully black. This phenomenon is clearly visible in the large black rectan-

gle in the lower middle of Figure 11.9, which actually denotes a folder containing

subpixel-thin rectangles. The second problem is that the actual distribution of

5Figures 11.9 and 11.10 have been produced using the freely available file system visualiza-
tion tool SequoiaView [van Wijk 06]. Similar functionality is implemented by the open source
WinDirStat visualization tool [Schneider and Seifert 06].
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files, shown as rectangles in the visualization, within the folders is not easily

visible. Although we can sometimes guess where a folder border occurs by look-

ing at the vertical and horizontal black line pattern change, this is not easy. In

some cases, such as a file hierarchy where all leaves (files) are of equal size, the

treemap layout produces a uniform grid that makes detecting the actual folder

structure impossible.

Squarified treemaps. Both the aspect ratio and the nonleaf node visibility prob-

lems are addressed by a variant of the treemap layout shown in Figure 11.10.

Let us first consider the layout. The principle of partitioning the rectangle of

a subtree root into smaller rectangles corresponding to its children, sized to re-

flect the children sizes, stays the same. However, instead of using the simple

horizontal-vertical alternating slicing, we use now a more involved technique

that tries to create cells of near-unity aspect ratio. The implementation of this

technique, called squarified treemap layout , is described in detail by Bruls et

al. [Bruls et al. 00], and can be easily reimplemented by the interested reader.

In order to obtain good aspect ratios, the squarified layout trades the order of

the children rectangles, which now do not reflect the actual order of the children

in the tree. Moreover, if we change the aspect ratio of the rendering target, the

order of the rectangles in the squarified layout can change significantly. Several

other treemap layouts exist, such as ordered and quantum treemaps [Bederson

et al. 02] and cluster treemaps [Wattenberg 99], which offer several trade-offs

concerning the ordering of the leaf nodes, aspect ratios of the leaf rectangles,

and layout stability upon changing the target rendering area. Implementations

of these algorithms, as well as an educative history of the evolution and use

of treemaps, are available online [Shneiderman 06]. Further generalizations of

the treemap layout are presented in [Vliegen et al. 06, Telea 06, Baudel and

Broeksema 12].

Cushion treemaps. The second design element present in the tree visualization

shown in Figure 11.10 is the use of shading to reflect the hierarchical structure.

Since only the tree leaves are explicitly rendered, we shall use their surface to

show structural information on their position in the tree. Figure 11.10 shows a

set of convex “bumps.” Given their appearance, these bumps are called shaded

cushions in the literature [van Wijk and van de Wetering 99]. If we look care-

fully, we notice that these bumps occur at several levels: Each treemap rectangle,

which corresponds to a tree leaf, displays a small-scale bump. However, larger

bumps are also visible in the shading signal or, to be more precise, in the lumi-

nance discontinuities of the shading. For example, if we look at the upper-left
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Figure 11.10. Improved treemap visualization using squarified layout and shaded cush-
ion rendering.

corner of the image, we see that the purple small-scale cushions appear to be

grouped into two large cushions of roughly the same size. These large cushions

actually correspond to the nonleaf nodes of the tree. Using the shaded cushions,

several levels of the tree hierarchy can be displayed with no additional screen

space by borrowing from the screen space already allocated to show the leaf

nodes. To explicitly visualize non-leaf nodes, we can use interaction: For the

node n under the mouse cursor, we highlight the path from n to the tree root

by drawing outlines around its nodes. Using different outline colors, such as red,

orange, and yellow in Figure 11.10, allows easily assessing the depth of a leaf

node into the tree. Using additional interaction, e.g., the mouse wheel, allows

us to implement a simple mechanism to select non-leaf nodes along the high-

lighted path. In contrast to drawing borders for all nodes, this solution shows

parent information only on demand, but is more space-efficient, especially for

deep trees.

To understand the construction of the shaded cushions, consider the one-

dimensional treemap visualization in Figure 11.11(b), which displays the tree

shown in Figure 11.11(a). The tree, as well as its corresponding treemap, has
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Figure 11.11. (a) The tree structure is visualized with (b) a cushion treemap. The
actual cushion surface is indicated by the bold black line in (b). The same color is used
to indicate the same node in the node-link tree drawing, the treemap, and the cushion
profiles.

three levels, whose nodes are colored in hues of blue, green, and red from top to

bottom. For every treemap cell, whether it corresponds to a leaf or nonleaf node,

we construct a profile whose shape is a convex parabolic function that passes

through zero at the cell’s borders and reaches maximum at the cell’s center.

Following the model proposed by van Wijk and van de Wetering [van Wijk and

van de Wetering 99], the expression of the parabolic profile for a one-dimensional

cell C = [x1, x2] is given by

h(x) =
4k

x2 − x1
(x− x1)(x2 − x). (11.1)

Here, the parameter k determines the steepness of the parabolic profile, i.e., the

ratio between its height and its width x2 − x1. In Figure 11.11(b), the profiles

for each node of the considered tree are drawn with dotted lines.

After we have defined a cushion profile for each treemap cell, we sum up

all profiles and obtain a surface H(x), as indicated by the black bold profile in

Figure 11.11(b), which is the sum of the dotted profiles. The one-dimensional

equivalent of Figure 11.10 is obtained by rendering this surface illuminated from

a direction as indicated in Figure 11.11(b). If we now use increasingly flatter

cushions for deeper nodes in the tree, we obtain an image in which the magni-

tude of the illumination discontinuity, which is proportional to the depth of the

“valleys” between neighbor bumps, reflects the depth of the corresponding node

in the tree. To achieve this effect, we let the cushion shape parameter k decrease

with the depth d in the tree of the considered node, e.g., by setting k = fdK,

where f ∈ [0, 1] is a flattening factor andK ∈ [0, 1] the steepness of the top-level,

largest cushions.

The shaded cushion construction proceeds similarly for the two-dimensional

case. The cushion profiles are now parabolic surfaces instead of curves. The com-
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plete, easy-to-replicate implementation of the shaded cushion treemap method

is detailed by van Wijk and van de Wetering [van Wijk and van de Wetering 99].

The reader is encouraged to implement the algorithm following this reference.

Several considerations on the shaded cushion treemap visualization are of in-

terest. First, we outline again the high scalability of the method. On a computer

screen of n by n pixels, one can render a single-hue treemap with approximately

(n2 )
2 leaves. Here, we consider that a leaf cell needs at least 2 × 2 pixels to

visibly display the parabolic shaded profile, which needs to show illumination

variation in both directions. Rendering smaller treemap cells may be dangerous,

as large clusters of adjacent minimal-size cells may appear as single large cells

if the individual cell profiles are not visible. Yet, even with this restriction, the

shaded cushion treemap is easily capable of displaying trees with over a hundred

thousand leaves on a typical computer screen. Just as the table lens technique

discussed in Section 11.3, this visualization is also an instance of the dense pixel

display, or space-filling, method. An evaluation of several space-filling techniques

for displaying hierarchical structures is provided by Stasko et al. [Stasko et al. 00].

A second observation relates to the angle of the directional light source used.

If we set the light to be exactly shining from above, i.e., orthogonal to the treemap

supporting plane, the cushion surface get maximal illumination, which helps us

distinguish small-scale details. However, this also creates a symmetric and zero-

order continuous shading profile over all cells. This makes the identification

of the importance of the cell-separating edges harder, as the luminance signal

does not exhibit strong discontinuities. If the light vector is slightly tilted from

the vertical direction, some parts of the cushion surface will be completely in the

dark, whereas their neighboring cushions will have maximal illumination. Hence,

the luminance signal will exhibit zero-order discontinuities at those cell borders,

which makes them easier to grasp visually. However, a drawback is that detail

on the surface parts left in the dark will not be visible.

As already explained, hue can be combined with shading to show tree node

attributes together with the tree structure. However, care must be exercised

when modulating the cushion shading with hues. Dark hues, such as the blue

used in Figure 11.10 for the object files, decrease the luminance range that

is used to show structure, which can make small-scale details hard to discern.

This problem can be alleviated by using brighter hues. Specular lighting (see

Section 2.2) can also add supplementary visual contrast, at the expense of using

larger cushions in order to accommodate the size of the specular highlight.

From an implementation perspective, shaded cushions are similar to texture-

based visualization methods (see Section 6.6) in the sense that they do not

generate polygonal primitives that undergo a rendering step, but directly create
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Figure 11.12. The Map of the Market [SmartMoney 13] rendered using a treemap.

the final 2D image. The original implementation of shaded cushions [van Wijk

and van de Wetering 99] renders the cushion treemap in software by applying the

Phong lighting (see Equation (2.1)) at every pixel of the treemap image, using

an analytically computed normal from the summed profiles. This method works

well for treemap images of moderate size, but cannot render full-screen images

at interactive rates. When this is required, such as in applications where the

user needs to change various visualization parameters and quickly regenerate the

treemap rendering, pixel-shader techniques can be used to compute the shaded

cushions in graphics hardware.

We conclude our discussion on treemaps with a different example. Fig-

ure 11.12 shows a snapshot from the very successful Map of the Market tool

provided by SmartMoney [SmartMoney 13]. This image shows a treemap that

describes the evolution of a stock exchange over a period of one year. The

treemap has two levels: industry sectors and companies. The sizes of the leaf

rectangles (companies) represent the market capitalization, i.e., the stock price

times the number of outstanding shares. The colors show the stock price vari-
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ation over a period of one year, as indicated by the colormap below the image.

Gray rectangles indicate companies for which no data was available. Finally, an

“N” glyph indicates companies for which news of financial interest are available.

Strong market movers can be easily found by looking for large bright green or

bright red rectangles.

In contrast to the file system visualization discussed previously, the Map of

the Market treemap uses a layout with similar properties to the squarified layout

[Wattenberg 99], but no shaded cushions to convey hierarchy. Instead, borders

are drawn to visually segregate the nodes, where the border width conveys the

node level. These design choices are backed up by the fact that there are only

two levels in the hierarchy, the full set of leaf nodes (companies) does not exceed

a few hundred, and the entire visualization is supposed to run as a lightweight

Java plug-in in a web browser. Several interaction mechanisms are provided to

allow users to search for companies of interest, display annotations, and control

the color mapping and selection of displayed data, all of which deliver a simple

but effective instrument for visually analyzing the stock market.

11.4.2 Graph Visualization

Graphs are the most general type of relational data. Formally, a graph G =

(N,E) is defined as a set of nodes N = {ni} and a set of edges E = {ei}, where
every edge ei = (nj , nk) is a pair of nodes nj ∈ N and nk ∈ N . In contrast

to trees, graphs can contain loops. Similar to trees, the node pair of an edge

in a graph can be ordered or not. Graphs that contain ordered edges are called

directed, whereas graphs where the edge node pairs are unordered are called

undirected. An important notion in graph theory is the number of connected

components a graph has. Informally, a connected component is defined as a

set of nodes and corresponding edges such that any two nodes in the set are

connected by a path.

Depending on the type and size of graph, different visualization methods

are most applicable. In the following, we overview some of the most popular

methods for visualizing graphs.

Hierarchical graph visualization. The first class of methods for graph visualiza-

tion is quite similar to the node-link visualizations of trees discussed in Sec-

tion 11.4.1. The main structure of the algorithm is the same. First, a layout is

computed for the given graph, subject to the same type of constraints described

for trees. Second, the laid-out graph is drawn using appropriate glyphs for nodes

and edges, which can optionally encode additional data attributes.
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The graph layout discussed in this section can be seen as a generalization

of the rooted-tree layout illustrated in Figure 11.5. The similarity resides in

the fact that both layouts exploit the notion of hierarchy. While for a tree this

notion is inherent, the situation is different for graphs. However, there exist

graphs that are naturally structured in a hierarchical manner by means of their

actual semantics. For these graphs, the nodes are grouped into layers, identified

by integers, such that the directed graph edges always point from a node in a

lower layer to a node in a higher layer. Essentially, such graphs are identical

to trees but allow nodes with several parents and several root nodes, which are

the nodes in the lowest layer. An example of such a hierarchical graph is a class

inheritance diagram in object-oriented software. Whereas some languages, such

as Java, admit only a single inheritance, in which case the inheritance diagram

is a tree, there exist languages such as C++ that allow a class to have multiple

parents, also called base classes. The inheritance diagram is, in this case, a

hierarchical graph.

Such hierarchical graphs can be laid out by a two-step algorithm [Sugiyama

et al. 81]. In a nutshell, the algorithm works as follows. First, the nodes are

assigned y-coordinates that are proportional to their layer numbers. This places

nodes in the same layer at the same height (y-coordinate). Next, the nodes in

each layer, from the root layer onward, are permuted to minimize the number of

edge intersections, also called edge crossings , between layers. Since the crossing

minimization problem is computationally expensive, several heuristics are used in

practice to obtain a good result with a limited number of permutations [Gansner

et al. 93].

Clearly, not all graphs have an intrinsic hierarchical semantics as described

here. Still, the hierarchical graph layout algorithm described here can be used

with any graph, as long as we are able to assign meaningful hierarchy layers to its

nodes. Different methods can be applied when assigning layers to nodes, which

creates different hierarchies with corresponding layout properties. Examples

are the maximal layer width method, which computes a hierarchy whose layers

are guaranteed to have a maximal number of nodes [Coffman and Graham 72]

and hence guarantees a bounded layout width; the longest path ranking, which

uses a minimal number of layers and hence guarantees a minimal layout height

[AGD 06]; and the depth-first search method, which computes a hierarchy from a

user-supplied set of root nodes. Such methods are beyond the scope of this book,

so we refer the interested reader to the specialized literature [Di Battista et al. 99,

Sugiyama et al. 81, Gansner et al. 93, AGD 06]. However, we should stress that,

even though we can associate layer information with any graph and thereby use

a hierarchical layout to visualize it, the resulting images may not be insightful
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or may even be misleading. Indeed, a hierarchical layout strongly conveys the

sense of layering, which should reflect some application semantics. For graphs

where such a layering is not natural, other layout methods may perform better

(see Section 11.4.2).

An important difference between trees and hierarchical graphs from the lay-

out perspective is that, for the latter, edges can connect nodes situated on non-

consecutive layers. In this case, it is impractical to draw edges as straight lines,

as we did for trees, since this would create too many edge crossings. A better

solution is to draw edges using smooth curves such as splines. This can be done

as follows. For each edge e = (m,n) that connects nodes situated on noncon-

secutive layers Li and Lj , one dummy node is inserted on each layer situated

between Li and Lj, and replaces the original edge with a set of edges (path)

connecting the nodes m and n via the intermediate dummy nodes. Next, the

edge crossings, between consecutive layers only, are minimized, as these are the

only edges we have now. Finally, a spline or another smooth curve is constructed

from node m to node n via the in-between dummy nodes. This curve is used as

an edge glyph to map the original edge e. The dummy nodes are now discarded,

and not visualized, as they were only used for construction of the splines.

Figure 11.13 shows a first example of the hierarchical graph layout. The

depicted graph illustrates the evolution of the UNIX operating system.6 The

vertical axis roughly indicates the timeline, with the early versions of UNIX de-

picted at the top and the most-recent versions at the bottom, respectively. The

edge directions indicate the same evolution pattern. The twelve horizontal layers

roughly correspond to the number of evolution steps, or phases, that the origi-

nal “5th Edition” UNIX has evolved through. This picture, generated from the

directed graph description using the dot tool from the open-source GraphViz

graph-drawing software [GraphViz 14], gives intuitive insight into how the 47

versions of the UNIX system are related to each other from an evolution per-

spective. From a single initial version, no less than seven versions have emerged

after two evolution steps. We see, however, that the version proliferation stays

contained, as only four versions (FreeBSD, NetBSD, OpenBSD, and System V.4)

are present on the latest evolution layer. We also notice how splines are used to

map edges that connect nodes on nonconsecutive layers.

Figure 11.14 shows a more complex example. In the following, we describe

this example and a possible investigation scenario based on this visualization.

The nodes depict the functions of a C program that consists of two subsystems:

a main program and an application library. The edge directions run from top to

6The UNIX evolution data is part of the GraphViz graph visualization software
[GraphViz 14].
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Figure 11.13. The evolution of the UNIX operating system, displayed as a hierarchical
graph.

bottom and indicate relations between a caller function (top) and called function

(bottom). Such graphs are known as call graphs in software engineering and are

a useful tool for understanding the structure of large software source code bases.

Let us examine this picture in more detail. The program entry point, i.e., the

main() function, is colored in cyan, and is placed at the top, since it is the

unique root node for this call graph. One fact that we see right away is the

two-layer structure of the program: The functions are clearly separated into

those contained in the main program and those that are part of the application

library. Note that this visual separation was not constructed on purpose by

the hierarchical layout. The layout actually shows that there is, indeed, a clear

separation of the software into a main subsystem and a library subsystem. This

is a fact that we discover about our software using the call graph visualization.

To gain further insight into which library functions the main program actually

uses, and who calls them, we colored the call edges that run between nodes in

the two subsystems in red. We see now that there are just six functions in the
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Figure 11.14. The call graph of a program visualized using a hierarchical graph layout.
Note the separation between the main program and library subsystem.
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main subsystem that call the library. This is a second indication of good design.

If we wanted to replace or drop the library, we would only need to modify these

five functions.

We can learn more facts about the software by encoding additional attributes

in the graph visualization. For instance, we color in blue the functions that

perform text-based output operations, such as displaying text on the screen. We

find two such functions in the main subsystem and five in the library (shown

at the bottom of the graph). Three of these last five functions are heavily used

by the library itself, as shown by the numerous black edges pointing to the

respective nodes, and also by the main subsystem, as shown by the red edges

running from the main subsystem to those nodes. Upon closer inspection of the

source code, we find that these blue nodes correspond to text-printing functions,

which are heavily used by the library for displaying warning and error messages.

By following the edges back from the blue nodes to their callers, we can discover

which parts of our library generate such messages, if desired. Finally, we color

the nodes that contain edges pointing to themselves in purple. There is one

single such node in the library subsystem, which indicates a recursive function.

However useful, Figure 11.14 also shows a limitation of the hierarchical graph

layout. The edges, although carefully laid out using spline curves to minimize

crossings, are still quite tangled and hard to tell apart from each other. In gen-

eral, although the hierarchical graph layout described here is technically scalable

to large graphs, the produced visualizations can easily become hard to read when

they contain more than several hundreds of edges. Addressing this problem in

general is quite difficult. In practice, two classes of approaches exist. First, one

can modify the graph to eliminate edges that are of little interest for the problem

at hand, or group related edges together, until a reduced edge count is reached

that can be satisfactorily handled by the available layout. This solution implies,

however, that we know beforehand how to simplify our graph without losing

important information.

Orthogonal layouts. A different type of variation of the hierarchical graph layout

is shown in Figure 11.15.7 The graph shown in this figure depicts the structure

of a software system. Nodes represent software components, which are in this

case modules (drawn in yellow) and functions (drawn in blue). The graph has

two types of relations, or edges. Containment edges describe the nesting of

subcomponents in parent components. Dependency edges describe functional

dependencies between communicating components. Nodes are drawn as rect-

angular glyphs. The containment relation is shown by drawing the contained

7This figure has been generated using the aiSee software visualization tool [AbsInt 07].
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Figure 11.15. Containment and dependency relations in a software system, visualized
using a hierarchical graph layout with orthogonal edge routing.

subcomponent glyphs inside the container (parent) component glyph. The de-

pendency relation is shown by drawing the graph edges connecting the related

components explicitly. Small dots drawn at the end of edges indicate the edge

direction (much like an arrow, but taking less space) from a dependent compo-

nent to the component(s) this depends on. The main organization of the layout

follows the hierarchical layered principle used in Figures 11.13 and 11.14. The

layout strives to put dependent nodes at the top of the nodes they depend on.

Yet, there are two main differences as compared to Figure 11.14. In contrast to

the straight lines and splines used so far, this layout uses an orthogonal routing

of the dependency edges. This creates patterns that are arguably easier to follow

and visually more pleasant too. A second element is the use of different levels of

detail throughout the layout. The middle row of modules has been expanded to

show detail on the contained function nodes, drawn in blue. All other component

nodes are drawn without showing containment details. In the actual aiSee vi-

sualization tool used to generate this image, users can interactively select which

nodes they want to get details on by clicking their glyphs, whereby the layout is

recomputed to expand the respective nodes.

Hierarchical edge bundling. A different method to reduce visual complexity

when displaying large hierarchical graphs is to visually group, or bundle, edges

that are visually close to each other, thereby reducing the visual clutter without

throwing away information explicitly. Let us illustrate this method for the same
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Figure 11.16. The call graphs of two programs visualized together with the programs’
hierarchical layering. The layout used suggests that the left system is more modular
than the right system.

problem of understanding complex call graphs. As shown in Figure 11.14, it is

useful to visualize the relation in a software system of the function calls to the

system layering. The layering describes how source code elements are contained

within each other in a hierarchical fashion. A typical layering in object-oriented

systems has three levels: methods (functions), classes, and files. We would like

to extend the visualization from Figure 11.14 to show call relations between all

layers.

We have now a graph with three types of nodes, i.e., methods, classes, and

files, and two types of relations, i.e., call and containment. The proposed method,

described by Holten [Holten 06], works as illustrated in Figure 11.16. First, we

lay out all the graph nodes in three concentric rings. The inner ring shows

the functions, the middle ring the classes, and the outer ring the files. Every

node is shown as a ring sector. The relative positioning of the sectors along

the three rings indicates containment. For example, in the lower-left area of

Figure 11.16(a), the green-colored methods are all contained in a single light

blue-colored class, which is in turn contained in the yellow-colored file. This

node layout is called an icicle plot [Kruskal and Landwehr 83].

After the nodes are laid out, the layout of the call relations proceeds. Every

call edge is laid out using a spline curve whose start and end points are the caller
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and called nodes on the inner ring. The spline’s control points are constructed

using a radial tree layout (not shown in Figure 11.16) of the method, class, and

file nodes and the containment relations. The net effect of this method is that

edges emerging from methods in the same class and which go to methods in

another class are “bundled” together as they get farther from the circular sector

corresponding to that class. The same bundling occurs at a higher level when call

edges connect methods in two different files. Finally, the edges are drawn using

a two-color scheme interpolated along the edge, where one color stands for caller

and the other for called methods, respectively. For example, in Figure 11.16(a),

blue indicates caller and red called methods. We encourage the reader to study

the layout’s design details from Holten [Holten 06] and implement this method

as an exercise. A ready-to-use implementation of the hierarchical edge bundling

(HEB) layout is also available in the Visualization Toolkit class library [Schroeder

et al. 06].

The visualization shown in Figure 11.16 allows us to discover several aspects

about the structure of a software system. The first system (Figure 11.16(a)) has

five files, which roughly correspond to different subsystems. If we look at the

central area, we can easily identify four main call bundles between these files.

These correspond to “strong” interactions between the respective subsystems.

Consider, for example, the tight bundle going from the yellow subsystem (lower

left) to the orange one (upper right). This bundle indicates that the yellow

subsystem calls the orange one. To be more precise, most methods in the yellow

subsystem call the purple class in the orange subsystem. In contrast, the large,

dark green subsystem (lower right) exhibits many calls to itself, as indicated by

the localized curved edges. Finally, both the yellow file and the large (uncolored)

file in the upper-left part of the image have mostly blue edges, which indicates

that these are calling subsystems, which probably contain application logic rather

than library code. The orange subsystem is connected with the rest via red edges

only, which suggest this is called (library) code. If we examine its label, we find,

indeed, the name “Libraries/Database.”

The second system visualized with the HEB technique (Figure 11.16(b)) tells

a quite different story. The system has a comparable hierarchy of methods,

classes, and files, of roughly the same size as the first system. However, we see

far less clearly delimited call bundles. This suggests that the software system has

a considerably less modular structure, or what in software development parlance

is called “spaghetti code.”8 A different edge coloring scheme is used here: blue

denotes virtual function calls and green normal (statically resolved) function

8The visual metaphor strongly suggests the spaghetti code denomination.
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calls, respectively. The edge direction is encoded by luminance: bright denotes

caller, and dark called. Although the call structure is quite complex, we see that

there are considerably fewer virtual method calls (blue curves) than ordinary

calls (green). Also, we notice a high concentration of virtual calls going to

the orange-colored class. This suggests an interface class that is heavily used

throughout the system.

Image-based edge bundling. However useful in showing relations between entire

groups of nodes, hierarchical edge bundles can be challenging to interpret for

large graphs. Consider the example in Figure 11.17(a). The hierarchy shows

the structure of a software system written in the C# programming language

(assemblies, classes, methods, and fields), using color mapping of the icicle plot

nodes. The graph contains three types of edges: calls (method m1 calls method

m2), field uses (methodm uses data field f), and type uses (field f is of class type

c). From Figure 11.17(a), we immediately see that subsystem A is connected to

subsystemB by a thick bundle, indicated by the arrow in the image, that contains

a mix of type-use and call relations. However, the tight edge bundling that makes

this insight possible also prevents refining our finding to finer-grained levels. For

instance, we cannot see which parts of A are related to which parts of B. In other

words, we cannot explain the bundle A − B on a finer level. Interactive edge

brushing and selection can solve this problem, but at the expense of additional

user efforts.

To address this problem, simplified edge bundle visualizations can be used.

Figure 11.17(b) shows such a visualization. In here, edges that are of the same

type and are also close to each other are rendered as single thick, shaded, tubes.

