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Preface to the Third Edition

The first and second editions of this book were published in 1995 and 2000, respectively.
We are gratified with their high level of use by both the university and industrial-research
communities. The second edition is often the text in senior year and graduate electrical
engineering courses in computational electrodynamics, and both editions are frequently cited in
refereed journal papers as primary background references for FDTD methods and applications.

This new third edition is extensively revised and expanded. We have had two primary goals
in this regard. First, we have worked to update the book's discussions of FDTD theory and
applications to keep pace with the continuing, rapid changes in these areas since 2000.
This allows the professional engineer or scientist to have a convenient single-source reference
concerning the latest FDTD techniques and research problems. Second, we have worked to
further enhance the educational content of the book from both a fundamental theoretical
perspective, and from the standpoint of the course instructor's ease of use.

New Material: Advances in FDTD Theory and Numerical Algorithms

Specifically, this third edition contains a large body of new material that discusses in great detail
the following recent advances in FDTD theory and numerical algorithms:

• New invited Chapter 17, "Advances in PSTD Techniques," by Qing Liu and
Gang Zhao, who have pioneered the theory and application of pseudospectral
time-domain computational solutions of Maxwell's equations;

• New invited Chapter 18, "Advances in Unconditionally Stable Techniques," by
Hans De Raedt, who, within the framework of the matrix-exponential technique,
has pioneered the unification of existing algorithms, as well as the synthesis of
completely novel algorithms, for unconditionally stable computational solutions
of the time-dependent Maxwell's equations;

• New invited Chapter 19, "Advances in Hybrid FDTD-FE Techniques," by
Thomas Rylander, Fredrik Edelvik, Anders Bondeson, and Douglas Riley, who
have pioneered the development and application of provably stable hybrids of
FDTD and finite-element time-domain techniques;

• New invited Chapter 20, "Advances in Hardware Acceleration for FDTD," by
Ryan Schneider, Sean Krakiwsky, Laurence Turner, and Michal Okoniewski,
who have led the development of computer hardware / software that promise one
order-of-magnitude speedups of FDTD solutions implemented on normal
laboratory computers;

• New invited Section 5.9 in Chapter 5, by John Schneider, describing his
development of advanced numerical dispersion-compensation techniques for the
total-field / scattered-field FDTD wave-source condition;

xix
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• New invited Sections 7.7 and 7.9 to 7.11 in Chapter 7 by Stephen Gedney,
describing the theory, numerical implementation, and illustrative results of his
convolutional PML absorbing boundary condition, the most effective such
technique yet for terminating open-region FDID computational modeling spaces;

• New invited Section 8.7 in Chapter 8 by Xu Li, who has solved the puzzle of why
FDTD had previously not properly modeled the backscanering of certain weakly
backscattering objects;

• New Sections 9.2.3 and 9.4.3 in Chapter 9 on Drude media, so important for
FDTD modeling of metals at optical frequencies;

• New invited Section 9.5 in Chapter 9 by Wojciech Gwarek, who has pioneered
the efficient circuit model of linear magnetized ferrites in FDTD simulations;

• New invited Sections 9.6.1 to 9.6.5 in Chapter 9 by Masafumi Fujii, who has led
the development of improved FDID algorithms for nonlinear dispersive media;

• New invited Section 9.8 in Chapter 9 by Shih-Hui Chang on advances in FDTD
modeling of quantum-gain materials characterized by a four-level, two-electron
atomic system constrained by the Pauli Exclusion Principle;

• New Sections 10.6.1 and 10.6.3 in Chapter 10 on the simple, robust, Yu-Mittra
techniques for modeling curved surfaces comprised of either a perfect electric
conductor or a dielectric material;

• New invited Section 10.8.3 in Chapter 10 by Malgorzata Celuch-Marcysiak on
her simple, robust, ultrawideband equivalent-circuit model of the frequency
dependent skin effect;

• New invited Section 11.8 in Chapter 11 by Nicolas Chavannes on his robust
subgridding technique that allows numerically stable local mesh refinement;

• New invited Section 15.7 in Chapter 15 by Wojciech Gwarek, who has pioneered
efficient and accurate S-parameter extraction from FDTD models of general
waveguides;

• New invited Section 15.9.6 in Chapter 15 by Tzong-Lin Wu, who has innovated
an efficient FDTD subcell model of the arbitrary two-terminal linear lumped
network;

• New invited Sections 16.10 to 16.16 in Chapter 16 by Geoffrey Burr, who has
helped to lead the development of FDTD techniques for modeling photonic
crystals.

New Material: Advances in FDTD Modeling Applications

In addition to theoretical advances, the third edition contains significant new material that
discusses in detail the following recent advances in FDTD modeling applications:
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• New invited Section 3.8 in Chapter 3 by Jamesina Simpson, who describes her
FDTD models of around-the-world electromagnetic wave propagation at
extremely low frequencies;

• New invited Section 14.9 in Chapter 14 by Nicolas Chavannes, who describes his
detailed FDTD modeling case study of the electromagnetic wave performance
characteristics of the Motorola 1'250 tri-band cellphone;

• New Section 14.10.4 in Chapter 14, which describes work by Susan Hagness'
group on the application of FDTD modeling of ultrawideband radar techniques
for the early-stage detection of breast cancer;

• New invited Section 15.12 in Chapter 15 by Jamesina Simpson, who describes
her FDTD models of potential hyperspeed digital interconnects in circuit boards
realized by defect-mode waveguides in electromagnetic bandgap structures;

• New Sections 16.17 to 16.21 in Chapter 16, which describes work by Susan
Hagness' group in PSTD modeling of frequency conversion in second-order
nonlinear optical materials, including photonic crystals;

• New invited Sections 16.22 to 16.24 in Chapter 16 by Geoffrey Burr, who
describes recent FDTD modeling applications in nanoplasmonics;

• New Sections 16.25 to 16.27 in Chapter 16, which describe applications of FDTD
and PSTD modeling in biophotonics, especially in advancing the detection of
early stage cervical and colon cancer.

These new examples serve not only to illustrate the power and beauty of FDTD modeling,
but also to inform and excite the reader about the integral role that electromagnetic wave
phenomena play in the design and operation of our society's most advanced electronics and
photonics technologies.

New Feature: A Web Site Dedicated to This Book

To supplement this third edition, we and the publisher have created a Web site where, with the
proper personal identification number (PIN), instructors can download solutions to the
homework problems. This PIN also enables downloads of color graphics, videos, and text
updates / errata, as generated by the authors. For details, visit www.artechhouse.com or contact
the publisher via email atartech@artechhouse.com . While subject to copyright protection,
the color graphics, videos, and text updates / errata downloaded in this manner can be freely
distributed by the course instructor to his or her students. We believe that this feature greatly
enhances the usefulness of this book as an instructional tool.

Structuring University Courses Around This Book

In our respective teaching experiences at Northwestern University and the University of
Wisconsin-Madison, we have found that the material covered in this third edition is most
appropriate for senior-year undergraduate students who have already taken at least one course in
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electromagnetics. Having said that, our personal experience is that even students without the
first course in electromagnetics can access most of the material in the first seven chapters,
assuming that they have a strong background in vector calculus and computer programming.
However, such students would require supplemental assistance to understand the basis of
Maxwell's equations.

When used in a semester-length, senior year undergraduate course (i.e., UW-Madison),
there is sufficient time to cover the first ten chapters. This includes time for the students to write
working FDTD codes in one and two dimensions, with absorbing boundary conditions and total
field / scattered-field grid zoning. When used in a quarter-length, senior year undergraduate
course (i.e., Northwestern), there is sufficient time to cover the first seven chapters.

We recommend that the final ten chapters be covered in a second semester or quarter at the
graduate level. Some of the advanced new material in Chapters 17, 18, and 19 is appropriate for
a special-topics course at the graduate level.

Acknowledgments
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Finally, we acknowledge our respective family members who exhibited great patience and
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Chapter 1

Electrodynamics Entering the 21st Century

1.1 INTRODUCTION

Maxwell's partial differential equations of electrodynamics, formulated approximately 140 years
ago, represent a fundamental unification of electric and magnetic fields predicting
electromagnetic wave phenomena, which Nobel Laureate Richard Feynman has called the most
outstanding achievement of 19th-century science. Now, engineers and scientists worldwide use
computers ranging from desktop machines to massively parallel arrays of processors to obtain
solutions of these equations for the purpose of investigating electromagnetic wave guiding,
radiation, and scattering phenomena and technologies. As we begin the 21st century, it may
seem a little odd to devote so much effort to solving the 19th century's best equations. Thus, we
ask the question: "Of what relevance are solutions of Maxwell's equations to modern society?"

The goal of this chapter is to help answer this question. We shall discuss prospects for using
numerical solutions of Maxwell's equations, in particular the finite-difference time-domain
(FDTD) method, to help innovate and design key electrical engineering technologies ranging
from cellphones and computers to lasers and photonic circuits. Whereas large-scale solutions of
Maxwell's equations have been motivated in the past primarily by the requirements of military
defense, the entire field of computational electrodynamics is shifting rapidly toward important
commercial applications in high-speed communications and computing that will touch everyone
in their daily lives. Ultimately, this will favorably impact the economic well-being of nations as
well as their military security. It is in this context of significant electrical engineering
technology advances resulting from the ability to accurately and rapidly solve Maxwell's
equations on large scales that this chapter is titled "Electrodynamics Entering the 21st Century."

1.2 THE HERITAGE OF MILITARY DEFENSE APPLICATIONS

From the onset of World War II until about 1990, the answer to our question about the societal
relevance of solutions of Maxwell's equations would probably have been, "We must have strong
military defense." The development of microwave radar technology during World War II
motivated early work, which proved crucial to the survival of England during the grim early days
of the Battle of Britain, and subsequently to the final victory of the Allied forces. During the 45
years of Cold War that followed, the advanced development of radar remained of paramount
importance, as both the East and West alliances developed enormous nuclear arsenals on hair
trigger alert. Radar technologies aimed at the early warning of aircraft and missiles were
subsequently met with countermeasures aimed at evading or spoofing radar detection. These
were in turn met by counter-countermeasures, and so forth.



2 Computational Electrodynamics: The Finite-Difference Time-Domain Method

Radar encompasses a wide range of needs in solving Maxwell's equations. At the radar site,
microwave sources, circuits, waveguides, and antennas must be designed to generate, transport,
radiate, receive, and process electromagnetic waves. For a foe determined to press an attack
despite the operation of a defensive radar system, there is the need to understand the scattering of
electromagnetic waves by complex, electrically large material structures. Such understanding
leads directly to materials and structure-shaping technologies for designing stealthy aircraft and
missiles having reduced or confusing scattering responses.

An additional military need motivating the solution of Maxwell's equations emerged after
about 1960, when it became clear that a nuclear bomb detonated above the Earth's atmosphere
could generate a high-level electromagnetic pulse (EMP). EMP can be sufficiently intense to
burn out electrical and electronic equipment on the Earth's surface that are located hundreds of
miles away from the point directly below the detonation. Equipment failures on this
geographical scale could leave a nation largely defenseless against subsequent attack. Therefore,
substantial efforts were devoted by the defense community to "harden" key systems to reduce
their vulnerability to EMP. Here, Maxwell's equations solution technologies were aimed at
predicting the level of EMP penetration and coupling into potentially vulnerable equipment, and
developing cost-effective means to reduce such coupling to well below the danger point.

A third area motivating the military development of Maxwell's equations solutions was
explored intensively after about 1980, when technology developments permitted the generation
of steerable, high-power microwave (HPM) beams. In principle, such beams could neutralize
electronics in the manner of EMP, but could be applied on a much more selective basis for either
tactical or strategic applications. On the offensive side, Maxwell's equations solutions were used
to design HPM sources, circuits, and antennas to generate, transport, and radiate electromagnetic
waves having intensities sufficient to ionize the air at normal pressures and temperatures.
Maxwell's equations were also used to analyze electromagnetic wave penetration and coupling
mechanisms into potential targets of HPM, and to design means to mitigate these mechanisms.

1.3 FREQUENCY-DOMAIN SOLUTION TECHNIQUES

During the era reviewed above, the modeling of electromagnetic engineering systems was
primarily implemented using solution techniques for the sinusoidal steady-state Maxwell's
equations. Before 1960, the principal approaches in this area involved closed-form and infinite
series analytical solutions, with numerical results from these analyses obtained using mechanical
calculators. After 1960, the increasing availability of programmable electronic digital computers
permitted such frequency-domain approaches to rise markedly in sophistication. Researchers
were able to take advantage of the capabilities afforded by powerful new high-level
programming languages such as Fortran, rapid random-access storage of large arrays of numbers,
and computational speeds orders of magnitude faster than possible with mechanical calculators.
In this period, the principal computational approaches for Maxwell's equations included high
frequency asymptotic methods [1,2] and integral equations [3,4].

However, these frequency-domain techniques have difficulties and tradeoffs. For example,
while asymptotic analyses are well suited for modeling the scattering properties of electrically
large complex shapes, such analyses have difficulty treating nonmetallic material composition
and volumetric complexity of a structure. While integral equation methods can deal with
material and structural complexity, their need to construct and solve systems of linear equations
limits the electrical size of possible models, especially those requiring detailed treatment of
geometric details within a volume, as opposed to just the surface shape.



Fig. 1.1 Snapshot visualizations of the FDfD-computed global propagation of an ELF electromagnetic
pulse generated by a vertical lightning strike off the coast of South America. All features of the
lithosphere and atmosphere located within ±lOO km of sea level are modeled in three dimensions
with a resolution of - 40 x 40 x 5 km. See Chapter 3, Section 3.8 for a complete discussion.



Fig. 1.2 High-resolution FDTD model of the Motorola T250 cellphone depositing radio-frequency power
into a IS-tissue numerical model of the human head derived from magnetic resonance imaging
(MRl) of a volWlteer. The lattice-cell size of the phone model is as fine as 0.1 rum to properly
render individual circuit board layers and the helical antenna in the FDTD mesh. The head model
is comprised of 121 slices (I-rum thick in the ear region; 3-mm thick elsewhere) having a
transverse spatial resolution of 0.2 mm. See Chapter 14, Section 14.9 for a complete discussion.
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Fig. 1.3 FDTD simulation of ultrawideband microwave detection of a 2-mm-mameter malignant tumor
embedded 3 cm within an MRI-derived numerical breast model. The cancer's signature is
15 to 30 dB (30 to 1,000 times) stronger than the clutter due to the surrounding nonnal tissues.
Adapted from: Bond et a!., IEEE Trans. Anlennas and Propagalion, 2003, pp. 1690-1705,
© 2003 IEEE. See Chapter 14, Section 14.10.4 for a complete discussion.
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Fig. 1.4 Snapshot visualizations of the FDTD-computed interaction of a IO-GHz microwave pulse with a
missile radome containing a horn antenna. The illuminating plane-wave pulse propagates from
right to left at 15' from boresight. See Chapter 14, Section 14.10.3 for a complete discussion.



(a) Outer surface of aircraft.

(b) Within a jet engine air inlet.

Fig. 1.5 Snapshot visualizations of the induced surface currents on the Saab Trainer calculated by the
FOTD-FE hybrid technique for head-on illumination by a horizontally polarized Gaussian plane
wave pulse. The observation time is just as the pulse reaches the aircraft's tail. See Chapter 19,
Section 19.7.2 for a complete discussion.



(a) Photograph of the laboratory test article, showing coaxial connectors
probe-coupled to a double-row-defect electromagnetic bandgap (EBG) waveguide.

(b) Visualization of the FDrD-calculated propagation of a
20-ps Gaussian-envelope sinusoidal pulse along the EBG waveguide of (a).
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(c) Comparison of FDrD and measured results for the transmission 521 of the EBG waveguide of (a).

Fig. 1.6 FDTD-designed wireless digital interconnect using electromagnetic bandgap (EBO) technology,
achieving a measured 42-0Hz bandwidth (28 to 70 GHz). Via pin radius =0.23 mm: via pin
separation =1.3 mm. Source: Simpson et aI., Proc. IEEE Antennas and Propagation Society Inti.
Symp., © 2005 IEEE. See Chapter 15, Section 15.12 for a complete discussion.



(a)

(b)

(c)

Fig. 1.7 Electrically driven, single-mode, low-threshold-current photonic crystal microlaser operating at
room temperature: (a) schematic diagram; (b) top view of the fabricated sample; (c) FDTD
calculated E-field intensity profile of monopole mode (log scale). Source: Park et aI., Science,
Sept. 3, 2004, pp. 1444-1447. See Chapter 16, Section 16.16.1 for a complete discussion.
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FDTD-calculated electric-field distributions in a photonic crystal cross-waveguide switch:
(a) control input is absent, and the signal output is low; (b) control input is present, and the signal
output is high. Red and blue represent large positive or negative E-fields, respectively, with the
same color scale used for both panels. Black circles indicate the positions of the dielectric rods in
the photonic crystal. Source: Yanik et al., Optics Lellers, 2003, pp. 2506-~. See Chapter 16,
Section 16.16. 2 for a complete discussion.



Chapter 1: Electrodynamics Entering the 21st Century 3

While significant progress has been made in solving the ultralarge systems of equations
generated by frequency-domain integral equations [5], the capabilities of even the latest such
technologies are exhausted by many volumetrically complex structures of engineering interest.
This also holds for frequency-domain finite-element techniques, which generate sparse rather
than dense matrices. Further, the difficult incorporation of material and device nonlinearities into
frequency-domain solutions of Maxwell's equations poses a significant problem as engineers
seek to design active electromagnetic I electronic and electromagnetic I quantum-optical systems,
such as high-speed digital circuits, microwave and millimeter-wave amplifiers, and lasers.

1.4 RISE OF FINITE-DIFFERENCE TIME-DOMAIN METHODS

During the 1970s and 1980s, defense agencies working in the areas summarized in Section 1.2
realized the limitations of frequency-domain integral-equation solutions of Maxwell's equations.
This led to early explorations of a novel alternative approach: direct time-domain solutions of
Maxwell's differential (curl) equations on spatial grids or lattices. The FDTD method,
introduced by Yee in 1966 [6], was the first technique in this class, and has remained the subject
of continuous development. Since 1990, when engineers in the general electromagnetics
community became aware of the modeling capabilities afforded by FDTD and related
techniques, the interest in this area has expanded well beyond defense technology.

There are seven primary reasons for the expansion of interest in FDTD and related
computational solution approaches for Maxwell's equations:

1. FDTD uses no linear algebra. Being a fully explicit computation, FDTD avoids
the difficulties with linear algebra that limit the size of frequency-domain
integral-equation and finite-element electromagnetics models to generally fewer
than 106 electromagnetic field unknowns. FDTD models with as many as 109

field unknowns have been run; there is no intrinsic upper bound to this number.

2. FDTD is accurate and robust. The sources of error in FDTD calculations are
well understood, and can be bounded to permit accurate models for a very large
variety of electromagnetic wave interaction problems.

3. FDTD treats impulsive behavior naturally. Being a time-domain technique,
FDTD directly calculates the impulse response of an electromagnetic system.
Therefore, a single FDTD simulation can provide either ultrawideband temporal
waveforms or the sinusoidal steady-state response at any frequency within the
excitation spectrum.

4. FDTD treats nonlinear behavior naturally. Being a time-domain technique,
FDTD directly calculates the nonlinear response of an electromagnetic system.

5. FDTD is a systematic approach. With FDTD, specifying a new structure to be
modeled is reduced to a problem of mesh generation rather than the potentially
complex reformulation of an integral equation. For example, FDTD requires no
calculation of structure-dependent Green functions.

6. Computer memory capacities are increasing rapidly. While this trend positively
influences all numerical techniques, it is of particular advantage to FDTD
methods, which are founded on discretizing space over a volume, and therefore
inherently require a large random access memory.
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7. Computer visualization capabilities are increasing rapidly. While this trend
positively influences all numerical techniques, it is of particular advantage to
FDTD methods, which generate time-marched arrays of field quantities suitable
for use in color videos to illustrate the field dynamics.

An indication of the expanding level of interest in FDTD Maxwell's equations' solvers is the
hundreds of papers currently published in this area worldwide each year, as opposed to fewer
than 10 as recently as 1985 [7]. This expansion continues as engineers and scientists in
nontraditional electromagnetics-related areas, such as digital systems and integrated optics,
become aware of the power of such direct-solution techniques for Maxwell's equations.

1.5 HISTORY OF FDTD TECHNIQUES FOR MAXWELL'S EQUATIONS

We can begin to develop an appreciation of the basis, technical development,
and possible future of FDTD numerical techniques for Maxwell's equations by first considering
their history. Table 1.1 lists some of the key publications in this area, starting with Yee' s
seminal paper [6]. The reader is referred to [7] for a comprehensive bibliography of FDTD
publications through 1998.

TABLE 1.1

Partial History of FDTD Techniques for Maxwell's Equations

1966 Yee [6] described the basis of the FOTO numerical technique for solving Maxwell's curl
equations directly in the time domain on a space grid.

1975 Taflove and Brodwin reported the correct numerical stability criterion for Yee's algorithm; the
first sinusoidal steady-state FOTO solutions of two- and three-dimensional electromagnetic
wave interactions with material structures [8, 9]; and the first bloelectromagnetics models [9].

1977 Holland [10], and Kunz and Lee [11] applied Yee's algorithm to EMP problems.

1980 Taflove coined the FOTO acronym and published the first validated FOTO models of sinusoidal
steady-state electromagnetic wave penetration into a three-dimensional metal cavity [12}.

1981 Mur published the first numerically stable, second-order accurate, absorbing boundary
condition (ABC) for Yee's grid [13].

1982, Taflove and Umashankar developed the first FOTO electromagnetic wave-scattering models
1983 computing sinusoidal steady-state near·fields, far-fields, and radar cross-section for two- and

three-dimensional structures [14, 15].

1985 Gwarek introduced the lumped equivalent circuit formulation of FOTO [16].

1986 Choi and Hoefer published the first FOTO simulation of waveguide structures [17].

1987, Kriegsmann et al. and Moore et al. published the first articles on ABC theory in IEEE Trans.
1988 Antennas andPropagation [18, 19].

1987, Contour-path subcell techniques were introduced by Umashankar et al. to permit FOTO
1988, modeling of thin wires and wire bundles [20], by Taflova at al. to model penetration
1992 through cracks in conducting screens [21}, and by Jurgens et al. to conformally model the

surface of a smoothly curved scatterer [22].

1987, FinIte-element time-domain (FETO), finite-volume lime-domain (FVTO), and partially or
1990 completely unstructured meshes for Maxwell's equations were introduced by Cangellaris et al.

[23], Shankar et al. [24], and Madsen and Ziolkowski [25].
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Sullivan et al. published the first three-dimensional FOTO model of sinusoidal steady-state
electromagnetic wave absorption by a complete human body (26).

FOTO modeling of microstrips was introduced by Zhang et al. (27).

FOTO modeling of frequency-dependent dielectric permittivity was introduced by Kashlwa and
Fukai (28), Luebbers et al. (29), and Joseph et at. (30).

FOTD modeling of antennas was introduced by Maloney et al. [31], Katz et al. [32], and Tirkas
and Balanis [33).

FOTO modeling of picosecond optoelectronic switches was introduced by Sano and Shibata
(34), and EI-Ghazaly et al. [35].

FOTO modeling of the propagation of optical pulses in nonlinear dispersive media was
introduced, including the first temporal solitons in one dimension by Goorjian and Taflove [36):
studies of beam self-focusing by Ziolkowski and Judkins (37): the first temporal solitons in two
dimensions by Joseph et al. (38): and the first spatial solitons in two dimensions by Joseph
and Taflove [39].

FDTD modeling of lumped electronic circuit elements was introduced by Sui et al. (40).

Toland et al. published the first FDTD models of gain devices (tunnel diodes and Gunn diodes)
exciting cavities and antennas (41).

Thomas et al. (42) Introduced a Norton's equivalent circuit for the FDTD space lattice, which
permits the SPICE circuit analysis tool to implement accurate sUbgrid models of nonlinear
electronic components or complete circuits embedded within the lattice.

Berenger introduced the highly effective, perfectly matched layer (PML) ABC for two
dimensional FDTD grids (43), which was extended to three dimensions by Katz et al. (44), and
to dispersive waveguide terminations by Reuter et al. (45).

Sacks et al. (46) and Gedney (47) introduced a physically realizable, uniaxial perfectly
matchedlayer(UPML) ABC.

Krumpholz and Katehi (48) Introduced the multiresolution time-domain (MRlO) technique
based upon the use of wavelet expansion functions.

Liu [49, 50) Introduced the pseudospectral time-domain (PSTO) method, which permits
extremely coarse spatial sampling of the electromagnetic field at the Nyquist limit.

Ramahl [51] introduced the complementary operators method (COM) to implement highly
effective analytical ABCs.

Dey and Mittra [52] introduced a simple, stable, and accurate contour-path technique to model
curved metal surfaces in FDTO space lattices.

Maloney and Kesler [53] introduced several novel means to analyze periodic structures in the
FDTD space lattice.

Schneider and Wagner [54] introduced a comprehensive analysis of FOlO grid dispersion
based upon complex wavenumbers.

Zheng, Chen, and Zhang [55, 56] introduced the first three-dimensional alt8mating-direction
implicit(AOI) FOTO algorithm with provable unconditional numerical stability.

Roden and Gedney introduced the advanced convolutionalPML (CPML) ABC [57].

Rylander and Bondeson introduced a provably stable FOTD-FE hybrid technique [58).

Hayakawa et al. [59, 60] and Simpson and laflove [61, 62] Introduced FOlO modeling of the
entire Earth-ionosphere waveguide for extremely lOW-frequency geophysical phenomena.

Huang [63] and Chang and laflove [64] Introduced a hybrid FOTO-quantum mechanics model
of lasing in a four-level, two-electron atomic system governed by the Pauli Exclusion Principle.

OeRaedt Introduced the unconditionally stable, "one-step" FOTD technique (65).
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1.6 CHARACTERISTICS OF FDTD AND RELATED SPACE-GRID
TIME-DOMAIN TECHNIQUES

FDTD and related space-grid time-domain techniques are direct solution methods for Maxwell's
curl equations. These methods employ no potentials. Rather, they are based upon volumetric
sampling of the unknown electric field vector E and magnetic field vector H within and
surrounding the structure of interest, and over a period of time. The sampling in space is at sub
wavelength (sub-Ao) resolution set by the user to properly sample the highest near-field spatial
frequencies thought to be important in the physics of the problem. Typically, 10 to 20 samples
per Au are needed. Sampling in time is selected to ensure numerical stability of the algorithm.

Overall, FDTD and related techniques are marching-in-time procedures that simulate the
continuous actual electromagnetic waves in a finite spatial region by sampled-data numerical
analogs propagating in a computer data space. Time-stepping continues as the numerical wave
analogs propagate in the space lattice to causally connect the physics of the modeled region.
For simulations where the modeled region must extend to infinity, absorbing boundary
conditions (ABCs) are employed at the outer lattice truncation planes. ABCs ideally permit all
outgoing numerical wave analogs to exit the computation space with negligible reflection.
Phenomena such as induction of surface currents, scattering and multiple scattering, aperture
penetration, and cavity excitation are modeled time-step by time-step by the action of the
numerical analog to the curl equations. Self-consistency of these modeled phenomena is
generally assured if their spatial and temporal variations are well resolved by the space and time
sampling process. In fact, the goal is to provide a self-consistent model of the mutual coupling
of all of the electrically small volume cells constituting the structure and its near field, even if the
structure spans tens of Ao in three dimensions and there are hundreds of millions of space cells.

Time-stepping is continued until the desired late-time pulse response is observed at the
field points of interest. For linear wave interaction problems, the sinusoidal response at these
field points can be obtained over a wide band of frequencies by discrete Fourier transformation
of the computed field-versus-time waveforms at these points. Prolonged "ringing" of the
computed field waveforms due to a high Q-factor or large electrical size of the structure being
modeled requires a combination of extending the computational window in time and
extrapolation of the windowed data before Fourier transformation.

1.6.1 Classes of Algorithms

Current FDTD and related space-grid time-domain algorithms are fully explicit solvers,
employing highly vectorizable and parallel schemes for time-marching the six components of E
and H at each of the space cells. The explicit nature of the solvers is usually maintained by
employing a leapfrog time-stepping scheme. Current methods differ primarily in how the space
lattice is set up. In fact, gridding methods can be categorized according to the degree of structure
or regularity in the mesh cells:

1. Almost completely structured. In this case, the space lattice is organized so that its unit
cells are congruent wherever possible. The most basic example of such a mesh is the pioneering
work of Yee [6], who employed a uniform Cartesian grid having rectangular cells. Staircasing
was used to approximate the surface of structural features not parallel to the grid coordinate axes.
Later work showed that it is possible to modify the size and shape of the space cells located
immediately adjacent to a structural feature to conformally fit its surface [22, 52, 58]. This is
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accurate and computationally efficient for large structures because the number of modified cells
is proportional to the surface area of the structure. Thus, the number of modified cells becomes
progressively smaller relative to the number of regular cells filling the structure volume as its
size increases. As a result, the computer resources needed to implement a fully conformal model
approximate those required for a staircased model. However, a key disadvantage of this
technique is that special mesh-generation software must be constructed.

2. Surface-fitted. In this case, the space lattice is globally distorted to fit the shape of the
structure of interest. The lattice can be divided into multiple zones to accommodate a set of
distinct surface features [24]. The major advantage of this approach is that well-developed
mesh-generation software of this type is available. The major disadvantage is that, relative to the
Yee algorithm, there is substantial added computer burden due to:

(a) Memory allocations for the position and stretching factors of each cell;

(b) Extra computer operations to implement Maxwell's equations at each cell and to
enforce field continuity at the interfaces of adjacent cells.

Another disadvantage is the possible presence of numerical dissipation in the time-stepping
algorithm used for such meshes. This can limit the range of electrical size of the structure being
modeled due to numerical wave-attenuation artifacts.

3. Completely unstructured. In this case, the space containing the structure of interest is
completely filled with a collection of lattice cells of varying sizes and shapes, but conforming to
the structure surface [25]. As for the case of surface-fitted lattices, mesh-generation software is
available and capable of modeling complicated three-dimensional shapes possibly having
volumetric inhomogeneities. A key disadvantage of this approach is its potential for numerical
inaccuracy and instability due to the unwanted generation of highly skewed space cells at
random points within the lattice. A second disadvantage is the difficulty in mapping the
unstructured mesh computations onto the architecture of either parallel vector computers or
massively parallel machines. The structure-specific irregularity of the mesh mandates a robust
preprocessing algorithm that optimally assigns specific mesh cells to specific processors.

At present, the best choice of computational algorithm and mesh remains unclear. For the
next several years, we expect continued progress in this area as various groups develop their
favored approaches and perform validations.

1.6.2 Predictive Dynamic Range

For computational modeling of electromagnetic wave interaction structures using FDTD and
related space-grid time-domain techniques, it is useful to consider the concept of predictive
dynamic range. Let the power density of the primary (incident) wave in the space grid be
Po W/m

2
• Further, let the minimum observable power density of a secondary (scattered) wave be

Ps W/m
2

, where "minimum observable" means that the accuracy of the field computation
degrades due to numerical artifacts to poorer than n dB (some desired figure of merit) at lower
levels than Ps' Then, we can define the predictive dynamic range as 10 log (Po/Ps) dB.

This definition is well suited for FDTD and other space-grid time-domain codes for two
reasons:
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It squares nicely with the concept of a "quiet zone" in an experimental anechoic
chamber, which is intuitive to most electromagnetics engineers;

It succinctly quantifies the fact that the desired numerical wave analogs
propagating in the lattice exist in an additive noise environment due to
nonphysical propagating wave analogs caused by the imperfect ABCs.

In addition to additive noise, the desired physical wave analogs undergo gradual progressive
deterioration while propagating. This is due to accumulating numerical dispersion artifacts,
including phase-velocity anisotropies and inhomogeneities within the mesh.

In the 1980s, researchers demonstrated a predictive dynamic range on the order of 40 to
50 dB for FDTD codes. This value is reasonable if one considers the additive noise due to
imperfect ABCs to be the limiting factor, since the analytical ABCs of this era provided grid
outer-boundary reflection coefficients ranging from about 3% (-30 dB) down to 0.3% (-50 dB).

The 1990s saw the emergence of powerful, entirely new classes of ABCs including
Berenger's PML [43]; the uniaxial PML (UPML) of Sacks et al. [46] and Gedney [47];
Ramahi's complementary operator method (COM) [51]; and the convolutional PML (CPML) of
Roden and Gedney [57]. These ABCs were shown to have grid outer-boundary reflection
coefficients of better than - 80 dB for impinging pulsed electromagnetic waves having
ultrawideband spectra. Solid capabilities were demonstrated to terminate free-space lattices,
multimoding and dispersive waveguiding structures, and lossy and dispersive materials.

However, for electrically large problems, the overall dynamic range may not reach the
maximum permitted by these new ABCs because of inaccuracies due to accumulating numerical
dispersion artifacts generated by the basic grid-based solution of the curl equations. Fortunately,
by the end of the 1990s, this problem was being attacked by a new generation of low-dispersion
algorithms. Examples include the multiresolution time-domain (MRTD) technique introduced by
Krumpholz and Katehi [48], and the pseudospectral time-domain (PSTD) technique introduced
by Liu [49,50]. As a result of these advances. the possibility is emerging of FDTD and related
space-grid time-domain methods demonstrating predictive dynamic ranges of 80 dB or more in
the first decade of the 21st century.

1.6.3 Scaling to Very Large Problem Sizes

Using FDTD and related methods, we can currently model electromagnetic wave interaction
problems requiring the solution of more than 109 field-vector unknowns. At this level of
complexity. it is possible to develop highly detailed, three-dimensional, volumetric models of
both naturally occurring and engineered systems, including, for example:

The entire Earth-ionosphere system (within ±100 km of sea level) for extremely
low-frequency geophysical phenomena such as potential earthquake precursors;

The entire human body for bioelectromagnetics studies at microwave frequencies;

• Clusters of scores of living cells for biophotonics studies at optical wavelengths;

• Entire aircraft and missiles illuminated by radar up to approximately 3 GHz;

Entire cellphones, including details of the internal circuit boards;

Combinations of micron-scale lasers, waveguides, couplers, and resonators
forming integrated photonic circuits.
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A key goal (or such large models is to achieve algorithm I computer-architecr:ure scaling such
that for N field unknowns to be solved on M processors, we approach an order(NIM) $caling of
lberequired computational resources.

We now consider the factors involved in determining the computational burden for the class
of FOro and related space-gridtime-domain solvers.

1. Numb~r of volumetric grid cells, N. The six vector eleclromagneti.c fi.eld
components located at each lattice cell must be updated at every time step. This
yields by itself an order(N) scaling.

2. Numbu of lim~ steps. n.u ' A self-consistent solution in the bme domain
mandates that the numerical wave analogs propagate over time scales sufficient to
causally conncet each ponion of the structure of interest Therefore, n

au
must

increase as the maximum electrical size of the structure. In three dimensions,
il cln be argued thai n... is a fractional power function of N. such as Nil).
Further. n.

Q
must be adequate to step through "ring-up" and "ring-down" times

of energy storage features such as cavities. These features vary from problem to
problem and cannot be ascribed a functional dependence relative to N.

3. Cumulaliv~ propagaJion errors. Additional computational burdens may arise due
to the need for either progressive mesh refinement or progressively higher
accuracy algorithms to bound cumulative positional or phase errors for
propagating numerical modes in progressively enlarged meshes. Any need for
progressive mesh refinement would feed back to factor I.

for most free-space problems, factors 2 and 3 are weaker functions of the size of the
modeled. tructure Lhan is factor I. This is because geometrical features at increasing electrical
disulnces from e~chother become decoupled due to radiative losses by the electromagnetic
waves propagating between these features. Further, it can be shown thai replacing second-order
accurate Igorithms by h.igher-order versions sufficiently reduces numerical dispersion error to
avoid the nud for progressive mesh refinement for object sizes up to the order of 100
wavelengths. Overall, a computational burden of order(N· nll\&ll) =oroer(N4I:l) is estimated for
very large FOID and related models.

[.7 EXAMPLES OF APPLICATIONS

We now present eight examples (with accompanying color visualizations) that illustrate both
cont.emporary and emerging applications of FOID computational electrodynamics modeling.

• Impulsiv~ around-the-world utrenuly Iow-frequ~ncy propagation
Can we model the Earth's elecuomagnetic environment. for geophysical studies?

• Ce/lplwne radiiJtion inluacting with the hunum head
Can ccllphones be designed to meet government safety standards for microwave
exposure while meeting all other design goals1

• Earl)··stage detection ofbreast canur using an ultrawideband microwave radar
Can we design an ultrawideband radar to detect breast cancer earlier than using
X-ray mammography?
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• Photon;c crystal microcavity ltuer
Can room-temperature operation be achieved with the world' mall 1:1 ?

• Photonic crystal cross-waveguide switch
Can we design low-power all-optical switches operating above 10 Gbi 1

• Homing accuracy ofa radar-guid~d missile
How do interactions between a missile's hom antenna and radome geDCnlle
in the anguJar location of a target?

• El~crromagn~tic wav~ vulnerabiliti~s ofa military jtt plane
What is the vulnerability of a military jet to either radar detection or circ:U.il U ;l

due to enemy' microwave threats?

• Millimtur-wave propagation in a dtfect-mode tltClromagMtic banJgap slnM:'IIIri

Within the constraints imposed by existing circuit-board tecbnolo,g , e
design digital interconnects transferring data at rates above: SO Gbitsl ?

Global propagation of extremely low-frtqu~ncy (ElF: 3 Hz to 3 kHz. and t 10M -/nqu
(VLF: 3 to 30 kHz) electromagnetic waves in the £anh-iono pherc waveguide - - b b"
of investigation extending over many years. ELPNLF propagation pbenomen form t.be
submarine communications and remote-sensing investigations of lightning and t'Mit..~

temperature change. subsurface structures. and potential earthquake precursors.
Most theoretical techniques for modeling ELFNLF propagation wilbio the Eanb~iiolllQSll~re

waveguide are based upon frequency-domain waveguide theory. Howe cr. th·
account for the complicated dielect.ric inhomogeneilie repre nted by lIle ion
continents, and oceans. Recently. Hayakawa et al. (59.60] and Simpson. nd Tan 61 621
developed FOTD models for this purpose. In the case of 161]. all fealu of tbe. Ean.b
lithosphere and ionosphere located within ±IOO kin of sea levcl WCfIC m eled in three
dimensions with a resolution of approx.imatel.y 40 x 40 x 5 Ion. P,eriodic undary Dditi
were used in conjunction with a variable-cell grid wrapping around the entire Earth. "llx: m
was verified by numerical studies of frequency-dependent propagation allcnuation. an1i
propagation. and the Schumann resonance. See Chapter 3, Scction 3.8 for I mpl~ em'cw:aO«l

Fig. 1.1 provides three color snapshot visualizations of the gJobal pc -:. Ii n ,of me
electromagnetic pulse resulting from a simulated vertical lightning Iroke t the EA:lu.ator off~
coast of South America. (The complcte video of this phenomenon is a 'Hable { downl'
hllp:/Iwww.ece.northwestern.edu/ecefaculty/tafiove/3Dmoviclextgif.a i. SI.igbl deJJU1lun:s
from circular symmetry of the propagating pulse are observed. Analy is re eats tha.t lb.' f
symmetry is caused by the inhomogeneities of the litho phere coDdu tiit mc:d in the
model. rather than by numerical distortions resulting from the gridding lechniqu .

Ongoing work in this area is aimed at calCUlating signatures of potential "IIroiOk fTUlII~1I

(ULF) precursors of major earthquakes. A second area of .interest is the ~ti and~ .
of ULFIELF signals tailored for the remote detection of large undergrotlnd ore and oiJ dq:)Miu

References arc made to later chapters where these applications are di'!~ssetd i.n me
specific FOTD techniques.
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1.7.2 CeUpbone Radiation Interacting with the Human Head

Since 1m, there bas been an explosive growth in the number and variety of persoNJI wireless
e<>mnumiCQIions (PWC) devices available to the consumer. With market forces pushing for
miniaturization and low cost, all aspects of cellular phones hav,e been rcengineered. A key
requirement is to meet the safety standard for microwave exposure to the user. Na.mely, the peak
specific absorption ralt. (SAR) for any Ig of tissue must be less than 1.6 WIkg.

FDID simulations have become a powerful tool for the design of safe, efficient, and
compact antennas for PWC devices. This is because FOTD allows straightforward, accurate
modeling of antenna near and far fields for essentially arbitrary configurations of inhomogeneous
media. Such c-apabilily is mandatory for the success of any predictive tool aimed at addressing
antenna interactions with the complex tissue structure of the human body.

Fig. 1.2 illustrates the SAR component of the case study discussed in Chapter 14, Section
14.9, wherein the Motorola 1'250 phone is modeled in very fine-grained detail imported from its
computer-aided design database. Here, a combination of graded FOTD meshes and local mesh
refinement rea.liz.es space-cell sizes as small as 0.1 mm. This allows precise rendering of the
phone's housing. pushbutlons, multiJayer printed circuit board, electrical interconnections, and
helical antenna in the FOro model space. As shown in Fig. 1.2(a), the phone is modeled in the
FOTD space lattic~ as being located immediately adjacent to a high-resolution, IS-tissue
numerical mode'l of the human head derived from magnetic resonance imaging of a volunteer.
This bead model is compri ed of 121 slices (I mm thick in the ear region; 3 mm thick
elsewhere), with each slice having a transverse spatial resolution of 0.2 mm. Fig. 1.2(b) provides
a co'lorvUuaJization of the FOTD-calculated SAR distribution within the head model.

In relaled discussions in Chapter 14, Section 14.9, the FOTD model of the 1'250 phone is
validated relative to laboratory measurements of the Ig-averaged and 109-averaged peak SAR
values for a tandard physical head phantom. Good-to-excellent agreement between the
experimental and FOTD data is observed.

We e~pecl continued progress in FOTD modeling of PWC devices of aU types. including
(in addition to ceUphones) laplop 'computers, personal digital assistants, Inlernet browsers, and
satelJjte phones. Here. the potential for FDTD solutions of Maxwell's equations impacting
everyday life is very large. since the number of people using PWC devices is climbing into the
hundreds of millions world.wide. and electromagnetic waves are the means to link these devices
to electronic networks.

1.7.J Early-StaCe Detection of Breast Cancer UslnC an Ullrawldeband Microwave Radar

The "flip side" of the cellphone human-exposure issue involves potential biomedical applications
of electromagnetic waves. wherein the goal is to deliberately direct electromagnetic signals inlo
the human body. These applications fall into three broad categories: diagnostic imaging,
medical implanlS, and thermal therapy. An excellent compilation of recent advances in these
areas is provided in (66). The ability of FOTD to model essentially arbitrary configurations of
inhomogeneous, loss)'. and dispersive dielectric materials makes this method broadly applicable
in each of these Ihtce areas.

An emerging major application of noninvasive microwave imaging is ,the detection of breast
cancer at an early stage. In particular, the ultrawideband (UWB) microwave technology
discussed in (67 -70) has shown promise for early-stage breast cancer detection. Here, FOTD
modeling has been. used to simulate the data-acquisition step wherein the breast is illuminated by
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UWB pulses generated by an antenna array at. the surface of the breast.. and me s:caucred.' "pals
received by the antenna array are recorded and processed by pace-time imaging algorithms.
As illustrated in Fig. 1.3, detailed FOTD modeling of this type indicate$ WI UWB tiI!Chnol·,
has the potential to detect maJignant tumors smaller than 5 mm embedded ithin rmaI,
inhomogeneous breast tissues (69,70J. These promising results have cu:nentJy brougbt UWB,
breast cancer detection technology to the point of initial preclinical investigations (70).

1.7.4 Homing Accuracy ofa Radar-Guided Missile

A long-standing defense-technology problem that can cause unreliable homing of radar-guided
missiles is caused by the complex. electromagnetic wave inleractions between an antennA i
protective radome. These interactions generate errors in the perceived angul:ar loan n f.
target, thereby degrading the ability of the missile to guide itself to that target-

While the materials used in the construction of a missile radome an: cbo- n t
electromagnetically transparent as possible. the shape of the radome i usual1 di taled b
aerodynamic considerations. Tradit.ionally, the radome and its internaJ IDten.'" an: designed
separately, and their interaction is ignored. However, the current trend toward min~w:rizaIjoa

and high-precision guidance is making lhis approach less valid. The FDTD method is IiAIdl
suited for use in analyzing both the antenna and its surrounding radome in the same
computational model, thereby capturing the electromagnetic wave ph,ysics o(tbe antenna-ndome
interaction.

Fig. 1.4 illustrates how detailed FDTD modeling can provide valuable insights into the
complelt interactions of the missile body. radome. and internal hom antenna. H~·tbe, E tid·
within and near a missile radome is visualized at two instants in time for the - of impuJsi e
illumination at 10 GHz. As the incident wave enters the radome. it fim generat _ I radiall
propagating scattered field due to the action of the radome's metal tip and curved sun: - . After
encountering the hom antenna,. a porrion of the incident. energy iJ SCIlttued.aod the
propagates down the hom to a matched load. A packet of energy is trapped inside lbe waJl of the
dielectric radome. Subsequently, this trapped mode encounters the junction between the r..oomc
and the missile body. reflects. and reradiates. Then. a new guided wive forms in me rad me
wall due to structural scattering from the hom antenna.

It should be clear that this highly spatially detailed. picosecond-by"pic1osccond exposition or
the electrodynamics of this problem cannot be obtained by presently .va.ilable ph i
measurements. FDTD computational modeling allows the engineer ctwged with mitigating
targeting errors to literally perfonn experiments on the comput.er to lest the effectiv. . oC
proposed design alterations.

1.7.5 Electromagnetic Wave VuJnerablUtles of. MUltary Jet PlaDe

A vital defense-technology problem involves the vulnerability of militAr)' aircraft to eitbet radar
detection or circuit upset due to enemy microwave threats. With the advent of provabl - able
hybrid FOID-FE techniques [58). it is now possible to construct efficient volumetric n)Qdels of
fighter aircraft (detailing the internal stores as we.n as the external :5urfac:e shape for~
purposes up to several gigahertz. These models are no longer constrained 10 appro imatc
complex. shapes via Yee staireasing. Instead. the flexibility of modem FE palia) meshin can be
applied to the regions of the aircraft model that require this level of detail.
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Fig. 1.5 visualizes the induced surfacecurrenls on the Saab Trainer aircraft and its jet engine
air inlet calculated by the FOTD-FE technique of [60] for head-on illumination by a horizontally
polarized Gaussian pulse. The Trainer is II m long, 304m high. and spans 8m between its
wingtips. In results shown in Chapter 19, excellent agyeement is obtained for the bistatic RCS of
the Trainer atSOO MHz for both horizontal and vertical polarizations of the incident wave
relative to a fast-multipole-method solution of the phasor-domain electric field integral equation.
Only three layers of unstructured FE cells are needed to obtain an accurate geometrical
representation of the aircraft, while 4 - em (M 15) FDTD "bricks" are used lhrou,ghout the
remainder of lhe modeling space. Implementing this hybrid FUID-FE model requires 1.9 GB of
memory and 8 hours ronning time on a single 900-MHz Itanium2 processor.

1.7.6 MUUmete:r-Wa.ve Propagation in a Defect-Mode Electromagnetic Bandgap Strocture

As computer cl.ock rates continue to rise in the microwave frequency range above 3 GHz.
problems with signal integrity. cross-coupling, and radiation will eventually render useless the
baseband nletal-srrip circuit.-board interconnects used since the 1940s. While replacing metal
strips with optical fibers would solve the problem, the required incorporation of optoelectronics
would represent a revolution in both chip-making and interconnect technologies.

References {71.72] propose an alternate solution: bandpass wireless interconnects
implemented using "defect-mode" electromagnetic bandgap (EBG) waveguides. As swdied in
[71. 721. EBG structures can be implemented using existing circuit-board fabrication technology
as square arrays of copper via pins. One or more rows of pins are removed to create a linear
waveguide. Operation at center frequencies above 100 OBz is conceptually feasible as the gain
bandwidth of silicon transistors rises well into this range. Relative to metal strips or optical
fibers. such millimeter-wave EBG waveguides would have the following advantages when used
for board-level digital interconnects:

• Sufficient high-qual.ity bandwidth (i.e., flat transmission magnitude. linear phase
shift, broadband impedance matching. and no multimoding) to support computer
processors clocked up to 20 to 30 GHz;

• Fabrication possible using existing circuit-board technology;

• Low signal auenuation due to copper loss;

• Little signal distortion, coupling. and radiation;

• Nearly speed-or-light signal transmission via the usage of low-permittivity
dielectric media.

References (71. 72) reported laborat.ory measurements and supporting lhrec-dimensional
FDTO modeling of protot.ype EOG waveguiding structures having linear double-row defects.
These lrUctures were realized using double-sided circuit board with either standard FR4 or
low-Io .Rogers 5880 as the dielectric material. Copper vias electrically bonded to the upper and
lower gfoundplanes served to implement the rows of EOG pins. The waveguides were
dimensionally scaled to operate at a center frequency of 10 GHz [71] and 50 GHz (72).
These tructures were coupled to input and output coaxial lines using thin. short probes
extending transversely across the gap between the upper and lower ground planes and bonded to
the opposing ground plane.
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Fig. 1.6 provides three visualizations relating to the FOro modeling and I rato
measurements of the EBG waveguide designed for a center frequency of SO GH 72).
structure spans 8.6 cmbetweem its input and output probes. 0.76 nun between ilS upper and
ground planes, and 3.9 mm between the rows of vias bordering the waveguiding dd 1be pills
have a radius of 0.23, mm and a center-to-center separation of 1.3 nun. OCe dw the WI q:uick
is bounded on all sides. thereby representing a closed cavity.

Rg. 1.6(c) shows the measured and FOTD results for the insenion 10· of thi EBG
waveguide. A standard Agilent network analyzer having son ource and toad im,pc<laDces
used in the measurements. We see a sharp transition fTom a t.opband of at I t - S dB 'to the
passband above approximately 28 GHz. This passband extends toapproltilDAlel 10 GHz ilb ,I

gain flatness of ±1.S dB. representing a relative bandwidth approaching 90 . Funbe:nDore. me
total insertion loss at midband (50 GHz) is only 4 dB. Comparison of this result ilb lbaI of ID

identical 12.7-cm-long waveguide shows that approximately 2 dB of this I is used \be
Rogers 5880 dielectric. Subtracting this dielectric loss from lhe tolallo yields. piing I
of only approximately I dB at each coaxial transition. This indicat the 'bilit or uccUent
broadband matching, into the EBG waveguiding defect using simple. thin ,mew 1"',."",,~

Assuming the availability of suitable low-loss dieleclri to rve as insulating layen 'lhio
the circuit boards. this technology will be scalable to center frequen ics well abo e 100 GHz..
Then, these interconnects will be capable of supporting data rates in the hundreds of gi . its per
second. adequate for the elevated computer clock rates expected over the ne~t~.

1.7.7 Pbotonic Crystal Mlcrocavity Laser

Photonic crystals arc artificial structures that have a periodic variation of the rdraeti c index in
one. two. or three dimensions. In essence. these are EBG structures sc led'io openle IJ opl'ieal
frequencies. hence the descriptor common in the lightwave community. phoronic balld ap
(PUG). Similar to a donor or acceptor state in a doped semiconductor. a small defect introduced
into a photonic crystal c'reates a resonant mode at a frequency that .Ii inside the band p.
The defect in the periodic array behaves as a microcavity resonator.

Three-dimensional FOID mOdeling has rcu:ently been used to design -.n c1ectri I dri
single-mode, low-threshold-current, photonic crystal microlaser that operates at room lempcrllUl'e

(73]. Fig. 1.7(a) is a schematic diagram of this microlaser (73). Here, Ught i coft.fined to a
single defect at the center of a photonic crystal that is fabricated as an array of ir bol etCbed
within a 282.5-nm-thick semiconductor slab of refractive index n:c 3.4. A l·J!.m-lollg InP
post placed directly below the defect injects holes. whereas elcu:tron are upplicd I terall
from a top circumferential electrode. The holes and electrons recombine in ' i.x lnGaAsP
quantum wells within the photonic crystal lab. These quantum well are designed 10 b.a\C an
electrolumjnescence peak near the communications wavelength of I.SOO nM.

Fig. 1.7(b) is a scanning electron microscope image of the top view of Lbe f.' led
photonic crystal slab [73]. The defect-mode cavity is surrounded by five photONc cryIU1 regiOM
I, II, m. IV. and V having the same lattice constant a l1li 510 nm. but different air-bole radii:
0.28a, 0.35a, 0.385a, O.4a, and 0.4Ia. re pectively. Optical clectromagnetic fie arc' coolined
within the cavity in tbe vertical direction by total internal renection It 'the lab-air intaf~ aDd
laterally by the action of the photonic cry tal bandgap. Therefore, light can eteIpC fTOI1I this
cavity only by either tunneling laterally through the photonic cry taJ. or CAjuns enieall b
impinging on thc slab-air interface at a sufficiently large angle.



Chapter 1: EkctrodyfUlll'liJ:s Enurin,g the 21st Cmnuy 15

Fig. 1.7(c) visualizes the FDTD-ealculated E-field intensity profile (log scale) along a planar
central cut through the photonic crystal slab (73). Note that, in creating the FOTD model. ICWai

structural data for the fabricated microlaser was transferred directly from the scanning electron
microscope image to the FOTD geometry dataset This allowed the model to incorporate aclUal
imperfections of the fabrication process. As a reSUlt, the FOTD model predicted the actual
observed monopole-mode operation of the laser, and reasonably reproduced the field asymmetry
resulting from the laser's imperfect fabrication. Cavity quality (Q> factors for this study were in
the order of 3,000 for a lasing wavelength of 1,519.7 nm and a modal volume of 0.0587 Jl-mJ

•

1be latter corresponds to 0.684 (M"»). which approaches the smallest theoretical value.
The microlaser of [13j discussed here has I flexible geometry that allows fine tuning of its

radiation panem and emission wavelength. The compact size and high spontanCQus-emission
coupling factor of its defect microcavity also make this laser interesting as a low-noise light
source. one day potentially approaching thresholdless operation or a single-photon source.
In addition. such macraeavity lasers may be useful where crystal growth of high-index contrast
mirrors are limited. such as .in long-wavelength vertical-cavity surface-emitting lasers or blue
green gallium nitride-based devices.

In the near future, we expect FDTD modeling to be commonly used in the design of
microlasers such as the one discussed above, incorporating even more details of the physics of
Light emission. With the capability of FOlD to accurately model active lasing devices as well as
passive PBG structures, optical waveguides, couplers, and cavities. it is almost certain that large
scale FOW modeling will be used to design complete photonic integrated circuits.

1.7.8 Pbotnnk Crystal Cross-Waveguide Switch

The FOTD method achieves robustness for nonlinear optical problems by retaining the optical
carrier and solving (or fundamental quantities. the optical E and H fields in space and time.
Norc that most previous approaches in nonlinear optics calculated a nonphysical scalar carrier
envelope fUDction aJler discarding much of the full-wave physics contained in Maxwell's
equations. In addilion, FDTD enforces the E and H boundary conditions at an material
interfaces in the time scale of a .small fraction of the carrier period. whether or not the media are
dispersive and/or nonlinear. As a result., il is almost completely general.

Because of Ihese desirable characteristics, FOTD has been used to study micron-scale
all-optical switching in photonic crystals [14]. Photonic crystal microcavities can confine
pholons to submicron dimensions. Such ultrastrong confinement leads to very high peak power
levels which enhance nonlinear processes by many orders of magnitude. This enhancement in
nonlinearity can be used to construct ultraJow-power all-optical switches.

Fig. 1.8 shows color visualizations of the operation of an all-optical photonic crystal
cross-waveguide switch Ihat can operate at 10 Gbits/s with pulse energy levels as small as
100 (J I pulse. The swilching action employs only the intrinsic nonresonant Kerr nonlinearities
Ihal are presenl in semiconduclors such as AIGaAs for wavelengths in the order of 1.5 ~m

(compatiblewilh modem lightwave communication systems). The structure of Fig. 1.8 consists
of IWO pholonic crystal waveguides that cross each other at right angles. The microcavity
locarcd at Ihe intersection of the waveguides possesses two orthogonal dipole-like cavity modes.
Each cavity mode couples to only one of the waveguides. and isolates the signals in the two
wa eguides. As proven by the FOTD simulations. this accomplishes both spatial and spectral
isolation betweenlhe signal and the control inputs. even in the nonlinear regime.
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Fig. 1..8 lllustrates the two states of the device as simulated with FDTD. lDitiallJ •.
the microcavity at the intersection is designed to be out of resonanu with the .gnat inpn in the
absence of the control input. This causes a. very low signal transmission, own in II- 1.
When a control pulse is launched, as shown in Fig, 1.8(b), it causes a trong I It
in the microcavit)' which shifts its resonant frequenc)' due Lo tbe maier; J non ioearil .
The overaJl result is a bistable transition of the cavity rcsonan e which .. Ltc· the '
transmission from low to high. Since the switching process cu via bis Ie . 'Ii
the device is digital. thai is, only low and high transmission taleS are aUo ed. As di.·slCU:ssed
[74), the same device can function either as a witch or as a memory elemenl. dependin u
the design parameters.

The implications of the work shown in fig. 1.8 may be profound ~ r the _f
"optonics," a proposed successor technology to electronics in me 21· I -nlury•. wIli b . d
integrate optical-fiber inlerconnects and optical microchip inl lem r urTenlJ
unimaginable infonnation-processing capability.

1.8 CONCLUSIONS

Whereas large-scale solutions of Maxwell's equalions were motivated in the past primaril
the requirements of military defense, the entire field of computational electrOdi
shifted toward important applications in communication.s, compuling. -nd bi medi
These applications touch all of us in our daily live c

• Now, the economic and·Ph i ell·"
of nations. as well as their mililary secunly. is being markedly impr cd b
computationaJ electrodynamics.

A key remaining goal is the computational unification ofelcclfolNgn Ii hu. :e
transport. and quantum phenomena to allow modeling the broadest range f proble

• These problems literally cover the frequency peClr'um ir m Lhe u lfiJow to
the ullraviolet (equivalently. lime scales from the bener pan of minu e 10

subfemtoseconds).

• These problems cover characteristic distance scales from IMI of the entire
to that of a single atom.

Arguably, FDTD and related space-grid time-domain techniques comprise the m
robust means to so.lve problems spanning these enormous rang,es, especially here
complexily. nonlinearity, and mUlliphysics dominate. in (hi pint, lei us . ilb lhe
remaining 1.9 chapters of this book. and engage our .reade in cxe'rci ing their inteUcd and
energy as they explore the rapidly expanding universe of FOlD computational elcctrod oamics.
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Chapter 2

The One-Dimensional Scalar Wave Equation

2.1 INTRODUCTION

In this chapter. we consider the numerical FDTD solution of the most basic partial differential
equation that describes wave motion. the one-dimensional scalar wave equation. The analyticaJ
propagating-wave solutions are fU'St obtained. Then finite differences are introduced and applied
to the wa.ve equation. leading to introductory discussions of numerical dispersion. numerical
phase velocity, the "magic" time-slep. and numerical stability. The discussions of this chapter
serve as the basis for later work with similar concepts regarding FOlD analysis of the vector
Maxwell's equations in two and three dimensions.

U PROPAGATlNG·WAVE SOLUTIONS

Con ider the one-dimensional scalar wave equation

a'u 2 a2u
= C-at· . ih 2

where u = u(x, I). What are the possible solutions? Consider functions of the type

U(X.l} = F(x+ct) + G(x-et)

where F and G are arbilrary. Let's partially differentiate these twice with respect to t and x:

(2.1 )

(2.2)

dU

dl

dF(x + et) a(x + CI)
+

d(x +CI) iJt
'----vo.--,' '---.....,---

F' c

= C~(X+CI) - cG'(X-CI)

dG(x - et} iJ(x - CI)

d(x -ct) at
•-c

(2.3a)

't"" "= ·r (x +ct) - c(-c)G (x -el)

2 . 2,,·= C F"'(X+CI) + C G(x-ct)

21

(2.3b)
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au
ax

=
dF(x + ct) a(x + ct)

+
d(x+ct) ax

'----v-" w
F' I

dG(x - CI) a(x - ct)

d(x-ct) ax
___........_.J' ....---.,..-.--'o·

= ~(X+CI) + O'(X-CI)

= rex + CI) + G"(x - CI)

and substitute into the scalar wave equation (2.1)

This is an identity regardless of the choice of F and G.
F and 0 are known as propag,ating,-wave solutions. Po,r example. c

F(x + ct) taken at time to- After AI seconds have passed, the wave soluti n F mo cd me
left (in the -x direction) by cAl meters. Why? Well. the time pan of lhe argument of F
increased by cAt. Therefore, the space part of the argument, has to d«c-rea ~ b cAt 1 ain,11be
previous wave function value. The converse is true for G(x - cr), a right ani U3vclin
We see that c represents the speed of wave propagation in the +x or -x direction.

2.3 DISPERSION RELAnON

In this section, we introduce the concept of dispersion. Dipersion is defined lhc," D of
propagating wave's wavelength A with frequency f . For convenien e. d'pe ion '
frequently represented as the variation of the propagating wave' WI enumber k = 21C IA. 'Jh

angular frequency CtJ = 21fj.
The simplest example of a dispersion relation re UllS from the one-dime i naJ

equation itself. Consider a continuous sinusoidal traveling-wave olution of 2.1
phasor form:

U(X.I) 6

where CtJ and Ie are defined above and j = .r=I. Substituting into (2.1 >, we obtain

( . )1 jt",,-iA) 1( '1.)1 /'OI'-tll
)ll) e = c -)1\ e

Now factoring out the complex exponentialtenn common to both ides yiel

7

-. Ie = ±CtJ/c
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In facl, (2.7b) is the dispersion relation for the one-dimensional scalar wave equation (2.1). This
relation i.s very simple, stating that the wavenumber is linearly proportional to the sinusoidal
fTequency. The plus sign designates +x-directed wave propagation. while the minus sign
designates -x-diJecled propagation.

From (2.7b), we can obtain an expression for the wave phase velocity, classically defined as

", = {jJl k .:

(jJ

", = = ±c
k

(2.8)

The phase velocity is seen to be ±c. a constant regardless of frequency. Propagating waves
having a. dispersion relation of the fonn of (2.7b), re-sulting in the constant phase velocity of
(2.8), are said to be dispersion/us. In effect, their waveshape remains unchanged after
arbitrarily large propagation distances for arbitrary modulation envelopes or pulse shapes.

Further, by considering the angular frequency to be a function of the wavenumber, that is,
CI) =Q)(k). we can differentiate (2.7b) with respect to k to obtain the wave group velocity,
classically defined as v, =dOJI dJc. This yields

dO)
2eu - = cl

• (2k)
dk

(2.9)

v, = d(j) = 2c
1

k = ~.(± tV) = ±c
dJc 2tV Q) C

The group velocity for this case is also sten to be ±e, independent of frequency.

2A FINITE DIFFERENCES

Consider a Taylor's series expansion of u(x, ',,) about the space point XI to the space point
x + ~" keeping lime fIXed at I,,:

(2. lOa)

The last lerm is lhe remainder. or error. term. Here, ~I is a space point located somewhere in the
interval (XI' x, + &x). Similarly, consider the Taylor's series expansion to the space point
XI - &X. again keeping time fixed at t,,:
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In the remainder term. ~2 is a space point located omewhue in the inLerv
Now. adding (2. lOa) and (2. lOb). we obtain

" ; - r.

II

Here, by the mean-value the.orem. ~) is a space point located somewhere if) the iDL

(x. - lu. x + L\x). Rearranging tenns. we obtain
I I

where O[(L\xn is a shorthand notaLion for the remainder term. which appr - h urn the
square of the space increment. Equation (2.12) is commonly rcferredto ~ ad
accurate, central-difference approximation to the second partial spa·c den tJ e of &I.

For convenience, we will adopt a sub cript ; for the space po ition and. uperscri,p( II (Of lbe
time observation point. EquaLion (2.12) is rewritten as:

;iu
dX 2

..t".'.

= U7.1 - 2u; + U;.I +
(L\x)2

In (2.13) and all subsequent finite-difference expressions. it is understood that ...; de
quantity calculated at the space point x, = jL\x and time point t. =: ,,6.l.

For the second panial time derivative. we keep .x fixed and expand II ip r flIo·U'dand
backward Taylor's series in time. By analogy with (2.13). we obtain a _-. ond-order ..rat.
central·difference approximation to the second partial Lime derivative of u:

=
.+. R ~-I

U/ - 2u/ + "/
(61)2

1,4

F

2.S FINITE-DIFFERENCE APPROXIMAnON OF THE SCALAR WAVE EQ Ano

Substituting the two central-difference expressions of (2.13) and (2.14 into the ne-dimea.si
scalar wave equation (2.1), we have
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(2.15)

This approximat.ion to the scalar wave e<luation has a second-order accuracy in both space and
time, O[(~}2 + (&il, which is denoted succinctly as "a (2,2) accurate solution." (See this
cnapter'sappendix. for additional discussion of the order of accuracy.) Neglecting the Taylor
series remainder terms and solving for the latest value of U at grid point i, we obtain

(2.16)

This is aful/)' explicit second-order accurate expression for u;,..• in that aU wave quantities on lhe
right-hand ide are known; that is. they were obtained during the previous time steps, n and
n - I. and then stored in the computer memory. No simultaneous equation solution is needed.
Upon performing (2.16) for all space points of interest, yielding the complete set of uj""'.

tbe process can begin 8gain lo obtain u;..2.. Repetition of (2.16) over the problem space
constitutes the numerical FOID solution of t.be scalar wave equation.

Of particular interest will be the case c~ = Ax. The properties of lhe resulting finite
differen e expression are 0 remarkable that. hencefonh, we will refer to this situation as lhe
mag;~ tim~-slep. For this case. (2.16) reduces to simply

(2.17)
.. .. .. -I

= £I,.. + II -l - "/

otc that (2.17) denotes an exact equality of the left- and right-hand sides, not an approximation
as shown in (2.16). This is nOI an error. In fact, for cfJ =Ax, we can show that the solution to
the numeri al finite-difference equalion is an exact solulion to the original differential wave
equation (2.1). despite the Taylor's series approximations. This proof is carried out next.

Consider again u(xI t) =F(x + ct) + G(x - ct), the exact propagati,ng-wave solutions to the
one-(fimcnsionl scalar wave equ8tion (2.1). In our notation, U evaluated at space point xj and
time point I. is given by u" :; F(x/ +ct.. ) + G(x/- CI.. ). where XI =il1x and I.. =n~. Now assume
th l these cxa t propagating-wave data are somehow available and stored in computer memory.
Funner. as ume that we perform the simple algorithm of (2.17) upon these exact data,
I'e,m:senting a time advance of t:J:

• i I " " .. -I
u

f
_. ".... + "'-I uj

J. J. J. J.

[ F(x, + c'••,) ] [ F(x., +c'.) ] [ Fk, +ct.l ] _ [ F{x, +c,._,) ]
= +

+ G(.r j - CI", •• ) + G(X'+I - CI..} + G(xJ-I -ct..} + G(x; -ct,,_I)

(2.18a)
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Initially, we see that the algorithm yields six terms, three right ard and th~ Idt'ard
propagating waves. However, some cancellation of these (emu iU n be ~Dt_

Expanding the right-hand side (RHS) of (2.18a), we obtain

RHS
= { F[(i+I)dt+c1J~] } {F{(i-I)Ar+cnM]}

+ G[(i + l)~ - C1J~]. ... + G(; -l)Ar - cnl1,d .

{
F[i6.x + c(n -OAr] }

+ G[i& - c(n - I)L\J]

From the magjc time-step, we let eL\J ;:; tit in each argument of F and G in 2..1 b:

= { F[(i + 1+ n)~]} {F[(; - 1+n)A.x)·} {.F[C; .n -11'] }

+G{(i+l-n)~l + +G[(i-l-n)6.r] - +G{,i-n if)

It is clear that the G term in the firt bracket cancels the Glenn in t~ third
term in the second bracket cancels the F term in the third bracket This lea,..,
the right-hand side:

RHS = F[(i+ I +n)L1x] + G[(i-I-n)6x]

I F
,ttnnS ti .

However, these two terms represent the sam~ t'Wo propagating WI Wt ""C

with, only shifted in space to the left andt the right by the di lanCe ct. • the dis't.aoe:e
moved by each wave traveling at the speed c over onetime-step 61., pracri.bed I· Lhe '00·
wave equati.on (2.1). We can see lbi·, imply by evaluating the initiaJly umed Ie.
solution u at the original space point XI but with the, lime advanoc:d 10 t. +&:

= F[i6.x + c(n + 1)t\J] + G[i~ - c(n + 1)61]

Again replacing c61 wilh~ in the arguments of F and G. we obtain

u;O' = F[(i+n+J)dx] + G[(i-n-I)t...r]

We note that this is euctly the right-hand side of (2.1Bd). There(fit. the nul
algoritbm of (2 .. 17) re ulls in the a umed cuet initial data for lhepr pa lin \Ii
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I:r1.Uformed 1'0 new ex el data for the waves, with the proper physics of propagation
iDcorporaled. U desired we can then apply ('2.11) again. but now to the new wave data obtained
II. time-:Iikp "T I. In lhis manner, we can proceed to time-step n + 2. By induction, it is dear
lhaI we can~ any number 01 ~stepS, or iterations of me algorithm. always caLcuJa.ting
UIJCI propiJ min WQ'~dilm.

Th- is lartJing result because, apparently, the approximations inherent in lhe Taylor's
series derivllion of the·~ and time derivatives cancel out for me magic time-step, yielding a
numerical finj e-difference olulion for the continuous one-dimensionaJ wave equationlhal is
euct. In the: DCltt section we IhaJI explore the cheoretical background behind this in more depth.

U ERlCAL 'DISPERSION RELATION

1'be prnadure u.sed in Secuon 2.3 can be applied to obtain the numerical dispersion relation of
the finite-ditreren ~ approXimation of the one-dimensional scalar wave equation given by (2.16).

Co idee'the inusoidaJ 'II ve of (2.6) of angular frequency co discretely 'sampled in space and
lime' (x. r ) in 'finile-difference grid. Lei , =k.,. + ji.:.., be the possibly complex-valued
waveaumber' of this "'numerieal" wave. Then, (2.6) becomes

•
II, (2.20)

1JJ aenerat. i. differs from k. the corresponding physical wavenumber, This difference, called Ibe
numeneaJ-d' _ ion anU I, may give rise 10 numerical wave amplitUdes and velocities that
depart: (rom the «',"I v lu . For Iller reference, we note that (2.20) pennits either a constanl

ve amplilude with ' padal po ilion (t _=0), an exponentially decreasing amplitude wilb
'.aJ posilj n ~.... <0). or an exponentially increasing amplitude with spatial position

.t _> 0 .
We til tiWIC into (2.16) the numerica1lrlveling wave of (2.20). This yields

J( a. 'I _ -

(2.2Ia)

AI," fIdOrin - 001 exp j (I) n& - I:~) on both sides, we obtain

(2.2Ib)

exponentiJJ. terms and dividing both sides by 2 yields
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Upon applying Euler's identity to the complex exponentials. we obtain the numen
relation corresponding to (2.16) expressed in two equivalent. useful fonns:

cOS(CU&) = (:J[cos(kdx) - I] + I

23)

We see that (2.22) and (2.23) are much more complicated relations between. d i
lhe saraightforward algebraic expression of (2.7b). which is lhc dispe ion rei-lion ( t
continuous one-dimensional wave equation. Nevertheless, we can use 2.22 and 10 '

information about lhe nature of the grid' numerical traveling wa. represent
We shall consider lhtee cases as follows.

2.6.1 Case 1: Vuy Fiue SampUngln Time and Space

Here. we start with (2.23) and assume a fine time-sampling condition. u h lh.tl mew
of the cosine approaches zero. This permits applying a two~term Tayl r" paMi n I
this cosine:

(CO&)~

2

J_1[ 1(W)l l] I 0"[ I :J= ~ cos I - '2 -; (dx) = ~ cos I - '2 (k.6.r

where the free-space wavenumber is Ie = wIc. Next. we. note thai Ie AI aPlX" uro under
the assumed fine space-sampling condition. This permit applying a two-tam T I r' sal
expansion to the cos· 1 function. which yields our final result:

- I
Ie = -·(k6.x) = Ie

6.x

We see that the numerical wavenumber i: in (2.24b) redu e 10 the free- :c mum
Since the latter provides for phase velocity v, and group velocity v, equal to rcgudJ -of
frequency (i.e., dispersionless wave propagation). we infer that the numerical luti n for lhis
case is dispersionle s as well. Thus. we have a satisfying intuitive result: in the limit lbc:
space and time increments of our finite-difference approximation go to :z.cro. the utlmer;
solution becomes eue"
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1.6.2 ~ .2: Mqic TIme-8Up

In lhis case. we substilute the magic time-step relation inlo (2.23). This yields

- 1 -l[Ie = - cos I + cos(0)l!J) - I]
cl!J

Performing Ihe indicated cancellation, we oblain

- I .-I[ ] 0>61Ie. = - cos cos(cul!J) = - = Ie.
cl!J cl!J

(2.25a)

(2.2Sb)

Just as in, Case I. k reduces to the free-space wavenumber, and the numerical solution is exact
However. unlike Case I, this is noninlUitive because it implies that the numerical solution is
euel regardless of the cboice of the space and time increments (fine or coarse). The space and
time increments need only be scaled by the free-space wave-propagation velocityc.

2.6.3 Cue 3: DlspuIIve, Wave PropaptiOD

This is the general solution of (2.23), where finite numerical dispersion errors can exist Before
wrestling witb the mathematics of the general solution, it is helpful to obtain sample values of k
and numerical phase velocity. These results show that the phase velocity of a sinusoidal
numerical wave wilhin lhe grid is determined by the grid's sampling resolution relative to lhe
free.'sp8CC wavelength.

SDmp/~ VaJfAts ofIh~ NUl'Mricai Wa,,~numbtr curd Phase Velocity

We consider firsl a choice of space and time increments such that cl!J =~12 and ~= An /to,
where Au i the free-space wavelength of a continuous propagating sinusoidal wave of angular
f:requencyw. from (2.23), we obtain

i = ~ cos-'{I+ (tu~J[cos( C02~) - lJ}
= ~ cos·

l
{ 1+ 4[cos(~) - tJ} (2.26a)

where again Ie =cui c. Further noting that Ie. =21rI A.o, and letting ~ I A.o = 0.1, we proceed:

= ..l.co ·'(0.8042) =
tu

0.63642

~

(2.26b)
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Defining a numerical phase velocity v, by analogy to the phase clocit r. r the 
analytical wave equation [see (2.8)]:

v, = w/I:

we have

v, =
2n:f

(0.63642 I at)

2n:(cl A,,)at
=

0.63642

2~· (0.1)= c ,- 0.91"3_
0.63642

The numerical phase velocity for this example is seen to be 1.27% 1-

physical wave propagating over a distance equivalent to 10A.g (100 Ulbc n.umc:rical
analog would propagate only 98.73 cells. At the leading edge of the pro plin
represents a numerical phase error of [(100 - 98.73)110) . 360°, or 45.72°.

We next repeat the above steps for Ax halved (i.e.. a grid space resolution, f
This yields k =0.31514/at and v, =O.99689c, implying a numencaJ pba$e- eI
-0.31 %. We see that reducing at by 2: I cuts the numerical phase-velocity rtrrOf b
indicative of the second-order accuracy of the finite-difference algorithm that e are us:m .
For a physical wave propagating over the same IO~ di tance considered e
to 200 space cells). the numerical analog would propagate 199.378 cell. AI Lbc: I
the propagating wave, this represents a numerical phase error of [{2oo - 199.37
11.196°, again reduced by a factor of about 4:1.

General Solution

Having shown that the grid' space resolution direclly impacts the nu . I
useful 10 solve (2.23) for the general case of 6t and~. FoUowins the nOlan n

s = c6t/~

be the numerical stability factor (or Courant number), 10 be dii5C'1UC~ I I.ct in thi
Funher. we define

to be the grid sampling resolution in space cells per free- pace wavelength. e thaI

defined in terms of resolving the continuous-world wavelenglh Aa and nOI the oumcri
wavelength ~ in the FOTD grid. Then. (2.23) can be written as

k 1 _'{ (~)'[c0f:,s)- I]};: ~cos 1+

I _I { I [n: -I ]= -cos ( ) = - - - sin ({)
ax· ax 2
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where

(2.29b)

As discussed in (Il, caution musl be exercised in evaluating numerical dispersion relations

'SUch as (2.29). since it is possible to choose S and NA such that k. is complex. In the specific case
of (2.29), it. can be shown that. the transition between real and complex values of k. occurs when,= -I. Solving (or NA at this transition results in

(2.30)

For grid ampling finer man this value (Le., NA> N}.ItrM1llloa)' k. is a real number, and the
numeric.al wave undergoes no auenuation while propagating in the grid. Here. the numerical

phase velocity v,. is less lhan the free-space phase vel~ity c, as shown in the example resulting
in (2.27b). for coarser grid sampling NA< N.lIIrUllidoa , k is a complex number. and the numerical
wave undergoes a. nonphysical exponential decay while propagating (I]. Further, in this coarse

resolution regime. v, canex~ c [I].
We now illustrate bow k and v, vary with grid sampling N,l both above and below the

transition between real and complex numerical wavenumbers. For clarity, we choose a specific

eumpJe wherein S = 0.5. This yields NAI-..ltloll =3 from (2.30).

Rea/·NumeriCdJ·Wavenumber Regime

For NJ. ~ 3. we have from (2.29)

- I I{kral = 4.r cos· I + k.... = 0 (2.31)

The: numerical phase velocity is given by

v =,

Since

(2.32a)

we ean rewrite (2.32a) as

(2.32b)

v,. =
21t

(2.32c)
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From (2.20), we note that the wave-amplitude multiplier per grid cell of propagation is

Thus, there is a constant wave amplitude with spatial position for this range of N),..

Complex-Numerical- Wavenumber Regime

(2.33)

For N),. < 3, we observe that S< -1 in (2.29). The following relation for the complex-valued
arc-sine function [1, 2] becomes useful:

Substituting (2.34) into (2.29) yields

k = ~ [~ + i In (is + ~ I - S2)]

= ~ [~ + i In (is + i~ S2 - 1)]

Factoring out j = e+jtr/2 in the argument of the natural logarithm, we obtain

k = ~{~ + jln[(s+~s2 -1)e+
jtr/2 J}

= ~ {~ + j In [(-s - ~ ( - 1) e- jtr/2 ] }

Upon taking the natural logarithm, we further obtain

This yields

(2.34)

(2.35a)

(2.35b)

(2.35c)

-
k =real

(2.36)
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Following [1], the numerical phase velocity for this case is

ro ro 2rr:f&
vp = = =

krcaJ (n I ax) rr:

2f Ao 2
= = -c (2.37a)

NA NA

and from (2.20), the wave-amplitude multiplier per grid cell of propagation is

(2.37b)

Since S< -1, the numerical wave amplitude decays exponentially with spatial position.
Let us now consider the possibility of vp exceeding e in this situation [I), Nyquist theory

states that any physical or numerical process that obtains samples of a time waveform every /1t
seconds can reproduce the original waveform (without aliasing) for spectral content up to

1. =1/(2&-). In the present case, the corresponding minimum free-space wavelength that can
max

be sampled without aliasing is therefore

Since (as will be shown later in this chapter) S ~ I to insure numerical stability of the algorithm,

we have

Ao . = e11.m.• = 2e/1t,mm ~

For a particular choice of grid ax, the corresponding minimum spatial sampling is

N, . = Ao . / ax = 2e&- / & = 2SA,mm ,mm

N, . = 2S ~ 2,,",mm

Then, from (2.37a), the maximum numerical phase velocity is given by

(2.38a)

(2.38b)

(2.38c)

Vp,max

2
= --e

NA,min

2= -e =
2S

1
- e ~ e
S

(2.39a)

We see that vp can exceed e for this case. In fact, substituting S from (2.28a) into (2.39a),
we obtain the maximum possible numerical phase velocity in the grid [1]:

Vp,max

1
= - c

S

& &
= -c =

e&- &-
(2.39b)
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This relation tells us that in one !!:.t, a numerical value can propagate at most one !!:.x. This is
intuitively correct, given the local nature of the spatial difference used in the field-updating
algorithm. That is, a field point more than one !!:.x away from a source point that undergoes a
sudden change cannot possibly "feel" the effect of that change during the next!1t. Note that
v is independent of material parameters, and is an inherent property of the grid and its

p. max

method of obtaining space derivatives.

2.6.4 Example of Calculation of Numerical Phase Velocity and Attenuation

This section provides an example of a calculation of numerical phase velocity and attenuation
based upon the dispersion analysis of Section 2.6.3. Graphs are provided that depict the
variation of the numerical velocity and attenuation as a function of the grid sampling density.

Fig. 2.1 graphs v/c, the numerical phase velocity normalized to the free-space speed of
light, and a !!:.X , the exponential attenuation constant per grid cell, versus the grid sampling
density N;., (given in points per free-space wavelength AD). A stability factor (Courant number)
S =0.5 is assumed. The data shown in this figure are obtained from (2.32c) and (2.33) for the
regime N;., ~ 3, and from (2.37a) and (2.37b) for the regime N;., < 3. We see that, at N;., =3
(the transition point between real and complex values of k), a minimum value of v =(2/3)c is

p

reached. This is also the onset of exponential attenuation of numerical waves in the grid. As N).
is reduced below 3, v

p
increases inversely with N;.,. Eventually, v

p
exceeds c for N;., < 2, and

reaches a limiting velocity of 2c as N;., ~ l. In this limit, as well, the attenuation approaches a
value of 2.639 nepers/cell. It appears that very coarsely-resolved wave modes in the grid can
propagate at superluminal speeds [1]. However, these modes are rapidly attenuated [1].

Fig. 2.2 graphs the percent error in the numerical phase velocity relative to the free-space
speed of light in the grid-sampling density regime N;., ~ 3. Similar to Fig. 2.1, a stability factor
(Courant number) S =0.5 is assumed. As N;.,» la, we see from Fig. 2.2 that the numerical
phase-velocity error diminishes as the inverse square of N;.,. This is indicative of the second
order-accurate nature of the algorithm.

2.6.5 Examples of Calculations of Pulse Propagation

Fig. 2.3(a) graphs examples of the calculated propagation of a 40-cell-wide rectangular pulse in
free space for two cases of the Courant stability factor: S = I (i.e.,!!:.t is equal to the magic time
step); and S =0.99 (Le., M is just 1% below the magic time-step). To permit a direct
comparison of these results, both "snapshots" are taken at the same absolute time after the onset
of time-stepping. There are three key observations: .

1. When S =1, the rectangular shape and spatial width of the pulse are completely
preserved. For this case, the abrupt step discontinuities of the propagating pulse
are modeled perfectly. In fact, this is expected, since v

p
== c for all numerical

modes in the grid under magic time-step conditions.

2. When S =0.99, the step discontinuities at the leading and trailing edges of the
pulse generate appreciable "ringing." In fact, this ringing represents time
retarded propagation (i.e., vp < c) of the sparsely sampled, high spatial
frequency spectral content generated by the step discontinuities.
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3. When S =0.99, a weak superluminal response (i.e., v
p

> c) propagates just
ahead of the leading edge of the pulse. This is in accordance with the dispersive

propagation theory developed earlier.

Fig. 2.3(b) repeats the examples of Fig. 2.3(a), but for the Courant stability factors S = I
and S =0.5 (i.e., tH is set at 50% below the magic time-step). Again, to permit a direct
comparison of the results, both "snapshots" are taken at the same absolute time after the onset of
time-stepping. From this figure, we see that the duration and periodicity of the ringing is
significantly greater than that for the S =0.99 case of Fig. 2.3(a). Further, the superluminal

response located ahead of the pulse leading edge is more pronounced and less damped.
Figs. 2.4(a, b) repeat the examples of Figs. 2.3(a, b). but for a smooth Gaussian pulse having

a 40-grid-cell spatial width between lie points. Again, to permit a direct comparison of the
results, all "snapshots" are taken at the same absolute time after the onset of time-stepping.
We see that the propagating Gaussian pulse undergoes much less distortion than the rectangular
pulse. The calculated pulse propagation for S =0.99 shows no observable difference [at the

scale of Fig. 2.4(a)] relative to the perfect propagation case of S = I. Even for S =0.5,
the calculated pulse propagation shows only a slight retardation relative to the exact solution,

as expected because v
p

< c for virtually all modes in the grid. Further, there is no observable
superluminal precursor. All of these phenomena are due to the fact that, for this case, virtually
the entire spatial spectrum of propagating wavelengths within the grid is well resolved by the
grid's sampling process. As a result, almost all numerical phase-velocity errors relative to the

free-space speed of light are well below 1%, as seen from Fig. 2.2. This allows the Gaussian
pulse to "hold together" while propagating over significant distances within the grid.

Fig. 2.5 graphs the calculated transmission and reflection of a Gaussian pulse at the interface

from free space to a lossless material half-space having a phase velocity v =c14. Here,
p

the incident pulse has a unity amplitude and a spatial width of 40Lix between its lie points.
Both regions of the grid are modeled using a uniform ~x and tH. The physics of the phase

velocity discontinuity between the two regions is modeled simply by assigning a different

Courant number S =c ~tILix to gridpoints in each region when implementing the time-stepping

algorithm of (2.16). In the free-space region (gridpoints between i =1 and i =139) we assume
S = I, whereas in the material region (gridpoints between i = 140 and i = 200) we assume

S =0.25.
At the time of the snapshot of Fig. 2.5, the incident pulse has already reached the interface

at i = 140 and experienced partial reflection and transmission. With the material half-space
being lossless and nondispersive, the reflected and transmitted pulses must also have a Gaussian
shape. Simply by taking the ratio of the peak values of the reflected and incident pulses,

a reflection coefficient of -0.603 is obtained. This is within 0.5% of the exact value of -0.6.

Similarly, taking the ratio of the peak values of the transmitted and incident pulses leads to a
transmission coefficient within 0.5% of the exact value of 0.4. Finally, the spatial width of the

reflected pulse is virtually identical to that of the incident, while the spatial width of the

transmitted pulse is almost exactly 0.25 times that of the incident, as predicted by the analytical

theory. This simple exercise is our first indication that a numerical model of the wave equation

can simulate the scattering properties of material structures by assigning appropriate updating

coefficients to the time-stepping algorithm of each gridpoint.
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2.7 NUMERICAL STABILITY

We have seen that the choice of space increment tu and time-step t::.t can affect the velocity of
propagation of numerical waves in a finite-difference grid modeling the one-dimensional scalar
wave equation (2.1), and therefore the numerical error. In this section, we show that another
consideration enters into the selection of the time-step: t::.t must be bounded in order to ensure
numerical stability. The following definition [3] forms the basis of this discussion:

An explicit numerical solution of (2.1) such as (2.16) is stable if it produces a
bounded result given a bounded input. The numerical solution is unstable if it
produces an unbounded result given a bounded input.

Numerical instability is an undesirable possibility for explicit numerical differential-equation
solvers. It causes the computed results to spuriously increase without limit during time-marching.

A classical approach to analyze numerical stability is the spectral technique developed by
von Neumann. This method expresses the error in a numerical solution such as (2.16) at any
point in time as a finite spatial Fourier series. Numerical stability results if each Fourier term has
a unity-or-Iess growth factor over one time-step. Then, assuming that each Fourier term is
initially bounded, each term remains bounded at all subsequent time-steps. Since the system is
linear, the total error represented by the finite sum of the Fourier terms must also be bounded at
any time-step. Hence, the numerical solution satisfies the stability definition given above.

In this section, however, we take a different (yet rigorous) approach to numerical stability
that is more intuitive to students than von Neumann's technique. The alternative approach
avoids the need for an eigenvalue / eigenspectrum analysis, and allows straightforward estimates
of the growth rate of unstable solutions. The method is based upon a complex-frequency
analysis of numerical dispersion relation (2.22). Its application to Maxwell's equations and the
Yee algorithm will be discussed in detail in Chapter 4.
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2.7.1 Complex-Frequency Analysis

We again consider the sinusoidal traveling wave of (2.6) present in our finite-difference grid and
discretely sampled at (Xi' t). Now, however, we allow for the possibility of a complex-valued
numerical angular frequency, iiJ = iiJreal + jiiJimag • Then, (2.20) becomes

(2.40)

Here, as in our earlier analysis, k is the wavenumber of the numerical sinusoidal traveling wave.
We note that (2.40) permits either a constant wave amplitude with time (iiJ. =0), an

.mag

exponentially decreasing amplitude with time (iiJimag > 0), or an exponentially increasing
amplitude with time (iiJ. < 0).

Jrnag

Given this basis, we proceed to analyze numerical dispersion relation (2.22), allowing for a
complex-valued angular frequency:

cos(w6t) = (:J[ cos(k~) - I] + 1

Again defining the Courant stability factor 5 =c I1t I~, we solve (2.41) for w:

(2.41)

where

1 -I= - cos (~)
!1t

I [n I ]= - - - sin- (~)

!1t 2
(2.42a)

(2.42b)

We observe from (2.42b) that 1 - 25
2

$ ~ $ 1 for all possible real values of k; that is, those
numerical waves having zero exponential attenuation per grid space cell. (For this case,
the value of the cosine function is bounded by -1 $ cos(k~) $ 1.) Now, consider dividing the
I - 252

$ ~ $ 1 range into two subranges, as follows:

(a) -1 $ S$ 1. This subrange exists for 0 $ 5 $ 1. Here, sin-l(~) is real-valued,
and hence, real values of ware obtained in (2.42a). With OJ. =0, (2.40)

Imag

yields a constant wave amplitude with time.

(b) 1 - 252
$ ~ < -1. This subrange exists for 1 - 252 < -1, or equivalently S> 1.

The most negative value in this subrange, ftl b d' occurs for cos(k~) =-I;_ ., ower oun _

that is, k~ =1t (equivalent to a numerical wavelength Il =2!1x). This lower

bound is given by
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]:. = 1 - 2S2
~ low.,. bound } for kill = 1r (2.43)

Here, sin-I(~) is a complex-valued function given by (2.34), which is repeated
here for convenience:

(2.44)

We sense that Case (b), that is, S > 1, may provide unusual numerical wave propagation
phenomena. To explore these phenomena, we substitute (2.44) into (2.42a) and solve for OJ.
This yields

(2.45a)

Factoring out j =exp(jrcl2) in the argument of the natural logarithm, we obtain

(2.45b)

Upon taking the natural logarithm, we further obtain

Now, the real and imaginary parts of OJ can be separated:

(2.45c)

(J) =real
tlt

(2.46)

Finally, substituting (2.46) into (2.40), we obtain
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[-n In(-~ - .JT=l)] j[Ur/At)(nAt) - kit.t]= e e

(2.47)

where **n denotes the n'th power. From (2.47), we define the following multiplicative factor

greater than 1 that amplifies the numerical wave every time-step:

qgrowth -

1

_~ _ ~ ~2 _ 1
(2.48)

Our suspicion that Case (b) is very interesting is now borne out. Because ~ < -1 for this

case, (2.47) and (2.48) define an exponential growth of the numerical wave with time-step

number n. We see that the dominant exponential growth occurs for the most negative possible

value of ~ [i.e., ~lowerbound defined in (2.43)]. As stated earlier in the context of (2.43), this occurs

for ktlx = 1t (equivalent to a numerical wavelength X= 2tlx). Substituting ~Iower bound of (2.43)
into (2,48) yields the maximum growth-factor per time-step, valid for the regime S ~ 1 :

qgrowth

= 2S
2

+ 25~ 52 - I - 1 = (5 + ~ 52 - 1r (2.49)

From (2.49), we see that a Courant stability factor S = 1 yields no solution growth. However, a

stability factor only 0.05% larger (5 = 1.0005) yields a growth-factor of

1.0653 every time-step

1.8822 every 10 time-steps

558.7 every 100 time-steps

2.96 x 10
27

every 1,000 time-steps

It is now quite clear that, for any Courant factor S > 1, our theory predicts an exponentially

growing, rapidly oscillating (X =2tlx), sinusoidal numerical wave propagating within the

computation grid. This is the origin of numerical instability.

A second implication of this theory is that such an exponentially increasing sinusoidal

numerical wave has a fixed temporal frequency fo that is independent of every algorithm

parameter except I:!t:

fa = wreal =
2n

1

21:!t
(2.50)
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Finally, a third implication of this theory is that the numerical propagation velocity of the
exponentially growing wave is given by

= it>real =
k

(n / ~t)

(n / fix)
= =

c

s
(2.51 )

In summary, for computational stability in modeling the one-dimensional scalar wave
equation using the numerical algorithm of (2.20), there exists an upper bound on ~t relative to fix
and the free-space speed of light. This bound is given by

s -
c~t

:::; I
c

(2.52)

following the notation of (2.28a) and [1]. S is called the numerical stability factor or Courant
number. In most modeling problems, tu is the first parameter to be specified by the analyst.
Namely, tu is selected to adequately resolve a structure's geometrical details and/or the principal
components of the spectrum of wavelengths propagating within the grid. Once tu is selected,
the maximum value of ~t is given by (2.52). If 6t is somehow taken to be larger than this bound,
then it is a certainty that the numerical algorithm will eventually undergo a progressive
instability wherein the computed values grow exponentially. Interestingly, the upper bound for
stable operation of the algorithm is exactly the magic time-step discussed earlier in this chapter.

2.7.2 Examples of Calculations Involving Numerical Instability

We first consider an example of the beginning of a numerical instability arising because the
Courant stability condition is violated equally at every gridpoint. Fig. 2.6(a) graphs three
snapshots of the free-space propagation of a Gaussian pulse within a uniform grid having the
Courant stability factor S =1.0005. The exciting pulse waveform has a 40~t temporal width
between its lie points, and reaches its peak value of 1.0 at time-step n =60. Graphs of the
wavefunction u(i) versus the grid coordinate i are shown at time-steps n =200, n =210, and
n = 220. We see that the trailing edge of the Gaussian pulse is contaminated by a rapidly
oscillating and growing noise component that does not exist in Fig. 2.4(a), which shows the same
Gaussian pulse at the same time but with S:::; 1.0. In fact, the noise component in Fig. 2.6(a)
results from the onset of numerical instability within the grid due to S being greater than 1.
Because this noise grows exponentially with time-step number n, it quickly overwhelms the
desired numerical results for the propagating Gaussian pulse. Shortly thereafter, the exponential
growth of the noise increases the calculated field values beyond the dynamic range of the
computer being used, resulting in run-time floating-point overflows and errors.

Fig. 2.6(b) is an expanded view of Fig. 2.6(a) between gridpoints i =1 and i =20, showing
a segment of the numerical noise on the trailing edge of the Gaussian pulse. We see that the
noise oscillates with a spatial period of 2 grid cells (i.e., i =2&), in accordance with the theory
developed in Section 2.7.1. In addition, upon analyzing the raw data underlying Fig. 2.6(b), it is
observed that the exponential growth factor q is in the range 1.75 to 2.0 for every 10-time-step
advance of the algorithm. This compares favorably with the theoretical value of 1.88,
determined using (2.49).
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Fig. 2.6 The beginning of numerical instability for a Gaussian pulse propagating In free space.
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We next consider an example of the beginning of a numerical instability arising because the
Courant stability condition is violated at only a single gridpoint. Fig. 2.7(a) graphs two
snapshots of the free-space propagation of a narrow Gaussian pulse within a grid having the
Courant factor S =1.0 at all points except at i =90, where S =1.075. 1 The exciting pulse
waveform has a lOilt temporal width between its lIe points, and reaches its peak value of 1.0 at
time-step n =60. Graphs of the wavefunction u(i) versus the grid coordinate i are shown at
time-steps n = 190 and n =200. In contrast to Fig. 2.6(a), the rapidly oscillating and growing
noise component due to numerical instability originates at just a single gridpoint along the
trailing edge of the Gaussian pulse (i =90) where S exceeds 1.0, rather than along the entirety of
the trailing edge. Despite this localization of the source of the instability, the noise again grows
exponentially with time-step number n. In this case, the noise propagates symmetrically in both
directions from the unstable point. Ultimately, the noise again fills the entire grid, overwhelms
the desired numerical results for the propagating Gaussian pulse, and causes run-time floating

point overflows.
Fig. 2.7(b) is an expanded view of Fig. 2.7(a) between gridpoints i = 70 and i = lID,

showing how the calculated noise due to the numerical instability originates at gridpoint i =90.
Again, the noise oscillates with a spatial period of 2 grid cells (i.e., X=2ilx). However, the rate
of exponential growth here is much less than that predicted by the theory of Section 2.7.1,
wherein all gridpoints were assumed to violate Courant stability. Upon analyzing the raw data
underlying Fig. 2.7(b), the exponential growth factor q == 15 is observed for every 10-time-step
advance of the algorithm. 1 This compares to q == 2,200 per 10 time-steps determined by
substituting S = 1.075 into (2.49). Thus, it is clear that a grid having just a single point of
numerical instability can "blow up." However, this process occurs much more slowly than a
uniformly unstable grid having a comparable or even smaller Courant factor S.

2.8 SUMMARY

This chapter introduced the numerical FDTD solution of the one-dimensional scalar wave
equation. First, the analytical propagating-wave solutions were obtained. Then, finite
differences were introduced and applied to the wave equation, leading to introductory
discussions of numerical dispersion, numerical phase velocity, the "magic" time-step, and
numerical stability. Calculated examples of impulsive wave propagation were provided to
illustrate these fundamental concepts. The discussions of this chapter serve as the fundamental
basis for our work in the following chapters, with similar concepts regarding FDTD
computational solution of the vector Maxwell's equations in two and three dimensions.

(For this example, numerical experiments have shown that the observed rate of exponential growth of the
numerical instability is a function of the precise details of the word length, arithmetic operations, and
round-off processes implemented by a particular computer and its software. Therefore, readers who
attempt to replicate this example may require values of S differing from that stated here.
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(b) Expanded view of (a) over grid coordinates i =70 through i =ItO.

Fig. 2.7 The beginning of numerical instability for a Gaussian pulse propagating in free space. Unlike
Fig. 2.6, the Courant stability factor is S =I at all gridpoints but i =90, where S =1.075.
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APPENDIX 2A: ORDER OF ACCURACy2

This appendix qualitatively defines what we mean by the "order of accuracy" of a numerical
approximation of a wavelike equation. This discussion is abstracted from Sections 2.1 and 2.2 of

[4], which provide considerable supporting mathematical detail.
We consider a general first-order system of equations for the wavefunction u, which we

symbolically denote by

au = Luat
(2A.l)

where L is a general linear operator, for example, the spatial-derivative portion of Maxwell's

equations. We have a one-step approximation given by

n+1 n
U - U

!1t
- L u- h (2A.2)

Now, assume that u is a sufficiently smooth solution of (2A.l). Let /::,.t denote the time-step
and h the mesh size in all spatial directions. Then, the approximation Lh has order of accuracy

p in time and q in space if the truncation error l' satisfies

T =
"+1 n

U - U []--- - Lhu = 0 (Ml +h
q

/)1
(2A.3)

We usually calculate the order of accuracy (p, q) by a Taylor series. Note that if the solution is
not sufficiently smooth, then the order of accuracy is reduced. This can happen if the
coefficients are not smooth, for example, due to a permittivity or permeability jump across a

material interface.

2A.l Lax-Richtmyer Equivalence Theorem

The local definition of accuracy is important because of the Lax-Richtmyer equivalence theorem

[5, 6]. This theorem states that if a scheme has a truncation error of order (p, q) and the scheme
is stable, then the difference between the analytic solution and the numerical solution in an
appropriate norm is of the order (Mf + h

q
for all finite time. This equivalence theorem can be

extended to variable coefficients and even smooth nonlinear problems. Further, Gustafsson has
shown that if the numerical boundary treatment is one order less accurate than the interior
accuracy, then the order of the global accuracy is preserved [7].

2This appendix is contributed by Eli Turkel.
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We note that the Lax-Richtmyer equivalence theorem deals with errors measured in some
norm, for example, least squares. Hence, we deal with the total error. At times, we may be
mainly interested in either the phase (velocity) of the solution or its amplitude, rather than the
entire information. In fact, it is possible to construct schemes that have higher-order accuracy in
their phase error than when measured in the least-squares norm [4].

For numerical schemes approximating hyperbolic, wavelike equations, the order of accuracy
in time and space are often taken to be equal, for example, (2, 2). This is because hyperbolic
systems behave in a similar manner in both time and space. In fact, for the simplest equation,
au/at = au/ax, one cannot distinguish between the time and space directions. Nevertheless, it is
often useful to consider schemes that have higher-order accuracy in space than in time,
for example, (2,4). This is because improving the order of temporal accuracy decreases the
work load only in the time direction without affecting the field storage. On the other hand,
improving the order of spatial accuracy enables the use of a coarser mesh, which decreases the
work in each space dimension and decreases the field storage. Hence, numerical accuracy in
space is more important than numerical accuracy in time.

2A.2 Limitations

Since the order of accuracy is found by a Taylor series expansion, this "figure of merit" only
gives useful information in the limit of sufficiently fine meshes. Equivalently, it stresses the
lower spatial frequencies. For high spatial frequencies not resolved by the mesh, we note that the
order of accuracy has no meaning. In fact, one can construct numerical methods that are
formally low-order accurate but have better accuracy for the higher spatial frequencies [8, 9].
For such approaches, there may be no equivalent of the Lax-Richtrnyer theorem.
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PROBLEMS

2.1 Use the Taylor's series expansion method to derive a second-order accurate central
difference approximation for au/ax.

2.2 Repeat Problem 2.1, but now derive a fourth-order accurate central-difference
approximation for au/ax.

2.3 Replicate the graphical results of Fig. 2.1.

2.4 Develop graphical results similar to those of Fig. 2.1, but for a Courant stability factor
S=1/..[2.

2.5 Replicate the graphical results of Fig. 2.2.

2.6 Develop graphical results similar to those of Fig. 2.2, but for a Courant stability factor
S=1/..[2.

2.7 Consider the numerical dispersion relation for the second-order-accurate finite-difference
solution to the one-dimensional scalar wave equation for free-space.

a) Calculate and graph vp / C I the numerical phase velocity normalized to the free-space
speed of light, as a function of the grid sampling density for N,I .. ~ N, ~ 10,

I\. translUon Il

assuming stability factors S =0.7, 0.8, 0.9, and 0.99.

b) Calculate and graph the percent numerical phase-velocity error relative to the free-space
speed of light as a function of the grid sampling density for N,I .. ~ N, ~ 100

A translUon A '

assuming stability factors S = 0.7, 0.8, 0.9, and 0.99. Use a logarithmic scale for the
error axis.

c) What grid sampling density is needed to suppress the numerical phase-velocity errors to
less than 0.1 % for a stability factor S =0.9?
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2.8 Write a computer program that implements the solution of the one-dimensional scalar wave
equation discussed in this chapter. To source a wave, specify u~ at the left boundary of the
grid. Test your program by replicating the graphical results of Figs. 2.3(a, b).

2.9 Use the scalar-wave-equation computer program developed in Problem 2.8 to replicate the
graphical results of Figs. 2.4(a, b).

2.10 Use the scalar-wave-equation computer program developed in Problem 2.8 to replicate the
graphical results of Fig. 2.5.

2.11 Use the scalar-wave-equation computer program developed in Problem 2.8 to replicate the
graphical results of Figs. 2.6(a, b).

2.12 Use the scalar-wave-equation computer program developed in Problem 2.8 to replicate the
graphical results of Figs. 2.7(a, b).



Chapter 3

Introduction to Maxwell's Equations
and the Yee Algorithm

Allen Taflove and Jamesina Simpson

3.1 INTRODUCTION

In this chapter, we consider the foundation of FDTD electromagnetic field analysis,
the algorithm introduced by Kane Yee in 1966 [1]. Yee's insight was to choose a geometry for
spatially sampling the electric and magnetic field vector components which robustly represents
both the differential and integral forms of Maxwell's equations. Many alternative griddings of
Maxwell's equations have been proposed in the approximately 40 years since Yee's paper.
However, none have had the seminal impact and longevity of his "original family recipe."

3.2 MAXWELL'S EQUATIONS IN THREE DIMENSIONS

Consider a region of space that has no electric or magnetic current sources, but may have
materials that absorb electric or magnetic field energy. Then, using MKS units, the time
dependent Maxwell's equations are given in differential and integral fonn by

Faraday's law:

aB
-=-VxE-M
at

(3.1 a)

~ffB'dA =
dt A

Ampere's Law:

-fE.dL - JfM'dA
L A

(3.1 b)

aD
-=VxH-j
at (3.2a)

~JfD'dA =
at A

fH.dL - ffj·dA
L A

51

(3.2b)
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Gauss' law for the electric field:

V·D = 0

#D'dA = 0
A

Gauss' law for the magnetic field:

V·B = 0

#B'dA = 0
A

In (3.1) to (3.4), the following symbols (and their MKS units) are defined:

E electric field (volts / meter)

D electric flux density (coulombs / mete/)

H magnetic field (amperes I meter)

B magnetic flux density (webers / meter
2
)

A arbitrary three-dimensional surface

dA differential normal vector that characterizes surface A (meter
2
)

L closed contour that bounds surface A

dL differential length vector that characterizes contour L (meters)

J electric current density (amperes / mete/)

M equivalent magnetic current density (volts / meter
2
)

(3.3a)

(3.3b)

(3.4a)

(3.4b)

In linear, isotropic, nondispersive materials (i.e., materials having field-independent,
direction-independent, and frequency-independent electric and magnetic properties), we can
relate D to E and B to H using simple proportions:

where

D = EE = Er Eo E ; (3.5)

E electrical permittivity (farads / meter)

E
r

relative permittivity (dimensionless scalar)

Eo free-space permittivity (8.854 x 10-12
farads / meter)

Il magnetic permeability (henrys / meter)

11, relative permeability (dimensionless scalar)

Ilo free-space permeability ( 4n x 10-
7

henrys / meter)
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Note that J and M can act as independent sources of E- and H-field energy, J source and
M . We also allow for materials with isotropic, nondispersive electric and magnetic losses

source

that attenuate E- and H-fields via conversion to heat energy. This yields

where

J = Jsource + (JE ; M = M + (J°Hsource (3.6)

(J electric conductivity (siemens I meter)
o

(J equivalent magnetic loss (ohms I meter)

Finally, we substitute (3.5) and (3.6) into (3.la) and (3.2a). This yields Maxwell's curl
equations in linear, isotropic, nondispersive, lossy materials:

aH 1 2- (Msource + (J. H)= --VxE -
at J1 J1

aE 1 1
- = -VxH - - (Jsource + (JE)
at E E

(3.7)

(3.8)

We now write out the vector components of the curl operators of (3.7) and (3.8) in Cartesian
coordinates. This yields the following system of six coupled scalar equations:

aHx = ~ [aE, _'!!.- _ (Mw~, +',H,)]
at J1 az ay

aHy =
~ [aE, _ aE, _ (Mw~, +0"' H,)]

at J1 ax az

aH, 1 [aE, aE, ' ]= - - - - - (M + (J H )
at a a ~rce lJ1 Y X l

aEx l[aH aH, ]= - _l _ - _ (1 + (JE)
at a a source xE y Z x

aEy
= ~[aH, _~_ (Jw~, +(J E,)]

at E az ax

aEl I [aH, aH ]= - - - _x - (J + (JE)
at a a source, z

E x Y

(3.9a)

(3.9b)

(3.9c)

(3.10a)

(3.10b)

(3.l0c)
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The system of six coupled partial differential equations of (3.9) and (3.10) forms the basis of
the FDTD numerical algorithm for electromagnetic wave interactions with general three
dimensional objects. The FDTD algorithm need not explicitly enforce the Gauss' law relations
indicating zero free electric and magnetic charge, (3.3) and (3.4). This is because these relations
are theoretically a direct consequence of the curl equations, as can be readily shown. However,
the FDTD space lattice must be structured so that the Gauss' law relations are implicit in the
positions of the E and H components, and in the numerical space-derivative operations upon
these components that model the action of the curl operator. This will be discussed in Section
3.6.9 in the context of the Yee algorithm.

Before proceeding with the full three-dimensional FDTD algorithm, it is instructive to
consider simplified two-dimensional and one-dimensional cases. These demonstrate important
electromagnetic wave phenomena and can yield insight into the analytical and algorithmic
features of the general three-dimensional case.

3.3 REDUCTION TO TWO DIMENSIONS

Let us assume that the structure being modeled extends to infinity in the z-direction with no
change in the shape or position of its transverse cross section. If the incident wave is also
uniform in the z-direction, then all partial derivatives of the fields with respect to z must equal
zero. Under these conditions, the full set of Maxwell's curl equations given by (3.9) and (3.10)
reduces to

JHx = .!.[_ dE, _ (M +<5'H)]
Jt () source xJ1 Y ,

JHy = .!. [dE, _ (M +<5' H)]
Jt J rou~~ y

J1 X

JHz 1 [dE dE, ' ]= - _x ___ (M + a H)
Jt J1 Jy J x source, z

JE
1 [dH ]__x

= - _z _ (J + aE )
dt

() source x£ y ,

JE
1 [ JH ]--y = - _--L_ (J +aE)

Jt J sou~c y
E X Y

JE 1 [JH, dH ]__z
= - - - _x _ (J + aE)

Jt J J source l£ X Y ,

(3.11a)

(3.11 b)

(3.llc)

(3.12a)

(3.12b)

(3.12c)
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3.3.1 TMz Mode

Consider grouping (3.11) and (3.12) according to field vector components. For example, let us
first group (3.lla), (3.11b), and (3.12c), which involve only H x ' H y ' and E

l
• We shall

designate this set of field components the transverse-magnetic mode with respect to z (TMz) in
two dimensions:

dHx

dt
= 2- [_ dEl _ (M + (j+ H )]

J1. dy source. x
(3.l3a)

dHy = 2- [5 _(M + (j. H )]
dt J1. dx sour<:<:y Y

(3.13b)

dEl

dt

3.3.2 TE Modez

1 [dHy dH ]- - - _x _ (J + (j E )
:1 :l source z

E aX uy Z

(3.l3c)

Second, let us group (3.12a), (3.12b), and (3.llc), which involve only Ex' Ey ' and Hz. We shall
designate this set of field components the transverse-electric mode with respect to z (TE) in two
dimensions:

dEy

dt
= .!. [-~ - (J + (j E )]:l SOUr<:<:y Y

E aX

(3.l4a)

(3.14b)

dHl = 2- [dEx _ dEy _ (M + (j. H )]
dt J1. dy dx sour<:<:, l

(3.14c)

We observe that the TMz and TEz modes contain no common field vector components.
Thus, these modes can exist simultaneously with no mutual interactions for structures composed
of isotropic materials or anisotropic materials having no off-diagonal components in the
constitutive tensors. The TMz and TEz modes constitute the two possible ways that two
dimensional electromagnetic wave interaction problems can be set up for the case of zero partial
derivatives in the z-direction.

Physical phenomena associated with these two modes can be very different. This is due to
the orientation of the E- and H-field lines relative to the surface of the structure being modeled.
We note that the TEz mode sets up E-field lines in a plane perpendicular to the infinitely long
axis (the z-axis) of the structure. If the structure is metallic, a substantial E-field can be
supported immediately adjacent and perpendicular to the structure surface without violating the
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boundary condition of zero E-field tangential to a perfectly conducting surface. As a result. the
TE

z
mode can support propagating electromagnetic fields bound closely to. or guided by, the

surface of a metal structure (the "creeping wave" being a classic example for curved metal
surfaces). On the other hand, the TMz mode sets up E-field lines only parallel to the z-axis.
These lines cannot be perpendicular to the structure surface and therefore must be negligible at
the surface if it is metallic. This diminishes or eliminates bound or guided near-surface
propagating waves for metal surfaces. The presence or absence of surface-type waves can have
important implications for scattering and radiation problems.

3.4 REDUCTION TO ONE DIMENSION

3.4.1 x-Directed, z-Polarized TEM Mode

Let us further assume that neither the electromagnetic field excitation nor the modeled geometry
has any variation in the y-direction. In effect, we assume that all field partial derivatives with
respect to both y and z equal zero, and that the interaction structure consists of an infinite space
having possible material layering in the x-direction. Then the two-dimensional TM

z
mode of

Maxwell's equations in rectangular coordinates given by (3.13) reduces to

dHx =
at

1 ( .)-- M + Hsource. cr x

/l
(3.15a)

aHy 1 [dE ( .)]-- --~- M +crHat ).l. ax sourcey y

dE, _ .!- [aHy _ (J + E)]at - c; ax source, cr z

(3.l5b)

(3.l5c)

Assuming that Msource = 0 for all time and H = 0 at t =0, then (3.15a) implies that
x xaHx / at = 0 at t=O. With no change in H

x
at the beginning of the observation. it remains at

zero. In fact. using a simple inductive argument, we can show that H x ;:: 0 during the entire

observation. Now we have a set of only two equations involving H y and Ez • We designate the

mode determined by this set as an x-directed, z-polarized transverse electromagnetic (TEM)
wave in one dimension:

;:: .!- [d Hy
_ (J + erE)]

c; ax source, z

(3.16a)

(3.16b)
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3.4.2 x-Directed, y-Polarized TEM Mode

Again assuming that all partial derivatives with respect to y equal zero, the two-dimensional TEl,
mode of Maxwell's equations in rectangular coordinates given by (3.14) reduces to

aEx =
at

1
--(J +aE)£ sourcex x

(3. 17a)

aE
y

at = 2. [-~ - (J + (jE )]
£ ax source] y (3.17b)

aH~ = -!.. [_ aEy _ (M + a· H)]at Jl ax source, ~
(3.17c)

Assuming that Jsourcex = 0 for all time and Ex = 0 at t =O. then (3.17a) implies that
aE I at = 0 at t=O. Via an inductive argument similar to the one used above for H , we can

x x

show that Ex = 0 during the entire observation. This leaves a set of only two equations
involving Ey and H~. We designate the mode determined by this set as an x-directed,
y-polarized TEM wave in one dimension:

aEy = !-[-~ -(J +aE l]at a source y
£ x y

aHl, I [aE, ( . l]= ---- M +aH
at i) source zJl X Z

(3.18a)

(3.18b)

3.5 EQUIVALENCE TO THE WAVE EQUAnON IN ONE DIMENSION

Consider the one-dimensional TEM mode given by (3.16). From this mode, we now derive a
homogeneous, lossless, one-dimensional scalar wave equation for H y ' assuming that
M = J =0 and a· =a = O. First, take the partial time derivative of (3.16a):

source.\, source:

~ (aHy _ -!... aE~ J
at at Jl ax (3.19a)

Now, take the partial space derivative of (3.16b):

~(aE~ _ 2.. aHyJ
ax at £ ax

1 a2 H= -.--y
£ ax2 (3.l9b)
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Since the order of partial differentiation is irrelevant because of the linearity of the system,
we substitute the x-t derivative of E in (3.19b) into the t-x derivative of E in (3.19a) to yieldz z

1 1 a2
H= -.-.--y

P £ ax2
(3.19c)

where c = 1 I.,fii£. Equation (3.19c) is a one-dimensional scalar wave equation for Hy • which
occupies the role of u in (2.1). The proportionality factor c, which we earlier showed to be equal
to the phase and group velocities of the propagating waves that are solutions to the wave
equation, is related to the permeability and permittivity of the medium. For free space wherein
J1 =Po and £ = £0' C == 3 X 108 mIs, the speed of light in vacuum.

To obtain the wave equation for Ez ' we take the partial time derivative of (3.l6b), again
assuming that all sources and loss terms equal zero:

1 a2
H= -.--y

£ atax
(3.20a)

Now take the partial space derivative of (3.16a):

(3.20b)

Upon substituting the x-t derivative of Hy in (3.20b) into the t-x derivative of H)' in (3.20a),
we obtain

(3.20c)

where again c = 1 I.,fii£ . Equation (3.20c) is a one-dimensional scalar wave equation for Ez'

which occupies the role of u in (2.1). The identical proportionality factor c that appeared in
(3 .19c) appears here as well. Therefore, it is clear that the one-dimensional TEM mode of (3.16)
provides for propagating waves of E- and H-components that travel at c. It is left to the reader to
show that exactly the same results are obtained for the one-dimensional TEM mode of (3.18).

3.6 THE VEE ALGORITHM

3.6.1 Basic Ideas

In 1966, Yee originated a set of finite-difference equations for the time-dependent Maxwell's
curl equations system of (3.9) and (3.10) for the lossless materials case a· =0 and a =0 [1].
Yee's algorithm, introduced in this section, persists in having great usefulness since its
fundamental basis is so robust. Namely:
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1. The Vee algorithm solves for both electric and magnetic fields in time and space using
the coupled Maxwell's curl equations, rather than solving for the electric field alone (or the
magnetic field alone) with a wave equation.

• This is analogous to the combined-field integral equation formulation of MM,
wherein both E and H boundary conditions are enforced on the surface of a
material structure.

• Using both E and H information, the solution is more robust than using either
alone (i.e., it is accurate for a wider class of structures). Both electric and
magnetic material properties can be modeled in a straightforward manner. This
is especiaUy important when modeling radar cross section mitigation.

• Features unique to each field, such as tangential H singularities near edges and
corners, azimuthal (looping) H singularities near thin wires, and radial E
singularities near points, edges, and thin wires, can be individually modeled if
both electric and magnetic fields are available.

2. As illustrated in Fig. 3.1, the Vee algorithm centers its E and H components in three
dimensional space so that every E component is surrounded by four circulating H components,
and every H component is surrounded by four circulating E components.

z

Hz +-----..oIi.----

(i,j,k)

/----------------~y

x

Fig.3.1 Position of the electric and magnetic field vector components about a cubic unit cell of the Vee
space lattice. After: K. S. Vee, IEEE Trans. Antennas and Propagation, Vol. 14, 1966,
pp. 302-307, © 19661EEE.
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This provides a beautifully simple picture of three-dimensional space being filled by an
interlinked array of Faraday's law and Ampere's law contours. For example, it is possible to
identify Yee E components associated with displacement current flux linking H loops, as well as
H components associated with magnetic flux linking E loops. In effect, the Yee algorithm
simultaneously simulates the pointwise differential form and the macroscopic integral form of
Maxwell's equations. The latter is extremely useful in specifying field boundary conditions and
singularities. In addition, we have the following attributes of the Yee space lattice:

• The finite-difference expressions for the space derivatives used in the curl
operators are central-difference in nature and second-order accurate.

• Continuity of tangential E and H is naturally maintained across an interface of
dissimilar materials if the interface is parallel to one of the lattice coordinate
axes. For this case, there is no need to specially enforce field boundary
conditions at the interface. At the beginning of the problem, we simply specify
the material permittivity and permeability at each field component location. This
yields a stepped or "staircase" approximation of the surface and internal
geometry of the structure, with a space resolution set by the size of the lattice
unit cell.

• The location of the E and H components in the Yee space lattice and the central
difference operations on these components implicitly enforce the two Gauss' law
relations (see Section 3.6.9). Thus, the Yee mesh is divergence-free with respect
to its E and H fields in the absence of free electric and magnetic charge.

3. As illustrated in Fig. 3.2, the Yee algorithm also centers its E and H components in time,
in what is termed a leapfrog arrangement. All of the E computations in the modeled space are
completed and stored in memory for a particular time point using previously stored H data.
Then, all of the H computations in the space are completed and stored in memory using the E
data just computed. The cycle begins again with the recomputation of the E components based
on the newly obtained H. This process continues until time-stepping is concluded.

• Leapfrog time-stepping is fully explicit, thereby avoiding problems involved with
simultaneous equations and matrix inversion.

• The finite-difference expressions for the time derivatives are central-difference in
nature and second-order accurate.

• The time-stepping algorithm is nondissipative. That is, numerical wave modes
propagating in the mesh do not spuriously decay due to a nonphysical artifact of
the time-stepping algorithm.

3.6.2 Finite Differences and Notation

Yee introduced the notation used in Chapter 2, Section 2.4 for space points and functions of
space and time. For convenience, this notation is repeated here and generalized to three spatial
dimensions. We denote a space point in a uniform, rectangular lattice as

(i, j, k) = (i~, jl1y, kl1z) (3.21)
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E E E E

1-1-1-1 t=2.tit
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• • • t=1.5.:it
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• • • t=O.5.:it
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-J 1 1 1 t=o

x=O x=.:ix x=2.:ix x=3.:ix

Fig. 3.2 Space-time chart of the Yee algorithm for a one-dimensional wave propagation example showing
the use of central differences for the space derivatives and leapfrog for the time derivatives.
Initial conditions for both electric and magnetic fields are zero everywhere in the grid,

Here, Ax, tiy, and tiz are, respectively, the lattice space increments in the x, y, and z coordinate
directions, and i, j, and k are integers. Further, we denote any function u of space and time
evaluated at a discrete point in the grid and at a discrete point in time as

u(if!.x, jtiy, kf:,.z, n&) = u~ . L
I, j, ~

(3.22)

where tit is the time increment, assumed uniform over the observation interval, and n is an
integer.
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Yee used centered finite~difference (central~difference) expressions for the space and time

derivatives that are both simply programmed and second~order accurate in the space and time

increments. Consider his expression for the first partial space derivative of u in the x-direction,

evaluated at the fixed time tn =n&:

au
-(iax, j6.y, k&, n6.t) =
ax

n n
U j+ 1/2 , j. k Uj_1/2.j, k

(3.23)

We note the ±l/2 increment in the i subscript (x-coordinate) of u, denoting a space finite
difference over ±1 12 ax. Recalling the tutorial material on finite differences in Section 2.1, it is

clear that Yee derived (3.23) by subtracting (2.1 Ob) from (2. lOa) (but with ax12 substituted for
ax in these expressions), and then solving for aulax. Yee's goal was second-order accurate

central differencing, but it is apparent that he desired to take data for his central differences to the
right and left of his observation point by only ax 12, rather than a full ax.

Yee chose this notation because he wished to interleave his E and H components in the

space lattice at intervals of ax 12. For example, the difference of two adjacent E components,
separated by 6.x and located ±1/2 ax on either side of an H component, would be used to

provide a numerical approximation for aElax to permit stepping the H component in time.

For completeness. it should be added that a numerical approximation analogous to (3.23) for

aulayor aulaz can be written simply by incrementing thej or k subscript of u by ±1/2~y or

±l/2&. respectively.
Yee's expression for the first time partial derivative of u, evaluated at the fixed space point

(i,j, k), follows by analogy:

au
-(iax,j~y,k&, n&) =
at

n+1/2 n-1/2

Ui,j,k Ui,j.k
(3.24)

Now the ±1/2 increment is in the n superscript (time coordinate) of u, denoting a time finite

difference over t1/2 ~t. Yee chose this notation because he wished to interleave his E and H
components in time at intervals of 1I 2 ~t for purposes of implementing a leapfrog algorithm.

3.6.3 Finite-Difference Expressions for Maxwell's Equations in Three Dimensions

We now apply the above ideas and notation to achieve a numerical approximation of the

Maxwell's curl equations in three dimensions given by (3.9) and (3.10). We begin by

considering the Ex field-component equation (3. lOa), repeated here for convenience:

aE 1 [aH aHy ]_x = _ _ z (J + aE )
at E ay az source, x

(3.10a)

Referring to Fig. 3.1, consider a typical substitution of central differences for the time and space

derivatives in (3. lOa), for example, at ExU, j+l/2, k+l/2, n). Here, we have initially



Chapter 3: Introduction to Maxwell's Equations and the Yee Algorithm 63

E /"+112 _ E In-1I2
x i. j+1I2. k+1I2 x i. j+1I2. k+1I2 =

I1t

H y l;,j+1/2.k+1 - HY [j+1/2.k

Ei . j+1/2, Hl/2

Jsource.l~,j+1/2, HI/2 ai, j+1/2, k+1/2 Ex I~, j+1I2. k+1/2

(3.25)

Note that all field quantities on the right-hand side are evaluated at time-step n, including the

electric field Ex appearing due to the material conductivity a. Since Ex values at time-step n
are not assumed to be stored in the computer's memory (only the previous values of Ex at time

step n -112 are assumed to be in memory). we need some way to estimate such terms. A very

good way is as follows, using what we call a semi-implicit approximation:

Here Ex values at time-step n are assumed to be simply the arithmetic average of the stored

values of Ex at time-step n -112, and the yet-to-be-computed new values of Ex at time-step

n + 1/2, Substituting (3.26) into (3.25) after multiplying both sides by I1t, we obtain

ExI~,j+1/2,k+1/2 =
E In+1/2 + E In-1/2

x i,j+ll2,k+1/2 x i,j+1/2.k+1/2

2
(3.26)

1
"+1/2 E In-1/2

Ex i. j+1/2. k+l/2 - xi. j+1/2. k+l/2 =

I1t
l1y

H,rj+1I2,HI - H y rj+1/2,k

Ei , j+1I2, k+I/2

J source, [j+1/2. k+I/2 - (

E In+1/2 +
. x i,j+1/2,k+I/2

ai, j+I/2. HI/2
2

\
"-1/2 J

Ex i,j+I/2.Hl/2

(3.27)

In+1/2 In-1/2 . .
We note that the terms Ex i. j+1I2, HI/2 and Ex i, j+1/2, k+1/2 appear on both SIdes of (3.27).

Collecting all terms of these two types and isolating E 1~+.1/2 on the left-hand side yields
x l.j+1I2,k+1/2
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(
I ai.j+II2,k+1/2 At) E In+1/2

+ 2 x j. j+1/2, k+1I2
Ej , j+1/2, HI/2

= (1 _a i,j+1I2, HII2 At) E In-1I2
2 x i, j+1/2, *+1/2

Ei.j+1/2.k+1/2

+
!:J.t

E i ,j+1/2,*+1/2

HI~. 1 - Hlnz I, )+1, HI 2 z i,j, *+112

!:J.y

JsourceJ~, j+ 1/2, k+1/2

H,[j+1/2,HI - H,[j+1I2.k

(3.28)

Dividing both sides by (I + ai, j+1/2,H1/2 At 12Ei,j+1/2, HI/J yields the desired explicit time-

. I' f In+1/2steppmg re atIOn or E :
x i.j+1I2,k+1/2

E In+J/2 =
x i. j+ 112. k+1/2

I _ a i ,j+1/2,H1/2 At

2 cj , j+1/2, k+1/2

I + a i ,j+1/2,H1/2 At

2 ci , j+1/2, k+1/2

E In-112
x i,j+1/2,Hl/2

(3.29a)

+
Ei , j+ 1/2, k+1I2

I + ai, j+1/2. *+1/2 At
2Ci.j+1/2.HII2

dy

H,rj+1I2,k+1 - H Y !;,j+1/2'k

The semi-implicit assumption of (3,26) has been found to yield numerically stable and
accurate results for values of a from zero to infinity, As we have seen above, this assumption
fortunately allows us to avoid simultaneous equations for El+ 1/2

, The term of this type
introduced on the right-hand side of (3.27) can be grouped with a like term on the left-hand side
and then solved explicitly.

Similarly, we can derive finite-difference expressions based on Yee's algorithm for the Ey

and E
z

field components given by Maxwell's equations (3.lOb) and (3.l0c). Referring again to
Fig. 3.1, we have, for example, the following time-stepping expressions for the E components
normal to the remaining visible faces of the unit cell:
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1

"+1/2

Ey i-1/2. j+ I. k+1/2 =

1 _ O"i_1/2.j+!,k+1I2!:ll

2 £i-1/2, j+I.k+1/2

1 + O"i_1/2, j+l. k+1/2 tit

2 £i-ll2. j+I, k+1/2

1

"-112

Ey i-1/2. j+I, HI/2

(3.29b)

HI" - H I~ .
JC i-1I2.j+l.k+1 ;x ,-1/2,1+l.k

tit

+
£i-1/2. j+l. k+1/2

1 + O"i-1/2,j+l.k+1/2 tit

2£i_1I2. j+l. k+1I2

E \"+112
z ;-1/2,j+1/2,k+1

1 _ 0"i-1/2. j+Jl2, k+1 tit

2 £i-1I2.j+1/2.HI

1 + _O"..:.i-....:1:../2:.:..~j+....;1....;/2:.:...k:..+..:.I_
ti_t

2 £i-1I2,j+1/2. k+l

E 1"-112
z i-1/2,j+1f2, k+1

(3,29c)

+
Ci _ 1/2. j+1/2, HI

1 + O"i-112.j+112.k+1 tit

2£i_1/2. j+1f2. HI

tiy

By analogy, we can derive finite-difference equations for (3.9a) to (3.9c) to time-step H;x'
H

y
' and Hz. Here, 0". H represents a magnetic loss term on the right-hand side of each

equation, which is estimated using a semi-implicit procedure analogous to (3.26). This results in
three equations having a form similar to that of the E equations above. Referring again to Fig,
3.1, we have, for example, the following time-stepping expression for the H;x component located
at the upper right corner of the unit cell:
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H In+1
x i-1/2,j+I,k+1

cy'i-1I2,j+l,k+J t!J.t
1 - -----'-----

2 J.li - 1/2 , j+l, HI

cy'i-1/2,j+l,k+1 t!J.t
1 + -----'-----

2J.l i - 1I2 , j+!, HI

HxI~-1/2,j+1,k+l

(3.30a)

I
n+1/2 In+1/2

E -E
y i-1/2, j+l, k+3/2 Y i-1/2, j+I, k+1I2

+
J.li - 1/2 , j+l, HI

CY·i-1I2,j+I.k+1 t!J.t
1+------

2 Ili -1/2, j +1, k+1

E In+1/2 _ E In+112
z i-1I2, j+312, k+l z i-112, j+II2, HI

t!J.y

M In+J/2
sourcox i-112,j+I, k+1

Similarly, we have the following time-stepping expression for the H y component located at the
upper front corner of the unit cell:

CY";,j+112,k+1 t!J.t
1 - --=------

H 1"+1 =
y i,j+112, k+1

2J.li ,j+1/2,k+1

cy'i,j+112,k+1 t!J.t
1 + ------

2 J.li , j+1/2, k+1

(3.30b)

t!J.t

E In+1I2 _ E In+112
z i+1/2,j+112,k+1 z i-112,j+112,k+1

+
Il i , j+1I2, k+1

CY·i,i+ll2.HI t!J.t
1+-----

2 J.l i , j+112, k+!

E In+112 _ E In+1I2
x: i,j+1/2,k+3/2 x: i,j+1/2,H1/2

I
n+1/2

Msourcor i,j+112, HI

Finally, we have the following time-stepping expression for the Hz component located at the

right front corner of the unit cell:
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With the systems of finite-difference expressions of (3.29) and (3,30), the new value of an
electromagnetic field vector component at any lattice point depends only on its previous value,
the previous values of the components of the other field vector at adjacent points, and the known
electric and magnetic current sources. Therefore, at any given time step, the computation of a
field vector can proceed either one point at a time, or, if p parallel processors are employed
concurrently, p points at a time.

(3.30c)

M 1"+1/2
souICe, i.j+l. *+1/2

1
"+1/2 1"+1/2

E - E
y i+1/2, j+1. HII2 Y i-1/2, j+l. k+1/2

l1y

2 J1.i , j+l, *+1/2

E 1"+1/2 _ E 1"+112
x i. j+312, H1/2 x i, j+1I2. *+1/2

2J1.i ,j+I.HII2

cr·i.j+I.Ic+1/2M
1+-----

cr\j+l.Hll2l1t
1 - --=-----

I1t

J1.i , j+I.Ic+1/2

2 J1.i , j+l, Hl/2

cr'i,j+1,k+1/2M
1+-----

+

H 1"+1 =
Z i, j+l, *+1/2

3.6.4 Space Region with a Continuous Variation of Material Properties

To implement the finite-difference systems of (3.29) and (3.30) for a region having a continuous
variation of material properties with spatial position, it is desirable to define and store the
following constant, updating coefficients for each field vector component before the time
stepping begins:

Updating Coefficients at the General E-Field Component Location (i, j, k):

(I U M)/( U M)ci = I,), Ie 1 + '0), Ie
a I,}, Ie

2e . * 2 e. . IeI.}. I. J,

CbJj,1e C;i:a,)/(I U,M)
+

I. },=
2e. . Ie

I,}.

Cb2 t. j , Ie C.i~taJ/(1 U,M)= + I.}.

2e. . k
I, J,

(3.31 a)

C3.31b)

(3.31c)
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Updating Coefficients at the General H-Field Component Location (i, j, k):

D I· .k = (I a'", ~t)/( 1 + a",j" I'.t )
a '. J. ' 2p. . . k 2p.. . k

I. J. I, J,

Db1li,j,k == C,:~J/(I + a",j,' I'.t )
2J1 . . kI, },

Db I .k = C',j:~J/(1 + a';'j" I'.t )
2 I, J, 2p. . . k

I, J,

(3.32a)

(3.32b)

(3,32c)

In (3.31) and (3.32), .D.! and .D. 2 denote the two possible lattice space increments used for the

finite differences in each field-component calculation, For a cubic lattice, III = .D.y =liz =.D.,

and thus .D. 1 = .D. 2 =.D.. For this case, Cb = C b and Db = Db ' reducing the storage
I 2 1 2

requirement to two updating coefficients per field vector component. For this case,

the approximate total computer storage needed is 18N, where N is the number of space cells in

the FDTD lattice. The finite-difference expressions of (3.29) can now be rewritten more simply

as:

E In+1/2
xi, j+1/2, k+1I2

= C I E In-1/2
a,Ex i,j+1/2,k+l/2 xi, j+I/2, .1:+1/2

[

HJ;, j+I, HI/2 - Hzrj, k+1/2 +

+ Cb,EI li,j+1/2.k+1/2· In In
H - H -

y i,j+1/2,k Y i,j+1/2,k+1

(3.33a)

I
n+112

Ey i-1I2, j+I, k+1I2
= C I E In-1/2

a,Ey i-1/2,j+l,H1/2 y i-1/2,j+1,k+l/2

(3.33b)

(

H In . -
x ,-1/2, J+I, k+1

+ C .
b,E),li-II2,j+I,HI/2 In _

H.. 12z 1-I,}+I,k+1 HJ;, j+I, k+l/2



(3.33c)

Chapter 3: Introduction to Maxwell's Equations and the Yee Algorithm 69

= c I E In-1I2
a. Ez i-1I2.j+1/2,k+1 z i-1/2, j+1I2. HI

J I" 6.Jsourcez i-1I2.j+1/2,k+1

I (
Hyrj+1/2,HI - H y LI,j+II2'HI +

+ C .
b, Ez i-1/2.j+1I2.k+1 I" _ I

H.. i-1I2, j, HI H .. ;-112, j+I, HI

E In+1/2
z i-1I2. j+ll2. HI

The finite-difference expressions of (3.30) can now be rewritten more simply as:

H In+1. = D I H I~ .
x i-1I2,J+I,HI a.H.. i-1/2,j+l,k+1 x 1-1/2,J+1.k+1

[

1
,,+1/2 \"+1/2 + J

Ey i-1I2, j+I, k+3/2 - Ey i-II2, j+l. HI/2

+ Db' H .. !i_1/2,j+I.HI·
E 1"+1/2 _ E 1"+1/2 - M 1"+1/2 6.

z i-II2, j+1/2. k+1 z i-1I2, J+3/2, HI source.. 1-1/2.j+l.k+1

(3.34a)

I
n+1

H y i. j+1I2, HI

(

E 1"+112 - E In+1/2 + J
Z i+1I2,j+1/2,k+1 Z i-1/2.j+1/2,k+1

+ Db, H yIi.j+1/2,HI· 1"+112 1"+112 1"+1/2

Ex i, j+1I2, k+1I2 - E.. i. j+1/2, k+3/2 - Msourcey i,j+1/2,k+1 6.

(3.34b)

In+'

Hz i, j+I, k+1I2

(

E In+1I2 _ E 1"+112 +
x l.j+3/2.k+1I2 .. i.j+1/2.k+1/2

+ Db,H, li.j+l.k+1/2· E \"+112 _ 1"+112

y i-1I2. j+l. HII2 Ey i+1/2, j+1, HII2 1
,,+112 6.J

- Msourcc, i.j+l. HII2

(3.34c)

3.6.5 Space Region with a Finite Number of Distinct Media

For a space region with a finite number of media having distinct electrical properties, the
computer storage requirement can be further reduced. This can be done by defining an integer
array, MEDIA(i, j, k), for each set of field vector components. This array stores an integer
"pointer" at each location of such a field component in the space lattice, enabling the proper
algorithm coefficients to be extracted. For this case, the finite-difference expressions of (3.33)
can be rewritten more simply as
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m = MEDIA I
E, i,j+1I2,k+1I2

m = MEDIA I
Ey i-1I2,j+l,k+1I2

(3.35a)

(3.35b)

I
n+I/2

Ey i-1/2, j+l, k+l/2
= C (m) EIn-l/2 + C (m) '(H In. -

a y i-1I2,j+l,k+l/2 b x i-1I2,j+I,k+l

m MEDIAE, LI/2,j+1I2,k+' (3.35c)

E In+I/2
l i-\/2,j+1I2,k+1 In-1I2 ( In=CmE +Cm'H -

a( ) l i-1/2,j+1I2,k+1 b() y i,j+1I2,k+1

The finite-difference expressions of (3.34) can be rewritten more simply as:

m = MEDIA H ,li_ll2,j+l.k+1 (3,36a)

H In+1
x i-I/2,j+1. k+l In ( In+I/2=DmH +Dm'E -a( ) xi-1I2,j+!,k+l b() Yi-l/2,j+l,k+3/2

In+1I2 /n+I/2 In+1/2 In+1/2)

Ey i-II2,j+l,k+1/2 + Ez i-112,j+lI2.k+1 - Ez i-1I2,j+3/2,k+\ - Msource, i-l/2,j+l.k+l Ll

m = MEDIA Hy li.j+1I2,k+J
(3.36b)

I
n+1

H y i, j+1/2, k+\ In ( In+112=DmH +Dm'E -
a( ) y i,j+I/2,k+1 b() l i+I/2,j+1I2,k+1

In+1I2 E In+1I2 _ E /n+l/2 _ M In+1I2 Ll)
Ez i-I/2.j+112,k+l+ x i,j+l/2,k+I/2 x i,j+1I2,k+3/2 sourcey i,j+112,k+l
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m == MEDIA I
Hz i,j+I.I:+1/2

(3.36c)

In+l In ( In+1/2
Hz i,j+l,k+lf2 == DaCm) Hz i.j+I.k+1I2 + Db(m)' E" i,j+3/2,1:+1/2 -

/
n+1I2 In+1/2 In+l/2 In+1/2)

Ex i. j+1/2, 1:+1/2 + Ey i-1/2, j+I, 1:+112 - Ey i+1/2, j+l• .1:+1/2 - Msourcez i,j+l•.l:+J/2 L1

With the finite-difference systems of (3.35) and (3.36), we note that the coefficient arrays
CaCm), Cb(m), Da(m), and Db(m) each contain only M elements, where M is the number of
distinct material media in the FDTD space lattice. Thus, if separate MEDIA(i, j, k) integer
pointer arrays are provided for each field vector component, the approximate total computer
storage needed is reduced to 12N, where N is the number of space cells in the FDTD lattice. This
reduction in computer storage comes at some cost, however, since additional computer
instructions must be executed at each field-vector location to obtain the pointer integer m from
the associated MEDIA array and then extract the C(m) or D(m) updating coefficients. On a
vectorizing computer, these additional instructions can inhibit the ultrafast flow of vectorized
computations possible when no pointer arrays are used, causing a substantial reduction in
throughput. However, the latter can be mitigated through careful programming.

Taking advantage of the integer nature of the MEDIA arrays, further reduction in computer
storage can be achieved. For example, FDTD codes have been written that use word packing to
combine the floating-point field value at each space lattice point with its associated MEDIA
integer. This halves the computer storage to 6N. However. with the additional computer
instructions required for word packing and word unpacking, there is a tradeoff between storage
and running time for such codes. Word packing would be pursued primarily if going "out of
core" leads to an intolerable expansion of program running time due to massive input / output
(I/O) to the disk array.

A more efficient means of packing the MEDIA integers is to construct a separate bit-packed
array. For example. a 64-bit word can be divided into sixteen 4-bit pointers. Such a composite
pointer could specify up to 24 = 16 distinct media at each of 16 field component locations in the
grid. This provides the means to reduce the overall computer storage for the MEDIA arrays by a
factor of 15/16 (94%). Efficient vectorized routines for word packing and word unpacking of
this type were available on the Cray, and appeared in at least one widely used FDTD code
(Lawrence Livermore National Laboratory's TSAR).

3.6.6 Space Region with Nonpermeable Media

Many electromagnetic wave interaction problems involve nonpermeable media ()1 == )10'

a' =0), and can be implemented on a uniform cubic-cell FDTD space lattice. For such
problems, the finite-difference expressions of (3.35) and (3.36) can be further simplified by
defining the proportional E and M vectors:

(3.37)

where ~ =LU =~y =~ is the space cell size. Assuming that Ex' E
y

, and Ezare stored in the
computer memory, and further defining a scaled E-field updating coefficient Cb(m) as
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then the finite-difference expressions of (3.35) can be rewritten as

m = MEDIA I
Ex i,j+l/2,k+1/2

~ In+1/2 ~ In-l/2 ~ (In
Ex i,j+1/2,Hl/2 = CaCm) Ex i,j+1/2,k+1/2 + Ch(m)' Hz i,j+I,k+1/2 -

Hr. + H In - H In - J In !:!.)
Z I, J, k+1I2 Y i, j+1I2, k y i, j+1/2, k+l source, ;,j+1I2,k+1/2

m = MEDIAE I
, i-1/2,j+1,k+112

(3.38)

(3.39a)

(3.39b)

~ In+1/2

Ey i-1/2, j+l, k+1/2
= C (m) E In-112 + C (m) '(H In -

a y i-1/2,j+I,HII2 b x i-1/2,i+l,k+1

m = MEDIA I
E, i-1I2,j+1/2,k+l

(3.39c)

~ In+1/2

Ez ;-112, j+1I2, HI
~ In-1/2 ~ (In=CmE +Cm'H -

a ( ) Z ;-112, j+l/2, H1 b() Y i, j+1I2, Hl

In In In In )H +H -H -J
y i-l,j+l/2,k+1 x i-1/2.j,k+1 x i-ll2,j+I.HI source, i-1/2,j+1/2,k+l!:!.

The finite-difference expressions of (3.36) can be rewritten very simply as

H In+l
, i-ll2, j+1, k+1

I
n+1

H y i,j+l/2,k+1

I ~ In+1/2 A In+ll2
=H~. +E -E

x ,-112,)+l.k+1 Y;-l/2,j+I,k+3/2 y i-1/2,j+l,k+1/2

~ In+1/2 ~ 1"+1/2 ~ In+1/2
+E -E -M

z i-l/2,j+I/2,k+l z i-1/2,j+3/2.k+1 source. i-1/2,j+I,k+1

I
n ~ In+1I2 ~ 1"+1/2

=H +E -E
y i, j+l/2, k+1 z i+1/2, j+1I2, k+1 Z i-1/2, j+1/2, HI

A )"+1/2 ~ In+1/2 ~ In+l/2+ E - E - M
xi, j+1I2, k+1/2 x i, j+1/2, k+3/2 sourcey ;,j+1/2,k+J

(3.40a)

(3.40b)
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H /n+l = H In . + E In+1/2 _ E In+1/2
! i.j+l.k+1I2 ! 1.}+I.k+1/2 x i.j+3/2.k+1/2 x i.j+1/2.k+112

(3.40c)
A In+1/2 A In+1I2 A In+1/2+E -E -M

y i-1I2,j+l, HI/2 Y H1/2. j+1, k+1/2 source, i.j+l.k+1/2

The simplified finite-difference systems of (3.39) and (3.40) eliminate the three
multiplications previously needed to update the H-field components, and require storage of
MEDIA arrays only for the E-field components. At the end of the run, the desired values of the
unsealed E-fields can be obtained simply by multiplying the stored scaled values by J1oIJ..I IJ..t.

3.6.7 Reduction to the Two-Dimensional TMz and TEz Modes

The finite-difference systems of (3.29) and (3.30), (3.33) and (3.34), (3.35) and (3.36), and (3.39)
and (3.40) can be reduced to the proper algorithms for the two-dimensional TMz and TEz cases
summarized in Section 3.3. For convenience and consistency, we again consider the field vector
components in the space lattice represented by the unit cell of Fig. 3.1. Assuming now that all
partial derivatives of the fields with respect to z are equal to zero, the following conditions hold:

1. The sets of (E!, Hx ' Hy ) components located in each lattice cut plane k, k + 1,
and so forth, are identical and can be completely represented by anyone of these
sets, which we designate as the TMz mode.

2. The sets of (H!, Ex' Ey ) components located in each lattice cut plane k + 1/2 ,

k + 3/2, and so forth, are identical and can be completely represented by anyone
of these sets, which we designate as the TEz mode.

3. The TMz and TEz modes are completely decoupled from each other.

Further assume, for example, a region of space containing a finite number of material media
having distinct electrical properties. Then, we reduce the finite-difference systems of (3.35) and
(3.36) as follows.

TM Mode, Corresponding to the System of(3.13)
!

Write (3.35c), (3.36a), and (3.36b) without specifying the k index, and then set all partial
derivatives of the fields with respect to zequal to zero:

m = MEDIA I
E, i-1I2.j+1/2

E In+1/2 - C ( ) E In-1/2 C ( . ( I"
! i-1/2.j+1/2 - am! i-1/2.j+1/2 + b m) Hy i.j+1/2 - (3.41 a)
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( In+1/2 In+1/2 In+1/2)
+ Db(m)· Ez i-1/2.j+1I2 - Ez i-112,j+3/2 - Msourcex i-1I2,j+1 A

m = MEDIA Hy t,j+1/2

(3.41 b)

I
n+l

H y i.j+l/2 =
(3.41 c)

D .(E In+1I2 _ E In+I/2 _ M In+1I2~)
+ b(m) z i+1I2,j+1/2 Z i-IIZ,j+IIZ source, i,j+I/Z

TE Mode, Corresponding to the System of(3,14)
I

Write (3,35a), (3.35b), and (3,36c) without specifying the k index, and then set all partial
derivatives of the fields with respect to z equal to zero:

m MEDIA Ez t,j+I/Z

E 1"+lIz
x i,j+1I2 In-liZ

= C (m) E .. 1/2a x t.)+

( In In In)+ Cb(m)· H1i,j+l - HZi,j- Jsourcexi,j+IIZA

(3.42a)

m MEDIAE, t-1/2,j+l

I
"+I/Z

E)' i-1/2,j+l 1
"-" Z

Ca (m) E)' i-1/2, j+l

( In In In)+ Cb(m)· HZi-l.j+l - HZi,j+l- Jsource,i_1/2,j+IA

(3.42b)
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m = MEDIA H, t,j+1

1"+1 I" ( 1"+1/2Hz i,j+l = Da(m) Hz i,j+1 + Db(m)' Ex i.j+3/2 -

1
"+1/2 1"+1/2 /"+1/2 1"+112 )

E:c i.j+1/2 + Ey i-1/2,j+1 - Ey i+1f2.j+1 - Msourcc, i,j+J d

3.6.8 Interpretation as Faraday's and Ampere's Laws in Integral Form

(3.42c)

The Yee algorithm for FDTD was originally interpreted as a direct approximation of the
pointwise derivatives of Maxwell's time-dependent curl equations by numerical central
differences. Although this interpretation is useful for understanding how FDTD simulates wave
propagation away from material interfaces, it sheds little light on what algorithm modifications
are needed to properly model the physics of fine geometrical features such as wires, slots, and
curved surfaces requiring subcell spatial resolution.

The literature indicates that FDTD modeling can be extended to such features by departing
from Yee's original pointwise derivative thinking [2,3]. As shown in Fig. 3.3, the idea involves
starting with a more macroscopic (but still local) combined-field description based upon
Ampere's law and Faraday's law in integral form, implemented on an array of electrically small,
spatially orthogonal contours. These contours mesh (intersect) in the manner of links in a chain,
providing a geometrical interpretation of the coupling of these two laws. This meshing results in
the filling of the FDTD modeled space by a three-dimensional "chain-link" array of intersecting
orthogonal contours. The presence of wires, slots, and curved surfaces can be modeled by
incorporating appropriate field behavior into the contour and surface integrals used to implement
Ampere's and Faraday's laws at selected meshes, and by deforming contour paths as required to
conform with surface curvature.

This approach is intuitively satisfying to an electrical engineer, since it permits the FDTD
numerical model to deal with physical quantities such as:

• Electromotive and magnetomotive forces developed when completing one circuit
about a Faraday's or Ampere's law contour path;

• Magnetic flux and electric displacement current when performing the surface
integrations on the patches bounded by the respective contours.

In this section, we demonstrate only the equivalence of the Yee and contour-path
interpretations for the free-space case, leaving the modeling of complex spatial features to
Chapter 10. For simplicity, FDTD time-stepping expressions are developed for only one field
component in Fig. 3.3(a) and one in Fig. 3.3(b). Extension to all remaining components is
straightforward,

For simplicity, we assume lossless free space with no electric or magnetic current sources.
Applying Ampere's law along contour C1 in Fig. 3.3(a), and assuming that the field value at a
midpoint of one side of the contour equals the average value of that field component along that
side, we obtain
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Ey (i-1/2j+1 ,k+1/2)

(a)

(b)

Az

dl1

Ax

Hy(ij+1/2,k+1)

Az

Ez (i-1/2j+3/2,k)

Hz (iJ+1 ,k+1/2)

Hz (iJ,k+1/2)

Ax

,,
,
,
,

,;

Ey (i+1/2J,k+1/2)

Ex (iJ-1/2,k+1/2)

Hy (iJ+1/2,k)

(i,j,k)

Fig. 3.3 Examples of chain-linked orthogonal contours in the free-space Yee mesh. (a) Ampere's law for
time-stepping E ; (b) Faraday's law for time-stepping H . Adapted from: Taflove et a!., IEEE

z z
Trans. Antennas and Propagation, 1988, pp. 247-257, © 1988 IEEE.
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(3.43a)

(3.43b)

- H I ilx - H I /3.y
x j-II2,j+l.k y i-I,j+1/2,k

Now, further assume that E I. . equals the average value of E over the surface patch 51'
t .-1/2,J+1I2,k t

and that the time derivative can be numerically realized by using a central-difference expression.

Then, (3.43b) yields

(

E 1"+1/2 - E r-1/2 J
Co Ax /3.y t i-1/2,j+1I2,k /3.£ Z i-l/2,j+1/2,k =

( HJ-1/2,j,k HJ-1/2,j+l,k) Ax
(3.43c)

Multiplying both sides by M / (co Ax /3.y) and solving for E IHI/2
. provides the following

t ,-1/2,/+1/2,k

time-stepping relation:

1"+1/2 = E 1"-1/2 (I"
Ez i-l/2,j+1/2,k t j-1/2,j+1/2,k + H x i-II2,j,k

(3.44)

Equation (3.44) is simply the free-space version of (3.29c), which is the Yee time-stepping
equation for E

t
that was obtained directly from implementing the curl H equation with finite

differences, The only difference between (3.29c) and (3.44) is that (3.44) is evaluated at the E
t

location (i-I/2,j+l/2, k), whereas (3.29c) is evaluated at the Ez location (i-l/2,j+l/2, k+l)
shown in Fig. 3,1.

In an analogous manner, we apply Faraday's law along contour C2 in Fig. 3.3(b) to obtain

(3.45a)

+ Exli,j+1/2,k+1/2 Ax + E Y LI/2,j,k+1/2/3.y

~J110 H I· k 1/2 dS2 -:l z ',J, +
ot S2

-EI Ax - EI /3.y
x i,j-1/2,k+1/2 y i+1/2,i,k+1/2

(3.45b)
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(
H1"+1 - HI")11

0
Llx t'1y t i.j,k+I/2 t'1t t i,j,k+1I2 = (E 1"+112

x i,j+I/2,k+l/2
E 1"+1/2 ) Llx

x i,j-1I2,k+l/2

(3.45c)

( 1
,,+1/2 1,,+1/2)

+ Ey i-I/2,j,k+1/2 - Ey i+l/2,j,k+1/2 t'1y

Multiplying both sides by Llt / (11
0

Llx!!"y) and solving for H 1~~1I2 provides the following
t I.),k+I/2

time-stepping relation:

H 1"+1 = H I" /2 + (E 1"+1/2
t i,j,k+1I2 t I.).k+l x i.j+I/2.k+1/2 1

"+112 )
Ex i,j-1/2,k+1/2 t'1t / (110 t'1y)

( 1

,,+1/2 1"+1/2)+ E - E Llt/ Llx
y i-l/2,j,k+112 Y i+1/2,j,k+I/2 (110 )

(3.46)

Equation (3.46) is simply the free-space version of (3.30c), which is the time-stepping expression
for H that was obtained directly from implementing the curl E equation with finite differences.

t

The only difference between (3.30c) and (3.46) is that (3.46) is evaluated at the H
t

location
(i,j, k+1/2), whereas (3.30c) is evaluated at the H

t
location (i,j+l. k+l/2) shown in Fig. 3.1.

3.6.9 Divergence-Free Nature

As stated earlier, it is crucial for any grid-based solution of Maxwell's curl equations to
implicitly enforce (3.3) and (3.4), the Gauss' law relations for the electric and magnetic fields,
which require the absence of free electric and magnetic charge in the source-free space being
modeled. We now demonstrate that the Yee space lattice and algorithm satisfy (3.3) for each cell
in the lattice, and therefore the lattice as a whole. The proof of the satisfaction of (3.4) by the
Yee grid and algorithm is by analogy. and is left as an exercise for the reader.

We assume lossless free space with no electric or magnetic current sources. (The presence
of such current sources is considered in depth in Chapter 5, Section 5.4.) Consider forming the
time derivative of the total electric flux over the surface of a single Yee cell of Fig. 3.1:

a # D.dS
at Yecccll

EO ~(Exli,j+I/2'k+1/2 - EJ-I,j+1/2.k+II2) t'1y L1z

Te~1

+ Eo ~(Eyt-1/2,j+1'k+J/2 - E y t-1/2,j'k+ll2) Llx 6.z

Te~2

+ eo f(Ez L1I2,j+1I2,k+1 - Et li-l/2,i+I/2,k) Llx t'1y

Te~3

(3.47)
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Using the time-stepping relations for the E-field components according to (3.29), we substitute
appropriate H-field spatial finite differences for the E-field time derivatives in each term:

(3048a)

(3048b)

H I· . - H I· /2' )_ .r '-1/2.}+I.k+~y .r ,-I .}.k+1

(3048c)

For all time-steps. this results in

a # D.dS = (Term 1)6yAz + (Term 2)&Az + (Term 3) & ily
at Yeccell

= 0

(3.49)

Assuming zero initial conditions. the constant zero value of the time derivative of the net electric
flux leaving the Yee cell means the flux never departs from zero:

# D(t)·dS = # D(t =O)·dS = 0 (3.50)
Vee cell Yeeeell

Therefore, the Yee cell satisfies Gauss' law for the E-field in charge-free space. Hence, the Yee
algorithm is divergence-free with respect to its E-field computations.
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3.7 ALTERNATIVE FINITE-DIFFERENCE GRIDS

Thus far, this chapter has considered several fundamental aspects of the uniform Cartesian Yee
space lattice for Maxwell's equations. Since 1966, this lattice and its associated staggered
leapfrog time-stepping algorithm have proven to be very flexible, accurate, and robust for a wide
variety of engineering problems. However, Yee's staggered, uncollocated arrangement of
electromagnetic field components is but one possible alternative in a Cartesian coordinate system
[4]. In turn, a Cartesian grid is but one possible arrangement of field components in two and
three dimensions. Other possibilities include hexagonal grids in two dimensions and
tetradecahedron I dual-tetrahedron meshes in three dimensions [4].

It is important to develop criteria for the use of a particular space lattice and time-stepping
algorithm to allow optimum selection for a given problem. A key consideration is the capability
of rendering the geometry of the structure of interest within the space lattice with sufficient
accuracy and detail to obtain meaningful results. A second fundamental consideration is the
accuracy by which the algorithm simulates the propagation of electromagnetic waves as they
interact with the structure.

3.7.1 Cartesian Grids

Fig. 3.4 illustrates two Cartesian grids that are alternatives to Yee's arrangement in two
dimensions for the TMz case [4]. Fig. 3.4(a) depicts the unstaggered, collocated grid, in which
all E and H components are collocated at a single set of grid-cell vertices. Fig. 3.4(b) depicts the
staggered, collocated grid, in which all E components are collocated at a distinct set of grid-cell
vertices that are spatially interleaved with a second distinct set of vertices where all H
components are collocated.

Upon applying second-order-accurate central space differences to the TM
z

mode equations
of (3.13) for the unstaggered, collocated grid of Fig. 3.4(a) (with a lossless material background
assumed for simplicity), we obtain [4]:

aH I..
x ',J

at

aE I.
__Z_"_)

at

= __1 . (Ezli.i+1 - Ezt,i-I J
II, . 2ily,..-.. )

1

(

Hyl· 1 ' - Hyl· I . H I· . I - H I· . I J_ • 1+ .J l-.) _ x 1.)+ .l' 'd-

E. 2& 2~
I,}

(3.51a)

(3.51b)

(3.5Ic)

Similarly, applying second-order-accurate central space differences to the TMz mode equations
of (3.13) for the staggered, collocated grid of Fig. 3.4(b) yields
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(j + 1) Ily r············.·.··.·.····.·.·.·······.·.·.· ·.···T· _ ,

Ez

I Io-1)IlY •........................................................................................................"

(i -1)/lx i/lx (i +1)/lx

(a) Unstaggered, collocated grid

O+1)lly

jlly

o-1)~y
(i -1)/lx

(b) Staggered, collocated grid

(i + 1) /lx

Fig. 3.4 Two Cartesian grids that are alternatives to Yee's arrangement (illustrated in two dimensions for
the TM case). Source: Y. Liu, J. Computational Physics, 1996, pp. 396-416.

z

aH...Ii+1/2.j+1/2 =at

at

_0_.5_. [(EJj+1 +Ezt+l,j+l~y- (EJ,j +EzL,J]
fl i+1/2.j+1I2 Ll

_0._5_ 0 [ (E,I...o' + E,k"ol+'~- (EJ, + E,l.oi+ll]
fl i +1/2 ,j+1/2

(3.52a)

(3.52b)
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aE I.--'-"-} =
at

0.5

E .
I.}

l1y
(3.52c)

Reference [4] analyzes the Yee grid and the alternative Cartesian grids of Figs. 3.4(a, b) for

a key source of error: the numerical phase-velocity anisotropy. This error, to be discussed in
detail in Chapter 4, Section 4.5, is a nonphysical variation of the speed of a numerical wave

within an empty grid as a function of its propagation direction. In order to limit this error to less

than 0.1 %, we require a resolution of 58 points per free-space wavelength Ao for the grid of
Fig. 3.4(a), 41 points per Ao for the grid of Fig. 3.4(b), and only 29 points per Ao for the Yee grid
[4]. Thus, Yee's grid provides more accurate modeling results than the two alternatives of

Fig. 3.4.

3.7.2 Hexagonal Grids

Regular hexagonal grids in two dimensions have been proposed to reduce the numerical phase

velocity anisotropy well below that of Yee's Cartesian mesh [4]. Here, the primary grid is

composed of equilateral hexagons having edge length As. Each hexagon can be considered to be

the union of six equilateral triangles. Connecting the centroids of these triangles yields a second
set of regular hexagons that comprises a dual grid.

Fig. 3.5 illustrates for the 1M, case in two dimensions the two principal ways of arranging E
and H components in hexagonal grids. Fig. 3.5(a) shows the unstaggered, collocated grid in

which Cartesian E" H x' and H y components are collocated at the vertices of the equilateral

triangles. No dual grid is used. Fig. 3.5(b) shows the field arrangement for the staggered,

uncollocated grid and its associated dual grid, the latter indicated by the dashed line segments.
Here, only Ez components are defined at the vertices of the equilateral triangles, which are the

centroids of the hexagonal faces of the dual grid. Magnetic field components HI' H
2

, H
3

, and so
forth, are defined to be tangential to, and centered on, the edges of the dual-grid hexagons.

These magnetic components are also perpendicular to, and centered on, the edges of the primary

grid triangles. We note that the grid of Fig. 3.5(b) is a direct extension of Yee's interleaved E
and H component topology from rectangular to hexagonal cells.

Upon applying second-order-accurate central space differences to the 1M, mode equations

of (3.13) for the unstaggered, collocated hexagonal grid of Fig. 3.5(a) (with a loss less material

background assumed for simplicity), we obtain [4]:

aH I..x I,j

at
_ ~ (EJi-1/2,i+O.s.J3 +

/.1 . .6As E I
I.) -, i-1/2,j-O.S.J3

Ez LII2,i+O.s.J3 J
EzL112.j-O.S.J3

(3.53a)



j

j

Chapter 3: Introduction to Maxwell's Equations and the Yee Algorithm 83

//~:':.::.~~""""""""""-""""'-'-':.~~?\\\

./ \ / \
,.../ \.... ../ \ ....

I \ Hy :' \.

// \\.... +/,/ \\
/ E~~ \.\:.:: :>!.\ H·~ ..········ · ·· ·::./

\ / ! \. /
......\ //; \.\ //

\ / ... /
\.... // \\ /

\ i \ ,-
\ .. /' \.. ,.I'

... / . ... .:,··························7·························,,
!

l

(a) Unstaggered, collocated grid, with no dual grid

i

(b) Staggered, uncollocated grid and its associated dual grid

F 'g 35 Two central-difference hexagonal grids that are alternatives to Vee's arrangement (illustrated inI. •

two dimensions for the TMz case). Source: Y. Liu, J. Computational Physics, 1996, pp. 396-416.
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at (

2E I· . - 2E I· I . + E I· 1/2 . 05 r:: JI z I+I.) z ,- ,} Z ,+ ,}+. '1/3

=
J.li,j 6lis - Ezli-1/2,j+0.S.J3 + EJi+1/2,j-0.S.J3 - EZ t-1/2.j-O.S.J3

(3.53b)

aE I.
__Z_,,_} =

at

1

e.. 6lis
',}

HI +HI -HIy i-1/2,j+0.S.J3 Y i+1/2,j-O,S.J3 Y i-I/2.j-O.S.J3

.J3 H,LI/2.j+O.S.J3 + .J3 Hx!t-1/2,j-O.s.J3

(3.53c)

Similarly, applying second-order-accurate central space differences to the TM z mode equations
for the staggered, uncollocated grid of Fig. 3.5(b) yields [4]:

aH1LI/4,j-0.2S.J3

at
= J.l 1 lis (Ezt+I/2,j-O.S.J3 - Ezt,j)

i+I/4,j-O.2S.J3
(3.54a)

at
(3.54b)

at
= J.l 1 lis (EJ+1I2,j+0.s.J3 - EJ.J

i+I/4,j+O.2S.J3
(3.54c)

aEJ.j = 2 ,(H1Ii+1/4,j-0.2S.J3 + H2LII2'i + H3LI/4,j+0.2S.J3 J
at e .. 3lis - H 1 r:: - H I - H I

,,) 1 i-1/4,j+O.2S'l/3 2 i-1I2,j 3 i-I/4.j-O.2S.J3

(3.54d)

We note that the total number of field unknowns for the staggered, uncollocated grid of
Fig. 3.5(b) is 33% more than that for the unstaggered grid of Fig. 3.5(a), but the discretization is
simpler and the number of total operations is less by approximately 50%.

Analysis of the numerical dispersion of the hexagonal grids of Figs. 3.5(a, b) shows that the
velocity-anisotropy errors are 1I200th and 11l,200th, respectively, that of the second-order
accurate Yee grid for a grid sampling density of 20 points per free-space wavelength [4].
This represents a large potential advantage in computational accuracy for the hexagonal grids.
Additional details are provided in Chapter 4, Section 4.9.3.
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3.8 EMERGING APPLICATION: GRIDDING THE PLANET EARTH

This section discusses an emerging application of FDTD grid generation, which illustrates many
of the concepts introduced earlier in this chapter: modeling of impulsive ELF propagation within
the global Earth-ionosphere cavity. This permits for the first time a direct, three-dimensional,
time-domain calculation of round-the-world ELF propagation, accounting for arbitrary horizontal
as well as vertical geometrical and electrical inhomogeneities and anisotropies of the excitation,
ionosphere, lithosphere, and oceans. Potential uses of this model include studies of
electromagnetic precursors of major earthquakes and the development of novel means for remote
sensing of underground ore and oil deposits.

3.8.1 Background

Propagation of ELF (3 Hz to 3 kHz) and VLF (3 to 30 kHz) electromagnetic waves in the Earth
ionosphere waveguide is a problem having a rich history of theoretical investigation extending
over many years [5-10]. Currently, ELFIVLF propagation phenomena form the physics basis of
important remote-sensing investigations of lightning and sprites [11], global temperature change
[12], subsurface structures [13], and earthquake precursors [14].

Most theoretical techniques for modeling ELFIVLF propagation in the Earth-ionosphere
waveguide are based upon frequency-domain waveguide mode theory [6, 9]. References
[15-17] were the first to report the application of FDTD methods to this problem. These used
two-dimensional cylindrical-coordinate FDTD grids to investigate VLF propagation over lossy
ground paths due to either man-made sources or lightning discharges. Both reported very good
agreement of their FDTD models with benchmark data.

Based upon the fundamental work in [18], [19-23] reported the initial application of FDTD
to model the complete Earth-sphere at ELF. These used three-dimensional, spherical-coordinate,
latitude-longitude space lattices with periodic boundary conditions. References [19, 20] reported
no improvements relative to the grid of [18], which is subject to increasing space-cell
eccentricity upon approaching the poles, due to converging lines of longitude. Since the Courant
limit is set by the smallest space-cell dimension in a grid, this eccentricity mandates a
corresponding reduction in the allowable time-step. For the grid of [18], the Courant limit is
reduced to approximately dirE times the limit that would exist if all grid cells maintained the
square configuration of those located at the Equator, where d is the cell dimension at the Equator
and r

E
is the radius of the Earth. This is a very significant mandatory time-step reduction factor

for high-resolution grids having d smaller than 100 km (i.e., dl rE < liM).
In contrast, [21-23] reported a key improvement in FDTD mesh generation to minimize the

effects of increasing space-cell eccentricity upon approaching a pole. Here, the mesh was
constructed to maintain approximately square cells in the polar regions by an adaptive cell
combination technique applied to adjacent grid cells in the East-West direction. This allows
maintenance of the time-step at nearly the level permitted by the Courant stability condition for
the square equatorial cells. Further, as shown in [21, 22], this approach achieves a high degree of
isotropy for numerical wave propagation despite the mesh nonuniformity due to the adaptive
East-West cell combinations. Overall, this technique permits a laboratory computer with 2 GB
of random access memory to generate high-resolution (approximately 40 x 40 x 5 km) modeling
results for global, fully three-dimensional, impulsive ELF propagation within the entire Earth
ionosphere cavity, to a height of 100 km into the ionosphere and a depth of 100 km into the
lithosphere. Section 3.8.2 provides the algorithmic details and sample results of this approach.
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More recently, [24] reported an alternative means to grid the Earth that avoids the problem
of geometrical singularities at the poles. Here, the FDTD grid is best described as resembling the
surface of a soccer ball, being comprised entirely of hexagonal cells except for a small fixed
number of pentagonal cells needed for grid completion. Grid-cell areas and locations are
optimized to yield a smoothly varying area difference between adjacent cells, thereby
maximizing numerical convergence. The new "geodesic" grid model is superior to the latitude
longitude grids of [21, 22] because it avoids geometrical singularities, executes approximately 14
times faster with only a 40% increase in the required memory, and provides even more isotropic
numerical wave propagation. Section 3.8.3 describes this scheme and provides sample results.

3.8.2 The Latitude-Longitude Space Lattice

Fig. 3.6 illustrates the general layout of the latitude-longitude space lattice as seen along a TM
surface at a constant radial coordinate. The lattice is a logically Cartesian 2M x M x K cell
arrangement, where M is a power of 2. The lattice-cell position index in the West-to-East
direction is 1 ~ i ~ 2M; the lattice-cell position index in the South-to-North direction is
1 ~j ~ M; and the lattice-cell position index in the radial direction is I ~ k ~ K.

Wraparound
to West side

Wraparound
to East side

Grid column

Isosceles trapezoidal grid
cells in rows j = 2
through j = M -1

Grid row j = 1

....~.,,:~~:~;!~~~ :.;:;~ Grid row j = M

/

I' .._-........-••...,.,... Isosceles triangular grid cells

South Pole In rows j = 1 and j = M

Fig. 3.6 General layout of the latitude-longitude FDTD space lattice covering the complete Earth-sphere
as seen in a TM plane at a constant radial (height/depth) coordinate. Source: Simpson and
Taflove. IEEE Trans. Antennas and Propagation, Vol. 52, 2004, pp. 443-451, © 2004 IEEE.
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In Fig. 3.6, we see that the grid cells follow along lines of constant latitude () =constant,
where () is measured from the North Pole; and along lines of constant longitude t/J =constant,
where t/J is measured from a specified prime meridian. In this manner, each 1M surface of the
grid shown is comprised of isosceles trapezoidal cells away from the North and South Poles
[Fig. 3.7(a»), and isosceles triangular cells at the poles [Fig. 3.7(b»).
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Fig. 3.7 Details of the TM-plane lattice-cell geometry: Source: Simpson and Tatlove, IEEE Trans.
Antennas and Propagation, Vol. 52, 2004, pp. 443-451, © 2004 IEEE.
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Similarly, each TE surface at a constant radial coordinate is comprised of isosceles
trapezoidal cells away from the North and South Poles [Fig. 3.8(a)], and a polygon at the poles
[Fig. 3.8(b)].
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Fig.3.8 Details of the TE-plane lattice-cell geometry: Source: Simpson and Taflove, IEEE Trans.
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We choose to have the same angular increment in latitude, /10 =rt/m, for each cell in the
grid. Thus, the South-North span of each trapezoidal or triangular grid cell is /1son =rtRlm, where
R is the radial distance from the center of the Earth. To maintain square or nearly square grid
cells near the Equator, we select the baseline value of the angular increment in longitude /1¢ to
equal /10. However, this causes the West-East span of each cell /1w~ =R/1¢ sin 0 to be a function
of O. This could be troublesome for cells near the North and South Poles where 0~ 0 and
o~ Tt, respectively, There, the geometrical eccentricity of each cell /1sj/1w~ =/10/(/1¢ sinO)
would become quite large, and the numerical stability and efficiency of the FDTD algorithm
would be degraded, An algorithmic means to deal with this problem will be discussed below.

The wraparound or joining of the lattice is along a specific line of constant longitude,
or meridian. As discussed below, this joining is, in effect, a periodic boundary condition applied
at eachj-row of lattice cells, whether trapezoids or triangles.

FDTD Algorithm, TM Components

Given the above assumptions, Ampere's law in integral form can be applied to develop an FDTD
time-stepping relation for the electric field Ez at the center of the (i,j, k)'th trapezoidal grid cell.
For example, referring to Fig. 3.7(a), we have

(3.55)lH In+1/2 .1 I - H In+1/2 .1 I ]
x i,j-1/2.k w-e j-1/2,k x i,j+1/2.k w-e j+1I2,k

---
+ (H In+1I2 _ HIn+1/2 ) /1

Y i+1/2,j.k Y i-I/2,j,k .-n

= EI~'k +
Z I,}, SI

£0 j,k

E In+1
z i,j,k

where /1t is the time-step, and

/1 I = R/1¢sin[(M-j)~/M]
w-e j+I/2,k

(3,56a)

/1 w _ e LI12.k = R /1¢ sin [(M - j + 1) ~ 1M] (3.56b)

sl'k = [/1 I + /1 I, ]/1 12}, w-e j-1/2,k w-e }+1/2,k .-n (3.56c)

Similarly, referring to Fig. 3.7(b), the update for Ez at the center of the i'th triangular grid cell at
the North Pole U= M) is given by

E r+1

z i.M,k [

H /n+1I2 /1 I ]
x i,M-1I2,k w-e M-I/2,k

n+ 1/2 n+1/2

+ (HYLI/2,M'k - Hy LI/2.M,k) /1._ n

(3.57)

where /1w.e IM-1I2, k is given by (3.56b) for the case j =M, and
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sl L1w-e1M-I/2,k L15 - n • [ -I (L1w_eIM-I/2,k )]
M k = SID COS
'2 2L1s-n

(3.58)

Analogous expressions can be derived for triangular grid cells at the South Pole (j =1).
The basic FDTD time-stepping algorithm is completed by specifying the updates for the Hx

and H
y

fields. For example, referring to the trapezoidal grid cell shown in Fig. 3.7(a), we have

1
"+1/2 !it ( 1"+1 /"+1)::;H .. +--E -E

x I,J-1I2,k Ji
o

L1z y i,j-l/2,k+1I2 y i,j-I/2,k-I/2

= 1"+1/2 +~ (E 1"+1
Hy i+IJ2.j.k Ji

o
L1z x i+IJ2,j.k-I/2

H 1"+1.5
x i,j-l/2.k

/

"+1.5

H y i+I/2,j,k

+

+

L1t (-- E \"+1 _ E 1"+1 )
L1 Z i,j-I,k Z i,j,k

Jio s-n

_!it_ (E 1"+1 _ E1"+1 )
L1 1 Z i+l,j,k Z i,j,k

Jio w-e j,k

_ E 1"+1 )
x i+l/2.j,k+1/2

(3.59)

(3.60)

where L1z is the cell span in the vertical (radial) direction.

For a triangular grid cell at the North Pole (j =M) shown in Fig, 3.7(b), we similarly have

H 1"+1.5
x i,M-I/2,k

+

H r+ I
/
2 L1t ( 1"+1 1"+1)

x i,M-l/2,k + J1
0

L1z Ey i,M-I/2,k+l/2 - Ey i,M-I/2,k-1I2

(3.61)

1

"+1.5

H y i+I/2,M,k

+

1
"+1/2 + -.!:!....- (E /"+1

H y i+1/2.M,k A_ x i+I/2,M.k-I/2
J10 L.1.(.

_M_ (E /"+1 _ E 1"+1 )

1
Z i+I,M,k Z i,M,k

Jio L1 w _ e M.k

_ E 1"+1 )
x i+I/2.M,k+1/2

(3.62)

Analogous expressions can be derived for triangular grid cells at the South Pole (j = 1),
As stated earlier, the geometrical eccentricity of each trapezoidal cell can become quite large

near the North and South Poles, thereby degrading the numerical stability and efficiency of the
FDTD algorithm, Fig. 3.9 illustrates a means to mitigate this problem by merging pairs of
adjacent cells of the TM plane in the West-East direction, effectively halving the cell
eccentricity. This process can be repeated several times as the grid approaches a pole, allowing
the user to specify a maximum allowable cell eccentricity.
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Fig. 3.9 Details of the TM-plane grid-cell geometry in the Northern Hemisphere at the transition between
two adjacent regular cells and a single cell spanning twice the distance in the East-West direction.
Source: Simpson and Taflove, IEEE Trans. Antennas and Propagation, Vol. 52, 2004, pp. 443
451, © 2004 IEEE.

The required algorithm is now presented. Again applying Ampere's law in integral form,
the time-stepping relation for the Ez field at the center of the merged cell is given by

1
"+1E ..

Z I.}. k

= Er. + _~_t_lo.5 (Hx Ci:L-1I2.k + HxC
1

::. i _I/2.k) 6.w-c!i-I/2.k ]

1'.J.k Eo sip H 1"+1/2 ~ I (1"+112 1"+1/2 )
x i,i+I/2,k w-c i+I/2,k + H y ,+I.).k - H y I-I.J.k 6.s_n

(3.63)

The Ez fields indicated by the * symbols in Fig. 3.9 are required for the subsequent H-field
updates. These are obtained by linearly interpolating the Ez fields calculated with (3.63), for
example:
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1
"+1 (1"+1 1"+1)E '-1/2 '" = 0.25 3E, '., + E '_2'Ll I ,J,' l I,J.' l I ,J.'

(3.64)

Now, the time-stepping algorithm for the merged cell can be completed by specifying the
updates for the H

x
and Hy fields at the periphery of the cell, for example:

H 1"+1.5
x i-1/2,j-1/2,k

+

H1"+1/2 +~ (E 1"+1 _ /"+1 )
x i-I/2,j-I/2,k /1

0
L\z Y i-1/2,j-I/2,k+1/2 Ey i-I/2,j-I/2,k-1/2

_C:.t_ (E 1"+1 _ E1"+1 )
l i-I/2,j-I,k l i-I/2,j,k

/10 t..,_n

(3.65)

1
"+112 t..t ( 1"+1

= Hy i+I,j,k + /1
0

& Ex i+I,j.k-1/2 -

= r+ I
/
2 t..t ( 1"+1 1"+1)

H,t i,j+1/2,k + /1
0

& E)' i,j+l/2,k+I/2 - E)' i.j+ll2,k-I/2

1

"+1.5

H)' i+I,j,k

H 1"+1.5
x i,j+l/2,k

+

+

t..t (__ EI"+1 _ EI"+I)
t.. I l i+2,j,k l i,j,k

/10 w-e j,k

_M_ (E 1"+1 _ E 1"+1 )
C:. t i,j,k t i,j+I,k

/10 s- n

E 1"+1 )
x i+l,j,k+I/2

(3.66)

(3.67)

The grid wraparound (periodic boundary condition) in the West-East direction completes the
FDTD algorithm for the 1M components, For each row j of grid column i::; 1 in Fig, 3.6, this is
implemented by the following special time-stepping relation for H at the West grid boundary:y

1

"+1.5

H)' Il2,j,k

+

H1"+1/2 +~ (E 1"+1 _ 1"+1 )
Y 1/2,j,k A~ x 1/2,j,k-I/2 Ex 1/2,j,k+I/2

/10 U<,

_t.._t_ (E 1"+1 _ E1"+1 )

I tlt,j,k l2M,j,k
/10 t.. w _ e j, k

(3,68a)

Upon obtaining each Hy value, the grid wraparound is completed by implementing the following
special relation for each row j of grid column i::; 2M for H)' at the East grid boundary:

1

"+1.5 1"+1.5
H =H

y 2M+1/2,j,k )' 1/2,j,k

Steps (3.68a, b) apply to all grid rows, whether containing trapezoidal or triangular cells.

(3.68b)
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FDTD Algorithm, TE Components

Faraday's law in integral fonn can be applied to develop an FDTD time-stepping relation for the
magnetic field Hz at the center of the (i+1I2,j+1I2, k+1I2)'th trapezoidal grid cell. For example,
referring to Fig, 3,8(a), we have

H 111
+1.5 := H 1

11
+

112

l i+1/2,j+1/2.k+\/2 z i+1/2,j+\/2,k+1/2

ti.t
+

f.10 Slj+1/2,k+1/2

E"LI/2,j+\,k+1/2 ti. w - e L+\.k+1I2

- E x LII2,j.k+1/2 ti. w-e1 j 'k+\/2

+ (E III - EIII ) ti.
y i, j+ 1/2,k+1/2 Y i+1,j +\/2, HI/2 s-n

(3,69)

Similarly, referring to Fig. 3.8(b), the update for Hz directly at the North Pole (i = 1I2,) = M+1I2)
is given by

1
11+1.5

Hz 1/2,M+1/2.k+1/2
= H 1

11
+

1/2

z 112,M+1/2.k+1I2

!1t ( N
sl L ExI~-1/2,M,k+\/2

Po M+1/2,k+1/2 X=l

(3.70)

where !1w.eIM, k+l/2 is given by (3.56b) for the case) =M, N is the number of Ex components
surrounding the Hz component directly at the pole, and

(3,71 )

Analogous expressions can be derived for Hz directly at the South Pole (i = I12,) = 112).
The basic FDTD time-stepping algorithm is completed by specifying the updates for the Ex

and E fields. For example, referring to the trapezoidal grid cell shown in Fig. 3,8(a), we have
y

E 1
11
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11
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(3.72)

= III ti.t (1 11
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E y i,j+1/2.k+1/2 + E liz Hx i,j+1/2,k+\ x i,j+1/2,k

o
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E y i,i+1/2,k+1/2
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ti. I z i-1/2,j+1/2,k+1/2 Hz i+1I2.j+1I2,k+1I2
Eo woe j+1I2.k+ 1/2

(3,73)
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As stated earlier, near the North and South Poles the geometrical eccentnclty of each

trapezoidal cell can become quite large, thereby degrading the numerical stability and efficiency

of the FDTD algorithm. Fig. 3.10 illustrates a means to mitigate this problem by merging pairs

of adjacent cells in the TE plane in the West-East direction, effectively halving the cell

eccentricity. This process can be repeated several times as the grid approaches a pole, allowing

the user to specify a maximum allowable cell eccentricity.
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Fig. 3.10 Details of the TE-plane grid-cell geometry in the Northern Hemisphere at the transition between
three adjacent regular cells and two cells each spanning twice the distance in the East-West
direction. Source: Simpson and Taflove, IEEE Trans. Antennas and Propagation, Vol. 52,
2004. pp. 443-451, © 2004 IEEE.
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The required algorithm is now presented. First, we obtain the Ex field indicated by the
* symbol in Fig. 3.10. This field component is obtained by linear interpolation:

E,J+1I2,j+I,k+1/2 = O.5(E X LII2,j+I,k+1/2 + E X Ll.s.j+I,k+1/2) (3,74)

Next, applying Faraday's law in integral form, we use the Ex component obtained in (3.74) in the
time-stepping relation for an Hz component located below a row of merged cells:

H In+1/2
z i+1/2.j+1/2.k+112

= H In-112
z i+1/2,j+1/2,k+1/2

+
J10 Sl j +1/2.k+1/2

E x l;+1/2,j,k+1/2 Ll w -e1 j 'k+1/2 +

(EY [j+1/2,k+1/2 - E yCl. j +1/2,k+1/2) Ll s_ n

(3,75)

Again applying Faraday's law in integral form, the time-stepping relation for an Hz component
located in a row of merged cells is given by

H In+1I2
z i+U.j+I.S.k+1/2

= H 1"-1/2
z i+U,j+U.k+1/2

+
J10 Slj +U .k+1I2

ExI;+l.s,j+l.k+1/2 Llw - e t+1.k+1/2 +

(Ey LI/2,j+U,k+I12 - E y L2.S.j+I.S,k+ll2) Lls_ n

(3.76)

Now, the time-stepping algorithm for a merged cell can be completed by specifying the updates
for the E and E fields at the periphery of the cell, for example:

x y

E In+1
x i+U,j+1,k+1/2

= E I" +~ (H In+1I2 _ HIn+1/2 )
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I
n+1
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+ _M_ (H In+1/2 _ H 1"+1/2 )
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y i+1/2,j+U.k+1/2 Eo Llz x i+1/2,j+I.S,k+1 x i+1/2.j+U,k

(3.77)

+ Llt (H In+1/2 In+1/2)
Ll 1 z ;-1/2,j+U,k+1/2 - Hz i+U,j+U,k+1/2

Eo woe j+U,k+1I2

(3,78)
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The grid wraparound (periodic boundary condition) in the West-East direction completes the
FDTD algorithm for the TE components. For each row j of grid column i =1/2, this is
implemented by the following special time-stepping relation for Hz at the West grid boundary:

H In+l/2 = H In-I/2
z 1/2,j+l/2,k+1/2 z 1/2.j+1/2.k+1/2

ExI~/2,j+I,k+I/2 D.. w-.I j +I,k+1/2 -

+
D..t

Po Sl j +ll2,k+1/2

(3,79a)

Upon obtaining each Hz value, the grid wraparound is completed by implementing the following
special relation for each row j of grid column i = 2M + 1/2 at the East grid boundary:

H In+1I2 = H In+1/2
z 2M+l/2,j+1I2,k+1/2 z 1/2,j+1/2,k+1/2

Validation Study

(3,79b)

Reference [23] reported a validation of the above algorithm by comparing its predictions for
round-the-world ELF propagation with data reported in [25]. Topographic and bathymetric data
from the NOAA-NGDC "Global Relief CD-ROM" [26] were mapped onto the space lattice with
an assumed resolution of 40 x 40 x 5 km at the Equator. This cell size was a compromise which:
(l) limited the space-lattice size to permit its residence in memory on an available workstation
with 2 GB of memory, (2) resolved ELF wavelengths of 800 km or greater (frequencies of 375
Hz or less) with 20 or more cells per wavelength, and (3) provided one-to-two cell resolution for
the radial extent (height and depth) of the Earth's oceans and mountain ranges.

For the lithosphere, conductivity values were assigned according to [27], depending upon
the location of the E component (i.e., below an ocean or within a continent). For the atmosphere,
the exponential conductivity profile used in [28] was assumed. This permitted the most
straightforward comparison of the FDTD modeling results with the data reported in [25] since
ELF propagation is crucially affected by the ionosphere characteristics. Note that, however,
the FDTD model is capable of significantly greater ionospheric detail (i,e., day-to-night
transitions, anisotropy, and so forth).

The model was excited with a vertical, 5-km-long, Gaussian current pulse located just above
the Earth's surface on the Equator at longitude 47°W, The pulse had a lie full-width of 480D..t
(where D..t =3.0 ~s) and its temporal center at 960D..t.

Fig, 3,11 provides snapshot visualizations of the global propagation of the electromagnetic
pulse resulting from the assumed excitation. (The corresponding color snapshot visualizations
are shown in Fig. 1.1 of Chapter 1; a color video of this phenomenon can be downloaded from
http://www,ece.northwestern.edu/ecefaculty/taflove/3Dmovietext@ gif.avi.) Slight departures
from circular symmetry of the propagating pulse are observed. Analysis reveals that this lack of
symmetry is caused to a high degree by the inhomogeneities of the lithosphere conductivity
assumed in the model, rather than by numerical distortions resulting from the gridding technique,



Fig. 3.11
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Snapshot visualizations of the FDTD-computed global propagation of an ELF electromagnetic
pulse generated by a vertical 5-km-long Gaussian current pulse off the coast of South America at
the Equator. All features of the lithosphere and atmosphere located within ±IOO Ian of sea level
are modeled in three dimensions with a resolution of approximately 40 x 40 x 5 km.
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Fig. 3.12 Comparison between FDTD-calculated ELF propagation attenuation versus frequency with data
reported in [25]. Source: Simpson and Taflove, IEEE Trans. Antennas and Propagation,
Vol. 52, 2004, pp. 443-451, © 2004 IEEE.

Fig. 3.12 compares, relative to benchmark data [25), the FOTO-calculated ELF propagation
attenuation in the example visualized in Fig. 3.11. Results are shown for two separate
propagation paths along the Equator in decibels per megameter versus frequency. Here, for each
path, broadband FOTO results were obtained by forming the ratio of the discrete Fourier
transform (OFT) of the vertical E-field time-waveform observed at the end of the path to the
OFT of the E-field waveform observed at the beginning of the path. Over the frequency range
50 to 500 Hz, the FOTD-computed propagation attenuation values agree with the results of [25]
to within about ±1.0 dB per megameter.

In developing Fig. 3.12, temporal-windowing of the FOTO-calculated field-versus-time
waveforms was required to eliminate the "reception" of signals propagating completely around
the model Earth in the opposite direction along the Equator. Such "long-path" signals would
eventually add to, and corrupt, each desired time-waveform propagated along the "short path"
directly from the source, especially the slow-tail response analyzed in [29]. In combination with
the high-frequency wavelength-resolution limitations implied by the usage of a 40-km grid cell,
the time-windowing process resulted in a frequency window of approximately 50 to 500 Hz
within which the FOTO results could be validly compared with the benchmark data of [25].
Nevertheless, the FOTD results should remain valid well below 50 Hz.
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3.8.3 The Geodesic (Hexagon-Pentagon) Grid

The geodesic Earth grid is comprised entirely of hexagonal cells except for a small fixed number
(12) of pentagonal cells needed for grid completion [30]. Grid-cell areas and locations are
optimized to yield a smoothly varying area difference between adjacent cells, thereby
maximizing numerical convergence [31].

Fig. 3.13 illustrates an example of the layout of a spherical geodesic grid along a TM surface
at a constant radial coordinate. This sample grid has a total of 642 planar cells, of which 630 are
hexagons and 12 are pentagons [30]. For purposes of efficient mapping into the computer
memory, this grid can be divided into five equal panels of size im5 xjm cells, where im5 = 18

andjm = 10.

(a) (b)

Fig. 3.13 642-cell, two-dimensional geodesic grid covering the Earth-sphere: (a) layout of the entire grid,
showing the arrangement of the planar grid cells; (b) division of the grid into five equal panels
with im5 = 18 and jm =10. Source: Randall et al., Computing in Science and Engineering,
Vol. 4(5), 2002, pp. 32-41, © 2002 IEEE.