We now immediately see that the red (type uses) edges in the A−B bundle are

made of one blue bundle connecting the left part A1 of subsystem A to the left

part B1 of subsystem B, and one red bundle connecting the right parts A2 and

B2 of the same subsystems. Thus, the “uses type” dependency A − B can be

split into two relation groups that connect disjoint node groups. This insight is

useful, for instance, if we want to refactor subsystems A and B by splitting them

into smaller components.

The simplified bundle visualization in Figure 11.17(b) can be easily pro-

duced by using an image-based approach [Telea and Ersoy 10]. Given a graph

G = (V,E), we first group, or cluster, its edges based on their so-called edge

compatibility. Edge compatibility comp : E × E → R
+ can be computed as

a mix of several parameters, including positions of the edges’ end nodes, sim-

ilarity in direction, and similarity in attributes. In our case, thus, compatible

edges reside in the same bundle and have the same edge type. Based on comp,
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Figure 11.17. Call-and-dependency graph of a software system (a). Simplified image-
based edge bundle visualization of the same graph (b).

we next hierarchically cluster edges using the bottom-up agglomerative method

presented earlier for vector field decomposition (Section 6.7.3). For each emerg-

ing cluster, we next compute the distance transform DT : R2 → R+ of its edges

(Section 9.4.5). Thresholding DT at a small value ε > 0 delivers hulls H that

surround all edges in a cluster at a distance of ε pixels. Alternatively, H could

be computed by using the alpha shapes method described in Section 8.3.2, with

a dense point sampling of the edges as input. Finally, we shade each hull with a

luminance profile that is dark at the border and bright in the center. To obtain

such a profile, we compute the skeleton S of H and next set the luminance I(x)

of a pixel x ∈ H to

I(x) =

[
1

2

(
min

(
DT∂H(x)

DTS(x)
, 1

)
+max

(
1− DTS(x)

DT∂H(x)
, 0

))]k
(11.2)

Here, DT∂H is the distance transform of the boundary of the hull H, and DTS is

the distance transform of the hull skeleton S. Equation 11.2 has the particular

property that it can generate a C2 signal that is zero on a given curve (∂H)

and one on another curve (S) contained inside the first curve, regardless of the

shapes, relative positions, and sizes of the two curves. The value k controls the

smoothness of the shading profile. Values k � 0.5 create effects that resemble

shaded tubes. As a side note, let us remark that Equation 11.2 is a generalization
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of the shaded cushions presented earlier in Section 11.4.1 from rectangular shapes

to arbitrary (convex or concave) contours. As such, this technique can be directly

used to create shaded cushions for any types of closed 2D contours. We will use

such cushions later to visualize Venn-Euler diagrams in Section 11.4.3.

The simplified bundle visualization presented above works, just as the image-

based flow visualization (IBFV) method presented earlier in Section 6.6.1 and the

graph splatting method presented later in this chapter (Section 11.4.2), purely

in image space. As such, it can be efficiently and easily implemented using

accelerated GPU techniques to deliver simplified bundle visualizations of large

graphs at interactive frame rates. We also note that this technique can be used

for any type of bundled graph (hierarchical or not), as it only requires as input a

set of 2D curves representing the locations of the bundled graph edges. We shall

next see, in Section 11.4.2, how the ingredients of this method can be used also

for the efficient and simple construction of bundled graph layouts themselves.

Force-directed layouts. In the previous sections, we have shown how to construct

layouts for relational data that form a hierarchical structure, such as trees and

hierarchical graphs. However, as already noted in Section 11.4.2, in many appli-

cations one is confronted with the problem of visualizing a general graph that

does not form a natural hierarchy. For such graphs, a different class of layouts

may produce better results. These layouts, known as force-directed layouts or

spring embedders, are described in this section.

The main idea behind force-directed layouts can be formulated in terms of

an optimization problem, as follows. Given a graph G = (N,E), we define a

so-called energy function E that measures the quality of a layout of G in terms

of a positive number. The lower the energy value is, the higher the quality of

the layout. The energy function E should be designed to measure the various

quality parameters we are interested in. On the other hand, the energy function

should depend on the controllable parameters of our layout, such as node and

edge shapes and positions. Once we have an appropriate energy function, we

minimize it using some optimization algorithm. The resulting parameters are

our desired layout.

This generic framework can be particularized in several ways. Several deci-

sions are to be made, including the following:

1. how we measure the quality of a layout;

2. what elements of the layout we parameterize;

3. how we efficiently and effectively minimize the energy function.
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These decisions are interrelated in several ways. We should only measure

those layout quality attributes that can be influenced by the parameterized lay-

out elements. As described in Section 11.4.2, a good layout has few edge crossings

and edge bends, few node overlaps, favors short edges, and has a balanced aspect

ratio. More subtle, and thus harder to measure and constrain, quality consid-

erations are that the layout should reflect the graph symmetry and structure.

Finally, although we may be able to design an energy function that measures

all our quality attributes, finding the parameter values for which this function is

minimal can be very costly and difficult.

To illustrate the preceding technique, we shall use a simple energy function

that, nevertheless, is able in practice to produce good graph layouts [Fruchterman

and Reingold 91]. This energy function attempts to enforce two quality criteria:

• connected graph nodes should be close;

• no two different nodes should be too close.

A simple way to describe an energy function that models these quality criteria

is to use a physical analogy. Imagine that every node in the graph is a charged

electric particle and every edge is an elastic spring. Hence, nodes connected by

edges will exert an attraction force upon each other. This models the quality

constraint that edges should be short. Additionally, all nodes will exert a re-

pelling force on each other, regardless of whether they are connected or not. This

models the second quality criterion that nodes should not overlap.

We now have to choose explicit expressions for the attractive and repulsive

forces. Many choices are possible, some based on physical motivations, and some

others following heuristics that yield good results in practice. A popular model

for obtaining good quality layouts is to use the following forces:

Fa(ni, nj) =
‖pi−pj‖

k
(pj − pi),

Fr(ni, nj) = − k2

‖pi−pj‖2 (pj − pi),
(11.3)

where Fa is the attraction force and Fr is the repulsion force between two graph

nodes ni and nj , pi and pj are the positions of these nodes, and k is a constant.

Following Fruchterman and Reingold, we set k to
√
A

N
, where A is the area in

which we want to do the layout, and N is the number of graph nodes [Fruchter-

man and Reingold 91].

Another model for the forces is as follows [Eades 84]:

Fa(ni, nj) = k log ‖pi − pj‖ pj−pi

‖pj−pi‖ ,
Fr(ni, nj) = − k

‖pi−pj‖3 (pj − pi).
(11.4)
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Yet a different way to model the forces acting upon nodes is to first define an

energy model [Kamada and Kawai 89]:

E =
1

2

N−1∑
i=1

N∑
j=i+1

(
‖pi − pj‖ − dij

dij

)2

(11.5)

where dij is the length (measured as number of edges) of the shortest path in

the graph connecting ni and nj .
9 Computing all dij values can be done using

the Floyd-Warshall algorithm [Cormen et al. 01]. Essentially, this energy model

states that a good layout, corresponding to a minimal energy E , has the geometric

distances between connected nodes proportional to the distances in the graph.

We know, from classical mechanics, that the force is equal to the gradient of the

potential energy, F = −∇E . Forces equal to the energy gradient −∇E can be

computed in order to minimize the energy E , by iteratively moving the nodes

in the force directions until E does not decrease any longer. For details on this

minimization, we refer to [Kamada and Kawai 89].

In all the previous models, the attraction forces (or corresponding energy

terms) between node pairs can be multiplied with an edge weight factor, which

models the strength of the respective relation. This is useful if some relations

are to be visually emphasized more than others. In the elastic spring metaphor,

this is equivalent to using springs of different stiffnesses.

Given a force model, we can minimize the energy by moving each node in the

direction of the resultant force acting on it, i.e., in the direction that decreases

the energy the most. This direction coincides with the sum of the attraction

forces corresponding to all edges connected to that node and the repulsive force

between that node and all other nodes in the graph. The pseudocode of the

complete force-directed layout algorithm is given in Listing 11.1. The algorithm

receives as input a graph with N nodes and E edges, each edge edge connecting

two nodes denoted edge.first and edge.second. The output of the algorithm is

the set of N node positions pi.

The force-directed layout algorithm has three phases. First, we compute

the repulsive force Fr for every node, following either of the models given by

Equations (11.3) or (11.4). Next, we add the attractive forces Fa along each

edge. Finally, we move the node positions pi using the resulting forces fi. We

limit the maximal move of any node to a given constant δ, set to a small fraction

of the size of the drawing space the layout should fit in. This restricts extreme

moves, caused, e.g., by high repulsive forces between nodes which are placed very

close to each other, and thus makes the layout process more stable.

9We assume here that all nodes in the graph form a single connected component.
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f o r ( i n t i =0; i<N; i++) // In i t i a l i ze layout
pi = random po s i t i o n ;

f l o a t t = t0 ; // In i t i a l maximal allowed move

f o r ( i n t i =1; i<ITER; i++) //Do the layout
{

f o r ( i n t i =0; i<N; i++) //Compute repulsive forces Fr

{
fi = 0 ;
f o r ( i n t j =0; j<N; j++)

i f ( j != i )
fi +=Fr ( i , j ) ;

}

f o r ( i n t edge=0; edge<E; edge++) //Compute attractive forces Fa

{
i n t i = edge . f i r s t ; //Get f i r s t node of edge
i n t j = edge . second ; //Get second node of edge
ff −= Fa( i , j ) ;
fe += Fa( i , j ) ;

}

f o r ( i n t i =0; i<N; i++) //Move the nodes by applying forces
{

pi+ = fi
‖fi‖min (δ, t‖fi‖) ;

}

t −= tΔt ; //Reduce maximal allowed move t
}

Listing 11.1. Force-directed graph layout algorithm.

After each complete position-update iteration, we decrease the maximal

amount t that any node is allowed to move by a factor Δt. The parameter t

is sometimes referred to as the temperature of the layout algorithm, since its

decrease determines a reduction of the nodes’ motion, which is analogous to the

temperature-controlled Brownian motion of small-scale particles in physics. A

good starting value t0 for t is a small fraction, e.g., one-tenth of the size of the

drawing space the layout should fit in. A good decrease factor for t is a small

fraction Δt of the current move, e.g., one-tenth of it. These heuristics gradually

limit the motion of the nodes, which in turn favors the convergence of the lay-

out. The entire node-moving process is repeated ITER iterations, after which the

forces should be small and, hence, energy E should be close to its minimum. In

practice, tens up to hundreds of iterations should deliver good results for most

graphs [GraphViz 14].
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Figure 11.18. Call graph of a C++ program visualized using a force-directed layout.
The node colors indicate the function types. The graph contains 314 nodes (functions)
and 718 edges (calls).

Figure 11.18 shows a call graph of a C++ program of approximately 1000 lines

of code, visualized using a force-directed layout.10 The graph nodes, depicting

functions, are drawn using spherical glyphs colored to indicate the function type,

in a manner similar to Figure 11.14. Warm colors show methods of the five

core application classes; green indicates methods of string handling classes; blue

indicates methods of Standard Template Library (STL) container classes, e.g.,

trees, maps, and sets [Plaugher et al. 00]; and white indicates other functions,

such as those from the standard C library. The program entry point (main()

function) is shown by a slightly larger cyan spherical glyph. The edges are drawn

using Gouraud-shaded lines, similar to Figure 11.5, from dark (caller) to white

(called).

Several aspects are visible in this image. Arguably the most salient elements

we see are the three similar-color node clusters corresponding to the core func-

tions (warm colors), containers (blue), and string functions (green). These indi-

10The layout is computed by the neato program, which is part of the freely available
GraphViz software [GraphViz 14].
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cate, in a rough way, a system decomposition into groups of functions strongly

related to each other, by means of calls. A way to interpret the layout is that

the system core uses string functions, which, in turn, use container functions.

However, the core does not directly use container functions, as there is no edge

between the warm-color cluster and the blue cluster. A fourth cluster containing

gray nodes is visible in the left of the image. Since this cluster is connected with

the rest of the system via a single green (string function) node, marked A in

Figure 11.18, it is probable that functions in this cluster contain implementation

features for the function A. The main function is, not surprisingly, laid out close

to the center of the core subsystem. This indicates that this function calls, hence

strongly depends on, many other core functions. Finally, edges that have the

same node as end points, such as the one marked E in Figure 11.18, need to be

drawn in a special way, since they do not connect two different spatial locations.

This is typically done by drawing such edges as small loops starting and ending

at their node.

Using this visualization, we can quickly isolate the system core from the

remaining functions to analyze it in further detail, e.g., by selecting the respective

nodes and zooming on them in a separate view.

However useful, this visualization also outlines some of the limitations of

force-directed layouts. The force-directed layout attempts to realize several aes-

thetic criteria, such as a distance between nodes that reflects their connectivity,

by numerically minimizing an energy function. The force-directed algorithm,

based on the pseudocode in Listing 11.1, cannot guarantee that it always finds

the global minimum of the energy function, since it works by seeking the steepest

energy decrease at every step. The algorithm may stop at a local energy mini-

mum that is far from the global one. Several heuristics are used in practice to

solve this problem and also to accelerate the minimization process. A good ex-

ample of such heuristics is given by the graph embedder algorithm (GEM) [Frick

et al. 94]. GEM adds a supplementary force that pulls the nodes toward their

barycenter, thereby accelerating the layout convergence. A second addition is a

set of heuristics that detect whether the minimization oscillates or rotates parts

of the graph, which indicates a potential blocking in a local minimum. To escape

such situations, random shakes of the graph nodes are added. Such heuristics

help the energy-minimization process, but have the drawback that they intro-

duce nondeterminism in the layout: Introducing a small change in a graph, or

even running the same layout algorithm on the same graph, may lead to different

visualizations.

From a computational viewpoint, force-directed layouts are more computa-

tionally demanding than the hierarchical layouts discussed in Section 11.4.2. In
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practice, many force-directed algorithms will not produce good layouts for dense

graphs with more than a few thousands edges, or will take minutes or even longer

to compute such layouts. Multiscale layout methods address this problem up to

a certain extent by first laying out a simplified graph and then using this layout

as a skeleton to construct the layout of the entire graph [Harel and Koren 00,

Koren et al. 03]. Such methods can deliver a tremendous speed-up of the layout,

but their quality is highly dependent on the heuristics used to simplify the graph,

as well as on how the actual graph structure fits those heuristics. As explained

in Section 11.2.4, relational attributes do not allow interpolation. Hence, one

must find a different way to simplify, or subsample, a graph than, for example,

a signal sampled on a spatial grid.

Speaking of the layout quality, one must note that even if a global minimum of

the used energy function is found, this does not guarantee an easy-to-understand

visualization. A typical problem with force-directed layouts is clusters of highly

interconnected nodes, such as the ones discussed for Figure 11.18. The force-

directed layout is able to separate the clusters themselves, but does not offer

a clear picture of how the nodes within a cluster are connected. As a rule of

thumb, a good layout algorithm will most often produce a visually structured

layout if the concerned graph does indeed have a clear structure, but will have

a limited effectiveness on laying out densely connected graphs.

How do force-directed layouts compare to hierarchical edge bundle layouts

(Section 11.4.2), for the same graph? Figure 11.19 illustrates this by compar-

ing an edge bundling layout, computed using the SolidSX visualization tool,

with a force-directed layout for the same graph, computed using the Tulip vi-

sualization tool [Auber 07]. Images (a,b) show the call graph of the libgklayout

plug-in of the well-known Mozilla Firefox browser (11817 function nodes, 21167

call edges), within static call edges colored red and virtual calls colored cyan re-

(a) (b) (c) (d)

Figure 11.19. Call graphs of Firefox plug-ins: libgklayout (a,b) and libembed (c,d)
visualized using edge bundling (a,c) and force-directed layouts (b,d).
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Figure 11.20. Inheritance relations in the VTK class library visualized using the GEM
force-directed layout. Specialization subtrees are indicated by blue outlines and labeled
by the respective subtree root class.

spectively. For this graph size, the node-link layout (Figure 11.19(b)) is clearly

not able to disentangle the calls and produce a readable image. In contrast, the

edge bundling layout (Figure 11.19(a)) is reasonably easy to read, due to edge

bundling and edge aggregation. For example, we see that almost all virtual calls

are directed at a few functions in a single file, nsCOMPtr.h, outlined in black in

the upper-left of the image. The virtual calls are only visible as a blue spot in the

node-link layout. Images (c,d) compare the two layouts for the much smaller call

graph of the libembed Mozilla plug-in (677 function nodes, 936 call edges). At

this scale, both layouts perform comparatively well. For instance, we can see in

both images that this plug-in contains only a single virtual function (marked by

a circle and arrow in the images), called seven times (seven cyan edges connect

to this node).

What if we use a force-directed algorithm to lay out a highly structured graph,

such as a tree? Figure 11.20 shows the tree of inheritance relations in the Com-

mon subsystem of the popular Visualization Toolkit (VTK) library [Schroeder

et al. 06]. VTK is a class library written in C++ using single inheritance al-
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most exclusively, hence the inheritance relations between its classes form a tree

structure. The force-directed layout shown in Figure 11.20, produced with the

freely available GEM force-directed layout software [GEM 07], is strikingly sim-

ilar to radial layouts such as the one in Figure 11.6. There is less regularity in

the force-directed layout of a tree, e.g., nodes the same distance from the root

are not exactly placed on a circle centered at the root, as in the case of the

radial layout. Nevertheless, the resulting image is clear and easy to comprehend.

We immediately locate, at the image center, the class vtkObject, which is the

hierarchy root. Next, we discover that vtkObject is specialized into several

subhierarchies, labeled in the figure by the names of the respective specialized

classes (vtkDataSet, vtkCell, and so on). These classes are actually interfaces

that get implemented deeper in their corresponding trees. We also see that the

distance from the center to the layout periphery does not change significantly

for the various leaves, which is a sign of a well-designed, mature class hierarchy.

Finally, the fan-out, or size of each subtree, indicates the number of special-

ized classes. For instance, we see that the vtkCell class has a high number of

specializations.

Multiple views. Let us reconsider the problem of visualizing the dependency re-

lations in a hierarchical (software) system. We saw in Section 11.4.2 how to

achieve this using a hierarchical graph layout with nested node glyphs for the

containment relations and orthogonal edge routing for the dependency relations,

as well as using a radial layout for the hierarchy and bundled splines for the de-

pendency relations. We can achieve a similar insight using force-directed layouts,

too. Figure 11.21 demonstrates the method. In contrast to the previous visual-

izations, we have now three different views, depicted by the three corresponding

subwindows.

The bottom view shows the hierarchical structure of a software system using

a rooted-tree layout. For this system, we want to visualize the call relations

between several subsystems. In this example, the user has selected, by means of

direct mouse interaction, two subtrees in the bottom view, which correspond to

two subsystems. The selected subtrees are rendered in red. For this selection, the

top-left view displays the call and hierarchy relations. For every node (system),

its contents (subsystems) are laid out using a force-directed layout in a bottom-up

manner, i.e., from the leaf nodes upward, considering the call relations between

the respective subsystems. The size of a node is set to the bounding-box of its

children’s layout. Leaf nodes that have no dependency relations are laid out

separately in a tightly packed grid-like pattern, to save space. The call relations

are rendered as in Figure 11.18, i.e., using lines connecting the respective nodes.
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Containment view

Full call view Simplified
call view

Figure 11.21. Hierarchical and call relations in a software system visualized with a
combination of tree and force-directed layouts. The bottom view shows the entire
system hierarchy, where two subsystems of interest have been selected (rendered in
red). The top-left view shows the call and hierarchy relations in the selected subsystems
using a force-directed layout. The top-right view shows a simplified view of the latter,
where several call relations have been filtered out. The arrows between the images
show the order of creating and examining the visualizations.

Whereas Figure 11.16 showed containment by means of correlated concentric

rings, we now show the same by means of the nesting of the nodes. This layout

is quite similar to the one depicted in Figure 11.15, with two main differences.

Whereas the layout in Figure 11.15 uses a hierarchical node arrangement on the

vertical axis and orthogonal edge routing, we use here a spring embedder to

arrange nodes and straight lines to draw the edges, respectively.

It is interesting to compare the top-right view in Figure 11.21 with Fig-

ure 11.15. Although Figure 11.15 shows a larger graph, we can argue that this

visualization is easier to follow than the one in Figure 11.21. An important reason

for this is the highly structured ordering of both nodes and edges in orthogonally-

aligned patterns in Figure 11.15, as compared to the less structured placement

provided by the force-directed layout in Figure 11.21 (top-right). Moreover, the

layout in Figure 11.15 has no overlaps between edges and nodes, while the edge
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crossings always occur at right angles. In contrast, the force-directed layout in

Figure 11.21 (top-right) poses no constraints on the intersections of edges with

nodes or with other edges.

Since there are numerous call relations, the top-left image in Figure 11.21

is quite hard to understand. A second step that helps is to filter the relations

and preserve only those that connect sibling nodes, i.e., nodes that are direct

children of the same parent. This produces the visualization in the top-right of

Figure 11.21, which is easier to follow.

The preceding visualization illustrates several common design decisions used

in practice in showing relational datasets. First, several views are used to show

several aspects. The views are correlated, or linked, in the sense that a selection

in a view (bottom one) determines a change in what is displayed in the other

views (top ones). The correlation is strengthened by using the same colors for the

same node types in all three views. The views work at different levels of detail.

The bottom view serves as an overview of the entire dataset, whereas the top

views are successively simplified detail views. Finally, the two types of relations

in the dataset are mapped using simple techniques: Containment is shown as

vertical tree layers (overview) or nested boxes (detail views), whereas association

(calls) is shown as lines between nodes (detail views). This visualization is

arguably less compact and requires extra interaction as compared to the one

shown in Figure 11.16. On the other hand, the tree layout, box nesting, and

lines-between-boxes (node-link metaphor) are more familiar and accepted visual

representations to a larger class of users than the bundled splines and radial

layout. As always in visualization design, there is no clear-cut answer, but the

task of optimizing is a design problem.

Graph splatting. Although they use different layouts, the tree and graph visual-

izations described in the previous sections all share the same visual representation

of node glyphs connected by one-dimensional curves that represent the edges.

As we have seen, such visualizations often have a limited scalability. Indeed,

it is hard for the eye to effectively interpret drawings with more than several

hundreds of such elements, given a drawing surface of finite size.

Making a visualization scalable can be approached from two main directions.

First, we can simplify the data to be visualized such that, given a certain mapping

technique, it yields understandable images. Second, we can leave the input data

unchanged, but design visual level-of-detail techniques such as zooming that

simplify the image produced by the mapping process. In the first case, we need

a way to simplify, or subsample, the application data itself. In the second case,

we need a way to simplify, or subsample, the mapped image.
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For many scivis applications, both data and the mapped images exhibit con-

tinuous properties, as they actually represent smooth signals defined over two- or

three-dimensional spaces. This allows the use of a wide array of signal sampling

strategies both before and after the mapping stage. For graph data displayed

using node-link visualizations, the situation is different. First, the process of

subsampling a relational dataset, such as a graph, is usually more complex and

application-dependent than, for example, subsampling an image. Given this,

we shall not discuss graph simplification methods here, but refer the reader to

the specialized literature in this field [Tutte 01, Di Battista et al. 99]. Second,

the node-link graph drawings discussed in the previous sections are inherently

discrete. A point of the displayed image either belongs to a node or edge glyph

or it does not. Simply zooming out the graph rendering works well only for rel-

atively simple graphs and small zoom factors. When zooming out a large graph

rendering, the clutter may actually increase rather than decrease, making the

zoomed-out view harder to understand.

However, the space in which the layout takes place is one element of the

graph-drawing process that does exhibit continuous properties. Since distances

in such spaces are continuous quantities, zooming techniques should work well,

provided that we are able to ensure the same continuity property for the mapped

shapes for nodes and edges.

A solution to the problem of creating a visually continuous mapping of graph

data is the graph-splatting technique [van Liere and de Leeuw 03]. The easiest

way to describe this technique is by means of an analogy to image processing.

Consider a discrete two-dimensional line drawing consisting of lines (foreground)

and empty space (background). If we apply a Gaussian filter on this drawing,

we obtain a continuous, smooth image where the sharp transitions between fore-

ground and background are blurred (see Section 9.3.3). The blurred thick edges

become now two-dimensional shapes. Given a sufficient amount of blurring, we

can now gradually zoom out the image and see both nodes and edges vanish

progressively.

If we assume that we use a graph layout that places strongly related nodes

close to each other, we can refine this idea further. We first compute the desired

layout and obtain a 2D position pi ∈ R
2 for each node i ∈ [1..n]. Next, let

us assume that every point i has a scalar importance attribute-value fi ∈ R.

We can now compute a continuous signal f(p) by summing up Gaussian radial

basis functions (RBFs) Φi(p) = e−k‖p−pi‖2

centered at the node positions pi and

scaled by the node importances fi:

f(p) =

n∑
i−1

fiΦi(p). (11.6)
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This yields a continuous 2D scalar signal f(p) that reflects the density of

graph nodes in the two-dimensional space, weighted by the node importances.

The node importances can be chosen to reflect data of interest of the underlying

graph, or set to 1, in case all nodes are equally important. Close to high densities

of points or to highly important points, this signal will be high. The signal is low

in areas far away from high point densities, or from important points. The graph-

splatting technique is quite similar to the scattered point interpolation technique

using Gaussian RBFs described in Section 3.9.2 and the reconstruction of surfaces

from point clouds using radial basis functions of finite support (see Section 8.3.2).

However, there are some differences. For large graphs, a good layout tries to

pull clusters of highly interconnected nodes apart from each other, in order to

emphasize the graph structure. Hence, the splatted signal f(p) exhibits strong

variations which, when visualized, let users detect the location and compactness

of such clusters. In contrast, a good point distribution for surface reconstruction

is close to a uniform density value which, when isosurfaced, delivers the surface

itself. Indeed, note that the RBFs in Equation (11.6) are not normalized to obey

the partition of unity property, as we did for the scattered point interpolation

(see Equation (3.47)).

After computing the density signal from the graph layout, we can display it

using any of the scalar visualization techniques discussed in Chapter 5.

Figure 11.22 illustrates the use of graph splatting to visualize dependencies

between modules of a software system. The first image (Figure 11.22(a)) shows

a classical force-directed layout of the dependency graph produced using the

GEM layout software [GEM 07]. Edge colors emphasize the dependency relation

direction, which goes from a module (black) to the other modules this depends

on (bright green). Node colors show the number of dependencies a module has

using a rainbow colormap. Blue nodes have few dependencies, whereas red ones

have the most dependencies in the system. This visualization is quite complex

due to the high number of relations. Figure 11.22(b) shows the graph splatting

applied to this dataset, visualized using a rainbow colormap. Here, the node

importances (fi in Equation (11.6)) are equal to the number of dependencies of

the respective nodes. Hence, red colors indicate either tight clusters of modules

or modules with many dependencies. Three “hot spots” have been labeled with

the names of the representative modules they contain: Main, GUI, and Reader.

These are high-level components of the considered system that consist of strongly

connected modules or modules with many dependencies. In a real application,

such information could be displayed interactively as the user sweeps the rendered

graph splatting with the mouse. This technique, called brushing, is a frequently-

used design element of both scivis and infovis applications.
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Figure 11.22. Software dependency graph visualized with (a) force-directed layout and
(b) graph splatting (b). The splatting density is scaled by the number of dependent
modules. Warm colors in (b) emphasize high-level system modules. The nodes, posi-
tioned identically to the layout shown in (a), are depicted by white dots.

Several other exploration scenarios can be used in conjunction with graph

splatting. Isolines can be displayed to explicitly outline the “hot spot” regions

in the visualized graph. Different weights derived from the graph attributes can

be used together with the Gaussian splats to emphasize different patterns in the

data. Graph splatting can be used with different layouts besides force-directed

ones. However, it is important to note that the usefulness of graph splatting is

highly related to the capability of the underlying graph layout to group-related

nodes in spatially separated clusters. If the layout cannot separate such groups,

e.g., due to a highly interconnected graph, or if the resulting groups do not have

a clear semantics, the emerging graph-splatting image will be of limited use.

General graph-edge bundling. Apart from graph splatting, we can also use edge

bundling (introduced earlier in this section for hierarchical graphs) to produce

simplified visualizations of general graphs. The overall idea for general graphs

is similar to the one shown in Figure 11.16: Given an input node-link draw-

ing Dinp ∈ D for a general graph G = (V,E), produce a bundled drawing

Dbundled ∈ D of the same graph where node positions stay the same, but edges

which are deemed to be compatible are drawn spatially close in Dbundled. Edge

compatibility comp : E ×E → R
+ has been defined earlier for simplified bundle
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visualizations (Section 11.4.2). Edge distance δ : E × E → R
+ is typically com-

puted as the symmetric sum of the minimum distances of points of an edge ei
to the other edge ej, normalized by the edge lengths

δ(ei, ej) =
1

2

(∫
xi∈ei

minxj∈ej ‖xi − xj‖ds∫
xi∈ei

ds
+

∫
xj∈ej

minxi∈ei ‖xj − xi‖ds∫
xj∈ej

ds

)
(11.7)

Since node positions are fixed, bundling will naturally have to curve the edge

drawings in order to bring them close in Dbundled. At the same time, bundling

should preserve a certain amount of edge smoothness, in order to produce draw-

ings which are visually easy to follow. Overall, thus, bundling can be seen as a

function B : D → D which operates on graph drawings Dinp ∈ D, and tries to

minimize δ under the constraints imposed by comp and the fixed node positions.

Several bundling algorithms for general graphs have been designed in the

last decade. Below we describe a few of these. The algorithms are illustrated in

Figure 11.23 for two graphs. The migrations graph contains 9780 edges and 1715

nodes. Nodes are cities in the United States, and edges encode migration flows

between cities. Figure 11.23(d) shown an unbundled view of this graph. The

airlines graph contains 17275 edges and 34550 nodes.11 Figure 11.23(a) shows an

unbundled view of this graph. Each edge is the actual flight path of an airplane

over French air space as recorded by air traffic control authorities. Edges are

sampled over a total of 330K sample points. We included this dataset to show

that edge bundling can also be applied to path sets, in addition to straight-line

graphs.

FDEB: Force-directed edge bundling (FDEB) was the first such method [Holten

and van Wijk 09]. Figure 11.23(f) shows the bundling of our migrations graph

using FDEB. FDEB uses a similar model to spring embedders (Section 11.4.2):

First, edges ei in Dinp are discretized into polylines {eji} by subsampling, using

typically a few tens of sample points eji per edge. Next, sample points are iter-

atively moved in a force field consisting of spring-like attracting forces between

consecutive points on an edge and between points on different edges which are

close to each other. To improve the visual quality of the result Dbundled, edge

compatibility measures are used to limit the bundling of edges which have very

different lengths and/or cross at large angles. FDEB is simple to implement,12

but has a complexity of O(KE2), for E edges and K sample points per edge.

11Data courtesy of Christophe Hurter, ENAC/University of Toulouse, France.
12An implementation is available in the Gephi open-source graph visualization

toolkit [Gephi 14].
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(a) airlines graph

(d) migrations graph (e) SBEB

(f) FDEB (g) KDEEB

(h) GBEB (i) WR

(b) SBEB (c) KDEEB

Figure 11.23. General graph bundling examples. Images (a) and (d) show the unbundled
graphs.

This makes its application impractical for graphs of tens of thousands of edges

and hundreds of thousands of sample points.

GBEB: In contrast to the self-organizing, bottom-up approach proposed by

FDEB, geometry-based edge bundling (GBEB) takes a top-down approach [Cui

et al. 08]. First, a direction field containing tangent vectors of all edges in Dinp

is computed. Second, this field is clustered to yield a spatial decomposition of

the space covered by Dinp into regions containing similar-direction edges. Next,

a control graph is created, where edges are lines cutting the decomposition re-
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gions into two roughly equal parts and being orthogonal to the main directions

in each region. Third, intersection points between the control graph edges and

original edges in Dinp are found. These points are next clustered using K-means

and used as control points to route smooth curves that create the edge bundles.

Figure 11.23(h) shows the bundling of our migrations graph using GBEB.

WR: Like GBEB, the winding roads (WR) method uses also a top-down, geom-

etry-based, bundling strategy [Lambert et al. 10]. The main idea is as follows.

First, a Voronoi diagram of the node positions is computed (see Section 8.3.1).

Second, all shortest paths between nodes connected by edges in Dinp are com-

puted, using Dijkstra’s shortest-path algorithm on the above diagram [Cormen

et al. 01]. To favor the creation of bundles, weights of the diagram’s edges are

next reduced to reflect the number of shortest paths passing through each edge.

A second shortest path algorithm invocation uses these weights to route the

edges of Dinp. Intuitively, the process can be thought as tracing paths along a

map in a way that favors frequently-taken roads (highways) upon less frequently

taken ones. Several GPU optimizations make WR run in near-interactive time

for graphs of thousands of edges.13 Figure 11.23(i) shows the bundling of our

migrations graph using WR.

SBEB: Unlike all previous methods, skeleton-based edge bundling (SBEB) con-

structs edge bundles by working fully in image space [Ersoy et al. 11]. SBEB

starts by grouping edges in Dinp which are similar with respect to the desired

compatibility comp into clusters and computing, for each edge cluster, its sur-

rounding hull. For this, we can use the same method as for image-based edge

bundles (Section 11.4.2). The key observation of SBEB follows next: The bun-

dle of a compatible edge-set should be located close to the center of its visual

hull. This center is, however, nothing than the skeleton, or medial axis, of the

hull. As such, SBEB computes these skeletons using the method described in

Section 9.4.7, and attracts edges along their shortest-path towards the skele-

ton. Iterating the density computation, thresholding, skeletonization, and edge

attraction steps yields the desired edge bundles. Figures 11.23(b,e) show two

examples of SBEB bundling, with edges colored differently per cluster.

KDEEB: The image-based approach of SBEB is further taken by the kernel

density estimation edge bundling (KDEEB) method [Hurter et al. 12]. Fig-

ure 11.23(c) shows the bundling of our airlines graph using KDEEB. Like SBEB,

a density map of the input edges is computed. Next, edge sample points are ad-

13An implementation of WR is available in the Tulip visualization framework [Auber 07].
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vected upstream in the normalized gradient of this density map. The density

computation and advection are iterated until edge bundles are formed. This

process is nothing but the mean shift clustering algorithm introduced earlier

for image segmentation (Section 9.4.2), but applied to the graph drawing Dinp.

KDEEB’s gradient of the edge density map is similar in direction and function

to the resultant of attraction forces from neighbor points in FDEB. Also, this

gradient is similar to the gradient of the distance transform of the edges’ hull,

which points towards the hull skeleton used by SBEB. The key advantage of

KDEEB, however, is computational efficiency. The entire method works image-

based, does not require any preprocessing such as edge clustering, and thus can

be very efficiently implemented on the GPUs. KDEEB’s complexity is O(KE)

for E edges and K sample points per edge. Currently, KDEEB is one of the

fastest general-graph edge bundling methods, able to bundle graphs of tens of

thousands of edges and hundreds of thousands of sample points in subsecond

time on a modern GPU.

Comparing bundling algorithms: As visible from Figure 11.23, different bundling

algorithms can yield quite different results on the same input dataset. In gen-

eral, GBEB and SBEB create bundles with a strongly emphasized branching

structure, but also which twist and turn more, thus are harder to visually fol-

low. FDEB creates very smooth bundles; however, their branching structure

may be hard to see. KDEEB creates bundles whose look-and-feel is somewhere

in between the two above-mentioned extremes.

Comparing the quality of different bundling algorithms is hard. The main

reason is that there are no application-independent criteria to objectively quan-

tify this quality. At one extreme, we can measure values such as edge curvature

(which should not be too high), the ratio of ink to whitespace in the bundled

drawing (which should be low for a good bundling [Gansner and Koren 07]), or

the sharpness of the edge density map [Hurter et al. 12]. However, such values

measure only low-level, local, properties of the drawing. Classical straight-line

quality criteria such as the minimization of edge crossings [Di Battista et al. 99]

are also not applicable for bundled graphs, since a bundle favors such crossings,

by excellence. At the other extreme, we can perform user evaluations to assess

the effectiveness of a bundled drawing for solving a given task. However, such

experiments are strongly dependent on the choice of task, dataset, and subjects,

and are hard to generalize.

Visualizing dynamic graphs. The graph visualizations presented in Section 11.4.2

so far target a static graph G = (V,E) whose nodes V and edges E do not change
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in time. However, many applications produce time-dependent graphs. Consider,

for instance, the software hierarchy-and-dependency graphs discussed earlier,

such as those shown in Figure 11.16. As a software project evolves in time, both

its hierarchy and dependencies will likely change. Visualizing the changes of such

graphs helps showing software maintainers, for instance, whether the modularity

of their software system has improved or worsened, and which are the subsystems

most and/or least affected by such changes. As a second example, consider the

airline graphs shown in Figure 11.23. Airline flights dynamically change over

time, so such graphs are not static. Visualizing such changes can help air traffic

controllers in seeing how the traffic load varies in time over different geographical

areas, which in turn can assist their flight planning procedures.

Types of dynamic graphs: Time-dependent, or dynamic, graphs G(t) = (V (t),

E(t)) can be further classified into streaming and sequence graphs [Nguyen

et al. 12, Hurter et al. 13]. Streaming graphs are essentially graphs where both

nodes v ∈ V and edges e ∈ E have a lifetime interval [tstart, tend > tstart] dur-

ing which they exist. Time can be modeled along a continuous, real-valued,

time axis, or in a weaker form, along any ordinal set. For any given moment

t, the graph G(t) contains all nodes and edges which are alive at t. Intuitively,

we can think of this model as having nodes and edges appearing and disap-

pearing in a continuous, or streaming, fashion. In our earlier examples, time-

dependent airline graphs are streaming graphs. Sequence graphs are ordered sets

of graphs G = {Gi = (V i, Ei}, 1 ≤ i ≤ N which typically capture N snapshots,

or keyframes, of the structure of a system. In our earlier examples, hierarchy-

and-dependency graphs of N distinct versions, or revisions, or a software system

create a sequence graph. In contrast to streaming graphs, in sequence graphs we

need to explicitly relate nodes and edges between keyframes. This is done by so-

called node and edge correspondence functions cnode : V → V and cedge : E → E.

Given two (typically consecutive) keyframes Gi and Gj , cnode(v ∈ V i) gives the

node v ∈ V j which logically corresponds to the node v ∈ V i, or the empty set,

if no such node exists. Edge correspondences are modeled similarly by an edge

correspondence function cedge.

Online vs. offline drawing: Both streaming and sequence graphs can be seen as

either fully available to the analysis or visualization or not. In the former case,

the techniques working on the graphs can fully analyze the entire dataset before

the actual visualization starts. This massively helps the optimization of various

visual attributes, such as positions of nodes or edges, as we shall see. This class

of techniques is also known as offline techniques. In the latter case, individual



496 11. Information Visualization

graph nodes or edges (for streaming graphs) or keyframes (for sequence graphs)

are provided to the visualization “on the fly,” and have to be accommodated in

the image drawn. This scenario is important when not all data is available at

a given moment. This class of techniques is also known as online techniques.

Online techniques are in general considerably more complicated, as they cannot

make provisions for what will next change in the graph dataset.

Several methods exist for the visualization of both streaming and sequence

graphs, as follows.

Visualizing small numbers of keyframes: Arguably the easiest task is to show

changes between just two keyframes in a sequence graph. Given two such

keyframes Gi and Gj , let us first assume that G is a tree rather than a general

graph. In this case, we can start by showing the node correspondence relation

cnode(u ∈ V i, v ∈ V j), as follows (Figure 11.24(a)). First, we draw both hierar-

chies of the graphs Gi and Gj using two horizontal icicle plots,. These plots are

identical to the ones used for the hierarchically bundled edges presented earlier

in this section, with the difference that the plots are now linear rather than cir-

cular. Next, we connect nodes u ∈ V i and v = cnode(u) ∈ V j which are linked

by correspondence relations. Next, we bundle the correspondence edges using

the hierarchical edge bundle (HEB) technique. Compared to the application of

(a) (b)

Figure 11.24. Visualizing two keyframes (a), respectively six keyframes (b) in sequence
hierarchies.
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HEB to the call graphs in Figure 11.16, we now however have edges between all

hierarchy levels than only between leaf nodes. To visualize such edges better, we

replace the simple curve drawing used in Figure 11.16 by drawing shaded tubes

that encompass the extents of the two connected nodes u and v. This technique

is similar to the one shown in Figure 11.17 for the simplified visualization of HEB

graphs. Drawing the tubes in nesting order of their connected nodes ensures that

thinner tubes are drawn atop of tubes for their parent nodes, and thus are better

visible.

Figure 11.24(a) illustrates the node correspondence visualization for two

graphs obtained from dynamic program analysis. The two hierarchies in this

case describe two call stacks recorded by executing a given software system twice.

Children of a node v are thus functions called by the function v. Sibling nodes

in the two icicle plots are ordered from left to right as based on their call start

tstart, and scaled based on their lifetime, or call duration [tstart, tend]. Node cor-

respondences cnode indicate function calls that are similar, given a user-supplied

similarity criterion [Trümper et al. 13]. Besides the existence of node corre-

spondences, we can use color to show an additional correspondence attribute.

For instance, in this example color is used to show the correspondence strength,

or amount of similarity between the corresponding nodes, using a rainbow col-

ormap. The image can be interpreted as follows: Asymmetries in the tubes’

layout indicate subsets of similar nodes which are located in different parts of

the two compared graphs. Missing tubes indicate nodes in one graph which do

not have a correspondence in the other graph. Finally, color indicates the cor-

respondence strength. If we combine the inherent space-filling property of icicle

plots with drawing only tubes which connect nodes whose spatial extent has a

minimal visible size of a few pixels, this technique scales well for graphs of tens of

thousands of nodes. The same technique can be also applied to the more general

task of comparing two hierarchies [Holten and van Wijk 08].

The technique illustrated can be extended to compare a small number of

trees Gi. Figure 11.24(b) illustrates this for the comparison of six revisions of

a given source code file. For each keyframe Gi, the hierarchy consists of the

syntax tree of the code in revision i. Nodes are thus code elements such as

classes, functions, statements, and symbols. Trees are now drawn as vertical

icicle plots, with nodes ordered based on their actual position in the source code.

Node correspondences indicate highly similar code fragments across the analyzed

revisions. Correspondence tubes are colored to indicate the similarity amount.

In contrast to Figure 11.24(a), gray is used here to indicate identical code frag-

ments. Correspondences between similar, but not identical, code fragments are

indicated by tubes colored to encode the type of syntactic construct. As such, in
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contrast to our first example in Figure 11.24(a) where the visualization focuses

on similar subtrees, we now highlight different subtrees, thus highlight changes

in the dynamic tree: Horizontal gray tubes indicate code that has not changed.

Diagonal colored tubes indicate code that has changed both in terms of contents

and position in the file.

The techniques discussed above effectively “project” the time dimension of

the input graph to one spatial dimension (the vertical, respectively horizontal

screen axes in Figures 11.24(a,b)). As such, the entire graph dataset is visualized

in a single image. This approach is named the small multiples technique. Small

multiple displays can be effectively used to visualize other types of dynamic

datasets and, more generally, for comparing several data keyframes in an ordered

sequence [Tufte 01]. However, the scalability of small multiples is limited by the

available screen space to about 10..20 keyframes, thereby their name.

Using animation: A different approach to showing dynamic graphs is to use

animation to encode the time dimension. The general idea is simple: Given a

dynamic streaming or sequence graph, produce a visualization where the amount

of change (in terms of color, size, position, or similar visual elements) is propor-

tional to the amount of change in the underlying graph data. As the eye is

attracted by visual changes, this helps in discovering the data changes.

Figure 11.25 introduces a simple graph animation technique for the visu-

alization of large dynamic hierarchical graphs. The underlying sequence graph

captures the software hierarchy and call relations from 14 revisions of the Wicket

open-source software system. Node correspondence relations cnode are based on

the fully qualified name of a node. In other words, a node ni is the same as

a node ni+1 if the two nodes have the same name and same-name parents in

the graphs Gi and Gi+1. Edge correspondence relations are based on correspon-

dences of their end nodes. That is, a call edge ei+1 is the same as an edge ei if

it links the same nodes (in Gi+1) as ei links in Gi.

Before constructing the actual animation, a so-called union graphGU is built.

This graph contains all nodes present in all keyframes Gi in our sequence, to-

gether with their hierarchy relations. GU is next drawn using the by now familiar

circular icicle plot technique. Next, call relations Ei in each keyframe Gi are

bundled, using the HEB technique. We thus obtain a sequence of separate edge

bundled images Bi, one for each keyframe. The animation is next constructed

by a linear interpolation that links a bundle keyframe Bi with its previous and

next keyframes Bi−1 and Bi+1, respectively. For each bundled edge ei ∈ Bi,

and two such keyframes Bi and Bi+1, we distinguish three cases:
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bundle
A-B

Figure 11.25. Eight frames from a graph animation for visualizing a dynamic hierar-
chical call graph.

• If cedge(e
i) = ei+1, i.e., ei has a correspondence ei+1 in Bi+1, we linearly

interpolate ei towards ei+1 as a function of the animation time t, and color

ei blue.

• If cedge(e
i) = ∅, i.e., ei has no correspondence in Bi+1, we linearly inter-

polate the position of ei towards a straight line linking its end points, color

ei green, and interpolate the opacity of ei from 1 (fully opaque) towards 0

(fully transparent).

• If c(ei−1) �= ei,∀ei−1 ∈ Ei−1, i.e., ei has no correspondence in Bi−1, we

linearly interpolate from a straight line linking the end points of ei towards

the actual curve ei, color ei red, and interpolate the opacity of ei from 0

to 1.

The above procedure effectively creates a continuously changing bundle image

B(t) that interpolates between the separate keyframe bundles Bi. The final
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animation is created by drawing B(t) for a dense sampling of the time parameter

t. Optionally, users can interactively control t to go to a particular moment, or

replay the animation. For full details, we refer to [Hurter et al. 12]. Figure 11.25

shows eight snapshots from the resulting animation, for eight time moments

taken between revisions 1.4.17 and 1.4.19 of our considered software system.

The current animation time t is marked in red on the revision timeline under the

snapshots. In the first four images (Figure 11.25 top row), we see how a thick red

bundle emerges between two subsystems marked A and B. This, and the thick

blue bundle present in the fourth image, indicate that many call relations have

been added in revision 1.4.18 as compared to revision 1.4.17. As we pass revision

1.4.18, we see in the bottom four images a thick green bundle that links the same

subsystems A and B fading out. This shows that, in the same time with the

addition of calls in 1.4.18, many existing calls linking A and B have also been

removed in the same revision. Combining the above two insights we conclude

that revision 1.4.18 is a major refactoring step in the software’s evolution.

Several design points of the above graph animation technique are worth dis-

cussing next.

• Using a static union graph GU to lay out the end points of the dynamic

edges Ei guarantees that an edge that does not change in the graph data

is drawn between the same end point locations. This means that, by con-

struction, an unchanging bundle (in the visualization) represents a set of

unchanging edges (in the graph data). If we did not use the union graph,

we could have node or edge movements which would not encode actual

data changes, but merely instabilities of the node layout algorithm being

used.

• Just as static graph bundling simplifies the visualization of a static graph

and emphasizes its main connectivity patterns, interpolating between bun-

dled keyframes simplifies the structure of the visualized changes, and makes

the visualization of large dynamic graphs possible. While bundling aggre-

gates small-scale changes, significant changes of the graph structure are

easy to spot and track.

• Bundling and unbundling edges which have no correspondences in the pre-

vious, respectively next, keyframe attracts the attention to events such as

edge creation and removal in the dynamic graph. Color and transparency

are used as additional visual cues to strengthen such events. In our case,

blue indicates existing edges, while red and green indicate newly appearing,

respectively disappearing edges.
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• The animation is piecewise-linear in time by construction. There are no

sudden jumps in the position or visibility of the animated objects. This

eases the visual following and interpretation of the resulting animation.

• The edge interpolation technique requires only a pair of keyframes to work

at a given moment, so it can be seen as an online visualization approach.

However, computing the union graph GU required for the icicle plot needs

to have all keyframes in advance (in the case of a dynamic hierarchy), thus,

is an offline technique.

The technique presented above can create effective animations of large se-

quence graphs, and it simple to implement, once we have a static graph bundling

algorithm available for our keyframes. For streaming graphs, however, we cannot

apply this approach. Indeed, for a streaming graph G(t), there are in theory as

many separate keyframes as number of moments tstart and tend when an edge

is created, respectively removed. For large graphs, there can be millions of such

moments. Technically, we could reduce G(t) to a sequence Gi by simply picking

N time moments ti, 1 ≤ i ≤ N and setting Gi = G(ti). However, choosing the

sampling moments ti in the best way so that the keyframes Gi truly capture the

dynamics of G(t) is in general a very complex problem.

A better approach for streaming graphs is to create the animation directly

from G(t) To do this, consider any of the general graph-bundling algorithms

discussed earlier in this section which works in an iterative manner, such as

FDEB, SBEB, or KDEEB. The key idea next is to let the physical time t and the

graph-bundling iterations run in parallel. In other words, the bundling process

runs continuously as t advances, and acts at any moment t on all edges which are

alive at that moment. Edges which are alive for long periods will thus bundle

tighter, and thus be visualized in a simplified manner. Edges which are alive

only for short time periods will bundle less, and thus appear as outliers atop of

the persistent bundle structure.

Although, in principle, any iterative bundling algorithm can be used for

streaming graphs, algorithms which have small costs to be paid each time when

the graph changes are clearly more suitable. FDEB and KDEEB are good exam-

ples hereof. For FDEB, we essentially have no costs to pay when edges are added

to, or removed from, the graph. A streaming graph visualization based on FDEB

is presented in [Nguyen et al. 12]. However, as already explained, FDEB is quite

slow for large graphs, and thus cannot create interactive animations on the fly.

KDEEB is more suited for such as use-case. As edges are added or removed,

we simply keep adding (or removing) their contribution from the density map

it uses to bundle edges. The remainder of the process stays the same. Given
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this, the dynamic extension of KDEEB can be seen as a fully online visualization

technique. As KDEEB can execute hundreds of bundling iterations per second,

it means it can be used to generate real-time bundled animations of streaming

graphs [Hurter et al. 13].

Visualizing large dynamic graphs is a challenging, and increasingly important,

area in information visualization. However, even more so here than for static

graphs, a gap exists between the effectiveness and efficiency of dynamic graph

visualization methods and the size and complexity of the graph datasets. Several

innovative visual metaphors to show change in hierarchies, association edges, and

data attributes are presented by Burch et al. in a series of papers [Burch and

Diehl 08, Burch et al. 10, Greilich et al. 09]. For a framework of dynamic layout

techniques for graphs drawn using node-link metaphors, a good starting reference

is [Frishman and Tal 08].