Fig. 3.14(a) shows the five grid panels of Fig. 3.13 after unwrapping and stretching them
flat. The cells at the North and South Poles can be arbitrarily connected to any of the five panels.
Fig. 3.14(b) illustrates how the five grid panels of Fig. 3.13 can be assigned logically Cartesian
coordinates, and how all five panels can then be laid side-by-side to constitute an overall
(im =90, jm = 10) logically Cartesian grid. This powerful interpretation of a spherical geodesic
grid as a single logically Cartesian grid for purposes of efficient computer processing can be
implemented for a variety of meshing densities over the sphere, as shown in Table 3.1.
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North Pole

(a)

(b)

Fig. 3.14 (a) The five grid panels of Fig. 3.13 after unwrapping and stretching them flat. The grid cells at
the North Pole and South Pole can be arbitrarily connected to any of the five panels.
(b) Illustration of how the cells in the five grid panels can be assigned logically Cartesian
coordinates, and how all five panels can then be laid side-by-side to constitute an overall
(im =90, jm =10) logically Cartesian grid. Source: Randall et aI., Computing in Science and
Engineering, Vol. 4(5),2002, pp. 32-41, © 2002 IEEE.

TABLE3.l

Horizontal (im5) and Vertical (jm) Number of Cells for the Five Panels at Different Resolutions.
Source: Randall et aI., Computing in Science and Engineering, Vol. 4(5), 2002, pp. 32-41, © 2002 IEEE.

Number of Cells im5 jm

642 18 10

2,562 34 18

10,242 66 34

40,962 130 66

163,842 258 130

655,362 514 258
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Fig. 3.15 Field components in the vicinity of the (i,j)'th hexagonal cell of the grid of Fig. 3,14,

Algorithm

Fig. 3.15 illustrates the field components in the vicinity of the (i,j)'th hexagonal cell of the grid
of Fig. 3.14. As discussed in [24], sample field updates are given by the following expressions:

H In+1/2
I .,)

(3.80)

E In+1
z I,)

A. (Hl~1I2 sl, 'I + H2r~1I2 sI. '2 + Hl~1I2 sl, '3 - Jn ill '.) I,). I,) I,). I.) '.).

= EI, ,+--
z ,.) £ sl, , In+1/2 I In+1/2 I In+1/2 I

o I,J HI '_I ' S ,'_I 'I - H2 '_I '_I S '-I '-12 - H3 ' '-I S, '-\ 3I.) ,j. I,) I.j. I.j 1,1,

(3.81 )

Field updates for the pentagonal cells are by analogy, noting of course that only five
H-components circulate about each Ez in these cells.

The periodic boundary condition to be discussed next completes the algorithm. For each of
the five panels in Fig. 3.14, the algorithm represented in (3.81) is used to update only the Ez
fields for which 2 < i < (im5 - 1) and 2 <j < (jm-l), along with the Ez fields in the pentagons at
the North and South Poles. The set of "ghost" Ez fields located at (i =1, 1 ~j $.jm- 2),
(j =1, 1 $. i $. im5 - 2), (i = im5, 2 $.j $.jm-l), and (j = jm, 2 $. i $. im5), along with the set of Ez
fields located at (i =I, j =jm -1) and (i =im5 -I, j =1) in the panels not updating the North and
South Poles, is then specified after each time-step by setting each such field equal to the
corresponding Ez field in the neighboring panel.
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Results

We now review the results of a numerical experiment designed to test the isotropy of the
geodesic FDTD grid model for two-dimensional TM electromagnetic wave propagation about
the lossless Earth-sphere [24]. The idea here is to track an impulsive circular cylindrical wave in
time and space as it propagates radially outward from a filamentary current source, travels
completely around the Earth-sphere model, and then propagates radially inward to the antipode.
Results are shown for a geodesic grid with 40,962 cells (im5 =130 and jm =66) spanning the
Earth-sphere, with the time step 6.t =25 ~s. For this simulation, implemented in Fortran 90 on a
Dell 530 workstation running Linux, the required computer memory is 3.3 MB and the running
time is 2.5 min for a single wave circumnavigation of the Earth-sphere. In comparison,
a comparably resolved latitude-longitude grid of the type discussed in Section 3.8.2 would
require 2.4 MB and 34 min running time on the same computer. The geodesic grid executes
approximately 14 times faster while requiring only 40% more data storage in two dimensions.

Fig. 3.16 is a snapshot visualization of the electric field calculated using the geodesic grid
FDTD model projected onto the surface of the Earth-sphere as the radiated wave converges to
the antipode. Superimposed on this visualization is: (1) a sample computed contour of equal
amplitude electric field, and (2) a circle centered at the antipode that is drawn to have a radius
matching as well as possible that of the equal-amplitude electric field contour.

Fig. 3.16 Visualization of the electric field projected onto the surface of the Earth-sphere as the radiated
wave converges to the antipode. Note that the white contour of calculated equal-amplitude
electric field coincides almost exactly with a black dotted circle centered on the antipode.
Adapred from: Simpson and Taflove, IEEE Antennas and Wireless Propagation Lett., Vol. 3,
2004, pp. 215-218, © 2004 IEEE.
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From Fig. 3.16, we see that there is negligible deviation of the computed equal-amplitude
electric field contour from a circle centered at the antipode. This means that the impulsive
numerical wave has propagated from its source point almost completely to the antipode in an
azimuthally isotropic manner, despite passing through regions of hexagonal and pentagonal grid
cells of varying areas. By way of comparison, using this same test, the azimuthal isotropy of
numerical wave propagation within the latitude-longitude grid is poorer by approximately one
order-of-magnitude for grids of comparable spatial resolution. Combined with the 14: 1 speed
advantage of the geodesic grid relative to the latitude-longitude grid, it appears likely that the
geodesic grid will become the choice for FDTD modeling of the global electromagnetic
environment of the Earth in the ELF spectral band.

3.9 SUMMARY

This chapter reviewed Maxwell's equations and the basics of their solution using the Yee
algorithm, which fonns the foundation of the FDTD method. Specific topics included:

• Review of Maxwell's equations in three dimensions;

• Reduction of Maxwell's equations to two-dimensional TM and lE modes;

• Further reduction of Maxwell's equations to one-dimensionallEM modes;

• Equivalence of Maxwell's equations to the wave equation;

• The Yee algorithm, including:

Basic ideas;

Finite differences and notation;

Finite-difference expressions for Maxwell's equations;

Application to space regions with either a continuous variation of material
properties or a finite number of distinct materials;

Application to nonpenneable materials;

Reduction to the two-dimensional TM and lE modes;

Interpretation as Faraday's and Ampere's laws in integral fonn;

Demonstration of its divergence-free nature;

• Alternative Cartesian and hexagonal finite-difference grids;

• An emerging illustrative application: gridding the Earth to model global
electromagnetic wave propagation in the ELF spectral band.

Since the space lattice is the foundation of all FDTD theory and applications discussed in the
remaining chapters of this book, the reader is advised to develop a thorough understanding of
each topic discussed in this chapter.
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PROBLEMS

3.1 Show analytically that Gauss' law in (3.3) and (3.4) for the electric and magnetic fields can
be derived from Faraday's law in (3.1) and Ampere's law in (3.2) for the case of source
free space. You only need to prove this for the differential forms of the equations.
Note that "source-free" means that there are no imposed electric or magnetic current
densities in the space region (i.e., Jsource = 0 and Msource = 0) in (3.6), as well as no free
charges, as already indicated in (3.3) and (3.4). Assume a linear, isotropic, nondispersive,
and locally homogeneous medium and zero electromagnetic fields at time t =: O.

3.2 Show analytically that a scalar wave equation equivalent to (3.20c) can be obtained for the
x-directed, y-polarized TEM mode of (3.18).

3.3 Construct a computer program that models one-dimensional x-directed plane-wave
propagation in a uniform Yee grid with Ez and Hy field components. Use (3.41 a) and
(3.41c) as the time-stepping algorithm. Assume that H" =0 and the j + l/2 subscripts can
be neglected. Assume that free space is everywhere in the grid, and use the time-step
tit =tix / c. Terminate the grid in Ez components at its far-left and far-right outer
boundaries. Set Ez at the far-left grid boundary to a specific time function such as a unit
step, a Gaussian pulse, or a sinusoid. This will radiate a rightward-propagating step,
a Gaussian pulse, or a sinusoidal wave in the grid by the action of the Yee algorithm.
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Set E =0 at the far-right grid boundary to simulate the presence of a perfect electric
z

conductor. Perform visualizations of the E and H distributions within the grid at az y
number of time snapshots before and after the propagating wave reaches the far-right grid
boundary. Show that the perfect electric conductor acts as a mirror that reflects the
incident wave. Compare the reflection properties of the E

z
and H

y
components of the wave.

3.4 Repeat Problem 3.3, but terminate the grid in an Hy =0 component at its far-right outer
boundary to simulate the presence of a perfect magnetic conductor. Compare the wave
reflection properties of the Ez and Hy components of the wave due to the presence of the
perfect magnetic conductor.

3.5 Repeat Problem 3.3, but use the time-step I:!.t =0.99Lixlc. Compare your results.

3.6 Repeat Problem 3.3, but use the time-step f:..t =1.01 Lixlc. Compare your results.

3.7 Construct a computer program that models two-dimensional TMz cylindrical-wave
propagation in a uniform Yee grid. Use (3.41a), (3.41b), and (3.41c) as your time-stepping
algorithm. Assume square unit cells Lix = f:..y ==~, free space everywhere in the grid, and a
time-step M = f:.. / (c..fi). Terminate the grid in E, =0 components at its outer boundaries,
thereby simulating the presence of perfect electric conductors. Set a single E, component
located at the center of the grid to a specific time function such as a unit step, a Gaussian
pulse, or a sinusoid. This will generate a radially-propagating step, a Gaussian pulse, or a
sinusoidal wave in the grid by the action of the Yee algorithm. Perform visualizations of
the Ez , Hx ' and Hy fields of the outgoing wave distributed within the grid at a number of
time snapshots before and after the wave reaches the outer grid boundary. Compare the
spatial-symmetry properties of these fields with respect to the center of the grid where the
excitation is applied.

3.8 Repeat Problem 3.7, but fill the grid with a uniform, electrically conductive medium.
Vary the conductivity upward from zero, and observe how the outgoing wave is attenuated.

3.9 Repeat Problem 3.7, but now use the time-step ~t =l.OO05~ / (c..fi).

3.10 Repeat Problem 3.7 for the two-dimensional TEz mode. Use (3.42a), (3.42b), and (3.42c)
as the time-stepping algorithm. Terminate the grid in Ex = 0 and E

y
= 0 components at its

outer boundaries, thereby simulating the presence of perfect electric conductors. Set a
single Hz component located at the center of the grid to a specific time function such as a
unit step, a Gaussian pulse, or a sinusoid. Perform visualizations of the H , E , and E'x y

fields of the outgoing wave distributed within the grid at a number of time snapshots before
and after the wave reaches the outer grid boundary. Compare the spatial-symmetry
properties of these fields with respect to the center of the grid.

3.11 Repeat Problem 3.10, but now use perfect magnetic conductor outer grid boundaries
(Hz =0).

3.12 Verify the divergence-free nature of the Yee grid and algorithm for its computed magnetic

fields.



Chapter 4

Numerical Dispersion and Stability

4.1 INTRODUCTION

The FDTD algorithms for Maxwell's curl equations reviewed in Chapter 3 cause nonphysical
dispersion of the simulated waves in a free-space computational lattice. That is, the phase
velocity of numerical wave modes can differ from c by an amount varying with the wavelength,
direction of propagation in the grid, and grid discretization. An intuitive way to view this
phenomenon is that the FDTD algorithm embeds the electromagnetic wave interaction structure
of interest in a tenuous "numerical ether" having properties very close to vacuum, but not quite.
This "ether" causes propagating numerical waves to accumulate delay or phase errors that can
lead to nonphysical results, such as broadening and ringing of pulsed waveforms, imprecise
cancellation of multiple scattered waves, anisotropy, and pseudorefraction. Numerical dispersion
is a factor in FDTD modeling that must be taken into account in order to understand its operation
and its accuracy limits, especially for electrically large structures.

In addition, the FDTD algorithms for Maxwell's equations reviewed in Chapter 3 require
that the time-step At has a specific bound relative to the lattice space increments Ax, /).y, and liz.
This bound is necessary to avoid numerical instability, an undesirable possibility with explicit
differential equation solvers that can cause the computed results to spuriously increase without
limit as time-marching continues.

This chapter derives the key relations for numerical dispersion and stability applicable to
FDTD modeling of Maxwell's equations in multiple dimensions. These derivations build upon
the analyses introduced in Chapter 2 for the one-dimensional scalar wave equation. Additional
results from the literature will be presented for non-Cartesian space lattices and emerging low
dispersion FDTD techniques.

4.2 DERIVATION OF THE NUMERICAL DISPERSION RELATION
FOR TWO-DIMENSIONAL WAVE PROPAGATION

We begin our discussion of numerical dispersion with an analysis of the Yee algorithm
implementation of (3.15a-c), the field equations for the two-dimensional TM

z
mode. It can be

easily shown that the numerical dispersion relation obtained is valid for any two-dimensional TM
or TE mode. Further, our analysis serves as a convenient starting point for extension to three
dimensional problems as well as simplification to one-dimensional problems. Assuming for
simplicity no magnetic or electric loss, the system of (3.15) yields

107
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dH 1 dE__x ----,
dt Ji dy

dH .!- dE,--y =
dt Ji dX
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(4.1a)

(4.1b)

(4.1 c)

To further simplify the problem, we assume that the FDTD modeling space is filled with
homogeneous material having no variation of 1.1. or E with position in the grid. Then the finite
difference expressions for the 1M, case are given by the following:
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(4.2c)

The basic procedure for the numerical dispersion analysis involves substitution of a plane.
monochromatic, traveling-wave trial solution into the finite-difference system of (4.2).
After algebraic manipulation, an equation is derived that relates the numerical wavevector
components, the wave frequency, the time-step, and the grid space increments. This equation.
the numerical dispersion relation, can be solved for a variety of grid discretizations, wavevectors,
and wave frequencies to illustrate the key nonphysical modeling results associated with
numerical dispersion.

Initiating this procedure, we assume the following plane, monochromatic. traveling-wave
trial solution for the 1M mode:,

EXJ = E
j(mnM - k, 1& -iy H.y)

e'0

HxI;,J
j(mn til- k, 1& - ky J Lly)

= H e
Xo

HX,} = H
j(mn til- ii, I fix - iiy J fly)

e
Yo

(4.3a)

(4.3b)

(4.3c)
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where k x and ky are the x- and y-components of the numerical wavevector, and ro is the wave
angular frequency. Substituting the traveling-wave expressions of (4.3) into the finite-difference
equations of (4.2) yields, after simplification, the following relations:

where c == 1 NJ.1E is the speed of light in the material being modeled. Equation (4.5) is the

general numerical dispersion relation of the Yee algorithm for the TMz mode.
We shall consider the important special case of a square-cell grid having Ax =Ay == A.

Then, we can use the Chapter 2 definitions of the Courant stability factor 5 =eM / A and the
grid sampling density N,t =Ao/ d to rewrite (4.5) in a more useful form:

fltE sin (kydY /2)
H =

__z_o.

Xo J.1dy sin (roM /2)

ME sin (k,. dx / 2)
H =

___z_o.

Yo J.1Ax sin(roM/2)

(
roM) At [Hx (kydYJ Hy (k AX]]Ezo sin -2- = -; A; sin -2- - ~ sin ~

Upon substituting H of (4.4a) and H of (4.4b) into (4.4c), we obtain
Xo Yo

1 . 2 ( n5J . 2 (A . kcos lP] . 2 (d .ksin lP ]
- S10 - = sm + sm
52 N,t 2 2

(4.4a)

(4.4b)

(4.4c)

(4.5)

(4.6)

where ¢ is the propagation direction of the numerical wave with respect to the grid's x-axis.
To obtain the numerical dispersion relation for the one-dimensional wave-propagation case,
we can assume without loss of generality that ¢ == a in (4.6). Then, (4.6) reduces to

or equivalently

- 2 -I [ 1 (n 5 J]k = A sin 5 sin N).

(4.7a)

(4.7b)
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4.3 EXTENSION TO THREE DIMENSIONS

The dispersion analysis presented above is now extended to the full three-dimensional case
involving all six coupled E- and H-field vector components. For convenience, this section
utilizes the compact vector notation for Maxwell's equations introduced in [lJ.

Following [1], we consider a normalized, lossless region of space with f1. = I, E = I, (J = 0,
(5. =0, and c = 1. Letting j = R, we rewrite Maxwell's equations in compact form as

jV x (H + jE)

or more simply as

B= -(H + jE)at
(4.8a)

jVxv
BV
at

(4.8b)

where V =H + jE. Substituting the vector-field traveling-wave expression

vln -I,J.K - (4.9)

into the Yee space-time central-differencing realization of (4.8b), we obtain

[
X (f tu) y (f/~.y) i (f 6.Z)] n -j n (W6.t)- sin _x_ + - sin -- + - sin _z_ x vi = - vi sin--
tu 2 6.y 2 6.z 2 I.J.K 6.J I,J,K 2

(4.10)

where x, y, and i are unit vectors in the X-, y-, and z-coordinate directions. After performing
the cross product in (4.10) and writing out the x, y, and z component equations, we obtain a
homogeneous system (zero right-hand side) of three equations in the unknowns V,t' V

y
' and V

z
•

Setting the determinant of this system equal to zero results in

(4.11)

Finally, we denormalize to a nonunity c and obtain the general form of the numerical dispersion
relation for the full-vector-field Yee algorithm in three dimensions:

[ ]2 [ (_ )]2 [ ( )]2
[

I (W6.t)]2 1 (f 6.X) 1 ky 6.y 1 f6.z
c6.t sin -2- = tu sin ~ + 6.y sin -2- + 6.z sin ~

(4.12)

This equation IS seen to reduce to (4.5), the numerical dispersion relation for the two

dimensional TM, mode, simply by letting f z =O.



Chapter 4: Numerical Dispersion arul Stability III

4.4 COMPARISON WITH THE IDEAL DISPERSION CASE

In contrast to the numerical dispersion relation of (4.12), the analytical (ideal) dispersion relation

for a physical plane wave propagating in three dimensions in a homogeneous lossless medium is

(4.13)

Although at first glance (4.12) bears little resemblance to the ideal case of (4.13), we can easily

show that the two dispersion relations are identical in the limit as Ax, Ay, Az, and At approach

zero. Qualitatively, this suggests that numerical dispersion can be reduced to any desired level if

we use sufficiently fine FDTD gridding.
It can also be shown that (4.12) reduces to (4.13) if the Courant factor and the direction of

wave propagation are suitably chosen. For example, reduction to the ideal dispersion case results

for a numerical plane wave propagating along a diagonal of a three-dimensional cubic lattice

(k =k =k =kiD) if S =1/D. Similarly, ideal dispersion results for a numerical plane wavex y l _ _ _

propagating along a diagonal of a two-dimensional square grid (kx = ky = k 1.[2) if S = 11[2.

Finally, ideal dispersion results for any numerical wave in a uniform one-dimensional linear grid

if S = 1, the magic time-step. These reductions to the ideal case have little practical value for

two-dimensional and three-dimensional simulations, occurring only for diagonal wave

propagation. However, the reduction to ideal dispersion in one dimension is very interesting,

since it implies that the Yee algorithm (based upon finite-difference approximations) can exactly

solve the continuous one-dimensional wave equation.

4.5 ANISOTROPY OF THE NUMERICAL PHASE VELOCITY

This section probes a key implication of numerical dispersion relations (4.5) and (4.12).

Namely, numerical waves in a two-dimensional or three-dimensional Yee space lattice have a

propagation velocity that is dependent upon the direction of wave propagation. The space lattice

thus represents an anisotropic medium.

Our strategy in developing an understanding of this phenomenon is to first calculate sample

values of the numerical phase velocity vp versus wave-propagation direction ¢ in order to

estimate the magnitude of the problem. Then, we will conduct an appropriate analysis to

examine the issue more deeply.

4.5.1 Sample Values of Numerical Phase Velocity

We start with the simplest possible situation where numerical phase-velocity anisotropy arises:

two-dimensional TMz modes propagating in a square-cell grid. Dispersion relation (4.6) can be

solved directly for k for propagati~n along the major axes of the grid: ¢ = 0·, 90·, 180·, and

270·. For this case, the solution for k is given by (4.7b), which is repeated here for convenience:
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- 2 -I[ 1 (ns)]
k = !:l. sin S sin N J..

The corresponding numerical phase velocity is given by

propagation along
major grid axes

(4.14a)

= c

_1[1 (ns)]
NJ.. sin S sin NJ..

propagation along
major grid axes

(4.14b)

Dispersion relation (4.6) can also be solved directly for k for propagation along the diagonals of
the grid: ¢ = 45

0

, 135
0

, 225", and 315". For this case, the solution for k and vp is given by

k = 2.J2 sin- I[_1 sin(JrS)]
!:l. s.J2 NJ..

propagation along
grid diagonals

propagation along
grid diagonals

(4.15a)

(4.15b)

As an example of values arising from these expressions, assume a grid having S = 0.5 and
NJ.. =20. Then (4.14b) and (4.l5b) yield numerical phase velocities of 0.996892c and 0.998968c,
respectively. Both of these velocities are less than c, indicating a phase lag relative to a physical
wave propagating in free space at these angles. Further, the velocities are not equal.
The implication is that a sinusoidal numerical wave propagating obliquely within this grid should
have a speed that is 0.998968 I 0.996892 =1.00208 times that of a wave propagating along the
major grid axes. This represents a velocity anisotropy of about 0.2% between oblique and along
axis numerical wave propagation.

We now demonstrate that this theoretical anisotropy of the numerical phase velocity actually
appears in FDTD simulations. Fig. 4.1 presents FDTD modeling results for a radially outward
propagating sinusoidal cylindrical wave in a two-dimensional TMz grid. The grid is configured
with 360 x 360 square cells with Llx =!:l.y ;; !:l. =1.0. Starting at time-step n = 1, a unity
amplitude sinusoidal excitation is provided to a single Ez field component at the center point of
the grid. Given that the radiated numerical mode for this case has an easily specified free-space
wavelength A.o' we choose a grid-sampling density relative to this wavelength as NJ... =20.
Further, we choose the Courant factor S = 0.5. This permits direct comparison of the FDTD
modeling results with the theoretical results for anisotropy of vp' discussed immediately above.

In Fig. 4.1 (a), we graph snapshots of the E
z

field distribution versus radial distance from the

source at the center of the grid. Here, field observations are made along cuts through the grid
passing through the source point, and either parallel to the principal grid axes ¢ =0·, 90·,
or parallel to the grid diagonal ¢ =45·. (We note that, by the 90· rotational symmetry of the
Cartesian grid geometry, identical field distributions are obtained along ¢ = O· and 90·.)
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(a) Comparison of calculated wave propagation along the grid axes and along a grid diagonal.
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(b) Expanded view of (a) at distances between 63a and 64a from the source.

Fig. 4.1 Effect of numerical dispersion upon a radially propagating cylindrical wave in a two-dimensional
TM Yee grid. The grid is excited at its center point by applying a unity-amplitude sinusoidal time
function to a single E, field component. S = 0.5 and the grid sampling density is N" = 20.
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The snapshots are taken 328M after the beginning of time-stepping. At this time, the wave has
not yet reached the outer grid boundary, and the calculated E field distribution is free of error

z

due to outer-boundary reflections. I

Fig. 4.1(b) is a greatly expanded view of Fig. 4.1(a) at radial distances between 63.1 and 64.1
from the source. Using the zoom feature of the graphing software, it is feasible to evaluate with

three-decimal-place precision the spatial locations of the zero-crossings of the E, distributions
along the two observation cuts through the grid. 2 From the data shown in- Fig. 4.1 (b),

the sinusoidal wave along the ifJ =45° cut passes through zero at 63.684Li, whereas the wave

along the ifJ = 0·, 90· cut passes through zero at 63.559Li. Taking the difference, we see that the

obliquely propagating sinusoidal numerical energy "leads" the on-axis-propagation by 0.125.1.

This yields a numerical phase-velocity anisotropy Liv Iv == 0.125/63.6 = 0.197%.
p p

This number is only about 5% less than the 0.208% value obtained above from (4.14b) and
(4.15b).

To permit determination of k and iip for any wave-propagation direction ifJ, it would be very

useful to derive closed-form equations analogous to (4.14) and (4.15). However, for this general
case, the underlying dispersion relation (4.6) is a transcendental equation. A useful alternative

approach for obtaining sample values of vp is to apply the following Newton's method iterative
procedure to (4.6):

-
k;counl+l

2 - 2-
sin (A k;coun,) + sin (B k;coun,) - C

A sine 2A k;coun,) + B sine 2B k;count)
(4.l6a)

- - - -
Here, k;counl+l is the improved estimate of k, and k;count is the previous estimate of k. The A, B,
and C are coefficients given by

A =
.1 . cos ifJ

2
B

Li . sin ifJ

2
(4.16b)

'From Fig. 4.1 (a), we also note a natural phenomenon (not a numerical ani fact). Namely, radial cylindrical
wave propagation in a two-dimensional space involves a progressive reduction of the field amplitude with
the radial distance from the source. This reduction profile is ideally independent of the angle of the
observation cut, representing the circular symmetry of the propagating wave. The precise nature of the
field falloff with radial distance from a point source in a two-dimensional Vee grid is discussed in detail in
Section 5.3 of Chapter 5.

2The primary cautionary note in applying this procedure is to position the measurement of the zero
crossings sufficiently behind the wavefront so that field jitter generated by the startup of the numerical
wave (see Section 4.6) is diminished to a negligible level. Zero-crossings located near the wavefront are
contaminated by the leading-edge jitter and cannot be reliably used to measure numerical phase velocity.
By positioning the zero-crossing measurement sufficiently behind the wavefront, the transient
(homogeneous) solution to the numerical model of Maxwell's equations, that is, the leading-edge jitter,
decays to nearly zero. Here, only the driven (particular) solution remains. This is the desired sinusoidal
steady-state response.
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Additional simplicity results if d is normali_zed to the free-space wavelength, AD (equivalent to

setting AD ;; 1). Then, a very good guess for kicounl=O is simply 2n. For this case, vp is given by

Vp ;;

c

2rr

kfinal icount

(4.17)

Usually, only two or three iterations are required for convergence.
Fig. 4.2 graphs results obtained using this procedure which illustrate the variation of vp with

propagation direction ¢. Here, three different grid-sampling densities NA are examined:
N

A
;; 5 points per Ao' NA ;; 10, and NA ;; 20. For each case, the Courant stability factor is S;; 0.5.

We see that vp < C for the three cases studied, and is clearly a function of both ¢ and NA'

V is maximum for waves propagating obliquely within the grid (¢;; 45°), and is minimum for
p

waves propagating along either grid axis (¢;; 0°,90°).

1

20 points I "'0

0.99
()

10 points I '"-a.
> 0

~ 0.98'(3
0
Q)
>
Q)
(f)

0.97(1j
~
C.
"0
Q)

.t::!
Ci3 0.96
E
'-
0z

0.95

9030 60

Wave angle, 4> (degrees)

0.94 I-__l.-__L..-__L..-__L..-__L..-__L.-__L.-__L.-_~

o

Fig. 4.2 Variation of numerical phase velocity with wave-propagation angle in a two-dimensional FDTD
grid for three sampling densities of the square unit cells. S = ct.t /d = 0.5 for all of the cases.

It is useful to summarize the algorithmic dispersive-error performance by defining two

normalized error measures: (1) the physical phase-velocity error .1vphysical' and (2) the velocity
anisotropy error .1vaniso ' These are given by
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x 100%
c

(4.I8a)

max[v/¢)] - min[vp (¢)]

min[vp(¢)]
x 100% (4.18b)

Llvphysical is useful in quantifying the phase lead or lag that numerical modes suffer relative to

physical modes propagating at c. For example. from Fig. 4.2 and (4.14b), ~VphYSiCal = -0.31%

for N;., ;= 20. This means that a sinusoidal numerical wave traveling over a lOAo distance in the

grid (200 cells) could develop a lagging phase error up to 11·. We note that LlVphYSicaI is a

function of N A: Since the grid cell size ~ is fixed, for an impulsive wave-propagation problem

there exists a spread of effective N;., values for the spectral components comprising the pulse.

This causes a spread of ~vphysical over the pulse spectrum, which in turn yields a temporal

dispersion of the pulse evidenced in the spreading and distortion of its waveform as it
propagates.

~vaniso is useful in quantifying wavefront distortion. For example, a circular cylindrical

wave would suffer progressive distortion of its wavefront. since the portions propagating along

the grid diagonals would travel slightly faster than the portions traveling along the major grid

axes. From Fig. 4.2 and (4.l4b) and (4.15b). ~vaniso =0.208% for N;., ;= 20. The wavefront

distortion due to this anisotropy would total about 2.1 cells for each 1.000 cells of propagation

distance.

It is clear that error~ due to inaccurate numerical velocities are cumulative (i.e., they increase

linearly with the wave-propagation distance). These errors represent a fundamental limitation of

all grid-based Maxwell's equations' algorithms, and can be troublesome when modeling

electrically large structures. A positive aspect seen in Fig. 4.2 is that both ~vphysical and ~vaniso

decrease by approximately a 4: I factor each time the grid-sampling density doubles. indicative of

the second-order accuracy of the Yee algorithm. Therefore, finer meshing is one way to control

the dispersion error.

As discussed in Section 4.9, there are proposed means to improve the accuracy of Yee-based

algorithms to allow much larger structures to be modeled. Specifically, ~vaniso can be reduced to

very low levels approaching zero. In this case, residual errors involve primarily the dispersion of

~VphYSical with N)., which can be optimized by the proper choice of ~t. These new approaches are

presently the subject of active research.

4.5.2 Intrinsic Grid Velocity Anisotropy

This section provides a deeper discussion of the numerical phase-velocity errors of the Yee

algorithm. We show that the nature of the grid discretization determines the velocity anisotropy

~vaniso in a manner that is virtually independent of the time-stepping scheme.
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Relation of the Time and Space Discretizations in Generating Numerical Velocity Error

In Section 4.5.1, we determined that ~vaniso =0.208% for a two-dimensional Yee algorithm
having N). = 20 and S = 0.5. An important and revealing question is: How is ~vaniso affected by
the choice of S, assuming that N). is fixed at 20?

To begin to answer this question, we first choose (what will later be shown to be) the largest
possible value of S for numerical stability in two dimensions, S =11ft. Substituting this value
of S into (4.14b) and (4.15b) yields

ii/ f/J = 0°) = 0.997926 C }

ii (f/J = 45°) = c
P

ilii .an"" =
c - 0.997926 c

0.997926 c
x 100% = 0.208%

To three decimal places, there is no change in ~vaniso from the previous value, S =0.5. We next
choose a very small value S =0.01 for substitution into (4.14b) and (4.15b):

ii (f/J = 0°) = 0.995859 c }

ii

P

(f/J = 45°) = 0.997937 c
P

iliianl'o

0.997937 c - 0.995859 c

0.995859 c
x 100% = 0.208%

Again, there is no change in Avaniso to three decimal places.
We now suspect that, for a given N)., ~vaniso is at most a weak function of S, and therefore is

only weakly dependent on M. In fact, this is the case. More generally, it can be shown that
Av. is only weakly dependent on the type of time-marching scheme used, whether leapfrog,

amso

Runge-Kutta, and so forth [2]. Thus, we can say that ~vaniso is virtually an intrinsic characteristic
of the space-lattice discretization. Three key points should be made in this regard [2]:

• Numerical-dispersion errors associated with the time discretization are isotropic
relative to the propagation direction of the wave.

• The choice of time discretization has little effect upon the phase-velocity
anisotropy ~v . for N, > 10.anlso ....

• The choice of time discretization does influence ~v h . aI' However, it is notP YSIC

always true that higher-order time-marching schemes, such as Runge-Kutta, yield

less Ail h . al than simple Yee leapfrogging. Errors in ~v h . al are caused
P YSIC P YSlC

separately by the space and time discretizations, and can either partially reinforce
or cancel each other. Thus, the use of fourth-order Runge-Kutta may actually

shift the v
p
(¢) profile away from c, representing an increased ~VphYSiCal relative to

ordinary leapfrogging.

The Associated Eigenvalue Problem

To determine the relative velocity-anisotropy characteristic intrinsic to a space grid, it is useful to
set up an eigenvalue problem for the matrix that delineates the spatial derivatives used in the
numerical algorithm [2]. Consider as an example the finite-difference system (4.2) for the case
of two-dimensional TM, electromagnetic wave propagation. The associated eigenvalue problem
is written as:
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c
x 100% (4. 18a)

~v . Iamso N..l

max[v/¢)] - min[v/¢)]
=

min[vp (¢)]
x 100% (4.18b)

~VphYSjCaJ is useful in quantifying the phase lead or lag that numerical modes suffer relative to

physical modes propagating at c. For example, from Fig. 4.2 and (4.I4b), ~VphYSicaJ = -0.31%

for N). = 20. This means that a sinusoidal numerical wave traveling over a 10Ao distance in the

grid (200 cells) could develop a lagging phase error up to 11°. We note that ~VphYSiCaJ is a

function of N).. Since the grid cell size ~ is fixed, for an impulsive wave-propagation problem

there exists a spread of effective N). values for the spectral components comprising the pulse.

This causes a spread of ~VphYSicaJ over the pulse spectrum, which in turn yields a temporal

dispersion of the pulse evidenced in the spreading and distortion of its waveform as it

propagates.

~vaniso is useful in quantifying wavefront distortion. For example, a circular cylindrical

wave would suffer progressive distortion of its wavefront, since the portions propagating along

the grid diagonals would travel slightly faster than the portions traveling along the major grid

axes. From Fig. 4.2 and (4.14b) and (4.15b), ~vaniso =0.208% for N). =20. The wavefront

distortion due to this anisotropy would total about 2.1 cells for each 1,000 cells of propagation

distance.

It is clear that error~ due to inaccurate numerical velocities are cumulative (i.e., they increase

linearly with the wave-propagation distance). These errors represent a fundamental limitation of

all grid-based Maxwell's equations' algorithms, and can be troublesome when modeling

electrically large structures. A positive aspect seen in Fig. 4.2 is that both ~VphYSiCal and ~vaniso

decrease by approximately a 4: I factor each time the grid-sampling density doubles, indicative of

the second-order accuracy of the Yee algorithm. Therefore, finer meshing is one way to control

the dispersion error.

As discussed in Section 4.9, there are proposed means to improve the accuracy of Yee-based

algorithms to allow much larger structures to be modeled. Specifically, ~vaniso can be reduced to

very low levels approaching zero. In this case, residual errors involve primarily the dispersion of

~vphysical with N)., which can be optimized by the proper choice of llt. These new approaches are

presently the subject of active research.

4.5.2 Intrinsic Grid Velocity Anisotropy

This section provides a deeper discussion of the numerical phase-velocity errors of the Yee

algorithm. We show that the nature of the grid discretization determines the velocity anisotropy

~v. in a manner that is virtually independent of the time-stepping scheme.
anlSO
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Relation of the Time and Space Discretizations in Generating Numerical Velocity Error

In Section 4.5.1, we determined that ~vaniso =0.208% for a two-dimensional Yee algorithm
having N). =20 and S =0.5. An important and revealing question is: How is ~vaniso affected by
the choice of S, assuming that N). is fixed at 20?

To begin to answer this question, we first choose (what will later be shown to be) the largest
possible value of S for numerical stability in two dimensions, S =1/.J2 . Substituting this value
of S into (4. 14b) and (4.15b) yields

vp(¢J =0°) = 0.997926 c }

V (¢J = 45') = c
p

=
c - 0.997926 c

0.997926 c
x 100% 0.208%

To three decimal places, there is no change in ~vaniso from the previous value, S = 0.5. We next
choose a very small value S =0.01 for substitution into (4.14b) and (4.15b):

v (¢J = 0°) = 0.995859 c }
p Llv .

UlISO

V (¢J = 45') = 0.997937 c
p

0.997937 c - 0.995859 c

0.995859 c
x 100% = 0.208%

Again, there is no change in ~vaniso to three decimal places.
We now suspect that, for a given N)., ~vaniso is at most a weak function of S, and therefore is

only weakly dependent on M. In fact, this is the case. More generally, it can be shown that
~v. is only weakly dependent on the type of time-marching scheme used, whether leapfrog,

amso
Runge-Kutta, and so forth [2]. Thus, we can say that ~vaniso is virtually an intrinsic characteristic
of the space-lattice discretization. Three key points should be made in this regard [2]:

• Numerical-dispersion errors associated with the time discretization are isotropic
relative to the propagation direction of the wave.

• The choice of time discretization has little effect upon the phase-velocity
anisotropy ~vaniso for N). > 10.

• The choice of time discretization does influence ~v h . aI' However, it is notP YSIC

always true that higher-order time-marching schemes, such as Runge-Kutta, yield
less ~v h . aI than simple Yee leapfrogging. Errors in ~v h . aI are caused

p YSIC P YSIC

separately by the space and time discretizations, and can either partially reinforce
or cancel each other. Thus, the use of fourth-order Runge-Kutta may actually
shift the v (¢) profile away from c, representing an increased ~v h . aI relative to

P P YSIC'

ordinary leapfrogging.

The Associated Eigenvalue Problem

To determine the relative velocity-anisotropy characteristic intrinsic to a space grid, it is useful to
set up an eigenvalue problem for the matrix that delineates the spatial derivatives used in the
numerical algorithm [2]. Consider as an example the finite-difference system (4.2) for the case
of two-dimensional TMz electromagnetic wave propagation. The associated eigenvalue problem
is written as:
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AHI· .x ttj
(4.19a)

~ [£,1;••/0] ~ £,L"'j) = (4.19b)

(4.19c)

We note that, at any time-step n, the instantaneous values of the E and H fields distributed

in space across the grid can be Fourier-transformed with respect to the i and j grid coordinates to

provide a spectrum of sinusoidal modes. The result is often called the two-dimensional spatial

frequency spectrum, or the plane-wave eigenmodes of the grid. Let the following specify a

typical mode of this spectrum having k.. and ky as, respectively, the x- and y-components of its

numerical wavevector:

(4.20)

H I = H /(i.ldx + i,16y)
Y I. J Yo

Upon substituting the eigenmode expressions of (4.20) into (4.l9a), we obtain

(4.21 a)

j(k,ldx+k 16y) h' b h 'd fFactoring out the e 'term t at IS common to ot SI es, we simpli y (4.21 a):

Applying Euler's identity to the complex exponentials yields a sine relation:

(4.21b)

H
2jEzo . (k/iY )= ----SIn --

X
o A).llly 2

(4.22a)
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In a similar manner, substituting the eigenmode expressions of (4.20) into (4.19b) and (4.19c)
yields, after the same type of simplifications:

H
Yo

2 j Ez • (k tix)= __0 sm _x_

AJ.1tix 2
(4.22b)

(4.22c)

Substituting H of (4.22a) and H of (4.22b) into (4.22c) yields
.1"0 Yo

E
Zo =

2j

A£

1 2jE (k tix) (k tix)lo • x . A

tix . AJ.1tix .sm -2- . sm -2-

1 -2jE,0 . (kyLlyJ . (kyLlyJ- -. ·sm -- 'sm --
Lly AJ.1Lly 2 2

(4.23)

where c = 1/.[iii is the speed of light in the homogeneous material being modeled. Following

the definition provided in [2], we finally obtain a "normalized numerical phase speed" c· / c
intrinsic to the grid discretization. This is given by

From the elementary properties of the sine function (assuming that k" and ky are real numbers

for propagating numerical waves), the right-hand side of (4.24) is negative. Hence, A is a pure
imaginary number given by

(4.26)

(4.25)

(4.24)

c· = A imng

C ck

K = _~[_1 sin2(kx tix) + _1 sin2(kyAyJJ
J.1£ (Llx)2 2 (Ay)2 2

[ (- ) (- JJ 1/21 2 k tix 1 2 ky Lly
A = j2c (tix)2 sin ~ + (Lly)2 sin -2-

Factoring out the common E term, simplifying, and solving for A2
, we obtain'0
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Following [2], a closed-form expression for c"/ c can be written by using the approximation

k == k. For additional convenience, we assume a uniform square-cell grid. This yields

(4.27)

The Meaning of c"lc

The reader is cautioned that c"1 c is not the same as vpic. This is because the derivation of

c"lc utilizes no information regarding the time-stepping process. Thus, c"lc cannot be used

directly to determine ~vphysical defined in (4.18a). However, c"1 c does provide direct
information regarding ~vaniso defined in (4.18b). Following [2], we can expand (4.27) to isolate

the leading-order velocity-anisotropy term. This yields a simple expression for ~vaniso that is
useful for N), > 10:

max[-c*-~¢-) ] - min[-C"-~¢-)]

----------- x 100% ::::::

min[_c*_~¢_) ]

---x 100%
12{NJ2

(4.28)

For example, (4.28) provides ~vaniso == 0.206% for N), :::::: 20. This is very close to the 0.208%
value previously obtained using (4.14b) and (4.15b), which are the exact solutions of the full

numerical dispersion relation for ¢= 0° and 45", respectively.

In summary, we can use (4.28) to estimate the numerical phase-velocity anisotropy ~vaniso of

the basic Yee algorithm applied to a square-cell grid without having to resort to the Newton's

method solution (4.16). This approach provides a convenient means to compare the relative

anisotropy of alternative space-gridding techniques, including the higher-order methods and
non-Cartesian meshes to be discussed in Section 4.9.

4.6 COMPLEX·VALUED NUMERICAL WAVENUMBERS

Section 2.6.3 of Chapter 2 demonstrated that the central-difference solution of the one

dimensional scalar wave equation has a low-sampling-density regime that allows complex

valued numerical wavenumbers. In this sampling regime, a spatially decaying numerical wave

can propagate faster than light. This can cause weak, nonphysical, superluminal energy to

appear in the numerical simulation at the leading edges of sharply defined pulses.

In an analysis similar to that of Section 2.6.3 and originally presented in [3], this section

investigates the possibility of complex-valued numerical wavenumbers existing for the FDTD

solution of Maxwell's equations. It is shown that the Yee algorithm also has a low-sampling

density regime that allows complex-valued numerical wavenumbers, and consequently,

weak superluminal propagation.
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4.6.1 Case 1: Numerical Wave Propagation Along the Principal Lattice Axes

Consider again numerical wave propagation along the major axes of a Yee space grid.
For convenience, we rewrite (4.14a), the corresponding numerical dispersion relation:

As discussed in [3] and Section 2.6.3, caution must be exercised in evaluating numerical

dispersion relations such as (4.29), since it is possible to choose Sand NJ.. such that k is complex.
In the specific case of (4.29), it can be shown that the transition between real and complex values
of k occurs when (= 1. Solving for NJ.. at this transition results in

where

- 2 1[1 (nsJ] 2 -Ik = - sin- - sin - == - sin (0
~ S NJ.. ~

I (nsJ' = - sin -
S NJ..

N,I ..
1\0 transluon

(4.29a)

(4.29b)

(4.30)

For a grid-sampling density greater than this value (i.e., NJ.. > N.tltransilion)' k is a real number and
the numerical wave undergoes no attenuation while propagating in the grid. Here, v < c. For a

- p
coarser grid-sampling density N). < N".Itransition' k is a complex number and the numerical wave
undergoes a nonphysical exponential decay while propagating [3]. Further, in this coarse

resolution regime, v can exceed c [3].
p -

We now discuss how k and vp vary with grid sampling N J.. both above and below the
transition between real and complex numerical wavenumbers.

Real-Numerical-Wavenumber Regime

For N.t> N.tLansilion' we have from (4.29a)

- 2 -1 [ I (n SJ]k = - sin - sin -
rtal ~ S N

J..

(4.31)

The numerical phase velocity is given by (4.14b) as

= c

. _1[1 (nsJ]
NJ.. sm Ssin N).

(4.32)
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From (2.21), the wave-amplitude multiplier per grid cell of propagation is

ek""" A == e-a A = eO = 1

Thus, there is a constant wave amplitude with spatial position for this range of N). .

Complex-Numerical- Wavenumber Regime

(4.33)

For N). < N).ILransilion' we observe that (> 1 in (4.29a). The following relation for the complex
valued arc-sine function [3,4] becomes useful:

(4.34)

Substituting (4.34) into (4.29a) yields

(4.35a)

Expressing the argument of the natural logarithm in polar form, we obtain

(4.35b)

This yields

(4.36)

From [3], the numerical phase velocity is given by

2Jrf!J.
=

(n / !J.)
(4.37a)

and from (2.21), the wave-amplitude multiplier per grid cell of propagation is

(4.37b)

Since (> 1, the numerical wave amplitude decays exponentially with spatial position.
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Let us now consider the possibility of vp exceeding c in this situation [3]. Nyquist theory
states that any physical or numerical process that obtains samples of a time waveform every /1t
seconds can reproduce the original waveform without aliasing for spectral content up to

f max = 11 (2~t). In the present case, the corresponding minimum free-space wavelength that can
be sampled without aliasing is therefore

-

Ao ' = elf. = 2e~t,mm max

The corresponding minimum spatial-sampling density is

N, . = Ao . I~ = 2eMI ~ = 2S
A.,mlfl ,min

Then from (4.37a), the maximum numerical phase velocity is given by

(4.38a)

(4.38b)

vp, max

2= --c
N;.,min

2
= -c =

2S

c

S
(4.39a)

From the definition of S, this maximum phase velocity can also be expressed as

v = .!. c = (~) C = ~
p,max S c~t /1t

(4.39b)

This relation tells us that in one time-step, a numerical value can propagate at most one space

cell. This is intuitively correct, given the local nature of the spatial difference used in the Yee

algorithm. That is, a field point more than one space cell away from a source point that

undergoes a sudden change cannot possibly "feel" the effect of that change during the next time

step. Note that vp, max is independent of material parameters, and is an inherent property of the
grid and its method of obtaining space derivatives. These results are analogous to those derived

in Section 2.6.3 for the numerical implementation of the one-dimensional scalar wave equation.

4.6.2 Case 2: Numerical Wave Propagation Along a Grid Diagonal

We next explore the possibility of complex-valued wavenumbers arising for oblique numerical

wave propagation in a square-cell grid. For convenience, we rewrite (4.15a), the corresponding

numerical dispersion relation:

where

2~ 1
-- sin- «()
~

(4040a)

(4040b)
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Similar to the previous case of numerical v:.ave propagation along the principal lattice axes,
it is possible to choose Sand N). such that k is complex. In the specific case of (4.40a),
the transition between real and complex values of k occurs when (= 1. Solving for N). at this
transition results in

N). IlrJnSiUOn =
nS

(4.41)

We now discuss how k and v
p

vary with grid sampling N). both above and below the transition
between real and complex numerical wavenumbers.

Real-Numerical-Wavenumber Regime

For N, > N,l u .. ,we have from (4.40a)
I\, '" anSlUon

k. = 2-fi. sin-1[_1 sin(ns)]
"al ~ s-fi. N).

The numerical phase velocity is given by (4.l5b) as

k. = 0
'mag

(4.42)

== (4.43)

From (2.21), the wave-amplitude multiplier per grid cell of propagation is

Thus, there is a constant wave amplitude with spatial position for this range of N). .

Complex-Numerical- Wavenumber Regime

(4.44)

For N, < N,I .. , we observe that r> I in (4.40a). Substituting the complex-valued arc-sine
A I\. tranSlUon ~

function of (4.34) into (4.40a) yields

(4.45)

By direct analogy with the development in (4.35a) and (4.35b), we obtain



(4.46)

(4.47a)

(4.47b)
1-2..[2 In(,+~)

= e =-at.
- e

and the wave-amplitude multiplier per grid cell of propagation is

The numerical phase velocity for this case is
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Since t; > 1, the numerical wave amplitude decays exponentially with spatial position.
We again consider the possibility of v

p
exceeding c. From our previous discussion of

(4.38a) and (4.38b), the minimum free-space wavelength that can be sampled without aliasing is

A . = c/~ = 2c~t, and the corresponding minimum spatial-sampling density iso mm Jmv.N: . = Ao . / ~ = 25. Then, from (4.47a), the maximum numerical phase velocity is given by
lI..mm ,mm

$.
= --c

NA•min

-J2= --c
25

(4.48a)

From the definition of 5. this maximum phase velocity can also be expressed as

(4.48b)

This relation tells us that in two time-steps, a numerical value can propagate at most .[2~ along

the grid diagonal. We can show that this upper bound on vp is intuitively correct, given the local

nature of the spatial differences used in the Yee algorithm. Consider two nearest-neighbor field

Points P . and P I ·+1 along a grid diagonal, and how a sudden change at P. could be
'.J .+ .J '.J

communicated to P;+I,j+l' Now, a basic principle is that the Yee algorithm can communicate
field data only along Cartesian (x and y) grid lines, and not along grid diagonals. Thus, at the
minimum. a single time-step would be needed to transfer any part of the field perturbation at P ,

I, J

over a distance of one space cell in the x-direction to P;+l,r Then, a second time-step would be
needed. at the minimum, to transfer any part of the resulting field perturbation at P , over a

,+I,J

distance of one space cell in the y-direction to reach P 1 '+1' Because the distance between P .
'+ .J '.J

and P ) . I is .[2~, the maximum effective velocity of signal transmission between the two.+ ,J+

Points is .[2~ /2~t, By this reasoning, we see that v is independent of the materialp,mu

parameters modeled in the grid. It is an inherent property of the FDTD grid and its method of

obtaining space derivatives.
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4.6.3 Example of Calculation of Numerical Phase Velocity and Attenuation

This section provides sample calculations of values of the numerical phase velocity and the

exponential attenuation constant for the case of a two-dimensional square-cell grid.

These calculations are based upon the dispersion analyses of Sections 4.6.1 and 4.6.2.

Fig. 4.3 graphs the normalized numerical phase velocity and the exponential attenuation

constant per grid cell as a function of grid-sampling density N;..' A Courant factor S =0.5 is

assumed. For propagation along the principal grid axes ¢ =0·,90·, a minimum value of

vp =(2/3)c is reached at N). =3. This sampling density is also the onset of attenuation.

As N). is reduced below 3, vp increases inversely with N).. Eventually, v
p

exceeds c for N). < 2,

and reaches a limiting velocity of 2c as N). ~ 1. In this limit, as well, the attenuation constant

approaches a value of 2.634 nepers/cell.

For propagation along the grid diagonal at ¢ =45·, a minimum value of v
p

=(.[2I2)c is

reached at N). =2. This point is also the onset of exponential attenuation. As N). is reduced

below 2, iip increases inversely with N).. Eventually, vp exceeds c for N). < .[2 , and reaches a

limiting velocity of .[2c as N). ~ 1. In this limit, as well, the attenuation constant approaches a

value of 2.493 nepers/cell.

For both the on-axis and oblique cases of numerical wave propagation, we see that very

coarsely resolved wave modes in the grid can propagate at superluminal speeds, but are rapidly

attenuated [3]. This is similar to the scalar-wave-equation results obtained in Section 2.6.3.

Fig. 4.4 graphs the percent error in the numerical phase velocity relative to c for lossless

wave propagation along the principal grid axes ¢ = 0·, 90°. In the present example, wherein

S =0.5, this lossless propagation regime exists for NJ.. ~ 3. Fig. 4.4 also graphs the percent

velocity error for lossless wave propagation along the grid diagonal ¢ = 45°. This lossless

regime exists for NJ.. ~ 2 for S =0.5. As N).» 10, we see that the numerical phase-velocity error

at each wave-propagation angle diminishes as the inverse square of N).. This is indicative of the

second-order-accurate nature of the Yee algorithm.

4.6.4 Example of Calculation of Wave Propagation

Fig. 4.5 presents an example of the calculation of a radially outward-propagating cylindrical

wave in a two-dimensional TMz Yee grid. A 360 x 360-cell square grid with tu =Lly =Ll =1.0

is used in this example. The grid is numerically excited at its center point by applying a unit-step

time-function to a single Ez field component. We assume the Courant factor S =.[2/2,

which yields dispersion-free propagation for numerical plane-wave modes propagating along the

grid diagonals ¢J =45°, 135°, 225·, and 315°. In Fig. 4.5(a), we graph snapshots of the E z

distribution versus radial distance from the source. Here, field observations are made along cuts

through the grid passing through the source and either parallel to the principal grid axes

¢ =0°, 90" or parallel to the grid diagonal ¢J =45". The snapshots are taken 232M after the

beginning of time-stepping. At this time, the wave has not yet reached the outer grid boundary,

and the calculated E distribution is free of error due to outer-boundary reflections.
z
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Fig. 4.5(a) illustrates two nonphysical artifacts arising from numerical dispersion. First, for
both observation cuts, the leading edge of the wave exhibits an oscillatory spatial jitter
superimposed upon the normal field falloff profile. Second, for the observation cuts along the
grid axes, the leading edge of the wave exhibits a small, spatially decaying, superluminal

component.
To more easily see these artifacts, Fig. 4.5(b) shows an expanded view in the vicinity of

the leading edge of the outgoing wave. Consider first the oscillatory jitter. We see that this
artifact is most pronounced along the grid axes t/J =0°, 90·. The jitter is qualitatively similar to
that exhibited by the rectangular pulse modeled in one dimension in Fig. 2.3. In that example,
the abrupt rise of the unit-step field excitation could not be exactly modeled unless the magic
time-step was used. We might expect a similarly exact result (i.e., no field jitter), for the present
case when observing along the grid diagonal t/J =45·, given that our choice of S = [2/2 implies
dispersionless propagation in that direction. However, we see from Fig. 4.4(b) that there exists a
small but nonzero oscillatory field jitter even along the 45° grid diagonal.

The apparent contradiction between theory and numerical experiment is resolved by noting
that, in two dimensions, numerical dispersion introduces a slightly anisotropic propagation
characteristic of the background "free space" within the grid versus azimuth angle t/J.
This equivalent inhomogeneity in the free-space dielectric properties scatters part of the original
radially propagating numerical energy into the ¢J direction. Thus, no point behind the wavefront
can avoid the radial field oscillation - this artifact is communicated azimuthally as well as
radially in space. An implication of this result is that we must be cautious in using plane-wave
dispersion analyses to probe the behavior of propagating numerical waves having curved fronts.

We last consider the superluminal artifact present at the leading edge of the wave shown in
Fig. 4.5(b) for ¢J =0°,90°; but not for ¢J =45°. The theory developed in Section 4.6.1 points
toward the existence of this artifact for very poorly sampled short-wavelength numerical modes
in the grid that are generated by an abrupt field discontinuity such as a step function. Unlike the
oscillatory jitter discussed above, the superluminal artifact can, by definition, never appear
behind the wavefront. By causality, the presence of the superluminal artifact cannot be
communicated from off-diagonal angles to the grid diagonals, regardless of the strength of the

azimuthal anisotropy of the free-space numerical propagation properties. With S = [2/2 in the
present example, we conclude that the abrupt drop to zero of the field distribution along the
¢J =45° cut exactly at the wavefront is analogous to the action of the one-dimensional magic
time-step shown in Fig. 2.3 for rectangular pulse propagation.

4.7 NUMERICAL STABILITY

We have seen that the choice of /1 and I1t can affect the propagation characteristics of numerical
waves in the Vee space lattice, and therefore the numerical error. In this section, we show that /11

must also be bounded to ensure numerical stability. Our procedure to determine this bound is
based upon the complex-frequency analysis introduced in Section 2.7 of Chapter 2 for analyzing
the stability of an FDTD model of the one-dimensional scalar wave equation. As noted there, the

complex-frequency approach is conceptually simple, yet rigorous. It also allows straightforward
estimates of the growth-rate of unstable solutions. The method is based upon the analysis of

numerical dispersion relation (4.5) for the two-dimensional case, and (4.12) for the three

dimensional case.
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Fig. 4.5 Effect of numerical dispersion upon a radially propagating cylindrical wave in a two-dimensional

TM Yee grid. The grid is excited at its center point by applying a unit-step time-function to a
single E, field component. The Courant stability factor is S = [2/2.
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4.7.1 Complex-Frequency Analysis

We postulate a sinusoidal traveling wave present in a three-dimensional FDTD space lattice and

discretely sampled at (xl' YJ , zX' t). As in Section 2.7.1, we allow for the possibility of a
complex-valued numerical angular frequency, W=Wreal + jwimag • Following (4.3a-c), a field

vector in this wave can be written as

(4.49)

Here, as in our earlier analyses, k is the wavenumber of the numerical sinusoidal traveling wave.

We note that (4.49) permits either a constant wave amplitude with time (w. = 0),.mag

an exponentially decreasing amplitude with time (wimag > 0), or an exponentially increasing

amplitude with time (w < 0) .•mag

Given this basis, we proceed to analyze numerical dispersion relation (4.12), allowing for a
complex-valued angular frequency:

[ I (WM)J2
cl1t sm -2-

(4.50)

We first solve (4.50) for W. This yields

where

(4.5Ia)

c I1t I 2(k I1X) I 2(ky dYJ I 2(k !1Z)(11x/ sin ~ + (l1y)2 sin -2- + (l1z)2 sin ~

(45Ib)

We observe from (4.5Ib) that

o :::; ~ :::; c I1t
I I I

--+ --+ ~(11x)2 (l1y)2 (I1Z)2 - upper bound
(4.52)

for all possible real values of k, that is, those numerical waves having zero exponential

attenuation per grid space cell. ~upper bound is obtained when each sin
2

term under the square root of
(4.51 b) simultaneously reaches a value of 1. This occurs for the propagating numerical wave

having the wavevector components
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(4.53)

It is clear that ~upper bound can exceed 1 depending upon the choice of Ii.t. This can yield
complex values of sin-I(~) in (4.51a), and therefore complex values for 5> which give rise to
numerical instability. To investigate further, we divide the range of ~ given in (4.52) into two

subranges, as follows.

Stable Range: 0 ~ c; ~ 1

Here, sin-I(c;) is real-valued and hence, real values of iiJ are obtained in (4.51a). With 5> =0,Imag

(4.49) yields a constant wave amplitude with time.

Unstable Range: 1 < S < Supper bound

This subrange exists only if

1= - c li.t
~upperbound -

111
--+--+ >1
(dx)2 (dy)2 (dZ/

(4.54a)

The unstable range is defined in an equivalent manner by

Ii.t >

c

- /).t stable
1 1 1 limit-3D

--+ --+
(dx)2 (dy)2 (dZ/

(4.54b)

To prove the claim of instability for the range S> 1, we apply the complex-valued sin-I(~

function given by (2.34), which is repeated here for convenience:

(4.55)

We now substitute (4.55) into (4.5la) and solve for ro. This yields

- j2 ( ~ 2)iiJ = - In jc; + I - C;
M

(4.56a)

Factoring out j =e+ jtrl2 in the argument of the natural logarithm, we obtain

(4.56b)
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Upon taking the natural logarithm, we further obtain

- - j2 [( I 2 ) nJ nill = - In ~ + 'V ~ - I + j - =
IJ.t 2 !J.t

Now, the real and imaginary parts of ill can be separated:

(4.56c)

Finally, substituting (4.57) into (4.49), we obtain

2nln(~+..ff=I) j[(ItIl>t)(n6l) - k, lax - k Jl>y - k K6I.]
= ~e e "

(4.57)

(4.58)

where **2n denotes the 2n'th power. From (4.58), we define the following multiplicative factor

greater than 1 that amplifies the numerical wave every time-step:

(4.59)

Equations (4.58) and (4.59) define an exponential growth of the numerical wave with time-step

number n. We see that the dominant exponential growth occurs for the most positive possible

value of c;; that is, ~upper bound defined in (4.52) for the numerical wavevector components defined
in (4.53). This is the origin of numerical instability.

Example of Calculating a Stability Bound

Consider the practical case of a three-dimensional cubic-cell space lattice with III =IJ.y =!J.z =IJ..
From (4.54b), numerical instability arises when

!J.t >

c

1

1 1 I
--+ --+
(IJ.)2 (IJ.)2 (!J.)2

1
=

C~(:)'
IJ.

= c~
(4.60a)

We define an equivalent Courant stability limit for the cubic-cell-lattice case:

S b'l'sta I uy
Iimil-3D

1

-J3
(4.60b)
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From (4.53), the dominant exponential growth is seen to occur for numerical waves propagating
along the lattice diagonals. The relevant wavevectors are

(4.61)liCl =iC = n (±x ± y ± i)
L\

where x, y, and i are unit vectors defining the major lattice axes. Further, (4.52) yields

1= - cM':> upper -
bound

_1_ + _1_ + _1_ = (c~t)J3 = sJ3
(L\)2 (L\/ (L\)2 il

(4.62)

From (4.59), this implies the following maximum possible growth-factor per time-step under
conditions of numerical instability:

qgrowUt == [ sJ3 + ~ (sJ3Y - 1 r (4.63)

Courant Factor Normalization and Extension to Two Dimensions and One Dimension

It is instructive to use the results of (4.60b) to normalize the Courant factor S in (4.63). This will
permit us to generalize the three-dimensional results for the maximum growth-factor q to
two-dimensional and one-dimensional Yee grids. In this spirit, we define

Snonn-3D -

S

SSUlbilitY
limit-3D

S
= (l/J3) = s.J3 (4.64)

Then, (4.63) can be written as

(4.65)

Given this notation, it can be shown that analogous expressions for the Courant stability limit
and the growth-factor under conditions of numerical instability are given by:

Two-dimensional square fee grid:

SSlabililY
limil·2D

I
= -fi (4.66a)

S
Snorm-2D -

SSUlbililY
limil-2D

S
= =

( 1/.J2)
s-J2 (4.66b)
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Dominant exponential growth occurs for numerical waves propagating along the grid diagonals.
The relevant wavevectors are

- n (A A)k = -±x±y
~

(4.66c)

This yields the following solution growth-factor per time-step:

One-dimensional uniform Yee grid:

SS13bility = 1
limit-ID

} for Snorm o 2D 2: I (4.66d)

(4.67a)

Snorm-ID -

S

SS13bility
Iimit-ID

S
= = S

1
(4.67b)

Dominant exponential growth occurs for numerical waves with the wavevectors

n A

k = ±-x
~

A. = 2~ (4.67c)

This yields the following solution growth-factor per time-step:

} for S ~ 1 (4.67d)

Interestingly, (4.67d) is exactly (2.49), the growth-factor under conditions of numerical
instability for the scalar one-dimensional wave equation.

We see from the above discussion that the solution growth-factor q under conditions of

numerical instability is the same, regardless of the dimensionality of the FDTD space lattice,

if the same normalized Courant number is used. For example, q is identical for the following
three cases:

I. S =].0005 for a uniform, one-dimensional grid;

2. S =1.0005 x (1/..[2) =0.707460 for a uniform, square, two-dimensional grid;

3. S =1.0005 x (1 /.[3) =0.577639 for a uniform, cubic, three-dimensional grid.

This is ilIustrated below by way of a sample FDTD calculation.
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4.7.2 Example oCa Numerically Unstable Two-Dimensional FDTD Model

We consider an FDTD modeling example where the Courant stability condition is violated

equally at every point in a TMz grid. To allow direct comparison with a previous example of

stable pulse propagation, the same grid discussed in Section 4.6.4 and Fig. 4.5 is used.

The overall grid size is again 360 x 360 square cells, with &:::: /).y :::: 1.0 :::: /).. Numerical

excitation to the grid is again provided by specifying a unit-step time-function for the center E•
component. The only condition that differs from those assumed in Section 4.6.4 is that the

Courant stability factor S is increased just above the threshold for numerical instability given by

(4.66a).
Fig. 4.6(a) visualizes the two-dimensional E. distribution in space at n :::: 40 time-steps for

S :::: 1.005 x (1/.fi). S is sufficiently greater than the instability threshold to quickly generate a

region of numerical instability spreading out radially from the source, where the field amplitudes

are large enough to mask the normal wave propagation. This permits a high-resolution

visualization of individual E. components in the grid, which are depicted as square pixels.

We see that the unstable field pattern has the form of a checkerboard wherein the dark and gray

pixels denote positive and negative E. field values, respectively. Here, the pixel saturation

denotes the relative amplitude of its positive or negative value.

Fig. 4.6(b) graphs the variation of E. versus radial distance from the source at n :::: 200 time

steps for S:::: 1.0005 x (1/.fi). Two distinct plots are shown. The solid line graph exhibits a

rapid spatial oscillation with the period 26. This is the E. behavior along the ep:::: 0°, 90°

(and similar on-axis) cuts through the grid. The smooth dashed-dotted curve with no spatial

oscillation represents the E. behavior along the ¢ :::: 45° (and similar oblique) cuts through the

grid. Analysis of the underlying data reveals growth factors in the range 1.060 to 1.069 per time

step along the leading edge of the instability region. This agrees very well with qgrowlh :::: 1.0653

calculated using (4.66d), and is an excellent validation of the Courant-factor-normalization

theory.
An interesting observation in Fig. 4.6(b) is that the smooth E. variation along ¢:::: 45· forms

the envelope of the oscillatory E
t

distribution observed along the grid's major axes.

This difference in behavior is confirmed in Fig. 4.6(a), which shows that the ¢:::: 45· cut lies

entirely within a diagonal string of dark (positive) pixels, whereas the ep:::: O· cut passes through

alternating dark (positive) and gray (negative) pixels. We attribute this behavior to (4.66c),

which states that the exponential growth along the grid diagonal has i:::: .fi/).. That is,

the numerical wavelength along the 45° observation cut for the unstable mode is exactly the

diagonal length across a single /). x /). grid cell. Thus, there exists 21t (or equivalently, 0) phase

shift of the unstable mode between adjacent observation points along the ¢:::: 45" cut. This

means that adjac_ent Ez values along ep:::: 45· cannot change sign. In contrast, (4.66c) reduces to

k =n / /). (i.e., A:::: 2/)'), for the unstable mode along the ¢:::: 0·, 90° cuts. Therefore, there is 1t

phase shift of the unstable mode between adjacent observation points along ep :::: 0·, 90·; yielding

the point-by-point sign reversals (rapid spatial oscillations) seen in Fig. 4.6(b).
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(a) Visualization of the two-dimensional E, distribution at n = 40 for S = 1.005 x (1/ .fi).
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(b) Comparison of E, distributions along the grid axes and along a grid diagonal at n =200 for

S = 1.0005 x (l/.fi). The theoretical and measured growth.factor is q,rowth == 1.065 per time-step.

Fig. 4.6 Effect of numerical instability upon the two-dimensional pulse-propagation model of Fig. 4.5.
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4.7.3 Linear Growth Mode When the Normalized Courant Factor Equals 1

Equation (4.49) postulates a numerical wave amplitude that is either constant, exponentially
growing, or exponentially decaying as time-stepping progresses. As shown in [4], an additional
linear growth mode is possible when the normalized Courant factor equals exactly 1.0.
While the amplitude of this mode increases much more slowly than the exponential instability
discussed previously, the analyst should proceed with caution when using Snarm =1.

4.8 GENERALIZED STABILITY PROBLEM

The stability of the overall FDTD solution procedure for Maxwell's equations depends upon
more than the stability of the Yee algorithm. In fact, a generalized stability problem arises due to
interactions between the Yee algorithm and any augmenting algorithms used to model boundary
conditions, variable meshing, and complex materials. Factors involved in the generalized
stability problem are now discussed.

4.8.1 Absorbing and Impedance Boundary Conditions

Numerical realizations of electromagnetic field boundary conditions that require the processing
of field data located nonlocally in space or time can lead to instability of the overall time
stepping algorithm. An important example of this possibility arises when implementing ABCs at
the outermost space-lattice planes to model scattering or radiation phenomena in unbounded
regions. As discussed in detail in Chapters 6 and 7. ABCs have been the subject of much
research, with several distinct physics modeling approaches and numerical implementations
emphasized by the FDTD research community.

The nature of the numerical stability problem here is exemplified by one of the most popular
ABCs of the early 1990s, the Liao ABC (Section 6.5). In augmentation of the Yee algorithm,
Liao et al. postulated a polynomial extrapolation of field data at interior gridpoints and past time
steps to the desired outer-boundary gridpoint at the latest time-step. However, the Liao ABC
was found by later workers to be marginally stable. Similar issues had previously arisen with
regard to other ABCs, including those of Engquist-Majda (Section 6.3) and Higdon (Section 6.4).
More recently, PML ABCs (Chapter 7) have come under scrutiny for potential numerical
instability due to their novel formulations.

Overall, the experience of workers in this area is that ABC numerical stability is maintained
for many thousands of iterations, if not indefinitely, with the proper choice of time-step.
This has permitted the ABCs of Chapters 6 and 7 to be used successfully in many different
engineering simulations. A similar experience base has been established for the numerical
stability of dispersive impedance boundary conditions (Section 10.8).

4.8.2 Variable and Unstructured Meshing

The analysis of numerical instability can become complicated when the FDTD space lattice is
generated to conformally fit a specific structure by varying the size, position, and shape of the
lattice cells, rather than using the uniform "bricks" postulated by Yee. Three varieties of such
meshes are discussed in detail in Chapters 10, 11, and 12. Groups working in this area have
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found that even if the mesh construction is so complex that an exact stability criterion cannot be
derived, a part-analytical / part-empirical upper bound on the time-step can be derived for each
gridding approach so that numerical stability is maintained for many thousands of time-steps,
if not indefinitely. This has permitted numerous successful engineering applications for
non-Cartesian and unstructured FDTD meshes. See Chapters 11 and 12 for specific numerical
stability conditions for such meshes.

4.8.3 Lossy, Dispersive, Nonlinear, and Gain Materials

Much literature has emerged concerning FDTD modeling of dispersive and nonlinear materials,
and the reader is referred to Chapter 9 for a detailed discussion of the primary algorithms in this
area. For linear-dispersion algorithms, it is usually possible to derive precise bounds on
numerical stability. However, stability analysis may not be feasible for models of nonlinear
dispersive materials. Fortunately, substantial modeling experience has shown that numerical
stability can be maintained for thousands of time-steps, if not indefinitely, for linear, nonlinear,
and gain materials with a properly chosen time-step. Again, this has permitted numerous
successful engineering applications.

4.9 MODIFIED YEE-BASED ALGORITHMS FOR MITIGATING NUMERICAL
DISPERSION

The numerical algorithm for Maxwell's equations introduced by Yee in 1966 is very robust.
Evidence of this claim is provided by the existence of thousands of successful electromagnetic
engineering applications, refereed journal papers, and conference presentations derived from the
basic Yee algorithm over the past 40 years. However, it is clear from our previous discussions
that Yee's approach is not perfect. For certain modeling problems, numerical dispersion can
cause significant errors to arise in the calculated field.

This section reviews a small set of representative strategies aimed at mitigating the effects of
numerical dispersion in Yee-based algorithms for Maxwell's equations. No attempt is made to
provide a comprehensive summary because such an effort would require several chapters.
The intent here is to provide the flavor of what may be possible in this area. Clearly, this area
will evolve as our understanding of the underlying physical and numerical issues improves.

4.9.1 Strategy 1: Center a Specific Numerical Phase-Velocity Curve Aboutc

We have seen from Fig. 4.2 that the Yee algorithm yields a family of numerical phase-velocity
curves contained entirely in the range v

p
< c. We also observe that each velocity curve is

centered about the value

Vavg =
2

(4.68)

where v(ep =0°) and v(ep =45°) are given by (4.l4b) and (4.15b), respectively. This symmetry
p p

can be exploited if a narrowband grid excitation is used, such that a specific phase-velocity curve
accurately characterizes the propagation of most of the numerical modes in the grid. Then, it is
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possible to shift the phase-velocity curve of interest so that it is centered about the free-space
speed of light c, thereby cutting dVphysical by almost 3:1. Centering is implemented by simply
scaling the free-space values of Co and 110 used in the finite-difference system of (4.2):

(4.69), (vavg
)110 = - 110

c

This scaling increases the baseline value of the model's "free-space" speed of light to
compensate for the too-slow value of vavg ' By scaling both Co and 110 , the required shift in vavg is
achieved without introducing any changes in wave impedance.

There are four difficulties with this approach: (l) The phase-velocity anisotropy error dV
aniso

remains unmitigated. (2) The velocity compensation is only in the average sense over all
possible directions in the grid. Hence, important numerical modes can still have phase velocities
not equal to c. (3) The increased free-space speed of light requires dt to be proportionately
reduced below the Courant limit to ensure numerical stability. (4) Propagating wave pulses
having broad spectral content cannot be compensated over their entire frequency range.
Nevertheless, this approach is so easy to implement that its use can be almost routine.

4.9.2 Strategy 2: Use Fourth-Order-Accurate Explicit Spatial Differences

It is possible to substantially reduce the phase-velocity anisotropy error dVaniso for the Yee
algorithm by incorporating a fourth-order-accurate finite-difference scheme for the spatial first
derivatives needed to implement the curl operator. This section reviews an explicit method
wherein a fourth-order-accurate spatial central-difference is calculated from a stencil of four field
values located at distances of N2 and 3N2 on each side of the observation point [5].

Basic Method

The basic fourth-order-accurate spatial-difference scheme [5] can be derived either by: (1) using
a Taylor's series approach similar to that of Chapter 2, Section 2.4; or (2) fitting a cubic
polynomial to the nearest fOUf field values centered about the observation point, and then
analytically evaluating the first derivative of this polynomial at the observation point. Assuming
that standard Yee leapfrog time-stepping is used, either approach results in the following set of
finite-difference expressions for the TMz mode analogous to (4.2a-c);

In+1/2 _ H In-1/2

H r i.j+112 x i,j+I/2 =
!it

_1_ (-Ex'j+2 + 27Ell~,j+1 - 27EJ,j + EJ,j_1 J
l1i.j+1/2 24dy

(4.70a)

In+1/2 In-1/2
H -H

Y ;+1/2. j Y ;+1/2, j
= (

- E I~ .+ 27E In - 27E In + E In )
_ ll+2.) l ;+I,j Z i.j Z i-l,j

24&
(4.70b)
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In+1/2 In+1/2 In+1/2 In+1/2
-Hy i+3/2,j + 27Hy i+1/2,j - 27Hyi-1/2,j + Hy i-3/2,j

t:.t c..
I,)

24t:.x

-H In+1/2 27H In+1/2 _ 27H \n+1/2 H In+1/2
x i,j+3/2 + x i,j+1/2 x i,j-1/2 + x i,j-3/2

24t:.y

(4,7Oc)

The numerical dispersion relation for this algorithm analogous to (4.5) is given by

= _1 [27 sin((t:.x) __1 Sin(3kx t:.X)]2
(t:.x)2 24 2 24 2

+ 1 [27. (kyt:.
y

) 1, (3kyt:.
y

)]2-- -sm -- - -sm
(t:.y)2 24 2 24 2

(4.71)

By analogy with the development in Section 4,5.2 leading to (4.27), it can be shown that the

intrinsic numerical phase-velocity anisotropy for a square-cell grid of this type is given by

[
27 . (1Csint/J) 1. (31Csint/J)]2-sm - -sm
24 N,l, 24 N),

c*

c

[
27 . (1C cost/J)-sm
24 N,l,

1 . (31CCOSt/J)]2-sm +
24 N),

(4.72)

and the numerical phase-velocity anisotropy error [by analogy with (4.28)] is given by

t:.ii . I .. ,L d -amso expilclI4uo-or er
(4,73)

Finally, we can apply a complex-frequency analysis analogous to that discussed in Section

4.7,] to numerical dispersion relation (4.7]). Solving (4.71) for OJ yields an expression

comparable to (4.5Ia) and (45tb):

where

2 -I r-
OJ = -sin (~)

!1t
(4.74a)
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~ = c!!.t

_1[27 sin(i<!!.x) __1sin(3kx !!'X)]2 +
(/).x)2 24 2 24 2

1[27. (ky!!.yJ 1-(3kY !!'YJ]2-- -sm -- - -sm
(!!.y)2 24 2 24 2

(4.74b)

~ reaches its maximum possible value when all of the sin terms in the square root reinforce,
yielding an expression analogous to (4.52):

1= _ eM 1 ( 27 1 )2 1 ( 27 1 )2
~uppcrbound - (/).x)2 24 + 24 + (!!.y/ 24 + 24

1 1
--+--
(/).x) 2 (!!.y)2

(4.75)

The sin- 1 function, and thus OJ, becomes complex-valued if 1= bo d> 1. As discussed in
"upper un

Section 4.7.1, this causes numerical instability through exponential growth of the solution.
Hence, the numerically stable range is defined by requiring that ~upperbound ~ 1:

(4.76)

yielding immediately

!!.tIexplicit ~
4th-order

c

(6/7)

1 1
--+-
(/).x)2 (!!.y)2

two-dimensions (4.77)

as the maximum time-step for numerical stability. The stability bounds for the one- and three
dimensional versions of the algorithm can now be written by inspection from (4.74) and (4.75):

!!.tl explicit ~ (~) Ax
4th-order 7 c

!!.tIexplicit
4th-order

c

(6/7)

1 1
+ --+--

(!!.y)2 (&)2

one-dimension

three-dimensions

(4.78)

(4.79)
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In each case, the maximum M permitted for algorithm stability is 6/7 of the corresponding limit
for the classic Yee algorithm using second-order space differences.

For a uniform square-cell space lattice, the Courant factor S =eM!11 can be defined. This
permits the following Courant factor normalization analogous to (4.64), (4.66b), and (4.67b):

S S 7
Snonn.3D = = = -s-J3

SSlabililY (~~)
6

limit-3D

S S 2s-J2
Snonn.2D = = =

SSlabililY (~.~)
6

Iimil-2D

S S 7
Snonn.1D = = -S

S bl (~.l) 6
sla Illy
limil-ID

(4.80a)

(4.80b)

(4.80c)

This permits the per-time-step solution growth-factor under conditions of numerical instability to
be defined exactly as in (4.65), (4.66d), and (4.67d):

} for Snonn ~ 1 (4.81)

Equations (4.80a-c) and (4.81) comprise a unified treatment of the exponential growth under
unstable conditions for the fourth-order space-derivative algorithm applied to one-, two-, and
three-dimensional space lattices.

Optimized Method

Reference [6] reported a means to optimize the spatial differences of (4.70) to reduce the
numerical dispersion error of the fourth-order accurate scheme discussed above by a factor of
better than 4: 1 for N). > 10. Here, a four-point central-difference operator for the first derivative
of a field quantity f at grid point i is given by the following general form:

ofI = CW1 (1;+1/2 - LI/J + Cw2 (1;+3/2 - L3/J
ow; I1w

(4.82)

where w denotes either x or y for two-dimensional problems, and I1w is the corresponding space
increment in the x or y directions. Assuming usage of standard Yee leapfrog time-stepping,
a dispersion analysis of the type considered in Section 4.2 is implemented. The resulting
dispersion relation is expanded in a Taylor series in both the space and time increments
(retaining terms up to order 2), and the ideal condition Ie =k is applied to this expansion.
Coefficients C

wi
and Cw2 are then selected to satisfy the resulting system of equations:



(4.84)

(4.83c)

(4.83a)

(4.83d)

(4.83b)

where the x and y subscripts have been dropped. For a three-dimensional space lattice having
cubic cells, [6] reported the following system of equations for optimally selecting C j and C2:

For the special case of square grid cells (& = !J.y =Ll), the system of equations given by (4.83)
reduces to
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(4.85)

We note that the significant reduction in numerical dispersion achieved by implementing
(4.83), (4.84), or (4.85) has no impact upon the required computer storage or number of
arithmetic operations relative to the basic fourth-order accurate algorithm of [5] discussed
previously. Further, there is little perturbation of the numerical instability threshold.

Example ofImproved Accuracy

Fig. 4.7 compares the accuracy of the fourth-order-accurate spatial-differencing method reported
in [7] with that of the classic Yee algorithm for a generic two-dimensional wave-propagation
problem - a sinusoidal line source radiating in free space after being switched on at t =O.
The fourth-order spatial-differencing technique is optimized for a square-cell grid of sampling
density N). =5, whereas the Yee grid has a much finer spatial resolution of N). =40. We see that,
despite its much coarser grid, the fourth-order technique achieves accuracy (in the L

2
-normed

sense relative to the exact solution) comparable to that of the Yee algorithm. This results in a
measured savings of (40/5)2: 1 =8

2
: 1 = 64: 1 in computer storage, and 23: 1 in running-time.

The advantage in computer storage for the fourth-order technique is expected to scale to the
order of 83

: I =512:1 in three dimensions.
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Fig. 4.7 Comparison of the Lz-normed errors in modeling a radially propagating sinusoidal wave (as a
function of the simulated time) for a high-resolution (NA =40) classic Yee grid and a low
resolution (NA = 5) grid employing Ty fourth-order-accurate spatial differences. Source:
E. Turkel, Chapter 2 in Advances in Computational Electrodynamics: The Finite-Difference
Time-Domain Method, A. Taflove, (ed.), © 1998 Artech House, Inc.

Discussion

From a growing set of published results similar to those of Fig. 4.7, it appears that fourth-order
accurate spatial schemes allow modeling electromagnetic wave-propagation and interaction
problems that are about eight times the electrical size of those permitted by the classic Yee
algorithm. This is a very worthwhile increase in efficiency and modeling capability.

However, this improvement is not without cost. Although easy to set up in homogeneous
material regions, the larger stencil needed to calculate fourth-order spatial differences is
troublesome when dealing with material interfaces. Metal boundaries are especially challenging,
since they effectively cause field discontinuities in the grid. Special boundary conditions
required for such interfaces significantly complicate the computer software used to render
structures in the grid.
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Fourth-Order Smooth Approximation ofJumps in Material Parameters at Interfaces

As stated above, special boundary conditions must be derived and programmed to deal with
material discontinuities (especially metal boundaries) when implementing high-order-accuracy
finite-difference approximations of spatial derivatives. This is because the nonlocal nature of the
numerical space-differentiation process (Le., the enlarged required stencil of field components)
may convey electromagnetic field data across such discontinuities in a nonphysical manner.

Reference [7] reported a means to markedly reduce error due to abrupt dielectric interfaces.
This approach replaces the discontinuous permittivity function £ by a fourth-order-accurate
smooth implicit approximation. (A similar strategy can be applied to jumps in J1.) Relative to
the use of a polynomial approximation to G, this strategy avoids the overshoot artifact. We note
that, with an implicit interpolation, G varies in the entire domain and not just near the interface.
However, far from the interface, the variation is small.

Consider a dielectric interface separating two regions defined along the x-axis of the space
lattice. Following (2.82) of [7], a fourth-order-accurate interpolation of the permittivity
distribution with grid position i can be achieved using

10 -5 4 -I 0
£3/2 G1/ 2C1

I 6 1 0 0

0 6 1 0 0
£2

1
£5/2 G3/ 2

1 1
= - +

8 2
£p-3/2 £p-512

0 0 1 6 1

0 -1 4 -5 10
c

p
_

1 c
p

_
1I2 £p-3/2

(4.86)

Here, [Ct' ~, ... , lOp_I] is the initially unknown set of values of the smooth approximation to the
abrupt dielectric interface; and [£112' £312' ... , Gp_ I/2] is the known set of permittivities for the
original dielectric interface geometry. Inversion of the linear system of (4.86) yields the desired

smooth approximation, [£" ~, ... , £p--J]'
We now consider an example of the use of this dielectric interface smoothing technique [7].

This example involves the error in calculating the sinusoidal standing wave within a two
dimensional rectangular cavity comprised of a block of lossless dielectric (c

r
= 4) surrounded by

free space. Here, both the Yee and the fourth-order-accurate spatial-differencing grids use
square unit cells, wherein N). =30 within the dielectric. An available analytical (exact) solution
is used to specify the L2-normed errors for both the Yee and fourth-order-accurate spatial
differencing simulations.

Fig. 4.8 shows that the error generated by the fourth-order-accurate spatial-differencing
technique in combination with the fourth-order dielectric interface smoothing provided by (4.86)
is more than one order-of-magnitude below the error of the Yee algorithm used with the same
smoothing. In additional studies in [7], it is demonstrated that the Yee error can be reduced to
that of the fourth-order-accurate spatial differencing / interface smoothing by increasing the Yee
grid sampling density eightfold, just what was observed for the free-space propagation example

discussed previously in the context of Fig. 4.7. Apparently, fourth-order-accurate smoothing of
abrupt permittivity jumps succeeds in preserving the accuracy advantage of the fourth-order
accurate spatial-differencing scheme that is observed for the homogeneous-permittivity case.
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Fig. 4.8 Comparison of the Lz-normed errors in modeling the sinusoidal standing-wave fields within a
rectangular dielectric cavity (as a function of the simulated time) for a high-resolution (NA, :: 30)
classic Vee grid and a high-resolution (NA, :: 30) grid employing Ty fourth-order-accurate spatial
differences. Both models use fourth-order-accurate smoothing of the permittivity at the dielectric
interfaces as per (4.86). Source: E. Turkel. Chapter 2 in Advances in Computational
Electrodynamics: The Finite-Difference Time-Domain Method. A. Taflove, (ed.), © 1998 Artech
House. Inc.

4.9.3 Strategy 3: Use a Hexagonal Grid, H Possible

Regular hexagonal grids in two dimensions have been proposed to reduce the numerical phase
velocity anisotropy well below that of Yee' s Cartesian mesh. Here, the primary grid is
composed of equilateral hexagons having edge length As. Each hexagon can be considered to be
the union of six equilateral triangles. Connecting the centroids of these triangles yields a second
set of regular hexagons that comprises a dual grid.

Basic Approaches

Fig. 4.9, which is Fig. 3.5 repeated for convenience, illustrates for the TMz case in two
dimensions the two principal ways of arranging E and H vector components about hexagonal
grids [2). Fig. 4.9(a) shows the unstaggered, collocated grid in which Cartesian Ez• Hx' and Hy

field components are collocated at the vertices of the equilateral triangles. No dual-grid is used.
Fig. 4.9(b) shows the field arrangement for the staggered, uncollocated grid and its associated
dual-grid, the latter indicated by the dashed line segments.
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j

(a) Unstaggered, collocated grid. with no dual-grid

}

(b) Staggered. uncollocated grid and its associated dual-grid

Fig.4.9 Two central-difference hexagonal grids that are alternatives to Yee's arrangement (illustrated in
two dimensions for the TM1 case). Source: Y. Liu, J. Computational Physics, 1996, pp. 396-416.
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In Fig. 4.9(b), only Ez components are defined at the vertices of the equilateral triangles,
which are exactly the centroids of the hexagonal faces of the dual-grid. Magnetic field

components HI' Hz, H3 , and so forth, are defined to be tangential to, and centered on, the edges
of the dual-grid hexagons. These magnetic components are also perpendicular to, and centered
on, the edges of the primary-grid triangles. We note that the grid of Fig. 4.9(b) is a direct
extension of Yee' s interleaved E and H component topology from rectangular to hexagonal cells.

Upon applying second-order-accurate central space differences to the TM mode equations
z

of (4.1a-c) for the unstaggered, collocated hexagonal grid of Fig. 4.9(a), we obtain the system
(4.87), which is (3.53) repeated for convenience [2]:

_ ~ (Ez t-IIZ'i+O.5..J3 +

11· .6& E I
1,1 - z i-IIZ.}-o.s..J3

(4.87a)

2H I - 2H I + HI
Y i+I.j Y i-I,j Y i+1/2,}+O.S...[J

(4.87b)

dE I..
__Z_',_1 =

dt

HI +HI -HIY i-l/2,}+O.S..J3 Y i+1/2.j-O.S...[J Y i-I/2,j-O.S...[J

E..6&1,1

(4.87c)

Similarly, applying second-order-accurate central space differences to the TM
z

mode equations
for the staggered, uncollocated grid of Fig. 4.9(b) yields the system (4.88), which is (3.54)
repeated for convenience [2]:

aH1L114,}-O.2S..J3

at (4.88a)

I (E I. . - EI..)& z I+I.J l ',J
l1 i + I/2 ,j

=at
(4.88b)
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We note that the total number of field unknowns for the staggered. uncollocated grid of Fig.
4.9(b) is 33% more than that for the unstaggered. collocated grid of Fig. 4.9(a). However, the
discretization of Fig. 4.9(b) is simpler, and the number of total operations is less by about 50%.

Using the analysis method of Section 4.5.2, the following expressions are obtained for the
numerical phase-velocity anisotropy error for the gridding cases of Fig. 4.9 [2]:

Discussion

Interestingly, we note that ~iianiso for both hexagonal grids exhibits a fourth-order dependence on
the grid-sampling density N). despite the second-order accuracy of each spatial difference used.
This is because the leading second-order error term becomes isotropic for the hexagonal gridding
case, with a value exactly equal to the average of its qrdependent Cartesian counterpart [2].

Comparison of ~vaniso of the Yee algorithm given by (4.28) with ~iianiso of the hexagonal
gridding given by (4.89) and (4.90) yields the following error ratios:

We note that these are approximate ratios that have increasing validity for N). > 10. We can also
compare the velocity-anisotropy errors of the hexagonal gridding with that of the basic explicit
fourth-order gridding method given by (4.73):

Note that the ratios of (4.92) are independent of the grid-sampling density N)..
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It appears that the hexagonal gridding of Fig. 4.9(b) can attain an intrinsic grid dispersion
that is significantly better than that achieved by the fourth-order-accurate Cartesian spatial
differencing algorithms discussed in Section 4.9.2. Thus. based upon the previous studies,
we expect the hexagonal gridding of Fig. 4.9(b) to provide at least an 82

: I reduction in computer
storage relative to the Yee algorithm for electrically large two-dimensional modeling problems.
In addition, hexagonal gridding uses only nearest-neighbor field data. thereby allowing material
discontinuities (including metal boundaries) to be modeled as easily as with the classic Yee
algorithm.

What, if any, are the limitations in using hexagonal grid algorithms relative to Yee's original
method? The answer is: none very significant in two dimensions. This is because it is only
moderately more complicated to generate (even manually) uniform hexagonal grids than it is to
generate uniform Cartesian grids. The difficulty arises in attempting to extend hexagonal
gridding to three dimensions. Such an extension involves filling space with tetradecahedron and
dual-tetrahedron unit cells [2]. This greatly increases the complexity of generating and
visualizing the computational mesh to the point where manual mesh generation is no longer
possible, and an automated computer-based approach is required.

4.9.4 Strategy 4: Use Discrete Fourier Transforms to Calculate the Spatial Derivatives

The fourth and final approach reviewed here for reduction of the numerical dispersion artifact is
called the pseudospectral time-domain (PSTD) method [8,9]. This technique uses a discrete
Fourier transform (DFI') algorithm to represent the spatial derivatives in the Maxwell's
equations' computational lattice. The fast Fourier transform (FFI') can also be applied to
increase numerical efficiency. (See Chapter 17 for a comprehensive discussion.)

Formulation

The PSTD method works on unstaggered, collocated Cartesian space lattices wherein all field
components are located at the same points. An example of such an arrangement is the
two-dimensional TMz grid of Fig. 4.10. To see how PSTD works. consider an x-directed cut
through this grid. At every sample point along this cut, we wish to compute the x-derivatives of
the general field component V. Let {V) denote the set of initially known values of V at all
gridpoints along the observation cut, and let {(aVI aX)i) denote the set of initially unknown
x-derivatives of V at the same gridpoints. Then, using the differentiation theorem for Fourier
transforms, we can write:

(4.93)

where :;: and :;:-1 denote respectively the forward and inverse DFfs, and k;r is the Fourier

transform variable representing the x-component of the numerical wavevector. In this manner,
the entire set of spatial derivatives of V along the observation cut can be calculated in one step.
In multiple dimensions, this process is repeated for each observation cut parallel to the major

axes of the space lattice.
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U+ 1)~y

Fig. 4.10 Unstaggered, collocated Cartesian grid (with no dual-grid) used for the PSTD method, illustrated
in two dimensions for the TMz case.

Ac:.cording to the Nyquist sampling theorem, (4.93) is exact for lixl $ rr/ Lix; that is,
~ ~ A/2. Thus, the spatial-differencing process here can be said to be of "infinite order" for

grid-sampling densities of two or more points per wavelength. The wraparound effect,

a potentially major limitation caused by the periodicity assumed in the FFT, is eliminated by
using the perfectly matched layer absorbing boundary condition [9]. Finally, the time
differencing for PSTD as reported in [8, 9] uses conventional second-order-accurate Yee

leapfrogging.
For the PSTD method, the following expressions are obtained for the wavenumber and

phase velocity of a sinusoidal numerical wave of temporal period T = 21t1(j) propagating in an
arbitrary direction within a three-dimensional space lattice [8, 9]:

(i + 1) iU<iiU<

i Ez i Hx j

1______1___1

j~y

U-1)~y

(i-1)iU<

_ I-I 2 ((j)~t)k = k = -- sin --
eM 2

(4.94)

(j)
OJ

~ sin(OJdt)
cd! 2

OJdt /2
= c

sin(OJM/2 )
(4.95)

We see from (4.95) that the numerical phase velocity is independent of the propagation direction

of the wave, unlike any of the methods considered previously in this chapter. Applying our
definitions of numerical phase-velocity error, we therefore have the following figures of merit
for the PSTD method:
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~v h . ,IP YSle. psm
== [ (j) M / 2

sin(mM/2 )

[
rr/Nr ]- 1 X 100%

- sin (rr / NT)

~v . I = 0.mso psm

(4.96)

(4.97)

where we define the temporal sampling density NT == T/,1t time samples per wave-oscillation

period.

Discussion

Remarkably, ,1v
aniso

== 0 for the PSTD method for aLL propagating sinusoidal waves sampled at

N).."? 2. Therefore, to specify the gridding density of the PSTD simulation, we need only a

reliable estimate of Ami"' the fastest oscillating spectral component of significance. This estimate
is based upon the wavelength spectrum of the exciting pulse and the size of significant structural

details such as material inhomogeneities. Then, the space-cell dimension is set at ,1 == Amin l2,

regardless of the problem's overall electrical size. This is because our choice of ,1 assures zero

,1v
aniso

error, and thus, zero accumulation of this error, even if the number of space cells

increases without bound. Consequently, we conclude that the density of the PSTD mesh

sampling is independent of the electrical size of the modeling problem.

However, the fact that ,1\ianiso == 0 does not mean that PSTD yields perfect results analogous

to the magic-time-step case of the one-dimensional scalar wave equation. In fact, (4.96) shows

that there remains a numerical phase-velocity error relative to c. This residual velocity error is

not a function of the wave-propagation direction ¢, and is therefore isotropic within the space

grid. The residual velocity error arises from the Yee-type leapfrog time-stepping used in the

algorithm, and is a function only of NT' Table 4.1 provides representative values of this residual

velocity error.

TABLE 4.1

Residual Numerical Phase-Velocity Error of the PSTD Method Versus Its Time-Sampling

NT L\v . NT L\\i .
ph)"lcai ph)"lcal

2 +57% 15 +0.73%

4 +11% 20 +0.41%

8 +2.6% 25 +0.26%

10 +1.7% 30 +0.18%
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The key point from Table 4.1 is that NT limits the accuracy of the PSTD technique when
modeling impulsive wave-propagation problems. This is not an issue for a monochromatic wave
where there is only a single value of NT' and ~vphysical can be nulled in the manner of Strategy 1.
For a pulse, however, with ~t a fixed parameter in the algorithm, there exists a spread of
equivalent NT values for the spectral components of the pulse, which possess a range of temporal
periods T. This causes a spread of vp over the pulse spectrum, which in turn results in an
isotropic progressive broadening and distortion of the pulse waveform as it propagates in the
grid. To bound such dispersion, it is important to choose ~t small enough so that it adequately
resolves the period T _ of the fastest oscillating spectral component A - . Because thismm min

dispersion is cumulative with the wave-propagation distance, we have a second key point:
the density of the PSTD time sampling must increase with the electrical size of the modeling
problem if we apply a fixed upper bound on the maximum total phase error of propagating waves
within the mesh.

Despite this need for a small ~t, PSTD can provide a large reduction in computer resources
relative to the classic Yee algorithm for electrically large problems not having spatial details or
material inhomogeneities smaller than AmiJ 2. Increased efficiency is expected, even relative to
the fourth-order-accurate spatial algorithms discussed previously. References [8, 9J report that,
within the range of problem sizes from 16 to 64 wavelengths, the use of PSTD permits up to an
8D

: 1 reduction in computer storage and running-time relative to the Yee algorithm to produce
results with comparable accuracy, where D is the problem dimensionality. We expect the PSTD
advantage to increase for even larger problems. In fact, the computational benefit of PSTD
theoretically increases without limit as the electrical size of the modeling problem expands.

Similar to techniques employing fourth-order approximations to the space derivatives.
PSTD's global calculation of space derivatives along observation cuts through the lattice may
have difficulties at material interfaces. A concern is that PSTD might yield nonphysical results
for problems having abrupt jumps in permittivity andlor permeability unless a parameter
smoothing technique is used [see (4.86) and Fig. 4.8J. This concern is especially acute for
computation spaces containing high-contrast material objects or metal structures. For the latter,
depending upon the orientation and thickness of the metal surfaces, tangential-field
discontinuities could appear for two reasons:

I. A space-cell boundary lies at a metal surface or within a metal layer.
The tangential H -field within the space cell drops abruptly to zero at the
metal surface, and remains at zero for the remainder of the space cell.

2. A metal sheet splits the space lattice so there exist distinct illuminated and
shadow regions within the lattice. Here, the tangential H-field on the far
(shadowed or shielded) side of the metal sheet may be physically isolated from
the field immediately across the metal sheet on its near (illuminated) side. Gross
error is caused by the global nature of PSTD's spatial-derivative calculation
which nonphysically transports field information directly across the shielding
metal barrier from the illuminated to the shadow sides.

In principle, these problems can be solved by the prescription of special boundary conditions,
or by dividing the modeled space into zones that limit the spatial extent of each field stencil used
to implement a DFT or FFT. The latter technique is discussed in detail in Chapter 17.
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We note that the PSTD usage of collocated field components simplifies rendering material
structures within the mesh. It is also ideal for modeling nonlinear optical problems where the
local index of refraction is dependent upon a power of the magnitude of the local E. Here,
collocation of the vector components of E avoids the need for error-causing spatial interpolations
of nearby electric field vector components staggered in space.

4.10 ALTERNATING-DIRECTION-IMPLICIT TIME-STEPPING ALGORITHM
FOR OPERATION BEYOND THE COURANT LIMIT

Section 4.7 showed that numerical stability of the Yee algorithm requires a bounding of the time
step I1t relative to the space increments L1x, ~y, and~. Rewriting (4.54b) for convenience, this
Courant stability bound is given in three dimensions by

1 ~
I1t :::; I1t max = = (4.98)

1 1 1 c.J3 cubic-cell
C -- + -- + -- space lattice

(Lh)2 (~y)2 (~Z)2

The limit on ~t set by (4.98) has allowed application of FDTD methods to a wide variety of
electromagnetic wave interaction problems of moderate electrical size and quality factor.
Typically, such problems require 103 to 104 time-steps to complete a single simulation.

However, there are important potential applications of FDTD modeling where the Courant
stability bound of (4.98) is much too restrictive. Modeling applications that fall into this difficult
regime have the following characteristics:

• The cell size 11 needed to resolve the fine-scale geometric detail of the
electromagnetic wave interaction structure is much less than the shortest
wavelength Amin of a significant spectral component of the source.

• The simulated time Tsim needed to evolve the electromagnetic wave physics to the
desired endpoint is related to the cycle time T of A ..

min

With ~ fixed by the need to resolve the problem geometry, (4.98) in turn fixes ~t to avoid
max

numerical instability. This, in turn, fixes the total number of time-steps needed to complete the
simulation, Nsim = Tsim / ~tmax' Table 4.2 lists parameters of two important classes of problems
where this decision process results in values of N. that are so large that standard FDTD

S1m

modeling in three dimensions is difficult, or even impossible.
If these classes of electromagnetics problems are to be explored using FDTD modeling,

we need an advancement of FDTD techniques that permits accurate and numerically stable
operation for values of I1t exceeding the Courant limit of (4.98) by much more than 10:1.
Chapter 18 provides a state-of-the-art review of such unconditionally stable techniques. In this
section, we summarize one candidate approach: the alternating-direction-implicit (ADI) time
stepping algorithm. In fact, work with ADI FDTD methods in the early 1980s [10, 11] achieved
promising results for two-dimensional models. However, using the ADI techniques of [10, Ill,
it proved difficult to demonstrate the required numerical stability for the general three
dimensional case, and research in this area was largely discontinued.
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Two Important Classes of Three-Dimensional FDTD Modeling Problems
Made Difficult or Impossible by the Courant Limit on I1t

-2 ps

- 0.5 fs-1 ns

-100 ms-I mm

-0.25 11m

Problem Class

Low-frequency bioelectromagnetics

Operation of VLSI digital logic

Since the late 1990s, there has been a revival of interest in the use of ADI time-stepping
algorithms to obtain unconditional numerical stability for FDTD [12-16]. This research has
focused on rigorous mathematical derivation of the numerical stability and dispersion properties
of proposed AD! algorithms. In this section, we focus on the work reported in [15, 16], wherein
for the first time unconditional numerical stability is derived for the full three-dimensional case.

Note that, with any unconditionally stable AD! FDTD algorithm, the upper bound on Mis
only that implied by the required numerical accuracy in implementing the time derivatives of the
electromagnetic field. Thus,!.lt need only be small enough to provide about 20 or more field
samples during the cycle time T of the fastest oscillating significant spectral component of the
exciting source. For example, in Table 4.2, !.It could be 0.1 ms rather than 2 ps for
bioelectromagnetics problems, yielding Nsim = 1,000 rather than Nsim = 5 x 1010

•

4.10.1 Numerical Formulation of the Zheng / Chen / Zhang Algorithm

Zheng, Chen, and Zhang (ZCZ) reported a new ADI time-stepping algorithm for FDTD that has
theoretical unconditional numerical stability for the general three-dimensional case [15, 16].
While the ZCZ technique uses the same Yee space lattice as conventional FDTD, the six field
vector components are collocated rather than staggered in time. In discussing the numerical
formulation of this algorithm, we assume that all of the field components are known everywhere
in the lattice at time-step n and stored in the computer memory.

Unsimplijied System o/Time-Stepping Equations

The ADI nature of the ZCZ algorithm can be best understood by first considering its
unsimplified form, and then proceeding to obtain the final simplified system of field update
equations. To advance a single time-step from n to n+ 1, we perform two subiterations: the first
from n to n + 1/2, and the second from n +1/2 to n +1. These subiterations are as follows.

Subiteration 1: Advance the six field components from time-step n to time-step n+ 1/2

1
"+1/2

Ex i+1/2.j.fe
= EI" + ~(H 1"+1/2 _ 1"+1/2 )

x i+1I2.j.k 2£!.ly :( i+l/2,j+1I2.k Hz i+1/2.j-1/2.k

I1t ( I" \")- ---- H - H
2 £!.lz Y i+1/2.j.fe+1/2 y i+1/2.j,k-1f2

(4.99a)
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\

"+1/2

Ey i,i+1/2,k

E 1"+112
Z i,j,hl/2

= I" I1t ( 1"+112 1"+1/2)
Ey i,i+ 1/2 ,k + 2 e /1z H x i,i+1I2,h1/2 - H x i,i+1I2,k-1/2

-2:~ (HJ+1I2,i+Jl2,k - HJ-1/2,i+1/2,k)

= E r + ~(H r+ 1/2
_ H 1"+1/2 )

Z i,j,k+1/2 2 e /1x )' i+l/2,i,k+1/2 Y i-1I2,i,k+1/2

(4.99b)

(4.99c)

H 1"+1/2
x i,i+ll2, HI/2 I" I1t ( 1"+1/2

= H X i,j+1/2,k+1/2 + 2/l/1z E)' i,j+1/2,k+1 1
"+1/2 )

Ey i,j+ll2.k

(4. 1OOa)

1

"+1/2
H y i+Jl2,j,k+1I2

H 1"+1/2
Z i+1/2,i+1/2,k

= H I" + ~(E 1"+1/2 - E1"+1/2 )
y i+1/2.j.k+1/2 2 /l /1x Z i+l.j.k+1/2 Z i,j,HI/2

= H I" C:.t (1"+112 _ E 1"+1/2 )
Z i+1/2,i+II2,k + 2/ll1y Ex i+1/2,i+1,k x i+1/2,i,k

/1t ( I" I")---E -E
2/l/1x y i+I,i+1/2.k )' i,i+1/2,k

(4.100b)

(4,lOOc)

In each of the above equations, the first finite-difference on the right-hand side is set up to be
evaluated implicitly from as yet unknown field data at time-step n + 1/2, while the second finite
difference on the right-hand side is evaluated explicitly from known field data at time-step n.

Subiteration 2: Advance the six field components from time-step n + 1/2 to n + 1

E 1"+1
x i+1/2,j,k

= E 1"+1/2 ~(H 1"+1/2 _ H 1"+1/2 )
x i+1/2.i,k + 2 £ l1y Z i+1/2,i+1/2.k Z i+1/2,i-1/2,k

I1t ( 1"+1 1"+1)- ---- H - H
2 e /1z y i+1I2,j,k+112 )' i+1I2,i,k-1I2

(4.101a)
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\

n+1/2 !1t ( \n+\/2 In+1I2)E In+1 = E . . + -- H - H
z i,j,k+112 z I,J,k+1/2 2£ /1x y i+l/2,j,k+J12 Y i-1I2,j,k+1/2

(4.101b)

(4,102a)

!1t ( In+1 In+\)
- 2 J1 !1y Ez i.j+l,k+\/2 - Ez i,j,k+1/2

In+1/2 !1t ( In+1/2 In+1/2 )

= Hx i,j+1/2,k+1/2 + 2 J1!1z Ey i,j+1/2,k+1 - Ey i,j+1/2.k
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!1t ( In+\ In+l)
- 2 £ /1x Hz i+1/2,j+\/2,k - Hz i-1/2.j+1/2,k

!1t ( In+\ In+l)
- 2 E !1y Hx i.j+1/2,k+J12 - Hx i,j-1I2,k+\/2

In+1/2 !1t ( In+\/2 In+l/2)

= Ey i,j+ll2,k + 2 £!1z Hx i,j+I/2,k+1/2 - Hx i,j+I/2,k-1/2

H In+l
x i,j+l/2,k+1/2

I
n+1

Ey i,j+ll2,k

In+1
H y i+1/2,i,k+1/2

H In+1
z i+1I2,j+\/2.k

= In+1/2 !1t (In+1/2 _ E In+1/2 )

Hy i+1/2,j,k+\/2 + 2J1/1x Ez i+I,j,k+1/2 Z i,j,k+\/2

!:i.t ( r+1 r+1)
- 2)1!1z Ex i+l/2,j,k+l - Ex i+\/2.j,k

= H In+1/2 ~(E In+1/2 _ EIn+1/2 )
z i+1/2,j+\/2.k + 2 J1!1y x i+1/2,j+\,k x i+1/2,j,k

!1t ( In+l In+l)---E -E
2 J1 /1x Y i+I,j+1I2,k Y i,j+1/2,k

(4,102b)

(4. I02c)

In each of the above equations, the second finite-difference on the right-hand side is set up to be
evaluated implicitly from as yet unknown field data at time-step n + 1, while the first finite
difference on the right-hand side is evaluated explicitly from known field data at time-step n+ 1/2
previously computed using (4.99) and (4.100).

Simplified System a/Time-Stepping Equations

The system of equations summarized above for each subiteration can be greatly simplified.
For Subiteration I, this is done by substituting the expressions of (4.100) for the H-field
components evaluated at time-step n+ 1/2 into the E-field updates of (4.99). Similarly, for
Subiteration 2, this is done by substituting the expressions of (4.102) for the H-field components
evaluated at time-step n+ 1 into the E-field updates of (4.101), This yields the following
simplified system of time-stepping equations for the ZCZ algorithm:
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Subiteration I: Advance the six field components from time-step n to time-step n + 1/2

2 ] [2 ](At) n+I/2 (At) n+I/2

2 Ii E(Ay)2 Exli+ll2.j.k - 4 Ii E(Ay)2 (Exli+I/2.j_U
E In+l/2 )

+ x i+1/2.j+l.l

(4.103a)

In+I/2 )

+ Ey i.j+I12.k+1

In At ( In In)E +--H.. -H
y i.j+I/2.k 2 E Az x 1,)+1/2.k+1/2 x i.j+l/2.k-I/2

(4.103b)

[
(At/] E r+ I/ 2 _ [ (At/ ] (E In+1/2

I + 2j.J.£(tu)2 Z i.j.k+I/2 4j.J.£(tu/ Z i-l,j.k+l/2

In I:1t ( In In)E +--H -H
Z i.j.k+I/2 2 Etu Y i+I/2,j,k+I/2 Y i-l/2.j.k+l/2

2 :~y (HJ,j+1/2.k+1/2 - HJ.j-I/2.k+IIJ

E In+I/2 )
+ l i+l.j.k+l/2

(4.l03c)
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H In+1/2
x i,j+I/2,k+1I2

In+I/2

H y i+1/2,j,k+I/2

H /n+I/2
l i+I/2,j+I/2,k

In f}.t ( In+I/2 In+I/2 )
= Hx i,j+lI2,HI/2 + 211!:1z Ey i,j+I/2,k+l - Ey i.j+I/2,k

- 2;:Y (EJj+l.HI/2 - EJj,k+I/2)

= In I1t (In+1I2 _ E In+1I2 )
Hy i+l/2,j,k+1I2 + 211 Ax E z i+l,j,k+I/2 z i,j.k+1/2

= In f}.t (In+l/2 _ E In+1/2 )
Hz i+l/2,j+l/2,k + 2/-ll1y Ex i+I/2,j+I,k x i+I/2.j.k

f}.t ( In In)---E -E
211 Ax y i+l,j+1I2.k y i,j+1/2.k

(4.104a)

(4.104b)

(4.104c)

We see that (4.103a) yields a set of simultaneous equations for E;+ln when written for each

j coordinate along a y-directed line through the space lattice. The matrix associated with this

system is tridiagonal, and hence, easily solved. This process is repeated for each y-cut through

the grid where Ex components are located. Similarly, (4.1 03b) yields a tridiagonal matrix system

for each z-cut through the lattice to obtain E;+II2, and (4,103c) yields a tridiagonal matrix
system for each x-cut through the lattice to obtain E;+ln.

We also note that (4.104a-c) are exactly (4.100a-c), repeated for convenience, These

H-field updating equations are now fully explicit because all of their required E-field component

data at time-step n + 112 are available upon solving (4.1 03a-c) in the manner described above.

Subiteration 2: Advance the six field components from time-step n +1/2 to n +1

= E In+I/2 ~(H In+I/2 _ H In+I/2 )
x i+l/2,j.k + 2 E l1y z i+I/2,j+l/2.k z i+l/2.j-l/2.k

(4.105a)

I1t ( In+J/2 In+l(2)

2 E!:1z Hy i+I/2,j,k+l/2 - Hy i+I/2.j,k-J/2

[
(M)2 ] (E r+ 1/ 2 In+1I2 In+I/2 In+I/2)

- 4 I1£Ax & z i+l,j,k+1I2 - E z i,j,hl/2 - E z i+I,j.k-1/2 + E z i.j,k-lf2
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In+l )

+ E y i+I,j+ll2,k

In+1/2 I1t ( In+1I2 /n+1/2)

= E y i,j+1I2.k + 2£~ H x i,j+I/2.k+1I2 - H x i,j+I/2,k-I/2

~ (H In+1/2 _ HIn+1/2 )
2 £ t.x l i+I/2,j+1/2.k l i-1/2.j+1I2,k

[ 2]_ (I1t) E n+1/2 _ E n+1I2 _ E n+1/2 E n+1/2

4 J.1£!1x f:..y (XLI/2,j+l.k J+II2,j,k J-1I2.j+U + J-1/2.j.k)
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We see that (4.105a) yields a tridiagonal matrix system for each z-cut through the lattice to
allow calculation of En

+
l
• Further, (4.105b) yields a tridiagonal matrix system for each x-cut

through the lattice to allow calculation of E;+I, and (4.105c) yields a tridiagonal matrix system
for each y-cut through the lattice to allow calculation of E;+I. We also note that (4.106a-c) are
exactly (4.102a-c), repeated for convenience. These H-field updating equations are now fully
explicit because all of their required E-component data at time-step n + 1 are available upon
solving (4.105a-e) in the manner described above. This completes the algorithm.

4.10.2 Sources

The ADI-FDTD algorithm given by (4.103) to (4.106) was derived for the source-free Maxwell's
curl equations. Extending this algorithm to include an electric or magnetic current source must
be done carefully. The use of explicit source conditions wherein specific electric and/or
magnetic field components at source points in the grid are updated separately from the implicit
electric field or explicit magnetic field ADI-FDTD updating equations leads to localized errors
[17]. If, for example, the ADI-FDTD algorithm is formulated so that the electric fields are
updated implicitly, then the electric current source excitation function should be embedded in the
known column vector on the right-hand side of the tridiagonal matrix system for the x-, y-,
or z-directed lines that pass through the location of the current source.

By considering the ADI-FDTD algorithm as a second-order-in-time perturbation of a Crank
Nicolson FDTD scheme, [18] rigorously determined the discrete time values that should be used
to evaluate current source terms in each of the two subiterations of the ADI-FDTD scheme.
In the first subiteration, the currents should be sampled at t =(n + 1/2)~t, even though the time
derivatives and the fields are evaluated at t =(n + 1I4)~t. Likewise, in the second subiteration,
the currents should be sampled at t = (n + 1I2)M, while the time derivatives and the fields are
evaluated at t = (n + 3/4)~t. This suggests that the update equations in each subiteration are not
consistent with Maxwell's curl equations; that is, they do not approximate the curl equations
when all of the space and time increments tend to zero. However, the overall scheme is still
consistent with Maxwell's curl equations up to the second order in both time and space. This can
be shown by obtaining the truncation error in the same manner used for the source-free lossless
case in [19]. It is interesting to note that each subiteration in the time-stepping algorithm can
lose consistency without impacting the overall consistency of the total scheme. An alternative
method for the temporal sampling of the current sources is found in [17]. In this alternative
formulation, the currents are evaluated at t =(n + 1I4)~t in the first subiteration and at
t = (n + 3/4)M in the second subiteration, thereby maintaining consistency within each
subiteration. However, this alternative method yields less accurate results [18].

4.10.3 Numerical Stability

In [15], Zheng, Chen, and Zhang provided a detailed theoretical stability analysis of their ZCZ
algorithm summarized in Section 4.10.1. The key results of their analysis are now summarized.
We assume that for each time-step n, the instantaneous values of the E- and H-fields are Fourier
transformed into the sp~tial spectral ~omain with wavenumbers k

x
' ky, and k

z
along the x-, y_,

and z-directions, respectIvely. Denotmg the composite field vector in the spatial spectral domain
at time-step n as
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(4.107)

it can be shown that Subiteration 1 [consisting of the systems of equations (4.103) and (4.104)]

can be written in the spatial spectral domain in matrix form as

(4.108)
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Qx =
(W)2+ _X_.,

J1E

(W)2
+ -y_.,

J1E

(W)2
+ _l_

J1E
(4.l1Ob)

Similarly, it can be shown that Subiteration 2 [consisting of the systems of equations (4.105) and

(4.106)] can be written in the spatial spectral domain in matrix form as

(4.111)

where
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Now, substituting (4.108) into (4.111) yields in matrix form the complete single time-step

update expression in the spatial spectral domain:

(4.113)

Using the software package MAPLE™, Zheng, Chen, and Zhang found that the magnitudes of

all of the eigenvalues of the composite matrix [M] =[M2l [Mil equal unity, regardless of the

time-step I1t. Therefore, they concluded that their ZCZ algorithm is unconditionally stable for all

I1t, and the Courant stability condition is removed.

4.10.4 Numerical Dispersion

In [16], Zheng and Chen provided a detailed analysis of the numerical dispersion of their ZCZ

algorithm summarized in Section 4.10.1. They derived the following relation:

(4.114)

For M below the Courant limit of the classic Yee leapfrog algorithm, it was found that the

numerical dispersion given by (4.114) is quite close to that of the Yee algorithm. For I1t above

the usual Courant limit, the dispersive error given by (4.114) increases steadily.
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4.10.5 Additional Accuracy Limitations and Their Implications

Gonzalez Garda, Lee, and Hagness [19] demonstrated additional accuracy limitations of AD1
FDTD not revealed by previously published numerical dispersion analyses such as that given in
[16]. They showed that some terms of its truncation error grow with (,1t)2 multiplied by the
spatial derivatives of the fields. These error terms, which are not present in a fully implicit time
stepping method such as the Crank-Nicolson scheme, give rise to potentially large numerical
errors as !1t is increased. Excessive error can occur even if !1t is still small enough to highly
resolve key temporal features of the modeled electromagnetic field waveform.

As a result, the primary usage of existing ADI-FDTD techniques appears to be for problems
involving a fine mesh needed to model a small geometric feature in an overall much larger
structure that is discretized using a coarse mesh; and where, for computational efficiency,
it is desirable to use a large time-step satisfying Courant stability for the coarse mesh. While this
limits the impact of the excess error introduced locally within the fine mesh, this also limits the
usefulness of ADI-FDTD when considering how to model the key problem areas outlined in
Table 4.2.

4.11 SUMMARY

This chapter derived the key relations for numerical dispersion and stability applicable to FDTD
modeling of Maxwell's equations in multiple dimensions. These included:

• Derivation of the numerical dispersion relation for two-dimensional wave
propagation;

• Extension to three-dimensions;

• Comparison with the ideal dispersion case;

• Anisotropy of the numerical phase velocity;

Complex-valued numerical wavenumbers;

• Numerical stability derived using a complex-frequency analysis;

• The generalized numerical stability problem;

• Modified Yee-based algorithms for improved numerical dispersion, including
fourth-order spatial differencing, use of hexagonal grids, and the pseudospectral

time-domain method;

• Alternating-direction-implicit time-stepping algorithm for operation beyond the

Courant limit.

Because this area is rapidly evolving, the reader is encouraged to keep up with technology

developments by monthly reading of relevant technical journals such as IEEE Transactions on

Antennas and Propagation and IEEE Transactions on Microwave Theory and Techniques.
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PROBLEMS

4.1 Derive numerical dispersion relation (4.5) by completing the steps of substituting traveling
waves (4.3) into finite-difference equations (4.2).

4.2 Show that the numerical dispersion relations associated with the second-order-accurate
FDTD solution to the one-dimensional scalar wave equation given by (2.29a) and the one
dimensional Maxwell's curl equations given by (4.7b) are identical.

4.3 Derive numerical dispersion relation (4.11) by completing the steps of substituting
traveling wave (4.9) into the Vee finite-differencing of (4.8b).

4.4 Derive analytical dispersion relation (4.13) for an arbitrarily directed plane wave in three
dimensions. Show that numerical dispersion relation (4.12) reduces to (4.13) in the limit of
infinitesimal time and space increments.

4.5 Derive numerical wavenumber and numerical phase-velocity expressions (4.14a), (4.14b),
(4.l5a), and (4.15b).

4.6 Using the two-dimensional TMz FDTD code that was constructed in Chapter 3, replicate
the results shown in Figs. 4.1 (a) and 4.1 (b).

4.7 Write a computer program to implement the Newton's method iterative procedure of
(4.16a) and (4.16b), and replicate the results shown in Fig. 4.2.

4.8 Confirm the derivations of (4.36), (4.37a), and (4.37b).

4.9 Confirm the derivations of (4.46), (4.47a), and (4.47b).

4.10 Replicate the results shown in Figs. 4.3 and 4.4.

4.11 Using the two-dimensional TMz FDTD code that was constructed in Chapter 3, replicate
the results shown in Figs. 4.5(a) and 4.5(b).

4.12 Confirm the derivations of (4.57), (4.58), and (4.59).

4.13 Confirm the Courant factor normalization given by (4.66d) and (4.67d).

4.14 Using the two-dimensional TMz FDTD code that was constructed in Chapter 3, replicate
the results shown in Figs. 4.6(a) and 4.6(b).

4.15 Using the differentiation property of Fourier transforms given by (4.93), write and test a
computer program that performs forward and inverse FFTs on a function Vex) to obtain its
numerical derivative. For the numerical experiment, let Vex) := exp [-(x - xi / i] where
xo := 45m, a := 5m, and the spatial domain spans 100m. Verify the accuracy of the program
by comparing the numerical and analytical derivatives of Vex).
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PROJECTS

P4.l Modify the one-dimensional FDTD code that was constructed in Chapter 3 to use the
fourth-arder-accurate spatial-differencing of (4.70). In the manner of Fig. 4.7, compare the
L2-normed errors versus time for the two codes when modeling free-space, non-magic
time-step propagation of a Gaussian pulse of full width equal to 6 cells at its lIe points.

P4.2 Modify the two-dimensional TMz FDTD code that was constructed in Chapter 3 to use the
explicit fourth-order-accurate spatial differencing system of (4.70). Then, repeat Problem
4.5 using the new code, and compare with the previous results.

P4.3 Model an air-dielectric half-space problem using the following one-dimensional FDTD
codes: (a) classic Yee algorithm; and (b) basic fourth-order-explicit spatial differencing.
Do this first with no special treatment of the permittivity jump between air and the
dielectric half-space. Then, implement the permittivity-smoothing tactic of (4.86) in both
codes. Compare the Lz-normed errors versus time for all cases in the manner of Fig. 4.8.

P4.4 Construct a new two-dimensional TMz FDTD code using the space-time algorithm system
of (4.88) applied on the hexagonal grid shown in Fig. 4.9(b). Then, repeat Problem 4.5
using the new code, and compare with the previous results in Problem 4.5 and Project P4.2.

P4.5 Construct a new one-dimensional code that implements the PSTD scheme of (4.93) on an
unstaggered collocated grid. In the manner of Fig. 4.7, compare the Lz-normed errors
versus time for the new PSTO code with the results of Projects P4.1 and P4.3, when
modeling non-magic-time-step propagation of a Gaussian pulse of full width equal to 6
cells at its lIe points.





Chapter 5

Incident Wave Source Conditions

Allen Taflove, Geoff Waldschmidt, Christopher Wagner, John Schneider, and Susan Hagness

5.1 INTRODUCTION

In the two previous chapters, we considered basic aspects of the discretization, stability, and
dispersion of Maxwell's equations when numerically approximated in a uniform Cartesian
FDTD space lattice. In this chapter, we consider another fundamental point: how to introduce
electromagnetic wave excitations that are useful for modeling engineering problems.

A generic issue in FDTD modeling has been to accurately realize the physics of an
electromagnetic wave source in as spatially compact a manner as possible. This means using
relatively few E and H components to realize the wave source compared to the total number of
field components' in the lattice. In this manner, the computer storage and running time needed to
simulate the source is small compared to that needed for ordinary time-stepping of the fields.
Maximum algorithm efficiency is achieved.

This chapter reviews four very useful, general classes of compact electromagnetic wave
sources to spotlight their key features: (1) hard-sourced E and H fields in one- and two
dimensional grids; (2) J and M current sources in three-dimensional lattices; (3) the total-field I
scattered-field formulation for plane-wave excitation in one, two, and three dimensions; and
(4) waveguide sources. While not compact, a fifth class of wave source, the pure scattered-field
formulation, is also reviewed because of its utility. Chapter 15 will discuss in detail an emerging
sixth class of FDTD wave sources: linear and nonlinear electronic circuits. Sources considered
there include resistors, capacitors, inductors, diodes, transistors, and logic gates. These are
useful for three-dimensional modeling of high-speed digital circuits and microwave amplifiers.
Research is ongoing in developing such hybrid FOTD I electronic-circuit models.

5.2 POINTWISE E AND H HARD SOURCES IN ONE DIMENSION

A hard source is set up simply by assigning a desired time function to specific components of E
or H in the FDTD space lattice. This time function is independent of anything else in the model.
For example, in a one-dimensional, x-directed Yee grid, the following E: hard source could be
established at grid-point is to generate a continuous sinusoidal wave of frequency 1

0
that is

switched on at n =0:

(5.1)

169
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The resulting wave would propagate bilaterally in both the +x and -x directions from the source
point. To provide the proper direction of the Poynting power flow away from the source, the
FDTD-calculated spatial distribution of the Ez component of the wave would assume even
symmetry about the source point, while the Hy component would assume odd symmetry.

A second common pointwise hard source provides a lowpass Gaussian pulse with finite dc
content. The time waveform of the pulse is centered at time-step no and has a 1/e characteristic
decay of ndecay time-steps:

(5.2)

Note that (5.2) has a nonzero value at n =0, so that if a smooth transition from zero into the
Gaussian pulse is required, nushould be taken as at least 3n

decay
.

A third common pointwise hard source provides a bandpass Gaussian pulse with zero dc
content. The Fourier spectrum of this pulse has even symmetry about fo' The pulse is again
centered at time-step no and has a 1/e characteristic decay of n

d
time-steps:

ecay

(5.3)

Each hard source in (5.1) to (5.3) radiates a numerical wave having a time waveform
corresponding to the source function. If a material structure is specified in the FDTD grid at
some distance from the source point, the radiated numerical wave eventually propagates to this
structure and undergoes partial transmission and partial reflection. In principle, time-stepping
can be continued until all transients decay. For the source of (5.1), this would mean the
attainment of the sinusoidal steady state for the transmitted and reflected fields. For the sources
of (5.2) and (5.3), this would mean the evolution of the complete time histories of the transmitted
and reflected waves. Discrete Fourier analysis of these time histories obtained in a single FDTD
run would provide the magnitude and phase of the transmission and reflection coefficients over a
potentially wide frequency band starting at dc.

However, these optimistic scenarios are problematic. As time-stepping continues to obtain
either the sinusoidal steady state or the late-time impulse response, the reflected numerical wave
eventually returns to the grid source location is. Because the total tangential E-field is specified
at is without regard to any possible reflected waves in the grid, the hard source causes a spurious,
nonphysical retroreflection of these waves at is back toward the material structure of interest.
In effect, the hard source prevents the movement of reflected wave energy through the source
position toward infinity, and thereby fails to properly simulate a physical incident wave.

This can be easily seen for the hard sources of (5.2) and (5.3), where for n -no » ndecay
the E-field at is decays to zero. This gridpoint then simulates the behavior of a perfect electric
conductor (PEe) having zero tangential E-field. It can be demonstrated that the same
retroreflecting effect occurs for the sinusoidal hard source of (5.1) or any other hard source,
even though the tangential fields at the source point may not be pinned at zero. In fact, total
reflection of an impinging wave always occurs whenever the total tangential field at a surface is
specified without regard to the values of the incident field.

One way to eliminate the reflective nature of a pulsed hard source is simply to remove it
from the algorithm after its pulse time waveform has decayed essentially to zero. Subsequently,
we apply instead the normal Yee field update at is. In the context of the Gaussian pulse source of
(5.2), we would program the equivalent of the following update relation for the E-field at is:
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I
" -[<n-nO)lndocayt

E = E ez . 0
's

(5.4)

ELSE E I" = C (m)E 1~-1 + C (m)(H 1"-1/2 _ H 1"-1/2)
z 's • z 's b Y is+1/2 Y ;.-1/2

However, this approach cannot be used for source waveforms such as continuous sinusoids,
which have extended durations such that the source remains active after reflections from the
material structure propagate back to it.

In general, using a hard source in a one-dimensional FDTD simulation limits the maximum
number of time-steps that can be run without spurious retroreflections contaminating the
computed fields in the vicinity of the material structure being modeled. However, pointwise
hard sources in two dimensions or collinear arrays of hard-sourced field-vector components in
three dimensions can be useful for exciting numerical models of waveguides and microstrips.
Here, the hard sources simulate a metal probe extending from a feeding coaxial line into the
waveguide. (Note that a zero generator source impedance is being modeled.) It is observed that
much less error in the calculated field occurs for pointwise hard sources in two and three
dimensions than in one dimension. This is because pointwise hard sources intercept and
retroreflect much smaller fractions of the total energy in a multidimensional FDTD space lattice.

5.3 POINTWISE E AND H HARD SOURCES IN TWO DIMENSIONS

A pointwise E (H) hard source located within a two-dimensional FDTD 1Mz (TEz) grid excites a
radially propagating cylindrical wave centered on the source point. Due to numerical dispersion,
the propagating wavefront experiences a fractional-percent lagging velocity error relative to the
free-space speed of light c. The wavefront also undergoes a fractional-percent distortion from its
ideal circular shape because of the variation of the numerical phase velocity with the local
propagation direction along the wavefront. Means to theoretically and numerically quantify
these errors were presented in Sections 4.2, 4.5, and 4.6 of Chapter 4.

This section discusses a revealing alternative means to test the accuracy of cylindrical wave
generation by a pointwise hard source: comparison of the FDTD calculations with the exact
analytical solution [1]. Following conventional terminology, we say that this section focuses on
the frequency-domain Green function for the two-dimensional Yee grid. Our analysis leads to
the interesting and useful conclusion that a "pointwise" hard source is really not a point at all.
In fact, a pointwise hard source has a finite effective radius of approximately 0.2 grid cell in two
dimensional FDTD models.

5.3.1 Green Function for the Scalar Wave Equation in Two Dimensions

For simplicity and clarity in our discussion, we consider Maxwell's equations for the two
dimensional TEz mode given by the system (3.14). After some manipulation, it can be shown
that the H-field in free space is governed by the following scalar wave equation:

(5.5)
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where c =1/ ~)10 Eo is the speed of light in free space. Noting that the same type of wave
equation is obtained for Ez for the TMz mode given by (3.13), we can generalize (5.5) for both
the TMz and TEz modes by identifying either Ez or Hz as the scalar function u(x, y, t). Now,
we assume that such a physical system is excited by a Dirac delta function occurring at t =0
at the coordinate origin:

u(x, y, t) = 8(x) 8(y) 8(t) (5.6)

It can be shown that this generates a circular cylindrical wave radiating outward from the
coordinate origin (the z-axis in our TMz and TEz field models) at the speed of light, as given
exactly by the following two-dimensional Green function G2O:

u(r, t) - G2D (r, t) =
c V(et-r)

~ 2 2 22a e t - r
(5.7)

where / =i + / and the unit step function V is given by

U(CI- r) =Cfor r> ct

for r < ct
(5.8)

The radial coordinate of the outgoing wavefront is given by r =c t, an intuitive result.
Here, the denominator in (5.7) equals zero and the amplitude of the outgoing wave is infinite.

As discussed in Chapter 4, numerical dispersion prevents the Yee algorithm from accurately
following the step discontinuity of u at the wavefront. However, much can be learned by taking
the Fourier transform of (5.7) to obtain the two-dimensional frequency-domain Green function:

~ _ j (2)
U (r, W) = G2D (r, w) = - Ho (k r)

4
(5.9)

Here, Ii is the phasor Ez or Hz field of angular frequency W = 2nf, H~2) (k r) is a Hankel function
of the second kind, and k is the free-space wavenumber at w. The magnitude of G

2D
(r, w) is

a continuous function of r. It is exactly the envelope of the oscillating u field that radiates
symmetrically outward from a time-hannonic source of angular frequency wat the origin.

5.3.2 Obtaining Comparative FDTD Data

Because of the spatially continuous nature of G 2O(r, w), it is possible to obtain a direct
comparison with sinusoidal steady-state FDTD results at any selected set of points away from the
origin. The required FDTD data can be obtained in one of two ways. For example, if a smooth,
essentially time-limited impulse function such as a Gaussian pulse is used to excite the FDTD
grid, the time-harmonic response Ii (r, w) can be obtained by running a discrete Fourier
transformation on u(r, t) concurrently with the time-stepping (taking care to continue this process
until all transients die down to a negligible level). Alternatively, if a sinusoidal source is turned
on at t =0 and then kept on sufficiently long, eventually only the time-harmonic response
remains at any point. Thereafter, we need only to activate a simple peak-detection function
working on u(r, t) to directly sense the envelope of the oscillations.
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Two related problems remain in comparing FOID data with G
lO

(r, (0):

• The theoretical magnitude of GlO(r, (0) is infinite at the origin (r = 0) because of
the logarithmic singularity of the Hankel function of (5.9):

lim H~2) (k r) - In (k r)
k r--loO

(5.10)

• The amplitude of the waveform u(t) used to excite a single Ez or Hz field
component at the center of the FOID grid cannot be infinite.

Despite these problems, the procedure now discussed permits accurate calculation of
C

lO
(r, (0) using a square-cell FDTD grid having an appropriate cell size Ii.. The procedure is

based upon the assumption that exciting a single Hz (E
l

) component in a two-dimensional TEz

(TM) grid is equivalent to exciting a cylindrical virtual surface of radius rcq =j*Ii. centered about
that component, wheref· is a fraction that is virtually independent of Ii.. We callj* the effective
action radius of the excited field component. The following steps are taken [1]:

1. Hard source a single Hz (Ez) component at the center of a large TEz (TMz) free
space grid. Use a sinusoid of period T and amplitude 1 Nm (l Vim), and let the
grid cell size be /i. = AolNA=(enl NA• Run the FOID simulation for a sufficient
number of T to reach the sinusoidal steady state in grid region SSS centered on
the hard source. Make sure that the radiated wavefront does not reach the outer
boundary of the grid to avoid computational artifacts due to wave reflections.

2. Process the FDTD data obtained in Step 1 to yield the sinusoidal steady-state
values of all of the Hz (E

l
) field components in SSS. Graph these values versus

their radial distance from the hard-sourced H (E).z z

3. Determine a scaling factor e that multiplies the entire set of FDTD data obtained
in Step 2 to yield the best fit (in the L2 or energy-normed sense) between the
FDTD and exact Green function results for the field-magnitude variation with
radial distance from the source.

4. Then, by our basic assumption concerning the effective action radius of an
excited field component in a two-dimensional grid. we equate

wherek=2rt/AO' Upon substituting e,k, and/), into (5.11), we obtainj*
by using a table of Hankel function values generated by MATLAB.

5. Repeat Steps 1 to 4 for other NA and check the convergence ofj*.

5.3.3 Results for Effective Action Radius of a Hard~Sourced Field Component

Fig. 5.1 (a) compares the radial variation of the magnitude of the exact Green function solution
(5.9) with both raw and best-fit scaled FDTD data for IHl(kr) I along the x-axis of a coarse grid
having /).=Ao/5. From (5.11), this yieldsj*=0.247. Fig. 5.1(b) is similar except that it
compares scaled FDTD data throughout the entire grid for /). = A/IO.
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Fig. 5.1 Comparison of the radial variation of the exact frequency-domain Green function with scaled
FDTD sinusoidal steady-state Hz data in a uniform. square-cell TEz grid. Source: Waldschmidt
and Taflove, IEEE Microwave and Guided Wave Lett., 2000, pp. 217-219, © 2000 IEEE.
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5.4 J AND M CURRENT SOURCES IN THREE DIMENSIONS
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0.149 - 0.247

0.187 - 0.211

0.200 - 0.207

0.206 - 0.209

Range ofEffective Radiusr

A/5
A/IO

A/20

A/40

Grid Cell Size D.

Table 5.1 lists the range of the effective action radius f· of the hard-sourced H l field
component, as determined using the above procedure. For a grid cell size fJ. finer than \/10,
r == 0.2 and is only a weak function of fJ., as originally assumed. In the limit as fJ. « Ao/ 10,

the effective action radius converges to the value r == 0.21. We conclude that, over the
commonly used range of FDTD grid resolutions Ao/ 10 to AoI40, a hard-sourced Hz (E) field
component in a two-dimensional TEz (TMz) grid exhibits an effective action radius of
approximately 0.2 space cell.

Range of Effective Action Radius of a Hard-Sourced Field Component in a 2D FDTD Grid.
Source: Waldschmidt and Taflove, IEEE Microwave and Guided Wave Lett., 2000,

pp. 217-219, © 2000 IEEE.

Relative to Fig. 5.1 (b), our methodology is to scale the FDTD results twice so that the Green
function forms either the upper or lower envelope of the scatter of FDTD values. [For clarity,
Fig. 5.I(b) shows only the best fit to the scaled upper envelope.] This yields two results for the
optimal scaling factor, which by (5.11) provides two corresponding values of1*. These bound
f" for the particular grid resolution used.

A pointwise source located within a three-dimensional FDTD space lattice excites a radially
propagating wave centered on the source point. Similar to the two-dimensional case, numerical
dispersion causes the propagating wavefront to experience a fractional-percent lagging velocity
error relative to the free-space speed of light c. The wavefront also undergoes a fractional
percent distortion because of the variation of the numerical phase velocity with the local
propagation direction along the wavefront. Eventually, the radiated wave exits the
computational space, assuming that a suitable absorbing boundary condition (discussed in
Chapters 6 and 7) is applied at the outer-boundary planes of the space lattice.

In addition to radiating fields to infinity, J and M current sources in three-dimensional
FDTD space lattices can deposit charge and generate charge-associated fields [2]. Such charge

can exist even though there is no explicit storage location for it. Indeed, the charge exists only
insofar as diverging fields exist. These diverging fields, which are required to satisfy the
continuity equation, can persist indefinitely, and hence remain in the computational domain even
after all of the radiated fields have exited.
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As shown in Chapter 3 (Section 3.6.9), the Yee space lattice is divergence-free in free-space
regions in the absence of a source. However, substantial field divergence (and thus, equivalent
charge deposition) properly results from current sources embedded in the lattice that have
specific geometrical and temporal properties. An example of a current-source geometry that
deposits charge is a contiguous, open-ended chain of J components forming a filamentary
radiator. Here, electric charge is deposited at the two ends of the filament where the current
diverges. An example of a temporal property that influences charge deposition is the presence
(or absence) of a de component in the time waveform used to excite the current source. A time
waveform having a dc component permits deposition of persistent charge, while a waveform
having no dc component can produce only temporary charging.

This section examines how J and M current sources in the three-dimensional Yee space
lattice cause equivalent electric and magnetic charge deposition. This results in either temporary
or persistent nonpropagating E- and H-fields to be generated within the lattice, in addition to the
desired radiated, outward-propagating wave. Since we show that the Yee Lattice stores electric
and magnetic charge, we can define an effective lattice capacitance and inductance. This must
be accounted for in models of embedded electronic components, as discussed in Chapter 15.

5.4.1 Sources and Charging

In the following discussion, the relationship between the electric field E and the electric charge
density p in free space is given by Gauss' law l

:

(5.12)

When the E-field diverges from a point, (5.12) states that the charge density is nonzero. The Yee
space lattice allows the divergence to be computed with central differences, thus preserving the
second-order accuracy of the charge-density computations.

Further, the relationship between the electric current density J and the electric charge
density p is given by the continuity equation2

:

V·J = (5.13)

We recall that, in the Yee lattice, the components of J are spatially collocated with corresponding
collinear components of E, but are offset by one-half time-step.

Consider an electric-current filament that consists of one or more contiguous components of
J forming a continuous path. In accordance with (5.13), electric charge exists at the ends of this
source. The amount of charge at one end of the current source (i.e., the amount of charge
enclosed within a surface surrounding the end of the filament), is given by the space and time
integration of (5.13):

I An equation analogous to (5.12) relates the divergence of the magnetic field H to the presence of
nonphysical magnetic charge density Pm'

2An equation analogous to (5.13) relates the nonphysical magnetic current density M to the time-rate of
change of the nonphysical magnetic charge density Pm'
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where l(t) is the total current entering the volume and QenclOSed is the enclosed charge. We see that
Qenclosed can be determined by integrating let) over time. Alternately, Qendosed can be detennined
numerically in an FDTD simulation by a discrete volume integration of Gauss' law (5.12).
If the volume containing the charge is a single space lattice cell of edge length Ll, this yields

Co #E· ds = Co (Ll/ L E race = QcnclOsed

s six races

(5.15)

Fig. S.2 Agreement of the time dependence of the expected and measured charge deposited at the ends of
an impulsively excited Hertzian di~ole located at the center of a three-dimensional Yee space
lattice. Source: Wagner and Schneider, IEEE Trans. Microwave Theory and Techniques, 1998.
pp. 2131-2136, © 1998lEEE.

where Erace is the total E-field on a cube face.
We now illustrate the deposition of charge and confirm the correspondence between:

(1) the "expected" charge given by the time integral of let) in (5.14), and (2) the "measured" or
calculated charge in the space lattice given by (5.15), the flux integral of the FDTD-computed E.
To this end, we source a single it component (realizing a Hertzian dipole) located at the center of
an 81 x 81 x 81 cubic-cell space lattice having Ll =1m. The it component is driven by a
Gaussian-pulse time waveform.

Fig. 5.2 shows the expected and measured charge as a function of time at the two ends of the
current source [2]. We see that the measured FDTD results correspond precisely to those
predicted by the time integral of the current. Thus, although the FDTD method is not considered
to be a dc analysis technique, it does, nevertheless, properly predict the fields associated with the
rearrangement of fixed (dc) electric charge.
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5.4.2 Sinusoidal Sources

FDTD simulations sometimes employ sinusoidal sources. However, because such a source is
turned on at some initial time and the total modeling time is finite, we should not expect the
resulting model to be completely valid for the sinusoidal steady-state (time-harmonic) case.
One important aspect of this problem is that the time integral of the current-source function can
have a nonzero de value. A specific example is a sinusoidal current turned on at t = 0, which
deposits the following charge into the computational domain:

Q(t)

I

f [(t')dt'
o

I

f sint' dt' = 1 - cost
o

(5.16)

Here, for simplicity, unit frequency and unit amplitude are used. We see that the charge
oscillates between 0 and 2 and has a time-average value of 1. This average charge might be
deposited at the ends of a dipole source, thereby producing nonzero dc fields throughout
unshielded portions of the computational domain.

We note that cosine currents turned on at t =0 deposit a zero time-average charge.
However, the large turn-on discontinuity of the cosine source function at t =0 contains
significant high-frequency spectral components which suffer large numerical dispersion.
Therefore, the use of cosine source functions is not advised.

5.4.3 Transient (Pulse) Sources

This section illustrates how the static fields generated due to charge deposition within the three
dimensional Yee space lattice can remain in the computational domain long after all radiated
fields generated by the impulsive source have propagated off the grid. The space lattice
geometry under consideration is shown in Fig. 5.3 [2].

,..,------------------"C7l (160,80,80).

I •

I :J .. - M;

...........:i::'l':::: >:"r"::
. .
, .
, ,

'" - - -; - - - - - - - - - - - - -:- -

(0,0,0) "'-- .J,r

Fig. 5.3 FDTD space-lanice geometry for the illustration of the persistence of static fields generated due
to charge deposition. Source: Wagner and Schneider, IEEE Trans. Microwave Theory and
Techniques, 1998, pp. 2131-2136, © 1998 IEEE.
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Fig. 5.3 depicts a 161 x 81 x 81 cubic-cell Yee space lattice that contains two z-directed
filamentary current sources, each 20 collinear elements long. The first source is an electric
current filament J whose center is located at cell (40, 40, 40), and the second source is a
magnetic-current filament M whose center is located at cell (120, 40, 40). The time-waveform of
each filament's excitation is a Gaussian pulse having a width of 16 time-steps between its lIe
points.

Figs. 5.4(a) and 5.4(b) are logarithmic-grayscale visualizations3 of the magnitude of E and
H, respectively, at n =100 time-steps within the z-directed lattice cut plane that contains both the
electric-current and magnetic-current filaments [2]. At this early time in the FDTD simulation,
both current sources are radiating outward-propagating dynamic fields. Note that Figs. 5.4(a)
and 5.4(b) are duals.

Figs. 5.5(a) and 5.5(b) repeat these visualizations at n =300 time-steps [2]. Now, the
dynamic fields have propagated off the space lattice, which is terminated by an absorbing
boundary condition. Only static fields remain. These diverge from electric or magnetic charges
deposited at the ends of each source filament. For example, Fig. 5.5(a) shows that the J filament
deposits electric charge at its ends and generates a dc E-field that is strongest near this charge.
However, the M filament deposits no electric charge and therefore generates zero dc E-field.
The dual situation is given in Fig. 5.5(b), which shows that the M filament deposits magnetic
charge at its ends and generates a dc H-field that is strongest near this charge. Because the
J filament deposits no magnetic charge, it generates zero dc H-field.

5.4.4 Intrinsic Lattice Capacitance

3For convenience, all field data in Figs. 5.4 and 5.5 are normalized to permit a direct visual comparison.

In the physical world, electric charges exert on each other an attractive or repulsive Coulomb
force, leading to charge motion under the influence of this force. In an FDTD simulation that
does not specifically provide for charge dynamics, electric charges do not move. Consequently,
since adjacent space lattice cells can store charge, it is natural to define a capacitance between
cells of the space lattice.

The capacitance of adjacent cells in free space in the Yee lattice can be derived in the
following manner [2]. The standard definition of capacitance is

where Q is the stored charge and V is the electric potential between the charges. The charge
stored in the grid can be found either from the time integral of the current that deposited the
charge, as in (5.14), or from the finite-difference flux integral of E (Gauss' law), as in (5.15).
By expressing the charge in terms of the flux integral, an E-field appears in the numerator of
(5.17), which can be cancelled with the E-field that subsequently appears in the denominator.
When computing the flux integral, the total E-field at any point on the flux surface can be
decomposed into two parts:

(5.18)

(5.17)C = QIV

E face = E enclose<! + Edistant
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(a) Electric field magnitude.

(b) Magnetic field magnitude.

Fig. 5.4 Logarithmic-grayscale visualization of the magnitude of (a) E and (b) H in Fig. 5.3 at n =100
time-steps within the z-directed lattice cut plane that contains both the electric-current and
magnetic-current filaments. Source: Wagner and Schneider, IEEE Trans. Microwave Theory and
Techniques, 1998, pp. 2131-2136. © 1998 IEEE.
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(a) Electric field magnitude.

(b) Magnetic field magnitude.

Fig. 5.5 The same as Fig. 5.4, but at n = 300 time-steps. Comparing with Fig. 5.4, note the departure of
the radiated fields from the space lattice, leaving only static fields due to the effective transfer of
electric and magnetic charge. Source: Wagner and Schneider, IEEE Trans. Microwave Theory
and Techniques, 1998, pp. 2131-2136, ~ 1998 IEEE.
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The contribution to the integral by the fields from "distant" sources (sources external to the
surrounding surface) is zero. The field from the enclosed charge makes a nonzero contribution
to the flux integral, provided that the total enclosed charge is nonzero.

Consider a cubic-cell Gaussian surface of side length 11 that encloses a charge Q. First, the
relationship between the charge and the field on the faces of the cell surrounding the charge is
from (5.15):

Q = Co (11)2 I. (Eenclosed + Edistant)

six. fa.ces

(5.19)

The right-hand side of (5.19) results from: (I) the problem symmetry, which dictates that E enclosed

is the same over all six faces of the single-cell cube; and (2) Ed' does not contribute to the
Istanl

integral. Second, the difference in potential between two adjacent cells containing charges of
equal magnitude and opposite sign is:

v
+Q position

f E ·dL = 2(I1)Ecncloscd

-Qposition

(5.20)

Here, the factor of 2 on the right-hand side is a consequence of the opposite charges doubling the
total E-field over the face common to both cells.

Now, combining these results, we substitute (5.19) and (5.20) into (5.17). This yields a
simple expression for the equivalent capacitance between adjacent nodes in the FDTD space
lattice in free space:

(5.21)

For example, the space-lattice capacitance between adjacent nodes of a 1m cubic unit cell in
vacuum is predicted by (5.21) to be 26.562 pF.

To verify (5.21) and to illustrate the effect of the space-lattice cell capacitance, we consider
an example where electric charge deposited into the lattice is discharged through a resistance
R load' the equivalent lumped resistance associated with the electric conductivity (1 assigned
to the space cell. (See Chapter 15 for a discussion of modeling lumped circuit elements within
the FDTD space lattice.) The rate of discharge is easily observed in the FDTD simulation and
can be used to obtain the associated time constant:

or = R Cload lattice (5.22)

This yields the cell capacitance upon dividing by R
load

•

Fig. 5.6 shows the results of one numerical experiment of this type involving the same
computational domain and impulsively excited Hertzian dipole discussed in the context of
Fig. 5.2 [2]. Here, the 11 = 1m cubic lattice cell associated with the source has a cell capacitance
predicted by (5.21) to be 26.562 pF. When this cell is assigned the conductivity (1= 0.0002 Slm
(equivalent to R

'oad
= 5,0000), a decay time constant of 133 ns results from (5.22). In fact,

this agrees almost exactly with the measured time constant observed from the FDTD-calculated
charge decay in Fig. 5.6, thereby verifying the cell capacitance predicted by (5.21).
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5.4.5 Intrinsic Lattice Inductance

An analogous effect exists for the storage of magnetic charge. Referring to Chapter 15, Section
15.10.3, it can be shown that the following equivalent inductance exists between adjacent nodes
in a free-space, three-dimensional FOTD space lattice:

Fig. 5.6 Computational demonstration of the charge-decay effect of the intrinsic lattice capacitance,
showing the charge versus time for the Hertzian-dipole electric current source used in Fig. 5.2,
but with a conductivity (j= 0.0002 Sim assigned to the cell containing the source (equivalent to
RJoIIJ =5,OooQ). The decay time constant is 133 ns. Source: Wagner and Schneider, IEEE Trans.
Microwave Theory and Techniques, 1998, pp. 2131-2136, © 1998 IEEE.

(5.23)LlaUice = Jlo/1/4

For example, the space-lattice inductance between adjacent nodes of a 1m cubic unit cell in
vacuum is predicted by (5.23) to be 0.314 J.lH. While magnetic charge is not physical, it is clear
that physical H-fields can be generated by electric currents flowing in conducting loops.
As discussed next, both the equivalent space-lattice capacitance and inductance must be factored
into FDTD simulations dealing with discrete electronic circuit elements posed as sources.

5.4.6 Impact upon FDTD Simulations of Lumped-Element Capacitors and Inductors

As discussed in Chapter 15, it is often desirable to embed a lumped-element capacitor or a
lumped-element inductor at a specific point within the FDTD space lattice, especially if a
combined electronic-circuit I electromagnetic-field model is useful. Chapter 15 shows that the
required field-update equation at the embedding point of the circuit element is simply a modified
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version of the standard Yee update. However, the modeler should realize that the total effective
capacitance or inductance at the embedding point is really the combination of the intrinsic lattice
capacitance or inductance and the embedded value. The additional modification of a field
update expression to compensate for this effect is discussed in Chapter 15.

As an example, Fig. 5.7 illustrates the impact of the intrinsic lattice capacitance upon the
overall capacitance at a point [2]. This figure shows the potential measured between charge
locations as a function of time for two FDTD simulations. (The potential is indicative of the
amount of charge present.) In the first simulation, deposited charge is discharged through a
conductance with no lumped capacitor present; that is, the only capacitance present is the
intrinsic lattice capacitance. In the second simulation, a lumped capacitor having a value equal
to the theoretical lattice capacitance given by (5.21) is introduced in the manner described in
Chapter 15. Since the capacitance of the lumped element equals the intrinsic lattice capacitance,
the addition of the lumped element should double the decay time constant. This is indeed the
case, as seen from Fig. 5.7. Viewed another way, if one were to ignore the inherent lattice
capacitance, the decay time constant would be incorrect by a factor of two.

It should be clear that it is not trivial to model the overall capacitance or inductance at a
lattice point such that C < 3 Eo 11 or L < Po 11/ 4 (i.e., the lower bounds set by the intrinsic lattice
capacitance and inductance, respectively). This may require the locally defined lattice cell size,
permittivity, or permeability to be less than the free-space values existing only one space cell
away from the desired point. Implementing one of these options could lead to numerical
instability, and must be approached with caution.

... ...
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... ...
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......

.... ...
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With lumped capacitor

No capacitor Oust intrinsic
lattice capacitance present)

200 400 600
Time [ns]

800

Fig. 5.7 Demonstration for the case of Fig. 5.6 of the impact of intrinsic lattice capacitance upon overall
capacitance at a point. The solid line shows the charge decay versus time for an embedded
lumped capacitor equal to the theoretical intrinsic lattice capacitance. The time constant for this
decay is double that for the case where the lattice is empty (dashed line). Source: Wagner and
Schneider, IEEE Trans. Microwave Theory and Techniques, 1998, pp. 2131-2136, © 1998 IEEE.
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5.5 THE PLANE-WAVE SOURCE CONDITION

The development of the plane-wave source condition allowed the earliest engineering
applications of FDrD computational electromagnetics modeling. These applications were in the
defense and bioelectromagnetics areas, and involved the interaction of complex-shaped,
inhomogeneous material structures with impinging pulsed or continuous-wave electromagnetic
fields. Initially, many problems of these types located the material structure of interest far from
the radiating antenna, where the incident illumination could be approximated by a plane wave.

In the context of FDTD solvers for Maxwell's equations, sourcing an incident plane wave in
the Vee space lattice poses a number of challenges. The sourced incident wave must have:

•

•

I. The space lattice must be enlarged to physically contain long-duration pulses or
continuous sinusoids as initial conditions. This wastes computer resources, and is
a classic example of a noncompact wave source.

2. A wave sourced by this method at an oblique angle in a two- or three-dimensional
space lattice undergoes distortion of its wavefront as it drags against the lattice
outer boundaries.

An arbitrary and easily specified propagation direction, polarization, time
waveform, and duration;

A planar wavefront that is perpendicular to the direction of propagation;

A constant amplitude along any plane parallel to the wavefront.

In addition, the incident wave source must be invisible to any scattered numerical waves,
allowing them to pass through the wave source without any hindrance or interaction to
eventually reach the exterior region.

Vee's 1966 paper provided the original plane-wave source [3]. This approach involved
inserting the incident wave as an initial condition at each E and H component location in the
space lattice. With this method, all values of E 1°, E 1°, E ,0, H 1112

, H 1112
, and H 1112

of the incidentx y z x y z
wave throughout the lattice are prefilled by the modeler. The sign and magnitude of each initial
field component is selected to give the desired wave polarization and propagation direction.

We note that, due to the Vee leapfrog time-stepping, this approach requires a 0.5 flt delay
between the insertion of the initial conditions Elo and HI I12

• Thus, when implementing such grid
prefilling, we must account for the shift in the wave location due to its propagation during this
delay. The shift depends upon the time-step used in the simulation. For example, using the
magic time-step eM:;: fl in a one-dimensional FDTD code implies a 0.5 fl wave motion in free
space between insertion of the E and H initial conditions. Similarly, the use of c!lt:;: fl/2 in a
two- or three-dimensional code implies a 0.25 fl free-space wave motion between the E and H
initial conditions. These positional shifts are reduced proportionately if the grid is filled with a
nondispersive dielectric medium that reduces the speed of wave motion below c. However, if the

dielectric filling of the grid is dispersive (i.e., has a frequency-dependent dielectric constant),
it is no longer straightforward to calculate the wave positional shift.

The initial-condition approach of [3] has two profound problems:

As a result of these difficulties, the initial-condition wave source currently finds only limited,

specialized usage.
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5.6 THE TOTAL·FIELD / SCATTERED·FIELD TECHNIQUE:
IDEAS AND ONE·DIMENSIONAL FORMULATION

The total-field/ scattered-field (TF/SF) formulation [4-6] resulted from attempts to realize a
plane-wave source that avoids the difficulties caused by using either hard sources or the initial
condition approach, as discussed in the previous sections. The TF/ SF technique succeeded in all
respects, permitting FDTD modeling of long-duration pulsed or sinusoidal illuminations for
arbitrary plane-wave propagation directions. It remains in use today for popular FDTD software.

5.6.1 Ideas

The TF / SF formulation is based on the linearity of Maxwell's equations. It assumes that the
physical total electric and magnetic fields E low and Hlow can be decomposed as follows:

(5.24a, b)

Here, E inc and H ine are the values of the incident-wave fields, assumed to be known at all points
of the space lattice at all time-steps. These are the fields that would exist in vacuum, that is,
if there were no materials of any sort in the modeling space. E and H are the values of the

scal scat
scattered-wave fields, which are initially unknown. These result from the interaction of the
incident wave with any materials in the space lattice.

We note that the finite-difference operations of the Yee algorithm can be applied with equal
validity to the incident field, the scattered field, and the total field. As shown in Fig. 5.8(a),
this property permits zoning the Yee space lattice into two distinct regions: Region I,
where total fields are assumed to be stored in the computer memory; and Region 2
(surrounding Region 1), where scattered fields are assumed stored in the computer memory.
Regions 1 and 2 are separated by a nonphysical virtual surface that serves to connect the fields
in each region, and thereby generates the incident wave.

In Region 1, the inner zone of the space lattice, we assume that the Yee algorithm operates
on total-field vector components, necessarily including the fields of the incident wave as well as
those of the scattered wave. The interacting structure of interest is embedded within this region.

In Region 2, the outer zone of the space lattice, we assume that the Yee algorithm operates
only on scattered-field vector components. This implies that there is no incident wave in
Region 2. The outer lattice planes bounding Region 2 truncate the computation space and serve
to implement an ABC. As discussed in Chapters 6 and 7, an ABC simulates the lattice extending
to infinity. An ideal ABC would permit all outward-propagating numerical waves to exit the
computation space with zero reflection.

TF/ SF lattice zoning provides a number of key features that enhance the computational
flexibility and dynamic range of the FDTD method. These features are summarized below.

I. Arbitrary incident wave. The connecting condition provided at the interface of
the TF and SF regions, which ensures consistency of the numerical space
derivative operations across the interface. simultaneously generates an arbitrary
incident plane wave in Region I having a user-specified time waveform and
duration, angle of incidence, and angle of polarization. This connecting condition
almost completely confines the numerical incident wave to Region I, and yet is
transparent to outgoing numerical scattered-wave modes, which are free to enter
Region 2. Therefore, Region 2 is a well-defined scattered-field zone.
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Fig. 5.8 Total-field / scattered-field zoning of the FDTD space lattice: (a) Total-field and scattered-field
regions, connecting virtual surface (plane-wave source), and lattice truncation (absorbing
boundary condition); (b) detail of field component locations in a one-dimensional x-directed cut
through the space lattice of (a).
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2. Relatively simple programming of interaction structures. The required continuity
of total tangential E and H across the interface of dissimilar materials is
automatically provided by the Yee algorithm because all materials are located in
Region I, where the total fields are time-marched. Unlike pure scattered-field
FDTD codes, to be discussed in Section 5.10, the incident field needs to be
calculated only along the simple connecting virtual surface between Regions 1
and 2. This connecting surface has a fixed rectangular shape that is independent
of the geometry and material composition of the interaction structure in Region 1.
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3. Wide computational dynamic range. In certain applications, it is important to
accurately calculate the electromagnetic field within deep shadow regions or
well-shielded internal cavities of a structure. There may be requirements for the
measurable fields in such regions to be many tens of decibels below the power
level of the incident wave. TF/ SF FDTD codes directly compute such low field
levels by time-marching the physical (measurable) total fields in Region 1,
in which the structure is embedded. However, pure scattered-field FDTD codes
calculate low field levels indirectly by time-marching only the scattered field, and
subsequently adding the value of the known incident field at the lattice points
where measurements are to be made. For such codes, the only way to obtain low
values of the measurable total field is via near cancellation of the FDTD
computed scattered field by the known incident field. Unfortunately, this
cancellation process can lead to large errors in the required total-field values
caused by "subtraction noise." Here, small-percentage errors in calculating the
scattered fields can result in large-percentage errors in the total fields which are
the residue after field cancellation. By directly time-marching total fields within
and near the structure to be modeled, TF / SF FDTD codes avoid subtraction
noise problems, and therefore can achieve a computational dynamic range (ratio
of the maximum-to-minimum accurately computed total-field level in the space
lattice) that is substantially larger than that of a pure scattered-field FDTD code.

4. Absorbing boundary condition (see Chapters 6 and 7). The provision of Region
2, a well-defined scattered-field zone forming the outer part of the TF/ SF space
lattice, permits the application of an ABC at the outermost lattice planes.
A modern ABC can very well simulate the FDTD lattice extending to infinity by
suppressing by 99.99% or more the nonphysical reflection of outward
propagating numerical waves at the lattice truncations. This permits the FDTD
solution to remain valid after the residual reflections from the lattice truncations
propagate back to the vicinity of the interaction structure.

5. Far-field response (see Chapter 8). A near-to-far-field transformation surface can
be located within Region 2. This virtual surface has a fixed rectangular shape
that is independent of the geometry and material composition of the interaction
structure modeled in Region 1. FDTD-computed tangential scattered-field data
along this surface are weighted by the free-space Green function and then
summed to obtain the complete far-field radiation or bistatic scattering pattern of
the structure being modeled.

5.6.2 One-Dimensional Formulation

The virtual surface constituting the interface of Regions 1 and 2 contains E and H components,
which, according to the Yee algorithm, require the formulation of various field component
spatial differences to advance one time-step. When the required spatial difference is taken across
the interface plane, there arises a problem of consistency. That is, on the Region-l side of the
interface, the field to be used in the difference expression is assumed to be a total field, whereas
on the Region-2 side of the interface, the field to be used in the difference expression is assumed
to be a scattered field. It would be inconsistent to perform an arithmetic difference between

scattered- and total-field values.
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To precisely illustrate this problem, consider the one-dimensional linear grid of E, and H)'
field components shown in Fig. 5.8(b). This also represents an x-directed cut through the two
dimensional TM

z
space grid of Fig. 5.8(a). Assume that all points in the one-dimensional grid

are in free space. Then, the Yee algorithm to time-step the E-field is given at any gridpoint by

E r+1= In ~ (H In+1/2 _ H In+1/2)
z , Ez ' + A _ )' i+1I2 y;-1/2

EOLlA

(5.25)

Note that (5.25) is consistent and completely valid when all three field components on the right
hand side are Contained within a single grid region, whether total-field or scattered-field. This is
due to the linearity of Maxwell's equations, which operate equally well on the total field and the
scattered field.

The validity of applying (5.25) within a single grid region is now shown. For example.
if points i - 1/2, i, and i + 1/2 are each in Region 1 of Fig. 5.8(b), the application of (5.25)
can be written in an equivalent manner as

Here, total-field E and H components that are assumed to be stored in the computer memory are, )'

manipulated to time-step a total E, component, which is then returned to computer memory.
Similarly, if points i - 1/2, i, and i + 1/2 are each in Region 2 of Fig. 5.8(b), the application of
(5.25) can be written in an equivalent manner as

In (5.27), we note that the H y component at iL + 1/2 (just to the right of E
z
) is assumed to be

stored in the computer memory as a total field, whereas the H component at i-I /2 (just to the
• y L

left of E) is assumed to be stored 10 computer memory as a scattered field. Thus, (5.27) is
inconsistent and incorrect, since it subtracts unlike H y quantities on the right-hand side.
For consistency, we must subtract total-Hy from total-Hy to advance total-E

z
in time, as in (5.26a).

Here, scattered-field E and H components that are assumed to be stored in the computer, y

memory are manipulated to time-step a scattered Ez component, which is then returned to
computer memory.

Now, consider applying (5.25) to time-step the E, component located at gridpoint i
L

, the left
interface between Regions 1 and 2. Assume that this Ez component is stored in computer
memory as a total field. Direct application of (5.25) yields

In+l
Ez• total ;

I
n+1

Ez . scat j

I
n+1

Ez. total ;
L

= Ez.lOtall~ +
'---v-"

assumed stored in
compUler memory

= E"scatr +
'---y----J

assumed stored in
computer memory

= E l~ +
~

assumed stored in
compUler memory

t':!t (In+1/2 In+112)

EO I:!.x ,Hy• total HI/2 ~ Hy• lOtal ;-112 I

assumed Slored in comPUle, memory

t':!t (In+1/2 In+1/2)

EO I:!.x \H)'.scal Hlf2 ~ H y• scat ;-1/2

assumed slored in computer memory

M (In+1/2 In+1/2 )
~ H y• lOtal i +1/2 - Hy.scat i -1/2
EOL.l.A. \ L v L I

assumed stored in compUler memory

(5.26a)

(5.26b)

(5.27)
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However, (5.27) can be made consistent and correct simply by adding another term that is a
function of the assumed-known incident wave:

1

"+1

Ex, lOW i
L

since

= E ..,I~ +
~

assumed stored in
compUler memory

M (1"+1/2 1"+112 )
EO~ ,HY,loIJlI i

L
+1/2 ~ HY.",al i

L
-1/2 I

assumed slored i" computer memory

M 1"+112
-:-: H)., inc i

L
-1/2

EOilA~
assumed mown

(5.28)

1
"+1/2 1"+1/2 1"+1/2-H -H. =-H

y.seal i -1/2 y, me i -1/2 y,lolal i -1/2
L L L

(5.29)

This can be done as a correction implemented only at gridpoint i
L

after first applying the generic
Yee algorithm of (5.25) at all Ex locations in the grid. The correction "fixes" the only gridpoint
(i), where inconsistency and error arises during the application of (5.25), and avoids breaking up
the Ex time-stepping loop to achieve maximum speed on a vectorizing machine.

However, we are not quite finished dealing with consistency problems at the left interface
between Regions 1 and 2. Consider the generic Yee algorithm to time-step the Hy field in fre·e
space at any gridpoint in Fig. 5.8(b):

H 1"+1/2 = H 1"-112 + ~(E I" _E I" )
Y i-I/2 Y .-1/2 Po~ x i x i-I

(5.30)

In the manner of (5.26a, b), it can be easily shown that (5.30) is consistent and valid when all
three field components on the right-hand side are contained within a single grid region, whether
Region I or Region 2. However, upon applying (5.30) to time-step the H component at

y

gridpoint iL - 112, an inconsistency arises. Assume that this H
y

component is stored in the
computer memory as a scattered field. Direct application of (5.30) yields

/

"+1/2

H y , scal i -1/2
L

/

n-1I2

= Hy,scal i
L

-1/2

~
assumed stored in

<;omputer memory

+ Ll:jEx,lolJll[ - Ex,scaX_J
J.1oLL\. \ L v L I

assumed stored in compuler memory

(5.31)

In (5.31), we note that the Ex component at iL (just to the right of H) is assumed to be stored in
the computer memory as a total field, whereas the Ex component at iL - 1 (just to the left of Hy)

is assumed to be stored in computer memory as a scattered field. Thus, (5.31) is inconsistent and
incorrect, since it subtracts unlike Ex quantities on the right-hand side. For consistency, we must
subtract scattered-E from scattered-E to advance scattered-H in time.x x y

However, (5.31) can be made consistent and correct simply by adding another term that is a
function of the assumed-known incident wave:

I"E ..
~1

"+112

H y• scal i -112
L

1

"-112

Hy,scal i
L

-1/2

'---v---'
assum cd slored in
computer memory

+ Ll: JEx, lOlal[ - Ex•scal [ _.)

Po ilA , L v L I

assumed slored in compuler memory

M

PO!:J.x
assumed known

(5.32)
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where the bracket denotes that the generic Ez time-stepping operations of (5.25) are implemented
before adding the incident-wave correction term. The consistency condition analogous to (5.32)
is given by

(5.35)

(5.34)

(5.33)

{ In+Jl2} I:!.t In=H +--E ..
y iR+1/2 (5.30) J1

0
I:!.x ~

assumed known

E /n In In
l,total; - Ez,inc; = E z•scat ;

L t t

In+1 {In+l} M In+1/2E. =E +--H ..
z 'R z iR (5.25) E I:!.x y. JOe 'R+ l12

o ~
assumed known

since

This can be done as a correction implemented only at gridpoint it - 112 after first applying the
generic Yee algorithm of (5.30) at all H locations in the grid. This correction "fixes" the only

y

gridpoint (it - 112) where inconsistency and error arises during the application of (5.30),

and avoids needlessly breaking up the H
y

time-stepping loop.
Similar procedures are implemented to preserve consistency of the numerical differentiation

at the right interface between Regions 1 and 2. As shown in Fig. 5.8(b), we assume that this
interface is located at the E

z
component at gridpoint iR , and further assume that this Ez is a total

field. The consistency condition analogous to (5.28) is given in a shorthand notation by

where the bracket denotes that the generic Hy time-stepping operations of (5.30) are implemented
before adding the incident-wave correction term.

Fig. 5.9 illustrates the overall effect of implementing the TFI SF formulation of (5.28),
(5.32), (5.34), and (5.35). In Fig. 5.9(a), we assume that free space exists everywhere in a one
dimensional linear grid with c t1t = I:!.x. A wave having a Gaussian-pulse time behavior is
generated at the left TF1SF interface at gridpoint it =100. This wave propagates virtually
unidirectionally within the grid. Specifically, to the right of iL in the total-field region,
it propagates in the +x-direction with full amplitude and no distortion; whereas to the left of i

L
in

the scattered-field region, there is only a very small leakage wave that is suppressed by more
than a factor of 105

• Eventually, the desired +x-directed wave passes entirely through the total
field region and arrives at the right TF1SF interface at gridpoint i

R
= 300. Here, the wave

disappears from the grid with negligible reflection and negligible transmission into the scattered
field region beyond iR • Overall, in the absence of a scatterer in the total-field region, there are
negligible fields present in surrounding scattered-field regions.

In Fig. 5.9(b), we assume that a PEC sheet enforcing Ez =0 is centered within the total-field
region at gridpoint i =200. This sheet generates a -x-directed reflected wave that eventually
passes through the left TF1SF interface at it =100. This passage is accomplished with negligible
retroreflection and essentially complete transmission - the left TF I SF interface is transparent to
the wave reflected by the PEC sheet. To the right of the PEC sheet in the total-field region,
there exists zero field for all time-steps, as expected.
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Fig. 5.9 Snapshots of a +x-propagating Gaussian pulse in a one-dimensional total-field / scattered-field
Yee grid for eli/ =LU, showing the action of TF/SF grid zoning. (a) Free space everywhere in
the grid; and (b) PEe mirror placed within the total-field region.
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However, to the right of the PEC sheet in the scattered-field region, there eventually appears
a +x-directed wave that is identical to the incident wave, but negatively signed. This is not an
error. In fact, a scattered wave properly exists within the shadow region of the PEC sheet by the
assumptions of (5.24). Where the total field is identically zero, as in the shadow region of the
PEC sheet, the scattered and incident fields must be equal and opposite so that their sum
(i.e., the total field) is zero. Thus, a negative-amplitude scattered wave must appear in the
scattered-field region to the right of iR =300 after sufficient time has passed to permit the
incident wave to propagate this far.

5.7 TWO·DIMENSIONAL FORMULATION OF THE TF ISF TECHNIQUE

The TF I SF technique can be extended in a straightforward manner to model two-dimensional
TM and 1E problems. Here, this technique permits generation of an incident plane wave having
an arbitrary time waveform, duration, and propagation direction in the Yee space lattice. As an
example of the extension of the TFISF formulation to FDTD modeling in two dimensions,
this section discusses in detail the algorithmic modifications required for the TMz case.

5.7.1 Consistency Conditions

for all time-steps, we can modify the normal Vee time-stepping relation for E ...I- _to achieve
l.tO"" 1,10

consistency. For simplicity, we assume a square-cell grid. Using the shorthand notation
established in (5.34) and (5.35), we have the following consistency condition to be applied to all
of the Ez components (circled dots) located at the front face of Region 1 of Fig. 5.1O(a):

(5.36)

(5.37a)

v
assumed known correction lerm

HI =H I +H·Ix. lOW i .j. -1/2 x. seal i.i. -1/2 I, U1C i,j. -1/2

{}
!:i.t 1"+1/2

1
,,+1 - E r+l + - H -

El i,i. - z i.i. (3.410) E t1 .t, me i.i. -112
o,

Fig. 5.10 illustrates the extension of the TF I SF technique to a TMz grid having the zoning shown
in Fig. 5.8(a). Referring to Fig. 5.1O(a), consider first the Region-1 I Region-2 interface located

at J' =Jo where the total-field components E to'" and HI'" are located. To time-step the E 10.--1 .
l. "" y, 0"" l, ..... 1,10

components (indicated by circled dots), we must know H .--1.. 1/2 and H t •• ,1· --1/2' Clearly, the
I. to"" 1.10+ I, 0 .... 1.10

first H ... is known and stored in the computer memory. since gridpoint Ci,Jo+I/2) is in thex, tOL4J

total-field zone. However, the second HI. lola! is not stored in computer memory, since (i,Jo-II2)
is in the scattered-field zone. Only H II .. 1/2 is available in memory. Yet, sincex, sea ")0-

Here, the bracket denotes that the generic Ez time-stepping operations of (3 Al a) are implemented
before adding the incident-wave correction term. Implicit in (5.37a) is the assumption that the
TF I SF interface is located in source-free vacuum.
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Fig. 5.10 Field components in the two-dimensional TMz grid at the interface of the total-field and
scattered·field regions used for the incident-wave source condition.
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The remaining E components located on the Region-I I Region-2 interface, also indicated,
by circled dots in Fig. 5.ID(a), can be treated in an analogous manner to achieve consistency.

The following are the required operations:

Back Face afRegion 1 U=J
l

; i =io ' ... ,i1)

E1"+1 = {E I"+l}
, i,j, 'i.j, (3.41a)

_ ~t H . 1"+1/2
£ 11 x, mc i, j, +1/2

o
, I

V
assumed known correction tenn

(5.37b)

To implement the consistency conditions of (5.37), data are required for the incident Hx and Hy

field components at grid locations 0.511 outside of the interface. These are indicated by triangles

in Fig. 5.1 O(a), We note that proper treatment of the four interface comer points at E I ., E I· .,
"odo "ll'}'

E I.. , and E I . (where two adjacent H-components are in Region 2) is provided by the
l',,)O l'l'}'

overlapping operations implied by (5.37a-d).

Referring to Fig. 5.1O(b), we see that a consistency problem also exists for the Handx, scat

H components (indicated by circled arrows) that are located 0.511 outside of the Region-l I
y, scat

Region-2 interface. To properly time-step each of these components, we must know E
t, scal

located 0.511 to each side. Yet, on one side of each H-component of interest is E w located on
z. to

the Region-II Region-2 interface.

The solution of the consistency problem for Hand H is analogous to the developmentx, scat y, seal

leading to (5.37) for E'.IOW· Knowing that

Right Face ofRegion 1 (i =i l ; j =Jo ' .. , ,JI )

(5.38)

(5.37c)

(5.37d)

~t 1"+1/2--H.
E 11 y. mc io -1/2, j

o
\. I

V
assumed known correction tcnn

I1t 1"+1/2+ -H .
E 11 y.mc i,+1/2.j

o
\. I

V

assumed known correction lenn

E 1"+1 _ { I"+I}
Z io ,j - E, io.j (3,4la)

E /"+1 _ { I"+I}. . - E ..
Z ',,) l ',.) (3,4la)

Left Face ofRegion I (i =io ; J=Jo ' ... ,jl)

for all time-steps, we can slightly modify the normal Yee time-stepping relation for the affected

H-components to achieve consistency. For example, consider the calculation of the scattered H

components (circled rightward arrows) that are located just outside the front face of Region 1~
Again assuming a square-cell grid, we have
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Outside Front Face ofRegion J (j =i o- 1/2; i = io' ... , i l )

H1"+112 = {H r+ I
/
2 } +

.., i,jo -112 ;x i,jo -1/2 (3.4lb)
/1t I"-E .

A l. me i J'
POU ' 0

~
assumed known correction tenn

(5.39a)

Similar to our previous shorthand notation, the bracket denotes that the generic H.., time-stepping
operations of (3.41b) are implemented before adding the incident-wave correction term.
Implicit in (5.39a) is the assumption that the TF/ SF interface is located in source-free vacuum.

The remaining H.., and H
y

components located just outside of the Region-l / Region-2
interface, also indicated by circled arrows in Fig. 5.1O(b), can be treated in an analogous manner
to achieve consistency. The following are the required operations:

Outside Back Face ofRegion J (j =i l + 1/2; i =io' , .. , i
I
)

H 1"+1/2
;x i.j, +112 { H 1,,+1/2} -

;x i.j, +1/2 (3.4lb)
M I"-E.

Po /1 l. me i, j,

'-----v----'
assumed known correction term

(5.39b)

Outside Left Face ofRegion J (i =io- 1/2; i =io' ... ,il )

1
,,+1/2 {1,,+1/2}

H y i o-1I2,j = H y i. -1/2,j (3.4lc)
M I"-E.

Po il l. me io• j

'--v-----'
assumed known com:ction lenn

(5.39c)

Outside Right Face ofRegion J (i = i I + 1/2; i =Jo' ... ,JI)

1
,,+112 {1,,+1I2 }

H y i, +1/2,j = H y i, +1/2.j (3.4 Ie)
+ ilt I"-E

A l. inc· .Po u ',,J
'---v-----'

assumed known correction term

(5.39d)

To implement the consistency conditions of (5.39), data are required for the incident E,
components at grid locations exactly on the interface. These are indicated by triangles in
Fig.5.1O(b).

Together, the consistency conditions of (5.37) and (5.39) properly connect the assumed
total-field and scattered-field grid regions for the two-dimensional TM mode. A direct result of

z
implementing these conditions is the generation of a high-quality numerical plane wave in the
total-field zone, Region I, with little field leakage appearing in the scattered-field zone,
Region 2. The wave generated in Region 1 has all of the properties specified for Eirw; and Hirw;
in the various correction terms used in (5.37) and (5.39): time waveform, duration, and angle of
incidence. Further, the interface between Regions I and 2 is transparent to all outgoing
numerical scattered waves, permitting them to pass without reflection or attenuation into
Region 2. Overall, this TF/ SF technique meets all of the requirements for the plane-wave source
condition.
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5.7.2 Calculation of the Incident Field

Referring to Fig. 5.10 and the previous discussion, we see that data for the incident E
z

' Hx '

and H y components at or near the interface of Regions 1 and 2 are required to implement the
IF I SF consistency conditions for the TMz mode. A simple approach to calculate these data for
arbitrary wave angles of incidence is now described. This approach is based upon a table
look-up procedure, which avoids the need to compute large numbers of mathematical functions
(sinusoids or exponentials) to describe the space-time behavior of the incident wave.

Coordinate Origins

and r is the position vector from 0\ to the location of the field vector component of interest:
eomp

(5.41)

(5.42)

(5.40)

(S.43a)

kine = icos¢ + ysin¢

A

where k is the unit incident wavevector given by
me

Consider first the two-dimensional TMz simulation of an incident plane wave. The wave is
assumed to propagate with a wavevector kine that is oriented at the angle cp relative to the +x-axis
of the FDTD grid, where O' S cp s 90'.

Fig. 5.11 (a) is a schematic diagram that is useful for analysis of this case. A key point is that
connecting conditions (5.37) and (5.39) generate a numerical analog of the desired plane wave
that appears to originate from the front-left corner of Region 1. We designate this point as
Origin OJ with the grid coordinates (io,jo)' In effect, 01 is the first total-field gridpoint that is
"contacted" by the incident wavefront. For a square-cell Cartesian grid, the other field
components in Region 1 are contacted by the wavefront after ndelay time-steps, where

Here, v/ CP) is the numerical phase velocity of the incident wave at the propagation angle cp,
as discussed in Chapter 4, Section 4.5. Also. d is the distance in grid cells along the wavevector
from Origin 01 to a perpendicular dropped to the wavevector from the location of the field
component in question. Distance d can be expressed conveniently as

Note that i and jeom can be either integers or integers ±112, since a field component can beeomp p

positioned at a half-cell location.

The delay distance d specified by (5.41) is necessary to calculate the incident field at the
desired grid location. However, for cp > 90', it is clear that the incident wavefront no longer
makes an initial contact with Region 1 at Origin 01' In fact. as the wavevector angle is rotated
through +360', three new points of initial contact are defined, representing the remaining three
corners of Region 1: 90'< cps 180' - Origin 02 at (i1,jo); 180'< cps 270' - Origin Q at
(iI' jt); and 270' < cp s 360' - Origin 04 at (io' i.). 3
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Fig. 5.11 Coordinate origins for efficiently calculating the incident field in a two-dimensional TM FDTD
grid zoned into total-field and scattered-field regions. •
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These points are shown in Fig. 5.II(b). For these cases, the position vector r of (5.43a) mustcomp

be modified. We have

90· < ¢ $ 180· Tcomp = (icomp - iJi + (jcomp - jo)' (5.43b)

180· < ¢ $ 270· Tcomp = (I - iJi + (jcomp - j1)' (5.43c)comp

270· < ¢ $ 360· Tcomp = (icomp - io)x + (jcomp - J1), (5.43d)

Selection of one of these four cases of coordinate origins and corresponding position vectors can

be performed automatically in a computer program upon specification of rp by the user.

Generation ofLook-Up Table

It is clear that E. and H. can be calculated at any grid location using an analytical expression
me me

for the space-time behavior of the incident wave (e.g., a sine function or an exponential), once

ndelay and d are determined for that location from (5.40) and (5.4l). However, a large amount of

computer arithmetic is needed to calculate the incident wavefunction to implement the TF IS F

connecting condition. For example, approximately 240,000 computations of a sine or

exponential function are needed each time-step for a six-sided Region-I I Region-2 interface in a

100 x 100 x 100-cell space lattice. (This is still much less than the 12 million computations of

the same type that would be required each time-step for a pure scattered-field formulation,

as discussed in Section 5.10.) To reduce the burden of computing many sines or exponentials

each time-step, an approach based upon a table look-up procedure has been used successfully in

FOTD software. This approach is now summarized.

Referring to Fig. 5.ll(a), we assume that an auxiliary one-dimensional FOTO grid is

positioned so that one of its E-field components, Eioclmo' coincides with origin 01 of the main
two-dimensional TMz grid. Further, the auxiliary grid is assumed to be oriented parallel to the

incident wavevector in the main grid. This allows us to use the auxiliary grid to calculate the

space-time variation of the incident fields in the main grid. With the delay distance d known for

a point in the main grid, the incident field at this point can be obtained by interpolating similar

field values adjacent to point mo+ d in the auxiliary grid. As Fig. 5.11(a) shows, this has the

geometrical interpretation of dropping a perpendicular from the point of interest in the main

two-dimensional TMz grid to the auxiliary one-dimensional grid, and then interpolating about the
foot of the dropped perpendicular.

Note that this procedure requires computation of the incident-wave time dependence at only

a single point in the auxiliary grid, a hard source at rno- 2 :

(5.44)

where g is an arbitrary time function. Thus, only one sine or exponential function must be

computed per time-step to excite the auxiliary grid, thereby exciting the complete
two-dimensional main 1M, grid.
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The system of finite-difference equations for the auxiliary grid is easily derived from (3.41a)
and (3.4lc). Assuming positive directions for E and H. as shown in Fig. 5.11 (a), and the same

mc mc

& and I1t in both the auxiliary and main grids, we have

E In+1 =
mc m InEinc m + /1t . (H In+l/2 _ H 1"+112)

=""[V-C-¢-=-O-O)=-]- inc m-l/2 inc m+1I2
p C !l
V (¢) 0

p

(5.45a)

H In+l/2
inc m+I/2 H In-l/2

= inc m+I/2 + (5.45b)

Note that the factor vp (¢ =OO)/v/¢), a ratio of numerical phase velocities in the main 1M
2

grid
that is slightly less than one, is introduced as a multiplier of both /lo and Eo to slightly speed up
the numerical wave in the auxiliary grid. This speed-up is needed to equalize the numerical
phase velocities of the incident wave in the main grid (propagating at the angle ¢) and the wave
in the auxiliary grid, which would otherwise propagate more slowly because it behaves as if it
were on-axis in the main grid (i.e., ¢= 00

). Using (4.14b), (4.16), and (4.17), the required ratio
of numerical phase velocities can readily be calculated at the beginning of the FDTD run.
(Note that this velocity compensation is valid only at a single sinusoidal frequency. See Section
5.9 for more sophisticated compensation techniques appropriate for broadband pulses.)

Although the above discussion considered the case of Fig. 5.11 (a) as an example. the use of
an auxiliary one-dimensional FDTD grid to source incident-field values applies equally well to
the three cases of Fig. 5.II(b). Changes of the incident-wave angle that cause a shift of the
coordinate origin simply shift the assumed position of the auxiliary grid, as shown in this figure.
In all cases, Eincl mo of the auxiliary grid coincides with the appropriate origin of the main grid.

Interpolation ofLook-Up Table Data

Linear interpolation can be used to obtain the incident fields given knowledge of the delay
distance d and the auxiliary grid field values. Let IFIX(r) denote the largest integer in the real
number r. Then, with d known from (5.41) to (5.43), we obtain for an E-field located at d:

d' = d - IFIX(d)
(5.46a)

For a magnetic field located at d, we have similarly

d" d + 1/2

d' d'J - IFIX(d") (5.46b)

/
"+1/2 ( J) 1"+1/2 J 1"+1/2

H inc d = 1- d . H inc m. -1/2+IFIX(r) + d . H inc mo +1/2+IFIX(d")
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Incident-Field Components

The last step in calculating the incident field needed to implement the TF I SF connecting

condition is to compute the vector components of the field in the X-, y-, and z-coordinate

directions. For the 1M case under discussion, we have simply
z

(5.47a)

5.7.3 Illustrative Example

where E;ncl: and Hincl:+l/2 are provided from (5.46a) and (5.46b). The incident-field

components calculated using (5.47a-c) can now be substituted into the Region-l / Region-2

connecting condition provided by systems (5.37) and (5.39).

We now consider an example of the action of the TF/SF grid zoning provided by systems (5.37)

and (5.39) for a pulsed plane wave propagating in free space at ¢J = 45° within a two-dimensional

TE
z

grid. The grid has uniform square cells of size !:1 = 1.5 cm and is time-stepped with

!:1t =M2c. Its total-field zone spans 100 x 100 cells, and is surrounded on all sides by a 20-cell

scattered-field zone. A Gaussian pulse having a lie spectral bandwidth of 1 GHz is assumed for

the incident wave.

Fig. 5.12 is a grayscale visualization that depicts four snapshots of the Hz field distribution

within the grid. In this figure, the dotted lines show the location of the TF I SF interface.

Above and to the right of 0, in the total-field region, the incident wave propagates exactly at

</J :;:: 45° with full amplitude and no wavefront distortion. Below and to the left of 0, in the

scattered-field region, there is only a small leakage wave that is suppressed by a factor of more

than 103
• Eventually, the plane wave propagates entirely through the total-field region and

arrives at the upper-right TF/ SF interface adjacent to gridpoint 03' Here, the wave disappears

from the grid with only a small leakage into the scattered-field region that is suppressed by

approximately 10
2

•

Fig. 5.13 repeats the visualization of Fig. 5.12, but here a 20 x 20-cell PEe cylinder is

centered within the total-field region. This obstacle generates a complex scattered wave that

eventually passes through all four sides of the TF / SF interface. This passage occurs with zero

retroreflection and complete transmission. Thus, the TF I SF interface is completely transparent

to outgoing scattered waves, regardless of their nature.

(5.47c)

(5.47b)H /"+112 :;:: H r+
1/2

• </J
.1. inc d inc d sm

H r+
1/2

= H r+
1I2

</J
Y. inc d - inc d COS
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Scattered - field zone
------------------------------------j

I
I
I,,
I
I,,
I,,

,,,,,,
I,

o e---------
1

t =2.5 ns

·:
I
I,,,
I
I·I·------------------------------ 1

t=6.25ns

t=3.75ns

r--------------------------

t= 7.5 ns

Fig. 5.12 Action of total-field / scattered-field grid zoning for a plane wave propagating in free space at
rp = 45' within a square-cell two-dimensional TE. grid for !J.t = !J./2c. The Hz field is visualized
in four snapshots as the wave propagates through the total-field zone.
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Scattered- field' zone
r-----------------------------------,.
I

I. ~,

Fig. 5.13 Action of total-field / scattered-field grid zoning for a plane wave impinging upon a square PEe
object at ¢ == 45° within a square-cell two-dimensional TE, grid for j).t == j)./2c. The H, field is
visualized in four snapshots as the wave propagates through the total-field zone.
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5.8 THREE-DIMENSIONAL FORMULATION OF THE TF/SF TECHNIQUE

The total-field / scattered-field grid zoning discussed above can be readily extended to three
dimensional FDTD space lattices. Fig. 5.14(a) shows the coordinates used to define the
propagation direction and polarization of the incident plane wave in three dimensions. Using
standard spherical coordinates, the incident unit wavevector k. is oriented with an angle 8

inC

relative to the +z-axis of the space lattice, where O' < 8 < 180'; and with an angle ¢ relative to
the +x-axis of the lattice, where O· ~ ¢ < 360·. To specify the incident-wave polarization,

we first define a reference direction kinc X z in the plane of the wavefront. We then specify an
orientation angle VI for Einc relative to this direction, where O' ~ III < 360·. This way of

specifying the polarization is useful for all wave-incidence cases except 8 =O· and 8 =180·,
where ¢ can be used to describe the orientation of E inc relative to the +x-axis.

5.8.1 Consistency Conditions

In three dimensions, the interface surface of the total-field and scattered-field regions in the Yee
space lattice is composed of six flat planes forming a closed rectangular box, as shown in
Fig.5.14(b). Each box face contains two tangential E components having a type and location
specified in Fig. 5.15. For simplicity, we assume a cubic-cell space lattice wherein the TF/SF
interface is located in source-free vacuum. Then, by analogy with the consistency conditions
given by (5.37) for the TM, mode, the consistency conditions for the E components at each face
of the TF I SF interface in three dimensions are given by

, 'F E (. . I . I1 =10 ace: x 1 = 10 + 2' ... , 11 - 2 ; k =ko' ... , k( )

= {E In+1 }
x i,jo' k (3.35a)

t1t In+1I2--H.
e!:J. ',inC i,j.-1/2.k

o
\

v
assumed known correction term

(5A8a)

v
assumed known cOfre<.:tion term

= {E In+1 }
Z i ,jo, k (3.350)

!:J.l In+1/2
+-H.e!:J. r,InC i,jo-1I2,k

o
I

(5A8b)

E In+l
x i,j, ,k

= {E In+1 }
x i.j,.k (3.35a)

t1t In+ 112+-H.e!:J. Z,InC i,j,+1I2,k
o

L ,

v
assumed known correction lCnn

(5A9a)
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(a) Incident wave propagation direction and polarization

(b) Coordinate origins for calculation of incident field

k=kO- ~-----~

/ O2

j=jo

Fig. 5.14 Definitions of the incident-wave propagation direction and polarization and the six-sided total
field / scattered-field interface surface for the three-dimensional FDTD space lattice.
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Fig. 5.15 Type and location of the tangential E components in the six faces of the total-field / scattered
field interface surface of Fig. 5.14(b).



Chapter 5: Incident Wave Source Conditions 207

J. =J', Face: E (., Iz 1=10 , ' .. , "

E r+ 1

l i,j,. k
= {E 1"+1 }

Z i.j"k (3.35c)

M 1"+112--H.
E 11 x.mc i, j, +1/2, k

o
, I

V

assumed known correction lenn

(5.49b)

k =ko Face: E (
. . I .,

x I = 10 + "2' ... , II -"2; ... , k-k)- 0

E 1"+1
x i,j,ko

{ E 1"+' }
x ',J, ko (3.35a)

111 1"+112+-H.e 11 y,mc i,j,ko -112
o ,

(5.S0a)

v
assumed known correction term

(5.51b)

(S.51a)

(5.50b)

k =kO' ••• , k,)

. ,
h -"2;

. ,
J, -"2;

. ,
1, -'2;

11t 1"+112+-H.e 11 X,mc i,j,k,+112
o

, J
V

assumed known correction lem

I1t 1"+112
--H.e 11 x, me i, j.*o -1/2

o
\, I

V

assumed known corrcction tenn

11t 1"+1/2--H.e 11 y.mc i.j,*,+112
o

" ,Iv
assumed known correction lCrm

. . I
J =10 +"2'

, . ,
J = Jo +"2'

. . I
1 =10 + 2' ... ,

= {E 1"+1 }
x i ,j, k, (3.35a)

E(i=i'yO'

1

"+1

Ey i,j.k,

E 1"+1
x i,j, k,

i =ioFace:

E (
, ,I • 1

k = k( Face: x 1= 10 +"2' ... , I, -"2;

(5.52a)

v
assumed known correction lenn

111 \"+112
+-H.

E 11 Z,mc io -II2,i. k
o

\
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i = io Face: E(i=i'
1. 0 '

{E 1"+1 }
, io.j. k (3.35c)

ill 1"+112--H.
£.1. y.InC i o-I/2,j.k
,0 ,

assumed knownvcorrection term

k -.:)1 2

(5.52b)

. . I

J = Jo + 2'
• 1

J1 -2";

1

"+1

Ey i,.j,k

.1.t 1"+112--H.
£.1. '.InC i,+1I2,i,k
, 0 ,

assumed knownvcorrection lenn

(5.53a)

i = i
l

Face: E (i = i .
, I'

{ E 1"+1 }
, i, ,i.k (3.35c)

.1.t 1"+1/2
+-H.

£.1. Y.InC i,+1I2,j.k

, (J v '

assumed known correction tenn

(5.53b)

By analogy with the consistency conditions given by (5.39) for the TM
z

mode, the
consistency conditions for the H components located O.5~ outside of each face of the TF/SF
interface in three dimensions are given by

• • 1 F H (. . I • I
J =Jo - 2 ace: ,I =10 + 2' .. " II - 2 ;

• • 1
J =Jo - 2;

H 1"+112
Z i,io -1/2 . ..1:

{ H 1"+1I2} _
, i.jo -112. k (3.36<)

.1.t I"-E.11
0

.1. •. mc i.jo.k

'---,0------'
assumed known correction term

(5.54a)

H /"+1/2
x i,jo-1/2.k { H 1"+112 }

• i·jo -1/2.k (3.36.) + .1.t I"-E.
11

0
.1. "mci.io.k

'----v-----'
assumed known correction lCrm

(5.54b)

1 (.. 1 . 1
j =jj + 2 Face: H, 1= 10 + 2' ... , II - 2;

j
n+1/2

H, i.j, +J/2.k { H 1"+112 }
, i.j, +1I2,k (3.36<) + .1.t I"-E.

110~ '.InC i, i, ,k

~
assumed Imown correction term

(5.55a)
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(S.S7b)

(S.S8a)

(S.57a)
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(5.56a)

(5.55b)
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~
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f'"()

~
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~
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I1t In-E.11 /1 x,mc i, i.k,

~
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/1t In-E.
11/1 ',mc i,i,.k

~
assumed known correction Lenn

• 0 1
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n+112 }
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I
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5.8.2 Calculation of the loddent Field

Coordi/UJ'U' OriginJ

As hown in Fig. 5.14 b). the TF/SPinterfaceun; c in thrre.e dmc i
possible points of initial contact with the incidc,nt wavefTonl, the Wive

are varied through their rang:e" A.naJogou to the two~imc:ni n I TN,
the e points of initial contact are. in fact. coordinltcrigins for c J ul Ii n f me dela eli,""'""'.......
d needed to, obtain the incident-wavc field for the conti 'tRey condidoM of 5.4 !lOS

Followin,g the nounion established for the TM. case. di lance d for the lhrec4imcMi naJ
again given by (5.41). which is repeated here for convenience:

Here. kfftC is the unit incident wavevector gjven by

if = i ine
In<

; + j in 8 in; + i 8

and r is the po ilion vector from lhe appropriate ori'ln to the lead "'t. r In' neal or
c p

intcre 'I.
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For O' < eS; 90". Origins 0,. Oz. 0], and 0.. of Fig. 5.14(b) are the points of the 'IFIS F
inlCCface rbal can make initial conlaCt with lhe incident wavefront. We have the following four
possibilities for' for lhis range of 8:-,

O·S'S90° -. Origin O.at (io,jo' Au>

'-. = (i-. - io)i + (ja.{l - jo); + (kaap - Au)i

90" <; • S 180" -. Origin O2at (i.. i o' ku)

'<'9!!!P = (i_p - ~)i + (j~p - je,); + (ktolllp - ko)i

ISO'<;. S 270' -+ Origin 0) al(i••j •• ko>

'a., = (i~ - iJi + (i...,- i.); + (ka.{l - ko)i

270' < • < 360" 4 Origin 0.. at 00 , i1 • Au)

, " = (ic.wp - io),i + (j~ - j.); + (k_p - ko)i

(5.61a)

(5.6Ib)

(5.6Ic)

(5.61d)

Por 90' < 9 < 180·. Origins 0;. 0;. 0;. and 0; of Fig. 5.14(b) are the points of the 'IFISF
interface that can make initiaJ contact with the incident wavefront. We have the following four
additiornll possibilities forra., for this range of 8:

O' S • S. 90' -+ Origin 0; at (io' jo •k. >

,~ = (;~ - ;o),i + (j~ - jo)j + (kan, - k.)i

900<_~180· -. OriginO;at(i•• jo.k.)

,~ = (ico.p - i1),i + (jc.wp - io)j + (k~ - k.}i

180'< _ S 270· -. Origin 0; at (il'j, •k.)

,~ = (ia-p - il),i + (i~p - j.)i + (k......p- k,)i

270' <.< 360" -+ Origin 0; at (io,il' k,)

r~ = (i~ - io); + (iOO8J - j.); + (kOO8J - k1)i

(5.62a)

(5.62b)

(5.62c)

(5.62d)

Selection of one of these eight cases of coordinate origins and corresponding position
Ve(:lOrs can be pedormed automaticaJly in a computer program upon specification of the
wa.vevcctor angles Band ; by the user. Then the delay distance d can be calculated using (5.41).
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5.9 ADVANCED DISPERSION COMPENSAnON IN THE TFISF TECHNIQUE

As discussed in Sections 5.7.2 and 5.8.2, implementation of the TP/SF technique requires
calculation of the incident.E and H components at FOTD space-lattice points on or adjacent to
the interface of lotal-field Region I and scaUered-field Region 2. A simple procedure was
described for lhis calculation, wherein an auxiliary onc-dimcnsional FOTD grid is assumed to be
oriented aloog the incident wavevcctor in the main two- or three-dimensional space lattice.
1be idea is 10 use the linear source grid, which has the same ~,liJ, and time-step number n as the
main grid. 10 calculate the free-space propagation of the incident wave. In this manner,
the source grid generates a loole-up table for the space-time variation of the incident fields.
The required incident field at any point in the main grid can be obtained by interpolating
c{)rTCSpOnding field values along the source grid.

While this strategy is concepluaJly straightforward, there is the nuance that, in general,
the numerical dispersion characteristics of the incident and main grids differ. This leads to
imperfect confinement of the incident wave within Region I. Field leakage into Region 2 is
most pronounced at the comer of the TFI SF interface that is opposite to the point of first contact
of the incident wave with Region L While small, this leakage can lead to significant error in
calculating scattering behavior. especially for those objects that ,exhibit pronounced suppression
of scattering in certain directions.

Equation (5.45) represents an attempt to compensate for the difference in the numerical
phase velocities of waves in the incident and main grids by adjusting the effective speed of light
in the incident grid. However, (5.45) is exact only in the limit of prolonged time-stepping of a
single,.f:requency sinusoidal incident wave. While helpful in reducing field leakage even during
nonsinusoidal-steady-state conditions, (5.45) is simply not formulated to address the issue of
matching lhe numerical dispersion characteristics of the incident and main grids over the broad
range of Fourier components of the incident wave that are injected during impulsive excitations.

This section describes two enhancements to the lF/SF formulation that address the problem
of minimiZing field leakage into Region 2. The first, the matched numerical dispersion (MND)
technique of Guiffaut and Mahdjoubi [7], requires only a slight modification of the method
presented in Sections 5.7 and 5.8. As will be shown, one merely uses a different space-cell size
.1. i.n the one-dimensional wave-source grid than in the main grid to ensure that the dispersion
properties in both grids are nearly the same. As opposed to the velocity adjusunent of (5.45),
wherein the dispersion correction is at only a single frequency, this modification matches the
dispersions of the two grids over a broad spectrum. As a result, leakage into the scattered-field
region is suppressed by 30 to 40 dB relative to the technique of (5.45) for broadband pulse
eXcitations.

1be second enhancement, caUed the analytical field-propagation (AfP) technique, takes an
entirely different approach. Instead of using an auxiliary grid to calculate the incident field,
an analytical expression is obtained for the incident field at each required space-lattice point.
This expression ac-eounts for all of the numerical artifacts inherent in grid-based propagation.
In addition. unJlke one-dimensional auxiliary grid schemes, it accounts for the fact that for non
grid-aligned propagation of a homogeneous plane wave, E, H, and wavevector k do not exactly
form. a mutually orthogonal sct, as they do in the continuous world. The AfP technique realizes
olders-or-magnitude reduction in leakage into the scattered-field region, at the expense of
additional calculations to perform Fourier and inverse-Fourier transformations at each point
where an incident field component is required.
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k by a scalar factor' which is yet. to be determined. Hence.

5.

where the Dumber of cell peT waveleDath N1 i defined in terms r the! mlCC,..CClI
three-dimensional main grid. For a plane wlveprOplgltinl II ,phe'ricaJ an
main grid. the factor , is obtained from the thrce~dimeMi MI di.speui 1'1 relati .n,.'

written as

5.

Here, the equality (j}6J12 ='lt5)OIN), has been usc:d in the IlgumeDI! r t.bc ine :fu the
left-hand side. In (5.65). one pecifie the number of celli per wl,vclccnam -:1' the C04....

number 5)0' and the directiOD of propagation.. There is DO closed·form luti a f: _ _..... _
it must be obtained numerically by such techniques II bisection or NeWlon' mctbod.

Having obtained ,. we tum out aUention to the Ont dimt:ns oul d - 0 tdllit:ML

In general Ibis can be written

. J.(liJ4J) 51 _. 2(klR~!Q)san - = 10 510 I
2 . 2
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when AID is Ihe spac.e-c.ell si.ze in me one-dimensional wave-source grid, and SID is the Courant

number in that grid. Since the same time-step is used in both the one- and ~-dimensional

grids, the argument on the left-hand side can written as in (5.65). The argument on the right can

be modified by substituting the Last term shown in (5.64) for i iD • Then, after taking the square
root of both sides, this yields

(5.67)

1be second form of the equation is obtained by recognizing that AID/~=S3D' SID because the

same time-step At is used for both grids. Equation (5.67) is now solved for SID' and hence, AID'

Again, no clOsed-form solution is available, and the equation must be solved numerically.

The one-dimensional auxiliary wave-source grid can now be constructed using this value of AlD'
This grid marches the disptrsion characteristics of the three-dimensional main grid nearly exactly
over a broad range of discretizations.

To demon trate this. we consider an example of propagation in a three-dimensional main

grid in the direction (8=60·, ;=45°) with the Courant number S3D = 0.95/.[3. Fig.5.16(a)

graphs (versus N.,) the numerical phase velocity normalized to the froe-space speed of light.

Four separate cases are shown: (I) in the main grid: (2) in a one-dimensional wave-source grid

that uses the same A (and hence the same Courant number) as the main grid; (3) in a wave

source grid that uses the same A as the main grid, but has its phase velocity adjusted to match the

main grid at NA :; 10 using the approach of (5.45): and (4) in a wave-source grid that uses the AID

obtained from (5.67) for N), =to. In the last case, the ratio A,D/AID is found to be 1.70570174 for

the assumed wave-propagation direction in the main grid.

We sec from Fig. 5.16(a) that the numerical dispersion curve of the uncompensated wave
sou.rce grid always differs from that of the main grid, and only approaches a match with the main
grid at very fine grid discrelizations. We also see that, while the approach of (5.45) succeeds in

locally matching the dispersions in the main and wave-source grids (as indicated by the
intersection of the curves at N). = 10), this match degrades rapidly away from the single

frequency match point By far the best dispersion matching is achieved using the value of AID
prescribed by (5.67). Here, the dispersion in the wave-source grid agrees so well with that of the

main grid thal the two curves are indi.stingui.shab/~at the scale of 5.16(a). Hence, the usage of
the term Umatched numerical dispersion" to describe this technique becomes clear.

To better quantify the level of agreement of the dispersion characteristics of the main and
MND wave- ouree grids, Fig. 5.16(b) graphs the magnitude of the difference between their

normalized phase velocities as a function of N),I Observing the exact values of this difference
(the solid curve), we see numbers that are four to seven orders-of-magnitude smaUer than the

free.space peed of light For propagating modes of primary interest in FOro modeling, that is,

modes sampled at N). ~ 10. this dispersion match approaches perfection. The null at N1. = 10
corresponds to the grid discretization at which the dispersion in the two grids was chosen to
match. The dashed curve in Fig. S.I6(b) will be explained in the context of the discu.ssion to
follow, regarding the essential indeptndence of the solution for AID relative to N)..
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We nOle dUll (5.67) requires specification of N)., S)D' and the factor' previously obtained by
solving (5.65). It is clear that N). is 8. fixed (single-frequency) parameter that cannol be uniquely
defined for a broadband impulsive excitation. However, we can show that the precise value 'used
for N). isnol particularly important, and one can safely use any "reasonable" number. To show
Ibis, consider (5.65) and (5.66). Essentially, SID was obtained by equating the right-hand sides of
the$e two equations (although first (5.65) had to be solved for ']. Here, we directly equate these
rig.bl-,band sides after using the fmt two terms of the Taylor series expansion of the squared sine
functions (Le., sinl(x) :: xJ - ~/3). The result is

(5.68)

Upon simplifying (5.68). we obtain

SID. = ~

5)0 A'D
(5.69)

This shows. ralher surprisin,gly, thaI at least approximately, the optimum ratio of the space-cell
ius in the Iwo grids is independent of N). and depends only on the direction of propagation.

For the example of Pig. 5.16 where the direction of propagation is (9=60·, ~=45·), (5.69)
yields a ratio of 1.7056057. Comparing this to the nominally exact value of 1.70570174, we see
that the IWO agree through the first four digits. Hence, if one wants to avoid the root-finding
needed to solve for this ralio rigorously, one is relatively safe merely using (5.69).
The dashed line in Fig. 5.16(b) shows the residual nonnalized phase-velocity mismatch using
this approximate approach. While the null is no longer present, the mismatch is in the same
order of magnitude as before (i.e.. exceedingly small).

The final step in implementing the MND technique is to slightly modify the TF/SF
procedure described previously in this chapter. First, we simply use AID [determined either
rigorously with (5.65) and (5.67) or approximately with (5.69)] in the updating coefficients for
E and H in the wave-source grid. Second, and just as simple, when doing the interpolations
outlined in Sections 5.7.2 and 5.8.2, we replace the distance d given in (5.41) with (A)O/A'D)d.
All other implementation details remain the same.

For broadband pulses launched inlO the main grid, numerical experiments show that MND
optimization of the TF/SF wave source reduces field leakage into the scattered-field region by
30; 1 to 100: I (I.e., 30 10 40 dB) relative to the single-frequency compensation technique of
(5.45). While remarkable given the simplicity of implementing MND, we may ask: "Why is
there nOI even more leakage reduction, given the microscopic residual phase-velocity mismatch
shown in Fig. 5.16(b)1" 1be answer is that error due to the required interpolation of field values
in the wav~source grid becomes the dominant cause of leakage, once the numerical dispersion
chancteri tics of the wave-source and main grids are exactly matched. The next section
discusses a means to achieve dispersion-matching and avoid interpolation, thereby suppressing
leakage into the scattered·field region by more than 90 dB for wideband pulses.
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fie. 5.17 Comparison of I.he field Jemlc versus lime-Slep number into the scattered-field ~gion of a two
dImen ioul TMI. TF/SP FOro grid for three wave-source techniques: the singlc-frequency
compenuted 1Otin:c grid, the matched numerical dispenion source grid, and analytical field
propa.llioo. The injected plane wave has the timc dependence of a Ricker wavelet (a twice
dilfcmniatcd OaUJIiu pulse) that is selCC1cd such that the PDTD grid discretization is 20 cells
pet wavdenlth at the most enerseLic frequency of !be cxcitation.

600500400300
Tlmestep

MaIChed numertcaJ
dispersion (MND)

100

AnaIytlcaI tIeId
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We now considet an example lhat illustrates just bow effective the AFP TF/SFtechnique is
in suppressing field leakage inlo abe scaltered~field region relative to the use of an auxiliary one
dimensional Wave~source grid. even one which has been compensated us,ing the matched
numerical dispersion method. This example involves a 141 x 141 square-cell TM. FOTD grid.
which is eltCiled by a plane wave propagating at 30· relative to the x-axis with the temporal
dependence of a Ricker wavelet (a twice-differentiated Gaussian pulse). The grid discretization
is 20 cells pe, wavelength at the most energetic frequency of the Ricker wavelet. and the Courant
number is set to 1/./3 so that the fields associated with this example could pertain to a three
dimensional Simulation. Leakage is recorded five space cells to the right and five space cells
above the upper-right comer of the total-field region. The reference point for the incident wave
is the lower-Jeft comer of t.he total-field region.

Fig. 5.17 compares the absolute value of the calculated field leakage waveform versus time
step number (or the single-frequency compensated source grid, the MND source grid. and the
AFP technique. We see that the MND results are approximately 40 dB better than the traditional
single-frequency compensated incident-wave grid. However. the AFP technique is much better
yet. suppressing field leakage by approximately 120 dB relative to the MND method. We note
that the AFP technique exhibits nonphysical, acausal energy that arrives at the recording point
essentiaJly at the beginning of time-stepping. However, this energy is microscopic compared
with the energy conllined in the incident pulse and should not pose a concern in practice.
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must bold al lite struclure surface at all time-steps. This causes a scattered wave to be locally
generated at the surface. The scauered wave has surface tangential E components equal and
opposite 10 those of me incident wave, which are assumed to be known everywhere in space and
time. (RecalJ that the incident wave is assumed to propagate in free space, that is, in the absence
of any of the structures being modeled, so that it can be expressed asa simple analytical
wavefuncliofl of space and time.) Thus, at each lattice space-cell edge that defines a small pan
of the Slructute surface, the FOTD code need only specify as a hard source tbe local E
component as being equal and opposite to the incident E at that point in space and time.

There are two principal disadvantages of the scattered-field fonnulation relative to the total
field I scattered-field technique when used to model PEe structures:

• To permit enforcement of the PEe boundary condition, the scattered-field
method requires that components of the incident-wave tangential E be calculated
at aJl space-lattice points comprising the surface of the structure being modeled.
Because the location of these points varies from structure to structure, the
programming of the wave-source condition in the scattered-field method is
structure--dependent and potentially complicated if a complex surface shape is
involVed. Further, complex surface shapes can require a large amount of
computer arithmetic to evaluate the required incident E components at all of the
surface points.

• In space regions where total E and total H are small, such as inside well-shielded
cavities. the incident and scattered fields are nearly equal and opposite
(canceling). Here. the nonnal computational uncertainties arising from applying
~ Vee algorithm to the scattered field can be greatly magnified if postprocessing
is needed to obtain the total field. This is a well-known computational
phenomenon called subtraction noise, which limits the dynamic range of the
scal1~-fieldmethod in calculating the total field.

n.ere is one major advantage of the scattered-field approach relative to the total-field I scattered
field technique:

• With the scattered-field method, the incident fields at all of the space-lattice
points comprising the surface of the structure being modeled are calculated
eXQcll)' using an analytical expression. Thus, the incident wave is not forced to
nUmericaJly propagate through the FOTD space lattice to excite the structure, and
therefore suffers no phase errors due to numerical dispersion. This is of
increasing importance as the elechical size of the modeled structure increases.

5.10.2 AppUcatioo to Lossy Dielectric Structures

The initial application of the scauered-field fonnulation of FOlD to lossy dielechic structures
was reported in (13). This formulation is best understood by starting with Maxwell's curl
equations (3.7) and (3.8) and writing them first for total-field quantities in a region free of
cunent sources:

(5.77)
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5.'10.3 CboIeeollDddeal Plane-Wave Formulation

Over the Years, subswuial high-quality FOTD modeling experience has been obtained with both
lhclolaJ-field I scauered-field and scallered-field formulations. The lolal-field I scattered-field
leChnique seems particularly usefuJ for guided-wave simulations, including transmission lines
and microwave circuits. Both approaches have done well with free-space scallering problems.
1be reader should be aware of me benefils and limitations of each approach, as discussed a'bove.
and in. lhe optimum case be able 10 CODSlr'Ucl working codes for each.

5.11 WAVEGUIDE SOURCE CONDmONS

Sourcing an incidenl numerical. wave in an FDTD model of a PEe or dielectric waveguide
presents additional challenges relative to the ones discussed above for plane-wave sources in free
space. The characteristics of a waveguide that proVide these challenges are as follows:

• The waveguide usually supports a number of distinct propagating modes that
have SUbstantially different spatial distributions of E and H. It may be difficult to
simulale the numerical ellcil4tion of one particular mode without inadvertently
eXCiting SO.OlC or all of the reSl

• Some waveguiding systems such as open dielectric channels and microstrip
structures can have energy rhat is not smclly bounded by conducting outer walls.
but. inslead decays with distance from the center of the system. The transverse
distribution of the modal field may be initially unknown for such systems.

• A pulsed widcband excitation of a waveguide introduces spectral energy that
travels at possibly widely varying phase and group velocities due to the
dispersive nature of the guide's frequency-wavenumber characteristic. This can
cause difficulty in specifying any numerical source condition that is not
complet.ely localized in space.

• Waveguides eXhibiting cutoff phenomena can be subject to reactive fields
loitering in Ihe Vicinity of a source. The distance between a numerical source and
the interaction structure of interest within the waveguide must be selected to
allow substantially complele decay of these reactive fields.

• The use of a wideband pulsed source in a waveguide exhibiting cutoff
phenomena may require substantially prolonging the time-stepping of the FOlD
simulation to permit the very slowly propagating spectral energy just above the
waveguide cutoff frequency to reach the interaction structure of interest, if these
specuaJ components are of interest in the simulation.

5.11.1 PaJRd Elecbic FIeld Modal Hard Souree

A simple way to excite an incident wave in an FOTD model of a waveguide or microstrip is to
specify • pulsed B bard-source distribution in a transverse cross section. That is. some or all of
the E Componenls 'located in and tangential to the transverse source pJane are provided with a.
~pace.lime variation that coincidC$ with that of the desired propagating mode. and are
independent of the presence of any other numerical waves in the grid.
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5.11.1 TOIaI-Fidd I RdIecUd-Fieid Modal Formulation

The total-field I reflected-field modal formulation is simply the application of the total
field I SCattered-field technique discussed earlier in this chapter to guided-wave systems.
H~, the FOTD space lattice modeling a microwave structure is zoned into two distinct regions
separated by a nonphysical vittuaJ swface that serves to connect the fields in each region.

1be intefICting strUcture of interest is embedded within total-field Region 1. In reflected
field Region 2; localed outside of Region I, the FOID algorithm operates only on reflected-field
components wilh no incident wave present A consistency condition is provided at the interface
of the two regions. This generates an incident wave in Region 1 having a user-specified
transverse distribution and Lime waveform, while allowing little leakage into Region 2.
The Reglon-II Region-2 interface is transparent to outgoing numerical reflected-wave modes.
which freely enler Region 2 and then disappear from the grid due to the action of the ABC.

Unlike lhe pulstd E-field modal hard source discussed in Section 5.1 L1, there is no need to
decay the total-field I reflected-field source to zero and remove it from the lattice, and no need to
elongate the simulated waveguide system to causally isolate the source from adjacent waveguide
discontinuities that generate reflections. Here, the source can be continuously operated in close
proximity to adjacent discontinuities.

The programming of the total-field I reflected-field source for a waveguide ca.n be easily
placed in the context of this chapter's previous detailed discussions. For example, assume that
we wish t.o generate a +x-directed incident waveguide mode. Let the interface between Regions
I and 2 be lhe Y-l plane at grid coordinate i = ;s containing total-field £, and E: components.
We immediately identify this interface with the ; =;0 face of the total-field I scattered-field
surface of Figs. 5.14(b) and 5.15(c). The consistency conditions for this race are provided by
(5..52) and (5.58). Thus, all that is needed to implement the wave source is knowledge of the
incident £ value at the total-field component locations in plane i =;$' and knowledge of the
incident Bvalues at the reflected-field component locations in plane; = is - 112.

Overall. this technique is well suited to sourcing an accurate waveguide mode for an
arbitrary PEe Or dielectric system if the incident-field values are known over the complete
transverse cross section of the waveguide. Bootstrapping, as discussed earlier, may be advised to
obtain the necessary field component data. especially for open dielectric and microstrip guides.
Again. caution sbould be exercised in using this approach for wideband pulse excitations.
Here, it is possible that the physical dispersion of the propagating spectral energy between planes
;=;s - 1/2 and; =is is sufficient to introduce error in the assumed incident-field distributions at
these planes. In addition, the inadvenent sourcing of reactive below-cutoff fields can muddy the
assumed incident. distributions.

5.11.3 Resisdv~ Source and Load Conditions

In the laboratory, a commonly used means to excite microstrips or waveguides is an insulated
metal probe extending fTom the metal ground plane or waveguide wall. For microstrips,
the probe connects to the signal trace. Por waveguides. the probe dead-ends in free space at
appro:dmately the c.entcr of the waveguide cross section at the location of an E-field maximum
of the waveguide mode. The metal probe is an extension of the center conductor of a coaxial
cable Oa( is connected to a microwave generator. Usually, the output impedance of the
microwave generator is mat.ehed to tbe characteristic impedance of the coaxial cable, which in
tum is matched (0 the characteristic impedance of the excited microstrip or waveguide.
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5.12 SUMMARY

This chapter reviewed four useful. general c1 sc: f c mpact tlcell magneti
FOTD model 10 POIJight Iheir key feature: (I) hard- urccd B and H ftel_
dimensional grid; 2) J and M currenl ource in three dime i oaI Ian
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and (4) waYeguide source . While not compact a fifth I r WI\' rtt. pUle sana'Cd-
fleld formulation. was also reviewed bccau - of it- ulilily. Chapter IS iJI d' in
sixth class of potential FOro wave source , electronic clrcuilJ. Circuit . m
to be considered there include re i tors, capaciton •. induct • dl
These are useful ~r modcHns high- peed digital circuits and micT WlY
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PROBLEMS

S.I Using the magic lime-step i.n a one-dimensional FOTD grid. implement the hard source of
(S.l), assuming+x-directed propagation. Use a resoluti.on of 20 grid cells per wavelength.
Set up a reflecting barrier in the grid, and demonstrat.e that the hard source causes a
retrorefleclion artifacl

5.2 Using, the magic time-step in a one-dimensional FOTD grid, implement the hard source of
(5.2), assumjng +x-direetcd propagation. Use a resolution of 20 or more grid cells between
the IIe points of the pulse.

S.3 Using the magic lime-step in a one-dimensional FOTD grid. implement the logically
removed hard source of (S.4), Set up a reflecting banier in the grid and demonstrate thal
the pulse width and distance to the reflecling barriet can be adjusted to permit zero
felroreflection artifact
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5.4 Using the magic time-step in a one-dimensional FDTD grid, implement the total
field / scattered-field wave-source condition of (5.28), (5.32), (5.34), and (5.35). Replicate
the results of Fig. 5.9.

PROJECTS

P5.1 Develop a working two-dimensional square-cell Yee TE
z

grid with simple outer boundary
conditions (PEC sheets). Then, replicate the results of Fig. 5.1 and Table 5.1. Be sure to
adjust the grid size so that numerical wave reflections from the outer grid boundary do not
contaminate the results in the field-observation region. Use the time-step relation
eM = ~/f2.

P5.2 Develop a working three-dimensional cubic-cell Yee space lattice with simple outer
boundary conditions (pEC sheets). Replicate the results of Figs. 5.3 to 5.5, using a smaller
space lattice as needed to keep the problem in the DRAM of your computer. Use the time
step relation c~t = ~ /f3 .

P5.3 Use the FDTD code developed in Project P5.2 to replicate the results of Figs. 5.6 and 5.7.

P5.4 Implement total-field / scattered-field zoning for a two-dimensional, square-cell TEz grid
over the incident-angle range O· ~ ¢J ~ 90'. Use both single-frequency compensated and
MND incident-wave grids. Replicate the results of Figs. 5.12 and 5.13.

P5.5 Modify the FDTD code of Project P5.4 to allow the incident-angle range 90· < ¢J ~ 180·.
Check the programming by obtaining the mirror-image results of Figs. 5.12 and 5.13 for a
plane wave incident at ¢J = 135".

P5.6 Replicate the results of Project P5.4, but use instead the scattered-field formulation of
Section 5.10.1.

P5.7 Develop a working two-dimensional square-cell Yee TM, grid with simple outer boundary
conditions (PEC sheets). After adjusting the grid size so that numerical wave reflections
from the outer grid boundary do not contaminate the results in the field-observation region,
simulate the lowest order (TEl) waveguide mode propagating between two parallel PEC
plates. Use the pulsed E-field modal hard source of Section 5.11.1 for a time waveform
similar to (5.3). Adjust the carrier frequency and pulse decay to implement first a
narrowband excitation well above cutoff, and then a broadband excitation with spectral
components near or even below cutoff. Graph or visualize the fields in the waveguide.
Justify the dispersive nature of the propagating pulse.

P5.8 Adapt the 1Mz FDTD code developed in Project P5.7 to use the total-field / reflected-field
modal source of Section 5.10.2. Contrast the operation of this source with that of the
modal hard source of Project P5.7, considering both the accuracy of the generated
waveguide mode and suppression of the source-retroreflection artifact.

P5.9 Adapt the TM, FDTD code developed in Project P5.7 to implement a single-component,
hard-sourced E excitation at the center of the waveguide. Observe the electrical length

l

needed for the generated fields to settle into the fundamental waveguide mode.
Justify this distance. Contrast the operation of this source with that of the modal hard
source of Project P5.7, considering both the accuracy of the generated waveguide mode
and suppression of the source-retroreflection artifact.



Chapter 6

Analytical Absorbing Boundary Conditions

6.1 INTRODUCTION

A basic consideration with FDTD modeling of electromagnetic wave interaction problems is that
many are defined in "open" regions where the spatial domain of the computed field is unbounded
in one or more coordinate directions. Clearly, no computer can store an unlimited amount of
data, and therefore, the field computation domain must be limited in size. The computation
domain must be large enough to enclose the structure of interest, and a suitable boundary
condition on the outer perimeter of the domain must be used to simulate its extension to infinity.

Fig. 6.1 shows schematically such a finite computational domain n. In the interior of n, we
apply one of the FDTD algorithms of Chapter 3 that models wave propagation in all directions.
On an, the outer boundary of n, only numerical wave motion outward from n is desired.
Here, we need a boundary condition that permits all outward-propagating numerical waves to
exit .Q as if the simulation were performed on a computational domain of infinite extent.
This boundary condition must suppress spurious reflections of outgoing numerical waves to an
acceptable level, permitting the FDTD solution to remain valid for all time-steps, especially after
the reflected numerical waves return to the vicinity of the modeled structure. Depending upon
their theoretical basis, outer-boundary conditions of this type have been called either radiation
boundary conditions (RBCs) or absorbing boundary conditions (ABCs). For simplicity,
the notation ABC will be used in the remainder of this book to describe all outer-boundary
conditions used to simulate the extension of an FDTD computational domain to infinity.

ABCs cannot be directly obtained from the numerical algorithms for Maxwell's curl
equations defined by the finite-difference systems reviewed in Chapter 3. Principally, this is
because these systems employ a central spatial-difference scheme that requires knowledge of the
field which is one-half space cell to each side of an observation point. Central differences cannot
be implemented at the outermost planes of the space lattice, since by definition there is no
information concerning the fields at points one-half space cell outside of these planes. Although
backward finite differences could conceivably be used here, these are generally of lower
accuracy for a given space discretization and have not been used in major FDTD software.

Modern ABCs have capabilities for virtually reflection-free truncation of two-dimensional
and three-dimensional FDTD space lattices in free space, in lossy or dispersive materials, or in
dispersive metal or dielectric waveguides. Extremely small local reflection coefficients in the
order of 10-4 to 10-

6
can be attained with an acceptable computational burden. These ABCs

allOW the possibility of achieving FDTD simulations having a wide dynamic range of 70 dB or
more. Currently, FDTD computational dynamic range is limited more by numerical dispersion
and by the precision in defining the shapes of the structures being modeled than by artifacts due
to reflection of numerical waves from the outer boundary of the computation space.
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Fig. 6.1 Two-dimensional Cartesian computational domain n showing the outer domain boundary an
at which an ABC is implemented to simulate the extension of the grid to infinity. Source: Moore
et aI., IEEE Trans. Antennas and Propagation, 1988, pp. 1797-1812, © 1988 IEEE.

This chapter discusses in detail several important, approximate analytical ABCs that indicate
the progression of research in this area. l The discussion is presented in the approximate
chronological order that these ABCs were examined in the literature. The next chapter
(Chapter 7) will provide a similarly detailed treatment of an alternative approach to realizing
ABCs, the use of the perfectly matched layer (PML) to literally absorb outgoing waves at the
outer boundary of the computation space.

6.2 BAYLISS-TURKEL RADIATION OPERATORS

Historically, the theory and application of radiation operators represents one of four major
achievements in ABC theory during the 1970s and 1980s. These operators constitute a class of
ABCs based upon the expansion of outward-propagating solutions of the wave equation in
spherical or cylindrical coordinates.

IUsing Green's theorem. it is possible to derive exact analytical expressions for the fields at the outer
domain boundary in terms of known interior fields. However, such expressions are "global" in nature in
that the field data required are located at a contour or surface completely enclosing the computation space.
Storing and processing these data involves a large computer-resource burden. While local ABCs are only
approximate. they require interior field data only in the vicinity of the outer boundary point of interest.
The computer-resource advantage of local ABCs relative to global ABCs has been decisive, with almost
all reported FDTD software using local ABCs.
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As presented by Bayliss and Turkel [1, 2], the idea here is to construct a linear partial
differential operator from a weighted sum of three types of derivatives of the field: (1) spatial
derivatives in the direction of outgoing wave propagation, (2) spatial derivatives in directions
transverse to the direction of outgoing wave propagation, and (3) time derivatives. Properly
constructed, this differential operator systematically "annihilates" terms of the outgoing-wave
expansion, leaving a remainder term that diminishes to zero as an inverse power of R,
the distance from the observation point to the origin. At any point on the outer boundary of the
computation space, applying this differential operator to the local field via finite differences
permits the derivative of the field in the direction of outgoing wave propagation to be accurately
estimated in terms of known transverse spatial derivatives and time derivatives. Such an
estimate permits the computation space to be closed, with little nonphysical wave reflection.

6.2.1 Spherical Coordinates

Consider solutions VCR, 0, ¢, t) to the three-dimensional scalar wave equation

(6.1)

The radiating solutions of the scalar wave equation (Le., solutions propagating in directions that
are outward from the origin of a spherical coordinate system) can be expanded in a convergent
series of the form [3,4]

U(R, 0, ¢, t)
= i Uj(ct-~, 0, ¢)

;;1 R
(6.2)

=

where the u
j

are unknown functions of angular position, but are all propagating in the radial
direction at the free-space phase velocity c. For a very large distance R from the origin, we note
that the leading terms of (6.2) dominate. Forming the partial-derivative operator

I () ()
L - -- +

c ()t ()R

and applying to the expansion of (6.2) yields for the limiting case of very large R:

(6.3)

lim LU
R.... -

= [2..u;.c + u;'(-l) + Uj.(-l)]

eRR R
2

[
1 u'· c+ _._2_ +
C R2

u' ·(-1) U .(-2)]
2 + .....::,.2__

R2 R3

(6.4a)

where the prime denotes differentiation with respect to the argument. After performing the term
cancellations indicated in (6.4a), we obtain
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. 1 (JU (JU ul . (-1) Uz . (-2) ( -Z)
hm LU = -- + - = + = 0 R
R-7- c (Jt (J R RZ R3

(6.4b)

where O(R-z) denotes the leading-order remainder term which varies as R-z. We call operator L
the Sommerfeld radiation condition [5]. Solving (6.4b) for (JUI(JR yields

(JU 1 (JU Z- = - - - + O( R- )
(JR c (Jt

(6.5)

In principle, (6.5) can be used at the outer boundary of the computation space to estimate
(JUI(JR from known interior field values if the remainder term is neglected (i.e., assumed to be
zero). As discussed above, this permits closure of the computation space. However,
the remainder term in (6.5) would not be negligible, in general, unless the outer boundary were
moved quite far from the origin. This would be wasteful of computer resources. Realizing this,
Bayliss and Turkel sought to devise a partial differential operator similar to L of (6.3) that would
have a remainder term diminishing more quickly to zero than O(R-z).

To follow the logic of the Bayliss-Turkel procedure, let us consider first a slightly
augmented version of the Sommerfeld radiation condition operator L:

B1 = L + II R (6.6)

which we call the Bayliss-Turkel radiation operator of order 1. Applying B
I

to outgoing wave
expansion (6.2) yields

BIU
[1 u;. c u;· (-1)

+
u

l
. (-I)

~'~J= -.--+ +
c R R RZ

[1 u~' c u; .(-1) U . (-2)
~'~J (6.7a)+ -.-- + + Z +

c RZ
R

Z
R3 R RZ

[1 u'· c u; .(-I) U • (-3)
~'~J+ _._3_ + + 3 + +

C R3 R3 R4 R R3

After performing the term cancellations indicated in (6.7a), we obtain

(6.7b)

Comparing (6.7b) with (6.4b), we see that B
I

is superior to the Sommerfeld radiation condition L
in that the leading-order remainder term of B. diminishes to zero more quickly than that of L by
one full inverse power of R.

Next, pursuing even better performance, we apply the transitional operator
BIZ =L + (31 R) to what remains in (6.7b), yielding the composite operator:

BZ = BIZ B, = (L + 31 R) (L + 11 R) (6.8)
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which we call the Bayliss-Turkel radiation operator of order 2. Applying B
2

to (6.2) results in

B2 U -[2_. u~ . c + u~ . (-1)
+

u
2

. (-3)
+ ~'~J

c R3 R3 R4 R R3

[1 u'· c u; . (-1) u
3

. (-4)
~'~J2 _._3_ + + 5 + (6.9a)

c R4 R4 R R R4

[I u'· c u; . (-1) u . (-5) :. ;:]- 3 _._4_ + + 4 +
C R5 R5 R6

After performing the term cancellations indicated in (6.9a), we obtain

(6.9b)

Comparing (6.9b) with (6.7b) and (6.4b), we see that B2 is superior to both Bland L.
The leading-order remainder term of B2 diminishes to zero more quickly than that of B 1 by two
full inverse powers of R. Relative to L, the leading-order remainder term of B2 diminishes to
zero more quickly by three full inverse powers of R.

It can be shown that the procedure discussed above can continue indefinitely via a recursion
relation to construct Bn , the Bayliss-Turkel radiation operator of order n:

(6.10)

B annihilates the first n terms of outgoing wave expansion (6.2). The leading-order remainder
n .

term of Bn is gIven by

To emphasize a remarkable and key point that might otherwise be lost in the mathematics,
the Bayliss-Turkel radiation operators are constructed to achieve their annihilation property
without our having any knowledge whatsoever of the angular dependence of the partial
wavefunctions uj that make up outgoing wave expansion (6.2). Further, the user can select the
order of B n as necessary to annihilate the dominant expected outgoing waves. Of course,
the complexity of the operator and its numerical realization increases significantly with its order.
In the research literature, B2 has been the most popular radiation operator for providing an ABC
for spherical meshes, or for more general meshes having locally defined curvatures that permit
exploitation of the Bayliss-Turkel formulation. Apparently, B2 represents a good compromise
between accuracy and complexity of implementation. Depending on the radial distance at which
the outer computational boundary is located, B2 yields reflection coefficients on the order of 1%.

lim B
n
U = o(R-2n

-
l

)
R-I~

(6.11)
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6.2.2 Cylindrical Coordinates

The derivation of Bn for use with cylindrical wavefunctions VCr, ¢, t) in two space dimensions
proceeds in a manner analogous to the above. The radiating solutions of the scalar wave
equation (Le., solutions propagating in directions that are outward from the origin of a cylindrical
coordinate system) can be expanded in a convergent series of the form [6]

VCr, ¢, t)
= ~ u/ct - r, ¢)

L.J i+1/2
;=0 r

u l (et - r, ¢) u2 (et - r, ¢)
1/2 + 3/2 + ...

r r

(6.12)

where the u j are unknown functions of angular position, but are all propagating in the radial
direction at the free-space phase velocity c. For a very large distance r from the origin, we note
that the leading terms of (6.12) dominate. Again forming the Sommerfeld radiation operator L
of (6.3) and applying to the expansion of (6.12) yields in the limit of very large r:

U~ • (-1) u2 • (-3 12)J
3/2 + 512

r r

lim LV [
1 u;· e u; .(-1)
- . '"lI2 + 1/2 +
err

[
1 u'· c+ _._2_ +

3/2e r

U1 . (-1I2)J
3/2r

(6.13a)

After performing the term cancellations indicated in (6.13a), we obtain

lim LV =
u j ·(-1/2)

3/2,
u2 . (-3 12) = 0(r-3/2 )

+. 512, (6.13b)

By analogy with the procedure discussed in Section 6.2.1, we consider first a slightly
augmented version of L. We call this the Bayliss-Turkel radiation operator of order 1 in
cylindrical coordinates:

BI = L + 11 2r

Applying B1 of (6.14) to outgoing wave expansion (6.12) yields

(6.14)

B1U
[1 u;· e u; . (-1)

+
u

1
• (-112)

+ 1 u1 ]= - . ---ui'"" + 1/2 3/2 2, r
l/2c , r ,

+ [.!.. u~ ·e + u~ . (-1)
+

u
2

. (-3/2)
+ I u2 ] (6.15a)

3/2 3/2 512
2r r

3/2
e r r ,

+ [1 u;· c U; .(-1)
+

u3 ·(-SI2) + _1.~] +-'--;n + 512 7/2 2 512
...

e , r , r r
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After performing the term cancellations indicated in (6.15a), we obtain

• Uz 2u3 ( -5/Z)
hm B1 U == - 5i2 - ---::;rz = 0 r
r-l- r r

(6.15b)

Comparing (6.15b) with (6.13b), we see that B1 is superior to the Sommerfeld radiation operator
L, in that the leading-order remainder term of B, diminishes to zero more quickly than that of L
by one full inverse power of r. This is the same degree of error reduction noted for B J versus L
in the three-dimensional case.

Again pursuing even better performance, we apply the transitional operator
BIZ = L + (5/2r) to what remains in (6.15b). This yields the composite operator Bz . which we
call the Bayliss-Turkel radiation operator of order 2 in cylindrical coordinates:

Bz = BIZ BI
::: (L + 5/2r)(L + 1/2r) (6.16)

Applying Bz of (6.16) to outgoing wave expansion (6.12) results in

BzU
_[.!.. u; .c + u; . (-1)

+
Uz . (-5/2)

+ ~'~J5/Z 5/Z 7/Z 2 5/ZC r r r r r

[I u'· c u~ . (-I) u
3

·(-7/2) 5 u3 ]2 _._3_ + + (6. 17a)7/Z 7/Z 9/Z + 2r //Zc r r r

[I u'· c u; .(-I) u
4

. (-9 /2) 5 u4 ]_ 3 _._4_ + +9/Z 9/Z 11/Z + 2r r 9
/

Z
c r r r

After performing the term cancellations indicated in (6.17a), we obtain

lim BzU
r-->-

6u4

I1/Z
r

::: O(r-9/Z) (6.17b)

Comparing (6.17b) with (6.15b) and (6.13b), we see that B2 is superior to both B
1

and L.
The leading-order remainder term of B2 diminishes to zero more quickly than that of B J by two
full inverse powers of r. Relative to L. the leading-order remainder term of Bz diminishes to zero
more quickly by three full inverse powers of r. These accuracy advantages of Bz versus Bland L
are the same as for the three-dimensional case discussed earlier.

It can be shown that this procedure can continue indefinitely via a recursion relation to
construct Bn • the Bayliss-Turkel radiation operator of order n in cylindrical coordinates:

IT
n

( 4k-3) ( 4n - 3)Bn = L + -- = L + -- Bn_1
k=J 2r 2r

(6.18)
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B annihilates the first n terms of outgoing wave expansion (6.12). The leading-order remainder
n

term of B
n

is given by

lim B
n
U = O(r-2n-I/2)

r->~

(6.19)

B
2

has been the most popular radiation operator fQr providing an ABC for cylindrical grids,
or for more general grids having locally defined curvatures that permit exploitation of the
Bayliss-Turkel formulation. This is because 8 2 represents a good compromise between accuracy
and complexity of implementation. Depending on the radial distance at which the outer
computational boundary is located, 8 2 yields reflection coefficients on the order of 1%.

Although Bayliss-Turkel operators can be adapted to provide ABCs for two- and three
dimensional Cartesian FDTD grids, the adaptation is really a forced one. The outer grid
boundary in Cartesian space is no longer at a fixed radial distance from the center of the grid, and
finite-difference realizations of the necessary azimuthal spatial derivatives no longer lie
completely within the computation space. Here, a better approach is to define a local coordinate
system at the outer boundary that follows natural grid planes, rather than cutting across them.
This is the approach of the next group of ABCs to be considered.

6.3 ENGQUIST·MAJDA ONE·WAY WAVE EQUATIONS

A partial-differential equation that permits wave propagation only in certain directions is called a
one-way wave equation. When applied at the outer boundary of an FDTD computation space,
a one-way wave equation numerically absorbs impinging outgoing waves. The theory and
numerical application of such equations constitute the second of the principal thrusts in ABC
technology during the 1970s and 1980s.

Engquist and Majda derived a theory of one-way wave equations suitable for ABCs in
Cartesian FDTD grids [7]. Their theory can be explained in terms of factoring partial-derivative
operators. For example, consider the two-dimensional wave equation in Cartesian coordinates:

1 i/U
= 0 (6.20)

where U is a scalar field component and c is the wave phase velocity. We can define the partial
differential operator

i/ ;/ 1;/
G - -+ -- --- -

Jx 2 Ji c
2 Jt 2

The wave equation is then compactly written as

GU = 0

(6.21)

(6.22)

It can be shown that the wave operator G can be factored in the following manner:

(6.23a)
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where G- and (j are defined as

D,~ 2- l-s
c

(6.23b, c)

with

s -
(Dr/c)

(6.23d)

Engquist and Majda showed that at the left and right grid boundaries in Fig. 6.1, applying
G- and G+, respectively, to the wavefunction U exactly absorbs a plane wave propagating toward
the boundary at any angle a. Thus, the conditions

(6.24a, b)

function as exact analytical ABCs for general leftward and rightward wave motion originating
from the interior of the spatial domain n.

6.3.1 One-Term and Two-Term Taylor Series Approximations

NoW, substituting (6.25b) into (6.24a) and identifying the differential operators as partial
derivatives, we obtain the corresponding partial-differential equation that can be numerically
implemented as a first-order-accurate ABC at the x = 0 grid boundary:

Note that a very small value of s means that the y partial derivative of the outgoing wave is
negligible compared to the time derivative of the wave scaled by c. Equivalently, the outgoing
wave impinges upon the x = 0 or x = h grid boundary at an angle very close to broadside.
For example, consider the x =0 grid boundary. Substituting (6.25a) into (6.23b), we obtain

(6.25a)

(6.25b)G - = D - Die
-.t r

The presence of the square-root functions in (6.23b, c) classifies G- and G+ as pseudodifferential
operators that are nonlocal in both space and time. This is an unfortunate characteristic, in that it
prohibits the direct numerical implementation of (6.24) as an ABC. However, we can
approximate the square-root function to produce a family of normal partial-differential equations
that can be implemented numerically and are useful in FDID simulations. These approximations
are not exact, in that a small amount of reflection does develop as numerical waves pass through
the outer boundary of the spatial domain. However, it is possible to design an ABC that
minimizes the reflection over a meaningful range of outgoing wave angles.

Consider the use of a Taylor series to approximate the square-root functions in (6.23b, c).
A one-term series of this type suitable for very small values of s is simply

au
ax

lau
c at = 0 (6.26)
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Next, we consider the use of a two-term Taylor series to approximate the square-root
functions in (6.23b, c):

(6.27a)

Clearly, this approximation remains useful for larger values of s than that of (6.25a),
or equivalently, for waves impinging upon the left or right grid boundary at angles somewhat
further from broadside. For example, substituting (6.27a) into (6.23b), we obtain at x =0:

Dr (- I
c

1 2)-s
2

(6.27b)

D,
-+
c

cD 2

--y-

2D
I

After substituting (6.27b) into (6.24a), multiplying through by D
I

, and identifying the differential
operators as partial derivatives, we obtain the corresponding partial-differential equation that can
be numerically implemented as a second-order-accurate ABC at the x =0 grid boundary:

;iu
---
JxJt

1 J2U C J2 U
---+
C Jt2

2 Ji
o (6.28a)

Analogous approximate analytical ABCs can be derived for the other grid boundaries of Fig. 6.1:

a2u 1 a2u c a2u
--+ --- - --- = 0, x = h boundary
axat c Jt 2

2 ai

J2 U 1 flu c ;/u
--- ---+ --- = 0, y =0 boundary
JyJt c Jt2 2 Jx2

a2u I a2
U c J2 U

--+ --- - --- = 0, y =h boundary
JyJt c Jt2 2 Jx2

(6.28b)

(6.28c)

(6.28d)

For the FDTD simulation of Maxwell's equations, the ABCs of (6.28) are applied to individual
Cartesian components of E and H that are located at, and tangential to, the outer boundaries of
the space lattice.

The derivation of ABCs for the three-dimensional case follows the above development
closely. The wave equation, given by
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has the associated partial-differential operator

(6.29b)

G can be factored in the manner of (6.23a) to provide an exact absorbing boundary operator G
at x::; 0 having the same form as that of (6.23b), but with s given by

s - (6.29c)

Again, (6.24a) holds, where G- applied to scalar wavefunction U at the x::; 0 boundary of the
space lattice exactly absorbs a plane wave propagating toward this boundary at an arbitrary
angle.

The first-order ABC in three dimensions, which uses a one-term Taylor series expansion of
(6.23b), remains the same as (6.26) obtained for the two-dimensional case. However, the
second-order ABC in three dimensions, which uses a two-term Taylor series expansion, has a
z partial-derivative operator added to (6.27b):

(Dx
- D, + cD: + CD:) U ::; 0

c 2D, 2Dr

(6.30)

Multiplying (6.30) by Dr' and identifying the differential operators as partial derivatives, yields
the desired ABC at x ::; 0:

1 ;:lu c (iu c a2u
--- + --- +
c ar 2

2 a/ 2 az 2
::; 0 (6.3Ia)

Analogous second-order ABCs can be derived for the other outer boundaries of the space lattice:

a2u 1 a2u c a2u c a2u
--+ --- - ---- --- ::; 0, x ::; h boundary (6.31b)axar c ar2 2a/ 2az2

a2u 1 a2u c a2u c a2u
--- ---+ ---+ --- ::; 0, y::;O boundary (6.31c)ayar c ar2 2ax2 2ai

a2u 1 a2u c a2u c a2u
--+ --- - --- - --- = 0, y=h boundary (6.31d)ayar c ar2 2ax 2 2ai
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;/u 1 ;lu C fiu C flu
---+ --- + --- = 0, z= 0 boundary

az at c at2 2 ax2
2 a/

a2u 1 a2u C a2u c a2u
--+ --- - --- - --- = 0, z = h boundary
azat c at 2 2 ax2

2 a/

(6.31e)

(6.31t)

For the FDTD simulation of Maxwell's equations, the ABCs of (6,31) are applied to individual
Cartesian components of E and H that are located at, and tangential to, each of the outer
boundaries of the space lattice.

The approximate second-order ABCs derived above have been found to be useful in FDTD
codes when implemented using the finite-difference scheme reported by Mur [8], discussed next.
These ABCs truncate FDTD space lattices with an overall level of spurious reflections in the
range of 1% to 5%, sufficiently low to provide simulations having engineering value.

6.3.2 Mur Finite-Difference Scheme

Mur introduced a simple and successful finite-difference scheme for the ABCs of (6.28a-d) [8].
For clarity, this scheme is illustrated at the x = 0 grid boundary. Let Wlo,j represent a Cartesian
component of E or H located in the Yee grid at x =0 and tangential to this boundary.
Mur implemented the partial derivatives of (6,28a) as numerical central differences expanded
about an auxiliary gridpoint (l/2,j). In the first step, the mixed x and t derivative is written as

dxat 112,j

1 (dW n+l

= - - -
2~t dX J/2,j

1 [( wt+1
- W1n+l) (Wt -I

_ Win-I)]= __ I,} o,} _ I,} o.}

2~t ~x ~x

(6.32a)

Next, the second time derivative is written as the average of the second time derivatives at the
adjacent points (O,j) and (l,j):

(6.32b)

The second y derivative is written as the average of the second y derivatives at the adjacent
points (O,j) and (l,j):
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(6.32c)

= 2.{ [WI~,j+l - 2Wl~,j + WI~,j_l] + [WI~,j+l - 2wl~.j + WI~,j_l]}
2 (Ay)2 (Ay)2

Substituting the finite-difference expressions of (6.32a-c) into (6.28a) and then solving for

wl~~) ,we obtain the following time-stepping algorithm along the x = 0 grid boundary:

In the same manner, we can derive analogous finite-difference expressions for the Mur ABC

at each of the other grid boundaries x =h, Y =0, and y =h by substituting into (6.28b), (6.28c),

and (6.28d), respectively. More simply, these expressions can be obtained by inspection from

(6.33) and (6.34), using coordinate-symmetry arguments to permute the subscripts of the W's.

Further, it is easy to show that the corresponding first-order Mur ABC is obtained by removing

the y-derivative tenns, yielding at x =0:

+ 26x (wl~,j + WI~J
cAt + Ax

+ (CAt)2 Ax (WI~,j+1 - 2wl~.j + Wl~,j_l +J

2(Ay)2(CAt+Ax) WI;,j+1 - 2WI;,j + wl~.j_1

For a square grid, Ax =Ay =A, and the Mur ABC at x =0 can be written as

= _ Will-I + cAt - A (WlII+) + WIII-,I) + 2A (Will. + Wrl.).)
I,) A A I.) 0.) A. A 0.)cut + Ll. CLl.l + Ll.

+ (cAd (WI~,j+1 - 2WI~,j + WI~.j_l +J

2A(cAt + A) will. _ 2wl lI
• + will.

1,)+1 I,) 1,)-1

wlll+I = _ wr-,l + cAt - A (WIII+.' + WIII-~) + 2A (Wloll. + will• .)
0,) I.) cAt + A I.) 0.) cAt + A ,j ,j

(6.33)

(6.34)

(6.35)



242 Computational Electrodynamics: The Finite-Difference Time-Domain Method

In three dimensions, the derivation of the Mur finite-difference expression for the ABC at

the x =°boundary of the space lattice follows the above development closely. Here, the Mur

scheme involves implementing the partial derivatives of (6.31 a) as numerical central differences

expanded about the auxiliary gridpoint (1/2,), k). The second derivatives, (J2 W/ (Jx (Jt,

(J2 WI (Jt 2, and (J2 WI (Jl are identical in form to (6.32a), (6.32b), and (6.32c), respectively, and

are evaluated in lattice plane z =kflz. The second z-derivative, (J2 W/ (Ji, is expressed as the

average of the second z-derivatives evaluated at the adjacent points (0,), k) and (1,), k).

Substituting these finite-difference expressions into (6.31 a) and solving for WI~~I,k' we obtain

the following time-stepping algorithm along the x =°lattice boundary:

Wj"+la,j.k
= _WI II - I efl.t - & (111+1 111 1 )

I.j.k + eM + & W I.j,k + W O~j,k

+ 2& (WI~ J' k + wl~· ,.)
cfl.t+& .. .J.'

+ (~fl.d & (WI~'J+I'k - 2WI~,j,k +WI~,j_I. k +)
2fl.y (cfl.t + &) WI~'J+l,k - 2 WI~,j,k + WI~,j_I,k

+ (~fl.d & (WI~,j'k+l - 2WI~.j,k +WI~,j.k-l +)
2& (cfl.t + L\x) wIll. _ 2will. + Will.I,J.k+l l,J,k I.J.k-1

(6.36)

For a cubic lattice, & = fl.y = flz = fl., and the Mur ABC at x = °can be written as

wl"+ 1
O.j.k 1

11-1 cfl.t - fl. ( 111 +1 I )= - WI Jk + WI' k + wl"O,-J',k. , cfl.t + fl. ,J.

(6.37)

WI~,j+l,k - 4wl~.j.k + WI~.j_),k +

(cfl.t/
+ WI~,j+I,k - 4WI~,j,k + WI~.j_l,k +

2fl.(cfl.t + fl.)

WI~,j,k+1 + WI~,j.k_1 + WI~,j,k+' + WI~.j.H

In the same manner, we can derive analogous finite-difference expressions for the Mur ABC

at each of the other lattice boundaries x = h, Y = 0, Y = h, z = 0, and z = h by substituting into

(6.31 b-f), respectively. More simply, these expressions can be obtained from (6.36) and (6.37)

using coordinate-symmetry arguments to pennute the subscripts of the W's.
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6.3.3 Trefethen-Halpern Generalized and Higher-Order ABCs

Trefethen and Halpern [9, 10] proposed a systematic means to improve the accuracy of ABCs

derived from the one-way wave equation. Their idea was to achieve a better approximation of

~ in (6.23b, c) than is possible using a Taylor's series. A general interpolant res) for this

purpose was defined over the range -1 ~ s ~ +1. This interpolant was postulated to be the ratio

of a numerator polynomial Pm(s) of degree m, and a denominator polynomial qn(s) of degree 11:

~ P (s)1 - S2 == res) = _m_

qn(s)
(6.38)

r(s) is called a rational-function interpolant of type (m, n) over the s interval [-1,1].

Since s == cD/Dr' implementing (6.38) is equivalent to approximating, for example, the exact
one-way wave equation of (6.24a) at the x =0 lattice boundary for outgoing waves ranging from
-y-directed grazing incidence along the lattice boundary (s =-1) through broadside incidence
(s =0) to +y-directed grazing incidence (s = +1).

In perhaps the most simple case, we can specify res) as a general (2, 0) interpolant.
Here, the square-root function is approximated by a polynomial of the form

(6.39a)

This results in the general second-order approximate analytical ABC:

Appropriate selection of the Pi and qi in (6.39a) and (6040a) produces various families of

ABCs. Standard Pade, least-square, or Chebyshev interpolations are applied to achieve a "best

fit" to~ over all or part of the range -1 ~ s ~ +1. This produces an approximate ABC

whose performance is good over all or part of the range of outgoing wave directions. The two

term Taylor's series of (6.27a) is now seen in a more general sense to be a Pade (2, 0) interpolant

with the coefficients Po = +1 and P2 = -112 in (6.39a). This provides a double zero of the wave

reflection at s = 0 (i.e., for waves at normal incidence to the x = 0 boundary of the space lattice).

(6.40a)

(6040b)

(6.39b)

= 0

Po d
2
U flu

--- -P c-- = 0
C dt 2

2 d/

d3
U d3

U

qo dxdt2 + q2
c2

dXd/

ciu---
dxdt

A more flexible interpolation is provided by the general (2, 2) rational function:

This results in the general third-order approximate analytical ABC:



5. Chebyshev-Pade (or CoP)

6. Interpolation in Newman points

7. Chebyshev (L" norm)
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A more accurate interpolation involves choosing qo =Po =1, P2 =-3/4, and q 2 =-114
in (6.40a). This yields a Pade (2, 2) approximation that provides a triple zero of the wave
reflection at normal incidence, S =O. In fact, this is the third-order ABC originally proposed by
Engquist and Majda in [7]. Other types of approximating polynomials "tune" the ABC to absorb
numerical waves incident at specified angles other than broadside to the lattice boundary.
These were considered by Trefethen and Halpern to be a means to improve the wide-angle
performance of the ABC. Tables 6.1 and 6.2 list the p and q coefficients for seven techniques of
approximation:

1. Pade

2. Chebyshev on a subinterval (L: norm)

3. Interpolation in Chebyshev points

4. Least squares (L2 norm)

Tables 6.1 and 6.2 also show the angles of incidence ±a defined in Fig. 6.1, at which the

rational-function interpolant exactly equals ~. Theoretically, the corresponding ABC

exactly absorbs numerical plane waves propagating at these angles.

TABLE 6,1

Coefficients for Second-Order ABCs

±Angles ofExact AbsorptionType ofApproximation

Pade (reported by Mur)

Chebyshev on a subinterval

Chebyshev points

Least-squares

Chebyshev-Pade

Newman points
Chebyshev

Po P2

1.00000 -0.50000

1.00023 -0.51555

1.03597 -0.76537

1.03084 -0.73631

1.06103 -0.84883

1.00000 -1.00000
1.12500 -1.00000

TABLE 6.2

0'
7.6'

22S
22.1'

25.8'
0'

31.4'

0'
18.7'

67S
64.4'

73.9'

90'
81.6'

Coefficients for Third-Order ABCs (qo =1.0 for each technique)

Type ofApproximation Po P2 q2 ±Angles ofExact Absorption

Pade 1.00000 -0.75000 -0.25000 O' 0' O'
Chebyshev on a subinterval 0.99973 -0.80864 -0.31657 11.7' 31.9' 43S

Chebyshev points 0.99650 -0.91296 -0.47258 15' 45' 75'

Least-squares 0.99250 -0.92233 -0.51084 18.4' 51.3' 76.6'

Chebyshev-Pade 0.99030 -0.94314 -0.5556 18.4' 53.1' 81.2'

Newman points 1.00000 -1.00000 -0.66976 O' 60.5" 90'

Chebyshev 0.95651 -0.94354 -0.70385 26.9' 66.6' 87.0'



Chapter 6: Analytical Absorbing Boundnry Conditions 245

In implementing any of the third-order ABCs of Table 6.2, the user must consider the
tradeoff between improved performance relative to the Pade (2, 0) condition reported by Mur and
increased complexity in the finite-difference realization. The following two sections will provide
information regarding the performance side of this tradeoff.

6.3.4 Theoretical Reflection Coefficient Analysis

We can think of a radiated or scattered wave propagating outward from an arbitrary structure as
being a superposition of plane waves having a range of incident angles a relative to an outer
boundary plane of the space lattice, where a is defined in Fig. 6.1. This allows the performance
of a proposed ABC to be assessed theoretically by deriving the plane-wave reflection coefficient
RABc(a) for that lattice outer-boundary plane. Clearly, an effective ABC would have a small
value of R

ABC
over a wide range of a, thereby permitting most of the impinging numerical energy

to exit the lattice.
Consider the outgoing numerical plane wave in Fig. 6.1. Assuming that it is sinusoidal and

propagates with the speed c = OJ/ k, the wave has the analytical form

U. = ej(w/ + kxcosa - kysina)
mc (6.41)

The total field at the x =0 boundary plane of the computational domain must satisfy the specific
ABC in effect there. Postulating the existence of a reflected numerical wave launched from this
plane, the total field has the form

U
j(W/ + kxcosa - kysina) + R j(w/ - kxcosa - kysina)= e ~ce (6.42)

R can now be determined by substituting U of (6.42) directly into (6.39b) or (6.40b),
ABC

the partial differential equations for the general second- or third-order analytical ABCs,
respectively, and then setting x = 0 while requiring y to be arbitrary. In this manner, we obtain
for the general second-order ABC [11]:

and for the general third-order ABC:

RABC

RABC =

• 2
cos a - Po P2sm a

• 2
cos a + Po + P2 sm a

• 2 • 2
% cos a + q2 cosasm a - Po P2Sill a

• 2 • 2
qo cosa + q2 cos a Sill a + Po + P2 Sill a

(6.43)

(6.44)

where the coefficients P and q correspond to those of the approximating function used in the
derivation of the ABC (see Tables 6.1 and 6.2).

Fig. 6.2 shows the variation of the theoretical reflection coefficient RABC for second- and
third-order Pade and Chebyshev ABCs as a function of a [11]. In Fig. 6.2(a), we see that
R < 0.1 % over 0 < a < 35· for the Pade (2, 2) ABC. In Fig. 6.2(b), we see that R < 0 02%

ABC ABC •

over 0 < a < 45" for the type (2, 2) Chebyshev-on-a-subinterval ABC. Here, the dips in R
ABC

near 12·, 32·, and 44· represent the angles of exact absorption for this ABC as listed in Table 6.2.
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Fig. 6.2 Theoretical reflection coefficient versus incident wave angle for: (a) second- and third-order Pade
ABCs; (b) second- and third-order Chebyshev-on-subinterval ABCs. Source: Moore et aI.,
IEEE Trans. Antennas and Propagation, 1988, pp. 1797-1812, © 1988 IEEE.
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On the basis of these excellent theoretical results for RABc ' one would think that the solution
to the ABC problem is well in hand: use a third-order condition, most likely the Chebyshev-on
a-subinterval. However, as shown in the following section, numerical experiments implementing
third-order ABCs do not indicate reflection coefficients much below 1%. Further, these
experiments do not indicate any performance advantage for the Chebyshev-on-a-subinterval
ABC relative to the Pade ABC. We shall discuss a probable reason for this anomaly at the
conclusion of the next section, after reviewing the results of the numerical experiments.

6.3.5 Numerical Experiments

We now discuss numerical experiments [11] which measure the amount of nonphysical
reflection that a given ABC produces as a pulsed wave propagates through a grid outer boundary.
Fig. 6.3(a) shows the two FDTD domains used in the experiments: the 100 x 50-cell test domain
nT' and the much larger benchmark domain 0B' On each domain, the TMz algorithm is time
stepped. Q

T
is centered within QB and has exactly the same grid-cell size, so that each field

component in Q T corresponds to a field component in 0B' The size of Q B is selected so that its
outer boundaries are so remote from Q T as to be causally isolated during the time-stepping.
In this manner, Q

B
exactly simulates the ideal of an infinitely large FDTD grid during tests of the

ABCon~.

On the outer boundary of nT' a test ABC is applied. This ABC is excited by an outward
propagating cylindrical wave generated by a hard source located at the center of nT' and,
by design, the center of QB as well. The outgoing wave is therefore spatially coincident in both
domains until time-stepping advances to the point when the wave interacts with the test ABC at
the outer boundary of Qr Any reflection from this boundary causes the FDTD-computed field
values at points within Q T to differ from the effective infinite-grid FDTD field values obtained at
corresponding points within QB' By calculating the difference between the FDTD solutions in
the two domains at each gridpoint at each time-step, a measure of the spurious reflection caused

by the test ABC is obtained.
We define at time-step n the local error at any point (i,j) within~ due to its ABC as

I" I" I"e .. = E - E
local I.J l.T i.j l.B i,j

(6.45a)

where E
z
.
T

and Ez•B are, respectively, the FDTD-computed E-fields within the test and benchmark
domains. We also define the global error measure

eglOball" = L L I EZ,TC - EZ,B C1

2

. j

(6.45b)

where the double sum is taken over all points (i,j) within Q r This error measure has the units of
power, and if summed over all time-steps, would provide the total error energy within ~.

As shown in Fig. 6.3(b), the time waveform of the line source used in the numerical
experiments is a smooth compact pulse peaking at n = 20 time-steps with a value of 1.0.
The pulse excitation is provided by the following hard source located at point (50, 25) in the test

grid:
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Fig. 6.3 Dual-grid setup for numerical experiments testing the effectiveness of proposed ABCs
implemented at the outer boundary of test grid ilr : (a) test and benchmark computational
domains; (b) time waveform of the cylindrical- or spherical-wave source. Source: Moore et aI.,
IEEE Trans. Antennas and Propagation, 1988, pp. 1797-]812, © 1988 IEEE.
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1 [10 - 15cos(nn/20) + ]
32 6cos(2nn/20) - cos (3nn/20)

o

n ~ 40

n > 40

(6.46)

The analytical form of this source function, introduced in [12], causes it to have an extremely
smooth transition to zero, with the first five time derivatives vanishing at n =0 and at n =40.
As a result, this pulse has very little high-frequency content.

A square-cell grid is used in all of the numerical experiments with c t1t =M2. With this

specification, the leading edge of the cylindrical wave generated by the source requires 50t1t
to propagate over the 25 t1 distance to the boundary of the test grid at j =O. Therefore, at time
step n =70, the peak of the radially propagating pulse reaches the ABC. We choose to observe
the local error along j =1, the first row of gridpoints away from the boundary, at time-step
n = 100. This permits the bulk of the outgoing pulse to pass through the boundary and excite the
largest possible reflection.

Fig. 6.4 graphs the local and global reflection errors observed for the second-order (2, 0)
and third-order (2, 2) Pade ABCs. Fig. 6.5 compares the reflection errors of the third-order
Pade and Chebyshev-an-subinterval ABCs. In each of the local-error graphs, the data are
normalized to the peak value of the incident pulse striking the grid boundary at time-step n =70
and grid position (50, 0). While the third-order ABCs have less error than the second-order
ABCs, the local reflections are still on the order of 1%. This is a much poorer performance than
the order 0.1 % or less theoretical plane-wave reflection coefficients derived earlier.
Further, inspection of Fig. 6.5 reveals no performance advantage for the third-order
Chebyshev-on-subinterval ABC versus the third-order Pade ABC. The improved wide-angle
performance suggested by Trefethen and Halpern [9, 10J is not evidenced in these numerical

experiments.
These contradictory theoretical and numerical-experimental results call into question the

formulation of ABCs based upon one-way wave equations. A possible explanation for the
discrepancy is the effect of numerical dispersion in the grid (see Chapter 4 and [13, 14)).
All ABC theory developed so far in this chapter assumes that numerical waves propagate in the
FDTD grid at the speed c regardless of their spectral content and propagation angle. Effectively,
these ABCs enforce vp =c at the outer boundary of the grid. However, unless extremely fine
meshing is used, it is impossible to avoid the order 0.1 % to 1% variations in vp introduced by
the Yee algorithm. Without doubt, these artifacts were present in the numerical experiments
providing data for Figs. 6.4 and 6.5. The mismatch between the dispersive vp -:f. c conditions
within the interior of the grid and the imposed vp =c condition at the outer grid boundary must

generate wave reflections, as does any interface between media of differing wave speeds.
The percentage reflection is easily estimated as the percentage that vp deviates from c, namely in
the order of 0.1 % to 1%. It is therefore futile to apply a (2, 2) Chebyshev-on-subinterval ABC

and expect to realize its theoretical reflection coefficient of less than 0.02%, unless somehow this
ABC is modified to account for the variability of the speed of the numerical waves impinging

upon it.
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6.4 HIGDON RADIATION OPERATORS

The third principal thrust in ABC technology during the 1970s and 1980s was originated by
Higdon [15, 16]. Similar to the method of Bayliss and Turkel (Section 6.2), Higdon's technique
involves the construction of a series of linear differential operators to annihilate outgoing
numerical waves. However, Higdon's operators absorb plane waves propagating at specific
angles. in a Cartesian grid, rather than the Bayliss-Turkel sum of radially propagating waves in a
cylindrical or spherical grid. Interestingly, as will be shown below, Higdon's approach yields,
as a special case, the set of Trefethen-Halpern generalized and higher-order ABCs (Section
6.3.3) obtained by constructing approximate one-wave wave equations in Cartesian grids.

6.4.1 Formulation

Consider a linear combination of numerical plane waves each traveling with speed c toward the
x = 0 boundary of a two-dimensional Cartesian FDTD grid. The waves are assumed to propagate
at the symmetrical incidence angles ±ai' '" , ±a

L
relative to the -x-axis. The aggregate

propagating mode is given analytically by

L L

Vex, y, t) = 2JI(ct + kl .r) + LgI(ct + k; .r)
f=1 1=1

= J;(ct + xcosa l + YSinaJ + + fJct + xcosaL + ysinaJ

+ gl(ct + xcosal - ySinaJ + + gJct + xcosaL - ySinaJ

(6.47)

where -n/2 :5 a l :5 n/2. Higdon proposed a differential annihilator for this sum of plane
waves of the form

[n(cosaf~ - c~)] U = 0
1=1 at ax

(6.48)

to permit closing the computation domain at x =O. He demonstrated that this operator has the
following properties:

I. It is satisfied exactly by anyone of the 2L plane waves in the sum of (6.47),
and by any linear combination of these waves all the way through the complete
sum. That is, any combination of plane waves propagating at the angles a f is
completely absorbed at x =0 with no reflection.

2. For a sinusoidal numerical plane wave traveling at an incidence angle e:t. af'
the theoretical reflection coefficient at x =0 is

rl (casal - coseJ
R = - 1=1 cosa( + cose

where each factor in (6.49) has absolute value less than 1 when IeI< n /2 .

(6.49)
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3. For any given order L of the annihilator and any given problem, the exact wave
absorption angles at can be chosen to optimize the overall transmission
characteristics of the grid outer boundary.

4. Finite-differencing (6.48) requires no space derivatives parallel to the grid outer
boundary. Thus, the stencil of gridpoints needed to implement the Higdon
operator is one-dimensional in the direction perpendicular to the grid boundary.
This simplifies the numerical implementation, especially near the corners of
rectangular grids.

5. The operator of (6.48) provides a general representation of ABCs in the following
sense. If an ABC is based on a symmetric rational approximation to the
outgoing-wave portion of the factored wave equation (equivalently, the portion of
the dispersion relation corresponding to outgoing waves), then it is either:

(a) Equivalent to (6.48) for a suitable choice of the at satisfying Iatl < n12;

(b) Unstable;

(c) Not optimal in that the coefficients in the ABC can be modified to reduce the
reflection coefficient for all Fourier modes.

The fifth point proved by Higdon is particularly interesting, since it implies that the ABCs
proposed by Engquist-Majda and Trefethen-Halpern are special cases of the more general
Higdon operator of (6.48). As stated by Givoli [17]:

"In other words, any stable [ABC] that is derived by using a symmetric rational
approximation and that cannot be improved by a simple modification of its
coefficients, is characterized completely by its angles of perfect absorption.
Higdon's theorem seems to imply that there is not much value in using rational
approximations to derive [ABCs] for the scalar wave equation, since equivalent
boundary conditions can be obtained in a simpler way by using [the Higdon
operator]. The fact that [the Higdon operator] requires the choice of the
parameters at may seem a disadvantage, but one may argue that those [ABCs]
which are special cases of [the Higdon operator] implicitly make this kind of
choice for the analyst."

6.4.2 First Two Higdon Operators

The simplicity of the Higdon approach can be illustrated by writing out the first two operators of
the sequence defined by (6.48). Letting L =1, we obtain the first operator:

This operator completely absorbs plane waves propagating with speed c at the angles tal with

respect to the -x-axis. If a l = 0·, (6.50) reduces to (6.26), the first-order ABC at x =0 resulting

from the one-term Taylor approximation of~. We recall that this approximation implies

normal incidence to the x = 0 boundary. The first-order Higdon and the one-term Taylor
approximation ABCs are therefore equivalent.

au
cosal -at

au
c- = 0ax (6.50)
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Now consider the second operator (L =2) in the Higdon sequence (6.48). We obtain

( cosa
2

!...- - cJ....-) (cosa
l
aU _ c au) = 0

at ax at ax

Carrying out the indicated operations and grouping terms yields

(6.51)

(6.52a)

At the x =0 grid boundary, the ABC of (6.52a) completely absorbs plane waves propagating
with speed c at the angles ±at and ±a2 with respect to the -x-axis. As stated by Higdon,
(6.52a) can be directly implemented with finite differences on a straight-line stencil of grid
points perpendicular to the boundary. However, we have the option of using the wave equation
a2Ulat2 = c 2 a2Ulax 2 + c2 a2Ulai to eliminate the second x partial derivative, and
thereby simplify the x finite-differencing at the grid boundary. This also permits a direct
comparison between the partial derivative terms of the second-order Higdon ABC and the
Trefethen-Halpern general second-order ABC of (6.39b). After algebraic manipulation,
(6.52a) is written as

(6.52b)

Comparison of (6.52b) with (6.39b) reveals that the two can be made identical with the following
correspondences:

Po =
1 + cosal cosa2

cos at + cos a 2

(6.52c)

To illustrate the identity, we substitute into (6.52c) the pair of angles of exact absorption from
Table 6.1 corresponding to anyone of the seven approximations. We can easily show that
(6.52c) then yields the corresponding Po and P

2
coefficients listed in the table. This indicates that

the Higdon operator of (6.52b) can be configured to be identical to each of the approximate
second-order ABCs in Table 6.1, simply by substituting the appropriate angles of exact
absorption. In a similar manner, the third operator (L =3) in the Higdon sequence (6.48) can be

configured to be identical to each of the third-order ABCs in Table 6.2.

6.4.3 Discussion

In general, the Higdon operator provides for a simple and explicit setting of the exact absorption

angles desired by the modeler. Using Trefethen-Halpern operators is more cumbersome,
requiring the modeler to go through the intermediate step of setting up an interpolating

polynomial.
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For a sample computation modeling the outward propagation of a pulsed cylindrical wave
sourced in the center of the grid, Higdon reported a reflection of about 7% at the grid outer

boundary when implementing his first-order operator with a =30 0

• For the second-order Higdon
operator, the outer-boundary reflection was reduced to the range 2.46% to 3.80%, depending
upon the choice of a 1 and ~, with the minimum reflection obtained when a) =~ =500.
These results are consistent with the magnitude of wave reflections obtained using Engquist
Majda and Trefethen-Halpern ABCs of the corresponding order.

Despite the greater generality and ease of implementation of Higdon ABCs, there is still the

fundamental problem of the assumption of a uniform wave speed c in its formulation.
As discussed earlier, this likely limits the suppression of reflections to the order of the numerical
phase-velocity variations within the mesh, 0.1 % to 1%, regardless of the order of the Higdon
ABC implemented. One possible way to mitigate this effect is to incorporate the theoretical
numerical phase velocity \ip at each of the exact annihilation angles at in the Higdon annihilator
of (6.48). That is, \ip (at) takes the place of the free-space velocity c in the operator:

(6.53)

Unlike the Trefethen-Halpern approach, the straightforward formulation of the Higdon operator
allows this insight to be readily implemented. However, it is not apparent from the literature that

anyone has pursued this improvement.

6.5 LIAO EXTRAPOLATION IN SPACE AND TIME

The fourth principal thrust in ABC technology during the 1970s and 1980s was originated by
Liao et al. [18], and based upon what the authors called the "multitransmitting theory."
Numerical experiments showed that this ABC exhibits 10 to 20 dB less reflection than the
second-order Mur condition (Section 6.3.2), with little sensitivity to the wave-propagation angle
or to numerical phase-velocity variations.

To assist in reader understanding, this section provides an alternate derivation of the Liao
ABC relative to that presented in [18]. Our derivation involves a straightforward extrapolation
of the numerical wave fields in space and time using a Newton backward-difference polynomial.

6.5.1 Formulation

Consider an outer grid boundary located at xmax ' To close the grid and absorb outgoing waves at
this boundary, we need to appropriately calculate the updated field u(xmax ' t +6t) using field
values that are already available in the computer memory. For this purpose, we consider a set of
L known fields ut that are positioned along a straight-line stencil perpendicular to the grid
boundary with a uniform spacing h =ac M, where O:S; a::;; 2. Given the normal propagation
delays for outgoing waves approaching this boundary, our strategy also involves using field data
that are progressively retarded in time by !:it as the distance along the stencil from x

max
increases

by h. We write:
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£=0 Uo = U(Xmax ' t +~t) } unknown field at grid boundary

£=1 u, = u(xmax - h, t)

£=2 u
2 = u(xmax - 2h, t-~t)

L known fields along (6.54)
£=3 u3 = u(xmax - 3h, t-2M) space-time stencil

£ = L U = u(xmax - Lh, t-(L-l)~t)
L

Before trying to evaluate uO' consider how we might estimate U at an arbitrary point f
located within the space-time stencil of (6.54). Call this field u- == U [ x - eh, t - (e - 1) M],

( max

where f is a real number in the range 1 S f S L. A straightforward means to estimate u, is to
set up a backward-difference interpolating polynomial. For this purpose, we define a sequence
of backward differences {Am} originating at u, (see [19, 20] for example):

1
Au, =u, - u2

} 2 = A'u -A1u
(

A u1 , 2

}~ u2 =u2 - U3
3 = ~2 U _ ~2 U

} 2 1 ,
/1 U

1 1 2 }.../1 U2 = A u2 - A u3, }~ u3 =u3 - U4
3 2 2

}
A u2 = A u2 - /1 u3

2 I ,
A u 3 = Ii. u3 - /1 u4(

~ u4 =u4 - Us

(6.55)

In general, the mth backward difference at u1 can be written as

m+1

~m U, = I. (-1/+
1
C~I u[xmax - £h, t-(t -1)&]

(= ,

where C; is the binomial coefficient defined by

m m!
C( ==

(m-£)! £!

(6.56a)

(6.56b)

With the backward differences of (6.55) and (6.56), Newton's backward-difference polynomial

can be applied to calculate an interpolated value for u,. Letting 13 =I - f, we write

I 13(13+1) 2 13(13+1)(13+2) 3u, _ u1 + 13 /1 u1 + /1 u, + A u1
2! 3!

+ ... +
f3(f3+1)(f3+2) .. ·(f3+L- 2) L-I
-'---'---.....;....---'----- /1 U

(L-1)! 1

(6.57)
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Liao's idea can now be interpreted very simply: Use the polynomial derived in (6.57),
but instead of interpolating in the range I ~ f =:; L, we extrapolate to f =0, the desired outer
boundary field uo' We immediately have f3 =I, and (6.57) yields

(6.58)

This is simply equation (9) of [18] with the symbol "L" replacing "N." Following Liao's
nomenclature, we call this the "generalized L-order transmitting formula." More commonly,
(6.58) is termed the Liao ABC of order L implemented at xmax '

6.5.2 Discussion

It is well known that using an interpolating polynomial such as (6.57) for extrapolation can yield
substantially larger errors than for the original interpolation case. However, Liao's ABC is
viable, providing that enough terms in the Newton's difference polynomial are retained.

Accuracy

Consider a unit-amplitude sinusoidal plane wave of wavelength A incident upon the ABC
specified by (6.58). For this case, Liao showed that the maximum amplitude error is given by

(6.59)

For a realistic simulation in three dimensions, we could have c I1t = !l/2 and !l = A120.
Then, (6.59) yields a maximum error of about 0.4% for L =3. Note that this error is 2 to 10 times
less than that of the ABCs considered earlier. In fact, actual FDTD modeling runs have
demonstrated this advantage. Unlike the ABCs discussed earlier, the Liao condition is capable
of realizing its theoretical level of error. This is because its underlying Newton extrapolation
process is not founded on any assumptions about the angle of incidence or velocity of the
outgoing numerical waves. It is robust.

Choice ofh

The choice of h == actlt in (6.54) determines the spatial position of the fields along the stencil
used in the extrapolation process. Liao reported considerable flexibility in choosing a in the
range 0.5 =:; a ~ 2, stating that

"It can be seen that the variance of a influences the accuracy of numerical
results; however, all theoretical [waveforms] converge to exact solutions for all
the different values of a."

This is additional evidence of the robust nature of the underlying extrapolation process.
However, depending upon the choice of a (and thus h), the needed data may not coincide

with field-calculation points in the Yee grid. For example, if a =I and c!lt == !lI2, we have
h =!lI2. Then, the following field data are required for L == 3:
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£=1

£=2

U\:::: u(xm",,-M2, t)

U2 :::: U(X
max

- tl., t-M) (6.60)

£ =3 u3 :::: u(x
max

- 3M2, t-2tl.t)

Here, u2 is available on the Yee grid as an explicitly computed field value. However, "I and "3

are not available because they are located at half-cell points occupied by vector components of
the dual field. To obtain such field values, Liao reported a quadratic-interpolation procedure and
suggested study of the spline function method.

However, given that the Liao ABC itself results from a Newton interpolating polynomial,
the additional interpolation suggested by Liao may provide no additional information. To avoid
any interpolation within the Yee grid, it is sufficient to set a = 2, the maximum value permitted
by Liao. For eM =M2, this yields h =tl.. Then, the following field data are required for L =3:

£=1 u1 = u(x
max

- tl., t)

£=2 u
2 = u(x

max
- 2tl., t - tl.t)

£=3 u3 = u(x
max

- 3tl., t-2tl.t)

(6.61)

All of the fields specified in (6.61) are explicitly computed in the Yee grid, and Liao's ABC
simplifies very nicely.

Potential for Numerical Instability

It was reported in [21] that the use of single-precision computer arithmetic causes FDTD
algorithms employing Liao' s ABC to become unstable with time-stepping, whereas double
precision arithmetic maintains stability. A z-transform analysis was presented, which shows that
Liao's field updating at the grid outer boundary has roots in the z-plane that are all inside the unit
circle, with the exception of one root, which lies on the unit circle. Reference [21] states that

"If there exist some numerical errors, for example, from the use of single
precision arithmetic, this pole could be driven outside the unit circle, rendering
the system unstable. To cure this problem, we subtract adiabatic loss terms from

[the interpolation coefficients] which are large enough compared to the machine

accuracy to keep the pole inside the unit circle, yet small enough to preserve the
desired accuracy of the final results."

Reference [21] goes on to suggest that loss terms of order (0.5%) or less be subtracted from each

of the interpolation coefficients. This introduces a perturbation that is comparable to the error of
the original Liao ABC (assuming tl. = ),120 grid resolution), and results in the overall error
increased to about 1% or less. Numerical experiments have shown that the suggested loss terms

eliminate instability, and at the same time maintain a solution accuracy superior to that available
using the second-order Mur ABC. However, this tactic reduces the accuracy of Liao's ABC,

relative to the alternative of using double-precision arithmetic.
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6.6 RAMAID COMPLEMENTARY OPERATORS

In the late 1990s, Ramahi introduced the complementary operators method (COM) [22,23] as an
effective means of canceling the residual outer-boundary numerical wave reflections that result
from applying standard analytical ABCs. This section summarizes the basis of COM and
provides representative FDTD modeling results that indicate its utility.

6.6.1 Basic Idea

The basic premise of the COM is that first-order reflections of numerical waves from the outer
boundary of the FDTD space lattice can be cancelled. This cancellation is made possible by
averaging two independent solutions to the modeling problem. These two solutions are obtained
by imposing radiation boundary operators that are complementary to each other. That is, their
reflection coefficients are equal in magnitude, but 180· out of phase.

To place this concept on a more precise footing, we consider the action of an analytical ABC
applied at the rightmost outer-boundary plane x =a of a Cartesian FDTD space lattice.
Impinging upon this boundary is the +x-directed sinusoidal numerical plane wave given by:2

u. =me (6.62)

The total field at x =a must satisfy the specific ABC in effect there. Upon postulating the
existence of a wave reflected from plane x =a, the total field in the region x ~ a has the form

(6.63)

If the ABC is ideal (completely reflectionless), then RABC =0, and the second term in (6.63)
equals zero. This has been the goal in formulating all of the analytical ABCs reviewed in this
chapter. However, Ramahi reported a strategy to compensate for the reality that the ABC is not
ideal (and thus RABc '* 0). To this end, he defined ABC, a complementary boundary condition
having the property

In the region x ~ a, this new condition generates the field

(6.64)

u (6.65)

Averaging the fields in (6.63) and (6.65) yields the desired result, a solution that has zero
reflection from the outer boundary of the space lattice at x =a :

g

vrhis analytical form is similar to (6.41). However, note that (6.41) described -x-directed wave propagation
toward the ABC acting at the x =0 lattice boundary.

UeX3£1 = (U + U) /2 (6.66)
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The primary strength of COM is that the cancellation of first-order outer-boundary
reflections indicated by (6.66) takes place for any field independent of its numerical wavenumber
k. This implies that reflections at the outer boundary of the space lattice are suppressed,
regardless of whether the fields are composed of evanescent or purely traveling waves.

6.6.2 Complementary Operators

To implement the COM, Ramahi derived two independent, complementary radiation boundary
operators from Higdon's ABC, discussed in Section 6.4:

a nL (a cos ¢ a )- -+---+a U
ax (=1 ax cat t

o (6.67a)

BL U = ~ IT (.i. + cos ¢~ + at) U = 0
at t=l ax c at

(6.67b)

Here, the parameter at ensures the stability of the numerical simulation. This parameter has
been shown empirically to depend on the space-cell size ~ and the problem dimensionality,
and is typically at =0.02/~ and at =0.01/~ for two- and three-dimensional computation
spaces, respectively. The angle ¢ can be optimized to minimize reflection in a specific
propagation direction. In a general application, however, where no advanced knowledge of the
propagation is assumed, ¢ is set to zero.

For a sinusoidal plane wave, the reflection coefficients for the radiation operators of (6.67a)
and (6.67b) are given respectively by

(6.68a, b)

Given the equal but opposite nature of the outer-boundary reflection coefficients in (6.68a) and
(6.68b), it suffices to implement separate FDTD modeling runs of the electromagnetic wave
problem of interest, using the corresponding ABCs B

L
and B

L
in (6.67a) and (6.67b). Then, as a

postprocessing step, the field values obtained in these two runs are averaged according to (6.66)
at each space-time point of interest. This yields a composite set of field data devoid of first-order
reflections from the outer boundary of the space lattice. Because this procedure requires two

independent FDTD modeling runs, the total floating-point operation count is exactly doubled in
comparison with the traditional implementation of the ABC.

6.6.3 Effect of Multiple Wave Reflections

In practical FDTD models, the ideal scenario for the COM technique outlined above is
complicated by the fact that multiple reflections of the outgoing numerical wave can occur.
As a result, complete cancellation of reflections from the outer lattice boundary may not occur
when averaging the two solutions as in (6.66).
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Fig. 6.6(a) illustrates the nature of this problem for a two-dimensional grid, showing three
categories of uncancelled multiple reflections. Here, we assume that the original outgoing wave
has unity magnitude. We denote the initial reflections at the outer grid boundary due to B

L
and

B
L

as [R] and (-R), respectively; and a retroreflection at the structure being modeled as a.
A double bounce between two BL ABCs yields the reflection [R2

] = [R)'[R], which is equal to the
double-bounce reflection between two BL ABCs, (R

2
) =(-R)'(-R). At any point in Fig. 6.6(a),

the residual field after implementing the COM averaging process of (6.66) is obtained by adding
[R) + (-R) =0, yielding the desired cancellation of the initial reflections, or by adding

[R2
) + (R2

) =2R2
, yielding undesired reinforcement. The categories of uncancelled multiple

reflections in Fig. 6.6(a) are as follows:

I. Double-bounce reflections at the corners of the grid. While such reflections are
of order(R2

), that is, second order, they can be a significant source of error. This
is because the outgoing waves impinge upon the grid corners at highly oblique

angles where the ABC generally has poor performance. Numerical experiments
with the COM, using B3 and B3 defined in (6.67a) and (6.67b), have shown that
a wave incident upon a grid corner at 70· comes back into the computational
domain with approximately a I% reflection after implementation of (6.66).

2. Double-bounce reflections between two parallel grid outer-boundary planes.
While also of order (R2

), these are less significant than those of Category I
because they occur near normal incidence at the grid outer boundary, where the

ABC is most effective.

3. Triple-bounce reflections between a grid-outer boundary plane and the structure
being modeled. Similar physical mechanisms apply here as in Category 2,

resulting in weaker reflections than those of Category 1.

Ramahi reported a variation of COM to cancel the double-bounce corner reflections in a two
dimensional grid. Here, four independent FDTD runs are required. For each run, one imposes a
unique combination of BL and BL over the four planes of the grid outer boundary. This is shown
in Fig. 6.6(b), where for conciseness, we use "+" and "-" symbols to denote the presence of the
B

L
or B

L
ABC, respectively, at each outer-boundary plane. By analogy to (6.66), postprocessing

of the fields is implemented by taking the arithmetic average of the fields obtained in the four
runs at each space-time point of interest. Using this procedure, the net reflection from a grid

corner is easily seen to be 0.25 x { [RHR) + (-R)'(-R) + [R]'(-R) + (-R)-[R] } =O.

6.6.4 Basis of the Concurrent Complementary Operator Method

The computational penalty involved in implementing the COM in two dimensions is a doubling
or quadrupling (depending upon whether corner reflections are cancelled) of the total number of
floating-point operations relative to a conventional FDTD model of the same grid size.
This discourages the use of the COM for large-scale simulations.

Recognizing this difficulty, Ramahi formulated an improved version of the original COM,
which he called the concurrent COM (C-COM). This technique, suitable for use in either two
or three-dimensional FDTD space lattices, is intended to achieve two objectives:
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(a) Multiple reflections due to the outer lattice boundary and the scatterer.
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+

(b) Permutations of boundary operators needed to cancel comer reflections in a two-dimensional grid.

Fig. 6.6 Effect of multiple wave reflections in the complementary operators method. Source: Ramahi,
IEEE Trans. Antennas and Propagation. 1998, pp. 1475-1482. © 1998 IEEE.
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• Implement the complementary radiation operators within a single FDTD
modeling run to cancel the reflections from the outer planes of the space lattice;

• At the user's option during the same FDTD run, cancel the reflections from the
corners formed by the outer planes of the space lattice.

The ability of C-COM to cancel outer-boundary reflections with only a single FDTD run rather
than multiple runs greatly reduces the required computer time to implement Ramahi's original
concept, thereby enlarging the scope of its potential applications.

Cancellation ofReflections from the Outer Side Planes ofthe Space Lattice

We implement C-COM by dividing the FDTD space lattice into an interior region and a
surrounding boundary layer. Components of E are assumed to lie tangentially on the interface
between these regions, and on the lattice outer-boundary planes. The interior region includes the
structure being modeled as well as any sources. Here, each of the components of E and H is
assigned a single computer storage location in the usual manner. However, in the boundary
layer, two storage locations are assigned to each component of E and H, which we designate as
E(I), E(2), H(I), and H 2

), This double allocation of field storage in the boundary layer permits the

concurrent and independent implementation of the complementary radiation operators in this

region.
A good way to understand C-COM is to consider it an inductive procedure founded upon the

following assumptions concerning the field values stored in computer memory at the beginning

of a time-step:

• E and H within the interior region are devoid of any error due to first-order
reflections from the lattice outer-boundary planes.

• E(I) and HI) within the boundary layer are corrupted by reflection error due to the
imperfect action of the ABC operator BL •

• E(2) and H2
) within the boundary layer are corrupted by reflection error due to the

imperfect action of the ABC operator Bi.'

Given these assumptions, time-stepping proceeds as follows:

E Updates

1. Update E within the interior region using the standard Yee algorithm applied to
the stored H values.

2. With the exception of points along the outer boundary of the lattice, update E(I) in
the boundary layer using the standard Yee algorithm applied to the stored H(\)

values. Similarly, update E(2) in the boundary layer using the stored HZ) values.

3. Using Bi. of (6.67a), update each tangential component of E(I) at its location P on
the lattice outer boundary. The required data are the L nearest parallel
components of E(\) located on a straight-line stencil perpendicular to the lattice
boundary at P. Similarly, update each tangential component of E(2) at P by
applying Bi. of (6.67b) to the L nearest parallel components of E(2) located on the
same stencil.
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4. Set each tangential component of E at its location pi on the interior-region I
boundary-layer interface to the average of the values of the tangential
components of E(I) and E(2) at P'. Set each tangential component of E(I) and E(2)

at pi to this same average value. This connects the solutions in the interior region
and the boundary layer.

HUpdates

I. Advance time by one-half time-step.

2. Update H within the interior region using the standard Yee algorithm applied to
the E values just calculated in the previous half time-step.

3. Update H(I) within the boundary layer using the standard Yee algorithm applied
to the E(I) values just calculated in the previous half time-step. Similarly, update
"2) in the boundary layer using the just-calculated E(2) values.

Fig. 6.7(a) shows that the net effect of the seven-step procedure summarized above is to
create a virtual (nonphysical) discontinuity at the interface of the interior region and the
boundary layer. The incident wave, assumed to have a unity amplitude, passes through the
interface with no reflection. This excites two independent waves {E(I), "I)} and {E(2), "2)}

having amplitudes (l] and (I), respectively, within the boundary layer. The initial (first-order)
reflection of these waves from the lattice outer boundary yields two waves propagating back
toward the interface with amplitudes [R] and (-R), due to the action of BLand BL, respectively.
However, Step 4 of the time-stepping algorithm sets the tangential E-field at the interface to be
the average of the wave fields in the boundary layer. To satisfy this constraint and to satisfy the
required continuity of the tangential E-field across the interface, complete retroreflection of the
first-order reflection errors must take place at the interface. These retroreflected error signals
propagate back toward the outer space lattice boundary with amplitudes [R] = [R]'l and
(-R) = (-R)'l, respectively.

Subsequently, these retroreflected error signals reach the outer space lattice boundary.
There, they are once again reflected back toward the interface with the amplitudes
[R

2
] =[R]·I·[R] and (R

2
) =(-R)·I·(-R), due to the action of BLand BL, respectively. It is clear

that these second-order reflections from the outer boundary are in-phase and have equal
amplitudes. Hence, when these reflections are averaged at the interface, no cancellation takes
place, and they penetrate into the interior region carrying the reflection error R2

• Thus, the
overall effect of implementing C-COM is to yield a composite reflection coefficient equal to the
square of the reflection coefficient generated by the ABC operators used at the sides of the outer
lattice boundary.

Fig. 6.7(b) is a validation study relating to the above discussion. This figure shows the
results of FDTD numerical experiments where the theoretical plane-wave reflection coefficient
for Higdon's first-order ABC is compared with the theoretical and measured reflection
coefficients for the C-COM using this same ABC and its complement. (Ramahi designates this

implementation as C-COM2.) We see that the measured reflectivity of C-COM2 is very close to
the square of the reflectivity of the Higdon ABC over incident wave angles from O· to 85"

relative to the lattice outer boundary.
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Fig. 6.7 Basis of the concurrent complementary operator method, Source: Ramahi, IEEE Trans. Antennas
and Propagation, 1998, pp. 1475-1482, © 1998 IEEE.
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Computational Burden for Cancellation ofOuter Side-Plane Reflections

With C-COM, each set of fields in the boundary layer is updated independently of the other set.
This amounts to having two independent simulations in the boundary layer, thereby meeting the
data requirements of the original COM without having to repeat the FOro processing of the
entire lattice. The computational penalty relative to a conventional FOTO model is only that due
to the processing of the double set of fields in the boundary layer. The width W of this layer is
required to be at least the size of the stencil used to implement B

L
of (6.67a) and BL of (6.67b).

Numerical experiments have shown that a useful increase in the accuracy of C-COM occurs as
W is increased to 8 to 12 grid cells. This is similar to the thickness requirement for the PML
ABC, to be discussed in detail in Chapter 7.

Cancellation ofReflections from the Corners of the Space Lattice in Two Dimensions

To enable C-COM to cancel the second-order reflections from the corners of the space lattice in
two dimensions, we must store and time-step four independent field sets [E(ml, lim)] in the
boundary layer. To each field set, we apply one of the boundary-operator permutations shown in
Fig. 6.6(b). Then, we implement the same seven-step time-marching algorithm outlined above.
The only difference is that four sets of tangential E fields are averaged at the interface of the
interior region and the boundary-layer. Overall, this technique results in additional computer
storage and running-time burdens relative to using C-COM to cancel reflections only from the
outer side planes of the lattice.

Cancellation ofReflections from the Corners of the Space Lattice in Three Dimensions

As stated earlier, C-COM can cancel first-order reflections from the outer side planes of the
space lattice in either two or three dimensions by implementing the seven-step time-marching
algorithm outlined above. For this purpose, only two storage locations need be reserved for each
E and H field in the boundary layer.

However, to enable C-COM to cancel the second- and third-order reflections from the
corners of the space lattice in three dimensions, we must store and time-step eight independent
field sets [E(m), lim)] in the boundary layer. This 'is because there are eight possible unique
permutations of the complementary boundary operators occurring when considering reflections
from a corner formed by three intersecting lattice side planes. For this case, eight sets of
tangential E fields are averaged at the interface of the interior region and the boundary layer.
Overall, this technique results in significant additional computer-storage and running-time
burdens relative to using C-COM to cancel reflections only from the outer side planes of the
lattice, or from the side planes and corners formed by two intersecting side planes.

Notation

Ramahi denoted the specific C-COM used in an FOro simulation as C-COML(S, W). Here,
parameter L specifies the order of accuracy of the radiation operator. Parameter S = 2, 4, 8
specifies the need to store either two, four, or eight independent field sets in the boundary layer
to cancel reflections, respectively, from the outer side planes of the space lattice, from corners
formed by two intersecting side planes. or from corners formed by three intersecting side planes.
Parameter W specifies the width of the boundary layer in lattice cells.
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6.6.5 Illustrative FDTD Modeling Results Obtained Using the C-COM

This section reviews two results of FDTD numerical experiments published by Ramahi [23] that

illustrate both the level of effectiveness of C-COM and the impact of varying its governing
parameters.

Radiationfrom a Line Current Source in Two Dimensions

This numerical experiment evaluates how C-COM performs in two dimensions for a radiating
source located close to the outer boundary of the FDTD grid. In this example, the grid spans
only 21 x 21 square cells, and the boundary layer needed to implement C-COM is added to this
space. A line current source is located at point (11, 11) and is excited with a time waveform
similar to the compact pulse specified in (6.46). A normalized error at the observation point

(16, 16) is defined as

Error(t) = Iyet) - Y",ference (t) I
max [I y reference (t) I]

(6.69)

where yet) is the FDTD-ca1culated field at point (16, 16) corresponding to the usage of either
Higdon's ABC or C-COM at the outer boundary of the 21 x 21-cell test grid, and Y f (t) is therc erence

FDTD-calculated field obtained in a much larger reference grid that has zero outer-boundary
reflections during the time-stepping span considered.

Fig. 6.8(a) shows the effect of varying the width W of the C-COM4(4, W) boundary layer

from 8 to 10 to 12 cells. We see that each application of C-COM considered here provides less

error than Higdon's fourth-order ABC. Further, the C-COM error decreases as W increases.

For a 12-cell boundary-layer width, the error in the C-COM calculation is generally one to two

orders of magnitude below that of Higdon's ABC.
Fig. 6.8(b) compares the error of the fourth-order, 12-cell-wide C-COM4(4, 12), which

cancels both side-boundary and corner reflections, with the fourth-order, 12-cell-wide
C-COM4(2, 12), which cancels only the side-boundary reflections. We see that suppressing

corner reflections reduces the error by approximately one order of magnitude. This is
significant, and in accordance with our expectation that relatively large reflection coefficients
arise from waves impinging on the comer regions at highly oblique angles.

Radiationfrom a Hertzian Dipole in Three Dimensions

This numerical experiment evaluates the performance of C-COM in three dimensions relative to

Higdon's fourth-order ABC. It also demonstrates the importance of canceling both the side

boundary and comer reflections of the space lattice. In this example, the FDTD lattice spans

only 21 x 21x 21 cubic cells, inclusive of the C-COM boundary layer. A z-polarized Hertzian

dipole is located at point (11, 11, 11) and is excited with a Gaussian pulse modulating a

sinusoidal signal. The normalized error in the Ez field, as defined by (6.69), is measured at the
observation point(ll, 11, 19).



268 Computational Electrodynamics: The Finite-Difference Time-Domain Method

300240 270

....
"-

\

210

Higdon 4th ABC
C=COM4T4-; 12)
C-COM4(4,10)
C-':'COM4"(:i', 8 )--------------

\

\

"'"I \

1e-9

\ /- ....

1 \ I

I ' ~ I I
I I, :;1\

II :' ~ \ "
I" ! (.:

~ : ~ :
I.! ~/~ : I ::

I /~ l\11
i I : I

l; d I
~ I . I,'
\ 1
;,; II

1e-1 0 ~_-:!:_----:~......i...--:L'-~..J......_-.J__...J..._---J~_-L..__L---l.....J
o 30 60 90 120 150 180

Time step

(a) Reduction of the error of fourth-order C-COM as the boundary layer widens.

C-COM4 (2, 1:11---------C-COM4(4,121

1e-5 ~ ~

, \ I I ,\,
\I I , \

H
,

,,' J
,,

I, \ ",,'- ...0 1e-6
I ~

I-l
, ,

I-l
I I , -----

rz1
I I

,,
I

1e-7 ,
I
I

•
I

1e-8 I
I

I
I
f

1e-9 I
I,
•
I

le-10
,

0 30 60 90 UO 150 180 :no 240 270 300

Time step

(b) Reduction of the error of fourth-order C-COM by canceling comer reflections.

Fig. 6.8 Measurement of the outer-boundary reflection error due to C-COM for a two-dimensional FDTD
model of a radiating line current source. Source: Ramahi. IEEE Trans. Antennas and

Propagation. 1998. pp. 1475-1482. © 1998 IEEE.
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Fig. 6.9 compares the error of the fourth-order, 8-cell-wide C-COM4(8, 8), which cancels
both side-boundary and corner reflections, with the fourth-order, 8-cell-wide C-COM4(2, 8),
which cancels only the side-boundary reflections, and with Higdon's fourth-order ABC. We see
that each application of C-COM considered here provides much less error than Higdon's ABC.
Namely, the C-COM4(2, 8) error is almost two orders of magnitude below Higdon, while the
C-COM4(8, 8) error is three orders of magnitude below Higdon. The primary caveat is that
implementing the latter C-COM technique involves a substantial burden on computer memory
and running time, and thus is recommended only for FDTD simulations requiring a wide
dynamic range of computational accuracy.
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Fig. 6.9 Measurement of the outer-boundary reflection error due to C-COM for a three-dimensional
FDTD model of a radiating Hertzian dipole. Source: Ramahi, IEEE Trans. Antennas and
Propagation, 1998, pp. 1475-1482, © 1998 IEEE.

What These Results Mean

Ramahi has convincingly demonstrated that his systematic C-COM technique can achieve an
outer-boundary reflectivity as little as 111 ,OOOth that of the best previous analytical ABCs,
such as Higdon's fourth-order operator. This translates to net reflection coefficients as low as
10-5 for three-dimensional open-region FDTD models, or equivalently, -100 dB. These are
extremely low levels that permit, in principle, the accurate simulation of very weakly scattering
objects of interest in defense, geophysical, optical, and biomedical applications.
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6.7 SUMMARY

Three decades of work in formulating analytical ABCs for open-region electromagnetic wave
interaction problems has culminated in systematic means, such as Ramahi's C-COM technique,
to reduce reflection coefficients in open-region FDTD space lattices to levels in the order of
-100 dB. As a result, current FDTD computational dynamic range for such problems is limited
more by numerical dispersion and by the precision in defining the shapes of the structures being
modeled, than by artifacts due to reflection of numerical waves from the outer boundary of the
computation space.

The next chapter, Chapter 7, will provide a completely different treatment of ABCs for
FDTD simulations involving the use of PML absorbers. PML ABCs may have more utility than
analytical methods such as C-COM for classes of problems involving the need to terminate space
lattices in guided-wave structures having multiple, significant corner-type reflections and other
reverberations. Ongoing work is helping to better define the classes of FDTD modeling
problems most amenable to analytical or PML ABCs.
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PROBLEMS

6.1 Apply the third-order Bayliss-Turkel operator to the outgoing wave expansion of (6.2) in
spherical coordinates and determine the first three terms in the remainder. Show that the
order of the leading term satisfies (6.11).

6.2 Apply the third-order Bayliss-Turkel operator to the outgoing wave expansion of (6.12) in
cylindrical coordinates and determine the first three terms in the remainder. Show that the
order of the leading term satisfies (6.19).

6.3 Derive the partial differential equation corresponding to the three-term Taylor series
approximation of the Engquist-Majda one-way wave equation of (6.24) at the x =0 grid
boundary.

6.4 Using appropriate finite differences, implement the first-order Engquist-Majda ABC of
(6.26) in an FDTD computer program for the two-dimensional TM z grid. Obtain field
values at the corners of the grid outer boundary by finite-differencing a first-order
Engquist-Majda ABC along the diagonal line running from the center of the grid to the
corner point. Then, follow the method illustrated by Fig. 6.3 to conduct numerical
experiments to obtain the local and global errors of your ABC system.

6.5 Repeat Problem 6.4, but for a two-dimensional TE
z

grid.
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6.6 Repeat Problem 6.4, but now implement the second-order Mur ABC of (6.34). At the
corners of the grid outer boundary, retain the first-order Engquist-Majda ABC finite
differenced along the diagonal line running from the center of the grid to the corner point.

6.7 Repeat Problem 6.4, but now implement the second-order Higdon ABC of (6.48). Select
the incidence angles a( to optimize the local and global error. Use a straight-line stencil to
implement the needed spatial finite differences.

6.8 Repeat Problem 6.4, but now implement the third-order (L =3) Liao ABC of (6.58) at all
boundary points, including the comers, using the space-time stencil of (6.61). Use double
precision computer arithmetic to avoid numerical instability problems.

6.9 Repeat Problem 6.4, but now implement Ramahi's COM ABC using (6.67a) and (6.67b)
evaluated for L =1.



Chapter 7

Perfectly Matched Layer
Absorbing Boundary Conditions

Stephen Gedney

7.1 INTRODUCTION

One of the greatest challenges of the FDTD method has been the efficient and accurate solution
of electromagnetic wave interaction problems in unbounded regions. For such problems,
an absorbing boundary condition (ABC) must be introduced at the outer lattice boundary to
simulate the extension of the lattice to infinity. As reviewed in Chapter 6, a number of analytical
techniques have been introduced to achieve this goal.

An alternate approach to realize an ABC is to terminate the outer boundary of the space
lattice in an absorbing material medium. This is analogous to the physical treatment of the walls
of an anechoic chamber. Ideally, the absorbing medium is only a few lattice cells thick,
reflectionless to all impinging waves over their full frequency spectrum, highly absorbing, and
effective in the near field of a source or a scatterer. An early attempt at implementing such an
absorbing material boundary condition was reported by Holland [I], who utilized a conventional
lossy dispersionless absorbing medium. The difficulty with this tactic is that such an absorbing
layer is matched only to normally incident plane waves. As a result, the entire category of lossy
material ABCs had only limited application in electromagnetics.

Since 1994, a new fervor in this area has been created by Berenger's introduction of a highly
effective absorbing-material ABC designated the perfectly matched layer (PML) [2].
The innovation of Berenger's PML is that plane waves of arbitrary incidence, polarization,
and frequency are matched at the boundary. Perhaps of equal importance is that the PML can be
used as an absorbing boundary to terminate domains comprised of inhomogeneous, dispersive,
anisotropic, and even nonlinear media, which was previously not possible with analytically
derived ABCs.

In his pioneering work, Berenger derived a novel split-field formulation of Maxwell's
equations where each vector field component is split into two orthogonal components [2].
Maxwell's curl equations were also appropriately split, leading to a set of 12 coupled first-order
partial differential equations. Then, by choosing loss parameters consistent with a dispersionless
medium, a perfectly matched planar interface is derived.

In a continuous space, the PML absorber and the host medium are perfectly matched.
However, in the discrete FDTD lattice, the electric and magnetic material parameters are
represented in a piecewise-constant manner and are spatially staggered. This results in
discretization errors that can degrade the ideal behavior of the PML. Berenger proposed a spatial

273
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scaling of the PML parameters to reduce the discretization errors at material interfaces [2].
He also reported means to reduce the discretization errors for the second-order FDTD scheme,
and to reduce the required PML thickness [3 - 7].

Following Berenger's seminal work, many papers appeared validating his technique [8 - 17]
as well as applying FDTD with the PML medium [18-28]. Several modifications of the PML
were also proposed to enhance its performance [3,6, 14, 29- 31]. The original split-field PML
concept was also restated in a stretched-coordinate form [9,32]. This form extends the use of the
PML to other orthogonal coordinate systems [33 - 35] through a coordinate mapping of the
metrics. The split-field PML can also be applied directly within an FDTD discretization using a
very effective scheme referred to as the convolutional PML (CPML), introduced by Roden and
Gedney [36]. The CPML accommodates more general metric tensor coefficients that can lead to
improved absorption of slowly varying evanescent waveS [36, 37].

The split-field PML was also posed as a uniaxial anisotropic medium having both magnetic
and electric permittivity tensors [38, 39]. Introducing loss into the tensors results in a perfectly
matched absorbing medium. This uniaxial PML (UPML) was first applied within the FDTD
method by Gedney [24, 39]. The UPML is intriguing because it is based on a Maxwellian
formulation rather than a mathematical model. In fact, attempts to realize a physical UPML
medium have been reported (40, 41].

This chapter reviews the theoretical foundations of Berenger's split-field PML, its stretched
coordinate representation, the UPML, and the CPML. The relationships between these methods
are highlighted. Efficient implementations of the UPML and CPML within the Cartesian FDTD
space lattice are presented. Additional topics include the numerical discretization error of PML
and the optimal choice of its constitutive parameters and spatial grading functions. We show that
PML is applicable to FDTD models having regions of inhomogeneous, conductive, and
dispersive media that exit normally from the space lattice.

7.2 PLANE WAVE INCIDENT UPON A LOSSY HALF-SPACE

To establish a foundation for our discussion of PML absorbers, this section reviews the physics
of a sinusoidal plane wave impinging upon a conventional lossy material at the arbitrary angle ()
relative to the x-axis. Specifically, we consider a TEl-polarized wave incident from Region 1,
the loss less material half-space x < 0, onto Region 2, the material half-space x > 0 having the
electric conductivity (j and magnetic loss (j0. Here, the incident-wave magnetic field is given by

-j!3l x -j!31Y
= zH e x Yo

where the hat denotes a phasor quantity. Then, the total fields in Region I are given by

The fields transmitted into Region 2 are given by

(7.1)

(7.2a)

(7.2b)
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rand 'r are the H-field reflection and transmission coefficients, respectively, and

(7.3b)

} x <° (7 Aa)

(7Ab)

where k. = OJ~lli £i for i = 1,2. Enforcing the continuity of the tangential fields across the
I

Region-l I Region-2 interface at x =0 leads to /32 = /31 =k) sine and
y y

1 = 'r=1+1 (7.5a, b)

In general, r:f. °for the arbitrary incidence angle e. However, for the special case of

normal incidence (e = 0) of the impinging wave, we have

1 = (7.6)

where the wave impedances in Regions 1 and 2 are given by

112 ( 1 + a·1 jOJ1l2)

£2(1 + aljOJ£2)
(7.7a, b)

Then, if we set £1 = £2 and III = 112 and further enforce the condition

(7.8)

then kl = k2 and TIl =Tl 2 • This yields r = 0, a reflectionless Region-II Region-2 interface for the
normally impinging wave. From (7Ab), we also find for this case that
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(7.9)

yielding the following transmitted fields in Region 2:

(7. lOa, b)

We observe that, for the normal-incidence case, the transmitted wave in Region 2 attenuates
exponentially along the normal direction. Further, despite propagating in a lossy medium,
this wave is dispersionless. That is, its wave speed is independent of frequency. Therefore,
the material half-space Region 2, having magnetic and electric losses defined by (7.8),
is perfectly matched to Region 1 for normally incident waves.

7.3 PLANE WAVE INCIDENT UPON BERENGER'S PML MEDIUM

The lossy medium discussed in Section 7.2 has been used with limited success as an absorbing
layer to terminate the outer boundary of the FDTD space lattice [1, 42]. A major difficulty is
that this medium is matched to the interior of the lattice only for normally incident waves.
Therefore, oblique waves partially reflect back into the computation region and corrupt the
solution. As a result, this absorber is not useful for most problems of practical interest.

Berenger provided the seminal insight that a nonphysical absorber can be postulated that is
matched independent of the frequency and the angle of incidence of the impinging wave by
exploiting additional degrees of freedom arising from a novel field-splitting strategy. In effect,
this allows the construction of what he called a "perfectly matched layer" adjacent to the outer
boundary of the FDTD space lattice for absorption of all impinging waves. Berenger reported
local reflection coefficients for his PML 1/3,OOOth that of the Mur ABC discussed in Chapter 6.
The overall noise power in the lattice due to reflections from the outer boundary was reduced by
70 or more decibels. This section reviews the theoretical basis of Berenger's PML for the case
of plane-wave incidence upon a half-space comprised of this medium.

7.3.1 Two-Dimensional TEz Case

Field-Splitting Modification ofMaxwell's Equations

Consider again a TEz plane wave impinging on the planar interface x =0 of the material half
space Region 2. Within Region 2, Maxwell's curl equations (3. t4a~) as modified by Berenger
are expressed in their time-dependent form as

dE dHc __" + ayE" =
__l

2 dt dy

dE dH
£. --y + aE = ---'

2 dt " y
dx

(7.11a)

(7.llb)
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aH , _ aEyfl _z_x + ax H =
2 at zx ax

aH
a; HZy

aE
J12 at

lY + =
__x

ay

(7.11c)

(7.IId)

Here, H is assumed to be split into two additive subcomponentsz

(7.12)

Further, the parameters a and a denote electric conductivities, and the parameters a' and a
y
'

x y x

denote magnetic losses.
We see that Berenger's formulation represents a generalization of normally modeled

physical media. Ifax = ay = 0 and a: = a; = 0, (7.11 a-d) reduce to Maxwell's equations in a
lossless medium. Ifax = a

y
= a and a: = a; =0, (7.1 Ia-d) describe an electrically conductive

mediurn. If G. = ~, fl} =fl2' ax =ay=a, a: = a; = a', and (7.8) is satisfied, then (7.11 a-d)
describe an absorbing medium that is impedance-matched to the Region-I half-space x < 0
for normally incident plane waves, as discussed in Section 7.2.

Additional possibilities present themselves, however. If a y =a; =0, then the medium can
absorb a plane wave having field components (Ey, Hr.x) propagating along x, but does not absorb
a wave having field components (Ex' Hzy) propagating along y, since in the first case propagation
is governed by (7.IIb, c), and in the second case by (7.1 la, d). The converse situation is true for
waves (E , H ) and (E ,H ) if a = a' = O. These properties of particular Berenger media

y LX x zy X x

characterized by the pairwise parameter sets (ax' a;, 0, 0) and (0, 0, a
y

, a;.) are closely
related to the fundamental premise of this novel ABC, proved later. That is, if the pairwise
electric and magnetic losses satisfy (7.8), then at interfaces normal to x and y, respectively, the
Berenger media have zero reflection of electromagnetic waves.

Now consider (7.1 la-d) expressed in their time-harmonic form in the Berenger medium.
Again letting the hat symbol denote a phasor quantity, we write

(7.l3a)

( a') = _aEyj OJ fl
2

I + _x_ H
j OJ fl

2
z.t ax

(
a' ) aExj OJ fl

2
I + -.-y- HZy =

} OJfl2 ay

(7.13b)

(7.13c)

(7.13d)
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The notation is simplified by introducing the variables

S = (1 + ~).. .
] WC2

Then, (7.13a, b) are rewritten as

( . )• 0"..
s.. = 1 + -.--

] W}12
w = x, y (7.14a, b)

_ d ( - -)
J'W£ S E = - H + H .

2 Y x dy zx Z)"

d (_ -)= -- H + Hdx zx zy
(7.15a, b)

Plane- Wave Solution Within the Berenger Medium

The next step is to derive the plane-wave solution within the Berenger medium. To this end,

(7.15a) is differentiated with respect to y, and (7.15b) with respect to x. Substituting the

expressions for dE/ dx and dE) dy from (7.13c, d) leads to

2 - Idld( __ )
-w }1 c H = - - - - - H + H

2 2 zy • d a zx z)'
sy y Sy Y

Adding these together and using (7.12), we obtain the representative wave equation

This wave equation supports the solutions

with the dispersion relationship

(7.16a)

(7.16b)

(7.17)

(7.18)

Then, from (7.15a, b) and (7.12), we have

(7.19)

(7.20a)



Chapter 7: Perfectly Matched Layer Absorbing Boundary Conditions 279

(7.20b)

Despite field splitting, continuity of the tangential E and H fields must be preserved across

the x =0 interface for the fields given by (7.2), (7.18), and (7.20). To enforce this continuity,

we have s = s' = 1, or equivalently, (J = 0 = (T'. This yields the phase-matching condition
Y Y )' Y

{J = {JI =k lsin8. Further, we derive the H-field reflection and transmission coefficients
Zy )'

Reflectionless Matching Condition

r=l+r (7.2Ia, b)

Now, assume c1 =cz' f..!1 =11z, and sx=s;. Thisisequivalenttokl =k2 , Til =~11I/Cl =~J12/£2'

and a / £1 = (J / 11, [i.e.• (J and a' satisfying (7.8) in a pairwise manner], With f32 = f3 l '
x x x x )' y

(7.19) now yields f3
2x

= {Jlx' Substituting into (7.21) gives the reflectionless condition r = 0 for

all incident angles 8. For this case, (7.18) and (7.20) specify the following transmitted fields

within the Berenger medium x > 0:

(7.22a)

Within the matched Berenger medium, the transmitted wave propagates with the same speed

and direction as the impinging wave, while simultaneously undergoing exponential decay along

the x-axis normal to the interface between Regions 1 and 2. The attenuation factor (T/1Icos8

is independent of frequency. Unlike the conventional lossy material considered in Section 7.2,

these desirable properties apply to all angles of incidence. Hence, Berenger's coining of the term

"perfectly matched layer" makes excellent sense.

(7.22b)

(7.22c)

Structure ofan FDTD Grid Employing Berenger's PMLABC

The above analysis can be repeated for PMLs that are normal to the y-direction. This permitted

Berenger to propose the two-dimensional TEz FDTD grid shown in Fig. 7.1, which uses PMLs to

greatly reduce outer-boundary reflections. Here, a free-space computation zone is surrounded on

all sides by PML backed by PEe walls.
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Fig. 7.1 Structure of a two-dimensional TE, FOTO grid employing the Berenger PML ABC. After:

Berenger, 1. Computational Physics, 1994, pp. 185-200.

Referring to Fig. 7.1, at the left and right sides of the grid (x I and x), each PML has ax and

a" matched according to (7.8), along with a =0 =a" to permit reflectionless transmissionx y y

across the vacuum-PML interface. At the lower and upper sides of the grid (Y
l

and Y2), each

PML has a and a" matched according to (7.8), along with a = 0 = a". At the four corners ofy y x x

the grid where there is overlap of two PMLs, all four losses (a , a', a, and a") are present and
x x y y

set equal to those of the adjacent PMLs.

Impact ofNumerical Dispersion

A reasonable question to ask at this point is whether or not numerical phase-velocity dispersion

limits the ultimate effectiveness of the Berenger PML ABC as it does the analytical ABCs of

Chapter 6. Based upon the experience with PML to date, the answer is that measured PML

reflection coefficients are orders of magnitude smaller than measured numerical phase-velocity

variations with incident wave angle and frequency. Therefore, the absorptive action of the PML

is robust relative to numerical dispersion artifacts in the FDTD space lattice.
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7.3.2 Two-Dimensional TMz Case

The analysis of Section 7.3.1 can be repeated for the case of a TMz-polarized incident wave,
wherein we implement the field splitting El = Ev: + ElY' Analogous to (7.11), the PML-modified
Maxwell's equations for the TMzcase are as follows:

aHx . aE
J12--a;- + ayHx = __"

ay

aH
a:Hy

aEly
+J12--a;- = ax

aE aH
E~ + a E = --y

2 at x lX ax

E aElY
+ <Iy ElY =

_ aHx
2 at ay

(7.23a)

(7.23b)

(7.23c)

(7.23d)

7.3.3 Three-Dimensional Case

Analogous to the two-dimensional cases of (7.11 a-d) and (7.23a-d), three-dimensional
time-domain Maxwell's equations for Berenger's split-field PML have been developed [5, 8, 12].
In three dimensions, all six Cartesian field vector components are split. For example, the
modified Ampere's law is given by

A derivation of the PML properties analogous to that of the TEz case yields slightly changed
results. In most of the equations, the change is only a permutation of E2 with J.L2 ' and of a with
(j*. However, the PML matching conditions are unchanged. This permits an absorbing
reflectionless layer to be constructed adjacent to the outer grid boundary, as in the TEzcase.

(7.24c)

(7.24a)

(7.24d)

(7.24b)

(E~ a y) Exy
a

+ = -(H +H )
at ay lX zy

(E~ a l ) Exz
a

+ = --(H +H )
at az yx yz

(E~ a l ) EYl
a

+ = -(H +H )
at az xy xz

(E :t + ax) EyX
a

= --(H +H )ax lX zy
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a-(H +H )ax )'x )'z
(7.24e)

(Ei.+a)E = -~(H +H)at )' z)' ay x)' xz

Similarly, the modified Faraday's law is given by

(J! i. + a') H a
= --(E +E )at y x)' ay zx t)'

(J!~ +a: ) Hxz

a
= -(E +E )at az )'x yz

(J!i. a:) H,.z
a

+ = --(E +E )at az x)' xz

(Iii. a:) H)'x
a

+ = -(E + E )at ax zx z)'

(Ii~ +a: ) Hzx
a

= --(E +E )at ax )'x yz

(Ii~ + a')H = ~(E +E)at )' z)' ay x)' xz

(7.24f)

(7.25a)

(7.25b)

(7.25c)

(7.25d)

(7.25e)

(7.25f)

PML matching conditions analogous to the two-dimensional cases discussed previously are
used. Specifically, if we denote w =x, y, z, the matching condition at a normal-to-w PML
interface in the FDTD lattice has the parameter pair (a

w
' a;) satisfy (7.8). This causes the

transmitted wave within the PML to undergo exponential decay in the ±w-directions. All other
(a

w
' a;) pairs within this PML are zero. In a corner region, the PML is provided with each

matched (a
w

' a;) pair that is assigned to the overlapping PMLs forming the corner. Thus,
PML media located in dihedral-corner overlapping regions have two nonzero and one zero
(a

w
' a;) pairs, and in trihedral-corner overlapping regions have three nonzero (aw ' a;) pairs.

7.4 STRETCHED-COORDINATE FORMULATION OF BERENGER'S PML

A more compact form of the split-field equations of (7.24) and (7.25) was introduced by Chew
and Weedon [9], and independently by Rappaport [32]. Here, the split-field equations are
reposed in a nonsplit form that maps Maxwell's equations into a complex coordinate space.
To this end, the following coordinate mapping is introduced:
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Ix , ,x ~ S (x)dx ;o x
- fY 'd'y ~ Jo Sy (y) y ; (7.26)

In (7.26), we assume that the PML parameters s'" are continuous functions along the axial
directions. The partial derivatives in the stretched coordinate space are then

a
ax =

1 a
=

a
az

1 a
=-- (7.27)

Thus, the V operator in the mapped space is defined as

A a A a A a
V = x- + y- + z-ax Jy Jz

(7.28)

The time-harmonic Maxwell's equations in the complex-coordinate stretched space are then
expressed as

1d-) A(ld- 1d_J--H + Y --H - --H
s, dZ y s, dZ x Sx dX l

jWEE = Vx if = x(2.~H
Sy dy ,

(
ld- 1d-)+ i --H - --H

Sx dX y Sy ay x

(7.29)

A direct relationship can now be shown between the stretched-coordinate form of Maxwell's
equations and Berenger's split-field PML. To demonstrate this, we first rewrite the split-field
equations of (7.24) for the time-harmonic case:

(7.30)

(7.31c)

(7.31a)

(7.31 b)

A(la- 1a_Jy --E - --E
S az x S ax l

, x

= x(2.~E - ~~E ) +
Sy ay' s, az y

(
la- 1a_)+ i --E - --E

SX ax Y Sy ay x

a (_ -)= - H +Haz xy x,

a (- -)= -- H +Haz yx y,

= VxE- jWJ1H
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jUJEsxEzx

a (~ ~)= -- H +Hax zx zy

a (- -)= - H +Hax yx yz

(7.31d)

(7.31e)

a (- -)
j 'wEs),E,y = - - H + Hay xy Xl

(7.31t)

Then, add (7.31a) + (7.31b), (7.31c) + (7.31d), and (7.31e) + (7.31t), and use the relationships
E = E + E • E = E + E • and E =E + E . This yields

x xy Xl Y YX),l l lX ly

1 a= --H
Sy ay l

1 a
= --H

s az x
l

1 a
--H
s az Y

z

1 a 
--H
sx ax z

(7.32a)

(7.32b)

1 a 1 a= --H - --H
Sx ax Y Sy ay x

(7.32c)

which is identical to (7.29). This procedure is repeated for the split-field equations of (7.25)
rewritten for the time-harmonic case, leading exactly to (7.30). Specifically, we see that the
stretched-coordinate form of the PML is equivalent to the split-field PML; however. it reposes it
in a nonsplit form.

In the time-domain, the stretched coordinate form of the PML is expressed as

aD
at

~ ( a= x s *-H
y ay z

~ (a a)+ z s *-H - s *-H
x ax Y y ay x

(7.33a)

aB
at

~( a= x s *-E)' ay l

~ ( a+ z s *-E
x ax y

(7.33b)

where * denotes a convolution,
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w =x, y, Z (7.34)

and :r-I denotes the inverse Fourier transform.
The complex stretched-coordinate formulation allows straightforward mathematical

manipulation of the PML equations, which in turn allows extension of our understanding of PML
behavior. For example, the stretched-coordinate formulation has provided a pathway to mapping
the PML into other orthogonal coordinate systems or into general curvilinear coordinate systems
[33 - 35]. It also can be shown that if the metric coefficients Sw are independent of the material
parameters, then the PML matches waves propagating in a general host medium. As shown in
Section 7.8, a highly effective discrete implementation of the stretched-coordinate formulation
can be applied within the FDTD method.

7.5 AN ANISOTROPIC PML ABSORBING MEDIUM

The split-field PML introduced by Berenger is a hypothetical medium based on a mathematical
model. Neither it nor its stretched-coordinate analog is a physical medium. Due to the
coordinate dependence of the loss terms, if such a physical medium exists, it must be anisotropic.

Indeed, a physical model based on an anisotropic, perfectly matched medium can be

formulated. This was first discussed by Sacks et al. [38]. For a single interface, the anisotropic
medium is uniaxial, and is composed of both electric and magnetic permittivity tensors.
The uniaxial material performs as well as Berenger's PML while avoiding the nonphysical field
splitting. This section introduces the theoretical basis of the uniaxial PML, and compares its
formulation with Berenger's PML and the stretched-coordinate PML.

7.5.1 Perfectly Matched Uniaxial Medium

. -jf3 x-jf3 )'
Consider an arbitrarily polarized time-harmonic plane wave iJlne = H o e Ix I), propagating

in Region 1, the isotropic half-space x < O. This wave is assumed to be incident on Region 2,
the half-space x > 0 comprised of a uniaxial anisotropic medium having the permittivity and
permeability tensors

Here, £ =£ and J.l =J.l , since the medium is assumed to be rotationally symmetric about the
Y)' lZ )'j' u

x-axis.
The fields excited within Region 2 are also plane-wave in nature and satisfy Maxwell's curl

equations. We obtain

(7.35)~]
o
d

o

o
b

o

-WE E2 (7.36)
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where fJ2 = :i fJ2 + YfJ2 is the wavevector in anisotropic Region 2. In turn, this permits the
x y

derivation of the wave equation

(7.37)

Expressing the cross products as matrix operators, this wave equation can be expressed in matrix

form as

k;c - (I\,rb-
I /3 /3 b-l 0 H2, 2y x

/3 /3 b- I ed - (/32,rb-
I

0 H = 02, 2y 2 Y

0 0 ed - (/3 rb-I - (/3 ra-I H2 2, 2y
,

(7.38)

where k~ =all-12£2. The dispersion relation for the uniaxial medium in Region 2 is derived from

the determinant of the matrix operator. Solving for /32
x

' we find that there are four eigenmode

solutions. Conveniently, these solutions can be decoupled into forward and backward TEz and

TM
z

modes, which satisfy the dispersion relations

(7.39)

(7.40)

The reflection coefficient at the interface x =0 of Regions 1 and 2 can now be derived.

Let us assume a TEz incident wave in Region I. Then, in isotropic Region I, the fields are

expressed as a superposition of the incident and reflected fields as

(7.4la)

(7.41 b)

The wave transmitted into Region 2 is also TE
z

with propagation characteristics governed by

(7.39). These fields are expressed as
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(7.42a)

(7.42b)

where rand -r are the H-field reflection and transmission coefficients, respectively. These are
derived by enforcing continuity of the tangential E and H fields across x =0, and are given by

r = (7.43a, b)

Further, for all angles of wave incidence we have

13 - 132y - 'y
(7.44)

due to phase-matching across the x =0 interface. Substituting (7.44) into (7.39) and solving for

f32
z

yields

(7.45)

Then, if we set £, =t2, /1, =/12' d =b, and a-I =b, we have k2 =kl and

(7.47)

(7.46)

Substituting (7.46) into (7.43) yields r =0 for all 131 , Thus, the interface between Regions 1
and 2 is reflectionless for all angles of wave incidence. Z

The above exercise can be repeated for the TMz-polarization case. Here, the E-field
reflection coefficient is the dual of (7.43), and is found by replacing b with d (and vice versa),
and a with c. For this case, the reflectionless condition holds if b =d and c- I =d.

Combining the results for the TE, and TMz cases, we see that reflectionless wave transmis
sion into Region 2 occurs when it is composed of a uniaxial medium having the £ and /1 tensors

This reflectionless property is completely independent of the angle of incidence, polarization,
and frequency of the incident wave. Further, from (7.39) and (7.40), the propagation
characteristics of the TE- and TM-polarized waves are identical. We call this medium a
"uniaxial PML" in recognition of its uniaxial anisotropy and perfect matching.
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Similar to Berenger's PML, the reflection less property of the UPML in Region 2 is valid for
any s,,' For example, choose Sx = I + a)JWEI = 1 - jax IWE,. Then, from (7.46), we have

(7.48)

We note that the real part of f32" is identical to f31>. Combined with (7.42), this implies that the
phase velocities of the impinging and transmitted waves are identical for all incident angles.
The characteristic wave impedance in Region 2 is also identical to that in Region 1, which is a

consequence of the fact that the media are perfectly matched.
Finally, substituting (7.44) and (7.48) into (7.42) yields the fields transmitted into the

Region-2 UPML for a TEz incident wave:

(7.49a)

(7.49b)

Here, 77 1 = ~J.11/£1 and () is the angle of incidence relative to the x-axis. Thus, the transmitted

wave in the UPML propagates with the same phase velocity as the incident wave, while

simultaneously undergoing exponential decay along the x-axis normal to the interface between

Regions I and 2. The attenuation factor is independent of frequency, although it is dependent on
() and the UPML conductivity ax'

7.5.2 Relationship to Berengerts Split-Field PML

Comparing the E- and H-fields transmitted into the UPML in (7.49) with the corresponding

fields for Berenger's split-field PML in (7.22), we observe identical tangential fields and
identical propagation characteristics. Further examination of (7.17) and (7.37) reveals that the
two methods result in the same wave equation. Consequently, the plane waves satisfy the same
dispersion relation.

However, upon comparing the normal electric fields Ex, we note that they differ by a factor

of sx' In fact, comparing the incident fields, it is clear that in the split-field formulation, Ex is

continuous across the x =0 boundary. However, for the UPML, Ex is discontinuous while
D =s -I E is continuous. This implies that the two methods host different divergence theorems.

x x x

Within the UPML, Gauss' law for the E-field is explicitly written as

V·D = V'(EsE) = L(£S-IE)+~(ESE)+~(ESE)ax x x ay x Y az x l
o (7.50)

This implies that D = ES -I E must be continuous across the x = 0 interface, since no sources arex x x

assumed here. It was shown that [; must be continuous across the interface for a perfectly

matched condition. Thus, D and S-I E must be continuous across x =O. Comparing (7.49)
x x x

with (7 AI), this is indeed true for the TEz-polarized wave.
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Next, consider Gauss' law for Berenger's split-field PML formulation. The V operator in
the stretched-coordinate space of interest is defined as

u ~ a ~ a ~ a
y =x--+y-+z-

s"ax ay az (7.51)

Therefore, we can express the divergence of the electric flux density as

1 a a a
--(EEJ + -(EE) + -(EEJ = 0
s" ax ay Y az (7.52)

Since e is continuous across the boundary and s-I occurs outside the derivative, both E and D
" " x

are continuous.
In summary, Berenger's split-field PML and the UPML have the same propagation

characteristics, since they both result in the same wave equation. They also have identical
reflection properties in a discrete FDTD implementation, as observed by Gedney [39] and proven
analytically by Berenger [37]. However, the two formulations have different Gauss' laws.
Hence, the E- and H-field components that are normal to the PML interface are different.

7.5.3 A Generalized Three-Dimensional Formulation

We now show that properly defining a general constitutive tensor s allows the UPML medi.um

to be used throughout the entire FDTD space lattice. This tensor provides for both a lossless,

isotropic medium in the primary computation zone, and individual UPML absorbers adjacent to
the outer lattice boundary planes for mitigation of spurious wave reflections.

For a matched condition, the time-harmonic Maxwell's curl equations in the UPML can be

written in their most general form as

(7.53a, b)-jWj1sHVXE

o

v X H = jWEsE ;

where s is the diagonal tensor defined by

o

(7.54)
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Allowing for a nonunity real part K, the multiplicative components of the diagonal elements of =s
are given by

ax
Sx = K x +--

jOJe

a y
s =K +--

y y jOJE

a
S = K

z
+ _z_

z jOJE
(7.55a, b, c)

The general tensor in (7.54) is sufficient to describe the anisotropic PML in the entire FDTD

volume. It turns out that it is sufficient to express sx' Sy' and sz' or more appropriately, Kx ' Ky '

K , a , a , and a as one-dimensional functions. That is:
z x y Z

K (x) = {«X) x ~ xmin ' X~ xmax ax(x) = {~;(X) x ~ xmin ' X~ xmax

x 1 xmin < X< xmax xmin < X< xmax

{"J (y) Y ~ Ymin , Y ~ Ymax { cr' (y) Y ~ Ymin' Y ~ Ymax
J( (y) = y ay(Y) = oyy 1

Ymin < Y < Ymax Ymin < Y < Y max

{ K' (z) Z ~ Zmin' Z ~ zmax a (z) = { a;(z) Z ~ zmin' Z ~ zmax
K (z) = z

z 1
zmin < Z < zmax Z 0

zmin < Z < zmax

(7.56a)

(7.56b)

(7.56c)

Thus, in the interior region of the FDTD space, the tensor becomes the unit dyad, whereas in the
PML regions, the tensor is properly expressed. Note that, as with the split-field PML, two tensor

coefficients are nonunity in dihedral corner regions, and all three tensor coefficients are nonunity
in trihedral corner regions.

The generalized constitutive tensor defined in (7.54) is no longer uniaxial by strict
definition, but rather is anisotropic. However, the anisotropic PML is still referenced as uniaxial,
since it is uniaxial in the nonoverlapping PML regions.

7.5.4 Inhomogeneous Media

Often, the PML is used to tenninate an inhomogeneous material region that is assumed to extend

infinitely. One example is a printed circuit constructed on an infinite substrate backed by a
ground plane. A second example is an optical fiber that is assumed to be infinitely long in the
axial direction. In such cases, the inhomogeneous material region extends through the PML to
the outer boundary of the FDTD lattice. It can be shown that the PML is indeed perfectly

matched to such a medium [43]. However, care must be taken to properly choose the PML

parameters to maintain a stable and accurate formulation.
Consider an x-normal UPML boundary. Let an inhomogeneous dielectric e(y, z), which is

assumed to be piecewise constant in the transverse y- and z-directions, extend into the UPML.

From fundamental electromagnetic theory, D =eE must be continuous across any y-normal
y y

boundary, and D =EE must be continuous across any z-normal boundary. Then, from Gauss'
z z

law for the UPML in (7.50), we see that Sx must be independent of Y and z to avoid surface

charge at the boundaries of the discontinuity.
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In the previous discussions, the dielectric in the UPML was assumed to be homogeneous.
For this case in (7.55a), Sx = /(x + (Ix I j OJE was chosen. However, if E =E(y, z) and is piecewise
constant, then Sx is also piecewise constant in the transverse directions. Thus, surface charge
densities result at the material boundaries as predicted by Gauss' law in (7.50), due to the
derivative of a discontinuous function. This nonphysical charge leads to an ill-posed
formulation. To avoid this, s must be independent of y and z. This holds only if (I lEisx x

maintained constant. This can be done in a brute-force manner by modifying (Ix in the transverse
direction such that (lx(Y' z)1 E(y, z) is a constant. A much simpler approach is to normalize (Ix

by the relative permittivity, rewriting (7.55a) as

s = /( + (If 1)'WEox x x (7.57)

where Eo is the free-space permittivity. In this case, (I~ is simply a constant in the transverse
y- and z-directions, although it is still scaled along the normal x-direction. Now, Gauss' law is
satisfied within the UPML, leading to a well-posed formulation. This also leads to a material
independent formulation of the UPML [24, 39, 43, 44 - 49].

Next, consider Berenger's split-field PML. To understand the constraints of this technique
in an inhomogeneous medium, it is simpler to work with the stretched-coordinate representation
of the equations. In stretched coordinates, Gauss' law is represented in (7.52). Here, it appears
that there are no further constraints on sx' However, conservation laws require that the charge
continuity equation be derived from Ampere's law and Gauss' law. To this end, the divergence
of Ampere's law in (7.29) is performed in the stretched coordinates, using (7.52). We see that
the divergence of the curl of H is zero only if Sx is independent of the transverse coordinates
y and z. This holds only if (I)e is independent of y and z. Again, this can be easily managed by

representing Sx by (7.57), thus leading to a material-independent PML.
In summary, an infinite inhomogeneous medium can be terminated by a split-field or

stretched-coordinate PML, or by a UPML medium. All are perfectly matched to arbitrary
electromagnetic waves impinging upon the PML boundary. The method is accurate and stable,
provided that the PML parameters Sw (sx' Sy' or s) are posed to be independent of the transverse
directions. This can be readily accomplished by normalizing (lw by the relative permittivity,
and hence posing Sw = /(w + (I: I j OJ eo' where (I: is constant in the transverse direction.

7.6 THEORETICAL PERFORMANCE OF THE PML

7.6.1 The Continuous Space

When used to truncate an FDTD lattice, the PML has a thickness d and is terminated by the outer
boundary of the lattice. If the outer boundary is assumed to be a PEC wall, as shown in Fig. 7.1,

finite power reflects back into the primary computation zone. For a wave impinging upon the
PML at angle 0 relative to the w-directed surface normal, this reflection can be computed using
transmission line analysis, yielding

R(O) = -20'w 17 d cos 9
e (7.58)
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Here, 1J and a", are, respectively, the PML's characteristic wave impedance and its conductivity,
referred to propagation in the w-direction. In the context of an FDTD simulation, R(O) is

referred to as the "reflection error," since it is a nonphysical reflection due to the PEC wall that
backs the PML. We note that the reflection error is the same for the split-field and stretched
coordinate PML and the UPML, since all support the same wave equation. This error decreases
exponentially with a", and d. However, the reflection error increases as exp(cosO), reaching the
worst case for e=90°. At this grazing angle of incidence, R =1 and the PML is completely
ineffective. To be useful within an FDTD simulation, we want R(O) to be as small as possible.

Clearly, for a thin PML, we must have a w as large as possible in order to reduce Rce) to
acceptably small levels, especially for 0 approaching 90'.

7.6.2 The Discrete Space

Grading afthe PML Loss Parameters

Polynomial Grading. Several profiles have been suggested for grading a/x) [and I(x(x) in
the context of the UPML]. The most successful use a polynomial or geometric variation of the
PML loss with depth x [3]. Polynomial grading is simply

(7.59)

(7.61)

(7.60a, b)

-Z,.,ux maxdC059/(m+l)
e '

( )
-2"'C059r u (x)d.t

RO =e Ox

a (x) = (x/d)m a ;
x x, max

R(O)

Theoretically, reflectionless wave transmission can take place across a PML interface regardless

of the local step-discontinuity in a and a· presented to the continuous impinging electromagnetic
field. However, in FDTD or any discrete representation of Maxwell's equations, numerical
artifacts arise due to the finite spatial sampling. Consequently, implementing PML as a single

step-discontinuity of a and a· in the FDTD lattice can lead to significant spurious wave
reflection at the PML surface.

To reduce this reflection error, Berenger proposed that the PML losses along the direction

normal to the interface gradually rise from zero [2]. Assuming such a grading, the PML remains
matched, as seen from the stretched-coordinate theory in Section 7.4. Pursuing this idea,

we consider as an example an x-directed plane wave impinging at angle eupon a PEC-backed

PML slab of thickness d, with the front planar interface located in the x =0 plane (chosen here
for convenience). Assuming the graded PML conductivity profile ax(x) , we have from (7.26)
and (7.22) or (7.49) the reflection factor

This increases the value of the PML aX from 0 at x = 0, the surface of the PML, to O'x.max

at x =d, the PEC outer boundary. Similarly, for the UPML, I(x increases from 1 at x =0 to

I( at x =d. Substituting (7.60) into (7.59) yieldsx,max
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For a fixed d, polynomial grading provides two parameters: O'x.max and m. A large m yields a
a (x) distribution that is relatively flat near the PML surface. However, deeper within the PML,

x
a increases more rapidly than for small m. In this region, the field amplitudes are substantially

x

decayed, and reflections due to the discretization error contribute less. Typically, 3 S m S 4 has
been found to be nearly optimal for many FDTD simulations [3,6, 14,39].

For polynomial grading, the PML parameters can be readily determined for a given error
estimate. For example, let m, d, and the desired reflection error R(O) be known. Then, from

(7.61), 0' is computed asx,max

where O'x.o is the PML conductivity at its surface, g is the scaling factor, and t!. is the FDTD space
increment. Here, the PML conductivity increases from O'x.o at its surface to gdlA O'x.o at the PEC
outer boundary. Substituting (7.63) into (7.59) results in

Geometric Grading. The PML loss profile is defined for this case as [6]

(7.62)

(7.63a, b)( ) = [(K: )1/d II~ ]xK x X max g

(m+l) In[R(O)]

2T]d
ax. max =

For a fixed d, geometric grading provides two parameters: g and O'x.o' O'x.o must be small to
minimize the initial discretization error, and the metric g > 1 governs the rate of increase of the
conductivity within the PML. Large values of g flatten the conductivity profile near x =0,
and steepen it deeper into the PML. Usually, g, d, and R(O) are predetermined. This yields

The design of an effective PML requires balancing the theoretical reflection error, R(B), and the

numerical discretization error. For example, (7.62) provides 0' for a polynomial-gradedx,max

conductivity, given a predetermined R(O) and m. If 0' is small, the primary reflection fromx,max

the PML is due to its PEC backing. Equation (7.59) provides a fairly accurate approximation of
the reflection error for this case. However, we normally choose 0' to be as large as possiblex,max

to minimize R(B). Unfortunately, if O'x.max is too large, the discretization error due to the FDTD
approximation dominates, and the actual reflection error is potentially orders of magnitude
higher than what (7.59) predicts. Consequently, there is an optimal choice for ax. max that
balances reflection from the PEC outer boundary and discretization error.

Discretization Error

(7.65)

(7.64)-2'1<1, o~(gdIA_l)Cosfillnge .R(B) =

In[R(O)] In(g)

2T]t!.(gd/~ -1)

Typically, 2 S g S 3 has been found to be nearly optimal for many FDTD simulations.
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It was postulated by Berenger [3, 6] that the largest discretization error manifested as
reflection occurs at x =0, the PML surface. Any wave energy that penetrates further into the
PML and then is reflected undergoes attenuation both before and after its point of reflection,
and typically is not as large a contribution. Thus, it is desirable to minimize the discontinuity at
x =O. As discussed earlier, one way to achieve this is by flattening the PML loss profile near
x =O. However, if the subsequent rise of loss with depth is too rapid, reflections from deeper
within the PML can dominate.

Through an extensive series of numerical experiments, it was demonstrated in [39,43] that,
for a broad range of applications, an optimal choice for a IO-cell-thick, polynomial-graded PML
is R(O) == e-16

. For as-cell-thick PML, R(O) == e-8 is optimal. From (7.62), this leads to an
optimal choice for ax, max for polynomial grading:

(JX,opt ;::::

(m + I)· (-16)

(2T/)·(IOM
=

O.8(m + 1)

T//).
(7.66)

This expression assumes a homogeneous medium. It can be further generalized to
inhomogeneous, dispersive, or nonlinear media by using the stretched-coordinate coefficient in
(7.57). Following the same principle, ax, opt is generalized to [39,43]

O.8(m + 1)
(7.67)

where 110 is the free-space wave impedance, /). is the lattice-cell dimension along the normal
stencil, and cr,eff and Ilr,eff are constants that represent the effective relative permittivity and
permeability, respectively. For inhomogeneous or dispersive materials, Er,eff and Il

r
.eff can be

chosen to be a mean value based on the material parameters, or based on a physical parameter
such as the wavenumber of the fundamental mode expected to impinge on the PML boundary.
This choice for ax,opt has proven to be quite robust for many applications, as will be illustrated in
Section 7.11.

7.7 COMPLEX FREQUENCY-SHIFTED TENSOR

7.7.1 Introduction

The performance of the PML in the previous sections considered only the absorption of
propagating waves with near-normal angles of incidence. However, we note that, when
implementing the PML within the discrete FDTD domain, large spurious reflections can occur
for cases where the numerical waves impinging on the PML are near grazing incidence.
This arises when the PML terminates a highly elongated domain. In addition, large PML
reflections can occur when the impinging wave spectrum is highly evanescent. This arises when
the PML boundary is placed very close to a field singularity such as that existing at a metallic
edge or comer, or in the near-field of an antenna.

Consider the specular reflection of a normally incident TEz-polarized wave from the front
PML interface. From (7.21), this can be written directly as:
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1 - ~ s;(O)/s/O)

1 + ~ s;(O)/s/O)
(7.68)

where we have intentionally expressed this in terms of the electric and magnetic tensor
coefficients sand s·, respectively, and sand s· are expressed via (7.57). The stretchedx x x x

coordinates are assumed to be spatially scaled using (7.60). Then, at the front PML interface,
s/O) = 1. In the discrete space, the magnetic tensor and electric tensor parameters are staggered
by one-half cell. Due to this discretization, the magnetic tensor coefficient is nonzero at
locations one-half cell from the interface. Thus,

1 + ~ s/~/2)
(7.69)

where ~x is the FDTD lattice-cell dimension. Defining Sx from (7.55a), this is rewritten as

(7.72)

(7.71)

(7.70)
~ OJ - j a / ~/2) /£0 ..j;

=
~ OJ - j a x (~/ 2) / £0 +..j;

10= 1.8 x 10 a/I1)2)

=
1.8 X 10

10
a/!1)2)

a (11 /2)f = x x

e 2n£o

where it is assumed for simplicity that 1(/~)2) = 1. In the frequency range OJ» a/l1)2)/£0 ,
r o=O. At low frequencies, where OJ« a/I1)2)/£o' ro"" 1. Consequently, slowly varying
fields or waves with a long time-interaction with the PML interface can suffer from large

reflections [4, 6].
A break frequency between the high-reflection, low-frequency regime and the low

reflection, high-frequency regime can be defined from (7.70) as [3]:

Thus, when f> fe' most of the impinging field is transmitted into the PML, and when f <!c,
most of the impinging field is reflected. In the time domain, this allows small reflections from
the PML interface up to a time of approximately

Relatively large reflections can occur beyond this time, as verified in numerical experiments by
Berenger [3]. An important consequence is that PML can perform poorly for highly oblique
incident waves and slowly moving evanescent waves that inherently have long-term interactions
with the PML boundary.

These undesirable late-time reflections from the PML interface can be mitigated by either
decreasing a)!1/2) or increasing the size of the problem domain. However, such options either
increase R(e) or increase the computational burden. Thus, again, discretization error and
theoretical reflection error must be balanced.
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7.7.2 Strategy to Reduce Late-Time (Low-Frequency) Reflections

One reason for the large reflection coefficient at low frequencies is that the tensor coefficient 5%

has a pole (or is singular) at zero frequency. That is, 5
x
-7 -)00 as OJ -7 O. However,

this problem can be circumvented by shifting the pole off the origin into the upper-half complex
plane. To this end, a choice for the tensor coefficient 5

x
that has proven beneficial is [36,50]:

(7.73)

This has been referred to as the complexfrequencY-5hifted (CFS) tensor coefficient [36, 37,43].
Assuming K' ~ 1, <J ~ 0, and a ~ 0 and real, this choice for 5 is both causal and stable [51].x x x x

The reflection coefficient can again be estimated for the CFS-PML tensor using (7.68).
In this case, it is assumed that 5 is polynomial scaled and <J (0) =0, K' (0) =I, a (0) ¢ 0, and

x x x x

5 (0) =1. For the magnetic tensor coefficient, 5· is nonzero at Li 12. The reflection coefficient is
x x x

then approximated as

1 +
<Jx (Il)2)

- 1

rCFS

a/Li)2) + jOJco
(7.74)=

1 +
<Jx (Li) 2)

+ I
axCll )2) + jeoco

Again, for simplicity it is assumed that K'/1l)2) = 1. In the high-frequency limit that

OJ »a/Li/2)/co and eo» <J/Li/2)/co' we see that rCFS -7 O. On the other hand, in the low
frequency limit that eo« a/Li/2)/co' we have

I +
<Jx (Li)2)

1-

rCFS Ilow, flimit

a (Li /2)
x x

z

<JJLi) 2)
1 + + 1

ax (Il)2)

Assuming that <J/Li/2) 1a/Il/2) « I, then

(7.75)

<Jx(Li) 2)

4axCll) 2)
(7.76)

Comparing this with (7.70), we see immediately that the CFS tensor coefficient can significantly

reduce the specular reflection error from the front PML interface at low frequencies. (See [52]

for a more detailed discussion of the reflection phenomena associated with the CFS PML.)
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To fully understand the behavior of the CFS PML, we also need to explore the attenuation of
a wave propagating within this medium. We assume that this wave has a complex propagation
constant rxinc =a;nc + j f3;nc, where a;nc represents attenuation. Following the derivation in
Section 7.5.1, the wave exhibits an exponential dependence along the normal axis of the form
exp(-rxincsxx). Assuming the CFS tensor coefficient in (7.73), this is expanded as

( inc '(Jine)( (Jr) (inc 'pine inc (Jr 'plne (J X )-a.1+J.r IC.1+--.- X -OrK.r+).rKx+ax--.-+}r--.- x
e ax+}ClIEO = e ax+}ClIEO ax+]ClIEO (7.77)

A number of observations can be made from (7.77). The first is that K amplifies the
. x

physical attenuation of the incident wave a;nc in the CFS PML. Next, in the limit that
w» a)£0 , the CFS PML absorbs to the same degree as the standard PML. However,
if w« a)£0' the CFS PML conductivity ax offers no additional attenuation. In fact, if the
wave is purely propagating (i.e., a;nc =0), the CFS PML provides little if any attenuation at low
frequencies. The break frequency for the CFS PML is thus quantified as

(7.78)

such that if f «fa' little absorption of a propagating wave is administered by the PML.
Conversely, high absorption is realized if f» 1;,.

As a consequence, while the CFS PML significantly reduces the reflection error at low
frequencies, propagating waves within the PML can be appreciably less attenuated. Fortunately,
this dilemma can be resolved with a spatial scaling of ax' As predicted by (7.74) and (7.76),
a should be relatively large near the front PML interface, since the reflection coefficient is

x
minimized when 6/1.1/2) / a//),)2) « 1. Inside the PML, ax should be reduced so that the low-
frequency spectrum of the waves propagating through the PML can be appropriately attenuated.
Therefore, a/x) should have a maximum value at the front PML interface, and decay to zero
within the PML. To this end, a recommended polynomial scaling function for ax is given by

a/x) = {ax.max(do:x)mo, O~x~d
, otherwise

(7.79)

where the front PML boundary is assumed to be located at x = 0, m
a

is the scaling order, and
d is the thickness of the PML.

7.8 EFFICIENT IMPLEMENTATION OF UPML IN FDTD

This section discusses mapping the UPML presented in Section 7.5 into the discrete FDTD
space. The FDTD approximation is derived from the time-harmonic Maxwell's curl equations
and tensor coefficients within the UPML medium, as defined in (7.53) to (7.55). Since the
effective medium presented by the UPML is both dispersive and anisotropic, new techniques
must be introduced to derive the discrete field-update equations. In this section, an auxiliary
differential equation (ADE) approach is used, leading to an efficient formulation.
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7.8.1 Derivation of the Finite-Difference Expressions

Starting with (7.53a) and (7.54), Ampere's law in a matched UPML is expressed as

dH dH 5 5
__I

- --y _J_'_' 0 0 Exdy dZ 5x

dil dil 5 5x - --' = jWE 0 ..2.....L 0 E (7.80)
dz dX 5 y

y

dHy dH 5 x Sy

if__x
0 0

dx dy 5,
,

where we repeat for convenience (7.55), the assumed tensor coefficients for general media:

a
5

x
= /(x + __x_

j WEo

a
5, = /( + --'-

, jmEo
(7.81a, b, c)

Directly inserting (7.81) into (7.80) and then transforming into the time domain would lead
to a convolution between the tensor coefficients and the E-field. This is not advisable, since
implementing this convolution would be computationally intensive in this form. A more
efficient approach is to define the proper constitutive relationship to decouple the frequency
dependent terms [24, 39]. Specifically, let

5 5 _ S _

D = e-3...jf Dy = E....!...E D = e-!...E (7.82a, b, c)x 5 x 5 y ,
5

,
x y ,

Then, (7.80) is rewritten as

dH, dH
- --y

0 0 Ddy dZ 5 y x

diIx dil,
jm 0 0 Dy

(7.83)= 5
dZ dX ,

dHy dH
0 0 D,-

__x
5x

dX dy

Now, we substitute 5 , 5 , and 5 from (7.81) into (7.83), and then apply the inverse Fourierx y ,

transform using the identity jmf(m) ~ (d/dt)f{t). This yields an equivalent system of time-

domain differential equations for (7.83):
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The system of equations in (7.84) can be discretized on the standard Yee lattice. Normal
leapfrogging in time as described in Chapter 3 is suitable, wherein the loss terms are averaged in
time according to the semi-implicit scheme. This leads to explicit time-stepping expressions for
D , D , and D. For example. the D update is given by

x y l X

D 1"+1
x i+l/2,j,k (2Eo K' - a M) I"= Y Y D +

2 E K' + a ~t x i+l/2,j.k
0)' )'

(

H 1"+112 _ H 1"+112
l i+I/2,j+1I2,k l i+1I2.j-1I2.k _

~y

1
"+1/2 1"+ II 2 J

H, ;'"'.].>+'''~H, ;"".].H"

(7.85)

Next, we focus on (7.82a-c), For example, we consider (7.82a). After multiplying both
sides by s ,and substituting for sand s from (7.8Ia. c), we havex x l

Multiplying both sides by jm and transforming into the time domain leads to

a a [a (I]- (K: D ) + _x D = E - (K: E ) + _l Eat x x Eo x at l x Eo x

Similarly, from (7.82b, c), we obtain

(7.86)

(7.87a)

i. (K: D ) + a), Dat )')' Eo Y
= E [i. (K: E ) + (Ix E ]at x)' Eo Y

= E [~(K: E) + ay E]at Y l Eo l

(7.87b)

(7.87c)



300 Computational Electrodynamics: The Finite-Difference Time-Domain Method

The time derivatives in (7.87) are discretized using standard Yee leapfrogging and time

averaging the loss terms. This yields explicit time-stepping expressions for Ex' Ey ' and E
l

•

For example, the Ex update is given by

E In+l
x i+ll2,j.k (

2EO 1( - (J MJ In= l Z E
2 E 1( + (J /),t x i+1/2.j.k

o l l

(7.88)

Overall, updating the components of E in the UPML requires two steps in sequence:

(I) obtaining the new values of the components of D according to (7.85), and (2) using these

new D components to obtain new values of the E components according to (7.88).

A similar two-step procedure is required to update the components of H in the UPML.

Starting with Faraday's law in (7.53b) and (7.54), the first step involves developing the updates

for the components of B. For example, the update for Bx is given by

B In+3/2
x i,j+1/2.k+1/2 (

2 Eo ICy - (Jy /),tJ BJ+1/2 _ ( 2 Eo M )
2E 1( + (J /),t 1,]+1/2,k+1/2 2E 1( + (J /),t

o y y 0,1' y

(

E In+1 -
l i,j+J'k+1/2/),y

E r+ 1

Z i,j,k+ 1/2 I
n+,

E -
y i,j+1/2.k+l In+, JEy i,j+1/2,k

(7.89)

The second step involves updating the H components in the UPML using the values of the B
components just obtained with (7.89) and analogous B-field updates:

(7.90)

Here, the dual constitutive relation Ex =J1 (sJsx> fIx is chosen. Similar expressions can be

derived for the remaining two H-field components,

It can be shown that numerical stability within the Courant limit is obtained when all six

field components in the UPML are updated based on the two-step procedure outlined in (7.85),

(7.88), (7.89), and (7.90) [13]. Further, it can be shown that the discrete fields satisfy Gauss'

law, and that the UPML is well-posed [52, 53].
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7.8.2 Computer Implementation of the UPML

(7.91f)

(7.91e)

(7.91a)

(7.91c)

(7.9Id)

(7.91b)

Cl(j)
2£0 IC/j) - ay(j)M

=
2 £0 ICy (j) + ay(j)M

C2(j)
2 £0 I1t

=
2 £0 ICy (j) + a y(j) I1t

C3(k) =
2£oICz(k) - az(k)M

2 £0 ICz<k) + az(k)M

1
C4(k) =

2 £0 ICz<k) + az<k) M

C5(i) = 2 £0 ICx (i) + a/OM

C6(i) = 2 £0 ICx (i) - ax (i) Llt

Each E and H component within the UPML is computed using an explicit two-step time
marching scheme as derived in (7.85) and (7.88) for E , and in (7.89) and (7.90) for H. Basedx x

on these updates, the UPML is easily and efficiently implemented within the framework of
existing FDTD codes. We now illustrate this in FORTRAN using the time-stepping expressions
for Ex given in (7.85) and (7.88). First, at the beginning of the computer program,
we precompute six coefficient arrays to be used in the field updates:

Defining the field-updating coefficients in this manner permits a unified treatment of both
the lossless interior working volume and the UPML slabs. In effect, UPML is assumed to fill the
entire FDTD space lattice. We set CT,., =0 and IC,., = 1 in the working volume to model free
space. However, in the UPML slabs, aw and IC,., are assumed to have the polynomial-graded
profile given in (7.60), or the geometric-graded profile given in (7.63), along the normal axes of
the UPML slabs. As a result, the coefficients in (7.91) vary in only one dimension.

When defining the coefficient arrays (7.91a-f), it is critical to assign the proper value to the
UPML loss parameters. To this end, a,., and ICw are computed at a physical coordinate using
(7.60a, b) or (7.63a, b). The appropriate choice of the physical coordinate is at the edge center of
the discrete field E (i, j, k), which is [(i + 1/2)&, j Lly, k.6.zJ. Thus, in (7.91 e, 0, a (i) and

x x

IC (i) are computed at the physical coordinate (i + 1/2)Llx. Similarly, in (7.91a, b), a (j) and
x y

IC (j) are computed at the physical coordinate j Lly; and in (7.91c, d), a (k) and IC (k) are
c;mputed at the physical coordinate k.6.z. This is similarly done for the updates of E

y
zand E

z
.

The UPML loss parameters for the H-fields are chosen at the lattice face centers. For example,
the physical coordinate of the discrete field H/i,j, k) is [i&, (j + 1I2)Lly, (k + 1/2).6.z]. Thus,
for the update of H/i,j, k), ax(i) and IC/O are computed at the physical coordinate iLlx; a)j)
and IC (j) are computed at the physical coordinate (j + 1/2)Lly; and az(k) and IC/k) are computed
at th/physical coordinate (k + 1I2).6.z. This is similarly done for the updates of H), and Hz.
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Given the above "all-UPML" strategy, and assuming that the physical medium is a lossless
and potentially inhomogeneous dielectric, then the FORTRAN program segment that executes
the time-stepping of Ex everywhere in the FDTD space lattice can be written as a simple triply
nested loop:

do 10 k=2,nz-1
do 10 j=2,ny-1

do 10 i=1,nx-1

dstore = dx(i,j,k)
dx(i,j,k) C1(j)*dx(i,j,k)

+ C2(j)*( (hz(i,j,k) - hz(i,j-1,k)) / deltay

(hy(i,j,k) - hy(i,j,k-1)) / deltaz
ex(i,j,k) = C3(k)*ex(i,j,k)

+ C4(k)*( C5(i)*dx(i,j,k) - C6(i)*dstore)/eps(i,j,k)
10 continue

(7.92)

Assuming UPML throughout the entire FDTD lattice has the limitation that the flux
densities D and B must be stored everywhere in the lattice. This essentially doubles thex x

memory. However, this approach offers the significant advantage of simplifying the
modification of existing FDTD codes. An alternative is to write a triply-nested loop for the
interior fields, and separate loops for the various UPML slabs (segregating the corner regions).
In this case, the auxiliary variables need to be stored only in the UPML region, leading to
memory savings, at the cost of complexity in programming.

7.9 EFFICIENT IMPLEMENTATION OF CPML IN FDTD

The UPML presented in the previous section has been widely used by practitioners, and has been
incorporated into a number of commercial FDTD software packages. Yet, as seen in Section 7.7,
the use of the classical tensor coefficients defined in (7.55) can lead to large reflection errors for
highly evanescent waves or for late-time, low-frequency interactions. It was found that using the
CFS tensor coefficient with the proper scaling can overcome these limitations.
An implementation of the CFS PML for FDTD was originally proposed by Gedney using an
ADE formulation [43, Section 5.6.3]. However, a more efficient implementation was published
by Roden and Gedney in [36] based on a recursive-convolution technique. This has since been
referred to as the CPML formulation. The CPML is based on the stretched-coordinate form of
the PML presented in Section 7.4. As will be shown in the remainder of this chapter, the CPML
formulation is more accurate than the classical UPML, more efficient, and better suited for the
application of domains with generalized materials.

7.9.1 Derivation of the Finite-Difference Expressions

Denoting 1'-1 the inverse Fourier transform operator, we first define the relation

w =x, y, Z (7.93)
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where {sw} are the CFS stretched-coordinate tensor coefficients defined by (7.73). Then, from
the stretched-coordinate form of the PML presented in Section 7.4, we can express the time

dependent Ampere's law as

aD
at

~ (- a H - a H )= x s *- - s *- +
Y ay Z Z az Y

A (- a H - a H )+ z s *- - s *-
x ax)' y ay x

A (- a H - a H )Y s *- - s *-
Z az x x ax Z

(7.94)

In addition, Fourier transform theory yields

A dual expression can be derived for Faraday's law:

where u(t) is the unit step function, and 8(t) is the unit impulse function. Now, from (7.95),

Ampere's law in (7.94) can be expressed more concisely as

(7.97)

(7.96)

(7.95)

8(t)
+ ~w (t)

/(w

aD i (_1 l.-H _1 i. H
a {'~H J- = + (, *-Hat /( a Z /(z az y Y dY Z Z az Y

Y Y

.(I a 1 a a - { ,.2...H J+ Y --H - --H + ~ *-H/( a x /(x ax Z Z az x x ax Z
Z Z

.(I a _1 i. H
a - { ,.2...H J+ z --H - + (, *-H

/(x ax Y /( a x x ax )' )' ay x
y Y

aB i (_1~E _I i.E a { ,~£ J-- = + ~ *-Eat /( a Z /(z az y Y ay Z Z az Yy Y

• ( 1 a _1 .i-E
a { ,.2...£ J+ y --E- + ~ *-E -

/(z az I /(x ax Z
Z az x x ax Z

.(I a 1 a a a J+ z --E - --E + ~ *-E - (, *-E
/(x ax Y /( a x x a Y Y a xY y x y

s (t)
w
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The objective now is to derive explicit updates for the electric fields from (7.96) or the
magnetic fields from (7.97) in the context of an FDTD discretization. The challenge is to
efficiently implement discrete convolutions arising from 'w'" (aHJaw). If implemented naively,
this could be prohibitively expensive in computer resources. However, given the form of 'Jt),
excellent efficiency can be realized by using the recursive-convolution (RC) technique reported
by Luebbers and Hunsberger [54].

The first step is to derive Zw(m), the discrete impulse response of s,,,(t):

where

c
w

(5 i(m+l)~1 _(£a;, + :w)..-= w_ e 0 w 0 d-r =
E 1(2 m~(

o w

_(5~w2- [e-(£o_a:.. +:: )AI 1 ]
(5J( +J(Q

w w w w

(

(II<' ow)- --+- mAl
£0"'.' £0

C ew
(7.98)

(7.99)

Now, the convolution can be implemented in a discrete manner by using a piecewise-constant
approximation for e(t) and aH/aw:

(7.100)

In this form, calculating the discrete convolution l/I at time nilt requires order(n) floating-point
operations. If implemented directly in an FDTD simulation, the computational burden would be
intolerable. Instead, a recursive relationship that efficiently computes the time advancement of l/I
can be derived [53]. This is expressed as

(7.101)

where

(7.102)

and c... is given in (7.99). In this form, l/Iw)n) can be- advanced in time with great efficiency
using a simple time-marching procedure.

By employing this recursive discrete convolution, an efficient FDTD formulation can be
derived for (7.96) and (7.97). As an example, we shall consider the x-projection of Ampere's
law in (7.96), assuming for generality that the host medium has a finite conductivity (5,

Applying the proper constitutive relationship between the electric flux density D and the electric
field intensity E, we obtain:
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a
-(EE ) +aE
at;r ;r

(7.103)

Using the discrete time and space approximations of Chapter 3, and the RC approximation of the
convolution integrals, (7.103) is expressed in discrete form as

(
E 1"+1/2 - E 1"-"2 J

E ;r i+1/2,j,k ;r i+l/2,j,k +
i+I/2,j,k

I1t

(
H I" . - HI" .= Z ,+1/2,)+1/2,k , ,+1/2,)-1/2,k

1(y l1y

lIf I" I"+ Ex ,)' i+I/2,j,k -lIfE,.z i+I/2,j,k

(

E 1"+1/2 E 1"-1/2 Ja ;r i+ll2,j,k + ;r i+1/2,j,k
i+I/2,j,k

2

(7.104)

where lifE and ljIE are discrete unknowns stored only in PML regions with y-normal and
z,y I.I

z-normal interface boundaries, respectively. These unknowns are updated as follows:

b 1"-1= Yj V!£x.), i+I/2,j,k + (7.105a)

Note that the discrete coefficients bYj and CYj are nonzero only in PML regions with y-normal
interface boundaries. These coefficients are computed using (7.102) and (7.99), respectively,
with the scaled tensor parameters 1(y' ay , and a y calculated at the discrete location j/1y, which is
the y-coordinate of the discrete grid edge center (i + 112,j, k). Coefficients b, and c, are
nonzero only in PML regions with z-normal interface boundaries, and are calcul~ted with the
scaled tensor parameters 1(" at' and at computed via the appropriate spatial scaling at the discrete
location k&, which is the z-coordinate of the discrete grid edge center (i + 1/2,), k).

The explicit update for Ex is derived directly from (7.104), and is given by

b
1
"-1 ( H I" - H I" JII! I" = ljI + C

Zk
Y i+1/2,j,k+I/2 I1z Y i+I/2,j,k-1/2

E"z i+l/2,j,k 'k £", i+1/2,j,k

E 1"+1/2 = c I E 1"-"2
x i+ll2,j,k a i+II2,j,k x i+I/2,j,k

(7.105b)

HI" - HI"t i+l/2,j+l/2,k t i+II2,j-1/2,k HI" - HI")' i+I/2,j,k+I/2 )' i+l/2.j,k-I/2

(7.106)
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where

Ca Ii+1I2,j,k (
1 (J1+1I2,j,kill)/(1 + aJ+I J2 ,j,k!.lt)

2c,+1I2,j,k 2ci+1/2 ,),k

(

6.t )/( a'+112 j k At)
c'+1I2,j,k 1 + 2Ci+l~~,j'k

(7.107a)

(7.107b)

Similar expressions are derived for E
y

and E
l

by simply permuting the (i,j, k) indices and
(x, y, z).

We can also derive dual equations for the H components. For example, from the

x-projection of Faraday's law in (7.97), the explicit update for H, is derived as

H In+l 12 1/ 1 = D I H In.
'i,j+1 ,k+ _ a i.j+l/2,k+1/2 ',,)+1I2,k+1/2

E In+1/2 _ E In+1I2
l i.j+I,k+1/2 l i,j,k+1/2

E In+1I2 _ E In+1/2
y i,j+1I2,HI Y i.j+1I2,k

where

- Dbl··1,)+1/2,k+1I2

+ 'II In+1/2
Hx,y i,j+1/2,k+1/2

1( &
It+112

In+1I2

'IIHX,I ',j+ 112,k+1/2

(7.108)

Da Ii,j+1I2,k+1/2 (
1 - ai~j+1J2,k+1I2 !.It)/(l + ai~j+1I2,k+l/2 At)

2 Pi,j+ 112,k+ 112 2 P i ,j+1/2.k+1/2

(
At )/(1 + a;,j+1/2,k+1/2 ill)

Pi,j+ 1/2,k+1/2 2 Pi,j +1/2,k+ 112

(7.109a)

(7.109b)

and where 'IIH and 'IIH are discrete unknowns stored, respectively, only in PML regions with
..I.y .r,Z

y-normal and z-normal interface boundaries. These unknowns are updated as follows:

In+1I2

'I'Hx,y i,j+l/2.k+I/2 =
b In-1/2

Yj+IIZ 'l'H,.y i,j+1I2,k+1/2 + (

E In+1I2 _ E In+1I2 )
C l i,j+I,k+1/2 l i,j,HI/2

y j+IlZ !.ly
(7. 110a)

'I' In+1/2

HX,I i,j+1I2,k+1I2 (

E In+1I2 _ E In+1I2 )= b 'I' In-1/2 + c y i,j+1/2,k+J Y i,j+1I2,k
It+1I2 HX •I i,j+1/2,k+l/2 lhll2 & (7.11Ob)
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Note that the discrete coefficients by and cy are nonzero only in PML regions with y-normal
j+ln j+ln

interface boundaries. These coefficients are computed using (7.102) and (7.99), respectively,
with the scaled tensor parameters 1Cy ' O"y' and a y calculated at the discrete location (j + 1I2)l1y,
which is the y-coordinate of the discrete grid face center (i, j + 112, k + 112). Coefficients b,

1."+112

and c, are nonzero only in PML regions with z-normal interface boundaries, and are calculated
t+lfl

with the scaled tensor parameters 1C, 0", and a computed at the discrete location (k + 112)&,z z ,
which is the z-coordinate of the discrete grid face center (i, j + 112, k + 1/2). We see that similar
updates are derived for Hyand H, by simply permuting the (i,j, k) indices and (x, y, z).

Upon comparing the Ex time-stepping relation of (7.106) to (3.29a) of Chapter 3, and
comparing the Hx time-stepping relation of (7.108) to (3.30a), we observe that the CPML field
updates are identical to those of the standard FDTD algorithm, with the exception of the
convolutional terms and the scaling parameters. The scaling parameters 1Cy and 1C, are identified
as real stretching coordinates since they physically lead to an effective scaling of the mesh in the
PML region, much like the nonuniform grid presented in Chapter 11, Section 11.2. We also
observe that the convolutional terms act as induced time-dependent polarization currents whose
radiation cancels the wave propagating through the PML, rather than radiating externally.

Finally, we note that a more accurate approximation of the time convolution based on the
piecewise-linear recursive-convolution (PLRC) technique (reviewed in Chapter 9, Section 9.3)
could be employed. Then, the update of If/, (n) would take the formw.v

10 continue

(7.112)

7.9.2 Computer Implementation of the CPML

(7.111 )PLRC(n) = PLRC PLRC(n -1) + j:PLRC dHy(n) + CLRC dH.c n -1)
lfIw.v Xw lfIw.y ':>w dW w dw

do 10 k=2,nz-1
do 10 j=2/ny-1

do 10 i=1,nx-1
ex(i,j,k) ca_x(i,j,k)*ex(i,j,k)

+ cb_x(i,j,k)*((hz(i,j,k) - hz(i,j-1,k» / kedy(j)
(hy(i,j,k) - hy(i,j/k-l» / kedz(k)

where X:LRC
, c;:LRC, and ~:LRC are coefficients to be determined. PLRC update (7.111) requires

one additional time history of dH..,IdW relative to RC update (7.101). Implementing this would
require either updating lfIw.v(n) in the H-field updating (thereby complicating the algorithm), or
storing the value of aH..,law at the previous time-step (thereby increasing the required memory).
In general, experience to date indicates that the RC approximation provides sufficient accuracy,
and leads to a very simple implementation of the CPML algorithm, as shown in the next section.

The computer implementation of the CPML for FDTD is very straightforward. Electric fields
can be updated throughout the entire FDTD domain using (7.106) and (7.107), much in the same
way as the classical FDTD update scheme. Then, in a separate loop, the convolutional terms are
updated and then injected into the fields. As an example, we shall consider the Ex update.
Following (7.106) and (7.107), the field-update loop is written in FORTRAN as
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where kedy(j) = K(j!1y)!1y and kedz(k) = K(k/1z)/1z. Note that the tangential electric
y z

field on the PEe outer boundary of the FDTD space lattice is not updated, since this field

remains zero for all time-steps.

Analogous loops are written for the updates of ey and ez. After updating all the electric

fields, the discrete convolutional terms psi are updated and superimposed into the electric fields

only in the PML regions. A representative loop through the base y-PML region of thickness
nyprnll - 1 cells is given by

do 10 k==1,nz-1

do 10 j==2,nyprnl1

do 10 i==1,nx-1

psi_Exy1(i,j,k) be_y(j)* psi_Exy1(i,j,k)

+ ce_y(j)*«hz(i,j,k) - hz(i,j-1,k» / dy

psi_Ezy1(i,j,k) = be-y(j)* psi_Ezy1(i,j,k)

+ ce-y(j)*«hx(i,j,k) - hx(i,j-1,k» / dy

ex(i,j,k) ex(i,j,k) + cb_x(i,j,k) * psi_Exy1(i,j,k)

ez(i,j,k) == ez(i,j,k) - cb_z(i,j,k) * psi_Ezy1(i,j,k)

10 continue

(7.113)

where

be-y (j) == exp (a; (j ) I K; (j ) + a; (j ) ) * !1t I £0

and where, assuming the polynomial scaling of (7.60a, b), we have

(7.114a)

(7.1 14b)

a;(j) a~ax * ( (nyprnll - j) I (nyprnll - 1) ) ** rn

1 + (K~:U -1) * «nyprnll - j) I (nypmll- 1) ) ** rn

(7.115a)

(7.115b)

and finally, from the scaling of (7.79), we have

a; (j) == a~ax * ( (j - 1) I (nyprnll - 1) ) ** rna (7. 11 5c)

Analogous loops can be written for the remaining PML regions to update the discrete

convolutional terms psi and then superimpose these terms into their corresponding E-field

components. For example, in the z-PML region, the discrete convolutional term psi_Exz1 is

updated and superimposed into ex. In the same loop, the discrete convolutional term psi_Eyz1

is also updated and superimposed into ey.

For completeness, we now write the field-update loop for H
x

' following (7.108):
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10 continue
(7.116)

(7.ll8a)

(7.118b)

(7. 119a)a;'ax * ( (nypmll - j - 1/2) / (nypmll - 1) ) * *m

bh_y (j) = exp (a; (j ) / <(j) + a; (j ) ) * ~t / £0

a;(j )

do 10 k=l,nz-l

do 10 j=l,ny-l

do 10 i=2,nx-l

hx(i,j/k) = da_x(i,j,k)*hx(i,j,k)

- db_x(i,j,k)*«ez(i,j+l,k) - ez(i,j,k) / khdy(j) 

(ey(i,j,k+l) - ey(i,j,k)) / khdz(k)

(7.117)

where

where khdyej) = K'y[(j-1I2)~y]~y and khdz(k) =K'J(k-ll2)Llz]Llz. We note that the
normal H-field at the PEe outer boundary of the FDTD space lattice is not updated, since this
field remains zero at all time-steps.

Analogous loops are written for the updates of hy and hz. After updating all the H-fields in
this manner, the discrete convolutional terms psi are updated and superimposed into the
H-fields only in the PML regions. A representative loop through the base y-PML region is given

by

and where, assuming the polynomial scaling of (7.60a, b), we have

do 10 k=l,nz-l

do 10 j=l,nypmll-l

do 10 i=l,nx-l

psi_Hxyl(i,j,k) = bh_y(j)* psi_Hxy1(i,j,k)

+ ch_y(j)*«ez(i,j+l,k) - ez(i,j,k)) / dy

psi_Hzyl(i,j,k) = bh-y(j)* psi_Hzy1(i,j,k)

+ ch-y(j)*«ex(i,j+l,k) - ex(i,j,k) / dy

hx(i,j,k) = hx(i,j,k) - db_x(i,j,k) * psi_Hxyl(i,j,k)

hzei,j,k) hz(i,j,k) + db_z(i,j,k) * psi_Hzyl(i,j,kl

10 continue

«j) 1 + (1(;'ax -1) * «nypmll - j -1/2) / (nypmll-1) ) ** m (7. 119b)

and finally, from the scaling of (7.79), we have

a>j) = a;'ax*( (j - 1/2) I (nypmll- 1)) **ma (7.119c)
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An important distinction is observed between the PML coefficients used for the E- and H
field updates. The discrete coefficients in (7.115) computed for the E-field updates are evaluated
at integer multiples of the cell dimension ~y. On the other hand, the coefficients in (7.119) used
for the H-field updates are computed at half-integer multiples of ~y. The distinction is that the
coefficients are computed at the edge centers of the primary grid for the E-field updates, and at
the face centers for the H-field updates. By correctly following this strategy. the CPML
implementation presented in (7.112) to (7.119) is stable.

The efficiency of this implementation can be slightly improved by following some other
simple strategies, such as weighting the field intensities by the scaled lengths Kwdw, as suggested
in Chapter 11, Section 11.2, or by indirectly addressing the physical material parameter arrays
ca_w, cb_w, da_w, and db_w for memory efficiency, as suggested in Chapter 3, Section 3.6.5.
Note also that the method can be readily extended to nonuniform grids following the procedure

in Chapter 11, Section 11.2, and to the nonorthogonal grids of Chapter 11, Sections 11.4 to 11.6.
Finally, it was discussed at the end of Section 7.8 that UPML (and similarly split-field PML)

is most efficiently and simply implemented by extending the required auxiliary fields throughout
the entire FDTD lattice. This is not the case for CPML, which requires storage of its auxiliary

convolutional variables psi only in the PML region. As a consequence, CPML is inherently
more storage-efficient than UPML. Furthermore, UPML requires two auxiliary variables per
field component to terminate lossy and dispersive media [24,43], and three auxiliary variables
per field component to apply the CFS technique [43]. On the other hand, the CPML formulation
remains unchanged for all of these cases.

7.10 APPLICATION OF CPML IN FDTD TO GENERAL MEDIA

7.10.1 Introduction

An important feature of the CPML formulation is that it can be readily extended to anisotropic,

dispersive, and nonlinear media. Since the field updates in (7.112) and (7.116) are written
separately from the CPML updates in (7.113) and (7.117), there is no additional complexity in
adding CPML to an FDTD code already designed to treat such general media. This is because,
at its most basic level, CPML has nothing to do with the D - E and B - H constitutive
relationships (i.e., how fluxes are related to field intensities) that normally characterize a
material. This distinguishes CPML from UPML and split-field PML. Rather, CPML is applied

as stretched coordinates to the curl operator, which is applied only to the field intensities.
While the UPML and split-field PML formulations have been applied to general media, CPML

provides a simpler alternative to such applications, since its formulation remains unchanged.

7.10.2 Example: Application of CPML to the Debye Medium

This section focuses on how to implement a CPML termination of the FDTD lattice when it

hosts a dispersive medium. We shall find it instructive to provide a specific implementation for
the single-pole Debye medium from which more general implementations can be inferred.

(See Chapter 9 for a detailed treatment of FDTD modeling of electromagnetic wave propagation
in dispersive and nonlinear media located within the interior of the space lattice.)
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In the phasor domain, the relative permittivity of a single-pole Debye medium is given by

From (7.120), this can be written as

(7.120)

(7.122)

(7.121)

£ -£= £~ + 5 ~

l+jW'r
£r(W)

where J
d

is the polarization current due to the Debye pole given by

where £5 is the static relative permittivity, £~ is the infinite-frequency limit for the relative

permittivity, 'r is the pole relaxation time, and Os is the conductivity. In the Debye medium,

Ampere's law can be expressed as

(7.123)

The expressions in (7.122) and (7.123) are then transformed into the time domain and written as

a pair of coupled differential equations:

av x H = £ £ - E + (I5 E + Jdo ~ at (7.124)

where the right-hand side is independent of the media type, as discussed previously.

A standard finite-difference procedure can then be applied to formulate explicit update

expressions for (7.126) and (7.125). Following a standard Yee scheme for (7.126), second-order
accurate difference approximations would be of the form

where 6..£::: Es - £~.