11.4.3 Diagram Visualization

Consider a set of elements E = {ei}. Over this set, assume we have defined

several subsets Sj = {eji} ⊂ E. Furthermore, let us assume that the set E

already admits a visualization which maps its elements ei to particular spatial

locations and also associate particular drawing metaphors, such as shapes, colors,

and sizes. How can we intuitively show the sets Sj atop of a given visualization

of E? More precisely, how can we construct a visualization of all Sj so that

1. given a set Sj , we can easily tell which are its elements eji from all elements

ei of E;

2. given an element ei of E, we can easily tell which are the sets Sj which

include ei;

3. we achieve the above two tasks without modifying the underlying visual-

ization proposed for E?

Essentially, the problem we face is that of drawing so-called Venn-Euler dia-

grams atop of a given visualization of the set E. A Venn-Euler diagram typically

consists of a set of closed contours Cj so that all visual representations of elements

in a subset Sj can be easily seen as being contained within Cj . Furthermore, the

drawing of the contours Cj should help spotting all sets Sj into which a given

element ei ∈ E falls.

Several solutions exist to this problem. First and easiest, of the number of

subsets is small, we can color elements ei in each subset by a distinct color. This

addresses task (1) mentioned above—all elements having the same color belong to
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Figure 11.26. Diagram visualizations atop of a relational dataset.

the same subset. However, telling all subsets Sj that a given element belongs to,

or question (2) above, cannot be answered, since we cannot color an element with

multiple colors at the same time. A second solution involves drawing contours

Cj atop of our given visualization of E, so that (a) each contour Cj contains

precisely the elements in Sj, and (b) we can easily separate contours from each

other, and thus tell which are all contours that contain a given element ei.

Several techniques exist for constructing such contours. The simplest of them

involves computing a distance field DTj per subset Sj for all elements eji ∈ Sj .

This can be directly done by computing the distance transform of the visual

representations of the sites eji (Section 9.4.5). If we next threshold DTj at

a small positive value, the resulting contours, are precisely our sought shapes

Cj . Figure 11.26(d) illustrates this technique for five subsets of elements of a

graph which is laid out using a 3D spring embedder [Sprenger et al. 00]. Each
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contour Cj is drawn as a half-transparent isosurface of its resulting field DTj . By

construction, distance transform contours are smooth and guaranteed to enclose

all their sites. However, such contours are not guaranteed to be compact : Given

a set Sj , we cannot enforce that the resulting distance transform contour Cj

consists of a single connected component. If more components are drawn, the

user can potentially get confused.

A different approach is taken by the technique presented in [Byelas and

Telea 06]. Similar to the parametric snake technique used for image segmen-

tation (Section 9.4.2), we construct now a separate, explicit, connected contour

Cj for each subset Sj . Each contour Cj is initialized to the convex hull of the

elements in Sj , which guarantees that it surrounds all these elements. Next, each

Cj is iteratively shrunk by moving its sample points inwards along the contour

normal, until they get close to any element eji ∈ Sj . To ensure a smooth con-

tour, an additional Laplacian smoothing is applied on the contours after each

shrinking iteration. Figures 11.26(a) and (b) show a set of such contours drawn

atop of a Unified Modeling Language (UML) software architecture diagram. The

first image (Figure 11.26(a)) is a hand-drawn diagram, where contours are man-

ually drawn by a user following the specification of the subsets Sj . The second

image (Figure 11.26(b)) shows the contours computed by the above method.

As visible, the two contour sets are quite similar in terms of spatial location,

size, and overall look and feel. Moreover, the computed contours are guaranteed

to be compact by construction (unlike the implicit surface contours proposed

in [Sprenger et al. 00]) and also to include all elements in their corresponding

subsets Sj . However, when showing the two images to a group of 36 diagram

users (software engineers, in our case), nearly all users preferred the hand-drawn

diagram, explaining that it has a more natural “flow of hand,” or smoothness,

of contours. This stresses the fact that aesthetic aspects are an important com-

ponent of visualization design.

Diagram visualizations can be further enhanced by showing attribute values.

Consider that an element eji ∈ Sj has a data value vji for each Sj it belongs to.

As an example, if the elements eji are software artifacts in a given system, and

subsets Sj indicate elements that participate in one given aspect of the software

system (e.g., S1 being all elements that are tested, S2 being all elements that are

portable, and so on), then the values vji indicate the extent to which eji meets

the criterion of subset Sj (e.g., v1i being the amount of testing, and v2i being the

portability degree, in our example). We would like next to visualize the values

vji atop of our Venn-Euler diagram. The main goals of this visualization are to

see how a given attribute vji ,∀i varies over a given subset Sj , and how the values

vji ,∀j correlate for a given element ei.
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Figure 11.26(c) shows a solution to the above attribute visualization. Three

graphical elements are used here, as follows. First, shaded cushions are drawn

atop of the contours Cj , to further emphasize their spatial extent and overlap.

For this, the generalized cushion technique presented for image-based edge bun-

dles in Section 11.4.2 can be used. Second, the spatial extent of each contour

Cj is textured by using a distinct transparency texture, such as stripes having

various orientations, or dots. The texture pattern is roughly divided into 50%

fully opaque, and 50% fully transparent pixels. All textures overlapping at a

given spatial location, such as the location of an element eji , are visible, due to

the “weaving” effect caused by the transparency texture design. Seeing which

patterns overlap over an element lets us tell which subsets this element belongs

to, without having to visually search the contours which enclose that element.

For example, in Figure 11.26(c), we see that the element eA belongs to both S3

and S6 (as it is surrounded by two diagonally crossing hatch patterns), while

eB belongs to S2 and S3 (as it is surrounded by a diagonal pattern crossing a

horizontal pattern). Finally, each textured contour Cj is color-coded using the

values of the attributes vji interpolated over the Cj ’s extent. The texture color

interpolation allows us to visually follow both how a given attribute vji varies

over a given subset Sj , and also how the values vji differ at a given element ei.

For instance, in Figure 11.26(c) we see that eA has harge attribute values v3A and

v6A, since the crossing stripes surrounding it are both red. In contrast, eB has a

large value for e3B (red diagonal stripes) but small values for e2B (blue horizontal

stripes).

11.5 Multivariate Data Visualization
Consider a set of N data points D = {pi}, 1 ≤ i ≤ N , where every point pi has

a K-dimensional vector of attributes (a1i , . . . , a
K
i ) ∈ AK , each attribute being

defined over some domain A. Such a dataset is called multivariate, as it has

several variables, or attributes, per data point (K in our example). We want

to visualize the dataset D such that correlations, outliers, clusters, and trends

in the data become visible. Below we describe several classes of techniques that

address this task.

11.5.1 Parallel Coordinate Plots

The general problem of analyzing the distribution and correlation of positions

of a set of K-dimensional points can be, conceptually, split into K problems of

analyzing the distributions and correlations of K sets of one-dimensional values.
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Figure 11.27. Schematic description of (a) table visualization vs. (b) parallel coordinate
plots. A K-dimensional point pj is shown in blue in both plots.

Each such set Di = {ai1, . . . , aiN} is formed by the ith attribute (1 ≤ i ≤ K) of all

our N data points. One technique that allows us to perform such investigations

is the parallel coordinate plot, or PCP [Inselberg and Dimsdale 90, Wegman 90].

This technique is described below.

To easier understand the way parallel coordinate plots work, let us consider an

example. We have a dataset containing around N = 400 data points. Each data

point describes a car via K = 7 attributes: miles per gallon (MPG), number

of cylinders, horsepower, weight, acceleration, manufacturing year, and origin

(Europe, United States, or Japan). All attributes are real numbers, except the

origin attribute, which is nominal, and the number of cylinders, which is an

integer.

These data tuples can be seen as data points in a K = 7-dimensional space.

Since we cannot directly render into seven dimensions, we must find ways to map

this space onto two or three dimensions. One way to do this is to consider the K

sets Di, each containing N data values, as the K columns of a data table (Fig-

ure 11.27(a)). Each point pj is now a table row. Such a visualization has already

been described in Section 11.3. Similar to table visualizations, parallel coordi-

nates also map each of the sets Di to a separate vertical axis (Figure 11.27(b)).

However, while tables draw a point pj as a horizontal row, parallel coordinates

map each point to a polyline that connects the points on the vertical axes whose

ordinates (y values) equal the point attributes aij . Intuitively, we can think of a

parallel coordinate plot as being produced by warping the rows of a data table

in a vertical direction, so as to reflect the data values.
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Figure 11.28. Parallel coordinate plot showing six attributes (miles-per-gallon, cylin-
ders, horsepower, weight, acceleration, and manufacturing year) for about 400 cars. A
selected car is shown in the image as a red polyline with the individual attribute values
displayed as labels.

Figure 11.28 illustrates the parallel plot technique for the car dataset.14

There are six axes, corresponding to the first six data attributes. Each axis

is scaled individually to show the full range of its attribute value. Although

the different axes have different ranges, this does not reduce the usefulness of

the parallel coordinate plot, which shows correlations of attribute value distri-

butions rather than the absolute values. Each polyline represents a different car

of the several hundred in the dataset. The polylines are drawn with a certain

amount of transparency using additive blending (see Section 2.5). In this way,

areas covered by many lines, i.e., where the data are correlated, appear darker

on the plot. The red line and associated labels show the details of the car record

under the mouse pointer: a six-cylinder vehicle weighing 3410 lbs manufactured

in 1978. The “origin” attribute is shown only for the selected data point, and

not for all data points on a separate axis, as it is of the ordinal type. For the

selected car in the image, its value is “Japan.”

This visualization already shows a number of facts. Clusters of lines that run

parallel indicate similar data points. Lines widely spread apart along an axis

14The visualizations in this section are created with the parvis open-source software. The
software and example dataset are available from [Lederman 12].
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brushed selectionoutlier

Figure 11.29. Using brushing to select the low-acceleration cars. The selected cars are
shown in red. An interesting outlier is highlighted further.

show a large variation of that data attribute. We quickly see, for example, that

most cars have 4, 6, or 8 cylinders, and there are a very few with 3 or 5 cylinders.

There is a strong inverse correlation between the number of cylinders and the

MPG rating, which is easily understandable. The fan-out of the lines going from

the “Cylinders” to the “Horsepower” axis (right next to it) is quite strong. This

shows that the number of cylinders does not determine the horsepower value.

The lines from “Horsepower” to “Weight” run mostly parallel, which indicates

a strong proportionality of the two attributes. Finally, the similar bundles of

lines emerging from the “Year” axis (rightmost) indicate that there are similar

numbers of cars produced every year, and that they come in all acceleration

categories.

Adding interaction to the preceding basic visualization further supports our

queries. Using brushing (point-drag-click with the mouse on the axes), we can

select ranges of attribute values. Figure 11.29 shows the visualization after se-

lecting a “low acceleration” attribute range. The polylines corresponding to all

data points falling within the selected range are drawn in red. This shows us

that cars with a low acceleration are also the heaviest, have powerful engines,

are quite fuel-inefficient (low MPG), originate mostly from the early years of the

considered period (1970), and all have the maximum number of cylinders (8).

These are probably trucks or vans. We also find an outlier, shown by the selected
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Figure 11.30. Enhancing parallel coordinates. The orientation of the axes whose labels
are marked in red has been swapped as compared to Figure 11.29. Histograms show
the attribute value distribution over 10 equally sized ranges for each axis.

thick red line with labels. This is a low-acceleration car, produced later (1978),

which is quite light and low-power, has six cylinders, and an average MPG.

Many additional interaction and visual enhancements can be built on top of

the basic concept of parallel coordinates to further support investigation tasks.

Figure 11.30 illustrates several possibilities. Here, the orientation of several axes

(“Cylinders,” “Horsepower,” and “Weight”) has been swapped as compared to

the previous examples. This reduces the number of line crossings, since inversely

correlated axes become, after the orientation swapping, directly correlated. A

second addition is the overlay of axes with histograms that show the number of

data points within a number of fixed value range intervals. This figure uses 10

intervals for each axis. The histograms show how all attribute values are dis-

tributed along each axis, while the lines connecting them show high correlations

between different ranges. For example, we see that most cars have four cylin-

ders, and of those most have a low horsepower, low weight, and high MPG. The

histogram of the “Year” axis shows that this dataset contains roughly the same

number of entries for each manufacturing year. Such findings were in principle

possible also by looking at the number of lines connected to a certain range of

an axis, but the histogram displays make them easier and more accurate.

Several extensions have been proposed to the basic design described above.

Hierarchical clustering and display techniques help reduce clutter when visual-
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izing large datasets with parallel coordinates [Fua et al. 99]. Various brushing

mechanisms can be added to help selecting more complex patterns than possible

by simple axis range selection [Hauser et al. 02]. Parallel coordinate plots can

be integrated with other techniques, such as scatter plots and statistical analysis

tools, to facilitate the combination of different exploration tasks [Ward 94]. An

early survey on this topic is given in [Inselberg 98]. For more details, we refer

the reader to a comprehensive recent book on parallel coordinate plot variations

and their multiple applications [Inselberg 09].

However useful, parallel coordinate plots also have their limitations. For

large, complex datasets with many attributes, they can produce cluttered im-

ages that are hard to understand. The ordering of axes is also very important.

Correlations are easier to find between axes that are (direct) neighbors than be-

tween axes placed far away from each other. In practice, this means a fair amount

of interaction such as brushing and axis swapping and reordering is needed to un-

derstand complex datasets. Finally, parallel coordinates are abstract and novel

for many users and may require a certain amount of training.

11.5.2 Dimensionality Reduction

Consider again our multivariate dataset consisting of a set of data points D =

{pi}1<i<N , where every points pi = (a1i , . . . , a
K
i ) lives in some K-dimensional

space AK . One task that frequently occurs in practice is to visualize the structure

of the datasetD. Subtasks thereof are finding points which have similar attribute

values; finding groups, or clusters, of similar points; finding which points belong

to which group; and assigning a meaning to a point group.

To do this, we proceed by construction a so-called projection function

P : AK → R
k (11.8)

Instead of visualizing the original dataset D ⊂ AK , we now map each point

pi ∈ D to its projection P (pi) ∈ R
k, where we typically have k ∈ {2, 3}. In other

words, we replace the (complex) problem of visualizing a K-dimensional point

cloud by the (simpler) problem of visualizing a two- or three-dimensional point

cloud. The latter can be achieved, for instance, by using a 2D or 3D scatter plot,

which is straightforward to construct. For such a point cloud, graph splatting

can be used (see Section 11.4.2). Graph splatting is especially good if we are

interested to find compact groups of points.

However, to be able to use the resulting low-dimensional point cloud to com-

plete the tasks listed earlier in this section, the relative positions and distances of

the projected points should, in some way, reflect the corresponding distances and
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positions of the original K-dimensional points. For this, the projection function

P should respect several constraints. The most common such constraints are

• Distance preservation: Given two points p1 and p2 in D, the distance be-

tween their projections ‖P (p1) − P (p2)‖ in R
k should, ideally, be propor-

tional with the distance ‖p1 − p2‖ between the original points in AK . If

this happens, then when we find visually close projections, we can infer

that these correspond to similar points in AK . This effectively supports

the so-called query by example task [Faloutsos and Lin 95].

• Neighborhood preservation: Given a point p in D, the neighbors P (pi) of

P (p) in R
k should be, ideally, the same as the neighbors pi of p in AK . If

this happens, then when we find a group of close projections, we can infer

that they correspond to a group of similar points in AK .

To better quantify the above preservation conditions, we define a so-called

stress function

σ =

√∑
i,j (‖pi − pj‖ − ‖P (pi) − P (pj)‖)2∑

i,j ‖pi − pj‖2
(11.9)

over all point-pairs 1 ≤ i ≤ N, 1 ≤ j ≤ N in our dataset D. σ is a global value

that measures how well the placement of the projections preserves distances

on the average. Lower stress values indicate that P has successfully preserved

the relative distances from the high-dimensional space. Higher stress values

indicate that distances are preserved less well. However, note that σ is only a

global indication of this preservation: Depending on the actual algorithm used,

distances may be preserved better for certain point pairs than for others.

Techniques that compute a projection P in order to minimize the stress func-

tion σ are known under the global name of dimensionality reduction methods.

Such methods differ in their implementation based on what type of information

they use to compute P , as follows.

11.5.3 Multidimensional Scaling

A first type of dimensionality reduction method does not assume that we know

the actual coordinates of the points pi in A
K . Rather, we only know the N ×N

square matrix M = {dij}1<i<N,1<j<N of distances between these points. Here,

dij ∈ R+ gives the distance, or dissimilarity, between the K-dimensional points

pi and pj . Of course, if we have access to the actual point coordinates, we can
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immediately compute such distances as

dij = ‖pi − pj‖ =

√√√√ K∑
l=1

δ(ali, a
l
j)

2. (11.10)

Here, the function δ : A×A→ R+ gives the (one-dimensional) distance between

two attribute values. For numerical attributes, δ is the difference and d becomes

the Euclidean distance in R
K . For non-numerical attributes, we must design a

distance δ that reflects the similarities of interest for the problem at hand. For

instance, if the attributes are categorical, then we can use the distance

δ(a ∈ A, a′ ∈ A) =

{
0 if a = a′

1 otherwise.
(11.11)

However, there are cases when we only know the interpoint distances dij but

not the actual point coordinates. In the extreme case, we may not even know the

space AK or even its dimension K. In such cases, the stress σ (Equation 11.9)

becomes

σ =

√∑
i,j (dij − ‖P (pi) − P (pj)‖)2∑

i,j d
2
ij

. (11.12)

Methods that compute the projection P by directly minimizing σ given by

Equation 11.12 are known under the name of multidimensional scaling (MDS)

methods [Borg and Groenen 97, Cox and Cox 01, Mead 92]. The process of as-

signing k-dimensional coordinates to points in an unknownK-dimensional space,

based only on the distances dij , is also known under the name of embedding, since

we “embed” points from an unknown space AK into a known k-dimensional

space. The MDS name reflects an important property of the computation: Dis-

tances between data points in the low-dimension k should be “scaled” versions

of the distances between the same points in the original (unknown) high dimen-

sion. In the ideal case, we would like the two distances to be proportional to each

other. MDS methods are useful also if they do not enforce a strict proportional-

ity relation between the distances in the two spaces, as long as the distances are

highly correlated.

Multidimensional scaling can be computed in a variety of ways. A simple,

though not very computationally efficient way, is to use force-directed layouts.

Consider a graph in which every data point i is a node, and every distance

relation dij is an edge between the corresponding nodes i and j. The edge

stiffness is set to be inversely proportional to the distance dij between its nodes.

Performing a force-directed layout on this graph (Section 11.4.2) will bring points
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Figure 11.31. Computation of projection coordinates in FastMap using only point-wise
distances.

that are highly similar in the high-dimensional space close to each other in the

k-dimensional layout space. In practice, several refinements must be applied

to this basic idea to make it usable. Edges corresponding to very high distance

values are not created, as these have a negligible impact on the layout. Reducing

the number of edges from the theoretical maximum of N2, or in other words

approximating the distance matrix M by a sparse matrix, also considerably

accelerates the layout process. Furthermore, more sophisticated layouts than the

basic force-directed method and more complex distance functions can be used

to obtain a better reflection of the high-dimensional distances in the computed

k-dimensional layout [Williams and Munzner 04].

A different approach is taken by FastMap [Faloutsos and Lin 95]: This simple,

but effective, algorithm constructs a k-dimensional point set using the N × N

distance matrix M only. The main idea of FastMap is simple:

1. Choose the points pi and pj which maximize dij .

2. Project all points pl on the line v = pj − pi to find one coordinate in the

k-dimensional space.

3. Recursively apply FastMap on the projections of pi on a plane orthogonal

to v, to find the remaining k − 1 coordinates.

The key to FastMap is the observation that, to find the coordinate xl of pl along

the line v, we only need to know the distances between the points pi, pj , and pl
(Figure 11.31), using the well-known ‘cosine law’ theorem

xl =
d2il + d2ij − d2lj

2dij
. (11.13)

FastMap is simple to implement and computationally efficient: For N K-

dimensional points to be projected in k dimensions, its complexity is O(kN ).

However, compared to other more recent MDS methods mentioned at the end
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of this section, FastMap achieves a less well-minimized stress cost. For more

details, we refer to the highly readable paper of Faloutsos and Lin [Faloutsos

and Lin 95]. An implementation of FastMap is also readily available.15

Besides force-directed layouts and FastMap, many other MDS algorithms

exist. Spectral decomposition techniques project points along the eigenvectors

having the largest eigenvalues of the distance matrix [Torgeson 65]. Efficient

methods such as LLE [Roweis and Saul 00] and Isomap [Tenenbaum et al. 00,

de Silva and Tenenbaum 03] have been devised, using numerical methods tai-

lored to solve sparse eigenproblems. Isomap is an interesting extension of the

conventional MDS techniques that aims to capture nonlinear relationships in the

dataset. For this, Isomap replaces the input point-to-point distances by an ap-

proximation of the geodesic distance between points given by the shortest path

on a graph created connecting neighbor points in the K-dimensional space with

the original distance as weight. The k-dimensional coordinates are computed via

conventional MDS methods, with calculations of eigenvalues over the distance

relations of the previous step. Landmark MDS [de Silva and Tenenbaum 03] and

Pivot MDS [Brandes and Pich 07] book further speed-ups by applying classical

MDS to a small subset of representative points and projecting the remaining

ones by local interpolation. MetricMap improves upon FastMap by attempting

to perform the entire projection in one step [Wang et al. 99]. We refer the more

mathematically inclined reader to the paper of Platt which shows how FastMap,

MetricMap, and Landmark MDS can be unified in a single mathematical frame-

work [Platt 05].

11.5.4 Projection-Based Dimensionality Reduction

As discussed in the introduction of dimensionality reduction methods, apart from

using the point-wise distance matrix, we can use the original high-dimensional

point coordinates (if available). Compared to MDS methods, the key differ-

ence is that we now assume that we know all K-dimensional coordinates pi =

(a1i , . . . , a
K
i ) of our points. We call the methods using this type of information

projection-based dimensionality reduction methods.

One such method uses the so-called Karhunen-Loèwe transform [Fukunaga 90],

which works as follows:

1. Compute the covariance matrix C of the N K-dimensional points pi (for

the definition thereof, see Section 8.3.2).

15http://www.cs.cmu.edu/∼christos/software.html
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2. Compute the eigenvectors ei of C corresponding to the first k largest eigen-

values λi of C.

3. Compute the projections P (pi) = (q1i , . . . , q
k
i ) as

qli = el · pi, for all 1 < l < k. (11.14)

The intuition behind the above computation is simple to explain: Eigenvectors

corresponding to the largest eigenvalues of C indicate the directions, in K di-

mensions, along which our points pi spread the most. Hence, if we construct our

low-dimensional projections P (pi) by projecting data along these directions, we

preserve the most information encoded in interpoint distances. In other words,

the first axis of our projection plot will show the direction (in AK) along which

our data has the largest variance; the second axis of the projection plot shows

the direction (in AK) along which the data has the second-largest variance, and

so on.

This mechanism has several limitations. First, it is a global operation. The

eigenvectors, or projection directions, are determined from and for the entire

dataset, and thus cannot account subsets of points which have different direc-

tions along which they vary the most. Second, we lose all variation of the data

points along the last K − k eigenvectors, which are not used in the projection.

In practice, the above two aspects imply that eigenvector projection cannot ac-

curately represent point sets which are spread along hypersurfaces of topological

dimension larger than k (see Section 3.1.3 for the definition of topological di-

mension).

The dimensionality reduction technique outlined above is closely related to

the well-known singular value decomposition (SVD) technique known in linear

algebra [Golub and van Loan 89].

11.5.5 Advanced Dimensionality Reduction Techniques

Besides the methods mentioned above, many more sophisticated dimensionality

reduction techniques exist. These methods try to optimize the balance between

scalability (being able to project or embed large datasets consisting of millions of

points) and accuracy (being able to preserve distances and/or neighborhoods).

Below we briefly present several such methods. The aim is to give to the inter-

ested reader pointers to relevant literature as well as to implementations that

can be readily used in practice.

1. Least Square Projection (LSP): The Least Squares Projection [Paulovich

et al. 08] uses a force-based scheme to first position a subset of the input points,
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called control points. The remaining points in the neighborhood of the control

points are positioned using a local Laplace-like operator. Overall, LSP creates a

large linear system that is strong in local feature definition. LSP is very precise in

preserving neighborhoods from the K-dimensional space to the projection space.

2. Part-Linear Multidimensional Projection (PLMP): Both user-driven selec-

tion of the control points and computational performance are issues for LSP. As

such, a series of successors of the general idea of LSP (control point selection

followed by mapping of remaining points) followed to address these issues. Of

those, the Part-Linear Multidimensional Projection (PLMP) [Paulovich et al. 10]

addresses computational scalability for large datasets by first constructing a lin-

ear mapping of the control points employing the initially force-placed control

points. Next, this linear mapping is used to position the remaining points, by a

simple and fast matrix multiplication of the feature point matrix with the linear

mapping matrix.

3. Local Affine Multidimensional Projection (LAMP): Aiming to allow more

user control over the final layout, the Local Affine Multidimensional Projection

(LAMP) [Joia et al. 11] provides a user-controlled redefinition of the mapping

matrix over a first mapping of control points. LAMP also works by defining

control points, which are used to build a family of orthogonal affine mappings,

one for each point to be projected. LAMP has restrictions regarding the number

of dimensions (K) against the number of points (N ). Also, LAMP cannot di-

rectly work with distance relations, i.e., it needs to access the point coordinates.

However, LAMP is a very fast projection method, without compromising the

precision reached, for instance, by LSP.