Now, assume that we want to model a Debye medium extending to infinity through the use
of CPML. This can be done by padding the FDTD space lattice with CPML, and extending the

Debye medium through the entire CPML. Following the procedure used to derive (7.103),
and applying (7.122), the x-projection of Ampere's law in the CPML region is then expressed as

(7.126)

(7.125)

aE ( I aH I aHy ) (aH aH )
£E _x +C5E +J = ---' - --- + S *--' -s *--y

o - at 5 x d, K y ay K, az y dy 'dZ
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(
EIn+I/2 - EIn-1/2 J (E In+1/2 EIn-112 J

E E x i+II2,j,k x i+1/2,j,k + (J x i+112,j.k + x i+1/2.j,k + J In =
o - ~t s 2 d, i+1/2,j,k

H In '2 - H In .z .+II2.j+lI .k Z 1+1I2,j-1/2.k

Then, from (7,125), we have

H In _ H In
Y i+1I2.j.k+1/2 Y i+1/2,j,k-1/2

(7.127)

(

J In+112 + J In-1I2 J (J In+1I2 _ J In-112 )
d, i+112.j.k 2 d, i+1/2.j.k + T d, i+1/2.j.k M d, i+1/2.j.k

(
E In+I/2 - E 1"-1/2 J=Eo ~E x i+1/2,j,k ~t x i+112,j,k

(7.128)

Equation (7.128) can be used to derive an explicit update equation for Jd :,

(E In+1/2 EIn-112 J
J In+112 = k J In-I/2 + f3 x i+112.i.k - x i+112.j,k

d, i+1/2,i.k d d, i+1/2.j.k d /1t

where

(7,129)

In (7.127), Jd In is evaluated as:,

(7.130a, b)

J In
d x i+1/2.j,k (

J In-I/2 + J In+I/2 )

dx i+1/2,j,k 2 d, i+II2,j,k

= .!.(l + k ) J In-1/2 f3d (E In+1/2 _ E In-1/2 )
2 d d, i+1/2.j.k + 2~t x i+1I2.i.k x i+1/2,j.k

(7.131 )

After inserting (7.131) into (7,128), we obtain an explicit update equation for the electric field as

E 1"+112
x i+1/2,j,k

c I E In-I/2
a i+ll2.j.k x 1+1/2,j.k

H In _ H In
Y i+1/2,j,k+1/2 Y i+1I2.j.k-1/2

+ CI
b i+1/2.i.k

/( ~y
Yj

I
n In 1 ( )J In-1/2+ '1/£ - '1/ -- I+k

x,y i+1/2,j.k £x.z i+1I2.i,k 2 d d, i+1/2,i,k

(7.132)
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where

2£ £ - (J !1t + f3d i+ll2.j ,k

Ca L+1f2,j,k = o -i+I/2,j,k s i+ll2,j,k

2£ £. . + (J !1t + f3d i+l/2.j ,ko -,+1/2,},k s i+II2,) ,k

Cb L+l/2,j,k

2!1t

=
2£O£-i+1J2,j,k + (J !1t + f3d i+1J2,j ,ks i+I/2,j ,k

(7. 133a)

(7.133b)

Finally, the CPML convolutional terms lifE are updated using the expressions in (7.105a, b).
w,v

If we compare (7.132) and (7.133) with (7.106) and (7.107), the only difference is the
expression for the update coefficients in (7.133a, b) and the inclusion of the Debye polarization
current and the polarization current update. The implementation details are identical to those in
(7.112) to (7.115) plus some minor additions specific to the Debye media. Specifically,
the Debye polarization current density update in (7.129) must be included in the field-update
loop in (7.112). Another subtle difference is that since JdJ+l/2 is a function of E..,I"+1/2, a partial
update of Jd 1"+112 to include the contribution of the updated CPML variables lifE to the electric

.I w,v

field should also be included in the CPML update loop in (7.113). Finally, the H-field updates
are identical to those presented in (7,108) to (7,110).

7.11 NUMERICAL EXPERIMENTS WITH PML

This section presents examples of using PML to terminate FDTD grids for a number of typical
applications. The goal is to provide an understanding of how the PML tensor coefficients and
grading functions impact the effectiveness of the PML as an ABC. In this manner, the reader can
better understand how to properly choose these parameters. The CPML formulation discussed in
Section 7.9 is used for all simulations unless otherwise noted.

7.11.1 Current Source Radiating in an Unbounded Two-Dimensional Region

Fig. 7.2 illustrates the first example, a y-directed electric current source centered in a 40 x 40-cell
TE FDTD grid. The source is constant along its axis, and has the time variation of a

z

differentiated Gaussian pulse:

(7.134)

where tw =26.53 ps and to =4tw '

The FDTD grid has I-mm-square cells and a time-step of 0.99 times the Courant limit.
The E-field is probed at two points, A and B, as shown in Fig. 7.2. Point A is in the same y-plane
as the source and two cells from the PML, and point B is two cells from the bottom and side
PMLs. Time-stepping runs over 1,000 iterations, well past the steady-state response. Both 6-cell
and lO-cell PML ABCs are used with polynomial grading as defined in (7.60), with m = 3.
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d

2 mm -----f~~

PML region

Fig. 7.2 y-directed electric current source centered in a two-dimensional 40 x 40-mm TEz FDTD grid.
The working volume is surrounded by PML of thickness d. E-fields are probed at points A and B.

For this case, the reference solution Ererl;,j at grid location (i,}) and time-step n is obtained
using a large 1,040 x 1,040-cell grid, An identical current source is centered within this grid, and
the field-observation point (i,}) is at the same position relative to the source as in the test grid.
The reference grid is sufficiently large such that there are no reflections from its outer boundaries

during the time-stepping span of interest. This allows a relative error to be defined as

Rei. error In . = IEl n
. - Ererl n. 1/ IErefnl•• I· ,II,) I,J I,) ~ ,,)

(7.135)

where ErermaxL,j is the maximum amplitude of the reference field at (i,}), as observed during the
time-stepping span of interest.

Fig. 7.3 graphs the relative error calculated using (7.135) at points A and B of Fig. 7.2 over
the first 1,000 time-steps of the FDTD run for 6-cell and lO-cell PMLs. In Fig. 7.3(a), each PML
has polynomial-scaled a with rn = 3, a = a [where a is given by (7.67)). I( = I, and

max Opl Opl max

a max = 0, yielding the properties of UPML. In Fig, 7.3(b), all PML parameters are the same,

with the exception that a max =0,2 and rna =I, yielding the properties of CPML. Comparing
Figs. 7.3(a) and 7.3(b), we see that the CPML provides a clearly reduced error, especially at B,

where the wave impinges on the PML obliquely at 45°. The CPML appears to mitigate the two

sources of error for a wave impinging obliquely upon PML: (1) degraded bulk absorption by the
PML, as per (7.59), relative to the absorption at normal incidence; and (2) degraded

transparency of the front PML interface, as per Section 7.7, due to the prolonging of wave

interactions with this interface relative to what occurs at normal incidence. The effect of the
latter phenomenon can be observed in Fig. 7.3(a), where the reflection error at B increases in the
late time, and is very slow to decay.
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(a) a max =0 (equivalent to UPML).

Fig.7.3 Relative error at points A and B of Fig. 7.2 over 1,000 time-steps for 6-cell and lO-cell PMLs with
()' = ()' ,Ie = 1, and rn =3.
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(b) CPML with a max =0.2 and rna =I.
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Fig. 704 shows decibel contour plots of the maximum relative error observed at points A and
B in Fig. 7.2 as a function of (J and a for the 6-cell and lO-cell CPMLs over the course of amax max

1,000-time-step simulation. Again note that, when choosing a =0, the CPML has the same
rna<

reflection error as a conventional UPML or split-field PML with the same values of O'max and
ICm.J37].

.5 0.6 0.7 0.8 0.9
0' /0'max opt

1.1 1.2 1.2

(a) Point A with 6-cell CPML (left) and la-cell CPML (right).

·90
0.15 ~ ~I
~0.1 :£

•O~ i\lLs'_-=.9;;;....0__ OO/:.OO
~-u ~ -8~5 --8°_75

.BO:r;~==:=~--75-------;O-

8.5 0.6 - 0.7 0.8 0.9 1 1.1 1.21.21.10.6 0.7 0.8 0.9

0'max/O'opt

8.5

k
0.15

..eO.l
I'll

(b) Point B with 6-cell CPML (left) and IO-cell CPML (right).

Fig.7.4 Decibel contour plots of the maximum relative error observed at points A and B in Fig. 7.2 as a
function of O'm•• and am •• for 6-celI and lO-celI CPMLs over a I,OOO-time-step simulation.
Polynomial-scaled tensor parameters with m =3 and m

a
=I.

From Fig. 704(a), we see that the reflection error at A is only weakly dependent on a max •

However, from Fig. 7o4(b), we see that the reflection error at B can be quite strongly dependent
on am•• ' In fact, up to a 20 dB reduction in error relative to classical split-field PML or UPML
can be achieved with the proper choice of am•• ' This improved accuracy comes at no additional
cost when using the CPML algorithm.
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While there is an optimum choice of amax and a max in Fig. 7.4, it is clear that there is a broad
range of these parameters that lead to an excellent ABC with exceptionally low error levels.
In fact, for this discretization, one would expect roughly three digits of accuracy from the FDID
simulation. Consequently, a 6-cell CPML is sufficiently accurate for this problem.

7.11.2 Highly Elongated Domains and Edge Singularities

The previous example involved a simple homogeneous two-dimensional space with a square
domain. While it is necessary for an ABC to perform well for such an example, il does nOl
demonstrate the full potential of the CPML formulation. Fig. 7.5 illustrates a more taxing
example: three-dimensional electromagnetic scattering by an elongated thin PEC plate (having
dimensions 25 x 100 mm). The FDTD model is discretized spatially with uniform cubic cells
spanning ~ = 1 mm, and temporally with a time-step !it = 1.9066 ps (equal to 0.99 x the Courant
limit). Excitation is provided by a z-directed electric dipole located 1 mm above one of the
corners of the plate. The time signature of the excitation is the differentiated Gaussian pulse of
(7.134), with a half-width t

w
=53 ps and a time delay to =4t",. In this example, we shall study

the computed electric field in the plane of the plate at its opposite corner, in a direction normal to
the plate edge at a distance of 1 mm from the edge. This field has significant evanescent content
due to the presence of the edge singularity. There is also a creeping wave supported by the plate
that requires a long-time interaction of the fields with the PML boundary.

J
l

t
~_ .. __ _.._._ _ .

25mm

Fig. 7.5 Geometry of a vertical electric current dipole placed 1 mm above the corner of a 25 x 100 mm
thin PEe plate. The horizontal E-field is computed in the plane of the plate at its opposite corner,
in a direction normal to the plate edge at a distance of 1 mm from the edge.

To assess the accuracy of the simulation, we compare the FDTD results with reference data
obtained using a significantly larger FDTD problem domain (201 x 276 x 176 cells).
The reference domain includes an optimized lO-celi CPML ABC at each of its six outermost
boundaries, and 78 free-space cells between the plate and the front CPML boundary. The error
in the trial FDTD simulations using much smaller space lattices is then computed using (7.135).
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Fig. 7.6 illustrates the error in the calculated E at the probe point for three trial simulations
y

in which the FDTD lattice is terminated with either a lO-cell UPML or a lO-cell CPML. In the
first trial, the UPML is placed only 3 cells from the plate in all directions, yielding an overall
lattice size of 51 x 126 x 26 cells. Standard UPML tensor coefficients are assumed as per (7.55)
with a =0.75 a , /( =15, and m =3 polynomial scaling. In the second trial, the samemax opt max

UPML coefficients and scaling are assumed, but the UPML is placed 15 cells from the PEC plate
in all directions, yielding an overall lattice size of 75 x 150 x 50 cells. In the third trial,
the CPML is placed only 3 cells from the plate in all directions. Here, a

w
is linearly scaled

(m =1) with a =0.24, and m =3 polynomial scaling is applied to a and /( for a =aa max w w max opt

and /(max =15.

• UPML 3 cells from edge

----0-- UPML 15 cells from edge

- - 0 - - CPML 3 cells from edge

10-3

......
0............
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3 4

Fig. 7.6 Time-dependent error in Ey computed near the PEC plate edge of Fig. 7.5 for lO-cell UPMLs
placed 3 and 15 cells from the plate, and a 10-cell CPML placed 3 cells from the plate.

From Fig. 7.6, we see that the closely located UPML exhibits significant late-time error.
Specifically, for the UPML placed only 3 cells from the PEC plate, the error is on the order of
I % relative to the amplitude of the leading pulse. Such error may be intolerable if an accurate
simulation of the creeping wave is required. As expected, if the UPML is moved 15 cells from
the plate, the error drops by about 10:1. However, using the CPML placed only 3 cells from the
plate is even better, with the error reduced by yet another one to two orders-of-magnitude.
This means that the CPML formulation permits a much smaller space lattice to be employed
while retaining accuracy. In this example, using the closely located CPML simultaneously
reduces the required computer memory and running time by about 70% (relative to the UPML
placed 15 cells from the edge of the plate), and improves accuracy by better than one full digit!
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Fig. 7.7 Decibel contour plots of the maximum relative error in Ey observed at the probe point in Fig. 7.5
for m = 3 polynomial-scaled IO-cell-thick UPML and CPML.

Fig. 7.7 shows decibel contour plots of the maximum relative error in Ey observed at the
probe point in Fig. 7.5 as a function of Kmax and a max for the UPML, and Kmax , a max , and am"" for
the CPML. In both cases, the PML is 10 cells thick and polynomial scaled with m == 3
(determined in other trials to provide the most accurate results.) From Fig. 7.7(a), we see that
significant error results if the UPML is located too close to the plate. This is predominately due
to the presence of evanescent waves in the singular fields near the plate edge, and the long time
interaction of the creeping waves. If the UPML is placed further away from the plate edge, then
this error is reduced. From Fig. 7.7(b), we see that the CPML is significantly more accurate than
the UPML even when placed very close to the plate. Here, optimum CPML parameters are in the
ranges 0.8a

Opl
< a max < l.4aopl ' 7 < Kmax < 20, and 0.15 < amax < 0.3. These yield reflection errors

below -70 dB (or greater than 3.5 digits of accuracy), which is more than sufficient for this
discretization.
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7.11.3 Microstrip Patch Antenna Array

The next example involves the use of PML to terminate the three-dimensional FDTD model of a
printed microwave circuit. This is a classic example wherein an inhomogeneous dielectric
medium penetrates the PML, and ultralow levels of composite wave reflection are required.

We consider the series-fed microstrip patch antenna array illustrated in Fig. 7.8. This
antenna is printed on a 1.5748-mm-thick dielectric substrate (E

r
=2.1) backed by a metal ground

plane. The antenna is fed by a single microstrip line of width 3.93 mm (Zo == 560. at 9 GHz).
A uniform rectangular FDTD space lattice is employed with Lll =1.008 mm, ~y =0.3275 mm,
.1z =0.2624667 mm, and ~t =0.99 x the Courant limit. The space lattice is terminated with
PML on all sides except at -z, where the dielectric substrate is located. Each PML region is
placed only J cell from the outer dimensions of the antenna geometry. Thus, the working
volume of the space lattice is 119 x 38 x 7 cells.

Fig. 7.8 Top view of the microstrip-fed patch antenna. The antenna is printed on a metal-backed dielectric
substrate of thickness h =1.5748 mm and £r =2.1. Key dimensions are W

ms
=3.93 nun, WI =1.3

mm, W =11.79 mm, L =25.2 mm, L, =13.1 mm, L
2
= 12.1 mm, and L =10.08 mm [55].

p ms p

To model the antenna situated on a circuit board of infinite transverse dimensions,
the dielectric substrate extends completely through the PML regions on the ±x- and ±y-sides of
the space lattice, ending at the outer PEC planes backing the PML. To model a matched
transmission line exciting the antenna, the microstrip feed extends completely through the PML
at the -x-side of the lattice to the outer PEC backing plane. Table 7.1 lists the parameters used
for each CPML region.

TABLE 7.1

CPML Parameters Used for the Microstrip Patch Antenna Array Model of Fig. 7.8

CPMLRegion
Erell rn 0'max 1000pt O'max /( a rnamax max

-x 1.55 3 1.0 6.8 1 0.0 n1a

+x 1.55 3 1.0 6.8 15 0.2

-y 1.55 3 1.0 20.8 15 0.2

+y 1.55 3 1.0 20.8 15 0.2

-z

+z 1.0 3 1.0 32.4 15 0.2
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With regard to Table 7.1, O'OPI can be chosen for each CPML region according to (7.67).
On the ±x- and ±y-sides of the space lattice, the medium is inhomogeneous. Since the
constitutive parameters scale only along the normal direction of each CPML and are constant
relative to the transverse directions, only a single value of O'OPI can be used. Thus, an effective
permittivity must be used, as suggested by (7.67). For this example, we choose a mean value for
the effective permittivity on the sidewalls. Note that, on the +z boundary, Cr = 1, since this

err
boundary is entirely in the air region.

As discussed in Section 7.7, while choosing K"m.x> 1 and amax > 0 helps to attenuate
evanescent modes, these values can degrade the absorption of propagating modes. Therefore,
we set K"max =1 and a max =0 in the -x CPML region, where the waves impinging on the CPML
are predominately due to the purely propagating, quasi-TEM mode supported by the feeding
microstrip. In contrast, waves impinging on the other PML regions are a superposition of
propagating and evanescent modes, and therefore K"max and amax are set to reasonable values,
as determined in the previous section.

The driving-point voltage waveform is calculated for three different trial PML terminations
which use the parameters of Table 7.1 and are placed only 1 cell from the outer dimensions of
the antenna geometry: (1) lO-cell UPML (amax =0 for all regions), (2) 6-cell CPML, and
(3) lO-cell CPML. In addition, a reference solution is obtained by increasing the separation of
the to-cell CPML from the antenna geometry by 50 space cells, yielding an overall
219 x 138 x 57-cell lattice. In all cases, the microstrip feed is driven by a soft voltage source
exciting the fundamental quasi-TEM mode. This source has a Gaussian-pulse time signature of
half-width t = 31.831 ps and delay time to = 4t .w w

Fig. 7.9 illustrates the relative error in the driving-point voltage waveform (normalized to
the maximum source voltage). In the late time, the 6-cell CPML reduces error by more than 10:1
relative to the 10-cell UPML. The 10-cell CPML is about a factor of 10: I better yet.

UPML 10 cells thick

CPML 6 cells thick

CPML 10 cells thick

10.3

....
0........
Q)

Q) 10.4>:;:;
C'3
Q)

a::
10.5

2 4 6 8

t (ns)

10

•

12 14 16

Fig. 7.9 Relative error in the driving-point voltage wavefonn for a lO-cell UPML, a 6·cell CPML, and a
10-cell CPML placed only I cell from the outer dimensions of the antenna geometry of Fig. 7.8.
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7.11.4 Dispersive Media

Accurate and efficient modeling of electromagnetic waves in dispersive and nonlinear media is
an important need for research in bioelectromagnetics, nonlinear optics, and geophysics.

The PML was the first absorbing boundary condition for FDTD to allow such modeling for
broadband excitations [24]. As discussed previously in this chapter, the CPML formulation is

ideal for such applications since it has the advantage of material-independence. While some fine

tuning may be required to optimize the choice of CPML parameters, this technique has proven to
be very robust and broadly applicable to all types of materials.

In this section, we study the termination of an FDTD space lattice with CPML to model the
radiation of a broadband bow-tie antenna that is potentially useful for detection and hyperthermia
treatment of breast cancer [56. 57]. Fig. 7.10 illustrates the geometry of the bow-tie antenna.

The bow-tie antenna of Fig. 7.10 has two triangular elements of length and base width h =4
em with a flare angle of 53°. We assume that the antenna is placed directly on I-mm-thick breast

skin while immersed in a bath of deionized water. Below the skin (along -z) is modeled several
centimeters of breast tissues to be characterized for electromagnetic power deposition.
Excitation to the antenna is provided at its apex by a son source which generates a 0.22-ns
Gaussian-modulated carrier pulse (6-GHz center frequency, 4-0Hz spectral width, no de

content). In order to reduce end reflections, the antenna has the variable conductivity

a(x) =0'0[1 - (x/h)] / [1 + (0'/0'1/2 - 2)'(x/h)] Slm, where xlh is the normalized distance along

the length of the antenna, 0'0 =3.27 X 10
7

S/m is the conductivity at the apex, and 0'1/2 =1.0 S/m.
The finite conductivity is modeled as a sheet resistance, with the antenna assumed to have a

thickness of I mm.

The FDTD model uses the spatial discretization Llx = ~y =0.5 mm and ~ =0.25 mm, and a
time-step ~t = 0.99 x the Courant limit. The following Debye dispersive material parameters are

assumed for the various media in the FDTD model:
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The FOTD lattice is terminated by rn =3 polynomial-scaled PML; UPML in the first trial,
and CPML in the second trial. Each PML is 10 cells thick and is placed 3 cells above the
antenna and 3 cells from the edges of the antenna. Each uses a value of CT predicted from

opt

(7.67) for £r =4 on the side boundaries; £r =7 on the lower boundary (terminating the breast-
ill err

tissue region); and £r =4.55 on the upper boundary (terminating the OJ-water region). For the
erf

CPML, Q
w

is linearly scaled with rna = 1. To quantify the error, we probe the electric field Ex at
the position (x, y) =(h, h/2) and 2 mm below the skin in the breast tissue, and compare with a
reference FDTO model conducted on a much larger space lattice.

Figs. 7.11 (a, b) are decibel contour plots of the maximum error at the probe point as a
function of 1( and CT for the UPML and the CPML, respectively, with a fixed valuemax max

a =0.20 used for the CPML. The CPML gives approximately 20 dB improved accuracy for
max

this discretization. Fig. 7.11(c) completes the study for the CPML by plotting its error as a
function of Q max and CTmax for a fixed 1(max =21.
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Fig. 7.11 Decibel contour plots of the maximum relative error in Ex observed at the probe point in Fig. 7.10
for m =3 polynomial-scaled lO-cell-thick UPML and CPML.
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7.12 SUMMARY AND CONCLUSIONS

This chapter reviewed the theoretical foundation and numerical implementation of perfectly
matched layer absorbing boundary conditions in Cartesian FDTD space lattices. Parametric

studies of PML performance under a variety of conditions were reported. The review included:

• Berenger's original split-field PML concept;

• The stretched-coordinate PML formulation;

• Theoretical development of the UPML;

• Theoretical performance of the PML;

• The CFS-tensor coefficients;

• Efficient implementation of the UPML in FDTD;

• Efficient implementation of the CPML in FDTD;

• Numerical experiments to provide an understanding of the effect of the PML
parameters and grading functions on PML effectiveness.

Results indicate that the CPML is a superior means to terminate FDTD space lattices having

regions of homogeneous or inhomogeneous, lossless or lossy, and nondispersive or dispersive
media that exit normally from the lattice. When employed with optimized parameters, CPML
reduces errors due to reflections from the absorbing boundary by better than 20 dB relative to
UPML. In addition, CPML programming is simplified relative to UPML, because CPML can be
implemented in a manner that is essentially independent of the material to be terminated.
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PROJECTS

P7.1 Implement Berenger's split-field PML ABC in a two-dimensional TEz FDTD grid. Use a
cubic increase of loss with depth within the PML, and have the PML thickness and R(O) as
user-specified parameters. Compare the local and global error to the best that was
obtained with the analytical ABCs implemented in Chapter 6.

P7.2 Implement the CPML ABC in the two-dimensional TEz FDTD grid of Fig. 7.2. Replicate
the results graphed in Fig. 7.3. Verify the optimum choices of CPML parameters shown in
the contour plots of Fig. 7.4.
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P7.3 Implement the CPML ABC in a three-dimensional FDTD space lattice for the PEC plate
problem of Fig. 7.5, and replicate the results graphed in Fig. 7.6. Verify the optimum
choices of CPML parameters shown in the contour plots of Fig. 7.7.

P7,4 Implement the CPML ABC in a three-dimensional FDTD space lattice for the microstrip
patch antenna array problem of Fig. 7.8, and replicate the results graphed in Fig. 7.9.

P7.5 Implement the CPML ABC in a three-dimensional FDTD space lattice for the bow-tie
antenna breast-hyperthermia problem of Fig. 7.10. Verify the optimum choices of CPML
parameters shown in the contour plots of Fig. 7.11.



Chapter 8

Near-to-Far-Field Transformation

Allen Taflove, Xu Li, and Susan Hagness

8.1 INTRODUCTION

The provision of a well-defined scattered-field region in the zoned FDTD space lattice,
as described in Chapter 5, permits a systematic near-to-far-field (NTFF) transformation, which is
derived in this chapter. Using the near-field data obtained in a single FDTD modeling run,
this transformation efficiently and accurately calculates the complete far-field bistatic scattering
response of an illuminated structure for a single illumination angle, or the complete radiation
pattern of an antenna. There is no need to extend the FDTD space lattice to the far field.

The discussion begins in the phasor domain with the two-dimensional TMz mode. Using
Green's theorem, we show that scattered or radiated E and H fields that are tangential to a
closed virtual surface containing the scatterer or antenna of interest can be integrated to provide
the far-field response. The virtual surface is independent of the nature of the structure being
modeled, and can have a fixed rectangular shape to conform with a Cartesian FDTD grid. This
yields the powerful surface equivalence theorem in two dimensions, which is subsequently
extended to the general three-dimensional case. The resulting analytical NTFF expressions have
been implemented in many FDTD codes. Next, we derive the time-domain NTFF transformation,
which permits a direct computation of scattered or radiated field-versus-time waveforms.
Finally, we conclude with a recent simple modification of the NTFF procedure that greatly
improves the accuracy in calculating the backscatter from strongly forward-scattering objects
such as biological cells illuminated by light, and certain types of low-observable vehicles.

8.2 TWO-DIMENSIONAL TRANSFORMATION, PHASOR DOMAIN

Consider the two-dimensional TMz scattering or radiation geometry of Fig. 8.1, wherein the

scattered or radiated field phasors Ez ' iJ x' and il)' are involved. We assume that an arbitrary
structure of interest is enclosed by the arbitrary contour Co having the unit outward normal
vector n . Further, we assume the existence of the infinite-radius circular contour C centereda _

at the coordinate system origin, and having the unit outward normal vector n_ =;. Finally,

we assume that Co and C_ are connected by an infinitely thin "umbilical" path to form a single

continuous, closed contour that encloses the surface S. A positive (counterclockwise or right
hand) direction is assumed about this combined contour, so that the surface unit normal dS
points in the "thumb" direction. Note that n_ and na have opposite orientations relative to S.

329
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Fig. 8.1 Two-dimensional scattering or radiation geometry showing the integration contours used in the
derivation of the near-to-far-field transformation.

8.2.1 Application of Green's Theorem

By Green's theorem [1] applied to the scalar functions Ez(r) and G(r Ir'), we have

f [Ez(r') (V 2
)' G(rlr') - G(rlr') (V 2

)' Ez(r')] ds'
5

~ [
_ dG(rlr') dE (r')]

;:: E (r') - C(r Ir') z dC'
Z:I' :I'

C or or

f [ ~ dC(r Ir') (J E (r')]
- E (r') - G(r Ir') Z dC'

Z dn ' dn 'c a a
a

(8.1)
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where T is an observation point in the two-dimensional space, r' is a source point, and de'

is a differential path element along the combined Ca and C~ source contour. The negative sign

before the second integral term on the right-hand side of (8.1) results from the opposite

orientations of n = i and n relative to S.
~ a

Let us consider the various integral terms of (8.1). For the C~ term, we can show that both

Ex (r') and G(r Ir') decay as Iff? in two dimensions as r'~ 00. Using this information,

we find that the contribution of the C~ integral term is zero in the limit as r' ---7 00:

f
c~

. [ , I a(lf#)]
z I,lm 2nr· (f' a'

r ~- '\/ r r

, 1 1
"" r·--·-- ""

(r')1/2 (r')3/2
(8.2)

Now consider the S integral term evaluated at an observation point r in S. From the

definition of the Green function for time-harmonic systems, we have

Substituting (8.3) and (8.4) into the S integral term, we obtain

(8.5)

(8.4)

= fEl(r')O(r-r')ds' = Ez(r)
s

f {£/r').[o(r -r') - eG(rlr')] - G(rlr').[- e£l(r')]}ds'
s

where 0 is the Dirac delta function and k is the wavenumber. Further, from the Helmholtz

equation, we have

Thus, (8.1) simplifies to

= f[G(rlr')na',V'£/r') - E)r')rJa',V'G(rlr')] dC'
Ca

E (r)
l = 1 [G(r Ir') aEx (r')

j an'C aa

_ E (r') aG(rl r')] dC'
z an '

a

(8.6)
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8.2.2 Far-Field Limit

Now, consider the analytical form of the Green function. In two dimensions, G(rlr') is given
by the Hankel function expression

(8.7)

Consider Fig. 8.2, which depicts an observation point P =r in the far field many wavelengths

away from any source points on Ca' Clearly, P is located such that k Ir - r' I is very large.
For this case, it can be shown that the limiting expression for G(rlr') is

.3/2 -jkl r-r'l

lim G(rlr') =~ ~ '11/2
klr-r'l~oo 8nk r-r

Applying the law of cosines to the geometry of Fig. 8.2, we obtain for Ir - r'12
:

[ I 'I I '1
2

]= Ir12
. 1 - 2~coS(¢-q/) +~

Irl Irl

(8.8)

(8.9)

Taking the square root of both sides of (8.9), and then expanding the resulting right-hand side in

a one-tenn binomial expansion (assuming Ir'l / Irl « 1), yields

Ir - r'l == Irl'[1 - l!JCOS(¢-q/) + ~'rT] == r - r'cos(¢-¢') (8.10)
Irl 2 Irl

Here, for convenience, we denote Irl and Ir'l as simply rand r'. respectively. Repeating this
square-root procedure on the results of (8.10). we obtain

1/2r (8.11 )

Substituting the results of (8.10) and (8.11) into the Green function expression of (8.8) provides a

more convenient limiting form of G(r Ir'):

.3/2

lim G(rlr') = } e-jk[r-r'cos(4)-4>'l]

klr-r'l~oo ..J8nkr

With G (r Ir ') written in this manner, it is now clear that

.312
} -jkr +jH·r'

e e
..J8nkr

(8.12)
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Fig. 8.2 Geometry of the far-field observation point relative to the near-field integration contour.

Substituting (8.12) and (8.13) into (8.6) results in the following expression for the far-field E :
z

lim V'G(rlr')
kl r-r'l~oo

.3/2

(j kr)k e-jkre+jki·r'

8nkr
(8.13)

lim E (r)
kl r-r' I~oo z

jkE (r')n '.r] e+jki.r'dC'
z a (8.14)
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8.2.3 Reduction to Standard Form

We will now complete the derivation of the NTFF transformation for this case by manipulating
(8.14) to place it in a standard form. First, we have in Cartesian coordinates:

V'E (r ' ) = x,dEz + ~/dE,
, dx' Y dy'

(8.15)

However, Maxwell's equations in two dimensions let us replace the x and y partial derivatives of
Ez with corresponding magnetic field quantities:

(8.16)

Then, it follows that

(8.17)

Exploiting a vector identity, we can write

E- ( ') ~ I ~r n ·r =z a

= it '(£' . E) .; - E(i.'· it ') .;
a '---.r---' ~

Ez =0 here

Substituting (8.17) and (8.18) into (8.14) yields the NTFF transformation in standard form:

(8.18)

lim E. (r) =
kl r-r'I-t~ -

=
-jkr j(n/4) [roJ.10 £'. J (r ' ) ]e e,{ cq 'k- •-- 1 _ e+) r·r dC'-r;~ Ca - ki' X Mcq(r

/
).;

(8.19)

where Jcq - ita xiI and Mcq == -ita xi are defined as the phasor tangential equivalent
electric and magnetic currents observed at Ca' If we now identify a complex-valued pattern

function F(¢):

F(¢)

j(n/4)

- e ,{ (roJ.1 if. J (r') - k z' x M (r / )· f] e+jki·r' de'
~l 0 cq cq (8.20)
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then the bistatic radar cross section (RCS) in two dimensions is defined as

RCS(¢) -

power scattered per
unit angle in direction;

2rr· -----------
incident power per unit length

(8.21)

having the dimension of meters. As an historical note, the NTFF transformation of (8.19) was
first published in the context of two-dimensional FOTD electromagnetic scattering simulations in
[2], and was extended to three-dimensional FDTD simulations in [3].

It should be emphasized that Co is not a physical surface. It is a virtual suiface that is the
locus of points in space where E- and H-field data are being compiled and integrated. Because
C can have an arbitrary shape, we can conveniently assign it to lie along a rectangle in the

a
scattered-field zone of the FOTO grid. If this rectangle is populated with time-domain Ez field
components, the complex phasor values Ez of these components are first obtained via a DFT
conducted concurrently with the FOTO time-stepping, as discussed below. Then, the phasor
E-field data can be used directly in the numerical calculation of the integrals of (8.19) and (8.20),
which can be implemented by any convenient integration rule (such as the trapezoidal rule).
For this case, the time-domain tangential H-field components located one-half space cell to either
side of Co (due to the normal staggering of the field components in the FOTO grid) would be
averaged at each time-step to obtain the necessary phasor H-field values directly on Co' before
undergoing the OFT.

8.3 OBTAINING PHASOR QUANTITIES VIA DISCRETE
FOURIER TRANSFORMATION

The E- and H-field data used in the near-to-far-field transformation of (8.19) and (8.20) are
phasor quantities. At each field point on the virtual surface Co' these data can be efficiently and
concurrently obtained for multiple frequencies with only one FDTD run. We need only provide
an impulsive wideband electromagnetic excitation of the structure of interest, and perform a
recursive OFT "on the fly" (i.e., concurrently with the FOTD time-stepping) for each frequency
of interest. Computer storage is quite reasonable, with only two numbers (i.e., the field
magnitude and phase) required to store the OFT results for each frequency at each field point on
the virtual surface. Therefore, a single FOTO run can generate the complete far-field distribution
of a structure (i.e., its bistatic ReS pattern or its radiation pattern) at many frequencies.

The formulation of the wideband excitation and the required OFT is best illustrated by
considering the following annotated Fortran code segments:

dimension EZEFR(ib,nfreq,2) , OMEGA (nfreq) , RD(nfreq,2) , SN(nfreq,2)

EZEFR stores the quadrature components of the phasor values Ez at i b grid locations
along the front line of the rectangular near-to-far field contour Co for each of n f r e q

frequencies. At each gridpoint i and frequency index number n f , EZ EFR ( i , n f , 1 )
contains the real-valued amplitude of the sine component of the phasor and
EZEFR (i , nf , 2) contains the real-valued amplitude of the cosine component.

OMEGA stores the nfreq angular frequencies in the DFf at which the phasor values E
are evaluated. z
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RD (nf, 1) and RD (nf, 2) store, respectively, the sine and cosine multipliers used in the
DFT at frequency index number nf .

SN (nf, 1) and SN (nf, 2) store, respectively, the sine and cosine quadrature components
of the incident field source phasor at frequency index number nf.

data ib, nfreq, OMEGA! ... !, nmax, omegacenter, tau

ib defines the number of Ez components located along the front line of the rectangular
near-to-far-field contour.

nfreq defines the number of frequency points in the DFT.

OMEGA specifies the nfreq angular frequencies in the DFT at which the phasor values Ez
are evaluated.

nmax defines the maximum number of time-steps in the FDTD solution.

omegacenter defines the center frequency of the source spectrum.

tau defines the lie decay time of the source pulse.

1

do 1 i=L ib ;
EZEFR(i,nf,k) 0.0

nf=l,nfreq k =1,2

k=1,2

2

do 2 nf=l,nfreq

SN (n f, k) = O. 0

The electric field and incident field source phasors are initialized to zero.

do 500 n=l,nmax

esource = exp(-(~t-3*tau)**2!tau**2) * sin(omegacenter*(~t-3*tau»

The main FDTD time-stepping loop is initiated, and the source waveform is evaluated for
the current time-step. Note that the Gaussian pulse envelope of the source waveform is
essentially zero at the initiation of time-stepping, and that the sinusoidal carrier has a zero
crossing at the peak of the Gaussian envelope ~t = 3*tau. This causes esource to
have odd symmetry in time about the peak of the envelope function, ensuring a spectrum
concentrated about omegacen ter and zero dc component. It is clear that adjusting tau
and omegacenter permits specifying the position and width of the source spectrum.

Here the program implements the main time-stepping loops to update the fields everywhere
in the FDTD grid.

do 110 nf=l,nfreq

RD(nf,l) = sin(OMEGA(nf)*n~t)

RD(nf,2) = cos(OMEGA(nf)*n~t)

The sine and cosine multipliers used in the DFT are calculated at each frequency of interest.

do 110 k=1,2

SN(nf,k) = SN(nf,k) + esource*RD(nf,k)

The sine and cosine quadrature components of the incident field source phasor SN are
calculated using a simple recursive sum.



do 110 i=l, ib

EZEFR (i, nf, k)
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= EZEFR (i, nf, k) + b ,.. *RD (nf, k)
Z J,Jiront

The sine and cosine quadrature components of the electric field phasor EZEFR
corresponding to each Ez component along the front line of the near-to-far-field contour,
are calculated using a simple recursive sum. Note that this sum is updated concurrently
with the FDTD time-stepping of the fields.

110 continue

The remainder of the main FDTD time-stepping loop is completed, including all other
recursive sums implementing DFTs.

500 continue

Upon completion of the do 500 main FDTD time-stepping loop, there is also a
termination of the recursive sums for the sine and cosine quadrature components of the
incident field source phasor SN and the recursive sums for the quadrature components of
the electric field phasor EZEFR.

do 600 nf=l,nfreq
store = sqrt(SN(nf,1)**2 + SN(nf/2)**2)
SN(nf,2) = -atan2(SN(nf,1), SN(nf,2))
SN(nf,l) = store

The final values of the recursive sums for SN are processed at each frequency in the DFT
to yield the corresponding magnitude and phase of the source phasor stored in SN (nf , 1 )
and SN (nf, 2), respectively.

do 600 i=l,ib
store = sqrt(EZEFR(i,nf,1)**2 + EZEFR(i,nf,2)**2) / SN(nf,l)
EZEFR(i,nf,2) = -atan2(EZEFR(i,nf,1), EZEFR(i,nf,2» - SN(nf/2)
EZEFR(i,nf,l) = store

The final values of the recursive sums for EZEFR are processed at each frequency in the
OFT to yield the corresponding magnitude and phase of the source phasor stored in
EZEFR (i, nf, 1) and EZEFR (i, nf, 2) ,respectively. In addition, the EZEFR values
are normalized relative to the magnitude and phase of the incident field phasor at the
corresponding frequency, just calculated above. The EZEFR data are now ready for
insertion into (8.19) or (8.20) to permit computation of the far-field pattern at each of the
nfreq frequencies that were tracked during FDTD time-stepping.

600 continue

The principal caution in this entire procedure is that nmax must be carefully chosen so that
the impulse response of the structure of interest "rings down" to zero before the end of time
stepping at each observation point along the near-to-far-field virtual surface. Failure to decay the
impulse response to zero causes inaccuracy of the computed DFf due to windowing of the true
impulse response. To mitigate windowing effects for certain classes of structures that require
many thousands or tens of thousands of time-steps to ring down, several techniques have been
proposed to extrapolate the late-time impulse response from a windowed response before the
OFf is applied [4,5]. These are discussed in Chapter 15, Section 15.9, which reviews digital
signal processing and spectrum-estimation techniques as applied to FDTD time-waveform data.
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8.4 SURFACE EQUIVALENCE THEOREM

The implication of (8.19) is that knowledge of the equivalent electric and magnetic currents
tangential to any closed contour surrounding a two-dimensional TMz electromagnetic wave
interaction structure is sufficient to obtain the far field via a simple integration of these currents
around the contour. No other sources appear. In fact, we can think of the region within the
observation contour as being source-free and field-free. This idea, illustrated in Fig. 8.3, forms
the basis of the surface equivalence theorem [6, 7), a powerful concept in electromagnetic theory
wherein actual sources such as an antenna are replaced by equivalent sources. Quoting from [7],

"By the surface equivalence theorem, the fields outside an imaginary closed
surface are obtained by placing over the closed surface suitable electric and
magnetic current densities that satisfy the boundary conditions. The current
densities are selected so that the fields inside the closed surface are zero and
outside are equal to the radiation produced by the actual sources. Thus, the
technique can be used to obtain the fields radiated outside a closed surface by
sources enclosed within it. The formulation is exact but requires integration over
the closed surface. The degree of accuracy depends on the knowledge of the
tangential components of the fields over the closed surface."

Consider now the meaning of Fig. 8.3. Fig. 8.3(a) depicts the most general case of an
electromagnetic wave interaction with an arbitrary three-dimensional structure. Following [7],
we assume that (E I' H) filling all of space is generated by the action of physical electric and
magnetic current sources J) and M) flowing on the surface of the structure. In Fig. 8.3(b),
we assume that J) and M) are removed, and that a new field (E, H) now exists inside an arbitrary
closed observation surface S that completely encloses the structure. However, we wish to
observe the original field (E

J
, HI) outside S. For this situation to satisfy the electromagnetic

field boundary conditions on the tangential E- and H -field components at S, the following
nonphysical electric and magnetic currents flowing tangentially along S must exist:

(8.22a,b)

where ;, is the unit outward normal vector to S. The virtual electric and magnetic currents of
(8.22) radiate into free space everywhere (inside and outside of S), and generate the original
fields (E(, HI) in the unbounded free-space region outside S. Since the fields within S can be
anything (and we are not concerned with this region with regard to developing far-field
information), it is useful to assume that E and H inside S are identically zero. Then, the
equivalent problem of Fig. 8.3(b) reduces to Fig. 8.3(c), with the equivalent current densities

(8.23a)

(8.23b)

If applied in two dimensions, this concept of surface equivalent fields conforms with the
rigorously derived integral expression of (8.19), which shows the far field being sourced by
equivalent electric and magnetic currents tangential to a virtual contour completely enclosing the
structure of interest.
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(c) Final equivalent problem

Fig. 8.3 Definition of electromagnetic fields and equivalent electric and magnetic virtual currents for the
surface equivalence theorem. After: Balanis, Advanced Engineering Electromagnetics, Wiley,
1989.
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8.5 EXTENSION TO THREE DIMENSIONS, PHASOR DOMAIN

Using the surface equivalence theorem discussed above, the NTFF transformation of (8.19) can

be readily extended to FDTD modeling of three-dimensional scatterers and antennas. Here, the

virtual surface is a six-sided rectangular locus S that completely encloses the structure of interest

in the scattered-field zone of the FDTD lattice. Along each side of S, the equivalent phasor

electric current is and equivalent phasor magnetic current Ms are calculated using DFfs

applied to the FDTD-computed tangential H- and E-fields, respectively. Then, these equivalent

currents are integrated with the free-space Green function weighting to obtain far-field quantities,

as explained next.
Following the notation of [7], we can define a pair of vector potentials suitable for far-field

computation:

where

-jkR

A = Po If is _e__ ds' ==
4n s R

-jkR

F = ~ If Ms _e__ ds' -
4n s R

N = If]s e j k r'cos'll ds'

s

-jkr
,-p-,,-o_e__ iI

4nr

-jkr
_c",-o_e__ L

4nr

L = If Msejkr'cos'll ds'
s

(8.24)

(8.25)

(8.26a, b)

r = rr = position of observation point (x, y, z)

, , ,,' I I I

r = r r == position of source point on S (x , y , z )

(8.26c)

(8.26d)

R = RR -
,

r - r ; VI == angle between rand r' (8.26e, f)

and R is given by the law of cosines in the far field as

[
2 2 ] 1/2 {r - r' cos VI

R = r +(r') -2rr'cosVl == r
for phase variations

for amplitude variations
(8.26g)

The phasor E- and H-fields due to the vector potentials of (8.24) and (8.25) are given
rigorously by

(8.27)

(8.28)
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Neglecting terms in (8.27) and (8.28) that diminish as order(1/ r
2

) or faster, and neglecting radial
field components of negligible amplitude compared to the () and ¢ components, we obtain the
following simplification in the far field. Here, the E components are given by

E, == 0

jke-
jkr

(_
E,., _ -J'OJ(Ao + 71o~) = - L" + 710 No)

Q Q" 47t'r" "

(8.29a)

(8.29b)

. -jkr
. (- -) Jke (-

E~ == - JOJ A~ - 710 F'o = + Le
47t'r

(8.29c)

where 71
0

= ~ Ilo/co is the intrinsic impedance of free space.

Given the Cartesian geometry of the FDTD space lattice and its NTFF transformation
- -surface 5, it is convenient to first calculate Nand L in rectangular coordinates, and then

transform to spherical coordinates for substitution into (8.29) and (8.30). Again following [7],

we have

The far-field H components are given by

He
jOJ (-

- 710 Fe)
jke-

jkr
(-

- Le/71o)- +- A = + N~
71

0
~ 47t'r

jOJ (-
. k -jkr

H~ + 710 ~)
j e (-

L~/71o)- -- Ae = - Ne +
1Jo 47t'r

N = If (x J
x

+ yJ
y

+ i JJ e +jkr'cosyr ds'

S

L = If (x M;r + yMy + i MJ e +jkr'cosyr ds'

S

and the corresponding () and ¢ components:

No = Jj(Jxcos8cos¢ + Jycos8sin¢ - Jzsine) e+jkr'cosyr ds'
s

N~ = JJ(-J;rsin¢ + Jycos¢) e+jkr'cosyr ds'

s

(8.30a)

(8.30b)

(8.30c)

(8.31 )

(8.32)

(8.33a)

(8.33b)
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Le = If(MxcoS8cos¢ + Mycos8sin¢ - M
z
sin8) e+jkr'coslif ds'

s

L¢ = If (-M
x

sin ¢ + My cos¢) e+jkr'coslif ds'
S

(8.34a)

(8.34b)

The integral expressions of (8.33) and (8.34) can now be numerically implemented. taking
into account the location and orientation of each face of the integration surface S. Assuming that
S is a rectangular box of side dimensions 2xo' 2yo' 2zo located symmetrically about the coordinate
origin, there are six faces to be accounted for in the integration process. These may be grouped
into three pairs of faces whose kernel functions have common properties, as follows.

1. The two faces ofS located at x· = ±Xu

Nonzero components of 1s and Ms :

Exponential phase term:

r' cosljl = r'·; = (±xox + y'Y+ z'i)· (xsin8cos¢ + ysin8sin¢ + icos8)

= ± Xo sin 8 cos ¢ + y' sin 8 sin ¢ + z' cos 8

Integration limits: < . < < . < .- Yo - Y - Yo ' - Zo - Z - Zo ' ds' dy'dz'

2. The two faces ofS located at y' =±Yo

Nonzero components of 1s and its:

Exponential phase term:

r'cosljl = r'·;= (x'.i±YoY+z'i)·(xsin8cos¢+Ysin8sin¢+zcos8)

= x'sin8cos¢ ± yosin8sin¢ + z'cos8

Integration limits: ds' dx'dz'

3. The two faces ofS located at z' = ± Zo

Nonzero components of 1s and its:

Exponential phase term:

,
r cos If! r'·; = (x'x+y'Y±zui)·(isin8cos¢+Ysin8sin¢+icos8)

x'sin8cos¢ + y'sin8sin¢ ± zocos8

Integration limits: < '< <'<.-xo - X - xo' - Yo - Y - Yo ' ds' = dx'dy'
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(8.37)

(8.35)

(8.36)Rcs(e, ¢) == lim (4Jr/ ~cal)
r---)~ p

tnC

Upon substitution of (8.35) into the definition of the bistatic RCS in three dimensions:

we obtain the final expression for RCS (having the dimension of square meters):

Luebbers et al. [8] reported lJn efficient "on-the-fly" time-domain NTFF transformation that
calculates the time waveforms of the scattered or radiated E- and H-fields at selected angular
locations in the far field. These calculations are performed concurrently with the normal FDTD

time-stepping.
Luebbers' method involves setting up time-dimensioned arrays for the far-field vector

potentials. Each array element is determined by conducting a recursive (running) sum of
contributions from the time-domain electric and magnetic current sources just computed via
FDTD on S. These contributions are delayed in time according to the propagation delay between
a source element on S and the far-field observation point. If the far-field bistatic RCS pattern or
antenna radiation pattern is required at specific frequencies, the field-versus-time waveform
obtained in this manner can be postprocessed via an FFf.

We now summarize this approach. To correlate as much as possible with the notation used
in [8], we start with (8.29b) and (8.29c) and make the substitution k ;;;: 2 rrl Ao:

where P is the power density in the illuminating wave. Note that (8.37) is a function of only fJ
me

and cp. not r.
It is clear that the integral expressions of (8.33) and (8.34) can be numerically evaluated as

discussed above to obtain the required phasor quantities. Thus, a single FDTD run modeling a
plane-wave excitation having a specific incidence angle and polarization provides the scattered
near-field data along S to permit calculation of the complete far-field bistatic RCS pattern.
For an antenna problem, there is no incident plane wave, but (8.37) is still usable to obtain the
far-field radiation pattern from the radiated near field along S. Here, the normalizing factor Pine

can be taken as the total power exciting the antenna.

PSCal

8.6 TIME.DOMAIN NEAR-TO-FAR-FIELD TRANSFORMAnON

Finally, assuming knowledge of Ne• N~, i e• and i~. we can write the following expression

for the time-averaged Poynting vector of the scattered field:
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. -jkr
Je (~ - )= - Lrp + 770 Ne
2Aor

(8.38)

(8.39)

These are, respectively, (3) and (4) of [8], but the distance from the origin to the far-field
observation point is denoted here by r, rather than the R symbol used in [8). Next, defining

W - N, u -
. -jkr

_J_e__ L

2Ao r
(8.40,8.41)

as in (5) and (6) of [8), we can rewrite (8.38) and (8.39) more simply as

- --
E(J == - 770 "¥e - U¢; (8.42, 8.43)

We can now apply the inverse Fourier transformation to each term of (8.40) and (8.41),

using the basic definitions of iii and i in (8.31) and (8.32), respectively. This yields the

following time-domain relations corresponding to (8.40) and (8.41):

W(r, t)

U(r, t)

= _1 ~ [JJ Js(t _ r-rl

.,) dS']
4Jrrc at s c

= _1 ~[JJMs(t _ r-rl'T)dS']
4Jrrc at s c

(8.44)

(8,45)

In addition, inverse Fourier transformation of (8.42) and (8.43) yields

(8.46)

(8.47)

Equations (8.44) to (8.47) form the theoretical basis of Luebbers' time-domain NTFF
transformation. These correspond to Equations (7) to (10) of [8), respectively, with minor
differences in notation.

We note that the argument of Js and M s in (8.44) and (8.45) implies a time delay 'l'd between
the appearance of H- and E-fields on virtual surface S, and their impact upon the far-field vector
potentials Wand U. This time delay is given by

, A

r - r ·r

c
=

,
r - r COSlfI

c
(8.48)
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flowing within a rectangular patch !:ufJ.z located at r' = (x' x + Yo j + z' z) on the y = +Yo face
of S. From (8.45), this magnetic current yields the following additive increment to U(r, t):

In fact, this time delay is precisely the propagation delay of an electromagnetic wave in free
space over the distance R given by (8.26g), which is between the source point r/ on S and the far

field observation point r.

We now consider the implementation of (8.44) to (8.47) in the context of the FDTD method,
The overall strategy is to evaluate the integrals of (8.44) and (8.45) in Cartesian coordinates
along the six planar faces of S at each time-step, thereby obtaining the Cartesian components of
the incremental values of Wand U at each cell of each face at that time-step. These increments
are added to the respective running sums for the time samples of the Wand U waveforms,

assuming appropriate source-to-observation-point time delays "rd , Upon conclusion of time
stepping, the Cartesian components of the final accumulated Wand U waveforms are converted
to () and ¢ components in spherical coordinates for direct substitution into (8.46) and (8.47).

To illustrate the core of this process, we follow the example of (11) in [8], and use as a
sample excitation the magnetic current

M i = _yA X E x = E i
l X X

(8.49)

= t1U A

Z Z
1 a(A )= -- - M,Z6xfJ.z

41l'rc at
= 6xfJ.z ~(E i)

4nrc at x
(8.50)

This increment contributes to U(7. t) after the time delay "rd of (8.48), expressed as the following

fractional number of time-steps:

f = ~ =
M

,
r - r cos If!

c t1t
(8.51 )

Assuming a second-order-accurate central-difference realization of the time derivative of
(8.50) evaluated at the half time-step point n + 1/2, and assuming standard FDTD notation,

(8.50) and (8.51) can be concisely combined to yield the following recursive (running) sum:

We see that (8.52) conveys the full meaning of (8.45) in that the time derivative of the magnetic

current on the elemental surface patch at time-step n + 1/2 appears in the far-field vector
potential after a delay of f time-steps. corresponding to the propagation delay between the
surface patch and the observation point. The recursive sum notation appearing in (8.52) serves to

remind us that magnetic currents flowing on other patches on S, not necessarily at the same time
step, can also provide a contribution to u,I;+112+1 which must be summed immediately after they
are obtained in the normal FDTD time-stepping.

U In+1/2+ 1
, r

= U In+J/2+ 1 +
, r (8.52)
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The last step in the process is to conform (8.52) with the fact that uzl; is, in fact, a finite
array of time samples at M discrete time-steps. With the time-step delay f of (8.51) being a
decimal fraction, it will be rare, indeed, that a delayed value of the additive increment in (8.50)
falls precisely on one of the time samples of Uz . A decision must be made regarding how to
apportion the delayed value of the increment to the two discrete values of Uz that lie to either side
in time. The approach followed by [8] is to use linear interpolation. Adopting a slightly
different notation than [8], let

nn == INT(n + 1/2 + f)

where INT is a function that extracts the greatest integer in the argument. Then,

a == (n + 1/2 + f) - nn

(8.53)

(8.54)

is the fractional time-step (0::; a ::; 1) between the true time location of the delayed increment and
the Uz sample uzl;n that occurs just before. Conversely, (1 - a) is the fractional time-step
between the true time location of the delayed increment and the Uz sample uzl;n + I that
immediately follows. Then, we have the following apportionment for the running sum:

(8.55a)

U Inn+l
z r (8.55b)

Implementing (8.55) for each surface patch on S for each time-step of the FDTD modeling run
completes the process of evaluating the Uz integral of (8.45), thereby completely evolving the
far-field vector potential waveform U/r, t). We need only ensure that M, the total number of
time-value storage locations assigned to the uzl; array. sufficiently exceeds NMAX, the number
of time-steps in the FDTD run, to allow for delayed contributions arriving from all parts of S at
the conclusion of time-stepping. Assuming that the maximum distance between any two points
on S is stl, and that the time-step relation 2ctlt =tl is used, it is sufficient to set

M = NMAX + 2s (8.56)

to ensure that there are enough storage locations in the U In array to deal with arbitrary angularz r
orientations of the far-field observation point r.

It is clear that the process discussed above can be implemented in an analogous manner for
U (r, t) and U (r, t) in (8.45), as well as for the three Cartesian components of W(r, t) in (8.44).

x y

For the latter, two additional considerations are that:

1. The FDTD H components used to obtain ls are shifted by 0.5tlt relative to the
E components used to implement (8.45).

2. There is a sign reversal in the definition of the equivalent current.
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To illustrate these changes, consider the following expressions that are analogous to (8.52)
to (8.55). These expressions provide the contribution to the running sum for W, along the y:;;: +yo
face of S. First, we have the true location of the time-delayed is contribution:

W jn + f = W In + f _
z r Z r

(8.57)

Finally, the apportionment for the running sum:

w Inn = wrn
- (1- a)· ilxAz (H r.+ 1

/
2

- Hr.- 1
/
2

)
l' l, 4nrcLlt x, x,

Next, there are the time interpolation factors:

nn :;;: INT(n + f) a :;;: (n + f) - nn (8.58a, b)

(8.59a)

(8.61a)

(8.61b)

(8.60a)

(8.60b)

(8.59b)

~(r, t) = - ~(r, t)sin¢ + W;,(r, t)cos¢

~(r, t) :;;: ~(r, t)cosecos¢ + ~(r, t)cosesin¢ - ~(r, t)sine

Ue(r, t) = Ux(r, t)cosecos¢ + Uy(r, t)cosesin¢ - U,(r, t)sine

The time waveforms of the vector potentials of (8.60) and (8.61) can now be inserted into (8.46)
and (8.47) to directly obtain the desired time waveforms of the E-field at observation point r

in the far zone, completing the calculation. From (8.44) and (8.45), we note that the amplitudes
of these waveforms diminish as 1/ r, so that it is possible to obtain a normalized far-field
response that is independent of the distance from the origin simply by multiplying (8.46) and
(8.47) by r. In fact, this is how [8] presented its time-waveform results. Finally, we note that
[8] reported a postprocessing FFf of its normalized far-field waveforms to yield the wideband
RCS response of generic PEC flat plates. Very good agreement with frequency-domain MoM

data was reported.

In total, six one-dimensional arrays, each containing M :;;: NMAX + 2s storage locations,
are required to store the time variation of the six Cartesian vector components of W(r, t) and
VCr, t) for each (e, ¢) in the far field at which a field-versus-time waveform is required.
Upon completion of the filling of these arrays, the following rectangular-to-spherical vector

component conversion is performed:
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8.7 MODIFIED NTFF PROCEDURE TO MORE ACCURATELY CALCULATE
BACKSCATTERING FROM STRONGLY FORWARD-SCATTERING OBJECTS

Backscattered electromagnetic waves in the microwave frequency range are routinely used in a
wide variety of detection and remote-sensing applications. At much higher frequencies, it has
recently been demonstrated that backscattered light spectra from biological tissues can provide

valuable medical diagnostic information, including potential noninvasive means for early-stage
cancer detection [9 -11]. In fact, promising emerging applications in optical tissue diagnosis
have motivated a series of detailed FDTD studies of light scattering by complex material shapes
in the 1A to lOA size range [12-14]. Such objects are generally characterized by strong
forward-scattering lobes [15]. (See also Chapter 16, Section 16.21.)

Unfortunately, using the basic NTFF procedure discussed earlier in this chapter, it has been
found to be difficult to apply FDTD to accurately calculate the backscattering spectra of strongly
forward-scattering objects. Numerical experiments reveal that, for such objects, smaIl

percentage errors in the FDTD-calculated fields along the portion of the NTFF integration
surface located in the forward-scattering region result in large-percentage errors in the far-field
backscattering [16]. In essence, this is a "subtraction-noise" problem. That is, the hundreds or

even thousands of relatively large field values collected over the NTFF surface in the forward
scattering region must nearly cancel upon integration (addition) to correctly yield the relatively
small values in the backscattered far field. Consequently, converged backscattering results

require unusually high-precision FDTD calculations of the near field, with spatial resolutions
much finer than A/20 (which usually suffices for accurate forward-scattering results). This
requirement for very fine grid resolution poses obvious and significant computational burdens.

Instead of trying to improve the FDTD near-field calculation, [16] proposes a simple

alternative: just omit the forward plane of the NTFF surface when performing the integration to
calculate the far-field backscattering. This approach is clearly an approximation to the rigorous
surface-equivalence theorem, in which integration over a closed virtual surface completely

surrounding the scattering object is specified. However, this approximation can be justified by
the fact that the Poynting vectors of the scattered waves propagating through the forward plane

of the NTFF integration surface approximately point in the forward direction, and therefore
should have only a small contribution to the backscattered far field. In essence, the working
hypothesis of [16] is that, for strongly forward-scattering objects, the gain in accuracy realized
by omitting the forward-plane fields (with their relatively high level of numerical "noise") from

the NTFF integration substantially outweighs the loss of accuracy caused by the incomplete
surface integration.

We now summarize numerical evidence reported in [16] that supports this hypothesis.

Fig. 8.4(a) illustrates the backscattering spectrum of a single, plane-wave-illuminated,
3-llm-diameter dielectric sphere of relative permittivity E

r
;;;; 1.21. The sphere is mapped with a

staircased surface into a uniform, three-dimensional FDTD space lattice of cubic cell size
L1 ;;;; 25 nm. Two FDTD backscattering spectra are shown for this sphere: one calculated with
the full NTFF surface integration (as specified earlier in this chapter), and the other calculated

with a partial surface integration that omits the NTFF plane in the forward-scattering region.

These spectra are graphed over a 500 to 1,000 nm incident wavelength range in comparison with
the Mie far-field analytical solution. From Fig. 8.4(a), we see that omitting the forward plane of

the NTFF surface results in a much more accurate calculation of the backscattering at all

wavelengths examined, with no additional requirement for computational resources.
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Fig. 8.4 (a) Backscattering spectrum of a single, piane-wave-illuminated, 3-llm-diameter dielectric sphere
of relative permittivity £r =1.21. The sphere is mapped with a staircased surface into a uniform,
three-dimensional FDTD space lattice of cubic cell size t:,. =25 nm. Two FDTD backscattering
spectra are shown for this sphere: one calculated with the fulI NTFF surface integration, and the
other calculated with a partial surface integration that omits the NTFF plane in the forward
scattering region. (b) RMS error of the backscattering calculations over the 500 to 1,000 nm
incident wavelength range as functions of sphere diameter. Source: Li et aI., IEEE Antennas and
Wireless Propagation Lett., 2005, pp. 35-38, © 2005 IEEE.
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Fig. 8.4(b) repeats the calculation for a series of Er = 1.21 dielectric spheres with diameters
ranging from I to 5 11m. Here, a root-mean-square (RMS) error functional is used to characterize
the accuracy of each FDTD-calculated backscattering spectrum relative to the analytical solution
over the entire 500 to 1,000 nm wavelength range. We see that the RMS error stabilizes at
approximately 5% for larger spheres using the partial-surface integration method. This is a
factor of approximately 100 times smaller than the error observed with a full-surface integration.

Reference (16] also reports additional validations of the NTFF partial-surface integration
method which involve calculations of the backscattering spectra of aggregations of dielectric
spheres with total dimensions spanning up to 20A. Here, the results of the FDTD full-surface
and partial-surface NTFF techniques are compared with the analytical solution of [17]. An RMS
accuracy for the backscattering spectrum of better than 10% is reported for all cases examined
when applying the partial-surface approach. Fig. 8.5 illustrates an example for a three-sphere
aggregation. Similar to the findings for the single sphere, it is clear that omitting the forward
plane from the NTFF integration greatly improves the accuracy in calculating backscattering.

10-4 .-------r------,------,------"'T""-----,

ooo

••••••••••••••• ••••••••••• ••••••••••••••••••••

• Full NTFF surface integration

o Partial NTFF surface integration

-- Analytical theory [17J

500 600 700 800
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Fig. 8.5 Backscattering spectrum of a plane-wave-illuminated triplet of dielectric spheres of relative
permittivity t:r =1.21. The larger sphere is 2 ~m in diameter, and the two smaller spheres are
I ~m in diameter. The spheres are mapped with staircased surfaces into a uniform, three
dimensional FDTD space lattice of cubic cell size t::.. =25 nm. Two FDTD backscattering spectra
are shown: one calculated with the full NTFF surface integration, and the other calculated with a
partial surface integration that omits the NTFF plane in the forward-scattering region. Source:
Li et aI., IEEE Antennas and Wireless Propagation Lett., 2005, pp. 35-38, © 2005 IEEE.

In addition to having applications in numerical studies related to the biophotonics of
individual living cells and clusters of cells, the method proposed in [16] could provide improved
FDTD modeling of the backscattering cross section of certain types of low-observable aerospace
vehicles. These vehicles would be in the class of structures that are designed to shift the major
scattering lobes away from the backscatter direction.
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8.8 SUMMARY

This chapter discussed the basis of frequency-domain and time-domain near-to-far-field
transformations suitable for use in FDTD simulations. The discussion began by using the
phasor-domain Green's theorem in two dimensions to prove that scattered or radiated E and H
fields tangential to a virtual surface enclosing the structure being modeled can be integrated to
provide the complete far-field pattern. This virtual surface is independent of the shape or
composition of the structure being modeled, and can have a fixed rectangular shape to conform
with the Cartesian FDTD lattice. It was next shown that the phasor field data needed for this
calculation can be efficiently obtained during the FDTD run by running a concurrent DFT on the
time-stepped E and H field components tangential to the designated virtual surface in the lattice.

These discussions motivated a review of a powerful phasor-domain surface equivalence
theorem. This theorem allows calculation of the sinusoidal scattered or radiated far fields in
general three-dimensional FDTD simulations.

The chapter continued with a review of the theory and numerical implementation of a three
dimensional time-domain NTFF transformation which permits direct computation of scattered or
radiated pulses at a set of angles in the far field. This procedure can be used instead of the
phasor-domain transformation discussed earlier, if the required data are time waveforms,
and there are relatively few far-field observation angles of interest.

Finally, the chapter concluded with a recent simple modification of the NTFF procedure that
greatly improves the accuracy in calculating the backscatter from strongly forward-scattering
objects, such as biological cells illuminated by light and certain types of low-observable vehicles.
The modification involves simply omitting the forward plane of the NTFF surface when
performing the integration to calculate the far-field backscattering. This avoids the "subtraction
noise" problem posed by the requirement for near cancellation of the relatively large field values
collected on this plane when integrated into the far backscattered field.
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PROJECT

P8.1 Implement the phasor-domain near-to-far-field transformation in a two-dimensional TMz
FDTD code. Write a DFT subroutine to obtain the necessary phasor data at a rectangular
virtual surface surrounding the structure of interest. Conduct numerical experiments
modeling the illumination of a flat PEC plate or square PEC cylinder to obtain the complete
bistatic RCS pattern. Compare the results with data in the literature, such as [2].
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Dispersive, Nonlinear, and Gain Materials

Allen Taflove, Susan Hagness, Wojciech Gwarek, Masafumi Fujii, and Shih-Hui Chang

9.1 INTRODUCTION

Current and emerging technological applications in aerial and ground-penetrating radar,
high-power microwaves, bioelectromagnetics, biophotonics, nanophotonics, and microlasers can
involve electromagnetic wave interactions at the wavelength or subwavelength scale with
materials having frequency-dispersive dielectric properties that potentially exhibit nonlinearity
and / or gain. Computational electrodynamics modeling requires four key electromagnetic
characteristics of such materials to be accounted:

• Linear dispersion. A material's permittivity and/or permeability varies with
frequency at low intensities of the wave's E- and H-fields.

• Nonlinearity. A material's permittivity and/or permeability varies with the
intensity of the wave's local E-field, H-field, or Poynting power flux (usually at
high intensities).

• Nonlinear dispersion. The strength of a material's nonlinearity varies with the
sinusoidal frequency of the electromagnetic wave.

• Gain. An active dielectric material (such as in a laser) transfers power from an
external source (the pump) to progressively increase the amplitude of an
electromagnetic wave propagating within the material. Gain can also be
frequency-dispersive and nonlinear.

This chapter discusses several approaches that allow the FDTD method to model dielectric
materials exhibiting linear dispersion, nonlinearity, nonlinear dispersion, and gain. Topics
covered include: (l) a summary of generic material dispersions, including Debye, Lorentz, and
Drude media; (2) the piecewise-linear recursive convolution (PLRC) method for linear
dispersive media; (3) the auxiliary differential equation (ADE) method for linear dispersive and
nonlinear dispersive passive media, and for saturable dispersive active gain media; (4) analysis
of linear magnetized ferrites; and (5) coupling of quantum effects in an active atomic system to
Maxwell's equations, with application to the detailed analysis of a laser's pumping dynamics.
As with all FDTD techniques, these approaches enforce the vector-field boundary conditions at
interfaces of dissimilar media at the time scale of a small fraction of the impinging pulse width or
carrier period. As a result, these approaches are almost completely general.

353
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9.2 GENERIC ISOTROPIC MATERIAL DISPERSIONS

This chapter first considers three important generic classes of linear, isotropic material
dispersions amenable to FDTD modeling at the macroscopic scale: (I) the Debye relaxation,
(2) the Lorentzian resonance, and (3) the Drude model of metals. Note that these cases are
defined using the expUro!) convention for phasor (Fourier-domain) quantities.

9.2.1 Debye Media

Debye media are characterized by a complex-valued, frequency-domain susceptibility function
xC OJ) that has one or more real poles at separate frequencies. For a single-pole Debye medium,
we have

I + jroTp + jroTp

(9.1)

where £ is the static or zero-frequency relative permittivity, £ is the relative permittivity atS,p ~,p

infinite frequency, !1Ep is the change in relative permittivity due to the Debye pole, and T
p

is the
pole relaxation time. The real-valued time-domain susceptibility function XU) is obtained by
inverse Fourier transformation of (9.1), yielding the decaying exponential function

!1£ -II.= -_P e P U(t)
'rp

(9.2)

where U(t) is the unit step. For a Debye medium having P poles, we extend (9.1) to express the
relative permittivity as

£(ro) =

9.2.2 Lorentz Media

p !1E
p

2:-~
p=1 1 + jOJrp

(9.3)

Lorentz media are characterized by a complex-valued, frequency-domain susceptibility function
X(ro) that has one or more pairs of complex-conjugate poles. For a Lorentz medium
characterized by a single pole pair, we have

(9.4)

where !1E = E - £ is the change in relative permittivity due to the Lorentz pole pair, rop is
p S,p -.p

the frequency of the pole pair (the undamped resonant frequency of the medium), and 8
p

is the
damping coefficient. The real-valued time-domain susceptibility function xU) is obtained by
inverse Fourier transformation of (9.4), yielding the exponentially decaying sinusoidal function
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-8 I (~ 2 2)e P sin Wp-D p t Vet) (9.5)

For a Lorentz medium having P pole pairs, we extend (9.4) to express the relative permittivity as

£(w) (9.6)

9.2.3 Drude Media

At optical wavelengths, it may be important to treat electromagnetic wave interactions with
metals using a dispersive formulation to properly account for the physics of internal electron
motion. At the macroscopic scale, the Drude model has become widely used for such modeling.
For a single-pole Drude medium, we have

(9.7)

where W is the Drude pole frequency and y is the inverse of the pole relaxation time.
p p

The real-valued time-domain susceptibility function XU) is obtained by inverse Fourier
transformation of (9.7), yielding the function

For a Drude medium having P poles, we extend (9.7) to express the relative permittivity as

(9.8)

p w;
I 2 •
p=1 W - JWYp

(9.9)

9.3 PIECEWISE·LINEAR RECURSIVE·CONVOLUTION METHOD,
LINEAR MATERIAL CASE

Luebbers et al. [1-3] reported the development of an efficient "on-the-fly" PLRC approach to
modeling electromagnetic wave interactions with linear materials that have combinations of

multiple Debye and Lorentz dispersions. The discussion that follows, adapted primarily from

[3], considers only dispersive electric permittivity. Results for dispersive magnetic permeability
can be readily obtained by using duality.

n
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9.3.1 General Formulation

At any point in a linear dispersive medium, the time-domain electric flux density D(t) is related
to the time-domain electric field intensity E(t) by the convolution

t

D(t) = eo e_ E(t) + eo JE(t - r) x(r) dr
T=O

(9.10)

Using the notation Dn= D(n~t) and En =E(n~t), (9.10) can be written in time-discrete form as

ll!J.r

D
n = eo e~ En + eo JE(nAt - T) X(T) dT

T=O

(9.11)

where eo is the permittivity of free space and XU) is the susceptibility time-function of the
medium. In the present discussion, xU) is given by (9.2) and (9.5), respectively, for Debye and
Lorentz dispersive media having a single pole or single pole pair.

Previous recursive-convolution formulations [1, 2] implementing (9.11) approximated the

continuous time function E(t) by a constant value over each time-step 111. However, greater
accuracy results if a linear approximation is used. For example, over any given time interval
(iM, (i+I)M], E(t) can be approximated by linearly interpolating the values of E at the
beginning and end of the time interval:

. (E i
+

1
_ Ei

)
E(t) = E' + I1t . (t - iAt) (9.12)

We see that implementing (9.12) separately over each M in the process results in an overall

piecewise-linear temporal approximation of the E-field.

Preparing to use the piecewise-linear temporal approximation for E(t) given in (9.12) in the
convolution integral of (9.11), we first rewrite (9.12) in a time-reversed and offset form:

(
E n-m-l n-m )

n m - E
E(n/1t - T) = E - + At . (r - ml1t)

After substituting (9.13) into (9.11), we obtain after some manipulation

11-1

Dn = eoe_En + eo IJEn-mx m + (En-m- 1
_ En-m)c]

m==O

where

(9.13)

(9.14)

(m+I)!J./

X
m = J X(T)dT

m!J./

1 (m+I)!J.t

~m = - J (T - ml1t)X(T)dr
I1t m!J./

(9.15a, b)
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After substituting (9.14) for D n (and a similar expression for D n
+

l
) into the discrete-time

form of Ampere's law

v x H n +)f2 =
l!.t

we obtain the general form of the FDTD update equation for the E-field:

E n+) (E_ - ~o ) n ( l!.t / Eo ) V X n+l/2= ooE+ 00 H
c_ - ~ + X E_ - ~ + X

where

(9.16)

(9.17)

(9.18a, b)

We now designate the summation in (9.17) as the new time-dependent vector variable '1/1:

n-l

'I/In = L [En-m~Xm + (En-m- I
_ En-m) l!.~m]

m=O

(9.19)

For Debye and Lorentz media, (9.19) can be efficiently evaluated by using a recursion relation
called in [3] the recursive accumulator. This is of the fonn

(9.20)

where (as will be shown) l!.Xo, ~~o, and Cree are real-valued constants for Debye media and
complex-valued for Lorentz media. Now, E-field update equation (9.17) becomes

+ C_ -;. + x,) lIf"
(9.21 )

Equations (9.20) and (9.21) permit an efficient updating of the E-field without the need to
explicitly evaluate the convolutional sum embedded in (9.17). The primary algorithmic
requirement is the storage and updating of an additional real or complex vector variable '1/1,
representing the recursive accumulator, for each E in the space lattice.
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In proceeding from time-step n to time-step n + I, each En is first stored in the temporary

vector variable ESlore' Then, En
+

1
is obtained by applying (9.21) to En, 'VxHn

+
I12

, and ."n.
Then, ."n+1 is computed by applying (9.20) to E n

+
l
, ESlore' and ."n. The entire cycle then repeats.

This technique works because the value of ." is zero at n =O.

9.3.2 Application to Debye Media

To use the PLRC algorithm, the quantities Xm, ,1Xm, ~m, ,1~m, and Cree must be calculated.

All of these depend on the susceptibility function of the dispersive medium. Substituting the

time-domain susceptibility function (9.2) for Debye media into (9.l5a) and (9.I5b), we obtain for

the p'th Debye pole

X
m = ,1£ (Ip p

-Ii/IT) -mli/IT- e PeP (9.22a)

,1£ T [ ]~m = P P I _ (,1t/-r + 1) e-IiI/Tp e-mlit/Tp

P ~ P

The quantities ,1X
m

and ,1~m are found by using (9.I5a, b) in (9.l8a, b). Noting that

(9.22b)

A m+! A m -lir/T
u y = u y e p.
~p ~p ,

,1~m+1 = ,1J=m e-1i/ITp
p <'p (9.23a, b)

and following a procedure similar to that outlined in the appendix of [1], the recursion relation
for ."n is given by

(9.24)

All quantities in (9.24) are real valued.

9.3.3 Application to Lorentz Media

For Lorentz media, the real-valued time-domain susceptibility function X (t) given in (9.5) does
p

not lead to simple recursion relations for Xm and ~m. This problem is circumvented as in [2] by

introducing the complex-valued quasi-time-domain function

A • (-a +jft )/
X (t) = - J reP p U(t)p p

where the carat" A " denotes a complex number and

(9.25)

a = ~ .
p P , f3 = ~ 0/ _ ~2 .

P p P ,
(9.26a, b, c)
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We see that X/t) is simply the real part of Xp(t). Substituting Xp(!) for xU) in (9.15a, b),
we obtain for the p'th Lorentz pole pair

-jyP [1 _e(-ap +j {3p)tlJ] e(-ap +j {3p)mt>t

a p - j fJp

(9.27a)

(9.27b)

These have the properties

(9.28a, b)

and are related to the real-valued quantities X; and ~; by

x; = Re(x;) ~; = Re(~;) (9.29a, b)

The values of XO and ~o found using (9.27a, b) and (9.29a, b) with m =0 can be substitutedp p

directly into the E-field update equation (9.21).

A complex-valued recursive accumulator y," can be defined for the p'th Lorentz pole pair as

where

n-1

y,; = L[E"-m~X; + (E"-m-l _ E"-m) ~~; ]
m=O

(9.30)

_ ~m+1
p (9.31a, b)

Again applying the procedure outlined in the appendix of [1], the recursion relation for ijI is

given by

Thus, in the PLRC algorithm for Lorentz media, the complex-valued recursive accumulator is
updated using (9.32). However, the E-field update equation (9.21) uses the real-valued recursive
accumulator found via (9.33).

Noting (9.29), and comparing (9.30) with (9.19), we see that

n ( A ")'lip = Re 'lip

(9.32)

(9.33)
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9.3.4 Numerical Results

Reference [3] reports applying the PLRC method to calculate the reflection coefficient and
transmitted field for a plane-wave pulse normally incident from free space onto a Lorentz
dispersive half-space. Referring to (9.4), the Lorentz half-space in this example is characterized
by a single pole pair with the parameters E =3.0, E =1.5, w = 21t X 20 GHz, and 8 =O.lw.

S.p -.p P P p

The one-dimensional FDTD model has !1 =0.25 mm and !1t =0.833 ps (the Courant stability
limit). This corresponds to an FDTD grid density in the half-space medium of about 22 cells per
wavelength at the pole-pair frequency of 20 GHz, and about 10 cells per wavelength at 100 GHz,
the approximate upper bound of the spectrum of the impinging Gaussian pulse.

Fig. 9.1 shows the E-field distribution after 900 time-steps within the Lorentz dispersive
half-space. Curves are shown for the exact solution, the PLRC-FDTD method discussed here,
and the original RC-FDTD method introduced in [2]. We see that the PLRC results have greatly
improved accuracy relative to the original RC method. In particular, the PLRC method picks up
the sinusoidal behavior of the field in the precursor region located ahead of the main body of the
transmitted pulse, whereas the RC method erroneously indicates a damped response with little
oscillation. Further, the PLRC method provides a much more accurate calculation of the positive
and negative peaks of the field distribution in the main body of the pulse.

The PLRC method can be extended to model dispersive media characterized by a finite sum
of Debye poles and Lorentz pole pairs, by the existence of a fixed conductivity a in addition to
the dispersion, and by the Drude dispersion. These extensions are left as homework exercises.
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E
~
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-a;
;;=
()
'C
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iIi
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Position (cell number)
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Fig. 9.1 Comparison of RC-FDTD, PLRC-FDTD, and exact results for the E-field distribution after 900
time-steps within a single pole-pair Lorentz dispersive half-space subjected to an impulsive
illumination. Source: Kelley and Luebbers, IEEE Trans. Antennas and Propagation, 1996,
pp. 792-797, © 1996 IEEE.
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9.4 AUXILIARY DIFFERENTIAL EQUATION METHOD, LINEAR MATERIAL CASE

The second category of methods for implementing FDTD models of dispersive materials utilizes
time-domain auxiliary differential equations linking the polarization and the electric flux density
(4,5]. These equations are time-stepped in synchronism with Maxwell's curl equations, yielding
a composite self-consistent system. ADE methods have the same second-order accuracy as the
PLRC techniques discussed in Section 9.3. In addition, their time-domain basis makes modeling
of arbitrary nonlinear dispersive media particularly attractive.

Reference [6] reported an efficient reformulation of the ADE method of [4, 5] for a
dispersive material characterized by a frequency-domain susceptibility function having multiple
(P) real poles or pole pairs. This reformulation eliminates the previous need to solve a system of
P linear equations at each E component at each time-step. Using the approach of [6], the ADE
method now requires an equal or smaller number of unknowns to be stored than the
corresponding PLRC scheme, and fewer floating-point operations, since no complex-number
arithmetic is needed. This section discusses the formulation of the ADE technique of [6] for
dispersive dielectric media characterized by multiple Debye, Lorentz. or Drude poles.

9.4.1 Formulation for Multiple Debye Poles

Consider a multiterm Debye dispersive medium having a total of P poles in its susceptibility
response. At any particular E observation point, Ampere's law in the time domain can be
expressed for this medium as

'dE P
V x H = e e - + aE + '" Jo - ::It £.. P

o p=\

where J is the polarization current associated with the p'th Debye pole. The goal of the ADE
p

technique is to develop a simple time-stepping scheme for Jp that can be updated synchronously
with (9.34).

To this end, we express the relative permittivity of the Debye medium in the frequency

domain as

£(w) =
p D.£p

£- + L _--!:-

p=1 1+ jWTp

(9.35)

where p denotes the number of the Debye pole. M: =e - e is the change in relativep S,p -,p

permittivity due to the p'th pole, and Tp is the pole relaxation time. A phasor polarization current
is associated with each pole by

(9.36)

An efficient means to obtain Jp from (9.36) is to first multiply both sides of this equation by
(l + j (In ). This gives

p

(9.37a)



362 Computational Electrodynamics: The Finite-Difference Time-Domain Method

Conveniently exploiting the differentiation theorem for the Fourier transform, we perform an
inverse Fourier transformation of each term of (9.37a):

aJp
J + 'l' - =

P P at (9.37b)

Equation (9.37b) is the required ADE for J . This can be easily and accurately implementedp

in an FDTD code using the semi-implicit scheme, wherein yet-to-be-computed fields at time-step
n + 1 are used to create an update formula for a field known at time-step n. Using this strategy,
we write the following finite-difference expression for (9.37b), centered at n + 1/2:

(9.38)

Solving (9.38) for J;+I, we obtain

where

£0 /1£p /1t / 'l'p

1 + /1t / 2 'l'p

(9.39)

(9.40a. b)

The second component of the ADE algorithm involves solving (9.34) for E n
+

J
• We again

use a semi-implicit scheme centered at 11 + 1/2. This requires knowledge of J;+1I2, which can be

obtained from (9.39) by

In+112 = 2-(Jn + JHI) = 2-[(1 + k )r + f3 p (En+1_ En)]
p 2 p p 2 p p /1t

Now, we can evaluate (9.34) at time-step 11 + 1/2:

(9.41)

v x H n+1I2

(9.42)

Upon collecting like terms, we obtain the following explicit time-stepping relation for E:
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P

2£0 £_ + 2.f3p - a fJ.t

E,,+l p=1
E"= P

2£0 £_ + 2.f3p + a fJ.t
p=1

+ [2£, E. +

2 fJ.t HVxH"·'" - ~±(1 + k lr]p
(9.43)2.f3p + aM 2 p=1 p P

p=l

Thus, the ADE-FDTD algorithm for modeling a dispersive medium with P Debye poles is a

three-step fully explicit procedure. Starting with the assumed known (stored) component values
"I" d H,,+ll2 fO I I h E"+1 0 (9of E, ,an ,we Irst ca cu ate t e new components usmg .43). Second,

p

we calculate the new Ip"+1 components using (9.39) applied to the just-computed set of E n+I

F· II H,,+3J2 0 b' d f H,,+112 d E,,+I. th I fcomponents. lOa y, IS 0 tame rom an In e usua manner rom the Yee

realization of Faraday's law, and the complete cycle starts again. Only P additional real

variables are required for each E component.

9.4.2 Formulation for Multiple Lorentz Pole Pairs

We next consider a multiterm Lorentz dispersive medium having a total of P pole pairs in its

susceptibility response. Ampere's law in the time domain for this medium is again given by

(9.34); and again the goal of the ADE technique is to develop a simple time-stepping scheme for

I
p

' which can be updated synchronously with (9.34).

To this end, we express the relative permittivity of the Lorentz medium in the frequency

domain as

£((i)) = £- + (9.44)

where p denotes the number of the Lorentz pole pair, fJ.£ =£ - E is the change in relative
p SoP -.p

permittivity due to the p'th pole pair, OJp is the undamped frequency of the p'th pole pair, and

o is its damping factor. A phasor polarization current is associated with each pole pair by
p

_ 2 ( j(i) ) _
I = £ fJ.£ (i) EpOp p m; + 2jmop _ (i)2 (9.45)

An efficient means to obtain I p from (9.45) is to first multiply both sides of this equation by

( 0/ + 2j(i)o - (i)2). This gives
p p

(i)
2 J + 2j m0 J - (i)

2J = Eo fJ.Epmp
2

J'mEp p p p p (9.46a)
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Conveniently exploiting the differentiation theorem for the Fourier transform,

we perform an inverse Fourier transformation of each term of (9.46a):

::IJ ::IzJ
Z Up Up zaE

ill J + 20 - + -- = E ~E W -
p P P at al 0 p p at (9.46b)

Equation (9.46b) is the required ADE for J . This can be easily and accurately implemented
p

in an FDTD code using the semi-implicit scheme, wherein yet-to-be-computed fields at time-step

n + 1 are used to create an update formula for a field known at time-step n. Using this strategy,

we write the following finite-difference expression for (9.46b), centered at time-step n:

(9.47)

Solving (9.47) for J;+l, we obtain

a r + ;; I n
-

I +
p p ~p p

where

r (En
+

1
- En-I)

p 2~t
(9.48)

2 - W; (M)z
a =

p I + 8
p
~t

8 M-I
~ = -,-P_-

P 8 M + 1
P

r =p
1 + Op I1t

(9.49a, b, c)

The second component of the ADE algorithm involves solving (9.34) for E n
+ I. To this end,

we use a semi-implicit scheme centered at time-step n + 1/2. This requires knowledge of Jp
n
+
ln

,

which can be obtained from (9.48) by

I n
+

1IZ = 2.(Jn +In+
l

) = 2.[(1 +a )r + ~ r- I + .!.L.(En
+

1
_ En-I)]

p 2 p p 2 p p p p 211t

Now, we can evaluate (9.34) at time-step n + 1/2:

(9.50)

v x H n
+

1/2

+ 2. f [(1 + a )r + S I n-I + .!L(En
+

1
_ En-I)]

2 ~ p p p p 2M

Upon collecting like terms, we obtain the following explicit time-stepping relation for E:

(9.51)
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where

(9.52)

1 p-Iy
2 p=l P

1 p-Iy
2 p=1 P

+ aM

(9.53a)

2£0 £_ - aM
Cz = (9.53b)

1 p

2£0 £_ + -Iy + aM
2 p=1 P

2M
C3 1 P

(9.53c)

2£0 £_ + -Iy + a/)./
2 p=1 P

Thus, the ADE-FDTD algorithm for modeling a dispersive medium with P Lorentz pole

pairs is a three-step fully explicit procedure. Starting with the assumed known (stored)

component values of En-I, En, 1;-1, 1;, and Hn
+ 1(2, we first calculate the new E n

+ I components

using (9.52). Second, we calculate the new 1;+1 components using (9.48) applied to the just-

fE n + 1 F' II H n+ 3/2
• b' d f H n+ l12 d E n+ 1 . hcomputed set 0 components. lOa y, IS 0 tame rom an 10 t e usual

manner from the Yee realization of Faraday's law, and the complete cycle starts again. Only 3P

additional real variables are required for each E component.

9.4.3 Formulation for Multiple Drude Poles

We last consider a multiterm Drude dispersive medium having a total of P poles in its

susceptibility response. Ampere's law in the time domain for this medium is again given by

(9.34); and again the goal of the ADE technique is to develop a simple time-stepping scheme for

1 which can be updated synchronously with (9.34).
P

To this end, we express the relative permittivity of the Drude medium in the frequency

domain as

p

I
p=1

(9.54)
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where p denotes the number of the Drude pole, oo
p

is the frequency of the p'th pole, and Jj, is the

inverse of the pole relaxation time. A phasor polarization current is associated with each pole by

(9.55)

An efficient means to obtain J
p

from (9.55) is to first multiply both sides of this equation by

(00
2

- jo;yp)' This gives

(9.56a)

Conveniently exploiting the differentiation theorem for the Fourier transform,

we perform an inverse Fourier transformation of each term of (9.56a):

iJ
--p

al
(9.56b)

Integrating once with respect to time, and omitting the trivial constant solution, yields

aJ
-p- + Y J = c 0;2 Eat p pop

(9.56c)

Equation (9.56c) is the required ADE for J . This can be easily and accurately implemented in
p

an FDTD code using the semi-implicit scheme, wherein yet-to-be-computed fields at time-step

n + I are used to create an update formula for a field known at time-step n. Using this strategy,

we write the following finite-difference expression for (9.56c), centered at time-step n + 1/2:

(I
n

+
1+ In)+ y p p

p 2
(9.57)

Solving (9.57) for J;+l, we obtain

r+ 1 = k r + f3 (En
+

1 En)
p p p p +

where

(9.58)

1
f3 =p

w~ coM /2

1 + Yp !1t /2
(9.59a, b)

The second component of the ADE algorithm involves solving (9.34) for E n
+

1
• We again

use a semi-implicit scheme centered at n + 1/2. This requires knowledge of J
p

n
+

1
/
2

, which can be

obtained from (9.58) by
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Now, we can evaluate (9.34) at time-step n + 1/2:

vX H n
+

1/2

(9.61)

Upon collecting like terms, we obtain the following explicit time-stepping relation for E:

P

2EoE~ - Llt Lf3p
- (J!J.t

E n +1 p=l En
p

2EoE~ + Llt Lf3p + (J!J.t
p=l

+ [2£0 E_

2M HVxH"'" - !-±(1+ k lr]p (9.62)
+ !J.t Lf3p

+ (J!J.t 2 p p
p=l

p=l

Thus, the ADE-FDTD algorithm for modeling a dispersive medium with P Drude poles is a

three-step fully explicit procedure. Starting with the assumed known (stored) component values
of En, In, and Hn

+
I
/
2

, we first calculate the new E n
+

1 components using (9.62). Second,
p

we calculate the new J
p

n
+

l components using (9.58) applied to the just-computed set of E n
+]

F
o 11 H n +312· bOd f Hn+1/2 d En + I 0 h I f thcomponents. ma y, IS 0 tame rom an m t e usua manner rom e Yee

realization of Faraday's law, and the complete cycle starts again. Only P additional real

variables are required for each E component.

9.4.4 Illustrative Numerical Results

Fig. 9.2 illustrates the accuracy achievable using ADE-FDTD to model reflection from a medium

characterized by multiple Lorentzian pole-pairs. Here, ADE-FDTD results for the reflection

coefficient of a half-space comprised of a hypothetical dispersive material are compared with the

exact solution obtained using monochromatic impedance theory. The FDTD data over the entire

spectral range are obtained in a single run using a narrow illuminating Gaussian pulse, and then

taking the ratio of the DFTs of the reflected and incident waveforms. With E
s
=10 and £_ = I,

the half-space is assumed to have three moderately undamped Lorentzian resonances in the

optical range: (fl =2 X 10
14

Hz,°1 =0.5fl ), (f2 =4 X 10
14

Hz, °2 =005f;), and (J; =6 x 1014 Hz,°
3
=0.5f;). The ADE-FDTD and exact results agree to within 0.1 % at all points shown.
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Fig. 9.2 Demonstration of the accuracy of ADE-FDTD modeling of reflection from a dispersive half
space characterized by three Lorentzian pole-pairs in the optical range.
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9.5 MODELING OF LINEAR MAGNETIZED FERRITES

Magnetized ferrites are used extensively in microwave circuit technology, with specific
applications in the design of circulators and isolators. This section presents a new approach to
the FDTD modeling of magnetized ferrites. An equivalent lumped circuit of an FDTD cell filled
with such a medium is developed. Then, the lumped circuit is used to propose a new FDTD
algorithm. This algorithm is verified on canonical examples, and is shown to be simple,
accurate, robust, and computationally more effective than the previously published approaches.

FDTD modeling of microwave devices using magnetized ferrites has followed two distinct
paths. In the first [7-9], the ferrite is characterized in the time domain by the equation of motion
of the magnetization vector. The resulting equations are discretized, and supplement the FDTD
algorithm in a manner that imposes modifications of the Yee space lattice. Here, at each spatial
point where a standard mesh includes only a magnetic field component perpendicular to the dc
magnetization of the ferrite, we must also define the magnetic induction component and another
magnetic field component [7]. In this approach, the anisotropic and dispersive properties of the
ferrite are inseparably bound together in a new form of the FDTD mesh.

In the second approach [10], the ferrite is characterized in the frequency domain by the
Polder vector, which in a lossless case can be expressed as

with

~] (9.63)

/( = (9.64a, b)

(9.64c, d)

where r is the gyromagnetic ratio, Ms is the saturation magnetization, and Hi is the static biasing
magnetic field assumed to be z-directed. Here, the basic FDTD mesh is not modified, and the
ferrite's anisotropic properties are modeled by direct mutual influence of the magnetic field
components perpendicular to the dc magnetization. The dispersive properties of the ferrite are
treated separately. The frequency dependence of these properties is transformed into the time
domain through a convolution wherein four complex-valued convolution terms must be updated
recursively for each FDTD cell [10]. Thus, for each such cell, four complex (or eight real)
variables need to be additionally stored.

This section presents an alternative approach [11] that is simpler and computationally more

effective than [7-10]. As in [10], we use a basically unmodified Yee cell, and separate the
anisotropic and dispersive properties of the ferrite. However, we account for the material
dispersion by considering a simple lumped equivalent resistor-inductor-capacitor (RLC) circuit.



370 Computational Electrodynamics: The Finite-Difference Time-Domain Method

9.5.1 Equivalent RLC Model

We first consider the two-dimensionallossless TMz case involving field components (E
z

, Hx ' H y )

propagating between two electric planes, z =0 and z =a. Introducing a finite-difference

discretization of space with cell size ~ =a, we can write two scalar components of Maxwell's

curl equations in the phasor domain as

J'":WCV\.. = I I· 1/2 .I.) x 1- ,) I I. . + II - I Ix 1+112,) Y i,j-l/2 Y i,j+1/2
(9.65)

J'":W LI I. I . = Vi - Vi
x 1+1 2.) i,j i+l.j

(9.66)

(9.68)

(9.69)

(9.70)

(9.67a, b, c)-I - II). .. = - a Hx i )'
I,) •

vi. = af: I· ;
I,) Z I,)

- [ - I - 0) -I ] -I -,'wa 1+ /. - .- / = V - VJ )10 ( X) x 1+1/2,j J 0)0 X )' i+l/2.j i.j i+l.j

X =

where j = .J=l, C = ca, L =)1a, and

The same equations describe an equivalent lumped circuit [12] as presented in Fig. 9.3(a).

Let us now consider a ferrite material with de magnetization along the z-axis, described by the

tensor defined in (9.63). Equation (9.65) does not change, while (9.66) is modified to

with

We note that X of (9.69) corresponds to a parallel LC circuit resonating at O)~ =1 / L
I
C

I
and

with L/L = wm/OJO' This is reflected in the equivalent circuit shown in Fig. 9.3(b). We also note

that the term ~J+1/2,J =- JWQJ10X Ixl.+112.J describes voltage across the parallel LC circuit.

The current ICI t+1I2.} flowing through the capacitor is proportional to that voltage multiplied by

]UJ. Thus, in the anisotropic term in (9.68), we can eliminate the dispersive factor X after

replacing i I with i I . Equation (9.68) then transforms to
). 1+112.) C)' 1+1I2.}

Thus, the voltage source describing the anisotropic term is driven by the capacitor current in the

perpendicular arms. Since such a current is not available at the position of the source, it must be

obtained by averaging the current flowing in the four adjacent perpendicular arms:
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I 1 1/2 .x ,- .J

(b)

(a)

I I· . 1/2y 1.)-

Fig. 93 Lumped equivalent circuit of a discretized two-dimensional TMz structure: (a) simple dielectric
case; (b) magnetized ferrite case. Adapted from: Gwarek and Moryc, IEEE Microwave and
Wireless Components Lett., 2004, pp. 331-333, © 2004 IEEE.

(9.71)

9.5.2 Time-Stepping Algorithm

The development of the FDTD time-stepping algorithm is based upon inverse Fourier
transformation of equations of the type of (9.65) and (9.70). In the circuit arm describing
component Hy ' we need to define (and update at each time-step) Ix' which corresponds directly to
H. We also define and update two other variables, one describing Vex and the other describing
[ y or alternatively, Ie =I -IL . The latter choice is computationally more effective. I is

Lx' x x X .t

calculated from the time-domain discretization of (9.70). Then, we update Vex' knowing the
current injected into the capacitor over the previous iteration; and we update [Lx' knowing the
voltage across L I • The analogous operations are performed in the arms corresponding to H

x
'

The remaining equation uses standard FDTD time-stepping.
The sequence of time-stepping the H x and Hy fields must be carefully considered since,

in equations like (9.68) or (9.70) containing the effects of off-diagonal anisotropy, it is assumed
that we should know (at the same instant of time) H to calculate H , and H to calculate H .

x y y x

The implicit relation between Hx and Hy can be easily resolved in the one-dimensional case [10].
The three-dimensional situation additionally involves the need for space-averaging of these
components, which makes direct solving of the implicit relation impractical. In previous work
reported in the literature, it was solved by either extrapolation or interpolation in time [8].
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An advantageous alternative approach discussed below involves alternating the direction of

field updating over two successive time-steps. The sequence of field updating is as follows:

1
"+1/2 1"-1/2 1"-1/2 I"1. Calculate H y based on the current H y • H" ,and E components;

1
"+1/2 1"-1/2 1"+112 /"2. Calculate HI based on the current Hx • H y ,and E components;

3. Calculate EI"+1 using the standard Yee update;

4 C 1 I H
1
"+3/2 b d h H 1"+112 H

y
l"+J/2, and EI"+I. a cu ate x ase on t e current" . components;

1
"+3/2 1"+112 1"+3/2 EI"+I5. Calculate H y based on the current H y , H

x
' and components.

For a square-cell FDTD grid of cell size t;,. and time-step M. the time-stepping expressions
corresponding to calculations 1 and 2 are as follows:

(9.72)

(9.73)

(9.74)

(9.75)

(9.76)

(9.77)

I" I" rI]Ez i-112,j - Py i,i - 0.25~ C
I

'

h "-1/2 h "-112 h "-1/2
+ x1i-l.j+1/2 + xLi-l12 + Xli.i+1/2)

At E I" '-112 - E I" , 1/2 - PI", + 0.25~1 .Ll ZI,j Z,./+ "I,J C
1

L
(
h 1"+1/2 h 1"+1/2 h 1"+112 h 1"+1/2 )

Y i-1/2,j-l + Y i+1/2,i-1 + Y i-1/2.j + y i+1I2.i

[

E I"I!ll Z i+1/2.1

L
h "-1/2

( "LI,i-112

h 1"~1I2 + H 1"+112 _ H 1"~1I2 + t;,.t I~,
y 1.1 Y I.J Y I,J L Py I,J

I

h 1
"-"2 H 1"+IJ2 _ H 1"-1/2 I1t I", + " ., + -Px ,·

x 1./ x ',I x I.J L ',J
I

= H),/"~1I2 +
I, J

= I" I1t h 1"+1/2Py ' , + y' ,
1,/ C

1
1,/

I" I1t hi", +,112= Px " + x1,/ C 1./
1

1
"+1

Py ' ,
I,J

H 1"+1/2 = H 1"-1/2
x 1,/ x i,i +

h 1"~1I2
x 1,/

1
"+1

Px i,i

where L =f.111, L 1 =L OJm / OJo' C1 = 1/(OJ0
2
L I ), and px' py' h", and hy are four auxiliary algorithm

variables required to be stored and updated. These variables correspond, respectively, to Vcx'

Vcy ' lex. and ICy in Fig. 9.3(b). Analogous updates are implemented for calculations 4 and 5.
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9.5.3 Extension to the Three-Dimensional Case, Including Loss

Extension to the three-dimensional case is straightforward, provided that we maintain dc
magnetization along the z-axis. In this case, the right-hand side of (9.70), which describes H

y

(and the analogous equation for Hx )' need only be supplemented with the two remaining terms of
the E-field integration. The remaining four equations for E , E , E , and H are classical FDTD,

x Y l Z

Furthermore, extension to the lossy case is not difficult. When an attenuation factor appears
in the Polder vector [9], the equivalent-circuit scheme can be supplemented with a conductance
G

1
=2awoC

I
(where a is a damping constant) in parallel with L, and C" and a resistance

R =aWOL I in series with L. This modifies the updating equations for Vex and Ix in a manner
typical to FDTD relations for lossy media.

Overall, for a cubic-cell FDTD lattice of cell size A and time-step !:J.t, the time-stepping
expressions corresponding to calculations 1 and 2 for the three-dimensional lossy case are:

H r+ 1/2

Y i,j,k
D H In-i/2

= a)"'k+Db/ ,),

~ (

h In-I/2 h In-l/2 )

I
n L. X i-l.j-1I2,k + x i-t.j+1l2,k

- P .. - 0.25 -,
y l,j,k C h In-I/2 h In-I/2

I + X i,j-1/2,k + x i,j+1/2,k

(9.78)

h r+ JJ2

y I,j,k

In+1

Py i,j.t

h In-112 H In+1/2 _ H In-I/2 At In= y" k + Y" k Y .. l.: + Py .. kI,j, I,), 1.), . L I.),

I

E In _ E In E In _ E In
l i,j-1/2,k l i,j+1/2.k + )' i,j,k+1/2 Y i,j,k-1/2

(9,79)

(9.80)

H In. +.112 D H In -I/2 D= a x I',)',k + bx I, J,k

(

h In+1/2 h In+1/2 J
I
n ~I Y i-1/2,j-J,k + Y i+1/2.j-\'k

- P .. + 0.25 -.
X I,j,k C h In+l/2 h In+1/2

I + y i-1/2,j,k + Y i+1/2,j,k

(9.81)

h r+ 1
/
2

x /,),k
h In-1/2 H In+1/2 _ H In-1/2= x i,j,k + x ;,j,k x i.j,k +

At InTPx i,j,k
I

(9.82)

In+1
P ..x I,).k (9.83)

where L, LI , C1, Px ' Py ' hx ' and hy are defined as before; D
a

=(2L-RAt)/(2L+RAt); and
Db =2At / (2L + RAt). Analogous updates are implemented for calculations 4 and 5.
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It is interesting to note that G 1 influences the modeling results only in the frequency range
very close to roo' In most practical ferrite applications, the interesting frequencies are much
higher than roo' and thus G) =0 can be assumed without any significant error.

9.5.4 Illustrative Numerical Results

Fig. 9.4 illustrates the accuracy achievable using the magnetized ferrite model discussed above.
In this example, a rectangular waveguide of width w) =22.86 mm is assumed to be
nonsymmetrically loaded with a ferrite slab of width W z=w/3. The ferrite slab is transversly
magnetized in z-direction with Hi =200 Oe (1.59 x 104 Aim), and is assumed to have the
parameters Cr =9, 41tMs =2,000G (0.2T), and a =0.02. In this example, the nonsymmetric
location of the ferrite slab within the waveguide cross section is chosen to yield different phase
constants f3 for the forward and backward waves.
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Fig. 9.4 Phase and attenuation constants of the TE
lO

mode of a rectangular waveguide nonsymmetrically
loaded with a ferrite slab: continuous line - calculated using the method of this section; circled
stars - simulations after [9]; triangles - analytical results after [8); circles - analytical results
after [9]. Source: Gwarek and Moryc, IEEE Microwave and Wireless Components Lett., 2004,
pp. 331-333, © 2004 IEEE.

From Fig. 9.4, we see that the FDTD modeling results obtained using the method of this
section (obtained with a cell size !1 =0.5 mm) agree very well with the result of simulations
presented in [9], and are within I % of the analytical results quoted in [8]. Taking into account
the fairly coarse AilS grid resolution at 13 GHz, we conclude that the level of modeling error is
close to that introduced by the intrinsic FDTD grid dispersion.
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9.5.5 Comparison of Computer Resources

Table 9.1 compares the computer resources needed for the method discussed in this section with
three previously reported methods for FDTD modeling of magnetized ferrites [8-10]. This table
lists the minimum number of variables needed to be stored for each FDTD cell, and the operation
count (the minimum number of floating-point operations per cell per iteration). Assuming the
use of uniform square or cubic meshing, this comparison has been conducted for both lossless
and lossy ferrite cases in two- and three-dimensional problems. We note that, when taking into
account the complex-number operations needed in the method of [10], the multiplication of two
complex numbers was assumed to be equivalent to six real floating-point operations.
Assumed also in the method of [10] was the use of a simple space averaging of the contribution
of the off-diagonal terms, similar to that employed in the method of this section in (9.75).

TABLE 9.1

Comparison of Various FDTD Methods for Modeling Magnetized Ferrites
Adaptedfrom: Gwarek and Moryc, IEEE Microwave and Wireless Components Lett., 2004,

pp. 331-333, © 2004 IEEE.

Operation Count
Method Required Number ofStored Variables 2-D Solver 3-D Solver

2-D Solver 3-D Solver a>O a=O a>O a=O

This section [11] 7 10 39 35 58 54

Reference [9] 7 10 41 61

Reference [8] 7 10 37 56

Reference [10] 11 14 77 86

From Table 9.1, we see that the method discussed in this section compares favorably with
previous methods in terms of computer effort, being slightly more conserving than those of [8]
and [9], and considerably more conserving than that of [10].

However, the method discussed in this section does have one significant computational
advantage relative to those of [8] and [9]: excellent numerical stability. Specifically, it was
stated in [8] that a very fine grid discretization of 30 to 100 cells per wavelength is needed to
achieve a stable solution in practical cases. In contrast, no stability problems have been observed
when using the method of this section, even for a grid resolution as coarse as }'1l5 (realized in
Fig. 9.4 at the upper end of the excitation spectrum).

Moreover, in what is an important advantage in deepening our theoretical understanding,
formal numerical stability and dispersion analyses of the FDTD ferrite model of this section can
be conducted by separating the resonant and anisotropic effects. In [8] and [9], the resonant and
anisotropic effects were inherently bound, making their numerical stability analysis very
difficult. Indeed, no formal stability analyses of these algorithms have been reported to date.
Such analyses are currently in progress for the algorithm of this section.
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(9.85)

(9.84)= VxH
dD

dt

The overall strategy employed here is to apply normal Yee leapfrogging to time-step the electric
flux density D via

9.6.1 Strategy

9.6 AUXILIARY DIFFERENTIAL EQUATION METHOD, NONLINEAR
DISPERSIVE MATERIAL CASE

The behavior of electromagnetic fields in nonlinear dielectrics is a central topic in nonlinear
optics technology, currently of great interest in the areas of lasers, communications, and high
speed digital switching. In principle, the electrodynamics of nonlinear media can be determined
by solving Maxwell's equations, subject to the assumption that the electric polarization has a
nonlinear relation to the electric field magnitude. However, until recently. the resulting
nonlinear equations have not been attacked directly. Rather, approximations have been made
that result in the class of generalized nonlinear Schrodinger equations (GNLSE) [13, 14].
The least approximate methods for GNLSE solve nonlinear scalar equations for the envelope of
the propagating optical pulses. For example. the split-step Fourier method [14] is often used to
simulate the propagation of optical pulses in low-loss fibers over very long optical distances, and
the propagating beam method [15] has been used to model directional couplers.

References [16-21] reported auxiliary differential equation FDTD techniques that permit
direct time integration of the full-vector Maxwell's equations for the important case of materials
characterized by both a linear dispersion and a third-order Kerr and Raman dispersive
nonlinearity. The optical carrier is retained in these approaches, which are robust and allow
modeling ultrashort optical pulse interactions with complex two- and three-dimensional micron
scale structures. Recently, a simplified and computationally more efficient ADE-FDTD
technique with the same capabilities was reported by Fujii et ai. [22]. This section reviews the
basic strategy of ADE-FDTD techniques for this problem, and the improved algorithm presented
by Fujii et ai. in [22].

and then calculate the electric field E (for subsequent application in the normal Yee time
stepping of H) by applying the constitutive relation

Here, we separate the dielectric polarization into two parts: a linear part pL and a nonlinear part
pNL [14]. Independent (uncoupled) time-domain auxiliary differential equations are developed to
time-step pL and pNL, thereby avoiding the computationally inefficient simultaneous equations
required in the formulation of previous ADE-FDTD approaches for this problem.

In the discussion to follow, we shall assume that the linear polarization pL has two

contributing additive terms: PDebye' due to a single-pole Debye relaxation; and PLorenl~' due to a
single-pole-pair Lorentzian dispersion. Furthermore, we shall assume that the nonlinear
polarization pNL has two contributing additive third-order terms: PKerr' due to an instantaneous
Kerr nonlinearity; and PRaman' due to a dispersive Raman nonlinearity.
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9.6.2 Contribution of the Linear Debye Polarization

As stated in Section 9.2.1, Debye media are characterized by a complex-valued, frequency
domain susceptibility function X( m) that has one or more real poles at separate frequencies.
For convenience, we repeat (9.1), which represents a single-pole Debye medium:

e -e
X (m) = S,p ".P_

P 1 + jm-r
p

where e is the static or zero-frequency relative permittivity, e is the relative permittivity at
S,p ".p

infinite frequency, tJ.e is the change in relative permittivity due to the Debye pole, and -r is the
p p

pole relaxation time. The electric polarization is then given by

PDebye = E (9.86)

For simplicity, let us assume that the electric field has a single vector component, E. After
multiplying (9.86) through by (1 + jm'rp ) and transforming to the time domain, we obtain the
following auxiliary differential equation:

PDebye + 'rp (9.87)

Finite-differencing (9.87) centered at time-step n + 1/2 yields the following update for P
Debye

:

n+lPDebye (
2'r -iltJp p'n

2r p + ilt Debye

'----v----'
aDebye

+ (eo tJ.epiltJ(En+1 + En)
2-rp + tJ.t

'----v----'
bDebye

(9.88)

where ilt is the time-step.

9.6.3 Contribution of the Linear Lorentz Polarization

As stated in Section 9.2.2, Lorentz media are characterized by a complex-valued, frequency
domain susceptibility function X(a» that has one or more pairs of complex-conjugate poles.
For convenience, we repeat (9.4), which represents a single-pole-pair Lorentz medium:

where tJ.e =e - e is the change in relative permittivity due to the Lorentz pole pair a> is
p s.p ".p . ' p

the frequency of the pole pair (the undamped resonant frequency of the medium), and 0 is the
damping coefficient. The electric polarization is then given by P
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PLorenlZ = (9.89)

After multiplying (9.89) through by (co 2 + 2jco8 - 0/) and transforming to the time domain,
p p

we obtain the following auxiliary differential equation:

co 2 P + 28 aPLorentz +
p Lorentz Pat

a2p
Lorenlz = E. !:iE. co 2 E

dt2 0 p P
(9.90)

Finite-differencing (9.90) centered at time-step n yields the following update for PLorentz:

[
2 2] ( ) [ 2 2]n +1 2 - Wp(!:it) n 8 !:it - 1 I EO!:iE. CO (!:it) n

p = p + p pn- + P P E
Lorentz 8p!:it + I Lorentz 8p!:it + 1 Lorentz 8p!:it + I

9.6.4 Contributions of the Third-Order Nonlinear Polarization

(9.91)

In general, the third-order nonlinear polarization is given by the time convolution between the
third-order susceptibility function X(3)(t

l
• t2, t) and the electric field for the different time scales

represented by the arguments. For a relatively simple model of the electron response, it reduces
to the Born-Oppenheimer approximation [23]:

(9.92a)

where X~3) is the strength of the third-order nonlinearity. The causal response function g(t) is
normalized so that

(9.92b)

Equation (9.92) accounts only for nonresonant third-order processes, including phonon
interactions and nonresonant electronic effects. To model these responses, we let [24]

where 8(t) is a Dirac delta function that models Kerr nonresonant virtual electronic transitions on

the order of 1 fs or less, and gRaman(t) is given by

get) = a 8(t) + (I - a) gRaman(t)

(
2 2)or + or -tIT

gRaman (t) = I 2 2 e 2 sin(t fori) Vet)
'l'J 'l'2

(9.93a)

(9.93b)
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that models transient Raman scattering. Effectively. gRam,nCt ) models a single Lorentzian line
centered on the optical phonon frequency 1/ 't"l and having a bandwidth of 1/ 't"2' the reciprocal
phonon lifetime. Note that a is a real-valued constant in the range 0 ~ a ~ I which
parameterizes the relative strengths of the Kerr and Raman interactions.

Instantaneous Kerr Nonlinear Polarization

The polarization contributed by the instantaneous Kerr nonlinearity is given by [23]

The corresponding update equation is simply

p'"+l = a £ ,\,(3) (E"+1)3
Kerr 0 A..O

Raman Nonlinear Polarization

(9.94)

(9.95)

From (9.92a), the polarization contributed by the Raman effect can be expressed as the

convolution

where

,\,(3) (t) = (l - a) ,\,(3) g (t)
A.. Raman A.. 0 Raman

Following [22], we now introduce an auxiliary variable for the convolution

Set) = X~~an (t) * E
2
(t)

The Fourier transform of (9.97) leads to

(9.96a)

(9.96b)

(9.97)

(9.98)

where !T denotes the Fourier transform, and the frequency-domain response function is given by

where

,\,(3) (W) =
A.. Raman

( 1 - a) ,\,(3) W 2
A.. 0 Raman

2 2' ~ 2
W Raman + JWVRarnan - W

(9.99)

(ORaman = ~Raman = 1/ "r·2 (9.100a. b)
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We next rewrite S as

SeW) =
( 1- a)x(3lw2

o Raman :r[£2 (t)]
2 2' s: 2

W Raman + JWURaman - OJ

(9.101)

and multiply (9.101) through by (OJ~aman + 2jw8Raman - (
2

). Inverse Fourier transformation to

the time domain then yields the following auxiliary differential equation:

= (1 - a)x(3l w 2 £2o Raman
(9.102)

Finite-differencing (9.102) centered at time-step n yields the following update for S:

Since from (9.96a) and (9.97) we have

(9.104)

the update equation for the Raman polarization is simply

(9.105)

where S"+I is given by (9.103).

9.6.5 Electric Field Update

The time-stepping expressions for the linear and nonlinear polarization contributions obtained in
(9.88), (9.91), (9.95), and (9.105) can now be substituted into (9.85), given in expanded form by

(9.106)

We note that the Debye, Kerr, and Raman polarization terms on the right-hand side of (9.107)
include £"+1, and furthermore, the Kerr polarization term incorporates (£"+1 { Therefore, (9.107)

is nonlinear in E"+l. Following the approach reported in [17], a Newton iteration procedure can

be applied to (9.107) to determine E"+I. This procedure is given by

(9.107)_ pn+l _ pn+1 _ R"+I )/£ £
Lorentz Kerr Raman 0-

Isolating the £"+1 term, we obtain
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Dn+1 _ a P: - b En _ pn+1
Dcbye Dcbye Debyc Lorentz

b (3) (E<m»2 Sn+1
Co C~ + Oebye + acO Xo + Co

(9.108)

for m == 0, 1, 2, ... Here, aOebye and boebye are defined in (9.88), and E <m > denotes the
approximation of En

+
l at the mth iteration of the Newton procedure. For convenience, the initial

estimate of En
+

1 to begin the iterative process is simply En; that is, E<o> =En.

9.6.6 Illustrative Numerical Results for Temporal Solitons

This section presents selected published results illustrating the dynamics of temporal solitons,
calculated using ADE-FDTD nonlinear dispersion algorithms. The materials investigated are
assumed to exhibit a single linear Lorentz polarization and the third-order Kerr and Raman
nonlinearities.

References [16, 17] reported modeling a 50-fs pulsed optical signal source switched on at
t == 0 at the surface x =0 of a material half-space. The material is assumed to be characterized by
the following parameters:

Linear Lorentz dispersion: Es = 5.25 ; E_::: 2.25 ; (Up::: 4 X 10
14

sec-
1

;

Nonlinear response: X~3) == 7xl0-2 (V/mr2
; a=0.7; 't'1::: 12.2fs; 't'2 = 32 fs

These parameters represent a nonphysical material which has a group velocity dispersion and
nonlinearity selected to demonstrate temporal soliton formation over short propagation spans of
less than 200 Ilm. The impinging pulse is assumed to have unity amplitude of its E-field, the
carrier frequency fc ::: 1.37 X 10

14
Hz (Ao= 2.19 Ilm), and a hyperbolic secant envelope function

with a characteristic time constant of 14.6 fs. Approximately seven cycles of the optical carrier
are contained within the pulse envelope, and the center of the pulse coincides with a zero
crossing of the sinusoid. The grid resolution is set at 5 nm (= A/400) to limit the numerical
phase velocity error to approximately one part in 105

, very small compared to the physical
dispersions being modeled.

Fig. 9.5, taken from [16, 17], depicts the results of the dispersive and nonlinear dispersive
ADE-FDTD computations. In Fig. 9.5(a), the computed rightward propagating pulse for the
linear Lorentz dispersive case (X

O
(3) temporarily set to zero) is graphed at n = 20,000 and 40,000

time-steps. This corresponds to pulse propagation to depths of x::: 55 Ilm and 126 Ilm at times of
487 fs and 973 fs, respectively, after initiation. Here, the assumed linear dispersion causes the
computed pulse to broaden and have diminished amplitude during its propagation. In addition,
the pulse exhibits a carrier frequency modulation that is greater than fc on the leading side of the
pulse, and less thanfc on the trailing side of the pulse.

Fig. 9.5(b) graphs the optical pulse propagation when the assumed dispersive nonlinearity is
actuated. Upon the precise choice of XO(3) and the initial pulse amplitude, this yields a rightward
propagating temporal soliton that retains its amplitude and width. Here the pulse-width
spreading effect caused by the assumed linear dispersion is exactly balanced by the pulse-width
sharpening effect caused by the assumed nonlinearity. Fig. 9.5(b) also shows the formation of a
small precursor (daughter) pulse, which has spectral content at approximately three times the
frequency of the soliton. We note that all of these phenomena have been similarly calculated
using the efficient ADE-FDTD algorithm introduced in [22] and reviewed in this section.
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Fig. 9.5 ADE-FDTD study of temporal soliton fonnation in a nonphysical, nonlinear dispersive medium:
(a) calculated optical carrier pulse after propagating 55 11m and 126 Ilm in the linear Lorentz
dispersive medium; (b) corresponding results for the nonlinear dispersive case, showing the
fonnation of a soliton and a small precursor pulse. Source: Goorjian and Taflove, Optics Letters,

1992, pp. 180-182.
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Fig. 9.6 Redshift of the Fourier spectrum of the propagating soliton of Fig. 9.5(b). Source: Goorjian and
Taflove, Optics Letters, 1992, pp. 180-182.

Fig. 9.6 graphs the Fourier spectrum of the temporal soliton of Fig. 9.5(b) at n = 20,000
and 40,000 time-steps. This figure indicates a 4-THz redshift and a sharpening of the soliton

spectrum as the computed pulse propagates. These phenomena have also been predicted from
the GNLSE theory as being caused by the Lorentz nonlinear dispersion.

9.6.7 Illustrative Numerical Results for Spatial Solitons

Reference [19] reported FDTD modeling of spatial optical soliton propagation and mutual
deflection in a homogeneous, physical glass medium that has an instantaneous Kerr nonlinearity.
Here, the models calculate two-dimensional TMz sinusoidal optical beam propagation with the

f ield components E , H , and H. Spatial soliton formation is observed when the transversez x y

spreading of the beam caused by linear diffraction is balanced by the transverse self-focusing of

the beam caused by the nonlinearity. The propagation medium is assumed to be Type-RN

Corning glass with the linear and nonlinear refractive indexes no = 2.46 and n
2
=1.25 x 10- 18

m2fW, respectively. The beam carrier frequency is 2.31 x 1014 Hz (An = 1.3 !-lm), the initial peak

Ez field is 6.87 x 10
9

V1m, and the initial transverse distribution of E
z

is a hyperbolic secant
function with a spatial width (full-width at half-maximum - FWHM) of 0.65 Ilm.
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Fig. 9.7(a) illustrates the results of the FDTD simulation of parallel, copropagating, equal

amplitude spatial solitons separated by 1.05 )lm center-to-center. Here, the beams are assumed to

have a carrier phase difference of 1t. This model shows the beam-to-beam repulsion expected

from previous NLSE analyses, with increasing separation of the beams as they propagate.

Fig. 9.7(b) illustrates the results for the same conditions as Fig. 9.7(a), except that the beams

are assumed to have in-phase carriers (i.e., a carrier phase difference of zero). Previous NLSE

analyses for this case predicted that the two beams interact by alternately attracting, coalescing,

repelling, and then recoalescing. If the two beams have the appropriate amplitudes and spacing,

the attraction and repulsion is periodic. In fact, [25] states that two in-phase fundamental spatial

solitons having an initial field-amplitude distribution in the transverse direction of

(9.109)

repeatedly coalesce in the propagation direction with a period of

(9.110)

based on the NLSE theory of [26]. Here, w is the characteristic width of the hyperbolic secant

function, Yo = 1.42 w, 2yo is the center-to-center separation of the two beams, and Xo =1t
2no w

2
/ A.

is the soliton period. For the choice of parameters used in the FDTD simulations, the predicted

repetition period is x
p
=9 )lm. However, as shown in Fig. 9.7(b), the FDTD calculations show

only a single beam coalescence and then subsequent beam divergence to arbitrarily large

separations, for an effective x =00.
p

It is important to understand why the nonlinear FDTD Maxwell's equations model does not

agree with the NLSE prediction in this case. The first possibility is a flawed FDTD simulation,

due to either inadequate grid resolution or inadequate isolation of the beam-interaction region

from the outer grid boundaries (where the fairly reflective second-order Mur ABC was used at

the time). However, tests with progressively finer space-time resolution and larger grid size

yielded no changes. Therefore, it was concluded that the original FDTD model was numerically

converged and sufficiently free of the outer boundary artifact to yield plausible results.

The second possibility is a flawed NLSE simulation, because the optical beamwidth is too

narrow, and diffraction effects are not properly accounted. Since it is known that additional

terms in the NLSE are required to model higher-order effects for temporal solitons, it is

reasonable that NLSE modeling of copropagating spatial solitons becomes more physically

meaningful if the two beams are widened relative to the optical wavelength, while maintaining

the same ratio of beamwidth-to-beam separation. This would reduce linear beam diffraction

effects, hopefully bringing the test case into the region of validity for the simple NLSE model.

To test this possibility, [19] reported additional FDTD simulations with a progressively increased

intensity beamwidth B
f

and beam-to-beam separation, keeping the dielectric wavelength Ad
constant. The results of one such simulation are shown in Fig. 9.7(c).
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Fig. 9.7 FDTD computations of the E
l

field of optically narrow, mutually interacting spatial solitons in
Type-RN Corning glass: (a) repulsion for relative carrier phase = 1t; (b) single coalescence and
subsequent divergence for relative carrier phase =0; (c) periodic beam recoalescence after
doubling the intensity beamwidth and separation parameters of the simulated beams, but keeping
the wavelength constant. Source: Joseph and Taflove, IEEE Photonics Technology Letters, 1994,
pp. 1251-1254, © 1994 IEEE.
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After an initial doubling of the beamwidth and beam separation, the FDTD-predicted spatial
solitons begin to qualitatively show the recoalescence behavior predicted by NLSE, but with a

38% longer recoalescence period xp than the NLSE value. After a second doubling, the FDTD
and NLSE predictions for x show better agreement, differing by 13%. Finally, a third increase

p

of the beamwidth and beam separation dropped the difference between the FDTD and NLSE
predictions for x to only 5%. These results are shown in Table 9.2.

p

TABLE 9.2

Progressive Agreement of FOTD and NLSE Results for the Recoalescence Period x
p

of
Copropagating Spatial Solitons as the Ratio of the Beamwidth to Wavelength Increases

R,. FWHM (~m)

0.65

1.3

2.6

3.9

1.22

2.46

4.9

7.36

x (~m)NLSE
p

9

34

135

305

xp (~m) FDTD

00

47

153

320

Difference

00%

38%

13%

5%

We conclude that there is a strong likelihood that copropagating, optically narrow spatial
solitons have only a single coalescence, followed by indefinite separation. The FDTD model
appears to properly predict the behavior of such solitons, both in the regime where the standard

NLSE model breaks down (B,I Ad < 1), and the regime where the standard NLSE model is valid
(B,I Ad» 1). The paraxial approximation inherent to NLSE, according to [27], accounts only
for zeroth-order linear diffraction effects. Since the FDTD model implements the fundamental
Maxwell's curl equations, it makes no assumption about a preferred propagation direction.

It naturally accounts for energy transport in arbitrary transverse directions, and should be exact
for the computed optical electromagnetic fields up to the limit set by the grid resolution.

The single-time spatial soliton coalescence behavior indicated by the FDTD modeling
studies discussed above provides the basis for an all-optical "AND" gate operating at time scales

in the order of 100 fs. This gate would consist of a Kerr-type nonlinear interaction region with a
pair of input and output waveguides on each side. Optical signal and control pulses would be fed
in at the left edge, interact in the nonlinear medium, and then couple into receptor waveguides.

In the absence of the control beam, the signal beam would propagate with zero deflection.

In the presence of the control beam, and depending upon its carrier phase relative to the signal
pulse, there would be either a single coalescence and then deflection to a collecting waveguide,
or deflection without coalescence.
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9.7 AUXILIARY DIFFERENTIAL EQUATION METHOD, MACROSCOPIC
MODELING OF SATURABLE, DISPERSIVE OPTICAL GAIN MATERIALS

This section reviews an ADE-FDTD formulation [28] for modeling at the macroscopic scale
materials that have saturable, frequency-dependent gain at optical wavelengths. By macroscopic,
we mean that conventional dielectric parameters such as the permittivity c and the conductivity (J

are adjusted to yield the desired gain. No attempt is made here to model at the atomic level the
rates of electron transitions and photon interactions that underlie this gain. However, Section 9.8
provides a detailed discussion of FDTD modeling of just such an atomic-level gain model.

19.7.1 Theory

The ADE-FDTD method described in this section models a saturable, frequency-dependent
optical gain through the constitutive relation for the current density. The basic idea underlying
this approach, using a negative conductance for gain, is an extension of a decades-old concept in
microwave engineering and electronics. For example, the tunnel diode has a long history of use
as a microwave negative-resistance amplifier.

We assume that the optical gain medium is homogeneously broadened, wherein the atoms of
the gain medium are indistinguishable and have the same atomic transition frequency coo'
The relaxation processes are included in a phenomenological manner through the time constant
T

2
• This dipole relaxation time accounts for the fact that any phase coherence introduced into the

system of atoms by the action of the E-field is lost in a finite time interval once the field is turned
off. Therefore, the small-signal linear gain is governed in the frequency domain by a single
Lorentzian profile having a width determined by T2 • The gain also exhibits a large-signal
saturation, which is due to the decrease of the population inversion with field intensity.

For simplicity, the algorithm is described in the context of a one-dimensional problem with
field components E

l
and H y propagating along the x-direction through a nonmagnetic, isotropic

medium. In this case, Maxwell's curl equations are

d~,

dt

_1_ dEl

110 dx

dE = dHyJ. + c £ __z
, ,0 dt dx

(9.llla, b)

The frequency-dependent conductivity that relates the E-field and the current density is given by

(9.112)

where Hermitian symmetry is assumed for the Lorentzian gain profile, 0'0 is related to the peak
value of the gain set by the pumping level and the resulting population inversion, and I is the

s
saturation intensity. Since O'(co) accounts for any gain (or loss) in the medium, the susceptibility
can be reduced to a frequency-independent real constant, such that Dz =£E

l
where £ =c,£O'

)For a more detailed physical description of the physics of a homogeneously broadened gain medium, the
reader is referred to a quantum electronics textbook (for example, see [29, 30]).
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Upon assuming a propagating wave of the form

and that the material is low-gain (or low-loss) such that

where the effective relative permittivity is

it can be shown that [28]
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To see how this gives gain, consider the linear case where 1« Is' The right-hand side of
(9.112) simplifies and is separated into real and imaginary parts:

where neff = ~ Er,df' From (9.116a), we conclude that if O'R (co) is negative, then a is negative,

providing gain. According to (9.113), this is the case when 0'0 is chosen to be negative.

Physically, this corresponds to a population inversion.

Taking the inverse Fourier transformation of (9.112) provides the following auxiliary

differential equation that is solved simultaneously with (9.111 b):

Here, S == (l + II I r' is the saturation coefficient that contains feedback information concerning
s

the latest peak E-field. The saturation intensity Is is treated as a frequency-independent constant,

and the spatially dependent intensity I is treated as a feedback parameter in time. An auxiliary

variable F is defined in order to write (9.117) as two first-order equations:
z
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(9.119)

The coupled differential equations (9.111b), (9.118), and (9.119) are converted to finite

difference expressions using second-order central-differences at time-step n + 1/2. Solving the

resulting system for r: r+ ', JX+ 1
, and Ez I~+I yields the following explicit update equations:

where

Fln+,
z I

J In+1
z I

E In+1
Z I

= J In + f1t (Fln+1 + Fin)
Z I 2 Z I <: ,

In f1t (In+1 In) M (In+I/2 In+l/2)=E --J +J +-H -H
zi 2£ zi zi £f1x Yi+I/2 Yi-I/2

(9.120)

(9.121 )

(9.122)

4 f1t sCi) 0'0 (f1t + 21;)

Bf1x

8£ sCi) 0'0 f1t

B
(9.123a, b)

4 ~t[2£(1 + W~ 1;2) + s(i)<TO(ill + 21;)]

B
(9.l23c)

8£1; (M - 1;)

B

(L\d [ 2 £ (l + W~ 1;2) + sCi) <To (~t + 2 1; )]

B
(9.123d)

(9.123e)

sCi) = [I + I(i)! Is r' ; (9.123t)

For a linear medium, sCi) = I, since the intensity is negligible compared to the saturation
intensity. For a nonlinear medium, sci) is updated as follows. If lEI at time-step n is greater than
IE I at n - I at the same location in space, then sci) is updated using the latest value of E. On the
other hand, if IE I at n has decreased from its previous value, then sCi) is not updated, and hence
remains based on the most recent peak E-field value. In this manner, intensity feedback in the
time domain retains, as much as possible, its frequency-domain meaning. Note that since the
feedback is performed independently at each grid location, this model represents a spatially
inhomogeneously broadened medium in which spatial hole burning can occur.
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The following update expression for Hy is obtained at time-step n in the standard manner

from (9.111a):

I
n+112

Hy ;+112 In-1I2 /1t (In I")=H +--E-E
y i+1/2 Ax l i+l l i

J10

(9.124)

This completes the FOTO algorithm for a saturable, single-Lorentzian optical gain medium.

We see that this algorithm is a four-step process given by (9.120) to (9.122) and (9.124), which

retains the explicit nature and field storage of the original. It is easily extended to two- and

three-dimensional problems with heterogeneous media. More complicated gain spectra can be

approximated using a linear combination of Lorentzians.

9.7.2 Validation Studies

Linear Dispersive Optical Gain Medium

The accuracy of the dispersive-gain FOTO algorithm is first established for a linear gallium

arsenide (GaAs) medium. In the example of [28], the complex-valued propagation factor

y =a +j f3 of a plane wave in a one-dimensional FOTD grid is computed for the grid filled with

a homogeneous GaAs gain medium characterized by Ao=0.89 11m, T
2
=0.07 ps (gain spectrum

bandwidth = 5 THz), and n =3.59. A Gaussian carrier pulse of center frequency roo and

bandwidth greater than 5 THz excites the grid. The time waveforms of the FOTO-calculated

E-fields are recorded at two observation points Xl and x
2

separated by l =x2 - Xl = 'A/n.

By taking the ratio of the OPTs of these two waveforms, the propagation factor y is calculated

over the full bandwidth of the pulse.

Fig. 9.8 compares the FOTD-computed amplification factor e-al and phase f3l with the exact

values for a very-fine grid resolution of Ax =\/400n =0.62 nm. (f3l is corrected by nrol!c

to give the phase due solely to the presence of the gain medium.) Over the complete frequency

range, the error is less than two parts per 10,000 in e-al
, and less than 0.006° in f3t. This indicates

the potential for high accuracy of the FOTD dispersive-gain model over an extremely large

instantaneous bandwidth.

Saturable Dispersive Optical Gain Medium

Next, the accuracy of the dispersive-gain algorithm is established for a saturable dispersive

gain medium. The model used for this study [28] consists of a one-dimensional Fabry-Perot

laser cavity of length l =12.4 11m filled entirely with a GaAs gain medium characterized by

A.o =0.89 11m, T2 =0.07 ps, n =3.59, and Is =65.2 kW/cm2
• The mirrors at the ends of the

laser cavity are formed by planar GaAs I air interfaces. Therefore, the reflectivity R of each end

facet is independent of frequency. The mth resonance for this simple cavity is given by

A.m =2nllm.
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Fig. 9.8 Comparison of FDTD results and exact theory for the amplification factor and phase spectra of an
optical pulse propagating a distance of one dielectric wavelength in a linear GaAs gain medium
with 0"0 =-5,000 S/m. Source: Hagness et aI., Radio Science, 1996, pp. 931-941.
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Fig. 9.9 shows an above-threshold unsaturated gain curve for <To =-7,000 Slm superimposed

on the cavity resonances marked by the vertical lines. Three longitudinal modes lie in the region

between 880 and 900 nm, where the unsaturated gain exceeds the round-trip loss. Since this is a

homogeneously broadened system, the longitudinal mode with the highest unsaturated gain

clamps the gain curve at the loss line, yielding single-mode operation. In this example, the

frequency of the lasing mode is designed to be the m =100 resonance, which corresponds to 1..0 ;

that is, the peak of the gain curve. For a cavity with no internal loss, the minimum material gain

required to achieve lasing (the point at which the round-trip loss of the cavity equals the round

trip gain) is given by the gain threshold a
1h

=(1/2l)lnR. Using (9.1 16a) to determine the

threshold value of eroyields eroth =-1,760 S/m.
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Fig. 9.9 Unsaturated gain and loss spectra for a Fabry-Perot microcavity laser. The longitudinal modes of
the cavity are shown as vertical lines. Adapted from: Hagness et aI., Radio Science, 1996,
pp. 931-941.

Within a semiclassical framework, spontaneous emission can be included in Maxwell's

equations as a noise current [31]. A pseudorandom number generator for a Gaussian random

number sequence X [32J, with zero mean and a variance of 1.0 x 10-6 (standard deviation

err =0.001), is used to implement a noise current in the FDTD model of the laser cavity.

The noise current is implemented in the FDTD algorithm at each time-step as an additive virtual

current source at an E-field component located within the laser cavity:

E I~+l = E In+l + X
Z I l t

(9.125)
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Fig. 9.1 O(a) shows the FDTD-computed time evolution of the E-field outside the laser cavity
for 0"0 = -7,000 S/m. The oscillations build up from the noise background and then level off to a
steady-state amplitude as the gain saturates. Fig. 9.1O(b) shows an expanded time scale of the
sinusoidal steady-state region of Fig. 9.10(a). This illustrates that the FDTD model correctly
predicts a lasing frequency of WOo The simulation is then repeated for smaller values of 0"0'

obtaining for each run the output intensity from the steady-state data. For gain levels above
threshold, the output intensity is found to vary linearly with 0"0' a behavior that is expected for a
homogeneously broadened system. Extrapolating the output intensity data towards zero yields
(J h =-1,780 Slm, a value that corresponds closely to -1,760 Sim calculated above. Thus, this

0,1
study of a simple Fabry-Perot laser demonstrates the validity of using FDTD to provide accurate
predictions of the gain threshold and lasing wavelength.
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Fig. 9.10 (a) FOrO-computed time evolution of the E-field outside the Fabry-Perot laser cavity;
(b) expanded time scale of the steady-state region showing a single-mode oscillation a[ (J) ,

Source: Hagness et aI., Radio Science, 1996, pp. 931-941. 0
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9.8 AUXILIARY DIFFERENTIAL EQUATION METHOD, MODELING OF
LASING ACTION IN A FOUR-LEVEL TWO-ELECTRON ATOMIC SYSTEM

This section reviews a new ADE-FDTD formulation [33, 34J for modeling lasing dynamics.
Unlike the method of [28J reviewed in Section 9.7, the new technique is a semiclassical approach,

wherein we treat the atom quantum mechanically and the electromagnetic wave classically.
The new model incorporates quantized electron energies that specify four possible energy levels
for each of two interacting electrons. Electron transitions between these energy levels are
governed by four coupled differential (rate) equations and the Pauli Exclusion Principle (PEP)
[30]. In addition, there are two oscillator-type differential equations for temporal evolution of
the induced polarization densities.

From the FDTD perspective. the new ADE formulation appears to be an advance relative to
previously reported techniques for semiclassical modeling of optical interactions with materials.
Previous FDTD approaches employed either a more limited set of rate equations ungoverned by
the PEP [35J. or the density-matrix method to solve the Maxwell-Bloch equation [36].

From the broader perspective of the entire laser-physics community, the method of [33. 34]
that is reviewed in this section is superior to the conventional modal expansion of the

electromagnetic field. When dealing with complex, inhomogeneous laser geometries constructed
in photonic crystals or light-localizing random media. the lasing modes are either difficult or
impossible to calculate. The new ADE-FDTD technique eliminates the need for prior knowledge
of the lasing modes. It provides a robust, self-consistent treatment of the dynamics of the four
level atomic system and the instantaneous ambient optical electromagnetic field, regardless of
the complexity of the material geometry that confines this field.

9.8.1 Quantum Physics Basis

Fig. 9.11 illustrates the electron transitions in the four-level two-electron model considered in
this section [33,34]. These transitions are treated as two coupled dipole oscillators. Levels 1
and 2 correspond to dipole P a , and Levels 0 and 3 correspond to dipole Pb' The two-level Bloch
equation is used for each oscillator. This is now derived. following the development in [33, 34].
The atom-photon Hamiltonian for a two-level system can be expressed as:

(9.126)

where

HField ~:n(Ok(a;aaka+ 1/2)
k.(1

(9. 127a)

(9. 127b)

(9. 127c)
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Fig. 9.11 Four-level two-electron model [33, 34].

A

N
U

= lu>< ul = number operatorfor the upper-level I u>

fig Ig >< gI= number operator for the upper-level Ig>

nOJa = energy difference between Iu> and ground level Ig >

a:(J" =photon-creation operator; k =mode number; (j =polarization direction

In (9.126) and (9.127), the electric field is given by

and the dipole operator is given by

(9.128)

(9.130)

(9.129)

A A OJ[A A] A-jOJV-yV+_a N -N p·A
a 1i 2 I

dV = L[Ii, V] =
dt n

it = - er = LPIl' ~['
II'

where e is the electron charge and ~I' = Ii >< 1'1 is the atomic transition operator. For a two

level system, the dipole operator can be written as jJ.= pVt +p'V, where p=(ulerlg).
The first-order differential equations of the dipole operator with the empirical dephasing term

y V are given by:
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= !...[iJ, vt
] = jw v+ - y v+ + Wa [il - N ]Jl'. A

tz a tz 2 I
(9.131)

The direction of the dipole along the z-axis is defined such that Jl =Jie. Therefore, the dipole
%

operators are

diJ. dVt dV
= )1-+)1'-

dt dt dt

(9.132)

Next, the second-order differential equation for the dipole operators in a two-level system is

derived. Using d/dt (JiV t - )1'V) = jWaiJ., (9.132) becomes

(9.133)

(9.134)

(9.135)

(9.136)

(9.137)

d
2
iJ. diJ. (2 2w~ I 12 ~2) A 2wa!)11

2
~ (A A)--2 +2y- + W + -2-)1 A J1 = E N2 - N1dt dt a tz l tz l

d
2

P. dP. [20/ ] 2eo I 1
2

__b + Y _b + 0/ + --1Q. (II . A / P. = 30 J1b E (N - N )
dt2 30 dt 30 tz2 TO b tz l 0 3

d 2p dP
w2p

__a
+ y _0 + = (a(N2 - N,)E

dt 2 a dt a 0

d
2
P' dE'" 2__b

+ y- + WbE'" = (b(N3 - NO)E
dt

2 b dt

The polarization density Pa(t) between 11> and 12> is then

where (V30 is the pumping frequency. The Rabi oscillation term 2 (V~o(Pt, . A)2 / tz2 in (9.135) is

neglected in the subsequent development since it is important only when the external electric

field is very high. This yields the governing equations [33, 34]:

where (V12 is the resonance frequency, J1a is the dipole matrix element between levels 11> and

12>, Ya is the dephasing rate for Pa(t), A is the vector potential, and N; is the atomic population

density in level i. A similar equation holds for the polarization density Pb(t) between 10> and

13>:
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where P
a

and Pb have the resonant frequencies w
a

and wb ' nW
a

is the energy difference between

Levels 1 and 2, nWb is the energy difference between Levels 0 and 3, and Sa =67t£oc3/ Wi
t
'r21 .

In (9.136) and (9.137), the driving terms are proportional to the population differences, and the

damping coefficients Y
a

and Yb simulate the nonradiation loss. For the example discussed later,

Y
a
=Y

b
= 10-13

S-I. Furthermore, note that the electric field E is an instantaneous value that is

composed of contributions from both the pumping and emission signals.

The population operator for the upper level is expressed as

dNu =
dt

j [A h]- H, Nu =
n

where N u and N g are defined in the context of (9.126) a~d (9.127). Here, we include the

spontaneous decay to the lower level by the term -yO - Ng ) Nu •

Due to the PEP, the presence of electrons within one energy level reduces the efficiency of

the pumping or relaxation from other levels, since each quantum state can be occupied by only

one electron. Similar to a semiconductor band structure, for interband interactions (3 -7 0) or

(2 ~ 1), this results in pumping blocking that takes the form Jl =JloO - N). Here, Jlo is the

quantum efficiency when there are no electrons in the active region, and N is the electron

population density probability. As a consequence, the quantum efficiency drops by a factor of

(l - N). Similar to interband relaxations, intraband transitions (3 -7 2) or (l -7 0) are reduced

by a factor (l - N) due to the Fermi distribution of the electron population within the band.

By coupling the dipole oscillator Pa (between levels I and 2) with Pb (between levels 0 and

3), the preceding considerations lead to the following rate equations for the electron populations

within the four energy levels [33,34]:

dN3
N3 (1- N2 ) N3 (1 - No) 1 dP

b= + -£.-
dt 'l"32 'l"30 nWb dt

dN2 N3 (1 - N2 ) N2 (1 - NJ I dP
= + __£._a

dt 'l"32 'l"21 nw dta

dN, N2 (1 - NJ N1(1- No) 1 dP
=

___£._a

dt 'l"21 rIO nwa dt

dNo N3 (1 - No)
+

N1(1 - No) 1 dPb= -£.-
dt 'l"30 'l"1O nWb dt

(9.138)

(9.139)

(9.140)

(9.141 )

(9.142)
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Here, N; is the electron population density probability in Level i, and 'rij is the decay time

constant between levels i and j. The electron populations vary with pumping E ·(dPldt) and

spontaneous emission decay (N; - N)I'rij" Electrons in Level 3 spontaneously decay to Levels 2

and 0 with decay time constants 'r32 and 'r30 , respectively. Electrons in Level 2 spontaneously

decay to Level I with decay time constant 't"21'

9.8.2 Coupling to MaxwelPs Equations

The quantum physics model that resulted in (9.136), (9.137), (9.139), (9.140), (9.141) and

(9.142) couples to the macroscopic Maxwell's equations via Ampere's law [33,34]:

(9.143)

This permits investigating both transient processes as well as the asymptotic behavior at longer
time scales.

9.8.3 Time-Stepping Algorithm

We now summarize the time-stepping algorithm used in [33, 34), assuming that the following
variables are known at the beginning of the update: ~n, ~n, En, H n

+
l12

, Nln-1/2, N;-1I2, N~, and

N;. Note that, where variables are required at time levels midway between their formal

evaluation points, simple averaging is used. This yields the familiar "semi-implicit" formalism

that results in fully explicit updates.

Step. 1. Update Pa and Pb to time-level n + I by implementing (9.136) and (9.137) with explicit
second-order temporal finite-differences centered at n. For example, (9.136) yields

where

(9.144)

2 - 0/ (i1t)2c = a
a.1 l+y

a
M/2

c = _ 1 - Ya M 12
a.2 1 + y

a
M/2

(i11/c =-----
a.3 I+Ya M / 2

(9.145a, b, c)

Pb is updated to time-level n + 1 in an analogous manner.

Step 2. With Pa and P
b

now available at time-levels nand n + I , update E to time level n + 1 by

implementing (9.143) in the normal Yee manner with an explicit temporal finite

difference centered about n + 1/2.

Step 3. Update N
3

to time-level n + 1/2 by implementing (9.139) with an explicit temporal

finite-difference centered about n:
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N n
+

1/2 =
3

[ (

Nn -1 N n -1 2) En . (pn+1 _pn-l)]Nn-lf2 0 + 2 + _ + b b
3

'T30 r 32 1M nOJb f1t
(9.146)

Step 4. Update N 1 to time-level n + 112 by implementing (9.14 I) with an explicit temporal

finite-difference centered about n:

N n
+

1/2 =
I

En . (p.,n+l _p.,n-l )]

nOJ(lM
(9.147)

Step 5. Update N2 to time-level n + 1 by implementing (9.140) with an explicit temporal finite
difference centered about n + 112:

[ (

Nn+1/2_1
Nn ---:.1 _

2
r 21

_N..:;..;+_1/_2 + 2.) + _2_N~;+_1/_2 + (E
n

+
1
+ En) . (p.,n+1 - p"n)]

r 32 1M r 32 flOJaf1t

(9.148)

Step 6. Update No to time-level n + 1 by implementing (9.142) with an explicit temporal finite
difference centered about n + 1/2:

[ (
_ N n

+
1/2 N n

+
1/2 2 ) Nn

+
1/2 N n+l12 _ (E n+1+ En) . (Pbn

+
1

_ Pbn
)]Nn 1 __3 _ + _ + I + --::3__

o
rIO r 30 1M rIO 'f30 nWbf1t

(9.149)

Step 7. Update H to time-level n +3/2 via normal Yee time-stepping of the Maxwell-Faraday

Law. This completes the algorithm. Note that this sequence of updates avoids the need
to use the predictor-corrector algorithm of [36].
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9.8.4 Illustrative Results

Fig. 9.12 illustrates laser-modeling results obtained using the ADE-FDTD model discussed in
this section [34]. The laser is assumed to have a one-dimensional, optically pumped, single
defect, distributed Bragg reflector (DBR) cavity. Each DBR has three layers of refractive
indices alternating between n =1.0 and 2.0, with thickness 375 and 187.5 nm, respectively.
The gap between the DBRs is 750 nm, corresponding to a cold-cavity defect mode of 1.5 1lID.
This mode has a cold-cavity quality factor (Q) of 100, which is sufficiently small to achieve
lasing with a relatively short FDTD running time.
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Fig. 9.12 Electron population density probability showing the inversion between Levels 1 and 2. Source:
Chang and Taflove, Optics Express, 2004, pp. 3827-3833.
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In each DBR, the passband is centered at 0.75 Jlm, which allows pump light at this

wavelength to escape the cavity. Furthermore, the stopband is centered at 1.5 Jlm, which

confines the lasing mode at this wavelength within the cavity. To computationally extract the

lasing signal, the calculated output time-waveform is recorded on one side of the DBR cavity,

transformed to the frequency domain with an FFf, windowed by a flat-topped Gaussian filter

function, and finally transformed back to the time domain with another FFf.
In the present example [34], 'f32 = 'flO = 100 fs and 'f21 = 'f30 = 300 ps, which takes into

account the dephasing time. The initial population density is N I = No = 5 X 1023/m3
. With these

parameters, the required density probability of population inversion is estimated to be

approximately 8.4 x 10-
4

•

Fig. 9.12 shows the calculated time evolution of the electron populations in all four levels.

After the onset of pumping, the population in Level 1 starts to decrease, and the population in

Level 2 starts to increase. This is because pumping moves electrons from Level 1 to Level 0,
then to Level 3, and finally to Level 2. Because of the relatively long decay time from Level 2 to

Level 1, the population of Level 2 increases until inversion relative to Level 1 is reached.

As shown in Fig. 9.13, the laser output signal jumps upward at this point, followed by

fluctuations that have been predicted in the literature [37].
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Fig. 9.13 Intensity output of the pump and laser output signals. Source: Chang and Taflove. Optics
Express, 2004, pp. 3827-3833.
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To obtain the lasing threshold, the output intensity is plotted versus the pump intensity as
shown in Fig. 9.14 for four cases: (1) two-electron model with PEP, (2) two-electron model
without PEP, (3) one-electron model with PEP, and (4) one-electron model without PEP.
For both cases with the PEP, the lasing threshold is evidenced by a physically plausible sudden
jump of the output intensity. On the other hand, omission of the PEP for the one-electron case
results in a nonphysical zero-threshold laser operation. Further, omission of the PEP for the
two-electron case results in a nonphysical situation where both electrons occupy the ground state,
and there is no light output for the pump intensity considered. These calculations illustrate the
importance of incorporating the Pauli Exclusion Principle.
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Fig.9.14 Laser output intensity versus pump intensity. Source: Chang and Taflove, Optics Express. 2004.
pp. 3827-3833.

9.9 SUMMARY AND CONCLUSIONS

This chapter discussed several approaches that allow the FDTD method to model dielectric
materials exhibiting linear dispersion, nonlinearity, nonlinear dispersion, and gain. Topics
covered included:

• A summary of generic isotropic material dispersions, including Debye, Lorentz,
and Drude media;

• The piecewise-linear recursive convolution technique for modeling linear
dispersions, with application to Debye and Lorentz media;
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• The auxiliary differential equation technique for modeling linear dispersions
characterized by multiple Debye, Lorentz, or Drude poles;

• Analysis of linear magnetized ferrites using a simple lumped equivalent resistor
inductor-capacitor circuit model;

• The auxiliary differential equation technique for modeling combined Debye and
Lorentz linear dispersions and third-order Kerr and Raman nonlinearities, with
application to analyzing the formation, propagation, and interactions of temporal
and spatial optical solitons;

• The auxiliary differential equation technique for modeling saturable, dispersive
optical gain materials at the macroscopic level, with application to estimating the
output wavelength and power of a simple one-dimensional laser cavity;

• The auxiliary differential equation technique for coupling quantum effects in a
four-level, two-electron atomic system to Maxwell's equations, with application
to the detailed analysis of a laser's pumping dynamics and the variation of the

intensity of its light output relative to the intensity of the pump.

In particular, the FDTD techniques reviewed in the last three sections of this chapter permit
detailed modeling of the electromagnetic wave behavior of a wide variety of passive and active
photonic materials. Unlike prior analytical or numerical approaches in this area, FDTD is almost
completely general. It assumes nothing about: (1) the homogeneity or isotropy of the optical
medium; (2) the magnitude of any nonlinearity; (3) the nature of the material's linear and

nonlinear dispersions, except that these dispersions can be approximated by combinations of

generic relaxations; (4) the shape, duration, polarization, and numbers of interacting optical
pulses; and (5) the direction of wave propagation or scattering. Consequently, FDTD provides
much richer physical detail and is more robust than prior techniques for modeling micron-scale
photonic devices and integrated circuits. FDTD permits optical structures comparable in size to
one wavelength to be modeled without neglecting the physics of wave diffraction or the effects

of nanometer-scale features.
We note at this point that the algorithmic coupling of Maxwell's equations to the quantum

mechanical description of electron energy levels in an atomic system (described in Section 9.8)
opens possibilities for a subsequent deeper theoretical understanding of the fascinating transition

regime between fully quantum and fully classical descriptions of optical physics. This could
potentially enable the future engineering design of nanoscale quantum optical devices of great

technological importance, especially in the area of quantum computing. It is expected that
theoretical and algorithmic research pursuing such goals will significantly intensify over the next

several years.
Finally, while proving numerical stability of the FDTD procedure for the general nonlinear

case is difficult, experience to date shows that modeling the nonlinearities and gains of optical

materials require no more restrictive a time-step than is needed to ensure stability for the

corresponding linear dispersive case. Numerical stability has been observed for literally
hundreds of thousands of time-steps.

--
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PROBLEMS

9.1 Extend the PLRC method of Section 9.3 to a material having a dielectric susceptibility
characterized by a finite sum of Debye poles.

9.2 Extend the PLRC method of Section 9.3 to a material having a dielectric susceptibility
characterized by a finite sum of Lorentz pole-pairs.
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9.3 Extend the PLRC method of Section 9.3 to a material having a dielectric susceptibility
characterized by a finite sum of Debye poles and a finite sum of Lorentz pole-pairs.

9.4 Extend the PLRC method of Section 9.3 to a material having a magnetic susceptibility
characterized by a finite sum of Debye poles.

9.5 Extend the PLRC method of Section 9.3 to a material having a magnetic susceptibility
characterized by a finite sum of Lorentz pole-pairs.

9.6 Extend the ADE method of Section 9.4 to a material having a dielectric susceptibility
characterized by a finite sum of Debye poles and a finite sum of Lorentz pole pairs.

9.7 Extend the ADE method of Section 9.4 to a material having a magnetic susceptibility
characterized by a finite sum of Debye poles.

9.8 Extend the ADE method of Section 9.4 to a material having a magnetic susceptibility
characterized by a finite sum of Lorentz pole-pairs.

PROJECTS

P9.1 Construct a one-dimensional FDTD code using the PLRC technique of Section 9.3 and
replicate the results shown in Fig. 9.1 for the pulse transmitted into a single pole-pair
Lorentz half-space.

P9.2 Construct a one-dimensional FDTD code using the ADE technique of Section 9.4 and
replicate the results shown in Fig. 9.1 for the pulse transmitted into a single pole-pair
Lorentz half-space.

P9.3 Construct a one-dimensional FDTD code using the ADE technique of Section 9.6 and
replicate the results shown in Fig. 9.5(b) for the temporal soliton transmitted into a
nonlinear half-space.

P9.4 Construct a two-dimensional FDTD code using the ADE technique of Section 9.6 and
replicate qualitatively the results shown in Fig. 9.7 for spatial solitons propagating in a
nonlinear half-space.

P9.5 Construct a one-dimensional FDTD code using the ADE technique of Section 9.7 and
replicate the results shown in Fig. 9.8 for the amplification factor and phase spectra.



Chapter 10

Local Subcell Models of Fine Geometrical Features

Allen Taflove, Malgorzata Celuch-Marcysiak, and Susan Hagness

10.1 INTRODUCTION

A fundamental problem arises in any grid-based numerical modeling tool for basic science and
engineering simulations. Namely, the distance scales over which key physical processes or
material/structural properties must be resolved can range over several orders of magnitude.
The modeler is left with the following options:

1. Use a variable lattice of space cells to precisely model the shape and features of a
structure. During a separate preprocessing step, use sophisticated mesh
generation software to automatically grade the cells' sizes and shapes from one
region to another. The resulting mesh completely contains the structure and
accommodates the full range of its characteristic distance scales and features.

2. Use a simpler and much more uniform mesh than option 1. Approximate the
physical properties of the fine spatial details by somehow building them into the
local mesh cells that are immediately adjacent to the details.

From the twin standpoints of maintaining geometrical fidelity and second-order numerical
accuracy everywhere in the space grid, option 1 is the choice if: (1) computer software is
available to generate the mesh, (2) the mesh generation does not dominate the total simulation
time, and (3) the mesh generation avoids introducing space cells that are so strangely shaped that
the numerical algorithm becomes unstable. Recall that numerical instability is an ever-present
concern for an explicit time-stepping algorithm such as FDTD, due to the requirement that the
time-step have an upper bound related to the space increment.

The accuracy of the local subcell approach may be less than that of a properly implemented
global mesh generation. However, for a number of important modeling problems, the subcell
approach can have computer-resource and mesh-generation requirements that are relaxed enough
relative to those of global mesh generation to prompt its use as the more desirable alternative.
This chapter discusses FDTD technology that implements local subcell models for a background
Cartesian mesh. For the reader interested in pursuing option 1, see Chapter 11 for a detailed
discussion of a generalized FDTD algorithm on a globally variable array of space cells,
and Chapter 19 for details regarding a robust new hybrid FDTD / finite-element algorithm that
combines the computational efficiency of Yee' s Cartesian space lattice with the geometrical
modeling flexibility of finite elements.

407
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This chapter first reviews the premise that the integral forms of Faraday's and Ampere's
laws yield the free-space Yee algorithm as originally derived from the differential forms of these
laws (Maxwell's curl equations). The initial application of this insight yields the two simplest
local subcell approaches: the diagonal split-cell model for nonconforming PEC surfaces, and the
average permittivity-permeability model for material surfaces. Subsequent discussions apply
contour-path models to accurately simulate subcell slots in conducting plates, subcell-diameter
wires, and curved PEC and dielectric surfaces. For the thin-wire case, it is shown that the
contour-path approach allows incorporation of singularities of the E- and H-fields immediately
adjacent to the wire. The subcell models are then extended to treat thin material sheets, surface
impedance and the skin effect, and thin coatings on a PEC surface. The chapter concludes with
the application of the subcell approach to provide accurate rest-frame models of PEC surfaces
subject to relativistic translation and vibration.

10.2 BASIS OF CONTOUR-PATH FDTD MODELING

The Yee algorithm for FDTD was originally interpreted as a direct approximation of the
pointwise derivatives of Maxwell's time-dependent curl equations by numerical central
differences. Although this interpretation is useful for understanding how FDTD models
electromagnetic wave propagation away from material interfaces, it sheds little light on what
algorithm modifications are needed to properly model the physics of fine geometrical features
such as wires, slots, curved surfaces, and thin material layers requiring subcell spatial resolution.

References [1 - 4] reported that FDTD modeling can be extended to wires, slots, and curved
surfaces by departing from Yee's original pointwise derivative interpretation. As discussed in
Chapter 3, Section 3.6.8, the idea involves starting with a more macroscopic (but still local)
combined-field description based upon Ampere's law and Faraday's law in integral form,
implemented on an array of electrically small, spatially orthogonal contours. These contours
mesh (intersect) in the manner of links in a chain, providing a geometrical interpretation of the
coupling of these two laws.

This meshing results in the filling of the FDTD modeled space by a three-dimensional
"chain-link" array of intersecting orthogonal contours. The presence of wires, slots, and curved
surfaces can be accounted for by incorporating appropriate field behavior into the contour and
surface integrals implementing Ampere's and Faraday's laws at selected meshes, and by
deforming contour paths as required to conform with surface curvature. This approach is
intuitively satisfying to an electrical engineer, since it permits the FDTD model to deal with
physical quantities such as electromotive forces and magnetomotive forces developed when
completing one circuit about a Faraday's or Ampere's law contour path, and magnetic flux and
electric displacement current when performing the surface integrations for the patches bounded
by the respective contours. See Section 3.6.8 for a demonstration of the equivalence of the Yee
and contour-path interpretations for the free-space case.

10.3 THE SIMPLEST CONTOUR-PATH SUBCELL MODELS

The two simple subcell models discussed here represent a minimal, yet surprisingly effective,
approach to dealing with PEC and material structures whose bounding surfaces do not conform
to grid planes in a uniform Cartesian mesh. Both are easily derived from the contour-path
concepts of Sections 3.6.8. We shall refer to Fig. 10.1 in our discussion.
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10.3.1 Diagonal Split-Cell Model for PEC Surfaces

Consider the smoothly curved PEC surface of Fig. 10.1 and its approximation by, respectively,
the staircase model of Fig. 10.1 (a) and the diagonal split-cell model of Fig. 10.1 (b). We note that
the staircase model is really a continuous chain of zeroed Ex and Ey components in the grid that
forms a "best fit" to the PEC surface. The split-cell model adds a degree of freedom in locating
this chain by permitting it to run along cell diagonals, thereby potentially decreasing its
positional error relative to the PEe boundary. Applying Faraday's law of (3.45) of Chapter 3 at
the cell split diagonally by the PEC chain, and assuming zero field penetration into the PEC
structure, we obtain the following finite-difference expression:

(

H r+ 112
- H 1"~112 JJi z I.J.k Z I.J.k

o !:it
. (~2) =

'---,,-J
area of split cell

carrying magnetic flux

E I" 1 - E Inx I,j+l 2,k x i,j-1/2.k
'---v-----'
o [itld in PEe

(10.1)

Isolating Hz C,1:2 yields the corresponding time-stepping expression for the split cell:

In+1/2 1"-1/2 2!:it ( In I")H .. =H .. +--E .. -E
ZI.J.k ZI.j.k Jio!:i XI.j+1/2.k Yi+1J2.j,k

(10.2)

I
"- E

)' i+ 112.j,k

Only H-field components located at the center of such split cells are updated using (10.2).
All others are updated using the normal Yee algorithm,

Mesh generation for the split-cell model is predicated upon first constructing a best-fit
staircase model. Then, we need only to test the H , H , or H component centered in each cell

X)' z
face of the grid to see if any contiguous pair of E-fielct" components circulating on the boundary
of the cell face had been previously assigned as PEC (i.e., set to zero). All such cell faces are
designated as split along the diagonal, and the H-component at the center of the face is updated
using (10.2).

10.3.2 Average Properties Model for Material Surfaces

Now assume that the smoothly curved boundary of Fig. 10.1 (b) is a material interface. Applying
Faraday's law to the special Hz cell cut by this boundary yields

(l0.3)

. H 1".+."2where 0 $1, $ I is the fraction of the cell area embedded in Medium #1. IsolatIng Z I,j,k

yields the corresponding time-stepping expression:
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n+1/2 n-I/2 /:i.t [ExI;,j+1/2'k - EX C_1/2' k J
HJj,k = Hzt,j,k + [,uJ; + ,u2(1 -.1;)] /:i. + E In _ E In (IDA)

y i-li2,j,k y i+1/2,j,k

The cell permeability ,u is seen to be the weighted average of the ,u on each side of the interface,
An analogous development leads to a weighted average for cr" in this cell, and for E and cr in
E-cells cut by a dielectric interface, While this simple average-properties model does not
rigorously enforce continuity of the tangential field components, it nonetheless provides an
effective modeling tool. See Section 10.6.3 for a discussion of how this approach is used to treat
dielectric structures having curved surfaces.

10.4 THE CONTOUR-PATH MODEL OF THE NARROW SLOT

To illustrate how the contour-path concept provides the basis for FDTD modeling of geometrical
features requiring subcell resolution, we consider the two-dimensional slot geometry of Fig. 10.2
[1]. The slot is assumed to provide a subcell air gap that penetrates a planar PEC screen of finite
size and thickness subjected to TEz illumination. Faraday's law contour paths C1 , C2 • and C

3

are used to derive special FDTD updates for the Hz components located immediately adjacent to
the screen.

The following summarizes the a priori assumptions concerning the near-field physics built
into the Faraday's law models of Fig. 10.2.

Contour C
J

(away from the slot). Field components Hz and Ey have no variation
in the y-direction (perpendicular to the screen). Evaluated at the x-midpoint of
contour C1, components Hz and Ex represent the average values of their respective
fields over the full x-interval.

• Contour C2 (at the opening of the slot). Component Hz represents its average
value within the free-space region enclosed by C2 . Ey has no variation in the
y-direction. Component Ex represents its average value over the full x-interval.

• Contour C
3

(within the slot). Component Hz represents its average value over the
full y-interval. H

l
and Ex have no variation in the x-direction (across the slot gap).

Finally, for all three contours, the portions of the contours located within the conducting screen
are assumed to have zero E- and H-fields.

After applying Faraday's law for the three contours subject to the above assumptions,
the following special FDTD relations are obtained for the Hz components immediately adjacent
to the screen.

Away from the Slot (Contour C1):

H In+1/2 _ H In-I/2
z X,Yo z x.)'o

/:i.t

(EyCM2. YO - Er!:+M2, yo)' (/:i./2 + a) - ExI:, yo-A/2 /:i.

,uo/:i.(/:i./2 + a)
(l0.5)
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At the Opening (Aperture) of the Slot (Contour C
2

):

H In+ll2 _ H In-lf2

z xo .yo z xo ,Yo

Within the Slot (Contour C3 ):

H In+ll2 _ H In-1I2
z xo.)' I xo.)'

r
EX:, ,,+An g - E:I:., ,,_An A + ]

(EJt o-Af2.yo - EJt o+6f2.JO )'(~/2 + a)
-

,uo[(~/2 + a) ~ + (~/2 - a) g ]

E In E In
x xo.)'+6f2 g - x xo.y-Af2 g

(10.6)

(10.7)

Here, the slot gap width g cancels on the right-hand side, reducing the FDTD relation for H in
z

the slot to that of a ±y-directed plane wave in free space.
In each of (l0.5), (10.6), and (l0.7), isolation of the Hl+1f2

term on the left-hand side yields
the corresponding FDTD time-stepping relation that conveys the electromagnetic field physics of
the special cell. We also note that no E or H components in the FDTD grid other than the Hz
components inunediately adjacent to the screen require modified time-stepping relations. This is
a very desirable general characteristic of the contour-path approach, recurring when modeling
thin wires and curved surfaces, as will be seen.

We now consider a study of the accuracy of the Faraday's law contour-path model for a
narrow slot having a subcell air gap [1]. Here, coarse-grid FDTD results, using the contour-path
approach to treat the slot air gap as a fraction of one space cell, are compared to two different
high-resolution numerical calculations. Fig. 10.3(a) shows the geometry of the slot that
penetrates through a PEC shielding screen. The screen is Ao/1 0 thick and extends A/2 to each
side of a straight slot having a gap dimension of Ai40. Excitation is provided by aTE,
polarized plane wave at broadside incidence to the screen. Three types of predictive data are
compared for the magnitude and phase of the gap-field (E) distribution within the slot along an
observation locus extending from the lit side to the shadow side of the screen:

1. Contour-path FDTD model with ~ =A/I 0 (slot air gap equals 1/4 cell);

2. High-resolution FDTD model with ~ =Ao/40 (slot air gap equals 1 cell);

3. Very-high-resolution phasor-domain method-of-moments model which treats the
slotted screen as a pure scattering geometry. A/400 resolution in the slot is
required for convergence.

We see from Fig. 10.3 that the low-resolution contour-path FDTD model agrees very well
with both sets of high-resolution data in both the magnitude and the phase of the gap Ex field.
Of particular interest in the area of electromagnetic pulse and high-power microwave effects is
the ability of the contour-path model to accurately compute the peak Ex field in the slot. This field
can cause arcing across the air gap if sufficiently intense. As discussed in [I], the coarse-grid
contour-path FDTD model calculates the peak gap Ex field very accurately, even if the slot gap is
closed to as little as A/I,OOO (I/IOOth of a space cell).
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Fig. 10.3 Comparison of contour-path FDTD and frequency-domain moment-method results for the gap
electric field distribution in a slotted PEC screen for broadside TE, illumination: (a) magnitude;
(b) phase. Source: Taflove et aI., IEEE Trans. Antennas and Propagation, 1988. pp. 247-257,
© 1988 IEEE.
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10.5 THE CONTOUR-PATH MODEL OF THE THIN WIRE

The contour-path interpretation permits incorporation of near-field physics, yielding special
purpose time-stepping expressions that are not obvious from the pure finite-difference
perspective. An excellent example of this involves the interaction of an electromagnetic wave
with a PEe wire of circular cross section having a subcell diameter [2,5]. Fig. IDA illustrates
the geometry used in deriving special FDTD time-stepping expressions for the circumferential
(looping) H-components and radial E-components immediately adjacent to a z-aligned thin wire.
Although only Hy and Ex fields to the right of the wire are shown, the analysis is easily
generalized to the other adjacent looping H and radial E components.

Thin wire

\
Incident field components: Ez ' Hx (TM case)

Z =Zo + t.z/2

z =Zo - t.z/2

'"'c

Ex IAx12, Yo- Zo+~12
L_.---

F- LU ~ "'0/10
r-

®
H)Ax/2, Yo- Zo

/).X ~ "'i1 0
dS®

Jr-
, ...

"
EI .

x AxI2, Yo' Zo-~/2

b-

c

IL x =ro'5 t.x./2

x=o x =t.x

Fig. 10.4 Faraday's law contour path for the thin wire. Source: Umashankar et aI., IEEE Trans. Antennas
and Propagation, 1987, pp. 1248-1257, © 1987 IEEE.
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The basic idea in the thin-wire model of [2] is that we can assume a static-field spatial
distribution for the E and H components immediately adjacent to the wire. In effect, we assume
that these components behave as if they are sourced by the local wire current and charge.

Each looping H component nearest to the wire (for example, Hyllu/2. Y•• Zo in
Fig. 10.4) varies as 1Ir, where r is the radial distance from the wire axis.

Each radial E component nearest to the wire (for example, Exllu/2. Yo. ;,±!>z/2 in
Fig. 10.4) also varies as l/r.

• Each axial E component within the wire (for example, Ezla. Yo' Zo in Fig. 10.4) is set
to zero. This implies that no displacement current is allowed to flow in the axial
direction in the space cell containing the wire.

All other field components are represented in the usual manner of the Yee algorithm.
Subsequently, [5] reported the following improvements to the model of [2]:

•

•

Each looping H component is projected onto the its respective Cartesian cell edge
when used to update a radial E component.

Each radial E component is projected from its Cartesian cell facet to the
cylindrical surface occupied by the looping H component to be updated.

• Axial and radial E components at an unconnected (open-circuited) end of the
wire vary spatially as if there exists locally a uniform line-charge distribution.

These additional assumptions result in the following examples of special finite-difference
expressions for time-stepping the field components immediately adjacent to the thin wire [5]:

Looping H Components:

211/ In
+ Potu In(tu/r

a
) Ez

lu'YO·lO
(10.8)

where k£ = [(ilxl.1.y) tan- I(.1.yILlx)r l
• A straightforward permutation of the subscripts (with an

interchange of Llx and .1.y for the H
x

update) yields analogous time-stepping relations for the three
other looping H components that are located immediately adjacent to the wire at z = ZOo

Radial E Components:

E In+1
x I!.xl2.yo,zo-!>z/2

= E In + kH 11/ (H In+1/2 _ H In+112 )
x luf2,YO,lo-!>z/2 E I1z Y luf2,Yo.lO-1!.< Y luf2.YQ.zo

o

M (H 1"+1/2 H In+1/2 )
+ ~ z luI2'YO+l!.y/2.l0 -!>zf2 - z I!.xI2.yo-l!.y/2.l0 -1!.</2

o y
(l0.9)
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where kH = (tu//).y) tan-J(~y/tu). A straightforward permutation of the subscripts (with an
interchange of tu and ~y for the E update) yields analogous time-stepping relations for the threey

other radial E components that are located immediately adjacent to the wire at Z =ZOo

End of Open-Circuited Wire, Radial E Components Located at Z = ZlOP:

(10.10)

(10.11)

(10.12)

In (l0.12), K and E are complete elliptic integrals of the first and second kind, respectively,
and k] =2(r

O
tul2) 1/2 / (tu/2 + ro )' Here, the current I is computed from the circulation of the

looping H-field around the wire in a plane one-half space cell below its end. A straightforward
permutation of the subscripts (with an interchange of ~x and ~y for the Ey update) yields
analogous time-stepping relations for the three other radial E components that are located
immediately adjacent to the wire at z=ZlOp'

End ofOpen-Circuited Wire, Axial E Component Located at Z =ZIOP + ~/2:

+ /).t (H In+1/2 In+ll2)
co~y x O'YO -t1yI2,Zlr>p+az/2 - Hx O,Yo +t1yI2,ZlOp+az/2

(10.13)

where
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I
n+1/2 [1r16 - 0.111(1:0 /&) + ] In+1I2

E~e = E
l.q O'YO.ltop+6z12 - 3.31 (rol &)2 _ 2.51 (r

o
/ ~Z)3 l.q

(10.14)

(l0.15)

Reference [5] reported numerical experiments measuring the degree of accuracy of the thin
wire model reviewed above. In one test, an L =0.305m dipole antenna was modeled within a
uniform FDTD space lattice for two cell sizes, 21 and 41 cells per dipole length (14.5 and 7.44
mm, respectively). The lattice was terminated with an eight-cell PML, and a simple delta-gap
hard source was used to excite the antenna. In the impedance calculations, voltage values were
interpolated in time to compensate for their half time-step offset relative to the current values.
Benchmark data were calculated using the phasor-domain moment-method software, NEC-2.

Fig. 10.5 graphs the calculated Islll of the dipole over the frequency range 0.3 to 0.6 GHz.
We see that the improved thin-wire model of [5] accurately predicts the resonant frequency.
Even when implemented in the low-resolution mesh, the model of [5] yields better results than
the original model of [2] run at high resolution. Reference [5] concludes that the improvement in
accuracy is largely due to the treatment of the ends of the dipole, as per (l0.10) to (l0.15).
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Fig. 10.5 Calculated ISIII of the dipole antenna. The number in the legend refers to the number of
segments or cells used per antenna length L. Wire radius ro=L/820. Source: Makinen et aI.,
IEEE Trans. Microwave Theory and Techniques, 2002, pp. 1245-1255, © 2002 IEEE.
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Fig. 10.6 graphs the calculated input impedance of the dipole at frequency f =c12L over a
wide range of wire radii. Even when implemented in the low-resolution mesh, the improved
thin-wire model of [5] is more accurate than the original model of [2] run at high resolution.
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10.6 LOCALLY CONFORMAL MODELS OF CURVED SURFACES

The contour-path technique was proposed in [3,4] to implement conformal models of structures
having curved surfaces within a Cartesian FDTD lattice. This technique has evolved to have
significantly improved numerical stability and accuracy [6 - 8]. The basis and illustrative results
of such locally conformal models of curved surfaces are presented in this section.

10.6.1 Yu-MiUra Technique for PEC Structures

We now review the simple, effective, and numerically stable conformal modeling technique
introduced in [8] by Yu and Mittra. Fig. 10.7 depicts a TE

z
cut-plane in a three-dimensional

FDTD lattice. Embedded within the lattice is a PEC structure whose surface intersects this cut
plane along contour epEC' (Note that there is an easy generalization to the TEx and TE

y
cut

planes, allowing a three-dimensional PEC surface to be specified by its intersections with each
TEx> TE

y
' and TEz cut-plane in the FDTD mesh.) Free space is assumed to be to the left of CPEe'

-------,
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EI t! /)"y
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Fig. 10.7 Contour path for the conformal FDTD PEC surface model. Adaptedfrom: Yu and Minra,IEEE
Antennas and Propagation Magazine, Oct. 2000, pp. 28-39, © 2000 IEEE.

Upon applying the integral form of Faraday's law to the FDTD grid cell intersecting CPEe ' and
discarding the contributions of the E-field contour integral inside the PEC region, the following
modified updates are obtained for the H-components in the cells intersecting CpEC :

1
"+1/2 = /"-112 /11 (Ey LII2,j.k/1y + EX C+l/U

8x JH __ , H _. +
Z I,J.' Z I.J.k !1x /1 _ E I" 8 - E I" !1x

110 Y Y ;+112.i.* Y x i.j-1/2, *

(10.16)

Note that the entire area !1x !1y of the grid cell is used. Further, each E-component is updated
exactly as in the usual Yee manner, whether located inside or outside of the PEC region.
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We now discuss three representative studies of locally conformal FDTD models of PEe
structures having curved surfaces. The goal is to demonstrate the key characteristics of these
models, especially their improved accuracy relative to the traditional Yee staircasing method.

Twisted Elliptical Cross Section Waveguide Cavity

Reference [9] reported application of the contour-path technique of [6, 7] to analyze the resonant
frequency of a PEC cavity comprised of a twisted waveguide of elliptical cross section. Here,
the benchmark was a highly resolved phasor-domain finite-element calculation using Ansoft
HFSS. Fig. 10.8 shows the resonator geometry and compares the error in its resonant frequency
calculated by the contour-path and staircase FDTD models.

Fig. 10.8 Twisted elliptical PEe waveguide cavity and comparison of error in its fundamental-mode
resonant frequency calculated using contour-path and staircase FDTD. Source: Waldschmidt
and Taflove, IEEE Trans. Antennas and Propagation, 2004, pp. 1658-1664, © 2004 IEEE.
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From Fig. 10.8, we see that contour-path FDTD yields an error at a mesh resolution of
8 cells per wavelength which is comparable to that obtained using staircased FDTD at 32 cells
per wavelength. This represents a very significant computer-storage and running-time reduction
of approximately (32/8)3: 1 =64: 1 and (32/8)4: 1 =256: 1, respectively.

Winglike Object

The second example is a detailed study conducted in 1990 of the monostatic RCS at 10 GHz of a
winglike aluminum plate having acute 11 0 angles for its leading and trailing edges [10].
The target specifications follow:

1. Length = 30.48 cm (10Ao) in the vertical (z) direction, width = 25.4 cm (8.47 Ao);

2. Cross section shape (in the horizontal x-y plane) of an isosceles triangle with base
angles = 11.31 0

;

3. Triangle sides opposite to the base are smoothly joined by a 15.24 cm (5.1 Ao)
radius cylindrical chamfer;

4. Base has a vertical triangular slot centered in its span. Slot dimensions: 1.27 cm
(0.42 Ao) depth, and 2.54 cm (0.85 Ao) width.

Because of the broadside, high-frequency, plane-wave target illumination used in this study,
it was determined that full three-dimensional FDTD modeling could be avoided. Instead,
computationally efficient two-dimensional TM

l
and TEl FDTD models could provide useful

results. Each model used a uniform square-cell grid with a resolution !J. = 1.5 mm = A/20,
and second-order Mur absorbing boundaries. The contour-path FDTD technique of [3] was
applied.' Comparative data included anechoic chamber measurements of the monostatic RCS
at 10 intervals in a horizontal plane sweeping around the triangular cross section of the object.

Fig. 10.9(a) graphs the measured and FDTD-calculated RCS data for the case of TMz

illumination of the target. Fig. 10.9(b) is the corresponding data comparison for TEz illumination
of the target. In these figures, an angle of 90 0 denotes a monostatic RCS observation broadside
to the target's flat base with the triangular slot, while 2700 denotes a monostatic RCS observation
broadside to the target's machined chamfer. The agreement between the measurements and the
contour-path FDTD calculations is seen to be very good in both cases at all look angles. Useful
dynamic range is about 45 to 50 dB. When the same target geometry was modeled using a
staircased FDTD approximation of its surface shape, it was found that a uniform grid resolution
of!J. =Ao/80 or finer was required to attain approximately the same level of accuracy. This 4: 1
advantage in grid resolution in each Cartesian direction is similar to that noted above in the
discussion of the twisted waveguide cavity model of Fig. 10.8.

IUnlike the later, more robust methods of [6-8], stretched cells were a feature of the algorithms of [3.4],
which caused an unpredictable (geometry-dependent) late-time numerical instability. Nevertheless,
in many cases, such as the models of the winglike object and the sphere-pair reviewed in this section,
the algorithms of [3,4] were able to attain accurate, converged results before the onset of instability.
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Fig. 10.9 Validation of the two-dimensional contour-path FDTD model of [3] for the IO-GHz monostatic
radar cross section of a winglike metal object having a V-shaped vertical slot. Source: Taflove,
Report to General Dynamics, 1990.
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Pair ofSpheres

The final example of the use of the contour-path approach to model curved PEC surfaces is a
study of the bistatic RCS of a pair of identical spheres [4]. Each sphere was assumed to have a
diameter of lAo' with the surfaces of the spheres separated by a lAo air gap. A cubic-cell
background space lattice provided a uniform resolution of Ao/20. Comparative data were
obtained using the phasor-domain generalized multipole technique. 2

Fig. 10.10 graphs the two sets of data for the E-plane bistatic RCS for the case of a plane
wave impinging upon the pair of spheres at an angle of 45° relative to the line connecting their
centers. We see that the contour-path FDTD results differ from the generalized multipole
technique data by only about ±1 dB over a 35-dB dynamic range.

Discussion

Locally conformal FDTD models of PEC structures with curved surfaces provide clear
advantages relative to the use of staircasing. In a number of disparate simulations ranging from
studies of cavity resonances to calculations of monostatic and bistatic RCS, the conformal FDTD
models achieve accuracy levels at mesh resolutions of Ao120 that staircased models might
achieve at mesh resolutions of AJ80 or finer. Especially in three-dimensional simulations, this is
an overwhelming advantage.

Locally conformal FDTD models may also provide advantages relative to the use of
unstructured and partially structured space lattices. Away from the PEC surface, the locally
conformal models globally propagate numerical modes in the uniform and well-characterized
Cartesian Yee lattice. I~ contrast, unstructured-lattice models globally propagate numerical
modes in nonuniform, non-Cartesian meshes which have numerical dispersion and stability
properties that vary with spatial position, and from problem to problem. This variability of the
background mesh leads to some difficulty in characterizing the baseline accuracy of such
models.

Although providing promising results, as shown above in the examples of the winglike
object and the pair of spheres, the original contour-path FDTD models of [3, 4] were subject to
late-time numerical instability. It was determined that this problem arose from the use of
stretched space cells and the resulting requirement for "borrows" of E components to implement
Faraday's law on these stretched cells [11]. While the approach of [11] satisfactorily addressed
this difficulty, the technique of [8] is more accurate and simpler to implement.

10.6.3 Yu-MiUra Technique for Material Structures

We now review the second conformal FDTD technique reported by Yu and Mittra [12], which
provides a simple and efficient treatment of dielectric structures with curved surfaces. Based
upon the calculation of an effective local dielectric constant for E components, this technique is
much easier to use than the contour-path model of [3] or the effective-dielectric-constant method
of (13]. It shows a significant improvement in accuracy relative to staircasing that is comparable
to either of the two previous approaches.

2Provided by Art Ludwig of General Research Corporation.
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E)i+II2,)+IIZ,k

Elkx I,},

Fig. 10.11 FDTD space-cell geometry for the conformal dielectric structure model. Adapted from:
Yu and Mittra, IEEE Microwave and Wireless Components Lett., 2001, pp. 25-27, © 2001
IEEE.

Fig. 10.11 illustrates the space-cell geometry for the Yu-Mittra model in a TEz cut-plane in a
three-dimensional FDTD space lattice. Embedded within the space lattice is a dielectric

structure whose surface intersects this cut plane such that a triangular part of the cell is filled
with dielectric of permittivity £z' whereas the remainder of the cell is filled with dielectric of

permittivity £,. Here, components EJ)+ I, k and Erli+ I/Z,)+ 1/2. k are assigned the permittivity E),

since the entire cell boundary of each of these components resides in medium 1. On the other

hand, an effective pennittivity £ cc is assigned to components E I· .k and E k I/Z . I/Z k' since part
C x I,}. Y I ,J + ,

of the cell boundary of each of these components resides in both media. A simple linear
weighting is used to assign these effective pennittivities:

(~y - 8y)E) + 8y· Ez

~y

(10.17)

Extension to E-components in the TEx and TE
y

cut-planes is straightforward.
Yu and Mittra reported results using this approach to calculate the resonant frequencies of a

rectangular PEC cavity loaded with a cylindrical dielectric rod (£r =38), as well as for a
cylindrical dielectric rod (sr =38) sandwiched between two parallel PEC plates [12]. Benchmark
data for the resonant frequencies were provided by phasor-domain numerical or analytical

techniques. It was found that the Yu-Mittra technique can provide accuracy equal to or better
than that previously reported in [13], which in turn was significantly better than that achievable
using staircasing. Furthermore, the Yu-Mittra technique is simpler to implement because it does

not require area or volume calculations pertaining to how space cells are cut in three dimensions
by arbitrarily oriented surfaces. Hence, the mesh generation for this confonnal technique is quite

simple.
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10.7 MALONEY·SMITH TECHNIQUE FOR THIN MATERIAL SHEETS

This section reviews the basis and illustrative results of a contour-path method to model planar
material sheets of subcell thickness, where the sheet is perpendicular to one of the major axes of
the FDTD space lattice. As reported by Maloney and Smith [14], this technique permits accurate
treatment of both thin dielectric and conducting sheets.

10.7.1 Basis

Fig. 10.12 illustrates embedding a material sheet of thickness d < /1/2 and properties cs ' CIs' and
Ps=/-1

0
in a three-dimensional free-space FDTD lattice. The cross section of the sheet in a lattice

plane j = constant is shown. The sheet is perpendicular to the x-axis and lies between x = if:,. and
x = (i + 1/2)/1. Yee meshing is used everywhere except for special cells that contain the sheet.
In these cells, the E component (normal to the sheet) is split into two parts, E . and E , where

x X,In X,out

"in" or "out" denotes that the component is evaluated either inside or outside of the sheet. This
splitting permits modeling the jump discontinuity of Ex across the air-material boundary due to
the change in c and CI.

x

-.l
d

T

k + 3/2k + 1k + 112kk - 112k - 1k - 3/2

L---t-----if----t-----il----+--__I----+-~z

i + 1

i'--

j-t

i- 3/2

i·1/2

i + t/2

i + 3/2

Fig. 10.12 A slice of the three-dimensional FDTD lattice at a j =constant plane, showing the locations of
the field components used in the thin-sheet model. Source: Maloney and Smith, IEEE Trans.
Antennas and Propagation, 1992, pp. 323-330, © 1992 IEEE.
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In Fig. 10.12, we note that there is no discontinuity of the normal Hx component at the

boundary of the thin material sheet. since its permeability is assumed to be that of free space.

Therefore, H
x

need not be split. Furthermore, all tangential components of the field (such as H y

and E) need not be split, since they are continuous across the material boundary.
z

We first consider E and E . located, respectively, at i and i* just outside and inside of the
X.OUl x, In

sheet. An Ampere's law contour can be constructed in the y-z plane parallel to the sheet to

surround Ex,oul' This contour lies entirely in free space. Thus, the update expression for E
X

• OUI is
the same as for Ex in a regular free-space cell:

I
n+ I

EX• OUI i.j -1/2, k + 112 EX ,OUI[j_1/2.k+1I2 +
[( I

n+1/2

!1t H y I. )-112, k

£ (H In+1/2
o + Zi,j.k+1I2

/
n+1/2 )/ ]

H y I. )-112, HI &

H n+1/2 /).J j-I. k+1/2)/ y

(10.18)

where the coordinates are those of [14J. For E . , the surrounding Ampere's law contour isx. In

located in a y-z plane entirely inside the sheet. While this location modifies the updating

coefficients to account for £s and as' the H -components circulating about the contour are the
same as those of (l0.18). This is because these components are tangential to the sheet surface

and therefore continuous across the boundary located between i and i'. Following the usual

semi-implicit formulation of the conduction current, the time-stepping relation for E. isx, In

therefore

I
n+1

E.
X,1n i', j-1/2, k+1I2

= (l-as/).(12£s)E ·In
1 + as /).( I 2£s X,1n i', j-1I2. k+1/2

(10.19)

We next consider E and E located at i +1/2. These components are tangential to the sheet
)' Z

and lie within /).x12 of the sheet surface. Using Ampere's law contours that pierce the sheet at

right angles, we apply the effective-properties idea of (l0.17):

I
n+1

Ey i+t/2.j,k+1/2 (

1 - aavg /).t I 2£avg ) r
= I + (j /).t I 2£ Ey i+1/2.j.k+1/2

.vg avg

[(
H In+Jl2 _ H In+1/2)/ ]

/)./I£.vg ) x 1+1/2.}.k+1 x 1+1/2.j,k &

(

1/2 In+II2)1+ (j /).t I 2£ H n+ H /).x
avg avg + z l.,j,k+1I2 Z 1+I,).k+1/2

(10.20)
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(

1 - (1avg I1t / 2£avg ) E In
1 + I1t /2 z i+112,j-112,k

(1avg £avg

+ ( 11t/£avg )[(HyCI,lj2_112'k - Hy[I~~I2'k)/l1x ]

1 + (1 I1t / 2£ (In+1/2 In+1/2)!avg avg + H H l1y
x 1+112,j-l,k x ,+1/2,j,k

(l0.21)

where £ and (1 are the average permlttlvlty and conductivity, respectively, within theav g avg

Ampere's law contour, and are given by

£ . == (1 -~) £ + ~ £
avg /).x a /).x s (1avg

d
- -(1

/1xs
(1O.22a, b)

We next consider the Hx components located at i + 1/2. These components are normal to the

sheet and lie within /ixl2 of the sheet surface, A Faraday's law contour which lies entirely in
free space can be constructed in the y-z plane parallel to the sheet to surround each H x ' Thus,
the update expression is the same as for Hx in a regular free-space cell,

Finally, we consider the Hy and Hz components located at i. These components are

tangential to the sheet and lie at the sheet surface. For each H.v and Hz component, we construct a
surrounding Faraday's law contour that pierces the sheet at a right angle. Evaluating the

magnetic flux integral in the enclosed patch, and the E-field line integral around the contour,

yields the following time-stepping relations:

/

"+ 112

Hy i,j-I/2,k 1

"-112

= By iii -1/2,k

!1t
+ + d (E . I" - E ·1" )x.m i",j-1/2,k+1/2 x,m i",j-112,k-1/2

+ !1z (EJ-1/2,j-1/2,k - EX+1/2,j-1/2,k)

(10.23)

H 1"+1/2 = H 1"-112
l i,j,k+112 l i,j,k+112

+
Po /).x Ay

+ d (E . I" - E I" )x,m j·,j+112,k+112 x,in i",j-1/2,k+1/2

+ Ay (E I" . - EIn )
y,-1/2,J,k+1/2 Y i+112,j,k+112

(10,24)
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10.7.2 Illustrative Results

Maloney and Smith reported two tests of the accuracy of their subcell technique for FDTD

modeling of the thin material sheet [14]:

1. Comparison with the exact solution for the attenuation and phase characteristics

of a two-dimensional PEC parallel-plate waveguide having a thin lossy sheet

centered within its walls;

2. Comparison with measurements of the reflected voltage from a resistively loaded
monopole antenna modeled in a cylindrical, rotationally symmetric FDTD grid.

The goals and results of these tests are now summarized. We shall refer to Fig. 10.13 for the
results of the waveguide modeling test.

Waveguide Modeling Test

The Maloney-Smith subcell model of the thin material sheet treats the normal and tangential

components of the E-field at the sheet surface very differently. The normal component is split

into two parts: Ex,oul' time-stepped without direct reference to the sheet material properties £, and

(j; and E ' , time-stepped with direct reference to £ and (j. Tangential components E and E
S x, In S S Y z

are time-stepped using the cell-averaged material properties approach. Reference [14] reported a

test of this model for separate cases, in which either the normal or tangential component of the

E-field of the impinging wave would be more significant within the sheet. This would test the

validity of the physics modeling for the disparate cases of ohmic losses within the sheet resulting

from currents flowing either normally or tangentially within the sheet.

The two-dimensional PEC parallel-plate waveguide was selected as the basis for the tests.

This is because it can support the propagation of both: (1) the TEM mode, having an E-field

perpendicular to the guide walls, and (2) a spectrum of TM modes, each having E-field

components both parallel and perpendicular to the guide walls. By modeling the loading of the

waveguide with a thin material sheet parallel to and centered between the walls, and separately

exciting the TEM or TM mode, the orientation of the E-field of the propagating wave relative to

the thin material sheet could be precisely controlled. Further, there exists an exact solution for

the propagation constant of such a loaded waveguide for both modes.

The following are the parameters of the sheet-loaded waveguide model considered in [14]

and repeated here:

1. Waveguide plate separation =2a =32~ (square grid cells). TM, mode cutoff

frequency =we =nel2a, where c =free-space speed of light.

2. Material sheet thickness = d = 2b; permittivity = Es = £0'

3. Monochromatic excitation with the TEM mode frequency =O. I we; TM, mode

frequency = .fi CO
e

, No change in /);. for these two cases, so that the grid

resolution was an ultrafine /);. =Ac/640 for the TEM mode, and a still very fine

/);. =Ao/45.255 for the TM, mode.
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Fig. 10.13 Validation of contour-path FDTD calculations of the normalized attenuation and phase
constants for propagation in a PEe parallel-plate waveguide loaded by a subcell-thick lossy
sheet. Source: Maloney and Smith, IEEE Trans. Antennas and Propagation, 1992, pp. 323
330, © 1992 IEEE.

Fig. 10.13 depicts the principal results of this study. Each of the four graphs in this figure

Plots ciA, the wave attenuation per guide wavelength within the sheet-loaded waveguide;
g g

and (/3' - /3 )).. , the corresponding difference in the wave phase between the loaded and
g g g

unloaded guide. The pair of graphs on the left show these propagation factors as a function of

the sheet loss tangent Ps' with the sheet-thickness parameter fixed at b/fl = 0.5. This thickness
was selected as the worst-case example, since the assumptions underlying the thin-sheet

approximation have improved validity as b/fl-7 O. The pair of graphs on the right show the
propagation factors as a function of the fractional-cell thickness of the sheet, with the sheet loss

tangent fixed at Ps =1.
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For the TEM-mode results shown in Fig. 10.13(a), the predictions of the FDTD subcell

model agree with the exact solution to better than 1% over several orders of magnitude of ~Ag'

and to better than 0.1" for (f3~ - f3g )Ag • For the TM1-mode results shown in Fig. 1O.13(b), there is

a similar level of agreement for eX A , while the agreement for (f3' - f3g)Ag is about 0.2
0

•
g g g

Reference [14] provides additional validation studies showing that the subcell model also

accurately treats a wide range of sheet permittivity.

Monopole Antenna Modeling Test

Maloney and Smith also reported in [14] a very promising result in which their subcell material

sheet model was used to obtain a validation relative to experimental data for the voltage pulse

waveform reflected back along a feeding coaxial line by a resistively loaded monopole antenna.
Fig. 1O.14(a) depicts their antenna and feed geometry. Referring to this figure, the details of the

monopole antenna system and FDTD model are as follows:

1. The monopole element was an acrylic rod with E = 2.45, mean radius = a ,and
r m

normalized height hla
m

= 29.12.

2. Carbon-loaded paint (conductivity ()s = 200 S/m) was used to create a conducting
layer on the rod with the normalized thickness dla =0.147.

m

3. Coaxial line inner-conductor radius ala =0.893, outer-conductor radius
m

b = 2.30a, and acrylic rod metal-base length ls =4.61a.

4. A rotationally symmetric FDTD grid (see Chapter 12) was used. The subcell
model was adapted to this grid.

Fig. 10.14(b) compares the measured reflected voltage time waveform in the coaxial line

with the FDTD modeling results. The incident Gaussian pulse for this study was assumed to

have a peak amplitude of 1.0V and a normalized decay time constant equal to 0.162(hlc), where

hic· was the characteristic time scale of the antenna. Excellent agreement between the measured

and predicted results is apparent, confirming the accuracy of the thin-sheet model for this case.

Comparison with earlier FDTD modeling and experimental results for a PEC monopole [15]

showed a reduction in the reflections from the end of the antenna caused by the resistive loading.

10.8 SURFACE IMPEDANCE

Surface impedance boundary conditions (SIBCs) have been used in electromagnetic wave

analyses since the 1940s [16-18]. In the context of FDTD modeling, SIBCs can be used to

calculate the fields outside a lossy dielectric or conducting structure without having to model its

interior. This avoids the need to resolve the decay of penetrating fields due to the skin effect.

Instead, the free-space cells immediately adjacent to the surface are provided with a special time

stepping relation that conveys much of the physics of the exact surface fields and permits a large

reduction in computer burdens. This section will discuss and compare several FDTD approaches

to modeling SIBCs.
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is satisfied, (10.25) yields a simple expression for the monochromatic surface impedance:

where Z/r, w) is the complex-valued surface impedance and nCr) is the unit surface-normal
vector.

We consider a time-harmonic plane wave propagating in free space (medium number 1)
at the angle () relative to the outward normal of a lossy dielectric half-space (medium number 2).
The lossy dielectric has the constitutive parameters E

2
, ~, and a 2' with the loss tangent

P2 =a/w~ > 1. After solving for the reflected and transmitted components of the field subject
to the assumption that
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10.8.1 The Monochromatic SIDe

for any orientation of the incident plane wave. [Note that, in (10.27), the final approximation is
based upon the additional assumption that a2 »WE2.] The approximation of (10.27), which is
designated the Leontovich impedance boundary condition [16], is equivalent to assuming that the
transmitted field in the lossy dielectric half-space propagates in the direction normal to the
interface regardless of the orientation of the impinging incident field.

We next consider the specific case of a planar interface at z =0 between free space and the

lossy dielectric half-space, assuming that the monochromatic field has the phasor components

Ny, Ex, and Ez. For an arbitrary incident wave in the free-space region, (10.25) to (10.27) yield
the following relation at a point x along the interface:

Surface impedance is inherently a phasor-domain concept that is founded upon the Ohm's law
relation between the tangential E-field and surface-current vector phasors at a point r on the
interface of free space and a conducting medium:

Using (10.27), (10.28) can be rewritten as

where R is the surface resistance and L is the surface inductance defined bys s
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In the monochromatic case, the frequency dependence of Rand L can be removed by
s s

evaluating these quantities at a particular frequency and treating them as constants [19].
Equation (10.29) can then be written as

Inverse Fourier transformation of (l 0.31) yields the time-domain condition:

a
Ex(X' 0, t) == Rs Hy(x, 0, t) + L -H (x, 0, t)

S at y

(l0.31)

(10.32)

This condition requires that the E- and H-fields be located at the same space-time point (x, 0, t).

In the context of the interleaved Yee mesh, this can be interpreted as [19]

EJ.o
aH n

== Rs Hy [ -1/2 + Ls~
at ;.-1/2

(10.33)

using the H
y

component located in free space I1zl2 from the boundary as an approximation of the
H at the boundary. Applying the contour-path method and Faraday's law to this H yields

y y

a InI1x -H -J.1o I1z y . -1/2 -at I,
(E In - E In ) 11

Z i +112, -112 Z i -1/2. -112 Z

Using (l0.33) to substitute for the final E-field term yields

In (In a In )+ E. I1x - R H + L -H I1x
x I, -I S Y i, -1/2 S at y i, -1/2

(10.34)

(10.35)

We now group the time-derivative terms, approximate the time derivative using a central
difference, use a semi-implicit representation of the RSHy term, and finally solve for the updated
H . This yields the final form of the monochromatic smc [19]:

y

I
n + 1/ 2

Hy i, -1/2

+

(
J1o I1z + Ls - Rs 11t/2 ) H r- 1/2

J1o l1z + L
s

+ R
s

l1t/2 )' ;.-1/2

---I1_t-
R

-
A
-/-

2
[(EJ+1/2.-1/2 - EJ_1/2'_1/2)'(~) + ExI;,_I]

J10 I1z + Ls + s ut UA

(10.36)
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Method ofBeggs et al.

10.8.2 Convolution-Based Models of the Frequency-Dependent SIBC

This section summarizes two FDTD formulations of the frequency-dependent sme based upon
a time-domain convolution approach [19, 20]. These were reported in consecutive papers in the
January 1992 issue of IEEE Transactions on Antennas and Propagation.
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This technique [19] is founded on the impedance boundary condition of (10.27) and (10.28).
Here, however, (10.28) is cast in a slightly different form:

to facilitate the subsequent transformation to the time domain. For convenience, we define the
modified surface impedance Z; as

This allows (10.37) to be rewritten as

Inverse Fourier transformation of (10.39) yields the time-domain convolution

where Z; (t) is the equivalent surface-impedance impulse response obtained by inverse Laplace
transformation of (10.38):

Similar to (10.32), (10.40) requires collocation of the E- and H-fields at the same space-time
point (x, 0, t). Following {l9], (10.40) is interpreted as
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where the nearest-neighbor H y component located in free space dz/2 from the boundary is used
as an approximation of the Hy at the boundary.

Now the contour-path method and Faraday's law are applied to this same H component,
y

yielding again (10.34). Using (10.42) to substitute for the final E-field term in (10.34) provides

d I"L\x& -H =110 dt y i, -1/2

+ EX -1 /).x _ ~2 * dHy
" /).x

1r (J2 n dt dt.
I, -1/2

The convolution in 00.43) can be expressed as a discrete summation to give

~
t n-l { dH I"-m }- ~ L y i, -1/2 Zo(m) /).x

1r(J2 m=O d[(n-m)dt]

where ZO<m) is the discrete impulse response given by [21]

m+l/2 1

Zo(m) == f ra da
m-ll2 -yu,

(10.43)

(10.44)

(10.45)

In (10.45), Zo(m) is obtained by assuming that the fields are piecewise constant in time. Further,
if m =0, the lower limit of the integration interval is O.

After implementing a central-difference approximation of the time derivatives in (10.44) and
solving for the updated value of Hy ' the following time-stepping expression is obtained:

n-l

H1"+1/2 = H1"-1/2 _ Z " [(H 1"-m+1/2 - H1"-m-"2) Z m]
y i, -1/2 Y i, -1/2 I L..J y i, -1/2 Y i, -1/2 oC)

m=O

(10.46)

where

(10.47)

Equation (10.46) is the full-sum convolutional formulation of the dispersive SIBC of [19].
While suitable for computer implementation, (10.46) is so cumbersome as to be impractical for
most problems, requiring storage and processing of all past values of the tangential H-field.
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This computational difficulty can be overcome by using Prony's method (discussed in
Section 15.8.1 of Chapter 15) to expand the kernel function of the convolution in a sum of
exponentials. Then, we can apply the recursive-sum technique (discussed in Section 9.3 of
Chapter 9) to update a sum for each exponential term. Following this strategy, the following
convergent expansion can be constructed [19]:

N

Z () ~ aim
om == ,,--,aJe

1=)

This leads directly to the final form of the dispersive SIBC of [19]:

(10.48)

I
N+1/2

Hy i, -1/2 I
N -1/2

Hy i, -1/2

+ Jl, ~[l :2,2,(0) 1[(EX.", -'" - E,I:-", -",)(~) + E,I:.-, ]
(10.49)

where the lth recursive sum is defined by

II = 1° = 0'I! I i, -1/2 'l!t i, -1/2

(1O.50a)

(10.50b)

Implementing recursive equations (10.49) and (10.50) is much more efficient than directly
implementing (10.45) and (10.46). This is because the recursive formulation is local in time,
requiring computer storage of only the N running sums 'I!t at each boundary point. (For the
examples considered in [19], N =10 provided an adequate approximation.) Further, only two
multiplications and two additions per running sum are needed at each time-step. An additional
feature is that the preprocessing time needed to calculate the time-domain modified impedance
function of (10.41) and its exponential-series approximation of (10.48) is negligible compared
with the normal FDTD requirement.

Method ofMaloney and Smith

Somewhat similar to the method of [19], this convolutional technique [20] was developed
independently and published concurrently. It departs directly from transformation of (10,25) into
the time domain, rather than from (10,39). Thus, in place of (10.40), the following relation is
used to reconstruct the surface E-field:

(10.51)
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Inverse Laplace transformation of (l0.27) for the case /12 := /10 provides the following equivalent
surface-impedance impulse response suitable for use in (10.51):

(l0.52)

where b == -(J/2~, /0 and II are the modified Bessel functions of the first kind of order zero
and one, Vet) is the Heaviside unit step function, and 8(t) is the Dirac delta function. Assuming
that the fields are piecewise linear in time, the convolution integral is discretized to produce the
value of surface E-field that will subsequently be used in (10.34). The nearest-neighbor and
time-extrapolation approximations of the H-field are applied, yielding

where

(

n-I )77 n-I/2 n-m
En =_0_ H + FmHJ 0 - re y L-]/2 ~ ( ) .I' t. -1/2

~~2r m-O

r=m+1

F(rn):= J (l-lr-ml)b~terbt.l[Io(rb~t)+/I(rb~t)]dr
r=m-l

(10.53)

(10.54)

and the lower limit for the integral of (10.54) is set to 0 if m := O. Now, Prony's method is
applied to approximate the function F(m) with a sum of complex exponentials. by direct analogy
to the approximation of Zo(rn) in (10.48). This leads to the following recursive implementation

of (l0.53):

( N)n 770 n-1/2 n
E ::;--H + G.xt.O r;:- yt.-l/2 I ,1..-1/2

~£2r l=1

where the tth recursive sum is defined by

I I
n-1/2 a In-I

G
n -aH +e'G.

I i -1/2 - I y i, -1/2 I I. -1/2

Validation Studies

(10.55)

(l0.56a, b)

Beggs et al. reported FDTD results in [19] testing their SIBC formulation for one- and two
dimensional problems. Their first study involved modeling the illumination of a conducting
half-space by a normally incident plane wave having the time-dependence of a Gaussian pulse.
The SIBC model replaced the half-space with the boundary condition of either (10.36) or (l0.49)
implemented on the interface between free space and the lossy medium. For this example,

£2 := Eo' /12 =/10 ' and (J2:= 2 and 20 S/m. Both the magnitude and phase of the reflection
coefficient were calculated and compared to the analytical solution.
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The results of this study indicated reflection-coefficient errors of 1% to 4% when the
temporal width of the Gaussian pulse was resolved with 256M. Upon changing the grid space
time resolution, the errors varied as O(Llz), consistent with the first-order-accurate rectangular
rule integration assumed for the convolution.

The second study reported in [19] involved modeling the illumination of an infinitely long,
square conducting cylinder centered in a two-dimensional TM grid. The cylinder was 96 mm
square with the material parameters c2 =CO' J12 =J10 ' and 0"2 =20 S/m. It was assumed to be
illuminated by a Gaussian pulse having a lO-GHz bandwidth and temporally resolved with 64Llt.
Two modeling cases were considered: (1) uniform gridding (including the cylinder interior) with
.1. =0.5 mm =0.1 it2 at 10 GHz, and (2) the cylinder replaced by the SIBC of (10.49) applied at
what would have been the cylinder surface, with Ll =3 mm =0.1 ito at 10 GHz. Using both the
normal FDTD model and the dispersive SIBC model, the scattering width was calculated versus
frequency for scattering angles of 0° and 30°. The sets of data agreed to within approximately
±1 dB across the band up to 10 GHz.

Maloney and Smith [20] first studied the excitation of a lossy dielectric half-space by an
infinitely long line current flowing in free space parallel to the interface at a height z =d.
The current waveform let) was a differentiated Gaussian pulse of unity amplitude. Using the
recursive-convolution SIBC (10.55) applied at z =0 to replace the half-space, FDTD simulations
developed data for the tangential E-field along the interface. These data were compared with the
exact solution obtained using the plane-wave spectrum approach [18]. The following parameters
were selected for this example: c2 =co' loss tangent P2p =30 at cop [cop =frequency of the peak
amplitude of the spectrum l(co )], M =T /32 [T = time from the zero-crossing to the peak of

p p

l(t)], and normalized height of line current =k d = 0.25 and 1.0 (k = co Ie).
p p p

Fig. 10.15 compares the exact and FDTD-SIBC results of [20] for the time waveforms of the
total and reflected tangential E-field at a point on the interface laterally displaced by d relative to
the line current. The FDTD-SIBC data agree very well with the exact results for both heights.
However, we note from [20] that this agreement diminishes if P

2p
is reduced to 3, because of a

basic limitation of the SIBC formulation not associated with its FDTD implementation.
The second study reported in [20] involved modeling the propagation of a monochromatic

TEM mode in a parallel-plate waveguide composed of lossy walls separated by a It/IO air gap.
Here, the wall loss tangent P ranged from I to 105 for a relative permittivity of 1. This range was
large enough to transform the wall properties from those of a lossy dielectric to those of a good
conductor. Three data sets were considered: (1) the exact solution for a and 13 (the real and
imaginary parts of the propagation constant) with no SIBe assumed, (2) the analytical solution
for a and 13 for the case of the SIDC of (10.27) applied at the waveguide walls, and (3) the
FDTD solution for a and 13 employing the recursive-convolution SIDe of (10.55). A square-cell
grid with Ll =it/80 was employed.

Fig. 10.16 depicts the principal results of this study. This figure plots aAo' the wave
attenuation per free-space wavelength within the lossy-wall waveguide, and (13 - f3o)/to' the
corresponding difference in the wave phase between the lossy-wall waveguide and the PEC-wall
waveguide. We see that the analytical SIBe and its FDTD numerical realization agree very well
over the entire range of wall loss tangents. We also see that both the analytical and FDTD SIDes
correspond very well with the exact solution for aAo when the wall loss tangent P > 3. In fact,
this high level of accuracy extends over orders-of-magnitude of P and alto' Similar accuracy is
obtained for (13 - f3o)lto when p > 30. Overall, these results show that the FDTD- SIBC
approach of [20] can properly model the impact of wall loss upon wave-propagation
characteristics, an important engineering result.
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Fig. 10.15 Validation of the FDTD-SIBC model of a lossy half-space excited by an infinitely long
impulsive line current flowing in free space parallel to the interface at a height z=d. Both the
FDTD and exact time waveforms of the tangential E-field are graphed at a point on the
interface at a lateral displacement of x =d away from the line current. (a) Total-field time
waveform, current at height kpd =1.0; (b) reflected-field time waveform, current at height
k d =1.0; (c) total-field time waveform, current at height k d =0.25; (d) reflected-field time
~aveforrn, current at height kpd =0.25. Source: Maloney ~nd Smith, IEEE Trans. Antennas
and Propagation, 1992, pp. 38 -48, © 1992 IEEE.
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Fig. 10.16 Comparison of exact, analytical SIBC, and FDTD-SIBC results for normalized attenuation and
phase propagation constants of the monochromatic TEM mode in a parallel-plate waveguide
comprised of lossy walls with £2 = £0 and loss tangents varying from I to 105

. Source:
Maloney and Smith, IEEE Trans. Antennas and Propagation, 1992, pp. 38 -48. © 1992 IEEE.

10.8.3 Equivalent-Circuit Model of the Frequency-Dependent SIBC

Celuch-Marcysiak et al. [22] proposed an alternative approach to dispersive SIBC modeling in
FDTD in which the frequency-dependence of the surface admittance is approximated by the
input admittance of a ladder of conductance (G) and capacitance (C) elements, as illustrated in
Fig. 10.17. While an infinitely long ladder is theoretically needed to match the required
admittance characteristic over all frequencies, in practice a ladder of only 8 to 20 GC units
provides a modeling bandwidth of one to two decades in frequency.

This model was derived in the context of extending Gwarek's independently developed,
two-dimensional equivalent-circuit model of Maxwell's equations [23] to implement conformal
modeling in three dimensions. In [23], time-stepping of the electromagnetic field vector
components was interpreted as repeated updates of voltages across capacitors and currents
through inductors. In essence, the values of capacitances and inductances varied throughout the
model, being proportional to the local material permittivity and permeability, but also being
related to the shapes of (not necessarily rectangular) individual space cells. This same
equivalent-circuit idea was subsequently shown to be useful in formulating Nher useful
extensions to the basic FDTD method such as modeling linear magnetized ferrites, as discussed
in Section 9.5 of Chapter 9. Here, it will be used to derive an efficient FDTD SIDC model.
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Fig. 10.17 Configuration of the equivaJent-circuit SIBC model (After: [22].)

Basis

Consider (l0.34) reformulated in terms offield-integral quantities:

where h =H /1y, e =E &, e =E /1x, and c =l.lo!J.x&//1y· This equation is convenientlyy y l l X X y

interpreted as updating voltage h across capacitor c due to four currents e flowing in or outy y

through four branches. Current exl i, o' corresponding to the boundary tangential E-field.
is to be related to voltage hyL. -1/2 via admittance Y:

c ~ h In = e In - e In ( + e In - ex In,_. 0
y dt y i. -1(2 l i+1(2. -1/2 l i-I 2. -112 x i. -I

such that

eJ.o

Yew)

= Y hi)' i -1(2

(l0.S7)

(l0.S8)

(10.59)

We see that the SIDC of [22J is based on the same analytical expression for the surface
impedance as (l0.27) in the SIDC of [19], but scaled by the cell aspect ratio due to the integral

notation being used. However. it substantially differs from this approach, as well as that of [20).
With the technique of [22], there is no inverse Fourier transformation of a phasor-domain

impedance relation, and no numerical convolution. Instead, we implement a finite ladder of GC

elements (as in Fig. 10.17) at each surface ex' realizing that an infinite ladder of this type
provides an input admittance having exactly the required frequency dependence:

y (w) = ~ jwGC
In (10.60)
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Equating (l0.59) and (l0.60) yields the following relation for the product of G and C:

(10.61)

The actual values of G and C are determined by the desired operating frequency range. A small
value of C and a large value of G provides accurate results at high frequencies, but at low
frequencies allows spurious reflection from the end of the finite GC ladder. As C increases and
G decreases, the ladder-end reflection errors are reduced at low frequencies. However, accuracy
deteriorates at high frequencies due to reflections from the first unit of the GC ladder.

Numerical experiments [22] have shown that a good balance between low- and high
frequency operation of the GC ladder is obtained by: (1) providing each GC unit with 1t/4 phase
shift at the center frequency 10 of the desired operating band, and (2) using 2G for the first unit
of the ladder (as shown in Fig. 10.17). The resulting recommended values of G and C are

(l0.62a, b)

At each time step, the sequence of voltage and current updates along the GC ladder is given by

M(.n_1+ - ~
C k

.n-I)
- 'HI k= 1,2, ...• K (l0.63a)

n (In-1/2 n) Ini = 2G h - V = e
I Yi.-1/2 I '>:i.O

k= 2. 3, ... , K (l0.63b)

(1O.63c)

Finally, the value of eJ 0 obtained in (l0.63c) is used in (l0.57) to update the boundary H-field

h)i. -1/2 from time-step n -1/2 to time-step n +1/2.
We note that the updates of (10.63) differ somewhat from the FDTD leapfrog scheme. This

is because the GC ladder imposes a different time synchronism than the equivalent LC ladder of
the FDTD space lattice. Specifically, the ladder currents in (l0.63b) are correctly synchronized
with the voltages across the respective capacitances. In (l0.63a). the capacitor voltages are
updated explicitly (with first-order accuracy in time) from the currents. There is also an explicit
relation in time between the boundary H-field and the first ladder current, as in (l0.63c).

Validation Study

Reference [22] reported using the equivalent-circuit SIBC technique to model TEM transmission
loss in a 30-cm-Iong, 50n coaxial line (inner and outer conductor radii equal to 3.04 and 7 mm).
wherein both conductors were assumed to have (J = 10

5
S/m. Fig. 10.18 compares the results for

four and eight GC ladder units of Fig. 10.17 with the analytical solution from de to 20 GHz.
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Fig. 10.18 Transmission through a 30-cm length of coaxial line (conductor a= 105 S/m) calculated using
four and eight GC ladder units of Fig. 10.17 to model the frequency-dependent SIBC from dc
to 20 GHz (After: [22].)

From Fig. 10.18, we see that a ladder containing as few as four GC units gave an excellent
approximation over the 10: 1 frequency band 2 to 20 GHz. Extended coverage at lower
frequencies well below 1 GHz required simply increasing to eight the number of GC units in the
ladder at each surface tangential E-field component.

10.8.4 Sources of Error

There are two primary sources of error in the SIBC models reviewed above: (1) neglecting the
incident-wave angle for media with small values of permittivity and loss tangent, and (2) using a
nearest-neighbor approximation and time extrapolation of the surface H

1an
• The first error source

was studied by Kellali et al. [24], who reported an extension of the convolutional SIBC method
of [20] to the oblique incidence case. From [24], the modified 2 s(t) function corresponding to
(10.52) for a vertically polarized wave (Hine parallel to the interface) impinging from free space
at incidence angle e is given by

B' e-
B

'112 [(BIt) (B't)]
8(t) + I - - I - +

2 I 2 0 2

2 (t) = 2
Sv vo

(10.64)

where
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(10.65a)

(10.66)

(10.67)

(10.65b)B' =B=

Z•• (I) = Z., { 0(1) +

For horizontal polarization (E;nc parallel to the interface), the corresponding function is

where

We can categorize FDTD models of the frequency-dependent SIBC into two basic types:
convolution-based techniques and equivalent-circuit-based approaches. The first type involves a
recursive convolution of the surface tangential H-field with an equivalent impedance temporal
impulse response obtained by preprocessing the kernel function into a sum of exponentials.
The second type solves for the currents and voltages along a lumped-circuit GC ladder, which
yields a driving-point temporal response analogous to that exhibited by the tangential E- and
H-fields at the surface of a conductor.

The equivalent-circuit approach has two potential advantages: (1) robust and predictable
stability and convergence for the high conductivities (j of typical metals, and (2) no signal pre
processing is needed. While computer memory must be provided for the voltages and currents
associated with the two to eight units of each GC ladder, the convolution-based approaches also
require storage for each of the recursive sums, which may number 10 or more, depending upon (j.

The remainder of the development proceeds in the same manner as (10.53) to (10.56). We note
that these refinements complicate the implementation of the convolutional SIBC model of [20],
but markedly extend the range of its applications to low-permittivity half-spaces.

The second error source arises from' the fact that the SIBC models reviewed here require
knowledge of H

1an
at the same space-time location on the structure surface as that of E tan •

This conflicts with the spatial and temporal interleaving of E and H that forms the basis of the
Yee algorithm. For the techniques reviewed in this section, the required H UIn at the surface is
approximated by the parallel H-component located one-half space cell away from the surface in
free space, and one-half time-step earlier in time. This causes the time-domain SIBC methods to
have only a first-order convergence. Roden and Gedney [21] proposed two approaches to
improve temporal convergence. An improved spatial extrapolation of the near-surface H-field is
also conceptually feasible. In fact, for the equivalent-circuit technique, this can be readily
accomplished by adjusting the parameters of the first GC unit.

10.8.5 Discussion
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10.9 TffiN COATINGS ON A PEC SURFACE

10.9.1 Method of Lee at al.

In Chapter 9, the auxiliary-differential-equation technique was presented as an alternative to the
recursive-convolution method for FDTD modeling of dispersive materials. This section

summarizes the basis of such a technique reported by Lee et al. [25] for modeling a thin, lossy
dielectric coating on a PEC surface. For consistency with the previous discussion, the same
notation for fields and material properties is maintained. This notation differs somewhat from

that presented in [25].

Basis

Consider a planar PEC surface located at z ;= 0 having a thin, lossy material coating of thickness

h. The coating has the constitutive parameters ~;= ~rEO' )12 = J12r )1o' and a2 :1; O. Subject to the
assumptions involved in (10.27), the tangential E-field phasor at the free-space I coating interface

can be related to its normal derivative by

- 7J2r ( ) dEEx(x, -h) = k tan kok2r h ~(x, -h)
o aZ

where ko is the free-space wavenumber, and

(10.68)

)12r
1J 2r = (lO.69a, b)

are the coating's relative wave impedance and relative wavenumber, respectively.
Equation (10.68) can be rewritten as:

sin (kok2 r h)
cos (kok2 r h)

dE
_x (x, -h)

dZ
(10.70)

Using Taylor's series expansions of the sine and cosine functions, (10.70) can be expressed as
the ratio of two power series in the argument kok2rh:

(k k h)3
(k k h) _ 0 2r

o 2r 6 dE
_x (x, -h)

dZ

(10.71)
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Now, cross-multiplying (10.71) yields

2
+

24
...JE.(x, -h)

6
+

120
- ...JdEx (x, -h)

dz
(l0.72)

Retaining the first three terms of each expansion and substituting ko=OJ/c and k2r of (l0.69b)
into (l0.72), we obtain the final phasor-domain relation between the tangential E-field and its
normal derivative:

h
2

1l2r (j OJ(Y2 2 J+-----OJE

2 2 £ 2r
C 0

Ex(x, -h)

(10.73)

At this point, the inverse Fourier transform is applied term by term to (10.73) to provide the

corresponding time-domain differential equation. The following transform pairs make this
possible by inspection:

d d2
2

¢:::> jOJ ; - ¢:::> -OJ
dt dt 2

d3
_ jOJ3;

d4
4- ¢:::> - ¢:::> OJ

dt3 dt 4

(l0.74a, b)

(l0.74c. d)

Applying the Fourier transform pairs of (10.74) to (10.73) and retaining terms only through

O(h
2

) yields the following first-order time-domain SIDe:
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[ (h 2 J (h
2

J 2]J.l2 r (J'2 a /12r C2r a
1 + 2 - + 2 -2 Ex(X' -h, t)

2coc at 2c at

(10.75)

Retaining terms through O(h
4

) yields the following second-order time-domain SIBe:

(
2 J ( 2 4 2 2J 2h J.l2 r 0"2 a h /12r C2r h J.l2 r (J'2 a

1 + 2 - + 2 + 2 4 -2
2cO c at 2c 24 Co c at

(
2 J ( 2 4 2 2J 2h J.l2r 0'2 a h J.l2r C2F h J.l2r 0'2 a

1+ 2 -+ 2 + 24 --2
6coc at 6c 120co c at aE

__x (x, -h, t)
az

(10.76)

The SIDC of (10.75) or (10.76) can now be applied at the interface of free-space and the thin
coating, thereby eliminating the need to employ a fine grid to model the coating or the
underlying PEC structure. To obtain an expression for the required normal derivative of the
E-field at the point of application of the SlBC, a quadratic interpolating polynomial was
developed in [25] using the following three unevenly spaced datapoints:

1. E =0 at the surface of the PEC (z =0);
x

2. Finite Ex at the free-space / thin-film interface (z = -h), computed by applying
(10.75) or (10.76);

3. Finite Ex in free space one cell away from the free-space / thin-film interface
(z =-h - &), computed via normal Yee time-stepping.

Differentiating the interpolating polynomial with respect to z and evaluating at z = -h,
we obtain the following relation for the normal derivative:
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aEx I = _[ heff
] E I _ (L\z - heff

) E Iaz x. -h (herr + L\z) L\z x x. -h-tll heff &. xx. -h
(10.77)

where the effective coating thickness herr =h.,j£;: accounts for the slowing of the wave velocity
in the coating due to its dielectric constant. Central-differencing can be used to implement the
time derivatives in (10.75) and (10.76).

Discussion

For typical grid resolutions, the second-order SIBC of (10.76) was shown in a sample
computation in (25] to provide less than 1% error from 0 to 10 GHz for the magnitude of the
reflection coefficient of a coated PEe. For such problems, this approach appears to be
competitive in accuracy with recursive-convolution methods, and has the advantage of not
requiring the Prony's method preprocessing step.

10.9.2 Method of Karkkainen

Kiirkkiiinen (26] reported a subcell FDTD technique for modeling electrically thin dispersive
layers, including coatings on a PEC surface. The layers and coatings can have a permittivity and
permeability characterized in the frequency domain by multiple pole-pairs, which are treated in
the time domain using an auxiliary differential equation technique. This model reduces to that
reported by Maloney and Smith (14] for the case of dielectric and conductive layers. Since the
Maloney-Smith model was discussed in detail earlier in Section 10.7, the reader is referred to
[26] for the required modification of the field updates to accommodate the material dispersion.

10.10 RELATIVISTIC MOTION OF PEC BOUNDARIES

The engineering motivation for studying electromagnetic wave scattering by relativistically
moving bodies has been provided by work in the generation of millimeter and submillimeter
waves via the interaction of microwaves with rapidly moving plasma fronts or electron beams.
Classical theory in this area models the physics of a moving reflecting surface by employing
system transformations where the surface is at rest. This approach has been used to solve
canonical moving-body problems, such as planar conducting and dielectric interfaces in uniform
translation or vibration, uniformly moving or vibrating cylinders and spheres, and simple rotating
shapes. However, difficulties arise for general scatterers, since closed-form solutions cannot be
obtained when the scatterer shape, composition, translation, and surface vibration are arbitrary.
Solution of such general problems is important in the context of understanding microwave beam
interactions with moving or oscillating charged particle beams of finite cross section.

Although appearing at first glance to have a very different basis, the theory of scattering by
relativistically moving PEC surfaces can be cast into the SIBC framework discussed in Section
10.8. As reported by Harfoush et a!. [27], the key is to stay in the rest frame and apply the
relativistic surface boundary condition of (28]. Since this boundary condition is instantaneous in
time and therefore requires no convolution, it can be implemented more easily than those
considered in Section 10.8.2. This section will discuss the basis and illustrative results of
Harfoush's approach of [27].
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10.10.1 Basis

Consider an electromagnetic wave in free space (medium I) impinging upon a uniformly moving
material half-space (medium 2). Let v and ndenote the velocity and the unit normal vector of
the moving interface, respectively. Then, the following boundary conditions on the total
electromagnetic field [28J must be satisfied at the interface for arbitrary veloci ties, 0 $ v < c:

(10.78)

(10.79)

(10.80)

(10.81)

where Em' Dm, Hm, and Bm are, respectively, the electric field, electric flux density, magnetic
field, and magnetic flux density in media m = 1, 2 at the interface; p. is the surface electric
charge density; and J. is the surface electric current density.

We note that (10.79) and (10.81) are unchanged from the ordinary zero-velocity boundary
conditions that enforce continuity of the normally directed D and B across an interface. Further,
(10.78) and (10.80) reduce to the ordinary enforcement of continuity of the tangential £ and H
across an interface if either v =0 or n.v =O. The latter implies that any motion of the half
space perpendicular to the surface normal (i.e., in the plane of the interface) has no impact upon
the boundary condition. Only motion perpendicular to the plane of the interface has an effect.
Without any loss of generality, we will assume in the subsequent development that the half-space
has a zero-velocity component in the plane of the interface so that v =vn n.

Now, consider the application of (10.78) to the case of the PEe half-space. Here £2 =0 and
B =0, and (10.78) can be rewritten as

2

(10.82)

Using the vector identity A x (B x C) =(A' C)B - (A .B) C, we can expand the right-hand side
of (10.82) to obtain

nx £1 = nx (B, X v) + (n· B
J

) v

NoW applying the cross product -n x ( ... ) to both sides of (10.83) yields

E = B x v - nx (n .B ) VI 1 1

(10.83)

(10.84)

However, nx v = 0 by the assumption that v =vn n, so that we have the following E-field
boundary condition at the surface of the moving PEe half-space:

(10.85)
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Inspection of (10.85) reveals that unfamiliar physics results for v> O. Namely, the
tangential E at the surface of a moving PEC boundary can be finite rather than the required zero
when the boundary is at rest. However, this does not result in an infinite surface current density,
because the usual Ohm's law expression J = aE is no longer valid. Instead, for a uniformly
moving conducting surface, the total induced current is the result of the conduction current plus
an extra Lorentz force term. Defining [3= vic, the total current is given by

J
a(E + v x B)

~ I - [32
(l0.86)

where, for a PEC, E + v x B =0 by (10.85), and therefore J remains finite. In many cases,
s

only small velocities are considered, and the term [32 is negligible compared to 1.
For a moving PEC surface, relativistic boundary condition (10.85) linearly relates the local

values of the instantaneous total tangential electric and magnetic fields at the surface. Because
this relation is similar in form to the SIBCs discussed earlier in this chapter, it presents a similar
problem: how to implement a space-time-coincident boundary condition in the context of the
FDTD algorithm that does not calculate its E- and H-fields at the same points in space and time.
The nearest-neighbor approximation of the surface H-field, used successfully in [19] and [20], is
useless here because of the potentially significant positional change of the PEe surface during
each 0.5M due to its relativistic velocity. Here, it is mandatory to derive an equivalent form of
(10.85) that is consistent with the temporal interleaving of the field values in FDTD.

The derivation of the required relativistic boundary condition was reported in [27], and is
summarized below. For consistency with earlier discussions in the chapter, the derivation
assumes a +x-polarized incident plane wave in free space propagating in the +z-direction. This
wave impinges upon a PEC half-space located at Z ~ 0 that is in uniform motion with velocity
±vi. Therefore, the incident E- and B-fields in the free-space region z < 0 are given by

Ex. inc (Z, t) = fez - c t) ;
1

BY,inc(Z, t) := -Ex ine(Z, t)
C '

(1O.87a, b)

where f is an arbitrary function. The reflected fields have the form

Ex.rcf(z, t) := Rf(z + ct) ; (10.88a, b)

Summing the incident and reflected components, the total B-field in the free-space region is

I ( )BY,lol (z, t) := B. + B f = - E. - E fy,me .I',re C x,me x,re

but since E f =E - E ' ,we have
..t, re X.lot X,InC

(10.89)

(10.90)
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For the assumed velocity of the PEe half-space, the relativistic boundary condition obtained

from (10.85) is given by

EX. lot = ±v By,tOI = V By, lOt (10.91)

where it is clear that E takes the same sign as the velocity of the half-space. After substituting
X.IOI

B from (10.90), (10.91) yields
y.IOI

v ( )E = - 2E. - Ex, tOI eX, me x, lot
(10.92)

Upon collecting terms, we obtain the final expression for Ex •tot at the moving boundary in terms

of the incident field:

(
2 vic )E - E

X,tOI - I + vic x,inc (
2f3 )= -- E1 + f3 x,inc

(10.93)

Following an analogous procedure, we can also obtain the expression for B I I at the movingy,o

boundary in terms of the incident field:

(
2clv ) ( 2 )B- B=--B

y,lOl - 1 + elv y,inc I + f3 y,inc
(10.94)

Further, both of these relations can be generalized for the case where the half-space velocity v is

arbitrarily oriented in the x-z plane by defining

f3 ==
I A

--n' v
e

(10.95)

The negative sign in this expression results from the unit outward normal at the surface of the

half-space pointing in the -z-direction.
Using (10.93) to (10.95), the values of the total tangential fields at any point on the moving

PEe boundary, at any point in time, are given solely in terms of the known incident fields at that
same point in space and time. This is much simpler than the convolutional relation used in
Section 10.8.2 for general dispersive media. Assuming that the scatterer moves along a grid axis
as in [27], the FDTD implementation of the relativistic boundary condition now becomes
straightforward. For example, assume that the FDTD algorithm is ready to update the E-fields in
the grid at a particular time-step. In sequence, the algorithm must:

1. Determine the instantaneous position of the PEe boundary in the FDTD grid
from its assumed uniform motion;

2. Perform normal Yee updates for all E components in free space, except those at
locations less than !:i.12 from the boundary;
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3. Apply (l0.93) to calculate the tangential E-fields at the intersection of the PEC
boundary and each grid line along which E-components are located;

4. Use linear interpolation for each remaining E-component by averaging the value
at the PEC boundary computed in step 3 with the adjacent value in free space
computed in step 2.

Now the simulation time jumps tJ..tl2, and the algorithm proceeds with the H-field updates in the
grid. Each of the four steps listed above is followed by analogy.

For a wave obliquely incident upon the moving PEC boundary at an angle Ojnc relative to the
normal, the relativistic boundary conditions of (10.93) and (10.94) must be modified to account
for the velocity-dependent reflected-wave angle O,ef' From the special theory of relativity,
0ref satisfies the following relation [29]:

cos eref =
(1 + [32) cos ejne 2 [3

1 - 2/3 coseine + /32
(10.96)

A derivation similar to the normal-incidence case leads to the following relativistic boundary
conditions suitable for FDTD implementation:

Etan • lOl

[3 (cos e ( + cose )=± re me E .
1 + [3 D tan, me

- coso,ef
(10.97)

Btan . lot =
cos 0ref + cos°me

--------- B
lIlIl

•
inc

(1 ± [3 cos e,ef ) cos Ojne

(10.98)

where the fields refer to the total tangential values at the moving PEC boundary. The numerical
implementation is now only slightly more complicated than for the normal-incidence case
because of the angular dependence of the incident field values at the surface of the moving
boundary.

10.10.2 Illustrative Results

We now review three numerical experiments reported by Harfoush et al. [27] to validate the
FDTD relativistic boundary conditions discussed in Section 10.10.1. These experiments were
designed to test this technique for both uniformly translating and vibrating PEC surfaces.

Uniformly Moving PEe Surface, Normal Incidence

The first example in [27] involved the illumination at normal incidence of a uniformly moving
PEC surface by a plane wave of frequency Wine' This geometry led to the modeling of the
double-Doppler effect [30], in which both the frequency and amplitude of the reflected wave are
scaled relative to the incident wave by the same multiplying factor, a =(1 - /3) / (l + [3), where
[3 is defined in (10.95).
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Using a uniform FDTD grid of resolution ~ =..1,0/20 at wine' eight velocities of the PEC
surface were modeled. Three simulated the surface advancing toward the incident wave
(f3 = -117, -1/5, and -1/3), and five simulated the surface receding from the incident wave
(f3 = 1/7, 1/5, 1/4, 1/3, and 1/2). A OFf was applied to the field time waveforms to obtain the
reflected spectrum. In all of the cases studied, it was found that the frequency of the main
upshifted or downshifted reflected spectral component agreed with the exact double-Doppler
theory up to the resolution limit of the OFf. Further, the amplitude of this component agreed
with the theory to better than 1.5%, and spurious frequency components in the reflected spectrum
were limited to less than 5% of the amplitude of the incident wave.

Vibrating PEe Suiface, Normal Incidence

The second example in [27] involved the illumination at normal incidence of a PEC surface
vibrating at frequency wy • Here, the surface was assumed to be located at z = dsin(wyt), and the
maximum normalized surface velocity was f3 = wydlc = vma/c. The exact solution [31,32]
shows that the reflected spectrum is similar to that of an FM tone-modulated signal. Namely,
the vibrating surface generates an infinite number of reflected spectral components having the
frequencies w. ± m (.() , where the amplitude of the m'th component is proportional to J ,

Inc v m

a Bessel function of the first kind of order m. The argument of 1m depends upon the amplitude
and frequency of the vibration. A key element in the FDTD model reported in [27] was the use
of the "Doppler approximation" [30,31], where the relativistic boundary conditions of (10.93)
and (10.94) were applied at each time-step based upon the assumption that the PEC surface
moves with a uniform velocity equal to its instantaneous vibrational value.

Fig. 10.19(a) compares the FDTD and exact results for the reflected spectrum of the specific

Case W =0.1 W , f3 =0.1, and grid resolution ~ =..1,0120 at w. . There is less than 5% error inv me inC

the magnitude of each spectral sideband, and only 0.27% error in the magnitude of the
component at Wine' Fig. I0.19(b) shows that, upon varying the vibration parameters over a wide
range, the FDTD-calculated magnitude of the reflected component at Wine obeys the exact
10C2f3w;n/w) dependence over an argument range of 0 to 5 for 10' including the interesting null
of the reflection at the zero of the Bessel function. The level of agreement with the exact

solution is the same regardless of whether f3 is fixed at 0.1 and w. /W is varied from 0 to 25me v ,

or f3 is varied from a to 0.5 and win/Wy is fixed at 5. These parametric studies are strongly
supportive of the validity of the FDTD modeling approach for this case.

Vibrating PEe Suiface, Oblique Incidence

The third example in [27] involved oblique plane-wave incidence on an infinite vibrating PEC
surface using the relativistic boundary conditions of (10.97) and (l0.98). From the FDTD
standpoint, the primary challenge was to model an infinitely long structure in a finite grid.
To avoid edge-diffraction effects, it was decided to model a long PEe slab having edges so far
away from the observation point that they were causally isolated during a well-defined early time
period. The scattered-field waveform observed during this time window was exactly that if the
FDTD grid and PEC slab were infinite. From the analytical standpoint, this oblique-incidence
problem was much more complicated than normal incidence, since it has no closed-form
solution. As described in (33), the analytical solution can be written as an infinite series using a
plane-wave expansion, but then the coefficients in the series must be obtained numerically.
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Fig. 10.19 Validation of FDTD results for the reflected spectrum at normal incidence on an infinite PEC
surface vibrating at a relativistic speed: (a) spectral sideband amplitudes for my = 0.1 mine'

13 = 0.1, and grid resolution!:>. = \/20 at mine; (b) magnitude of reflected amplitude at mine for
a wide-ranging parametric study of surface velocities and vibration frequencies, showing the
JoC2f3m. 1m) Bessel function dependence. Source: Harfoush et aI., IEEE Trans. Antennas

IOC v
and Propagation, 1989, pp. 55-63, © 1989 IEEE.
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Fig. 10.20 Validation of FDTD results for the envelope of the scattered E-field versus time at observation
points z= - 5d and z = - 50d in free space in front of a relativistically vibrating PEe surface
illuminated at oblique incidence. Vibration parameters: (I)::: 0.2(1). d =it /2n n = 0 2.

V 1~' 0' p .
Source: Harfoush et aI.. IEEE Trans. Antennas and Propagation, 1989, pp. 55 -63, © 1989
IEEE.
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Fig. 10.20(a) compares the FDTD and infinite-series results for a test case involving a TM
sinusoidal plane wave illuminating a 20Ao x 3Ao vibrating PEC slab at Binc = 30·. Here,
Wv =a.2wine , the peak slab displacement is d = A/2rt, and f3 =0.2. There is good agreement
between the FDTD results and the solution of [33] for the envelope of the scattered E-field
versus time at the observation points z =-5d and z= -SOd in free space in front of the slab.
Fig. 1O.20(b) shows similar good agreement for an even more oblique angle, Bine =60·. 'rQese
results indicate that Harfoush's method of [27] has promise for engineering models of microwave
beam interactions with moving high-density charge fronts.

10.11 SUMMARY AND DISCUSSION

This chapter discussed how the integral forms of Faraday's law and Ampere's law can be used to
develop for the FDTD method accurate local subcell models of: (l) narrow slots in conducting
plates, (2) thin wires, (3) curved PEC and dielectric surfaces, (4) thin material sheets,
(5) surface impedance (including the skin effect), and (6) PEC surfaces subject to relativistic
translation and vibration. These subcell models greatly increase the accuracy, efficiency, and
range of applications of FDTD simulations.

Readers should understand that the subcell models discussed in this chapter are perturbations
of the basic Yee algorithm. Thus, the numerical stability criteria developed in Chapter 4 no
longer apply. Because of the complexity of the stability derivations, in many cases an
"engineering approach" is utilized wherein numerical experiments are conducted to find a time
step that produces stable results for the problem at hand. Despite the broad range of applications
discussed here, none of the subcell models appear to have unusually restrictive stability bounds
relative to those given in Chapter 4. However, we must exercise care in the choice of the time
step because the stability bounds for several of the procedures discussed in this chapter have not
yet been established analytically.
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PROJECTS

PlO.l Implement the diagonal split-cell model (Section 10.3.1) for an elliptical PEC cylinder in
a TEz code. Compare the monostatic RCS versus look angle calculated using this
approach to that computed using a staircase approximation of the cylinder's surface.
What is the grid resolution required for the staircase results to closely approximate the
split-cell RCS data, if the latter were obtained using ~ =Ao120? Compare relative
computer burdens for the two methods.

PIO.2 Implement the contour-path model of the narrow slot (Section lOA) in a TE code.
z

Replicate the results of Fig. 1O.3(a) for the gap E-field in the slotted PEC screen.

PIO.3 Implement the contour-path model of the thin wire (Section 10.5) in a three-dimensional
code. Replicate the results of Fig. 10.6 for the input impedance of the dipole antenna for
the case of 21 cells spanning the antenna length.
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PIO.4 Repeat PIO.1, but use the Yu-Mittra technique (Section 10.6.1) in a TEz code.

PIO.5 Implement the Maloney-Smith thin-material-sheet model (Section 10.7) in a TEz code.
Then replicate the results of Fig. 1O.13(a).

PIO.6 Implement the Celuch-Marcysiak skin-effect model (Section 10.8.3) in both TEz and TMz
codes for a parallel-plate waveguide. Then, verify each model relative to the analytical
solution for the attenuation of a fundamental mode in the waveguide. Examine the
bandwidths over which the solutions are accurate to within 5% of the exact values as a
function of the number of GC units in the ladder networks.



Chapter 11

Nonuniform Grids, Nonorthogonal Grids,
Unstructured Grids, and Subgrids

Stephen Gedney, Faiza Lansing, and Nicolas Chavannes

11.1 INTRODUCTION

The previous chapters have presented the FDTD algorithm as based on an orthogonal, regular
Cartesian lattice. Due to the orthogonality of the grid and the uniform spacing of the gridpoints,
the first-order derivatives of Maxwell's equations can be approximated using central-difference
operators. This leads to a second-order accurate solution in both space and time. This error,
however, is associated only with the differential operators. Additional error can be encountered
through the boundary conditions imposed on the discrete fields.

It was shown that PEC and PMC boundaries are naturally treated by the basic FDTD
algorithm. Further, discontinuities in material parameters are also naturally treated in a second
order-accurate manner. However, these boundary conditions assume that the physical boundary
conforms to the orthogonal lattice. In the event that the grid does not conform to the shape of the
physical boundary due to its curvature, additional error results. This is principally because the
desired boundary conditions cannot be enforced directly on the physical boundary, but rather on
an auxiliary boundary which is a staircased approximation of the physical boundary.
Unfortunately, this may lead to a formulation that does not converge to the correct answer,
no matter how fine the mesh is made to better resolve the boundary contour [I]. In studies where
the field interaction is highly dependent on the shape of the boundary, this can lead to substantial
error in the calculation. As a result, FDTD algorithms using boundary-fitted grids have been
actively studied. Chapter 10 reviewed a popular class of techniques whereby globally orthogonal
space lattices are provided with locally conformal subcell models to permit modeling of fine
geometrical features.

This chapter discusses more general FDTD techniques that allow the usage of nonuniform
grids, nonorthogonal grids, unstructured grids, and subgrids. These techniques implement either
conformal meshes for structure surfaces, or provide enhanced spatial resolution for conventional
staircasing. Specific topics to be covered include: (1) nonuniform orthogonal grids, (2) global
curvilinear coordinates, (3) irregular nonorthogonal structured grids, (4) irregular nonorthogonal
unstructured grids, (5) the planar generalized Yee algorithm, and (6) Cartesian subgrids.
Note that all of these approaches fall within the general context of classical FDTD techniques.
For emerging hybrid finite-element time-domain (FETD) I FDTD techniques similarly aimed at
conformal or enhanced-resolution modeling, see Chapter 19.
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11.2 NONUNIFORM ORTHOGONAL GRIDS

The FDTD algorithm is second-order-accurate by nature of the central-difference approximations
used to realize the first-order spatial and temporal derivatives. This leads to a discrete
approximation for the fields based on a uniform orthogonal lattice. Unfortunately, structures
with fine geometrical features cannot always conform to the edges of the uniform lattice.
Further, it is often desirable to have a refined lattice in localized regions, such as near sharp

·edges or corners, to accurately model the local field phenomena. With a uniform lattice.
this results in global refinement of the mesh density. Since such a high level of refinement is not
needed in all regions. this leads to an unnecessary increase in the computational burden. Chapter
10 addressed this issue by using a local subcell approach to model fine features. However.
a reduction in the actual cell size is sometimes necessary to more accurately model the local
fields, rather than a subcell model. This can be implemented with the use of nonuniform grids.

A quasi-nonuniform grid FDTD algorithm was introduced by Sheen [2]. This method is
based on reducing the grid size by exactly one-third. By choosing the subgrid to be exactly
one-third, the spatial derivatives of the fields at the interface between the two regions can be
expressed using central-difference approximations, resulting in a second-order-accurate
formulation. This technique was successfully applied to a number of microwave circuit and
antenna problems [2, 3]. However, this method is limited to specific geometries that conform to
this specialized grid.

It is clear that more general geometries could be handled by a grid with arbitrary spacing.
Unfortunately, central differences can no longer be used to evaluate the spatial derivatives of the
fields for such a grid, leading to first-order error. However, it was demonstrated by Monk that,
although this formulation does lead to first-order error locally, it results in second-order error
globally [4, 5]. This is known as supraconvergence [4-7]. In this section, a supraconvergent
FDTD algorithm based on nonuniform meshing is presented.

A three-dimensional nonuniform lattice is introduced. The vertices of the lattice are defined
by the general one-dimensional coordinates:

(11.1)

The edge lengths between vertices are also defined as

i=lN-l}'• x ' j=l,Ny-l}

(11.2)

We introduce the following notation defining the cell and edge centers in the nonuniform space:

(11.3)

A set of dual edge lengths representing the distances between the edge centers is then introduced:

{h;X =(Llx; + &;_1) /2; i =2, NJ ;

{ h; = (&k + &k-I) / 2; k =2, NJ

{ h; = (fiYj + fiyj _ , ) / 2; j =2, Ny}

(11.4)
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Finally, the E- and H-fields in the nonuniform grid are denoted as in the following examples:

E /n == Ex(X•. + 1/2 , Y
j
., Zk' n!lt)

x . 1/2 . k.+ ,I,

In+112
H == H [x., Y'+ 1/2' Zk+1/2' (n + 1/2)dt]

x i,j+1/2,k+1/2 x 1 j

(l1.5a)

(II,5b)

The nonuniform FDTD algorithm is based on a discretization of Max well's equations in
their integral form; specifically, Faraday's law and Ampere's law:

fE'dL
L

-~fJB.dA
at A

(11.6)

= ~fJD'dA + fJaE'dA + fJJ'dA
at A A A

(11,7)

The surface integral in (11.6) is performed over a lattice cell face, and the contour integral is
performed over the edges bounding the face, as illustrated in Fig, Il.l(a). Similarly, the surface
integral in (11,7) is performed over a dual-lattice cell face,

Evaluating (11,6) and (11.7) over the cell faces using the discrete field approximations in
(11.5), and evaluating the time derivatives using central-difference approximations leads to

EJ . 1 k dx i - EJ 1/2 . k dx i
i+1/2,j+ , 1+ ,j,

- E In t1.y. + E r t1.y.
Y i+I,j+l/2.k j Y i.j+1/2,k I

[ (

H In+lI2 - H In-1/2 J
= _ J1 Z i+1/2,j+1/2,k : i+1/2,j+1/2,k

i+II2,j+1/2,k

t1.t
In+1/2 ]+ M dx. t1.y.

Z i+1/2.j+1/2,k I)

(11.8)

In+1/2 In+1/2 1"+112H h -H h -H h
x i,j+1/2,k+1/2 Xi x i,j-1/2,k+1/2 Xi Y i+1/2,j,k+1/2 Yj I

n+1/2
+ H h

>' i-l/2,j,k+112 >'/

=

(

E 1"+1 + E In Ja i•j ,Hl/2 Z i,j,H1/2 Z i,j,k+1/2

2 t1.t
+ Jzr+1/2

1,},k+1/2

h h
Xi >'j

(11.9)

where ei ,j,k+II2' a j ,j,k+1/2' and J1i+1/2 ,j+1/2,k are the averaged permittivity, conductivity, and
permeability, respectively, about the grid edges [see (l 1.84a, b)]. Subsequently, this leads to an

explicit update scheme:
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Fig. 11.1 Lattice faces bounded by lattice edges defining surfaces of integration bounded by closed
contours.
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H In+1I2
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Xi

H r+
1/2

) - J
z

In+1/2

y i-1/2,i,k+1/2 ',}, k+1I2

(11.11)

Similar updates for the remaining field components are easily derived by permuting the indices
in (11.10) and (11.11) in a right-handed manner. This leads to an explicit solution for the E- and

H-fields, which is stable providing that

t1t <

c

1

(l1z
kmin

)2

(11.12)

where Ill, , , t1y, , , and I1zk , are the minimum edge lengths along the X-, y-, and z-directions,
Joun Jmm mm

respectively, in the nonuniform grid.
The explicit updates for the H-fields in (11.10) are second-order-accurate in both space and

time, since the vertices of the dual lattice are assumed to be located at the cell centers of the

primary lattice. On the other hand, the explicit updates for the E-fields in (11,11) are only first

order-accurate in space, This results in local first-order error in regions where the grid is
nonuniform. However, Monk has shown that despite the local first-order error, the nonuniform

model is globally second-order-accurate [4,5]. Specifically, the method is supraconvergent
since it converges with a higher order accuracy than the local error mandates.

The principle of supraconvergence is now demonstrated through a numerical example.

Referring to Figs. 11.2 and 11.3, we consider calculation of the resonant frequencies of a
rectangular 0.5 x 1.0 x 0.25m PEe cavity using the nonuniform FDTD method, A random grid
spacing for Xi' Yj' and Zk is assumed such that
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{Xi = (i -1)~ + 0.59\~ ; i =1, NJ

{Y j = (j - 1)~y + 0.59\~y

{Zk = (k -1)~ + 0.59\~

j =1, N),}

k =1, NJ

(l1.13a, b, c)

where -1/2 $ 9\ $ 1/2 is a random number. Note that the cavity boundaries remain fixed.
The interior of the cavity is excited with a time-varying magnetic dipole placed off a center

axis. The magnetic current is z-directed and has the Gaussian time variation

M(t) = (11.14)

where T=0.15 ns and to=0.45 ns. Expressions analogous to (11.10) and (11.11) are used to
time-step the H- and E-fields within the cavity region, subject to the standard PEC boundary
condition on the cavity walls, ii x E =O. The time-varying E-field is then probed off a center
axis to avoid the nulls of odd resonant modes, and the cavity resonant frequencies are extracted
using an FFT, as per Chapter 15, Section 15.8.

Fig. 11.2 shows an example of the Fourier spectrum of the time-varying field within the
cavity. Here, the spectral peaks correspond to the resonant frequencies of the cavity modes.
Subsequently, the average grid cell size h is reduced, and the entire simulation is run again.
Fig. 11.3 graphs the results of four such runs for the error of the nonuniform grid FDTD model in
calculating the resonant frequency of the TEllO mode relative to the exact solution [8], as well as
a generic order(h2

) accuracy slope. We see that the convergence of the resonant frequency is

indeed second-order.
The nonuniform FDTD· method is extremely well-suited for the analysis of planar

microwave circuits. The geometrical details of such circuits are typically electrically small,
leading to very small cell sizes. Further, microwave circuits are often located in an unbounded
medium, requiring absorbing boundaries to be placed a sufficient distance from the circuit to
avoid nonphysical reflections. For uniform meshing, these two characteristics can potentially
combine to produce very large lattices. With a nonuniform grid, the local cell size can be altered
such that field singularities near edges and corners are accurately modeled, while coarser cells
are used ,in regions where the fields are better behaved. It is noted that the maximum cell size in
coarser regions should still be less than AmiJ 15, where Amin is the smallest wavelength
corresponding to the upper bandwidth of the excitation.

As an example, consider the microstrip circuit in Fig. 11.4, a lowpass filter printed on a
dielectric substrate backed by a PEC ground plane. The substrate and the air above are assumed
to be infinite in extent. The traditional FDTD algorithm is first used to model this circuit with
M = 0.4064 mm, ~Y = 0.4233 mm, ~ = 0.265 mm, and ~t = 0.441 ps [9]. The lattice has a
dimension of 80 x 110 x 16 cells, and the total simulation requires 4,000 time-steps. The time
dependent line voltages Vj and V2 are calculated at the input and output ports, and the frequency
dependent S parameters are computed for the two-port device after a DFf (see Chapter 15.
Section 15.2). We note that the circuit boundaries cannot be modeled exactly using the above
discretization, since the widths of the lines are noninteger multiples of the grid spacing.
For accuracy, the grid spacing is based on the dimensions of the resonant strip (the horizontal
microstrip), since the resonant frequency is usually sensitive to small dimensional errors.
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Fig. 11.5 Top view of the mesh used for the nonuniform grid FDTD simulation.
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Next, the nonuniform FDID grid illustrated in Fig. 11.5 is used to simulate the same circuit.
This grid allows the microstrip boundary positions to be exactly modeled. Here, a global cell
size of~ =0.64 mm, !1y =0.635 mm, and & =0.265 mm is used, along with mesh refinement,
to more accurately calculate the fields near the microstrip edges. The overall lattice has a
dimension of 64 x 76 x 16 cells, and a time-step of 0.441 ps is used, resulting in 4,000 iterations.
Because the physical locations of the voltage observation points are the same as used earlier for
the uniform FDTD grid, the two calculations can be directly compared. Fig. 11.6 shows that
there is excellent agreement of the S parameters calculated using the uniform and nonuniform
grids, although the nonuniform grid provides a computer time savings of about 50%.

This example illustrates the usefulness of the nonuniform-grid FDTD algorithm.
For complex and highly detailed circuits having rectangular geometries, the nonuniform FDTD
algorithm is clearly a powerful and versatile technique. The nonuniform grid can easily conform
to such geometries without substantially increasing the lattice dimensions and without losing
accuracy. However, the reader is cautioned that the grid should not change size too rapidly.
As a rule of thumb, one should try to maintain 0.5~j±1 ::;; Lix;::;; 2Lixdl to avoid large local error.
If a large change in grid density is needed, this can be realized more accurately by scaling over a
few cells. While this is not a strict rule, it provides confidence in the numerical solution.

11.3 LOCALLY CONFORMAL GRIDS, GLOBALLY ORTHOGONAL

This class of algorithms is based on globally orthogonal grids having only those space cells
located immediately adjacent to curved boundary surfaces distorted to conform to these surfaces.
Known as the conformal or contour-path FDTD approach, this technique has been used
successfully for a number of applications [10, 11]. In particular, work by Yu and Mittra [12] has
resulted in a simple approach for modeling curved and arbitrarily oriented PEe surfaces in the
FOTD lattice while retaining good numerical stability. See Chapter 10, Section 10.6 for details
and illustrative results of this class of conformal gridding techniques.

Locally conformal FDTD gridding methods are based on a regular orthogonal grid, with the
exception that the grid is deformed in the near vicinity of the boundary interface. As a result,
Maxwell's curl equations cannot be discretized in the deformed cells using simple central
differences. Rather, the discretization in these cells is based on Maxwell's equations in integral
form; specifically, Faraday's and Ampere's laws of (11.6) and (11.7). Here, special contour
path and surface integrals are performed for each deformed cell. As discussed in Chapter 10,
such techniques can result in highly accurate solutions with little computational overhead.

11.4 GLOBAL CURVILINEAR COORDINATES

11.4.1 Nonorthogonal Curvilinear FDTD Algorithm

A number of investigations have demonstrated that an efficient FDTD algorithm can be
formulated for a regular grid described by a global curvilinear coordinate system [13, 14].
This is shown by mapping Maxwell's curl equations from curvilinear to Cartesian coordinates.
The advantage of such a scheme is that a general nonorthogonal curvilinear system can be
introduced that conforms to the boundaries of the problem, and a uniform update scheme can be
described for the three-dimensional space.
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Referring to Fig. 11.7, consider a general nonorthogonal curvilinear coordinate system
(u I, u2

, u\ Within this coordinate space, the differential length vector is described as

3 ar . 3 .

dr = I--; du' = ~aj du'
;=1 au i=1

(11.15)

where the a
j

are known as the unitary vectors. A reciprocal basis is also introduced, and is
related to the unitary basis as

1
a = 2

a
3a = (11.16)

where g is the determinant of the metric tensor with the elements

g ..
I, )

a. 'a.
f J

(11.17)

Fig. 11.7 Nonorthogonal curvilinear coordinate system (u I, u
2

, u\ (a) unitary vectors (a I' a
2

, a
3

);

b . I' (1 2 3)( ) reclproca UnItary vectors a , a , a .

It can be further shown that

(11.18)

From (11.16), it can be seen that the reciprocal vectors a
j

are orthogonal to the unitary vectors a.,
a

k
(i:i' j, k), and from (11.18) we derive the relationship that )

j ~a . a. = u..
) ',J (11.19)
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where O. . is the Kronecker delta function. Further, the inverse metric is defined where
I.}

; j ;,j
a . a = g (11.20)

and gi,j defines a metric tensor that is the inverse of the metric tensor g.
I.}

Using the notation of Stratton [15], a vector field in the curvilinear space can be represented
by its contravariant or by its covariant components. To this end, the E-field vector can be
expanded by the unitary vectors as

3

E = I/a i
;0;]

(11.21)

where the constant coefficient e
i is the j'th contravariant component of the E-field; or, it can be

expanded using the reciprocal vectors as

3

E = Le;a;
;=1

(11.22)

where the constant coefficient ei is the i'th covariant component of the E-field. From (11.19) and
(11.21), it can be seen that

In the dual space, from (11.19) and (11.22) we have

E·a. = (fe.aiJ.a. = e.
J £.J, ) }

;=1

(11.23)

(11.24)

From (11.19) to (11.24), we can derive the following relationship between the covariant and
contravariant components:

3

e. = ~ g.. e j

I £.J I.}

j=l

3

ei = Lg i
•
j e

j
j=l

(11.25a, b)

Since neither the unitary basis nor the reciprocal basis are unit vectors (i.e., with a unit
amplitude), the e

i
and e i do not have units of volts per meter, but rather have dimensions that are

dependent on the curvilinear space. However, from (11.17) to (11.24), contravariant and
covariant components of E having units of volts per meter can be expressed by the scaled values

E
i = ~ /;V6i,i

(11.26a, b)

Based on the above discussion, Maxwell's curl equations can be represented using the
covariant and contravariant projections. To this end, Maxwell's curl equations in a source-free
medium are expressed as
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JH
-J1- = VxE

Jt

JE
E - + aE = VxH

dt

Taking the dot product of (11.27) with a
j
(i =1, 2, 3) leads to

Jh 1

1 (de, de, )-J1- = ..fi au2
- au3

dt

ah2
1 (de, de, )-J1- = -Ii au 3

- au'Jt

-J1 ah
3

= _1_( ae~ _ ae~)
Jt ..fi au au

Similarly, taking the dot product of (11.28) with a
j
(i =1,2,3) leads to

ae' I 1 (dh, dh, )E-+ CTe = ..fi au2
- Ju 3

Jt

J/ 2 _1 (dh, _dh, )
E-- + CTe = ..fi au3 au]at

Je 3
CTe 3 = _1_( dh, _ dh, )

E-- +
at ..fi au l au2

(11.27)

(11.28)

(11.29a)

(11.29b)

(11.29c)

(l1.30a)

(11.30b)

(11.30c)

Using central-difference approximations in time and space, an explicit time-marching

scheme can be derived from these equations, To this end, a dual-lattice is introduced in the

nonorthogonal curvilinear space, for which a typical lattice cell is illustrated in Fig. 11.8.
Subsequently, (l1.29a) and (11.30a) lead to the updates

Iln+1
h i,j,k = h'ln _

i,j,k [(

tn+1/2 In+1/2 JJ1Jg e3
lj,j+l,k~~2 e3

i.j,k - (
In+1/2

e2 j,j,k+1 - e 1~~1/2 J]2 r,I,k

(11.31)
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e111,1+1,k+1

e31 i,j,k

e11
i,l.k+1 e 311+1,J,k

e1
1i,J+1,k

e 3
/ 1+1,j+1,k

(a) - electric field

_ h1L1.J,k

h21_ i,J+1,k

h11·· k1,1,h21"k_I,j,

(b) - magnetic field

Fig. 11.8 Electric and magnetic field discretization within a unit cell of the lattice, based on a
nonorthogonal curvilinear coordinate system.
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eT+ '/2 = (2et,j'k - a't,j,k i1tJ eT~ll2 (11.32)

I,J,k 2 el.. + al.. i1t I,J,k
I, J, k I,). k

2i1t [[ hl . k - hl .-I k J [h2r.k - hl . k - 1J]I,}, I,}, I,}, I, f,

+ ( ) r:: 2 - 3
2 et,j.k + aL,j,k i1t "\I g i1u i1u

where the (i, j. k) indices are referenced to Fig. 11.8. The updates of the remaining components
of e and h can be derived by permuting the indices.

We note that the covariant components of the E- and H-fields appear on the right-hand sides
of the above updating expressions for the contravariant components. Once the contravariant
components of the fields are updated, the covariant components must first be computed using
(11.25a) before the dual-field can be updated, This projection requires all three of the
contravariant components. However, these components are not known in space at the same
locations, and they must be averaged in space to maintain second-order accuracy. In the discrete
space, the projections are thus expressed by

h,r .k
I,} ,

g hll" + 0.25g ( h2 1" + h21" + h21" + h21" )
1,1 i.j.k 1,2 i-l,j,k i-l,j+I,k i,j,k i,j+1,k

+ 0.25 (h3 l
n

+ h31" + h31n + h31n )
gt.3 i-l,j,k i-l.j,k+l i,j,k i.j.k+\ (11.33a)

(lI,33b)

\

where the indices (i, j, k) are referenced to Fig. 11.8.
The field updates in (11,31) to (11,33) are in the contravariant space, The contravariant field

components can be solved explicitly, providing that the time-step M satisfies the stability
criterion defined in the next section. Finally, for both near-field and far-field calculations,
the physical E- and H-fields can be derived from the contravariant fields using (11,26).

11.4.2 Stability Criterion

The stability criterion for the nonorthogonal curvilinear FDTD algorithm [16] can be derived in a
manner similar to that for FDTD on a Cartesian grid, as discussed in Chapter 4. Assuming the
three-dimensional space to have a homogeneous material profile and to be source-free, the
E- (and H-) fields must satisfy the wave equation

VxVxE + (11.34)



(11.35)

(11.36)

(11.38)

(11.39)

(11.37)

(11.40)

(11.41)

= 0

n+l/ na = e e

[
3 i (k ~ i)] [3 m ( k ~ m)]V 2E = (V.V)E= 2j L~sin _i_

U
_ ·2j L~sin m U E

i =1 ~u 2 m=I ~u 2

I 2 3 -jk·,
E(u , u , U ,t) = e(t) e

where e(t) is an arbitrary function of time. This can be further expressed as

and

The task at hand is to determine the stability of the explicit time-stepping scheme in (11.31)
to (11.33). To this end, the growth-factor a is defined, where

The E-field is now expanded into a superposition of the eigenmodes of (11.35), which can
be expressed as the spectrum of plane waves. The FDTD algorithm must be stable for all
components of the plane-wave expansion. Thus, it can be shown that if it is stable for an
arbitrary plane wave, it is stable for all plane waves. We express
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where c is the speed of light within the homogeneous material medium. Applying the vector

identity V x V x E = -(V· V)E + V(V ·E) and Gauss' law V·E =0, then (11.34) becomes

Stability requires that Ia I:s 1. To derive the stability criterion, central-difference

approximations are used to discretize (11.35), leading to an explicit update scheme. It is
sufficient to show stability for this explicit scheme, in order to prove stability for the explicit
update scheme in (11.31) to (11.33).

The stability analysis proceeds as follows. In the general non orthogonal curvilinear

coordinate system, the V operator is expressed as

Using central-difference approximations, (11.40) and (11.36) lead to

From (11.41), and using a central-difference approximation of the second-order time derivative,

(11.35) is expressed as
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[
3 a

i
• (k i L1U

i
)] [3 am . (kmL1u

m
)] n 1 E

n
+ ' _ 2E

n
+ En-I-4 ~-. SIn -- . ~-SIn E =

L...i I 2 L...i A m 2 2 2
;=1 L1u m=l uU C (L1t)

(11.42)

From (11.39), we assume En
+' =aEn and En-I =Enla, leading to

[I3 ai . (ki L1U
i

)] [I3 am . (km L1U
m

)] n 1(a
2

- 2a + 1) n-4 -SIn --. --SIn E =- E
i 2 Am 2 2 A 2

i=l llu m=1 uU C a(ut)

(11.43)

Finally, solving for the growth-factor afram (11.43), we obtain

(11.44)

where

(11.45)

This must be true for all plane waves, and therefore it can be said that

We see from (11.44) that Ia I~ 1 only if

(11.47)

(11.46)

where gi. m is defined in (11.20). Then, combining (11.47) and (11.46), we find that Ia I~ 1 if

1
llt ~ (11.48)

3 3 gi.m

C II L1u i L1u m
i=) m=l

Equation (11.48) is the stability criterion for the nonorthogonal curvilinear FDTD algorithm.
One check of this result is that the stability criterion of the nonorthogonal curvilinear FDTD

algorithm should reduce to that derived for Cartesian space. In Cartesian space, we have

A

a
2

= y ; a = i3 (11.49a)

and



The previous section presented an FDTD algorithm based on a grid defined in a general
nonorthogonal curvilinear space. This algorithm assumes the grid is regular and uniform
(i.e., that the unitary vectors a i are constant throughout the space). Practitioners of mesh
generation find this assumption to be quite restrictive, in that such a coordinate system can be
derived only for specific geometries. In fact, more general techniques have been developed that
are based on irregular nonorthogonal structured grids [16-31]. Note that these grids are still
structured, in the sense that the grid vertices are described by three-dimensional arrays xCi, j, k),
y(i, j, k), and z(i, j, k). However, the unitary vectors can vary from cell to cell. This allows for a
more general grid that can conform to highly irregular geometries.

A number of formulations have been introduced based on such grids, especially the class of
finite-volume time-domain (FVTD) methods developed by Shankar et al. [18-20]. One principal
difference between FVTD methods of this class and FDTD is that the former collocate rather
than stagger the E- and H-fields in space and time. The coupled curl equations are then solved
simultaneously by casting them into conservation form. The general nonorthogonal grid is
mapped into a Cartesian grid using a local mapping, based on the assumption that the grid cell
can be described by a local curvilinear coordinate system. This permits the physical coordinates
to be mapped into a Cartesian coordinate system using the Jacobian of the transformation. Note
that because the three components of E or H are collocated in space, the averaging used in
(11.33a, b) is no longer necessary. The conservation form of Maxwell's equations is then solved
using an explicit solution method such as the Lax-Wendroff upwind scheme.

An alternate technique of assuming a locally curvilinear coordinate system for
nonorthogonal structured grids was introduced by Lee et al. [16,22,23], and by Fusco [30,31].
Similar to FVTD, the nonorthogonal grid is mapped into a Cartesian grid through local Jacobian
transformations. This is done numerically for a general grid by assuming the cells to be arbitrary
parallelepipeds [16], and leads to an explicit time-stepping scheme, which is implemented in a
manner similar to the FDTD algorithm presented in the previous section. However, there are
subtle yet significant differences between this algorithm and the FVTD technique proposed in
[18-20]. As discussed in Chapter 4, it is well-known that FDTD is inherently dispersive, and the
same can be shown for Lee's algorithm. But, the FVTD method reported in [18-20] is

(11.50)

(11.49c)

(11.49b)3
ilu = &

3
a = z2

a = y

2
flu = ily ;

1 1 1
--+--+-
(AxY (ily)2 (&)2

c

I
a = x
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and from (11. 16)

which is the same stability bound as given in (4.54b) of Chapter 4.

From (11.20) and (11.48), it can be shown for this case that

11.5 IRREGULAR NONORTHOGONAL STRUCTURED GRIDS
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inherently dissipative. Further, boundary conditions are more naturally enforced using Lee's
algorithm, since the fields are associated with the grid edges. Because the FVTD approach
associates the fields with the vertices of the grid cells (E-fields) and the centroids of the grid cells
(H-fields), one must enforce boundary conditions using all three components of the fields.

The general nonorthogonal FDTD algorithm can be derived in a manner similar to that of
the nonorthogonal curvilinear FDTD method. To this end, each cell in the space lattice is
approximated as a parallelepiped. as illustrated in Fig 11.9. Unitary vectors Ai are defined as the
length vectors bounding the lattice cell originating from a cell vertex. Note that in this
formulation. the A j have the units of length. A reciprocal basis is also introduced. This is related
to the unitary basis as

3 Al xAzA = ---'--=--=-
Ii

(11.51)

where g is the determinant of the metric tensor with the elements

g.. = A·A.
I,) I ]

It can be further shown that

+
I
I
I
I
I
I

(11.52)

(11.53) ..",
~.

Fig. 11.9 Structured nonorthogonal space-lattice unit cell and the unitary and reciprocal vectors associated
with the cell. After: Lee et aI.. IEEE Trans. Microwave Theory and Techniques, 1992.
pp. 346-352, © 1992 IEEE.
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which is equal to the volume of the parallelepiped. The reciprocal vectors Ai are normal to the
faces of the parallelepiped bounded by the unitary vectors A j , A k (i t:- j, k). Further, their
amplitudes are equal to the area of the face divided by the volume of the cell. Finally, from
(11.5l) and 01.53), we derive the relationship

Ai. A. = 8,
J '.J

where 8 -is the Kronecker delta. The inverse metric is defined where
t, J

A ; Aj i,j. = g

(11.54)

(11.55)

and gil defines a metric that is the inverse of g, "
t, J

As discussed in Section 11.4 for nonorthogonal curvilinear spaces, E and H are again
represented by their contravariant and covariant components. To this end, the E-field is
expanded in the unitary vectors as

E (11.56)

where the constant coefficient Ii is the i'th contravariant component of the E-field. The E-field
can also be expanded using the reciprocal vectors

3

E = I. E;A
i

i=]

(11.57)

where the constant coefficient Ei is the i'th covariant component of the E-field. From (11.54)
and (11.56), it can be seen that

(11.58)

Based on the definition of the reciprocal vectors A j
, we observe that the contravariant component

E j
represents the net flux of the E-field, normalized by the volume of the parallelepiped, flowing

across the surface bounded by the unitary vectors A
k

and Ai' Specifically, we have

01.59)

and in the dual-space

(11.60)

Based on the definition of the unitary vector A, we observe that the covariant component E,
J J

represents the net flow of the E-field along the lattice-cell edge. Thus,
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(11.61)

From (11.54) to (11.60), we can derive the relationship between the covariant and
contravariant components:

3

E" = '" g, , E
j

L.J '.J
j~J

3

E i = L gi,j E
j

j~l

(11.62a, b)

For this formulation, it is convenient to express the relationship of the E- and H-fields through
Maxwell's equations in integral form, specifically using Faraday's law and Ampere's law of
(11.6) and (11.7), respectively. Faraday's law is evaluated in the discrete nonorthogonal space
by choosing S to be the surfaces of the lattice cells, and C to be the edges bounding the faces,
Similarly, Ampere's law is evaluated by choosing S' to be the faces of the dual-lattice cells,
and C' to be the dual edges bounding these faces, These integrals are naturally performed using
the covariant and contravariant components of the fields, To this end, we use (1] .59) and
(11.61) to express (11.6) and (11.7) as

- Hkl, , )
/,J-I,k

(11.63)

(11.64)

where the i, j, and k indices are referenced to Fig, 11,10,
Central-difference approximations are used to evaluate the time derivatives in (11.63) and

(11,64), leading to the explicit updates

il"+JJ2
H , 'k/,J, '

i 1"-1/2 !1t [( I" I") ( I" I")]H i,j,k - 11 r::-- Ek i,j+l,k - Ek i,j,k - Ej i,j,k+1 - E j i,j,k

""'\f gi,j,k

(11.65a)

T+!
E'i,j,k (

2£, 'k - (J, 'k !1t) 'I"= ',J, ',j, E' +
2£ + (J !1t i,j,k

i, j,k i,j, k

2M

(2£ ' .. + (J, , ., !1t) r-::-g" k
I,J,- ',J,- '\f Oi,j,k (11.65b)

[( H r+ 1/2 _ H 1"+1/2 ) _ (1"+1/2 1"+1/2 )]
k i,j.k k i,j-I,k Hj i,j,k - Hj i,j,k-I

The updates of the remaining components of E and H can be derived by permuting the indices
i,j, and k,



(a) Covariant electric fields.

(b) Covariant magnetic fields.

(1', j, k)

(i, j, k)
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Fig. 11.10 Covariant electric and magnetic fields defined within a structured nonorthogonal-Iattice unit
cell at (i, j, k).
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We observe that there is a direct resemblance between (11.65a, b) and the pair of updating
equations (11.31) and (11.32). Specifically, if the general nonorthogonal space reduces to a
global nonorthogonal curvilinear space, then these equations reduce exactly to the FDTD
algorithm. One exception exists in (11.65a, b), where the Au

i are effectively 1 because the
physical edge lengths are incorporated into the unitary vectors, and thus the t1u i are included in
the ~ gi,j.k' However, this formulation is much more general, since the unitary vectors are
assumed to be cell-dependent, and the coordinates can be deformed in a general manner.

The right-hand sides of (11.65a, b) involve the covariant components of E and H, whereas
the components being time-stepped via the explicit update expressions are the contravariant
components, Once the contravariant components of the fields are updated, the covariant
components must be projected into the contravariant space using (11.62) before the dual field can
be updated. This projection requires all three of the contravariant components, However, these
components are not known in space at the same locations, and must be averaged in space to
maintain second-order accuracy. In the discrete space, the projections are given by

where the metrics gi i' gi,j' and gi,k are calculated from cell (i, j, k). The remaining field
components can be computed by permuting the i,j, k indices.

Finally, (l1.65a, b) and (l1.66a, b) define the explicit time-stepping scheme for the
contravariant E- and H-fields using a general nonorthogonal lattice. Once the contravariant
fields are computed, they can be mapped back to the physical space as

£.1"+1
, ',J, k

gi k (kl"+112 kl"H'2 kl"+112 kl"+112 )+-'H +H +H +H4 i-i,j,k i-I,j,k+! i,j,k i,j,hl

= .. Ei/"+I + gi,j (Ejl"+1 + Ejl"+1 + Ejl"+1 + Ejl"+l )
g", i,j,k 4 i,j,k i.j-l.k i+l.j,k i+l,j-I,k

gi k (kl"+l kl"+1 kl"+l kl"+I)
+ ~ E i,j,k + E i,j,k-I + E i+l,j,k + E i+l,j.k-I

(l1.66a)

(l1.66b)

(l1.67a, b)

where the direction of the field is along the unit vector of the reciprocal vectors (i.e., Ai / IAil ),
The explicit update scheme in (11.65a, b) and (11.66a, b) is conditionally stable. However,

due to the irregularity of the space lattice, a stability criterion cannot be derived in the global
sense as was presented in Section 11.4, but rather is derived in a more local sense. Again.
a growth-factor a = IE,,+l I/ IE"I is defined. Due to the explicit nature of the algorithm,

a is not defined by the vector norm II E"", but rather is defined for each edge in the lattice.
As before, numerical stability requires that all as; 1. Following the analogy presented in Section
11.4, we can thus derive the stability criterion [16]



11.6 IRREGULAR NONORTHOGONAL UNSTRUCTURED GRIDS

(11.68)
1

c sup (
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where sup(*) denotes the maximum value throughout the i, J, k space. This implies the

maximum time-step for stability is determined either by the smallest lattice cell, or by the

possible presence in the lattice of highly oblique parallelepiped cells (i.e., parallelepipeds with

very large interior angles become wedge-shaped).

A number of applications have been studied using the general nonorthogonal FDTD method,

and the reader is referred to [16, 22-27] for further study. A principal advantage of this

technique is that in the discrete space, all quantities can be described using a three-dimensional

array. This eases the complexity of programming and the amount of memory overhead. Further,

there are commercially available mesh generators that can automatically generate nonorthogonal
structured space lattices.

However, many geometries are difficult to model using structured meshes due to high rates

of surface curvature, fine features, and highly complex shapes. In such cases, a grid can develop

undesirable characteristics that degrade accuracy and numerical stability, such as very large cell

aspect ratios or extremely small cell edge lengths. An alternative for such problems is to use the

more general unstructured gridding method, which is the topic of the next section.

Unstructured grids are composed of arrays of general fitted polyhedral cells. While every cell

shares a common face and edge, the vertices of the grid can no longer be listed in a regular sense.

These meshes can conform to highly complex shapes while maintaining good cell aspect ratios

and global uniformity. Unfortunately, the methods discussed in the previous section are not

applicable to unstructured grids, and more general approaches must be used.

A general method to formulate an explicit time-marching solution of Maxwell's equations

using unstructured grids was introduced by Madsen [32]. This was founded upon deriving an

explicit operator based on Maxwell's equations in integral form, and evaluating the discrete

surface and line integrals. A key need was to introduce a projection scheme similar to

(l I.66a, b), which projects the face-normal components of the fields onto the dual-grid edges.

Due to the unstructured nature of the lattice, the precise approach of (l I.66a, b) could not be

implemented, and more general methods were investigated. It was shown that insufficient

accuracy of the projection method could cause the numerical solution to become unstable after a

very large number of time-steps. This problem was overcome, and a numerically stable, second

order-accurate projection of the normal fields onto the lattice edges was reported. This was later

incorporated into other algorithms for microstrip line applications by Gedney and Lansing

[33-36].

The class of algorithms presented in [32-36] provides an efficient and accurate means for

treating three-dimensional electromagnetic wave problems based on unstructured grids,
assuming that a second-order-accurate solver is used. This class is referred to here as the

generalized Yee algorithm, since analysis reveals that it is truly a straightforward extension of

Yee's classic space-time meshing approach [37].
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11.6.1 Generalized Vee Algorithm

We now consider the extension of the Yee concept of interleaved E- and H-fields to a dual-space

lattice formed by a primary and a secondary mesh. The primary mesh is composed of space
filling polyhedra, while the secondary (or dual) mesh is composed of the closed polyhedra whose
edges connect the centroids of adjacent primary cells, thereby penetrating shared faces.

Fig. 11.11 illustrates such an arrangement wherein adjoining primary and secondary cells are

hexahedrons.

Secondary cell

H Hj,I2
'8),

Primary cell H
j
,6

Fig. 11.11 A generalized unstructured Yee lattice using hexahedral cells.

In Fig. 11.11, an E-component is defined along each edge of a primary lattice cell, and an

H -component is located along each secondary lattice cell edge. Faraday's law (11.6) and
Ampere's law (11.7) are implemented by discretizing the surface and line integrals over each

primary and secondary lattice cell face, respectively. The fields are assumed to be constant over

each face and along each edge. Approximating the time derivative using a central difference,

we obtain

Nt,
I
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In (11.69), the superscripts denote the time index; N,; is the number of edges bounding the
i'th face of the primary lattice in (1I.69a) or the secondary lattice in (Il.69b); Ai is the area of
the i'th face; Pj and Sj are the length vectors of the j'th edge bounding the primary and secondary
lattice faces, respectively; and £ and <1 are the average material properties, to be discussedavg avg

later. By performing a closed surface integral over each cell, it will also be shown later that the
discrete forms of Gauss' laws are satisfied based on this formulation.

Upon solving for the latest values of Band D in (I1.69a) and (l1.69b), respectively,
the following explicit time-stepping algorithm is obtained:

By specifying the electric field along the edges of the primary lattice cell at time t =nM and the
magnetic field normal to each face at time t =(n-I /2)/1t, the normal magnetic flux density at

time t = (n + I/2)At can be updated using (lI.70a). Then, H = B/ J1 can be used to update the
electric flux density in (11.70b).

If the fields are discretized over a regular orthogonal lattice, (1I.70a, b) are equivalent to the

Yee algorithm (see Problem 11.1). This holds because, in this case, fi p =s and irs =p.
However, as shown in Fig. 11.12, if the lattice is unstructured, then the edge vector is not

necessarily parallel to the normal vector, and the normal field must be projected onto the

complementary lattice edge. Since the normal field alone cannot uniquely describe the edge

component, a secondary expression must be introduced.

The projection of the magnetic field onto the secondary lattice edge requires an interpolation

of the local magnetic flux densities normal to adjacent faces. This is similar to what was

required for the nonorthogonal structured lattice projection performed by (lI.66a). However,

due to the unstructured nature of the lattice, the adjacent faces are randomly oriented and

numbered. Therefore, a more general projection scheme is required. It must be chosen such

that: (l) the flux projected onto the edges has zero divergence in a charge-free medium,

and (2) the time-stepping algorithm maintains numerical stability. The projection scheme of

Madsen in [32] and slightly modified in [33, 34, 38] meets these criteria.
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Primary Cell

I (i, j)

Fig. 11.12 Adjacent primary lattice cells sharing a common face with the magnetic fields normal to each
face known. The face is penetrated by the edge of a dual cell directed along the unit vector s,
which is not necessarily parallel to np •

Referring to Fig. 11.12, we assume that each face is shared by Nc cells, where N c =2 or 1.
Each face is also bounded by Nt edges that connect Nt vertices, where the i'th vertex is shared by
three faces of the j'th cell. Equation (lI.70a) is used to update the normal magnetic flux
densities passing through each face. Then, the magnetic flux density associated with the j'th
vertex and the j'th cell can be computed by solving the following 3 x 3 system of equations:

B . ·Np = B ·NpI.j

B .·Np = B ·Np .
,.) i,j ',j

B.·N = B·N
t.j Pj+l.j Pi+l,j

(11.7Ia)

(11.71 b)

(11.7Ic)

where N p = Ai np is the area vector normal to the j'th primary lattice face. Since the right-hand

side is known from (l1.70a), then (11.71) is used to solve for the three orthogonal components of

B. .. Subsequently, this is performed for each of the vertices of the face (i = I, Nt)' and for each
t,j

cell U = 1, N ) shared by the face. At this point, we note that B. , is not an interpolation for the
c /,J

total field, but rather a local value associated with the (i,j)'th corner shared by the face.
The magnetic flux density vector over the face is expressed by the interpolation of the local

field values as

(11.72)
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where the weighting factors are computed by the triple scalar product

w.. = N p ' (Np x N p )
I. J i.J i+I.J

(11.73)

(11.74)

(11.75)

(11.76)

(11.77)

(11.78)
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Finally, the magnetic flux density in (11.72) can be uniquely projected onto the secondary cell
edge by implementing

The magnetic field intensity H can then be evaluated from the constitutive relationship.
We now show that the interpolated B in (11.72) satisfies Gauss' law in discrete form.

Consider the magnetic flux density at the current and previous time-steps. Then:

where V is the volume of the primary cell. From the Divergence Theorem and Faraday's law,
the right-hand side of (11.75) is expressed as

where S is the surface bounding the cell volume V, Nt is the number of faces of the cell, S; is the
i'th face of the cell, and C; is the contour bounding Sj' This expression is zero since the edges of
the cell are traversed twice in opposing directions when evaluating the line integral. Since this is
true for each B, the argument can be extended for the B appearing in (11.72). Finally, assuming
that the initial distribution of B has zero divergence throughout the volume, then from (11.75)
and (11.76) we have

and the numerical fields have zero divergence, as well.
By duality, the electric flux density is projected onto the primary lattice edges using
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where the weighting coefficients are w . .=N . (Ns . x Ns ) and the N s are the normal area
t,) s I,J ,"'1.;

vectors of the secondary lattice faces. It can be shown that the electric flux density in (11.78)

also satisfies the discrete form of Gauss' law. Finally, the field updates can be performed by

computing the vector fields normal to the primary or secondary lattice faces using (11.70a) or

(11.70b), and then projecting them onto the edges of the secondary or primary lattices using

(11.74) or (11.78), respectively. By introducing the correction terms in (11.74) and (11.78),

it can be shown that second-order accuracy of the algorithm is maintained.
We recall that explicit time-stepping is conditionally stable, and the time-step /1t must be

bounded to guarantee numerical stability. Due to the unstructured and irregular nature of this
lattice, a von Neumann stability analysis similar to that presented in Section 11.4 would be

extremely difficult to employ. A rigorous analysis of stability would calculate the eigenspectrum

of the linear operations involved in the combined update expressions (11.70a, b), (11.74),

and (11.78). However, these expressions are problem-dependent. The eigenvalue analysis

would have to be conducted for each modeling case, a procedure that at the minimum would be

computationally intensive, and at the maximum, prohibitive. However, through numerical
experimentation, a very simple relationship has been established that provides an excellent
estimate of the stability bound for tetrahedral, pentahedral, and hexahedral elements [34];

Here, c is the speed of light and L; (i = 1, 2, 3) are lengths of three edges in each cell sharing a

common vertex. This expression provides an estimate for the maximum stable time-step that is

likely within 10% of the actual upper bound. We see from (11.79) that the stability bound is

determined primarily by the smallest edge length in the lattice, as was found earlier with the

nonorthogonal structured-grid FDTD algorithm.

The advantage of the above formulation is that it is based on general unstructured lattices.

Space cells can be any polyhedron (assuming that each face is uniquely shared by, at most, two

polyhedra), and the number of polyhedra shared by each edge is arbitrary. This simplifies
modeling complex three-dimensional geometries, and is well-suited for commercially available

mesh-generation software.
There are some disadvantages, however. Since the lattice is unstructured and irregular,

regular indexing such as was used for the structured nonorthogonal grid case in (11.64) and

(11.65) cannot be used to store the lattice vertices and the fields. Rather, a more general storage

scheme is needed. This is discussed later.

/1t <
1

csup ( rnJ
~~~

01.79)

11.6.2 Inhomogeneous Media

The generalized Yee algorithm presented in the previous section is applicable for modeling

electromagnetic fields in arbitrary, isotropic, dielectric and conducting media. However, it is

assumed that the medium within each primary lattice cell is homogeneous. We now consider the
inhomogeneous medium case.
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L'1

Fig. 11.13 Secondary cell face within an inhomogeneous medium.

Fig. 11.13 illustrates a quadrilateral face of a secondary cell of an irregular and unstructured
lattice. The face is defined as the surface S bounded by the contour C. For the inhomogeneous
medium case, we assume that the primary edge passing through the centroid of the face is
tangential to the interface of a boundary shared by four materials characterized by (cj ' 0),
i = 1, 2, 3, 4. This is inherently the case, since the edge defines the boundary of four primary
lattice cells. Ampere's law must be valid over surface S. However, the permittivity of the face is
ambiguous as referenced to the electric field passing through its centroid. Consequently,
S is decomposed into four distinct surfaces Sj' each with the constant properties (ci ' 0').

Ampere's law can now be expressed for the geometry of Fig. 11.13 as

(11.80)

where the contour C j bounds S;' The integrals are then performed over each Si and the
corresponding C;. For example, in SI we have

(

En+1 - En J A (E
n

+
1

+ En J AcA 1 I .n+O'A 1 I. n
1 I tJ.t 1 1 2

= (L' H n +1/2 _ L H n+1/2 _ L H n+ l12 + L' H n+
1/2

)
I 1 12 12 41 41 4 4

(11.81)

where E 1 is the electric field in SI' and Ii is the unit normal. Similar expressions can be derived
for the remaining three regions.

With the assumption that Ii is tangential to the boundary interface, the requirement of
continuity of the tangential E across an interface yields
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Assuming that the edges extending above or below the boundary interface are close to normal,
we add the four equations implied by (11.80). This results in

= (L. H n
+

1/2 L· H n
+

1/2 L· H n
+

1/2 L. H n
+1/

2
)11 +22 +33 +44 (11.83)

This permits definition of the weighted average permittivity and conductivity:

(l1.84a)

where A is the total face area. For a face bounded by an arbitrary number of edges, we find

where A j is the area of subregion Sj' This leads directly to (l1.70b).
We note that this development can be applied to the structured-grid FDTD algorithms

presented in the previous sections. Equation (l1.84a, b) can be used to compute the effective
dielectric constants at inhomogeneous dielectric interfaces in (11.32b) and (l1.65b).

(l1.84b)

(11.85a, b)
N / Na = ~ Aa. ~ A

avg £.. J' £.. J

1=1 i=1

N / Nt t

e = ~ At: ~ A ;
avg £.. " £.. I

i=l i=1

11.6.3 Practical Implementation of the Generalized Vee Algorithm

The numerical implementation of (l1.70a, b), (11.74), and (11.78) could have a large computer
burden due to its calculation and/or storage of the area of each cell face, unit normal, edge
vector, and weighting factor. However, if treated properly, the algorithm can be implemented in
an efficient manner. To this end, the generalized Yee algorithm can be thought of as a series of
linear operations acting on the fields that are normal to the primary and secondary lattice faces.
These operations can be expressed in their discrete form as matrix multiplications. For example,
the explicit time-stepping relation of (l1.70a) can be written as the linear equation

(11.86)
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where {b
n

} is a one-dimensional array representing the amplitudes of the magnetic flux density
vectors normal to the lattice faces, and {e P

} is a one-dimensional array representing the

amplitudes of the electric field vectors projected onto the primary lattice edges. As can be seen

from (11.70a), matrix [Ahl is sparse, so that we need to store only a few nonzero entries in each

row. Further, the update in (11.86) requires far fewer floating-point operations than (11.70a),

leading to a much more computationally efficient algorithm.

The array {e P
} must be computed from the array of normal electric flux-density vectors {dn }

using (11.78). Again, this is a linear operation and can be expressed as

{e P
} =[A lid}pe n (11.87)

Matrix [Apel is also very sparse, since it involves only local field interpolation. Further,
in regions of orthogonality, the corresponding blocks of [Apel are simply the identity matrix and
need not be stored. Now, combining (11.86) and 01.87), the update of {bJ can be written as

(11.88)

Of course, the matrices never need to be multiplied. Rather, each update simply requires two
matrix-vector products. In a similar manner, starting with (11.70b) and (11.74), the time
stepping relation for the array of normal electric flux densities can be written as

(11.89)

where [Del is a diagonal matrix.
The sparse matrices in (11.88) and 01.89) need to be constructed only once and then stored.

This can be accomplished efficiently on a cell-by-cell basis [39]. To this end, the dual-lattice is
never actually constructed. In fact, there is sufficient information to construct the matrices
associated with the dual-lattice from the primary lattice alone. Upon completion of the matrix
construction, we can begin a computationally efficient time-stepping process based upon the
above matrix-vector multiplications.

11.7 A PLANAR GENERALIZED YEE ALGORITHM

The memory requirements of the generalized Yee algorithm can be greatly reduced by exploiting
symmetries in the model. The focus of this section is on geometries such as microwave printed
circuits having planar symmetry, namely three-dimensional geometries that can be uniquely
specified by a projection onto a two-dimensional transverse plane [36]. Here, the entire circuit
geometry can be described by an unstructured two-dimensional grid in the transverse plane, and
by a regular grid in the third dimension. However, only the cell geometry of the two
dimensional grid needs to be stored. Thus, the sparse time-stepping matrices in (11.86) and
(11.87) need be stored only for a single layer of grid cells. This relaxes the memory
requirements of the algorithm to the point where it is as memory-efficient as the basic FDTD
method.
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~Y
X

Fig. 11.14 An example of a primary PGY lattice composed of similar two-dimensional unstructured grids
stacked in the vertical z-direction in a regular sense. Source: Gedney and Lansing,
International Journal for Numerical Modeling (Electronics Networks, Devices, and Fields),
1995, pp. 249-264.

Fig. 11.14 illustrates the gridding used for this planar gen.eralized Yee (PGY) algorithm.
The primary PGY grid is generated simply by extruding a two-dimensional unstructured grid in
the vertical (z) direction, and then segmenting it at discrete heights. A secondary grid is
staggered within the primary grid such that its vertices lie at the centroids of the primary grid
cells, and the edges of the secondary grid connect the centroids by passing through the faces of
the primary grid. The E- and H-fields are decomposed into transverse and vertical components

(11.90)

Subsequently, the transverse E- and H-fields are mapped onto the horizontal edges of the primary
and secondary grids, respectively; and the vertical E- and H-fields are mapped onto the vertical
edges of the primary and secondary grids, respectively. These fields are assumed to be constant
along their respective edge lengths, as well as over the dual-faces through which they pass.

11.7.1 Time-Stepping Expressions

Based on the above discretization, Faraday's and Ampere's laws are approximated by choosing
the surfaces of integration to be the faces of the secondary and primary grids, respectively.
The time derivative is then approximated using a central-difference expression that is second
order-accurate if the fields are staggered in time. This leads to the following explicit time
stepping expressions:
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where D, and B, are the electric and magnetic flux densities, respectively, in the transverse
plane; k is the index along the z-direction; A

p
and As are the areas of the primary and secondary

grid faces, respectively; N
p

. and Ns are the number of edges bounding the i'th primary and the
j'th secondary grid faces, respecti~ely; and Lf and L~ are the lengths of the primary and
secondary grid edges, respectively. The material parameters E, /1, and (j are assumed to be
piecewise homogeneous in both the z-direction as well as the transverse direction, and can be
computed using the methods discussed earlier.

11.7.2 Projection Operators

Note that the flux densities updated in (11.92) and (11.94) are normal to the faces. However, the
corresponding field intensities on the dual-edges passing through these faces are not necessarily
normal to the faces. As a result, the flux densities must be projected onto the edges before the
dual-fields can be updated. This requires the introduction of an auxiliary projection operator.
The projection operators used in Section 11.6 are also used here. The principal difference is that,
due to the orthogonality of the vertical and transverse fields, only fields within the transverse
plane are needed for the interpolation. This results in a simplified form of (11.74) and (11.78).
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Fig. 11.15 Normal vector to a transverse primary face in the PGY grid, and a dual-edge passing through
the face.

Consider the geometry of Fig. 11.15. Here, N p is the normal area vector of a primary grid
transverse face, and s is the unit vector along the dual-grid edge passing through the face.
Note that the face is associated with an edge in the transverse plane. From (11.92), B .N

p

is known at each face and provides the basis of the interpolation. We introduce a general

magnetic flux-density vector B, which is to be determined from the interpolation. The edge
corresponding to the face is bounded by vertices 1 and 2, identified by the index i = 1, 2 in
Fig. 11.15. Each vertex is also shared by two additional edges that share a common cell.
Let j represent one of these edges, where j = 1, 2. The normal area vector to the j'th edge
associated with the i'th vertex is Np . "

I,)

Now, we define B, , to be the local estimate of the magnetic flux vector associated with the',)
i'th vertex and thej'th edge. B, . is computed by solving the system',)

B. ' . N p = B· N p ;
I. }

B." N = B· N
I.} Pi,j Pi,j

(11.95)

where the right-hand side is known from (11.92). Introducing the weighting coefficient

w., = Ii. (Np x Np . . ) I
I,} t.}

the magnetic flux density projected onto the dual-edge is expressed as

2 2 / 2 2
B . s = "" "" w, ,(B, .. s) "" "" w, ,£...J £...t I.) '.} £...J L..J '.}

i=1 j=l i=1 j=l

(11.96)

(11.97)
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A similar projection operator for the electric flux density is introduced as

2 2 / 2 2
D.P = "" "" w . (D. .. p) """ w .L.J L.J I.} I.} L.J L.J 1.1

;=1 j=l ;=1 j=l

where the weights are given by

w.. = Ii. (Ns X Ns . . ) I
1·1 '.}

(11.98)

(11.99)

and Ns is the normal area vector of a secondary grid cell through which a primary edge passes.
As discussed in Section 11.6, (11.97) and (11.98) also preserve the divergenceless nature of the
flux densities and lead to a stable solution.

11.7.3 Efficient Time-Stepping Implementation

The explicit solution method used to time-step the discrete E- and H-fields is based upon solving
(11.91) to (11.94), (11.97), and (11.98). As discussed in Section 11.6, computing the parameters
for these equations requires a significant number of floating-point operations. However, by
employing standard finite-element-type techniques, the computational efficiency can be greatly
enhanced by treating these expressions as linear operators.

To this end, the explicit time-stepping formulation for the PGY technique is expressed by
the following set of linear equations, involving matrix operations on one-dimensional arrays of
field components located within the grid (designated using a bracket { } notation):
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(11.100)

(11.101)

(11.102)

(11.103)

(11.104)
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(11.105)

In (11.100) to (11.105), the subscript k refers to the discrete height along the z-direction,
the [Drs are diagonal matrices, and the [A]'s are sparse matrices. Note that these matrices ·are
associated only with the two-dimensional unstructured grid, since they are the same for all values
of k. As a result, the additional computer memory required to store these matrices is nominal.

Overall, the field updates performed using (11.100) to (11.105) provide an efficient, second
order accurate computational approach to implement PGY models. Further, denoting L~ as
horizontal edges sharing a common vertex, the solution is numerically stable [34, 38] if

At < (11.1 06)

11.7.4 Modeling Example: 32-GHz Wilkinson Power Divider

Many digital and microwave circuit devices and antennas have a planar symmetry that is ideal
for PGY modeling of their associated electromagnetic wave phenomena. The ability of the PGY
technique to effectively implement an FDTD solution within an unstructured grid allows for the
use of commercially available software for computer-aided design and mesh generation.
These features greatly simplify the modeling process. Further, circuits with complex geometries
are more accurately modeled with the use of unstructured nonorthogonal grids.

This is now demonstrated through the application of the PGY algorithm to model a printed
circuit Wilkinson power divider [34], as illustrated in Fig. 11.16(a). This device is designed for
equal-phase 3-dB power division at 32 GHz, assuming matching to 50n microstrip lines.
A 15-mil substrate of permittivity c

r
=3.25 backed by a copper ground plane is assumed, along

with a lOOn chip resistor placed between ports 2 and 3 for isolation.
Fig. 11.16(b) depicts the horizontal cross section of the unstructured mesh used to model the

device of Fig. 11.16(a). Each such mesh plane consists of 3,200 quadrilaterals. Along the
vertical direction, there are 25 uniformly spaced lattice cells with /1z =0.0635 mm. The fields
on the outer boundary of the lattice are updated using the second-order Higdon ABC discussed in
Chapter 6, Section 6.4. To maintain the second-order accuracy of this ABC, the mesh in the
horizontal plane is padded with two layers of rectangular cells, slightly extending the problem
domain. The device is excited by an ideal voltage source generating a Gaussian pulse, and the
chip resistor is modeled as a lumped load, as discussed in Chapter 15, Section 15.9.2.

Fig. 11.17 shows the 5 parameter 511 computed for this device using the PGY technique.
(See Chapter 15, Section 15.2 for the extraction of 5 parameters from FDTD data.) The 5\1 data
are compared with results from a uniform Cartesian FDTD model (ill =6..y =0.0573 mm,
.1.z =0.0635 mm) having five times as many cells. The Cartesian model requires fine resolution
in the horizontal plane to limit errors due to: (1) staircasing the curved metal traces, and
(2) imprecise modeling of the length of the curved quarter-wave transformers in the circuit.
We see good agreement between the results of the relatively coarse PGY mesh and the fine
FDTD grid. Similar agreement is found for the other 5 parameters of this device. This indicates
the possibility of an 80% reduction in computer resources by using the PGY method.
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Top View

.9144 mm

.501 mm

Output port

·2 f
E
E
co

Chip
Resistor

Side View

Cr =3.25 L
~/ff$h 0.381mm

f

• 3Output port

1.........-----1=:6 mm -----II~.-ll

(a) Geometry.

(b) Horizontal cross section of the unstructured grid.

Fig. 11.16 32-GHz Wilkinson power divider and its planar generalized Yee model. Source: Gedney and
Lansing, IEEE Trans. Microwave Theory Tech., 1996, pp. 1393-1400, © 1996 IEEE.
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Fig.11.17 Magnitude of Sll of the Wilkinson power divider of Fig. 11.16 computed using both low
resolution PGY and high-resolution Cartesian FDTD methods. Source: Gedney and Lansing,
IEEE Trans. Microwave Theory Tech., 1996, pp. 1393-1400, © 1996 IEEE.
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11.8 CARTESIAN SUBGRIDS

A variety of methods have been proposed to reduce staircasing errors in Cartesian FDTD grids
and to refine the mesh resolution. Nonuniform (graded) meshes, discussed in Section 11.2,
comprise one approach. However, since grading extends throughout an entire cross section of
the space lattice (see Fig. 11.5), there may be an unnecessary expenditure of computer resources
to store and process small grid cells located far from the geometrical detail of interest.

A more general approach is to use a subgrid. Subgrids are blocks of small mesh cells placed
at specific locations within the computational domain without modifying the global mesh.
A variety of subgridding schemes have been proposed, ranging from methods based on the
Helmholtz equation [40, 41J; on curl and source matrices in the finite-integration technique [42J;
and on Ampere's law in integral form [43]. Improvements resulting in broadened applicability
include spatial and temporal interpolation for data transfer between the main grid and the subgrid
[44 - 46], and using filtering techniques to reduce instabilities [47J. Whereas these schemes can
show excellent performance, general applicability might not be guaranteed. Problems can arise
due to numerical instability, inability to model PEe and dielectric materials entering the subgrid
from the main grid, or significant reflections from the main-grid I subgrid interface.

This section presents a subgridding technique that is focused on providing high performance
with respect to numerical stability, low boundary reflections. material transitions, and
computational requirements. Furthermore. the method is tailored to provide general applicability
within automated CAD-supported modeling environments.
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11.8.1 Geometry

Fig. 1l.l8 iIJustrates the geometry of the subgrid technique described in this section. Here and in
the discussion that follows, E and H denote fields in the primary grid, and e and h denote fields
in the subgrid. Note that the space-cell size in the subgrid is one-half that in the primary grid.

Primary grid cell

E

16-

~ ----e

Subgrid cell

(a) Simplified plan view of a primary grid containing a 2: 1 subgrid.

(b) Three-dimensional perspective view, showing
(E, e) and (H, h) components used for spatial interpolation.

Fig. 11.18 Geometry of a primary grid and a 2: 1 subgrid.
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The subgridding technique illustrated in Fig. 11.18 is designed to robustly achieve a spatial
refinement factor of 2: I at each stage from the exterior grid, and furthermore allow for
systematic nesting of subgrids so that composite spatial refinements of 2n

: I are achievable.
This technique has been successful for up to five nested subgrids (overall refinements up to 32: I).

The spatial positioning of the subgrid shifted by one-quarter of the primary grid's cell
dimensions in each direction, as shown in Fig. 11.I8(a), has been found to lead to the smoothest
transition, since all H-fields of the primary grid as well as the subgrid are collocated in a way that
simplifies spatial interpolation and optimizes temporal updating. Within this implementation,
the cell size does not have to be modeled equidistant for the entire three-dimensional subgrid,
only for each Cartesian direction. Figure 11.l8(b) depicts a detailed view of this setup with a
single subgrid cell placed into a 3 x 2 x 2-cell primary grid. As will be discussed, the electric
and magnetic field components located on the outermost surfaces of the subgrid are used for
information transfer from the primary grid to the subgrid, and the magnetic field components
located within the subgrid are used for information transfer in the opposite direction.

11.8.2 Time-Stepping Scheme

For numerical stability, it is clear that time-stepping in the 2: 1 subgrid must be conducted using
one-half the time-step (i.e., at twice the rate of time-stepping) employed for the primary grid.
This results in missing temporal information when using a common FDTD updating scheme for
both the primary grid and subgrid. Most reported subgridding schemes use an extrapolation in
time to determine the missing information. In contrast, the technique discussed here uses an
interpolation in time, a procedure that is generally considered to be more accurate than
extrapolation. Extensive numerical experimentation has shown that this approach achieves
stability beyond 100,000 time-steps when using a time-step only 10% below the Courant limit,
even for cases where a PEe traverses the transition region between the primary grid and subgrid.

We assume that the following sets of fields are known at the beginning of time-stepping:
(1) all E-components through time-step n-l, (2) all H-components through time-step n-0.5,
(3) all e-components through time-step n-I, (4) all h-components through time-step n-0.75,
(5) all interior e-components away from the subgrid border region (designated einl) through time
step n-0.5, and (6) all interior h-components away from the subgrid border region (designated
h ) through time-step n-0.25. The complete time-stepping algorithm follows:

Inl

1. Update all E components to time-step n.

2. Update all H components to time-step n+0.5.

3. Using a spatial-interpolation technique (to be described in the next section),
calculate all e-components in the subgrid border region at time-step n from the
surrounding E-components in the primary grid. For purposes of notation,
we shall designate these subgrid border-region electric-field components as <.
Furthermore, those eb

n
components which are located at the outermost surface of

the subgrid are identified as es
n

•

4. Using a spatial-interpolation technique (to be described in the next section),
calculate all h-components in the subgrid border region at time-step n+0.5 from
the surrounding H-components in the primary grid. For purposes of notation, we
shall designate these subgrid border-region magnetic-field components as h

b
n+o.5.

-r:
,j
I



504 Computational Electrodynamics: The Finite-Difference Time-Domain Method

5. Using the available data for e,", e,"-l and e,"-2, use a quadratic-function

interpolation in time to calculate e
s
"-05.

U · h '1 bl d f h "+ 05 h" - 075 d h" - I 5 d . f .6. SlOg t e aval a e ata or b " b " an b " use a qua ratlc- unctIOn

interpolation in time to calculate h
b
" -025.

U . h '1 bl d f h"-075 d "-05 ( I .. f "-05 h' h7. SlOg t e aval a e ata or . an e . a so conslstlOg 0 eb . w IC

contain the <-05 components updated in Step 5), apply the normal Yee

algorithm to obtain an alternative evaluation of h
b
"-0.25.

8. Calculated the weighted average 0.35 x h "-0.25
1 + 0.65 x h "- 025

1 for
b Slep 6 b Slep 7

h h "-0.25
eac b •

9. Using the available data for e"-0.5 and h"-025, apply the normal Yee algorithm to

calculate e" .
ml

10. Using the available data for h"-025 and en, apply the normal Yee algorithm to

I I h
"+0.25

ca cu ate jnt .

11. Calculate all H"+025 fields within the subgrid via spatial interpolation of the

d· h"+0.25 f' Ida Jacent Ie s.

12. Using the available data for e" and hN
+

0
.
25

, apply the normal Yee algorithm to
"+0.5calculate einl .

13. Using the available data for hn
+

025
and ein~+05, apply the normal Yee algorithm

I I h
"+0.75

to ca cu ate int .

14. Calculate all H"+0.75 fields within the subgrid via spatial interpolation of the

adjacent hin~ +0.75 fields.

15. Calculate all H"+O.5 fields within the subgrid via simple averaging of the H"+0.25

fields obtained in Step 11 and the H"+0.75 fields obtained in Step 14.

This returns the sets of primary and subgrid fields to the original assumed state, except that all
fields have been advanced by one complete time-step of the primary grid. The process can now
repeat in a self-consistent manner.

11.8.3 Spatial Interpolation

As shown in Fig. 11.18(b), a total of 3 x 9 =27 E-components distributed in three dimensions
are used for the spatial interpolation of a single e-component in Step 3 of the time-stepping
scheme. This interpolation is implemented using a three-dimensional cubic spline [48] to take
advantage of its low-reflection properties [45]. For certain cases, particularly in the initial
propagation stage, a basic cubic spline can lead to over- and underestimated values. To decrease
error and therefore reduce instabilities, one can use a cubic smoothing spline [49], which allows
a trade-off between minimizing the residual error and minimizing local variation.
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In Step 4 of the time-stepping scheme, h-components are spatially interpolated by
application of either one-dimensional or two-dimensional cubic splines on the correlated
H-components, depending on their position. As stated earlier, this simplified interpolation
relative to that required for the e-components results from the spatial positioning of the subgrid
shifted by one-quarter of the primary grid's cell dimensions in each direction.

For a PEC cutting through the primary-grid / subgrid transition, a special interpolation must
be performed if at least one of the field components is located inside the conductor.
The modified scheme implements a two-dimensional or a one-dimensional spline interpolation,
depending on the localization of the cell for a virtually introduced e-component, while including
only those E-components that are not located inside the conducting material.

11.8.4 Numerical Stability Considerations

A major issue with subgridding schemes is reduced numerical stability. This problem arises due
to the abrupt spatial and temporal transition from the primary grid to the subgrid, which requires
non-Yee calculations to approximate the missing field components in the interface region.
Due to the complex updating scheme of the algorithm discussed here (and of three-dimensional
subgridding schemes in general), derivations of stability criteria for subgridding are difficult.
Some work on stability has been reported for a two-dimensional subgrid based on a simple
interpolation approach [50], and for a three-dimensional case [47].

In order to derive the stability criterion for the scheme discussed in this section, each of the
steps within an updating cycle can be formulated as a relation between Yee field values at two
subsequent sequential time-steps valid either inside or outside the subgrid region, which leads to
a product of different matrix terms. Via Fourier mode analysis, the corresponding amplification
matrix subsequently would be derived. To ensure stability of the system, all roots of the
characteristic polynomial derived from the amplification matrix would be required to be less than
or equal to one. An extensive discussion of this general procedure is found, for example, in [51]
for the case of a two-dimensional problem using different time-stepping schemes. Detailed
descriptions of this type of procedure can be found in [52, 53].

The derivation of the characteristic polynomial for the method presented in this section leads
to a very complex system whose solution is beyond the scope of this presentation. However,
by applying temporal interpolation instead of extrapolation, and by incorporating smoothing
cubic splines, robust, stable solutions have been demonstrated using a time-step that is reduced
by only 10% relative to the nominal CFL limit. The temporal interpolation process performs an
averaging procedure in Step 8, weighting the influence of the missing electric and magnetic field
values determined in the previous Steps 5, 6, and 7. This indirectly specifies the order of the
discontinuity within the intersection region between the two grids. The averaging factors of 0.35
and 0.65 specified in Step 8 were determined by numerical experiments for a variety of different
cases. By applying these factors, no tendencies for instability have been observed, even for
testing up to more than 100,000 time-steps.

11.8.5 Reflection from the Interface of the Primary Grid and Subgrid

This section summarizes numerical experiments aimed at measuring spurious reflections from
the interface of the primary grid and subgrid for a plane wave traversing the subgridding region.
Fig. 11.19 illustrates the gridding geometry used for the tests.
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Fig. 11.19 Gridding geometry used for numerical experiments assessing spurious reflections from single
or nested free-space subgrids embedded within a free-space primary grid.
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Fig. 11.20 Calculated spurious reflection from a single 2: I free-space subgrid for J.o/30 resolution of the
free-space primary grid at 10 GHz.
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In the first numerical experiment, a single 2:1 free-space subgrid spanning 31 x 31 x 23 cells
was embedded within a free-space primary grid of spatial resolution )..0/30 at 10 GHz.
Reflections from the subgrid were probed at a point in the primary grid three cells away from the
transition region used for the spline interpolation. An impulsive plane-wave excitation of
lO-GHz bandwidth was applied to the test primary-grid 1subgrid geometry, as well as to a
reference primary grid wherein the subgrid was deactivated. Fig. 11.20 graphs the calculated
subgrid reflection as a function of frequency. We see that this reflection is below -70 dB across
the entire spectrum of interest.

The second numerical experiment involved the embedding of a system of either triply-nested
or quad-nested 2:1 free-space grids (as illustrated in Fig. 11.19) within the free-space primary
grid. This arrangement provided either a maximum 8:1 or 16:1 reduction of the grid-cell size in
going from the primary grid to the innermost subgrid. Except for the nesting, all simulation
parameters were the same as for the first experiment.

'-

Triply nested subgrlds

Quad-nested subgrlds
(6 cells between each grid)

Quad-nested subgrlds
(4 cells between each grid)
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Fig. 11.21 Calculated spurious reflections from systems of triply-nested and quad-nested 2: I free-space
subgrids for Ao/30 resolution of the free-space primary grid at 10 GHz.

Fig. 11.21 graphs the calculated reflection from this subgridding system as a function of
frequency. Comparing Figs. 11.20 and 11.21, we see that, while using nested subgrids causes
significantly increased reflections at lower frequencies, the worst-case reflection is
approximately the same-that is, approximately -70 dB. Thus, for most FDTD simulations,
embedding a nested subgridding system of the type discussed in this section has little impact
upon the rest of the grid, regardless of the maximum degree of mesh refinement that is achieved.
111at is, the subgridding system is quite transparent.
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11.8.6 Illustrative Results: Helical Antenna on Generic Cellphone at 900 MHz

We next discuss an experimental and code-to-code validation wherein the subgridding technique
reviewed in this section was used to model a generic cell phone. As shown in Fig. 11.2,2,
the phone was modeled as a 40 x 16 x 140-mm metal box equipped with an axial-mode, 6.4-mm
diameter helical antenna [54]. The antenna was comprised of seven turns of 1.3-mm diameter
wire, with a pitch angle of 7.2D. In the laboratory experiments, surface waves on the feeding
coaxial cable were suppressed using a A/4 stub and ferrite chokes.

physical model interior structure CAD model

Fig. 11.22 Generic cellphone and antenna used in a validation study of the FDTD subgrid model.

Benchmark numerical data were obtained using a finely meshed FDTD model that provided
0.325-mm cell size in the vicinity of the helical antenna, thereby resolving the cross section of
the thin wire used in the helix with 4 x 4 grid cells. The subgrid provided the same spatial
resolution of the antenna, but connected to a much coarser primary mesh with a maximum cell
size of 8 mm. For both FDTD models, a discrete source feed was placed in a 0.325-mm gap
between the PEe box and the helix wire.

Fig. 11.23 compares the measured feedpoint impedance with the results of the finely meshed
benchmark FDTD model and the subgrid FDTD model. We see that the two FDTD datasets are
virtually identical, and correspond well with the measured values, even for the highly sensitive
imaginary part of the impedance. The excellent agreement between the subgrid and benchmark
FDTD models is verified in Fig. 11.24, which visualizes the differences in these models' results
for the E- and H-fields along a vertical cut-plane through the antenna helix and feedpoint. Very
small differences of less than 0.35 dB are seen here for both field types. Additional results (not
shown here) indicate that the radiated (far-field) E-components calculated by these two models
have similarly small differences, in the order of 0.5% or less.
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Fig. 11.23 Comparison of measured feedpoint impedance with results of the benchmark fine-grid FDTD
model and the subgrid FDTD model of the generic cellphone of Fig. 11.22.

Fig. 11.24 Grayscale visualization of the differences in the subgrid and benchmark fine-grid FDTD
models' results for the E- and H-fields along a vertical cut-plane through the antenna helix and
feedpoint for the generic cellphone of Fig. 11.22.
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11.8.7 Computational Efficiency

Commercial electromagnetic devices usually include structures that are considerably smaller and
more complicated than those of benchmark problems. Although such fine details often do not
significantly affect electromagnetic performance, it is risky to exclude this possibility a priori.
For this reason, highly detailed simulations are often desired. An example of the geometric
detail that may be necessary is provided in the case study of Chapter 14, Section 14.9, where the
performance of a commercial cellphone is examined when the phone is located in free space and
adjacent to human head models. The subgridding technique of this section is used in this case
study, making it possible to model the phone in a computationally efficient manner while
retaining engineering accuracy.

Modeling functional details of compact antennas may simultaneously require resolution of
fine geometrical details smaller than AI 1,000, and much larger structures spanning one or more A.
An example is given by a bifilar antenna [55,56] mounted on a generic phone and placed next to
the ear of an inhomogeneous head model [57]. Here, key antenna details require a local spatial
resolution of about 0.1 mm. By using a doubly nested subgrid for the antenna (O.l-mm inner
subgrid resolution, D.2-mm outer subgrid resolution) that is embedded within a primary mesh
that is graded from 0.4 to 8 mm, a total of approximately 5 x 106 cells is required. For a
sinusoidal simulation at 2.4 GHz, the steady state is reached after 30 periods, which corresponds
to about 60,000 time-steps. This requires a running time of 1.5 hr using a 3.6-GHz Intel
Pentium-4 computer, with a memory utilization of 370 MB. In comparison, using only an
appropriate graded mesh without the antenna subgrid would elevate the running time to 17 he and
the required memory to 1.3 GB. In the worst case, using a hypothetical homogeneous grid would
require about 2 months of running time if sufficient central memory could be found to provide
the 700 GB of required storage. The latter is clearly infeasible at the present time.

11.9 SUMMARY AND CONCLUSIONS

One focus of this chapter was on the development of FDTD algorithms implemented on space
lattices that conform to the surfaces of all structure boundaries in the problem domain.
Five types of grids were discussed:

• Nonuniform orthogonal grids;

• Locally conformal grids, globally orthogonal;

• Global curvilinear coordinates;

• Irregular nonorthogonal structured grids;

• Irregular nonorthogonal unstructured grids.

A second focus was on a robust, stable, and computationally efficient subgridding technique that
provides enhanced spatial resolution for conventional staircasing.

We conclude that the extension of the FDTD method to general space lattices, along with the
application of robust subgridding techniques, are promising means to exploit commercially
available software for computer-aided design and mesh generation. This greatly simplifies the
FDTD modeling process, and enhances its accuracy for structures with complex geometries.
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PROBLEMS

11.1 Derive the explicit updates (11.10) and (11.11) for the nonuniform FDTD method from
(11.6) and (11.7). Similarly derive the explicit updates for the remaining field
components.

11.2 Looking ahead to Section 11.6.2, find general expressions for the averaged Ei,j.k+Jl2'

(J'j.j. k+ 1/2' and J.1 i+ II2.j+ 1/2. k found in (11.10) and (11.11), assuming that the material medium
is three-dimensionally inhomogeneous and isotropic.

11.3 (a) Compute the determinant of the metric tensor g defined in (11.17).

(b) Show that ft = at . (a2 x a3 ) (Equation (11.18».

11.4 Take the dot product of (11.28) with the reciprocal vector a l to derive (11.30a).

11.5 Using central-difference approximations for the spatial derivatives in (11.40), derive
(1 ] .41). Show that in the plane-wave space, the V operator can be replaced by

3 ( i)i k. !:iu
V = L a sin -'--

;=1 2

Hence, derive (1 ] .42).

11.6 Derive the FDTD algorithm for a Cartesian space based on the nonorthogonal curvilinear
FDTD algorithm. Show that they are equivalent.

11.7 The explicit nonorthogonal curvilinear FDTD method can be applied to any curvilinear
system, including orthogonal curvilinear coordinates. Assume that you wish to derive the
FDTD algorithm for a spherical coordinate system where (u

l
, i, u

3
) =(r, 0, ¢J). Then:

(a)

(b)

(c)

(d)

(e)

(f)

11.8 (a)

(b)

(c)

Derive the unitary vectors a
j

•

Derive the reciprocal vectors ai
.

Derive the metrics gij and gi<

Derive the explicit update scheme for the electric and magnetic fields er , eo' e4l , hr ,

ho' and h
41

similar to (11.31) and (11.32).

Are the projections from the contravariant components to the covariant components,
as in (11.33a) and (11.33b), necessary? Why or why not?

Derive the stability criterion for the spherical FDTD algorithm (assume that all grid
points lie in the region r> 0).

Compute the determinant of the metric tensor g defined in (11.52).

Define a parallelepiped bounded by the three unitary vectors (AI' A 2 , A 3). Show that
the volume of the parallelepiped equals A I . (A 2 x A 3).

Show that ft = AI . (A2 x A3 )·
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11.9 Given a general parallelepiped within a nonorthogonal lattice defined by the eight vertices
having the indexes (x, y, z) . . k for i, j, k = 1,2.

I.}.

(a) Compute the three unitary vectors (A I' A2 , A 3) and the three reciprocal vectors
(A 1, A 2, A 3

). Assume that the common origin of the unitary vectors is (x, y, z) I I I'

(b) Compute the metrics giF

(c) Derive the expressions for the field updates in (11.65a, b) and (11.66a, b).

(d) Compute the stability criterion for the explicit update scheme using the metrics
pertaining to this parallelepiped.

11.10 Assuming an unstructured mesh composed of general fitted hexahedral elements, derive
(l1.70a) and (11.70b). Show that if the elements become orthogonal (brick-shaped) with
edge lengths Ax, Ay, and Az, that (11.70a) and (11.70b) reduce to the standard FDTD
algorithm.

11.11 Show that the discrete fields expressed in (11.70a) and (l1.70b) satisfy Gauss' laws.

11.12 Show that the electric flux density in (11.78) explicitly satisfies Gauss' law.

11.13 Show that if the unstructured mesh is locally orthogonal (i.e., the local hexahedral cells
are rectilinear), then the flux densities projected onto the dual edges, as expressed in
(11.74) and (11.78), are identical to the flux densities normal to the face as updated in
(11.70a, b).

11.14 From (11.91) to (11.99), derive expressions for the elements of the matrices in (11.100) to
(11.105), assuming the use of two-dimensional mesh elements that are arbitrary
quadrilaterals, and assuming uniform discretization along the z-direction.

PROJECTS

PILI You are given a general nonorthogonal structured lattice that is defined by the vertices
[x(i,j,k),y(i,j,k),z(i,j,k)] located within a volume n bounded by the surface an.
Assume that the material parameters are homogeneous within the volume, and that on the
surface an, the fields satisfy the boundary condition ;, x E =O. Write a program to
compute the time-varying E- and H-fields within n that are excited by a discrete electric
current source aligned on the grid edge (is,js' ks)' The source is defined as

: to =45 X 10- 11 sec; t
w
=15 X 10-11 sec

(a) To test your program, model a 1 x 2 x 3-cm rectangular cavity, using a lattice with
uniform discretization Ax = Ay = Az = A = 1 mm. Compute the time-varying
contravariant fields for the current source located at grid edge (3,3,3). Write to an
external file the time-varying E-field at grid edge (4,5,6). Using an FFT algorithm,
compute the frequency response of this time waveform, noting the resonanl
frequencies. Compare these with the exact cavity resonances. Double the spatial
discretization and monitor the change in the percentage of error.
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(b) Repeat (a) for a cylindrical cavity with a radius of I em and a height of 2 em.
Construct a structured grid for this geometry (see [24]) using a discretization
on the order of I mm, and excite the cavity with the same current source. Compute
the resonant frequencies and compare with the exact values. Double the spatial
discretization and monitor the change in the percentage of error.

PI1.2 You are given an unstructured mesh composed of general fitted hexahedral elements.
The geometrical description of the hexahedral elements is provided by a list of all the
nodes of the mesh, which uniquely define the vertices of the hexahedral elements.
The node coordinates are expressed by three one-dimensional arrays dimensioned as
x(N), yeN), zeN), where N is the total number of nodes. Another list is provided that
gives the set of nodes for each element. Since there are eight nodes per hexahedron,
the list is stored in a two-dimensional array that is dimensioned as Ihexn(8, M), where
M is the total number of hexahedral elements.

(a) Write a subroutine to uniquely determine the edges and faces in the model, and
construct the pointer array lhexe (12, M), which lists the 12 edges of each
hexahedron, and the pointer array Ihexf(6, M), which lists the 6 faces of each
hexahedron. Use a regular ordering based on that of the nodes, so that the edges,
faces, and nodes are easily referenced to one another.

(b) From (a), write a subroutine to construct the update matrices in (11.88) and (11.89).
Use a ceIl-by-ceIl assembly paradigm for this purpose.

(c) Write another subroutine to implement the field updates of (11.88) and (11.89).

(d) Repeat Project PII.I using the generalized Yee algorithm.

PI1.3 You are given a two-dimensional unstructured mesh composed of general fitted
quadrilateral elements. The geometrical description of the mesh is provided by a list of
all the nodes that uniquely define the vertices of the quadrilateral elements. The node
coordinates are expressed by two one-dimensional arrays dimensioned as x(N) and y(N),
where N is the total number of nodes. Another list is provided that gives the set of nodes
for each element. Since there are four nodes per quadrilateral, the list is stored in a
two-dimensional array that is dimensioned as lquadn (4, M), where M is the total number
of quadrilaterals.

(a) Write a subroutine to uniquely determine the edges in the model, and construct the
pointer array lquade (4, M), which lists the four edges of each quadrilateral. Use a
regular ordering based on that of the nodes so that the edges and nodes are easily
referenced to one another.

(b) From (a), write a subroutine to construct the update matrices in (11.100) to (11.105).
Use a cell-by-cell assembly paradigm for this purpose. Note that arrays (e) and (h)
are associated with the two-dimensional grid edges. Further, array {eJ is associated
with the nodes, and array {h } is associated with the quadrilateral cells.

l

(c) Write another subroutine to implement the field updates of (11.100) to (11.105).
Assume that the medium is inhomogeneous in the z-direction only.

(d) Repeat Project PII.I using the PGY algorithm.



Chapter 12

Bodies of Revolution

Thomas Jurgens, Jeffrey Blaschak, and Gregory Saewert

12.1 INTRODUCTION

This chapter discusses the conformal FDTD modeling of bodies of revolution (BOR).
The objects considered here are symmetric about an axis, leading to the natural use of cylindrical
coordinates. The azimuthal (¢) dependence of the fields is expressed as a Fourier series.
The algorithm is able to compute solutions for all the Fourier modes, provided it is rerun for each
mode. This sort of algorithm can be alternatively labeled as 2.5-dimensional. Since the
azimuthal field variation is analytically accounted for, there is no gridding in the ¢-direction.
This means the BOR-FDTD algorithm is two-dimensional in terms of computer resource usage.

Section 12.2 introduces the BOR expansion that will be used in this discussion. Section 12.3
derives the difference equations needed for the computation of field components away from the
coordinate axis. Field components that lie on the coordinate axis must be dealt with differently,
and are discussed in Section 12.4. Section 12.5 tackles the issue of algorithm stability. An ABC
extended from the PML theory discussed in Section 7.4 is presented in Section 12.6. Section
12.7 deals with the application of this method to problems in accelerator physics.

The BOR-FDTD algorithm has been used to model electromagnetic pulse effects (I],
electromagnetic wave scattering (2], subsurface interface radar [3], wake fields and impedances
of particle accelerators [4--8], optical lenses [9], and guided waves [10].

12.2 FIELD EXPANSION

Our starting point for the derivation of the BOR-FDTD algorithm is the Ampere's and Faraday's
laws in integral form:

= If (j E·dS + ~ If D·dS
s at S

-~Jf B·dSat S

(12.] )

(12.2)

where D = EE and B =JlH. For the purposes of this discussion, we let (J =O.
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Fig. 12.1 Spatial relationship of the field components for the FDTD unit cell in cylindrical coordinates.

Fig. 12.1 illustrates the discretization of (l2.l) and (12.2) with interlinked electric and
magnetic path integrals. In contrast with Cartesian coordinates, the integral contours have a
different shape depending upon the field component to be updated.

The next step is the analytical introduction of the azimuthal field variation. Assuming
linearity of all media, we expand the fields in a Fourier series of sines and cosines:

E = L (e u cosm¢ + evsinm¢)
m=D

H = L (hu cos m¢ + hv sin m¢)
m=Q

(12.3)

(12.4)
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where m is the mode number. u denotes the Fourier coefficients for the cosinusoidal dependence,
and v denotes the coefficients for the sinusoidal dependence. In this expansion, E and Hare
dependent on r, 4>, Z, and t, while eu' ev' hut and h v are dependent on r, z, and t. Note that the
dependence of the Fourier coefficients on m is not explicitly expressed, since the algorithm is
designed to provide a solution one mode at a time.

12.3 DIFFERENCE EQUATIONS FOR OFF-AXIS CELLS

This section derives the difference equations for the off-axis E- and H-components, including the
case where the path integrals are flexed to conform with local surface curvatures.

12.3.1 Ampere's Law Contour Path Integral to Calculate e,

Fig. 12.2 illustrates the computation of an er component using a path integral in the ¢ - z
coordinate surface.

x
q>l

/
....

q> 2 "
.... - .. '.....

, '

z

y

Fig. 12.2 Spatial relationship of the field components for the Ampere's law contour path integral used to
calculate e,'
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From Fig. 12.2, Ampere's law yields

a
E

dt
] f [er.u('O'zz, t)cos ml/> +
<I ¢,

<2

= f [h,.u(rO,zz,t)COsmI/>2 + hz,vC ro,zz,t)sinmI/>2] dz
<1

tP l

+ f (h,,;.U(rO'Z2,t)COsml/> + hq,.)'O,z2,t)sinml/>] rodl/>
¢2

<I

+ f [h"u('O,zz,t)cosml/>l + hz..c'O,zz,t)sinml/>l] dz
<2

¢2

+ f [h¢.U('O,ZI,t)cosml/> + h¢,v('O,zl,t)sinml/>] 'Odl/>
¢I

(12.5)

where the spatial discretization HI the z-direction is D.z =Z2 - zJ' zz =zJ + &/2, er.u is the
component of eu in the r-direction, and er,v is the component of e

v
in the r-direction. The notation

er)ro,zz,t) means that er,u is located at the coordinates roand zz at time t, where ro is the distance
from the coordinate axis. Integrating the above equation yields

+ '0 [h¢.u('O,z2,t)(sinml/>l - sinml/>2) - h¢..c'O.Z2,t)(cosml/>l - cosmI/>2)]
m

+ r
o

[h¢,u (ro' 21, t)(sin ml/>2 - sin ml/>I) - h¢, v (ro' Zl' t) (cos ml/>2 - cos ml/>l)] (12.6)
m

To arrive at (12.6), the component of the H-field parallel to the integral path is assumed to
be constant along each of the four sides of the path, and equal to the value of the H-field
component located along that side. In addition, the E-field normal to the surface of the patch
enclosed by the path is assumed to be constant within the patch, and equal to the value of the
E-field component located there.
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Since fIJI and flJ2 have arbitrary values, the cosine and sine tenns can be collected in separate
equations, which are listed below:

[
lije&a ].= ----e ("o,zz,t) smmfIJ.

m at r,u

(12.7)

(12.8)

(12.9)

(12.10)

Note that (12.7) and (12.8) describe the same relationship between the field components and are
therefore redundant, as are (12.9) and (12.10). The resulting two equations are listed as (12.19)

and (12.25) in Section 12.3.4.

12.3.2 Ampere's Law Contour Path Integral to Calculate e;

Fig. 12.3 illustrates the computation of an e; component using an Ampere's law path integral in
the, - Z coordinate surface. As with the er path integral, we assume that the H-field is constant
along each side of the path, and the nonnal E-field is constant within the patch enclosed by the

path. Designating zz =Zl + &/2, tJ., ='2 -'., rr =r1 + tJ.r/2, e;,u as the component of eu in the
AI-direction, and e.. as the component of e in the fIJ-direction, then the equation for the e'I' y. v v ;

integral is
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;----------~~ z

y

Fig. 12.3 Spatial relationship of the field components for the Ampere's law contour path integral used to
calculate e¢,

£!... f ] [e¢,u(rr,zz,l)cosm¢ + elfl,.(rr,zz,l)sinmI/J] drdz
dt

<I '\

<2

= f [hz,'(/j, ZZ, t) COS m¢ + hz.)/j, zz, t)sin m¢] dz

'2

+ f [hr'U(rr'Z2,t)cosm¢ + hr,V(rr,z2,t)sinm¢] dr

<J

+ f [hz,.('i,zz,t)cosml/J + h
Z
,v(r2,zz,t)sinm¢] dz

<2

'I

+ f [hr,u(rr,zl't)cosml/J + h,.)rr,zl,l)sinm¢] dr

'2

(12.11)
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Analogous relations exist for h , h , h , and h . Now integrating (12.11), we obtainz.u lov r,u r,V

d
e &. dr-[e.. (rr,zz,t)cosm¢ + e.. (rr,ZZ,t)sin m¢]dt '/'.u ,/"V

Since l/J is arbitrary, (12.20) and (12.26) of Section 12.3.4 follow from (12.12).

12.3.3 Ampere's Law Contour Path Integral to Calculate ez

(12.12)

Fig. 12.4 illustrates the computation of an e, component using an Ampere's law path integral in
the r - ¢ coordinate surface. Again, we assume that the H-field is constant along each side of the
path, and the normal E-field is constant within the patch enclosed by the path. The equation for
the e integral is then

z

d
e-

dt
f J[e,.u(rr,z,t)cosml/J +
'1 '1

ez,v(rr,z,t)sinml/J] rdl/Jdr

'2

= f [h"u(rr,z,t)cosml/JI + h,.)rr,z,t)sinm¢,] dr

'1

¢2

+ f [h4J.U(r2,z,t)cosml/J + h4J.vCr2,z,t)sinm¢] r2d¢

'I
'\

+ f [h,.u(rr,z,t)Cosml/J2 + h,.v(rr,z,t)sinmeJI2] dr

'2

'1
+ f [h4J.u(~,z,t)cosm¢ + h4J.vCTj,z,t)sinmeJI] TjdeJI

¢2

Integration of the above equation gives

(12.13)



(12.14)

.... - . - . ,-------A

}------------~Z

y

x

- ~[h4>,u(~,z,t)(sinm¢z -sinm¢l) - h4>,v('J,z,t)(cosm¢z - cosm¢I)]
m

+ .2[h<fJ,u(!i,z,t)(Sinm¢z - sinm4\) - h<fJ,v(!i,z,t)(cosm¢z - cosm¢I)]
m

z z
e(rz - ~ ) a [ ]
--=-----"-- - e (rr,z,t)(sinm¢z - sinm¢l) - e (rr,z,t)(cosm¢z - cosm¢l)

2m at l,U l,V
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Fig. 12.4 Spatial relationship of the field components for the Ampere's law contour path integral used to
calculate e .

l
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In (12.13) and (12.14), 6.'='2 - '1' "='1 + 6.,/2, e is the component of e in the z-direction,l,U u

and ez.v is the component of ev in the z-direction. Analogous relations exist for h,.u' h,.v' hr.u' and

h .r.v

Since 4'1 and 4'2 are arbitrary, the cosine and sine terms can be collected, giving the following
set of equations:

[

2 2 ") ]E(r..-r.)a
= 2 I -e (rr,z.t) cosm4',

2m at Z,v

[

2 2 ") ]E(r. -r. ) a
= - 2 , e (rr,Z,t) cosm4'2

2m at Z,v

[

2 2 ") ]E('2-lj)a .= - e (rr, Z, t) SIn m4'l
2m dt Z,u

[
E(/_lj2)d ]

= 2 e (rr, z. t) sin m4'2
2m dt Z,u

(12.15)

(12.16)

(12.17)

(12.18)

I
I.

Note that, again. (12.15) and (12.16) are redundant, as are (12.17) and (12.18). The two
equations that result are (12.21) and (12.26) of Section 12.3.4.

12.3.4 Difference Equations

The difference equations for off-axis field components are given here. The equations derived in

the previous three sections along with their H -field counterparts are listed first. This list is
divided into two sets of six equations. The first set follows:



(12.20)

(12.23)

(12.21)

(12.22)

(12.24)

(12.25)

(12.19)

(12.26)

2~ 2~
2 2 hiP." (r2 ' Z, t) - 2 2 hiP." (~ ,z, t)

£(r2 - ~ ) £(r2 - ~ )

2m6.r
2 2 hr •u (rr, z, t)

£(~ - ~ )
+

a
-e" (rr,zz,t) =at ,/"u

a
-e (rr,z,t) =at l."

]
+ --fer v(rr'ZI,t) - e (rr,z2,t)]

11& ' r,V

+ _l_[h (rr'Z2,t) - h (rr,zl,t)]e& r.v r,v

2m6.r
+ 2 2 er.)rr,z,t)

11 (r2 - ~ )

a
-hAt (rr,ZZ,t) =at '/'.v

a
-e (r:o,zz,t) =at r,"

a
-h (rr,Z,t) =at l.U

a
-e" (rr,ZZ,t) =at ,/,'V
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The second set of six equations follows:
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d
-e (rr,Z,t) =
dt l,U

+

d
-h (r:o' ZZ, t) =dt r.v

d
-hit. (rr,ZZ,t) =
dt ,/,'U

2mllr
2 2 hr,u(rr,z,t)

£(r2 - 'i )

_1_ [e. (r:2,zz,t) - e (r:I,zz,t)]
pllr "u z,u

(12.27)

(12,28)

+ _l_[e (rr'ZI,t) - e (rr,z2,t)]p /lz r,U r.u
(12.29)

d
-h (rr,Z,t) =
dt Z,v

The field components described in (12.19) to (12.24) are rotated 90· with respect to those
described in (12.25) to (12.30). Note that the two sets of equations are independent.
The independence of the two sets is lost if the material causes coupling between them, such as
for anisotropic media.

Without loss of generality, the first set will be used in deriving the difference equations.
Since only one set is being considered, the u and v subscripts will be omitted for the remainder of
this section, without ambiguity. The time derivative in (12.19) to (12.24) is replaced by a
central-difference approximation. Using the notation i = rl Ilr, k = zl/lz, and n = tl6.t,
the following equations result:

2mllr
+ 2 2 er.u(rr,z,t)

p(r2 - 'i )
(12,30)

I

I'
I.

In+1/2

er ;+1I2.k+l/2
= In-1/2 + ~(h In _ hIn )

er ;+1/2,HII2 C /lz ¢ ;+1I2.k ¢ ;+1/2,k+1

mAtle n

- hi·(i +1/2)6.r l.+1/2.k+1I2
(12.31)

In+1/2 = e In-1/2 + ~ (h In _ h In )
e¢ ;,HI/2 ¢ ;,k+1I2 e /sr l ;-1/2,k+1/2 l ;+1I2.k+1I2

Ilt ( In In )+ - h -he/:!"z ri,HI ri,k (12.32)



(12.33)

(12.34)

(12.35)

(12.36)

(12.37)

m tlt In+lf2

U+1I2)J1tlr e, i+1/2.k+1I2

In i M In+lf2

= hz i+1/2.k+lf2 + (i+1/2)J1tlr e¢ i,k+1I2

(i + I)tlt In+1/2
- e +

(i+1/2)J1tlr ¢i+I,k+1/2

= h In + tlt (r+ 1I2
In+1/2)

¢ i+lf2,k J1tlr e z i+l,k - e z j.k

tlt ( r+1f2 In+1/2)
+ J1& e'i+1/2,k-1/2 - e, i+lf2,k+1/2

m tlt In+ --h
Eitlr 'i.k

h In M (In+1/2 In+lf2) mM In+1I2= + -- e - e - --e .
, i,k J1 & ; i,k+112 ; i,k-1I2 J1 i tlr Z I.k

In+1/2 = e In-I/2 + (i + 1/2)tlt h In _ (i - 1/2)tlt h In
e. ,".k • k " "• .1, 'A Yi+1I2k 'A yj-1/2kE I Ur . E I Ur .

h I~+l
r I. k

h /n+1
; i+lf2,k

h In+l
z i+1/2.k+1/2

a
-J.1A-[h" (rr,zz,t)cosm¢ + h" (rr,zz,t)sinm¢]at ... u .. ,v
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When a field component lies near a material interface, the associated contour path used to
calculate that field component can be deformed to conformally represent the geometry of the
interface. The procedure used in implementing this idea is similar to that described for Cartesian
coordinates [11]. As an example, Fig, 12.5 is a sketch of the Faraday's law contour path needed
to calculate an h¢ component near a PEC surface. This results in the following equation:

12.3.5 Surface-Conforming Contour Path Integrals

where 1
0
=& is the length of the side of the contour containing ez ; II and 12 are the lengths of the

sides containing e, at Z =ZI and Z =Z2' respectively; A is the area enclosed by the contour;
rr = ro+ tlrl2; and zz =ZI + &12. Since one side of the contour coincides with the PEC surface
where the tangential E-field is zero, the contribution from that side of the path integral is zero.
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Fig. 12.5 Faraday's law contour path for calculating h~ near a PEe surface.

The sine and cosine terms can be collected in two separate equations, either of which can be
used. To be consistent with (12.31) to (12.36), (12.37) is further discretized, giving a difference
equation for the h¢' v component that has the form

I
n+l

h¢ i+1/2.k
= h In _ tit &. e In+1/2

¢ i+I/2.k J.lA z r,k

tit (In+1/2 In+l/2)
+ J1 A I( er i+I/2,k-I/2 - 12 er i+I/2,k+I/2 (12.38)

12.4 DIFFERENCE EQUATIONS FOR ON-AXIS CELLS

Fig. 12.6 shows that ez' e¢, and hr field components lie on the z-axis. These components cannot
be calculated using the integrals described in the previous section. The ez components along the
z-axis need to be computed only for m =0, since these components equal zero for all m > O.
This follows from the fact that any constant-r Faraday's law path integral containing r =0
integrates to zero for m > O. The e¢ and hr components need to be computed only for m = I,
since they are also identically zero for m :;: 1, due to the nature of the field distribution.

12.4.1 Ampere's Law Contour Path Integral to Calculate ez on the z-Axis

Fig. 12.7 illustrates the geometry for computing an ez component on the z-axis using an
Ampere's law contour path integral in the r- ¢ coordinate surface. Upon applying (12.13),
we obtain
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Fig. 12.6 Spatial relationship of the field components in the vicinity of the z-axis.

Fig. 12.7 Spatial relationship of the field components for calculating ez on the z-axis.
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TO

= f [hr,u(O,z,t)cOSm¢t + hr,.(O,z,t)sinm¢l] dr
o

¢2

+ f [h¢,u(ro,z,t)cosm¢ + h¢,.(ro,z,t)Sinm¢] 'Od¢
¢1

TO

+ f [hr,u (0, z, t) cos m¢2 + hr,. (0, z, t) sin m¢2] dr
o

where ro=~r/2, Now we proceed with integrating the above equations, obtaining

(12.39)

(12.40)

Since ¢1 and ¢2 are arbitrary, the cosine and sine terms can be collected, resulting in the
following set of equations:

[
ero

2

d ]= --e (O,z,t) cosm¢,
2 dt l,.

(12.41)

[-m roh,.,(O, z, t) - roh.,,(ro,z,t)Icos m¢, ~ [- e;0' :t e,.,(O, z, t>] cos m¢, (12.42)

[
e ro

2

d ]= ---e (O,z,t) sinm¢l
2 dt l,U

[
e ro

2

d ] .= --e (O,z,t) smm¢2
2 dt l,U

(12.43)

(12.44)



(12.45)

(12.46)

X

<PO h zf O

hr

Z
e4>

y

In+112 In-112 4 L\t Ine = e + --h
zO.k zO.k A ~1I2k

E tJ.r .
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As with Section 12.3.3, two equations result from the above set. The cosine equation has the
azimuthal variation of the field component that matches the choice in Section 12.3.4, so that is
the one we will proceed with. It is also worth noting that the area of this contour is less than
one-half that of an off-axis contour.

Since this contour is of interest only for a constant ¢ field dependence, let m =O. It follows
that there is now no need for information about the h, component, so its term can be dropped
from the equation. From the remaining cosine equations, the following can be extracted:

Using indexing consistent with Section 12.3.4, the fOllowing difference equation is written:

In the above equation, L\r =2ro'

Fig. 12.8 illustrates the geometry for computing an e, component on the z-axis using an
Ampere's law contour path integral in the r - z coordinate surface. Note that this component is
zero for all mode numbers except m =1.

12.4.2 Ampere's Law Contour Path Integral to Calculate e; on the z-Axis

Fig. 12.8 Spatial relationship of the field components for calculating e, on the z-axis.

Upon applying (12.11), we obtain
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Z2

= f [hl.U(O,zz,t)cosl/> + hl..cO,zz,t)sinl/>] dz

Yo

+ f [hr.uC0,Z2,t)COSI/> + hr,V<0,z2,t)sinl/>] dr
o

ZI

+ f [hl,u(IQ,zz,t)cosl/> + hl.v(IQ,zz,t)sinl/>] dz

'2

o
+ f [hr.u(O,Zl't)COS¢ + hr.vC0,zl,t)sin¢] dr

r
O

(12.47)

where ro =!:ir/2. The area of this contour is equal to one-half of the area of an off-axis contour.
The next step is integrating the above equation:

!:ir J [ , ]Et1z-- e", (O,zz,t)cos¢ + e", (O,zz,t)sm¢
2 Jt Y.U y,V

(12.48)

The cosine and sine terms can be separated, since with m =1, h
l
=°on the axis. Upon colIecting

the sine and cosine terms into separate equations, we obtain

[
!:ir a ]E!:u.--e", (O,zZ,t) cos¢
2 at Y.U

(12.49)



(12,50)

(12.51)

(12.52)

(12.53)

(12.57)

(12.55)

(12.56)

(12.54a, b)

1
-ez, v
r

a
= -eaz 9,U

[ C&. IJ.r ~e", (O,zz,t)] sin¢
2 at y,V

= {-&. hz, vero' zz, t) + ~r [hr,vCO, Z2' t) - hr,v (0, zl' 1)]} sin ¢

1

"+112 1"-112 2IJ.t I" IJ.t ( " " )e = e - --h + -- h - h
9o,k+1I2 ¢ O,k+112 C IJ.r z 112,k+112 C &. rlo.k+112 r lo,k

a
--IlH = VxE

at

a 1 A

--Il h = V x e + -f/lxe
vat U

U

r

a I A

--Il h = V x ev
- -f/lxe

uat v r

a
-Il hat r,u
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The information in the above equations is redundant, so either one can be used. The following
can be written:

Upon designating IJ.r =2ro' central-differencing the time derivative. and using indexing
consistent with Section 12.3.4, (12.51) can be rewritten as

12.4.3 Faraday's Law Calculation of hr on the z-Axis

The hr field component is zero on the coordinate axis for all mode numbers except m = 1,
The starting point for the derivation of the difference equation used to calculate this component
is the differential form of Faraday's law:

Now expand the fields in the q>-coordinate:

Substituting into (12,53) yields

To be consistent with Section 12.3.4, (12.55) is used. This vector equation contains the
following scalar equation for the hr component:
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The next step is to discretize (12.57) at the axis. Computation of the time and space
derivatives is straightforward. The ez term is a measure of the derivative of ez with respect to qJ,
and is not zero. However, the value of the ez component is zero at the axis for m > 0. Therefore,
a nearest-neighbor approximation is used: the ez value at r =I1r. This yields

h In+1 In I1t In+I/2 lit (In+J/2 In+l/2 )= h --e + -- e - e
r O,k r O,k - J1lir z I,k j.1& tP O,k+1/2 tP O,k-I/2

12.5 NUMERICAL STABILITY

(12.58)

Explicit finite-difference schemes have stability restrictions on the choices for the space and time
increments. The numerical stability bound for the time-step used in the BOR-FDTD algorithm
can be empirically represented as

lit ~ tu / sc (12.59)

8.0 ~- - -,

7°1
6.0 r
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t
O::"'SOL
~ . \

~
u. 4.0
~
::::::i
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where Ax is the space increment, S - m + I for m > 0, and S =.fi for m =0, Fig. 12.9 displays
the stability factor s versus the mode number m. It has been observed that the stability of the
algorithm is very sensitive to the way the field components near the axis are computed.
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Fig. 12.9 Stability factor versus mode number for the BOR-FDTD algorithm.
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(12.61)

(12.62)

(12.63)

(12.64)

(l2.65a)

(12.65b)

(12.60a, b)
dB

= -J1
dl

VxE
aE

= e-
dt

VxH

00

E = I (eu cos m¢ + ev sin m¢)
m=O

00

H = I (hu cos m¢ + hv sin m¢)
m=O

m ~ a
±-lPxh + Vxh = e-e

v.u u, v
at

U,vr

m ~

Vxe
d

±-4J x e + = -J1-hv,U u, v at U,vr

d a m
e-e = --h -h

dl
r, v az ~,v l,U

r

d d d
e-e = -h -hdt ~,u dZ

r.u ar l,U

The PML theory developed by Berenger [12] is a major theoretical and practical advance in

ABCs for FDTD methods. Chapter 7 discussed in detail PML ABCs for Cartesian space lattices.
This section describes an extension of Berenger's PML ABC to terminate a BOR-FDTD grid

in the axial and radial directions. Sample calculations for cylindrical waveguides are presented.

The starting point for deriving the PML conditions for the BOR-FDTD method is Maxwell's curl
equations written in cylindrical coordinates:

12.6.1 BOR-FDTD Background

As before, assume that the fields have a harmonic azimuthal dependence:

Substitution of (12.61) and (12.62) into (12.60a, b) results in the following equations:

The above vector equations can be separated into two independent groups of six scalar

equations, These groups represent modes that are azimuthally perpendicular to each other.

For the present discussion, only one group is needed. It is listed here for later comparison to the

PML forms:



a 1 a m
E-e = --(rh ) + -h

at z. v a ¢J.v r.u
r r r

a a m
Il- h = -e - -e

at r.u az ¢J.u '. vr

a a a
Il- h = --e + -e

at ¢J.v az
r. v

ar
,. v

a 1 a m
Il- h = -- -ere ) + -e

at ,.u a ¢J.u r. v
r r r
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(l2.65c)

(l2.66a)

(l2.66b)

(l2.66c)

In the above equations, the first subscript refers to the field component's coordinate direction,
while the second determines its azimuthal variation. The u and v subscripts will be omitted,
since we are only working with one group of these equations.

12.6.2 Extension of PML to the General BOR Case

This section derives a PML absorbing boundary condition for the general body-of-revolution
case, which applies and extends the techniques for cylindrical coordinates discussed in [13].
We start with the general BOR representation of Maxwell's time-dependent equations given by
(12.65) and (12.66). Specializing these for the sinusoidal steady-state case, we have for each
mode m = 0, 1, ... ,00 of the harmonic representation defined by (12.61) and (12.62):

_ali¢> _ m-
jwe er = -h

az ,
r

ali ali,
jwee¢J

_r _

az ar

1 a ( -) m-
JWEe, = -- rh, + -h

r
r ar r

ae¢ _ m
jmllhr = -e

az ,
r

jWllh¢
aer ae,

= --+
az ar

1 a m
jWllhz = - --(re¢J) + -e

r
r ar r

(l2.67a)

(l2.67b)

(l2.67c)

(l2.68a)

(l2.68b)

(l2.68c)

Ir .
I '.
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Assume that the region T < T\ and Zo < Z < Zl is comprised of ordinary media, and further

assume that PML occupies the regions z < zO' Z > z" and T> 'I' We wish to map the BOR
representation of Maxwell's equations into a complex stretched-coordinate space in the manner

of Chapter 7, Section 7.4. To this end, we define the stretched-coordinate variables [14,15]

(l2.69a)

(l2.69b)

Application of the stretched-coordinate mapping to (12.67) and (12.68) yields the BOR modal
representations expressed in the stretched-coordinate space:

(12.69c)

(12.71a)

(12.71c)

(12.71 b)

(12.72a)

(12.72c)

(12.72b)

(12.70a, b)
1 d

=
1 d

=

fz , ,z ~ z, + s (z )dzz z
I

ar s, aT

_~ dh; _ m-
jWEe, = -h

dZ
z

s ,
z

dh _ dhz
jWEe~ = --' -

s, dZ s, ar

~~~(rh¢) m-
jWE ez = + -h

r
r s, ar r

~ de¢ _ m
j WJ1 h, = -e

dZ
z

S Tz

1 de 1 de
jWJ1h¢ = ---' + --'

s dZ s, dT
l

1 I d m
jWJ1hz = - ::--(re~) + -e_ ,

r s, dT r

Note that in the ordinary media, S =S =1 with r~ T and z~ z. Further, this mapping leadsr ,

to the differential relations
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The stretched-coordinate formulation can be viewed as being equivalent to a uniaxial
anisotropic medium as the result of additional scalings applied to the e and h fields [16,17].
For example, let

r
er = sr er e¢ = -e¢ e = S ez z z

r

r -
h = S h h¢ = -h h = s h

r r r ¢ Z Z z
r

The results of applying this scaling to (12.71) and (12.72) are

(12.73a, b, c)

(12.74a, b, c)

s r 
j(J)£ _z_ e

r
s r

r

= _ ili¢ _ m h
az r Z

(12.75a)

s s r 
jOJ£~ e¢

r

= alir _ aliz
az ar

(12.75b)

s r 
jOJ£ _r_ e

z
Sz r

s r :::
jWJ1 _z_ hr

Sr r

= ~~(rh,,) + mh
r ar 'I' r r

a~¢ _ m:::
= -e

dZ r Z

(12.75c)

(l2.76a)

s s r :::
'wJ1_r_z- h

] - ¢
r

a~r= --+
dz

d~_z

ar (l2.76b)

I
t I'

I ',.

s r :::
jWJ1 _r_ hz

s rz

Id(-) m-= --- re¢ + -er
r ar r

(l2.76c)

Equations (12.75) and (12.76) characterize a uniaxial anisotropic medium described by

o

o
(12.77)

Therefore, the fields need not be represented as mapped quantities, and the "-" symbols over
each field component can be dropped. In the PML region, sr and Sz are complex-valued and

spatially dependent with
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Finally, the choice of s combined with (12.69a) yields the functional form
r

(12.8Ia)

(12.8Ic)

(12.8Ib)

(12.82a)

(12.82c)

(12.82b)

(12.78a, b)

(12.79a, b, c)

(12.80a, b, c)

r S r r
Pr = -e P¢ = ' - =-e P, -er - ¢ ,

S r r Sz rr

r S r- r
qr = -h q¢ = _z-h qz = -hr - ¢ Z

S r r Sz rr

The conductivity (J is used to attenuate propagating modes. Generally, (J varies from zero at the

interface of the ordinary medium and the PML to some maximum value at the edge of the grid.

The parameter 1( provides for the attenuation of evanescent modes, and generally varies from a

value of unity at the interface of the ordinary medium and the PML to some maximum value at

the grid edge [18]. See also the discussion in Chapter 7, Sections 7.5.3 and 7.6.2.

The specification of sr and s, given by (12.78) is frequency-dependent, and thus introduces

higher-order time derivatives in the time-domain representation of (12.75) and (12.76).
To ensure stability for the FDTD solution, auxiliary variables are introduced that lead to a

coupled set of first-order equations. We define the auxiliary variables

This yields from (12.75), (12.76), and (12.78)

_ dh¢ _ m-
jUJ£1(z(z)Pr + (Jz (z)Pr = -h

dZ
z

r

dftr aft
jUJ£1(r(r)p¢ + (Jr(r)p¢ = _z

aZ dr

jUJ£1(r(r)pz + I a( -) m_
a/r)pz = -- rh¢ + -hr

r ar r

ae¢ _ m
jUJ/..JXz(z)iL + a,(z)iL = -e

aZ
z

r

ae de
jUJ/..Jx,(r)q¢ + (Jr(r)q¢ = __r + _z

az ar

I a m
JUJ /..JXr(r) qz + a/r)qz = - --(re¢) + -er

r ar r
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1:
r</j

r =
j r 'd'+ rT( (r')dr' - -- ()r(r) r r> rl

(12.83)
, r

w£o r lI

Now, we have all of the information needed to develop a set of time-domain differential
equations for the e and h updates suitable for implementation in a BOR-FDTD code. We shall
next summarize these differential equations.

Updating of the e Components

First, we perform an inverse Fourier transformation of (12.81). This leads to

These can be time-stepped using the usual Yee leapfrogging to obtain pn+I/2 from hn
•

Next, we apply (12.83) to (12.79) to expand the relationships between the components of p
and e. Inverse Fourier transformation of these relationships yields

ap _ dh¢ _ m
£T( (z)-' + (),(Z)Pr = -h, at az ,

r

ap ah ah
£T( (r) _¢ + (),(r)p¢ = _r _ -', at az ar

ap 1 a m
£1( (r) -' + CJ,(r)p, = --(rh¢) + -h

r at
,

r ar r

ae s ap ra,(r)
(" + K) a:- - -e = rl( (r)-' + Pr,

r dt£0 £0

ae¢ ra, (z) ( ) ap¢ s
rT( (z) - + e¢ = ,,+Ka;- -p

1 at £0 £ ¢
0

de S dp ra,(z)
(" + K) a: - -e = rI( (Z)_l + P,, , dt£0 £0

(12.84a)

(12.84b)

(12.84c)

(12.85a)

(l2.85b)

(l2.85c)

where

K = rI( (r')dr'
r
1

r s = ra (r')dr'
'1 r

(12.86a, b)
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(l2.87a)

(12.87c)

(12.87b)

(12.88a)

(12.88c)

(l2.88b)

dq ra,(r)
rK (r)-' + q

, dt Eo'

dq de~ _ m
J.l.K (z) -' + az<z)q, = -e

z dt dZ
z

r

dq de delJ.l.K (r) _¢ + a,(r)q~ = --' +
, dt dZ dr

dq 1 d m
J.l.K (r) _l + a,(r)q, = - --(re~) + -e

, dt ,
r dr r

dh S
(~ + K) _l - - hz =

dt Eo

Updating of the h Components

First, we perform an inverse Fourier transformation of (12.82). This leads to

Equation (12.85) allows calculating e"+1/2 using data for pn+I/2 previously obtained in (12.84).

Overall, we see that (12.84) and (12.85) comprise a two-step process for obtaining e"+1/2 from h".

Th· h f I I' h"+! f "+1/2 h' h . . dIS sets t e stage or ca cu atmg rom e ,w IC IS summarIze next.

Th b · d' h I Y 1 f' b' n+l f n+1/2ese can e tlme-steppe usmg t e usua ee eap roggmg to 0 tam q rom e .

Next, we apply (12.83) to (12.80) to expand the relationships between the components of q
and h. Inverse Fourier transformation of these relationships yields

where K and S are defined in (12.86). Equation (12.88) allows calculating h"+l using data for qn+1

previously obtained in (12.87). We see that (12.87) and (12.88) comprise a two-step calculation
process for obtaining h"+1 from e

n
+

I12
• This completes a full time-step of the leapfrog algorithm.

As discussed in Chapter 7, Section 7.6.2, the loss parameters in the PML must be graded to
minimize the discretization error. One practical choice is polynomial grading. For a PML
located between r = r\ and r = r (the maximum-r outer boundary of the grid), the following

max

grading is found to be useful:

Grading of the PML Loss Parameters
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( )

f
r-r.

0"r ( r) = I 0"r max ;
r -r. .max ,

( )

fr-r.
/(r (r) = 1 + 1 ( /(r. max - 1)

r - r.max I

(12.89a, b)

This is analogous to the polynomial grading specified in (7.60a, b) for a rectangular space lattice.
Similarly, for PML located between z = z, and z = zmax (the maximum-z outer boundary of the
grid), we have

(12.90a, b)

An analogous expression holds for PML located between z =0 and z =ZOo

In the corner regions of an r-z grid, wave attenuation is needed in both the r- and
z-directions. Specifying the loss parameters of a PML medium as indicated in (12.89) and
(12.90) accomplishes this objective.

12.6.3 Examples

We now show two examples of the effectiveness of the PML ABC for the important case of a
BOR waveguide. Here, the waveguide is oriented parallel to the z-axis, and the PML is applied
to absorb waves propagating in the ±Z-directions. No PML is needed at the outer r-boundary of
the grid, which is outside of the waveguide.

The first example models a monochromatic, 6-GHz TMo1 mode propagating in air in a
circular, PEC waveguide having a 4.41-GHz cutoff frequency. The PML thickness is 20 cells,
and the PML loss G'z is graded quadratically with depth from the air boundary; that is, .e = 2

"
n (12.90), for 0" = 10 Slm and /( = 1.z,ma.x l.max

Fig. 12.10 shows the superposition of the propagating waveforms of the TM01 mode both in
an infinitely long waveguide and in the PML-terminated waveguide. The difference between the
twO waveforms is unobservable at the scale of the graph, being on the order of only 1 part per
14,000. The reflection coefficient due to the PML termination is calculated to be -83 dB [10].

The second example repeats the first (using the identical PML parameters), but here the
circular PEC waveguide has a cutoff frequency of 3.38 GHz and is excited to propagate a 4-GHz
TEll mode. This mode illuminates the PML ABC with a substantially different field structure
than the TMOI mode of the first example, and propagates much more slowly by virtue of its
frequency being quite close to cutoff. Nevertheless, the difference between the infinitely long
and PML-terminated guide waveforms is again unobservable at the scale of the graph of
Fig. 12.11, being on the order of only 1 part per 22,000. The reflection coefficient due to the
PML termination is calculated to be -87 dB [10].

12.7 APPLICATION TO PARTICLE ACCELERATOR PHYSICS

In high-energy physics, a charged particle beam is accelerated to nearly c, and collided with
another relativistic beam or a fixed target. These collisions result in a shower of subnuclear
particles. The study of these subnuclear particles enables the discovery of the innermost nature
of matter and the forces that interact with it.

I '
I '
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Fig. 12.10 Virtual congruence of the propagating waveforms of a TMol mode in an infinitely long
circular PEC waveguide, and the same waveguide terminated by 20-cell-thick PML.
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circular PEe waveguide, and the same waveguide terminated by 20-cell-thick PML.
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Particle accelerators used in such studies consist of a series of devices that have an
evacuated pathway through which the beam passes. Some of the possible devices in a particle
accelerator include empty beam pipes, plates, cavities, and magnets. The beam itself is usually a
series of particle bunches, rather than a continuous particle stream. Particles in these bunches
typically are electrons or protons.

When a beam bunch passes through a device, electromagnetic fields are excited in that
device. These excitations are called wake fields, and are analogous to the waves that make up
the wake of a boat traveling through water. Wake fields that persist in the device after the beam
bunch has exited can affect subsequent bunches. Given the right conditions, the wake fields can
even affect the trailing portion of the bunch that excited them. As a result of these mechanisms,
the beam could become unstable and break up.

This section discusses the application of FDTD methods to particle accelerator physics.
In this technology area, the FDTD method is most commonly used for the calculation of wake
fields and impedances. The section begins with a brief introduction to terms and concepts used
in the wake-field analysis of particle accelerators.

12.7.1 Definitions and Concepts

Let a particle with charge q travel at essentially the free-space speed of light v =c along the axis
of a circular PEe pipe of radius b. The resulting electromagnetic field distribution inside the
pipe is Lorentz-contracted into a flat disk. For example, the radial E-field distribution
approaches [19-21]

(12.91)

Note that there are no fields left behind the particle; they are located only at z = C t.

This situation does not change if the particle is moving parallel to, and offset from, the beam pipe
axis; again, no wake fields are excited. However, wake fields are excited if the pipe is not a
perfect conductor or if there is a change in the pipe's radius.

The particles that generate the wake field follow a prescribed path and are not affected by
any surrounding fields. These kinds of particles are described as rigid or stiff. If the
z-dependence of the particle distribution is not impulsive, then the fields generated by the front
of the bunch can affect the tail of the bunch. Accounting for this type of interaction requires a
self-consistent formulation of the problem where the beams are not rigid. Particle-in-cell (PIC)
algorithms have this feature [22, 23].

In order to include charged-particle movement in the FDTD formalism, a current source
term is added to Ampere's law:

r
Ti
I

(12.92)

Let the current source in (12.92) be due to a bunch of charged particles traveling in the
z-direction at velocity v =c. Following the BOR modal decomposition used in this chapter,
the charged-particle current is expressed as a sum of azimuthal moments
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where

= I
m=O

= {Ol8mO

m=O

m ;c 0

(12.93)

(12.94)

and Zo =ct - z. The azimuthal moments of the bunch are rings of charge with a radius of a.

The parameter p is the bunch charge density function in the z-direction.
Wake functions are the descriptions of the fields produced when the bunch is a point charge

with a charge density profile of p(zo) =q8(zo)' They are proportional to the forces that would be

encountered by a witness charge. The longitudinal and transverse wake functions of the m'th

mode, W mil and W ml.' are given as

e
l. U

m m
qa ~

Wml.(S) = m m-I
qa m~

(12.95a, b)

In (12.95a, b), the witness charge travels behind the point bunch at a distance S with a velocity

v =C, and along a path parallel to the pipe axis with an axial offset of r,o The e- and h-field

components are defined in Section 12.3. The transverse and longitudinal wake functions are
related by [24]:

(12.96)

Wake functions are time-domain descriptions of the fields. Since they originate from a point

charge, they can be thought of as the Green function of the device. This description can be

expressed in the frequency domain as longitudinal and transverse impedances. The longitudinal
impedance is defined as the Fourier transform of the longitudinal wake function:

= f (12.97)

Likewise, the transverse impedance is defined as the Fourier transform of the transverse wake

function:

Zml. (ill) = ~ f wml. ('r)e -jw, d-r
J-oo

(12.98)

From a computational point of view, (12.95a, b) are not calculable since the FDTD grid cannot

support a delta distribution. Only bunches with a finite frequency content can be modeled.
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The wake potential of a bunch (of finite length) is defined as the average effect on the test
particle resulting from its traversal through a wake-field-filled device of length L. It is dependent
upon the device's geometry and the charge distribution that created the wake. The longitudinal
and transverse wake potential for a given mode are given by

1 L---- f e (z,r,t)1 dzn m m L t,U I 1= (s+t)!c
lr:-() Q r, 0

1 L

-Q--m--m---\-L f [e r•u(z, r" t) + c,u h"u] L=(s+t)lc dz
oQ mr, 0

(12.99)

(12.100)

where Qo is the total charge in the bunch. The Fourier transforms of the bunch wake potentials
and the charge distribution are denoted as

We note that since p has a finite bandwidth, the accuracy range of the impedance values is also
bandlimited. In addition, for the impedance to have the correct phase, both W(s) and p(zo) must
be calculated from the same origin.

1 f -joJZpew) = - p(zo)e 0 dzo
2Jr

Therefore, the device impedance can be extracted through the equation

(12.101)

(12.102)

(12.103)

...
T
I

12.7.2 Examples

Several computer codes are available for calculating impedances and wake fields in azimuthally
symmetric structures [4-8]. The surface-conforming BOR-FDTD code XWAKE [4] was used to
produce the two examples presented here. In both examples, the mode number m equals zero.

Fig. 12.12(a) illustrates the geometry of the first example, a 14.8-cm-Iong section of circular
PEe beam pipe of radius 3.3 em. This pipe is provided with tapered input and output sections of
angle 2.4° that narrow down to a 3.0-cm radius. Fig. 12.12(b) shows the results of a convergence
study (versus grid resolution) for the peak longitudinal wake potential derived from the FDTD
field data using (12.99). This figure compares three methods of approximating the surfaces of
the tapered waveguide sections: ordinary staircasing, diagonal split-cells, and surface
conforming contour-path integrals (Section 12.3.5 and Fig. 12.5). While all three surface
approximations converge to the same peak value of wake potential, the use of the surface
conforming contour-path integrals provides as much as a 64: 1 advantage over staircasing in
memory usage, and a 512: 1 advantage in run time.
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Fig. 12.13 The wake potential of a ferrite-loaded particle accelerator cavity calculated by the BOR-FDTD
code. Ferrite permeability J.l, =10; grid resolution Ar =& =0.001 m.
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Fig. 12.13(a) illustrates the geometry of the second example, a section of PEC beam pipe
containing two cavities. This geometry is modeled twice, once with the second cavity empty and
once with it filled with ferrite. In both cases, the first cavity is empty. Fig. 12.13(b) plots the
distribution of the longitudinal wake potential as a function of distance s behind the particle
bunch, as calculated from the FDTD field data using (12.101). This example demonstrates a
capability of interest to the particle accelerator engineering community, namely, the ability of the
BOR-FDTD technique to model in a straightforward manner material loading in accelerator
cavities. Such data, as well as direct time-domain visualizations of the dynamics of the
electromagnetic field in the beam pipes and cavities, are leading to schemes to mitigate the
effects of wake potential upon the integrity of the moving particle bunches.

12.8 SUMMARY

This chapter discussed FDTD modeling of bodies of revolution. Such objects are rotationally
symmetric about an axis. This leads to the natural use of cylindrical coordinates and expression
of the azimuthal dependence of the fields using a Fourier series. The algorithm is able to
compute solutions for all the Fourier modes, provided it is rerun for each mode. Since the
azimuthal field variation is analytically accounted, there is no gridding in the Ij}-direction.
Thus, the BOR-FDTD algorithm is two-dimensional in terms of computer resource usage.

Topics discussed included the modal expansion, derivation of the difference equations
needed for the computation of field components located either on or away from the coordinate
axis, numerical stability, a PML ABC for waves propagating either radially or along the axis,
and examples of applications to problems in particle accelerator physics.
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PROBLEMS

12.1 Using Fig. 12.2, derive (12.5) from Ampere's law.

12.2 Integrate (12.5) to obtain (12.6).

12.3 Collect the sine and cosine tenus of (12.6) to derive (12.7) to (12.10).

12.4 Derive (12.22) to (12.24) from Faraday's law.
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12.5 Derive equations analogous to (12.31) to (12.33) for (J-:f. O.

12.6 Using the method of Section 12.3.5, obtain expressions analogous to (12.37) and (12.38)
for h

r
, given a smooth PEC contour in the r- z plane that is to be represented

conformally.

12.7 Derive (12.46) from (12.39), filling in all of the intermediate steps.

12.8 Derive (12.52) from (12.47), filling in all of the intermediate steps.

12.9 Derive (12.58) from (12.53) and (12.54), filling in all of the intermediate steps.

12.10 Derive the difference equations of a PML medium used to terminate a PEC circular
waveguide.

PROJECTS

P12.1 Write a BOR-FDTD computer code that models the propagation of the TEll mode in a
circular PEC waveguide. Choose the waveguide radius and length carefully so that the
proper mode can evolve from the excitation condition. Verify the accuracy of the model
by comparing the computed transverse E-field distribution with the exact solution.

P12.2 Add a PML ABC to the waveguide model of Project P12.1. Replicate the results of Figs.
12.10 and 12.11.



Chapter 13

Periodic Structures

James Maloney and Morris Kesler

13.1 INTRODUCTION

Many structures of electromagnetic interest possess a periodicity in one or more dimensions.
For example. a frequency selective surface (FSS) is commonly used in a radome to control the
energy that reaches an antenna. A typical FSS consists of one or more layers of material, each of
which is formed from an element periodically replicated in two dimensions. Another periodic
structure that has received considerable attention in recent years is the electromagnetic bandgap
(EBG) structure. An EBG structure is a periodic construct that has frequency regions in which
electromagnetic wave propagation is forbidden. A third type of structure that can be considered
periodic is an antenna array. If large enough, many of the important parameters of an array can
be analyzed by assuming that the structure is periodic.

The FDTD technique can be applied to the analysis of periodic structures such as the ones
mentioned above. Such structures often have fine details at the element level that must be
accurately modeled in order to predict the correct electromagnetic behavior. Coupled with the
fact that the overall structure may consist of many replicas of the basic element, this level of
detail leads to computational problems that are unmanageable. One way to alleviate the
computational burden is to model only the individual element, and use boundary conditions to
simulate the effect of periodic replication.

As an example of a periodic structure, consider the two-dimensional, electromagnetic screen
shown in Fig. 13.1. The screen consists of infinitely long, parallel conducting bars of width w,

thickness d, and separated by a gap g. The illumination is an electromagnetic plane wave with
the electric field parallel to the bars (z polarized), and the propagation direction at angle ¢I with
respect to the x-axis, as shown in the figure. This is a two-dimensional electromagnetic problem,
since only the Ez • Hx ' and Hy fields are nonzero. Because of the periodicity inherent in the
geometry, only the fields in the "unit cell" are unique and need to be determined. Dashed lines
in the figure denote the edges of the unit cell.

Now, consider discretizing the solution space within the unit cell using a traditional Yee
lattice. Field components that can be updated using the fields in the unit cell are denoted by solid
black symbols. while those that cannot be updated are denoted by white symbols. The field
components that cannot be updated instead can be determined using periodic boundary
conditions that relate the fields on one side of the unit cell to those on the other side. Of course,
this relationship depends on the angle at which the incident field impinges on the structure.
For the geometry shown, the relationship is expressed in the phasor domain by

553



554 Computational Electrodynamics: The Finite-Difference Time-Domain Method

Long, parallel,
equally spaced
conducting bars
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plane wave

x

Fig. 13.1 Two-dimensional electromagnetic screen (left) and a top view of the structure showing the field
components at the edges of the unit cell.

Hx( x, Y =Yp +fJ.y/2) = iIx(x, y =~yl2) exp( -jkyYp )

E, (x, Y =0) = E, (x, Y =Yp ) exp (+ j kyYp )

(t3.1a)

(l3.tb)

where ky=kosin¢1 and ko is the free-space wavenumber. FDTD requires the boundary conditions
to be expressed in the time domain. In the time domain, (13.1) becomes

(l3.2a)

(l3.2b)

Equation (13.2) shows that the periodic boundary condition involves using both previous as well

as future field components. Specifically, the Hx values at Y =Yp + ~y/2 are equal to previous
values of Hx at y = ~y/2, while the E, values at y = 0 are equal to future values of E, at y =yp'

Previous values can simply be saved using additional computational storage. However, there is
no simple solution for this need for future values of E,.
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This chapter discusses several of the techniques that have been proposed for dealing with
this problem. We have divided the techniques into the two classes shown in Fig. 13.2.
The techniques listed on the right side of this figure all use a field transformation to eliminate the
need for time-advanced data. The transformed field equations are then discretized and solved
using FDTD techniques. Each technique uses a different approach in handling the extra terms
introduced by the field transformation. Numerical stability is an important consideration in each
of these approaches. All of the other techniques are listed on the left under "Direct Field
Methods." These methods work directly with Maxwell's equations with periodic boundary
conditions.

FDTD with Periodic
Boundary Conditions

Direct Field Methods

• Norma/Incidence Method

• Sine-Cosine Method

• Multiple Unit Cell Methods

• Angled Update Method

Field-Transformation
Methods

• Multispatial Grid Method

• Split-Field Method . "

Fig. 13.2 The techniques used to perform FDTD with periodic boundary conditions are divided into two
classes. Each technique is discussed in this chapter.

Another type of periodic problem is one in which the periodicity is in the direction of
propagation. One example of this type is a Bragg filter. Several authors have investigated this
class of problem using an FDTD approach [1-3]. In this chapter, we will focus on geometries
that are periodic in the transverse directions, and will not consider longitudinal periodicity.

13.2 REVIEW OF SCATIERING FROM PERIODIC STRUCTURES

Before we delve into the details of FDTD modeling of scattering from periodic structures, a brief
general discussion of this topic is appropriate. For simplicity, consider the case of a planar
scatterer having one dimension of periodicity, as shown in Fig. 13.3. This geometry is periodic
in the y-direction with period yp' The illumination, denoted I in this figure, is aplane wave
propagating at angle ¢I relative to the x-axis. The traditional far-field transmitted and reflected
waves, denoted as To and Ro' propagate at angles ¢To = ¢I and ¢Ro =180

0

- ¢l' respectively.

The presence of periodicity in the scatterer can lead to the appearance of additional angles of
far-field transmission and reflection. These are often referred to as Floquet modes or grating
lobes. The set of angles (¢T) are the roots of the following equation:
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Fig. 13.3 Schematic representation of scattering from periodic media.

sin ¢r
m

= (_C) m + sin ¢,
Ypf

(13.3)

The angles of reflection ¢R
m

are related to the angles of transmission by

(13.4)

To illustrate the appearance and behavior of the additional angles of transmission and
reflection, consider the case ¢I =30". Fig. 13.4 shows {¢T) as a function of the normalized
frequency y fie. As the frequency increases, new solutions appear with angles beginning at

p

±90". Note that the number of additional angles is dependent on the frequency and the angle of
incidence. For positive ¢I' the following are the "turn-on" frequencies for the first few orders:

f. - 0(urn-on - m=O (13.5a)

c
hum-on =

Yp (l + sin¢l)

2c
hurn.on =

yp(l + sin¢l)

m =±l

m = ±2

(13.5b)

(13.5c)
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Fig. 13.4 Transmission directions ~T", of the periodic structure as a function of frequency for !PI =30', .. '

We see that for low frequencies f < c/[y/I + sin 1/>,)], only one root exists, namely I/>T
o
=1/>\,

This is in the traditional transmitted direction.
The fields on a planar surface in front of and behind the scatterer can be used to determine

the amplitude and phase of the signals reflected and transmitted in each order m. Because of the

periodic nature of the geometry, only the fields in the unit cell need be considered in performing
this calculation. In the phasor domain, the far field for order m is given by

y

Erarfield (OJ) = _I f E(OJ, y) exp[j(2nmylyp + koysin<PI)] dy
'" Yp 0

(13.6)

Thus, the far field for a given ray is found by summing up the fields across the unit cell with the

appropriate phase taper. Although (13.6) is written in terms of the E-field in the phasor domain.

this sum can also be performed using the time-domain fields directly. Transforming (13.6) to the

time-domain and discretizing yields

N

I ~ ( e~y sin <PI
Erarficldm (t) = -NLEt + .

y £=1 C
(13,7)

where Ny is the number of FDTD grid cells across the unit cell of the scatterer.
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Note that, in general, this sum produces a complex result. This occurs because the time

domain result is not a physically measurable quantity, since the angle at which ray m propagates

is frequency-dependent. When the sum is transformed into the frequency domain, physical

significance can be assigned to the individual frequency components.
We also note that in (13.7), a time gradient (f,1.y/ c) sintP1 is applied to the field across the

unit cell before the sum is performed. In other words, the sum is performed using the field at

different times across the grid. This time-shifted field is exactly equal to a variable P that is
introduced in Section 13.4 in the discussion of the field-transformation methods. In terms of P,
the sum of (13.7) is given by

N
1 y

Efarficld (1) = -I p(t, £,1.y) exp(j2rrmU Ny)
m Ny l=1

(13.8)

Fig. 13.5 provides illustrative results for the two-dimensional lossy screen of Fig. 13.1 for

the case wIg = 1, wld=4, 1/crd=63n, and cP
1
=30·. These results are for the relative

amplitudes of the primary transmitted wave and the first few grating lobes, and are calculated
using a frequency-domain, mode-matching technique [4]. Comparisons to these data are made

throughout the chapter to illustrate the capabilities of the FDID methods to be discussed.
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Fig. 13.5 Amplitudes of the primary transmitted wave and the first few grating Jobes for the lossy screen
of Fig. 13.1. Problem parameters: wIg = l,wld=4, I!Cid=63n, and ¢I = 30'.
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13.3 DIRECT FIELD METHODS

There have been several direct field methods proposed to implement periodic boundary
conditions in FDTD. This section describes these techniques.

13.3.1 Normal Incidence Case

The difficulty associated with the periodic boundary condition in the time domain does not exist
when the excitation is normally incident. Consider the two-dimensional configuration shown in
Fig. 13.6. Here, the wavefront has no spatial tilt, and therefore, no time delay or advance is
required in the periodic boundary condition.

Fig. 13.6 Cross section view of a plane wave normally incident on a periodic structure.

II

x

Normally
incident

plane wave

y ••••••

1
----- -------------------------------------------------------------------------------------------

•••••• Unit cell

----- - ---------------------------------------------------------------------------------------.-.••••••••••••
For this case, (13.2) for ¢. =O· becomes

(13.9a)

Ez(x, y=O, t) = Ez(x, Y =yp' t) (13.9b)

Because the normal FDTD technique is used and boundary condition (13.9) relies only on field
values at the current time level, the stability of the method is unchanged; that is,

(13.10)

for N-dimensional problems. Similarly, the grid dispersion is the' same as for the traditional
FDTD method.
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The normal-incidence periodic boundary condition of (13.9) has been successfully applied to
FDTD modeling of a number of scattering and radiation problems. These include scattering
from parallel strips and radiation from parallel slots [5,6]; a multilayer, quasi-optical rotator [7];
and rough-surface scattering [8].

An emerging important application for the periodic boundary condition in FDTD modeling
involves EBG materials [9, 10]. For example, consider an EBG material composed of six rows
of 4-mm-diameter Pyrex rods (cr =4.2) on a 9-mm square lattice, as shown in Fig. 13.6. For the
FDTD grid, 0.25-mm spatial cells are used. Thus, the rods are 16 cells in diameter, and the unit
cell is 36 cells wide.

FDTD
Mode Matching•
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o

Fig. 13.7 Magnitude of transmission through the 6-row EBG crystal of Fig. 13.6 composed of 4-mm
diameter Pyrex rods (permittivity c

r
=4.2) on a 9-mm square lattice.

Fig. 13.7 shows the magnitude of the transmission coefficient for the periodic array of Pyrex
rods. The FDTD results for normal incidence (solid line) and the frequency-domain mode
matching results (dots) are in excellent agreement. Comparisons of FDTD and experimental data
for EBG materials also indicate good agreement [9, 10].

13.3.2 Multiple Unit Cells for Oblique Incidence

The use of multiple unit cells is one means to solve the problem of needing future fields to
implement the periodic boundary condition for the oblique-incidence case. Fig. 13.8 illustrates
the basic strategy for a two-dimensional problem; the extension to three dimensions is
straightforward. The portion of the periodic boundary condition involving time delays is used to
truncate one edge of the grid; that is,
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Fig. 13.8 Cross section of the grid for the multiple-unit-cell FDTD algorithm.

(13.11)

where ¢l ~ O. The other three edges of the solution space are truncated with ABCs. The plane
wave is injected at a surface on the left.

A key difficulty with this method is that the ABC along the bottom of the grid interacts
strongly with the incident wave that is propagating along and away from the bottom boundary.
This source of error is apparently mitigated through the use of additional unit cells. At the
completion of the simulation, only the fields in the unit cell at the top of Fig. 13.8 are considered

the solution.
Numerical experiments using this approach indicate that scattering from a singly periodic

array of strips using 3 unit cells compares well with a large-array simulation of 11 unit cells.
Radiation from a doubly periodic array of rectangular apertures using 3x 3 unit cells also
compares well with a modal analysis for angles out to 80° from normal [11]. Input impedance
calculations of a doubly periodic array of patch antennas using 5 x 5 unit cells compare
reasonably with moment-method results [12].