Implementations: Implementing efficient and accurate dimensionality reduction

techniques is very challenging. Fortunately, several open-source implementa-

tions exist. Among these, we mention the Java-based Projection Explorer (PEx)

[Paulovich et al. 07], and VisPipeline [Paiva et al. 11] frameworks. Both sys-

tems offer a wide variety of optimized projection algorithms, working both with

distance matrices and directly with high-dimensional point coordinates, comple-

mented by several visualization options for interactive projection exploration.

Equally importantly, end users can apply the offered projection tools easily and

without having to dive into their mathematical or implementation details. Both

these tools, and a variety of related software for computing and exploring high-

dimensional data, are available online.16

16http://infoserver.lcad.icmc.usp.br/infovis2/Tools
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(a) point cloud (b) color by class

(c) color by attribute 18 (d) color by attribute 1

Figure 11.32. Exploring the relationship of projections with high-dimensional attribute
values. Different attributes are mapped to color in each image.

11.5.6 Explaining Projections

However useful to make high-dimensional data displayable in 2D or 3D, dimen-

sionality reduction techniques are by themselves not the full solution to under-

standing a given dataset. In this section, we overview the various challenges

related to understanding projection plots. The perspective taken is that of an

end user who requires to know what it takes to effectively gain insight from such

a dataset by using the dimensionality reduction methods presented earlier.

To illustrate this, consider the 2D scatter plot in Figure 11.32(a). The plot

shows N = 2100 points from a K = 18-dimensional dataset which has been
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projected in 2D using LAMP.17 Each point describes a small image block ran-

domly chosen from seven natural outdoor images of different types—sky, foliage,

brickwall, path, grass, cement, and windows. Each block has been reduced to

18 automatically computed attributes that describe statistical image proper-

ties, such as contrast, average hue, average saturation, average brightness, and

amount of edges. Apart from these, one additional attribute (not used in the

projection) describes the class, or type, of image that each block belongs to.

This attribute, which was manually assigned by users, has seven values, since

there are seven image types [Frank and Asuncion 13].

The basic scatter plot in Figure 11.32(a) shows three large point groups. To

further interpret these groups, we need to be able to answer the following types

of questions:

1. How to read the plot? What do the groups mean? What combination of

attributes and attribute values is typical to points in a group (if any)?

2. Do the projections, and ensuing groups, have a precise meaning, or are

they partially determines by limitations of the projection algorithm?

To answer the first type of questions, a first method uses standard red-to-blue

(rainbow) color mapping to show the values of one given attribute at a time

for all projections (Figures 11.32(b–d)). In Figure 11.32(b), we first map the

class attribute. We see that the bottom-right group is nearly entirely orange,

and the left group is nearly fully dark blue. This indicates that points in these

groups are coherent from the perspective of the class attribute—in other words,

points in one of these groups have the same image class. This allows users to

easily explain these groups in terms of the type of data they contain (from a

class perspective). In contrast, the large middle group shows a mixture of five

different colors, showing that it contains points of five different classes, which

could not be separated (into distinct groups) by the projection. Since the class

attribute was not used in the projection, this is a valuable finding—it means that

attributes 1..18, which were used to project data, do correlate very well with the

class attribute. We next explore further to understand which of attributes 1..18

did indeed determine the formation of distinct groups. In Figure 11.32(c), we

color points by the value of attribute 18. We see that the left group is the only

one having high values for this attribute (red points). Hence, the left group, and

17The dataset, known as Segmentation, is publicly available at http://www.ics.uci.edu/
∼mlearn.
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its class value, can be explained in terms of high-values of attribute 18. Next,

when coloring the projection by the values of attribute 0 (Figure 11.32(d)), we

see that colors spread over all groups following a northeast (blue) to southwest

(red) pattern. Hence, we infer that attribute 18, albeit reflected in the positions

of the projected points, does not explain the perceived point groups.

The above method of explaining projections works reasonably well when there

are not too many attributes (low values of K). We can also reduce the number

of images required to show all attributes by mapping more attributes to a single

image, e.g., by using point color, shape, and size. However, for large values of

K, the method is tedious, and relies on the users’ visual memory for correlating

attribute values over the projection. However, the core problem to be solved

is fundamentally hard in the general case, and no simple and scalable solution

exists: We need to show the identity and values of a potentially large number of

attributes over fuzzily defined spatial regions (the groups). Equally important,

we do not know beforehand which attributes or attribute values are important,

so in the worst case the user is required to cycle through all attributes.

A second problem of projections is that the spatial placement of points in

R
k does not have a straightforward meaning. Consider, in contrast, a scatter

plot: Its axes are very easy to explain to any user, as they map one-to-one k

dimensions of the original K-dimensional dataset. In our projections, however,

the screen axes do not have such a clear meaning, but are in fact mixtures of the

original K-dimensional attributes. Second, we cannot assign a uniform meaning

to the direction of the axes, e.g., we cannot directly say that values increase

from left to right and/or from bottom to top, like in a classical scatter plot or

2D function graph. Finally, we cannot easily interpret projection distances in

terms of units of the originalK-dimensional space—or, in other words, we cannot

say what a screen-space unit means in terms of units of the mapped attributes.

These factors make the interpretation of dimensionality reduction projections

challenging beyond the task of telling relative point similarities.

To alleviate such problems, explanatory visualization mechanisms can be

used. These mechanisms annotate a 2D or 3D projection plot with informa-

tion that enables users to revert the mapping from k ∈ {2, 3} dimensions to

the original K dimensions [Broeksema et al. 13]. Figure 11.33 illustrates sev-

eral such techniques. The displayed data consists of 20640 9-dimensional points.

Each point represents a household recorded by the California census of 1990.

Attributes describe various measured parameters of a household, as indicated by

the labels drawn in Figure 11.33. For the projection, we used LAMP here. In

contrast to Figure 11.32, the target space has k = 3 dimensions, so we obtain a

3D point cloud. The explanatory mechanisms are described next.
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Figure 11.33. Explanatory visualization of high-dimensional to low-dimensional axis
mapping. (Image courtesy of Danilo Coimbra, ICMC, University of São Paulo, Brazil.)

Attribute axes: The first explanatory mechanism consists ofK so-called attribute

axes. These are one-dimensional curves, drawn atop of the scatter plot. Each

curve is constructed as follows:

1. We first compute the projection P from our input dataset D; here, we can

choose any desired projection type of the ones we avail of.

2. For each attribute ai, 1 ≤ i ≤ K, uniformly sample the line in AK ranging

from the minimal to the maximal value of ai in D, using S = 100 points

(or a similar large value); call the resulting point-set ai = {a1i , . . . , aSi }.

3. Project all points in the point-sets ai using P as computed in step 1; call

the resulting k-dimensional point-sets ãi.
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4. Compute the angles αi between the vectors linking the first and last point

of each point-set ãi, and the z-axis perpendicular to the screen surface.

We can compute this using vector dot product, that is αi =
(aS

i −a1
i )·z

‖aS
i −a1

i‖
.

5. Draw the resulting point-sets ãi as standard polylines atop of our scatter

plot, using alpha blending with a transparency equal to 1− |αi|.

6. Color a user-chosen axis ãi with the values of its attribute at the sample

points aji , 1 ≤ j ≤ S.

Figure 11.33 shows the result. The attribute axes convey six important in-

sights that help us understand the meaning of the scatter plot, as follows:

• Orientation: The orientation of an axis indicates the direction along which

the variation of its attribute is maximal in the point cloud. In our example,

we see thus that the longitude and latitude attributes vary mainly in the

horizontal plane, while the median house value varies along the vertical

direction.

• Visibility: The opacity value of an axis indicates whether the respective

axis in the 3D plot is parallel to the screen plane or not. Axes which are

parallel to the screen plane, such as longitude, latitude, median income, and

median house value, correspond to attributes whose variance can be read

in our 3D plot from the given viewpoint. Axes which are transparent, thus

not parallel to the screen plane, correspond to attributes whose variance

cannot be seen in our plot from the given viewpoint. This helps users

understand what the plot can, and cannot, show. For instance, users should

not try reasoning about the variance of the #rooms attribute in the plot in

Figure 11.33, since this axis is simply not visible from the chosen viewpoint.

• Length: The length value of an axis indicates how much variance of the re-

spective attribute is visible in the plot. Long axes indicate thus attributes

which have a large variance in the projection, while short axes indicate

attributes having lesser variance. For instance, in our plot, we see that

median house value has the largest variance. Note that length is a combi-

nation of both the actual data variance in AK and the effectiveness of the

chosen projection P . In other words, a short axis may mean either that

the respective attribute has low variance, or that P has “compressed” the

range of that attribute in the resulting projection.

• Angles: The angles between two axes indicate the correlation of their at-

tributes. Large angles, such as between latitude and longitude, indicate
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that the two attributes are not correlated in the dataset. Small angles,

such as between median income and median house value, indicate that the

two attributes are strongly correlated.

• Direction: For the color-mapped axis, the color gradient indicates how its

attribute varies from low to high values. In Figure 11.33, we used a rainbow

colormap for the axis showing the most variance, median house value. We

now see that low house values correspond to points at the bottom of the

plot, and high house values map to points at the top. Thus, we can explain

the vertical plot axis as encoding mainly the median house value.

• Curvature: The curvature of an axis indicates the amount of linearity of

the underlying projection P . In Figure 11.33, all axes are straight lines,

which indicates that P is a linear projection. However, not all projections

are linear. For nonlinear projections, the axes’ curvature helps users in

reading the plot in the sense of following the (curved) directions along

which the atrributes exhibit maximal variance.

Axis legends: Typical end users have difficulties in understanding dimensionality

reduction plots because the x- and y-axes of such plots do not have an explicit,

clear, meaning, as is the case for classical 2D scatter plots or function graphs.

Axes legends alleviate this problem. Figure 11.33 shows three such legends: the

x-axis legend, the y-axis legend, and the z-axis legend. The first two legends

explain how we should read the x and y screen axes, as follows. Each legend

consists of a bar chart, which has one bar for each of the nine attributes of our

input dataset. The x legend bars for an axis i are scaled based on the absolute

angle |αi| between the projected axis ãi and the x screen axis. The y and z

legend bars are computed similarly. For each legend, the bars are labeled by the

names of their corresponding attributes, and sorted decreasingly on their lengths

from left to right.

The axis legends effectively show us the mix of original attributes that each

screen axis depicts. In our example, we see that the y-axis encodes mainly

median house value and, up to a lesser extent, median income. This information

was also visible in the fact that the attribute axes for these two attributes were

parallel. However, the x-axis legend shows us more clearly that the remaining

attributes do not significantly contribute to the screen y-axis. The x-axis, in

contrast, encodes predominantly both the latitude and longitude attributes, and

very little of the remaining ones. As we interactively change the viewpoint for the

3D scatter plot, the axis legends are also interactively updated. This effectively
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helps users in understanding what the meaning of the x- and y-axes in a given

view mean in terms of the original K-dimensional variables.

The small red-green icons under the bar charts indicate the direction of the

attribute variation with respect to the screen axes. A green icon indicates that

the respective attribute increases in the sense of the respective screen axis. A

red icon indicates that the attribute decreases along that screen axis. Looking

at these icons, we can see that median house income increases along the y-axis

(which confirms the earlier finding obtained using color mapping along the same

axis). However, we also see that longitude increases along the x-axis, while

latitude decreases along the same axis—two findings which we could not have

obtained so far.

The z-axis legend, shown top-right in Figure 11.33, shows the amount of

information we do not see in the current view of our 3D scatter plot. Here, bar

lengths show how much an attribute spreads along the z-axis. Since the z-axis

is orthogonal to the screen plane, variations along it are never visible from the

current viewpoint. In our example, we see that households, population, #rooms,

and #bedrooms map well on the z-axis—and thus cannot be seen in the current

2D view.

Combining the above mechanisms, we now can read the plot in Figure 11.33

as follows:

• The studied dataset shows two large concentrations of housing records for

two distinct geographical locations (the two peaks in the scatter plot).

• The spread on median house income is similar for both locations.

• For the entire dataset, median income and house values are well correlated.

• The largest variation in the data occurs for medial house income, followed

by geographical position.

Explanatory visualizations significantly enrich bare scatter plots used to dis-

play projected datasets, by adding information that lets users map back from

the reduced k-dimensional plot space to the original K-dimensional data space.

Additional details on the construction of such visualizations are given in [Broek-

sema et al. 13, Oeltze et al. 07]. However, as the number and complexity of

dimensionality reduction methods grows, the challenge of making dimensional-

ity reduction plots easy to use and widely accepted by the grand public remains

open.
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11.5.7 Assessing Projection Quality

As already outlined at the beginning of the previous section, the effectiveness of

a dimensionality reduction plot resides in two factors: The ease of interpreting

the final low-dimensional plot, and the quality of the projection itself. In the

previous section, we have show how explanatory visualizations can address the

former aspect. In this section, we focus on how we can assess the quality of

projections, with a focus on neighborhood preservation and group interpretation.

Given a general projection P defined as in Equation 11.8, the following ques-

tions are relevant:

1. False neighbors: For a point pi ∈ D and its 2D projection P (pi) ∈ R
k, a

necessary condition for neighborhood preservation is that all points P (pj) ∈
R

k which are close to P (pi) should be projections of points pj which are

close to pi in AK . If not, i.e., we have a point P (pj) close to P (pi) for

which pj is not close to pi, we will wrongly infer from the 2D projection

that pj is close to pi. We call point j a false neighbor of point i. How can

we visually find false neighbors?

2. Missing neighbors: The second necessary condition for neighborhood preser-

vation is that all points pj, which are close to pi in AK , project close to

P (pi) in R
k. If not, i.e., we have a point pj close to pi whose projection is

not close to P (pi), then we will underestimate the set of points similar to

point i. We call such a point j a missing neighbor of point i. How can we

visually find missing neighbors?

3. False and missing group members: An important task in projection visual-

ization is to help users find groups of similar points, such as in the example

discussed in Figure 11.32. For groups, the point-wise problems of false and

missing neighbors generalize to the problems of false and missing group-

members, respectively. That is, given a visual group Γ, i.e., a set of closely

projected points, we want to find if all points located in Γ truly belong to

the group in terms of attribute similarity (no false members). Second, we

want to find if all points that are similar to the group elements in terms

of attributes do indeed project in Γ (no missing neighbors). How do we

visually find false and missing members?

4. Comparing projections: Given two projections P1 and P2 of the same

dataset D, which projection preserves distances and neighborhoods bet-

ter?
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The stress function σ (Equation 11.9) delivers only an aggregated, single

scalar value, for an entire projection. The questions above, however, require

more fine-grained answers. To address these, we can use several visualization

methods, as follows.

Aggregate point-wise error: To begin with, we define the projection error of a

point i with respect to a point j �= i as

eij =
‖P (pi) − P (pj)‖

maxi,j‖P (pi)− P (pj)‖
− dij

maxi,jdij
. (11.15)

Here, dij = ‖pi − pj‖ is the distance between points i and j in AK (Equa-

tion 11.10). Clearly, eij can be estimated for both MDS methods that use only

the distance matrix M , and also for projection-based methods that have access

to the K-dimensional point coordinates. We see that eij ∈ [−1, 1]. Negative

errors indicate points whose projections are too close (thus, false neighbors).

Positive errors indicate points whose projections are too far apart (thus, missing

neighbors). Zero values indicate projections which approximate optimally the

distances in AK .

We next define the aggregate error of a point i as

eaggri =
∑
j �=i

|eij |. (11.16)

For a given point i, eaggri gives the projection error of that point with respect

to all other points. Hence, low values of eaggr show points whose projections

can be reliably compared with most other projections in terms of assessing sim-

ilarity. These are also good candidates for the so-called representatives, or con-

trol points, for multilevel projection methods [Faloutsos and Lin 95, Pekalska

et al. 99, Chalmers 96, Paulovich et al. 08]). Large values of eaggr show points

which are badly placed with respect to most other points. These are good can-

didates for manual projection optimization [Silva et al. 12, Paulovich et al. 11].

Figure 11.34(a) shows the aggregate error for the LAMP projection of the

Segmentation dataset shown in Figure 11.32, using rainbow color mapping. Here,

eij ∈ [−0.67, 0.35]. Rather than showing ei only at point locations, we used here

Shepard interpolation to construct a continuous signal between the points (Equa-

tion 3.47). The advantage is that the visualized image exhibits lower frequencies

and is also space-filling, thus it allows us to visually locate outliers easier than

when visualizing a color-coded point cloud. The image shows that the aggregate

error is relatively smoothly distributed over the entire projection, and also that

this error is not zero (dark blue) for almost any significant zone in the image.
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(a) (b)

(c) (d)

(e) (f )

false
neighbor

high-error
projections

Figure 11.34. Visualizing aggregate projection error (a), false neighbors (b), and missing
neighbors shown with color mapping (c,d) and edge bundles (e,f). Markers in images
(c–f) indicate selected points.

The blue areas close to the plot border show that points here are relatively better

placed than points in the middle of the plot. We also locate a few small red spots

(marked by circles in the image). These are high-error areas, which indicate that
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the respective few points are badly projected with respect to most other points.

Summarizing, Figure 11.34(a) explains the distribution of the aggregated stress

value σ at a higher level of detail.

False neighbors: However useful to assess the error distribution and find badly

versus well-projected points, the aggregate error view does not tell us the error

nature, i.e., if it is caused by false neighbors, missing neighbors, or both. Let us

next consider false neighbors. To visualize these, we proceed as follows. First,

we create a Delaunay triangulation of the projected points (for details on the

algorithm, see Section 8.3.1). This gives us the closest neighbors of each projected

point in all directions, i.e., the most important false-neighbor candidates for that

point. Next, we color each triangle-edge linking points i and j with the value

efalseij = |min(eij , 0)|. (11.17)

That is, we only consider errors due to false neighbors. Finally, we render the

resulting image, convolved with a Gaussian filter in order to make the colored

pixel-thin triangle edges thicker, and to make the overall image smoother, thus

easier to examine visually.

Figure 11.34(b) shows the resulting visualization. The triangulation edges

show the immediate neighbors of a point, and their color shows if the point and

its neighbors are in a false-neighbor relation (red edges) or not (blue edges).

We notice an overall trend in the image—edges go from blue at the projection

border to warm colors inside. This shows that the projection has more freedom

to accurately place points in low-density regions (border), but “compresses”

distances in high-density areas (interior) where there is little space to optimally

place points. Intuitively, this phenomenon resembles a pressure that increasingly

builds up from the projection border towards its interior. We also see a few red

outliers. The zoomed detail in Figure 11.34(b) shows one of them. The red

star-like pattern shows that the point at the center is too closely placed to all its

neighbors. However, when looking at the neighbors themselves, we see that they

are well placed with respect to all their subsequent neighbors except the center

point. Hence, we conclude that the star center is the false neighbor.

Missing neighbors: Besides false neighbors, projection errors (and subsequent

misinterpretations) can also be caused by missing neighbors. Visualizing this by

a space-filling method similar to the aggregate error or false neighbors described

above is, however, less straightforward. Indeed, the missing neighbors of a pro-

jected point can be anywhere in the projection, and are actually by definition

far away from that point. Hence, to locate such neighbors, we need to visualize

a many-to-many relation between far-away projected points.
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A first approach to this task restrains the scope of the question: Given a

single projected point P (pi), show which of all other projected points are missing

neighbors for P (pi). For this, we can proceed as follows. First, we let the user

select P (pi), by means of direct brushing in the visualization. Next, we compute

the error

emissing
i = max

j �=i
(eij , 0). (11.18)

Next, we visualize the signal emissing using the same Shepard interpolation tech-

nique as for the aggregated error discussed above.

Figures 11.34(c,d) shows the resulting visualization, for two selected points,

one close to the upper border of the central point group, and the second on

the left border of the left point group. In both cases, the missing neighbors

visualization shows an image where the color smoothly varies from dark blue

around the selected point to a fringe of warm colors far away from that point.

The blue color indicates that the largest majority of points are not projected too

far from the selected point. The warm colors show that points on the border of

the projection and far away from the selected point are placed too far from that

point. The reason for this lies in the implicit constraint of projection methods

which need to both pack points tightly (to avoid missing neighbors) but also

need to leave a certain amount of space between neighbor points (to avoid false

neighbors).

A second more explicit way to show missing neighbors is shown in Fig-

ures 11.34(e,f). For a selected point P (psel), we construct a graph G = (V,E)

whose nodes are all projected points P (pi) and edges link P (psel) with all P (pi).

The values eij are added as edge weights. Next, we draw G using a general-graph

edge bundling algorithm, such as the ones presented in Section 11.4.2. Finally,

we color edges based on their weights using a rainbow colormap, sort them based

on the same weight, and draw them in this order with a transparency equal to

the same weight. The background of the visualization shows the error emissing ,

drawn using a grayscale colormap, so that it does not interfere with the edge

bundle colors. The resulting image effectively “point” the user from the selected

point towards its missing neighbors. The colors and transparencies of the bun-

dles highlight the selected point’s most important missing neighbors. We now

see, more explicitly than in Figures 11.34(c,d), that the missing neighbors of

the selected point in the central cluster “fan out” to the left border of the left

cluster, while missing neighbors of the selected point in the left cluster fan out

to the top of the central cluster.

Group members: To be able to reason about false or missing group members,

we first have to define what a group is. Simply put, a group Γ is a set of
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(a) (b)

Figure 11.35. Visualizing missing group neighbors for two groups in a projection.

projections which a user perceives as “belonging together.” Practically, this

means that all points in Γ are significantly closer to each other than to points

not in the group; that Γ has a minimal size (we do not want to consider very

small groups containing just a few points); and that the group forms a compact

visual shape which stands out in the visualization as being separate from the

surrounding shapes. Clearly, detecting groups based on such conditions is a

largely heuristic process. Such groups can be found by a mix of techniques such

as upper thresholding of the projections’ spatial density signal [Ester et al. 96],

projection clustering [Comaniciu and Meer 02], or manual interactive selection

of points.

Once a group has been selected, we can show the actual group as follows.

First, we compute a density map of all points in the group, using, e.g., the ker-

nel density estimation method explained in Section 11.4.2 for graph splatting.

Next, we threshold this density to obtain the border of the group. Finally, we can

render the image points located inside the group in a given color, or construct

a luminance profile that emphasizes the group border by using the generalized

shaded cushion technique described earlier for image-based edge bundles (Sec-

tion 11.4.2). This technique is illustrated in Figure 11.35 for a selection of three

groups. The added value of this technique is that we only modify the luminance

channel of the final image, thus we can use hue to show additional data.

Next, to show missing group members, we compute a scalar signal emissing
Γ

that gives, for all points in a group Γ, the amount of missing group members at

each point

emissing
Γ (P (pi)) =

{
|minP (pj)∈Γ(eij)| if P (pi) /∈ Γ

0 otherwise
(11.19)
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Figures 11.35(a,b) shows the visualization of the scalar field emissing
Γ for the

bottom-right, respectively left, groups. Points in each group are rendered as red

circles. Atop of the scalar visualization, we also show the missing neighbors, using

the edge bundling technique described earlier in this section—the only difference

is that we now construct edges from all points in a group to all other points,

rather than from a single selected point. The color image in Figure 11.35(a) is

overall blue. This means that, from the perspective of the bottom group, seen as

a whole, no points are projected too far away. In other words, the bottom group

has no missing members. The edge bundles in the same image strengthen this

view—they show only a very few connections from the bottom group to other

groups. This matches the intuition conveyed by the projection which shows that

the bottom group is quite well spatially separated from the other groups. For

the left group, the situation is different. First, the color image in Figure 11.35(b)

shows a few hot spots into the central group. These indicate points which are

too far away placed from the left group, seen as a whole. The edge bundles

shown in the same image strengthen this view. We see now quite a number of

connections from the left group to the central group, which indicate that several

points in the central group should have been placed closer to the left group.

Comparing projections: The techniques presented above allow us to assess the

quality of a given projection P applied to a given multivariate dataset. However,

in practice, users may have difficulty in choosing the optimal projection, from

the wide palette of available projection techniques, to visualize a given dataset.

Different projections, or even applying the same projection algorithm but using

different parameters, may lead to significantly different results, and thus different

insights in the data.

To explore this issue, we can use the introduced techniques to compare dif-

ferent projections Pi. Figure 11.36 illustrates this, by comparing four different

projections for the Segmentation dataset. Several insights can be gained from

this figure. First and foremost, we see that the exact embedding of the 2D pro-

jections is not identical for the four considered projections. Second, we see that

the aggregate error (Figure 11.36, top row) is quite similar for all projections.

Also, the increasing trend of the aggregate error from the projection boundary

to its center is visible for all projections. Although the exact spatial distribu-

tion of aggregate error is not identical, there are no significant differences here

that would let us state that one projection is superior to the others. The same

observations can be made for the false neighbors visualizations (Figure 11.36,

middle row). The missing neighbors plots (Figure 11.36, bottom row) is built

slightly differently than the one shown in Figure 11.34(e,f). Here, rather than
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Figure 11.36. Comparison of LAMP, LSP, PLMP, and [Pekalska et al. 99] projections
for the Segmentation dataset. Color mapping is normalized so that the same color
indicates the same error value for all projections. Images courtesy of Rafael Martins
and Rosane Minghim, ICMC, University of São Paulo, Brazil.

showing all missing neighbors of a given user-selected point, we show the 5%

most important missing neighbors for all points, in terms of the error emissing

(Equation 11.18). The missing neighbors plots tell us a different story. By look-

ing at the size and color of the depicted bundles, we see that LSP and Pekalska

have many more important missing neighbors than PLMP, while LAMP has the

fewest missing neighbors. In all cases, we see bundles that connect borders of

the projected point-set. This confirms that all these projections focus on the

accurate placement of close points and dedicate less attention to the placement

of far-away points. We also see that the missing neighbors are spread differently

over the data: For LAMP, there are no bundles connecting to the bottom-right

point group. This shows that all points in this group are dissimilar from all other

points. In contrast, LSP, PLMP, and Pekalska all have bundles connecting to

this group. This shows that these projections place this group too far away to

the remaining points.
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The visualizations presented in this section show us that dimensionality re-

duction techniques, although being a powerful instrument for showing similari-

ties and correlations in large multivariate datasets, are complex tools whose use

requires care and expertise: First, the abstract nature of projections requires ad-

ditional interpretation efforts. Second, any projection will, in practice, generate

approximation errors in the resulting visualization. Finally, different projection

techniques or parameter settings will generate different visualizations for the

same input dataset. Users should be aware of all these aspect before interpret-

ing a dimensionality reduction visualization to draw conclusion about its input

dataset.

11.6 Text Visualization
As explained in Section 11.2.3, text is an important attribute in infovis datasets.

The question is: How can we visualize text? To answer this question in detail,

let us first consider the types of information contained in a text document. This

information can be structured into three categories: content, structure, and

metadata. The content describes the information contained in the text itself.

The typical way to comprehend this information is apparent to the reader who

reads these very lines: Text content can be understood by reading it. On the

next level, structure characterizes how the text is organized hierarchically into

several levels of abstraction, such as paragraphs, sections, chapters, or elements

of a document collection. The table of contents of a book can be seen as a basic

form of visualization of the document structure. However, getting further insight

into large document sets requires different visualization methods beyond plain

reading, as the task now is to comprehend the document organization rather

than its minute contents. Finally, metadata describes all types of information

related to the text that are not contained in the text itself. Typically, metadata

stores information about the document itself rather than information about the

document content. Metadata includes cross references, keywords, and indexes,

as well as information on the document author, publisher, and publication date.

Visualization methods that target metadata should provide insight in the meta-

data itself, but also ways to correlate metadata with the document content and

structure.

A different dimension of text visualization concerns the origin of the data.

All types of text-related information (content, structure, and metadata) can be

already present in the document to visualize, or can be computed using various

text-analysis methods in order to support a certain task. For example, document-
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retrieval systems, such as the engines internally used by the Google search tool,

analyze documents to generate information used for classification and indexing.

This process falls within the data-enrichment step of the visualization pipeline

(see Section 4.1.2). Text analysis is an extremely wide topic, including techniques

that range from neural networks and statistical analysis to lexical, syntactic, and

semantic analysis and natural-language processing.

Just as for other visualization applications, methods for visualizing text

should be scalable. An efficient text-visualization technique should support the

user in understanding the structure and contents of a text document, as well

as in finding specific details, in a shorter time than one would need to read the

entire document.

Several visualization methods have been devised to cope with the tasks of

quickly, scalably, and flexibly getting insight into text documents. These visual-

izations differ as a function of both the type of document, e.g., narrative text or

software source code, and the type of task, e.g., getting a structural overview,

comparing several documents or several versions of the same document, or an-

swering precise, application-specific questions. In the following sections, we shall

illustrate a few examples of text visualization methods encountered in practice.

11.6.1 Content-Based Visualization

A natural way to visualize a text document is to display its content using the

document’s “natural” layout, which is used when reading and printing the doc-

ument. In addition to the document content, its structure and metadata can be

shown. Since the visualization’s main target is the document content, we call

these methods content-based visualizations.

Figure 11.37 illustrates how such techniques are used in the Adobe Acro-

bat document management system [Adobe Systems Incorporated 07] to view an

electronic PDF version of this very book. Several design elements that are often

used in text-visualization tools are visible in this image. The main view shows

the document content (text and images) in full detail (a). The level of focus

here is a single page. The document context of the page in focus, consisting

of the neighboring pages, is shown by means of a set of thumbnails (b), which

are essentially downscaled versions of the renderings of the actual pages. The

thumbnail of the page in focus is shown outlined in red. This context-and-focus

visualization lets the user see all the details on the page in focus and also ex-

amine the context of the information in focus via the thumbnails. Navigation in

the document can be done both linearly, e.g., by scrolling the main or thumbnail

views, but also in a random-access fashion, e.g., by clicking on the page of in-
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Figure 11.37. Visualization of an electronic (PDF) version of this book in the Adobe
Acrobat system. Four design elements are emphasized. (a) The document’s detailed
content. (b) A page-level overview. (c) The document structure. (d) Annotation
metadata.

terest in an overview displaying all thumbnails together. The structure view (c)

shows the hierarchical, tree-like structure of the document, consisting of several

levels of containment: pages, paragraphs and images, embedded objects, lines

of text, down to the individual characters. This view is basically a browser for

all syntactic elements in a PDF document and helps answer several technical

questions about these elements. Finally, annotation views (d) can be used to

both create and display user annotations on the document. Two such annota-

tions are shown in Figure 11.37: a graphical red mark drawn by a user and a

deleted piece of text, marked in blue, both with side boxes displaying annota-

tion comments, author, and date. The annotation view allows one to create and

visualize metadata that supports tasks such as collaborative document creation

and review.

The main power of the text visualization described here resides in its sim-

plicity. All views use simple and familiar two-dimensional layout and mapping

techniques, such as the direct rendering of the document pages, at full or dimin-

ished size, and the tree-browser metaphor. The semantics of colors are also very

intuitive. These represent either actual data in the document or user choices in
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the annotation process. Combined with simple navigation and interaction, these

techniques can be quickly learned and used by a wide range of users.

11.6.2 Visualizing Program Code

In addition to plain narrative text, many other types of text documents exist.

An important example in infovis is source code, written by humans but essen-

tially targeted to be read and interpreted by computer tools. Source code is the

fundamental asset of the software industry. “Our civilization runs on software,”

said Bjarne Stroustrup, the creator of C++, the most widely used program-

ming language nowadays [Stroustrup 04]. Efficiently understanding source code

is, hence, an important problem in software engineering. Modern systems have

increasingly large sizes as measured in lines of code (LoC). New software com-

ponents and libraries are created every day and distributed for use, while old

ones are continuously modified. New programming languages and methodolo-

gies emerge, so that software systems are often written using a combination of

these. Developer team composition also changes dynamically, with new people

joining existing projects and people familiar with the software leaving. Given

this situation, it is not surprising that a major part of the effort invested in soft-

ware development is dedicated to understanding source code. Studies over 20

years, from Standish to Corbi, show that understanding software code accounts

for more than half the development effort [Standish 84, Corbi 99].

Given this high prominence and complexity of source code in the software

industry, it is natural to consider how visualization can aid its comprehension.

Source code has several particular properties, including the following:

• Exact: Source code is written in programming languages that have strictly

defined grammars with nonambiguous semantics.

• Large-scale: The source code of modern software systems has tens or thou-

sands up to millions of lines of code.

• Relational: Source code contains many kinds of relations, such as the types

of variables, members and parents of classes, dependencies of packages,

clients of services, and interfaces of modules.

• Hierarchical: Source code contains many types of hierarchies, such as the

package-file-class-method-statement hierarchy or hierarchies of data struc-

tures.
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• Heavily attributed: Source code entities have many attributes that express

their semantics, such as access rights for interface members, comments that

decorate specific statements, and signatures of functions.

Visualizing software source code is at the crossroads of software and document

visualization. On one hand, the targets of such visualizations are defined by

the software engineering context. On the other hand, source code is typically

written and maintained by humans as text documents. Hence, it is reasonable

to consider visualizing source code using the actual layout of the code text.

However, displaying the text itself does not scale to more than a few hundred

lines of code. If one is interested in discovering and correlating facts spread

over a large code base of several tens of thousands of lines or more, we need a

visualization capable of displaying all this code at the same time.

This can be achieved by using the same text-mapping method as in the table

lens (see Section 11.3) and document thumbnails (see Section 11.6.1) visualiza-

tions. The principle is to “zoom out” and reduce each line of code to one pixel

line, keeping the same line layout. This allows us to display several files con-

taining tens of thousands of lines of code in total on a single screen. The zoom

level is now too small to show actual program text. Instead, the pixel lines can

be colored to depict various attributes of interest of the source code.

Figure 11.38 shows a C source code visualization based on the previous model.

This visualization is constructed with SeeSoft, one of the first tools to use the

technique of mapping text lines to pixel lines [Eick et al. 92]. The image shows

several tens of files containing over five thousand lines of code in total. Color

shows code age for each line: red shows recently modified lines, while blue shows

lines unchanged for a long time. This type of visualization shows several facts

about the code base. First, we get an overview of the relative sizes of all files in

the project. Second, we quickly locate stable pieces of code that have not been

changed for a long time, as well as recently changed code. Let us further make

the plausible assumption that code fragments changed nearly simultaneously

contain related functionality. By correlating such fragments, we can thus obtain

insight in how cross-cutting concerns are distributed over the entire code base.

Figure 11.39 shows the use of the same technique to gain a different type

of insight into C++ source code. Just like in the visualization shown in Fig-

ure 11.38, the layout of the original source code is used in a zoomed-out fashion.

However, instead of mapping every code line to a pixel line, we now map syn-

tactic structures of the target language (C++) to their geometric outlines. The

process works as follows. The user selects a number of syntactic structures of

interest, such as functions, methods, classes, macros, includes, and conditional
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Figure 11.38. Visualization of C source code using the SeeSoft tool. Color shows the
code age. Red depicts recently modified code, while blue shows code unchanged for a
long time. The smaller window in front shows detail for a region in focus in the form
of actual source code text.

and jump statements, and assigns custom colors to them. For every such struc-

ture present in the source code, its outline is computed. This is a shape identical

to what one would see in a text editor when selecting the text contained in the

respective structure. Every outline is next rendered using a generalization of the

shaded cushions used for depicting treemaps (see Section 11.4.1), colored with

the color of the respective syntactic construct.

The source code visualized in Figure 11.39 is part of the VTK class library

[Schroeder et al. 06]. Each column depicts a separate file. In this example,

the leftmost column shows one source file, whereas the other columns show all

headers included by this file. Using this technique, we can discover several facts.

The visual nesting of the shaded cushions, combined with the cushion colors,

shows the nesting of the syntax structures. For example, in the lower part of

the leftmost file, we detect a complex code fragment consisting of conditional

(cyan) and iterative (light purple) structures nested several levels deep within

a method (yellow). The headers (all columns except the leftmost one) have

a different composition. In each header, we notice a similar comment block

(green) at the beginning, followed by one large class declaration (orange). After

this declaration, several short methods (yellow) are present. Closer inspection
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Figure 11.39. Visualization of C++ source code using shaded cushions. Color shows
the occurrence of selected construct types. The cushion luminance profiles emphasize
the syntactic nesting of structures.

reveals that these are inline methods of the previous class. The large number

of green lines contained in the class declaration indicate that the headers are

generously commented. We see no tall shaded cushion contained within the

class declarations, which indicates that there are no complex inline methods or

nested classes declared within such a class scope. Finally, constructs that can

indicate potential bad coding style, such as C macros, are colored red. This lets

us see that there are few macros within the considered code, with the exception

of a relatively large macro block concentrated in the class declaration contained

in the third header, i.e., fourth column, from left.

The source-code visualizations discussed here are, together with the table lens

and cushion treemap techniques, an instance of the dense pixel display method.
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The main advantages of showing source code in this way is the high scalability

of the method and its intuitiveness given by using the original code layout.

However, in contrast to the graph-based visualizations of source code discussed

in Section 11.4.2, relations such as dependencies between code elements are not

explicitly shown. In practice, a combination of dense pixel displays for showing

code details and graph-based methods to show relational information can be a

highly effective solution to the quest of understanding source code.

11.6.3 Visualizing Evolving Documents

Text documents are not immutable. Documents are continuously changed, ei-

ther by individuals working in teams or by automated computer tools. Getting

insight into the evolution of a text document can sometimes be as important,

or even more important, than understanding the information contained in the

latest version of that document. Consider again the example of the set of text

documents represented by all source code files in a software project. These doc-

uments are typically organized in a hierarchical fashion as files in folders. For a

medium or large project, there are thousands of files containing millions of lines

of code, continuously modified by tens of programmers over periods of many

years.

For such a code base, several questions arise in the software industry in

practice:

• How can we get insight into the overall structure?

• How can we see changes undergone by a specific document?

• How can we see who changed what?

• How can we see how or whether changes to different documents relate with

each other?

• How can we see whether there is a trend in the performed changes, and if

this trend is positive or negative?

These questions are typical infovis questions. They cannot be answered by a

single, precise query, and even if this were possible, the answer is so information-

rich that it justifies the need for a visual presentation. Answering such questions

efficiently and accurately is important for the software industry. Software is

modified as part of four types of maintenance activities: perfective (improving

the product), corrective (removing bugs), preventive (change to prevent foreseen
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problems), and adaptive (changing environments, e.g., porting to another plat-

form). The costs of maintenance have steadily increased in the last three decades

from a mere 30% to more than 80% of total software development costs [Pfleeger

et al. 05]. Of the maintenance costs, at least half are dedicated to the process of

understanding the software code base [Standish 84, Corbi 99].

Software evolution visualization methods are an increasingly popular answer

to the questions and problems. The main goal of these methods is to capture, in

a visual presentation, the dynamics of the changes undergone by software as it

evolves in time. Given its dynamic aspects, it is tempting to consider visualizing

software evolution in terms of an animation of the source code content, structure,

and metadata. However, even small-scale projects contain such a large number

of data elements and changes that an animation becomes too complex to follow.

A more effective way to convey the evolution dynamics is to map the time axis

to a spatial dimension, so that the evolution can be graphed using appropriate

layouts.

How can we visualize the evolution of a software project? First, we must make

several choices as to what the unit of evolution is, based on the task and goals

to be achieved. For example, in a software project, these units can range from

specific lines of code, functions, or files, to the complete set of files of the entire

project. After the unit of evolution have been chosen, we must define what we

consider to be a change. For example, if our unit of interest is a file then we can

say it has changed whenever an editing operation modifies its contents. However,

this can produce a large set of change events, of which not all have the same

importance. If we are interested in high-level modifications, such as the removal

of bugs from code or additions of new features, then only a subset of the file

content modifications will be perceived as actual change events. Next, we must

decide how to measure change. Several possibilities are available here, ranging

from a boolean measure (the file has been changed or not) to a continuous change

metric (a certain percentage value of the file has changed). Besides the line or

file level, we can measure the change of different aspects of software, such as

structure, object-oriented design quality, or maintainability. To do this, we must

first map these aspects to measurable quantities called software metrics [Lanza

and Marinescu 06], followed by a measurement of the metrics’ changes. Again,

the right choice here is determined by the task at hand.

After the unit of change, change definition, and change metric have been

established, the actual visualization must be designed. The challenge here is to

find the best visual mapping of change units and change values that effectively

and scalably conveys insight into the software evolution questions. Just as for

the other information visualization cases discussed in the earlier sections, a good
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Figure 11.40. Visualization of the evolution of the VTK software project. Files are
shown as horizontal pixel strips colored by file type. File strips are stacked on the
vertical axis in the order they appear in the directories. Yellow dots indicate the file
modification events.

answer is a combination of understanding of the task and user group, intuitive

and scalable visual representations, and simple but effective user interaction.

One possibility to visualize software evolution is shown in Figure 11.40. This

visualization depicts the evolution of the VTK code base [Schroeder et al. 06]

during the period from 1994 to 2001. The code base contains more than 2700 files

modified by 41 developers, also called authors. The raw data for visualization is

acquired by analyzing the Concurrent Versions System (CVS) software repository

containing the VTK code project using the freely available visualization tool

CVSgrab [Voinea 12]. The visualization in Figure 11.40 has a simple structure.

A two-dimensional layout is used, where the x-axis represents the time during

which the code has changed, and the y-axis the files in the project. Every file

in the code base is mapped to a horizontal pixel line, partitioned in several

segments. These pixel stripes can be stacked in several orders along the y-axis.

In Figure 11.40, the order follows a depth-first traversal of the code base. Hence,

pixel strips close along the y-axis correspond to files situated at a small distance

in terms of their directory paths.
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Each segment of a given file strip represents the file between two consecutive

modifications, or what in the terminology of software repositories is called a file

version. The color of each file strip, or each segment, shows an attribute of the

respective file or file version. In Figure 11.40, each file strip is colored to show its

type, as indicated by the file extension in the color legend below the image. The

pixels separating consecutive file segments are colored in yellow. These pixels

indicate the location in time of the file modification events, or commit events in

the terminology of software repositories. Along the left side of the main view, a

metric bar shows the project activity, measured as number of modifications per

file, encoded using a rainbow colormap. A different metric bar is shown atop

of the main view, displaying the 1994–2001 timeline using a ruler metaphor and

the so-called release dates when new software releases have been made available

to the public. The releases are displayed by rendering shaded cushions with

different hues over the intervals between consecutive releases.

Analyzing the project structure. This image tells us several facts about the evo-

lution and composition of the VTK code base. Looking at the colors, we see

that the VTK code base consists of roughly 40% Python files, 40% C and C++

source files, 15% C/C++ headers, and a small number of files of other types.

We also see two large compact groups of Python files that have been committed

at almost the same moments and are close along the y-axis. Closer inspection

reveals that these are Python examples, which have been committed in bulk to

the repository after being presumably developed offline. Looking at the horizon-

tal release bar at the image top, we find that no system release was performed

before 1996, even though the repository exhibits activity since 1994. The release

frequency after 1996 shows at least one release per year with no clear increasing

or decreasing trend, which suggests a stable project and development process.

The 1996 release also coincides with the introduction of the first large amount

of Python code in the repository. Looking at the vertical activity bar and the

commit yellow dots, we notice that the Python files are among the least modi-

fied, even though they come in large numbers. In contrast, C and C++ sources

show a high activity, which suggests intense maintenance activity.

Analyzing activity. Figure 11.41 shows a different visualization scenario. Here,

the files have been sorted along the y-axis in decreasing order of activity, as

outlined also by the colors in the vertical activity metric bar. Each file version is

colored to show the ID of the author who committed that version to the reposi-

tory, i.e., who was responsible for the respective file changes. This color mapping

lets us quickly discover who were the most active authors. The respective authors
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Figure 11.41. Visualization of author contributions in the VTK software project. The
file versions are colored by the author who modified them. File strips are stacked on
the vertical axis in decreasing order of activity, with the most modified files shown at
the top.

are listed in the color legend below the image. We discover a correlation between

the authors and the project structure and evolution. During the first third of the

monitored period, until roughly one year after the first release, schroede (purple)

was clearly the main contributor. His activity gets gradually interleaved with

that of martink (orange). Starting from the second half of the project, and espe-

cially during the last third of the time line, will and lorensen (green) also become

important contributors.18 Vertical color patterns, such as the one ascribed to

hoffman (blue), indicate project-wide changes executed by the same person at

the same time. These are typical signs for important code refactoring or code

beautification activities, such as a change in the copyright notice contained in

all source files.

18It is interesting to consider these findings in the light of the names of the three main
authors of the VTK toolkit: Will Schroeder, Ken Martin, and Bill Lorensen.
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Analyzing growth. Figure 11.42 shows a different type of analysis. Here, the

considered software repository contains an industrial project maintained by 32

developers over the period 2007–2013. The repository contains 27678 files of

which 9925 files are written in C#, the main development language for this

project. The files are now sorted vertically on creation date, with oldest files

placed at the bottom of Figure 11.42(a) and newest files at top. The emerging

envelope curve shows an exponential growth. Assuming this trend persists, this

is a sign for possible maintenance challenges and need for additional maintenance

workforce in the near future. File revisions are colored by author ID, similarly

to Figure 11.41. Figure 11.42(b) shows an aggregated view of the changes. For

each month during the considered time period, a histogram displays the relative

numbers of file revisions committed by all authors to the repository. Histogram

segments are colored by author ID. All histograms are scaled so that their re-

spective heights allow comparing the total number of file commits for all months.

The resulting visualization shows a number of variable-width bands evolving in

time, one band per author. The total thickness of the band set at a point in

time indicates the activity intensity. We see, for instance, two peaks in the end

months of 2010 and 2012, which indicate high-activity periods. The relative

thickness of an author’s band indicates the evolving contribution amount of that

author. We see that the “light blue” has significant contributions to the over-

all project for its entire duration. Since end 2010, a second important author

emerges—shown by the thick pink band. The same insight can be obtained by

looking at the colors in Figure 11.42(a). However, the aggregated visualization

shows this information more compactly and effectively.

The aggregated display of histogram-based metrics over a set of time moments

is a popular technique for showing the evolution of a distribution over time. The

same technique, called theme rivers, is used in a different context to show the

evolution of topics of interest in a set of documents over time [Havre et al. 02].

Visualizing quality metrics. An immediate question asked by stakeholders in soft-

ware maintenance is whether there are more factors indicating potential mainte-

nance problems besides the code size increase discovered using the visualization

in Figure 11.42. One way to answer this is to study the dynamics additional

metrics. Figure 11.43 shows two such metrics—average size of a source code

file in lines-of-code (a) and average complexity of a C# method, measured by

the well-known software engineering cyclomatic metric [Lanza and Marinescu 06]

(b). Since these are simple scalar functions of time, we display them using clas-

sical bar charts, showing the evolution of these metrics in time. For each chart,

we also display a histogram (in the insets) showing the number of file revisions,
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Figure 11.42. Visualization of growth and author contributions in a software reposi-
tory.

for the entire project duration, having specific values of code size and complex-

ity. This is done by dividing the ranges of these metrics in equal-size intervals.

Each interval is shown by a color-coded icon using a rainbow colormap. For each

interval, we show a horizontal bar indicating he number of file revisions taking

metric values in that interval.

Figure 11.43(a) shows that the average file size does not sharply increase

over the project duration, but fluctuates around 100 lines of code per file. Simi-

larly, Figure 11.43(b) shows that the average complexity for a method is stable

around the value 2, and actually has a decreasing tendency. Both file size and

code complexity histograms show a monotonic decrease of number of files and

average method complexity with file size, respectively. Correlating these find-

ings with those from Figure 11.42, we can conclude that, although the amount

of code increases in time, the average difficulty of maintaining individual code

components such as functions and files stays constant. As such, an increase in

maintenance effort will most likely come from newly added files rather than from
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Figure 11.43. Visualization of code quality metrics evolution over time.

existing files. This is a better situation than if both overall code size, and size and

complexity of the average code fragments, would increase, in which case main-

tenance effort would increase in line with the worsening quality of the average

code fragments.

Even though the previous findings are not exhaustive, they illustrate well

the power of visualization. Obtaining the insight described previously about

the evolution of the two presented repositories took less than ten minutes per

repository, and involved studying two images and no complex user interaction or

parameter setting. Obtaining a similar level of insight into the same repositories

would have clearly taken considerably longer using classical methods, such as

browsing the repository via text-based web clients such as ViewVC [ViewVC 07]

or Tortoise [TortoiseSVN 07]. These observations about the effectiveness of vi-

sual analysis in terms of quickly discovering interesting facts in large datasets

hold also for the table lens visualization (see Section 11.3), the map-of-the mar-

ket and file system treemap visualizations (see Section 11.4.1), and the dense

pixel source code visualizations (see Section 11.6.2). Visualizations that focus

on relational data, such as the various graph and tree layouts described earlier,

are arguably less effective. They take more time to configure and interpret the

results, and are less scalable. All in all, this outlines once more the difficulty of

efficiently and effectively visualizing relational data, which is one of the grand

infovis challenges.
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11.7 Conclusion

In this chapter, we have provided a succinct and inherently limited incursion

in the field of information visualization, or infovis. Given the explosion of data

sources in the modern society, infovis is a rapidly growing field where applications

and techniques emerge literally on a daily basis. Infovis inherits the same main

goal from scientific visualization of providing insight to users into complex data.

Yet, the infovis field is confronted with a number of specific challenges: The task

of making abstract data visible, the challenge of high dimensionality, a richer set

of attributes including noninterpolable types such as text and relations, and the

quest for effective interaction mechanisms with the information space. Last but

not least, many end users of infovis applications are not engineers or scientists

who have a formal mathematical training, but individuals who require insight

in an intuitive, easy-to-digest manner, and want fast and clear answers to their

domain-specific problems.

As already mentioned, infovis is an extremely large field, and this chapter

can only give a narrow overview of its developments. There are several good

books on information-visualization topics, ranging from more theoretical works

on human perception and cognition to more practical ones that overview several

types of information visualization applications.

For a good start in exploring the various facets and applications of infor-

mation visualization, the book by Card, Shneiderman, and Mackinlay [Card

et al. 99] is a must. This book presents a collection of articles that discuss

many aspects of the concrete use of infovis in various application areas, and also

an overview of the main design elements of the infovis exploration process and

applications.

A different, but equally useful reference is the book by Colin Ware on percep-

tion for design of infovis applications [Ware 04]. In this book, many issues related

to the way humans perceive information by means of structure, color, shape, and

other visual attributes are discussed. This material can help considerably in the

process of choosing the right type of visual encoding and interaction techniques

when designing an infovis application.

A recent book in the field by Robert Spence also targets the task of teaching

how to design effective information-visualization applications [Spence 07]. To

help readers understand the various, often subtle, issues that influence the effec-

tiveness of an infovis application, a large set of applications are discussed in the

text, along with a number of videos that illustrate these applications in action.

This book is especially well suited as a teaching material for undergraduate and
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master’s level courses in a wide range of study directions, as it assumes only a

minimal mathematical background.