This method appears to retain the usual FDTD stability limit (13.10) and dispersion
characteristics. The drawbacks are the increased computational storage requirements of multiple
unit cells, and the inherent finite-array approximation that is utilized to avoid the time-advanced
field conundrum. We expect the level of accuracy to be comparable to assuming that the result
from a unit cell in the center of a small finite array is equivalent to the infinite-array result.
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13.3.3 Sine-Cosine Method

The sine-cosine method approaches the problem of modeling periodic boundaries from a single
frequency perspective. Thus, it loses the wideband capability of FDTD modeling but retains all
of its other characteristics. The technique uses two separate grids computed simultaneously,
one excited with a COSWf time-dependence and the other with sinwf. Fig. 13.9 shows a schematic
representation.

riJ.,.

~ /:;.

B
------------------~-----

Incident
plane wave
sin rot dependence

Y

-E AHz x

/:;.

A
------------------~-----

Incident
plane wave
cos rot dependence

Y

Fig. 13.9 Periodic unit cell for the sine-cosine single-frequency technique in two dimensions.

With the sine-cosine method, the instantaneous fields at the known boundary points are first
combined to form a complex number, for example, Ez(A) + jE/B). Next, the phase shifts in
periodic boundary condition (13.1) are used to compute the complex field at the unknown
locations. Finally, the real part is used to truncate the COSWf grid, and the imaginary part is used
to truncate the sinwt grid. In Fig. 13.9, this yields

E (C) Re{ [E/A) + jEz(B)] exp(jkyYp )}z

E (D) = 1m{[Ez(A) + j Ez(B)] exp (j kyYp )}z

and

Hx(A) = Re{ [Hx(C) + jHx(D)] exp(- jkyYp )}

Hx(B) Im{ [Hx(C) + jHx(D)] exp(- jkyYp )}

(l3.12a)

(l3.12b)

(l3.13a)

(13.l3b)
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This approach has been successfully employed to model various periodic structures [13-16].
A finite-volume time-domain technique incorporated a similar approach for modeling periodic

boundaries in [17]. The stability of this approach is the same as for the usual FDTD algorithm.
The major drawback is that only a single frequency is calculated per simulation.

To illustrate the sine-cosine technique, the transmission through the lossy electromagnetic
screen discussed earlier is calculated. Fig. 13.10 shows the results for an angle of incidence of

30·, along with the results from the frequency-domain mode-matching technique. There is

excellent agreement between the two techniques.
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Fig. 13.10 Transmission through the lossy screen of Figs. 13.1 and 13.5 computed using the sine-cosine
FDTD technique. The angle of incidence is 30°.

13.3.4 Angled-Update Method

The last direct field method to be discussed is the angled-update method. The formulation of this

method is based on the observation that field components in the solution space do not all have to

be at the same time level. In fact, this same observation is the basis for the efficient out-of-core

FDTD solvers [18].
Fig. 13.11 shows the time evolution of the field components along a cut of constant x within

a two-dimensional TMz grid. This figure illustrates the development of a time gradient across a
numerical grid, which is the basis of the angled-update method.
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Fig. 13.11 Space-time representation of the field components along a cut of constant x within a two
dimensional TMz FDTD grid: (a) initial stage of building the time gradient across the grid;
(b) the second stage.

In Fig. 13.11 (a), the black symbols denote E components at time n, and Hand H, x y

components at time n + 0.5, which are assumed to be initially known. The Hx component at A',
not "updateable" using the Yee algorithm, is next assumed to be determined from saved,
previous values of H

x
at A by applying periodic boundary condition (l3.2a). Now, the E,

components at time n + I can be calculated, with the exception of B' , which cannot be updated

directly nor computed yet using periodic boundary condition (l3.2b). Despite this, most of the

H
x

and Hy components at n + 1.5 can be updated using the recently updated E, fields at n + 1.
The components computed in this sequence are denoted by gray symbols in Fig. 13.11(a).

This sequence can be repeated as shown in Fig. 13.11 (b). Again, the Hx field at A' is

determined from the saved previous values of H at A. This allows most of the E fields at timex ,

n + 2 to be updated. Now, most of the Hz and Hy components at n + 2.5 can be updated using the

recently updated E fields at n + 2. As before, the components computed in this sequence are
z

denoted by gray symbols.
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This process can be repeated up to Ny - 1 times, where Ny is the number of cells across the
grid in the y-direction. Eventually, the Ez field at B is known Ny - 1 time-steps in the future,
relative to the time level of the unknown Ez field at B'. For moderate plane-wave steering angles,
this sequence is stopped after

~ N-ly (13.14)

stages, where "ceil" is a function that rounds its argument to the next higher integer.
The sequence is stopped at this point so that the largest possible At can be used. Fig. 13.12
shows an example of this general case. Now, the time-step is chosen as

cAt

~y

::=
1

~
(13.15)

so that the time differential between points A-A' and between B-B' is identical to the time delay
and time advance required in the periodic boundary condition (13.2). We note that continuing
the above sequence beyond the point indicated in (13.14) would require a smaller /it according
to (13.15).
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Fig. 13.12 Space-time representation of the field components of Fig, 13.11 after time-stepping has
proceeded sufficiently to allow determination of E/B') from the periodic boundary
condition. Black symbols denote field components that are known, gray symbols indicate
those that will be updated in the next cycle, and white symbols are unknown.
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Because all fields in the FDTD grid are zero at the start of the simulation, the angled-update

method can begin the simulation with the time gradient already established. Only computer

storage for the most recent E- and H-field components are required. Referring to the specific

example in Fig. 13.12, a single cycle of updating of the field components (shown as gray

symbols) is as follows:

1. Assume Ns1ant is set by (13.14) and M is set by (13.15). Then, from periodic
boundary condition (13.2a), calculate H;+5.5 (A') = H;+oSCA) for all values of x.

2. Update £;+6(B) for all values of x using the standard Yee algorithm.

3. From periodic boundary condition (13.2b), calculate £;+1 (B
/
) = £;+6 (B) for all

values of x.

4. Update the fields along the slant portion of the grid:

(a) Update H;+1.5 and H;+J5 for all values of x using the Yee algorithm.

(b) Update £;+2 for all values of x using the Yee algorithm.

(c) Repeat (a) and (b) sequentially.

5. Update £;+6 for all cells along the flat portion, and for all values of x, using the

Yee algorithm.

6. Finally, update H;+6.5 and H;+65 for all cells along the flat portion, and for all

values of x, using the Yee algorithm.

Because the angled-update method only rearranges the order in which the field components

are updated and does not change the regular FDTD time-stepping equations, the stability

requirement is unchanged from (13.10). Further, the numerical dispersion is unchanged from

that of the standard Yee grid. The major limitation of this method is that the maximum steering
angle is limited to

(
N - 1)

¢max = sin -1 ./i Ny < 45" (13.16)

because the maximum time gradient across the grid is (Ny - 1)i1t, whereas the required time

gradient is (Ny i1y/e)sin¢. Since in the two-dimensional case, numerical stability limits the

maximum time-step to M ~ i1/en, then (13.16) follows. Note that for the three-dimensional

case, the maximum steering angle is approximately 35°.

To illustrate the angled-update technique, the transmission through the lossy screen example

discussed earlier is computed. Fig. 13.13 shows the results for an angle of incidence of 30°,

along with the results from the frequency-domain mode-matching technique. There is excellent

agreement between the two techniques.
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Fig. 13.13 Transmission through the lossy screen of Figs. 13.1 and 13.5 calculated using the angled
update FDTD technique. The angle of incidence is 30'.

13.4 INTRODUCTION TO THE FIELD-TRANSFORMATION TECHNIQUE

The second class of FDTD techniques for modeling periodic structures uses a field
transformation to remove the time gradient across the grid [19], in contrast to the numerical time
gradient introduced in the angled-update method. The resulting equations are then discretized
and solved using an FDTD approach. However, the transformed equations have additional terms
that require special treatment. This section provides a detailed derivation of the field
transformation approach. For simplicity and clarity, we consider the two-dimensional TM

z
case.

In the frequency domain, Maxwell's equations for the TMz case are given by

(l3.17a)

aE, =
ax (13.17b)

ai(, =
ay (13.17c)
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We introduce a new set of field variables to remove the phase that is accumulated across the grid:

p = E, exp(jkyY) (l3.l8a),

Qr = 770 Hr exp (J kyY) (l3.l8b)

Q" = 770 Hyexp (J kyY ) (13.18c)

The periodic boundary conditions (I 3.1) for the transformed field variables are now

~ -
Qx(x, y=O) = Qr(x, Y=Y

p
)

Substituting the relations of (13.18) into Maxwell's equations (13.17) yields

jWfl., Q
r

a"P
+ {jk)~}= --'

c ay

jWfl., - a"P
--Qy = --L

C ax

jw£ - aQy aQ
{jkyQJ

__r P = __r +
l ax ayc

(13.19a)

(13.19b)

(13.20a)

(13.20b)

(13.20e)

In system (13.20), the terms in brackets are extra terms resulting from transformation
(13.18). Expressing (13.20) in the time domain, we have

fl., aQr = _a~ + { sin ¢ d~ }
c at ay c at

fl., dQy =
d~

c at ax

£ dP dQ}, _ dQr + {sin¢ aQx }...L.._' =
c at ax ay c at

(l3.21a)

C13.2Ib)

(I3.2Ie)

where the wave is assumed to be incident on the periodic structure from free space. Combining
(13.21a) and (I3.2Ie) to eliminate the time derivatives on the right-hand side results in the basic
equations to be discretized:
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( £, Il, - sin' ~ ) dQ,
= _ £ df. + (d

Q
, _ dQ, )sin~

c at ' ay ax ay

11, aQy =
a~

c at ax

( £, Il, - sin' ~ ) df. ap
+ Il, (dQ, _ dQ,)l . ¢= --Sin

C at ay ax ay

(13.22a)

(13.22b)

(13.22c)

It is important to note the differences between (13.22) and the normal FDTD update
equations, which are found by letting ¢ = 0.

I. The presence of a space and time derivative of the same variable in an equation
means that the usual Yee leapfrog updating must be modified. For example,
in (l3.22a) with ¢ =0, Q

x
at time-step n+ 1/2 is determined by the derivative of

P
z

at n and the previous value of Qx ~t n - 1/2. However, with ¢:t 0, there are
spatial derivatives of Qx and Q

y
present on the right-hand side as well. These

derivatives must be handled properly before this technique can be made stable.

2, The Courant stability criterion is impacted by the extra terms and the factor
multiplying the time derivatives in (13.22a) and (l3.22c).

Before discussing techniques for discretizing (13.22), it is instructi ve to examine the
properties of the continuous equations. In particular, the dispersion relation is of interest, since
we will be looking at the numerical dispersion of the different techniques used to implement
(13.22). To this end, we assume that the fields are of the form

"

Q , Q , P DC exp(jmt - j kx sx - j v sy)x Y l ,'y, (13.23)

and substitute into (13.22). Here, the subscript s denotes the scattered field, which can be at an
arbitrary direction with respect to the angle of incidence, The result is

(J: cos
2

¢ - j ky,s sin ¢) j k sin ¢ - jk E
Qx

x, s y, S r

0
jm 11,

'k Qy 0] X,s =
c

'k 'k (jm cos2 ¢ _ j k sin ¢)- ] y.s 11, ] x.s 11, c y,s
P

l

(13.24)

The dispersion relation is found by setting the detenninant of the matrix in (13.24) equal to zero.
After some manipulation, this yields
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(13.25)

If we define angle a such that kx.s = «(JJ /vp) cos a and ky•s = «(JJ /vp) sin a , then (13.25) yields

= a (13.26)

where we have introduced the phase velocity v as a function of a. The dispersion is
p

characterized by finding vp(a). The solution to (13.26) is simply

2L=
c

sina sin¢> + ~ (sina Sin¢>/
2

cos ¢>

2+ cos ¢>
(13.27)

A comment about notation is necessary to avoid confusion at this point. ¢> is the angle at
which an incident plane wave impinges on the periodic structure, while a represents a direction
of propagation in the structure. Note that the solution to a particular problem involves a single ¢>,
but there are many possible values of a for a given ¢>. Any scattering in the structure can create
propagation at different angles.

Fig. 13.14 shows plots of the phase velocity for different angles of incidence. The phase
velocities along the principal directions are given by

v
...L

c cos¢>

v
...L =
c - sin ¢>

v
...L =
c + sin ¢>

a=O·

a= 90·

a= _90·

(l3.28a)

(13.28b)

(13.28c)

The phase velocities for the continuous case (or equivalently, the wavelength) will be used to
normalize the numerical results presented later in this section.

The minimum phase velocity determines the spatial discretization required to achieve an
accurate solution. This minimum velocity occurs for a =_90·, and is given by (13.28c).
This equation shows that, as the angle of incidence increases, a smaller cell size is required to
maintain the same effective number of cells per wavelength. In general, the cell size needs to be
reduced by as much as a factor of two as the angle of incidence approaches 90·.

A number of approaches for discretizing the system of (13.22) have been studied, and
numerical stability has always been a key concern. As a result, for each such approach discussed
in the following sections, a stability analysis will be a main focus. A simple estimate of the
stability can be made from the maximum velocity in the grid, given by (l3.28b). Using this
value, we might expect the stability limit to be given by
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Fig. 13.14 Nonnalized phase velocity v/c as a function of the propagation angle a for three angles of
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cJ1.t - sin</J

~
(13.29)

...

where D is the dimensionality of the problem. Stability analyses to be presented for various
discretization schemes will show that this limit is conservative.

"

13.5 MULTIPLE-GRID APPROACH

This section discusses the multiple-grid approach [20] to discretize the transformed field
equations of (13.22). Along with the split-field method, to be discussed in Section 13.6. this is
one of two successful approaches for this purpose reported in the literature.

13.5.1 Formulation

Fig. 13.15 shows the two grids needed for the two-dimensional case. Here, the solid black
symbols denote field components at time levels n, n+1, and so forth, while the white symbols
denote field components at time levels n-ll2, n + 1/2, and so forth. The additional subscript
indicates in which grid the field component resides. For example, P

z1
is the P z component in

grid I. Overall, this figure depicts the second grid as being spatially shifted one-half cell in the
direction of periodicity (the y-direction in this case), and temporally shifted one-half time-step
from the first grid. (The more general three-dimensional case involves four spatial grids [20].)
This arrangement permits centered differences in space and time to be applied to the system of
(13.22), with the space derivatives involving quantities located, at most, one-half cell away.
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Fig. 13.15 Schematic of the two spatia) grids required for the multiple-grid approach in two dimensions.

The equations to update the white-symbol field components of Fig. 13.15 to time level
n+ 1/2 are

Q In+J/2 _ Q 1~~1I2
xl r,j xl l.j

I
n+1/2 In-I12

QY1 " - QY1 ' ,
I.j I. j

P /n+1/2 _ P In~1/2
z2 ',j z2 l,j

( In In)- erA ~I i,j - ~I i,j-I

= ~(Plln 1' - P11n)J.1
r

Z 1+ ,j Z t,j

= - B(p.ln ,- P1ln'-1)
Z r, j Z '.j

(13.30a)

(l3.30b)

The equations to update the black-symbol field components to time level n + I are

(13.30c)
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_ £ A(p 1~+1/2 _ P 1~~lf2)
, z2 I.} z2 I.}-I

In+l In
Qy2' . - QY2 ..

I.} I.}

P IN+I _ p In
zl i.j z1 i.j

Ty

( In+1/2 In+1/2) (In+1I2 In+1I2)
+ aB QY1 i,j-I - QY1 i-l.j-I - B QX1 i.j - Q.f1 i.j-I

= .!!:..-(p In+ll2 _ p In+1/2)
z2 HI.} z2'.J

11,

_ B(p In+lf2 _ p In+lf2)
z2 I.} z2 I,J-I

(l3,3Ia)

(l3.3Ib)

+ (In+l/2 In+1/2 ) (In+1/2 In+ 1/2)
ll,aA QY1 i,j-I - QY1 i-I,j-J - Il,A QX1 i.j - QXI i,j-I

where a = /),ylAx, Ty=cl1tll1y, A = l/(Il,E, - sin
2
1j1), and B =A sinljl.

13.5.2 Numerical Stability Analysis

(l3.31c)

Assuming a generalized plane wave propagating in the grid, it can be shown that the von
Neumann local stability matrix determinant expression is given by

A 0 0 -BS aBS
x

-E ASy , y

0 A 0 0 0 as)11,

0 0 A -11 AS ll,aASx -BS, y ,.
0 (13,32)

-BS aBSx
-E AS A 0 0,. , )'

0 0 as/Il, 0 A 0

-11 AS ll,aASx
-BS 0 0 A, y ,.

where S = sin(k Ax/2) and S =sin(k. l1yI2). Solving (13.32) for nonzero values of A yieldsx X,s y ),5

A = ± BS ± ~ aA(S )2 + /I E A2(S )2
,. x t"'" Y

Since Sx and S,. lie between ±l, the stability limit for free space is found to be

2
cos IjI

=
sin ¢ + ~ 1 + a cos

2 ¢

(13.33)

(13.34)
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Fig. 13.16 Stability limit for the two-dimensional multiple-spatial-grid technique (solid line). Shown also
is the conservative stability limit derived from the maximum velocity in the grid (dashed line).

Fig. 13.16 is a plot of the stability limit as a function of the angle of incidence.
For comparison, also shown in the figure is a heuristic stability criterion derived from the fact
that the fastest velocity in the grid is given by c I (1 - sintP), yielding

r;, ~ (1 - sintP)/-/i

The stability limit is Jess restrictive by a factor of 1.22 at 40', and by a factor of 1.4 at 88'.

13.5.3 Numerical Dispersion Analysis

(13.35)

The numerical dispersion for the multiple-grid technique is readily found from (13.33). For free
space, the dispersion equation is of the form

where

(13.36)

A == ; sin(W
2
L\t)

)'

(13.37a)

. (7r L\ysin a)
Sy = sm _

).,
(13.37b)
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The dispersion is characterized by finding a numerical wavelength A(a) that satisfies (13.36) for
a given angle of incidence ¢ and discretization parameters. This numerical wavelength is then
compared with the actual wavelength, and a dispersion error per wavelength is calculated using

\fJ = (~(a) _I) 360'
error A(a)

90

(13.38)

Incident Angle (Deg)

120

180 ~_ i , -~

270
300

20 40 60 80
, ,.

(a) (b)

Fig. 13.17 Dispersion error per wavelength for the multiple-grid technique: (a) dispersion error as a
function of scattering direction for ¢ =0·,30'; (b) maximum dispersion error as a function of
the angle of incidence.

Fig. 13.17(a) shows results for \fJ error for 0' and 30' angles of incidence. In each case,
the discretization is at 20 cells I Ao with a time-step of one-half the stability limit. To characterize
the dispersion for all angles, we look at the maximum dispersion error as a function of the angle
of incidence. This result is shown in Fig. 13.17(b).

13.5.4 Lossy Materials

Introducing lossy materials into the grid makes the update equations more complex. We start
with the transformed field equations, assuming the presence of both electric conductivity a and
magnetic loss a·;

I,

_f.1 r
aQx aD

+ -Qx
c at 770

= _ a~ + {sin If> a~ }
ay c at (13.39a)



576 Computational Electrodynamics: The Finite-Difference Time-Domain Method

I1 r aQ)' a'
+ -Q

c at 17
0

y

E ap
-L._' + a 170 ~

c at

ap
= -'

ax
(13.39b)

(l3.39c)

The time derivatives on the right-hand sides of (l3.39a) and (l3.39c) are eliminated by
substituting (l3.39c) into (13.39a) and vice versa. This yields

(

Er l1r - sin
2
¢J aQx + Era' Q

x
=

c at 170

-e, ~ + (aa: - aa~' ]sin 4> - ury,sin4>p'

~ aQy a' __ a~
+ -Q

c at TID y ax

(
E,I1, - sin

2

¢J a~ + 11 a17 p =
~ , 0 l

c ot

_ a~ sin¢ + I1
r
(a Qy _ aQxJ _ a'sin¢ Q

xay ax ay TID

(13.40a)

(B.40b)

(l3.40c)

In discretizing the system of (13.40), there are several options in dealing with the loss terms
on the left-hand sides. Consider the space-time diagram in Fig. 13.18.

3
Time ®

1 2

® eA ®
4

®
Space

Fig. 13.18 Space-time diagram of the fields in the multiple-grid technique. The field is needed at point A,
and must be estimated from the fields at points 1, 2, 3, and 4.
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To maintain a centered approach, we need to have the field at point A, but the field is known
only at points 1 to 4. Points 1 and 2 are at the correct time, but not at the desired space point,
while points 3 and 4 are correct spatially but not temporally. Consider arriving at an estimate of
the field at A using the following general average:

(13.41)

The first term on the right-hand side is a spatial average of the fields in the second grid, while the

second term is a temporal average of the fields in the same grid. Parameter f3 determines the
nature of the averaging and impacts numerical stability. For example, f3 =0 implements spatial
averaging only, f3 =0.5 implements temporal averaging only, and f3 ~ 0.5 is helpful in ensuring

numerical stability.

13.5.5 Lossy Screen Example

To illustrate the multiple-grid technique, we again calculate the transmission through the lossy
screen discussed earlier. Fig. 13.19 shows the results with f3 =0.5 for an angle of incidence of
30·, along with the results from the frequency-domain mode-matching technique. There is

excellent agreement between the two techniques.

0

Multiple Grid

-5
0 Mode Matching

co
"'0

c -10 To0'w
ff)

E
ff) -15ceu....
I-

-20 T2

2.01.51.00.5
-25 L..-"---"---"---'--LL....""'-"--'''--'....................--I&......--I.........................-....---J

0.0

Fig. 13.19 Transmission through the lossy screen of Figs. 13.1 and 13.5 calculated using the mUltiple-grid
FDTD technique. The angle of incidence is 30'.
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The multiple-grid technique appears to be a viable means to handle the transformed field
equations. Numerical stability problems are abated at the cost of introducing additional
field components. Compared to the traditional three-dimensional Yee algorithm that has 6 field
components per unit cell, the multiple-grid technique has 24 per cell. Using Berenger's PML
ABC as in [20], there are additional variables introduced that bring the total to 40 per cell.
However, because of the periodic boundary conditions, this large number of variables per
cell does not cause a significant problem. (The transverse directions usually contain far fewer
cells than the longitudinal direction.) Usually running-time, not memory, is the limiting factor if
data at many angles is desired.

A potentially troubling issue with this technique is that the multiple spatial grids can be
decoupled from each other [21]. That is, it is possible to excite only the fields associated with
one of the grids, while the fields in the other grids remain zero. In addition, certain types of
scattering objects affect the fields in one grid only. For example, a thin wire along the edge of a
cell scatters into only one of the grids. Other scattering objects impact the separate grids
differently. For objects covering many cells, the level of error caused by the grid decoupling
should be small, but it is something to consider when using this technique.

13.6 SPLIT-FIELD METHOD, TWO DIMENSIONS

The second successful approach to discretize the transformed field equations is called the
split-field method [22-24]. This section discusses the two-dimensional version to introduce the
technique, leaving the three-dimensional case for Section 13.7.

13.6.1 Formulation

Consider the system of transformed field equations of (13.21) before any substitutions are made
to eliminate the additional time-derivative terms in brackets on the right-hand sides.
To eliminate these terms, we define a new set of split variables as follows:

sin¢
p = p + --Qxz za

£r

(13.42a, b)

Substituting (13.42a) into the left-hand side of (l3.21a), and (13.42b) into the left-hand side of
(l3.21c), the resulting equations are

~ aQxa
ap

= __z

c at ay

Il
r

aQy = a~

c at ax

£ ap aQ
y aQx....!.._z_a

C at ax ay

(l3.43a)

(l3.43b)

(l3.43c)



Chapter 13: Periodic Structures 579

Equations (13.43a) and (13.43c) show that the new variables P and Q defined by (13.42)
l.Q xa

satisfy the standard Maxwell's equations, with the caveat that the curl terms on the right involve
the total fields. Once P and Q are known, the total fields can be found using (13.42).zo xa

We note also that (13.42) requires that the field components be collocated in time.
Therefore, the systems of equations to be solved are first (13.43) and then (13.42). System

(13.43) allows updating the "a" portions of the split fields in terms of the total fields. However.
(13.42) still involves the total fields on the right-hand sides, and must be manipulated to
eliminate this dependence. (The total fields are not yet known for the updates.) There are two
useful strategies for solving the systems in question. The solution resulting from each approach
has distinct numerical stability and dispersion characteristics. The two possibilities are:

Strategy J: Substitute (13 .42b) into (13.42a) to eliminate P, to form a new equation
to use with (13.42b). The two equations to use are thus

(
sin 2 ¢ ) sin ¢

Q 1--- = Q +-Px xu za

~rEr ~r

E P = E P + Q sinA.r l r.to .t' ~

(l3.44a)

(l3.44b)

Equation (13.44a) determines Qx at time-step n from Q xa and Plo at the same time
step. This value for Q

x
can then be used to determine P, using (l3.44b). Spatial

averaging is needed for the P,a term in (13.44a) and the Qx term in (l3.44b), since the
fields are not collocated in the grid.

Strategy 2: Substitute (13.42a) into (13.42b) to form an equation for P, in terms of

Q and P . In this case, the two equations are
:co ZP

~(l _ sin
2

4» =
~r Er

sin ¢
~a + --Qxa

Er

(l3.45a)

"

II Q = II Q + P sin A.
~r x fA', xu z 'f'

The comments about spatial averaging made for Strategy 1 apply here as well.

(13.45b)

These strategies result in solutions having similar, but not identical, dispersion
characteristics. However, we choose to follow the first strategy, since it results in a slightly more
relaxed stability limit. This results in the following discretized system for (13.43):

Q In+1f2
xa J,}

In+1I2
Qv ' .

. I,)

= Q 1~~1/2 _ T.; (p In _ pin )
xa I,) , I.) , 1,)-\

~r

In-1/2 Q ~ (In In)=Q +--P .. -P,.
y i,j ~r' ',J ' I-I.J

(l3.46a)

(13.46b)
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P In+1/2
za '.j

= P In~1/2 + aT ( Inza '.j -_Y Qy ..
E I.j

r

QyLJ - : (QJ; - QJ;-I)
r

(13.46c)

For (13.44), we have

Q In+1I2
x '.j

= In+1/2 ErAsin¢ ( In+1/2 + P In+1/2)
Ilr Er A Qxa i.; + 2 P.a ;.;+1 za '.j

(13.47a)

P 1~~1/2 = p In+1/2 + sin ¢ (Q In+1/2 + Q 1~+II2)
z '.j za '.j 2 x I.} x '.j-l

Er

(13.47b)

where a =D.-yltu, TI, =CD.-IID.-y, and A =1I(Erflr-sin2¢). These two systems of equations are
the basic update relatlons for the split-field technique in the two-dimensional case.

13.6.2 Numerical Stability Analysis

Assuming a generalized plane wave propagating in the grid, it can be shown that the determinant
expression for von Neumann stability of the combined systems of (13.46) and (13.47) is given by

A 0 0 0 -Silly r

0 A 0 0 aSxl flr

0 as)cr A -5 IE 0 = 0 (13.48)y r

flrErA 0 ErA Cysin¢ -1 0

0 0 Cy sin¢ / Er -1

where [Qxa' Qy ' Pza • Qx' PJT is the order of the field components in the column vector. Solving

(13.48) for A yields

( 2)2 a 2 2 . 2
ASy + -E-5x (1 + A Cy SIn ¢)

fl r r

(13.49)

Stability requires that the largest value of IAT)' I be no greater than 1 for any value of Sx and Sy

between ±1. It is easy to see that the maximum A will occur for Sf =±1, but it is less evident

which value of S should be used, since both C and S are functions of k . After considerabley y y ~5

manipulation, the stability limit for square cells and free space is derived as

2
cos ¢

~ 1 + cos
2

¢
(13.50)



Chapter J3: Periodic Structures 581

1.0

0.8
~

0.....
0 0.6tU

~LL.

~

'":0 0.4
tU '".....

(J)

"'"0.2 "-.
"- --0.0

0 20 40 60 80

Incident Angle (Deg)

Fig. 13.20 Stability limit for the split-field method (solid line). Shown also is the conservative stability
limit (dashed line) derived from (13.35), using the maximum velocity in the grid.

Fig. 13.20 is a plot of this stability limit as a function of the angle of incidence. Shown also
is the heuristic stability criterion of (13.35) obtained by considering the maximum velocity in the
grid. Upon comparing with Fig. 13.16, we see that the split-field method has a more relaxed
stability requirement than the multiple-grid approach.

13.6.3 Numerical Dispersion Analysis

The numerical dispersion of the split-field technique is found by rewriting (13.49) as
:'

( 2 .)2 (2 2 2 2)(2 2. 2 )A cos ¢ - Sy CySIn ¢ = Sy + a S" cos ¢ cos ¢ + Cy Sin ¢

where

(13.51)

(13.52a)

. (7r ~ysin a)Sy = SIn _

A
(13.52b)

(
7r ~YSina)

C = cos _
y A (13.52c)

Equation (13.51) is solved to determine the numerical wavelength as a function of the scattered
direction a for a given angle of incidence and discretization parameters.
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Fig. 13.21 Dispersion error per wavelength for the split-field method: (a) error as a function of scattering
direction for ¢ = 0',30'; (b) maximum error as a function of the angle of incidence.

Fig. 13.21 (a) shows the dispersion error ~ for 0° and 30° angles of incidence. In each
error

case, the discretization is 20 cells lAo' and t1t is set at one-half the stability limit. To characterize
the dispersion for all angles, we look at the maximum dispersion error as a function of the angle
of incidence. This result is shown in Fig. 13.21(b). Comparing Fig. 13.21 with Fig. 13.17,
we see that the dispersion error for the split-field method exceeds that for the multiple-grid
technique at incident angles larger than 40°.

13.6.4 Lossy Materials

The equations for the split-field method must be modified to allow the inclusion of lossy
materials in the grid. In fact, the introduction of lossy materials requires additional stability
considerations. Whereas modeling lossy materials using the Yee cell with the standard FDTD
equations does not impact the stability criterion, the usual approach fails when applied to the
split-field equations.

The transformed equations with both electric conductivity a and magnetic loss a* are given
by the system of (13.39). Substituting (l3.42a) and (l3.42b) into the left-hand sides of (l3.39a)
and (13.39c), respectively, yields

!:i. aQXG
.

_ a~ (J' sin ¢a
+ -QXG p

at ay
z

c 710 710 fl r

fl, aQ)' * ap(J

+ -Q == -'
c at 71

0
y ax

(l3.53a)

(l3.53b)
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= aQ)'
ax (l3.53c)

The system of (13.53), along with the system of (13.44), are the equations to be solved.
The usual approach in FDTD to discretize a field update with loss [for example, (l3.53a)] is to
time-average the loss term. With that approach, (l3.53a) becomes

J.1, (In+l In) aO (In+l In ) =
c/1t Qxa i,j - Qxa i,j + 211

0
Qxa i,j + Qxa i,j

__1_ (p 1~~1/2 _ P 1~~1/2) _ aO sin ¢ (p r+ 1/2 + pr+1/ 2 )
/1 ll,J+1 ll,J 2 l I.J+I l I,J

Y 110 J.1,
(13.54)

Unfortunately, with this formalism, the approach is unstable for angles larger than approximately
30°. A more general approach for the time average is to use [25, 26]

a" aO [f3 In+1 + (1 _ 2f3) Q In~1/2 + f3 Q I~,]
- Qxa -t - Qxa " J' xa ',J xa I,J
110 1Jo '

(13.55)

By allowing f3 to be a function of the angle of incidence, the technique can be made stable.
Specifically, there is a minimum value of f3 required for stability at each angle of incidence.
However, the minimum f3 for stability does not have the largest allowable time-step, and is
therefore not optimal. The choice for f3 that gives the largest allowable time-step for stability is
empirically determined to be

0.5
2

cos ¢
(13.56)

With this choice of f3, the stability criterion is well approximated by (13.50), the stability limit
for the lossless case.

13.605 Lossy Screen Example

To illustrate the split-field method, we again calculate the transmission through the lossy screen
discussed earlier. Fig. 13.22 shows the results for an angle of incidence of 30·, along with the
results from the frequency-domain mode-matching technique. There is excellent agreement
between the two methods.

13.7 SPLIT-FIELD METHOD, THREE DIMENSIONS

The split-field method can be readily generalized to model problems involving three-dimensional
periodic structures. This section discusses the technique as applied to such structures that may
contain lossy, anisotropic materials.
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Fig. 13.22 Transmission through the lossy screen of Figs. 13.1 and 13.5 calculated using the split-field
FOTD method. The angle of incidence is 30'.

13.7.1 Formulation

Fig. 13.23 shows the geometry that is considered. The periodic boundaries are the y- and z-sides,
while ABCs are used to truncate the space lattice in the x-direction. We start with Maxwell's
equations for the transformed field variables, given by

dQ dQ= --=::L _ __Y

ay az
kyaQ, + ~ aQy

c at c at
(13.57a)

= _aQ, + dQx _ ~ dQx

ax az c at
(l3.57b)

aQy dQx ky dQx= -- - -- + ---
ax ay c at

(13.57c)

aQ •/lxr __x + ax Q

c at 71
0

x

= _ a~ + d~ + ky d~ _ k, d~
dY dZ c dt C dt

(l3.58a)
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Fig. 13.23 Geometry used in the analysis of the split-field method in three dimensions.
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x
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Absorbing
boundary
(ends)

J1yr aQy
.

a~ a~ kz a~(J

+ -YQ = +
c at 71

0
y ax az c at

J1zr aQz
. _a~ a~ ky a~(Jz

++ -Qz =
c at 710

ax ay c at

where we have introduced the notation

,..
sinO cos</> x + sin 0 sin </> y cosO£k. = +

J

(I3.58b)

(13.58c)

(l3.59a)

k = 1.·xx I
(13.59b)

Defining new variables as in the two-dimensional case, the extra time derivatives on the
right-hand sides can be eliminated. Because the angle of incidence is arbitrary, all of the field
components are split. The new "a" variables are given by

~ = ~o + 5... Q
E Y

xr

k k
Q =Q _zp+_yp

x xa - y z
J.l.xr J.l. xr

(l3.60a)
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k k
P = P _z Q

x , Q y = Q ya + _z p
y ya x

Eyr Ilyr

k k
P = P + -YQ , Qz = Q w - -yp

z za x x
Ezr Ilzr

(l3.60b)

(l3.60c)

Substituting these variables into the systems (I 3.57) and (13.58) results in the equations that are
discretized. The first six equations are updates for the "a" portions of the fields. These update
equations utilize only the total field values, and are given by

= dQz

ay
dQy + aJl0 ky Q
dZ c z

(13.6Ia)

Eyr a~a
+a1JP =c at y 0 ya

aQ___z

ax
dQx+ -- +
az

a1Jk
yO, Q

x
c

(I3.61b)

E ap
....Y.... --l!!. + a 1JoP
c at z za

= aQy

ax
a1Jk

z 0 Y Q
x

c
(13.61c)

J.1xr aQxa + a: Q
c at 1Jo xa

= _ a~ + apy

dY az
aOk (J°k
_x_y p + _x_z P

z y
1Joc 1Jo c

(l3.62a)

ap
_x

az
aOk
_y_z p

x
1Joc

(l3.62b)

J.1zr aQza + a; Q
za

c at 1Jo

ap a~ (J'0 k= _-y + + -'_Y P
ax ay 1Jo c x

(13.62c)

Spatial averaging of the nonderivative terms on the right-hand sides is needed to retain the
centered nature of the method.

Once the "a" portions are updated, the new values of the total fields P and Q are found byx x

algebraically manipulating system (13.60) to obtain

(I P [' J ky k
-)-'- _z_ P = --Qza + -'Q + P

J.1 yr E.., x
ya xa

J.1 zr Exr Exr
E .

xr

(1 - P
k' J k k

-y- - -'- Q x = _Y P __z P + Qxaza ya

Ilxr Ezr !LxrCyr J.1xr J.1xr

(13.63a)

(l3.63b)
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As before in the two-dimensional case, these relations are equalities and not standard update
expressions. Spatial averaging is also needed for these equations. We have chosen the
x-components of the fields to update first. Other combinations are also possible. However,
given the behavior observed in the two-dimensional case, we expect stability problems with
some of them. We have found that computing the field components normal to the absorbing
boundary first gives good results.

Finally, the remaining total fields are computed using

k k
~ = p _z Qx p = p + -y Qxya Z za

£yr Ezr

k k
Qy = Qya + _t P Q

z = Q
za - -y p

x x
f.1 yr f.1zr

(13.64a, b)

(l3.65a, b)

From these equations, we see that the split-field method in three dimensions is a three-step
update procedure. First, the "aJJ portions of the fields are updated using the total fields. Second,
the normal components are found. Third, the remaining tangential components are determined.
Each of the equations is spatially discretized with the usual Yee cell, as shown in Fig. 13.24.
However, spatial and temporal averaging is needed to properly deal with some of the terms.
We include the discretized version of one equation from each group to illustrate the procedure.
For example, the discretized version of (l3.6Ia) is given by

In+l = [-~x(l - 213)] p rH
/
2 + (I -f3~x) P I"

P.:a i.i.k I + f3~x xa I.J,k I + f3~x xa i.i.k

+ [2£,J~';'/l~J (Q,!;;:> Q,C~,\) + [2£n~1\~P~J (Q,C::' + QX::::,)
(13.66)

Where;; =(J I1t/£ £0' T =cl1t/l1y, and T =cM/&. The modified time-averaging of the loss':-x x xr y l

term is evident by the presence of the parameter 13. In the three-dimensional case, an optimal
choice for 13 is found to be

.....

0.5
f30Pt = (k,)2 =

0.5
• 2e 2At

SIn cos "I'
(13.67)

Using this value for 13 results in a maximum time-step that is the same as for the lossless case.
The lossless stability case is discussed later in this section.
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Fig. 13.24 Three-dimensional Yee cell used in the discretization procedure.

The discretized version of (l3.63a) is straightforward and is given by

(I P -, r
"'C~k = --y- ji,\" p In+1

lJ-u E xr
xu i,j,k

(I P -, n-)--y- kz .!L Q n+1 r+
1

)

lJ-u E xr
lJ- E 2 E (zal;,j'k + Qzu i, j-I,k

yr xr xr

+ (1 - P -, n-)kz kz n+!
r+

1
)

--y-
lJ- E U (Qyut,j,k + Qyu i,j,k-I

(13.68)
lJ-u E xr yr XT xr

Here, spatial averaging is used to preserve the centered nature of the algorithm, Finally,

the discretized version of (l3.64a) is given by

\
n+1

~ i,j,k
= p In+1 _ ~(Q n+J In+l)

yu i.j,k 2E Xli,j,k + Qx i,j.k-I

yr

(13,69)

These equations give a full prescription of the split-field technique in three dimensions in the

main portion of the lattice. The only remaining issues are the stability relation and the truncation

of the lattice with an absorbing boundary condition.
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13.7.2 Numerical Stability Analysis

The stability relation for the three-dimensional split-field technique is derived by implementing
the von Neumann analysis, as illustrated for the two-dimensional cases. This results in a 12 x 12
stability matrix for the general case with loss. Setting the determinant of this matrix to zero
results in a twelfth-order polynomial that must be solved to determine the stability limit.
Upon performing this evaluation, we determine that the use of the optimum value of f3 from
(13.67) results in a stability limit that is essentially the same as for the lossless case.

The roots of the characteristic equation for the lossless case are determined analytically with
the largest one given by

(ky Sy Cy +k,SzCJ
2

+

P [S2 + S2 + S2 (P + P C2 +
xy z xx yy r,'en] }

(13.70)

The stability limit is determined by maximizing (13.70) over all possible values of Sx' Sy' and Sz

(that are limited to lie between ±l). However, since C and C are not independent of Sy z y

and S , respectively, the values of Sand S that maximize (13.70) are not obvious.z y z
Analytical solutions to (13.70) for the cases ky =0 and kz =0 have been derived for the

general case of nonsquare cells [24], but the results are quite complicated. The results are
somewhat simpler for square cells. Subject to this restriction, we now present analytical
solutions for the special cases of propagation along a coordinate axis (ky =0 or kz =0) and along
the direction k =k. These two cases bound the stability limit for a general direction.

y z

The simplest and most stringent result occurs for k
y
=k

z
• Here, we have

(13.71 )

Along a coordinate axis (kz =0 in this case), the stability limit is given by

-2

~ ~

kx

(r.' + ~}2k
y
F;~ 1 - F;2 + + F;2 k:)

where

F; = 8P + P + ZPP
y x x Y

F,2 (F -PP) +~(F -ppr - 8FP1 xy 1 x)' Iy

=2 2F;

(13.72)

(l3.73a)

(l3.73b)
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Fig. 13.25 Stability limit for the three-dimensional split-field technique for two special cases.

Fig. 13.25 shows plots of the stability limits for these two cases. To present the data,
these plots use polar angles with respect to the x-axis:

k = cos8 .
x x '

k = sin 8 cos iii ;y x ~YE
(13.74)

With this notation, stability limit (13.71) is for ¢l =4Y, while stability limit (13.72) is for
)iE

¢lvz =0°. The curves are similar, and it appears that using just the lower curve would be suitable.
However, for large steering angles where the stability limit requires small time-steps, stability
limit (13.71) is considerably more stringent (for example, about 25% lower at 76°). To reduce
the long run-times at these angles, it is desirable to use the largest possible time-step. Thus, it is
beneficial to know the behavior of the stability limit as a function of iii for a fixed () .

~YE x
The behavior of the stability limit is investigated by numerically maximizing (13.70) as a

function of iii for different values of (). Fig. 13.26 shows results for () =4Y and 80°.
~)iE X x

This figure shows that the variation of the stability limit with ¢lYE depends on 8x ' One approach to
determining an approximate stability limit for a general angle of incidence is to fit a quadratic
function of ¢lYE through the minimum and maximum points given by (13.71) and (13.72),
respectively. We find that using 98% of this approximate limit is adequate to ensure that the
time-step is below the true stability limit.

13.7.3 UPML Absorbing Boundary Condition

An important part of any FDTD simulation is the ABC used to truncate the space lattice.
Since 1994, the PML concept has proven to be very effective for this purpose (see Chapter 7).
This section discusses how the uniaxial PML (UPML) ABC can be applied to the split-field
FDTD modeling of periodic structures.
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Fig. 13.26 Stability limit of the three-dimensional split-field method for two sets of incidence angles:
(a) 9x = 45°; (b) 9x = 80°.

Since we have absorbing boundaries only at the ends of the space lattice in a periodic
problem. the UPML is a material having the properties

o

o
(13.75)
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where Sx = 1(+ xcljw. The attenuation in the UPML is determined by X, and the usual tapering
of X should be used to minimize the numerical reflection from the free-space I UPML interface
and the steps in the discrete profile. With these material properties, the transformed equations
are given in the frequency domain by

= dQ,
dy

(13.76a)

jms - _ d'l, d'lx jwk -__xp = + -- --'QY dX dZ
x

c c

jws - dQy d'lx jWky 'l
x

-_xp = +,
dX dyc c

j w - dP dPy jwk _ jWk _
-Qx =

__l
+ + --yp - __lp

ay az
, y

s c c cx

jws - a~ af5. jwk -_xQ = - + --'Py
ax dZ

x
c c

jws - _d~ af5. jwk _
_xQ = + -_Yp,

ax dy
x

c c

(l3.76b)

(13.76c)

(I3.77a)

(13.77b)

(13.77c)

Because of the presence of sx in the denominators of (13.76a) and (I3.77a), we change variables

to i: = f5./sx and Ox = 'lx/sx [27]. Then, (I3.76) and (l3.77) become

jw A

-p
X

C

= a'll
dy

jWk _ jwk
--YQ + __'Q, )'

c c
(l3.78a)

jws - _ d'l, dOx jws k A-_xp = + s -- x Z Q
xy

dX x dZc c

jws - dQy aox jws k A

-_xp = - s -- + x y Q
x,

ax x dyc c

(I3.78b)

(l3.78c)

_ apz dP jWk_= +-Y+-_Yp
dy az c'

J'wi( 
--'p

c y
(13.79a)
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y ax az x

c c

jms - ap aft jWs k ~
_xQ )' S _x x )' p= --+z ax x dy x

c c
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(13.79b)

(13.7ge)

Defining new variables as in the non-UPML case, the extra time derivatives on the right
hand side are eliminated. These new variables are slightly different than before, with the
tangential components now split into "a" and "b" parts:

~ -kQP = Pxa + kzQy (13.80a)x y z

f db - ~ t ab
P = ~a + C _xdt - k Q P"b = c J_xdt (13.80b)

y a z X
--00 az--00 z

f ab - ~ I ao
P = P c __x dt + k Q ~b = -cJ__x dt (13.80e)z za d y x

--00 dy
--00 Y

..
Qx = Qxa kz p,. + ky~ (13.8la)

Jof - ~ t dP
Qy = Qya c _x dt + k P Q

Yb = -c f _x dt (13.8lb)d z x
--00 az--00 z

I aF I of
Qz = Qza + c J_x dt - k)'~ QZb = c J_x dt (B.8Ie)

--00 dY --00 ay

Substituting these into the left-hand sides of (13.78) and (13.79) and transforming to the time
domain yields

2. d~a =
aQ

z
_ dQy

c at dy dZ

K: d~a
+ X p"a =

_ dQz 2. dP,'b = oox

c at ax c at OZ

~ a~a
+ X~a

aQy I dP b _act= -~ =
c at ax c ot oy

(13.82a)

(13.82b)

(l3.82e)
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1 oQxa _ o~
+

o~,--- =
c at ay az

K aQYa ap ~ aQyb ap
--- + XQya = _z = _x

c at ax c at az

K aQza + xQza =
_a~ ~ aQzb

=
a~

c at ax c at ay

(13.83a)

(13.83b)

(13.83c)

The systems (13.82) and (13.83) show how the "a" and "b" portions of the fields are updated

in terms of the total-field values. This is similar to the split field in the non-UPML regions,

but the additional splitting eliminates the nonderivative terms from the right-hand sides.

As a result, no spatial averaging is needed in these equations. The loss terms (terms multiplied

by X) are handled in the standard FDTD fashion. This is equivalent to using f3
UPML

=0.5 in the

modified temporal averaging in (13.55).

Once the "a" and "b" portions of the fields are known, then the components normal to the
UPML boundary are found using the relations

( 1 - P - P) P = P k (Q Q) k (Q Q))' z x xa - )' za + zb + l ya + yb

( I - P - P)Q~ = Q k (p p) k (p p)
.I' l x xa + y za + zb - z ya + yb

Finally, the remaining field components are found from

(13.84a)

(l3.84b)

(13.85)

(13.86)

Note that it is not necessary to find P from P, since the fields within the UPML are irrelevant tox x

the solution in the non-UPML region. The only requirement is that the reflection from the

UPML region be sufficiently small.

Although this procedure is more complex than for the non-UPML regions, it is necessary to

perform the additional splitting of the tangential components in the UPML region to make the

technique stable. This has been verified by both a local stability analysis and simulations

involving many time-steps.

13.8 APPLICATION OF THE PERIODIC FDTD METHOD

The periodic FDTD method has been used to model several types of periodic structures [la, 24].

This section discusses three such applications: EBG structures, FSS, and antenna arrays.
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Fig. 13.27 Side and top views of the "woodpile" EBG structure comprised of dielectric rods of square
cross section W = T/4 = 3.175 mm on a side, with £r = 8. The rod spacing is L = 11.11 mm,
and the periodic cell is Lx L.

II" I

13.8.1 Electromagnetic Bandgap Structures

We first discuss the split-field periodic FDTD modeling of a particular three-dimensional EBG

structure, the "woodpile" geometry shown in Fig. 13.27. This structure is formed by stacking
dielectric rods [28]. Each dielectric rod has a square cross section 118 in (3.175 mm) on a side,

and is characterized by the relative permittivity E
r
=8. The spacing between adjacent rods in

each layer is L =0.4375 in (6.11 mm), and the rod orientation is alternated from layer to layer.

Every fourth layer is located directly beneath each other.
Fig. 13.28(a) shows the transmission through three periods of this woodpile structure for a

normally incident plane wave. The split-field FDTD results agree very well with the calculations
of a frequency-domain mode-matching code, and reasonably well with experimental data.

Characteristic of an EBG structure, there is a bandgap frequency range in which electromagnetic
propagation is not allowed. In the bandgap, the transmission through the structure decreases
sharply. Since the structure is lossless, the magnitude of its reflection coefficient in the bandgap

is very close to unity, and the EBG device behaves much like a metal reflector. However,
the phase of the reflection coefficient is usually a value other than 180 0

•

Fig. 13.28(b) shows the transmission versus frequency of the woodpile EBG structure for an

incident angle of 300

• The shape of the bandgap is different in this case than in Fig. 13.28(a),
and the bandgap is shifted to lower frequencies. Again, there is good agreement between the
split-field FDTD and mode-matching methods.
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Fig. 13.28 Comparison of split-field periodic FDTD, frequency-domain mode-matching, and measured
results for transmission through the woodpile EBG structure of Fig. 13.27.
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13.8.2 Frequency-Selective Surfaces

We next discuss the application of the split-field periodic FDTD method to an FSS. Fig. 13.29
shows the top view of one cell of the doubly periodic FSS [14,29].

14---- W, •

T

d

y

Lx

Fig. 13.29 Top view of a double-concentric-loop FSS that is doubly periodic in x and y. The conductors
forming the loops have a thickness of TIl6, where T is the periodic cell dimension. Also,
d = T/16, W/T = 0.875, and W/T = 0.6875.

Fig. 13.30(a) shows data for the percentage of reflected power for the FSS of Fig. 13.29 for

a normally incident plane wave. The split-field periodic FDTD results agree well with

calculations resulting from sine-cosine periodic FDTD and frequency-domain method-of
moments models [14, 29]. Fig. 13.30(b) shows the corresponding results for a plane wave
impinging at 60·. Good agreement is again observed.

We note that the wideband, split-field FDTD method is much more efficient than either the

single-frequency sine-cosine FDTD or moment-method approaches. In either Fig. 13.30(a) or
13.30(b), all of the split-field data are obtained from a single computer run, whereas each symbol

represents a separate run for the other methods.

13.8.3 Antenna Arrays

The third and final class of application discussed is the analysis of a large antenna array.
A single element in the array is modeled along with a simple transmission line feed structure,
and periodic boundary conditions are used to model the effect of the element being in an array.
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Fig. 13.30 Comparison of split-field periodic FDTD, sin-cos periodic FDTD, and frequency-domain
method-of-moments results for the percentage reflected power for the FSS of Fig. 13.29.
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Fig. 13.31 Four unit cells of the infinite dipole array. The dipole spacing W is 0.5A. and the dipole length
L is 0.39A. with a gap of 0.0 lA. The substrate is 0.19A.-thick with E, = 2.55. and is backed by a
metal layer.

Fig. 13.31 illustrates the geometry chosen for the simulation, an array of dipole antennas.
The dimensions of the problem match those given in [30] where a moment-method code is used
to analyze the structure.

Although the split-field FDTD calculation uses a pulsed excitation and thus contains
broadband data. we can compare its results only to the specific frequency used in [30]. At this
frequency, the dipole length is L =0.39)", including a 0.01).. gap between the arms, while the
dipole width is 0.0lA.. The size of a unit cell is 0.5).. in both the y- and z-directions. Beneath the
dipole array is a 0.19A.-thick dielectric substrate (£, =2.55) above a ground plane.
When discretized, the fundamental unit cell consists of 50 x 50 x 20 FDTD space-lattice cells.
with an additional 20 free-space lattice cells above the antenna, for a total grid (excluding the
UPML region) of 50 x 50 x 40 FDTD space-lattice cells.

Each dipole element is assumed to be excited at its terminals using a balanced 50n
transmission line. The element's impedance is calculated from the reflected voltage wave on this
line. (See Chapter 14. Section 14.3.3 for details of the transmission line feed.) We note that,
because of the periodic boundary conditions, all of the antenna elements are driven
simultaneously and phased to radiate in the scan direction. Thus, the reflected voltage wave on
the feedline includes not only the reflection from the antenna terminals, which represents the
isolated antenna impedance, but also any signal received because the other elements in the array
are radiating as well. Therefore, the impedance calculated from the reflected voltage is the
so-called "active impedance" of the element when the array is fully excited.
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To compare the results of the split-field FDTD method with those in [30], we use the FDTD
calculated antenna impedance in the transmission line circuit shown in Fig. 13.32. Here, a series
reactance is used to match the antenna impedance to the transmission line feed for a scan angle
of 0°.

Fig. 13.32 Transmission line circuit used to determine the reflection coefficient from the antenna
impedance. The conjugate reactance is used to match the antenna impedance at rp =0'.

Since the antenna impedance varies with scan angle, the match is no longer perfect as the array is
steered away from 0°. With this matching arrangement, the reflection coefficient is given by

r =
ZA (¢J) - ZA (0)

ZA (¢J) + Z; (0)
(13.87)

where ZA(0) =Xo+ j Yo is the active impedance of the dipole element at 0°, and ZA(¢) is the
active impedance when the array is scanned to the angle ¢.

Fig. 13.33(a) compares, as a function of scan angle, Ir I calculated using split-field FDTD
and (13.87) with MoM results for the same problem [30]. The agreement between the two
techniques is good, especially for scan angles below 45°, considering that there are slight
differences in the physical models used. Note that the magnitude of the reflection coefficient
approaches unity near 45'. This is the array scan-blindness phenomenon that occurs because of
the excitation of surface waves in the dielectric substrate.

The radiated far-field is also computed with the split-field FDTD code. Since the element
spacing is A/2 at the comparison frequency, only the lowest order Floquet mode is computed.
This result is then used to determine the gain of the element for comparison to the results given
in [30]. The conversion from far-field to gain is given by

G(¢J) = ~(¢J) cos¢J (13.88)

Fig. 13.33(b) compares, as a function of scan angle, split-field FDTD results for the gain of a
single dipole element embedded in the array of Fig. 13.31, with MoM results for the same
problem [30]. Again, there is good agreement between the two computational approaches. Here,
the scan blindness shows up as a reduction in the active gain of the element. The angle at which
scan blindness occurs is a function of the operating frequency. Since the FDTD results cover a
broad frequency range, these data can be used to track the angle at which scan blindness occurs.

......
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Fig. 13.33 Comparison of split-field FDTD and MoM results for the infinite dipole array of Fig. 13.31:
(a) magnitude of the reflection coefficient as a function of the scan angle; (b) gain of a
single dipole element embedded in the infinite array as a function of the scan angle.
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Fig. 13.34 Further examination of the phenomenon of scan blindness for the antenna array of Fig. 13.31:
(a) element gain as a function of normalized frequency when the array is scanned to 15';
(b) variation of the normalized scan-blindness frequency with scan angle.
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Fig. 13.34 provides a further examination of the phenomenon of scan blindness.
Specifically, Fig. 13.34(a) shows the element gain as a function of frequency when the array is
steered to 15". Here, a normalized frequency of 1.0 corresponds to the;' used earlier in the
description of the array geometry of Fig. 13.31. The sharp dip near 1.2 indicates the frequency at
which scan blindness occurs for this angle. Fig. 13.34(b) shows the variation of the scan
blindness frequency with scan angle. Overall, we comment that scan blindness can be a strong
limitation on the useable scan range of broadband antenna arrays.

13.9 SUMMARY AND CONCLUSIONS

The FDTD method has strong appeal for modeling periodic structures. However, there are
fundamental difficulties in applying periodic boundary conditions in the time domain. Several
techniques have been proposed for this problem. Some methods approximate the problem by
using multiple unit cells, while others use a single frequency to allow the periodic boundary
condition to be applied in the frequency domain.

The most promising approaches involve applying a field transformation to eliminate the time
delay across the FDTD grid. Most of this chapter is devoted to discussing techniques for
discretizing Maxwell's equations when such a field transformation is applied. Of the techniques
investigated, two stand out as the best: the multiple-spatial-grid method and the split-field
method. A computer program utilizing either of these approaches provides the researcher with a
valuable tool for analyzing electromagnetic wave interactions with periodic structures.
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PROJECTS

PI3.! Write a direct-field periodic-boundary FDTD program for the normal-incidence case.
Verify the program by replicating the results of Fig. 13.7.

P13.2 Write a periodic-boundary FDTD program using the sine-cosine method. Verify the
program by replicating the results of Fig. 13.10.

P13.3 Write a periodic-boundary FDTD program using the angled-update method. Verify the
program by replicating the results of Fig. 13.13.

P13.4 Write a periodic-boundary FDTD program using the multiple-grid method. Verify the
program by replicating the results of Fig. 13.19.

P13.5 Write a periodic-boundary FDTD program using the split-field method. Verify the
program by replicating the results of Fig. 13.22.
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Modeling of Antennas

James Maloney, Glenn Smith, Eric Thiele, Om Gandhi, Nicolas Chavannes, and Susan Hagness

14.1 INTRODUCTION

The FDTD method was initially used primarily to model the scattering of electromagnetic waves
from objects. Later, after techniques were developed for including sources within the
computation lattice, the method was used to model radiating structures. The first antennas
analyzed with the FDTD method were simple structures such as rotationally symmetric, perfectly
conducting, cylindrical and conical monopoles in free space [1]. The excellent agreement
between the FDTD results and measured data for these simple antennas showed the potential of
the method for modeling antennas having realistic complexity.

Since these early investigations, the complexity of the antennas modeled with FDTD has
steadily increased. A partial list of the different types of antennas analyzed includes loaded
linear elements [2,3] and arrays of linear elements [4-6], waveguide and TEM horns [7-12],
planar designs (microstrip patches and spirals) [13-16], dielectric resonators and lenses [17-19],
and active antennas [20]. A more complete accounting is in the detailed review in [21].

Today, the FDTD method is routinely used to analyze practical antennas transmitting or
receiving energy in the presence of realistic material structures. The ability of this method to
accurately determine wideband near-field and far-field antenna characteristics in the presence of
complex materials (inhomogeneous, anisotropic, and frequency dispersive) allows antenna
designers great flexibility, and opens possibilities for novel antenna concepts.

This chapter discusses FDTD modeling theory and procedures for antennas. It presents case
studies that indicate the potentially high accuracy of the method, and reviews selected recent
applications that point toward future modeling possibilities of technological importance.

14.2 FORMULATION OF THE ANTENNA PROBLEM

14.2.1 Transmitting Antenna

Fig. 14.1 (a) shows the basic elements for the FDTD analysis of a transmitting antenna.
This figure is for a cross section through the computational volume. The antenna is placed near
the center of the volume, and is fed by a transmission line or waveguide. As we discuss later,
the details of the transmission line can be completely modeled within the FDTD lattice, or the
line may be simply modeled as a one-dimensional FDTD grid attached to the antenna at the feed

607
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Antenna

Virtual surface for
near-to-far-field
transformation

Excitation,
transmission

line

Absorbing
boundary
condition

(a) Transmitting antenna case.

Scattered-field
region

Antenna

Total-field region ---+-+--r-+

Transmission
line

~--------------------------------------,

(b) Receiving antenna case.

Fig. 14.1 Basic elements in the FDTD analysis of antennas.
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point. The computational volume is surrounded by an ABC to reduce the reflection of the
radiated energy at the boundaries of the volume. At this time, the PML ABC discussed in
Chapter 7 is the most effective for this purpose.

The FDTD method provides the electromagnetic field for all space lattice points within the
computational volume. However, for many antenna applications, we want to know the
electromagnetic field at a large distance from the antenna - the radiated or far-zone field.
This field can be obtained by applying a near-to-far-field (NTFF) transformation, as discussed in
Chapter 8. To perform this transformation, a virtual surface S' is placed around the antenna, <\S

indicated by the dashed line in Fig. 14.1(a). The field on this surface is obtained for the time
. eriod of interest. This field is then transformed to obtain the far field using a version of
iIuygens' principle for electromagnetic fields. One analytic form for this principle is

Po J.( { A A a [A I , ']er(r,t) = -n rxrx-, n xH(r,t)
47rr S' at

where the retarded time is

t = t - (r-i·r')/c,

1 A a [AI " ]} ,- -r x-, n x E(r ,t ) dS
Tlo at / =1,

(14.1 )

(14.2)

Here, r'is a source point on surface S', which has the outward-pointing unit normal vector ii',
d r is an observation point in the far zone where the radiated field E' is to be calculated.

an In some situations, the near field is needed at points so far from the antenna that it is
. rae tical to extend the computational volume to include these points. A near-to-near-field
101Psformation may be used to obtain these results. For this case, the FDTD analysis is
tra;;'ormed for a volume such as that shown in Fig. l4.1(a), and the field on the surface of the
pel. me is transformed to obtain the near field outside the volume. Details of this transformation
vo U

e found in [22. 23].
ar Note that in certain situations (such as for a microstrip). more than one material region can
. rsect the transformation surface. The modifications to the NTFF transformation required for
IOte
tll is case are discussed in [24].

4 2 2 Receiving Antenna1 ..

. 14.1 (b) shows the basic elements for the FDTD analysis of a receiving antenna. Again.
FIg'figure is for a cross section through the computational volume. The response of the antenna,
tile h d ., I' . d . d hlly the signal in the attac e transmiSSIOn me, IS etermme w en the antenna is irradiated
~su:n incident plane wave h.aving the fiel~s [Eine(r, t), HinJ~. t)].

Y In the FDTD formulatIOn, a source IS placed on the vIrtual surface of a volume containing
ntenna; the dashed line in Fig. 14.1 (b) indicates this virtual surface. This source produces

the ~ncident field within the volume and a null field outside the volume. An analytic form for
tll~ 1 ource specifies electric and magnetic surface currents with the values
tillS s

J (r, t) = -ii X Hine(r. t) ;
s

(l4.3a, b)

note that the electromagnetic field within this volume is the total field (the incident field plus
We cattered field), while outside the volume, it is only the scattered field.
tile s
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14.2.3 Symmetry

The symmetry of an antenna and its excitation can be used to reduce the size of the FDID
modeling volume. This is illustrated for a bow-tie transmitting antenna in Figs. 14.2(a, b).
Here. the antenna is located in the y-z plane. It is formed from a thin PEC and fed at its center.
First, the antenna is replaced by its monopole configuration. That is, the top half of the antenna
is placed over a PEC image plane, here the x-y plane as shown in Fig. 14.2(b). Next, the x-z
plane and the y-z plane are made PMCs to exploit the remaining symmetry. For this example,
the use of symmetry reduces the modeling volume, and thus the computer storage and running
time, by a factor of 8: I.

z z

PEG plane

y

PMC
plane

PMG
plane

x

y

x

PEG
antenna

(a) (b)

z

(c)

x

y

Incident
wave

Fig. 14.2 Potential use of symmetry in the modeling of antennas: (a) bow-tie antenna example;
(b) use of symmetry for a transmitting bow-tie antenna to reduce the modeling volume by 8: I;
(c) receiving antenna with plane wave incident from an arbitrary direction.
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Fig. 14.2(c) shows the same antenna as a receiver for a plane wave incident from an
arbitrary direction. In this case, none of the symmetry of the antenna can be exploited to reduce
the modeling volume. However, if the incident wave possesses some of the same symmetry as
the antenna, a reduction in the modeling volume is possible. For example, if a plane wave is
incident in the x direction with E inc oriented in the z direction, the PEC x-y plane and PMC x-z
plane shown in Fig. 14.2(b) are used to decrease the computational volume by a factor of 4:1.

14.2.4 Excitation

The excitation to be modeled for an antenna depends upon the particular application.
For example, when we are determining the locations on an antenna at which reflections or
,adiation originate, a smooth, narrow pulse such as the Gaussian shown in Fig. l4.3(a) may be an
r propriate excitation. If 'r

p
denotes the characteristic time of this pulse, then the incident

~~ltage in the feeding transmission line of the transmitting antenna would be

(14.4)

Vo
(a) V (b)

0

v. (t) Vi nc(t)me

o -4 -2 0 2 4 0 4
fir t/r

pp

-vo

GAUSSIAN

10% BANDWIDTH

IV (w)!IDe

0.1

0.01
0.01 0.1

w/w
p

(c)

10

Cjg. 14.3 Potential antenna excitations: (a) Gaussian pulse; (b) differentiated Gaussian pulse; (c) spectra
., of the Gaussian pulse and the differentiated Gaussian pulse.
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Fig. 14.3(c) shows the Fourier transform of this signal, which is given by

(14.5)

When the antenna is to be analyzed over a band of frequencies, it is efficient to excite the
antenna with a pulsed signal and then use the Fourier transform to obtain the desired frequency
domain response. The Gaussian pulse can be used for this purpose; however, its spectrum has
significant low-frequency content, as seen in Fig. 14.3(c). For some problems, this can produce
an unacceptably long settling time for the solution. An alternative is to use the differentiated
Gaussian pulse shown in Fig. 14.3(b). For the transmitting antenna, the incident voltage and its
corresponding Fourier spectrum in the feeding transmission line would then be

(14.6)

(14.7)

as shown in Fig. 14.3(c). This spectrum peaks at the frequency OJ = liT, and the lO0/0-amplitudep p
(-20 dB power) bandwidth extends from approximately 0.06 to 2.8w .

p

When the antenna is to be analyzed at a single frequency, a ramped sinusoid is a good
choice. An example is shown in Fig. 14.4, where the amplitude of the sinusoid is ramped from
o to lover three periods. We apply this excitation and then wait a length of time sufficient for
the electromagnetic field quantities of interest to reach the sinusoidal steady-state.

t

-
" " II 1\ II ~ n

1\
I~ f\

V V
,

w

'-
V V V V v V v-vo

Fig. 14.4 Ramped sinusoidal excitation.

14.3 ANTENNA FEED MODELS

In the previous section, the general formulation of the antenna problem for use with the FDTD
method was described. The need for key elements such as antenna feed models and NFFF
transformations was introduced. This section and those that follow discuss the details of the
implementation of these elements in the FDTD method. We begin with the antenna feed models.
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14.3.1 Detailed Modeling of the Feed

The antenna is connected at its terminals to a transmission line or waveguide, into which a signal
is either introduced (transmitting) or extracted (receiving). When necessary, the full details of
the transmission line and transmission line / antenna junction are included in the FDTD model.
This may be desirable, for example, when designing an antenna for very low internal reflections.

Fig. 14.5(a) illustrates an example of a detailed antenna feed model, the junction between a
coaxial line and a metallic conical antenna [25]. Using FDTD modeling, the details of the
'unction (distance d and the size of the matching ring) were adjusted to make the peak reflected
~olt.age from this junction -46 dB relative to the peak of the incident voltage.

CONICAL
ANTENNA

IMAGE
PLANE

MATCHING
RING

COAXIAL ~
LINE

FOTD
GRID

(a) Rotationally symmetric conical monopole antenna fed from coaxial line. Source: Maloney
and Smith, IEEE Trans. Antennas and Propagation, 1993, pp. 940-957, © 1993 IEEE.

1l0W·T[E
ANTENNA

(b) Staircasing of geometry for bow-tie monopole antenna fed from coaxial line. Source:
Shlager et aI., IEEE Trans. Antennas and Propagation, 1994, pp. 975-982, © 1994 IEEE.

. 145 Details of two antenna feeds directly modeled using the FDTD method.
Fig· .
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The antenna shown in Fig. 14.5(a) is rotationally symmetric. allowing conformal modeling
using a rotationally symmetric FDTD space lattice (see Chapter 12). For more complicated
antennas that do not possess such symmetry. a staircased approximation to the geometry of the
antenna and transmission line can be used. An example of this is shown in Fig. 14.5(b),
the junction between a bow-tie antenna and a coaxial line [26].

The dimensions of the transmission line and antenna feed region are usually smaller than the
other key antenna dimensions. Thus, the FDTD cell size required to model the antenna feed is
often smaller than that needed to model only the antenna. If a small cell is used for the entire
lattice, the computer storage and run-time may be very large. Alternatives are to use a graded
mesh with the cell size increasing away from the antenna feedpoint, or an approximate model for
the feedline and antenna junction. Two approaches to the latter are examined below.

14.3.2 Simple Gap Feed Model for a Monopole Antenna

Fig. 14.6 illustrates the monopole antenna used in our examples of an approximate FDTD model
for the feedline and antenna junction. This antenna is a PEC cylindrical wire of radius a and
length h driven through an image plane by a coaxial transmission line of characteristic
impedance 20 ,

h

COAXIAL
TRANSMISSION

LINE (2.)

Fig. 14.6 Cylindrical monopole antenna fed through an image plane from a coaxial line.

Fig. 14.7 illustrates the simplest method to feed this antenna. In the feed region. a gap of
length &. exists between the wire and the image plane. The lower end of the gap is on the image
plane at the point (x =i/ll. Y =jaJ1y, z =ka&.), for which we use the notation (ia.ja' k). In the
wire. the E component of the electric field is set to zero, and on the image plane, the E and E

l X Y

components are set to zero.
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k = ka + 1/2 -- /).Z

i
z

, )
I I

Wire: :
I

I it
: Hx
I

I I
I I

t' _'J
+

_ 14.7 Simple model for feeding the monopole antenna of Fig. 14.6.
Fig-

S -itting AntennaTroTt ".

transmitting antenna, E in the gap is related to the specified voltage V by
Foc a t

=
V(n~t)

&.
(14.8)

current in the wire at the feedpoint is obtained by applying Ampere's law [27] to the surface
'Tbe ....h the bounding contour C centered on the wire at (i ,j ,k +312):5 WlU~ a a a

f H· dL = If J. dS + £0 If aE . dS
c s s at

(14.9)

. giyes the current:
TJ'1tS

(H In+l/2

= ax x j • j -1/2, k +3/2.. . _ H In+I/2 )
Xi, j +1/2. k +3/2•• •

( I
n+I/2 In+I/2)

+ .1.y H y i +1/2, j ,k +3/2 - H y ; -1/2, j ,k +3/2
a a a a a Q

(14.10)
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The Fourier transfonns of this current and the applied voltage

l(t) H l(m) ; Vet) H V(m) (l4.11a, b)

are used to compute the input impedance of the antenna:

Z(m) = V(m) fl(w) (14.12)

For applications that involve pulse excitation, we are often interested in the reflected voltage
VrerCt ) in the feeding transmission line for a specified incident voltage Vinc(t). This is obtained
from the reflection coefficient and the Fourier transfonn of the incident voltage:

rem)

as follows:

Z(w) - Zo
=

Z(w) + Zo
~nc (t) H ~nc (m) (l4.13a, b)

Receiving Antenna

For a receiving antenna, the open-circuit voltage is obtained from E
z

in the gap:

v In - - L\.z E In
oc z , ,J • k +1/2

a a a

The voltage into a section of transmission line matched at the far end is

where

(14.14)

(14.15)

(14.16)

(14.17)

(14.18)

Due to the required Fourier and inverse Fourier transformation of several quantities.
the above procedures are awkward to use when only time-domain values are of interest.
Such data include the reflected voltage in the feedline of a transmitting antenna (14.14) and the
voltage in the matched transmission line of a receiving antenna (14,16). Since FDTD is
inherently a time-domain approach. it is advantageous, when possible, to carry out all
computations in the time domain. This can be accomplished by using the improved. simple feed
model described below.
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14.3.3 Improved Simple Feed Model

In this model, the one-dimensional FDTD grid shown in Fig. 14.8 is used to represent the
transmission line attached to the antenna [28]. The index k'locates a point within this grid.
The FOTD lattice used for the antenna is three-dimensional, and the set of indexes (i,j, k)
locates a point within this lattice. The top end of the transmission line is at point k~op in the one
dimensional grid, and the feedpoint for the antenna (the center of the aperture in the coaxial line)
is at point (ia' ja' k) in the three-dimensional lattice. The spatial step within the one-dimensional
grid is az, the same as the spatial step for the z-coordinate in the three-dimensional lattice.

1D transmission line cell

"One-way" injector

Absorbing boundary condition

z

i Ex 0
3-D /y EyYee cell 0

Ez 6

Hx •
Hy •
Hz •

~ x V 'V

I I

(ia• ia• ka )

+V-

k' =1

k' =0

k' =k~op

k =ka + 1/2

k=ka (k'=k;op)

Fjg. 14.8 Improved simple model for feeding the monopole antenna of Fig. 14.6 from a coaxial line.
showing details of the one-dimensional FDTD grid for the transmission line and the three
dimensional FDTD lattice at the antenna feedpoint.



(14.19a)

(l4.19b)

(l4.20a)

(l4.20b)

vl~·
soma:

(
V I1t) 1"+112

+ A~ V:nc k' +1/2
~ source

= ,"-1/2 (1 )(VM)[ '" I"]1 k'+1/2 - 2
0

.&: V k'+1 - V k'
11"+1/2

k'+ 1/2

11"+1/2 1"-1/2 ( I J(V I1t) [ I" '"]k' +1/2 = 1 k' +1/2 - - -- V k' +1 - V k'
source source: 2

0
Liz source source

where v is the phase velocity within the transmission line. An ABC is used to match the
transmission line at its far end, k' = O.

The incident wave is introduced into the transmission line at the location k;"urce by a
"one-way" injector. This is an algorithm feature that launches a desired signal in the forward
direction (+z) while launching only a negligible, undesired signal in the backward direction (-z).
The update equations at the injector are
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For this geometry, the update equations for the current and voltage in the transmission line are

Fig. 14.9 illustrates the operation of the one-way injector [29]. This figure shows the
computed voltage waveforms at a position above the injector (the forward signal) and below the
injector (the backward signal). The forward signal is seen to be a 1V Gaussian pulse as given by
(14.4), while the backward signal has a peak amplitude of less than 4 /lV. The construction for
this one-way injector is the same as that for the plane-wave injector referred to as "zero field on
the right" in Section 14.5.2.

When the monopole is used as a transmitting antenna, the reflected wave Vref is the only

wave present at points below the injector k' < k;ouree' When the monopole is used as a receiving

antenna, the injector voltage is set to zero (Vine =0), and the voltage at any point in the matched

transmission line is the received wave Vrec '

In the FDTD model, the one-dimensional transmission-line grid and the three-dimensional

antenna lattice are attached in the following manner. Location k' =k' in the one-dimensional
lOp

grid is assumed to be coincident with point (ia' ja' k.) in the three-dimensional lattice. An update

equation for H is then obtained by applying Faraday's law [27]
r
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Fig. 14.9 FDTD-computed signals in the feeding, one-dimensional transmission line of Fig. 14.8 showing
the operation of the one-way injector. Note that the "backward" signal is scaled by 105

. Source:
J. G. Maloney, Ph.D. dissertation, Georgia Institute of Technology, 1992.

f E· dL = - 110 JJ aB .dS
c 5 at

I I

(14.21)

he surface 51 with the bounding contour C1 in Fig. 14.8. Implementing the thin-wire model of

~h~pter 10, Section 10.5 yields

In fa Llx In
vln + &. E + - E dx ==k' zi+l.j,k+112 2 Xi+112,j,k+l

lOP 000 tu- X a ao

t:.x
110 &. f Llx ( In+1I2-- -H -

A 2 y ; +1/2, j ,k +1/2ut X a a a
a

1
"-112 )

Hy ; +1/2, j . k +1/2 dx
a a a

(14.22)

or

I
n-1/2 Llt [ nH ---. E

y; +1/2,j ,k +112 /I A_ xl; +1/2,j ,k +1
a Q Q r'OL..l.(, a a Q

2 VIZ,]lop

In (Llx/a) Llx

(14.23)
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Here, we assume that Ex and Hyare zero within the wire, and that close to the wire, they vary as
1/p, where p is the radial distance from the center of the wire:

E (x) = (&) E (1ll/2)
.x 2x x

H" (x) =(&) HI' (Ill 12)
. 2x·

(14.24)

Updates similar to (14.23) are obtained for the other components of H that loop around the wire:

1

"+1/2H .
y i -1/2. j • k +\/2 '

a a a

H 1"+
1
/ 2 .

x ; . j +112, k +1/2 '
(I a a

H 1"+ 112

xi.j -1/2.k +112
a a a

Location k' =k:op + 1/2 in the one-dimensional grid is assumed to be coincident with point

(ia')a' ko+ 1/2) in the three-dimensional FDTD space lattice. The update equation for current

Ilk' +112 in the transmission line is then calculated by applying Ampere's law (14.9) to the surface
lOp

52 with the bounding contour C2 in the three-dimensional lattice, as shown in Fig. 14.8:

11"+ 112
k' + 112

lOP

_ H 1"+
112

)
Xi ,j +112, k +112

a a a

( 1

"+112 1"+ 112 )

+ ~y H)'; +1I2,j ,k +1/2 - Hy i -112,j ,k +112
a a a a a a

(14.25)

Equations (14.23) and (14.25) couple the transmission line to the antenna and vice versa.

At other points along the monopole k > ka, the subcell monopole radius is easily accounted

for in the update equations for the H-field, using the thin-wire model (30]. For example, we use

1

"+112

H y i +112. j . HI12
a a

1

"-112 ~t ( I"H ---. E
)'; +1/2.j .k+112 A~ Xi +112.j .HI

a a 11
0

Ll.(. a a

~t 2
+ --.---.Er .

Il
o

& In(&/a) l'a+I'}a·k+112

_ E I" .)
X I +112.J .k

a a

(14.26)

This equation is included to complete the description of the monopole antenna. It is not part of

the feed model.
Fig. 14.10 compares FDTD results with measured data for the reflected voltage waveform in

the transmission line feeding the transmitting monopole antenna of Fig. 14.6. Here, time is

normalized as t 11'0' where To =hie is the time for an electromagnetic wave propagating in free
space to travel the length of the monopole. Other parameters are alh = 0.0304 and 20 = son,
and the excitation is a IV Gaussian pulse characterized by T

p
ITa =0.161. Despite the complexity

of the reflected waveform, the FDTD calculations and the measurements agree very well.

In the above discussion, the improved simple feed model is applied to a wire antenna
connected to a coaxial transmission line (an unbalanced feed). This model is also adaptable to

wire antennas connected to a two-wire transmission line (a balanced feed) [31, 32]. Additional

discussion regarding FDTD modeling of antenna feeds is provided in [33-35].
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Fig. 14.10 Comparison of FDTD results with measured data for the reflected voltage in a coaxial
transmission line feeding the cylindrical monopole antenna of Fig. 14.6. The improved simple
feed is used in the FDTD model. Source: Maloney et aI., IEEE Trans. Antennas and
Propagation, 1994, pp. 289-292, © 1994 IEEE.

4 NEAR-TO-FAR-FIELD TRANSFORMATIONS
14.

FDTD method is inherently a near-field technique. It accurately computes the
Tb~trol1lagnetic field within a computational volume surrounding the antenna as a function of
~le Usually, it is impractical for the computational volume to extend from the antenna to the
tl~~ield zone. Therefore, an NTFF transformation is needed to compute far-field antenna
fae d· . d .eters, such as ra latlOn patterns an gam.
Pacac;ince the standard FDTD method is based on an ordered, rectilinear gridding of the solution

it is natural to consider a rectangular volume for the evaluation of an NTFF transformation.
space, . . .

. volume is placed 10 the computaUonal space so that Its surface (the transformation surface)
!b;;cated between the exterior of the antenna and the begin~ing of the ABC, as shown in Fig.
15 1(a). In practice, the rectangular faces of the transformatIOn surface are chosen to coincide
1~· the faces of individual Yee cells.
WJtb

4 1 Use of Symmetry
14..

far-field transformation surface must enclose the whole antenna. When PEC and PMC
~:ge planes are used to reduce the com~utational volu~e, as illustrated in Fig. 14.2(b),
~:rn e theory must be used to construct the fIeld on the remamder of the transformation surface
u:Jlag the field on the portions of the surface inside the computational volume.
feo[1l
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Fig. 14.11 Near-to-far-field transformation geometry: (a) transformation surface developed from the
surface of a smaller computational volume that exploits the symmetry of the antenna;
(b), (c) relationships for the field components at the PEC and PMC image planes.

Fig. 14.11 (a) illustrates this case for a bow-tie transmitting antenna. Here, field components
on the three faces inside the modeling volume are used, along with image theory, to compute the
field on the rest of the transformation surface. The relationships between the field components at
the PEC and PMC image planes are summarized in Figs. 14.11(b) and 14.11(c), respectively.

14.4.2 Time-Domain Near·to-Far-Field Transformation

Two types of near-to-far-field transformations are routinely used in FDTD antenna modeling:
the time-domain NTFF (TD-NTFF) transformation, and the frequency-domain NTFF (FD-NTFF)
transformation. The TD~NTFF transformation computes the transient radiation response in a
specific far-field direction. Upon Fourier transformation, this yields the broadband gain of the
antenna in that direction. This section briefly reviews the TD-NTFF transformation.
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The TD-NTFF transformation is based upon the general integral relation of (14.1).
FroID Chapter 8, Section 8.6, the theoretical basis of this transformation is given in (8.44) to
(8.47) for purp~ses of efficient numeric~l implem~ntation. These e~uations are repeated here for
convenience. First, (8.44) and (8.45) define the pair of vector potentials

W(r, t) = _1 ~ [If Js(t _ r - r
J

• r) dS']
4n rc at s c

vCr, t) = _1 ~ [Jf Ms(t - r -~' .r) dS']
4n rc at s

here J
s

= nx Hand M s = -n x E are equivalent electric and magnetic currents on S,
:e rectangular-box v~rt.ual sUrf~ce enclosing the antenna at which the TD-NTFF transformation
. 'JJlplemented, and n IS the umt outward normal vector to S. Next, (8.46) and (8.47) define the
~_~ield radiated by these vector potentials, and hence the antenna contained within S:

Section 8.6 discusses an efficient concurrent-processing approach to calculate Wand U
"on-the-fly" in step with the FDTD simulation. Here, a total of 24 two-dimensional arrays are

l1ired to store the Cartesian components of J sand M s on S at the current time-step.
reqaddition, 6 one-dimensional arrays are required to store the time variation of the Cartesian
III ponents of Wand U for each (e, ¢) in the radiation zone at which a field-versus-time
corneform is needed. Each array of this type contains NMAX + 25 storage locations, where
W;;'A.X is the number of time-steps in the FDTD run, 5 is the maximum number of space lattice
f'/ Us between any two points on S, and 2c tH = ~. This allows accounting for delayed
ce tributions arriving from all parts of S at the conclusion of time-stepping, regardless of the
con4J) orientation of the far-field observation point r. We note that the one- and two-dimensional
(e, ge arrays required for the TD-NTFF transformation represent, in total, a dimensionally
stO

ra
ed computer storage burden relative to the three-dimensional E- and H-field arrays required

reduc ,
he normal FDTD operatIOns.

for t upon completion of the filling of the storage arrays for Wand U, the rectangular-to-
rical vector-component conversion of (8.61) and (8.62) is performed. This yields time

sph
e

forms of the spherical vector components of Wand U, which are inserted into (8.46) and
way;) to directly obtain the desired time waveforms Eo(r, t) and E,(r, t) at observation point r

~8':be far-field zone. Fro~ (8.44? and (8.45), we no~e.that the amplit~d~s of these waveforms
1~ . ish as 11r, where r IS the distance from the ongm, Therefore, It IS possible to obtain a
dlJ1ll0 lized far-field response that is independent of the distance from the origin by simply
portJ1a

ltiplying (8.46) and (8.47) by r.
J1l11 This procedure can be used to calculate Eir, t)_and E/r, t) ~ arbitrary (e, ¢) directions,

i btforward Fourier transformation then yields Eo(r, (0) and E,(r, (0), respectively. This
Stra g ., 'f' (e A.) d" b'ts the antenna gam III speci IC , 'I' IrectlOns to e calculated over a wide bandwidth in a
p~~ FDTD run. Since the radiated field contains both {} and ¢ components, it is convenient to
SlOg '~h t·separate gams lor eac componen.
define
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(14.27a)

(14.27b)

where p.n,(w) is the net power (incident power minus reflected power in a single mode) that
enters the transmission line or waveguide feeding the antenna. P ilIll(W) is computed from

(14.28)

where we define the Fourier transform pairs V;nc(w) H V;nc(t) and ~cn(CO) H Vren(t), and the

reflection coefficient nco) = v'en (w)/ V;nc (w).
The TD-NTFF transformation is an efficient approach for computing the wideband,

frequency-domain gain in a number of discrete (0,4» directions. However, this transformation

can be inefficient for computing frequency-domain antenna patterns because of the fine angular

spacing often required. The more efficient approach for computing frequency-domain antenna
patterns is the FD-NTFF transformation, which is briefly reviewed next.

14.4.3 Frequency-Domain Near-to-Far-Field Transformation

From Chapter 8, Section 8.5, the theoretical basis of the FD-NTFF transformation is given by

(8.33), (8.34), and (8.29) for purposes of efficient numerical implementation. These equations

are repeated here for convenience. First, (8.33) and (8.34) define spherical-coordinate
components of the vector potentials

Ne = fJ(JxcosOcos¢ + JycosOsin¢ - J,sinO) e+jkr'cos'll ds'

s

N, = fJ(-J
x

sin4> + JycOS4» e+jkr'coslJI ds'

s

Le JJ(MxcosOcos¢ + MycosOsin¢ - M,sinO) e+jkr'cos'll ds'

s

L, = f}(-A(sin4> + Mycos¢) e+jkr'cos'll ds'

s

where J , J , and J are Cartesian components of is = nx jj , the equivalent phasor electricx y l _ _ _

current on the rectangular-box NTFF-transformation virtual surface S; M x ' M, and M, are
- - y A

Cartesian components of M s =-n x E, the equivalent phasor magnetic current on S; n is the

unit outward normal to S; and vris the angle between rand r'. Next, (8.29b) and (8.29c) define

the phasor E-field radiated by these vector potentials, and hence the antenna contained within S:
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.k -jkr

£e = - J e (L~ + 770 IVe) ;
4nr

Section 8.3 discusses an efficient discrete Fourier transform method to calculate j and Sfs s
"on-the-fly" in step with the FDTD simulation. This requires a total of 24 complex-valued,

two-dimensional arrays to store the Cartesian components of the equivalent currents at each

frequency of interest. With these data in hand at the end of the FDTD run, Ne' N~' Le, and L4>
are computed from (8.33) and (8.34) in a postproce!sing st,:P at the desired (0, 4J) orientations in

the far field at each frequency of interest. Then, Ee and E~ are obtained from (8.29). We see

that the complete radiation pattern of the~antenn~ at selected frequencies can be obtained in this

manner during the postprocessing of the 1s and M s data resulting from a single FDTD run.

In practice, both TD-NTFF and FD-NTFF transformations are commonly used in FDTD

models of transmitting antennas. The selection of one NTFF technique or the other is usually

determined by whether broadband gain characteristics are desired at just a few angles of interest

crD-NTFF preferred), or whether wide-angle gain patterns are desired at just a few frequencies

of interest (FD-NTFF preferred).

14.5 PLANE-WAVE SOURCE

FDTD models of receiving antennas use a plan.e-wave source condition to create an incident

lectromagnetic wave. Here, the plane wave IS produced by electric and magnetic current

e rces placed tangentially on a virtual surface surrounding the antenna. As shown in
sou
Fig. 14.1 (b), the plane-w.ave sour~e surface is lo~ated between the ABC and the antenna.

Ideally, the tangential electnc and magnetic current sources are placed on the same virtual

surface. However, in the standard FDTD method, these sources cannot be coplanar because of

e spatially staggered nature of the Yee cell. Hence, a straightforward application of (14.3) can

th d to nonideal behavior. That is, the field inside the computation volume may only

lea roximate the desired plane wave, and the field outside may be small, but not zero.

~s section discusses the subtleties involved in the plane-wave source condition due to the

re of the Yee algorithm.
nato

5
1 Effect of an Incremental Displacement of the Surface Currents

14..

consider the -x -directed pl.ane wave [Einc = f(t.+ xlc) Eo' H inc =-x X E;n/1Jo] generated by

l
anar electric and magnetic surface currents defmed by

the P

M s =!(t) x xEo (14.29a, b)

Fig. 14.12(a) illustrates the ideal case where the source currents are collocated at the same

rf e Here, the superposition of the radiation from these currents generates the desired plane
u ac·

S . propagating to the left of the source plane, and zero field to the right of the source plane.
wave
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---... x

E =Eo f(t+x/c)

tJ~

fM~__-... x

E - Eo f(t+x/c)
2 i E - O(Bx/2Ctp)+i8

J~t tM~
I\~

(a) (b)

---... x

E=O

--."x

E - Eo f(t+x/c)

+ O( Ox/C'tp )2/2 .

-it J~r tM~
~

! 8<

E = Eo f(t+x/c) E - O(8Jc'tp )
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~

! 0':
(c) Cd)

Fig. 14.12 Fields produced to the right and left of plane sheets of uniform electric and magnetic current:
(a) ideal case of collocated currents; (b) currents displaced by 0.. ; Cc) time-shifted currents
generating exact field on the left; Cd) time-shifted currents generat.ing zero field on the right.

Fig. 14.12(b) illustrates the nonideal case corresponding to the Yee space lattice where the
surface currents are displaced by the small distance 8... Here, the net field to the left and right of
the source planes is given by, respectively:

E left "" f(t-bJ2c +x/c)Eo

+ ;C":J[<;J"(t-O.J2C + X !C)]Eo + O(2~J (14.30a)

E ri ht "" - (~J [r f'U + 8/2c - x/c) ]Eo + O(~J3
g 2 r p 2 C1'c p p

(14.30b)

where l' is a characteristic time associated withf(t), such as r for the Gaussian pulse of (14.4);p p

and cr »8x. We see that the field radiated to the left of the source is no longer the desired
p

field; it is the desired signal with a slight time shift and an additional small replica of the second
derivative of the source signal. Further, the field to the right of the source is no longer zero;
it is now a small replica of the derivative of the source signal.
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14.5.2 Effect of an Incremental Time Shift

A modification can be introduced that improves the situation of the noncollocated source
currents in Fig. 14.12(b). Namely, the source currents are time shifted to generate either the
desired signal propagating to the left of the source planes or zero signal on the right, but not both
conditions simultaneously. Fig. 14.12(c) illustrates the case of time shifting of the source
currents to generate the exact field on the left. Here, the currents are given by

witb the resulting radiated fields

EleCt = J(t + x/c) Eo

(14.31a, b)

(14.32a)

For this case, the field ~ropagating to the left of ~he so.urce planes is ~he desired fi~ld, .while the
field appearing to the nght of the source planes IS agam a small replIca of the denvatlve of the

1 rce signal. While small, the amplitude of the signal propagating to the right is doubled
;;;:'tiVe to that in. (14.30b); that is, all of the error is shifted onto the unwanted signal

pagating to the nght.
pro Fig. 14.12(d) illustrates the case of time shifting of the source currents for zero field on the

right. Here, the currents are given by

(14.32b)

(14.33a, b)

with the resulting radiated fields

E == 0
righl

(14.34a)

(14.34b)

this case, the field to the right of the source planes is identically zero, while the field to the
For f the source planes is the desired signal plus an additional small replica of the second
left'vOative of the source signal. All the error is shifted onto the signal propagating to the left of
deCl h h I' d f h' . .

U
rce planes. We see t at t e amp Itu eo t IS error IS mcreased by a factor of 4: lover that

the sO
. (14.30a).
10 In practice, the external ~i~ld to the .right .of th~ so~rce plan~s in Fig. 14.l2(d) is never

tly zero because of the fImte numencal dIsperSIOn mherent 10 the Yee algorithm. This
~xacduces a small error that negates the perfect cancellation in the external region.
InUo
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14.5.3 Relation to Total-Field 1Scattered-Field Lattice Zoning

As discussed in detail in Chapter 5, Sections 5.6 to 5.9, the traditional plane-wave source
condition for FDTD is based on total-field / scattered-field (TF/ SF) zoning of the space lattice.
In fact, it can be shown that the TF1SF technique is equivalent to the zero-external-field plane
wave source case of Fig. 14.12(d). We note that this is the preferred situation for computation of
the scattered field, for example, when calculating radar cross section. However, for modeling
receiving antennas, it appears that the exact-signal case of Fig. 14.12(c) is more appropriate.

In practice, one usually constructs a single FDTD code suitable for a wide range of modeling
problems involving scattering, antenna radiation, and antenna reception. Therefore, it makes
sense to use only one form of the plane-wave source. The TF / SF technique, equivalent to the
zero-external-field configuration of Fig. 14.12(d), is generally used for this purpose. From
(l4.34a), we note that this causes a small error of D(8 ler )2 in the generated plane-wave field.

x p

14.6 CASE STUDY I: THE STANDARD-GAIN HORN

Now that the elements of the FDTD analysis of antennas have been discussed, they will be
applied to a particular antenna. The purpose of this example is twofold: (l) to show how the
elements are combined in a practical situation, and (2) to show the high level of accuracy that
can be expected from the method when properly applied. The antenna selected for this example
is the Flann Microwave Instruments Ltd. Model 1624-20, an X-band (8.2 to 12.4 GHz) metal
pyramidal horn fed by rectangular WR-90 waveguide. Antennas like this are used in many
microwave applications and may serve as gain standards (standard-gain horns).

Fig. 14.13 shows the FDTD model for this horn antenna. The small inset drawings at the
left of the figure define the lengths and angles that characterize the original antenna geometry.
The numerical values of these parameters are: a = 109.5 mm, b = 78.5 mm, D = 228.4 mm,
lw = 50.8, a = 10.74°, and fJ = 8.508°.

The FDTD model uses a uniform space lattice composed of 519 x 116 x 183 cubic Yee cells
having ~ = L1y = L1z = L1 = 0.635 mm (=),,0/38 at 12.4 GHz). The even symmetry of the horn
geometry is used to define the x-z plane at y =0 as a PMC. Looking closely at the perspective
view of the model in Fig. 14.13, we see the faces of the individual cells that model the hom.
In fact, the cells are drawn twice their actual size for clarity. This fine spatial resolution permits
direct modeling of the 1.35-mm wall thickness of the metallic components, assumed to be PEes.
A 10L1-thick PML ABC is used on all sides of the FDTD lattice. This is spaced 20L1 from the
closest surface of the antenna, except directly in front of the aperture, where the spacing is 40L1.

The antenna is assumed to be fed from a coaxial transmission line having the characteristic
impedance 20 =50n. The center conductor of the coaxial line (the probe) has a radius
a be =0.2 mm and extends into the waveguide a distance h be =6.35 mm. The probe ispro pro

centered laterally in the waveguide, and is spaced at a distance lprobe =5.08 mm from the
waveguide's back wall to minimize reflection at the coaxial line 1 waveguide transition at

midband, 10 GHz. In the FDTD analysis, the improved simple feed model of Section 14.3.3 is
used for the transmission line and probe. For the transmitting case, the antenna is excited with
the differentiated Gaussian pulse of (14.6) with 'r =1.59 x 10-

1
J sec.

p

Fig. 14.14 compares FDTD calculations and measurements [36,37] of the far-field E-plane
and H-plane radiation patterns of the pyramidal horn antenna of Fig. 14.13 at 10 GHz.
The FDTD results are in excellent agreement with the measurements.
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(a) E-plane radiation pattern.
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(b) H-plane radiation pattern.

Fig. 14.14 Comparison of FDTD-calculated and measured far- field patterns at 10 GHz for the Flann
pyramidal hom antenna of Fig. 14.13.
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Fig. 14.15 compares FDTD calculations and measurements of the boresight properties of the
horn antenna of Fig. 14.13. The first comparison, shown in Fig. 14.15(a), is for the boresight
gain versus frequency. There is again excellent agreement of the FDTD model results and the
test data. The second comparison, shown in Fig. 14.15(b), is for the boresight effective area
versus frequency. Here, the FDTD analysis is performed for the horn as a receiving antenna
ill uminated by a z-polarized plane wave incident in the boresight direction. The time waveform
of the impinging signal is the same differentiated Gaussian pulse used for the transmitting case.
The effective area for the horn is derived from the FDTD-computed received voltage in the
coaxial transmission line as

A (m) =e

170 I2(0))/20 + 112 Iifrec (0)) /2

4 R( co) I Binc (w) 1
2 (14.35)

where Z(w) == R(O)) + jX(w) is the input impedance of the transmitting antenna. Fig. 14.15(b)
compares the FDTD results for Ae obtained using (14.35), with the effective area Ae == A0

2C/41t
derived from the measured gain G. Note that these results are shown in decibels relative to one
square meter. Again, the agreement is excellent. Overall, these data show that, when properly
used, the FDTD analysis produces equally good results for the transmitting and receiving cases.
Further, Fig. 14.15 demonstrates reciprocity for the FDTD results for transmitting and receiving
antennas in the frequency domain. A demonstration of reciprocity for the time domain is in [38].

The FDTD method inherently provides information about the dynamics of the
electromagnetic field within the computational volume over the period of the simulation. Only a
small fraction of this information is used when investigating conventional antenna-performance
metries such as radiation pattern, gain, and effective area. Mapping or visualizing the computed
space-time evolution of the elec~romagnetic ~ie.ld can provide useful additional information,
helping to improve our understandmg of the radIatIOn process for an antenna.

Fig. 14.16 illustrates how space-time visualization is used to help develop an understanding
of how an antenna radiates. Here, the magnitude of the E-field on the vertical symmetry plane of
the horn antenna of Fig. 14.13 is plotted on a grayscale for two different times. The incident
voltage in the coaxial line feeding the horn is a sinusoid that is amplitude modulated by a

Gaussian pulse:

(14.36)

where f
o
=w/21t == 10.0 GHz and Tp = 7.96 X lO-11 sec. In Fig. 14.16(a), the pulse has entered

the horn from the waveguide but has not yet reached the aperture. The spacing between the
white lines (lines of null field) roughly corresponds to one-half of the guide wavelength.
We observe that this spacing decreases between the throat of the horn and the aperture.
This observation is reasonable in that the wavelength in the rectangular waveguide is about 1.3
tirnes the free-space wavelength, whereas at the aperture of the horn it is much closer to the free

space wavelength.
In Fig. 14.16(b), the pulse has reached the aperture. The white lines in the horn near the

aperture are distorted; there is a .small s~gment that is concave to the right. This is caused by the
reflection from the aperture that IS traveling back toward the throat of the horn. Directly in front
of the aperture, the radiated wave is roughly planar. It becomes spherical at greater distances.
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(a) The pulse has entered the hörn from ihe 
waveguide. 

(b) The pulse has reached the aperture of the horn. 

F i g . 14.16 Grayscale visualization showing the maenin.H f L 

venical symmeliy plane of the Flann pyramidal hom anlenna^of F i g ^ i ^ ^ « ,He 
8- 1 j at two early times. 
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14.7 CASE STUDY II: THE VIVALDI SLOTLINE ARRAY

This section focuses on the FDTD analysis of Vivaldi slotline antennas including the single and
double element, the crossed-pair subarray element. and linear arrays of crossed-pair elements
[9, 39]. It reveals a number of important features of FDTD modeling of antennas and antenna
arrays: (l) calculation of radiation patterns; (2) calculation of driving-point impedance,
especially as a function of array phasing (active impedance); and (3) ability to conduct
sensitivity studies probing the effects of engineering tolerances upon key performance attributes
such as cross polarization.

14.7.1 Background

Slotline antennas are known to be traveling-wave antennas with the capability of producing
broadband endfire radiation. A recent implementation of slotline antennas was introduced in
[40]. In this structure, a microstrip slotline is flared outward to some width at which the desired
radiation occurs. This is referred to as a tapered slot antenna (TSA). It is this type of slot
antenna that is under consideration in this section.

Derived from the slotline, the TSA is a traveling-wave antenna; specifically, a surface-wave
antenna. An advantage of this antenna over resonant antennas is its ability to work over a large
bandwidth. On a fundamental level, TSAs work because the fields confined in a slotline can
decouple from the slot edges and radiate as slot width is increased. Since the structure is open
ended, there is virtually no reflection of the outgoing wave, and current reflections along the
edges are also small.

Analytical and numerical modeling of the TSA had not been extensive until the publication

of [9,39], with the primary references including [41--44]. Reference [44] was arguably the most
advanced previous model, using the frequency-domain method of moments to account for the
finite width of the antenna and the presence of the dielectric substrate. The results of [44] are. in
fact, used in one of the validations of the FDTD model, as will be seen.

The primary goals of the study reported in [9, 39], reviewed in this section, were to
investigate FDTD modeling of the E-plane and H-plane gain patterns and the input impedance of
stripline-fed Vivaldi TSA elements and arrays. There were several phases to the modeling.
summarized as follows.

• Phase 1: The Planar Element. This phase established the baseline FDTD models
for both the single-flair and double-flair designs. The E- and H-plane gain
patterns were determined, and key flare-geometry parameters (length and rate of

the taper) were examined. To validate the FDTD method in the study of this
general antenna type, the linear tapered slot antenna (LTSA) of [44] was also

modeled.

• Phase 2: The Quad Pair. This phase developed and validated an FDTD model of
the quad element. The quad element consisted of two perpendicular planar

double flares constructed with collocation slots to allow for an interleaved

mechanical assembly. Such a design avoided shorting either the horizontal or

vertical ground planes upon assembly.
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• Phase 3: The Linear Phased Array. The final phase developed and validated an
FDTD model of a linear phased array comprised of the quad elements studied in
Phase 2. The array was capable of beam steering and selectable polarization in
either primary plane, and exhibited the broadband behavior characteristic of the
Vivaldi TSA. Radiation patterns were computed for beam-steer angles of 0·, 20·,
45°, and 60· at selected frequencies across the bandwidth, and then compared
with measurements. Calculations were made of the driving-point impedance as a
function of the beam-steer angle and the operating frequency, to address the issue
of the array active impedance.

14.7.2 The Planar Element

Fig. 14.17 illustrates the geometry of the baseline planar Vivaldi element. This element was
comprised of two 0.020-in-thick, 1 ozlfe-copper-clad circuit boards forming a sandwich
strUcture around a 0.032-in-wide copper stripline. Each of the outer copper planes was etched to
have a flared slot extending from a O.l30-in-diameter matching hole. The stripline passed under
(over) each slot at the point where the slot connected to its matching hole; the stripline was then
terminated in a 0.105-in-radius, 70· circular sector. The dielectric substrate was Duroid 5880
(E

r
== 2.2, tan D=0.0009).

1.50"

T

2.00"

0.75" -..

~"'7"""'l""""",,.,....,...,....,..j~ Duroid
substrate

Flared slot
on both sides

of antenna
element

Fig. 14.17 Geometry of the Vivaldi single-flare baseline element. Source: Thiele and Taflove, IEEE
Trans. Antennas and Propagation, 1994, pp. 633-641, © 1994 IEEE.
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In the FDTD model, the cubic cell size was !:J. =0.5 mm (0.020 in). This was based on the
smallest physical dimension characterizing the antenna element: the gap across a slot at the point
of its connection to its matching hole. The spatial resolution of Li =0.5 mm corresponded to
Ao/33 to Ao/99 over the 6 to 18 GHz bandwidth of the element. This high resolution permitted a
simple stepped-edge (staircase) model to simulate the antenna radiation characteristics nearly as
accurately as a more elaborate conformal contour-path model. Therefore, all modeling was
performed using stepped edges. The resulting space-lattice size for the single- and double-flare
Vivaldi models was 42 x 116 x 142 cells, corresponding to 4.2 million field unknowns.

Fig. 14.18 compares the FDTD and measured results for the 12-GHz co-polarization
(co-pol) pattern of the single Vivaldi element of Fig. 14.17. Here the radiation pattern was
calculated in the plane of the antenna (the E-plane), with 0° denoting the forward direction.
For the co-pol pattern, the E-field was polarized in this plane. From Fig. 14.18, we see a
±2.5-dB ripple in the main beam predicted by FDTD that was borne out by the measurements.

o

- -5
(0
"0-C....
Q)
t::co
a. -10"'0
Q)

.t:!
co
E....
0
Z -15

!r~. ! V~

~:~!j
. ;.' . .'

• • i

.

-- FDTD calculations

• • • Measurements

-20
-90' -60' -30' O' 30' 60' 90'

Observation angle

Fig. 14.18 Comparison of FDTD and measured data for the 12-GHz E-plane co-pol pattern of the
baseline element of Fig. 14.17. Source: Thiele and Taflove, IEEE Trans. Antennas and
Propagation, 1994, pp. 633-641, © 1994 IEEE.

Fig. 14.19 shows the results of another validation of FDTD modeling of a single-flare
antenna. Here. FDTD was used to calculate the radiation pattern of an LTSA that had been the
subject of measurements and moment-method modeling [44]. This antenna had the following
physical parameters at 9 GHz: length L /Ao=3.0, ground-plane width HI \ =0.9. substrate
thickness dlAo =0.021, substrate permittivity E, =2.33, and flare angle 2ex =12°. For this case.
the FDTD space lattice resolution !:J. was defined by the substrate thickness.
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Fig. 14.19 Comparison of FOTD, moment-method, and measured data for the E-plane co-pol radiation
pattern of a linearly tapered slot antenna validation model at 9 GHz. Source: Thiele and
Taflove. IEEE Trans. Antennas and Propagation, 1994, pp. 633-641, © 1994 IEEE.

Fig. 14.19 replicates Fig. 6 of [44] and adds the FDTD results for comparison. Through the
first 60 0 relative to the forward direction, there is good agreement between the three data sets.
Beyond 60°, the moment-method results exhibited a poorer level of agreement with the
measurements than FDTD. In this angular range, the sidelobes predicted by the method of
moments were as much as 6 to 10 dB above the measurements, whereas the FDTD-computed
sidelobes were very close to the reported test data.

14.7.3 The Vivaldi Pair

Fig. 14.20(a) illustrates the geometry of the Vivaldi pair. This geometry differs from the
baseline configuration of Fig. 14.17 only in overall size, with the ground planes narrowed to
1 in, and the dielectric along the front edge removed. Fig. 14.20(b) compares the measured and
FDTD-calculated co-pol patterns at 12 GHz. Good agreement in the main beam can be seen
throughout the 180

0

range. We observe that the measured data indicated a beam shift (squint) of
approximately 5°. The probable physical basis for this squint was a phase offset in the excitation
of the elements. With the elements fed by a pair of coaxial lines, it can be shown that this level
of squint arises from as little as a 0.5-mm difference in line length.
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14.7.4 The Vivaldi Quad

Fig. 14.21 illustrates the geometry of the Vivaldi quad. Each quad consists of two Vivaldi pairs,
discussed in the previous section, that are mutually perpendicular bisectors, forming a "+" shape.

Fig. 14.21 Geometry of the Vivaldi quad antenna. Source: Thiele and Taflove, 'IEEE Trans. Antennas
and Propagation, 1994, pp. 633-641, © 1994 IEEE.

The Vivaldi quad is the basic repetitive element used in the linear array of Fig. 14.22.

Clearly, the Cartesian nature of the FOID space lattice is well suited for geometry definition in
this model. However, this arrangement requires a change in the usual definition of a far-field

attern "cut," since the axis of the linear array of Vivaldi quads (denoted as the x-axis in Fig.i4.22) lies along a diagonal in the FOTO lattice. To account for this, a great-circle cut is made.

This involves defining two rotated axes x' and z', determining their unit vectors, and using these
unit vectors to define a rotation matrix through which ()' and ¢' can be mapped to the standard
(] and ¢ spherical coordinates. This allows the provision of an E-plane scan with respect to the
diagonal orientation of the array. Further, the far-field radiation components E8 and E¢ are rotated
to obtain the correct correspondence to co-pol and cross-pol radiation. These great-circle pattern

cuts are used for both the single Vivaldi quad of Fig. 14.21 and the eight-element linear array of

Vivaldi quads shown in Fig. 14.22.
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X'

y

Fig. 14.22 Geometry of the eight-element linear array of Vivaldi quads. Source: Thiele and Taflove.
JEEE Trans. Antennas and Propagation, 1994. pp. 633-64 I, © 1994 IEEE.

Fig. 14.23 compares FDTD modeling results with measured E-plane co-pol radiation
patterns at 18 GHz for a single prototype Vivaldi quad having the geometry of Fig. 14.21.
In general, good agreement is seen. However, while the FDTD model properly predicts a
symmetric pattern, the measured data are not symmetric. For example, the measurements
indicate a pattern "shoulder" at -40·, but not at +40·. Relative to the first sidelobes at ±70',
the measured levels are approximately 7 dB out-of-symmetry. In fact, the FDTD predictions of
these sidelobes are approximately the geometric mean of the asymmetric measurements.

14.7.5 The Linear Phased Array

This section presents FDTD and measurement data for the complete eight-element linear array of
Vivaldi quads shown in Fig. 14.22. The FDTD model. implemented on a 222 x 222 x 14O-ceU
cubic lattice, uses an impulsive excitation along with an on-the-fly DFT of the fields at the near
to-far-field transformation surface. In this manner, a single run provides the complete radiation
pattern at multiple key frequencies spanning the desired 6 to 18 GHz operating band. Applying
an appropriate time-delay taper to the feeding striplines across the array provides for the desired
beam-steering angle.
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Fig. 14.23 Comparison of FDTD and measured E-plane co-pol radiation patterns for the single Vivaldi
quad at 18 GHz. Source: Thiele and Taflove, IEEE Trans. Antennas and Propagation. 1994,
pp. 633-641, © 1994 IEEE.

Fig. 14.24 graphs the FDTD modeling results at 6, 9, 12, 15, and 18 GHz for the E-plane
co-pol and cross-pol radiation patterns for the eight-element array, assuming a nominal 45· beam
steer. We see that grating lobes evolve as the operating frequency increases. In fact, the strength
of the principal grating lobe equals or exceeds that of the nominal main beam for frequencies

reater than 15 GHz. Further, the cross-pol levels are quite high, rising to within 10 dB of the
~o_pollevels in the main beam at all of the fre~uencies modeled.

Fig. 14.25 compares the FDTD calculations for the E-plane co-pol radiation pattern with
measured results at 6 GHz (0· beam steer) and 12 GHz. (45· beam steer). Good agreement is
seen at most points in the radiation patterns, even the sidelobes, over a dynamic range

approaching 30 dB.

14.7.6 Phased-Array Radiation Characteristics Indicated by the FDTD Modeling

Simple array theory can be used to qualitatively assess the above results. We note that in both
the computed and measured patterns, the nominal beam-steer angle is not quite reached.
For example, in Fig. 14.25(b), a desired beam-steer angle of 45° results in an actual angle of
approximately 40·. Array theory predicts the o.ve~aIl radiation pattern to be the product of the

lement pattern and the array factor. The deviatiOn of the beam-steer angle can logically be
:ttributed to this pattern multiplication.
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steer. Source: Thiele and Taflove, IEEE Trans. Antennas and Propagation, 1994,
pp. 633-641, © 1994 IEEE.
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Array theory can also be used to predict one of the most notable features of the FDro
modeling results, the grating lobes. For a linear array, array theory predicts that grating lobes
appear if the element-to-element spacing exceeds 0.5 wavelength. By this thinking, the element

spacing of this array of Vivaldi quads, 1.35 em, should give rise to grating lobes at frequencies'
above 11.1 GHz. In fact, the FDTD results show unmistakable grating lobes arising as the
excitation frequency exceeds 12 GHz, a close match. Further, a simple array calculation shows
the grating lobes to be almost exactly where they appear in the FDTD results. The FDro
prediction of these dominant features lends additional confidence to the modeling results.

14.7.7 Active Impedance of the Phased Array

Active impedance is defined as the driving-point impedance of a given array element when all of
the elements of the array are excited [45]. When the antenna elements are near one another, as in
the case of most arrays, complex interactions occur between all of the elements, changing the

current distribution of any particular element relative to its distribution when isolated in free
space. Since beam steering is implemented via changes in the excitation of a given element.,
the current distributions vary on all of the elements due to their mutual coupling, which in turn
varies the driving-point impedance of each element. In practice, array active impedance is
difficult to predict and measure due to the complexity of the mutual coupling and its sensitivity
to the test setup.

A direct approach is used here to calculate the driving-point impedance. Following the
procedure discussed in Chapter 15, Section 15.2, the voltage and current on a stripline feeding an

antenna element are determined using appropriate path integrals for Faraday's and Ampere's
laws based on instantaneous E- and H-field values. These are converted to phasor voltages and

currents using on-the-fly DFTs, yielding impedance data over the complete bandwidth of the

antenna for a single FDTD run. Therefore, it is straightforward to conduct studies of the active
impedance of the array concurrently while calculating the variation of its beam-steered radiation
pattern over the same operating bandwidth.

FDTD results are now presented for the active impedance of the eight-element linear array
of Vivaldi quads of Fig. 14.22 from 6 to 18 GHz for a fixed beam-steer angle of 45°. In the

presentation of these data, the driving-point impedance of each of the four feeds of each of the
eight quad elements is depicted separately. This is because geometrical asymmetries arising in
the construction of each Vivaldi quad cause corresponding electrical asymmetries of the driving

point impedance for each of the four feeds of the quad element.
Figs. 14.26 and 14.27 graph the driving-point impedance data using a three-dimensional

perspective view. Here, the independent variables are frequency from 6 to 18 GHz (in discrete
I-GHz increments), and the sequence number of the Vivaldi quad in the linear array of
Fig. 14.22 (an integer from 1 to 8). The magnitude of the driving-point impedance is depicted as
a "height" above the frequency / quad-number plane. Fig. 14.26 shows that the FDTD-calculated
impedances for the stripline feeds classified in the groups "horizontal feed I" and "vertical feed
1" are extremely high at 8 GHz, reaching a peak of nearly 1,300.0 at Vivaldi quad #8.

Less substantial peaks in impedance are calculated at 11 and 17 GHz. Fig. 14.27 shows that the
FDTD-calculated impedances for the feeds classified in the groups "horizontal feed 2" and
"vertical feed 2" attain large values at 11 GHz, with lesser peaks at 13 and 17 GHz.

Here, Vivaldi quads #4 and #5 experience the largest values of driving-point impedance.
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Overall, these FDTD calculations indicate that, for a fixed beam-steer angle of 45·,
the driving-point impedance behavior of the eight-element linear array of Vivaldi quads of
Fig. 14.22 is within the desired voltage standing-wave ratio (VSWR) specification of 2:1 or less
(250 to lOOn), for much of the 6 to 18 GHz design bandwidth. However, one-half of the
striplines feeding the Vivaldi quads are predicted by the FDTD analysis to have very high
VSWR at 8 GHz, and the other half of the stripline feeds are predicted to have very high VSWR
at 11 GHz. Therefore, the antenna array would likely fail at these two frequencies.
prior knowledge of this problem should be sufficient to permit (hopefully) modest changes in the
stripline feeds to meet the VSWR specification throughout the entire bandwidth of the array.

14.8 NEAR-FIELD SIMULATIONS

The previous sections in this chapter discussed means to apply the FDTD method to accurately
model antennas for their far-field radiation and reception properties and their driving-point
characteristics. In contrast, this section focuses on examples of applying FDTD techniques to
analyze the near fields generated by antennas. Such modeling has taken on increasing
importance, even urgency, due to the rapidly increasing usage of personal wireless
communications devices, such as cellphones, by the general public. Questions regarding the
near-field coupling of such devices to potentially sensitive regions of the human body, especially
the brain, have prompted specific absorption rate (SAR) compliance testing mandated by various
agencies [46-49]. This section describes five disparate near-field test cases where excellent
agreement is found between the results obtained using FDTD modeling and benchmark data
derived from either exact analyses, high-quality alternative numerical techniques, or carefully

performed experiments.

14.8.1 Generic 900-MHz Cellphone Handset in Free Space

This example involves calculation of the E- and H-fields in free space adjacent to a generic 900
MHz cellphone handset having a ),'0/4 wire monopole antenna mounted at the center of its top
face [50]. For simplicity, the handset is modeled as a rectangular PEC box with the dimensions
15 :>< 6 x 2.4 em. FDTD calculations are made on a uniform cubic-cell Cartesian mesh having

~ :=2mm.
To provide a validation benchmark, the near electromagnetic fields generated by the handset

e also calculated using the Numerical Electromagnetics Code (NEC) [51]. In modeling with
at .
NEC, which is based upon the frequency-domaIn method of moments, a structure has to be
described in terms of thin wire segments. Therefore, the body of the handset in NEC is
e resented by a cage of intermeshed wires, and the antenna by a single wire excited at its base.

r p f th . '1 . IThe segments at the base 0 e antenna are simi ar In ength to those of the wire mesh at the
oint it is connected. For accuracy, small segment lengths are used with an attendant scheme to

~ansition from the fine segmentation in the antenna to the relatively coarse segmentation
required to describe the surface of the handset with a reasonably small number of segments.
A 16-wire radial segmentation scheme is used at the connection of the monopole wire to the top
of the handset box. In all, there are 1,150 segments in the NEC model.
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Fig. 14.28 Comparison of FDTD and NEC values of the near fields adjacent to a generic 900-MHz
cellphone handset in free space for a transmitter output power of IW into a Ao/4 wire
monopole antenna centered at the top of the handset. The observation locus is a vertical cut
located I cm from the side of the handset box in the x-direction, where the top of the box is at
the plane z =O. Legend: FDTD values =solid line; NEC values of Hy=triangles;
NEC values of E = diamonds; NEC values of E = asterisks. Source: Dimbylow and Mann,

x z
Phys. Med. Bio1., 1994, pp. 1537-1553.

Fig. 14.28 compares the calculated FDTD and NEe field values for an assumed transmitter

output power of 1W. Here, the vertical electric field Ez, the radial electric field Ex, and the

circumferential magnetic field H are graphed as a function of height z along a vertical cut
y

located a distance of I cm from the side of the handset box in the x-direction, where the top of

the box is at the plane z =O. We observe very good agreement between the two sets of data.

This high level of agreement of predictions arising from two codes with completely different

theoretical and numerical bases indicates reliably that both techniques are valid for such free

space near-field models.
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14.8.2 900-MHz Dipole Antenna Near a Layered Bone-Brain Half-Space

The second example involves calculation of the E-field generated by a 12-cm-Iong, 900-MHz
dipole antenna and penetrating into a layered bone-brain half-space, where the dipole is located
in air 2 em away from the surface of the half-space. An exact analytical solution based on
expansion of the dipole fields and enforcement of the boundary conditions at the planar material
interfaces is given in [52]. For this specific case, the bone layer is I-em thick with c, =5.98 and
cr == 0.099 S/m. The underlying brain is infinitely thick with £, =50.3 and (J =1.34 S/m.

The FDTD space lattice uses a uniform cell size of .1x =.1y = 5 mm and .1z = 9.23 mm.
This gives an antenna length of 13i1z with the feedpoint in the center, and 4dy of free space
between the antenna and the bone layer, which is 2.1y thick. The underlying brain layer is
24.5 em (49.1.y) thick. This is sufficient to attenuate the fields to well below 1% of their peak
values before the end of the brain layer is reached. The infinite nature of the layered half-space
in the transverse x-z directions is simulated by using a sufficiently large grid (12 x 33.2 em) in
these directions, such that the fields are very small at the grid edges. Convergence to the
sinusoidal steady state is observed at about eight periods of the 900-MHz excitation.

Fig. 14.29 compares the magnitude of the FDTD-computed E-field along the y-axis
(penetrating into the half-space) with the analytical solution (Table I of [52]). The field values
are normalized to an antenna feedpoint current of 100 rnA rms. Agreement is seen to be good.

140

FDTD
120

<:) Exact

100

z- 80 -E->........
W 60 I

dipole y

I40

air bone brain

20

o 4 9 14

y (em)

Fjg. 14.29 Comparison of FDTD and exact results for the E-field penetrating along the y-axis into a
layered bone-brain half-space excited by a 12-cm-Iong dipole antenna operating at 900 MHz.
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14.8.3 840-MHz Dipole Antenna Near a Rectangular Brain Phantom

The third example involves calculation of the SAR generated by a half-wavelength (17.4-cm
long), 840-MHz dipole antenna within an acrylic box filled with brain-equivalent phantom
material. Here, comparison is made to measured data. The dipole is placed at several distances
from the box, but always with the feedpoint centered in front of it. The box dimensions are
30 x IS x 50 cm in the X-, y-, and z- directions, respectively.

The walls of the box are made of 6.35-mm-thick acrylic, which is assumed to have the
electrical properties of polystyrene (c, =2.55). Since the FDTD cell size used in this simulation
is slightly larger than the wall thickness, the effective dielectric constant for the acrylic is
calculated from the formula given in [53J

Eeff = (14.37)

where /). is the size of the FDTD cell, w is the thickness of the acrylic, and c, is the dielectric
constant of polystyrene. In [53], this formula is derived by finding the average field at the air
acrylic interface and setting this equal to the field in the larger-sized FDTD cell, thereby giving
the smaller effective dielectric constant of (14.37). The acrylic box is filled with brain
simulating material with E, =41.1 and (j = 1.06 S/m.

SAR measurements are taken with a Narda Model 8021B E-field probe. All data are
parameterized relative to the distance d between the dipole and the exterior surface of the acrylic
box for d = 11.0, 16.0, 21.0, and 26.5 mm. FDTD simulations are run for 2,500 time-steps,
and convergence is observed after about 1,500 time-steps. Values are normalized to a total
radiated power of 500 mW.

Fig. 14.30(a) compares the FDTD-computed and the measured SAR distributions along the
y-axis (penetrating into the phantom). Fig. 14.30(b) provides a similar comparison along a line
parallel to the z-axis and 7 rom beneath the inside edge of the box wall within the phantom brain
material. Excellent agreement is seen between the measured and computed data.
This agreement demonstrates the accuracy of both the measurements and the FDTD simulations
in this near-field region. Note that the physical dimensions of the E-field probe make it
impossible to measure closer than 4 mm from the front of the box. However, this would be
necessary to obtain the highest 1g-averaged SAR values, since the peak fields (and hence the
peak SARs) occur at the very front of the phantom nearest the antenna. The excellent agreement
between the FDTD results and the measured data extrapolated to the front of the box supports the
conclusion that FDTD can provide a good estimate of the peak SARs, even in locations where
direct measurements are not feasible.

14.8.4 900-MHz Infinitesimal Dipole Antenna Near a Spherical Brain Phantom

The fourth example involves calculation of the relative SAR distribution generated by an
infinitesimal (Hertzian) dipole excited at 900 MHz adjacent to a spherical brain phantom. This
tests the ability of FDTD to correctly analyze the near fields within a structure having a curved
surface. Here, simple staircasing is used (i.e., the best fit to the sphere's surface by the
rectangular unit cells of the space lattice). Note that the smaller the sphere is relative to the cell

size, the coarser is its staircased model.
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Fig. 14.30 Comparison of FDTD-computed and measured SAR distributions generated by a half
wavelength 840-MHz dipole antenna within an acrylic box filled with brain-equivalent
phantom material. The total radiated power is 500 roW.
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For this case, the infinitesimal dipole is located 1.5 em from a 20-cm-diameter,
homogeneous brain-equivalent sphere (lOr = 43, a= 0.83 S/m) [54]. The infinitesimal dipole is
modeled as a single Ez component. Cubic space cells of size fJ. =5 mrn are used in the FDTD
model, yielding a sphere 40fJ. in diameter. Care is taken so that the front edge of the model
sphere contains multiple space cells, rather than just one, to ensure good FDTD accuracy.

Fig. 14.31 compares the FDTD-computed and exact normalized SAR along the y-axis
penetrating into the sphere from its front surface. The exact solution is obtained with a Bessel
function expansion [54]. Excellent agreement is seen.
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Fig. 14.31 Comparison of FDTD and exact analytical results for the relative SAR distribution along the
y-axis penetrating into a 20-cm-diameter, homogeneous, brain-equivalent sphere excited by an
infinitesimal dipole located 1.5 em from the sphere and radiating at 900 MHz.

14.8.5 1.9-GHz Half-Wavelength Dipole Near a Spherical Brain Phantom

The fifth and final example involves calculation of the SAR distribution generated by a half
wavelength dipole of length 7.7 em, excited with O.5W at 1.9 GHz adjacent to a spherical brain
phantom [55]. Simple staircasing of the sphere is again used.

For this case, the dipole is located at d = 5, 15, or 25 mm from the bottom of a 223-mm
outside-diameter spherical glass container having a wall thickness of 5 mrn and wall permittivity
c

r
=4. To simulate the average dielectric properties of the brain at 1.9 GHz, this container is

filled with a homogeneous fluid of E
r
=45.5 and a =1.31 S/m. Cubic space cells of size

fJ. =2.5 mm are used in the FDTD model.
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Fig. 14.32 compares the FDTD-calculated and measured SAR distributions along the
vertical z-axis penetrating into the phantom for the three spacings d [55]. Excellent agreement is
seen. There is similar agreement along horizontal cuts parallel to the dipole within the phantom
medium [55). These results give confidence that the FDTD method can accurately model curved

absorbing objects for near-field simulations.
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Fig. 14.32
Comparison of FDTD and measured data for SAR distributions along the z-axis penetrating
into a 223-mm-diameter spherical brain phantom excited by a half-wavelength dipole located
d =5, IS, or 25 mm from the sphere. The dipole radiates O.5W at 1.9 GHz. Source: Yu et a!.,
IEEE Trans. Electromagnetic Compatibility, 1999, pp. 234-245, © 1999 IEEE.

9
CASE STUDY III: THE MOTOROLA T250 TRI-BAND PHONE

14.

.s section focuses on the study reported in [56], which evaluates whether FDTD-based tools
Thl . RF . . th d '1 d d .be utilized for supportmg engmeers In e etal e eSlgn of mobile phones. This clearly
can h h f h d . . .rnands that not only t e outer S ape 0 t e eVlce IS slInulated, but also all embedded
de tromechanical components that are relevant to the RF characteristics of the phone,
elec Th'" I I' dhoWn in Fig. 14.33. IS requIres spatIa reso utIons own to 100 11m or less.
as S The quality of the FDTD simulation is validated by measurements utilizing the DASY V4

'metric assessment system [57] near-field scanners. The phone selected for this study is the
do

S1
rola T250 a commercially available tri-band phone (GSM. DCS, PCS).

Mota •
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Physical phone

Phone model within CAD environment

Fig. 14.33 The physical model of the Motorola T250 phone and its numerical equivalent used for the
FDTD computations. Source: Chavannes et a!., IEEE Antennas and Propagation Magazine,
Dec. 2003, pp. 52-u6. © 2003 IEEE.

14.9.1 FDTD Phone Model

The T250 phone had been designed at Motorola using the ProEngineer CAD platform, thereby
allowing its CAD dataset to be exported in stereolithography format to the SEMCAD FDTD
software [58]. In the FDTD model, the phone is oriented with its printed circuit board (PCB)
aligned with a primary space lattice plane to reduce staircasing. Whereas basic dielectric parts
such as the housing and pushbuttons are maintained as imported into the FDTD software, special
attention must be paid to parts which significantly influence electromagnetic field behavior.

The PCB is modeled as two 450-llm-thick dielectric layers embedded into three llO-llm
thick PEC ground layers. PCB grounds are connected to each other by 50 vias that are uniformly
distributed over the entire board area. All metallic parts are modeled as PEe. Dielectric
components are represented within the FDTD model using material parameters obtained from the
manufacturers of the various parts.

As illustrated in Fig. 14.34, to effectively mesh the phone geometry with acceptable memory
and running-time requirements, a combination of graded meshes and local FDTD mesh
refinement is applied. In particular, the mesh-refinement scheme outlined in Chapter II, Section
11.8, is applied to model certain regions of the phone with a fine spatial resolution. The most
crucial parts to model with fine resolution are the antenna, including its wire helix and monopole
(O.65-mm wire diameter), as well as the PCB with its thin PEC ground layers. Since the helix is
completely nonconformal in the FDTD lattice, it must be resolved by multiple cells in its wire
diameter to permit accurate calculation of its field distribution.
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Fig. 14.34 Enhanced FDTD meshing approach to reduce computational resources by combining a graded
mesh and a subgrid for the antenna. Source: Chavannes et al., IEEE Antennas and
Propagation Magazine, Dec. 2003, pp. 52-66, © 2003 IEEE.
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:Fig. 14.35 Excitation of the antenna-PCB structure in the modified source region. Source: Chavannes
et al., IEEE Antennas and Propagation Magazine, Dec. 2003, pp. 52-66, © 2003 IEEE,
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A spatial resolution of 0.2 x 0.2 x 0.1 mm in the X-, y, and z-directions is used within the
SOO,OOO-cell subgrid (2: I refinement factor) surrounding the antenna. For the outer grid in the
free-space simulation, an inhomogeneous mesh having an increasing cell size from 0.2 to 7 mm

(grading ratio = 1.5) is used. All simulations including head models consist of the same
minimum and maximum cell sizes. For these models, the human ear region is rendered with a

0.4 x 0.4 x 0.2-mm resolution, leading to a total of about 6 million cells. Finally, all models
employ an eight-cell-thick PML ABC to terminate the space lattice.

To achieve proper excitation of the simulated phone structure, a source region is modeled

that closely corresponds to that of the physical phone. Figure 14.35 illustrates the details of this
setup in the CAD environment. Here, the RF source is placed across a I-mm air gap between the
PEC island that terminates the antenna and the upper PCB ground layer.

14.9.2 Measurement Procedures

The near-field scanning system DASY4 [57] that is used for the measurements in this case study
is equipped with the latest probes providing the required isotropy, sensitivity, and spatial
resolution. The phantom used is the Twin SAM [59], which has been standardized for antenna

performance characterization by various organizations.
We note that the T250 design does not permit an accurate, direct measurement of the

antenna input power. Therefore, the antenna input power is determined indirectly by matching

calculated radiated H-field distributions with measured ones. In order to minimize uncertainty,
a global least-squares fit is conducted on the H-field distributions in free space at a variety of
distances from the phone, and inside a flat phantom. This procedure includes information

regarding the reactive near-field, thereby providing a more reliable determination of the antenna
input power than using either conductive power measurements or far-field radiated power

measurements alone. Following this approach, the values for the antenna input power (to which

all reported simulation results are normalized) are found to be +30.6 dBm at 902 MHz
(expressed as GSM900), and +29.1 dBm at 1,747 MHz (expressed as DCSI800).

14.9.3 Free Space Near-Field Investigations and Assessment of Design Capabilities

Fig. 14.36 provides grayscale visualizations of the measured and FDTD-calculated E- and

H-field distributions immediately adjacent to the T250 at the DCS1800 frequency. The fields are
shown in a plane located 10 mm above the phone with the PCB aligned horizontally, and the

phone placed on a Styrofoam block. While there are slight deviations in the region of the field

maxima close to the antenna, the agreement is seen to be very good.
One benefit of the high level of modeling detail afforded by FDTD is that we can assess how

the non-RF electromechanical parts in the phone might influence the phone's electromagnetic
field behavior. An illustrative example of this benefit involves a modeling study of how the

liquid crystal display (LCD) is connected to the PCB. FDTD modeling has revealed that major

differences in the phone's electromagnetic fields in the vicinity of the LCD arise, dependent

upon whether or not the four clamp-like electrical connections between the LCD and the PCB

constitute a proper RF short-circuit to the PCB ground. These modeling results have been

verified by measurements for both possibilities (i.e., poor and good RF ground), with an

excellent level of agreement of the type shown in Fig. 14.36.
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Fig. 14.36 Comparison of FDTD-computed and measured E-field (left) and H-field (right) (DCS 1800),
shown in a plane located 10 mm above the phone. All fields are normalized to an antenna
input power of +29.1 dBm. Source: Chavannes et a!., IEEE Antennas and Propagation
Magazine, Dec. 2003, pp. 52-66, © 2003 IEEE.

14.9.4 Performance in Loaded Conditions (SAM and MRI-Based Human Head Model)

r this case study, the T250 phone is placed adjacent to the SAM standard phantom [59] in a
Fo ner equivalent to that performed during SAR compliance testing. The dielectric parameters
man

the liquid and shell used in the measurements and simulations at both the GSM900 and
fO~S 1800 frequencies are consistent with the values proposed in [60], which have been derived
D worst-case considerations. SAR distributions and averaged spatial peak SAR are assessed
from f h I f I' t' 'd "t h" d 15° "'1 d" dand compared or tee t app 1ca Ion 51 eouc an tl te stan ard test positions,

described in [47, 59].
as Fig. 14.37 provides grayscale visualizations of the measured and simulated SAR

. tributions in the SAM phantom at a distance of 4.7 mm normal to the inner shape of the shell.
dIS f d f h I f 'd" h" . . fThe scans are per or~e or tee t-s1.e toue posl~lon at =1,747 MHz, and are

arithrnieally scaled (l.e., 0 dB equals maXImum peak expenmental SAR value) for an antenna
~Ogut power of +29.1 dBm. Good agreement is obtained between the measured and simulated
lOP . b .

. tr'butions over the enllre 0 servatlOn area.
dIS 1
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Simulation

Fig. 14.37 Comparison of measured and FDTD-simulated SAR distributions within the SAM phantom
(left-side "touch" position, GSM1800). Source: Chavannes et aI., IEEE Antennas and
Propagation Magazine, Dec. 2003, pp. 52--66, © 2003 IEEE.

Tables 14.1 and 14.2 list the measured and FDTD-ca1culated Ig-averaged and 109-averaged
peak SAR values for the T2S0 phone in the left-side "touch" and 15° "tilted" positions relative to
the SAM phantom. Good-to-excellent agreement between the experimental and FDTD data is
observed. In the "touch" position, the SAR values show little frequency dependence, whereas
there is a strong frequency dependence of the SAR in the "tilted" position. The latter reveals the
influence of the large currents close to the antenna.

Tables 14.1 and 14.2 also list FDTD calculations of the SAR for the T250 phone positioned
adjacent to the HR-EF-l MRI-based inhomogeneous human head model [61], visualized in
Fig. 14.38. This model consists of a total of 121 slices (l mm thick in the ear region; 3 mrn thick
elsewhere). Each slice has a transverse spatial resolution of 0.2 mm. A total of 15 tissue types
are distinguished, with dielectric parameters at mobile phone frequencies taken from [62].

TABLE 14.1

19-Averaged and 109-Averaged SAR Values (in W/kg) for the T250 Phone in the Left-Side
"Touch" Position for the SAM and MRI-Based Human-Head Phantoms. Source: Chavannes et aI.,

IEEE Antennas and Propagation Magazine, Dec. 2003, pp. 52--66, © 2003 IEEE.

SAR Type SAM (Measured) SAM (FDTD) % Difference Head ModeL (FDTD)

902 MHz (I g) 0.86 0.91 5.8% 0.77

1,747 MHz (l g) 0.91 0.98 7.7% 0.80

902 MHz (lOg) 0.58 0.66 13.7% 0.58

1,747 MHz (lOg) 0.57 0.61 7.0% 0.35
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TABLE 14.2

Ig-Averaged and 109-Averaged SAR Values (in Wfkg) for the T250 Phone in the Left-Side
"Tilted" Position for the SAM and MRI-Based Human-Head Phantoms. Source: Chavannes et aI.,

IEEE Antennas and Propagation Magazine, Dec. 2003, pp. 52-66, © 2003 IEEE.

SAR Type S~(Measured) SAM (FDTD) % Difference Head ModeL (FDTD)

902 MHz (I g) 0.40 0043 7.5% 0040

1,747 MHz (I g) 1.10 1.08 1.8% 0.73

902 MHz (lOg) 0.29 0.31 6.9% 0.36

1,747 MHz (lOg) 0.66 0.65 1.5% 0.32

Fig. 14.38 T250 phone positioned adjacent to the HR-EF-I MRI-based high-resolution European female
inhomogeneous head model. Source: Chavannes et aI., 1EEE Antennas and Propagation
Magazine, Dec. 2003, pp. 52-66, © 2003 IEEE.

9
5 Radiation Performance in Free Space and Adjacent to the SAM Head

14..

. 14.39 plots the measured and FDTD-calculated two-dimensional radiation patterns of the
Flg50 phone located in free space. Good agreement i.s seen for both. polarizations in the two
TZ rvation cuts. Due to the smaller number of expenmental data pomts, the field minima are
obse I d' d" . h . .determined properly, ea mg to eVIatlOns m t ese regiOns. Fig. 14.40 displays the three-
n?~ensional far-field patterns of the 1150 phone placed in the "touch" position with the SAM
dl tom at the GSM900 and the DCS1800 frequencies.
phan
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Fig. 14.39 Comparison of measured and FDTD-calculated free-space radiation patterns (in dBi) for the
T250 phone in the GSM900 and DCS 1800 bands. Source: Chavannes et aI., IEEE Antennas
and Propagation Magazine, Dec. 2003, pp. 52-66, © 2003 IEEE.
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Fig. 14.40 Three-dimensional radiation pattern of the T250 phone when positioned adjacent to the SAM
phantom operating in the GSM900 (left) and in the DCS 1800 (right) band. Source: Chavannes
et al.. IEEE Antennas and Propagation Magazine, Dec. 2003, pp. 52-66, © 2003 IEEE.

14.9.6 Computational Requirements

Using the latest SSE-optimized S.EMCAD FD!D solver with mesh ~rading and local mesh
finement on a 3.6-GHz Intel PentiUm 4, the entue phone + head model tS computed in less than

~:o hours with a memory requirement of. approximately 500 MB. If only mesh grading is used,
he running time lengthens to 15 hours wtth more than I GB of memory needed. Finally, if Qne
~ere to apply a simple uniform mesh, the r~nning time extrapolates to weeks with hundreds of

. abytes of memory needed. The computational-resource advantages of mesh grading and local
~:sh refinement for this problem are very clear, indeed.

14.9.7 Overall Assessment

This case study demonstrates that ~DTD is a very u~ef~1 engineering t?ol for analysis, design.
d optimization of complex mobIle phones and SImilar personal wIreless communications

~nvices operating in the vicinity of the human body. This study also reveals that graded FDTD
e shes combined with local mesh-refinement schemes permit a computationally efficient and

me 11' f .rate means to resolve sma geometnc eatures In the order of 100 J..Lm located within
aCcu .,.

P
act subsets of an overall computational domam that can span m the order of 1 m.

co I1l

14.10 SELECTED ADDITIONAL APPLICATIONS

11l
is

section reviews several additional applicati?ns of FDTD m.odeling in the analysis and
ign of antennas and antenna systems used 1ll complex environments. These include:

deS d' d' 1 . I .1) a reflector antenna constructe USI~g a Ie ectrlc e ect~omagnet1~ bandga~ structure instead of
( etal sheet, (2) a ground-penetrating radar for detectIOn of buned all-dielectric land mines,
a3~analysis of anten.na-radome inter.acti.ons, ~nd (4) a.nal~sis and design of antennas and antenna
( t mS for diagnostic and therapeutIc bIOmedical applicatIons.
sys e
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14.10.1 Use of Electromagnetic Bandgap Materials

We consider first the usage of electromagnetic bandgap (EBG) materials in antenna design.
EBG materials are periodic structures formed from dielectrics. They are the electromagnetic
analog of electronic crystals, and are characterized by frequency bands (bandgaps) in which
electromagnetic waves cannot propagate in any direction within the material. At frequencies
within the bandgap, a plane wave incident on a half-space of EBG material is totally reflected.
In this regard, the material acts like a good conductor [63]. (See also Chapter 16, Section 16.8.)

Fig. 14.41 illustrates the FDTD model of an EBG "crystal" used as an all-dielectric reflector
for a simple dipole antenna. The EBG crystal is a block of dielectric (relative permittivity
E, = 13) penetrated with air-filled cylindrical voids at the sites of a body-centered cubic lattice.
For clarity. only a small segment of the periodic reflector structure is shown in the figure.
In fact, a dielectric block 21-periods-square by 3-periods-thick is used for the full reflector.

EBG "eRYSTAL"

Fig, 14.41 FDTD model of an electromagnetic bandgap crystal used as an all-dielectric reflector for a
dipole antenna.
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Fig. 14.42 Comparison of FDTD-calculated and measured far-field radiation patterns in the horizontal
plane for the EBG reflector antenna of Fig. 14.41.

Fig. 14.42 compares the FDTD-computed and measured far-field radiation patterns in the
rizontal plane of the antenna of Fig. 14.41 for an excitation frequency within the bandgap of

hOe EBG crystal. The antenna pattern is maximum for azimuth angles pointing away from the

~BG crystal, just as if it were metal. Very good agreement is noted between the FDTD

dl'ctions and the measured data.
pre

14.10.2 Ground-Penetrating Radar

next discuss a continuous-wave ground-penetrating radar designed for the detection of
VIe.ed all-dielectric land mines. Fig. 14.43(a) shows the arrangement of antennas for signal
bUO ' . h' h' d' d hnsmission and receptIOn, w IC IS eSlgnate as t e separated-aperture sensor [31, 32, 64].
rra .

s
sensor consists of two parallel dipole antennas, each contained in a metallic reflector.

'l1t~ dipoles are fed in the manner shown in Fig. 14.43(b), with the length of the dipoles and the
-r::sition of the shorting screws on the tunin~ stubs adjusted to match the antennas at a specified
P uency (typically 790 MHz). The couplIng 1521 1 between the two antennas is measured as
freqdetector is moved over the surface of the ground, and an increase in the coupling indicates
the esence of a buried anomaly, such as a land mine.
the pr
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I~~--- 34.2 ---~·I Metallic reflector

.....~ 19 -.j ..'
-:--:~--:-----:>"""----:-----:----:--7""'--- .._.. ~"--_-o"/

14.9

~

Land mine ~Ground

(a) Antenna arrangement.

r Is

12 ~

L

~====::::=:;::=::=:;:n)r-====::J +~-- Dipole.. II- antenna

.....----- Two-wire line

..,.-- Shorting screw

I~ Coaxial line

I~ 15.6

(b) Details of the feed for the dipole antennas.

Fig. 14.43 Separated-aperture sensor for detecting buried land mines. The sensor is designed for 790
MHz, and all dimensions are in centimeters. Source: Bourgeois and Smith, IEEE Trans.
Antennas and Propagation, 1998, pp. 1419-1426, © 1998 IEEE.

The complete system, including two antennas with tuning stubs and reflectors, the half-space
of soil, and a buried land mine, has been modeled using the FDTD method [31,32,64].
Fig. 14.44 uses grayscale plots to visualize the magnitude of the E-field on a plane through the
center of the detector of Fig. 14.43. In Fig. 14.44(a), the detector is over empty ground.
In Fig. 14.44(b), the detector is over ground containing an all-dielectric mine. The increase in
the coupling between the transmitting antenna T and the receiving antenna R caused by the
presence of the mine is clearly shown.
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R

Fig. 14.44

(a) Sensor over empty ground.

(b) Sensor centered over an all-dielectric land mine.

Grayscale visualizations showing the magnitude of the E-field on the transverse symmetry
plane of the sepa.rated-.aperture sensor of Fig. 14.43. Source: J. M. Bourgeois. Ph.D.
dissertation, Georgla Institute of Technology, Atlanta. GA, 1997.
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(c) 30.5 x 30.5 x 7.3-cm Plexiglas
block located 7.2 em below sensor.

(d) 30.5 x 30.5 x 6.S-cm Stycast
block located 8.4 em below sensor.

Fig. 14.45 Comparison of FDTD-calculated and measured responses of the separated-aperture sensor of
Fig. 14.43. Legend: FDTD:::: solid line; measurements:::: dashed line. Source: Bourgeois and
Smith, IEEE Trans. Antennas and Propagation, 1998, pp. 1419-1426, © 1998 IEEE.

Fig. 14.45 compares FDTD predictions with measurements for four cases of the separated

aperture sensor of Fig. 14.43 positioned in air 29.2 em above a low-frequency RF absorber:

(1) SWR for no target, (2) 15211 for a 30.S x 30.S x 0.3-cm aluminum plate located 28.9 em

below the sensor, (3) 15211 for a 30.S x 30.S x 7.3-cm Plexiglas block (e,:::: 2.6) located

7.2 cm below the sensor, and (4) 1521 1 for a 30.S x 30.5 x 6.8-cm Stycast block (e,:::: 7.4)

located 8.4 cm below the sensor. Each target is centered below the sensor, and positioned at a

distance that yields the maximum 15211 at 790 MHz. Data are obtained over the 0.6 to 1.0 GHz

range without retuning the sensor.
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We see from Fig. 14.45 that the FDTD results are in good agreement with the measurements
in all of the cases considered. More quantitatively, at 790 MHz, there is less than ±2 dB
difference in the FDTD and test values of IsZII· The overall good agreement shows that the
FDTD simulation properly models key features of the sensor (including the dipoles, dipole feeds,
stubs, and corner reflectors), as well as the target and the free-space medium beyond.

14.10.3 Antenna-Radome Interaction

We next consider FDTD modeling of a long-standing defense-technology problem that can cause
unreliable homing of radar-guided missiles: the complex electromagnetic wave interactions
betWeen an antenna and its protective radome. These interactions generate errors in the
perceived angular location of a target, thereby degrading the ability of the missile to guide itself

to that target.
While the materials used in the construction of a missile radome are chosen to be as

lectromagnetically transparent as possible, the shape of the radome is usually dictated by
:erodynamic considerations, Traditionally, the radome and its internal antenna are designed
separately, an~ ~heir i~teracti~n is ig~ored" However, the curr~nt trend toward miniaturization
nd high-preclSlon gUidance IS makmg thiS approach less valId. The FDTD method is well

auited for use in analyzing both the antenna and its surrounding radome in the same
~OJ1lPutationalmodel, thereby capturing the electromagnetic wave physics of the antenna-radome

interaction. , . ,
Referring to Figs. 14.13 and 14.46(a), we conSIder an X-band pyramIdal horn antenna

haying the characteristic dimensions a =7,30 cm, b =5.32 cm, and D =8 cm. The missile is
odeled as a 17.8-cm-diameter, hollow, circular, PEC tube of wall thickness 7,5 mm. Its 33,0

J1lIll_IOng nose section (the radome) is an ogive body of revolution formed from a lossless
~ielectric of permittivity £r = 4, The nose cone is capped with a 2-cm-Iong metal tip of thickness

3.7s
mm

. f'll ' , fh "1 b bl' "We consider the case 0 I ummatlOn 0 t e mlSSI e y an 0 Ique mCldent plane-wave pulse
opagating at 15° from boresight. The pulse consists of six sinusoidal cycles of a 10-GHz

~:rrier. The FDTD model uses a unifor~ space lattice ~om~osed of cUb~c Yee cells. each
anning 1.27 mm (=A.o/24 at 10 GHz). FIgS. 14.46(a, b) VIsualIze the magmtude of the E-field

SPithin and near the missile radome at two instants in time. (The corresponding color
"". ualizations are shown in Fig. 1.4 of Chapter I.) These graphics provide valuable insights into
y~S complex interactions of the missile body, radome, and internal horn antenna.
t e Fig. 14.46(a) shows the incident pulse, propagating from right to left, after it has entered the
(adome. A quasispherical, radially propagating, sc~ttered field is observed due to the action of

metal tip and the radome surface. The propagatIon delay due to the reduction of c inside the
th~ome's dielectric wall is evident. In Fig. 14.46(b), the incident wave has encountered the horn
ra enna. A portion of the energy incident upon the horn antenna is scattered (structural-mode
ant 'd h d h h' 'd .ttering). The wavegUl e attac e to team IS termmate In a matched load, and hence the
SC~enna_mode scattering is zero. We note the packet of energy that has been trapped inside the
an 11 of the dielectric radome. The strong evanescent fields near the metal tip and the curvaturew; the radome allow the excitati~n of this tra~p~d, guided wave. Subsequently, after the
? I mination passes the nose sectIOn of the miSSIle, the trapped, guided mode identified in
II U h' 'b h d' I .. 14.46(b) encounters t e JunctIOn etween t e Ie ectnc radome and the PEC missile body,
:FIg· h fl d d' I dd" ,Th trapped energy t en re ects an rera lates, n a ItlOn, a new gUIded wave forms in the

. e
l

etrie radome due to structural scattering from the horn antenna.
dIe e
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Missile

i dY

-
~
antenna

-

Scattered
energy

(a) Incident pulse has just entered the radome.

Energy guided
in radome wall

.~

\ Metal tip

Dielectric
radome

lEI

(b) Incident pulse has just encountered the horn antenna.

Fig. 14.46 Snapshot visualizations of the FDTD-computed interaction of a IO-GHz microwave pulse with
a missile radome containing a horn antenna. The illuminating plane-wave pulse propagates
from right to left at 15· from boresight.
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14.10.4 Biomedical Applications of Antennas

often in biomedical applications, the goal of the antenna system is to radiate into the human
body. These applications fall into three broad categories: diagnostic imaging, medical implants,
and thermal therapy. An excellent compilation of recent advances in these areas is provided in
[65]. The ability of FDTD to model essentially arbitrary configurations of inhomogeneous, lossy
dielectric materials makes this method broadly applicable in each of these three areas.

Diagnostic Imaging

Significant progress has been made over the past decade towards the clinical realization of
noninvasive nonionizing microwave imaging techniques employing large arrays of sensing
antennas and sophisticated inversion algorithms. In particular, the ultrawideband (UWB)
microwave technology discussed in [66-71] has shown promise for early-stage breast cancer
detection. As illustrated in Fig. 14.47 (and in the corresponding color visualizations of Fig. 1.3
of Chapter 1), detailed FDTD modeling indicates that UWB technology such as microwave
. rnaging via space-time beamforming has the potential to detect malignant tumors as small as
~ rnID embedded several centimeters deep within normal, inhomogeneous breast tissues [70].
These promising results have currently brought UWB technology to the point of initial

eclinical investigations [71].
pr Antennas capable of transmitting and receiving short microwave pulses with high fidelity

e a vital component of UWB microwave imaging systems for breast cancer detection. Recent
arork has used FDTD modeling to assist in the design of a variety of UWB antennas, including
VI sistively loaded bowties and dipoles [67, 68J, and ridged pyramidal hom antennas [71].
re In the area of MRI, the frequency dependence of RF power deposition into patients being

nned is drawing increased attention with the use of systems operating at very high magnetic
;~~d strengths. Recent work has used FDTD modeling to analyze the relationship between the
;RI frequency. of oper~tion and. the R~ power ~issipated in th~ body for field strengths up to
8,5T [72]. Unlike prevIOus stU?le~, this analySIS trea~s th~ COil and human head as a single

teID models the actual excitatIOn rather than an Idealized current source, and utilizes a
sys '
six-tissue anatomically detailed head model.

Medical Implants

this area, novel antennas are being developed for telemetry and power links for retinal
In stheses [73J and other medical implants such as cardiac pacemakers [74, 75]. Detailed FDTD
prodeling permits design of such antennas for very small size and optimized efficiency subject to
;~ constraint of compatibility of the antenna materials with the surrounding biological tissues.

Thermal Therapy

goal in radio-frequency and microwave hyperthermia cancer therapy is to configure a set of
The nnas around the human body so that they irradiate and focus electromagnetic energy onto a
ante I . . h' . dI' gnant tumor. The resu tmg tissue eatmg m uces a tumor temperature that is substantially
rn:~ter than the normal physiologic range. This heat either directly damages the malignant cells
~ renders them more vulnerable to damage by a concurrent program of chemotherapy or

~onizing radiotherapy.
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Fig. 14.47 Top: MRI-derived breast model shows the location of a simulated 2-mm diameter malignant
breast tumor at a depth of approximately 3 cm. Bottom: Gray-scale rendition of the color
image of the backscattered signal energy (decibel scale) created by the scanned output of a
space-time beamformer applied to the FDTD-computed backscattered waveforms. Note that
the tumor signature is 17 dB stronger than the backscattering clutter due to the surrounding
normal tissues. Adapted from: Bond et aL, IEEE Trans. Antennas and Propagation, 2003,
pp. 1690-1705, © 2003 IEEE.

In conjunction with ionizing radiotherapy, hyperthermia has been shown to result in the
regression of superficially located malignant tumors [76]. Annular phased arrays of multiple
aperture antennas or dipoles placed symmetrically around the body have been designed to heat
deeply embedded tumors by controlling the phases of the fields radiated from each of the
antennas [77]. FDTD modeling has been used to optimize the phases and magnitudes of the
excitations of the various radiating elements, using either a generic model of the human body
[78] or patient-specific models [78 - 81]. FDTD modeling has also been used to explore and
demonstrate the feasibility of UWB microwave hyperthermia treatment for breast cancer [82].
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14.11 SUMMARY AND CONCLUSIONS

This chapter summarized the primary elements involved in FDTD modeling of transmitting and

receiving antennas, namely:

•
•
•
•
•
•
•

Formulation of the antenna problem, including the use of symmetry;

Antenna feed models;

Near-field to far-field transformations;

The plane-wave source for the receiving antenna;

Near-field simulations;

Detailed case studies with experimental validations;

Selected recent applications.

A key conclusion is that, when properly implemented, FDTD analyses of antennas produce

results for near fields, far-field radiation patterns, receiving apertures, and driving-point

. pedances that agree very well with carefully performed experiments. FDTD has a powerful

::;:ility to provide, in a straightforward manner, wideband results for complex antenna structures

oJl1prised of, adjacent to, or even embedded within essentially arbitrary configurations of

~ nOIl1ogeneous materials. This robustness allows the use of the FDTD method to confidently

~:st proposed novel antenna designs on the computer before they are built.
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PROJECTS

P14.1 Implement the improved simple feed model of Section 14.3.3 to excite a monopole over a
ground plane in a three-dimensional Cartesian FDTD space lattice. Replicate the feedline
time-domain wavefonns of Figs. 14.9 and 14.10.

P14.2 Model the standard-gain horn antenna of Section 14.6 using a space increment as coarse
as }."o' 10 to keep the computer-resource burden tractable. Replicate the results for
the far-field radiation patterns in Fig. 14.14, and for the boresight gain and boresight
effective area versus frequency in Fig. 14.15.

P14.3 Model the Vivaldi single-flare baseline element of Fig. 14.17. Replicate the far-field
radiation pattern in Fig. 14.18.

P14.4 Model the linearly tapered slot antenna considered in Fig. 14.19, and replicate the far
field radiation pattern shown in this figure.

P14.5 Model the generic cellphone geometry of Fig. 14.28, and replicate the near-field
distributions shown in this figure.

P14.6 Model the dipole and layered half-space geometry shown in Fig. 14.29, and replicate the
near-field distribution shown in this figure.

P14.7 Model the dipole and spherical brain phantom geometry considered in Fig. 14.32, and
replicate the SAR distributions shown in this figure.
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15.1 INTRODUCTION

High-speed electronic circuits are traditionally grouped into two classes: analog microwave
circuits and digital logic circuits.

1. Microwave circuits typically process bandpass signals above 3 GHz. Common
passive circuit features include waveguides, microstrips, couplers, circulators,
and filters. Active devices such as transistors perform as amplifiers or oscillators.
Small-signal (linear) operation is usually characterized by S parameters, whereas
large-signal (nonlinear) operation is usually characterized by specifications for
gain compression and generation of harmonic and intermodulation products.
Designers of microwave circuits account for electromagnetic wave effects as a
matter of course, since the circuit operation is based upon these effects.

2. Digital circuits typically process lowpass pulses having clock rates below
3 GHz. Typical circuits include densely packed, multiple planes of metal traces
providing flow paths for the signals, dc power feeds, and ground returns.
Via pins provide electrical connections between the planes. Designers may not
always account for electromagnetic wave effects since the circuit operation is not
based upon these effects. In fact, electromagnetic phenomena for such circuits
are considered to be parasites.

However, the distinction between the design and packaging of these two classes of high
speed electronic circuits is blurring. Microwave circuits are becoming very complex systems
composed of densely spaced elements, discontinuity structures, and passive and active devices.
On the digital-circuit side, the rise of everyday clock speeds to 3 GHz implies lowpass signal
bandwidths up to about 15 GHz, well into the microwave range. Electromagnetic wave effects
that until now were in the domain of the microwave engineer are becoming a limiting factor to
digital computer performance. At the chip level or the level of a device comprised of several
interconnected chips, these effects are very complex, usually not well understood, and not trivial
to analyze either theoretically, numerically, or experimentally. Hard-won experience has shown
that the following electromagnetic-wave-related problems exist for high-speed digital circuits:

677
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• Coupling between vias can distort signals, and mismatches between vias and
signal lines can lead to ground bounce.

• Holes and other discontinuities in ground planes can increase coupling between
the circuit-board layers.

• Metal traces (with or without bends) are likely to have reactive impedance
components that can degrade system performance at high clock speeds.

• Signals can couple (crosstalk) from one parallel trace to another.

• Manufacturing tolerances can cause a range of coupling, crosstalk, and
impedance parameters.

• Electromagnetic interference and compatibility problems can arise relative to
other circuits and systems.

A key bottom line here is the signal integrity, a measure of how good the signal quality is at
some digital circuit output relative to the specific design goals. Common signal-integrity
specifications include rise time, threshold, and ringing.

Overall, the design of complex high-speed circuits, especially those having nonlinear active
devices, encounters substantial problems in dealing with electromagnetic coupling and radiation
effects between different circuit elements. Until recently, the focus of electromagnetic
simulators has been the analysis of passive structures [1, 2]. Design tools have been based on an
approach wherein circuits are first divided into small elements, and then the characteristics of
each element are cascaded to obtain the overall system performance [3,4]. Software packages
such as Touchstone and MDS use equivalent-circuit models to represent the passive part of the
circuits, and then the complete circuit, including the lumped elements, is analyzed using a
circuit simulator. The High-Frequency Structure Simulator (HFSS) provides a complete
electromagnetic solution based on the finite-element method [5].

Recent progress in the FDTD method, including the development of the PML ABC and
information-extraction techniques, has made it possible to efficiently analyze realistic high-speed
circuits in their complete form using full-vector-field computations [6]. FDTD algorithms now
allow the accurate calculation of S parameters, radiation patterns, and coupling coefficients over
a very broad frequency band with one run. In addition, visualization of the time-domain data can
provide practical insights into the operation of a particular structure.

The goal of this chapter is to communicate this progress, specifically in the FDTD modeling
of the electromagnetic wave properties of high-speed circuits that are constructed using primarily
stripline and microstrip technology. We consider both passive interconnects and circuit devices.
We show how to extract lumped-circuit equivalences and S parameters, and how to embed linear
and nonlinear lumped circuit elements within the FDTD space lattice. In the latter area, we also
show how Norton's and Thevenin's equivalent circuits can be derived for the FDTD grid, and
used to connect the distributed, full-wave physics of Maxwell's equations to the circuit behavior
of potentially complex electronic networks. Sample computed results are summarized that show
very good accuracy for this extended FDTD algorithm, and the ability to model cases where
available circuit simulators cannot be applied. Here, examples include nonlinear cases involving
the generation of harmonics and intermodulation products in large-signal microwave circuits.
Finally, as a potential means to mitigate the problems of using microstrip / stripline technology
in future digital systems clocked faster thanIO GHz, we discuss the possibility of utilizing
wireless microwave / millimeter-wave electromagnetic bandgap structures as interconnects.
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15.2 BASIC CIRCUIT PARAMETERS FOR TEM STRIPLINES AND MICROSTRIPS

FDTD modeling provides full-vector E and H distributions in time and space. For metallic
stripline and microstrip systems with signal propagation known to be primarily in the transverse

electromagnetic (TEM) mode, the following fundamental integral expressions can be used to
connect the E and H field distributions to the usual circuit quantities of voltage and current:

V(t,xJ = JE(t,xJ.dl ;
Cv

I(t, xJ = fH(t, xJ .dl
c,

(I5.la, b)

Here, Cy is a contour extending from a defined voltage reference point (usually a ground plane)
to the metal strip conductor at the adjacent location Xi' VCt, Xi) is independent of the choice of Cy

if this contour is confined to the transverse plane. Usually, Cy is conveniently chosen to extend
in a perpendicular manner from the ground plane to the adjacent surface of the strip conductor.
To provide the local current, contour C, is chosen to wrap completely around the strip conductor
in the transverse plane, as close as possible to the surface of the conductor. Care must be
exercised in applying (15.1) if there is evidence that the circuit trace of interest is propagating
non-TEM modes. In this case, the accuracy of this (V, l) formulation can degrade rapidly.

15.2.1 Transmission Line Parameters

Wideband frequency-domain transmission line parameters can be found by applying the Fourier
transform to the voltage and current responses of (I5.1) for an impulsive excitation of the line
[7]. For example, the line characteristic impedance as a function of frequency is obtained from

(15.2)

where .r[ ] is the Fourier transform operator, and Vine (line) is the incident voltage (current)
observed at x .. Further, if get, x.) denotes an incident voltage or current waveform at x =x, and

I I I

get, Xj) is the corresponding waveform atx =Xj' then the propagation constant y is obtained from

where d =x. - x .. Rearranging this expression provides yas a function of frequency:
} I

1 {.r[g{t, xJ] }
y(m) = - In [( )]

d .r g t, x j

Defining y(m) =a(w) + jf3(CtJ) , the group velocity vg(W) is calculated as

[
d{3(m)]-1

v (m) = --
g dm

(15.3)

(15.4)

(15.5)
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15.2.2 Impedance

For an impulsive excitation, the wideband reflection coefficient from a given transmission line

load is calculated using

r(OJ, Xi)
.1"[ ~cr (t, Xi)]
.1"[ '{ne (t, Xi)]

(15.6)

where V,er is the reflected voltage, and Vine is the incident voltage observed at Xj' This reflection
coefficient is subsequently transformed to the plane of the load via

(15.7)

where f is the distance from Xi to the load. The effective load impedance is then

(15.8)

where ZL(OJ), Zo(OJ, x), and rL(w) are all complex values.
The above derivation does not take into account the fact that the V and I values derived from

corresponding E- and H-fields in the FDTD space lattice are offset from each other by one-half

space cell and one-half time-step. Ignoring these offsets can lead to errors for certain geometries.

Reference [8] reported a simple interpolation that permits the V and I data used in the impedance

calculation to be at the same space-time point. For a voltage VI; and adjacent currents I1 i+ 1/2

and II i -II2' the desired spatially interpolated current is given by

(15.9)

Further, the one-half time-step offset can be accounted for by multiplying Vii by a factor of
e+JCJJI'.,/2 For example, (15.2) for the characteristic impedance now becomes

(15.10)

15.2.3 S-Parameters

Given a multi port network, wideband, complex-valued scattering parameters Sm" can be obtained
for an impulsive excitation as follows [7, 9]:

if (OJ, X )m m

V (OJ, X )
n "

(15.11)
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where '-':n (m, xm) is the phasor voltage at port m at observation plane xm' ~ (co, xJ is the
phasor voltage at port n at observation plane xn ' and ZO.m and ZO.n are the characteristic
impedances of the lines connected to these ports. For example, to obtain SJ I' the incident and
reflected pulses at port 1 must be known. To obtain S21' we must observe the transmitted pulse
emerging at port 2, corresponding to the known incident pulse at port 1.

In most cases, the magnitudes of the S-parameters are the primary data used by engineers to
characterize, for example, the filtering properties of a network. The magnitude data are
independent of the observation positions on the transmission lines feeding the corresponding
ports, assuming that the feeding lines are either infinitely long or matched at their far ends.
However, the phases of the S-parameters are clearly a function of the positions of the observation
planes. As discussed later, phase data can be important when extracting a lumped-circuit
equivalent network from the observed S-parameter variation with frequency [10].

15.2.4 Differential Capacitance

The capacitance per unit length of a TEM stripline or micros trip can be calculated indirectly
using (15.2) and (15.5) as

(15.12)

Of more interest is the possibility that this capacitance can be calculated directly from the E-field
that FDTD simulations provide. Given a designated incremental Lix L'1y surface patch M on the
bottom of a circuit trace (facing the ground plane), Gauss's law can be used to calculate the
electric charge.l1Q on this patch from the normal component of E originating from the patch:

(15.13)

Here, D = £E, and SE is a virtual surface positioned parallel to the trace, between M and the
ground plane, that captures all of the electric flux emanating from L'1A. Combined with the
voltage expression of (15.1 a), the incremental trace capacitance (in farads/meter) is given by the
ratio of the charge on M to the voltage:

.l1C L'1Q
= (15.14)

This approaches the true differential capacitance per unit length in the limit that .l1x « A for the
smallest relevant wavelength II, present on the trace. In this quasistatic limit, .l1 C /.l1x is
independent of the precise nature of M, SE' and the excitation.

Note that this procedure lends itself to calculating the capacitance between two surface
regions of any shape. Patch L'1A could be defined to wrap around the entire circuit trace.
The conductor at the other end of the integral path used to define the voltage (i.e., the other node
of the capacitor) could be an adjacent trace rather than the ground plane. Therefore, this electric
flux collection method can directly provide the mutual capacitance for subsequent SPICE
calculations of crosstalk between traces.



682 Computational Electrodynamics: The Finite-Difference Time-Domain Method

15.2.5 Differential Inductance

In a manner analogous to that discussed above. the differential inductance of a TEM circuit trace
geometry can be calculated directly from the vector magnetic field that FDTD simulations
provide. It is well known that the self and/or mutual inductance of any physical structure is
entirely determined by the geometric relationship between the electric circuit that transports the
current I, and the surface SM through which the magnetic flux generated by I penetrates. In fact,
inductance L is defined as the ratio of the magnetic flux <l> penetrating SM to its generating I:

L
<1>

I
=

I
(15.15)

To obtain inductance from the full-wave vector electromagnetic field, properly defining the
magnetic-flux-collection virtual surface SM is crucial. As shown in Fig. 15.1 (a), the perimeter of
SM for circuit trace I is bounded on the top by trace 1 carrying the signal current II' and on the
bottom by the ground plane carrying the return (image) current i

l
. The incremental se1f

inductance of trace 1 (in henrys/meter) is given by

MIl = Ll<1>ll =
Ax I)

(15.16)

where 8 1 is the magnetic flux density vector generated by I,. The incremental mutual inductance
of trace 1 relative to the adjacent trace 2 is found by obtaining the magnetic flux penetrating SM
due to current 12 flowing on trace 2:

(15.17)

where 8 2 is the magnetic flux density vector generated by 1
2

, The inductance values given in
(15.16) and (15.17) approach the true differential inductance per unit length in the limit that
Ax « A. for the smalIest relevant wavelength A. present on the trace. In this quasistatic limit,
ilLIAx is independent of the precise nature of SM and the excitation of the trace.

15.3 LUMPED INDUCTANCE DUE TO A DISCONTINUITY

A key element of current engineering practice in the design of high-speed circuits is the
development of lumped-circuit equivalences (especialIy inductances) for discontinuities in the
signal and ground return paths. The equivalent circuits for the discontinuities are then
substituted into SPICE or SPICE-like circuit modeling software to obtain the desired overall
circuit response. Using the Fourier-transformed FDTD fields, the desired equivalent circuits
may be derived in two ways [10);
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Fig. 15.1 Magnetic flux integration surfaces suitable for inductance calculations for a circuit trace over a
ground plane: (a) "window pane" surface suitable for a continuous ground plane; (b) "hockey
net" surface suitable for a slotted ground plane.
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By using the basic flux / current definition of inductance, as discussed in Section

15.2.5;

• By fitting an equivalent circuit to the calculated variation of impedance or
S-parameters with frequency.

These approaches are now summarized.

15.3.1 Flux / Current Definition

The simple magnetic flux collection procedure discussed in Section 15.2.5 can be extended to

any three-dimensional circuit trace geometry, including the interesting cases of a via present in

the signal path and a geometrical discontinuity present in the current return path. Consider,

for example, a microstrip that traverses an open slot discontinuity in the ground plane, as shown

in Fig. 15.1(b). Here, the use of the planar "window-pane" integration surface SM of Fig. 15.1(a)
between the slot and the circuit trace would underreport the inductance of the discontinuity,

because a portion of the magnetic flux would slip under its collection area. But we note that the

magnetic flux is always contained between the signal and the return current paths. Thus, it is
essential that the edges of SM are bounded by the signal and return currents to collect all of the

magnetic flux. Then, the total magnetic flux penetrating SM would be independent of the precise

surface definition of SM'
We see that the problem reduces to finding the return-current path and then constructing an

integration surface bounded by this path and by the signal trace. Fig. 15.1 (b) illustrates a

"hockey net" integration surface that is suitably curved around the slot to follow the distorted
return current path, thereby capturing substantially all of the magnetic flux and properly yielding

the inductance of the discontinuity. For simplicity, we assign Cartesian walls to define the

"hockey net," noting again that the flux calculation is dependent upon the location of the edges

of the net rather than its surfaces. Of course, a Cartesian integration surface is natural for the
standard FDTD space lattice.

15.3.2 Fitting Z(c:o) or S(c:o) to an Equivalent Circuit

A second approach for obtaining the equivalent lumped inductance due to a discontinuity such as

a via or a slotted ground plane is to fit the calculated impedance or S-parameter variation with
frequency to that of an equivalent circuit over a frequency range of interest [11-13]. The fitting

process can be automated to an extent by using software such as TOUCHSTONE to manipulate

the components in an equivalent circuit composed of a number of inductor-capacitor-resistor
(LCR) sections (13]. The inductors model the vias, signal traces, and ground return

discontinuities, while the capacitors account for coupling between the package planes. Resistors

are associated with internal impedances of sources, lossy materials, and leakage radiation.

The distributed nature of these processes is modeled by using several LCR sections.

For situations where an equivalent circuit is needed over only a limited range of

frequencies, [13] reported an alternative to the use of a sophisticated software. This approach is

suitable for deriving a simple equivalent circuit by means of a rational function representation of

the input impedance:
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M / NV(S) i k
Z (S) = - = R, (s)+jX (s) "'" '" a,s '" bks

In I( ) In In £..t I £..t
s ;=0 k=O

(15.18)

where s =j21tf (for f spanning the desired range of frequencies), and the summation orders M
and N are selected to achieve a balance between the accuracy of the impedance-fitting process
and the complexity of the resulting equivalent circuit. The unknown real coefficients Q

j
and b

k

can be determined by using either a least-squares minimization procedure or an interpolation
method to achieve a best-fit to the variation of impedance with frequency obtained from the
FDTD modeling. Subsequently, these coefficients are used to synthesize an equivalent circuit
that is valid in the desired range of frequencies.

15.3.3 Discussion: Choice of Methods

Reference [10] provided data indicating that certain important distributed components, such as
ground pads connected to the ground plane using vias, cannot be easily modeled using the fitting
procedure of Section 15.3.2. The key data provided (see Fig. 8 of [10]) indicate that the phase of
5

11
(equivalently, the phase of Zin) can have a dramatically different variation with frequency,

depending upon the choice of the reference plane. This sensitivity to the observation point
makes it very hard to find an equivalent inductance that is independent of the location of the
observation plane and the frequency.

On the other hand, [10] reported that inductance calculated using the flux / current method is
accurate and essentially independent of frequency. The reader is therefore cautioned that the
fitting procedure of Section 15.3.2 may not be as robust as the more basic flux / current
definition of inductance of Section 15.3.1.

15.4 INDUCTANCE OF COMPLEX POWER-DISTRIBUTION SYSTEMS

Determining the equivalent-circuit lumped inductance of a power-distribution system is of
critical importance to successful package-level and system-level high-speed digital design.
physical and electrical design tradeoffs can be understood, and optimal performance achieved,
if this inductance is known before commitment to hardware. This section discusses FDTD
modeling of the lumped inductance of a complex printed-circuit-board power-distribution
structure. The example shown demonstrates the versatility of the method for arbitrary structures
of this type.

15.4.1 Method Description

The previous two sections discuss calculating the signal-path inductance directly from FDTD
field data based upon the fundamental flux / current definition. This technique works well for
signal paths where the return current flows along a reasonably linear route adjacent to the signal
trace. However, by design, low-inductance power-distribution systems usually have highly
interdigitated geometries with globally distributed power and return paths. The inductance of
these three-dimensional structures results from a complex interaction of the electromagnetic
fields not amenable to the flux / current definition.

rr
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+

V(t)

Arbitrary Power Distribution Structure

l(t)

Fig. 15.2 Black-box model of FDTD inductance simulation using the method of current-pulse injection.

Referring to Fig. 15.2, consider an alternate approach [14] for modeling the inductance of an
arbitrary power-distribution system. Here, we inject a current pulse ls(t) at the input of the
power-distribution structure. Short-circuiting the output of this structure simulates the operation
of a load that is drawing significant current (e.g., a CMOS integrated circuit experiencing a
current spike). In this state, the conduction current causes magnetic flux to develop throughout
the power-distribution structure, thereby emphasizing its inductive characteristic. A voltage V(t)
develops across the input of this structure in response to the current l(t) flowing through the
effective lumped inductance of the structure, according to the fundamental relation V = Ldl/dr.
Data for both V(t) and dl/d! are derived from the full-wave FDTD-calculated fields, as described
in Section 15.2. For many power-distribution structures, the temporal waveforms of these
quantities are sufficiently similar that they can be related to each other by a constant ratio, which
is, in fact, the equivalent inductance L = V/(dl/dt).

This approach permits the calculation of inductance to be free from any special
considerations of the internal geometry of the power-distribution structure. In fact, the full-wave
solution of Maxwell's equations by FDTD already accounts for the physics of the structure's
internal and external geometry to the resolution limit of the space lattice. Thus, this approach
can be used systematically to calculate the inductance of arbitrarily shaped, three-dimensional
structures. In addition, the full-wave FDTD solver frees the inductance calculation from any
potentially limiting TEM assumptions or approximations. This provides an inherently three
dimensional environment for the required simulation and parameter extraction.

Of key importance to the correct application of this method is the choice of the injected
current waveform. There are two directly competing conditions for this waveform:

•

The leading edge should rise quickly enough to yield a voltage response that
corresponds mainly to the inductive component of the structure.

The leading edge should rise slowly enough so that, upon propagation, this edge
extends spatially over the entire structure to be characterized for inductance.
This provides a comparable dynamic condition over each part of the structure,
even though these parts may be distributed in space, and permits the structure to
be characterized as a single lumped element.
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A Gaussian exciting current pulse can be used to meet these conditions. Validation studies
using FDTD modeling of canonical microstrip and coaxial geometries [14J indicate that
Gaussian leading-edge rise times that are 5 to 10 times longer than the propagation delay across
the structure yield reliable inductance data over a 20% to 80% span of the rising edge of the
FDTD-calculated response. We also find it useful to average the observed inductance over a
time-windowed portion of the response. This averaging window can extend up to the 20% to
80% span. These findings are further supported by analogous circuit-based studies using SPICE
to model the current-pulse excitation of an inductor [14].

15.4.2 Example: Multiplane Meshed Printed-Circuit Board

A significant problem in modeling and designing high-speed digital circuits has been
understanding how to extract system-level parameters from complex power-distribution systems.
Fig. 15.3 shows one such structure, a meshed printed-circuit-board (PCB) system having three
power planes with current sources at the edges, five ground planes, and nine interdigitated vias
connecting the power and ground planes.

Power-ground
via short

Current sources
(3 of 24 on the

edges)

(a) Top view.

power-ground
via short --------.

Ground pianos ~=====
(b) Side view.

------7 Power planes

Fig. 15.3 Example of a complex power-distribution system modeled using FDTD.
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This model is based on a portion of an actual PCB power-distribution structure that lies
under a 2,499-pin, 30-mm multichip module (MCM) [IS]. The MCM has a pad pitch of 0.5 mm
and is built with copper I polyimide technology. The modeled portion of the PCB covers a

planar area of 3 x 3 mm and a via height of 1.02 mm. When the planes are meshed due to the
signal-pin antipads, approximately 50% of the metal is removed. The meshed planes force the
current to diverge around the antipad holes. Consequently, magnetic flux develops through the
holes, and the total inductance of the system is increased. In applying the inductance-modeling
technique discussed in Section 15.4.1, the voltage response is measured between a power plane
and a ground plane at the edge of the PCB structure. A via short to a ground plane on top of the
structure (simulating a real load) provides a measurement of the input current that causes a
voltage to develop across the structure.

In the past, inductance calculations for this type of structure were done in a piecewise
manner; that is, by examining the effects of the power I ground planes on the vias, and vice
versa. However, by applying the method of Section 15.4.1 (based strictly on the structure's
stimulus and response), it is possible to represent the entire power-distribution structure as a
lumped inductor with one straightforward calculation.

Fig. 15.4 depicts the FDTD-computed V and I data for the structure of Fig. 15.3, along with
the results of the inductance calculation. Note that the shapes of the dlldt stimulus and the
voltage response are similar, indicating the presence of an inductive element linking the two

variables. The final plot in the figure is the structure's inductance as given by L = VI(dlldt).

This shows an 83.8 pH average value over the 20% to 80% time window. This period, in which
L shows little variation, corresponds to the state where the leading edge of the exciting pulse
extends spatially over the entire structure, as discussed earlier. Because the complete PCB under
the MCM repeats this 3 x 3 mm subsection eight times in both lateral directions, the composite
inductance of the power-distribution system feeding the MCM is approximately 10 pH.

15.4.3 Discussion

This approach appears to be useful for general optimization of the physical configuration of a
high-speed digital system to permit conformance with inductance ground rules. For example,

in addition to optimizing the geometry of the meshed planes, this method can optimize the height
of the vias that transport the signal from the power and ground planes of the PCB into the MCM.
An extension of this approach involves developing and validating a dual method for lumped
capacitance modeling and optimization. Overall, this method could be integral in the
development of design guidelines for digital structures similar to the one in Fig. 15.3.

15.5 PARALLEL COPLANAR MICROSTRIPS

Reference [16] reported studies to establish the validity of FDTD modeling for the important
case of parallel coplanar microstrips. Initial studies set up models for single x-direc ted
microstrips of negligible metallization thickness and a variety of widths over dielectric substrates

about 1 mil (25.4 fJ.m) thick. For these cases, Ll == 0.1 mil (2.54 fJ.m) and Lll == 4.2 fs. In all cases,
the conductors were "on grid"; that is, located at loci of tangential E components in the lattice

set to zero for all time-steps.
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Fig. 15.4 FDTD data used to calculate the inductance of the multi plane power-distribution system of
Fig. 15.3.

Excitation of a microstrip was provided by specifying a Gaussian pulse waveform for a
group of collinear E components bridging the gap between the ground plane and the strip
conductor at the desired source location. Application of (15.2) showed the FDTD-computed
values of 2

0
to be virtually independent of frequency up to 1.0 GHz, and on the order of 1%

agreement with textbook values given in [17].
Next considered were single microstrips with finite metallization thickness, possibly fully

embedded within a dielectric layer. Here, FDTD predictions were compared to measurements.
In one example, a 1.1 ~mil-thick. lA-mil-wide metal strip was assumed to be suspended 1.1 mils
above a large ground plane within a 3.I-mil-thick dielectric layer having E

r
= 3.2. The FDTD

simulation predicted a flat characteristic impedance of 480 up to 1.0 GHz, agreeing with the
experimental results to within the measurement uncertainty (approximately 0.20).
The computed variation of 20 above 1 GHz was found to be ±20. Similar agreement was found
for the propagation delay, where the experimental value of 150.5 ± 1.5 ps / in compared very well
with the 149.5 ps/in delay calculated using the FDTD model.
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Reference [16] also reported a study of the impedance and propagation delay of three

parallel, coplanar microstrips of the type discussed above, separated by 3.6 mils. Even-mode
results were obtained with all three strips excited simultaneously with the same polarity, while
odd-mode results were obtained with the two outer strips excited with the opposite polarity
relative to the center strip. Results were also observed for the center strip excited with the two
outer strips floating. Fig. 15.5 shows the characteristic impedance and propagation delay
predicted by FDTD for all three cases. These results were obtained with Ll = 0.1 mil, Lll = 4.2 fs,
and a lattice size of 200 X 134 X 42 cells.

From Fig. 15.5, it is clear that signal propagation on adjacent lines can significantly
influence the effective impedance of the line, and to a lesser degree affect the propagation delay.
The FDTD results were confirmed by laboratory studies, which showed an approximate
7 n elevation of the characteristic impedance for the even-mode excitation, and an approximate
7 n reduction of the characteristic impedance for the odd-mode excitation (both from de to about
I GHz).

15.6 MULTILAYERED INTERCONNECT MODELING

Reference [16] reported an example of the power of FDTD to model the classical
electromagnetic compatibility problems of crosstalk and ground-loop current flow in a real-world

computer module. The module consisted of a stack of four 22-layer printed circuit boards
penetrated by fifty 12-mil-diameter circular via pins located on 100-mil centers. In this stack,
the vias served to provide electrical interconnects between the four boards. The FDTD model

used a space lattice cell size of Ll =4 mils (the thickness of a single circuit-board layer), along
with Lll = 169 fs. In this manner, each layer, via, and pin of every circuit board and connector

was modeled.
The study first focused on the early-time response of the top circuit board to a 90-ps

Gaussian pulse propagating down a single vertical via pin. Excitation was provided by pulsing a
single E component in the FDTD space lattice, just above the via pin and below a simulated

ground strap connected to the outer via pins designated as ground returns. The short duration of
the pulse was selected primarily to permit time resolution of layer-to-Iayer pulse reflection
effects within the circuit board. A video of the dynamics of the pulse propagation along the

excited via pin showed repeated bursts of outward-propagating waves linking all points within
transverse cross sections of the board as the leading edge of the pulse passed vertically through
the multiple layers of the board. The resulting early-time crosstalk was calculated to be of

sufficient amplitude to upset the operation of the digital circuits using the pins immediately
adjacent to the excited pin.

The study then focused on the late-time response of the complete module to the same via-pin
excitation. Keeping the same space resolution as for the single-board model, the FDTD lattice
was enlarged to 300 X 92 x 340 cells. Currents were derived in a postprocessing step by
numerically evaluating the curl of the H-field obtained from the FDTD model. In this manner,

it was determined that signal current had proceeded down the excited via through all four boards
and all three connectors of the module. However, return current was observed to flow upward on
the adjacent signal vias. This represents undesired ground-loop coupling to the digital circuits

using these vias at a level predicted to be of sufficient amplitUde to cause circuit upset.
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15.7 S-PARAMETER EXTRACTION FOR GENERAL WAVEGUIDES

Extraction of transmission parameters from stripline and microstrip structures, discussed in the
previous sections, relies upon the primarily TEM nature of the propagating fields along these
structures. Reference [18] reported means to process FDTD modeling data to extract wideband
S parameters for much more complex waveguiding geometries potentially having a superposition
of propagating and evanescent modes. This section briefly summarizes the foundation of this
technique.

Following [18], we begin by considering the observation of the FDTD-calculated E and H
fields along a transverse (x, y) reference plane s located at Z across a particular geometric port of

p

a multiport waveguiding system. We generalize our intuitive concept of voltage and current,
as presented in (15.1), to allow the extraction of information concerning the i'th electromagnetic
mode that may exist at this port. This mode is not necessarily TEM. It may be one of many
modes, and may even be evanescent (nonpropagating). The following "voltage" and "current"
quantities are defined for this mode: l

V;(Zp' t) = JJ E(x, y, zp' t) x hT,i(X, y, mT) . ds (15.19)
s

J;Czp,t) = JJ eT,i(x, y, my) x H(x, y, zp' t) . ds (15.20)
s

where eT,i(x, y, (liT) and hy,;(x, y, mT) are real-valued vector functions representing the cross
sectional E and H field patterns of the mode at frequency ill

T
, and

(15.21)
s

provides the normalization condition.
We note that eT,i(x, y, my) and hT,;(x, y, (liT) contain information only about field amplitudes,

and not phases. [The required phase information resides in the E(x, y, z , t) and H(x, y, z , t)
p p

data.] The {eT,i' hT,; } "mode template" can be obtained in at least two ways. The first approach
is via an analytical solution of Maxwell's equations for those waveguide geometries having
solvable internal fields. For more complex waveguides, a numerical solution of the internal
fields is required. Here, we can use any appropriate scheme such as the "bootstrapping" FDTD
procedure discussed in Section 5.11.1. Where applicable, FDTD solution of a simplified two
dimensional vector wave equation [19] may be a more computationally efficient means to obtain
the mode template.

We further note that the vector cross products prescribed in (15.19) to (15.21) present a
robust procedure for inhomogeneous waveguides. Unlike previous techniques employing scalar
products to define "voltage" and "current," it can be shown that (15.19) to (15.21) properly
separate the modes for the case of inhomogeneous lines.

lIt is only by analogy to TEM transmission lines that V and I of (15.19) and (15.20) are called "voltage" and
"current." In actual fact, these quantities may be quite far from such physical interpretations.
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The next step in calculating the S-parameters is to obtain the Fourier transforms of the modal
"voltage" and "current," taking care to account for the space-time offsets inherent in the FDTD
algorithm. Linear interpolation is used as needed, as implemented in [8]:

{ [
IJZ+l1z/2,t+tit/2)+]} .

T(z ,m) = 'J' 0.5 p e-1WtJ.tI2

I p I. (z - l1z /2, t + tit /2 ), p

(15.22)

(15.23)

In addition, following [I 8], we require knowledge of the Fourier transforms of the z-derivatives

of the modal "voltage" and "current":

(15.24)

J'(z ,m) = 'J'[dlj(Z' t)] = 'J'{[J;CZp +l1z/2' t+tit/2) -])l1z} e-jwt1Il2 (15.25)
I p dZ rcz - l1zI2, t + tit /2)

Z=Zp , P

Then, from [18], we have the modal impedance at reference plane zp:

~ ~,

V;(zp,m) V; (Zp,m)
- ~,

Ii CZp' m) Ii Czp , m)
(15.26)

and the modal propagation constant:

J; (zp' m) W(zp' m)

JjCzp,m) Y;Czp,m)
(15.27)

and the incident and reflected wave coefficients. respectively:

Y;CZp,m) + Zi(ZP,ro)~(zp,m)

2~ Zi(Zp'ro)

Y;(Zp,ro) - Zj(zp,ro) ~(zp,ro)

2~ ZJzp,ro)

(15.28)

(15.29)

The incident and reflected wave coefficients of (15.28) and (15.29) can be inserted directly into
(15.11), thereby yielding the S-parameters for the mode of interest.
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The above procedure allows wideband extraction of the S-matrix with compensation for
imperfect matching of the loads. Frequency dependence of the reference (modal) impedances is
automatically taken into account. Moreover, knowledge of the propagation constant y provided
by (15.27) also can be used for a virtual shift of the port reference planes at the postprocessing

stage.
Furthermore, knowledge of y allows us to refine the averaged and differenced quantities

calculated in (15.23) to (15.25) for improved accuracy [8, 18]. For propagating modes, we first
implement (15.22) to (15.25), calculate y based upon these results, and then recalculate (15.23)
to (15.25) as follows:

{

05

[

!'(Z +t1z12, t+l1tI2) +]}= :r . I P -jrotul2

cos ( fJ; t1z 12)' I; (z P - t1z 12, t + I1t 12 ) e
(15.30)

(15.31)

Pi t1z/ 2 } - jrotu 12

'sin(Pi t1z / 2) e
(15.32)

These corrections enforce a sinusoidal field variation in the z-direction between the FDTD field
evaluation points. Without these corrections, direct use of (15.23) to (15.25) would amount to
the assumption of a piecewise-linear field variation between these points. 2 For evanescent
modes, a similar correction procedure can be fOllowed, but with the trigonometric functions in
(15.30) to (15.32) replaced by their respective hyperbolic versions, and a; used in place of Pi'

15.8 DIGITAL SIGNAL PROCESSING AND SPECTRUM ESTIMATION

Typical FDTD models of high-speed circuit structures use a lattice resolution 11 that is dictated
by the dimensions of the circuit board layers and vias. This resolution is almost always much
fine r than needed to resolve the smallest spectral wavelength propagating in the circuit.
As a result, with the time-step I1t bound to 11 by numerical stability considerations, it may be
necessary to run FDTD simulations for tens of thousands of time-steps in order to fully evolve
the impulse responses needed for calculating impedances, S-parameters, and resonant
frequencies. This is particularly probable if the structure being modeled has a high quality (Q)
factor, with little energy dissipated relative to the energy stored.

2While the correction approach described here is formally' iterative, for all practical purposes it converges
after just one iteration.
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A brute-force way to mitigate this burden is to truncate a run before the impulse response
fully evolves. However, this has the effect of viewing the true time-domain response through a
rectangular window of duration T = N maJt~t. In the frequency domain, this windowing is
translated into the convolution of the true spectrum with the function sin (f) If. This convolution
widens the peaks in the spectral response, causes other distortions, and can mask weak spectral
signatures. Distortion can be reduced and the spectral resolution improved by lengthening the
window. However, this may cause the FDTD computer simulation times for several important
classes of problems (particularly resonators) to be so lengthy as to be virtually prohibitive.

A fruitful approach in addressing this problem is to apply analysis techniques from the
discipline of digital signal processing and spectrum estimation. The strategy is to extrapolate the
electromagnetic field time waveform by 10: I or more beyond the actual FDTD time-stepping
window, allowing a good estimate of the complete system response with 90% or greater
reduction in the FDTD computation time. In effect, a low-computational-burden extrapolation
process at a limited number of reflection or transmission observation points in the lattice replaces
the computationally intensive FDTD process that is necessarily applied at every point in the
lattice. Then, the reflected and transmitted field spectra and the associated impedances and
S-parameters at the observation points can be efficiently obtained by FFT of the extrapolated
waveforms or, in certain cases, from the coefficients of the extrapolation process itself.