For guidelines and examples on how to design a good graphical display for

visualizing information, we refer to the classic books by Tufte [Tufte 90, Tufte 97,

Tufte 01], Bertin [Bertin 83], and Cleveland [Cleveland 85]. These books contain

a wealth of information, in particular elements of graphics design, that can be

directly used by the practitioner in the fields of infovis and scivis in the design

of effective visualizations. An interesting element related to this field is the work

of Mackinlay on the automated design of visualizations [Mackinlay 86].

For the technical topics of graph layout and drawing, a comprehensive start-

ing point is the classic book by Di Battista et al. [Di Battista et al. 99]. This book

covers both the theory and implementation of a large number of graph-drawing

techniques. From a more practical perspective, the book edited by Jünger and

Mutzel [Jünger and Mutzel 03] provides a comprehensive review of graph layout

and graph-drawing software tools, and is a good guide for the practitioner in

the field who is interested in weighing the pros and cons of using one of the

many graph-drawing software systems. A survey of graph-visualization tech-

niques from an information visualization perspective is provided by Herman et

al. [Herman et al. 00].

To get acquainted with the extensive research in the graph-drawing area, one

of the best ways is to browse the proceedings of the International Symposium of

Graph Drawing, which have been published in Springer’s series of Lecture Notes

in Computer Science since 1992.

Software visualization is one of the fastest growing and most diverse branches

of information visualization. For the readers interested in exploring the field of

software visualization, a good starting point is the book by Diehl [Diehl 04],

which presents an overview of several established techniques in software visual-

ization such as source code visualization, algorithm animation, and the use of

graphs in software visualization. In a recently published second book [Diehl 07],

Diehl further explores the field of software visualization by presenting newly

emerging topics such as visualizing the behavior and evolution of software sys-

tems. This book provides a comprehensive overview of the state-of-the-art in

software visualization at the current moment.

As a final word: Just as for scientific visualization, the best way to learn and

understand the theory and techniques behind infovis is to apply them, first as

a user of the many software tools available, and next as a developer of existing

or new techniques. Only this path, where one combines the roles of critical end

user and dedicated application developer, can make one fully understand the real

problems, challenges, and the true meaning of the phrase “effective solution” in

visualization.
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Conclusion

WE have arrived at the end of our incursion into the field of data visualiza-

tion. In the previous eleven chapters, we have presented a number of the

most important theoretical and practical ingredients involved in the design of

visualization methods and applications. As we have seen, designing an efficient

and effective data visualization application is a complex process. This process

involves representing the data of interest, processing the data to extract relevant

information for the problem at hand, designing a mapping of this information

to a visual representation, rendering this representation, and combining all this

functionality in an easy-to-use application.

Visualization is a highly dynamic field. As the complexity, diversity, and size

of datasets generated by current applications increase, new methods and tools

emerge every year at a high pace in order to provide more effective and efficient

ways to understand such datasets. As these methods and tools mature and be-

come better known by the public, they are applied to an increasing range of

application domains and eventually find their way into established commercial

products. If we look at the different subfields of visualization, such as scientific

visualization, medical visualization, information visualization, and software vi-

sualization, to name just those that have been discussed in this book, we see a

number of evolution trends and patterns.

Scientific visualization. Scientific visualization (scivis) is arguably the oldest and

most mature branch of data visualization. It is based on a firm mathematical

foundation, has its roots in the experiments done in engineering and physics,

and has taken advantage of extensive field testing in many types of applications.

549
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The complex simulation applications, in conjunction with which scivis has been

developed and has grown as a field, have triggered the development of highly

scalable data manipulation and rendering techniques. New scivis methods and

techniques keep being created in response to the generation of new types of

data, such as produced by diffusion tensor imaging (DTI) scanning techniques.

There exist also a number of old problems, such as the visualization of time-

dependent, three-dimensional flow fields, that are not yet considered to be fully

solved. Although new scivis methods emerge on a constant basis, it is fair to say

that a considerable number of techniques concerning visualizing scalar, vector,

and tensor fields have been designed and tested to a level satisfactory for direct

and efficient application in practice. This is reflected in the large number of

stable and established scivis software systems, both commercial and open source

(see the appendix). For further information on the latest advances in scientific

visualization, we recommend the reader consult the several available books that

provide more specialized overviews of the state-of-the-art of the field [Nielson

et al. 06, Post et al. 03a, Hansen and Johnson 05], as well as the collection of

proceedings of the IEEE Visualization conference.

Information visualization. Information visualization (infovis) shows a somewhat

different picture. Infovis is a newer field, roughly half the age of scivis. Al-

though the last 15 years have witnessed many developments in infovis, there are

still several unsolved problems. It can be argued that infovis is, in some sense,

a broader field than scivis, as it deals with data of more diverse structure and

attribute types. Due to this diversity, infovis data cannot be easily fit into a

uniform mathematical framework such as in the case of scivis. Infovis applica-

tions are also more diverse than scivis ones, and target a wider public that goes

beyond the engineering and scientific audiences. But probably the most diffi-

cult and challenging aspect of infovis is the need to make inherently abstract,

multidimensional data entities visible such that insight is effectively conveyed

to the user. Many techniques for visual data representation and interaction are

already widely accepted and used in infovis applications, such as tree and graph

layouts, treemaps, scatter and parallel coordinate plots, and focus-and-context

navigation techniques. Along with these, we witness a sustained stream of new

techniques for visual data representation and interaction being created in this

field. Given the growing interest and need for understanding multidimensional

abstract datasets, we expect many additional techniques to be created and re-

fined in the coming years. For additional information, we refer to the collection

of proceedings of the IEEE Infovis conference.
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Synergies and challenges. Scientific and information visualization are not two

clearly separate branches of the same field that evolve in parallel. In recent

years, an increasing number of researchers have shown interest in applying info-

vis techniques and principles to the design of applications targeting scivis data.

Many infovis techniques become interesting in a scivis context in situations when

one needs to visualize multidimensional datasets, or in cases when the actual spa-

tial data distribution is less important than understanding the relations between

the data values themselves. Moreover, studies performed originally in an infovis

context on perceptual issues such as the usage of color, shape, and texture to

convey data, or interaction techniques for large information spaces, are immedi-

ately relevant in the context of designing effective scivis applications. Conversely,

scivis techniques have also been applied in the context of infovis applications.

An example is a number of hierarchical layout methods for very large graphs

based on numerical techniques such as algebraic multigrid [Harel and Koren 00,

Koren et al. 03] that were originally developed in the context of accelerating

numerical solvers for partial differential equations for typical scientific simula-

tions [Trottenberg et al. 01, Griebel and Schweitzer 06]. We foresee an increasing

number of cross fertilizations between the two fields of visualization, driven by

the need to visually represent and navigate increasingly complex, abstract, and

large datasets coming from multidisciplinary applications.

However, despite all developments in the field of visualization, or maybe just

because of the rapid proliferation of a wide variety of visualization techniques and

applications, there exist also signals that such developments need to be pursued

with care and without forgetting the main goals and purpose of the visualization

field. A strong message was sent in 2004 by one of the pioneers of the field

in a paper entitled “The Death of Visualization—Can It Survive Without Cus-

tomers?” [Lorensen 04]. The title conveys the main message quite clearly: The

visualization discipline needs to focus on providing solutions to concrete prob-

lems raised by customers in the field. This requires detailed understanding of

the various specifics of the customer, such as the problems to be solved, accepted

ways of working, and the complementary techniques beyond the scope of visual-

ization that are to be integrated to yield a complete, usable solution. Without

this tight and dynamic feedback from the customers, there may be a risk for

visualization to become an academic discipline with a diminished impact in the

real world. Similar reflections appeared in the context of the actual effectiveness

of visualization used in the context of software engineering [Reiss 05].

The way forward. Given the previous messages, what is a good path for visual-

ization? A number of answers to this question are presented by another pioneer



552 12. Conclusion

in the field in his recent paper, “The Value of Visualization” [van Wijk 05].1 We

attempt below to summarize the main points outlined in the above messages.

Efficiency and effectiveness: It is increasingly acknowledged that there is a grow-

ing gap between the providers (researchers) and the consumers (users) in the

field. Following an economical model, a visualization method, technique, or tool

is considered to be useful if it is effective, i.e., it answers a concrete question or

helps solving a concrete problem of a given user, and efficient, i.e., it does so

with a limited usage of resources, including but not limited to computational

power, cost of equipment, and time spent by the user. Although not a direct

answer, this provides a set of guidelines for assessing the value of a visualization

technique or tool, whether existing or newly developed, as well as of an image

produced by such a tool or technique. If using the technique or tool leads to

taking decisions that demonstrably save costs and/or lead to increased profits,

then the respective technique or tool is useful.

Measuring value: Since visualization is to be effective and efficient, we need ways

to measure this. This implies that we must know a number of elements. First

and foremost, we must be able to qualitatively, but also quantitatively, describe

the problem to be solved or questions to be answered. This involves having a

good amount of domain-specific knowledge, or working together with domain ex-

perts [Lorensen 04, van Wijk 05]. Second, we must be able to quantify the cost

of using a certain visualization method. Measuring the actual computational

resources involved is relatively easy and can be done by using various bench-

marks involving processor speed, memory, and throughput. Measuring the user

effort needed to gain a certain amount of insight is more difficult, and can be

reliably done only by performing extensive user studies. However difficult and

time-consuming, the need for such user studies at all points of the visualization

process (requirement gathering, method design, testing, validation, and concrete

usage) is increasingly viewed as a mandatory component of the design of a good

visualization. However, performing user studies is not a guarantee for acknowl-

edging success. Designing a truly significant user study is hard, time-consuming,

and expensive. Second, typical user studies only measure certain facets of a vi-

sualization application, such as the relative efficiency or effectiveness of a given

visualization technique. Measuring the end-to-end efficiency or effectiveness of

embedding visualization solutions in a given workflow requires longitudinal stud-

ies that take years or more. To date, probably the best (indirect) way to measure

1An update of this message is given, by the same author, in the capstone presentation of
the IEEE Visualization 2013 conference, available online at http://vimeo.com/80334651.
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the success of a given visualization technique is by counting how many users, or

application developers, have adopted the respective technique. Recent salient ex-

amples hereof, to mention just a few, are treemaps (Section 11.4.1) and bundled

edge layouts (Section 11.4.2).

Integration: Visualization can only become accepted when developed and de-

ployed for, and together with, its users. On one hand, this involves working

together with domain experts and end users to design and validate the pro-

posed techniques and tools. On the other hand, such visualization techniques

and tools rarely work only by themselves. Integration of visualization meth-

ods, either for presentation or exploration needs, with complementary methods

used for automated analysis such as data and pattern mining, can provide much

stronger solutions than using either of these methods in isolation. This situa-

tion is reflected by the recent developments in the new field of visual analytics,

which advocates the combination of visualization and data-mining techniques

for integrated problem solving [Thomas and Cook 05]. Implicitly, visual ana-

lytics acknowledges the fact that a “pure” visualization application is, by itself,

not a solution to a set of complex questions involving intricate processes and

workflows, and large datasets. Rather, visualization can be seen as the binding

agent that combines data analysis operations and techniques in an easy-to-use,

scalable, and insightful end solution. Identical signals are voiced, for instance,

by the program comprehension community [Koschke 03].

Explorers vs. practitioners: There is a subtle, but crucial, difference between

applying proven visualization solutions and designing new solutions. This book

mainly focuses on the former: Given a dataset whose structure captures a well-

understood problems, we focus on how the data can be depicted in the best way

so that end users grasp the phenomenon behind the actual measurement. How-

ever, the space of existing datasets (and associated problems and types of users)

grows literally daily. As such, an open challenge is how to transfer the design

and implementation knowledge acquired for existing problems and cases to newly

emerging problems. This is a tricky and challenging path, as similarities between

the new and the known many be sometimes genuine but other times superficial.

Finding out where existing tools and techniques can apply directly, where they

need adaptation, and where fundamentally new “custom point” solutions are

required, is probably one of the greatest challenges in designing successful vi-

sualizations. To address this challenge, the four-layered approach of Munzner

provides a starting point [Munzner 09]: (a) Characterize the task and data in

the parlance of the problem domain; (b) abstract the previous in operations and
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data types (much like when designing a software application); (c) design visual

encoding and interaction techniques to map the data and tasks, respectively;

and (d) design algorithms that implement the previous techniques efficiently

and scalably.

Specialists vs. generalists: Who are the end users of visualization applications?

Unfortunately, this question is rarely easy to answer, even for the same task,

problem, and dataset. Users can range between savvy professionals who under-

stand (the implications of), e.g., data interpolation, multiple dimensions, and

data approximations, such as described in Chapter 3, and professionals who

may have a deep understanding or their business domain but (very) limited

mathematical or computer science backgrounds. Obviously, designing effective

visualizations for these two user classes should take different paths. However, at

some point, we (and the users too) should acknowledge that the current problems

and datasets that we try to approach by visualization are inherently complex. As

such, a certain amount of training to master the sophistication of visualization

tools is simply unavoidable, if we truly want these tools to deliver us the insights

captured by our datasets. Salient examples hereof are given by the multivariate

visualizations discussed in Section 11.5. Deciding whether the price to pay for

such training is worth it, is part of the first step in the assessing of value versus

price outlined above.

As a last word, we conclude by repeating our statements from Section 1.3

of the introduction: Visualization is a dynamic, growing field located at the

crossroads of design, technology, science, and art. We consider our goal to be

accomplished if we have, with the material presented in this book, awakened the

interest, taste, and ability of the reader to further explore this exciting domain

by studying the existing literature, but, first and foremost, by trying to use and

design visualization methods and tools to solve concrete existing and upcoming

problems.
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Visualization Software

ONE important element of the five-dimensional classification model for visu-

alizations presented in Section 4.3 was the medium, or type of drawing

canvas that the rendering takes place on. There are many examples of early

visualizations that use paper as the medium [Spence 07]. Modern architectural

blueprints can also be seen as visualizations that use a printed medium. Yet, by

far the largest class of visualization applications described in this book have one

thing in common: they use the computer screen as a medium.

Using the computer to do data visualization is a natural choice from several

points of view. First, many visualization scenarios are, by their very nature, ex-

plorative. This makes interactive visualization tools the best instruments for such

cases. Second, the datasets to visualize usually come in electronic form. Third,

the large amounts of data, or dynamically changing datasets, make computer-

based visualization tools again the natural choice.

In this appendix, we provide an overview of a number of issues concerning

visualization software. First, we discuss how visualization software can be clas-

sified from an architectural perspective (Section A.1). Next, we provide a list

of several representative visualization systems for scientific, imaging, and infor-

mation visualization data, in order to illustrate the various flavors of systems

available to practitioners.

A.1 Taxonomies of Visualization Systems
Visualization software tools are central to creating successful visualizations. Be-

sides the provided functionality, such systems have also to cover several non-
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functional requirements in order to be effective. Relevant attributes in the latter

group include the following:

• Efficiency: The software should produce visualizations quickly. This can

mean minutes for some applications, but fractions of a second for others,

such as interactive applications.

• Scalability: The software should be able to handle large datasets within

given performance and resource bounds.

• Ease of use: The software should provide an easy-to-learn-and-use interface

for its intended user group.

• Customizability: The software should allow a simple and effective way to

customize it for specific tasks, scenarios, problems, or datasets.

• Availability: The software should be available to its intended user group

under specific conditions (e.g., license and platform).

Modern visualization applications are complex software systems containing

tens or hundreds of thousands of lines of code organized on several layers. With

respect to this layered application architecture, the users can have different roles.

One such classification identifies three roles: end users, application designers, and

component developers [Ribarsky et al. 94]. End users are the final customers of a

visualization application, and use it to obtain insight into a given dataset, typi-

cally by means of customized user interfaces that support domain-specific tasks.

Such applications are also known as turnkey systems. Application designers

construct turnkey systems for the end users, typically by assembling a set of pre-

made software components and providing them with the needed configuration

and user-interface elements. Finally, component developers program software

components that implement visualization algorithms and datasets, and provide

these to application designers as ready-made visualization software packages or

libraries.

From this perspective, visualization software can be classified into three

classes: libraries, application frameworks, and turnkey systems. Libraries pro-

vide application programmer interfaces (APIs) that contain the data types and

operations that constitute the basic building blocks of a visualization applica-

tion, such as the ones presented in Chapter 3. At the other end of the spectrum,

turnkey systems provide custom user interfaces, presets, and configurations de-

signed to support specific tasks. Application frameworks fall between these two

extremes. They encode a set of fixed domain-specific rules, operations, and
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functions as a backbone to which an open set of components can be added. The

components use the backbone to interact and provide functionality at a higher

level, and in a more compact way, than bare libraries. Several mechanisms exist

for adding components to the framework and composing them in. A popular

design metaphor presents the components to the application designer in a vi-

sual, iconic form. Applications are constructed by interactively assembling these

iconic component representations. This allows nonprogrammers to quickly and

easily prototype new applications without programming. The AVS, ParaView,

and VISSION applications illustrated in Figures 4.6, 4.9, and 4.8 in Chapter 4

are examples of application frameworks.

In the next sections, we give several examples of visualization software sys-

tems used in practice. Instead of using an architectural taxonomy into libraries,

frameworks, and turnkey systems, we have opted for a domain-centered tax-

onomy into three classes: general scientific visualization systems (Section A.2),

medical and imaging systems (Section A.3), and information visualization sys-

tems (Section A.5). Given the size of the field and the rapid rate at which new

software is produced, the list of systems presented here is definitely not exhaus-

tive and limited in choice. However, we believe that this list can serve as a

useful starting point for the interested reader in search for a given visualization

software tool or component.

A.2 Scientific Visualization Software
The systems listed in this section fall in the category of general-purpose scientific

visualization software. The target of such systems is primarily the visualization

of datasets defined as two- and three-dimensional grids of various types with

scalar and vector attributes, such as created by scientific simulations or data-

acquisition processes. The main application domains targeted are engineering,

mechanics (both in research and in the industry), and weather and geosciences.

However, some of the systems provide also support for medical imaging, tensor

visualization, and information visualization.

The Visualization Toolkit (VTK)

Type: Class library (written in C++)

Availability: Open source

Address: http://www.kitware.com/vtk/
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Description: VTK is a set of class libraries written in C++. Classes come in two main
flavors: datasets and algorithms. Dataset classes range from low-level
containers, such as lists and arrays, to full-fledged uniform, rectilinear,
structured, and unstructured grids. Several hundred algorithm classes
provide grid manipulation, slicing, interpolation, contouring, stream-
lines, image processing, polygonal and volume rendering, and informa-
tion visualization techniques for graphs and table datasets. VTK is
arguably one of the leading data visualization libraries at the moment.

Utilization: Applications are built by assembling dataset and algorithm class in-
stances into a pipeline. This is done either via the native compiled
C++ API or its wrappings in interpreted languages, such as Python,
Java, Tcl, and recently also .NET. The basic VTK building blocks offer
a wide functionality. Yet, constructing a complete visualization appli-
cation, and even more so extending VTK with one’s own algorithms,
requires a fair amount of programming effort and knowledge of the VTK
API and its programming paradigms.

MeVisLab
Type: Turnkey system/application framework

Availability: Restricted open source (written in C++)

Address: www.mevislab.de/

Description: The MeVisLab system can be used as an end-user tool for processing
and visualizing scientific datasets. Its main operation mode is very sim-
ilar to AVS/Express, IRIS Explorer, and SCIRun (described below). A
visual editor allows assembling a dataflow network from existing compo-
nents available in a number of application-specific libraries. Component
parameters can be controlled by customized GUIs or by direct interac-
tion in the available 2D and 3D viewers. One of the main strengths
of MeVisLab is the huge number of available components, provided by
the core software itself, third-party community developers, but also the
integration of VTK, ITK, and Open Inventor visualization and graphics
libraries within a single framework. As such, MeVisLab’s functionality
covers extensively scientific visualization, volume/medical visualization,
and image processing. Several components, such as volume processing
and volume rendering, benefit from optimized GPU implementations.

Utilization: MeVisLab operates mainly as an end-user system. The application de-
sign freedom is slightly smaller than in systems such as AVS/Express
or IRIS Explorer, but higher than in ParaView or MayaVi. Carefully
designed user interfaces and a comprehensive documentation make the
system easy to learn and use, and especially suited for educational, rapid
data exploration, or demonstration scenarios. Modules can be added via
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a plug-in mechanism, and are actively contributed by the open source
community. MeVisLab comes with mainly two license types. The free
license offers unrestricted use for research and academic purposes, but
a restricted set of features. The paid license is further split into a full-
feature variant for nonprofit organizations, and a full-feature variant for
commercial usage.

AVS/Express
Type: Application framework

Availability: Commercial

Address: www.avs.com/solutions/express/

Description: AVS/Express is an application framework for development of high-end
scientific visualization solutions. AVS/Express provides more than 800
visualization building bricks (algorithms) that cover scalar, vector, and
tensor visualization on several types of grids, much like VTK. Several
extensions of AVS/Express provide support for parallel processing and
high-end virtual-reality visualizations. Some extensions also target in-
formation visualization (OpenViz toolkit), operational industrial moni-
toring (the PowerViz toolkit), and scientific presentation graphics (the
Gsharp toolkit). A snapshot of the AVS tool in action is shown in Fig-
ure 4.8.

Utilization: Applications are built by assembling premade components into a pipeline,
somewhat similar to the VTK paradigm. This can be done programmat-
ically in C or C++, or interactively, via a point-and-click visual appli-
cation designer. The visual editor allows rapid application prototyping,
user interface construction, and application steering. The AVS/Express
components are less fine-grained than VTK classes, for example.

IRIS Explorer
Type: Application framework

Availability: Commercial

Address: http://www.nag.co.uk/welcome\ iec.asp

Description: IRIS Explorer is an application framework for development of high-end
scientific visualization solutions. Its user group and philosophy is quite
similar to AVS/Express. The provided visualization functionality cov-
ers application domains as varied as life sciences, chemistry, medical
imaging, geology, financial modeling, and aerospace engineering. IRIS
Explorer builds its versatility on top of several major software com-
ponents, such as the well-known Open Inventor 3D and ImageVision
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graphics libraries and the Numerical Algorithms Group (NAG) numeri-
cal libraries. IRIS Explorer is particularly attractive for users who wish
to combine numerical simulation code with visualization facilities.

Utilization: IRIS Explorer provides a visual application builder based on a dataflow
application architecture, much like AVS/Express. Modules can be de-
veloped in C, C++, and FORTRAN, but also in a proprietary scripted
language called SHAPE, which offers an easier way to manipulate com-
plex n-dimensional datasets. Modules are next visually assembled in
so-called maps, which are essentially dataflow networks.

SCIRun
Type: Application framework

Availability: Open source

Address: http://software.sci.utah.edu/scirun.html

Description: SCIRun is an application framework developed for the creation of sci-
entific visualization applications. SCIRun is very similar in aim and
scope to AVS/Express. It provides a set of modules for scientific data
visualization that can be connected into so-called networks, following a
dataflow application architecture. SCIRun has been used to construct
visualization applications for several domains such as finite element nu-
merical simulations, (bio)medical imaging, and computational steering.

Utilization: Similar to AVS/Express, SCIRun allows applications to be constructed
visually, by editing the dataflow network, or programmatically. Once
constructed, applications can be packaged into so-called PowerApps.
These are dataflow networks provided with custom user interfaces into
turnkey applications that facilitate specific exploration scenarios. Sev-
eral such PowerApps are available for different domains, such as segmen-
tation (Seg3D), tensor visualization (BioTensor), volume visualization
(BioImage), and finite element problems (BioFEM). All in all, SCIRun
is a mature environment that covers most needs and requirements of the
users of a scientific visualization framework.

ParaView
Type: Turnkey system/application framework

Availability: Open source

Address: http://www.paraview.org/

Description: The ParaView system can be used as an end-user tool for visualiz-
ing scientific datasets. The main operations for data filtering, selec-
tion, mapping, and rendering are provided, such as slicing, isosurfaces,
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streamlines, and interactive viewing. ParaView provides an intuitive
and simple graphical user interface that allows one to both prototype
a visualization application and set its various parameters interactively.
ParaView is built on top of the VTK class library. The user interface
layer is written in the Tcl/Tk scripted languages. Most of the illustra-
tions used in this book were created using ParaView, unless otherwise
specified in the text.

Utilization: ParaView operates mainly as an end-user system. The application de-
sign freedom is considerably less involved, but also easier to learn, than
AVS/Express, for example. ParaView makes an excellent system for
learning the basics of scientific visualization without having to be a
programmer. Only the core VTK functionality is exposed in the user
interface. However, developers can add new modules to the ParaView
user interface using a mix of Tcl, C++, and XML wrappers.

MayaVi
Type: Turnkey system/application framework

Availability: Open source

Address: http://mayavi.sourceforge.net/

Description: The MayaVi system is an end-user tool for visualizing scientific datasets.
Its architecture, provided functionality, and intended user group are very
similar to ParaView’s. MayaVi is also built as an interactive front-end
on top of the VTK class library. However, in contrast to ParaView,
MayaVi uses Python as a scripted (interpreted) language to bind user
interface functions to the compiled C++ libraries.

Utilization: MayaVi operates mainly as an end-user system, similar to ParaView.
The user interface is structured differently. A relatively greater emphasis
is put on executing operations by writing Python commands at a user
prompt than via the user interface itself. The user interface exposes
more of the VTK implementation details and is relatively lower-level
than the one of ParaView. Overall, although MayaVi and ParaView are
quite similar in intention, we find ParaView easier to learn and use and
more mature than MayaVi.