This section discusses a number of digital signal processing and spectrum estimation
techniques that have appeared in the FDTD literature. While good results have been obtained
with each of these methods, there are tradeoffs. A goal of this section is to illuminate the
tradeoffs as currently understood.

15.8.1 Prony's Method

Prony's method [20] has been used to extrapolate transmission-line matrix (TLM) and FDTD
computed waveforms for microwave circuits by a number of investigators [21-23]. Because it is
a technique for modeling sampled data as a linear combination of complex exponentials, it is
particularly suitable for calculating the resonant frequency and Q of a resonating structure, since
the impulse response of such a structure is characterized by a superposition of decaying
exponentials.

To begin our discussion, we assume the existence of N equally spaced time samples of the
FDTD-computed impulse response of field component F at observation point (i,j, k) in a high
speed circuit:

{
FI.M --> M+N-I }

',j.k

C'i M C'i M+l FI M+2 C'i M+N-l
== rli.j.k' rli.j.k' i.j,k'· .. , rl i. j •k (15.33)

These samples constitute an observation "window" that begins at time-step M and ends at
M + N - 1. Because the FDTD data are very oversampled relative to what is needed for Prony's
method (and the other signal-processing methods discussed in this section), {F} is obtained by
decimating the actual FDTD data record by a factor of 10: I or greater. Now, let each time
sample in {F} be approximated by a sum of p exponentials:

(15.34)
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where 0::; n - M ::; N - 1, Cl is the complex-valued amplitude of the R'th mode,

III = exp(al + j 2nh)ilt, a l is the damping factor of the f'th mode, h is the frequency of

the e'th mode, and p is the order of the model.
The direct solution of (15.34) is a difficult nonlinear least-squares problem. An alternative

solution is based on Prony's method. This is a two-step procedure [20] which solves two

sequential sets of linear equations with an intermediate polynomial rooting step that concentrates
the nonlinearity of the problem. Following [24], the first step is to set up the following N - P
equations:

FIM+p + A FlM+P-1 + A FI~,+p-2 + + A FI
M

= 0I. J. k I I.J.k 2 '.J,k P I.J.k

FIM,+P+l + A F1M+p + A FIM+P-l + + A FIM,+I = 01 " k ...I. J, k I, J. 2 ',J, k P '.J.k

(15.35)

F1M + N - 1
+ A F1M+N - 2

+ A FIM,+N-3 + ... + A FIM+N-1-P = 0I.J.k J i,j.k 2 I.J.k P I.J.k

This overdetermined system is solved using a least-squares algorithm for the {At}. This permits
the {,ul} to be found as the roots of the polynomial

(15.36)

The second step is to find the {Ce} in (15.34). This is accomplished by writing out (15.34)
for each of the time samples, thereby obtaining a set of N equations in the p values of the Cl :

C1 + C2 + + Cp = F1~j.k

,ul C) + ,u2 C2 + + ,up Cp = F1~/;

2 2
(,up/ Cp FlM+2 (15.37)(,ul) C1 + (,u2) C2 + + = i, j.k

=

This overdetermined system is solved using a least-squares algorithm for the {Cl }. Now all of

the parameters in (15.34) are known, and it becomes possible to:

l. Write down by inspection the set of resonant frequencies and Q -factors

Qe =Init / a I Idirectly from the Prony parameter sets just obtained;

2. Calculate the complete estimated impulse response at times n » M + N - 1 until

it is observed to decay to zero, at which point an FFT provides the magnitude and

phase of the frequency-domain transfer function with no windowing artifacts.
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Fig. 15.6 shows results using Prony's method reported in [23]. This figure graphs the

resonant frequencies and Q-factors of the three lowest TEOn modes of a cylindrical dielectric

resonator of permittivity £, =38, radius a =5.25 mm, and length 1= 4.6 mm. Here, a cylindrical

FDTD grid was used, with parameters I1r =0.29167 mm, I1z =0.2875 mm, and I'1t =0.4795 ps.

It can be seen that a time-stepping window extending over about 217 (13] ,072) iterations was

needed to obtain converged results for the Q of the TE02 mode when using an FFT applied to the

windowed FDTD data. However, using Prony's method of order p =10 and a decimation factor

of 50, only 3,000 iterations were required, a reduction of about 98%. In fact, reductions can be

even greater in the case of structures having even higher Q or with very closely spaced resonant

frequencies. The accuracy of the results was verified in [23] by comparing the data to those

available in the literature, and the agreement was found to be good.

Prony's method shows good resolution with relatively short data sequences and presents no

windowing problem. The main difficulty with this approach lies in its determination of p,

the user-selected order of the model. If the value of p is less than the number of actual modes

excited in the structure, the spectral resolution is poor.

However, if p is selected to be too high, spurious (nonphysical) modes appear.
The following are two guidelines given in [23] to deal with these problems:

• Before Prony's method is applied, digitally lowpass filter the time-domain

response to limit the number of resonant modes and therefore the number of

parameters to calculate.

• If spurious modes are suspected, apply Prony's method with the time sequence of

the sample points in reverse order. Here, the real modes appear with positive

damping factors (Xt > 0, but the spurious modes have negative damping factors

(Xt < 0 [25].

15.8.2 Autoregressive Models

The most popular time series modeling approach used in modern spectral estimation is the class

of linear predictors or autoregressive (AR) models. This is because an accurate estimate of the

AR parameters can be derived by solving a set of linear equations. In contrast to Prony's

method, which uses a sum of deterministic exponential functions to fit the data, the AR approach

constructs a random model to fit a statistical database to the second-order.

We again assume the FDTD-computed impulse response (15.33) (i.e., N equally spaced time

samples beginning at time-step M). This time series is said to represent the realization of an AR
process of order p if it satisfies the following relation:

In 1"-11 i,j.k = - a l f i,j,k 11n - 2
a2 i,j,k - ... - 1l

n - p
ap i.j,k + q(n) (15.38)

where the constants ai' a2 , ••• , ap are the AR parameters to be determined from {fl, and q(n) is

a white-noise process whose variance also has to be found to carry out the extrapolation of {1}.
It is clear that (15.38) permits the prediction of a new value of the time series from known
previous values, once the AR parameters are in hand.
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Many published approaches to evaluating the a j exist [26]. In fact, a primary categorization
of AR techniques is by the means used to calculate these parameters. In this section, we consider
three specific applications of AR to the extrapolation of FDTD electromagnetic field records,
categorized according to this criterion: (1) the covariance method, (2) the forward-backward
method, and (3) the nonlinear predictor. The choice of approach is important, since these
methods have substantially different operational characteristics.

Covariance Method

Reference [27] reported the use of the covariance method for determining the AR parameters.
This method involves setting up and solving the following p x p linear system of equations:

cff(l, 1) c
JJ

{1, 2) c
JJ

{1, p) a\ cJJ(l, 0)

cJ/2,1) c
ff

(2, 2) c
ff

(2, p) Q
2 cJ/2,0)

=

cf /p,l) cff (P,2) cff(P, p) Q cff(p,O)p

where c
ff

are covariances defined by

(15.39)

N-p n=p

(15.40)

The matrix of (15.39) is Hermitian and positive semidefinite, and can be solved by Cholesky
decomposition.

As stated in [27], a key issue that arises when using the covariance-based AR model is
choosing the model order p. The use of a low-order model can cause the extrapolated waveform
to attenuate nonphysically. However, a high-order model can have divergence problems due to
statistical instabilities. These competing effects cause the results to be quite sensitive to p.
TwO common ways to estimate p are the final-prediction-error technique and the Akaike
Information Criterion [28J. Both are based upon the estimated predictor error power, and are
regarded as general guides for AR model selection.

Using the covariance-based AR method of (15.39) and (15.40). [27] reported the successful
extrapolation to over 30.000 time-steps of FDTD field records spanning only 2,000 to 3,500
time-steps. A decimation factor of 10 was used. and the order of the AR model was 50.
As shown in Fig. 15.7, very good accuracy was observed for the extrapolated time waveform for
an edge-coupled microstrip bandpass filter.

The final example discussed in [27J involved modeling a microstrip double-stub structure.
Here. lengthy wave propagation delays along the stubs required extrapolating the FDTD data to
100,000 time-steps to achieve convergence of the transmission coefficient. This extrapolation
was accomplished using a 91st-order AR model working from an FDTD database covering
iterations 3,100 to 8,900, and decimated by a factor of 25. Although very good agreement was
observed with benchmark frequency-domain data, the results were found to be more sensitive to
the model order than the 50th-order model used for the previous two examples.
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a

11-'

.........------ b ------t.~

(a) Geometry, showing the cross section and plan views. Key dimensions: [) = 6.36 mm;
12 = b/2 = 8.48 mm; a = 11.62 mm; w = I =1.27 mm; Llx =!J.y =!:J.z = w/4.
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(b) Comparison of AR-extrapolated field record with an extended FDTD data sel,

Fig. 15.7 Application of a 50th-order covariance-based AR model to extrapolate a windowed FDTD data
segment (2,500 time-steps) to 10,000 time-steps. Source: Chen et aI., IEEE Trans. Microwave
Theory and Techniques. 1994, pp. 1992-1997. © 1994 IEEE.
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Forward-Backward Method

The results of a covariance-based AR model can be sensitive to the order of the model because

its a j parameters often have low accuracy. The low accuracy results, in turn, because the

ensemble calculation that is rigorously required to find the covariance is instead substituted in

these methods by using the law of large numbers, and by approximating the covariance with

j nexact functions of the known time signal. A useful alternative approach based on an

unconstrained least-squares estimation of the AR parameters was proposed independently in

[29, 30J and calculated more efficiently in [31]. This approach, called the forward-backward

prediction method [30], avoids the problems of the covariance-based AR models by working

directly with the time-domain data, rather than calculating the covariance functions of the data.

Following [31], the method involves setting up and solving the following (p + 1) x (p + 1)

system of linear equations:

r(O,O)

r(p,O)

reO, p)

rep, p)

1

==
°
°

°

(15.41)

where, for °~ a and 13 ~ p, we have

rea, 13)
N-p

== ~ (fIM+P+l-P fIM+P+fo£l + fIMH+P fIM+f+£l)L.. I.].k I,],k I.].k I.].k
£=1

(15.42a)

p

ep == Larr(O,f)
£=0

(15.42b)

Reference [321 was the first to report the application of the forward-backward method to AR

extrapolation of FDTD data records and corresponding spectral estimation. Results were given

for a test problem involving a rectangular PEe plate embedded in a high-permittivity half-space

and excited by a sinusoidal point source located in the free-space region. Both an

autocorrelation-based AR model and the forward-backward AR model were "trained" on the

same FDTD field record, a set of datapoints from 201 to 800 time-steps that were "appropriately

decimated and lowpass filtered." Both models were then used to generate an extrapolated

sequence extending over 5,000 time-steps. The forward-backward method was found to provide

more accurate spectra and achieve better computational efficiency, since its order was much

lower (p == 5 versus p == 50).
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Nonlinear Predictor

In addition to the use of covariance-based AR linear prediction to extrapolate FDTD waveform
records, [27] reported the application of a nonlinear predictor for the same purpose. The form of
this predictor is the exponential autoregressive (EXPAR) model of order p given by [33, 34]:

(15.43)

where {a}, {b}, and 8 are the modeling parameters that are "trained" from the windowed and
decimated FDTD field-versus-time record.

The EXPAR model was applied in [27] to the same large double-stub microstrip problem
discussed earlier, and similarly used to extrapolate an 8,900-step FDTD data record to 100,000
time-steps. As shown in Fig. 15.8, the nonlinear EXPAR model provided excellent accuracy for
521 over a wide dynamic range upon Fourier transformation of the 100,000-step record.
Moreover, the EXPAR results were much less sensitive to the model order than were the results
of the 91 st-order covariance-based linear AR model previously discussed in [27]. However,
the reported order of the EXPAR model in this paper exceeded 80, which is still very high.
A necessary line of inquiry involves applying the forward-backward linear AR model to
problems of this size and complexity, to establish whether its superior characteristics can
markedly reduce the required model order.

15.8.3 Pade Approximation

In [35], Dey and Mittra reported an efficient, robust alternative to Prony's method (Section
15.8.1) and the generalized pencil-of-function technique [36] for calculating the resonant
frequencies and Q factors of cavities from a small time window. Unlike Prony's method and the
generalized pencil-of-function technique, both of which represent the FDTD-computed field time
response as a sum of exponentials, the Dey-Mittra approach is based upon the use of the Pade
approximation [37] in conjunction with the FFT. Because its accuracy appears to be less
sensitive to the field-sampling conditions, the Pade approximation technique may be more suited
for use in a general-purpose FDTD simulation package.

Formulation

To obtain cavity resonant frequencies and Q's using FDTD, we must transform the cavity's field
versus-time response obtained from the FDTD simulation to the frequency domain, for example
by using the FFT. An inherent limitation of this approach is its inadequacy in frequency
resolution, which is reciprocal to the product of the total number of time-steps and the time-step
size. Thus, to achieve some desired frequency resolution, it is necessary to run the FDTD
simulation for a sufficiently long time.

Dey and Mittra employ a two-step procedure to overcome the above limitation. First, they
apply the FFT to the FDTD-calculated field-versus-time data of one of the six electromagnetic
field components to obtain the cavity'S spectral response. Then, they process the spectral data
using the Pade approximation to improve the accuracy of the frequency response.
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(a) Plan view of the double-stub microstrip structure. Key dimensions: w =0.122 mm,
L =2,92 mm, s =0.76 mm, h =12.7 mm, ax =h/4, l1y =& =w/4, £.r =9.9.
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(b) Comparison of EXPAR and benchmark data for S21'

Fig. 15.8 Use of covariance-based EXPAR model of order greater than 80 to model S21 of a double-stub
device by extrapolating the FDTD record from 8,900 to 100,000 time-steps. Source: Chen
et. aI., IEEE Trans, Microwave Theory and Techniques, 1994, pp. 1992-1997, © 1994 IEEE.
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The frequency response can be represented as

P( W) = ~OICS (W) + remainder tenn (15.44)

where P(w) is a complex function of w, and P I (w) contains all of the poles of P( w). The Padepo cs
approximation expresses PPO!cs(w) as the ratio of the polynomials QN(w) and DM(w), such that

where

P(w) - PpOICS (w) =

N

QN(W) = I ai Wi
i=O

M

DM(w) = I f3j Wi
i=O

(15.45)

(15.46a, b)

The unknown coefficients {a} and ({3.} in (15.46) can now be obtained. Let P(w.) denote
I I J

the value of the FFT of the FDTD field-versus-time response as sampled at the frequency wr
Then, we rewrite (15.45) as

(15.47)

Upon enforcing (15.47) at each of S sampling frequencies w
O

' WI' ... , W
S

_ 1 within the range of
the FFT, we obtain a system of S equations for the total of N + M + 2 unknown {a;} and {{3j}
coefficients. To render the system inhomogeneous, Dey and Mittra set f3

0
equal to unity.

This yields

M N

P(w}) I f3; (W); - I. a i (w/ = - pew) ,
i=1 i=O

)=0,1, ... ,S-1 (15.48)

We see that a total of S ~ M + N + 1 data samples of the FFT spectral response is needed to
solve the system of (15.48).

A computational problem arises because of the potentially large dynamic range of the matrix
elements in the system of (15.48), which contain powers of the angular frequency up to (W)M

J
and (w( One way to avoid this problem is to scale the frequencies used, such that each is near

J
unity. To accomplish this goal, Dey and Mittra proposed the following frequency scaling:

(f)scaJcd =
W max + Wmin

(15.49)

where wand W . are the maximum and minimum angular frequencies of the samples used.
max mm

Upon solution of (15.48), the coefficients {aj} and {{3i} are known. Then, it is
straightforward to interpolate the sampled data for PCw) to obtain the desired resolution. In the
application reported in [35], N is chosen to equal M. This is called the diagonal PaM
approximation, and requires samples of the FFT response at 2N + 1 frequencies.
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Numerical Results

We now review results obtained using the Pade approximation technique, as reported by Dey and
Miura in [35]. These involve calculation of the resonant frequencies and Q' s of a
2.286 x 1.016 x 2.286-mm rectangular cavity with lossless walls, where the cavity is filled with a
slightly lossy medium having the conductivity 5.162 x 10-4 S/m. The corresponding spatial
discretizations in the FOTD lattice are 0.057,0.058, and 0.057 mm.

In the first numerical experiment, the resonant frequencies and Q's are determined using:
(1) the FFf approach alone, and (2) the combined FFTlPade method working on only 13
samples of the FFT data set, yielding 2,700 interpolated outputs. For total FDTD time-step
counts between 4,096 and 32,768, the error in the resonant frequency for the TE

101
mode

obtained using the FFTlPade method is less than 0.01 %, nearly ten times less error than that of
the regular FFT approach. While the error in the cavity Q for this mode obtained using the
FFTIPade method is only 0.3%, the frequency resolution for the regular FFT technique is so
coarse that the Q cannot be meaningfully obtained even after 32,768 time steps.

Fig. 15.9 vividly illustrates the ability of the FFTlPade technique to provide high resolution
of cavity resonant frequencies and Q factors, using far fewer time-steps than the conventional
FFT approach. This figure shows the normalized cavity frequency response calculated after only
1,024 FOTD time-steps. (Note that the normalization in this figure is carried out independently
for the two curves to enhance the clarity of the graph.) It is evident that the conventional FFT
method is unable to resolve any of the resonances, whereas this is easily accomplished using the
FFTlPade technique. Comparable frequency resolution is obtained using the conventional FFT
method only when running the FDTD simulation for several orders of magnitude more time
steps than used in the FFTlPade technique.
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Fig. 15.9 Comparison of FFT and FFT/Pade results for the normalized frequency response of the
rectangular cavity for 1,024 time-steps. Source: Dey and Mittra, IEEE Microwave and Guided
Wave Lett., 1998, pp. 415--417, © 1998 IEEE.
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The second numerical experiment in [35] examines the effect of varying the number of input
data samples used in the FFTlPade method for a fixed number (4,096) of FDTD time-steps. It is
found that using only 7 frequency samples is sufficient to resolve both the resonant frequency
and Q. Using 9, 11, 13, 15, ." frequency samples yields neither improvement nor degradation
of the accuracy. Dey and Mittra therefore conclude in [35] that the FFTlPade technique is quite
insensitive to the choice of the input parameters, in contrast to the behavior of Prony' s method
and the generalized pencil-of-function approach. Their approach appears to be robust.

15.9 MODELING OF LUMPED CIRCUIT ELEMENTS

In this section, three-dimensional FDTD modeling of the connection of linear and nonlinear
lumped circuit elements to a microstrip trace is discussed. For convenience in the discussion,
the microstrip is assumed to be oriented in the x-direction, and the lumped load is assumed to be
oriented in the z-direction. The extension of the theory to other Cartesian orientations in the
FDTD space lattice is straightforward.

A resistive source of the type discussed in Section 15.9.3 is used in all of the FDTD
simulations of this section. The source resistance is matched to the line impedance so that
retroreflections at the source are minimized.

15.9.1 FDTD Formulation Extended to Circuit Elements

Assumptions and Notation

Consider Maxwell's curl H equation, suitable for time-stepping the E-field:

aD
v x H = Jc + at (15.50)

Here, the electric conduction current is Jc = (JE, and the electric flux density is D = £E. Using
central differencing, (15.50) becomes

E 1"+1
z i, j, k =

(J.. k !1t
1 _ -"..:...}'--

2£ . k'. ),

(J.. k !1tI + ',)..
2£ 'kI,}, .

E r, +
Z I,}, k

+

!1t

(J 'k!1tI,)•.

2£, . k
" }.

1
"+112 1"+1/2

H - H
)' ;+112, j, k Y i-I/2. j, k

-----'-~----...;..:.;- +
!1x

H 1"+112 _ H 1"+1/2
x i,j-I/2.k x i,j+II2,k

!1y

(15.51)

An important observation is that all H-fields on the right-hand side of (15.51) are at time-step

n + 1/2, centered in time relative to the stored E-fie1d E I" 'k and the newly updated E-field
Z I,},

Ezl;;~. Further, the bracketed coefficients are derived assuming thatJc is also evaluated at time-
step n + 112, taking
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In+1/2 /n+1/2 ai• j, k ( In In+J )J .. =a.E =--E .. +E ..c I.J.k I,j.k z i,j,k 2 z I,j.k z I,j.k
(15.52)

We call this the semi-implicit formulation for the conduction current, since this current relies in
part upon the updated E-field to be determined as a result of the time-stepping, and yet does not
result in a system of simultaneous equations. This results in a numerically stable algorithm for
arbitrary positive values of a.

For convenience in this chapter, we shall assume that all circuit components are located in a
free-space region (E =Eo' (J= 0, Jc =0). Additional notational convenience is provided by
denoting the Yee finite-difference analog to the curl of H observed at EJj.k as

In+1I2 In+1/2 H In+1/2 _ H In+1I2

(V X H)z(+Jl2 = H y i+1/2.j,k - H y i-1/2,j.k + x i,j-1/2,k x i,j+1/2,k

1.I,k L\x boy

Then, (15.51) can be rewritten more simply as

/
n+l In bot jn+1/2

Ez i.j,k = Ez i,j.k + ~ (V X H)z i,j,k
o

Extended FDTD Formulation

(15,53)

(15,54)

Reference [16] reported the modification of the three-dimensional E-field time-stepping
algorithm of (15.54) to allow for the addition of lumped linear and nonlinear circuit elements.
The basis of this formulation, reported originally by Sui et al. [38] for two-dimensional
problems, is that circuit elements can be accounted for in Maxwell's equations by adding a
lumped electric current density term JL to the conduction and displacement currents on the right
hand side of (15.50), which now becomes

(JD
VxH=JC+-+JL

(Jt
(15.55)

We assume that the lumped element is located in free space at field component EzL,j,k' and is
z-oriented in the grid, Further, we assume that this element provides a local current density
related to the total element current IL by

(15.56)

Here, I
L

can be a scalar multiple, time derivative, time integral, or nonlinear function of the

electric potential V =Ezli.j.kb.z developed across the element. (Note that the assumed positive
direction of I L is +z.) Then, the following modified version of (15.54) specifies the presence of
the lumped circuit element in the FDTD lattice:

I bot n+1/2

E In+ = E In + - (V X H) I
zi,j,k Zi,j.k Eo Zi,j,k

bot n+1/2
---I
CO box boy L

(15.57)
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Note that the lumped current in (15.57) is evaluated at time n + 1/2, as done in (15.52) for

the conduction current. Since the lumped current is a function of the E-field at the circuit

element, this requires averaging E ,n+l. and E In ." and yields a stable semi-implicit time-z I,J, Z I, J, •

stepping algorithm. Generalization to x- and y-orientations of a lumped element is

straightforward by permuting the coordinate subscripts of the fields.

15.9.2 The Resistor

Assuming a z-directed resistor R located in free space at the field component E"i,i," the voltage
current characteristic that describes its behavior in a semi-implicit manner appropriate for stable

operation of the FDTD field solver is [16]

I In+1/2 = & (E r+1 + E I~, )
Z I.J.k 2R Z I.J.' Z I.J.'

From (15.57), the corresponding time-stepping relation is [16]

I r+1/2

Z I. J•• (15.58a, b)

tlt& ~t

EJ:\
2Rco&tly Co n+1/2

= EJj.' + (V X H)J,j.' (15.59)
tlt tlz ~ttlz

1 + 1+
2Rco&tly 2Rco&tly

Implementation of (15.59) in the FDTD algorithm requires only redefining the Co and Cb

updating coefficients for the E-field component at the location of the resistor, as defined in
Section 3.6.

Reference [16] reported a comparison of the impedance match provided by the numerical

resistor of (15.59) and a benchmark physical resistor model composed of a one-cell-thick

resistive slab in the FDTD lattice. Using one or the other to terminate a son transmission line

excited by a 90-ps Gaussian pulse (spectral width of 20 GHz), it was found that both resistor
models provide reflection coefficients of less than 1% up to 1 GHz. Above 1 GHz, the two
resistor models continue to provide very close agreement in terms of reflection coefficient,

although, as expected, the match to the line degrades because of parasitic capacitance or

inductance present in each model. It is important to note that implementing (15.59) at two
adjacent E-field components between the microstrip signal line and ground plane simulates the
presence of two parallel resistors terminating the line, halving the effective load resistance.

15.9.3 The Resistive Voltage Source

With the ability to model lumped elements in the context of FDTD, it is a simple matter to model

a nonreflecting (matched) source as a resistive voltage source. Again assuming a z-directed

lumped element, the voltage-current characteristic that describes the behavior of a resistive

voltage source in a semi-implicit manner is [16]
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n+lf2

I In+1/2 = & (E r+! E r ) ~
Z i.i,k 2R

s
Z i,i,k + l i.i,k + R

s
i L =

I r+1/2

l ',}, k

A.u:ly
(15.60a, b)

lT
n + 1I2 R ' h . .where Y s is the source voltage and s IS t e Internal source reSistance. The corresponding

time-stepping relation is [16]

E In+1 =
l i, i. k

+

15.9.4 The Capacitor
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(15.61 )

We next consider the insertion of a numerical lumped capacitor C into the FDTD space lattice.
Again assuming a z-directed lumped element located in free space at Elt,i.k' the voltage-current
characteristic that describes the capacitor's behavior in a semi-implicit manner is [16]

I In+1/2 = C & (E r+1
- E I~. ) ;

ll.l.k !:it l',},k ZI,},k

I r+1I2

l ',}, k
(I5.62a, b)

This formulation differs from that of [38] in that the E-field samples are separated here by one
time-step rather than by two. In this manner, we are consistent with the sampling used for the
numerical resistor described above. The corresponding time-stepping relation is [16]

!:it

E r k +Z I, I. C&
1+---

eo At!:iy

n+1/2

(V x H)zt.i,k (15.63)

In (15.63), we assume that the value of C being modeled includes the additive contribution of the
intrinsic lattice capacitance defined in Chapter 5, Section 5.4.4.

For the parallel combination of a capacitor C and resistor R located at E I.. ,the results of
l ',), k

(15.58), (15.59), (15,62), and (15.63) can be readily combined to yield the following time-
stepping relation [16]:
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!1t& C&
1 - +

E r+1 2REo!1.x!1y Eo !1.x !1y
E In . k=l I,]ok !1t& C& l '. j, .

1 + +
2REO !1.x!1y Eo !1.x !1y

!1t

Co n+1/2
+

!1t& C& (V>< H)Jj.k (15.64)
1 + +

2Rco !1.x!1y Co !1.x !1y

Implementation of (15.64) in the FDTD algorithm is again simple, requiring only an appropriate
redefinition of the Ca and Cil updating coefficients for the E-field component at the location of the
parallel resistor / capacitor.

Reference [16] reported tests of this FDTD model wherein a variety of numerical capacitive
loads were modeled at the end of a long 50 Q microstrip line (approximately I mil scale in the
transverse plane) that was excited by a rectangular pulse 1,000 time-steps long. The FDTD
computed voltage response versus time across each capacitor was then compared to the exact
theoretical response. Results are shown in Fig. 15.10 for micros trips terminated with 4- and
20-nF capacitors. The theoretical and FDTD curves are indistinguishable.
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Fig. 15.10 Agreement of FDTD and exact solutions for the voltage across the numerical capacitor
terminating a microstrip for two values of capacitance (step incident pulse). Source: Piket-May
et al., IEEE Trans. Microwave Theory and Techniques, 1994, pp. 1514-1523, © 1994 IEEE.
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15.9.5 The Inductor

We next consider the insertion of a numerical lumped inductor L into the FDTD space lattice.
Again assuming a z-directed lumped element located in free space at E I .k' the voltage-current

l r,J,

characteristic that describes the inductor's behavior in a manner appropriate for stable operation

of the FDTD field solver is [16]

I
n+1/2 .1.z I::1t In 1mI .. =-- E ..

, ,.}.k L ' ,.}.k
1Il=1

1 In+J/2

J = ',,},k

L &l::1y
(15.65a, b)

This formulation differs from that of [38] in that the E-field samples are summed only through
time-step n, which is consistent with the observation of the lumped current at time-step n + 1/2
that is employed throughout this development. The corresponding time-stepping relation is [16]

n+1 n (I::1t) n+1/2
E.. = E. + - (V x H) -,I..},k "',I.k Co ,t.i.k

.1.z (t:.t) 2
n

--~EI'"
L A _ A .L..J ".},k

Co U,,\. uy m=1

(15.66)

15.9.6 The Arbitrary Two-Terminal Linear Lumped Network

Reference [39] reported an efficient technique to incorporate an arbitrary two-terminal linear
lumped network into a single cell of a three-dimensional FDTD space lattice. This approach has
been demonstrated to have good accuracy and numerical stability.

Following [39], we first express the impedance of the two-terminal linear lumped network of
interest in the form of a rational function as

V(s) R / M
2(s) = - ;:;; Lar(lls)' Lbm(lIs)m

I(s) r=O 111=0
(15.67)

where s;:;; jill, and it is assumed that the order of the numerator and the denominator of the
rational function is Rand M, respectively. The sets of coefficients {a) and {b"'} are determined
strictly by the values of the resistors, inductors, and capacitors comprising the network.
From {a

r
} and {b",}, the following composite coefficients are calculated:

(15,68a, b)

NoW, we can begin the actual time-stepping procedure.

Step 1: Update Auxiliary Variables ~m) Via a Recursion Relation

- n+1
~m=O) = 0 (15.69a)

- n+1

~m) (l5.69b)
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Step 2: Update Auxiliary Variables fer) Via a Recursion Relation

7n
+

1I2 = 0
(r=O)

/
-n+1/2 = /-n-1I2 + /-n+1I2 At + /n-1I2( At)r 12M
(r) (r) (r-I) L.l u, m = , , ... ,

Step 3: Update the Composite Auxiliary Variable Q

(l5.70a)

(1S.70b)

M

= "" b Vn
+

1

£..J m (m)

m=\

R

"" a 7n
+

1/2
£..J r (r)

r=\

(15.71)

Step 4: Update Ez at the FDTD Lattice Cell Containing the Lumped Network

E /"+1
Z i.j.k

(15.72)

Step 5: Update the Auxiliary Current Variable /

/n+112 = E In+1 tJ.z + Qn+1
PI z I,),k P2 (15,73)

This completes the updating sequence at the FDTD space cell contammg the lumped
network of interest. Subsequently, the Step 1 to Step 5 sequence is repeated during each cycle of
E-field updates in the space lattice. A total of M + R + 2 auxiliary variables is needed to
implement the algorithm at the cell where the lumped network is embedded.

Reference [39] reported a test of this algorithm for a parallel-strip transmission line of length
l = 240 mil, width w = 8 mil, substrate thickness h = 16 mil, and substrate permittivity c

r
= 2.2.

The line was assumed to be driven by pulsed 50n voltage source having a bandwidth of 100
GHz, and terminated by a seven-element lumped network having the configuration of Fig. 15,11:

0.2 pF 250 n

1 nH 10n 1,5 nH

0.2 pF

50n

Fig. 15.11 Test circuit used to validate modeling of an arbitrary two-terminal linear lumped network
embedded within a single FDTD space-lattice cell. Adaptedfrom: Wu et aI., IEEE Microwave
and Wireless Components Lett" 2004, pp. 74-76, © 2004 IEEE.

.1
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Fig. 15.12 Agreement of FDTD and Agilent ADS results for S11 of a transmission line tenninated by the
seven-element network of Fig. 15.11. Adapted from: WU et a\., IEEE Microwave and Wireless
Components Lett., 2004, pp. 74-76, © 2004 IEEE.
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The FDTD model of the parallel-strip transmission line was implemented using a cubic
space lattice of cell size ~ =4 mil with a time-step M = 0.25 ps. The algorithm of this section
was used to model the lumped network of Fig. 15.11 embedded within a single space cell
terminating the transmission line. Fig. 15.12 compares the FDTD results for S II of the
terminated transmission line with numerical data obtained using a commercial tool, Agilent's

ADS. Good agreement is seen in both magnitude and phase over the entire frequency range.
Additional simulations indicate that FDTD numerical stability is unaffected by the network
embedding algorithm. It also appears possible to extend this technique to embed an arbitrary
multiport linear network within the FDTD space lattice.

15.9.7 The Diode

The current through a lumped-circuit diode is expressed by

(15.74)

where q is the charge of an electron, V
d

is the voltage across the diode, k is Boltzmann's constant,

and T is the absolute temperature. According to the two-dimensional study of [38], for a

z-directed diode located in free-space at E I.., the E-field time-stepping relation is given by
Z I,J

n+1 n (M) n+lf2 I ~t [( n / ) ]E I.. = EJ + - (V x H) I.. - 0 exp -q E.I . . Liz kT - 1
ZI,J ,',J Eo ZI,J Eo&~Y .I.J

(15.75)

However, it has been determined [16] that (15.75) yields a numerically unstable algorithm for
diode voltages larger than 0.8V, due to its explicit formulation that employs the previously
computed E-field in the exponential.

A numerically stable FDTD algorithm for the lumped diode can be realized in three
dimensions by using the semi-implicit update strategy for the E-field [16]

E r+ 1/2 = .!. (E n+1 En)
Z i.J.k 2 zt,J'k + J,J'k

In this manner, the following transcendental equation is obtained [16]:

10 M {exp[-q(Eln+.'
k

+ E ln.
k
)Liz/2kT] -I}

Eo & ~Y Z I,J, ll,J.

(15.76)

(15.77)

Upon solving (15.77) for the updated E-field using Newton's method, the new model is found to

be numerically stable over a diode voltage range up to 15V.
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Reference [16] reported numerical results for a diode with a saturation current of 1 x 10-14 A
located at the end of a 50n microstrip line (approximately 1 mil scale in the transverse plane).
The excitation was a matched resistive voltage source providing a 10V, 200-MHz sinusoid.
This high-level source was selected both to challenge the numerical stability of the diode
algorithm and to test whether FDTD can properly simulate driving a diode into hard clipping.
As shown in Fig. 15.13, there is excellent agreement of the diode voltage response versus time as
calculated by FDTD and SPICE. No instability of the FDTD solver is observed.

2.0

0.0

-2.0->-
~ -4.0
~-(5
> -6.0
Q)
"0oo -8.0

-10.0

FDTD

SPICE

201510
Time (ns)

5
-12.0 -f--r--r--r---r--r--r--r--,-r---r---r--,.--r--r--r--,

o

Fig. 15.13 Agreement of FDTD and SPICE calculations for the voltage across a diode terminating a
microstrip line and driven into hard clipping by a sinusoidal RF source. Source: Pikel-May
et al.,/EEE Trans. Microwave Theory and Techniques, 1994, pp. 1514-1523, © 1994 IEEE.

15.9.8 The Bipolar Junction Transistor

Reference [38] presented a two-dimensional FDTD model for the linearized, small-signal
behavior of the bipolar junction transistor. While good results were obtained using this model
for selected parameters, some problems remained: (1) numerical instability for very high or low
values of base resistance rb , (2) fringing fields between the base and collector terminals, and
(3) lack of generality for large-signal and digital switching applications.

Referring to Fig. 15.14, we now consider a numerically stable FDTD algorithm for the
lumped NPN bipolar junction transistor in three dimensions [16]. This algorithm permits study
of the large-signal behavior, including switching. In the example discussed here, the transistor is
assumed to terminate a microstrip in a grounded-emitter configuration. The simulation is based .
upon a simple Ebers-Moll transistor model described by the following circuit equations [40]:
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1 cell

1 cell
I A I a F· IF

microstrip

1 cell B -=- Vcc

As

/' cell IF j aR' IRVs

ground plane E

• 25 cells ... 1 cell ..

Fig. 15.14 Three-dimensional FDTD model of the NPN bipolar junction transistor in the common-emitter
configuration terminating a microstrip line. Source: Piket-May et a\.. IEEE Trans. Microwave
Theory and Techniques. 1994, pp. 1514-1523, © 1994 IEEE.

(15.78a, b)

(15.79a. b)

Now, assuming a transistor that is located in free space and oriented in the z-direction in the

FDTD space lattice, we can use a semi-implicit strategy to express the base-emitter voltage VBE
in terms of EzIEB' which is the FDTD-computed E-field in the one-cell gap between the ground
plane and the end of the microstrip [16]:

n+l/2 Llz (In+1 In )V = -- E + E
BE 2 z EB z EB

(15.80)

A similar semi-implicit strategy is used to express the base-collector voltage VBC in terms of

E I ,which is the FDTD-computed E-field in the one-cell gap between the end of the microstrip
z BC

and the collector load:

n+1/2 Llz (In+1 In )
~c = 2 Ez BC + Ez BC

(15.81)

Substituting (15.80) and (I5.81) into (15.78) and (15.79), we obtain:
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1;+1/2 = a
R
lo{exp[q(E":;1+E":J/2kT] -I}

- 10{exp[-q(Ezl~:I+ Ezl~B)/2kT] - I}

1;+1/2 = 1
0
{exp[q(Ezl:;l + EzI:e)/2kT] -I}

- a Flo {exp [-q (Ez I~: I + Ez I~B)/2kT] - I}

(15.82)

(15.83)

Now we obtain two coupled transcendental equations for the FDTD E-field updates at the

transistor:

E 1"+1 ( dlJ ."" !1t n+1/2

= E I"B + - (V x H) I. . + IEzEB zE e z I.),k eo !1x!1y0

E 1"+1 ( M J ..,,, !1t n+1/2

= E I:e + - (V x H) I . + IezBe z Co z I,),k eo!1x !1y

(15.84)

(15.85)

This system can be solved using the Newton-Raphson method [16].

Reference [16] reported FDTD modeling results for a transistor at T =300"K (/0 =10-16 A,

a
R

=0.5, and aF =0.990 I) located at the end of a 500 microstrip line (approximately I mil scale

in the transverse plane) in the manner of Fig. 15.14. The collector dc supply was included in the

electromagnetic simulation. Both the active (Re = 500) and saturated (Re = 100) regions of

operation were observed for a step-function excitation of the microstrip. A typical result is

shown in Fig. 15.15, where the FDTD-computed base-to-emitter voltage waveform is compared

with that obtained by a SPICE model. Excellent agreement is observed.

15.10 DIRECT LINKING OF FDTD AND SPICE

The computational technology discussed so far in this chapter demonstrates the feasibility of

combining full-wave FDTD Maxwell's equations' models of complex three-dimensional

multilayer circuit boards and modules with generic linear and nonlinear loads. At this point,
one key question remains to be answered:

Must we "reinvent the wheel" for the lumped-circuit side of the model? That is,

for each electronic device of interest, must we develop from scratch a specialized

time-marching circuit model appropriate for insertion into the FDTD space lattice

and algorithm? Or, can we somehow build upon the substantial existing knowledge
base inherent in popular circuit-modeling tools such as SPICE?
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Fig. 15.15 Agreement of FDTD and SPICE calculations for the base-to-emitter voltage waveforms of the
transistor of Fig. 15.14 for a step incident pulse. Source: Piket-May et aI., IEEE Trans.
Microwave Theory and Techniques, 1994, pp. 1514-1523, © 1994 IEEE.

Reference [41] demonstrated that it is possible to link FDTD and SPICE. This forms an
interface between time-stepping the set {E, H} of vector electromagnetic fields in a volume of
space and time-stepping the set {V, I} of scalar voltages and currents characterizing an electronic
circuit embedded within this volume. Effectively, the SPICE link permits the systematic
construction of FDTD subgrid models of entire circuits that incorporate all important aspects of
the circuit physics including gains, nonlinearities, device parasitics, and time delays.

15.10.1 Basic Idea

The basic idea underlying the FDTD-SPICE link can be expressed simply. Consider a multipart
lumped circuit embedded within the FDTD space lattice. We want to conveniently and self
consistently interface the physics of this circuit at each of its ports with the distributed
electromagnetic field physics of the entire space lattice. Therefore, we ask the question:

Can we define Norton or Thevenin equivalent circuits "looking into" the FDTD
space lattice from the local perspective of each port of the embedded circuit?

If this is possible, the Norton or Thevenin equivalent circuits for the local physics of the FDTD
space lattice could be combined with the lumped circuit of interest at its corresponding ports, and
the combined circuit time-stepped using SPICE. The resulting updated port voltage or current
would then be interpreted as an equivalent updated port E- or H-field, which would then be fed
back to the FDTD space lattice. Fields elsewhere in the space lattice would be time-stepped in
the usual manner of the Yee algorithm. Repetition of these steps would synchronously time
march the lattice {E, H} and the circuit {V, I} until evolution to the desired endpoint.
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15.10.2 Norton Equivalent Circuit "Looking Into" the FDTD Space Lattice

Fig. 15.16 illustrates how we can define a Norton equivalent circuit "looking into" the FDTD
space lattice from the two-terminal port of an embedded circuit. We assume that the port is
located in free space at the site of Ew ' a particular Ex, E)', or Ez component in a cubic-cell lattice.

'port(t)
----...

i +

~'NCt) eN ~ vportCt) Embedded circuit

~IdiSP(t)

Fig. 15.16 Schematic diagram of a two-terminal port of a circuit embedded in a single cell of the FDTD
space lattice, and the Norton equivalent circuit "looking into" the FDTD lattice from this POfl.

From the Norton equivalent circuit standpoint, the excitation provided by the complete FDTD
lattice to this port can be distilled down to the action of the four immediately adjacent
H-components that loop around Ew ' Applying Ampere's law, the total Norton current INCt)
is obtained from these looping H-components by implementing the closed contour integral

INCt) = f H(t) ·dr
r

(15.86)

where the contour r bounds the space-cell cross section A where the circuit port is embedded.
For example, the following expressions implement (15.86) for the three possible Cartesian
orientations of IN(t) within a cubic space cell:

(l5.87a)

I In+1/2 =
)' i,j,k

(H In+1/2 _ H In+1/2 H In+1/2 _ H In+1/2 )
x i.j.k+1/2 x i.j.k-1/2 + z i-1/2,j,k z i+1/2,j,k ~ (l5.87b)

In+1/2 _ (H In+1/2 _ HIn+1/2 In+1I2 In+1/2)
I z i.j,k - x i.j-1/2,k x i,j+II2,k + H)' i+1/2,j,k - H)' i-II2,i,k ~ (l5.87c)

From Fig. 15.16, we note that [N(t) sources two currents flowing in parallel through the
space cell, the displacement current Id, (t) and the port current I Ct)·

ISP pon '

(15.88)
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From Chapter 5, Section 5.4.4, JdiS/t) can be related to the voltage across the space cell
[which equals the voltage VpOI1 (t) across the embedded circuit port] as

J
diSP

(t) ;:: (15.89a)

where, adapting (5.21), we define an intrinsic lattice space-cell capacitance

that provides the Norton equivalent admittance in our model. In fact, we designate this
capacitance as eN" Substituting (15.89) into (15.88), we obtain

(15.90)

where fpon(Vpon) is the known (possibly nonlinear) current-voltage characteristic of the circuit
port.

We see that (15.90) is merely a statement of Kirchhoff's current law applied to the circuit of
Fig. 15.16. If this equation could be integrated in time to evolve V (I), then it would be apan
simple matter to obtain the corresponding E-field across the cell containing the circuit port, since

(15.91)

This would complete the updating of all of the E-fields in the space lattice, since for all cells
where circuit ports are not present, the E-fields are updated by the conventional Yee algorithm.
Subsequently, all of the H-fields in the lattice could be updated according to the standard Yee
algorithm, and the complete cycle would begin anew.

One possibility is to perform a direct time integration of (15.90) using a standard technique
such as the Runge-Kutta method. Specifically, we could start at time to and integrate to time
to + /)"t, assuming knowledge of V (to)' fN(t), and J (V):pan pan pan

'0 +AI

Vpon(to+/)"t) = Vpon(to) + ~ f {IN(t) - Ipon[Vpon(t)]}dt

N '0

(15.92)

However, as stated, this requires knowledge of I (V), a possibly complicated nonlinear
porI pon

function that may not be immediately available.
A potentially more fruitful approach [41] is to simply apply SPICE to model the complete

circuit of Fig. 15.16, including the contents of the embedded circuit. This strategy permits taking
advantage of SPICE's built-in algorithms for the integration of the large systems of ordinary
differential equations that arise in circuit analysis, as well as SPICE's versatile device library.
In this case, there would be no need to have knowledge of IporJVpon) , since this function would
arise naturally from the interconnection of the linear and nonlinear elements placed into the
SPICE model.
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For convenience, we now summarize the entire procedure, assuming a SPICE interface.
Starting at time to + /1t/2 with an assumed known H-field distribution everywhere in the lattice:

1. IN is computed at time to + /).t/2 using the H-fields circulating around the cell
containing the circuit port. Depending upon the orientation of the port, either
(l5.87a), (l5.87b), or (15.87c) is used for this step.

2. SPICE is used to model the circuit of Fig. 15.16, assuming as an excitation

INCto+ M/2) obtained in step 1. This updates VponCto) to VponCto + /).t), thereby
providing EwCto+!1t) from (15.91).

3. Using the normal Yee algorithm, the E-fields everywhere else in the space lattice

are updated to time to + /).t.

4. Using the normal Yee algorithm, the H-fields everywhere in the space lattice are
updated to time to + 3/).t /2, and the computation cycle of steps 1 to 3 is repeated.

The above technique is readily extended to model a multipart lumped-element network
embedded in the FDTD space lattice. Here, an equivalent circuit as shown in Fig. 15.16 is set up
at each of the network ports, wherein the Norton excitation IN(t) at each port is provided by the
local FDTD-calculated H-field components in the manner of (15.86). SPICE is then applied to
the entirety of the multipart network and its associated Norton equivalent driving circuits.
This yields updates for each port's associated Ew component, which are fed back to the FDTD
solver to permit subsequent updating of the H-fields in the usual Yee manner.

15.10.3 Thevenin Equivalent Circuit "Looking Into" the FDTD Space Lattice

Fig. 15.17 illustrates how we can define a Thevenin equivalent circuit "looking into" the FDTD
space lattice from the two-terminal port of an embedded circuit. We again assume that the port is
located in free space at the site of E ,a particular E , E , or E component in a cubic-cell latticew x y z .

Vl (t)
9

Ve(t)

+

Embedded circuit

Fig. 15.17 Schematic diagram of a two-terminal port of a circuit embedded in a single cell of the FDTD
space lattice, and the Thevenin equivalent circuit "looking into" the FDTD lattice from this
port.
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From the Thevenin equivalent circuit standpoint, the excitation provided by the complete FDTD

lattice to this port can be distilled down to the action of the four immediately adjacent single-cell

E-field loops that have E
w

along their common edge. The total Thevenin voltage Va(t) is the sum

of the loop-voltage contributions:

where

I 4

= - I V;ooP.;(t)
4 i=t

(15.93)

= 1,2,3,4 (15.94)

Here, Ii is the i'th cell-face E-field contour having E
w

along one of its edges. There are four such

contours. Further, with L; =J1o/1 being the inductance associated with the i'th contour,
we identify from (5.23) an intrinsic lattice space-cell inductance

L = J1 /1/4 = Llattice 0 - a (15.95)

that provides the Thevenin equivalent source impedance in our model. In fact, we designate this

inductance as La'
Having defined the Thevenin equivalent voltage source and source inductance of the FDTD

space lattice "seen" by the embedded circuit port, the remainder of the formulation is most easily
understood as a duality transformation of (15.90):

dIpon (1) [ ]
= La + Vporl [port (t)

dt
(15.96)

where Vpon (lPOrl) is the known (possibly nonlinear) voltage-current characteristic of the circuit

port. We see that (15.96) is merely a statement of Kirchhoff's voltage law applied to the circuit

of Fig. 15.]7. If this equation could be integrated in time to evolve J (t), then it would bepon
possible to evolve the corresponding In ·dr circulation around the circuit port, thereby

permitting updating E
w

from Ampere's law.

One approach is to perform a direct time integration of (15.96) using a standard technique

such as the Runge-Kutta method. Specifically, we could start at time to - /1t/2 and integrate to

time to + /1t/2, assuming knowledge of JponCto- /1tl2), Ve(t), and Vpon(lpon):

/0+ 61 /2

Ipon (to +/1t/2) = Jpon(to - /1t/2) +t f {~(t) - Vpon[Ipon(t)] }dt
e '0-61/2

(15.97)

However, just as for the case of the Norton equivalent circuit, a potentially more fruitful

approach is to apply SPICE to model the complete circuit of Fig. 15.17, including the contents of

the embedded circuit.
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For convenience, we now summarize the entire procedure, assuming a SPICE interface.
Starting at time to with an assumed known E-field distribution everywhere in the space lattice:

1. Va is computed at time to using (15.93) applied to the E-fields circulating around
the four cell-face loops having the circuit port as a common edge.

2. SPICE is used to model the circuit of Fig. 15.17 assuming as an excitation Ve(to)

obtained in step 1. This updates Ipon(to - I1t/2) to lpon(to + I1tl2); and hence from
Ampere's law, the In ·dr circulation at time to + MI2 around the circuit port.
The H-fields everywhere else in the lattice are updated to time to + 6.t12 using the
normal Yee algorithm.

3. Ew can now be updated from to to to + I1t using the In ·dr circulation around the
circuit port at time to + 6.t /2 obtained in step 2.

4. Using the normal Yee algorithm, the E-fields everywhere else in the lattice are
updated to time to + I1t, and the computation cycle of steps I to 3 is repeated.

The above technique is readily extended to model a multiport lumped-element network
embedded in the FDTD space lattice. Here. an equivalent circuit as shown in Fig. 15.17 is set up
at each of the network ports, wherein the Thevenin excitation Ve(t) at each port is provided by
the local FDTD-calculated E-field components in the manner of (15.93). SPICE is then applied
to the entirety of the multipart network and its associated Thevenin equivalent driving circuits.
This yields updates for each port's associated E.. component, which are fed back to the FDTD
solver to permit subsequent updating of the H-fields in the usual Yee manner.

15.11 CASE STUDY: A 6-GHz MESFET AMPLIFIER MODEL

This section discusses the application of the hybrid FDTD / lumped-circuit analysis of Section
] 5.10 to model a metal-semiconductor field-effect transistor (MESFET) used in a two-port,
common-source, 6-GHz amplifier. Both linear and nonlinear operation of the MESFET are
considered. Fig. 15.18(a) shows the mounting of the MESFET in a microstrip circuit. Here,
the MESFET is connected to the ground plane through vias at its source terminal.

15.11.1 Large-Signal Nonlinear Model

Following [42], Fig. 15.18(b) illustrates the large-signal model of the MESFET used in the
hybrid FDTD / lumped-circuit analysis. In this figure, the MESFET circuit model is enclosed by

a dashed box, while the Thevenin equivalent circuits outside of this box represent the action of
the FDTD space lattice located at the gate and drain terminals of the transistor. Internal nodes
G', D', and 5' represent the intrinsic part of the MESFET. This model contains two nonlinear
elements: the gate-source capacitor Cgs and the drain current source Ids' Governed by the
PN-junction capacitance model, the gate-source capacitor is expressed as

(15.98)
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Grounded vias

(a) Mounting of the packaged MESFET in a microstrip circuit. The transistor
is connected to the ground plane through vias at its source terminal.
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"e.g

..............................................................................................................................
: :· .
1 Lg Rg Cgd Rd Ld ! Le.d· .· .· .· .

+ Cds
vd

"e.d

· .
~ ;

Rg =0.50

Cds = 0.6 pF

Rs =0.70

Lg =0.05 nH

Rd =0.50
Ld::: 0.05 nH

Ri =1.00
Ls=O.lnH

Cdg =0.2 pF

(b) Large-signal model of the MESFET, combined with Thevenin
equivalent circuits for the FDTD space lattice at the gate and drain terminals.

Fig. 15.18 MESFET transistor used in the FDTD model of a common-source amplifier. Source: Kuo
et al.. IEEE Trans. Microwave Theory and Techniques. 1997. pp. 819-826, © 1997 IEEE.
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In (15.98), C
gSO

= 3 pf and tPbi =0.7V for the transistor of interest. The transistor drain current
source IdS' describing its dc characteristics, relates to vg and vd as

(15.99)

where Ao=0.5304, A I =0.2595, A 2 =-0.0542, A 3 =-0.0305. and a = 1.0. Fig. 15.19 plots the
transistor's dc characteristics.

500
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VGs=-0.4
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E--CIl
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100
VGs=-1.6
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0
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VDS ( Volts)

Fig. 15.19 DC characteristics of the MESFET transistor used in the 6-GHz amplifier case study. Source:
Kuo et al., IEEE Trans. Microwave Theory and Techniques, 1997, pp. 819-826. © 1997 IEEE.

15.11.2 Amplifier Configuration

Fig. 15.20 shows the structure and dimensions of the 6-GHz MESFET amplifier used in our case
study. This amplifier contains the MESFET having the electrical characteristics described in
Section 15.11.1. We note that the physical size of the MESFET (approximately 2.0 mm) is much
smaller than the guided wavelength at 6 GHz. A PEe box is used to model the packaging
structure. There are two rectangular holes at the input I output ports for feeding dc power from
the sources Vgg and Vdd , each with a source impedance of 50n. The biasing conditions chosen
are V

GS
= -0.81V and VDS = 6.4V.

The FDTD computation domain is a uniform space lattice of dimensions 74 x 40 x 128
cells with ~ =Llz =0.254 mm (10 mil) and ~y =0.197 mm (7.75 mil). Higdon's second-order
ABC is applied at the lattice truncation to absorb outgoing waves.
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Fig. 15.20 Structure and dimensions of the common-source 6-GHz MESFET amplifier used in the case
study. Source: Kuo et al., IEEE Trans. Microwave Theory and Techniques, 1997,
pp, 819-826, © 1997 IEEE.

15.11.3 Analysis of the Circuit without the Packaging Structure

Linear Small-Signal Case

The FDTD model is first applied to obtain the small-signal response of the amplifier of
Fig. 15.20 without the packaging box [42]. Here, a Gaussian pulse modulating a 6-GHz carrier
is used as the input to the FDTD MESFET circuit model shown in Fig. 15.18(b). The signal
amplitude is small enough to allow the circuit to operate in the linear region.

Fig. 15.2 I compares the FDTD-computed 5 parameters with results obtained using the
Hewlett-Packard MDS circuit simulator. In this figure, the dip of SII (the impedance-matched
condition) in the FDTD simulation is at 5.58 GHz, 7% below that of the HP MDS simulation.
This difference may result from a different modeling of the vias at the source port in the two
simulations. The frequency of the S II dip is sensitive to the effective inductance of the vias,
which causes a series-feedback effect. In the HP MDS simulation, the frequency of the 5 11 dip
decreases as the inductance of the vias decreases, approaching the FDTD value.

Nonlinear Large-Signal Case, Harmonic Generation

Fig. 15.22 compares the FDTD- and MDS-calculated output power at the 6-GHz fundamental
frequency, the 12-GHz second-harmonic, and the 18-GHz third-harmonic as a function of the
input power for a single-tone excitation [42]. Very good agreement is observed.
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Fig. 15.21 Small-signal response of the common-source 6-GHz MESFET amplifier of Fig. 15.20 without
the packaging box. Source: Kuo et aI., IEEE Trans. Microwave Theory and Techniques. 1997,
pp. 819-826, © 1997 IEEE.
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Fig. 15.22 Large-signal harmonic generation of the 6-GHz MESFET amplifier of Fig. 15.20 without the
packaging box. Source: Kuo et aI., IEEE Trans. Microwave Theory and Techniques, 1997,
pp. 819-826, © 1997 IEEE.
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Nonlinear Large-Signal Case, lntermodulation Product Generation

Next, we review the calculation of intermodulation due to a two-tone, equal-input power
excitation at 3 and 6 GHz. The output power appears only at the mixing frequencies,
or intermodulation products, which arise as linear combinations of 3 and 6 GHz. Fig. 15.23
compares the FDTD- and MDS-calculated intermodulation products as a function of the input
power [42]. Again, good agreement is observed.
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Fig. 15.23 Large-signal intermodulation product generation of the 6-GHz MESFET amplifier of
Fig. 15.20 without the packaging box. Source: Kuo et aI., IEEE Trans. Microwave Theory and
Techniques, 1997, pp. 819-826, © 1997 IEEE.

15.11.4 Analysis of the Circuit with the Packaging Structure

The FDTD simulation of the microwave amplifier permits a detailed evaluation of the effects of
its packaging simply by properly locating the package geometry and materials in the space
lattice. Such an evaluation is beyond the capability of many existing microwave circuit
simulators, but can be readily accomplished using the extended FDTD method discussed in this
chapter. Physically, the packaging structure forms a partially dielectric-filled cavity. Excited by
the circuit, the cavity stores energy due to its natural resonances, and the stored energy is
inevitably coupled back to the circuit. For a nonlinear active circuit, this feedback makes the
stability circles shift, and may result in oscillation. To illustrate this phenomenon, we first
consider the example of our MESFET circuit contained within a PEe box of dimensions
39.6 x 4.7 x 31.8 mm (l ,560 x 186 x 1,250 mil). The first resonant frequency of this box is
found to be at 5.72 GHz by an FDTD presimulation of a packaged uniform microstrip line.
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Fig. 15.24 Spectrum of the output power for a small-signal exciting the initial packaged MESFET
amplifier, showing the circuit oscillating after being placed in the packaging structure. Source:
Kuo et al., IEEE Trans. Microwave Theory and Techniques, 1997, pp. 819-826, © 1997 IEEE.

Fig. 15.24 shows the results of FDTD calculations indicating that this packaging interacts
strongly with the circuit and causes oscillation at the resonant frequency [42]. Here, a very-Iow
level input Gaussian pulse modulating a 6-GHz carrier (close to the center frequency of the
amplifier) generates a much larger output power than warranted by the nominal amplifier gain.
In fact, this indicates the presence of essentially unlimited gain at the amplifier center frequency,
and thus a condition of potential instability leading to self-oscillation.

In order to avoid instability, the dimensions of the packaging structure are usually chosen
such that its resonant frequency is raised well above the frequency range of interest. To explore
this possibility, we now consider a second packaging example for our MESFET circuit, where
the dimensions of the enclosing PEe box are reduced to 16.3 x 4.7 x 17.5 mm (640 x 186 x 690
mil) [42]. This elevates the FDTD-calculated first resonant frequency to 11.79 GHz, rendering
the packaged circuit electrically stable.

Fig. 15.25 shows the effect of the modified packaging upon the small-signal 5-parameters of
our MESFET amplifier. In this case, the frequency of the FDTD-ca1culated match point remains
at 5.58 GHz, but the magnitude of 5 11 drops from -8.98 to -10.07 dB, while the amplifier gain
5 at 6 GHz rises from 10.95 to 11.76 dB.

21

Fig. 15.26 illustrates the effect of the packaging on the output power at the fundamental,
second-harmonic, and third-harmonic frequencies for a large-signal, single-tone input at 6 GHz.
The resonant frequency of the package is close to that of the second harmonic at 12 GHz.
Therefore, package energy is coupled strongly to the second harmonic, and its output-power
curve varies more significantly than the others.
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Overall, this case study demonstrates that the extended FDTD I electronic-circuit modeling
technique discussed in this chapter is capable of providing accurate and useful information
regarding the operation of active, nonlinear microwave circuits of realistic complexity.
While the example discussed in this section focuses on an analog circuit, it should be clear that
digital circuits can be simulated as well by this approach.

15.12 EMERGING TOPIC: WIRELESS IDGH-SPEED DIGITAL INTERCONNECTS
USING DEFECT-MODE ELECTROMAGNETIC BANDGAP WAVEGUIDES

As computer clock rates continue to rise in the microwave frequency range above 3 GHz,
problems with signal integrity, cross-coupling, and radiation will eventually render useless the
baseband metal-strip circuit-board interconnects that have been employed since the 19405.
While replacing metal strips with optical fibers would solve the problem, the required
incorporation of optoelectronics would represent a revolution in both chip-making and
interconnect technologies.

This section summarizes work reported in [43, 44J, which proposes an alternate solution to
the digital-interconnect problem: . bandpass wireless interconnects implemented using "defect
mode" electromagnetic bandgap (EBG) waveguides [45-48].3 (See also Chapter 16, Section
16.14.) The EBG structures studied in [43,44] are dimensionally scaled to operate at center
frequencies of 10 and 50 GHz. These structures are simply square arrays of copper via pins
embedded either in free space or in circuit-board dielectric material. One or more rows of pins
are removed to create a linear waveguide. Operation at higher center frequencies well above 100
GHz is conceptually feasible because of the recent development of silicon transistors having
gain-bandwidths above I THz [49]. Relative to metal strips or optical fibers, such millimeter
wave EBG waveguides would have the following advantages when used for board-level digital
interconnects:

• Sufficient high-quality bandwidth (Le., with flat transmission magnitude, linear
phase shift, and broadband impedance matching to available loads) to support
computer processors clocked up to 30 GHz;

• Construction using evolutionary extensions of existing circuit-board and
connector technologies;

• Low copper loss;

• Little signal distortion, coupling, and radiation, even at right-angle bends;

• Nearly speed-of-light signal transmission via the usage of low-permittivity
dielectric media.

3In the 1990s, the photonics community was the first to develop engineering applications of EBG structures.
Hence, the tenns "photonic bandgap" (PBG) and "photonic crystal" (PC) came into wide use. Photonics
applications of EBG structures having point or linear defects include low-loss dielectric or semiconductor
waveguides and cavities for optical interconnects, couplers, filters, and lasers. At present, interest in
applying ESG concepts is rapidly increasing in the microwave and millimeter-wave community. In fact,
the growth in radio-frequency applications has caused the tenn "PBG" to be generalized to "EBG" in the
electrical engineering literature. Here, EBG concepts are being adapted to impose frequency-selective
behavior upon familiar baseband metal signal paths such as microstrip lines and coplanar striplines.



732 Computational Electrodynamics: The Finite-Difference Time-Domain Method

15.12.1 Stopband of the Defect-Free Two-Dimensional EBG Structure

Following [43], we first review the application of FDTD modeling to calculate the stopband of
defect-free two-dimensional EBG structures employing uniform square arrays of copper pins in
free space. Here, referring to Fig. 15.27, numerical experiments involved simulations of the
electromagnetic field transmission through these structures for an impulsive, normally incident,
E-polarized plane wave (electric field parallel to the copper pins). Many combinations of pin
radius rand center-to-center pin spacing a were tested to obtain the maximum possible spectral
width of the EBG stopband, in combination with the maximum possible transmission bandwidth
of a linear defect-mode waveguide having a desired center frequency of 10 GHz.

In all of the simulations, a standard two-dimensional TM
z

FDTD code was implemented on
a uniform Cartesian grid using square space cells of size Li = 0.48 mm. This cell size was found
to yield numerically converged results relative to rendering the geometry of the array of copper
pins comprising the EBG structure.

• • • • • • • • • • •
• • • • • • • • • • •

E;nc0 • • • • • • • • • • •
~ • • • • • • • • • • •

H;nc • • • • • • • • • • •
Observation planes for

calculating the stopband

Fig. 15.27 Geometry of the two-dimensional defect-free EBG structure modeled using FDTD.

Fig. 15.28 shows the FDTD-calculated stopband observed two, three, and four rows deep
within the EBG structure for the nearly optimum case r =1.7 mm and a =9.7 rnm. We see that
the stopband extends from dc to approximately 14.1 GHz. In our subsequent discussion,
we shall take 14.1 GHz as the upper limit of the permissible passband of the EBG structure with
a waveguiding defect, since above this frequency the field confinement is lost.

15.12.2 Passband of the Two-Dimensional EBG Structure with Waveguiding Defect

Reference [43] then reported FDTD modeling results for the transmission characteristics of
waveguiding defects created in the EBG geometry of Fig. 15.27. Either one row of pins was
deleted from an approximately optimum EBG structure in air having initially five rows in the
lateral direction, or two rows of pins were deleted from an EBG structure having initially six
rows in the lateral direction.



Chapter 15: High-Speed Electronic Circuits with Active and Nonlinear Components 733

0

-20

CO -40
~
c
0
'(jj

-60(/)

'E
(/)
c
<tl -80~

I-

-100

-120
4 rows deep

Upper stopband limit -----:

6 8 10 12 14

Frequency (GHz)

Fig. 15.28 FDTD-calculated magnitude (E-polarization case) of the electric-field transmission transfer
function through the first two, three, and four rows of metal pins of the EBG structure
illustrated in Fig. 15.27 for the nearly optimum parameters pin radius r =1,7 mm and center-to
center spacing a = 9.7 mm. Source: Simpson et al., IEEE Microwave and Wireless
Components Lett., 2004, pp. 343-345, © 2004 IEEE.

For each waveguiding defect, FDTD was applied to calculate the magnitude and phase of
the electric field transmission characteristic over a 45-cm longitudinal span along the center axis
of the waveguide. Defining the usable transmission bandwidth as the frequency span over which

the transmission magnitude variations are less than ±l dB, the transmission bandwidth for the
single-row waveguiding defect was calculated to be 55% (6.1 GHz) centered about 10 GHz,
and 85% (8.7 GHz) for the double-row waveguiding defect. Further analysis indicated that the

phase of the electric field transmission characteristic corresponding to the single-row
waveguiding defect is linear to within ±1.8°/GHz over the full passband, and to within
±1.1 0 /GHz for the double-row waveguiding defect. The latter is therefore preferable from the
standpoint of bandwidth and phase linearity.

To examine the possibility of multimoding in the double-row waveguiding defect [48],

[43] reported additional numerical experiments that transversely offset the source distribution

within the defect. These experiments indicated little (if any) evidence of odd-mode generation.
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15.12.3 Laboratory Experiments and Supporting FDTD Modeling

Based upon the optimizations determined with the two-dimensional FDTD modeling, [43,44]
reported laboratory measurements and supporting three-dimensional FDTD modeling of
prototype EBG waveguiding structures with linear double-row defects. These structures were
realized using double-sided circuit board having either standard FR4 or low-loss Rogers 5880
as the dielectric material. Copper vias electrically bonded to the upper and lower ground planes
served to implement the rows of EBG pins. The waveguides were dimensionally scaled to
operate at a center frequency of 10 GHz [43] and 50 GHz [44]. These structures were coupled to
input and output coaxial lines via short probes extending transversely across the gap between the
upper and lower ground planes, and bonded to the opposing ground plane.

Fig. 15.29 is a photo of one of the 50 GHz test EBG waveguiding structures [44]. (See Fig.
1.6 of Chapter 1 for color visualizations corresponding to the FDTD modeling and laboratory
measurements of this device.) This structure spans 8.6 cm between the input and output probes,
0.76 mm between the upper and lower ground planes, and 3.9 mm between the rows of vias
bordering the waveguiding defect. A second structure identical to that of Fig. 15.29, but
spanning 12.7 cm between the input and output probes, was also constructed to isolate and
measure the dielectric loss. Because the radius and spacing of the copper pins scale inversely
with frequency and with the dielectric constant of the circuit-board material, the pins of the test
structure have a radius r = 0.23 mm and a center-to-center separation a = 1.3 mm. Note that the
waveguide is bounded on all sides by the EBG structure, thereby representing a closed cavity.

Fig. 15.29 Photograph of the FDTD-designed laboratory test structure for the wireless digital interconnect
using EBG technology, achieving a measured 42-GHz bandwidth (28 to 70 GHz). Coaxial
connectors are probe-coupled to a linear, double-row-defect, EBG waveguide. Source:
Simpson et a!., Proc. IEEE Antennas and Propagation Society IntI. Symp., © 2005 IEEE.

Fig. 15.30 shows the measured results for the insertion loss of the waveguiding structure of
Fig. 15.29. A standard Agilent microwave network analyzer having 50n nominal source and
load impedances was used in these measurements. We see that there exists a sharp transition
from a stopband of at least -65 dB to the passband above approximately 28 GHz. This passband
extends to approximately 70 GHz with a gain flatness of ±1.5 dB. This result supports the basic
concept that an approximate 85% fractional bandwidth is feasible using double-row defect EBG
structures, and also that such structures can be scaled in a straightforward manner to higher
center frequencies.
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Fig. 15.30 Comparison of FDTD-calculated and measured results for the transmission of the prototype
double-row EBG waveguide shown in Fig, 15.29. Source: Simpson et aI., Proc. IEEE
Antennas and Propagation Society Inti. Symp., © 2005 IEEE.

Fig. 15.30 shows that the total insertion loss at midband (50 GHz) of the 8.6-cm-long
waveguiding defect is 4 dB. Comparison of this result with that of an identical 12.7-cm-Iong
waveguiding defect indicates that approximately 2 dB of the 4-dB total loss is caused by the

propagation attenuation due to the Rogers 5880 dielectric. Subtracting this dielectric loss from
the total insertion loss yields a coupling loss of only approximately I dB at each coaxial
transition. This indicates the possibility of excellent broadband matching into the waveguiding
defect using simple thin metal probes.

Overall, the results summarized in this section demonstrate the utility of FDTD modeling in
designing a novel wireless digital interconnect technology which employs linear defects in
electromagnetic bandgap structures as uItrawideband waveguides. This technology has the
following desirable features:

• Ultrawideband (greater than 80%) relative bandwidth;

• Compatibility with existing circuit-board technology;

• Excellent stopband. insertion-loss, and impedance-matching characteristics;

• Negligible crosstalk and radiation.
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If a low-permittivity, low-loss dielectric medium such as an aerogel can be used for the
insulating layers within a circuit board comprising the EBG structure, the following additional
advantages would accrue:

• High-characteristic-impedance operation, thereby reducing copper losses relative
to conventional 50n striplines;

• Signal velocities potentially approaching the free-space speed of light.

Laboratory measurements conducted at both 10- and 50-GHz center frequencies have shown
very good agreement with the FDTD design predictions. Assuming the availability of suitable
low-loss dielectrics to serve as insulating layers within the circuit boards, this technology will
ultimately be scalable to millimeter-wave center frequencies well above 100 GHz, thereby
leveraging emerging terahertz silicon transistor technology. Then, the wireless interconnects
discussed herein would be capable of supporting digital data rates in the hundreds of gigabits per
second, adequate for the elevated computer clock rates expected over the next decade.

15.13 SUMMARY AND CONCLUSIONS

This chapter summarized several key aspects of the formulation and application of FDTD for
modeling contemporary high-speed digital and microwave circuits, including those having active
and nonlinear components. Topics reviewed included:

• Processing FDTD-computed E- and H-fields in a TEM transmission-line system
to obtain the line's characteristic impedance, propagation constant, load
impedance, S-parameters, differential capacitance, and differential inductance;

• Processing FDTD-computed E- and H-fields in a TEM transmission-line system
to obtain the equivalent series lumped inductance due to a discontinuity in the
signal or ground-return paths;

• Processing FDTD-computed E - and H -fields to obtain the equivalent series
lumped inductance of a complex power-distribution system in a high-speed
digital-circuit module;

• FDTD modeling of parallel coplanar microstrips;

• FDTD modeling of early-time and late-time coupling modes in a realistic
multilayered interconnect module in a high-speed digital circuit;

• S-parameter extraction from FDTD models of general waveguides that support a
superposition of propagating and evanescent modes;

• Digital signal processing and spectrum-estimation techniques for extrapolating
time-windowed FDTD impulse responses;

• Modeling of linear and nonlinear lumped circuit elements embedded within a
single unit cell of the FDTD space lattice, including: resistors, resistive voltage
sources, capacitors, inductors, general two-terminal linear lumped networks
(containing arbitrary combinations of resistors, capacitors, and inductors), diodes,
and bipolar junction transistors;
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• Direct linking of FDTD and SPICE via Norton and Thevenin equivalent circuits
"looking into" the FDTD space lattice, thereby enabling the coupling of FDTD
electromagnetic wave simulations with SPICE circuit models of arbitrary linear
and nonlinear components and subsystems;

• A case study involving the hybrid FDTD I circuit modeling of a 6-GHz
microstrip MESFET amplifier for small-signal S-parameters, large-signal
harmonic and intermodulation generation, and the potentially destabilizing effects
of the amplifier packaging;

• An emerging wireless high-speed digital-interconnect technology involving
defect-mode electromagnetic bandgap waveguides, wherein FDTD modeling has
been crucial from the initial concept to the design of laboratory prototypes.

We conclude that recent progress in the FDTD method has made it possible to analyze many
high-speed digital and microwave circuits of engineering interest in their complete form using
full-wave electromagnetic field computations, and accounting for relevant circuit nonlinearities.
A self-consistent interface with SPICE and related circuit solvers is feasible. In the future,
this interfacing of FDTD and SPICE may help to unify the electromagnetics and circuit-analysis
disciplines within electrical engineering. Overall, FDTD can provide ultrawideband modeling of
linear and nonlinear devices and circuits with a single simulation run. FDTD is straightforward,
robust, and physically appealing. Given these attributes, FDTD modeling of microwave and
digital circuits will likely become widely used in industry as the capabilities of workstations and
personal computers improve from year to year.
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PROJECTS

PI5.I Construct a three-dimensional Cartesian FDTD code with a simple first-order Mur
ABC. This will be used as a tool in a number of subsequent exercises. Model a son
micros trip transmission line, making sure that there is ample clearance between the
microstrip and the edges of the PEe ground plane, and similar clearance between the
edges of the ground plane and the ABC. Excite the line by pulsing collinear E-field
components located between the ground plane and the metal trace. Set up a subroutine
to implement DFTs of the incident and reflected pulses in the line. Check to see that the
model is working by using a single-space-cell resistive block to terminate the trace to
ground with son, 100.0, and 250. For these cases, observe the time-domain reflected
pulses and compare to the simple analytical theory. Calculate the frequency-domain
reflection coefficient and compare with the theory.

PI5.2 Using the method of Section 15.2.1, obtain ZoCw) and y(w) for the microstrip of P15.1
and compare with the analytical theory.

PIS.3 Using the method of Section 15.2.2, obtain ZL(W) when the micros trip is terminated in
the three loads tested in PIS. I. Locate the observation point 20 space lattice cells from
the load in each case.

PI5.4 Using the methods of Sections 15.2.4 and 15.2.5, calculate the differential capacitance
and differential inductance of the microstrip. Compare with the analytical theory.

PI5.5 Introduce a thin slot (air gap) in the ground plane under the microstrip. Use the flux /
current method of Section 15.3.1 to calculate the equivalent lumped series inductance
due to the slot, and compare with the differential inductance obtained in PI5.4.

PI5.6 Repeat PI5.5, but use the impedance-fitting method of Section 15.3.2. Examine the
sensitivity of the answer to the location of the observation plane.
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PIS.? Construct a one-dimensional FDTD code that models the impulsive illumination of a
finite-thickness dielectric slab of high permittivity. Choose the slab thickness and
dielectric constant so that more than 10,000 time-steps are required for the transmitted
impulse response to decay essentially to zero. Use DFTs to calculate and graph 521 (w).

P15.8 Repeat PI5.7, but apply Prony's method of Section 15.8.1 to extrapolate the transmitted
wavefonn. Window the FDTD data for only about 1,000 time-steps, beginning after the
transmitted wave unambiguously begins to decay. Compare the extrapolated waveform
and the corresponding 521 «(0) with that obtained with the full-term FDTD computation
ofPI5.7.

PI5.9 Repeat PIS. I , but use the resistive load and resistive voltage source models of Sections
15.9.2 and 15.9.3 to excite and terminate the microstrip.

PI5.l0 Repeat PI5.9, but use the numerical capacitor load of Section 15.9.4 to terminate the
microstrip. Replicate the results of Fig. 15.10.

PI5.II Repeat PI5.9, but use the numerical diode load of Section 15.9.7 to terminate the
microstrip. Replicate the results of Fig. 15.13.



Chapter 16

Photonics

Geoffrey Burr, Susan Hagness, and Allen Taflove

16.1 INTRODUCTION

Recently, there has been a pronounced expansion in the application of FDTD and related
pseudospectral time-domain (PSTD) computational techniques to simulate man-made and
natural structures at optical wavelengths. This expansion is being driven by the worldwide
emergence of interest in lightwave communications and computing, nanometer-scale technology,
and biomedical applications of light. While one word, photonics, serves to describe the totality
of this field, we realize that the various component technologies are simultaneously disparate and
yet linked strongly together via the elegant unification posed by Maxwell's equations. FDTD
and PSTD can put Maxwell's equations to work across a wide range of photonics technologies.

This chapter reviews applications of FDTD and PSTD techniques to photonics in six distinct
areas: (I) index-contrast guided-wave structures, especially waveguides and microcavity ring,
racetrack, and disk resonators; (2) distributed Bragg reflector devices; (3) photonic crystals;
(4) frequency conversion in second-order nonlinear materials; (5) nanoplasmonic devices; and
(6) biophotonics. Almost 300 references are provided to assist the reader in exploring further
how FDTD and PSTD computational models are assisting in the development of these areas.

16.2 INTRODUCTION TO INDEX·CONTRAST GUIDED-WAVE STRUCTURES

Advances in nanofabrication techniques permit optical structures with physical dimensions on
the order of the optical wavelength to be used as components in high-density photonic integrated
circuits. Such components include waveguides, couplers, filters, multiplexers, switches, and
lasers [1-4]. Micro-optical structures can be categorized into the following two groups, based on
the physical mechanism by which they confine light [5]:

• Group 1: Confinement by refractive-index contrast, leading to total internal
reflection as in whispering-gallery-mode (WGM) disk cavities;

• Group 2: Confinement by multiple wave reflections within periodic structures,
as in vertical-cavity surface-emitting lasers (VCSELs) and photonic crystals.

The next four sections of this chapter review FDTD applications to index-contrast guided-wave
structures, especially optical waveguides and microcavity ring, racetrack, and disk resonators.
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16.3 FDTD MODELING ISSUES

The FDTD method permits accurate analysis of the complex electromagnetic wave phenomena
inherent in the operation of index-contrast guided-wave structures. This section introduces basic
issues related to FDTD modeling of such structures.

16.3.1 Optical Waveguides

The submicron width and large refractive index contrast of waveguides commonly found in
micron-scale integrated optical devices leads to significant waveguide dispersion. The relatively
strong dependence of the waveguide propagation constant upon frequency impacts several key
design parameters for microcavity resonators composed of such waveguides, including their Q
and the free spectral range (FSR), defined as the spacing in frequency or wavelength between
adjacent resonances. Accurate FDTD modeling of highly dispersive waveguides requires careful
consideration of two important issues:

• How to terminate waveguides that extend beyond the lattice boundaries;

• How to source specific waveguide modes for the case of pulsed excitation.

The accuracy of the FDTD method for problems in linear optics was first demonstrated for
the directional coupler [6]. Since then, Berenger's PML ABC [7] has provided the increased
computational dynamic range required for sensitive numerical simulations, such as the analysis
of antireflection coatings [8]. Of particular importance here is the demonstration in [9) that
multimodal and dispersive waveguiding structures extending beyond the edges of the FDTD
space lattice can be terminated accurately by the PML ABC, with reflection coefficients below
-75 dB for a wide range of group velocities.

Consider a dielectric slab waveguide and its TE optical modes. Sourcing the numerical
analog of a propagating TE mode is accomplished by specifying an electric field distribution
along a one-dimensional transverse cross section of the waveguide. For the case of sinusoidal
excitation, the transverse field distribution of the desired guided mode is obtained by numerically
solving a determinant equation for the transverse propagation constant and decay constants. For
example, given the refractive indexes of the core and cladding layers, the dispersion relations for
the various waveguide modes can be computed [10]. With these data, the longitudinal
propagation constant f3 corresponding to the desired frequency of excitation and mode number is
selected, and used to calculate the transverse propagation constant and decay constants.

The case of a pulsed source, such as a Gaussian pulse modulating a carrier wave, poses more
of a challenge. Even if the frequency spectrum of the pulse is narrow enough and the carrier
frequency is low enough to allow only the fundamental mode to propagate, there still exists a
spread of f3 values along the fundamental mode dispersion curve corresponding to the spread of
frequencies of interest, as illustrated in Fig. 16.1.

In this case, the transverse mode profile for the pulse can be approximated using the value of
f3 at the carrier frequency. The fact that the transverse distribution of the source is not exact for
all frequencies in the pulse spectrum means that a small amount of energy is shed from the
waveguide early in the FDTD simulation. The accuracy of simulations in which the waveguide
is immediately surrounded by the PML ABC is not affected by this shed energy. However, shed
energy from the waveguide could interact with other structures in the grid, thereby introducing
unwanted noise into the computation. This should be carefully examined.
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Fig. 16.1 Excitation spectrum (dotted line) superimposed on the waveguide dispersion relations (solid
lines) for the first three TE modes of a symmetric. strongly guiding dielectric slab waveguide.
The index of refraction n for the O.3-llm-wide core is 3.2; for the cladding layers, n ::: 1.0.

An effective solution to this problem is to use "bootstrapping"; that is. to perform a
preliminary FDTD simulation of a sufficiently long version of the waveguide, and store the time
history of the transverse E-field distribution as the pulse passes an observation plane at the far
end of the lattice. The stored data are used as the waveguide source excitation in all subsequent
simulations. The level of numerical noise introduced into the grid from this bootstrapped source
is very low, comparable to that arising from reflections at the PML ABC.

The accuracy of the FDTD method for modeling propagating waveguide modes is now
demonstrated in a sample computation of the longitudinal propagation constant f3 and the group
velocity v of a strongly guiding planar waveguide. Here, the waveguide consists of a 0.3-llIn-

g
wide core of high refractive index (n =3.2) having low-refractive-index (n =1.0) cladding on
both sides. The PML ABC is used to terminate the waveguide in the lattice. Since the only
structure in this simulation is the straight waveguide. a bootstrapped source is not required,
and the inexact mode profile for the pulsed source of the waveguide is used. (Any energy shed
from the waveguide is absorbed by the PML ABC.) The waveguide must simply be made long
enough to ensure that the mode has settled down before recording any data.

A single 20-fs Gaussian pulse modulating a carrier of frequency fo=2.0 x 10 14 Hz is
launched at one end of the grid. using the fundamental (m =0) mode profile computed for fo'

Fig. 16.1 shows the source spectrum superimposed on the normalized waveguide dispersion
curves for the first three TE modes. At fo, this waveguide can support only the m =0 mode,
which has spatially even symmetry about the longitudinal axis of the waveguide. and the m = I
mode, which has odd symmetry. Because the numerical excitation has even symmetry.
it generates only the m =0 mode. At the far end of the grid, two fixed observation points located
along the longitudinal axis of the core record E-field data as the pulse passes. By taking the ralio
of the DFTs of the two time histories, f3 is computed over the full bandwidth of the pulse.
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Fig. 16.2(a) compares the FDTD-computed f3 as a function of frequency with the exact
denormalized dispersion curve. Fig. 16.2(b) compares the corresponding FDTD-computed and
exact variations of vg with frequency. Here, vg is computed from the numerical data for f3 using a
second-order-accurate central-difference approximation to the derivative. The error in f3 at fa is
less than 0.2% at a grid resolution of 13.6 nm. Similar accuracy is obtained for v
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Fig. 16.2 Comparison of FDTD-computed and theoretical values for properties of the fundamental TE
mode propagating in the strongly guiding dielectric-slab waveguide characterized in Fig. 16.1.
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16.3.2 Material Dispersion and Nonlinearities

To fully treat the broadband behavior of integrated optical devices, the effect of material
dispersion should be included in the FDTD calculations. Over the past several years, a number
of different methods have been proposed to account for material dispersion with absorption.
These include recursive-convolution (RC) methods that implement a discrete convolution of the
dispersion relation [11,12], auxiliary differential equation (ADE) methods that discretize a
differential equation obtained from the relevant constitutive relation [13, 14], and Z-transform
methods based on digital signal processing techniques [15].

Additional extensions to the ADE and Z-transform methods have enabled the modeling of
X(2l and X(3l nonlinear optical materials [16-19]. With this advent, the range of FDTD modeling
applications has been substantially expanded to include temporal and spatial soliton propagation
(16, 18-21], self-focusing of optical beams [17], scattering from linear-nonlinear interfaces [22],
pulse propagation through nonlinear corrugated waveguides [23], pulse-selective behavior in
nonlinear Fabry-Perot cavities [24], and nonlinear second-harmonic generation [18].

FDTD algorithms for modeling optical gain media on a macroscopic level have also been
reported [25, 26]. Advances in modeling the interaction of light with optical materials on a
microscopic level have enabled the modeling of ultrafast pulse interactions with two-level atoms
[27] and lasing by four-level atoms [28,29]. See Chapter 9 for details of FDTD algorithms used
to model a broad range of nonlinear, dispersive, and gain materials.

16.4 LATERALLY COUPLED MICROCAVITY RING RESONATORS

This section reviews the use of the FDTD method for modeling laterally coupled microcavity
ring resonators. Such devices are useful components for wavelength filtering, routing, switching,
modulation, and multiplexing/ demultiplexing applications [30]. The quality of a resonator
for optical communications is measured by its: (1) FSR, or wavelength spacing between
adjacent resonances; (2) finesse, or ratio of the FSR to the width of the resonance; and
(3) extinction ratio, or the ratio of the transmission at resonance to the off-resonance

transmission.
The ideal resonator for a wavelength-division multiplexing (WDM) system has a wide FSR

and a high finesse to accommodate many channels, high on-resonance transmission to minimize
insertion loss, and a large extinction ratio to minimize crosstalk. A resonator having an FSR
greater than 30 nm is desirable for accommodating the WDM channels within the erbium
amplifier communications window.

To achieve a large FSR, the diameter of the ring (or disk, as discussed in Section 16.5) must
be just a few microns. Semiconductor ring and disk resonators based on high-jndex-contrast,
strongly guiding waveguides can be designed with diameters as small as 1 to 2 11m with
negligible bending loss. Current nanofabrication techniques permit the realization of such
resonators coupled to submicron-width waveguides across submicron air gaps via evanescent
waves [1, 31]. For example, Fig. 16.3 shows scanning electron microscope images of 10.5-11m
diameter AIGaAs/GaAs microcavity ring and disk resonators laterally coupled to O.S-llm-wide
waveguides across 100-nm air gaps.
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Fig. 16.3 Scanning electron microscope images of IO.5-11m-diameter AIGaAs / GaAs ring and disk
resonators laterally coupled to O.5-11m-wide waveguides across IOO-nm air gaps. Source:
Rafizadeh et aI., Optics Letters, 1997, pp. 1244-1246.

16.4.1 Modeling Considerations: Two-Dimensional FDTD Simulations

The resonator geometries of Fig. 16.3 are clearly three dimensional. In the vertical direction,
each semiconductor waveguide consists of a 0.45-11m-thick GaAs guiding layer with AIGaAs
cladding layers above and below. Strong lateral confinement is achieved by etching air-filled
trenches down through the lower cladding layer. Confinement in the vertical direction is
deliberately weak to allow optical coupling from an external fiber or planar-emitting device.
To conserve computer resources, two-dimensional FDTO models can be applied. In these
models, the vertical waveguide thickness and inhomogeneous material composition is accounted
for by computing the effective refractive index neff for the fundamental mode at A =1.5 !Lm, and
then using neff as the bulk material index of the core in the two-dimensional simulations. In the
cases considered here, each waveguide core (n = 3.2) is bordered on each side by air (n = 1).

Fig. 16.4 is a schematic diagram of the two-dimensional FDTD model of a microcavity ring
or disk resonator of the type shown in Fig. 16.3. Waveguides WG 1 and WG2 serve as
evanescent wave input and output couplers. Using the bootstrapping technique discussed in
Section 16.3.1, a fundamental mode is sourced at the left end of WG 1. In the simulations
discussed here, the excitation is a 20-fs Gaussian pulse modulating a 200-THz carrier.

The standard FDTD method is used in two dimensions for either the TM or TE mode.
Transverse field components in the pulsed waveguide mode are recorded as the mode propagates
past cross sections PI and P2 in WG I, and P3 in the microring or microdisk. By taking OPTs of
the time waveforms of the fields, calculating the Poynting power densities along the cross
sections, and then summing, the longitudinal power flux passing through each cross section is
obtained as a function of frequency. The total power computed in this manner is found to be
conserved to within parts per IO,OOO for cases where the optical radiation is negligible, making
possible a reliable spectral characterization of the coupling efficiency (flux through P3
normalized by the incident flux through PI), and transmittance (normalized flux through P2).
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Fig. 16.4 Schematic diagram of a microcavity ring or disk resonator laterally coupled to two straight
waveguides. An off-resonance signal entering port A remains in waveguide WGI and exits at
port B. An on-resonance signal is switched to waveguide WG2 and exits at port C. Source:
Hagness et aI., 1. Lightwave Technology, 1997, pp. 2154-2165, © 1997 IEEE.

We note that the etching process that yields the physical structures shown in Fig. 16.3 results
in a IOta 20 nm roughness of the waveguide sidewalls. This fabrication artifact scatters light
propagating within the waveguide, and causes back-reflection into the counterpropagating mode
[32]. Since FDTD grid-cell sizes in the 10 to 20 nm range are computationally feasible for
two-dimensional problems spanning 10 11m or more, we can directly and simply model this
surface roughness via the usual staircasing inherent in Cartesian FDTD grids. In fact, several
variations of a staircase fit can be implemented to examine the optical effects of randomness in
the fabrication process. The fine 10 to 20 nm grid-cell size also permits detailed modeling of
optical coupling across the approximately 100-nm waveguide-resonator air gaps.

Optical scattering due to waveguide surface roughness also causes radiation. This results in
a partial loss of the stored energy and a reduction of the resonator quality factor, Q [33].
We note that such radiation losses can also be caused by waveguide bends. However, because of
the strong mode confinement, bending losses are negligible in these resonators. For the passive
devices considered here, the intrinsic absorption loss due to the materials is also negligible.

The importance of accurate modeling of semiconductor waveguides having highly
dispersive wave-propagation characteristics is illustrated with the following equation for the FSR
between longitudinal modes m and m + I :

(16.1 )

where deff is the effective diameter of the ring or disk. The quantity 1td
eff

corresponds to the
circumferential path traveled by the peak of the guided mode.
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For semiconductor microcavity ring and disk resonators, neffU
m

+I) :;t. nen(fm ), since the
waveguide dispersion is strong and the longitudinal mode spacing is wide. Also, den is smaller
than the diameter d, and is a function of frequency. Thus, (16.1) cannot be reduced to tJ..fFSR =

c1ndneff' as is commonly done for larger weakly guiding resonators. Similarly, the Q is affected
by the relatively large dispersion [34].

16.4.2 Coupling to Straight Waveguides

The coupling efficiency of the geometry of Fig. 16.4 can be investigated by varying g, the size of
the coupler air gap, and d, the outer diameter of the ring or disk [31]. We now consider such a
study for a 5.0-Jlm-diameter ring. Here, the width of WGl, WG2, and the ring waveguide is
0.3 Jlm. The straight waveguides support only one symmetric and one antisymmetric mode at
}.. =1.5 Jlm. The coupling coefficient 1(, defined as the percentage of power coupled into the ring
from WG 1, is computed using the procedure outlined above.

Fig. 16.5 shows the FOTD-computed 1( for the verti~al-polarization (V-pol) case, where the
optical E-fieid is perpendicular to the plane of the ring for g varying from 191 to 259 nm. Two
coupling phenomena are illustrated here [31]: (1) for a fixed frequency, 1( decreases as the gap
widens; and (2) for a fixed gap, 1( decreases at higher frequencies. At}.. =1.5 Jlm (f=200 THz),
1( ranges between 0.7% and 2.8% for a change of only 68 nm in g. This compares well with the
0.5% to 3% 1( range needed to achieve good transmission characteristics and large extinction
ratios. Convenient rules of thumb are that 1( should be greater than the round-trip cavity loss,
and should be symmetric for both WG 1 and WG2 relative to the ring or disk. Since the FOTD
simulations indicate that 1( is sensitive to g, and since it is difficult to fabricate identical gaps to
very high precision, the coupling from the ring to WG1 and WG2 may be slightly asymmetric.

Fig. 16.6 compares the FOTD-computed V-pol coupling coefficient curve of Fig. 16.5 for
8 =232 nm with FOTO results for the same gap size computed for the horizontal-polarization
(H-pol) case, where the E-field is in the plane of the ring [31]. The coupling coefficient for the
H-pol case at 1.5 Jlm is 1.9%, compared with 1.2% for the V-pol case.

The results of Fig. 16.6 show that the H-pol coupling exceeds the V-pol coupling for most of
the spectrum of interest. In order to avoid high lateral coupling of light to the media surrounding
the waveguides and the ring or disk, relatively wide boundary trenches must be etched, as seen in
the images of Fig. 16.3. While the remainder of this section focuses on the V-pol case, note that
with a sufficiently wide trench, the H-pol case is qualitatively the same.

The V-pol FOTD results for a IO-Jlm-diameter ring have also been obtained for the same
range of gap sizes. The IO-Jlm ring has about twice the 1( of the 5.0-Jlm ring for a given gap size
and frequency, ranging from 1.3% to 5.5% at }.. = 1.5 Jlm. The interaction length for the larger
ring is still short enough to avoid back-coupling from the ring to the waveguide.

16.4.3 Coupling to Curved Waveguides

In addition to varying the gap size and ring diameter, the waveguide-to-ring coupling can be
manipulated by adding curvature to the coupling waveguides. Oetailed FOTD modeling studies
[31] have shown that the coupling drops and becomes less sensitive to frequency as we bend the
input waveguide from the straight tangent path shown in Fig. 16.4 toward the ring. Although
curving the waveguide toward the ring increases their interaction length, it introduces a path
length difference due to their differing bending radii. This causes a phase mismatch between the
'''3veguide and ring signals, reduces the net coupling, and smooths out frequency variations.

---~-----------
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16.4.4 Elongated Ring Designs ("Racetracks")

As discussed above, the strong transverse optical confinement of the waveguide requires it to be
very close to the ring in order to achieve the desired level of coupling. An important step
towards practical fabrication and commercialization of these devices is the exploration of designs
that might alleviate the need for such narrow air gaps. In particular, a wider gap may allow
reliable and repeatable fabrication of these resonators, with reduced sensitivity to fabrication
variations.

To achieve the desired coupling level with a wider gap between the waveguide and the ring
resonator, the interaction length over which the coupling takes place must be increased.
As noted above, coupling actually drops when the adjacent waveguide curves toward the ring.
Here, we investigate changing the shape of the ring instead of the adjacent waveguide.
For example, elongating the ring to form a "racetrack" configuration [35], as shown in Fig. 16.7,
leads to an increased interaction length without introducing a phase mismatch. We shall consider
as an example this resonator configured with d = 5.0 ~m semicircular sections and L = 1.5 ~m

straight sections.
Fig. 16.8 compares the FDTD-computed 1( for this case with the previous 5.0-~m-diameter

circular ring resonator as a function of the gap width, g [36]. The dotted curves represent 1( at
the wavelengths 1.5, 1.55, and 1.6 ~m for the circular ring, and the solid curves represent 1( at the
same three wavelengths for the racetrack geometry. At a given wavelength, a specific coupling
level is achieved at a larger gap width with the racetrack resonator, in comparison with the
circular ring resonator. These results illustrate the potential advantage of the racetrack structure
in allowing wider air gaps while providing the desired coupling levels.

16.4.5 Resonances of the Circular Ring

This section discusses the resonance behavior of microcavity rings [31]. Referring to Fig. 16.4,
if the signal that enters port A is on-resonance with the ring or disk, then that signal couples into
the cavity from WG 1, couples out from the cavity into WG2, and exits the device at port C.
Alternatively, a signal that is off-resonance remains in WG 1 and exits at port B. The output at
port B is often called the channel-dropping transmittance, while the output at port C is called the
channel-passing transmittance. We note that rings and disks support both clockwise and
counterclockwise propagating modes. By sending a signal into port A, only counterclockwise
propagating modes are directly excited. However, backward reflections in the coupling regions
and backscattering due to sidewall roughness can excite counterpropagating modes.

We consider a 5.0-~m-diameter circular ring coupled by two straight waveguides in the
manner of Fig. 16.4. Here, all straight and ring waveguides are 0.3 11m wide, and there is a
232-nm gap between the ring and each adjacent waveguide. A uniform 13.6-nm grid-cell size is
used in the FDTD model. The excitation in WGI is a 2D-fsjull-width at half-maximum (FWHM)
Gaussian pulse modulating a 200-THz sinusoidal carrier. Time-stepping is continued as the
exciting pulse first couples into the ring, and then repeatedly circumnavigates it. Coupling of
optical energy to the adjacent waveguides at each pass results in a series of pulses of diminishing
amplitude at the output ports of WGI and WG2. To determine the spectral properties of the
output signals, DFTs are performed on these signals concurrently with the FDTD time-stepping.
High Q-factors require either extended time-stepping windows or extrapolation of unconverged
windowed responses using, for example, Prony's method (see Chapter 15, Section 15.8.1).
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Fig. 16.9 FDTD-computed transmiltance spectrum of a 5.0-llm-diameter circular ring resonator.

Fig. 16.9 graphs the calculated transmittance spectrum for this microcavity ring. The Q of
the m'th resonance is obtained directly from the power spectrum by forming the ratio of the
center frequency f mto the width of the resonance I1fm at the half-power points.

TABLE 16.1

Resonance Data from Fig. 16.9 for the 5.0-llm-Diameler Circular Microcavity Ring

m fm (THz) Am (nm) Q FSR (nm)

25 185.85 1,613.10 3,700
50.66

26 191.88 1,562.44 5,000
47.56

27 197.90 1,514.88 4,000
44.73

28 203.92 1,470.15 4,000
42.17

29 209.94 1,427.98 4,000

Table 16.1 lists the resonant frequencies, Q factors, and FSR values calculated from the data
in Fig. 16.9. We note that the FSR decreases as the frequency increases. This is a consequence
of the relatively large waveguide dispersion, as seen in (16.1). The finesse, calculated from the
FSR values and the widths of the resonances, falls in the range between 115 and 160.
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lmpact'ojSidewall Roughness

Based only on coupling, which decreases at higher frequencies as seen in Fig. 16.5, the Q should
increase with frequency. This is observed for the m;: 25, 26 resonances in Table 16.1, but not
for the higher-frequency resonances due to scattering caused by imperfections in the etched
sidewalls (approximated in the FDTD model using staircasing). On an expanded frequency
scale, each of the m =28, 29 resonances is seen to represent two subresonances. This is caused
by sidewall roughness, which backscatters optical energy into a counterpropagating mode that
splits the resonance peak [32]. In the case of Fig. 16.9, the subresonances are not split far
enough to be individually discernible, so the apparent Q of each resonance is lowered.

The drop in the apparent Q has been verified by simulating a ring that has rougher sidewalls
by a factor of two. This involves modifying the FDTD staircasing of the sidewalls to mimic a
twice-coarser grid in the vicinity of the walls, but actually retaining the fine 13.6-nm grid-cell
size everywhere. Here, all five resonances are split as a result of higher scattering losses.
Further, the two highest-frequency resonances are split far enough apart to individually resolve
each subresonance. This study reveals that the Q does increase with increasing mode number for
each subresonance, as expected based on the strong dependence of coupling on frequency.

Extinction Ratio

Fig. 16.10 illustrates the potential for high extinction ratios. First, the sinusoidal steady-state
E-field is computed for excitation at the nonresonant frequency 193.4 THz (1.55 j.lm), as shown
in Fig. 16.10(a). In this case, nearly 100% of the signal remains in WG 1. Second, the sinusoidal
steady-state E-field is computed for excitation at the m =26 resonant frequency of 191.9 THz.
As shown in Fig. 16.10(b), nearly 100% of the signal in this case is switched to WG2.

".

(a) (b)

Fig. 16.10 Grayscale visualizations of the FDTD-computed sinusoidal steady-state E-field in the S.O-l1m
diameter ring. Here, a single-frequency (sinusoidal) excitation is applied at port A of WG 1:
(a) off-resonance signal at 193.4 THz; (b) m =26 on-resonance signal at 191.9 THz.



756 Computational Electrodynamics: The Finite-Difference Time-Domain Method

Rejection Ratio

The on/off ratio, or rejection ratio, is defined as the ratio of power transmitted at a resonance
frequency to the power not transmitted at that frequency. Consider the 30-nm communications
window of erbium amplifiers centered around 1.55 J.!m. Within this window, that is, around the
m =26 resonance (191.9 THz) in Fig. 16.9, the rejection ratio is approximately 72: 1.
By slightly decreasing the gap, the rejection ratio is increased to more than 500: 1. In general,
this ratio can be optimized over any desired band spanning a few terahertz by adjusting the gap
size. This changes the coupling with respect to the scattering losses in that wavelength range.

Effective Diameter

Since neff is a known function of frequency for straight waveguides, we can estimate derr for the
ring resonator using mc/rr.!",neff • For the resonances in Fig. 16.9, deff increases with frequency
from 4.717 to 4.720 Ilm. If the circumferential path of the mode were along the center of the
waveguide, deff would be 4.7 Ilm, halfway between the outer-rim diameter of 5.0 Ilm and the
inner-rim diameter of 4.4 /lm. The estimate of deff is slightly larger, agreeing with the expectation
that the peak of the mode profile shifts toward the outer edge of the curved waveguide.

Overall Assessment

The 5.0-llm-diameter circular ring resonator demonstrates narrow channel wavelength selectivity
(high finesse) and constant transmittance over FSR values as wide as 6.026 THz (50.66 nm).
This structure exhibits excellent rejection and extinction ratios. Its Q is limited primarily by the
degree of sidewall roughness, which is a function of the fabrication process.

16.5 LATERALLY COUPLED MICROCAVITY DISK RESONATORS

Referring again to Fig. 16.4, consider a circular 5.0-llm-diameter disk resonator with a 232-nm
gap between the disk and each adjacent straight O.3-llm-wide waveguide. The disk geometry is
identical to that of the 5.0-llm-diameter ring studied in Section 16.4, except that there is no inner
rim. Exciting WG1 in the same manner as in the previous studies, the simulation is continued in
time as the pulse initially couples into the disk and repeatedly travels around it.

16.5.1 Resonances

Fig. 16.11 graphs the FDTD-calculated transmittance spectrum for the circular microcavity disk.
The three sets of resonances in this figure correspond to the first-order, second-order, and third
order radial whispering-gallery modes of the disk. As the radial order (number of
E-field maxima in the radial direction) increases, the transmission characteristics worsen because
the coupling between the disk and the adjacent waveguides degrades.

Table 16.2 lists the resonant frequencies, Q's, and FSR values calculated from the data in
Fig. 16.11. In this table, q indicates the radial order of the mode and "NA" indicates that the
resonance is too weak to obtain accurate data. Comparing with the data for the ring in Table
16.1, the disk's first-order radial-mode resonances exhibit several interesting properties:
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Fig. 16.11 FDTD-computed transmittance spectrum of a 5.0-~m-diameter circular disk resonator.

TABLE 16.2

Resonance Data from Fig. 16.11 for the 5.0-~m-Diameter Circular Microcavity Disk

q m 1m (THz) Am (nm) Q FSR (nm)

27 189.20 1,584.51 7,600
51.32

28 195.54 1,533.19 7,500
47.98

29 201.85 1,485.21 7,000
45.03

30 208.16 1,440.18 9,100

2 23 191.29 1,567.24 8,700
52.69

2 24 197.94 1,514.55 9,900
49.12

2 25 204.58 1,465.43 11,000
•••••• _ •••••••_0&••••••~ ••••40••••••••••••••••••.•••••_ • .......................................................................................................................................................................................

3 19 187.83 1,596.10 9,900
57.09

3 20 194.80 1,539.01 9,700
52.96

3 21 201.74 1,486.05 8,800
NA

3 22 -208.65 NA NA
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1. The disk's resonances are at lower frequencies than those of the ring because the

effective index of the fundamental whispering-gallery modes in the solid disk is

different from that of the narrow-waveguide ring.

2. The disk's FSR values are larger than those for the circular ring because the
disk's lack of an inner rim allows its effective diameter to be smaller for its

fundamental whispering-gallery modes. This phenomenon is also evident in

comparing the FSR of the first-order modes of the disk with the FSR of the

higher-order modes. As the order of the radial mode increases, the peak of the

mode moves toward the center of the disk. Therefore, dcff decreases even further

for the higher-order modes. Just as with the microcavity ring, the FSR decreases

as the frequency increases within a given set of microdisk resonances.

3. The disk's linewidths are narrower than for the ring. The higher fundamental

mode Q's of the disk resonator result from the reduced scattering loss arising

from the lack of an inner rim. In an ideal disk, the low-order modes have the

highest Q. However, since the lowest-order mode is confined most closely to the
perimeter of the disk, it is most sensitive to sidewall roughness. Therefore, as

seen in Table 16.2, the higher-order mode resonances have slightly higher Q's

because of lower scattering loss.

To observe the whispering-gallery modes of the microdisk resonator, single-frequency

FDTD simulations are performed at the resonance frequencies pinpointed by Fig. 16.11.

Fig. 16.12(a) visualizes the sinusoidal steady-state E distribution for a continuous excitation atz
the nonresonant frequency, f =193.4 THz ()., =1.55 jlm). Calculations made from the FDTD-

computed field data for this case show that 99.98% of the power in the incident signal at
193.4 THz remains in WGI.

Fig. ] 6.12(b) visualizes the E distribution within the microdisk at the m =27 resonance ofz
the first-order radial whispering-gallery mode. We note the resonant field enhancement inside

the disk. While the fields in WG 1 and WG2 appear to be weak, in fact they are at the same level

as the fields in WGI in Fig. 16.12(a), since the grayscale is normalized to the peak field

amplitude. For this on-resonance case, 99.79% of the incident power in WG1 switches to WG2.

Fig. 16.12(c) visualizes the Ez distribution within the microdisk at the m =23 resonance of

the second-order radial whispering-gallery mode. Here, the field distribution has two local

maxima in the radial direction, with the higher-amplitude field maximum shifted radially toward

the center of the disk, away from the disk's edge.

Finally, Fig. 16.12(d) visualizes the Ez distribution within the microdisk at the m =19

resonance of the third-order radial whispering-gallery mode. Here, the field distribution has

three local maxima in the radial direction, with the highest-amplitude field maximum shifted

radially even further toward the center of the disk than in Fig. 16.12(c).

The visualizations of Fig. 16.12 show how each resonant whispering-gallery mode is

confined to an annulus around the perimeter of the disk, wherein the width of the annulus

increases as the radial order increases. A comparison between Figs. 16.12(a and b) indicates the

potential for high extinction ratios and low crosstalk between channels in these devices if the

higher order modes of the microdisk can be suppressed.



(a) Off-resonance: 193.4 THz.
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(b) 1st-order radial WGM resonance: 189.2 THz.

(c) 2nd-order radial WGM resonance: 191.3 THz. (d) 3rd-order radial WGM resonance: 187.8 THz.

Fig. 16.12 Grayscale visualizations of the FDTD-computed sinusoidal steady-state Ez distributions in the
5.0-~m-diameter circular disk resonator for monochromatic excitations at four different
frequencies. Source: Hagness et a!., 1. Lightwave TechnoLogy, 1997, pp. 2154-2165. © 1997
IEEE.
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16.5.2 Suppression of Higher-Order Radial Whispering-Gallery Modes

As demonstrated above, circular disk resonators supporting whispering-gallery modes have less
sidewall scattering loss and higher Q than single-mode circular rings. However, circular disks
have multiple sets of resonances due to the presence of fundamental and higher-order radial
modes. Suppression of the higher-order modes is necessary to permit using the disks as single
mode laser sources, or as WDM devices having low crosstalk across a wide spectrum.

This section reviews two methods for suppressing the higher-order radial modes of circular
disk resonators [31, 37]: (1) etching out the center of the disk, and (2) choosing the width of the
adjacent waveguide to minimize the coupling between its guided mode and the higher-order
modes of the disk. In each case. the resonances are manipulated by taking advantage of the
spatial characteristics of the whispering-gallery modes of the disk.

Etching Out the Center of the Disk

A concentric circular hole located in the center of the circular disk can be etched out to create
larger losses for the higher-order whispering-gallery modes that propagate in that region, thereby
suppressing these modes. For the 5-llm circular disk resonator, the two limiting cases of hole
diameter are dho'c =0 (yielding the solid disk considered above), and dho1e = 4.4 llm (yielding the
narrow circular waveguide ring considered in Section 16.4). Note that only the microcavity
geometry is perturbed; the air gap between the laterally coupling waveguides and the
microcavity remains constant.

FDTD studies have shown that, as dho1e increases from zero to 3.5 llm, the weak m =19, 20,
21, and 22 third-order-mode resonances in Fig. 16.11 are completely suppressed, while the
stronger m = 23, 24, and 25 second-order resonances are shifted upward in frequency.
Proceeding further, as dho1e increases to 4 llm, there is substantial weakening and frequency
upshifting of the second-order resonances. Here, the fundamental-mode resonances are slightly
upshifted and their Q's slightly lowered. Finally, as d

ho1c
increases to 4.4 llm, only the

fundamental-mode resonances previously seen in Fig. 16.9 remain.
In summary, as the diameter of the etched-out hole within the circular disk increases, each

set of resonances monotonically shifts toward higher frequencies. A smooth transition occurs
between the multi-whispering-gallery-mode resonances of the solid 5.0-llm-diameter circular
disk and the single-mode resonances of the 5.0-llm-diameter circular ring formed by O.3-llm
wide waveguide.

Optimally Choosing the Width of the Adjacent Waveguide

We can minimize coupling to the higher-order whispering-gallery modes of the circular disk by
properly choosing the width of the adjacent waveguide. Consider the FDTD-computed
transmittance spectra for the 5.0-llm-diameter circular disk resonator coupled laterally to two
straight adjacent waveguides across air gaps of 200 nm. As the width of the adjacent waveguides
increases from 0.2 llm, the radial whispering-gallery-mode resonances of the third order and
higher weaken and disappear. At the optimum waveguide width of approximately 0.38 llm,
the second-order resonance verges on extinction, as seen in Fig. 16.13. Now, the air gap can be
adjusted to give the best fundamental-mode characteristics, namely, low on-resonance
transmission and high Q.
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16.6 VERTICALLY COUPLED RACETRACK

The previous two sections discussed two-dimensional FDTD modeling studies of micron-scale
photonic resonators having the shape of a circular ring, an elongated racetrack. and a solid
circular disk. However, the very nature of two-dimensional modeling prevents simulation of the
important class of guided-wave photonic structures wherein the waveguide-to-resonator coupling
occurs in the vertical direction, rather than sideways in the plane of the resonator.

Reference [38] reported the formulation and results of what may be the first fully three
dimensional FDTD model of vertical waveguide coupling and subsequent optical beam
confinement in a photonic racetrack. Referring to Figs. 16.14 and 16.15, the geometry
considered in this paper consists of a straight bus waveguide located 1.343 Ilm below and parallel
to one of the straight sections of a photonic racetrack that spans 64.0 x 17.6Ilm.

Fig. 16.14 shows the x-y cross section planes containing the bus waveguide and the
racetrack, and Fig. 16.15 shows the y-z cross section plane at P2' the center of the waveguide
coupling region. The bus waveguide consists of a 2.015 x 0.775-llm rectangular cross section
channel of refractive index n =3.33 embedded within a uniform substrate of index n =3.17.
The racetrack consists of a 2.015 x 0.775-llm rectangular cross section channel of refractive
index n =3.33 sandwiched above and below by rectangular cross section channels of refractive
index n =3.17, all embedded within a uniform superstrate of index n =1.5.

By use of the bootstrapping technique, the straight bus waveguide is excited in its
fundamental TE mode with a numerical Gaussian pulsed source having a center free-space
wavelength Ao=2.32 Ilm. Because the bootstrapping runs indicate 3- and 1.5-llm Ao cutoffs for
the fundamental and the first higher-order modes, respectively, the source spectrum is adjusted to
span 2.17 Ilm < Ao< 2.47 Ilm (FWHM) to avoid multimoding in the straight waveguide.
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Fig. 16.14 Horizontal (x-y) cuts through the three-dimensional FDTD modeling geometry: (a) through
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Fig. 16.15 Vertical (y-z) cross section through the three-dimensional FDTD modeling geometry at P2 in
the center of the waveguide coupling region. Source: Greene and Taflove, Optics Letters,
2003, pp. 1733-1735.

The FDTD model is implemented on a uniform 1500 x 440 x 138-cell Cartesian cubic space
lattice of resolution 51.7 nm (lt

d
Il3.5 within the waveguide at the center of the excitation

spectrum). A 12-cell uniaxial perfectly matched layer absorbing boundary condition is used to

terminate the mesh with wave reflections below 0.01 %.
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Figs. 16.16 and 16.17 provide grayscale visualizations of FDTD-calculated electric fields
and Poynting vectors which illustrate key aspects of the operation of the racetrack. In Fig. 16.16,
the absolute value of E within the racetrack is shown at three key points during the propagation
of the optical pulse coJpled from the bus waveguide: (1) to the right of P2 immediately after the
initial coupling, showing the establishment of the fundamental propagating mode;
(2) approaching P4 in the right curved section, showing the onset of multimoding; and (3) after
exiting the right curved section, showing residual modal-distortion effects and pulse dispersion.
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Fig. 16.16 Grayscale visualizations of the FDTD-calculated absolute value of E)' of the optical pul e
within the racetrack: (a) +x-directed propagation to the right of P2 of Fig. 16.14 after initial
coupling from the bus waveguide; (b) in the right curved section approaching P

4
of Fig. 16.14,

showing modal distortion; (c) -x-directed propagation after exiting the right curved section,
showing residual modal-distortion effects. Source: Greene and Taflove, Optics Letters. 2003,
pp.1733-1735.
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Fig. 16.17 Grayscale visualizations of the relative FDTD-calculated Poynting vector in the direction of
propagation: (a) +x-component of the Poynting vector along the y-z cross section at P2 of
Fig. 16.14 at the instant of peak excitation within the bus waveguide; (b) +y-component of the
Poynting vector along the x-z cross section at P

4
of Fig. 16.14 at the instant of peak excitation

within the racetrack waveguide. Source: Greene and Taflove, Optics Letters, 2003.
pp. 1733-1735.

Fig. 16.17 visualizes the relative Poynting vector in the direction of propagation. In this
figure. the magnitudes are normalized by the maximum magnitude in each plot, and the
boundaries of the bus and racetrack waveguides are shown as white rectangles. From Fig.
16.17(b) [see also Fig. 16.16(b»), we see that transient multimoding arises within the curved
section of the racetrack. This multimoding spatially distorts the propagating optical pulse both

by longitudinally broadening it and by shifting its local power flow toward the outer curved
boundary of the racetrack waveguide. The latter effect increases radiation from the curved
sections, since a portion of the near-surface power flow is launched as freely propagating energy
by the surface roughness inherent in the fabrication of the racetrack waveguide. Interestingly,
as seen from Fig. 16.16(c), the modal distribution within the racetrack returns to a closer
approximation of the fundamental mode seen in Fig. 16.16(a), once it leaves the curved section,
albeit with some residual distortion and broadening.

One of the advantages of vertical coupling to rings. racetracks, or disks is that this type of
coupling exhibits reduced sensitivity to dimensional tolerances in the fabrication process relative
to the sensitivity of the lateral coupling considered previously (illustrated by Fig. 16.8. which
showed lateral-coupling variations over an approximate 2: 1 range for gap-width changes of only
40 nm). In turn, increased interest in vertically coupled photonic structures is causing fully
three-dimensional FDTD modeling to be more seriously considered for detailed simulations.
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16.7 INTRODUCTION TO DISTRIBUTED BRAGG REFLECTOR DEVICES

Distributed Bragg reflector (DBR) mirrors are comprised of essentially one-dimensional stacks
of pairs of dielectric layers having contrasting (high-low) refractive indices n

H
and n

L
.

By choosing the layer thicknesses, the values of nH and nL , and the number of high-low-index
pairs, we can adjust the reflection characteristics of the composite DBR structure. Qualitatively,
light is reflected by a DBR mirror due to multiple internal wave reflections within its periodic
structure. Positioning two DBR mirrors in close proximity yields a simple Fabry-Perot cavity.

An important application of DBR mirrors involves the fabrication of vertical-cavity suiface
emitting lasers (VCSELs). These have attracted much attention because of their desirable lasing
characteristics: low power consumption, high output power, and single-mode operation.
The low lasing threshold of these devices can be further improved by using a periodic-gain
configuration within the cavity. By placing thin gain segments along the E-field standing-wave
maxima, the longitudinal confinement factor is maximized, thereby reducing the material gain
threshold [39].

16.8 APPLICATION TO VERTICAL-CAVITY SURFACE·EMITTING LASERS

This section reviews the application of the classical (nonquantum) FDTD gain model described
in Chapter 9, Section 9.7 to model VCSELs having uniform-gain and periodic-gain structures
(UGS and PGS) [26]. Fig. 16.18 illustrates the microcavity geometries of interest.

L

[SJ Active

o Passive== DBR mirrors

(a) (b)

L

Fig. 16.18 Schematic diagrams of VCSELs: (a) unifonn gain within the cavity; (b) periodic gain within
the cavity. Source: Hagness et aI., Radio Science. 1996, pp. 931-941.
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The VCSELs of Fig. 16.18 can be modeled as one-dimensional structures since their lateral
dimensions are large relative to A [39]. Each is assumed to be grown on a GaAs substrate
(n =3.59), with DBR mirrors comprised of pairs of alternating layers of AlAs (nL =2.971) and
Al

o2
GaOgAs (n H = 3.452) having a Bragg wavelength As =0.87 11m. The top DBR mirror has

9 pairs, while the bottom DBR mirror has 12.5 pairs. Both DBR mirrors are designed to have a
peak reflectivity of 92.8%. The optical path length of each cavity is assumed to be 27A

B
/2.

For the uniform-gain case, shown in Fig. 16.18(a), the cavity consists of a solid, active GaAs
region (n = 3.59) of length d surrounded on each side by a passive GaAs region (also n = 3.59).
The fill factor dlL is chosen to be 0.5. For the periodic-gain case, shown in Fig. 16.18(b),
the cavity consists of thin active GaAs segments, each with a thickness t separated by passive
GaAs segments. The spacing between the gain segments is equal to one-half the lasing
wavelength Alasing' and the total thickness of the gain segments is d. These design parameters
permit comparison of the FDTD results with the analysis presented in [39].

Following [39], for a cavity with no loss, the material gain required at threshold is given by

am = InR/2fL (16.2)

where R is the geometric mean mirror reflectivity and f is the longitudinal confinement factor.
For the UGS, f is the fill factor: fUGS = diL. Assuming a uniform standing-wave pattern and
ideal mirror reflectivities, the longitudinal confinement factor for the PGS is approximated as

d[ Sin(2nlIA)]r == - 1 +
PGS L 2 n t I A

(16.3a)

where A=A,asin/n. When t =A/2, (16.3a) shows that f for the PGS reduces to that of the UGS.
When f ---) 0, that is, when the gain segments are extremely thin, f is maximized at twice that of
the uniform-gain system. Therefore. according to (16.2), the gain threshold can be reduced by as
much as 50%. Equation (16.3a) is expressed in terms of the fill factor as follows:

[PGS == !!- [1 + sin(ndl L)]
L ndlL (16.3b)

since L =M A/2 and d =M t. where M is the number of thin gain segments in the PGS. For this
case (dIL=0.5), the gain threshold for the PGS according to (16.2) and (16.3b)
is approximately 39% less than the gain threshold for the UGS.

16.8.1 Passive Studies

The FDTD method is first used to determine the passive "cold cavity" characteristics of the
microcavity (i.e.. for zero optical gain). Here. the UGS and PGS are identical because the
refractive indexes of the passive and active regions are the same. For each mirror,
the reflectivity spectrum is calculated with a single run using a short-pulse excitation and DITs
of the incident and reflected time-domain data. At a grid resolution of Llx =As 1124nH == 2 nm,
errors of less than three parts per 10,000 are obtained in the squared-amplitudes of the reflection
coefficients at the reflectivity peaks of the bottom and top mirrors.
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Fig. 16.19 FDTD-computed reflectivity spectrum of the each passive vertical microcavity illustrated in
Fig. 16.18. Source: Hagness et aI., Radio Science, 1996, pp. 931-941.

Fig. 16.19 graphs the FDTD-computed reflectivity spectrum of the entire microcavity.
Five cold-cavity resonances at 821, 843, 870, 897, and 923 nm fall within the broad stopband.
Knowledge of the wavelength spacing between these resonances, here approximately 27 nm,
permits determination of the effective cavity length. This is greater than the physical length of
the cavity because of field penetration into the DBR structures. In this case, the effective cavity
length is approximately 34,,1,

B
I2, compared to the physical length of 27 ,,1,B 12.

16.8.2 Active Studies: Application of the Classical Gain Model

Fig. 16.20 graphs the superposition of the wavelength dependencies of: (1) the optical gain of
GaAs for three different values of the baseline negative conductance 0'0 [as defined in the
classical Lorentzian gain model of (9.112), with sample results shown in Fig. 9.8]; (2) the losses

of the DBR mirrors of Fig. 16.18; and (3) the cold-cavity resonances obtained from Fig. 16.19
[40]. We see that the gain spectrum is centered at 890 nm, while the mirror losses are minimum
at the Bragg wavelength of 870 nm. At the 870-nm cavity resonance, the mirror losses exceed
the optical gain for each value of 0'0 shown, even though the mirror losses are at a minimum here.
However, at the 897-nm cavity resonance, the optical gain exceeds the mirror losses for values of
0'0 more negative than approximately -3,000 S/m. Therefore, since the 897~nm longitudinal
mode experiences the greatest net gain, lasing should occur at this wavelength.
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Fig. 16.20 Superposition of the wavelength dependencies of: (I) optical gain of GaAs for three different
values of baseline negative conductance (Jo; (2) losses of the DBR mirrors of Fig. 16.18; and
(3) cold-cavity resonances of Fig. 16.19 (shown as vertical dotted lines). Source: Hagness
et aI., Computational Electromagnetics and Its Applications, 1997, pp. 229-251.

The classical-gain FDTD algorithm is now used to determine the lasing wavelength and gain
threshold for the VeSELs of Fig. 16.18, using a simulated noise current as an initial condition.
Fig. 16.21 plots the FDTD-computed envelope of the E-field within the uniform-gain VeSEL at
the sinusoidal steady state.
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Fig. 16.21 FDTD-computed normalized E-field envelope within the uniform-gain-structure VCSEL of
Fig. 16.18 under lasing conditions at the sinusoidal steady state. Adapted from: Hagness et aI.,
Radio Science, 1996, pp. 931-941.
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In Fig. 16.21, the decaying fields on either side of the cavity illustrate the penetration of the
mode into the passive DBR mirrors. This simulation yields a lasing wavelength of just under
900 nm, as expected from the discussion of Fig. 16.20. The standing-wave maxima within the
cavity are spaced periodically by an optical path length of A1asin/2. These maxima determine the
optimum locations of the thin gain segments within the periodic-gain VeSEL.

For each lasing structure, the simulation is performed for several different values of ao and
the output intensity is recorded, as shown in Fig. 16.22. A comparison of the FDTD-computed
UGS and PGS data sets reveals the following advantages of the PGS: (1) a substantial reduction
in the gain threshold for lasing, and (2) a higher output intensity for a given gain level.
Specifically, extrapolating the data of Fig. 16.22 to zero output yields a lasing gain threshold
O'o.th == -3,260 Sim for the VGS (as expected from Fig. 16.20), but only -1,790 Sim for the PGS,
approximately 45% less. This compares to a 38.5% threshold reduction predicted by the analysis
of (16.2) and (16.3). The FDTD calculation is a more accurate measure of the lasing threshold
reduction, since it accounts for the fact that the DBR mirrors are not perfect reflectors.

4

~
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'0 3 f- A UGS
c:
Q)-.~ •••-:::l
Q. 2-:::l
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.' "Q) ....~
Cii
Cii ... -
a: .. ,
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Baseline VeSEL gain -0'0 (kS/m)

Fig. 16.22 FDTD-computed sinusoidal steady-state output intensity versus gain for the unifonn-gain
structure and periodic-gain-structure VCSELs of Fig. 16.18. Source: Hagness et aI., Radio
Science, 1996, pp. 931-941.

16.8.3 Application of a New Semiclassical Gain Model

The reader is referred to Chapter 9, Section 9.8 for the FDTD algorithm and sample results for a
new semiclassical formulation [28, 29] for modeling lasing dynamics, which treats the atom
quantum mechanically and the electromagnetic wave classically. This algorithm models four
quantized electron energy levels for each of two interacting electrons. Electron transitions
between energy levels are governed by four coupled differential (rate) equations and the Pauli
Exclusion Principle. In addition, there are two oscillator-type differential equations for temporal
evolution of the induced polarization. This provides a robust, self-consistent treatment of the
dynamics of the four-level atomic system and the instantaneous ambient optical electromagnetic
field, regardless of the complexity of the material geometry that confines this field.
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16.9 QUASI.ONE-DIMENSIONAL DBR STRUCTURES

An important class of photonic structures is based on an index-contrast semiconductor
waveguide that confines light transversely, and a quasi-one-dimensional OBR structure that
confines light longitudinally. Using FOTD, numerical investigations have been carried out for a
variety of such structures, including waveguides with holes or notches and multilayer dielectric
stacks [26,40,41-45]. These simulations provide transmission and reflection characteristics,
radiation losses, field patterns, and cavity Q.

In this section, we discuss FDTD modeling of one such structure, the "air-bridge" [41] or
"photonic-wire" [42] microcavity shown in the scanning electron microscope image of
Fig. 16.23. Here, two linear arrays of etched air holes along an air-suspended 0.45 x 0.79-/lm

InGaAsP /InGaAs waveguide bound the microcavity.

Fig. 16.23 Scanning electron microscope image of an InGaAsP IInGaAs suspended photonic wire
microcavity. Air holes etched in the waveguide form quasi-one-dimensional DBR structures.
Source: Zhang et aI., IEEE Photonics Technology Letters, 1996, pp. 491-493, © 1996 IEEE.

Fig. 16.24 is a schematic diagram of a quasi-one-dimensional DBR reflector formed by a
six-hole array, and a microcavity formed by two six-hole arrays at either end of a photonic wire.
The specific geometry considered here is a 0.3 x O.79-/lm semiconductor waveguide (n =3.3)
surrounded by air (n =1). To permit fine resolution (12.5 nm), simulations are performed in two

dimensions (the horizontal plane of the structures) for the field components E
l

, Hx ' and H),.
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Fig. 16.24 Schematic diagram of a photonic wire mirror and the corresponding microcavity. Adapted
from: Zhang et aL, IEEE Photonics Technology Letters, 1996, pp. 491-493, © 1996 IEEE.

In the two-dimensional FDTD model, the finite extent of each optical waveguide of Fig.
16.24 in the vertical direction is accounted for by using the theoretical effective index of

propagation in the actual three-dimensional waveguide as the bulk material index in the model.
All waveguide and grid outer boundaries are terminated using the PML ABC. To obtain
broadband spectral information from a single computer run, a 30-fs Gaussian pulse modulating a
A = 1.5 ~m carrier is excited at one end of the waveguide using a fundamental-mode transverse

source profile. Reflection and transmission spectra for the quasi-one-dimensional OBR
structures are obtained from the FOTD data by taking the appropriate DFTs.

For such OBR structures, the center-frequency and width of the reflectivity spectrum are

governed by the size, shape, number, and spacing of the etched holes. Fig. 16.25 graph as a

function of wavelength the FDTD-computed reflectivity of DBRs of the type shown in Fig.
16.24 formed by arrays of four, five, six, and seven rectangular air holes (each 0.25 x 0.1 ~m).

Here, the center-to-center spatial periodicity of the holes along the waveguide is 0.325 ~m.

As the number of holes increases, we see that the edges of the stopband sharpen, and the peak
reflectivity increases. With seven holes, the OBR provides a reflectivity bandwidth of
approximately 500 nm (about 33% of the carrier wavelength), and a peak reflectivity that

approaches 99%.
Additional FDTD studies show that the shape of the holes impacts the reflectivity spectrum.

Specifically, the bandwidth and peak reflectivity of a quasi-one-dimensional OBR of the type
shown in Fig. 16.24 that uses elliptical holes is reduced relative to DBRs using rectangular holes.

The bandwidth of the circular-hole DBR structure is similar to that of the rectangular-hole DBR,
but is shifted towards shorter wavelengths.



772 Computational Electrodynamics: The Finite-Difference Time-Domain Method

2.01.8

4 holes
5 holes
6 holes
7 holes

1.6
wavelength (~m)

1.4

II:
J
li
/:

J,;
I:

':', J
.... ' "/{:\ " ,

, ~

\ ~ :
/' ,

\ : I;

:\ I( (

\. / \ 1\:
oJ '.

0.8

0.2

0.0
1.2

~ 0.6
>
t5
\l)

Q)a: 0.4

1.0

Fig. 16.25 FDTD-computed reflectivity spectra for quasi-one-dimensional DBR structures formed by
arrays of rectangular air holes etched along a strongly guiding semiconductor waveguide,

Finally, we consider a microcavity of the type shown in Fig. 16.24 that is formed by an array
of 10 rectangular holes with a 0.6625-/lm-Iong defect introduced in the center. Fig. 16.26 plots
the FOTO-computed reflectivity spectrum of this microcavity obtained from the time-domain
data using a high-resolution OFT. A single resonant mode is seen within the stopband at
A=1.595 /lm. From the width and location of the resonance, the cavity Q is estimated to be
about 300 [26]. By changing the length of the defect, the number and location of resonant modes
within the stopband can be customized,

16.10 INTRODUCTION TO PHOTONIC CRYSTALS

In much the same way that the atomic lattice of a semiconductor establishes an electronic
bandgap between conduction and valence bands, a periodic distribution of materials of disparate
optical properties can create a photonic bandgap [46-49]. Within such a material, termed a
photonic crystal, electromagnetic waves with frequencies within the bandgap cannot propagate,
By itself, this behavior is extremely interesting, offering the potential for high reflectivity over a
wide range of incident angles and wavelengths, or for useful dispersion properties at the edges of
the bandgaps. However, it is when defects are introduced into an otherwise perfect lattice that
suddenly the field of photonic crystals offers a host of new opportunities for manipulating light
in ways never before considered, To date, researchers have used photonic crystals to bend,
combine, filter, modulate, route, self-collimate, slow, split, switch, and trap light; to enhance
nonlinearities; and to manipulate spontaneous emission [50), A very incomplete list of
applications includes waveguides, filters, lasers, modulators, and sensors.



Chapter J6: Photonics 773

I I I I I I I I I I
(a) Geometry (approximately to scale).

2.01.81.6
wavelength (~m)

1.4

\ r
I-

-
\ f\

-

f\
l-

V V I I I \~

0.2

0.0
1.2

1.0

.~ 0.6
U
Q>

Q)a:: 0.4

0.8

(b) Calculated reflectivity spectrum.

Fig. 16.26 FDTD simulation of a photonic microcavity fonned by introducing a O.6625-Jlm-long defect at
the center of a quasi-one-dimensional DBR structure fonned by an array of 10 rectangular air
holes etched along a strongly guiding semiconductor waveguide.

In many ways, photonic crystals and the FDTD method seem uniquely suited for each other.

For instance, a photonic bandgap of noticeable extent requires a large index contrast, which is

typically implemented by combining two or more widely different materials (e.g., air and a

semiconductor such as silicon). However, such sharp discontinuities in the index of refraction

would seem to mandate a modeling technique based directly on Maxwell's equations, rather than

on the wave equation, since in general the latter is accurate only when the index varies slowly

along the propagation direction. In turn, given the appropriate boundary conditions, FDTD can

model either the properties of an underlying photonic crystal lattice, the performance of a device

engineered by appropriate defect placement, or even the effects of fabrication imperfections.

In addition, the current emphasis inherent in photonic crystal structures on enabling functionality

in compact areas or volumes implies that many important problems can be addressed without

having to resort to inordinately large FDTD simulations.
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In the next six sections, we shall review the use of FDTD for modeling photonic crystal
structures and devices. While the emphasis is on optical wavelengths, the physical principles
involved work equally well at all wavelengths. However, the size of the periodic lattice that
must be engineered tends to scale with the wavelength. This implies that most near-term
applications will be for visible light, the near-infrared, millimeter waves, and microwaves, since
outside these spectral bands, the required geometrical features are either too small to accurately
fabricate or too large to be practical.

16.11 CALCULATION OF BAND STRUCTURE

Since the interesting properties of photonic crystal devices arise from the existence of a photonic
bandgap for an infinitely periodic lattice, the computation of this bandgap is a logical place to
start. Photonic bandgaps are typically visualized and investigated by computing the dispersion
relationship, w(k), between the temporal and spatial frequencies of the modes that can propagate
in the particular periodic structure of interest.

For example, Fig. 16.27 illustrates the dispersion relationship or band diagram for an
infinite two-dimensional square lattice of circular dielectric cylinders in air. Here, a is the
center-to-center spacing of the cylinders; the cylinder radius equals 0.2a; and the cylinder
relative permittivity, c

r
' is 8.9. In the figure, the vertical axis represents the normalized temporal

frequency wa/21tc, where c is the speed of light. The horizontal axis represents the spatial
frequency or k-vector, represented in three segments to correspond to the edges of the triangular
irreducible Brillouin zone for this lattice (the shaded region in the figure inset, with the
symmetry points labeled). The edges of this Brillouin zone suffice because the modes in the
interior of this zone are, in general, bounded by those on the periphery, and because once the
irreducible Brillouin zone is known, then the entire extent of reciprocal space is known by either
symmetry or translation. Only modes for which the electric field is parallel to the cylinders are
shown (e.g., this is a TM •. band diagram)l. Note the bandgap that exists for waves with
frequencies between wa/21tc =0.322 and 0.442. To place this in context, in order to center this
bandgap at A= 1.5 /lm, the cylinders would need to be 229.6 nm in diameter on 574-nm centers,
and the bandgap would then run from 1,295 to 1,780 nm.

Fig. 16.27 actually shows the dispersion diagram computed in two different ways: the solid
curves show the results of the plane-wave expansion method using the MIT Photonic Bands
package [51,52], while the black dots show the band diagram as computed by a two-dimensional
FDTD model. To learn more about the plane-wave method and photonic crystal band diagrams
in general, the reader is directed to [48,49,51]. In particular, the example shown here is
described in detail on page 56 of [48]. We turn now to discussing how to use FDTD to compute
photonic crystal band diagrams.

lWe follow the FDTD and photonic crystal convention that the transverse nature of a two-dimensional
simulation is dictated by the plane of the simulation; so having Hx and Hv in the plane and Et out of the
plane as in Fig. 16.27 is designated as a simulation that is transverse magnetic relative to the z-direction
(TMJ. However, in the same two-dimensional geometry, any resulting guided-wave modes with these
same field components would be designated as TE modes in the lexicon of standard waveguide theory,
which takes the modal propagation direction as the reference. Therefore, the designations TE and TM
must be used with considerable care.
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Fig. 16.27 Dispersion diagram for an infinite two-dimensional square lattice of high-index dielectric
cylinders in air for TMz polarization. Insets show the real-space and the reciprocal-space
lattices. The normalized frequency is in units of 27tc/a. The spatial frequency is normalized
to the symmetry points r (kx =ky =0), X (kx =7t/a. ky =0), and M (kx =ky =7t/a). Two dotted
boxes show regions of the dispersion diagram that are discussed in detail later: one is near the
X point (Fig. 16.29), and the other is near the M point (Fig. 16.30).

16.11.1 The "Order-N" Method

The FDTD technique described here was introduced in [53] as the "Order-N" method. It was

motivated by the fact that the computational burden of plane-wave expansion techniques in use
at the time scaled as O(N\ where N denotes the number of grid cells in the simulation. Since
an FDTD simulation of N grid cells scales as O(N), at least in memory size, the advantages of
FDTD could be significant. Subsequently, the Order-N method was extended to Green functions
[54], nonorthogonal grids [54,55], and metallic materials [56-58]. A parallel can also be drawn
between the Order-N method and earlier work using FDTD to solve eigenvalue problems in
microwave engineering [59]. A review of some of the features of the Order-N method and a
brief discussion of its application to photonic crystals can be found in [60].

We note that, rather than the OCN
3

) referred to in earlier papers, the block-iterative plane
wave expansion techniques described in [51], and widely available through download [52], scale
computationally as O[pNlogCN)] + O(p2N ), where p denotes the number of bands to be
evaluated. While this affects the tradeoff between using FDTD and plane-wave methods in
terms of speed, particularly for two-dimensional simulations, there remain numerous useful and
unique features in using FDTD to compute photonic crystal band diagrams.
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To compute the band diagram of a photonic crystal lattice, we use (nearly) standard FDTD

on the unit cell of that lattice with Bloch or Floquet boundary conditions. Such boundary

conditions are identical to those used in order to source infinite plane waves at arbitrary oblique

angles [61, 62], namely

- - ·k·R
E(r + R) = E(r)eJ - "k-R

H(r+R) = H(r)eJ (16.4a, b)

where R is the lattice vector of the unit cell of the photonic crystal, and the saucer symbol

denotes a complex value. To implement this, one need only ensure that the fields that "leave"
one side of the FDTD model immediately "appear" on the other side, multiplied by the

appropriate complex number. However, in contrast to standard FDTD, which uses purely real

E - and H-fields, here E and H must be complex-valued. In an appropriate programming

language, this can be a trivial modification. An alternate method is to add yet another dimension

or layer to the FDTD grid. The latter approach is more flexible, since it allows the same

compiled program to switch at run time between standard and complex-valued FDTD, as needed.

As an example of the required FDTD equations for Floquet boundary conditions along x in a

TM, simulation, one might write

E-' = E-I -jk, Lx. . . e
l 1=lmax+1 Z. ,=1

(16.5a, b)

Here, for simplicity, we assume that the boundary field components are redundantly stored

(perhaps for ease of parallelization), so that the photonic crystal unit cell of interest spans from

FDTD grid cell 1 to i , with cell a serving as a phase-adJ'usted copy of cell i ,and cell i Imax max ma.x.+

serving in the same role for cell 1. Similar equations follow for the two H-components in the

1M, simulation (or all six field components in a three-dimensional simulation).

Note that these equations are the only point at which the "layer-I" components (E
l

, Hx ' Hy )

interact with the "layer-a" field components (E
l

, H
x

' H), and thus the only point at which
complex numbers are considered. For the E-components, (16.5) is implemented after the normal

E -updates from the H -components and the subsequent data exchange for parallelization,

but before any H-updates. The H-components are phase-adjusted at a commensurate spot with

respect to their normal updates.

With these Floquet or Bloch boundary conditions, one can consider the FDTD algorithm to

be modeling wave propagation through an infinite expanse, which just happens to be tiled into

identical squares or cubes, as shown schematically in Fig. 16.28. In this figure, we consider the

simple case of a plane wave propagating from left to right through various "copies" of the unit

cell. Two snapshots of the variation in the amplitude of one field component, say Ex, along the

horizontal direction x are shown for two points slightly separated in time. Since the wavefront is

constant along y, we are using the vertical direction to plot both the y-dimension of the cell and

its monitor, as well as the amplitude of the wavefront snapshots. Here, the k value established by

the ±x boundaries corresponds to a wavelength slightly longer than the unit cell width Lx.
This wave undergoes slightly less than 21t of phase shift within the unit cell, but the boundary

conditions add just the right amount of phase to get exactly to 2n. As a result, the wavefront

appears identical in each unit cell, jumping in phase at each unit-cell boundary.
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Fig. 16.28 Four "copies" of a square unit cell are shown, each containing its own copy of a monitor point
(dot). A wavefront with wavevector k( is illustrated at two instants in time, showing that when
the phase jump imparted by the Floquet boundary conditions completes a 21t phase excursion,
every copy of the unit cell has the same snippet of waveform. Under these conditions. the field
amplitude in every copy constructively interferes, resulting in a strong monitor signal at the
associated temporal frequency ill, .

If one considers a monitor point at some arbitrary point within each cell (represented by a
small dot in Fig. 16.28), the amplitude at that point will oscillate in time with a frequency WI and
some arbitrary phase offset. In fact, every copy of this monitor point will see an identical
oscillation with the same phase offset. However, for some other wavefront of different k

x
value

(and its own frequency ( 2 ), the phase excursion for each unit cell is not 21t, and a snapshot at
any point in time would find a different snippet of the wavefront in each unit cell. As a result,
while each monitor point indeed sees an amplitude variation at some frequency w

2
' the phase in

each unit cell "copy" differs.
However, since there is only one unit cell in the actual FDTD simulation, there is really only

one monitor. The field measured at this point is a superposition of all of the unit-cell "copies"
shown in Fig. 16.28. The phase differences between "copies" causes w2 to die out through
destructive interference, leaving only an oscillation at WI (and at the W values corresponding to
all other modes for which the transit across the unit cell plus boundary conditions represents a
multiple of 21t phase excursion). Note that this does not depend on any relationship between the
values of w

J
and w2 • In addition, even without the spatial-superposition effect, the signal

contribution at w2 at anyone monitor "copy" at some time I) is still out-of-phase with the
contribution at some later time 12 because of the non-21t phase excursion. Thus, the Fourier
transform of the time evolution of the fields at the monitor point combines both effects, resulting
in a strong response or resonance at wJ and no response at w2 . Hence, all of the modes
(at various values of w) that share the same underlying k vector have their frequencies
represented in the Fourier spectrum, and can be computed with the same FDTD run.

There are, of course, several ways for this to fail to find all of the correct modes. If the
monitor point we choose is located at or near a node where the fields associated with a mode go
to zero, then the contribution at WI can be so low as to be accidentally discarded. However, it is
fairly straightforward to record the time evolution at several appropriately selected monitor
points during the FDTD simulation, and then combine the spectra afterwards. This greatly
reduces the probability of missing a mode. Unfortunately, such redundancy does not help if the
original excitation of the FDTD unit cell fails to inject any energy into one of the modes we want
to identify. The original Order-N paper suggested a linear combination of a small number of
plane waves G as an initial condition, or:
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H(r) = IJv X (k + G)] e j(k+G)'r

G

(16.6)

where v is a unit vector controlling the resulting polarization [53]. This choice of initial
condition ensures that V • H =0 throughout the simulation. However, the user must still choose
how many and which G values to use, which in turn affects the overlap between the initial
conditions and the modes of interest [53, 60].

Alternatively, Sakoda et al. [63, 64J suggested that if a radiating dipole is introduced into the
FDTD grid at a frequency (J) near the eigenfrequency wd (equal to WI) of a resonant mode of the
structure being simulated, then the field E(r) emitted by the dipole (as well as the radiated
energy) should depend strongly on the resonant eigenmode Eir), expressed as

E =
27t'WA r· E; (ro)] Ed (r) e- jillr

V(w-wd+jr)
(16.7)

where r is the decay rate of the mode (here effectively zero, since the medium is not lossy and
there are no radiation losses in an infinite crystal); V is the volume of the unit cell; and r is the
dipole moment of the excitation located at position ro [56, 58, 63, 64]. To map out the dispersion
diagram with this, one then would scan along W looking for the strongest response.

In contrast, we have found it simpler to combine both of these ideas by just "pinging" the
FDTD model with a single delta function in both space and time. This has the advantage of
exciting all temporal and spatial frequencies, so that the only way to fail is to be so unlucky as to
"ping" at or near a node point. In the context of (16.7), we are attempting to excite all possible W

simultaneously without having r· E;(ro) - 0 for any mode of interest to us. In practice, we can
avoid this condition by ensuring that the source delta function does not sit at any symmetry point.
However, prudence would suggest that several such source points be tried, especially when
computing a new band structure for the first time, in order to ensure that the resulting band
structure is indeed independent of the source placement.

Through the denominator of (16.7), we can be confident that only the portion of injected
energy that is very close in frequency to each wd contributes significantly to the measured
spectral peaks. In the context of the two-layer complex-valued FDTD formulation described
above, the delta function appears on only one of the two layers, with energy eventually making
its way to the other layer through the boundary conditions (except when k = 0). The field
component chosen for the "ping" dictates the polarization of the modes that are computed,
as dictated by the dot product between rand E;Cro) in (16.7). For instance, setting just E

t
to 1

for one time-step should excite the 1M modes, while H
t

excites the TE modes. In three
dimensional simulations, all modes wherein the chosen field component is nonzero at the "ping"
position are excited.

16.11.2 Frequency Resolution

There remains an unanswered question: How many FDTD time-steps are necessary in order to
unambiguously identify the spectral peaks WI? Through the usual properties of the Fourier
transform, the width of each spectral bin in the calculated frequency spectrum is inversely
proportional to the total duration of the monitored field component's temporal response.
This seems to imply that accurate determination of the resonance frequencies could require
inordinately long FDTD simulations.
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Fig. 16.29 Spectral peaks at kx =O.81t for the infinite square lattice of dielectric cylinders, corresponding
to the left-hand dotted box in Fig. 16.27. Successive curves show the effect of windowing the
raw temporal data with a Blackman window before performing the Fourier transform, and the
effects of various amounts of truncation (as if the FDTD simulations had been stopped earlier).
Curves are vertically offset for visualization purposes. The inset displays only a small portion
of the spectral range, showing the strong ripple in the raw, unwindowed spectrum.

As an additional complication, due to the inherently abrupt truncation of the ongoing
temporal response, the raw spectrum tends to have a significant amount of ripple, as shown by
the lowest trace in Fig. 16.29. Here, the spectral peaks corresponding to the particular k value of
k =0.81t are shown, corresponding to the dotted box in Fig. 16.27 located to the left of the

x

X point. This undesirable ripple tends to complicate the identification of spectral peaks, since the
derivative of the spectrum goes through zero in many places other than at a peak.

However, it is important to keep in mind that the main interest here is the presence and
position of the spectral peaks, not their width. Thus, multiplying the original temporal response
data with a windowing function such as the Blackman window

f(t) = 0.42 - 0.5 cos (27r t / t ) + 0.08 cos (4rc t / t )max max (16.8)

can reduce the ripples in the spectrum without significantly affecting the spectral peak position,
as shown by the second trace in Fig. 16.29, labeled as "Windowed." In essence, the underlying
delta functions we are trying to locate (representing a lossless mode of essentially infinite Q) are
simply being convolved by a symmetric function. As a smaller and smaller portion of the
temporal response captured during the FDTD run is used when performing the Fourier transform
(as if we had truncated the run earlier), the resulting spectral peaks get wider and wider
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(the remaining traces in Fig. 16.29, shown only with Blackman windowing). However, the
centroids of these peaks, representing the normalized frequencies we want to extract to place as
dots on the dispersion diagram, remain almost completely unchanged.

This seems to imply that relatively short FDTD runs are sufficient to construct an accurate
dispersion diagram. In fact, this is the case if all of the peaks are isolated. However, we see
from Fig. 16.29 that, at some degree of blurring, it becomes impossible to distinguish a closely
set pair of modes from a single mode. We see that conducting longer FDTD runs provides finer
spectral resolution and reduces the uncertainty in identifying all possible pairs of spectral peaks.
This reduction of uncertainty follows directly from the frequency resolution of the Fourier
transform, 6.f=1/N6.t, where N is the number of FDTD time-steps of size 6.l.

16.11.3 Filter Diagonalization Method

Fortunately, there are more accurate ways than Fourier analysis to extract resonant frequencies.
One such technique, the filter-diagonalization method [65-67] was introduced to the photonic
crystal community by Johnson et al. [68,69]. This technique recasts the problem of spectral
analysis of a short segment of a time-dependent signal into an eigenvalue problem. A set of

FDTD-calculated time-response data containing several resonances, CCl) =Lkdkexp(-jaV), is
treated as being equivalent to the autocorrelation function of an unknown dynamical system,

CCt) = (<1>0' exp(-jtQ) <1>0)' where (-, -> represents the complex symmetric inner product [66].
By choosing <1>0 appropriately, the unknown operator Q can be completely described in terms of
the original data C(t), and thus can be diagonalized [66]. The advantage of this technique over
Fourier analysis is that, rather than simply measuring the correlation of the signal against
multiple sinusoids exp(-jaV) in multiple fixed-width spectral bins, a smaller number of spectral
bins are precisely tuned in size and position to identify the complex frequencies where there is
maximal correlation (e.g., the desired resonances). This allows the filter-diagonalization method

to distinguish pairs of spectral peaks using much shorter-duration time signals than possible with
Fourier analysis. Relative to older harmonic-inversion techniques, such as those based on
Prony's method, filter diagonalization remains stable and efficient while requiring small
matrices, even when an enormous number of resonances may exist outside of the spectral range
of interest [65, 66].

Implementing the filter-diagonalization method in a Fourier basis involves following the

checklist given on page 6761 of [66], with one minor addition described below. We first choose
a matrix size J based on the desired frequency range (w . ,w ), the signal extent N, and themm ma.x

time-step M. We then fill the basis vectors w . 6.t ~ til. ~ w M and the matrices [U](P) for
mm 'YJ max

p =0, 1,2; solve the generalized eigenvalue problem [U](1){Bk} =Uk [U](O){B k} for eigenvalues

Uk =exp(-jwk 6.t) and eigenvectors {BkL and then discard the spurious eigenvalues by checking
them against [U](2). The minor addition is that the matrices [U](P) can be assembled much more

efficiently by using (25) of [67], so that the various inner products between the raw time data
CCt) and the vectors derived from tP· are performed only once, and are stored temporarily as G P

J J

so they can be reused appropriately. (Note that while (29) of [67] describes how to iteratively
derive [U](I) using GO, it seems to be more efficient to iteratively compute G1 from GO instead,

J (1) J J
since that can then lead to [U] - as well.) Of course, an even easier approach to implementing
the filter-diagonalization method is to simply download Johnson's "harminv" program from the

Web [69]. In addition to the above checklist, the harminv program refines the eigenvalues by
repeated iteration, converging smoothly to an accepted set of resonances.
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Fig. 16.30 Advantages of the filter-diagonalization method relative to Fourier analysis in using short
FDTD datasets to identify the two nearly degenerate modes at kx = ky = 0.9571: for the infinite
square lattice of dielectric cylinders, corresponding to the right-hand dolled box in Fig. 16.27.
Filter-diagonalization method data: diamonds; Fourier data: open and filled squares; dotted
horizontal lines: predictions of the plane-wave method.

Fig. 16.30 demonstrates the advantages of the filter-diagonalization method relative to
Fourier analysis. Here, we plot as a function of the length of the FDTD data record the
calculated resonant frequencies of the two nearly degenerate modes at kx =k\. =0.951t for the
infinite square lattice of dielectric cylinders (corresponding to the right-hand dotted box in
Fig. 16.27, just to the right of the M point). A second horizontal axis is also shown in this figure
to indicate the width of the normalized frequency bin corresponding to the FDTD dataset length.
The diamonds show the results of the filter-diagonalization method, and the squares show the
results of Fourier analysis (open squares-direct transformation of the FDTD data record; filled
square-transformation after zero-padding the FDTD data to a uniform length of 131,072 time
steps). The two dotted horizontal lines show the resonant frequencies calculated using the plane
wave method [52] (128 plane waves with the meshing value set to estimate the local dielectric
constant over 7 x 7 subsamples).

Fig. 16.30 shows that, by applying the filter-diagonalization method, we can separate the
resonances of the two nearly degenerate modes using FDTD data records extending over 11,000
time-steps, only about one-fifth the record length required using Fourier analysi .
This corresponds to a spectral resolution that is more than twice as coarse as the separation
between the peaks of the degenerate modes, indicated by an x on the lower horizontal ax.is.
A relative frequency difference of only 0.1 % is noted in comparison with the plane-wave method.
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In addition, the filter-diagonalization method continues to identify the presence of a double
peak (although the frequencies are no longer being computed as accurately) down to an FDTD
data record of only 4,096 time-steps, equivalent to a frequency resolution that is one order of
magnitude coarser than the spacing between the nearly degenerate modes. Clearly, filter
diagonalization is a powerful technique that can significantly reduce FDTD run times without
sacrificing the ability to resolve nearly degenerate modes.

16.11.4 The Triangular Photonic Crystal Lattice

Given this basic recipe of establishing a FDTD grid over the primitive unit cell of the photonic
crystal, running successive simulations with different boundary conditions to cover the periphery
of the irreducible Brillouin zone, and finding the spectral peaks for placement on the dispersion
diagram through simple Fourier analysis or filter diagonalization, it would seem rather
straightforward to apply these techniques to other photonic crystal lattices. For instance, the
triangular lattice of air holes in a high-index dielectric, which can have a fairly wide bandgap for
TE polarization (as well as a smaller one for TM) [70], is a photonic crystal that has received a
great deal of both theoretical as well as experimental interest. Fig. 16.31 shows the TE band
diagram, the real-space lattice, and the irreducible Brillouin zone for the triangular lattice of air
holes, as calculated by both the plane-wave method [52] and by FDTD.
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Fig. 16.31 TE dispersion diagram of an infinite two-dimensional triangular lattice of air holes (ria =0.48)
in a dielectric (E r = 13), along with the real-space and reciprocal-space lattices. The unit cell
used here is the true primitive unit cell (the rhombus shown in the inset), rather than the larger
rectangle that would lead to a folded band structure.
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Fig. 16.31 seems unremarkable until one realizes that the primitive unit cell for this photonic
crystal lattice is the rhombus marked in the left-hand inset, rather than a rectangle. If we had
used the rectangle marked with dotted lines in this inset as the unit cell, we actually would have
been simulating a "folded" version of the real band structure [71] - one having extra bands to
be identified and unfolded. As a result, some researchers have concluded that such non
Cartesian-friendly photonic crystal lattices are simply inaccessible to standard FDTD [60], and
require nonorthogonal FDTD [72]. However, one way to overcome this unit-cell problem and
yet still use standard FDTD is to place a dipole source in the same spot of every copy of the
primitive cell represented within the larger rectangular grid being simulated. (In the unit cell
shown in the inset, there are two such copies.) Then, we would adjust the phase of the waveform
applied to each to satisfy each particular k-vector [71]. This can be adapted to the simple one
time-step "ping" discussed earlier by having the second impulse (at point r' relative to the first)
appear on both layers of the FDTD grid, weighted by cos(k . r') and sin(k' r'), respectively.

An easier approach [73] is to take the smallest rectangle in which we can inscribe the correct
rhomboidal primitive unit cell, perform the standard FDTD algorithm over this entire grid, and
then modify the boundary conditions to periodically wrap the sides of the rhombus rather than
the sides of the rectangle. (A similar approach was likely taken in [74].) The unit cell is shown
in Fig. 16.32 for rIa =0.48 and 30 cells/a, along with some circular arcs added to help visualize
the cylindrical air holes. While the additional Yee time-marching steps performed on the cells
outside the rhombus are wasted, the advantage is that these customized boundary conditions are a
relatively simple computational step that can be added to the usual FDTD algorithm. In fact,
in this implementation, this extra computational step is added by a dynamic-link library, meaning
that the underlying FDTD program does not even need to be recompiled.
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Fig. 16.32 FDTD grid used to compute the dispersion diagram for a photonic crystal consisting of a
triangular lattice of air holes in a dielectric. A rectangular grid of FDTD cells is used (dashed
box), but the boundary conditions are performed across the rhombus-shaped primitive cell.
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The triangular photonic crystal lattice can be thought of as holes arranged in equilateral
triangles of side length a, or equivalently as two interlaced comb functions comb [xla , yl2a'] +
comb [(x - a /2)la, (y - a l )/2a']' where a' = a..J3 /2 is the spacing between rows of holes.
Thus, the real-space lattice vectors are (aI2)(i ± ..J3y), and the reciprocal lattice vectors are
(2n1a) (li. ± vIfj)? Since symmetry point X is located halfway between the center r point and

the next reciprocal lattice point, the k-vector for point X is k" =rcla, k
y

=n 1a..J3, and it follows
from trigonometry that point J is k;c =4rc/3a, k

y
=O.

In Fig. 16.32, Floquet conditions are used which correspond to translating the bottom

horizontal segment of the rhombus by al2 in x and a..J3 /2 in y (point A maps onto point A'),

and translating the slanted left side of the rhombus by a in x (point B maps onto point B').
The top and right segments of the rhombus are similarly mapped in the opposite direction.
Note that using square FDTD grid cells (Ax = ~y) prevents straightforward enforcement of these
conditions in both x and y. However, it is simple to choose ~y = a' / ra'1~xl, where r·1 is the
"ceil" function. Thus, while ~y may end up slightly smaller than fu, the unit cell still tiles the

plane with an integer number of FDTD grid cells in both dimensions.
As an example of the custom boundary conditions, points A and B shown in Fig. 16.32 serve

in the role of the i = 1 cells from (16.5), with point A' receiving the complex field from A

multiplied by exp [-j a (k" + ky..J3 )/2], and point B I similarly from point B multiplied by
exp(- jak). As in the simple rectangular grid, these boundary conditions replace the field
components in the outermost rows and columns of active grid cells by phase-adjusting the
components from the cells that are exactly one row or column "in" on the opposite side.

As can be seen in Fig. 16.31, this approach allows FDTD to accurately compute the photonic
crystal band structure of nearly arbitrary lattices. However, as can be observed in both Figs.
16.27 and 16.31, the agreement between the plane-wave method and FDTD is better at low

frequencies than at high frequencies. This brings us to the topic of the sources of error in the
FDTD models, and how to mitigate them.

16.11.5 Sources of Error and Their Mitigation

The two primary sources of error in FDTD modeling of photonic crystals are numerical
dispersion and staircasing artifacts. As these are discussed extensively elsewhere in this book,

we only briefly discuss the mitigation approaches considered here.

The reason for the increasing error at high normalized frequencies in the dispersion
diagrams calculated by FDTD is that the number of cells per wavelength is reduced for these
frequencies. For instance, at the uppermost normalized frequency of mal2rcc =a lAo =0.8 in

Fig. 16.27, with 30 grid cells spanning a, there are only approximately 13 cells per dielectric
wavelength because of the high refractive index of the material (nearly 3). As a result, numerical

dispersion causes a noticeable loss in accuracy.

2This follows from the Fourier transform of the two comb functions, comb(a u, 2a'v) {I +
exp[- j2rc(aul2 + a'v)] }, where destructive interference in the term with the exponential reduces the full
comb function back to a triangular lattice rotated by 90·. Or see Appendix B of [48), noting there the
rotated coordinate systems and an unfortunate typo in the reciprocal lattice vectors of the triangular lattice.
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To help compensate for numerical dispersion, we can apply the simple correction suggested
in Chapter 4, Section 4.9.1, adjusting the permittivity and permeability of free space to force a
particular frequency and angle to propagate at exactly the speed of light within the FDTD grid.
As suggested in [75], we apply a different adjustment to each axis to allow for nonsquare or
noncubic grid cells. However, in contrast to the procedure detailed in [75], we choose to solve
an index-adjusted version of (4.12):

[c:, Sin(~t)r [~ sin ( ~n~dx)r + [~y Sin(~n~:~y)r

+ [~ sin ( ~n;,'~)r (16.9)

for the values of a in a two-step process. Here for readability, we have written out (i) in
x,y,z

terms of the vacuum wavelength Ito' First, we remove the effects of the different grid-cell sizes
by solving (16.9) for the three Cartesian directions, resulting in

Ito I [ n t:.x ( n c I1t )]a :::: ---sin- --sin --
x n n t:.x c l:1t Ito

(16.10)

and the equivalent for y and z. At this point, the numerical dispersion is corrected such that the
speed of light in the FDTD grid is identically c along any of the three coordinate axes, and is
faster at all intermediate angles. It is then straightforward to apply the iterative Newton's
method of (4.16) to compute the effective phase velocity at any of these intermediate angles, and
then to use this incorrect speed of light to further adjust a as in (4.69). Thus, the numerical

X,Y.Z

dispersion can be exactly compensated at this particular angle and wavelength. Alternatively, an
angle can be picked which minimizes the numerical dispersion over a particular range of nearby
angles, or which minimizes the worst-case numerical dispersion.

The simple mitigation technique for numerical dispersion discussed above provides
relatively small improvements in the accuracy of photonic crystal band diagrams [73]3. This is
inherent in the variation of the speed of light within the classic Yee grid at frequencies and
angles that are not close to the set-point chosen for compensation. One advantage of even this
simple form of numerical-dispersion compensation, which we only briefly mention here, is that it
can help to reduce the nonphysical reflections associated with the changes in mesh-cell size in a
nonuniform grid [76]. Note that in generating Figs. 16.27 and 16.31, dispersion compensation
was implemented at the angle corresponding to the particular k-vector being simulated, and at a
wavelength near the center of the photonic bandgap.

3The reader is referred to Chapters 4 and 17 for more sophisticated approaches to reduce numerical
dispersion.
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In contrast with the subtle improvements provided by compensating numerical dispersion,
mitigating staircasing errors provides significantly improved accuracy [73]. This is illustrated in
Fig. 16.33, which plots as a function of the size of the cylindrical holes the first two FDTD
calculated bands of the triangular-lattice photonic-crystal dispersion diagram at the J point
(spatial frequency kx =41t/3a, ky=0) for the transverse electric (TEz) case. Fig. 16.33(a) shows
results using the classic staircased FDTD algorithm for a moderate spatial resolution, 20 cells
spanning a. Fig. 16.33(b) shows results for the same grid resolution, but using a subcell method
to compute an effective dielectric constant for every E-component near a material interface.
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Fig. 16.33 First two FDTD-calculated bands of the triangular-lattice photonic-crystal dispersion diagram
at the J point (spatial frequency kx = 4rc/3a. ky= 0) as a function of the size of the cylindrical
holes for the TEl case: (a) staircased hole surfaces; (b) subcell model for hole surfaces.
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The particular subcell method used here assigns an effective dielectric constant to each
E-component, based on a volume integration of the dielectric-constant distribution within the
FDTD grid cell containing this component [77]. For a general Cartesian component E that is

II

oriented perpendicular to the v-w grid plane and is located at grid point (uo' VI)' wo), this scheme
is given by

(16./1)
] }

_l

L\vL\w
wO+6w12

w

o

l.V/2 E(U, v, w)dvdw du{

uo+t1ul2 [
= ~u J ·0 +6v12

uo-t1u/2 fVo -6./2
Ell. err

Here, the direction, u, along which the outer integration is performed, corresponds to the
direction of E . This allows satisfying the required continuity of the tangential E and normal D

II

fields at the dielectric interface. For Ell parallel to a dielectric interface, the outer integration is
straightforward, while the inner double-integral results in a simple averaging of the dielectric
constant over the v-w cross section of the grid cell. For Ell in a plane that is perpendicular to a
dielectric interface, the inner double-integral is straightforward, while the outer integral leads to
an averaging of the inverses of the dielectric constants, just like capacitors in series. Note that
this technique allows modeling of an arbitrarily tilted interface in three dimensions.
Furthermore, it has no impact on the stability of the underlying FDTD algorithm, and only a
minor impact on the memory requirements and execution speed.

The literature contains a variety of other subcell approaches for FDTD modeling of lilted
and curved dielectric interfaces [60, 78-82]. An analysis of the impact of these various subcell
techniques on the accuracy of FDW as applied to photonic crystals is currently under way [73].

In summary, relative to staircasing, subcell methods for modeling tilted and curved dielectric
interfaces have two important benefits for FDTD modeling of photonic crystals. First, subcell
techniques permit improved accuracy in calculating resonant frequencies by properly modeling
the amount of high- and low-index material. This minimizes oscillations in the error signal as a
function of the grid's spatial resolution. Second, even when there is residual error in computing
a resonant frequency, only a few coarse-resolution FDTD simulations may be needed to
accurately measure trends or derivatives of interest that involve a change of material boundaries.
Of course, these considerations may not be very significant in the analysis and design of two
dimensional photonic crystals, where each FDW run might take at most a minute, and where
even faster alternatives are readily available [52]. However, for large three-dimensional FDTD
simulations, the use of subcell methods can significantly reduce the amount of required memory,
the execution time, and the number of simulation runs, thereby enabling studies that would
otherwise be intractable.

16.12 CALCULATION OF MODE PATTERNS

In addition to the frequencies (eigenvalues) of the photonic crystal modes, it is often important to
know the mode patterns (eigenfunctions) associated with each mode. In essence, this should
require nothing beyond the analysis described above, with monitor locations at every gridpoint in
the cell. The relative amplitude and phase of the response at WI at each point in the unit cell
describes the mode patterns:
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However, it is often intractable to retain the full time evolution of all field components at all

gridpoints. For this reason, it is more convenient to perform two FDTD runs. The first,

as described in the previous sections, uses only a few monitor points to obtain the

eigenfrequencies of all the modes. The second then performs a running Fourier transform at

every gridpoint for each frequency of interest. Here, one requires two extra variables per cell per

field component per frequency of interest, one to retain the cosine (real) part and the other for the

sine (imaginary) part, as

(16.14)

(16.15)

where U stands for any of the three (or six) E and H components, U identifies the corresponding

field from the second (imaginary) layer of the FOTO grid, and WI is the angular frequency of

interest. Often, it is sufficient to extract the mode patterns in a single plane, thus reducing the

portion of three-dimensional simulations for which this additional storage / computation is

performed. With fully complex-valued fields, one could simply multiply by aCt) exp(j WI t).

The envelope function a(t) allows us to apply a Blackman window or other kinds of spectral

filtering during the FOTO run. This is important, since it may not be straightforward to use filter

diagonalization here to help separate near-degenerate modes from each other.

However, assuming that the initial run is performed with sufficient frequency resolution,

we have a priori knowledge of the location of the modes that might interfere, which we can use

to our advantage [83]. For instance, if we are interested in finding the eigenmode at w
2

while

avoiding any contribution from a nearby mode at WI' we can choose an envelope function whose

spectrum has a zero at WI'

Fig. 16.34 shows the Ez mode patterns for the two nearly degenerate modes of the square

photonic crystal lattice near the M point of the dispersion diagram of Fig. 16.27, as also

discussed in the context of Fig. 16.30. The top row of Fig. 16.34 shows the lower-frequency

mode pattern, while the bottom row shows the pattern for the higher-frequency mode.

The higher-frequency mode has a weaker response in these simulations due to poorer coupling

from the particular initial excitation "ping." Figs. 16.34(a, d) represent the modes calculated by a

long FDTO run (120,300 time-steps), so that the two frequencies are clearly resolved by the end

of the running Fourier transform. Figs. 16.34(b, e) represent the modes obtained when the

running Fourier transform is accumulated over only 12,000 time-steps. Since the lower

frequency mode is stronger, it dominates the truncated computation of both mode patterns.

These are obtained by Fourier transforming at the exact frequencies indicated by filter

diagonalization on a previous run, without any Blackman window. (With a Blackman window

applied, the higher-frequency mode pattern is almost identical to the lower frequency pattern.)
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Fig. 16.34 Modal patterns (I EzI) for the two nearly degenerate modes of the square photonic crystal
lattice near the M point of the dispersion diagram of Fig. 16.27. One unit cell of the photonic
crystal is shown, with the dielectric cylinders (not shown) located at the four comers. Parts (a),
(b), and (c) correspond to different calculations of the lower-frequency (j - 0.5477) mode;
while parts (d), (e), and (f) correspond to the simultaneous computation of the higher-frequency
(j - 0.5497) mode. Parts (a) and (d) result from long FDTD runs (120,300 time-steps); while
parts (b), (c), (e), and (f) result from much shorter simulations (12.000 time-steps). Although
the modes are nearly degenerate. the response to the lower-frequency mode is stronger in these
simulations due to the spatial placement of the initial excitation. As a result, for coarse
frequency resolution, the running Fourier transform of the higher-frequency mode (e) is
swamped by crosstalk from the nearly degenerate mode (b). As described in the text, a simple
modification allows the properties of the Fourier transform to null out the crosstalk from the
strong mode, revealing the weak mode (t).

Figs. 16.34(c, t), in which the two modes are correctly resolved, are obtained with exactly
the same reduced number of time-steps. The only difference is that !:it is adjusted so that the
normalized frequency II of the strong mode lies exactly at the center of a frequency bin, as

(M)'
L.t; c!:if NJ

=
.t;cN

(16.16)

where N is the number of time-steps. Without any spectral windowing, the effective spectral
response of each bin is a sine function [e.g., sin(nx)/(nx)] whose nulls land at the center of each
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neighboring spectral bin. This means that a running Fourier transform at the frequency
corresponding to the center of the next higher bin does not accumulate any signal from the mode
at i

J
, even as it accumulates energy from 1; (since this bin's sinc function is nonzero at 1; *" it)·

This occurs even when this next frequency bin-center is somewhat higher than the actual value of
1;. As a result, the mode patterns for the weaker mode can be distinguished from the stronger
modes without having to use a large number of time-steps. Such techniques for the Fourier
analysis of nearly degenerate photonic crystal modes are possible because the spectral features
we are trying to either avoid or detect are essentially delta functions, and because we have
a priori knowledge of the frequencies involved.

16.13 VARIATIONAL APPROACH

References [84, 85] reported a technique using the mode patterns of a photonic crystal and
variational expressions to reduce the computational burden of computing band diagrams with
FDTD. The variational expressions can be derived by reinserting the periodic solution of a
photonic crystal mode described by (16.12) and (16.13) into Maxwell's equations and solving for
OJ [48], producing

(~y
J_I I V x e - j k x e 1

2 dv J _1IV x e /2 dv
VUnil J1, VUnil JLr= Jc, Ie 1

2
dv
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V
unit
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= Vunit r

f li r I h 1
2
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= f Ii, Ih1
2
dv

VUnil Vunit

(I6.17)

06.18)

In turn, these expressions can be used to compute the eigenfrequency OJ of a mode from its
eigenfunctions e or h. Since e and h are the same functions computed by the running Fourier
transform described in the previous section, these mode patterns can be directly inserted into the
right-hand sides of either (16.17) or (16.18) to compute OJ.

However, this functionality would seem to be somewhat superfluous, since by the time we
can compute the eigenfunction with FDTD, we must have already computed the eigenfrequency
with an earlier FDTD run. However, [84, 85] described two significant advantages to using
these variational expressions. First, by interpolating the eigenfunction computed by coarsely
gridded FDTD onto a finer-resolution grid before inserting it into the variational expression, the
accuracy of the computed frequencies can be greatly improved. This is another means to reduce
the frequency errors introduced by staircasing and numerical dispersion, which can be applied in
addition to the error-reduction techniques discussed previously.

The second advantage is that variational expressions can provide information about the band
structure around the k value used in the FDTD run, rather than just at that single spatial
frequency. One way to do this is to approximate the modal pattern for some k value of interest
by interpolating between two FDTD-computed modal patterns (of the same mode) at two
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bracketing k values. This linear superposition can then be inserted into the variational
expression to compute the eigenfrequency [84], making it possible to fill in the complete band
structure using only a few FDTD runs. Finally, from even a single modal pattern, the variational
expressions can be manipulated to allow the computation of the group velocity [84] as

(16.19)

For dispersive media, we note that the denominator of (16.19) must be modified to obtain the
correct energy density, as described in Section 6.8 of [86]. We also note that, to ensure accuracy,
the input data (e, h, and E) must be adjusted to account for the offset spatial positions inherent
in the underlying Yee lattice. This is similar to the treatment required for accurate computation
of the Poynting vector [87]. In particular, when interpolating E-fields, it is important to consider
the impact of any nearby material boundaries [88]. In [85], this latter point was avoided by using
only TM polarization wherein the E-field is tangent to all interfaces.

16.14 MODELING OF DEFECT-MODE PHOTONIC CRYSTAL WAVEGUIDES

The intentional introduction of defects into an otherwise perfect photonic crystal opens up
opportunities to engineer novel photonic devices. For example, since we know that light with a
frequency within the photonic bandgap is not allowed to enter a region of photonic crystal,
we can create a waveguide along which light must travel, simply by hemming it on all other sides
with photonic crystal. An example would be a row of defects created by either removing or
adding material to a photonic crystal. Given such a waveguide, we can fabricate: (1) sharp
bends by connecting the ends of row and column defects, (2) couplers and splitters by bringing
twO or more waveguides close together, and (3) filters by modifying the photonic crystal in the
vicinity of such a coupler.

While there has been progress in fabricating fully three-dimensional photonic crystals, it is
challenging to realize such wavelength-scale structures with the required precision.
Conventional semiconductor lithographic techniques are most efficient when fabricating
structures having a small number of layers, and when the need for precise layer-to-Iayer
registration can be avoided or finessed. In contrast, assembly techniques for three-dimensional
photonic crystals are often subject to both long- and short-range disorder. These techniques face
the challenge of having to suppress unwanted defects, and yet permit the introduction of desired
defects at arbitrary positions. As a result, many researchers in the photonic crystal community
have chosen to work with relatively simple planar or slab geometries.

Fig. 16.35 illustrates an example of a planar photonic crystal. Here, instead of the infinitely
long air holes considered previously, a triangular lattice of air holes is drilled into a finite
thickness slab. A row of holes remains filled to serve as the defect-mode waveguide, which is
connected at both ends to a conventional ridge waveguide. An air region exists both above and
below the slab, at least down to an underlying substrate. Such an "air-bridge" structure [see also
Figs. 16.23 and 16.24] can be fabricated using conventional semiconductor lithography, with one
of the final steps being to etch away the originally underlying oxide layer of a silicon-on
insulator (Sal) wafer in the vicinity of the photonic crystal [89, 90].
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Fig. 16.35 Example of a planar photonic crystal consisting of a triangular lattice of air holes (lattice
spacing a) etched into a thin high-index slab. A defect-mode waveguide is formed by not
etching one row of holes. Light entering this waveguide at either of its ends from one of the
ridge waveguides is confined vertically within the slab by total internal reflection (index
guiding), and laterally within the defect row by the photonic bandgap effect. Here. an air
bridge structure is shown that offers improved index guiding, since the underlying substrate is
located across an air gap some distance below the slab.

In Fig. 16.35, the optical confinement within the photonic crystal waveguide takes two

forms. Within the plane, the presence of the photonic bandgap in the neighboring regions of the

slab confines light of relevant frequencies to the defect row. Out of the plane, light is confined

by the total internal reflection established by the index contrast between the high-index

semiconductor slab and the surrounding air regions. This same index confinement keeps the

light in the conventional ridge waveguide as well, but only if the waveguide is not bent too

sharply. The presence of the photonic crystal not only offers the potential for sharp bends

[91 - 96], but also for wavelength filtering [97 - 104], slow group velocity [105 - 108], and

enhancement of nonlinear effects [105 -108]. It is even possible to have the photonic bandgap

force the light to travel in a lower-index region surrounded by higher index, which has no

analogy in conventional index-guiding [109-110].
In this section, we discuss how to extend the FDTD techniques reviewed in the previous

sections to the study of photonic crystal waveguides. We do not attempt a full exposition on this

subject, but instead refer the reader to numerous excellent articles wherein FDTD modeling,

other numerical techniques, and experiments have been used to investigate the properties of these

fascinating devices.
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Fig. 16.36 Dispersion diagram for a planar photonic crystal triangular lattice of air holes (hole radius
r = 0.3a, slab thickness h = 0.6a) in a high-permittivity dielectric (£,. = 11.56), along with the
reciprocal lattice. The unit cell used here is the same as the primitive two-dimensional unit cell
in x and y (the rhombus shown in the inset), extruded in z through surrounding air regions and
the underlying substrate of identical high-index material (located 3a below the slab). Light
lines are shown for both air (n =1.0, gray-shaded region), as well as for a higher-index
cladding (n = 1.47, dotted line). Note that the naming convention for the symmetry points of
this triangular lattice, and the different convention shown in Fig. 16.31, are both in active use
within the photonic-crystal waveguide and resonator communities, respectively.

16.14.1 Band Diagram of a Photonic Crystal Slab

When the third dimension of a photonic crystal structure is made finite, the temporal frequencies
of the modes shift and a new feature, the "light line," is added to the dispersion diagram,
as shown in Fig. 16.36. Here the spatial frequency on the horizontal axis represents the in-plane
component of the k-vector. This diagram is sometimes referred to as a "projected" dispersion
diagram (projected to k, =0). The shift in temporal frequency is due to the fact that some part of
each mode now travels in the lower-index material outside the slab [111]. The light line,
corresponding to the lower boundary of the gray shaded region in the figure, can be thought of in
several ways. In one sense, it marks the critical angle for the total internal reflection that
confines modes to the slab. In another, it marks the lower boundary for radiation modes that are
not confined to the slab [109, 112]. Thus, any photonic crystal slab mode that lies in the shaded
region above the light line can freely couple energy to one of these radiation modes, and in
general tends to be lossy. Since the light line has the same slope in all directions, it is sometimes
referred to as the "light cone." The curved shape between the M and K symmetry points can then
be understood as the projected shadow of this cone down onto the M-K leg of the triangular
irreducible Brillouin zone (shown shaded in the figure inset).
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At least for the first three bands, the modes shown in Fig. 16.36 are "TE-like" that are
vertically even with respect to the center plane of the slab. These are called TE-like since they
have most, but not all, of their energy in the Hz, Ex, and E

y
field components. While a gap is

evident between normalized frequencies 0.261 and 0.346, this cannot be considered a true
photonic bandgap because of the presence of the modes above the light line [109, 111-113].
(At any given frequency, there is always some direction that light can take and be permitted to
propagate.) However, this is a bandgap for guided modes, and can offer many of the features of
a full photonic bandgap [109, 111-114]. By spacing the holes by a lattice constant a =455 nm
to center this gap on A. =1,500 nm, the wavelength range 1,315 to 1,740 nm would be available
without any guided modes other than those we engineer through defects. However, it is not
always feasible (or desirable) to design a waveguide that uses the entire wavelength range.

The thickness of the slab has a strong effect on the width of this guided-mode photonic
bandgap. If the slab is too thin, the modes are insufficiently confined to the slab, reducing the
bandgap by hugging the edge of the light line. If the slab is too thick, higher-order modes can
exist at similar frequencies [112]. See [50, 109, 111-114) for more information about the
dispersion diagram of this and other planar photonic crystals.

To calculate this dispersion diagram with FDTD, we take the same two-dimensional unit cell
used before and extrude it in the third dimension, as shown in the inset to Fig. 16.36, adding a
vertical sandwich of air on both sides of the high-index slab. Absorbing boundary conditions are
used at the top and bottom of the FDTD mesh [111,114). The CPML [115] is recommended.
CPML is an improved version of uniaxial PML [116), and has a straightforward implementation
for widely different types of materials (homogenous, lossy, inhomogeneous, and dispersive).
See Chapter 7, Sections 7.7 and 7.9 to 7.11 for a thorough discussion of CPML theory and
numerical implementation.

In the case of an isolated slab, the surrounding air regions should be at least one to two
lattice constants a thick. If a low-index cladding is used on one side, then more space may be
needed between the high-index slab and PML, since the modes then penetrate farther into the
cladding. Before performing many potentially inaccurate three-dimensional simulations, it is
prudent to pick a few k points and try different amounts of cladding to assess the impact on the
frequencies of interest. For instance, in the next section, we discuss convergence tests supporting
the use of nonuniform gridding along the z-direction of the unit cell. While 20 grid-cells are
used to span a in x and z (with the y-gridding closely related, as described in the previous
section), portions of the mesh that are farther than a from the slab have only 12 grid-cells
spanning a. We compensate as described before for numerical dispersion in the fine- and coarse
gridding regions, and in the intersection of these two regions (since the z-distance between
H-components here is the average of al12 and a/20). This suppresses most of the nonphysical
reflections from the interface between the two grid regions so long as the change in grid-cell size
is moderate (less than a factor of three to five).

If the structure and its excitation is symmetric with respect to the center plane, it is possible
to halve (and with additional symmetry, sometimes even quarter) the FDTD simulation space by
using symmetry conditions. The easiest way to implement symmetry conditions is with a PMC
plane for even symmetry, and a PEC plane for odd symmetry. This is easy to remember, since
the tangential E-field goes to zero at a PEC plane, and thus the E-fields in the mirrored structure
are "odd" with respect to this fold plane. See Chapter 14, Section 14.2.3 for a discussion of the
use of PEC and PMC planes in the FDTD mesh to efficiently model the symmetry of a structure
and its excitation.
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By definition, symmetric and antisymmetric field boundary conditions at a mirror plane in
the center of the photonic crystal slab are consistent only with the vertically even and odd modes,
respectively [111]. For the case of Fig. 16.36, neither boundary condition could be used because
of the asymmetric location of the substrate. In this case, odd modes would always be generated
despite attempts to provide a precisely even field excitation. However, we could identify and
remove the portions of the first few odd modes that would have otherwise appeared on the
dispersion diagram simply by using five to seven monitors arranged at a common x, y point but
with different z values. By looking at the shape and strength of the Hz response along these
monitors, we could label the modes sufficiently well to visually pick out the even modes from
the full dispersion diagram. However, this classification could not be perfect even for the first
few bands. For higher bands, the assignment to odd and even is not at all straightforward [112].
For Fig. 16.36, such errors could be corrected manually, and the first few odd bands could be
removed for clarity. Had this been an issue, it would have been straightforward to repeat the
simulation with running Fourier transforms at the frequencies of interest to obtain modal patterns
suitable for unambiguous assignment of frequencies to modes of various symmetries [114].
As before, the spatial and temporal extent of the initial excitation could have been modified to
further control which modes were excited. However, our interest here is the simple delineation
of the region of the guided mode gap.

The light line is not produced by FDTD, but needs to be drawn on the plot afterwards.
At a constant frequency, the k-vectors in the air above the waveguide (n =1) fall on a k-sphere
of diameter 21tnlAo' where Ao is the vacuum wavelength. If the wavevector of light in the slab is
larger than this radius, the light cannot couple to a mode in the air. The lower boundary of the
light line corresponds to the condition in which the transverse k-vector in the waveguide shrinks
to the point that matches the radius of the k-sphere in air (e.g., a plane wave of near-grazing
incidence to the surface). Since the normalized frequency wal21tc can also be written as a/Ao'
the equation of the light line (normalized temporal frequency as a function of k-vector) is simply
alAo =ka/21tn. For the K point where k =kx =41t/3a, then for air the light line passes through
a normalized frequency of 2/3. Also drawn as a dotted line in Fig. 16.36 is the light line for a
surrounding index of n =1.47, corresponding to the case where the oxide underlying the slab is
not removed. (Note that only the light line is shown for this; the slab bands themselves would
also shift slightly for such a structure.) From the point of view of the light line, whether the
higher-index cladding (and its associated radiation modes at lower frequencies) is present on one
or both sides of the slab is often not considered important. As we will see below, the light line
has a significant impact on the loss of photonic crystal waveguides. In the case of an
inhomogeneous cladding (such as in many AIGaAs-GaAs structures where the air holes pierce
both the slab and the cladding), the effective index of the overall cladding layer should be used.
This is equivalent to the lowest band of the two-dimensional photonic structure [112], which
corresponds intuitively in the discussion above to the wavevector of light at near-grazing
incidence within the punctured cladding layer.

16.14.2 Band Diagram of a Photonic Crystal Waveguide

Now that we have identified the guided-mode gap described by Fig. 16.36, we can engineer a
waveguide by creating a row of defects in the photonic crystal. As described in [112], the best
way to do this is to introduce defects along the nearest-neighbor direction (i.e., the r - K
direction, as shown in Fig. 16.35). This produces a waveguide structure that is periodic in x with
periodicity at the lattice constant a.
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As a result, we need a new dispersion diagram that shows the modes from Fig. 16.36,
but only as a function of k.r' To create this from Fig. 16.36, we fold its triangular Brillouin zone
at the point k.r = rc/a, marked in its inset as a vertical dashed line running through the M point,
and plot every mode from the figure as a function of the k)( value (after folding). Thus, the mode
at the K point appears at the spatial frequency kx =2rc/3a. It is important to consider the
presence of the other copies of the irreducible Brillouin zone, such as the one shown outlined by
the gray dotted line. For example, because of this copy, the mode at the M point also appears
mapped to the point k)( = 0 (the 41M2" point) as well as at k)( = rc/a.

Fig. 16.37 shows the folded slab modes from Fig. 16.36 as the boundaries of two light gray
regions of slab modes, bracketing the mode-gap region between normalized frequencies of 0.261
and 0.346. These gray regions represent the presence of modes from throughout the entire
Brillouin zone, as bounded by the modes shown in Fig. 16.36 from the periphery of the Brillouin
zone. The light line (for air cladding) has also been placed on the dispersion diagram, running
from (k)( =0, wal2rcc =0) to (k)( =n/a, wa/2rcc =0.5). It is clear that the regions of primary
interest are those left unshaded on this figure. If we create a guided mode through defect
placement that is in the light-gray region, then we expect it to be lossy by coupling from the
defect mode to the many slab modes of the photonic crystal that are free to guide light away from
the waveguide. If a guided mode runs above the light line, then we expect it to be lossy by
coupling to the many radiation modes that are free to radiate light vertically away from the slab.
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Fig. 16.37 Dispersion diagram for the planar photonic-crystal waveguide fonned by removing a row of
holes from the triangular lattice along the r- K direction. The unit cell shown in the inset
spans a in the x-direction and 14a in the y-direction, with a vertical geometry identical to that
of Fig. 16.36. PML absorbing boundary conditions are placed on the ±y and ±z outer mesh
boundaries, with BlochIFloquet conditions on the ±x mesh boundaries. When the lattice of
holes continues into the PML, the slab modes are greatly suppressed. but also require a reduced
time-step for values of k)( greater than approximately O.8rr/a to avoid late-time instability.
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To compute the defect modes of the photonic crystal waveguide with FDTD, we use a three
dimensional unit cell of the waveguide, as shown in the inset of Fig. 16.37. Here, we take a slice
out of the waveguide of length a in the guiding direction x, and which spans a number of
photonic crystal rows in y [111-117]. As before, there is air above and below the waveguide,
and a substrate is located 3a below the slab (not shown in the inset). PML terminates the mesh
in both the ±z and ±y directions, and Bloch/Floquet conditions are used in the ±X direction
[Ill, 113,118]. (While it is possible to use periodic boundary conditions in ±y, the modes of the
resulting supercell would also be calculated.) The same FDTD models as before are run, with
each determining the eigenfrequencies of the modes at the k-vector established by the Bloch/
Floquet boundary conditions. The difference here is that we need only to vary kx from 0 to n/a.

When the FDTD mesh is terminated in the ±y direction with a contiguous PML (e.g., the
lattice of air holes is continued up to and into the PML region), there is the possibility of a late
time numerical instability, especially for kx values greater than approximately 0.8n/a [118].
This problem can be avoided by reducing the time-step to 60% of the nominal three-dimensional
Courant stability limit. Other fixes include imposing a vertical notch in the slab outside of the
last hole, or continuing the slab without holes for a distance of approximately a before
introducing the PML. With these fixes, slab modes are also produced because light propagating
along y is retroreflected by the termination of the photonic crystal lattice. However, most of
these modes can be readily identified since they fall within the light-gray slab-mode region.

The guided modes introduced by the defect are shown in Fig. 16.37 as small black dots
(connecting lines are present only to guide the eye). The defect mode that is horizontally even,
and which has received considerable attention in both theoretical and experimental work,
is shown as large black dots. Typically, interest in this particular mode is driven by a need to
obtain strong coupling to and from the photonic crystal waveguide, since a conventional ridge
waveguide has a similarly shaped fundamental mode. The other two modes in the guided-mode
gap have different symmetries [109, 111]. While it is clear that part of this mode exists above
the light line and part exists below the light line, the dispersion diagram does not provide any
quantitative information on the losses. We will take up this topic in the next section.

One of the advantages of using FDTD for computing these guided modes over an alternate
technique such as the plane-wave method is that such defect modes can be readily followed into
the region above the light line or out of the guided-mode gap. This can be important, since a full
understanding of the waveguiding often depends on knowing what other modes are lying above
the light line at the same frequency. Of course, if the mode enters the shaded region that denotes
slab modes, it is critical to be able to differentiate slab modes from defect modes using PML or
other absorbing boundary conditions in the ±y direction.

Fig. 16.38 is a convergence study that illustrates the effects of coarsening the FOTD grid
resolution (from a /20 used in Fig. 16.37) and decreasing the number of surrounding photonic
crystal rows in the FDTD model (from seven used in Fig. 16.37). Three kxa/rr. values (0.25,
0.60, and 0.85) are considered. These results demonstrate that the choices used to obtain Fig.
16.37 were conservative. While it would be prudent to check these choices in combination, it
appears that a grid resolution as coarse as a/12 and only three rows modeled on each side would
be sufficient to provide an acceptable error level. We note that this convergence is assisted by
the use of the Kaneda (or another) subcell technique, as described earlier. The relative frequency
error is less than 0.1 % when modeling three or more surrounding rows, and less than 0.3% for
grid resolutions finer than a /12. As described in previous sections, it is likely that the number of
time-steps used to compute the eigenfrequencies could be significantly reduced as well.
Here, the number of time-steps is sufficient to resolve two frequencies near the center of the
bandgap that differ by 1% (i.e., to place them two frequency bins apart in the resulting FFT).
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Fig. 16.38 Convergence study of the normalized frequency at three kx values. Left side: as a function of
the number of surrounding rows modeled in the photonic crystal for a fixed a/20 mesh
resolution. Right side: as a function of the FDTD mesh resolution for a fixed number (7) of
surrounding photonic crystal rows. The FDTD mesh cells are scaled so that their x and z spans
are identical within the slab; the y-span of the mesh cell is slightly smaller to allow an integer
number of time-steps per a' = a..f3 / 2.