A.3 Imaging Software
In this section, we list a number of imaging software systems. By “imaging,” we

refer to several functionalities related to the manipulation and visualization of

2D and 3D image datasets. Such datasets occur frequently in medical practice
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as the output of the various scanning technologies, such as computed tomogra-

phy (CT) and magnetic resonance imaging (MRI). Image datasets can contain

scalar, vector, and tensor data. Imaging operations cover a wide range of tasks,

such as basic data handling and manipulation, basic image processing, image

segmentation and registration, shape recognition, image visualization, and vol-

ume rendering. Just as for the other types of software systems listed in this

appendix, it is not possible to cover all aspects and variants of such systems, so

we limit ourselves to a small selection of representative systems.

The Insight Toolkit (ITK)
Type: Class library (written in C++)

Availability: Open source

Address: http://www.itk.org/

Description: ITK is a set of class libraries written in C++. The main functionality
targeted by the ITK toolkit is divided into three categories: image pro-
cessing, segmentation, and registration. As such, ITK does not provide
visualization (rendering) and user interface facilities. However, ITK can
be combined with other toolkits, such as VTK, in order to construct
complete visualization applications.

Utilization: The software structure of ITK bears a number of similarities to VTK,
which is not surprising given the fact that a large number of common or-
ganizations and people have been jointly involved in the development of
both toolkits. ITK comes with a considerable amount of documentation
in the form of books, courses, online material, examples, and demos.
Also, the source code of several medical imaging applications built on
top of ITK is available for downloading from the ITK site. However,
just as for its older cousin VTK, using ITK to construct an imaging ap-
plication requires a nonnegligible amount of effort, given the sheer size
and complexity of the toolkit APIs.

3D Slicer
Type: Turnkey system/application framework

Availability: Open source

Address: http://www.slicer.org/

Description: 3D Slicer is a freely available, open-source application framework for
visualization, registration, segmentation, and quantification of medical
data. 3D Slicer supports a wide array of tasks, ranging from the in-
vestigation and segmentation of volumetric CT and MRI datasets to
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providing the basic mechanisms for more complex applications, such as
guiding biopsies and craniotomies in the operating room and diagnostic
visualizations. 3D Slicer can handle scalar, vector, and tensor data at-
tributes. In particular, several functions for visualizing diffusion tensor
images, such as principal component analysis, tensor color coding, ten-
sor glyphs, and hyperstreamlines are supported. 3D Slicer is supported
by a large number of organizations, and is used in a large number of
research projects, as well as in clinical studies and actual applications
in the medical practice. Several images created with the 3D Slicer tool
are shown in Section 7.6.

Utilization: 3D Slicer has an architecture consisting of an end-user front end and a
framework that manages a set of application libraries. The front end pro-
vides user interfaces and direct mouse-based manipulation of the data,
such as picking, probing, and interactive streamline seed placement.
The application framework allows one to add new plug-ins in order to
provide custom-developed functionality. The 3D Slicer architecture was
designed to facilitate adding a wide variety of plug-ins, ranging from
standalone binaries (executables and shared libraries) to modules based
on the VTK and ITK toolkits and even shell, Tcl, and Python scripts.
Although this makes learning the software architecture of 3D Slicer more
complex than that of other toolkits such as VTK or ITK, it also makes
3D Slicer more flexible in interfacing with a broad spectrum of third-
party software components.

Teem

Type: Turnkey/library

Availability: Open source (written in C)

Address: http://teem.sourceforge.net/

Description: Teem is a set of coordinated libraries representing, processing, and vi-
sualizing scientific raster data. Teem provides functions that support a
wide range of operations on n-dimensional raster data (uniform grids)
of m-dimensional attributes. The functions of Teem are provided as a
set of standalone executables designed much like UNIX filters, which
are parameterized by command-line options. The generic data model of
Teem, together with the modular decomposition of operations in terms
of several filters, allows many complex operations on image volumes to
be specified easily and compactly. The set of basic operations provided
by Teem include convolution, slicing, resampling, interpolation, statis-
tics, principal component analysis for tensors, color mapping, volume
rendering, and tensor glyph visualizations. Several images created us-
ing the Teem software are shown in Section 7.5.
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Utilization: Data-processing and visualization tasks are typically written as shell
scripts that construct and execute a dataflow pipeline by cascading the
Teem basic filters. This is the easiest and most rapid way to use Teem
to produce visualizations. If desired, Teem can be also used in terms of
libraries providing APIs. Teem is not end-user software. As such, it does
not provide user interface or interaction functions present in complete
visualization applications. However, its generic, modular, and coherent
API design allow such applications to be built on top of it. For example,
the SCIRun and 3D Slicer applications integrate the functionality of
Teem to provide high-level imaging capabilities.

ImageJ

Type: Turnkey

Availability: Open source (written in Java)

Address: http://rsbweb.nih.gov/ij/

Description: ImageJ is an application conceived for the easy processing of 2D images.
Inspired by classical 2D image manipulation programs, ImageJ offers a
wide set of basic image processing operations, such as contrast enhance-
ment, smoothing, sharpening, denoising, edge detection; advanced im-
age processing such as segmentation and manipulating stacks of 2D im-
ages, image sequences, or separate channels of the same image; and com-
puting various image statistics and measurements, such as histograms
and image calibration. Written in Java, ImageJ is optimized for the
efficient processing of large images, using multithreading.

Utilization: In typical end-user mode, ImageJ offers its processing capabilities via
GUIs and a range of direct selection and manipulation tools. Basic func-
tionality is extendable via a relatively easy-to-use plug-in Java interface.
As such, hundreds of third-party plug-ins has been developed for ImageJ
for both general-purpose image processing but also for specialized ma-
nipulation of various types of microscopy, biology, and medical images.
Basic operations can be composed in so-called macros by using a built-in
scripting language. Given the rich set of available plug-ins, ImageJ is a
very competitive alternative to MATLAB for 2D image processing.

Binvox

Type: Turnkey utility

Availability: Open source (written in C/C++)

Address: http://www.cs.princeton.edu/∼min/binvox
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Description: Binvox is a set of command-line utilities for the conversion of 3D polyg-
onal meshes to volumetric formats. The main utility of this toolset
is binvox, a program for converting polygonal meshes in a variety of
formats (such as Stereo Lithography (STL), Stanford Polygonal File
Format (PLY), Object File Format (OFF), Virtual Reality Modeling
Language (VRML), and Drawing Interchange Format (DXF)) to 3D bi-
nary uniform voxel volumes. Conversion works best for closed orientable
meshes. The output volumes are available in several formats, such as
raw binary, VTK, Heritable Image Processing Format (HIPS), and Mim-
icking Intelligent Read Assembly (MIRA). Apart from voxelization, the
toolset also provides a tool for extracting curve skeletons from binary
volumes (thinvox) and a tool for converting between a number of pop-
ular mesh formats (meshconv). While the mesh conversion features are
less powerful than those provided in related software such as MeshLab,
the voxelizer binvox offers a very easy to use, robust, and efficiently im-
plemented, way to convert a wide range of 3D meshes to binary volumes
up to 10243 voxels.

Utilization: binvox is offered as a set of command-line, UNIX-style, utilities that
read, process, and write mesh and voxel files. Command-line options
are simple and easy to learn and use. As such, these tools can be easily
integrated in third-party visualization applications or pipelines. The
source code of the toolkit is quite compact, platform independent, and
easy to read. This allows one to easily add extra input or output formats
and/or integrate it in more complex applications, if needed.

OpenVDB
Type: Class library

Availability: Open source (written in C++)

Address: http://www.openvdb.org/

Description: Open Volumes with Dynamic Topology, or OpenVDB, is a class library
that supports the efficient representation and manipulation of very large
voxel volumes. Designed in mind for handling very high resolution sparse
volumes, OpenVDB provides a set of sophisticated data storage, index-
ing, and manipulation operations that allow the processing of 3D voxel
volumes of thousands of voxels cubed or more. Operations are provided
for creating volumes from a variety of mesh and point cloud formats,
reading voxel volumes from third-party file formats, and processing vol-
umes via level set operations, computational solid geometry (CSG) op-
erations, mathematical morphology, and surface advection and track-
ing. Apart from these, operations are also provided for procedurally
compositing volumes and computing various differential quantities on
volumes (divergence, Laplacian, curl, and distance transforms). Results
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can be exported to both voxel, point cloud, and mesh representations.
Support is also included for processing time-dependent volumes, which
allows coding various physical simulations that require volumetric do-
main representations.

Utilization: The main operation mode of OpenVDB is similar to VTK (described
above): Users write the intended volume processing scenario in as a
C++ program that calls the required functionality provided by Open-
VDB classes. Results can be visualized by a number of viewer compo-
nents provided in OpenVDB itself, or exported to various point cloud
file formats. Similar to VTK, this offers a large freedom in building spe-
cialized scenarios, but also requires a non-trivial learning curve. While
the current focus of OpenVDB is to provide the lower-lever infrastruc-
ture required to build end-user applications for volume processing with
a focus on volumetric simulations, and less so for interactive volume
visualization and exploration, the evolution of OpenVDB will arguably
make it easier to use for more general volume processing and volume
visualization tasks.

A.4 Grid Processing Software
In this section, we overview several software systems that address the general

task of processing grids. Under the grid denomination, we include all discrete

representations of spatial domains which are formed by vertices connected by

various cell types. Following the domain modeling terminology introduced in

Chapter 3, we consider here software tools that process discrete representations

of 2D curved surfaces (mesh processing tools), unorganized point sets, and uni-

formly sampled 3D volumes (voxel processing tools). Given the wide variety of

such tools, the focus is here on tools which implement a comprehensive set of

typical operations present in grid processing such as resampling, reconstruction,

and filtering, rather than on more specialized tools that focus on a narrower set

of operations and/or grid types.

MeshLab
Type: Turnkey system

Availability: Open source (written in C and C++)

Address: http://meshlab.sourceforge.net/

Description: MeshLab is a general-purpose turnkey system for the analysis, process-
ing, and visualization of 3D polygonal meshes. Data can be imported
from mesh files in a variety of formats (such as Stanford (PLY), 3D
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Studio (3DS), Alias/Wavefront (OBJ), OFF, X3D, and VRML). Both
meshes including vertex and cell data, and unorganized point clouds
with no connectivity information can be processed. MeshLab includes a
large variety of processing operations, including but not limited to mesh
cleaning, repairing, simplification, refinement, smoothing and fairing,
and computing quality metrics. For point clouds, several algorithms are
provided for normals estimation, surface reconstruction, filtering, and
registration. MeshLab is continuously extended with recent reseach-
grade algorithms via a plug-in mechanism. This makes MeshLab one
of the best starting points for applying and/or comparing recent mesh
processing algorithms. However, given the rapid pace of development
of such algorithms, not all algorithms included in MeshLab have fully
optimized or entirely robust implementations. Also, a certain amount
of literature study and training is needed to understand the various
parameters of the included algorithms.

Utilization: MeshLab can be used much like a traditional image editor. After load-
ing mesh data from files, users can apply any of the provided algorithms
in immediate mode, examine the results in a built-in viewer, and re-
peat the process if desired. MeshLab does not offer the concept of a
computational pipeline, such as present in visualization tools such as
MayaVi or ParaView. However, this operation mode fits well the highly
interactive nature of many mesh processing scenarios, where the user
wants to carefully examine the results of each processing step before de-
ciding how and where (on the mesh) to apply the next step, and which
this step should be. The final results can be saved in a variety of mesh
file formats, compatible with the largest majority of mesh processing or
data visualization software tools.

PCL

Type: Class library

Availability: Open source (written in C++)

Address: http://pointclouds.org

Description: PCL (the Point Cloud Library) is a class library dedicated to the acquisi-
tion, processing, and visualization of point cloud datasets. Its core focus
is on supporting point cloud operations related to typical computer vi-
sion use-cases, such as the analysis of, and information extraction from,
point clouds acquired with 3D scanning devices such as laser scanners
or range cameras. However, PCL components can be also very useful
for a variety of operations on (large) point clouds in the context of data
visualization, such as point cloud cleaning and filtering, normal estima-
tion, spatial search, registration, segmentation, surface reconstruction,
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and visualization. Similarly to MeshLab (described above), PCL con-
tains a large set of recent research-grade algorithms, which makes it a
valuable resource for the researcher or practitioner interested in testing
and/or comparing such algorithms. PCL is designed with scalability in
mind, and most of its components can efficiently process point clouds of
millions of data points.

Utilization: PCL is a class library, which implies that its users need to program
their applications using the provided APIs. Although these are very
flexible, learning PCL has a steep curve. The extensive use of non-
trivial C++ features and design patterns, and its design that relies on
fine-grained components, makes it suitable only for the versed C++
programmer, much like, for example, the Boost C++ library. As its
documentation uses a relatively more mathematical presentation angle
than typical class libraries, PCL developers should be at least familiar
with the main computational geometry concepts and terminology.

CGAL
Type: Class library

Availability: Open source (written in C++)

Address: http://www.cgal.org

Description: CGAL (the Computational Geometry Algorithms Library) is a class li-
brary that includes a wide set of algorithms dedicated to the processing
of point clouds and polygonal and volumetric meshes. In contrast to
MeshLab, for example, CGAL focuses on providing lower-level func-
tionality, or building blocks, that can be used in the development of
applications that need to process grids. Included components cover vir-
tually all well-known computational geometry algorithms, ranging from
simple spatial searches and intersection computations, Delaunay and
Voronoi diagram construction in 2D and 3D, alpha shapes, surface re-
construction, up to complex polygon and polyhedral decompositions,
mesh refinement, and surface parameterization. The design of the li-
brary makes extensive use of advanced C++ features such as templates
and traits. This makes it possible to parameterize the provided algo-
rithms in a variety of directions, such as choosing the space to work in,
interpolation type, or numerical approximations to use. CGAL comes
with high-quality documentation and an extensive example set, and is
actively maintained and used by a sizeable community. As such, it is ar-
guably the tool of choice for application developers requiring non-trivial
computational geometry functionality.

Utilization: The main operation mode of PCL is similar to VTK (described above):
Users write the intended point cloud processing scenario in as a C++
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program that calls the required functionality provided by PCL classes.
Results can be visualized by a number of viewer components provided
in PCL itself, or exported to various point cloud file formats. Similar
to VTK, this offers a large freedom in customizing specialized scenarios,
but also requires a non-trivial learning curve.

A.5 Information Visualization Software
Compared to scientific visualization systems, information visualization systems

come in a larger variety. There are fewer “generic” systems in this category that

can be compared to frameworks such as AVS/Express, SCIRun, or IRIS Explorer.

One reason is arguably the higher diversity of the application domains, data

types, and end user groups for information visualization systems. Consequently,

the selection of information-visualization systems presented next has even fewer

pretensions to be exhaustive than our selection of scientific-visualization systems.

The considered domains for this selection are graphs and trees, multivariate data,

and table data.

The Infovis Toolkit (IVTK)
Type: Class library/application framework

Availability: Open source (written in Java)

Address: http://ivtk.sourceforge.net/

Description: IVTK is a general-purpose toolkit for developing information-visualiza-
tion end-user applications and components. IVTK comes as a set of Java
class libraries implementing a number of core infovis methods, such as
scatter plots, time series, parallel coordinates, matrix plots, and several
types of graph and tree layouts.

Utilization: Developing applications with IVTK and VTK is quite similar. Both
are class libraries, so building an application requires programmatically
combining instances of the necessary datasets and visualization algo-
rithms. One of the features of IVTK is that it uses a generic dataset
model. All datasets (including relational ones) are represented as tables.
IVTK provides efficient representations for these tables both in terms
of memory and access time. However, just as for VTK, constructing
a full-fledged end-user application with IVTK requires a fair amount
of work and understanding of the toolkit design. Moreover, compared
to VTK, IVTK is relatively newer and less developed toolkit, which
provides only a small number of basic versions of the many infovis al-
gorithms that exist for the supported data types (e.g., tree and graph
layouts).
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Prefuse
Type: Class library/application framework

Availability: Open source (written in Java)

Address: http://prefuse.org/

Description: Prefuse is a toolkit for constructing information-visualization applica-
tions, and is quite similar to IVTK. The toolkit comes as a set of Java
class libraries that provides support for representing the main types of
datasets used in information visualization, such as trees, graphs, and
tables. Together with these, a number of fundamental algorithms for
constructing infovis applications are provided, such as graph and tree
layouts, glyphs, dynamic queries, brushing, search, database connectiv-
ity, and animation.

Utilization: Prefuse is both a class library and an application framework. Function-
ality and data representation are provided in terms of classes. Program-
ming interaction, correlation between multiple views, and application
execution is provided by means of framework services. In this respect,
prefuse is similar to the VTK and IVTK toolkits. However, the archi-
tectures and internals of the two toolkits are quite different. A VTK
application is structured like a dataflow pipeline. In prefuse, the ac-
cent is laid more on connecting data and processing items via actions
and events. All in all, prefuse is a good start to learn experimenting
with information-visualization concepts and algorithms via prototyping.
However, the toolkit does not yet have a wide palette of implemented
algorithms, which is similar to IVTK. Also, the scalability and efficiency
of the implemented algorithms cannot yet cope with truly large datasets.

GraphViz
Type: Library and turnkey system

Availability: Open source (written in C)

Address: http://www.graphviz.org/

Description: GraphViz is a high-quality library for computing and displaying graph
layouts. GraphViz implements several popular graph-layout algorithms
such as rooted and radial trees, hierarchical directed acyclic graph lay-
outs, and force-directed layouts. In addition to layout, GraphViz of-
fers advanced control of the mapping and rendering of graph nodes and
edges, including annotations, spline edges, and nested graphs. An exten-
sive set of options allows one to specify the finest details of the layout
and mapping. Its robustness, scalability, simplicity of use, and avail-
ability have made GraphViz one of the best-known toolkits for laying
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out graphs and quickly producing quality graph visualizations. Several
graph visualizations created with the GraphViz software are shown in
Section 11.4.2.

Utilization: GraphViz is structured as a set of separate executables. These read and
write graph specification files in various formats. These executables can
be easily used as turnkey systems to load, lay out, and draw graphs. In
addition to these, GraphViz also provides an API that allows more flexi-
ble access to the layout functionalities. This allows one to use GraphViz
as a layout library on behalf of other applications.

Tulip
Type: Library and turnkey system

Availability: Open source (written in Java)

Address: http://www.tulip-software.org/

Description: Tulip is a framework for the manipulation and visualization of large
graphs. At the core of the Tulip system is an efficient data represen-
tation that allows manipulation of graphs with more than one million
elements. The Tulip framework contains a core library and an end-
user visualization tool. The library provides graph data representation
and so-called algorithms. The algorithms include several layout engines
(rooted, radial and bubble trees, treemaps, and force-directed) and ren-
dering engines that allow one to parameterize the node and edge glyphs
by graph data attributes. Apart from these, several graph data manip-
ulation algorithms are provided, such as editing, clustering, decompo-
sition, and computing statistics on graphs. Several tree visualizations
created with the Tulip system are shown in Section 11.4.1.

Utilization: Tulip can be used either as a C++ class library or as a turnkey sys-
tem. In the first case, developers build their application on top of the
core Tulip graph data and algorithm classes. In the second case, end
users can use the Tulip visualization front-end to interactively import,
navigate, edit, lay out, and render graphs in a variety of ways. The
functionality of the Tulip front-end, although not covering all the func-
tions of the core library, is rich and customizable enough to allow one to
use this application as a full-fledged viewer for complex graphs in real
applications. Similar to ParaView and MayaVi, the Tulip front-end can
be customized via a plug-in mechanism to load additional functionality
developed on top of the core libraries.

Gephi
Type: Library and turnkey system

Availability: Open source (written in C++)
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Address: http://gephi.org/

Description: Gephi is a framework for the visual analysis of medium to large graphs.
In terms of features and utilization mode, Gephi is very similar to Tulip.
However, Gephi targets a slightly different user group, and poses the
focus more on ease of learn and use than on computational scalability,
fine-grained APIs, and algorithm customizability. As such, Gephi offers
more plug-ins for importing both static and dynamic graphs from a
variety of file formats and live data sources and widgets for interactive
graph exploration. However, Tulip offers more research-grade graph
layout and analysis algorithms. Also, Tulip is scalable to graphs larger
than the ones that Gephi can handle at interactive frame rates.

Utilization: Gephi can be used either as a set of Java class library or as a turnkey
system. In the first case, developers build their application on top of the
core Gephi APIs (graph, layout, attributes, statistics, import, export,
tools, filters, and generators). In the second case, end users can use
the Gephi visual front-end to interactively import, navigate, edit, lay
out, and render graphs in a variety of ways. The Gephi front-end is
very similar (albeit easier to learn but slightly less flexible) than its
counterpart in Tulip. The front-end can be directly used to generate
a wide palette of graph and network visualization and visual analytics
applications. Similar to ParaView, MayaVi, and Tulip, Gephi can be
customized via a plug-in mechanism to load additional functionality
developed on top of its core APIs.

ManyEyes
Type: Web-based front-end

Availability: Available online as a web application

Address: http://www-958.ibm.com/

Description: ManyEyes is a web front-end for a set of information visualization tech-
niques for interactive exploration of moderately-sized information visu-
alization datasets [Viegas et al. 07]. Provided visualization metaphors
include treemaps, node-link graph and tree layouts, bar and line charts,
scatter plots, timelines, tag clouds, and data-annotated geographical
maps. Each visualization offers a few customization options, such as
parameterizing the size, color, annotation, and shape of elements in a
node-link layout or treemap; or specifying the columns of a table used
to create a 2D scatter plot or bar chart. Customization options can be
either explicitly specified by the user, or linked to reflect the value of a
data attribute. The created visualizations are displayed online, and can
be explored by means of a standard web browser. Interaction features,
apart from configuring the visualization parameters, cover interactive
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zooming, panning, and brushing to reveal data values. The provided
visualizations are kept on purpose simpler than the equivalent ones of-
fered by toolkits such as Tulip or Prefuse. However, their built-in default
values and presets make them suitable for visualizing a wide range of
datasets. Also, the data model is kept very simple: All datasets are ba-
sically text documents or two-dimensional data tables. While this offers
arguably less freedom to model complex relational datasets, it allows for
a very short, easy-to-learn, and error-tolerant path from generating the
datasets to creating the actual visualizations.

Utilization: In contrast to most other toolkits, that run as local applications on the
user’s machine, ManyEyes offers a web-based model: Users format their
datasets in a simple, typically text-based tabular model, and upload the
resulting data file to the ManyEyes site. Next, visualizations can be cre-
ated online from the uploaded dataset, both by the user who uploaded
data, but also by other users. This model allows for an easy sharing of
datasets, constructed visualizations, and insights generated from these
visualizations—hence the application’s name. The main advantage of
this model is the ease by which any user can create a (simple) visual-
ization from tabular data, with zero software installation requirements,
and with all the software development and maintenance effort located at
the site’s provider. Disadvantages involve the need to format the data
in the template demanded by ManyEyes; having to share potentially
confidential data; and the dependence of a third-party service “in the
cloud.”

Treemap

Type: Turnkey system

Availability: Open source for nonprofit uses (written in Java)

Address: http://www.cs.umd.edu/hcil/treemap/

Description: Treemap is a customizable turnkey system for the visualization of large
multivariate datasets using the treemap layout. Treemap implements
several layout algorithms (slice and dice, squarified, and strip) and al-
lows one to parameterize several elements of the mapping process, such
as size, color, borders, and labels of the treemap nodes by the data
attributes of the underlying tree. Several interactive navigation and fil-
tering mechanisms support a wide range of structure and attribute-based
user queries. Treemap also allows one to construct tree hierarchies from
data dynamically using a mechanism called flexible hierarchies. Given
a set of multivariate data points, trees can be built level-by-level by
successively grouping the points by different user-defined criteria on the
data attributes.
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Utilization: Treemap comes as a turnkey system that can be customized by means of
its user interface. Treemap accepts many data formats as input. Also,
Treemap can be configured to monitor “live” data that changes dynam-
ically in time. Its many options can be saved as presets, called feature
sets, which allows relatively easy customization without the need for
programming. All in all, Treemap is quite easy to use as a customizable
turnkey system, but an important limitation is that it cannot be used
as a library via an API, e.g., for developing third-party applications.

XmdvTool
Type: Turnkey system

Availability: Open source (written in C/C++)

Address: http://davis.wpi.edu/xmdv/

Description: XmdvTool is a general-purpose visualization tool for the interactive
exploration of multivariate datasets. As such, XmdvTool implements
several visualization methods: scatter plots, star glyphs, parallel coor-
dinates, and dimensional stacking. These visualization methods come
in a “flat” and a hierarchical variant. The flat variant visualizes all
data points separately. The hierarchical variant first groups the data
points in a tree, based on some similarity metric defined on the data at-
tributes. Next, tree nodes, which represent data clusters, are visualized
using color and shading to map different cluster attributes. XmdvTool
is implemented in C++ using OpenGL for the graphics and Tcl/Tk for
the user interface functionality.

Utilization: XmdvTool comes as a turnkey system that can be directly used to vi-
sualize multivariate data coming in a number of different formats. The
user interface is relatively easy to learn. A strong feature of Xmdv-
Tool is the provision of many interaction mechanisms that allow several
types of brushing in screen, data, and structure spaces; zooming and
panning; display distortion techniques; and masking and reordering of
the axes (dimensions). All these mechanisms make XmdvTool a ver-
satile tool that can be used relatively easily to get a first look into a
given multivariate dataset. However, just as Treemap, the functional-
ity of XmdvTool is not available as an API or library, which makes its
applicability limited in some contexts.
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