It is common to read in the photonic crystal literature that FDTD modeling is excessively
demanding in computational resources. While this perspective has some merit, it is often based
upon overly conservative specifications for the required mesh size, mesh resolution, and number
of time-steps. As Fig. 16.38 shows, relaxing these specifications can lead to significant
reductions of the computational burden without a significant impact on accuracy. Again, the
presence of the subcell methods described earlier are invaluable in enabling such reductions.

16.14.3 Intrinsic Loss in Photonic Crystal Waveguides

There are many types of loss in a planar photonic crystal waveguide. Since the number of rows
of photonic crystal in the slab on each side of the defect row is by definition finite, some amount
of light can escape this way. Above the light line, light can couple from the waveguide into
radiation modes; and below the light line, light can couple from the waveguide into the adjacent
high-index substrate. Furthermore, the semiconductor material itself can absorb light in the
wavelength range of interest. Finally, modes with k-values very close to the Brillouin zone edges
can be coupled into backward-traveling modes through distributed Bragg reflection [119, 120].
These factors are all considered intrinsic losses, since they are present even in a perfectly
fabricated device.

-
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In addition, there are extrinsic losses caused by random errors in fabrication. Since
semiconductor fabrication procedures usually begin with a wafer whose vertical layer structure
can be controlled very precisely, fabrication errors and roughness are often associated with the
definition of the holes themselves. Thus, typical errors are variations in the placement of holes
relative to the lattice [121,122], errors in their radius or degree of circularity [123,124], and any
undesired cone angle [125, 126] or roughness [124, 127, 128] on the sidewalls of the cylindrical
holes.

Finally, many experiments and even some numerical simulations are affected by coupling
issues, both from conventional ridge waveguides to the photonic crystal waveguide, as well as
(in experiments) the coupling of light onto and off the device under test. Recently, the use of
calibrated tapers at the photonic crystal and polymer-encapsulated mode converters at the edge of
the chip have led to significant improvements in the ability to experimentally isolate the loss of
the photonic crystal devices [89].

Many numerical and theoretical techniques have been used to estimate the intrinsic and
extrinsic losses in photonic crystals, including FDTD [74, 126, 129-132], transmission-line
matrix theory [133-136], and coupled-mode theory or modal expansions [121,128,137-141].
Besides the FDTD methods of [74] described in this section, and of [124] described in a later
section, one quite flexible non-FDTD method was introduced in [123, 142, 143]. In this method,
the coupling between the guided and radiation modes is calculated by a time-dependent
perturbation theory. While it is not clear how this method would handle the presence of
numerous guided modes, it has been successfully used to compute a wide range of both intrinsic
and extrinsic losses.

One popular way to measure both loss and waveguide coupling with FDTD has been to
simulate a section of photonic crystal waveguide and to then measure the transmission of a pulse
through it. However, the measurement of very small levels of intrinsic loss intuitively requires
long propagation lengths. Such large simulations are often intractable for three-dimensional
FDTD modeling without significant code parallelization. (We will discuss other issues inherent
to such transmission measurements in the next section). In fact, motivated by exactly these
problems, a phenomenological method was introduced to allow two-dimensional FDTD models
to simulate the out-of-plane scattering of the real three-dimensional planar photonic crystal
waveguide. This approach encapsulates the out-of-plane losses in an effective dielectric loss
coefficient, which is added as an imaginary term to the dielectric constant of the air holes [144].
While this approach has given researchers a useful tool that can be used to fit experimental
results and to qualitatively motivate new designs [125, 130, 145, 146], it is clear that a true three
dimensional simulation capable of rapid quantitative prediction would be preferable.

Other researchers have used the temporal decay of the defect-mode resonance to compute
the associated losses. As mentioned in a previous section, the eigenfunctions of an infinite two
dimensional lattice, or of a vertically isolated and laterally infinite slab photonic crystal below
the light line, should be lossless, and thus have an infinitely high quality factor, Q. However,
the defect modes in a finite structure are not lossless, and thus the energy in the mode V(t)
decays as [114, 147, 148]

(16.20)

By rearranging this equation, or by taking the Fourier transform of the underlying field evolution
[147,149], we can obtain two useful alternate definitions of Q:
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Q =
-OJoE

dE/dt
Q (16.21)

where L1W is the FWHM of the Lorentzian energy spectrum centered at 010 , and

U(OJ) = (16.22)

As can be seen from (16.20), the quality factor describes the loss per unit time. In order to
convert this to loss per distance, we can use the group velocity v of the mode to derive an

g

equation for the loss coefficient ex:

(16.23)

that can be represented in conventional units such as loss per centimeter. Since this is the loss of
the mode propagating in an infinitely periodic structure, this approach is typically used to
compute intrinsic loss. However, it could be used for extrinsic losses if they are due to an error
that is periodic with respect to the waveguide unit cell (for example, all of the holes in the first
row next to the defect having the same slightly elliptical shape).

This approach works well if the Q is relatively low and the group velocity is not too small.
Often, Q can be calculated from the noticeable decay of the field envelope, which should fall as
exp(-wotI2Q). However, sometimes a lower-loss mode at a different frequency masks the
decay of the mode of interest. In this case, the Q can still be computed from the width and
position of the spectral line in the FFT. However, when the Q gets very high, it becomes
difficult to estimate the decay from either the envelope time response or the spectrum without
very long FDTD run times. Fortunately, the filter-diagonalization method described in Section
16.11.3 already provides the decay constants and Q as the imaginary part of the eigenfrequency it
computes. This allows one to accurately estimate Q values that would be too high to measure
reliably with the FFT spectrum, and to measure more than just the mode with the lowest loss.
However, while FDM can extend the effective frequency resolution, we saw in Fig. 16.30 that
the range of this resolution extension might be at most four to eight times. Thus, it is perhaps
unreasonable to expect FDM to accurately estimate Q values that are 100 or 1,000 times higher
than the inverse of the frequency resolution. In addition, if the group velocity is being calculated
by taking the difference between two eigenfrequencies, then the impact of frequency errors can
be greatly compounded when the group velocity is small. Although correlated errors in
frequency (for instance, perhaps all the frequencies are slightly too high) subtract away, even
small amounts of uncorrelated frequency error can produce a large relative error when the group
velocity is low.

As a result of these considerations, the loss as calculated by (16.23) is often not sufficiently
reliable for high-Q and low-group-velocity modes. Fortunately, an alternate technique for
computing the intrinsic loss was recently introduced in [74]. This technique is similar to the
procedure we used earlier to compute modal patterns, in that once the eigenfrequency of a defect
mode of interest is known, we run another nearly identical simulation to focus in on this
eigenfrequency. However, rather than "ping" all temporal frequencies and take a running
Fourier transform, instead we preferentially excite just the mode of interest by a continuous-
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wave excitation of our single spatial dipole as before. By driving the real part of the complex
E-fields (the top FDTD "layer") with a sinusoidal carrier, and the imaginary part or bottom layer
with a cosine, we can produce an excitation that travels in only one direction across the periodic
boundaries [62].

Fig. 16.39 illustrates many of these concepts. This figure plots the out-of-plane loss for the
horizontally even mode featured in Fig. 16.37 of the air-bridge, triangular lattice planar photonic
crystal shown in Fig. 16.35. This design is identical to the first of the five cases studied in [74),
and thus can be directly compared with the lowest curve from Fig. 2(a) of that paper.
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Fig. 16.39 Intrinsic loss due to out-of-plane radiation as a function of spatial frequency for the photonic
crystal slab waveguide described in Figs. 16.35 to 16.37. This curve can be directly compared
with the lowest curve from Fig. 2(a) of [74), corresponding to the "deep undercut" design.
Insets show the Blackman-windowed incident field (upper right); the resulting field evolution
for a lossy spatial frequency above the light line (center left); and the field evolution for a low
loss point below the light line (lower left).

We first consider the insets in Fig. 16.39 as a means to understand its main plot. In order to
reduce the excitation of modes at other frequencies, we apodize the temporal waveform with a
Blackman window [74]. The envelope of the resulting temporal waveform is shown as the upper
right inset in Fig. 16.39. (Here, the carrier oscillates too rapidly to be seen clearly, with one
sinusoidal period spanned by about 140 time-steps.) At the end of this excitation waveform,
a large amount of energy has been injected into the mode of interest, specified in spatial
frequency k by the boundary conditions and in temporal frequency Q) by the incident source.
If this mode is lossy, this energy continuously leaks out of the waveguide; if it is not, the injected
energy would continue to propagate along the guide.
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These two cases are shown in the left-hand insets in Fig. 16.39. The upper-left inset shows
the field evolution at a k-value located above the light line. For this case, we see that energy
leaks out of the mode even before the excitation pulse is finished. In contrast, the lower-left inset
shows the field evolution at a k-value located below the light line. For this case, the field
amplitude continues to build throughout the excitation. These effects combine to yield the
overall loss characteristic plotted in Fig. 16.39, wherein losses are high for the portions of the
dispersion curve located above the light line, and are low below the light line.

For the low-loss case, we could choose to prolong the FDTD time-stepping and attempt to
measure the slow decay of the field. However, there is an alternative. Since all lost energy exits
the simulation space via the PML absorbing boundary, we can measure the total power flow out
of the waveguide at any point during the steady-state condition by spatially integrating the
Poynting vector just in front of the PML. Similarly, we can measure the total power flow along
the waveguide by spatially integrating the Poynting vector across the Floquet boundary.
The ratio of the total power outflow, P

OUI
' to that remaining in the waveguide, Po, can be used to

measure both the out-of-plane loss and the intrinsic loss into the slab due to a finite number of
rows of surrounding photonic crystal. The loss is then -log[1 - (PouJPo)] la. In the present
example, we use a == 0.42 /lm [74]. The advantages of this technique are twofold. First, we can
measure very low losses (an accuracy limit of less than 0.01 cm- I is estimated in [74]). Second,
out-of-plane loss can be isolated from in-plane loss and from effects such as mode coupling.

Before combining E and H' to calculate the Poynting vector for a power flow, we account
for the Yee spatial and temporal offsets of the fields by spatially averaging both fields to the
centers of the mesh cells, and temporally averaging the H-fields to coincide with the E-fields
[87]. Overall, we are taking advantage of the single-frequency nature of this simulation and the
presence of the quadrature fields in the second FDTD "layer" to produce a monitor of the time
averaged Poynting vector.

We note that the in-plane Poynting vector evolves differently during these simulations for
k-values very close to the Brillouin zone. At these k-values, either bidirectionality is imperfectly
suppressed or, more likely, distributed Bragg reflection redistributes power into both the
forward- and backward-propagating modes. As a result, for k-vectors close to either 0 or rc/a,
we take the ratio of the out-of-plane power flow relative to the peak in-plane power flow, rather
than the final in-plane power flow. While it is possible to change the transition point between
these two operations without introducing a nonphysical jump in the calculated losses, the values
of loss calculated with this algorithm for k-values within 0.05rc/a of the Brillouin zone edges
may not be as reliable as at other spatial frequencies. This issue was apparently finessed in [74]
by simply avoiding such k-values.

Fig. 16.40 provides the results of a convergence study of the FDTD-calculated vertical
radiation loss with respect to the number of surrounding rows of the photonic crystal in the
model, the mesh resolution, and the number of time-steps. We see that as few as four
surrounding rows, 12 mesh cells spanning a, or 6,000 time-steps could be used without
significant deviation of the results. (Of course, the impact of making all three of these choices
together would need to be verified.)

Interestingly, initially seeding these tests with the accurate eigenfrequency obtained with the
conservative choices of seven surrounding rows and 20 cells spanning a, yields somewhat larger
errors at the left edge of each subplot in Fig. 16.40 than those shown here. This can be traced to
the fact that very little energy is injected into the mode of interest when we combine a slight
frequency error and a long time window. Simply using the same conditions (coarse gridding or
reduced number of surrounding photonic crystal rows) for both the frequency and loss
calculations avoids this problem.

.....
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Fig. 16.40 Convergence study of the FDTD-calculated vertical radiation loss at three kx values from
Fig. 16.39 with respect to the number of surrounding rows of the photonic crystal in the model,
the mesh resolution, and the number of time-steps. The length of the Blackman window is
chosen to be five optical cycles (approximately 700 time-steps) shorter than the overall length
of the simulation.

Similarly, the use of a shorter time window on the excitation allows any nearby frequency to
produce the correct excitation, although this should be avoided if a second defect mode were
located at a nearby frequency. Still, we can reduce the computational load in terms of the
number of time-steps so long as no competing defect (or slab) mode is nearby.

16.14.4 Transmission in Photonic Crystal Waveguides

The method of [74] described in the previous section can calculate extremely low losses, and can
be used to isolate the intrinsic losses of individual modes. However, it requires a pair of
simulations per k-point, and thus does not exploit the ability of FDTD to compute broadband
frequency response with a single simulation. One approach that does was introduced in [131].
Here, a larger simulation space of 10 lattice constants, surrounded on all sides by absorbing
boundary conditions, is excited with a pulsed input from a dipole. The waveform is captured
along the waveguide, Fourier transformed to isolate each OJ in the excitation bandwidth, and then
filtered spatially by correlation against previously captured mode profiles. This was used to
study the loss above the light line, but was shown to have difficulties measuring loss when the
group velocity is low [131].
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In addition to intrinsic losses, we might also like to be able to simulate the coupling between
photonic crystal waveguides and conventional ridge waveguides, and to estimate the extrinsic
losses due to random fabrication errors. The transmission measurements briefly mentioned
before are often used for these kinds of simulations. Here, isolated boundary conditions are
imposed on all sides, a pulse is introduced, and the ratio of flux at the far end to flux near the
input excitation is used to compute transmission at all frequencies within the pulse bandwidth
simultaneously. As mentioned previously, one problem with these simulations is that low losses
are difficult to definitively quantify without inordinately long simulations.

However, a more serious problem is that even modern absorbing boundary conditions such
as PML are much less efficient at terminating photonic crystal waveguides than they are for free
space or conventional ridge waveguides [150-153]. This has been attributed to imperfect mode
matching between the photonic crystal waveguide and its analog within the PML. Fig. 16.41
illustrates this problem.
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Fig. 16.41 Spurious reflections as a function of PML thickness when terminating a conventional high
index slab waveguide and two different photonic crystal waveguides. All FDTD simulations
employ two-dimensional TMz grids. The slab waveguide (350-nm thick, n =3.4) propagates a
TE waveguide mode centered at A == 1,550 nm within a square-cell grid of resolution 25 nm.
The square-lattice photonic crystal waveguide has a single missing row of dielectric cylinders
(ria =0.2, n =3.4), and is excited at a center frequency (j)a/2nc =0.37 in a grid of resolution
a1l8. The triangular-lattice photonic crystal waveguide has a single missing row of air holes
(ria =0.4) in a high-index background (n =3.4), and is excited at a center frequency
(j)a I2ne =0.37 in a grid having ax =all 8 (with ~y related as described earlier).
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Fig. 16.41 compares the spurious reflections as a function of PML thickness when
terminating a conventional high-index slab waveguide and two different photonic crystal

waveguides. (Note that, for the latter two cases, the air-dielectric variation of the photonic
crystal is continued throughout the entire extent of the PML.) From this figure, we see that PML
is much more effective for the conventional slab waveguide than for the photonic crystal
waveguides, even for dramatically increased PML thickness. Similarly (but not shown in this
figure), little improvement is obtained in terminating the photonic crystal waveguides upon
varying the usual PML parameters of (Jrnax and polynomial-grading order m, as defined in

Chapter 7, Section 7.6.2.
The low efficiency of PML terminations for photonic crystal waveguides negatively impacts

FDTD simulations. There is the obvious error introduced by the PML reflection artifact, which
causes the calculated transmission spectra to have oscillations that are dependent upon the length
of the waveguide. Another uncertainty is how to measure flux: whether with one monitor, a few
scattered monitors, all of the flux within a few a of the waveguide, or the entire lateral extent of

the simulation. Yet another problem is that it is more difficult to develop an accurate
"bootstrapped" wave source; that is, a record of a pulsed waveform supported by the waveguide
for use in sourcing subsequent simulations (see Chapter 5, Section 5.11). Data records of this
type can also be contaminated by spurious reflections.

One strategy to attack the reflective-termination problem involves modeling the coupling of
the input and output ports of the photonic crystal waveguide of interest to a waveguide that can

be efficiently terminated with PML. For example, [150] reported for this purpose the design of a
DBR waveguide (a one- or two-dimensional Bragg grating orthogonal to the guide direction).

DBR waveguides can be terminated with PML because they possess continuous rather than
translational symmetry. However, for the smoothest coupling, such a guide should be optimally

designed for each photonic crystal waveguide of interest, and even then, may have difficulty in
achieving spurious reflections below a few percent at the input and output ports.

In the same genre, we can model the coupling of ridge waveguides to the input and output
ports of the photonic crystal waveguide. This has the advantage of potentially corresponding to
the actual physical measurements of the device. (For example, see the moderate-Q photonic

crystal resonator studied in Section 16.15 [154].) However, due to limitations on the size of the

simulation space, the input and output ridge waveguides likely are much closer together in the

FDTD model than in the physical experiment. As a result, such simulations could include

artifacts caused by interactions of the input and output couplings, especially potential Fabry
Perot oscillations.

Of course, the brute-force solution to the problem of terminating photonic crystal

waveguides is to simply use enormous simulation spaces. This allows temporal isolation of the
reflected and transmitted pulses of interest (e.g., those due to a bend in the waveguide [90, 155]),
from the spurious pulses due to the outer boundaries of the simulation space. In such

simulations, the pulse bandwidth is chosen carefully: too small, and the pulse wavepacket is so
long that it overlaps at the monitor despite the long propagation lengths; too large, and the
group-velocity dispersion inherent to many photonic crystal waveguides creates a broad

wavepacket anyway [90]. Unfortunately, this approach also means that such simulations,
especially for three-dimensional FDTD, mandate parallelization across a large number of
processors.
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16.14.5 Aperiodic Photonic Crystal Waveguides

Recently, [156-158] reported a photonic crystal waveguide design that is intentionally aperiodic.
Here, the row of holes closest to the defect row is made periodic along the waveguide with
period b:l; a. For this structure, the simulations described earlier, based on the unit cell along the
waveguide, are no longer appropriate. In an alternate approach [I56, 157], FDTD is used to

model the injection of energy from a ridge waveguide into the photonic crystal waveguide.
The k-vector of the light propagating in the photonic crystal waveguide region is then analyzed
using two Fourier transforms: one transform in time at each grid cell to isolate particular
temporal frequencies OJ; and then a transform in space to identify the particular k-vector.
Comparison of the results of this spatial Fourier-transform (SFT) technique to the conventional
Order-N method described previously indicates good agreement [156,157].

An advantage of the SFT technique is that it can potentially obtain the entire dispersion of
defect modes, OJ versus k, with one simulation. A disadvantage is the size of the simulation
relative to the single unit cells, especially given that the shorter the waveguide, the fewer
oscillations along x that are available for identification of k. It might be expected that such
simulations could also be adversely affected by imperfect termination of the photonic crystal
waveguide, although [156, 157] do not indicate the thickness of the PML used to terminate the
waveguide. Fortunately, any power reflected from the waveguide port at temporal frequency OJ

and wavevector k is more likely to establish a noise signal at 2k, corresponding to a standing
wave. Another interesting consideration for the SFT method is how well two or more modes
with common symmetry can be distinguished if they share the same temporal frequency.

16.14.6 Photonic Crystal Waveguide Extrinsic Scattering Loss from the Green Function

As mentioned above, the method for loss calculation introduced in [74] is primarily intended for
intrinsic loss (as well as extrinsic loss due to periodic errors). However, the ability to focus on a
single k-vector at a time improves the reliability of the results and eases subsequent interpretation
of the underlying physics. Recently, [124] introduced a method of computing the extrinsic
scattering loss using FDTD. Here, FDTD is used as described above to compute the defect
modes and their mode profiles. Then, pairs of dipoles and monitors are successively applied to
map out the Green function tensor at the positions within the photonic crystal lattice that are
expected to be the primary contributors to scattering loss (for instance, the edges of the air holes)
[159].

Using this Green function and a suitable model for the error in the permittivity, t1.£, between
the desired photonic crystal structure and the structure that is actually fabricated, the power loss
due to backscatter and the overall extrinsic power loss can be computed as [124]:

aback (CO) (16.24)

using the mode patterns E.cr ) =ekexp(jkx) and the assembled Green function tensor GB
•

(16.25)



Chnpter 16: Photonics 807

Even before computing any elements of the Green function, it is already apparent from
(16.24) and (16.25) that slow group velocity is associated with large extrinsic losses, and in
particular with very large backscatter. (Note that second-order scattering from the backward
mode into the forward mode and similar higher-order terms are not represented in these
equations. See citation #17 in [124].) From (16.24) and (16.25), it is also apparent that any
particular error in shape or roughness (for example, where there should be dielectric, there is air
instead) results in a larger value of liB (and thus more extrinsic scattering) for a high-index
contrast slab than for structures where the materials involved are closer in index. By choosing an
appropriate value of root-mean-square surface roughness and correlation length, it has proven
possible to closely match experimentally measured loss spectra of both conventional WI as well
as WO.7 photonic-crystal waveguides [160]. (In a WO.7 waveguide, the photonic crystal sections
on either side of the defect mode are moved 30% closer together, improving the group-velocity
dispersion and pushing competing modes out of the bandgap [106].) Thus, this Green function
method offers the opportunity to compute extrinsic loss.

In a certain sense, this method has many similarities with the methods of [123, 142, 143].
Both depend on enumerating all the guided modes, and both then quantify the coupling between
these modes and the radiation modes.

16.15 MODELING OF PROTONIC CRYSTAL RESONATORS

Just as a row of defects creates a photonic crystal waveguide, an isolated defect in an otherwise
perfect photonic crystal can create a photonic crystal resonator. Light is trapped at such a defect
because it is hemmed in on all sides by regions of photonic crystal through which it cannot
propagate. Such resonators can be used as out-of-plane couplers [100, 161-164], wavelength
filters [97-99, 165], lasers4 [166-172], cavities designed for quantum electrodynamics (QED)
experiments [173-175], sensors [154,176-179], tunable filters [180-186], and switches
[187, 188]. Planar as well as fully three-dimensional photonic crystal structures such as the
"woodpile" have been studied [152, 189-193].

For most of these applications, the parameter of primary interest is the quality factor Q of
the photonic crystal resonator. A high-Q cavity has a narrow spectral response and a long
lifetime for its resonant photons; equivalently, the resonator loss is low. This is certainly
desirable for filters and lasers. Additional desirable attributes of a photonic crystal resonator
vary according to the application. For example, a key goal in the design of photonic crystal
lasers is to produce an electrically pumped device. This implies that the maximum optical field
within the photonic crystal cavity should be in a solid region where one can position gain
material and electrical contacts [168, 172]. In contrast, in QED experiments, wherein the goal is
to manipulate the quantum state of a neutral gas-phase atom, the photonic crystal cavity should
have its maximum optical field at a hole [173]. Here, in addition, to obtain strong coupling
between the atom and the cavity mode, not only should the Q be large, but the effective volume
of the cavity mode, Verr , should be small [173].

4In addition to defect-based resonators, a "band-edge" laser can be engineered by using the distributed
Bragg reflection inherent at symmetry points of the band diagram where the bands become flat
[194-197]. Here, the center of the resonator is dictated not by the engineered defect, but by the optical or
electrical pumping.
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The suite of FOTD tools currently used to study photonic crystal resonators has essentially
been covered in previous sections. Reference [166] first laid out this set of tools, starting with
two-dimensional band diagrams of a perfect photonic crystal (Section 16.11.1); extending this to
a three-dimensional band diagram delineated by the light line (Section 16.14.1); and finally
three-dimensional simulations to explore the impact of the defect. The latter parallel the defect
mode and intrinsic-loss simulations discussed in Section 16.14, but with absorbing boundary
conditions on all six boundaries. Once the band diagram of the planar photonic crystal is known,
the resonator is probed with delta functions in both time and space to identify the modes of the
resonator [166]. Alternatively, the temporal pulse used for excitation can be tailored to reduce its
spectral content. Symmetries of the resonator structure can be used to both reduce the size of the
simulation space and isolate those modes sharing the given symmetry [166]. Alternatively,
multiple dipoles can be arranged in symmetric positions to have the same effect [198], or the
results of multiple FDTO runs can be combined to project onto the proper irreducible
representation according to group theory [189]. Since, in general, there are no longer any
BlochiFloquet boundaries, there is no need to scan over spatial frequency.

Once the frequencies of the defect modes of interest are known, Q can be obtained by
adapting the intrinsic-loss simulations described in Section 16.14.3.5 The resonator is excited by
a pulsed excitation centered on the frequency of the mode of interest. and the Q is calculated
using (16.20) from either the energy decay or the relative amount of power leaving the
simulation space. For the latter, Q=Q)oV(t)IP(t), where Vet) is the energy in the mode and pet)
is the amount of power leaving the simulation space. One advantage of measuring the outgoing
power over the energy decay is that we avoid the necessity of accurately measuring what could
be a very slow decay of the energy. However, both methods give similar results [166, 199].
A more important advantage of computing Q by the power shed from the resonator is that
different contributions to the total quality factor, QT' can be studied separately-specifically, the
portion due to vertical or out-of-plane losses (Q,L)' and the portion due to power loss within the
plane of the slab (QII)' where Q;' =Q~l + QII-I.

However. while this method is fairly straightforward, there are still cautionary points.
First, it is important to be sure that the outgoing flux at the boundaries reaches a steady-state
condition before using it to calculate Q, especially when Q is large. Second, if one wants to
concentrate on Q,L or Q II individually, the division between which portions of the outer
boundaries correspond to P,L(t) and which to PII(t) must be chosen with care. For instance,
portions of the sidewalls far from the slab almost certainly intercept some of the outgoing
vertical radiation, yet the in-plane loss cannot be considered to be completely confined to the
high-index slab. One common choice is to consider the slab plus one-half wavelength of
cladding above and below as the in-plane component. with everything else assigned to P,L(t)
[173-175].

In addition to the choice of flux planes, the excitation bandwidth must be chosen carefully.
As described in previous sections, it is often important when investigating a particular mode to
avoid injecting any energy into other modes. However, if the bandwidth of the excitation is
made too narrow, the high Q value obtained may be the spectral width of the excitation rather
than that of the underlying resonator [199].

5An alternative approach is to improve the estimates of resonant frequency and Q by iteratively inserting the
modal patterns into a variational expression [200].
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Fig. 16.42 Modes in a planar photonic crystal resonator with components inside the light cone tend to be
lossy due to coupling to radiation modes. A k-space design thus concentrates on placing the
spatial-frequency content of modes outside the light cone. Adapted from: Srinivasan and
Painter, Optics Express, 2002, pp. 670-684; and Optics Express, 2003, pp. 579-593.

Just as with the planar photonic crystal waveguide, the light line represents an avenue for
light to escape a planar photonic crystal resonator, and thereby reduce its Q. Fig. 16.42, adapted
from [169,170], elegantly shows the relationship between spatial frequency, temporal frequency,
the light line, and the relative positioning of guided and radiation modes. Many researchers have
used FDTD to help redesign their cavities to suppress this loss mechanism and thus increase Q
[167,169-171, 174, 199]. Reference [174] pointed out that by applying the paraxial
approximation to the analysis of the far-field radiation from a planar photonic crystal resonator,
the vertically radiated power at some vacuum wavelength ito could be written in terms of the
in-plane field components as

(16.26)

where 11
0

=~)10 I eo; Y represents the two-dimensional spatial Fourier transform; and the
integration is performed over all spatial frequencies inside the light cone (e.g., with magnitude
Ikl ~ 21tlito)' Thus, the modal patterns of the resonator (Section 16.12) become an avenue to
reducing its out-of-plane losses by redesigning the cavity mode to decrease the low-spatial
frequency content. This redesign can be driven by symmetry [169, 170], by solving the inverse
problem [201], by destructively interfering lower-order multipole radiation components [68],
or by creating a dislocation [174] or a shift [202] of the holes. It is conventional to use the field
patterns at the center plane of the resonator for this k-space design. It is important to suppress
the effects of the field pattern that lie outside the real-space boundaries of the resonator,
but without shifting or altering the k-space pattern during such windowing [199]. FDTD can
then be used to investigate the sensitivity of the Q to slight variations in the device parameters,
as a way to develop resonator designs that are more tolerant to potential fabrication errors
[203,204].
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16.16 MODELING EXAMPLES OF PROTONIC CRYSTAL RESONATORS

16.16.1 Electrically Driven Microcavity Laser

As illustrated in Fig. 16.43, three-dimensional FDTD modeling has recently been used to design
an electrically driven, single-mode, low-threshold-current, photonic crystal microlaser that
operates at room temperature [172]. (See also the color version of this figure in Fig. 1.7.)
Fig. 16.43(a) is a schematic diagram of this microlaser [172]. Here, light is confined to a single
defect at the center of a photonic crystal that is fabricated as an array of air holes etched within a
282.5-nm-thick semiconductor slab of refractive index n =3.4. A 1-llm-Iong InP post placed
directly below the defect injects holes, whereas electrons are supplied laterally from a top
circumferential electrode. The holes and electrons recombine in six InGaAsP quantum wells
within the photonic crystal slab. These quantum wells are designed to have an electro
luminescence peak near the communications wavelength of 1,500 nm.

Fig. 16.43(b) is a scanning electron microscope image of the top view of the fabricated
photonic crystal slab [172]. The defect-mode cavity is surrounded by five photonic-crystal
regions I, II, III, IV, and V having the same lattice constant a == 510 nm, but different air-hole
radii: 0.28a, 0.35a, 0.385a, O.4a, and 0.41a, respectively. Optical electromagnetic fields are
confined within the cavity in the vertical direction by total internal reflection at the slab-air
interface, and laterally by the action of the photonic crystal bandgap. Therefore, light can escape
from this cavity only by either tunneling laterally through the photonic crystal, or by exiting
vertically by impinging on the slab-air interface at a sufficiently large angle.

Fig. 16.43(c) visualizes the FDTD-calculated E-field intensity profile (log scale) along a
planar central cut through the photonic crystal slab [172]. Note that, in creating the FDTD
model, actual structural data for the fabricated microlaser was transferred directly from the
scanning electron microscope image to the FDTD geometry dataset. This allowed the model to
incorporate actual imperfections of the fabrication process. As a result, the FDTD model
predicted the actual observed monopole-mode operation of the laser, and reasonably reproduced
the field asymmetry resulting from the laser's imperfect fabrication. Cavity Q factors for this
study were in the order of 3,000 for a lasing wavelength of 1,519.7 nm and a modal volume of
0.0587 Ilm3. The latter corresponds to 0.684 (}.In)3, which approaches the smallest theoretical
value.

The microcavity laser of [172] discussed here has a flexible geometry, which allows fine
tuning of its radiation pattern and emission wavelength. The compact size and high spontaneous
emission coupling factor of its defect microcavity also make this laser interesting as a low-noise
light source, potentially approaching threshold less operation or a single-photon source.
In addition, such microcavity lasers may be useful where crystal growth of high-index contrast
mirrors are limited, such as in long-wavelength vertical-cavity surface-emitting lasers or blue

green gallium nitride-based devices.
Finally, we note that FDTD can be used to predict the far-field pattern of photonic-crystal

lasers for comparison with measured near- and far-field patterns [199,205,206]. This can be a
useful way to verify that the device operation is well understood. Here, it is important to avoid
evanescent contributions to the simulated far-field by taking the flux at a plane some distance
above the resonator surface. It is also important to match the finite collection angle inherent in
any experimentally measured data [199, 206].
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(a)

(b)

10-4 1

(c)

Fig. 16.43 Electrically driven, single-mode, low-threshold-current photonic crystal microlaser operating at
room temperature: (a) schematic diagram; (b) top view of the fabricated sample; (c) FDTD
calculated E-field intensity profile of the monopole mode (log scale). Source: Park et aI.,
Science, Sept. 3, 2004, pp. 1444-1447. See Fig. 1.7 of Chapter I for the color visualizations.

m
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16.16.2 Photonic Crystal Cross-Waveguide Switch

FDTD has been used to study micron-scale all-optical switching in photonic crystals [187, 188].
Here, photonic crystal microcavities confine photons to submicron dimensions, leading to very
high peak power levels which enhance nonlinear processes by many orders of magnitude.
This enhancement in nonlinearity can be used to construct ultralow-power all-optical switches.

Fig. 16.44 shows grayscale visualizations of the operation of an all-optical photonic crystal
cross-waveguide switch that can operate at 10 Gbits/s with pulse energy levels as small as
100 fJ I pulse. (The corresponding color visualizations are shown in Fig. 1.8.) The switching
action employs only the intrinsic nonresonant Kerr nonlinearities that are present in
semiconductors such as AIGaAs for wavelengths in the order of 1.5 11m (compatible with modem
lightwave communication systems). The structure of Fig. 16.44 consists of two photonic crystal
waveguides that cross each other at right angles. The microcavity located at the intersection of
the waveguides possesses two orthogonal dipole-like cavity modes. Each cavity mode couples to
only one of the waveguides, and isolates the signals in the two waveguides. As proven by the
FDTD simulations, this accomplishes both spatial and spectral isolation between the signal and
the control inputs, even in the nonlinear regime.

Fig. 16.44 illustrates the two states of the device as simulated with FDTD. Initially, the
microcavity at the intersection is designed to be out of resonance with the signal input in the
absence of the control input. This causes a very low signal transmission, as shown in
Fig. l6.44(a). When a control pulse is launched, as shown in Fig. 16.44(b), it causes a strong
electric field buildup in the microcavity, which shifts its resonant frequency due to the material
nonlinearity. The overall result is a bistable transition of the cavity resonance, which switches
the signal transmission from low to high. Since the switching process occurs via bistable
transitions, the device is digital; that is, only low and high transmission states are allowed.
As discussed in [187, 188], the same device can function either as a switch or as a memory
element, depending upon the design parameters.
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Fig. 16.44 FDTD-caIculated electric field distributions in a photonic crystal cross-waveguide switch:
(a) control input is absent, and the signal output is low; (b) control input is present, and the
signal output is high. Black circles indicate the positions of the dielectric rods in the photonic
crystal. Source.' Yanik et aI., Optics Letters, 2003, pp. 2506-2508.
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16.17 INTRODUCTION TO FREQUENCY CONVERSION IN SECOND-ORDER
NONLINEAR OPTICAL MATERIALS

Frequency-conversion processes in second-order (X(2» nonlinear materials such as LiNb03 have
been explored for a variety of optical communications, signal-processing, data-storage, arid
sensing applications that rely upon components such as wavelength routers, add/ drop
multiplexers, tunable coherent light sources, and all-optical switches. Frequency conversion is
extremely sensitive to the phase velocities of interacting optical waves. Therefore, quasi-phase
matching (QPM) techniques are needed to compensate for material dispersion that would
otherwise degrade the frequency conversion efficiency. First-principles modeling tools based on
the full-wave vector Maxwell's equations are useful for the analysis and design of X(2) nonlinear
optical devices, including QPM structures.

Since the early 1990s, the FDTD method has been refined and extended to treat a wide range
of problems involving the interaction of electromagnetic waves with nonlinear materials
(see examples in Chapter 9). However, the numerical dispersion characteristics associated with
FDTD can be problematic in modeling frequency-conversion processes. Since interacting
optical waves with different phase velocities fall out-of-step as they propagate through a
nonlinear material, a coarsely resolved FDTD simulation of a homogeneous frequency
independent second-order nonlinear material erroneously predicts a finite coherence length.
A computationally inefficient solution to this problem is to use an extremely fine grid resolution
to reduce the effects of numerical dispersion. For example, [207] reported that at least 80 points
per wavelength at the second harmonic are required to achieve reasonably accurate results in
modeling second-harmonic generation.

Reference [208] reported an alternative solution to the problem of modeling phase-sensitive
nonlinear optical phenomena. This solution is based on the PSTD method [209,210], adapted
for modeling optical wave propagation in X(2) materials. (For detailed discussions of PSTD
techniques, see Chapter 4, Section 4.9.4, and Chapter 17.) The spatial derivatives in Maxwell's
equations are calculated using the differentiation theorem for Fourier transforms, thereby
providing spectral accuracy. Hence, the time-stepping is the only source of numerical dispersion
errors. The dispersion errors of the standard second-order-accurate-in-time PSTD algorithm,
denoted here as PSTD-2, can be reduced by employing a PSTD scheme with fourth-order time
stepping, denoted here as PSTD-4.

16.18 PSTD-4 ALGORITHM

For simplicity, consider an electromagnetic plane wave propagating in a linear, lossless,
nondispersive, and isotropic medium with no electric or magnetic current sources. For this one
dimensional case with E, polarization and x-directed propagation, the PSTD-4 algorithm is given
by the following update equations [208]:

~t{ 2~2 }Hl,I~-1/2 + J1; J:-1[-jkxJ:(EJ]r + V j24t J:-'[jk} J:(EJl[

~t { 2 A 2 }E In+1 = E In + - 1'.-I[-'k 1'.(H )]In+112 ~ -1[. 3 ( )]In+112
" l, ~ x lxx )' . + 1'.x lkx1'.xH

G j I 24 Y ;

(16.27)

(16.28)
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where k
x

is the Fourier-transform variable representing the x-component of the numerical wave
vector, and ~ and J;,-I denote, respectively, the forward and inverse DFfs along the x-direction.

The complete derivation of this algorithm is given in [208]. Without the last term on the right
hand side of (16.27) and (16.28), the update equations reduce to the PSTD-2 algorithm for one

dimension.
An FFf algorithm is used to implement the DFfs in (16.27) and (16.28). Note that one

forward and two inverse FFfs are required in PSTD-4 to update either field, whereas only one

forward and one inverse FFf is required for PSTD-2. Hence, in one dimension, PSTD-4

requires a total of six FFf subroutine calls per grid cell per time-step, whereas PSTD-2 requires a
total of only four. However, PSTD-2 requires a much smaller time-step to achieve the same
level of accuracy offered by PSTD-4. Thus, PSTD-4 offers improved computational efficiency
relative to PSTD-2, as long as the computational overhead is compensated by the reduction in the

total number of time-steps required by PSTD-4 relative to PSTD-2. The break-even point in the
computational burden of PSTD-4 versus PSTD-2 occurs when the accuracy requirements of the

problem force PSTD-2 to have a time-step that is 1.5, 2.25, and 3.5 times smaller than that used
by PSTD-4 in one, two, and three dimensions, respectively.

16.19 EXTENSION TO SECOND-ORDER NONLINEAR MEDIA

For the linear case, one time-step in the PSTD numerical solution consists of first updating

H from the previously computed E using (16.27), and then updating E from the previously
computed H using (16.28). In contrast, the PSTD scheme for the nonlinear case involves three

stages to complete one time-step: (I) updating H from E, (2) updating the electric flux density

D from H, and (3) calculating the updated E from D using the nonlinear constitutive relation

D = E E E + E X(2) £2
OrO

This equation can be solved directly as follows:

(16.29)

(16.30)

Note that this equation is replaced by the linear constitutive relation E =DIEOEr in any region of
the grid where X(2) =o.

16.20 APPLICATION TO A NONLINEAR WAVEGUIDE WITH A QPM GRATING

Reference [208] reported the results of numerical experiments designed to test the performance

of the PSTD algorithms for modeling second-harmonic generation (SHG). Here, a symmetric

dielectric slab waveguide with a nonlinear core guiding layer was modeled in a two-dimensional

TE PSTD computational domain.
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In [208], the dielectric constants of the waveguide core and cladding layers were assumed to
be 4.84 and 4.0, respectively. The core was assumed to be 0.682 J.lm thick, with the nonlinear
susceptibility X(2) =44 pmIV (corresponding to LiNb03). A QPM grating (a periodic reversal of
the nonlinearity) was modeled in the core. This grating was designed to restore the proper phase
relationship between the fundamental wave and the second harmonic in the presence of the
waveguide dispersion, thereby improving the efficiency of SHG. The sign (polarization) of X(2)

was assumed to be constant over the coherence length for the waveguide (7.885 J.lm, assuming a
fundamental wavelength of 1.5 J.lm).

Reference [208] first compared the numerical convergence of PSTD-2 and PSTD-4 for
modeling SHG in a 130-J.lm length of the nonlinear waveguide. using a grid sampling density of
approximately ten points per fundamental wavelength in the core region. The maximum allowed
time-step was the two-dimensional stability limit for the linear case [209, 210]:

/).t
s

2..jE;
=

nc~At -2 + /).y-2

(16.31)

where E denotes the dielectric constant of the cladding region. In each simulation, a DFT at the
r

second-harmonic frequency was applied to the fields along the center axis of the waveguide.
and the power density was computed. Starting with D.ts ' the PSTD-2 and PSTD-4 simulations
were repeated with smaller time-steps until numerical convergence in the power density was
reached. Fig. 16.45 shows the results of these convergence tests.
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(a) PSTD-2 model. (b) PSTD-4 model.

Fig. 16.45 Convergence of the PSTD-2 and PSTD-4 models of SHG in a nonlinear waveguide with a
QPM grating. Source: Lee and Hagness, J. Opt. Soc. America B, 2004, pp. 330-342.

Fig. 16.45(a) shows that the power density of the second harmonic was grossly
underestimated when PSTD-2 was used with a large time-step, but converged to the reference
data (M = M)30) as the time-step decreased. Fig. 16.45(b) shows that PSTD-4 slightly
overestimated the power density of the second harmonic when the maximum possible time-step
was used, but very quickly converged to the reference data as the time-step decreased.
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By way of a quantitative comparison, the time-step required to achieve an error of no more
than approximately 2% in the computed second-harmonic power density at a propagation
distance of 130 j.lm was determined to be M/5 for PSTD-2 and M/1.5 for PSTD-4. With this
selection of time-steps, the PSTD-4 model ran about 1.5 times faster than the PSTD-2 model,
despite the extra FFfs needed to implement PSTD-4.

Reference [208] then evaluated the numerical convergence of FDTD with respect to grid
resolution for modeling second-harmonic generation in the nonlinear waveguide with a QPM
grating. Since the numerical dispersion error of FDTD is directly controlled by the grid
resolution, the grid-cell size in the FDTD model was gradually decreased until the FDTD results
were as accurate as the PSTD-4 results. Fig. 16.46 shows the results of the FDTD convergence
tests for a 60-j.lm propagation distance. The FDTD error drops to the 2% range when its grid-cell
size is decreased by a factor of 10: 1 relative to that used for PSTD-4. With this choice of grid
resolution, the FDTD model using a time-step of tits ran about 51 times slower than the PSTD-4
model using a time-step of M/1.5.
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Fig. 16.46 Convergence of the FDTD model of second-harmonic generation in a nonlinear waveguide
with a QPM grating. The FDTD grid resolution is expressed in terms of the ratio
r,. =Llxrnm/LlxpsTD =J1Yrnm/tiypSTo. In these tests, the FDTD time-step was set at tits. Source:
Lee and Hagness. J. Opt. Soc. America B, 2004, pp. 330-342.

These benchmark simulations demonstrate that low-dispersion schemes such as PSTD-2 and
PSTD-4 offer significant computational advantages over the standard FDTD scheme for
modeling phase-sensitive frequency-conversion processes in second-order nonlinear optical
materials. Since errors due to numerical dispersion are cumulative, the computational savings of
PSTD relative to FDTD increases with the distance of wave propagation. Hence, PSTD
techniques (especially PSTD-4) enable much more efficient modeling of frequency conversion in
larger-scale nonlinear optical devices, such as the nonlinear photonic crystals to be discussed
next.
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16.21 APPLICATION TO NONLINEAR PHOTONIC CRYSTALS

A nonlinear photonic crystal (NPC) is an artificially engineered material comprised of a periodic
spatial variation in a nonlinear susceptibility tensor [211]. An NPC created via two-dimensional
periodic poling of the second-order susceptibility has a unique spatio-spectral feature that
permits quasi-phase-matching in two dimensions. Thus, in contrast to one-dimensional QPM,
the harmonic wave in a two-dimensional NPC can propagate in a different direction than the
fundamental wave. This noncollinear propagation characteristic has been demonstrated

experimentally for SHG in LiNb03 NPCs with hexagonal poling patterns [212), and has been
exploited for simultaneous wavelength interchange of optical signals [213].

In this section, we review the application of the PSTD-4 technique (introduced in [208] and
discussed in the previous section) to model SHG processes in LiNb03 NPCs, as reported in

[214]. The material properties of LiNb03 were incorporated using an auxiliary differential
equation technique [215] adapted for nonlinear PSTD simulations [216]. A two-pole Lorentz
dispersion model was developed to account for the linear frequency-dependent susceptibility
[216]. The instantaneous nonlinear susceptibility was described by x'2) == +44 pm/V for the

inverted poling region, and x'2) == -44 pmN for the surrounding areas.

Fig. 16.47 shows the computational domain assumed in [214] for the case of a two

dimensional NPC lattice structure designed to generate the second harmonic at an angle of 6.3 0

with respect to the direction of propagation of the fundamental. In this example, a hexagonal

poling pattern was assumed at each lattice point of the NPC. The size of the computational
domain was 24.2 /lm in the y-direction and 270 /lm in the x-direction (between the source plane

and the far right boundary). The fundamental wave (..:to == 1.5 /lm) propagating in the +x-direction
was launched as a uniform plane wave from the left side of the domain, using the source

condition of [217]. UPML absorbing boundary conditions were used to terminate the left and

right sides of the computational domain, while periodic boundary conditions were applied at the

top and bottom sides of the domain. Once the sinusoidal steady state was reached in the time
domain simulation, discrete Fourier transforms were applied to the PSTD-computed E- and

H-fields at the fundamental and second-harmonic frequencies. Then, the spatial variation of the
power density and propagation direction of the second-harmonic wave was determined via

Poynting vector calculations performed throughout the domain.

source
plane

x
UPML UPML

Fig. 16.47 PSTD ~odel of a two-dimensional nonlinear photonic crystal with a hexagonal poling paaern.
The thlck arrow indicates the direction of incident wave propagation. Adapted from: Lee and
Hagness, Proc. IEEE LEOS Annual Meeting, 2003. Vol. I, pp. 194-195.
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Three different shapes of poling patterns were investigated in [214]: hexagonal, circular,
and elliptical. The circular and hexagonal poling patterns were parameterized in terms of the
radius r of the circle and the distance h between the center and the side of the hexagon.
The elliptical pattern was parameterized in terms of the major axis a and the minor axis b, where
the major axis was aligned with the intended direction of propagation for the second harmonic.

Fig. 16.48 shows the PSTD simulation results of [214] for second-harmonic generation in a
nonlinear photonic crystal having a circular poling pattern (r =2.6 11m). Here, the magnitude
(background grayscale) and the direction (arrows) of the local Poynting vector for the second
harmonic wave are displayed for two regions of the computational domain.
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Fig. 16.48 Power density (grayscale) and propagation direction (arrows) of the second-harmonic wave
computed in two IS-11m-wide regions of the PSTD nonlinear photonic crystal model. A circular
poling pattern was assumed. Adapted from: Lee and Hagness, Proc. IEEE LEOS Annual
Meeting. 2003, Vol. I, pp. 194-195.
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Fig. 16.48(a) shows that, close to the source, the second-harmonic wave is weak and quite
randomly directed. However, Fig. 16.48(b) shows a much stronger second-harmonic wave far
from the source, with Poynting vectors uniformly oriented at the design angle of approximately
6

0

with respect to the +x-axis. These PSTD results illustrate that a finite propagation distance is
required for the second-harmonic wave to emerge with a well-defined direction of propagation.

Fig. 16.49 shows the results of [214] for the power densities and average propagation angles
of second-harmonic waves generated in nonlinear photonic crystals having the three different
poling patterns. Here, the dimensions for each pattern had been optimized for maximum
frequency-conversion efficiency. The results shown in Fig. 16.49(a) reveal that the elliptical
poling pattern yields the highest frequency-conversion efficiency among these poling patterns.
Fig. 16.49(b) shows how the propagation direction of the second-harmonic wave approaches the
design angle of 6.3 0 as a function of distance of propagation along the +x-axis.
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Source: Lee and Hagness, Proc. IEEE LEOS Annual Meeting, 2003, Vol. I, pp. 194-195.
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16.22 INTRODUCTION TO NANOPLASMONIC DEVICES

In addition to nanophotonic devices based on dielectric materials, there has been much recent
interest in nanoscale devices that exploit the unique features of surface plasmons. Surface
plasmons are the joint interaction between the collective oscillation of electrons and the
associated electromagnetic wave bound to the surface between two different materials
[218-220]. The requirement here is that the two materials have opposite signs in the real part of
the dielectric constant, so that the field strength decays away from the interface in both directions
[218-220]. Typically, this implies a metal such as gold or silver that interfaces either air, glass,
or another dielectric material.

The classical experiment for surface plasmons is excitation via attenuated total reflection
(ATR). Here, an optical beam is incident on the inside face of a silver-coated glass prism at an
incident angle past the critical angle. In one configuration [218-220], evanescent waves from
the reflected beam couple energy through the silver film into surface plasmons on the interface
between the silver and the dielectric beyond it. By carefully selecting the incidence angle,
the transverse component of the k-vector of the light is made to match the spatial frequency of
the plasmon. Further, by an optimum selection of the gap thickness, the coupling from the
evanescent wave to the surface plasmon is maximized, and the peak field strength at the silver
dielectric interface can be many times larger than the incident field.

Even though such ATR experiments do not necessarily involve nanoscale features,
they demonstrate the advantages of surface plasmons: the ability to concentrate and enhance the
optical electric field in configurations that depend critically on the local surroundings.
The potentially large field enhancement means that plasmonic devices can be used to maximize
the strength of light-matter interactions such as two-photon fluorescence, second-harmonic
generation, and surface-enhanced Raman spectroscopy (SERS). In turn, the tight confinement
means one can implement nanolithography and high-density optical storage. Further, the strong
dependence on the local environment can lead to sensors of either index or film thickness.
Since surface plasmon modes can propagate energy along surfaces, they can be used as optical
waveguides. Such energy propagation or collection by surface plasmons may also have a role in
the enhanced throughput of light through small holes in nanostructured metallic films. Finally,
periodic structures of metallic material can be designed to show photonic bandgaps , to display
negative refraction, and to generally act as novel metamaterials.

16.23 FDTD MODELING CONSIDERATIONS

The first consideration in developing an FDTD model of a nanoplasmonic device is properly
simulating the dielectric behavior of the materials of interest at optical wavelengths. In general.
we can apply the techniques of Chapter 9 for modeling linear dispersive media, especially the
Drude dispersion algorithm of Section 9.4.3 for the dielectric behavior of metals. Reference
[221] provides an example of matching real experimental data for nand k for this purpose.

A complicating factor in developing a correct dielectric model for metal nanoparticles at
optical wavelengths is that the dielectric constant of a metal in a nanoparticle can be perturbed
from the baseline (macroscopic-scale) value by the particle size and shape. Such perturbations
are caused by changes in the effective mean free path of the electrons in the metal that result
from scattering from the nanoparticle surface [222, 223].
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The second fundamental consideration in developing an FDTD model of a nanoplasmonic
device is properly choosing the spatial resolution. This issue arises because the plasmon
wavelength may be much shorter than the free-space optical wavelength. Experience indicates
that very fine grid cells of approximately 0.5 nm are needed to accurately simulate the exact
angle of plasmon coupling (224], absent any corrections for numerical dispersion (225] and
staircasing. Hence, to reduce the computational demands of simulating nanoplasmonic devices
with FDTD, it is appropriate to employ subcell techniques, or perhaps more robustly, the
nonuniform gridding or subgridding techniques described in Chapter 11, Sections 11.2 and 11.8.

16.24 FDTD MODELING APPLICATIONS

Oscillating charges in a metallic nanoparticle have a resonant interaction with incident light at a
frequency that depends on the incident polarization, the particle shape, and the properties of the
metal and the surrounding dielectric. Such nanoparticles are of interest because the field
enhancement associated with them can be used to enhance interactions between light and nearby
molecules (226-228]. Here, FDTD has been used to both understand experiments as well as to
engineer the field enhancement via the morphology of the nanoparticle [222, 229-234]. These
local field enhancements also can be utilized in lithography, where FDTD has been used to study
the near-field intensity of nanoparticles resting on photoresist substrates [235, 236].

Another approach to enhance the local field either for Raman spectroscopy or other
nonlinear effects is to use a sharp metal tip, such as on a scanning probe microscope. FDTD has
been used to try to understand and optimize the field enhancement with such near-field optical
probes [237 -243].

Because of the tight localization of light, it is also possible to create a surface plasmon
waveguide. This can be accomplished by either coupling the individual plasmon resonances of a
line of closely spaced nanoparticles [244, 245], or by coupling into a very narrow metal stripe
[246, 247]. Both nanoparticle chain devices [248 - 250] and metallic-stripe waveguides
[251-253] have been studied with FDTD.

A number of studies have used FDTD to help understand and optimize the images generated
by near-field microscopes, including the important effects of surface plasmons generated at the
sharp metallized tip [254 - 262]. An important application outside of microscopy for such near
field tips is optical data storage. where FDTD has been used to study punctured tips [263,264],
nanoparticles in an aperture for field localization [265 - 268], and field enhancement provided by
either a triangular metal aperture [269] or a triangular metal plate on a slider [270].
In addition, FDTD has been used to model the readout from super-resolution near-field structures
[271-274], wherein silver nanoparticles embedded in one or more of the disk layers act as a
virtual near-field probe or aperture.

A topic that has received much attention is the transmission of light through thin metal films
perforated with single or multiple holes [275, 276], and containing nanostructure on one or both
sides (277]. Essentially, the optical throughput is much higher than would be expected according
to the original theory of diffraction through small holes proposed by Bethe [278]. It is believed
that the nanostructure on the incident side of the film collects energy from portions of the
incident beam outside the holes, either by surface plasmons [279] or other evanescent waves
[280]. This energy makes its way through the hole(s) to the shadow side, where it can be
reradiated into a beam whose diffraction properties can be affected by the backside nanostructure
[281- 283]. Many researchers in this area have used FDTD to study these effects [284 - 291].
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16.25 INTRODUCTION TO BIOPHOTONICS

Biophotonics is an exciting emerging discipline that involves theoretical studies and clinical

applications of optical interactions with living tissues. Currently, primary applications of

biophotonics include the accelerated diagnosis and treatment of human disease.

An important emerging research area in biophotonics with potentially near-term clinical

applications is early-stage cancer detection. This involves investigation of possible correlations

of the linear ("elastic") light-scattering properties of tissues with precancerous alterations in their

cellular composition and nanostructure. Until the introduction of FDTD and PSTD techniques to

this field, exploring these correlations was impeded by an inability to robustly and accurately

model the electrodynamics of optical interactions with living tissues. In the following two

sections, we review recent progress in this area. Topics include: (l) FDTD modeling results

showing how optical interactions can be sensitive to submicron, even nanometer-scale features

embedded within micron-scale models of living cells; and (2) PSTD modeling results showing

promise for studies of optical interactions with random arrangements of hundreds, even

thousands of living cells, spanning in aggregate macroscopic tissue regions. FDTD and PSTD

techniques are providing means to strengthen the science base for cellular-level and tissue-level

biophotonics, and to accelerate the development of corresponding novel clinical technologies.

16.26 FDTD MODELING APPLICATIONS

16.26.1 Vertebrate Retinal Rod

Arguably the first application of FDTD to cellular-level biophotonics was reported in [292],

wherein visible light interactions with a retinal photoreceptor were modeled for the two

dimensional TMz and TEz polarization cases. The working hypothesis was that the detailed

physical structure of a photoreceptor impacts the physics of its optical absorption and thereby,

vision. One such photoreceptor was studied: the vertebrate retinal rod. The bulk structure of the

retinal rod exhibits the physics of an optical waveguide, while the periodic internal disk-stack

structure adds the physics of an optical interferometer. These effects combine to generate a

complex optical standing wave within the rod, thereby creating a pattern of local intensifications

of the optical field.

The FDTD model of the rod reported in [292] had the cross section dimensions of

2 x 20 /lm, corresponding to (3.8Ad - 5.7Ad) X (38A.d - 57Ad) over the range of wavelengths

considered, where \ denotes the optical wavelength within the rod's dielectric media.

A uniform Cartesian space grid having 5.0-nm square unit cells was utilized. This permitted

resolution of the 15-nm-thick outer wall membrane of the rod and the I5-nm-thick internal disk

membranes. There was a total of 799 disks distributed uniformly along the length of the rod,

separated from each other by 10 nm of fluid, and separated from the outer wall membrane by

5 nm of fluid. The index of refraction of the membrane was chosen to be 1.43, and the index of

refraction of the fluid was chosen to be 1.36, in accordance with generally accepted

physiological data. These parameters implied a resolution within the dielectric media of A/70

to Ad1l05, depending on the incident wavelength.
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Fig.16.50 Grayscale visualizations of the FDTD-computed optical E-field standing wave within the
retinal rod model for TMz illumination at free-space wavelengths ~ =714, 505, and 475 nm.
Source: Piket-May et a1., Optics Letters. 1993, pp. 568-570.

As reported in [292], Fig. 16.50 provides grayscale visualizations of the FDTD-computed
magnitude of the normalized electric field values of the optical standing wave within the retinal
rod model for TMz illumination at the free-space wavelengths Ao = 714, 505, and 475 nm.
Similar visualizations were obtained for the TE illumination case.z

To assist in understanding the physics of the retinal rod as an optical structure, the standing-
wave magnitude data at each Ao were reduced as follows. First, at each transverse plane located
at a given Yo in the rod, the electric field values, E(x, Yo)' of the optical standing wave were
integrated over the x-coordinate to obtain a single number, Einl(yO)' Second, a discrete spatial
Fourier transform of the set of Einl(yO) values was performed over the y-coordinate. With the
exception of isolated peaks unique to each Ao' the spatial-frequency spectra for each polarization
were found to be essentially independent of the illumination wavelength. It was concluded that
the retinal rod exhibits a type of frequency-independent electrodynamic behavior.
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The agreement of the spatial-frequency spectra for the three incident wavelengths for each
polarization was so remarkable that the overall procedure was tested for computational artifacts,
The test involved perturbing the indices of refraction of the membrane and fluid from those of
the vertebrate rod to those of glass and air, while leaving the geometry unchanged. It was found
that the glass-air spectrum exhibited little correlation (i.e" numerous sharp high-amplitude
oscillations) over the entire spatial-frequency range considered. On the other hand, the
normalized membrane-fluid spectrum varied in a tight range near unity through spatial
frequencies of 3.6 ).lm-1

, It was concluded that the agreement of the spatial-frequency spectra for
the vertebrate retinal rod indicates a real physical effect that is dependent upon the proper
definition of the indices of refraction of the components of the rod structure.

From an electrical engineering standpoint, frequency-independent structures have found
major usages in broadband transmission and reception of radio frequency and microwave signals,
There is a limited set of such structures, and it is always exciting to find a new one, Reference
[292] concluded by speculating that some engineering usage of wavelength-independent retinal
rod-like structures may eventually result for optical signal processing.

16.26.2 Precancerous Cervical Cells

In a series of papers ([293, 294] being most relevant to the present discussion), the Richards
Kortum group pioneered FDTD modeling of light scattering from cervical cells during their
earliest stages of cancer development. This group investigated how the light-scattering
properties of cervical cells are affected by changes in nuclear morphology, DNA content, and
chromatin texture that occur during neoplastic progression, FDTD was applied to calculate the
magnitude and angular distribution of scattered light as a function of pathologic grade,

We now consider work by the Richards-Kortum group on two-dimensional FDTD models of
cellular scattering, as illustrated in Fig. 16.51 [293]. In this example, the cell cytoplasm, when
present, had a diameter of 8 ).lm, and the nucleus had a diameter of 4 ).lm. Refractive index
values for the cytoplasm and the nucleus were 1.37 and 1.40, respectively. Organelle refractive
indices ranged from 1.38 to 1.42, and organelle sizes ranged from 0.1 to 1 ,"un. Approximately
25% of the available space within the cell (i.e" space not already occupied by the nucleus) was
filled with organelles. Wavelengths spanned from 600 to 1,000 nm in 5-nm increments.

From Fig, 16.51, we note how the introduction of heterogeneities in the form of small
organelles impacts scattering. Closely following the discussion of [293], the addition of
cytoplasmic organelles begins to obscure the interference peaks visible in the simulations using
homogeneous geometries, The effects of the heterogeneities are most noticeable at angles over
90·, partially because the scattered intensity values in this region are five to six orders-of
magnitude smaller than the scattered intensity values at low angles.

Reference [293] then proceeded to consider more complicated two-dimensional descriptions
of cellular morphology. In the example illustrated in Fig. 16,52, two cells containing multiple
sizes and shapes of organelles and heterogeneous nuclei were considered. In the first cell,
the morphology was defined using histological features of normal cervical cells. In the second
cell, the morphology was defined based on the features of cervical cells staged as high-grade
dysplasia, In order to emphasize differences due to the internal contents, both cells were
assumed to be circular with 9-).lm diameters. The most significant differences between the
dysplastic cell relative to the normal cell included increased nuclear size and nuclear-to
cytoplasmic ratio (normal 0,2, dysplastic 0.67), asymmetric nuclear shape, increased DNA
content, and hyperchromatic nucleus with areas of coarse chromatin clumping and clearing.
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Fig. 16.51 Grayscale visualizations of the FDTD-computed optical scattering of four models of a cell:
(a) nucleus only; (b) cytoplasm only; (c) nucleus and cytoplasm; and Cd) nucleus and
cytoplasm containing organelles. The grayscale corresponds to the log of the scattered
intensity. Source: Drezek et aI., Optics Express, March 27, 2000, pp. 147-157.

For the normal cell considered in Fig. 16.52, nuclear refractive-index vanatIons were
assumed to be uniformly distributed in the range n =1.40 ± 0.02 at spatial frequencies ranging

from 10 to 30 Ilm-
I
, thereby simulating a fine, heterogeneous chromatin structure [293].

In the dysplastic cell, nuclear refractive-index variations were distributed in the range
n == 1.42 ± 0.04 at spatial frequencies ranging from 3 to 30 flm-I, thereby simulating a coarser,

more heterogeneous chromatin structure. Both normal and dysplastic cells contained several

hundred organelles (radii from 50 to 500 nm; n =1.38 to 1.40) randomly distributed throughout
the cytoplasm.
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Fig. 16.52 Top: Grayscale visualizations of the FDTD-computed optical scattering from models of nom1al
(left) and dysplastic (right) cervical cells. The grayscale corresponds to the log of the scattered
intensity. Bottom: Integrated scattered intensities over three angular ranges for normal (left)
and dysplastic (right) cervical cells. Source: Drezek et aI., Optics Express, March 27, 2000,
pp. 147-157.

Fig. 16.52 shows the results of this FDTD modeling study. Closely following the discussion
of [293], the dysplastic cell exhibits elevated scattering, with increased scattering at small angles
due to the larger nucleus, and with increased scattering at larger angles due to alterations in the
chromatin structure, which results in increased heterogeneity of the refractive index. Since the
dysplastic cell contains a large heterogeneous nucleus that is comprised of an assortment of
scatterer sizes and refractive indexes, distinct interference peaks are not present. Although
heterogeneities are present in the structure of a normal cell, they are not significant enough to
disrupt the peaks resulting from the cytoplasm and nuclear boundaries.

The bottom half of Fig. 16.52 displays the integrated scattered intensity as a function of
wavelength for three angular ranges: O· to 20·, 80· to 100·, and 160· to 180·. Closely following
the discussion of [293], these results show that the integrated intensity is a function of both angle
and cellular structure. Here, changes in the wavelength dependence of the scattering between the
normal and dysplastic cells are especially evident at large angles. To develop optimized optical
probes and measurement techniques that can discriminate between normal and dysplastic tissue
based on differences in the wavelength dependence of cellular scattering, it is important to be
aware of which angular regions offer the greatest potential for differential diagnosis.
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16.26.3 Sensitivity of Backscattering Signatures to Nanometer-Scale Cellular Changes

Recent experimental evidence indicates that light-scattering signals can provide means for ultra
early-stage detection of colon cancer [295] before any other biomarker that is currently known.
In combination with the findings reported by the Richards-Kortum group, it is now quite clear
that light scattering is very sensitive to minute differences in tissue and cellular structures.
An important question then arises for researchers investigating optical tissue diagnostic
techniques: Which light-scattering parameters provide the best sensitivity to detect cellular
changes that are at the nanometer scale (i.e., those that may indicate cancer)?

Fig. 16.53 illustrates the application of FDTD to evaluate the sensitivity of optical
backscattering and forward-scattering signatures to refractive index fluctuations spanning
nanometer length scales [296]. Here, the spectral and angular distributions of scattered light
from inhomogeneous dielectric particles with identical sizes and volume-averaged refractive
indices are compared with corresponding data calculated for their homogeneous counterparts.
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Fig. 16.53 Grayscale visualizations of the FDTD-computed optical scattering signatures of a 4-llm
diameter particle with a volume-averaged refractive index n = 1.1. (a) homogeneous
p~rticle; (b) inhomogen~ous particle with refractive index fluctu~t~ons t1n = ·±0.03 spanning
distance scales of approxImately 50 nm; and (c) inhomogeneous particle with refractive index
fluctuations An =±0.03 spanning distance scales of approximately 100 nm.
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The optical backscattering signatures (shown in the center panels of Fig. 16.53) are of
particular interest. These are grayscale visualizations of the FDTD-calculated backscattering
intensity distributions as functions of wavelength and scattering angle within a ±20° range of
direct backscatter. Relative to the homogeneous case of Fig. 16.53(a), we observe distinctive
features of the backscattering signatures for the randomly inhomogeneous cases of Figs.
16.53(b, c). This is despite the fact that the inhomogeneities for these cases have characteristic
sizes of only 50 and 100 nm, respectively, which are much smaller than the illumination
wavelength of 750 nm. In contrast, the forward-scattering signatures shown in the right-hand
panels exhibit no distinctive features.

These FDTD calculations strongly support the hypothesis that there exists signatures in
backscattered light that are sufficiently sensitive to detect alterations in the cellular architecture
at the nanometer scale. Importantly, this sensitivity is not bound by the diffraction limit.
Potentially, backscattering signatures can serve as biomarkers to detect and characterize slight
alterations in tissue structure which may be precursors of cancer [295].

16.27 PSTD MODELING APPLICATION TO TISSUE OPTICS

Tissue optics deals with light scattering by biological structures, on which noninvasive optical
imaging techniques such as optical coherence tomography are based. Most studies of tissue
optics have utilized heuristic approximations in the categories of radiative transfer theory and
Mie theory, including Beer's law, the Kubelka-Monk theory, the adding-doubling method, the
diffusion approximation, and the Monte Carlo method. To various degrees, these methods
neglect the full-vector electromagnetic wave nature of light based on Maxwell's equations,
especially with regard to near-field interactions of closely spaced particles.

In principle, FDTD techniques can be used to model cell collections spanning macroscopic
dimensions (millimeters) and thus to attack the tissue-optics problem on the most fundamental
basis. However, using FDTD for this purpose may not be feasible for many years, because
computers lack the capabilities to deal with the enormous database of electromagnetic field
vector components mandated for FDTD by its mesh-density requirement of 20 or more samples
per optical wavelength in each spatial dimension.

References [297, 298] report the initial application of the Fourier-based PSTD technique to
the tissue-optics problem. (Refer to Chapter 4, Section 4.9.4 and Chapter 17 for detailed
discussions of PSTD methods.) For large electromagnetic wave interaction models in D
dimensions that do not have geometric details or material inhomogeneities smaller than one-half
wavelength, the Fourier-based PSTD method reduces computer storage and running time by at
least 8D

; I relative to standard FDTD while it achieves comparable accuracy. This advantage is
sufficient to permit for the first time rigorous numerical solution of the full-vector Maxwell's
equations for optical interactions with dielectric structures spanning in the order of 1 mm.
At this scale, random arrangements of hundreds, even thousands, of living cells can be modeled
with assurance that all of the physical principles of Maxwell's equations are enforced.

The work reported in [297,298] involves implementing PSTD using the scattered-field
formulation reviewed in Chapter 5, Section 5.10.2. This allows sourcing a plane wave having an
arbitrary angle of incidence, polarization, and time waveform. The total E- and H-fields can be
obtained in a postprocessing step by adding the known (analytical) incident fields to the PSTD
computed scattered fields. In implementing these studies, it was determined that temporal
convergence of the PSTD calculations requires that the time-step must be less than 1/60th of the
sinusoidal period at the maximum frequency of interest [298].
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Fig. 16.54 PSTD-computed total scattering cross section of: (a) 160-llm overall-diameter cylindrical
bundle of 120 randomly positioned, noncontacting dielectric cylinders of individual diameter
d = 10 11m and refractive index n = 1.2; (b) as in (a), but for 480 cylinders of individual
diameter d =5 11m; and (c) single cylinder of n =1.0938, the volume-average refractive index
of the random bundles of (a) and (b). Source: Tseng et a1.. Optics Letters, 2005, pp. 56-57.

Fig. 16.54 illustrates a principal finding of [297, 298], namely that when the average
dielectric coverage of a bundle of cylindrical scatterers has increased beyond a certain threshold,
the total scattering cross section (TSCS) of this bundle becomes independent of its internal
geometric details such as the size, position, and number of its constituent cylinders. In this
regime, the frequency dependence (spectrum) of the TSCS of the cylinder bundle represents
essentially the average behavior of the TSCS spectrum of the volume-averaged homogeneous
cylinder of the same diameter. The primary difference is that the homogeneous cylinder exhibits
ripples of its TSCS spectrum as a result of coherent internal wave-interference effects that are
suppressed by scattering events within the random clusters.

The results reported in [297, 298] point toward the emerging feasibility of direct, exact
Maxwell's equations modeling of light propagation through, and scattering by, millimeter of
biological tissues. More generally, these results have a wider implication. Namely, the study of
electromagnetic wave propagation within random media is moving toward exact rather than
approximate solutions of Maxwell's equations. The driving force behind this fundamental
advance is the advent of robust PSTD algorithms, which permit using space grids having coarse
resolutions approaching one-half wavelength. PSTD achieves spectral accuracy, thereby
yielding numerical dispersion errors approaching theoretically minimum values.
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16.28 SUMMARY

This chapter reviewed applications of FDTD and PSTD techniques to photonics in six distinct
areas: (l) index-contrast guided-wave structures, especially waveguides and microcavity ring,
racetrack, and disk resonators; (2) distributed Bragg reflector devices; (3) photonic crystals and
defect-mode waveguides and microcavity resonators derived from photonic crystals;
(4) frequency conversion in second-order nonlinear materials; (5) nanoplasmonic devices; and
(6) biophotonics. A key goal has been to alert and inform readers how FDTD and PSTD can put
Maxwell's equations to work in the analysis and design of a wide range of photonics
technologies in lightwave communications and computing, nanometer-scale technology, and
biomedical applications. The comprehensive listing of 298 references provided below will
hopefully assist in the achievement of this goal.
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Chapter 17

Advances in PSTD Techniques

Qing Liu and Gang Zhao

17.1 INTRODUCTION

As demonstrated in the previous chapters, the FDTD method is a simple, robust, and powerful
technique to simulate transient electromagnetic phenomena. However, numerous examples have
indicated that a spatial sampling density of at least 10 to 20 cells per minimum wavelength is
necessary to ensure that the FDTD method produces acceptable results even for an electrically
small problem. To maintain acceptable accuracy for an electrically large problem, it may be
necessary to increase the spatial sampling rate beyond this range to reduce the cumulative
numerical dispersion error, which is linearly proportional to the length of wave propagation.
In other words, given a prescribed accuracy, the spatial sampling rate is not just determined by
the minimum wavelength, but also by the electrical size of the modeled structure. This makes
FDTD modeling of electrically large problems very challenging.

In order to efficiently solve time-domain electromagnetic problems, various techniques have
been proposed to improve the FDTD method. This chapter focuses on recent advances in
pseudospectral time-domain (PSTD) techniques. PSTD techniques use either trigonometric
functions [1-3] or Chebyshev polynomials [4-11] to approximate spatial derivatives in order to
greatly reduce the numerical dispersion error. When applied to single domains having smooth
internal media, PSTD techniques based upon these functions have spectral accuracy, meaning
that the numerical dispersion error decreases exponentially with the sampling density.
Spectral accuracy also can be achieved for problems with multiple regions of inhomogeneities
when PSTD techniques are coupled with appropriate boundary-patching conditions.

We will first summarize the basic finite-difference, Fourier pseudospectral, and Chebyshev
pseudospectral approximation methods used for the derivative of a function. Next, we will
present a single-domain Fourier PSTD method that uses the fast Fourier transform algorithm.
Then, a single-domain Chebyshev PSTD method will be presented where the fields are
represented by Chebyshev polynomials. Finally, several multidomain PSTD methods are
described for modeling structures with discontinuous material compositions.

17.2 APPROXIMATION OFDERlVATIVES

In this section, we summarize the basic finite-difference, Fourier pseudospectral, and Chebyshev
pseudospectral approximation methods used for the derivative of a function. A convenient
compact matrix notation is used.

847
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17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method

For a uniformly sampled function, the central-differencing scheme

Um

dl(xm )= ::::::::
dx

l(xm+1) - I(xm - t )

2&
(17.1)

has a second-order accuracy [i.e .• the error is 0(&)2], as can be verified by a Taylor expansion.
Assuming a set of periodic data {1m, m =1,2, ... ,N}, where I m+

N
=f m for all integers m,

we can write this derivative in terms of a derivative matrix [D] such that

where

{u} = [D]{/) (17.2)

{u) (17.3)

o -1

[D] =
1

2&

o
-1 o

o
o o

(17.4)

o 0 -1 0

This can be also viewed from the interpolation approach of a second-order polynomial p(2)(X):

I) J. ,/,(2» f.,/,(2) (2)
(x = m-I'I'-I (x + m'l'O (x) + Im+1 ¢l (x)

I
"" (2)= L. 1m+! </>( (X)
(=-1

(17.5)

where ¢2J(x) are the Lagrange interpolation polynomials

(x - xm)(x - xm+1)

2(&)2

(x - Xm_l)(X - Xm+1)

(&)2

(x - Xm_I)(X - Xm )

2(&)2

(17.6a)

(17.6b)

(l7.6c)

Hence, the derivative is given by
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where [D] is a Toeplitz matrix given by

(17.7)

= _1 (8 -8 )2Ax n,m+l n,m-l
_1_(8 -8 )_

- 2Ax m-n+1.0 m-n-.,O

{

1/ (2Ax)

= -1/~Ax)

n=m+1

n =m-I

otherwise

(17.8a)

= _I (8 - 8 )ak 2Ax k-l,O k+1,O
(l7.8b)

17.2.2 Derivative Matrices for Fourth-Order and N'th·Order Finite-Difference Methods

For the fourth-order finite-difference scheme, we have

2
~ (4)

f(x) :; £..J fm+l tP, (x)
1.=-2

The derivative matrix is given by

(17.9)

D := a = _1_(88 - 88 - 8 + 8 )
1M m-n 12Ax m-n+1,O m-n-I,O m-n+2,O ",-n-2,0

1/ (12Ax) n= m-2

-2/ (3Ax) n =m-l

= 2/(3Ax) n= m+1

-1/(l2Lix) n =m+2

0 otherwise

(17.10)

Similarly, the finite-difference scheme can be increased to N'th order with all N points, yielding

(17.11)

where tP~~: (x) are the N'th-order Lagrange polynomials. The required N + 1 data points are
provided by the N points, plus the additional point from the peri.odic boundary condition,
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17.2.3 Trigonometric Interpolation and FFT Method

If the period of the computational domain is T =x
max

- x
min

' with spatial sampling points at
x = x . + (m - J)~x (where m = 0, 1, ... ,N-l and th =TIN), we can write the periodicm mill

function as the truncated Fourier series

N/2-1

f(x) :;:; ~ I. in e j21rn (X-Xo)INb.x

n=-N/2

where the Fourier series coefficients are

Xmax

in = ~ J !(x)e-j2trn(x-Xo)INflldx ""

Xmin

Thus, from (17.12), we have

N-lI. !(xm)e-j21fmnIN _

m=O
DFT(U}t

(17.12)

(17.13)

1 NI2-1 '2
~ J n n A j2trmnlN

:;:;-£.,; --I.e -
N

2
n=-N/2 th n

(17.14)

where OFT and OFT-I denote the forward and inverse discrete Fourier transforms, respectively.

When substituting the Fourier series coefficients in into (17.12), one can obtain the explicit
derivative matrix

where

df(x,J

dx

2 N-I N/2-1
n ~ f( ) ~ . j21f(m-p)nIN

"" -2- L..J X L..J Jne =
N th p=O p n=-N/2

N-I

I !cxp)Dmp
p=O

(17.15)

Dmp

2n N/2-1
~ . j21f(m-p)nIN= -2- L..J Jne =

N th n=-N/2

== am-p

1r m ( ) [Cm - p) 1r ]--(-1) -p 1- 8 0 cot
Nth "I-p. N

(17.16)

Therefore, the derivative matrix is again Toeplitz. Hence, the derivative vector is given by

d{f} = [D]{f} = DFT-J[DFT(U}) 'DFT({a})]
dx (17.17)

This derivative costs O(N logN) operations. For an analytic function, the accuracy of this
algorithm is exponential; that is, the error decreases as OeaN) where 0 < a < 1.
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17.2.4 Nonperiodic Functions and Chebyshev Method

In the preceding discussion, we assume that the domain is periodic. However, many problems in
practice are not periodic. For example, a cavity problem is not periodic, and thus the
trigonometric representation of the derivatives cannot be used. If one attempts to apply such a
representation, the discontinuity at the endpoints generates the Gibbs' phenomenon.
Furthermore, the wave field "wraps around" because of the periodicity, thereby corrupting the
fields within the computational domain.

Gibbs' Phenomenon and Wraparound Effect

When trigonometric interpolation is used to approximate a discontinuous wave function,
a significant overshoot and ringing error is introduced adjacent to each discontinuity. This error
is called the Gibbs' phenomenon. Furthermore, when a nonperiodic wave function is
interpolated using trigonometric functions, a wraparound effect causes the wave field from other
periods to spuriously propagate into the domain of interest.

Runge Phenomenon

One may be tempted to choose a uniform grid and the Lagrange interpolation method to
interpolate a nonperiodic function. This is fine if the order of the Lagrange interpolation
polynomial is low. However, as one increases the order of the Lagrange polynomials,
the numerical error near the edges grows exponentially. This is called the Runge phenomenon
for a uniform grid. For example, if

N+l
" (N)f(x) "" L..J /; tPi -[NI2-1I(X)
i=1

I x IS 1 (17.18)

the Runge phenomenon causes the error to increase exponentially with N near x =±1. Because
of the Runge phenomenon, one must choose a nonuniform grid where the gridpoints are
clustered near the edge.

Chebyshev Interpolation

The basis of Chebyshev interpolation is that the gridding density per unit length should change

withN,sothatthedensityisproportionalto NI(n~),whereSE [-1,1]. An example of

such gridding is the set of Gauss-Chebyshev-Lobatto (GeL) points given by

Sm = -cos(mn/ N) m = 0,1"", N (17.19)

If x . $ x $ x ,we can first transform x into t by
mm max "

where Jx == (xmax - xmin )/2 is the Jacobian of the transformation.

(17.20)
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Given {1m =I(x) =1(4m )} (m =0, 1, ... , N), the function can be interpolated by Lagrange
polynomials as

m =0,1, ... , N (17.21)

n~m n~m

where the interpolation polynomial can be written in closed form as

(17.22)

where em = 1 + 8m.O + 8m,N and T is the Chebyshev polynomial given by ~(4) =cos[ncos-'(4)].
For example, if N::: 1, then 4

0
::: -1, 4

1
= 1, and

1(4) :::: 0.5(l-4)fo + 0.5(1+4)1;

dl 1
- = -(-0.5ia +0.51;)
dx 1

x

The derivatives at the gridpoints are

where

(17.23a)

(l7.23b)

(17.24)

I (-1[D](I) = -
21 -I

x

(17.25)

4

o

is the derivative matrix. Similarly, if N =2, then ~o =-I, ~I = 0, ~2 = 1, and we have

dl I
- = -[(~-0.5).fo - 241; + (4+0.5)/2 ]
dx 1

x

The derivative matrix is now

= 2~ [=~
x I -4

(I7.26a)

(17.26b)

(17.27)
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For an arbitrary positive integer N, one can obtain the general formula

c C_I)m+n
....!!1.. _

D(N) =
mn

1

J,

l~m=n~N-I

m=n=O

m=n=N

(17.28)

It seems that, in general, to find the derivative, one would need to multiple this dense matrix
[D](N) with the array {f}, thus requiring OCN2

) operations. However, this can be circumvented
by the fast cosine transform if one views this in an alternative way.

Since the Lagrange polynomials used above are of order N, then from (17.22) we can
expand the functionf(x) by Chebyshev polynomials up to order N:

N

fC~) = L aJ':(~)
Il=O

where an are the expansion coefficients. Examples of Chebyshev polynomials are

(17.29)

TaC~) = I; J;(~) = ~; I;(~) = 2~2 -I; J;(~) = 4~3 - 3~ (l7.30a, b, c, d)

Some useful recursion relations for Chebyshev polynomials are

(17.3Ia)

T,,'-I C~)
n -I

= 2 1;, (~) (l7.3Ib)

(l7.3Ic)

(I7.3Id)

Therefore, from To(~) and T,(~), one can obtain all higher-order Chebyshev polynomials.
Now, using (17.29), we can obtain the derivative of fC~) as

df(~)

d~
(17.32)
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The coefficients {bJ can be derived through the recursion relations of the Chebyshev
polynomials. Comparing (17.32) and the derivative of (17.29), we then obtain

bN = 0

bN _
J = 2NaN

b
N

_
2 = 2(N -l)a

N
_1

(17.33)

bn_
J = bn+1 + 2nan n = N -2, N-3, 2

bo = a, + O.5b2

With the choice of the gridpoints in (17.19), we can obtain the coefficients (a) and {b
n

} using
the fast cosine transform (FCT) algorithm. First, {an} can be obtained by the inverse FCT, since

N

I aJ:(~m) =
n=O

N

Lan cos{ncos-I[-cos( mn IN)]}
n=O

N

= I an cos{n[n-(mnl N)]}
n=O

(17.34)

In other words, coefficients {anI are just the inverse cosine transform of Urn}' Then, {bJ can be
obtained from {an} using (17.33). Finally, the derivative at the gridpoints can be obtained via
(17.32) through the forward cosine transform:

N

= I,.bncos{n[n-(mnIN)]}
n=O

(17.35)

Thus, the cost of finding the derivative is O(NlogN) using the GCL points.

Legendre Interpolation

A similar approach can be developed for the Legendre interpolation method. However, in this
case, the cost is, in general, O(N\ since one cannot use the FCT algorithm to speed up the
derivative computation. Nevertheless, this is not a problem if N S; 16, since it is usually faster to
do the direct matrix-vector multiplication than the FCT for smaller N values.

17.3 SINGLE-DOMAIN FOURIER PSTD METHOD

In contrast to the FDTD method, which uses a staggered grid, the Fourier PSTD method uses a
grid wherein all vector field components are located at the cell centers. This centered grid
provides an important advantage over FDTD in specifying material properties, especially for
anisotropic media [3], and removes the field-singularity problem in cylindrical coordinates [12].
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The single-domain Fourier PSTD mesh includes the modeling volume and the PML in a
single, uniform space lattice. If the dimensions of the problem are L x L xL, and N x N x N

x )' z x)' z
cells are used to discretize the problem, then we have 1\w = LjNw ' where W=X,y, z. Then,
using classic Yee leapfrog time-stepping, the spatially collocated field components are given by

En(i, j, k) EI nlU
(i+1/2)6:<. (j+l/2)6)'. (k+l/2)6<

(17.36a)

n+l/2 ( . . k) HI (n+1/2)AJ
H I, J, = (i+l/2)6x. (j+l/2)6.r. (H1/2)6<

(l7.36b)

A higher-order time-integration scheme can be used to improve the accuracy of the time
stepping. Such a scheme based on the fourth-order, five-stage Runge-Kutta method will be
presented later in the context of the Chebyshev PSTD technique. If this is used for the Fourier
PSTD method, the components of E and H must be collocated in time instead of being staggered
by one-half time-step, as for Yee updates.

17.3.1 Approximation of Spatial Derivatives

In the Fourier PSTD method, computation of the field-component spatial derivatives IS

accomplished by the FFT algorithm through (17.14). For example:

(17.37)

where n is the index of the FFT, and the : symbol denotes all i-coordinates along the straight-
x

line cut through the space lattice at (Jo' ko)' Note that this formulation involves only the one-
dimensional FFT and the one-dimensional inverse FFT, each of which is calculated efficiently
with only O(Nx 10gN) operations.

Equation (17.37) yields an approximation to the set of spatial derivatives that has spectral
accuracy (i.e., the error decreases exponentially as Nx increases), given that the fields are
analytic (Le., the medium is a very smooth function of space). For such media, a discretization
of only two grid cells per minimum wavelength (Le., the Nyquist sampling limit) is required.

We note that, for piecewise-smooth media, there is some degradation in accuracy because of
the Gibbs' phenomenon. However, because Maxwell's equations guarantee that tangential field
components are continuous across material interfaces, the resulting degree of smoothness permits
the spectral calculation of derivatives to be very accurate, even for material interfaces exhibiting
reasonably large contrasts in properties across the interface. For the extreme case where the
contrast is infinity (e.g., a perfect conductor), however, one of these field components (e.g., the
tangential component of the magnetic field) is no longer continuous, and a significant Gibbs'
phenomenon arises. In practice, for very high material contrasts, a higher grid density is required
in order to adequately model the higher spatial frequency components. Alternatively, the
nonuniform fast Fourier transform (NUFFT) algorithm [13, 14] can be used, which samples
more densely near high contrasts. The latter approach represents a better use of the field
sampling locations. This improvement is implemented in [15]. Alternatively, one can use the
nonuniform cosine transform algorithm in a Chebyshev PSTD method [16].
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17.3.2 Numerical Stability and Dispersion

References [I, 2] reported numerical stability and dispersion analyses for the Fourier PSTD
algorithm when modeling a homogeneous, lossless medium. The numerical stability condition
can be written compactly as

(17.38)

for a problem of dimensionality D. Note that, for a given Ar, !it must be reduced by a factor of
n/2"" 1.57: 1 relative to FDTD. However, in practice, for electrically' large problems not
requiring modeling of geometrical features smaller than one-quarter wavelength, the choice of !it
in the Fourier PSTD method is usually dictated by considerations of accuracy rather than
numerical stability, as discussed in Chapter 4, Section 4.9.4, and reviewed below.

For the Fourier PSTD method, the following expressions, (4.96) and (4.97), repeated for
convenience from Section 4.9.4, are obtained for the numerical phase-velocity figures of merit:

!iii h . IIP YSlca psm - I] xl()()%

where NT = TI I1t is the temporal sampling density in time samples per wave-oscillation period.
However, the remarkable nulling of the numerical phase-velocity anisotropy implied by

(4.97) for spatial sampling densities exceeding the Nyquist rate does not mean that the Fourier
PSTD technique yields perfect results analogous to the magic-time-step case of the one
dimensional scalar wave equation. In fact, (4.96) shows that there remains a numerical phase
velocity error relative to c. This residual velocity error is not a function of the wave-propagation
direction t/J, and is therefore isotropic within the space grid. The residual velocity error arises
from the Yee-type leapfrog time-stepping used in the algorithm, and is a function only of NT'
As noted in Section 4.9.4, the density of the PSTD time sampling must therefore increase with
the electrical size of the modeling problem if we require a fixed upper bound on the maximum
total phase error of propagating waves within the mesh. Recent numerical experiments have
shown that, when modeling large, low-contrast dielectric structures (E

r
- 1.44), values of NT of at

least 60 are required to properly resolve the shortest-duration sinusoidal period of interest [17].
Despite the potential need for a small 11t, the Fourier PSTD technique can provide a very

large reduction in computer resources relative to the classic Yee algorithm for electrically large
problems not having spatial details or material inhomogeneities smaller than Amin /2. References
[1-3J report that, for problem sizes up to 64 wavelengths, the use of Fourier PSTD permits
approximately an 8D

: 1 reduction in computer storage and running-time relative to the Yee
algorithm to produce results with comparable accuracy, where D is the problem dimensionality.
Even greater reductions in computer resources are obtainable for larger problems. Additional
results using the Fourier PSTD method for large-scale problems have been reported in [12] for
cylindrical coordinates, in [18] for large-scale scattering objects, in [19-21J for dispersive media,
and in [3] for anisotropic media. The reader is referred to these papers for more details.
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17.4 SINGLE-DOMAIN CHEBYSHEV PSTD METHOD

17.4.1 Spatial and Temporal Grids

Similar to the single-domain Fourier PSTD method, the single-domain Chebyshev PSTD method
adopts a collocated spatial grid, but with nonuniform gridpoints to treat a nonperiodic problem.
The temporal grid, however, is a collocated grid instead of a staggered grid, to accommodate
higher-order time-integration schemes.

The single-domain Chebyshev PSTD mesh can be used for bounded or unbounded
nonperiodic problems with a smooth material distribution. For an unbounded domain, it includes
the modeling volume and the PML in a single, nonuniform space lattice with the outer lattice
boundary a PEC or PMC surface.

A simple cubic domain of dimension L x L x Land (N + 1) x (N + 1) x (N + 1) gridpointsx y z x y z
in Cartesian coordinates can be transformed into a standard cube in coordinates (~, 1], 0
through the linear coordinate transformation:

x. It c;; + 0.5 (xmin + xmax ) (l7.39a)
I

Yj = Jy 1]j + O.5(Ymin + ymaJ (17.39b)

Zk = Jz t;k + 0.5 (Zmin +zmaJ (l7.39c)

where (~, 11, OE [-1,1], and thelacobians are Ja=0.5(amax-amin)'
Furthermore, a more general curved hexahedral domain can also be transformed into

(c;, 11, 0 coordinates by a curvilinear transformation, if the curved hexahedral domain is
described by a number of anchor points on the surface and inside the domain. In general, we can
approximate the curved domain by a high-order polynomial, for example, O(P, Q, R) in the
( J=, 11, r) directions. If we denote these anchor points as (x , Y ,z ) for (0 ~ p < P,
~ ~ pqr pqr pqr -

o~ q ~ Q. 0 ~ r ~ R), then

P Q R

X = L L L xpqr ¢~P)(~) ¢~Q\7J) ¢;R)(t;)
p==O q=O r=O

P Q R

Y = L L LYpqr¢~P)(~)¢~Q)(7J)¢;R)(t;)
p==O q=O r=O

P Q R

Z = I I I Zpqr ¢~P)(c;) ¢~Q)(7J) ¢;R)(t;)
p=O q=O r=O

(17.40)

(17.41)

(17.42)

Note that the simple cubic domain is just a special case of this with P =Q=R = I. Inside the
domain, the inverse transform of these equations yields

c; = c;(x,y,z), 1] = 7J(x,y,z), t; = t;(x,y,z) (l7.43a, b, c)
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(a) (b)

Fig. 17.1 Representative quadratic element in the PSTD mesh with three anchor points on each edge.
(a) Curved element in the physical space, and (b) standard cubic element in the transformed
coordinates.

Fig. 17.1 illustrates a representative element in the PSTD mesh with curved geometry.
Each element is completely described by some anchor points, and can be made conformal to the
actual problem geometry with high-order Lagrange polynomials. In this figure, for simplicity a
quadratic element is shown with three anchor points on each edge. For the more general high
order elements, the number of anchor points is determined by the polynomial approximation of
the geometry.

In the transformed coordinates, the gridpoints can be chosen as the tensor product of GeL
points in the ~, Tf, and 'directions:

;j = - cos ( i1r / NJ i=Ol··· N (17.44a),t , x

Tf j = - cos(jn I Ny) j=Ol··· N (l7.44b)" , y

Sk = - cos ( k1r I N, ) k=OI· .. N (17.44c)" , z

The collocated field components are defined at

(l7.45a, b)

where the temporal grid is also collocated. Note that these gridpoints for the fields can be in
general different from the anchor points for the geometry transformation.

17.4.2 Maxwell's Equations in Curvilinear Coordinates

Maxwell's equations can be equivalently written into the conservation form

a{q} + V.F =
at - [D]{q} (17.46)
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where {q} = {H,H ,H ,E,E,E}, {F} = {Fx ' Fy,Fz } = {[A]{q},[B]{q}, [C]{q}}, and
x )' l x Y l

0 0 0 0 0 0
0

1
0 0 0 0 -

-.1
J1

0 0 0 0 0
J1 0 0 0 0 0 0

0 0 0 0 1 0 1
J1 0 0 0 0 0

[A] = [B] = J1 (17.47a, b)
0 0 0 0 0 0 0 0 1 0 0 0e

0 0 1 0 0 0 0 0 0 0 0e 0

0 1 0 0 0 0
1 0 0 0 0 0e e

0 0 0 0
1

0
J1 0 0 0 0 0 0

0 0 0
1

0 0 0 0 0 0 0 0
J1

0 0 0 0 0 (j 0 0 0 0 0 0
[C] = 0 [D] = - (17.48a, b)

£ 0 0 0 0 0
0

1 0 0 0 0e 0 0 0 0 0
1

0 0 0 0 0
e 0 0 0 0 0

0 0 0 0 0 0

The corresponding flux defined in the curvilinear coordinates {F} = {F~, FT]' it:} must satisfy
the contravariant mapping [22] and maintain a divergence-conforming relationship with the
original flux in the physical coordinates (x, y, z):

i =1, 2, "', 6 (17.49)

where j[·]1 denotes the determinant of a matrix, and the Jacobian matrix is defined by

[1] =
d(X,y,Z)

d(~,7],()
== y~ (17.50)

Defining {q} = j[JJI {q} for convenience, Maxwell's equations in the transformed curvilinear
coordinates become
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(17.51)

with the divergence of the flux functions related by

(17.52)

where

Iacy,z) I[A] + Iacz,x) I[B] + Iacx,y) I[C]
aery,s) aery,s) aCry,s)

~.rA] + ~y[B] + ~z[C][A] = =
I[J]I

Ia(y,z) I[A] + Io(z,x) /[B] + Io(x,y) I[C]
o(s,~) oCs,~) oCs,~)

1].rA] + 1]y[B] + 1]JC][B] = =
I[J]I

Io(y,z) I[A] + Io(z,x) I[B] + Io(x,y) I[c]
oC~,ry) a(~,ry) oC~,1J)

= s.rA]+ s)B] + ([C][C] =
I[Ill

(17.53a)

(17.53b)

(l7.53c)

can be derived from (17.49). With this transformation, we can then solve Maxwell's equations
(17.51) in the (~, 1], 0 coordinates for a general curved hexahedron.

17.4.3 Spatial Derivatives

In multidimensions, the spatial derivatives in the Chebyshev PSTD method can be simply
obtained by the tensor product of one-dimensional derivatives. A field function f(~, 1], 0
defined in the standard cube is interpolated by the Chebyshev-Lagrange interpolation
polynomials <p/N~l(~), <pt~l(1]), and <p/N,l(0 of (17.22) as

N~ N'I N,

f(~, 1], S) = I I I f(~i' 1]j' Sk) <p/N~)(~) ¢r~)(1]) ¢k(N,)(S)
i=O )=0 k=O

Thus, the partial derivatives of f(~, 1], 0 with respect to ~, 1], and S are approximated as

(17.54)

(l7.55a)

(17.55b)

(17.55c)
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with the derivative matrix [D] given in (17.28). Note that, even though these derivatives are
written here as the multiplication of derivative matrices and field arrays, for large N~, NT/' and Nt;
(greater than 16), the fast cosine transform algorithm can be used to speed up the derivative
calculation, as shown in (17.35).

17.4.4 Time-Integration Scheme

With the spatial derivatives represented by the Chebyshev pseudospectral method, we are now
ready to perform the time integration of Maxwell's equations. Equation (17.46) can be written
compactly as

a{q} = {p(t, (q})}
at

(17.56)

where {q} is an array that includes six field components in regular (non-PML) media, and the
required additional auxiliary field variables in a PML medium. Array {p} contains the right
hand side of (17.46) including the spatial derivative terms of (17.55).

Both two-stage, second-order and five-stage, fourth-order Runge-Kutta schemes to
temporally integrate (17.56) have been reported [23]. Denoting {q}" as the value of array {q} at
time n/).t, the 2N-storage, M-stage, K-th order Runge-Kutta method is given by

= Gj{k}j_,

= {u}j_1 +

+ {p[(n+cj)~' {u}j_I]}/).t }

bj{k}j
'v' j E [1, M]

(17.57)

For the two-stage, second-order scheme, G 1 = c1 = 0, b l =c2 = 0.5, G 2 = -0.5, and b2 =1.
This scheme has the advantage of self-starting and 2N-storage. Appendix 17A tabulates the
values of G., b., and c. for the five-stage, fourth-order Runge-Kutta method.

J J J

In some applications where /).t is small, the two-stage, second-order Runge-Kutta scheme is
advantageous because it is faster than the five-stage scheme, and provides sufficient accuracy.
For both schemes, /).t must provide numerical stability, as discussed in [5,23]. Unfortunately,
there is no closed-form expression for the stability condition.

17.5 MULTIDOMAIN CHEBYSHEV PSTD METHOD

The single-domain Fourier and Chebyshev PSTD methods are ideal for modeling spatial regions
having no discontinuities in the material properties, and thus the field components. Although
these methods can be applied to discontinuous media, the accuracy is no longer spectral.
A better way to model sharp material discontinuities is to use the multidomain PSTD method.
This provides the additional benefit of removing staircasing errors associated with the tensor
product of one-dimensional grids that are inherent to single-domain PSTD methods.
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The multidomain Chebyshev PSTD method has been developed for general curvilinear
coordinates [4 - 7]. This method has recently also been developed for lossy media [8 - 11] and
for elastic waves [9]. In this section, we present the general formulation of this technique for
Maxwell's equations for the cases of three-dimensional and 2.5-dimensional simulations.

In general, the steps involved in implementing the multidomain PSTD method are as

follows:

1. The computational domain is divided into a set of nonoverlapping curved
hexahedral subdomains conforming to the boundary of the material distribution.

2. Each general hexahedral subdomain is mapped onto a cube in (~, TJ, 0
coordinates by a curvilinear transformation. The fields within each subdomain
are represented by Chebyshev-Lagrange interpolation polynomials of orders

(N~, N", N() for the (~, TJ, 0 directions, respectively. Spatial derivatives with
respect to ~, TJ, and t; are evaluated by the derivative matrices or through fast
cosine transforms.

3. Given the spatial derivatives, Maxwell's equations are updated by a time
integration scheme such as the fourth-order Runge-Kutta method.

4. At each stage of the time integration, the fields between adjacent subdomains
must be reconciled in order to arrive at the correct fields in the whole
computational domain. This important step is termed "boundary patching," and
is discussed in more detail in the following sections.

One advantage of this approach is that the derivative calculations can be done in parallel for all

of the subdomains. Communication between any pair of adjacent subdomains is needed only at
their mutual interface at each substep of the time integration.

17.5.1 Subdomain Spatial Derivatives and Time Integration

In order to develop a multidomain Chebyshev PSTD method, the computational domain is

divided into hexahedral subdomains that naturally conform to the problem geometry. In general,

each subdomain has curved boundaries in (x, y, z) coordinates, which can be mapped onto a

cube in (~, 1], 0 E [-1,1] coordinates by the curvilinear transformation given by (17.40) to
(17.43). Then, one can calculate all spatial derivatives with respect to (~, TJ, 0 in Maxwell's
equations (17.51) within each subdomain.

Since the spatial derivatives are found, the time integration for each subdomain can be

performed in the same way as in the single-domain Chebyshev PSTD method, with the exception
that the boundary conditions between adjacent subdomains must be reconciled at each substep of
the time integration. We can use either the two-stage, second-order or the five-stage, fourth

order Runge-Kutta schemes to temporally integrate (17.51) within each subdomain.
The boundary patching procedure is an important step in the multidomain PSTD method to

enforce the boundary conditions between adjacent subdomains. We next discuss two ways to

perform this boundary patching: first, through the method of characteristics, and second, through
the physical boundary conditions.
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17.5.2 Subdomain Patching by Characteristics

At the end of each substep of the time integration, the fields at the interfaces between adjacent
subdomains do not naturally satisfy the appropriate boundary conditions between subdomains.
The first subdomain patching technique presented here is based on the characteristic conditions
of the hyperbolic system given by Maxwell's equations.

Note that (17.51) is a hyperbolic partial differential equation. We can diagonalize [.4] by
orthonormal matrices:

where

[A] = [5][A][5r
1

[A] = v' diag( 0, 0, 1,1, -1, -1) ,

(17.58)

(17.59)

are the eigenvalues, and matrix [5] consists of the corresponding eigenvectors, which represent
the characteristic waves propagating along the ~ direction. The six eigenmodes include two
nonpropagating characteristic waves (R1, R) with a speed of zero, two +~-directed waves
(R3 , R4 ) with a speed of v, and two -~-directed waves (Rs' R

6
) with a speed of -v,

The corresponding characteristic vectors can be written as

(17.60)

Similar results can be obtained for matrices [B] and [C] for characteristic waves propagating
along 1] and Sdirections, respectively.

The characteristic variables can be used to match the fields at the interface separating two
subdomains of the same material. Suppose the ~-axis points from subdomain 1 to subdomain 2.
In this case, we match the characteristic waves at the interface as follows:

Ri l
•
2) <= 0.5( R

I
(1) + R

I
(2») (l7.61a)

R;I,2) <= O.S( R;I) + R;2)) (l7.61b)

R(2) R(I)
(l7.61c)3 <=3

R(2) <= R(I) (17.61 d)4 4

R(I) <= R(2)
(17.61e)s s

R(I) <= R(2)
(l7.61f)6 6

where the superscript denotes the two different subdomains. Essentially, these conditions state
that for each subdomain, the incoming characteristic waves are determined by the corresponding
outgoing waves from the adjacent subdomain, the outgoing waves are left unaltered, and the
nonpropagating waves remain continuous.



864 Computational Electrodynamics: The Finite-Difference Time-Domain Method

17.5.3 Subdomain Patching by Physical Conditions

The characteristic conditions discussed above are used for an interface separating two
subdomains with the same material. However, when the two adjacent subdomains have different
materials, these characteristic conditions cannot be applied directly, since the characteristic
waves become discontinuous across the interface. Instead, we can use the physical boundary
conditions to perform subdomain patching.

On the interface of two adjacent subdomains, the physical boundary conditions require the
tangential components of E and H to be continuous:

E(I) = E(2) •
tan tan'

H(l) = H(2)
Ian Ian (17.62a, b)

where the superscripts denote the two subdomains with a common interface. For a dielectric
interface, this implies continuity of the tangential E and H components across the interface,
while for a PEC interface, the tangential E and normal H components vanish. We first extract
the tangential and normal field components:

E tan1 = E·i , Elan 2 = E·i E norm = E·n1 2

H ,an, H·i H 1an2 = H·i , H = H·nI 2 norm

(17.63a)

(17.63b)

where i], i 2 , and n are local unit tangential and normal vectors, respectively. We next force
the tangential field components to be continuous:

(H(') H(2)) <= O.S(H(l) + H(2») (H(l) H(2)) <= 0 S(H(I) + H(2) )
tan I ' Ian I tan I tan 1 tan2 'tan2 . tan 2 Ian 2

(17.64a)

(l7.64b)

The normal field components are left unchanged. This subdomain patching is performed after
the field components are updated at each Runge-Kutta stage. The process for field updating and
boundary patching continues until the desired time window is completed.

Combinations of characteristic and physical conditions have been successfully applied to
subdomain patching [5, 6,8, 10]. However, when applied to patch three-dimensional subdomains
of the same material, using characteristics can be cumbersome, because one has to track the
conditions that make some of the characteristic variables zero [7]. Here, it is simpler to patch
subdomains by using only the physical boundary conditions [9, 11, 24].

17.5.4 Filter Design for Corner Singularities

As discussed in detail in [25], numerical oscillations can appear when pseudospectral methods
are applied to hyperbolic problems with discontinuous solutions. These oscillations are directly
caused by the solution discontinuities, and have a high-frequency character. For the multi
domain PSTD scheme, such discontinuities can arise from edges and corners at subdomain
interfaces, potentially causing late-time instability.
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A viable means to surmount the oscillation and to help improve the stability of
pseudospectral solutions is to employ a filtering procedure [26- 28]. Filtering accelerates
convergence by multiplying the Fourier or Chebyshev coefficients with a gradually decreasing
function a(·) to reduce the high-frequency components. For example, a 2n-periodic discrete
function U can be written in its Fourier series:

m

1
NI2-1 ,2tr)-mn

L ~ N
U = - u e

m N n
n=-NI2

Then, the filtered solution is represented as

I N/2-1 /tr mn

U =- '" a~eN
111 N.£.J nUn

n=-NI2

where the Fourier coefficients are

N-I ,2tr
'" -F-iT

mn

Un = .£.J ume
m=O

(17.65)

(17.66)

(17.67)

and an is a decreasing function with In I.
Similarly, a function u(~) defined within ~ E [-I, 1] also can be represented in its discrete

polynomial transformation, for example, by Chebyshev polynomials

N

urn = u(;J = LUn~(;J
n=O

(17.68)

where ;m are the GCL points ;m = -cos(mnln), 0 ~ m ~ N; and Tn (X ) is the n'th-order
Chebyshev polynomial Tn(xm) =-cos(mnnlN). The inverse relationship is

Un =

N

-N:-:------ L um~(xm)wm =
L r,,2 (x) w

j
j=O

j=O

N 2
'" -- u T(x ).£.J Nc c m n m
m=O m n

(17.69)

where cn = I + 0n.O + 0n.N' and the weights for the GCL points are given by W o=W N =n 12N and
w =2nlN for 1 ~ m ~ N-l. Then, the filtered solution is derived as

m

2 N U' N a
= - '" -) '" _n T (x )T (x,)N!-'c,.£.J c n m n)

j=O ) n=O n

which can be conveniently expressed into a tensor product form.

(17.70)
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The choice of the filtering function a{) is discussed in [25] and remains an active research

topic [29]. This function must be unity in the neighborhood of the origin, and gradually decrease
to zero at higher frequencies to filter out the higher modes. Some of the functions that have been

discussed include the raised cosine function:

an = 0.5[I+cos(nn/N)]

and the exponential cutoff function

(17.71)

O~n~nc

(17.72)

where n
c

is the cutoff number, f3 is the order of the filter, and ex = -In(cM ) is a constant
coefficient, with c

M
being the machine precision. Decreasing either the cutoff number nc or the

order f3 leads to a stronger filtering action. Reference [29] proposed to choose f3 adaptively as a

function of both the order of projection and the distance to the discontinuity. It has been
demonstrated that, with an appropriate implementation of a filter, spectral accuracy can be
maintained in the regions away from discontinuities.

17.5.5 Multidomain PSTD Results for 2.S-Dimensional Problems

This section presents two illustrative cases of 2.5 - dimensional multidomain PSTD modeling of
electromagnetic wave interaction problems. We first consider the field radiated by an impulsive

line current source located at the center of a 4 m diameter, air-filled, circular cylindrical hole
within an infinite, lossy, homogeneous medium (c,=9, Il

r
= 1, and a=0.0015 S/m). This

source has a sinusoidal spatial distribution along the z-axis given by J = i cos (kz z )b(x) bey)

for kz = 0.5 m- I
, and a time function that yields a Blackman-Harris spectral window centered at

30 MHz. Note that the current varies with position along the z-axis with a periodicity that is

comparable to the free-space wavelength at the center frequency of the excitation.

Fig. l7.2(a) illustrates the mesh of subdomains used for the PSTD model. A grid with

16 x 16 GeL points is used within each subdomain, along with a time-step M = 21.5 ps.

This represents a meshing density of only 5.66 points per wavelength (PPW) in the high

permittivity surrounding medium for the highest-frequency spectral component of importance,

90 MHz. Fig. 17.2(b) shows excellent agreement between the PSTD numerical result and the
analytical solution for the time waveform of the radiated E field at observation locationz
(x. y, z) = (-2.0135, -2.0135, 0).

In the second example, we study the same problem as that above, except that a point electric

dipole J = i b(x)b(y)b(z) is used. The fields in this case can be obtained by performing the
inverse cosine/sine transform of the fields obtained in the first example with different values of

kz ' In this particular case, only the cosine transform is needed for Ez because J is an even
function of z. Fig. 17.3 compares the PSTD numerical result and the analytical solution for the

time waveform of the radiated Ez field at observation location (x, y, z) = (-2.0135, -2.0135, 1).
The agreement between the two results is excellent despite the low sampling density of

5.66 PPW for the highest-frequency spectral component of importance.
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Fig. 17.2 Multidomain PSTD model of a 2.5-dimensional problem involving the field radiated by an
impulsive line current source. The current source is located at the center of a 4m diameter,
air-filled, circular cylindrical hole within an infinite, lossy, homogeneous medium (£r =9,
Ilr =I, and (J"= 0.0015 S/m). The current source has a sinusoidal spatial distribution along the
z-axis given by J = zcos(k,z)O(x)O(y) for k,=0.5 m- I

, and a time function that yields a
Blackman-Harris spectral window centered at 30 MHz. (a) Subdomain geometry,
and (b) comparison of PSTD numerical result and analytical solution for the time waveform of
the radiated E, field at observation location (x, y, z) =(-2.0135, -2.0135, 0).
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Fig. 17.3 Results of the same multidomain PSTD model as in Fig. 17.2(a), except that a point electric
dipole J = i o(x)O(y)O(z) is used for the excitation. This graph compares the PSTD
numerical result and the analytical solution for the time waveform of the radiated E field at
observation location (x, y, z) =(-2.0135, -2.0135, I). Z



17.6 PENALTY METHOD FOR MULTIDOMAIN PSTD ALGORITHM

(l7.73a)
(YE-nxH)(l) + (YE+nxHY2)

= nx
y(l) + y(2)

This section presents three illustrative cases of three-dimensional multidomain PSTD modeling
of electromagnetic wave interaction problems. We first consider modeling the field radiated by
an impulsive electric dipole J = i 8(z - 2.0) 8(x) 8(y) located outside a PEC cube of side
length 2.0 m centered at (0, 0, -2.0) m. The center frequency of the source spectrum is 60 MHz.
Fig. 17.4 compares the PSTD results for the radiated Ez field at observation point (2.0, 0, 2.0) m
with corresponding FDTD modeling data. There is excellent agreement despite the coarse PSTD
meshing resolution (8 PPW) relative to that of FDTD (20 PPW).

We next consider the scattered field due to an impulsive, +z-directed, x-polarized, plane
wave impinging upon a dielectric cube of side length 0.6 m and permittivity £r =16. The center
frequency of the source spectrum is 100 MHz. Fig. 17.5 compares the PSTD results for the
Ex field at observation point (0,0, -0.6) m with corresponding FDTD modeling data. There is
excellent agreement despite the coarse PSTD meshing resolution (4 PPW) relative to that of

FDTD (1°PPW).
The final example involves calculation of the bistatic RCS of a lossy circular cylinder of

radius and length a =2 m, permittivity Er = 4, and conductivity (J =0.0015 S/m. Illumination is
provided by an impulsive, -z-directed, x-polarized, plane wave with a spectrum centered at 50
MHz. This problem is designed to test the ability of the PSTD algorithm to simulate curved and
conducting objects. Fig. 17.6(a) illustrates the geometry of the cylinder and the PSTD mesh in a
transverse cross section, showing the conformal subdomain decomposition. Fig. 17.6(b) shows
the good agreement of the PSTD ReS calculations with corresponding results obtained using the
phasor-domain, stabilized biconjugate-gradient FFT method [30,31].

17.5.6 Multidomain PSTD Results for Three-Dimensional Problems

868 Computational Electrodynamics: The Finite-Difference Time-Domain Method

As discussed in the last section, subdomain boundary patching is needed at the end of each stage
of the time integration. Techniques for this purpose have been developed using both the method
of characteristics and the physical boundary condition. Essentially, these schemes explicitly
reconcile the field values to satisfy the correct boundary conditions after the field is updated by
the differential equations. However, these schemes do not guarantee that Maxwell's equations
and the boundary conditions are satisfied simultaneously, and tend to neglect the fact that the
differential equations are satisfied at points arbitrarily close to the boundary. In [32J, Funaro and
Gottlieb showed the advantages of imposing a combination of boundary conditions and the
equation itself, and theoretically proved its stability and convergence for Chebyshev
approximations. This strategy, recognized as the penalty method, was later developed by
Hesthaven in a spectral-element framework for Maxwell's equations [33]. Here, the penalty
term is realized by an explicit upwind scheme originally proposed by Mohammadian et al. for
the finite-volume time-domain method [34J.

Following [33,34], we adopt the upwind condition at the subdomain boundaries.
The corrected tangential field components at a dielectric interface can be determined by



8060

Chapter 17: Advances in PSTD Techniques 869

40

Time (ns)
20

-1
o

1

PSTD
--- FDTD

0.5
N

W
"'0
Q)

.~ 0
CO
E
\-

0
Z

-0.5
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by an Er = 16 dielectric cube illuminated by an impulsive plane wave.
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(a) Geometry of the cylinder and transverse cross section of the PSTD mesh.
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Fig. 17.6 Agreement of PSTD and phasor-domain, stabilized biconjugate-gradient FFT results for the
bistatic RCS of a lossy circular cylinder of radius = length = a = 2m, permittivity f:, = 4, and
conductivity a= 0.0015 Stm. Illumination is provided by an impulsive, -z-directed, x-polarized,
plane wave with a spectrum centered at 50 MHz.
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A • ~ (ZH+nxE)(I)+(ZH-iixEr 2
)

n x H = n X (1) (2)
Z + Z

(17.73b)

where the superscripts (1) and (2) denote two adjacent subdomains with normal direction n
pointing from subdomain 1 to subdomain 2, and * denotes the corrected field values for both
subdomains to replace the current field components on the right-hand side of (17.73). Note that
both characteristic and physical boundary conditions are included in (17.73), which is also
known as the Riemann solver of Maxwell's equations.

The ideal situation is that the corrected field components equal the current field components,
in which case the boundary conditions are already satisfied. Otherwise, it is natural to. consider
using the difference of the corrected field and the current field as the penalty term for Maxwell's
equations. For subdomain 1, this leads to the following equations [33J:

(l7.74a)

(l7.74b)

where the jumps in the fields are E(2)_E m and H(2)_H(I). Therefore, the penalized Maxwell'
equations on the interface for subdomain 1 can be written as

(17.75a)

(l7.75b)

where r is a positive coefficient to adjust the weight of the penalty term. A similar formulation
applies to subdomain 2.

For the two-dimensional Maxwell's equations under TM polarization, the above
y

formulation can be written as

dHz =
_~ dEy

+ !.- OH(I)
dt J.1 dX J.1

z

dH;r; I dE !.- oHO)= --->' +
dt J.1 dz J1

;r;

dE), I (dH dH) (J' ~ oE(I)= ~ a: - ax
z

-;Ey +at £
y

(l7.76a)

(l7.76b)

(l7.76c)

where the penalty terms oH;r;' oHy' and oHz are derived from (17.74):
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oH(I)
n2(H(2) _ H(I») - n n (H{2) - H(I») _ n y(2) (E(2) - E(I»)

x z z 1. x x x x y y

=z y(l) + y(2)

n2(H C2 ) - H(I») - n n (H C2 ) - H(I») + n y(2)(E(2) _ E(l»)
oH (1

)
z x x Z x l Z Z Y Y

x y(I)+ y(2)

oE(I)
ZC2l[-n

x
(H

z
(2) - HZ(I») + n

z
(H;2)-H;I»)] + (E(2) - E(I»)

y y

=.I' Z(I)+ Z(2)

(17.77a)

(l7.77b)

(l7.77c)

This penalty method has been implemented to achieve stable and accurate treatment for the
boundary conditions. It replaces the traditional patching schemes discussed in the previous
sections. As an example, Fig. 17.7 shows a calculation of the scattering of a +x-directed,
impulsive plane wave of center frequency 200 MHz by an E

r
=4.0 dielectric cube of side length

0.6 m. The penalty PSTD method at 4 PPW and the FDTD method at 10 PPW are used to
compute the Ez field at the observation point (-0.6, 0, 0) m. There is excellent agreement of the
results.
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Fig. 17.7 Comparison of results of the penalty PSTD method at 4 PPW and the FDTD method at 10 PPW
for the electric field near an £, =4.0 dielectric cube of side length 0.6m illuminated by an
impulsive plane wave of center frequency 200 MHz.

The penalty PSTD method achieves stability without the help of filtering [6]. Since
implementing an appropriate filter is primarily dependent upon the experience of the modeler,
and since an inappropriate filter could degrade the accuracy of the results, we consider the
penalty PSTD method superior to the subdomain patching schemes in terms of stability.
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17.7 DISCONTINUOUS GALERKIN METHOD FOR PSTD BOUNDARY PATCHING

The discontinuous Galerkin method (DGM) has become increasingly popular among the
computational fluid dynamics community in the past decade [35]. First introduced by Reed and
Hill [36], it has been demonstrated to be a robust. efficient approach for high-order and spectral
methods, because it can achieve a uniformly high-order accuracy for complicated geometries.

DGM has been recently applied to solve Maxwell's equations with superior accuracy and
efficiency [37. 38]. Here. we apply DGM to the multidomain PSTD algorithm in order to
improve the robustness of the interface patching schemes.

17.7.1 Weak Form of Maxwell's Equations

Consider a piecewise homogeneous medium within a subdomain r. We can multiply Maxwell's
equations in conservation form (17.46) by a testing function {p(x. y, z)} and integrate over the
subdomain to obtain the weak form of this equation:

where

(a~;}, {P(X,y,Z)}) + (V·F, {p(x,y,z)}) = -([D]{q}, {p(x,y,z)}) (17.78)

(17.79)(I, g) = fI(x.y.z)g(x,y.z)dxdydz
r

denotes the inner product over the volume r. After integration by parts. (17.78) is written as

( a{q}. {P(X,y,Z)}) - (F, V{p(x,Y.z)}) + J{p(x.y,z)} F'n ds
at ar

= - ([D]{q}. {p(x. y.z)})

17.7.2 Space Discretization and Domain Transformation

(17.80)

Again, a coordinate transformation is performed to transform an arbitrary hexahedron in the
physical (x, y, z) domain onto a standard cube [-1, 1]3 in (~. 1],0 coordinates. The spatial
discretization of the transformed domain is based on the Gauss-Legendre-Lobatto (GLL) points
{~o =-1, ~i (l S; is; N-l). ~N =I}, which are zeros of L~(~), where LN(~) is the N'th order
Legendre polynomial. This choice takes advantage of the Gauss quadrature rule

(17.81)

which is exact for polynomial p(~) of up to order (2N - 1). Here, the weights for the GLL nodes
are given by

OS;iS;N (17.82)
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Therefore, the inner product can be written in the transformed domain (~, TI, 0 as

(17.83)

where (I, J, K) are the orders of polynomials used in the (~, TI, 0 directions, respectively, and

J[JlLjk = I[Jll(~i' Tl j , Sk)'
The testing function is defined in the transformed domain as

(17.84)

where

(17.85)

is the I'th-order Legendre-Lagrange polynomial having the property g,(~) =0li for GLL nodes
~; (0 ~ i ~ 1).

17.7.3 Mass Matrix and Stiffness Matrix

With the above definitions, and further denoting I[JlLmn = HJlIC;" T]m' sJ, the inner product for
the time derivative in (17.80) can be written into

( a~qt}' {P}) = 51 51 51
a{q} (o -I -[ -I a;- P'mn ~, TI, S-) I[Jll d~ dT] d(

= l[1l/ a{q(~I'Tlm,S-J} == I[Jll aq'mn
'mn at Imn at (17.86)

In other words, the mass matrix is diagonal if derived by using the GLL points and the Legendre
Lagrange polynomials as basis and testing functions.

The derivation of the stiffness matrix involves the transformation of the flux from the
physical domain to the transformed domain. Given the transform relationship in (17.5]), the
inner product of the divergence of flux can be directly evaluated in the curvilinear coordinates:

(17.87)
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where {q} = HJ] I{q}. For the derivative in the ~ direction alone,

~ g/(I) (J=) I J (I) ( a J=))
= ([A] I[J]I {q} )'mn (I~ - I :~l) [A] 1[1]1 {q}~

WI -1 1=0 I a~ ;mn

J (I)

~ Wi (!)( ~ )
- ~ (i)Dil [A] I[J]I {q} ;mn

;=0 WI

where * denotes the updated flux obtained by the interface conditions, and

(17.88)

L/(x)

LI(xI)(Xj - XI)

-/(/+1)/4

1(1+1)/4

o

i :f. I

i=1=0

i=l=/

otherwise

(17.89)

represents the derivative matrix for GLL nodes.
With similar manipulations for the T1 and S directions, the weak form of Maxwell's

equations in (17.78) can be finally written into the following form:

aq/mn 1
--+--

at 1[1]Lmn

f J

I Di:) ([A] I[JlI{q})imn + I D~~)([B] I[J]I{q})/jn
;=0 j=O

K

+I D~:)([C] I[J]j{q})/mk
k=O

(
81 J - 8, 0 ) (( A )* A ) ( 8 - 8 ) (A * A )+ ' W~!) , [A]{q} - [A]{q} Imn + m'}wj}) m,O ([B]{q}) - [B]{q} Imn

(17,90)
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Note that in the left-hand side of (17.90), the second term represents spectral collocation for
the evaluation of spatial derivatives that have been introduced in the Chebyshev PSTD
algorithm. The remaining three terms denote the correction of the interface fluxes at the six

surfaces of the unit cube in the ~, 1], and { directions, respectively. These also can be viewed as
penalty terms imposed on the six surfaces. In other words, the discontinuous Galerkin PSTD
technique specified in (17.90) is rigorously equivalent to the PSTD method with a penalty term
having the fixed coefficient

r = I/w';l = N(N + 1)/2

if one assumes I = J = K = N.

17.7.4 Flux on the Boundary

(17.91)

The remaining task in (17.90) is to evaluate the interface fluxes in the ~, 1], and Sdirections,
respectively. Note that

[A] Io(y,z) IrA) + Io(z,x) IrB] + IO(x,y) Irc]
a(T1,~) a(T1,~) O(1J,~)

= 1[1]1 (17.92)

Thus, it is natural to rewrite the flux in the physical domain as

[AH q}

1 ~

-~xE
jJ.

I ~

--~xH
E

(17.93)

Therefore, for the field vectors at the interface of two adjacent subdomains with a normal

direction ~ pointing from subdomain 1 to subdomain 2, the resolved flux for a dielectric
interface or homogeneous medium can be determined by (17.73) [34]. Once the flux at the

interface is updated, the discontinuous Galerkin PSTD system (17 .90) is ready to be solved by a
time-integration scheme. In the results discussed next, we employ a five-stage, fourth-order
Runge-Kutta method.

17.7.5 Numerical Results for DG-PSTD Method

Similar to the penalty method, the discontinuous Galerkin PSTD technique is considered to be

more robust than the regular PSTD algorithm because of its independence of the filtering
procedure. As discussed in earlier sections, filtering degrades the accuracy of the high-frequency
components, especially when the PSTD sampling density is close to its limit of 1t points per
wavelength.
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To explore the attributes of the new discontinuous Galerkin PSTD technique, we now
consider the application of this and other PSTD algorithms to example problems involving
electromagnetic wave interaction in two and three dimensions. The first example involves the
two-dimensional electromagnetic bandgap (EBG) structure shown in Fig. 17.8(a), which is
comprised of circular dielectric rods of permittivity £r =9.6. The EBG structure is assumed to
extend infinitely in the x-direction, and have a finite thickness of six periods in the y-direction.
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Fig. 17.8 PSTD studies of an electromagnetic bandgap structure having a stopband between approximately
20 and 35 GHz: (a) structure geometry; (b) comparison of benchmark results with a standard
low-resolution (2 PPW at 40 GHz) Chebyshev PSTD code with filtering; (c) comparison of
benchmark results with a low-resolution DG-PSTD code (2 PPW at 40 GHz).

Fig. 17.8(b) compares experimental results for y-directed electromagnetic wave transmission
through the EBG structure [39] with two sets of simulation results: (I) benchmark PSTD data
obtained using a high-resolution mesh (4 PPW at 40 GHz), and (2) test PSTD data obtained
using a standard low-resolution (2 PPW at 40 GHz) Chebyshev PSTD code with filtering.
Here, we see that the PSTD technique with filtering fails to maintain accuracy at high
frequencies. Fig. 17.8(c) repeats this study, but now the test PSTD data are obtained using a
low-resolution DG-PSTD code (2 PPW at 40 GHz). Here, it is clear that the DG-PSTD method
maintains excellent accuracy despite its low spatial resolution.
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The second example involves application of the three-dimensional discontinuous Galerkin
PSTD method to model the electromagnetic wave interaction of an impulsive dipole source with
a 4.8 x 4.8 em heat sink slab. as shown in Fig. 17.9(a). The source is assumed to be located
between the heat sink and an infinite ground plane, and is assumed to have a spectrum centered
at 4 GHz. Fig. 17.9(b) demonstrates excellent agreement of the results of the DG-PSTD
technique with results of the enlarged-cell conformal FDTD (CFDTD) technique [40] for a
nearby radiated electric field component.
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(b) Comparison of the DG-PSTD and CFDTD results for a nearby radiated electric field component.

Fig. 17.9 Three-dimensional discontinuous Galerkin PSTD model of the electromagnetic wave interaction
of an impulsive dipole source with a 4.8 x 4.8 cm heat sink slab.
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17.8 SUMMARY AND CONCLUSIONS

This chapter has discussed in detail two different types of PSTD techniques for Maxwell's
equations: the Fourier and Chebyshev PSTD methods. For a single-domain implementation,
spectral accuracy can be achieved with these techniques if the internal medium is continuously
inhomogeneous. Under this condition, the Fourier PSTD method can achieve spectral accuracy
with a spatial resolution of only two cells per minimum wavelength, while the Chebyshev PSTD
requires 1t cells per minimum wavelength. The wraparound effect due to the assumption of
spatial periodicity in the Fourier PSTD method is removed by using the perfectly matched layer
absorbing boundary condition.

This chapter further discussed the multidomain PSTD method, which is suitable for
modeling electromagnetic wave interaction problems involving piecewise material
inhomogeneities and curved or complex geometric structures. Recent developments concerning
the penalty PSTD and discontinuous Galerkin PSTD methods were reviewed. Selected two
dimensional, 2.5-dimensional, and three-dimensional modeling examples were discussed to
illustrate the performance of candidate PSTD algorithms.

Readers are referred to the growing literature concerning PSTD applications, especially for
large-scale problems in a variety of applications including scattering, wave propagation, photonic
crystals, nonlinear optics, subsurface sensing, and biophotonics [6,8,11,15,16,41-46].
Readers are also referred to recent literature dealing with new developments, such as the
unconditionally stable PSTD method [47] and a unified PSTD treatment of complex media,
including PML [48]. These topics were not included because of space limitations.

A key conclusion of this chapter is that existing and emerging PSTD techniques are greatly
expanding the size and scope of rigorous computational solutions of Maxwell's equations,
well beyond those of the original FDTD method. In a broad sense, PSTD and FDTD methods
can be viewed as being complementary in terms of characteristic electrical length scales
appropriate for modeling by each technique.

APPENDIX 17A: COEFFICIENTS FOR THE FIVE-STAGE, FOURTH-ORDER
RUNGE-KUTTA METHOD

al 0.0

az -567301805773.0/1357537059087.0

a3 -2404267990393.0/2016746695238.0

a4 -3550918686646.0/2091501179385.0

a5 1275806237668.0/842570457699.0

hi 1432997174477.0/9575080441755.0

b2 5161836677717.0/13612068292357.0

b3 1720146321549.0/2090206949498.0

b4 3134564353537.0/4481467310338.0

bs 2277821191437.0/14882151754819.0
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CI 0.0

C2 1432997174477.0/9575080441755.0

c3 2526269341429.0/6820363962896.0

C4 2006345519317.0/ 3224310063776.0

C5 2802321613138.0/2924317926251.0
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Chapter 18

Advances in Unconditionally Stable Techniques

Hans De Raedt

18.1 INTRODUCTION

This chapter discusses recent progress in the development of unconditionally stable FDTD
algorithms to solve Maxwell's equations. We present a general, unified framework that
facilitates the construction of FDTD algorithms (including the Yee algorithm [1]) with specific
properties. Our approach is constructive and modular. It gives a recipe for constructing
unconditionally stable algorithms that are tuned to particular problems, and that can be combined
with other unconditionally stable algorithms to solve more complicated problems.

18.2 GENERAL FRAMEWORK

For simplicity and clarity of the notation, we introduce the basic concepts using Maxwell's
equation in one dimension. Specifically, we consider the case of a TEM wave (see Section 3.4).
We assume that M =0, a=a'=O, and e=j1=1. Equation (3.16) then reduces tosourcey

dH/x,t)
=

dE/x,t)

dt dx

dE/x,t)
=

dH/x,t)
- J (x,t)

dt dx l

(18.1a)

(18.1 b)

Using the one-dimensional Yee lattice arrangement of field components illustrated in Fig. 18.1,
we represent the spatial derivatives in (18.1) by second-order central-difference approximations,
but do not yet discretize the time variable t:

d 1/-H
dt )' ;+1/2 (18.2a)

883

(18.2b)
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~,L'/2 I' HY/:+ 3/2 EzI; +2 H)LmE.z 1+ I

• • • • •
i +1/2 i+1 i +3/2 i+2 i +5/2

... LU •
Fig. 18.1 Positions of the two field components in the one-dimensional Yee grid (see also Fig. 3.2).

It is convenient to use a compact notation for one-dimensional arrays of numbers and their
associated matrix operators. We introduce the row array

Ell
Z 1

Ell
Z I (18.3)

where the superscript T in (18.3) denotes the transpose of an array (or matrix). Accordingly,
{'fl(t)} is a column array containing 2n + 1 field components. The Maxwell equations (18.2) can
now be written as

a
-{'P(t)} = [L]{'P(t)} - {S(t)}at (18.4)

where the source term in (18.4) is represented by the array

{S(t)}T =: {o 11' 0 1r 11' o} (18.5)z I Z I Z n

and the matrix [L] is given by

0 0 0

-1 0

[L] = 0 0 (18.6)
Llx

-l 0

0 0 -l 0

The mathematical structure of (18.4) to (18.6) is much more general than this simple one
dimensional example suggests. We now discuss the general aspects of (18.4) in more detail.

18.3 MATRIX.EXPONENTIAL CONCEPTS

In general, Maxwell's equations [see (3.7) and (3.8) of Chapter 3] can be written in the form
(18.4). By direct substitution, it is easy to verify that the solution of (18.4) can be written as

......
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{'P(t)} = /ILJ{'P(O)} - J~e('-U)(LJ{S(u)}du (18.7)

where the matrix exponential etlLI is formally defined by the matrix-valued Taylor series [2-8]

00 l
e'lLI = I _[L]k

k=O k!
(18.8)

Formal solution (18.7) is a convenient starting point to construct FDTD algorithms. Time
marching methods solve (l8.7) by advancing the fields {'PU)} in small steps, using a time-step
.. =t::.t. From (18.7) it follows directly that

{'P(t + -r)} = e-r[LJ {'PU)} - fo1' e
ulLI {SCt + -r - u)}du (18.9)

From (18.9), we see that solving Maxwell's equations in the time domain amounts to specifying
an algorithm that updates an arbitrary array of field components {<I>(t)} according to

(18.10)

The exceptional case for which the matrix exponential e -rILl can be calculated explicitly is usually
of little relevance for realistic problems. Therefore, we will exclude this case from our
discussion. Thus, the general strategy is to develop some approximation scheme that performs
the operation (18.10). Later, we show that this strategy can be used to recover algorithms that
are obtained in the conventional manner (including the Yee algorithm) by discretizing the time
derivatives. The main advantage of approximating e -rILl instead of the differential equation is
that we can easily construct algorithms with specific properties, such as unconditional stability.

To see why this is a fruitful strategy, we now make a number of general observations.
For simplicity, we assume that there are no current sources ({ S(t)} =0) and exclude the case of

. I Ilossy matena s.

1. Matrix [Ll in (18.4) satisfies [L]T =-[Ll; that is, [L] is real and skew-symmetric.
This is a fundamental, general symmetry property of the pointwise Maxwell
equations. Under the conditions stated in Chapter 3, Section 3.2, the integral
representation of Maxwell's equations is easily transformed into an equation of
the form (18.4). In general, for the two- and three-dimensional Maxwell
equations (with spatially varying permittivity and permeability but in the absence
of absorption), [Ll is skew-symmetric.

2. If [L] is a skew-symmetric matrix, then (e,IL1r l = e-r[L] =etld = (e tlLJ { Hence,

e
tlL1

is an orthogonal matrix; that is, it performs a rotation of a vector [9, 10].
We see that the time development in formal solution (18.7) is represented entirely
in terms of rotations e,ILl.

I Appendices 18A.1, 2 and Sections 18.6, 7 discuss the extensions that are necessary to deal with these cases.
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3. The energy of the electromagnetic field in the Yee grid is just the inner product

{'J'(t)}T{'J'(t)}. Therefore, conservation of electromagnetic energy implies that

the length (norm) II {'J'(t)} II = ~{'J'(t)}T {'J'(t)} of {'J'(t)} does not change with

time. Of course, the time evolution e tiLl exactly conserves the energy (in the

absence of external sources) because it only rotates {'J'(t)}, and rotation does not

change its length.

4. Any approximation to e llLI that can be written as a product of rotations exactly

conserves the electromagnetic energy.

5. The general criterion for numerical stability given in Chapter 2, Section 2.7, is

formally expressed by II {'J'(t)} II ~ cll (\fI(O)} II for all t and C being a positive
constant [2].

6. If a time-integration algorithm can be written as a product of rotations, then

according to observation 3, we have II {\fI(t)} II = II {\fI(O)} II. By observation 4,
this algorithm is unconditionally stable by construction. Thus, an algorithm that
conserves energy exactly is unconditionally stable.

A systematic approach to construct approximations to the matrix exponential e rILl is to

invoke the Lie-Trotter-Suzuki formula [6- 8]. The basic idea is to split [L] into several parts

[L] =[L t ] + [L2] + ... + [Lp]' and to approximate e riLl by some product of the matrix
exponentials er[L.J, erlL,l, ... , e rlLpJ . Thus, we apply the idea of operator splitting to the formal

solution of the differential equation, rather than to the differential equation itself. Instead of

discussing this approach in great detail, we confine ourselves to approximations that are useful

for FDTD applications. As a matter of fact, we only need the approximation

riLl rl~1/2 rlL,l r(L, /21e ::=:; e e e (18.11)

Appendix 18A.2 gives a rigorous proof that the error resulting from approximating e rlL} by
e rlL,I2) e fiL,l e flL,t2l is less than Cr3 for any time-step r, where C is a positive constant.

Without going into the details of a particular problem, there are a number of important

consequences of employing (18.11). First, for practical purposes, it is necessary to decompose
[L] such that we can easily compute e flL,] {ct>} and e rlL,J {ct>} for any time step T and arbitrary

{<1>}. We have not yet specified how to choose [L1] or [L
2
], except that these should satisfy

[L] =[L,] + [L2] . Therefore, we have much freedom to construct algorithms with specific

properties. For example, if [L t ] and [L) are skew-symmetric, then by observation 2,
e rlL,12l e rlL,] e f1L,t21 is the product of three orthogonal matrices. Hence, by observation 4, the

energy of the fields is conserved, and by observation 6, this choice defines an unconditionally

stable algorithm. Second, if necessary, we can split up any of the matrix exponentials in
erlL,l2IeflL,lerlL,t21 by reapplying (18.11). The error always remains less than Cr 3 , where the

actual value of C depends on the details of the decomposition of [L]. Finally, if necessary,

the accuracy of approximation (18.11) can be increased to O(r4
) by simply reusing (18.11);

that is, with a minimum of programming effort. A particularly useful fourth-order product

formula, also illustrating the modular structure of the approach, is given by [8, 11, 12]
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T[L] ( OT(L,]lZ oT[L,) OTlL11/Z)Z( br[L,I/Z br[L,! brlL.,)/Z) ( or[L.,I/Z orrL.,) OT[L,1/Z)Z
e ""e e e e e e e e e

(18.12)

where a =1/(4 - 4 113
) and b =1 - 4a. The use of (18.12) does not require more storage than its

component algorithms.
As an alternative to the product-formula approach, we may also consider computing

e T[L.) {«I>} using a polynomial or rational approximation to e rfLl. We shall later discuss two cases:
the "one-step" algorithm [13, 14] based on an extremely accurate Chebyshev polynomial
representation of e rrL1 [15], and an alternating-direction implicit (ADI) algorithm [16] that
employs a rational approximation to compute e T[L,I {«I>} and e r[L,1 {«I>} .

18.4 PRODUCT-FORMULA APPROACH

18.4.1 The Classic Vee Algorithm as a Particular Realization

We first show how the classic Yee algorithm can be viewed as a particular realization of the
product-formula approach discussed above [17]. While this discussion uses the example of a
TEM wave in a one-dimensional space to illustrate the basic ideas, extension to two- and three
dimensional models does not require new concepts.

In the Yee algorithm, one time-step involves an update of E using the current values of H,
followed by an update of H using the new values of E (see Chapter 3, Section 3.6.1). Deriving
the Yee algorithm via the product-formula approach is straightforward if we rearrange the
elements of {\P(t)}. We define a new array of field components by

{Y(t)}T = {HyLz HY[+lIZ Er Ezl: } (18.13)z I

This pennutation of elements also changes [L] as follows:

0 0 0 0 1 0 0

0 0 0 o : -1 1 0

0 0 0 O~ 0 -I 1
I

[Ll = - 0 0 0 0: 0 0 -1 (18.14)ax ..............................................
-1 1 0 0 0 0 0

0 -1 1 0 : 0 0 0:

0 0 -1 1 0 0 0

where we have taken as an example a one-dimensional Yee lattice of seven gridpoints.
From (18.14), we see that [L] remains skew-symmetric, as it should because a permutation of the
array elements does not change the symmetry properties of a matrix. The structure of [Ll

of (18.14) suggests that it is convenient to use a block-matrix notation. Following our general
strategy, we can now recover the Yee algorithm if we choose [L] = [L) + [Lz], where
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[L] ~ ( 0 -[~]l [L.] = (~ -[~ll [1.,1 ~ ( 0 ~) (18.15)
[A] [A]

and

-1 0 0

0 -I
[Al = (18.16)

Llx 0

0 0 -I

The decomposition of (18.15) is general; that is, it also works for two- and three-dimensional
problems. However, the particular form of [A] given by (18.16) is directly linked to the specific
one-dimensional example considered here.

According to our general strategy, the decomposition should be such that we can readily
compute e .,"lL11 {<I>} and eT(L,l {<I>} for arbitrary T and {<I>}. For (18.15), this is straightforward;
it is clear that [L ,] [L I ] = (L

2
] [L

2
] = O. From Taylor series (18.8), it follows that e TIL,I {Y(t)} =

(I + T[L.D (Y(t)}, which is exactLy the first part of the Yee algorithm, the H update. Similarly,
the second part of the Yee algorithm, the E update, is given by e TIL,1 {Y(t)} =(l + r(L

2
]) ( Y(t)}.

From the general criterion for numerical stability, it follows that the Yee algorithm is stable if
IIedL,leTlL,lll =111 + r[L] - ~(Ll] (LI]T" ~ 1. Appendix 18B shows how this condition leads to
the well-known result (see Chapter 4, Section 4.7) that the Yee algorithm is numerically stable if
-r ~ Llx 1.,fJ, where d denotes the spatial dimension of the system.

We now show that a slightly different approach yields a Yee-like algorithm that uses a
collocated time arrangement of E and H [17]. According to our general formalism, we can write

(18.17)

In the second line of (18.17), operations are grouped so that the relation to the Yee algorithm is
more explicit. Reading from right to the left, the first operation propagates H by T/2. Then,
the first pair of matrix exponentials performs a Yee update of E with a time-step T, followed by a
Yee update of H with a time-step T. The second pair of matrix exponentials repeats the previous
two operations. The final operation restores the T/2 shift generated by the first matrix
exponential by propagating Hover -TI2. In the original Yee algorithm, the last step is missing
because, throughout the procedure, Hand E are defined for times that differ by T12. Overall,
(18.17) demonstrates that we can remove the staggered-in-time feature of the conventional
Yee algorithm at virtually no extra computational cost, while retaining its other properties.

18.4.2 The ADI Method as a Second Realization

ADI algorithms (see Chapter 4, Section 4.10) are usually derived by applying the idea of
operator splitting to the difference equation [16]. In fact, and importantly, we can derive the ADI
algorithm starting from formal update rule (18.10).
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Obtaining the ADI method from the product-formula approach is instructive for two reasons.
First, this derivation shows that ADI algorithms are approximations to the second-order product
formula relation (18.11). Second, it suggests how to derive ADI algorithms that are
unconditionally stable by construction. As an example, we consider the splitting [L] :::: [L 1] + [L

2
]

into skew-symmetric matrices [L
1
] and [L2]. The second-order product formula reads

(18.18)

We now replace each of the matrix exponentials in the right-hand side by its first-order accurate

Taylor expansion, and obtain a standard ADI scheme [16]

(18.19)

where we used the fact that we may interchange the order of the two middle factors in the right
hand side of (18.19). The implicit character of ADI algorithms is reflected by the presence of
factors such as (1 + 1"[L

2
]/2)(I - -r[L2]l2r l

, which is the (1,1) Pade approximation to e 1'11.,1 [5].

Appendix 18C proves that time-stepping based on the ADI algorithm is unconditionally stable if
[L

1
] and [L

2
] are skew-symmetric. This proof is less complicated than the proof of the

conditional stability of the Yee algorithm. A discussion of applications of ADI methods to
FDTD problems can be found in [18 - 21], and in Chapter 4, Section 4.10.

18.4.3 Unconditionally Stable Algorithms: Real-Space Approach

According to our general theory, all we have to do to construct an unconditionally stable

algorithm is to apply the product-formula recipe with a decomposition of [L] into skew
symmetric parts. These parts are chosen such that it easy to compute each matrix exponential
that appears in the product. To illustrate the basic idea, we use a simple one-dimensional system
with seven gridpoints and decompose [L] :::: [L

1
] + [L

2
] as follows [11]:

0 I 0 0 0 0 0

-1 0 0 0 0 0 0.............:...............:. .............. ...
0 0 0 1 0 0 0

1
[L

1
] = - 0 0 -1 0 0 0 0 (18.20a)ax . ..............;...............: .............. ...

0 0 0 0 0 1 0

0 0 0 0 -1 0 0.............:............... :- .............. ...
0 0 0 0 0 0 0
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0 0 0 0 0 0 0....... . . . - ... ...... ..............
0 0 1 0 0 0 0

0 -1 0 0 0 0 0
1 .... ; . .. . . . . . ..... ..... ...................

[L
2

] = - 0 : 0 0 0 1 0 0 (18.20b)
fu

0 0 0 -1 0 0 0
... .... ... . . ... . ... . . . ....

0 0 0 0 0 0 1

0 0 0 0 0 -1 0

It is clear that both [L) and [L2] are skew-symmetric, and display a block-matrix structure

wherein each block matrix has at most a 2 x 2 dimension. Since the matrix exponential of a block
diagonal matrix is also block diagonal (with the same structure as the matrix itself), finding the

explicit form of the matrix exponentials of [L,J and [L2] requires, at most, the calculation of a
matrix exponential of a 2x2 matrix. For this example, the expressions are

C 5 0 0 0 0 0

-5 C 0 0 0 0 0. . .·.............. ' ............. , .............. ~ ....
0 0 C 5 0 0 0

TI L1l
= 0 0 -5 C 0 0 0 (18.2Ia)e .................................................

0 0 0 0 C 5 0

0 0 0 0 -5 5 0............................................ , ..... . .
0 0 0 0 0 0

1 0 0 0 0 0 0·... ~ ..... - ...... , ..:............... ;- ............
0 C 5 0 0 : 0 0

0 -5 C 0 0 0 0
TI L2 I

· ....:...............~............... ;.............
e = 0 0 0 C 5 0 0 (I8.2Ib)

0 0 0 -s c 0 0.....:...............:...............:.............
0 0 0 0 0 c s

0 0 0 0 0 -5 C

where c = cos(r/fu) and s = siner/Ax). This completes the construction of an unconditionally

stable algorithm that solves the one-dimensional Maxwell's equations.

In practice, implementing the algorithm defined by the decomposition (18.21) is about as

simple as writing code to implement the classic Yee algorithm. From (18.21), it is clear that all

we need to program is the multiplication of an array of two elements by a 2 x 2 matrix.

This operation needs to be repeated in a loop with stride 2. Table 18.1 lists Fortran code that

implements both the real-space algorithm based on (18.21) and the conventional Yee algorithm

for the example of Section 18.4.1.
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TABLE 18.1

Comparative Fortran Code for the Yee Algorithm and the
Real-Space Unconditionally Stable Algorithm Based on (18.21)

Conventional Yee Algorithm

r = tau / deltaX

if(istart==1) then c=O else c=psi(l)

do i = istart, L-1, 2

s = psi(i+1)

psi (i) = r* (s-c) + psi (i)

c = s

end do

if(istart /= 1) psi(L) = psi(L) - r*c

Real-Space Unconditionally Stable Algorithm

r tau / deltaX

c = cos(r)

s sin(r)

do i = istart, L-l, 2

r = psi (i)

psi (i) = c*r + s*psi(i+l)

psi (i+l) = c*psi (i+l) - s*r

end do

The left side of Table 18.1 lists Fortran code that implements the classic Yee algorithm
using the decomposition defined by (18.15) and (18.16). The right side of Table 18.1 lists
Fortran code that implements the real-space unconditionally stable algorithm based on the
decomposition (18.21). In the latter case, e dL,I is implemented for is tart = 1 and e"L,)

is implemented for istart = 2. Note that, for both algorithms, the arrangement of the fields is
given by (18.3) and not by (18.13).

Counting floating-point arithmetic and memory-access operations, we see from Table 18.1
that six operations per iteration are required for the Yee algorithm, and nine operations per
iteration are required for the unconditionally stable algorithm. Thus, in terms of operations,
the extra cost of using the unconditionally stable algorithm based on (18.21) is not excessive.
Furthermore, both algorithms vectorize and parallelize equally well.

The extension of this real-space approach to two- and three-dimensional systems with
spatially varying permeability and permittivity andlor using fourth-order-accurate spatial
differences is technically more complicated, but does not require new concepts [11, 12].
This class of algorithms is explicit and unconditionally stable by construction.

18.4.4 Unconditionally Stable Algorithms: Fourier-Space Approach

As discussed in Chapter 4, Section 4.9.4, and Chapter 17, evaluation of the spatial derivatives in
Maxwell's equations via Fourier transformation [i.e., the pseudospectral time-domain (PSTD)
technique] greatly reduces numerical dispersion. Here, we show how this idea can be
incorporated into unconditionally stable algorithms. The approach we describe may be useful in
combination with the decompositions to be discussed in Sections 18.6 and 18.7, in which [L] is
split into a free-space propagator and a propagator that accounts for the material properties.
The latter is most conveniently treated in a real-space representation. Thus, we only have to find
a procedure to perform the free-space time evolution efficiently, with minimal numerical
dispersion. As in the Fourier PSTD approach, we work with regular, rectangular spatial lattices.

In three dimensions, Fourier transformation of Maxwell's equations with respect to the
spatial coordinates yields
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d CB}) CB})
j ([~f [K]) CB})

- [L1] {E} =at {E} o {E}

where

[K] ~U-k
k, Jz

0 -~x
-k k

)' x

(18.22a)

(18.22b)

Straightforward algebra shows that [L1]3 = -(k
x

2+ k)~ + kz2)[L,l This implies that [U(t)] = e/IL,1

satisfies the differential equation d 3
[ U(t)]Idt 3 =-(e + e+e)d[U(t)] Idt. Its solution is

x )' z

[VCt)] = [I] +
sint~e +e +e

x )' Z [L]
~ 2 2 2 I +k +k +kx )' Z

~ 2 2 21 - cos t k + k + k
x Y Z [L]2

e + k 2 + k 2
1

x )' Z

(18.23)

where [I] denotes the unit matrix. Thus, the PSTD unconditionally stable algorithm for the free

space propagator reads

[
{B(r, t+'t")}] -I{ [{B(r, t)}]}
{E(r, t+'t")} =:F [U('t")]:F (E(r, t)}

(18.24)

which is exact for any time-step 1'. In practice, we implement (18.24) as follows. First,

we Fourier transform the fields, labeling the fields with wavevector k instead of position r.

Then, for each value of k, we multiply the six field components with the 6x6 matrix [U(.)).

Finally, we apply the inverse Fourier transform to bring the fields back to real space.

The accuracy, unconditional stability, numerical dispersion, and efficiency of the algorithm

based on (18.23) and (18.24) do not depend on r. Therefore, modeling free-space propagation

with this algorithm is extremely efficient. Of course, in realistic FDTD applications, some

material is present in the simulation space, and it is necessary to use the splitting

[Ll = [L 1] + [L2]. Then, the efficiency (but not the unconditional stability or the numerical

dispersion) depends on the specific material properties, grid size and shape, boundary conditions,

and so forth.

18.5 CHEBYSHEV POLYNOMIAL ALGORITHM

This section describes an algorithm that uses Chebyshev polynomials to compute e
tlLJ {<1>}

to machine accuracy for arbitrary large times t (15]. We call this a "one-step algorithm,"

because the solution at time t is obtained directly without making use of time-stepping, while the

calculation of e
tlL1 {<1>) cannot be used to extract information about el'lLl {<1>} for t' < t [13, 14].

Because of its extreme accuracy, the one-step algorithm can be used for time-stepping (with very

large t) without running into numerical instabilities [13, 14, 17].

-
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It is instructive to start from Lagrange's form of the Taylor series:

K-I(l ) tK[L(e~[LI
/[LI = L _[L]k + ,

k=O k! K!
(18.25)

From (18.25), we can estimate the error of truncating the Taylor series after K terms. For a
skew-symmetric matrix [LJ, the error is smaller than some positive number e if Ilt[LJ II ~ (eK!)"K.
For sufficiently large K, we can use Stirling's formula [22] to find that the error vanishes faster

than (ellt[LlIIIK)K. Thus, if ellt[LJII ~ K, the error incurred by retaining the first K terms in the
Taylor series vanishes exponentially fast with K. Put differently, for a given (large) time t,

we can calculate /[LI {<I>} to machine precision using O(K) matrix-vector operations

{ell} f- [Ll {<I>} if K is sufficiently large. This would be the most efficient procedure to compute
e,ILI {ell} if summing of the first K terms is a numerically stable procedure, which it is not [4].

In all cases of interest, some of the K terms in (18.25) are so large that it renders the Taylor series

useless. However, this numerical instability can be easily removed by economization of the
series (18.25) in terms of matrix-valued modified Chebyshev polynomials [22].

We define the matrix [il = [L] IIi[L] II. This ensures that IHi]{ <I>} II ~ II {<I>} II for all {<I>}.
We also define new matrices [~] by the recursion relation

where

(l8.26a)

[~]{<I>} = {<I>} , (l8.26b)

and express the powers of [il in terms of [~]. After some algebra, or alternatively, using the
expansion eizcos9 =Jo(z) + 2Ik/Jk(Z)cos(k8) [22], we find

00

e'ILI{<I>} = Jo(tll[L]ID{<I>} + 2IJk(tll[L]II)[~]{<I>}
k=1

(18.27)

where Jk (x) is the Bessel function of the first kind of order k. Since IJ
k
(x)I $; 1, each term in

(18.27) will be of order one if II [~] II :::; 1 for all k. The latter is equivalent to the statement that

matrix recursion (18.26) is numerically stable. The solutions are given by [~] {<I>} =[Rt {<I>},

where [Rl =[il ± (1 + [i]2)112. If [Ll is skew-symmetric, the eigenvalues of [il are pure

imaginary, and their modulus does not exceed one. Hence, II [Rl II :::; 1 and II [~ ]II :::; 1. Thus,

each term in (18.27) can be calculated in a numerically stable manner.
Retaining the first K terms of series (18.27), we obtain

K-I

e/[LI{<I>} = Jo(tll[LJII){<I>} + 2 L Jk(tll[L]II)[~]{<I>}
k=1

(18.28)

Using the inequality IJk(x)1 $; xklik!, we find that the error incurred by retaining the first K

terms of series (18.27) vanishes exponentially fast with K if ell teLl II $; 2K, and K is large.
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Fig. 18.2 Bessel function it (z) as a function of order k. Solid line, Z = 500; dashed line, z = 1,000;
dotted line, Z =2,000.

Fig. 18.2 provides numerical results using the downward recursion relation of [16] to
calculate Bessel functions. These results confirm that the first K Bessel functions can be

calculated to machine precision in O(K) arithmetic operations. We see that, if k is slightly larger

than z, the coefficients in expansion (18.28) are zero within machine precision. In practice,

calculating the first 20,000 Bessel functions takes less than 1 sec on a Pentium III 600-MHz

mobile processor using 14 to 15 digit arithmetic. Hence, this part of the calculation is a

negligible fraction of the total computational work for solving Maxwell's equations.

The previous analysis can be repeated to find the Chebyshev polynomial expansion of the
source term J~ f(u) e(l- u)[Ll So duo For sinusoidal and Gaussian pulsed sources, an efficient

computational procedure for the expansion coefficients is described in [13, 14].

Implementing the one-step algorithm is straightforward if we already have a subroutine to

perform {<I>'} =[LJ {<I>}. A few minor modifications (mainly deleting fragments) of an existing

Yee code are sufficient to write such a subroutine. For a realistic problem, the calculation of

/I [LJ /I is very expensive. Therefore, we use the rigorous upper bound II [L] II ~ II [L] /II =
maxIILI [9,10], and replace /I[L]/I by Il[L] II. in (18.26) and (18.28). Table 18.2 lists the

i I 'i

code that implements the one-step algorithm. Here, we assume that a subroutine [Lpsi(X,Y)] to

perform {<I>} ~ [L]{ <I>} is available, and that the K Bessel functions have been stored in the

array cheb(.). This code is not well-optimized.

In summary, since all the terms in (18.28) are of the same order of magnitude, we can

calculate etlLI {<I>} to machine precision with only K matrix-vector operations {<I>} ~ [L] {<I>}.

This operation can be performed in real space using the Yee grid, or in Fourier space using

PSTD. The main limitation of the one-step algorithm is that it can only be applied to problems

for which [L] is skew-symmetric [13, 14, 17J.
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TABLE 18.2

Fortran 90 Code that Implements the One-Step Algorithm

real (kind=8) : :cheb(O:K-l),

Lnorml = 2/DeltaX

X = Psi
call Lpsi (X, Y)

Y = Y / Lnorml
Psi = cheb(O)*X + cheb(l)*Y

do i = 2, K-l
call Lpsi (Y, Z)

Z = Z*(2/Lnorml) + X

X = Y
Y = Z

Psi Psi + cheb(i)*Y

enddo

Psi (l:L), X(l:L), Y(l:L), Z(l:L), Lnorml

IILII_l
T_O = 1
Lpsi (X, Y) ~ Y = L X

cheb(O) =J_O(tIILII_l), cheb(l) =2*J_l(tIILII_1)

T_{i-l} psi +- T_{i) psi
T_(i) psi +- T_{i+l} psi

cheb(i) = 2*J_i(tIlLII_1}

18.6 EXTENSION TO LINEAR DISPERSIVE MEDIA

This section shows how the general strategy of constructing unconditionally stable algorithms
can be extended to the case of linear dispersive materials. Conceptually, the approach is related
to the auxiliary differential equation method discussed in Chapter 9. We consider fully three
dimensional systems, and interpret the symbol V x as either the differential operator for the
continuum case or the corresponding difference operator on the Yee space lattice.

For purposes of illustration, we consider a Lorentz medium characterized by a single pole
pair (see Chapter 9, Section 9.2.2). Note that the same technique can be used to treat the Debye
and Drude dispersions, as well as generalizations to multipole pairs or magnetic response.
The Lorentz model for linear dispersion assumes that: (l) the electrical polarization P =per, t)
is related to the displacement R =R(r, t) of the local electron cloud in the molecules by
P =eN(r)R, where N(r) is the density of molecules at position r; and (2) R obeys the equation
of motion of a damped oscillator driven by the effective electric field E' =E + P/3c.o [23].
Denoting the damping coefficient and bare frequency of the oscillators by 8( = 8

1
(r) and

Q = nCr), respectively, the equation of motion for the polarization is given by [23]

/N /N
-E + --P

m 3mc.o
(18.29)

where m denotes the mass of the electrons in the molecules. In the notation of Chapter 9,
(.V1

2 =Q2 - e
2
N/3mc.o ~ 0, .!lc.1 =3(n2

- Q)(2)/W~ ~ 0, and (9.46b) is obtained from (18.29) by
differentiating with respect to time. Next, we write Maxwell's curl equations in the matrix form

0 1
E c. J.1 Vx 0 Eo 0 c.o

a B -Vx 0 0 0 B= (18.30)at P P0 0 0 1
Q 2

0 -0/ Q
WI c.o6C1 -28I I
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where we have introduced the set of auxiliary variables Q=Q(r) to write the system as a set of
first-order differential equations. Note that each entry in (18.30) represents a matrix itself.

We can "skew-symmetrize" the matrix in (18.30) by a simple rescaling transformation;
that is, we search for a diagonal matrix [D] (D;; =: d) such that

0
1

0--v x
coJ.1o CO

[L] = [Dr
l -Vx 0 0 0 [D]

0 0 0 1
2

0 2
-28WI cOLlc] -WI I

0 cVx 0 -w1Jii:
-cVx 0 0 0

= (18.31)0 0 0 WI

wlJii: 0 -WI -28I

After some algebra, we obtain (d/d l )2= £oJ.1o' (d/d1)2= c~f1elw~, and (d/dJ= w~. Choosing
d l = 1 yields the second line of (18.31). In terms of the rescaled fields, (18.30) reads

EI d[ 0 cVx 0 -WI~f1el E I d1

a B I d2 -cVx 0 0 0 B I d2
= (18.32)

at PI d..., 0 0 0 WI PI d...,

Q I d4 wlJii: 0 -WI -28 QI d4I

Note that d 1 and d2 do not depend on r, but d..., and d
4

do. Disregarding its negative diagonal
elements, the matrix of (18.32) is clearly skew-symmetric. According to Appendix 18A.2,
IIetlL11I ~ e,p(ILIJ, where perL]) is the largest eigenvalue of ([L] + [L]T)/2. From (18.32),

it follows that perL]) ;;:: 0, implying that the formal solution of (18.32) cannot diverge with time.

We have two main options to construct unconditionally stable algorithms. We can
decompose [L] into a skew-symmetric ([Ll') and nonpositive definite diagonal ([L]") matrix.
Appendix 18A.2 shows that employing an unconditionally stable algorithm to compute e'lL]' {<I>}

h tUJ"12 -rILl' 'TlLJ"J2 . d" 11 bl I . h AI . I .guarantees t at e e e 1S an uncon 1tlona y sta e a gont m. ternatlve y, we wote
[L] = [L

I
] + [L

2
] where

0 cVx 0 0

-cVx 0 0 0
[L

I
] = (18.33)

0 0 0 0

0 0 0 0
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0 0 0 -(Ol~

0 0 0 0
[L2 ) = (18.34)

0 0 0 (0.

(Ol~ 0 -(01 -28)

Clearly, [L.] describes the propagation of the electromagnetic fields in a vacuum. The calculation

of etlL,J{ q,} is straightforward, amounting to solving three coupled linear differential equations

for each location r at which material is present [otherwise, M:. =dc1(r) =0]. This can be done
analytically. For each position r, the matrix exponential of [L2 ] reads

1+ [C(t) + 81S(t)]dcI

1+ dC I

o
[1- C(t) - 8IS(t)]~

1+ dC I

(01~S(t)

o

o

o

[1- C(t) - 8IS(t)]~

1+ dc.

o
dCI + C(t) + 8IS(t)

1+ dCI

-(OIS(t)

o

C(t) - 8
I
S(£)

(18.35)

OJ -I -01 . d [2(1 A ) 82 ]1/2 F h ..where C(l) =e- I coswt, Set) =we' smwt, an w = (01 +UC\ - I . or eac pOSitIOn r,
-ol-jwl d -OI+jWI Th I' h I I' f tiL I{~}the eigenvalues of (18.35) are I, I, e I ,an e I • erelore, t e ca cu atlOn a e ' 'V

is not only exact, but also unconditionally stable for any value of the time-step 't' and damping

81 ~O.

The practical implementation of algorithms of this type is much easier than the algebra

involved in constructing the algorithms might suggest. We start from the basic product formula

r[L )/2 T[L) T[L ]/2
{'¥(t + -r)} = e 2 e I e 2 {\Ii(t)} (18.36)

where 't' denotes the time-step. To compute e T(L,I{ q,}, any unconditionally stable algorithm can

be used. Given the time-step -r, we compute and store the nine nonzero elements of the matrix of

(18.35) for each r at which material is present. This needs to be done once. To compute

e ,[L,112 {<t>}, we make a loop over all gridpoints at which material is present, and multiply the

array {E(r, t), per, t), Q(r, t)} by the corresponding 3 x 3 matrix; that is, the nonzero matrix

elements of (18.35) for that particular gridpoint r. Note that this procedure is fundamentally

different from the one described in Chapter 9, Section 9.4: instead of updating the three fields
sequentially, we update them simultaneously.

The modularity of the product-formula approach adds extra flexibility to FDTD algorithms.

For instance, for some applications we may want to use different algorithms (e.g., the Yee,

Fourier-space, or one-step algorithms) to perform the free-space time-stepping. In practice, this

means using another code to compute e r[L,1 {q,} without changing the code that simulates the
material properties.



898 Computational Electrodynamics: The Finite-Difference Time-Domain Method

18.7 EXTENSION TO PERFECTLY MATCHED LAYER
ABSORBING BOUNDARY CONDITIONS

This section discusses the numerical stability of FDTD schemes that implement uniaxial
peifectly matched layer (UPML) absorbing boundary conditions (ABCs) [24,25]. We explore

the conditions that allow constructing unconditionally stable algorithms that use UPML ABCs.

We consider only the case of two-dimensional TE modes with a UPML ABC in the x-direction.

Other cases are left for future research.
Our starting point is the UPML formulation of [24J. For convenience, we repeat the relevant

equations:

-I
J'ws E

x x
= aH, .

ay
dE dE

jOJs H = __x --y

x, ay ax (18.37)

where s = I( + a fJ' WE. Introducing the field B = s H , we have
x .t x l x l

jwE
.<

= aB,
dy

? eJR, 1 dSx
jws-E = -- +B --'

x Y dX 's ax'
x

aE dE
jOJB

z
= _x - _Y

ay ax
(18.38)

To simplify the notation in the remainder of this section, we put Eo =Po =£1 =PI =1, and take
Sx = 1 + a/jill. Then, (18.38) can be written as

B B 0 d/dY -d/aX 0 Bz z z

a E E a/ay 0 0 0 Ex
[LJ

x x
(18.39)- =at E E -d/aX 0 -20- -a E

)' y x x Y

Q Q 0 0 ax 0 Q

where the auxiliary field Q is introduced to write the equations in the standard form (18.4).

As in Section 18.6, we make a minor abuse of notation by interpreting the symbols afax and

dfay as differential operators if we discuss the continuum equations, or as the corresponding

difference operators on the Yee grid.

We recognize that (18.33) and (18.39) have the same mathematical properties. The matrix

in (18.39) is the sum of a skew-symmetric and a nonpositive diagonal matrix. Thus, we can

apply the same strategies to construct unconditionally stable algorithms. For instance, repeating

the steps of Section 18.6. we write [LJ = [L
1
J + [L2J where

0 a/ay -ajax 0 0 0 0 0

a/ay 0 0 0 0 0 0 0
(L

1
] = [~J = (18.40)

-a/ax 0 0 0 0 0 -2ax -ax

0 0 0 0 0 0 ax 0
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To construct an unconditionally stable algorithm. we use the second-order formula, where
'f denotes the time-step. To compute e -rILl) {<1>}, any of the unconditionally stable algorithms can

be used. The matrix exponential of [L2 ] is straightforward to obtain analytically, and is given by

0 0 0

'f[ L
2 1 0 0 0

e = -'f(j -'f(~ (18.41)
0 0 e x (1- 'fa) -'fCT e x

x
-'f(j -f(j

0 0 'fCTxe
.r e .r (l + 'fCT)

The eigenvalues of (18.41) are 1 or e--rCT, , implying that calculating e -r[L1)12 {<1>} is numerically

stable if 'fa ~ 0 (which is the relevant case). Thus, we conclude that we have constructed an
x

unconditionally stable algorithm for the TE mode and the UPML ABC in the x-direction.
Note that, instead of starting from the UPML formulation, we can also construct an

unconditionally stable algorithm starting from the stretched-coordinate formulation (Chapter 7,
Section 7.4), and repeating the steps leading to (18.39). This yields the same equations.
with D =s E replacing E .x x x x

Finally, as discussed in Chapter 7, in any discrete formation of Maxwell's equations, perfect
transmission into the PML is lost and spurious wave reflection occurs. The standard procedure

to reduce these artifacts is to introduce a grading of the PML parameters (here, a and K).
x x

However, a subtle problem now appears. The construction that leads to (18.39) explicitly uses
the fact that as lax = O. However, if as lax:;; 0, we have not yet been able to transform the setx x

of continuum equations (18.38) into a form that explicitly shows that these equations are stable.
In retrospect, this is not surprising. We have repeatedly seen that unconditional stability is

intimately related to the behavior of the underlying physical system, requiring energy
conservation or energy dissipation. The UPML formulation is based on a physical medium, with

constitutive equations of the form D(w, k) =e(w, k)E(w, k) and R(m, k) = /J(w, k)H(w, k) [23].

Transformation to the time-space domain yields a convolution over time and space. In current
implementations of UPML, the latter is approximated by its local value. While very reasonable
from a practical point of view, this approximation is not compatible with the derivation of
reflectionless transmission at the UPML interface. Finding a UPML medium that yields
reflection less transmission after discretization, and does not violate the constitutive equations,
is a challenging theoretical problem that we leave for future research.

18.8 SUMMARY

The main theme of this chapter is that there is a systematic, constructive procedure to generate
unconditionally stable FDTD algorithms. Examples of the application of this procedure include:

• Unconditionally stable real-space and Fourier-space algorithms;

• A one-step algorithm that permits the use of very large time-steps;

• Unconditionally stable algorithms for linear dispersive media;

• Unconditionally stable algorithms for UPML in two dimensions.
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An important conceptual consequence of the constructive approach is that there is an intimate
relation between the unconditional stability of an algorithm and the energy conservation
(or dissipation) in the physical model. Further research is necessary to establish whether these
recent developments can extend the range of applications of the FDTD method.

APPENDIX 18A: SOME TECHNICAL DETAILS

18A.l Convolution Equation (18.9)

The convolution of Equation (18.9) is simplified by invoking the n-point Gauss-Legendre

quadrature formulas

f: e
ulL1

{Set + r - u)}du
n
~ (1+.0:. )[LJI2 2 J= r Liwje I {S(t+(I-x)r/2)} + OCr n+)
i=l

(l8A.I)

where Xi is the i'th zero of the Legendre polynomial P
n
(x), and the weights are given by

w. = 11 (l - X
2
)[p ' (X.)f From (l8A.l), we see that an error reduction by a factor r 2 comes at the

tin I

cost of an extra calculation of the type eulLJ {S(v)}. In many applications, the temporal and

spatial dependence of the source-term factors is given by {S(t)) =!(t){SoL where !(t) is a scalar
function [e.g., !(t) = sinOt]. Then, (l8A.l) reduces to [17]

rt' u L n (1+.0:.)1 LJ/2
Joe! I{S(t+-r-u)}du = rI![t+(I-x)r/2]wj e' {So}

i=l

(l8A.2)

where the computational work involves n calculations of the type e
ulLJ {So}, For n =1, 2, 3,

this work is negligible compared to that required to perform the time-stepping itself.

18A.2 Error Bounds on Product Formula Approximations

To give a rigorous proof of the basic results used in this chapter, it is useful to recall several

facts from linear algebra [3,9, 10]. First, we define the norm of a matrix [A] as II [A] II =
(maximum eigenvalue of [A]T[A]) \12. Second, for any orthogonal matrix [R] (a rotation),

we have [R]T[R] = I, and therefore II[R] II =1.

In addition, for two square matrices [A] and [B], we have the identity [6]

I t'). 11 (e'-IAII2 eAIBle..1AJ/2([AJ,([A],[Bl»]
e f ([A)+[81) _ ef[AI/2er(8JefIAI/2 = -JdAJdJ.LJdK

4 (),-")(A]l2 (f-A)([A]+181)
o 0 o'e e

1 t' A 11 (iIAJ/2 e{)·-K)lBJ([Bl, ([AJ,[Bl»]

+ 2'fdAJdJ.LfdK .. (Bj AIA)/2 (r-A)«(AJ+(B»
o 0 0 'e e e

(l8A.3)



Chapter 18: Advances in Unconditionally Stable Techniques 90 I

where ([A], [B]) == [A][BJ - [B][A] is a symbol for the commutator of [A] and [B]. From
(l8A.3), it is clear that the right-hand side vanishes if [A ][B] == [B][A]. Without loss of

generality, we may assume that l' ~ O. Repeated application of II[A ][B] II :::; II [A] III1 [B] II to
identity (l8A.3) yields [7, 26]

"et"([AI+(BIJ _ et"rAJ/2 et"[BI et"[AI/211 :::; .£ (II ([AJ,([AJ,[B]» II +) edIlA11+B[BIlil

24 211 ([BJ,([A],[BJ» II (l8A.4)

Using the identity [Xr-[yr == [Xr-'([X]-[YJ) + [Xr-2([X]-[Y])[Y] + .,. + ([X]-[YJ) [yr-1

and the triangle inequality II [X] + [Y] II $ II [X] II + ,,[ Y] ", we can find an upper bound on the
error after m time-steps. For general matrices [A] and [B], we have [7]

$ m1'
3 (II ([A], ([A],[B]» /I + ) emT(JI[AJ~+11 BI~ J

24 211 ([B],([A],[Bl» !I
(l8A.5)

Putting m'r == t, we conclude that

l([AI+IBJ) I' ('(AI/2m I[BJ/m I[AI/2m)me == lID e e e
m~~

(l8A.6)

We can use (l8A.6) to derive much stronger results than (l8A.4) and (l8A.5). Substituting
[A] == ([L] - [L]T)/2 and [B] == C[L] + [L]T)/2 in (l8A.6), and taking the norms we find

Ile,rLIII :::; lim(llel([LI-[LjTJ/4mlllle'(ILI+ILITl/2m IllIe'(lLI-'LITl/4mllf == Ile'('LJ+ILITJ/2mlr
m~~

(l8A.7)

where we used the fact that since [A] == ([L] - [L]T)/2 is skew-symmetric, ed (LI-ldl/4m is an
. d h f II I(ILI- [LIT) 14m II I D . .orthogonal matnx, an t ere ore e . ==. enotmg the Largest eIgenvalue of the

symmetric matrix ([L] + [L]T)/2 by p([L]), the largest eigenvalue of e"[Ll+ILI
T
l/2m is e,P(iL))lm.

We find that

II e 'ILI II :::; e'P([L)) (l8A.8)

If [L] itself is skew-symmetric, then perL]) == I and (I8A.8) implies that Ile,(lL))1I == I, as it
should be.

It is now straightforward to show that we can improve the bounds (l8A.4) and (l8A.5) by
repeated use of (18A.8). For general matrices [A 1 and [B], we obtain

and

II T([Aj+IBJ) _ T[AI/2 T(B) nAI/211 1'3 (II ([A],([A],[B])) II +) t"p«(A))+rp([BJ)e e e e $- e
24 211 ([B], ([A],[B]» II (l8A.9)
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mr
3

( II ([A], ([A], [B])) II +JemTP([AJJ+mTP([BlJ

24 211 ([B],([A],[B]))II

(I 8A. 10)

This shows that the error between the exact time-evolution operator and the product-formula

approximation cannot grow faster than the time t =mr, and vanishes like 1'2. If [A] and [B] are
skew-symmetric matrices, the last factor in (18A.9) and (l8A.1O) is equal to one.

In the presence of dissipation, we have [L] = [L'] + [L"], where [L'] is a skew

symmetric matrix, and the absorbing medium is represented by a symmetric matrix [L"]. As aJl

the eigenvalues of [L"] are nonpositive, we have II etfLll1 ~ /P(IL"J) :c;::; I. Furthermore,
[ 'I WI IL'1/2 IL"J II dL'1/2 TIL") TIL'1/2II e r L 12 ere r II = II e r :c;::; I, implying that the product formula e e e defines

an unconditionally stable algorithm.

APPENDIX 18B: STABILITY ANALYSIS OF EQUATION (18.17)

The stability analysis of Chapter 4 assumed a homogenous FOTD modeling space, the existence
of sinusoidal waves, and the knowledge of the dispersion relation for waves propagating on the

Yee lattice, Here, we derive a general stability criterion for the Yee algorithm by exploiting the
underlying product-formula structure. First we note that from

and

II(e riLl I e rlL2 ,)mll = /Ie TI L
11/2 (/[1..1112 e T[L2 ) e TILl 1/2)m e-r[ L

I I/2 /I

~ II e rlL11/21111 e-t'[
L11/2 II II e rILl 1/2 e rl L

2 1er! L1l/2 11
m

(l8B.I)

(l8B.2)

it follows immediately that stability of the Yee algorithm implies stability of the equal-time
formulation (18.17) and vice versa, Next, we observe that

[L]T[L] = ([A]OT[A] J
[A] [Af

(l8B.3)

In general [as in example (18.14)], [A] is not a square matrix. Since ([L]{<I>))T([L]{<I>}) ~ 0,

all eigenvalues of [L]T[L] are nonnegative. Because of the block-diagonal structure of (l8B.3),
all eigenvalues of [A]T[A] and [A][A]T are also nonnegative.

The eigenvalues of the time-step operator
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(

2 T
TIL I T[L) [I] - T [A] [A]

e I e 2 =
T[A]

-T[AfJ

[I]
(l8BA)

where [I] denotes the unit matrix, are the solution of the secular equation

(

T[L J TIL) ) ((1- A)[/] - -r
2
[A]T(A]

e 1 e 2 - A[I] {«P) =
T[A]

Assuming that Ai: 1, we eliminate {«P2} from (l8B.5) and obtain

The linear set of equations (l8B.6) has nonzero solutions {cI>,} if

(l8B.6)

(n+1)/2

det((l-A)2[1] +A-r2[A]T[A]) = II (I-A)2[I]+AT2a~) = 0
j=1

where the eigenvalues of [Af[A] are denoted by aj

2
• The solutions of (18B.7) are given by

(l8B.7)

(18B.8)

Numerical stability of the algorithm requires that IA 1 ::; 1 for all j. This is equivalent to the

condition that -r2a2
S; 4 for all j. From our definition of the matrix norm, it follows that this

J

condition is satisfied if 1'
2

11 [A] WS; 4. In general, finding the largest eigenvalues of (the very

large) [A]T[A] is of comparable difficulty as solving Maxwell's equations in the frequency

domain. Fortunately, it is easy to a find good approximation to IJ[A] W. From linear algebra,

we know that IHA] WS; Ii[A]TI1 1 IHA] Ill' where Ii[A] III =max/l1i IAijl) [9]. Thus, the Yee
algorithm is numerically stable if

2

II [A] II
2

II [A] TIIIII [A] II,
(18B.9)

For FDTD problems, [A] is sparse [see example (18.16)], and the right-hand side of (l8B.9) is

easy to compute. This is also the case when the permittivity and permeability vary in space.
For the matrix (18.16) of the one-dimensional example, we have II [A] II) = 2/l1x and

II [A]T II, =2//1x, and we recover the stability condition of (2.52), T S; /1x. For a homogeneous

system represented on the Yee space lattice (see Fig. 3.1), II [A] III "counts" the maximum

number of H-components that appear in the update rule of the E-components. Similarly, II[A]TIL

"counts" the maximum number of E -components that appear in the update rule of the
H -components.
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For the TMz mode in a two-dimensional system, inspection of (4.2c) shows that
II [A] II. = 21lu + 2/!J.y and II [Af II. = 2/min(lu, !J.y). If lu = !J.y, condition (l8B.9) reduces to
-r ::; lulfi, which agrees with (4.66). For a cubic Vee lattice, we find -r::; lu/2, which is not
as sharp as the result '[ ::; lu 113 obtained by using the exact value II [A] II = 213 I lu for the

homogeneous system.

APPENDIX 18C: STABILITY ANALYSIS OF EQUATION (18.19)

After m applications of the ADI time-step matrix (18.19), the growth of the arrays of
field components is bounded by II ( (1- '[[LI ] /2r t (l + 1'[L2]/2) (1- 1'[L2]/Zrl (l + '[[L1]/Z) )m II.
Regrouping factors and introducing [X;l = (1- '[[L;lIZr l (I + '[[L;lI2) for i = 1,2, we can write

this as II (l + '[[L,]12r
l
([X, ][X2 ]t (I + '[[L,] 12) ". It is straightforward to show that [X) is an

orthogonal matrix. Hence, we have

/1(1 + T[L,J/Zr'([X,][X2 ]t(1 + '[[L1]/z)11 ::; 11(1 + '[[L,J /Zr'III/(1 + '[[L,]/Z) II
(l8C.1)

Since the eigenvalues of the skew-symmetric matrix [L,] are pure imaginary, the matrix
(I + -r[L,J /2t' is nonsingular [9]. Therefore, for any value of the number of time-steps m,
the ADI time-step matrix (18.19) is bounded by a finite number.
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PROJECTS

P18.1 Implement the Chebyshev polynomial algorithm for the one-dimensional TM mode
problem. Use the Yee grid of Fig. 18.1 to discretize the continuum equations and assume
PEC boundary conditions. Compute the time evolution of a Gaussian wave packet and
compare with the exact analytical solution for a cavity of length X:
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P18.2 Write a code to compare the Yee algorithm and the real-space second-order

unconditionally stable algorithm with the numerically exact (for a given mesh size 8)

solution generated by the Chebyshev polynomial method. Use as an initial state a

uniform random distribution of the E and H fields. normalized such that

/I {\fI(f = O)} II = 1. Study the behavior of the three algorithms as a function of the

Courant number S = a/Ill. Hint: To facilitate the comparison, consider employing the
form of the Yee algorithm that does not use the staggered-in-time formulation.

PI8.3 Reuse the codes of P18.2 to implement the fourth-order time-accurate algorithm defined
by (18.12), and repeat the error analysis.

P 18.4 Write a code to implement (18.35) and (18.36) for the one-dimensional propagation case.

Use this code to simulate a Gaussian wave packet impinging normally on a half-space

medium having a Lorentz dispersion. (See Chapter 9, Sections 9.2.2 and 9.4.4 for
examples of the medium parameters.)

PI8.S Repeat the analysis of Section 18.6 for the case of Debye and Drude media. (See Chapter

9, Sections 9.2.1, 9.2.3, and 9.3.4 for examples of the medium parameters.)



Chapter 19

Advances in Hybrid FDTD-FE Techniques

Thomas Rylander, Fredrik Edelvik, Anders Bondeson, and Douglas Riley

19.1 INTRODUCTION

The FDTD method represents a powerful tool for computational electromagnetics (CEM).
As shown in previous chapters, it can provide accurate solutions to a very wide range of practical
engineering applications. However, a fundamental limitation of the basic algorithm is the
Cartesian nature of the finite-differencing scheme. Although an FDTD algorithm can be defined
for cylindrical and spherical coordinate systems [1,2], the most widely used form is tied to a
purely rectangular grid. As a result, a geometry that does not conform to this rectangular lattice
becomes rendered by a so-called "staircased" approximation. While it seems intuitive that
curved surfaces should be well approximated in the limit as the space cell size approaches zero,
research has shown that staircasing can result in nonconverged solutions, independent of the
level of grid refinement [3]. Consequently, the development of geometry-conforming algorithms
represents an important area of research in CEM.

In other scientific disciplines such as structural and fluid dynamics, geometry-conforming
algorithms based on finite-element (FE) and finite-volume (FV) techniques have been widely
used for several decades [4-7]. The adoption of these methods for CEM has been relatively
slow. A possible reason for this was the prominence of research into moment-method techniques
as applied to integral-equation representations for Maxwell's equations. Although Yee's original
paper on the FDTD technique appeared in 1966 [8], it was not until the early 1980s that
widespread interest within the CEM community began to turn toward grid-based differential
methods. Nevertheless, research into the application of more advanced techniques for the
solution of the differential Maxwell's equations, beyond the basic FDTD method, remained
limited, primarily because of the added complexity of these techniques and various theoretical
difficulties.

The theoretical problem of "spurious" modes [6] detracted from the application of traditional
nodal-based FE methods to the frequency-domain Helmholtz equation or the time-dependent
wave equation, even though FE methods were well-established solution approaches for
electrostatic and magnetostatic applications based upon the Laplace and Poisson equations.
The fundamental problem was that standard nodal-based FE methods incorrectly model the null
space of the curl-curl operator. In addition, experimentation with nonorthogonal FV methods
revealed challenges with late-time instabilities when solving the time-dependent differential
Maxwell's equations [9].

907
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Despite these technical difficulties, both FE and FV solution techniques have found practical
application within the CEM community. This has been largely due to the use of "penalty"
methods [6, 10] to mitigate the spurious-mode problem associated with nodal finite-elements
when applied to high-frequency applications, and alternative time-integration or spatial
averaging techniques to mitigate the stability problems associated with FV methods [9, 11].
In addition, the subsequent introduction of vector edge-based finite-elements [12, 13] eliminated
the spurious-mode problem for FE techniques by properly modeling the null space of the curl
curl operator.

Currently, the primary problem associated with conformal FE and FV techniques for CEM is
that these approaches have much greater computational requirements than the basic FDTD
algorithm. Specifically, FE methods generally require solving a very large (although sparse)
system of equations. Finite-volume time-domain (FVTD) techniques generally require many
more arithmetic operations per space cell per time-step than FDTD. even though FVTD
techniques are usually explicit and involve only the solution of a diagonal matrix.

To reduce the computational burden associated with the use of conformal grids, a number of
hybrid gridding concepts have been investigated. Yee et al. introduced an overlapping-grid
scheme that utilized both FV and FDTD algorithms [14]. Their FV algorithm was similar to that
described by Madsen and Ziolkowski [15]. The basic grid structure for this method is shown in
Fig.19.1(a).

Conformal Grid

(a)
Uniform Grid

(b)

Fig. 19.1 (a) Cross section of the overlapping-grid approach showing a locally conformal mesh overlaid
onto a uniform rectangular grid. Spatial interpolations are required at the outer interface of the
conformal grid. (b) Local unstructured grid interfaced to a rectangular grid.

The type of hybrid mesh illustrated in Fig. 19.1 (a) had been previously widely used for
computational fluid dynamics applications. being known as a "Chimera" grid [7]. We note that
complicated spatial interpolations are required to connect the grid types at the interface of the
locally conformal mesh and the rectangular background mesh. In addition, as proposed,
the method was based on a local "mapped-mesh" FV technique. This method extrudes triangular
surface elements into three-dimensional prismatic elements. Hence, the locally conforming mesh
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is of the "structured" type, which means that the nonorthogonal elements can be referenced using
an I-J-K ordering scheme [16] (for comparison, an unstructured grid cannot, in general,
be referenced in this manner). This technique was shown to provide good results for scattering
from a variety of canonical shapes [14, 17, 18]. However, the underlying FV method and grid
interpolation technique rendered the global method weakly unstable.

Riley and Turner [9, 19], and Kalfon and Harran-Klotz [20] reported a generalization of the
hybridization concept involving directly connecting an unstructured tetrahedral-element grid to a
rectangular FDTD grid, as illustrated in two dimensions in Fig. 19.1 (b). The FV technique used
in [9, 19] was based on a generalization of the offset-mesh concept proposed by Madsen and
Ziolkowski [15], whereas the FV scheme used in [20] was based on a cell-centered, conservative
form of Maxwell's equations [21]. Because FV methods typically compute barycentric field
values, arbitrary cell shapes are easily accommodated. Consequently, an interface to make the
three-dimensional transition between tetrahedra and hexahedra can be accomplished by using a
rectangular hexahedron with one quadrilateral face split into two triangles [19]. Alternatively,
the transition also can be accomplished by using a more traditional, pyramidal element shape.

An interesting aspect of the offset-mesh, FV method described in [15] is that this technique
is a direct generalization of the basic FDTD algorithm to nonorthogonal cells. Hence, the global
grid can be considered to be purely FV-based, with the only regional difference being the
technique used to reference the cells; namely, a structured or unstructured referencing scheme.
This concept will be useful later in this chapter when FE hybridizations are discussed.
The convergence, accuracy, and stability of tetrahedral-FDTD grid hybridizations using FV
methods have been extensively studied by Edelvik et al. [22, 23]. In general, weak late-time
instabilities exist for these methods.

Wu and Itoh introduced a two-dimensional hybridization of finite-element time-domain
(FETD) techniques with FDTD [24]. This type of grid is also illustrated in Fig. 19.1(b).
Three-dimensional implementations followed [25, 26]. Here, vector edge-based FE methods
were used to avoid the problem of spurious modes associated with nodal elements. In addition,
since domains formulated using FE techniques are provably numerically stable [27], the late-time
instabilities exhibited by FV techniques on nonorthogonal cells were avoidable. Also, as shown
in previous chapters, the basic FDTD algorithm is provably stable as long as the time-step
satisfies the Courant condition. Consequently, the hybrid schemes of [24-26] appeared to
possess desirable stability characteristics. Unfortunately, even though each constituent algorithm
taken individually was provably stable, the resulting hybridization was found to be weakly
unstable, similar to that observed for the FV-based hybrids.

In fact, the stability properties of the constituent FE and FDTD algorithms are lost when
these techniques are combined in a simple, nonreciprocal manner. As pointed out by Rylander
and Bondeson [28], the difficulty can be summarized as follows: At the interface between the
two techniques, cell edges exist that are cornmon to both solution domains. The field values on
these edges must be computed identically by either solution method; otherwise, an asymmetry
exists that may render the global algorithm unstable. Because FE methods and FDTD both
provide a solution to Maxwell's equations, they each provide similar estimates for the field
values on these edges, but cannot, in general, be expected to provide numerically identical
results. Note that this problem can be avoided by globally using FE techniques on a mixed
element grid, possibly consisting of tetrahedra, hexahedra, and pyramidal elements, since there
will be no discontinuity of the solution methods in this case [29, 30]. Hence, a possible approach
to obtain a stable FE and FDTD interface is to first explore the potential equivalence of these two
solution methods.
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It is well-known that by changing the integration method used in FE formulations from
Gaussian quadrature to Lobatto quadrature (a generalization of trapezoidal integration), a finite
difference representation can be recovered [4,31]. In addition, Wong et al. demonstrated that
FDTD can be recovered from an edge-based FE formulation on rectangular hexahedra (brick
elements) through the use of mass-lumping concepts [32]. Using Lobatto quadrature, Cohen and
Monk [33] further demonstrated the equivalence of FDTD and edge-based FE techniques on
brick elements. Thus, the basic FDTD scheme is, in fact, a subset of vector edge-based FE
formulations when the latter is specialized to rectangular hexahedral elements.

In Reference [28], Rylander and Bondeson reported the successful formulation and testing
of a stable, computationally efficient, hybrid FDTD-FE method. The distinguishing feature of
this hybrid formulation is that it preserves, by construction, the reciprocity of Maxwell's
equations. Reciprocity is preserved by using:

• A curl-conforming representation of the electric field on a space lattice of brick
elements and tetrahedrons joined by pyramids;

• A FE treatment of Maxwell's equations based on Galerkin's method;

• Trapezoidal integration on the brick elements to recover the FDTD scheme.

As a consequence, unconditional stability is maintained up to the classic FDTD limit [34, 35] for
arbitrary unstructured grids in the FE region. Furthermore, there is zero spectral contamination
and nonphysical dissipation, and second-order convergence for smooth bodies.

Topics discussed in this chapter include: an overview of FETD formulations; vector basis
functions for tetrahedral, hexahedral, and pyramidal space-lattice elements; proof of the stability
of the FDTD-FE hybrid; grid-generation issues; subcell models for arbitrarily oriented thin
wires and thin slots; and advanced applications.

19.2 TIME-DOMAIN FINITE ELEMENTS

This section provides an overview of the FE representation of the wave equation, as well as the
coupled Maxwell curl equations. The former can be represented in terms of vector edge element
basis functions, whereas the latter uses both vector edge elements and vector face, or facet,
elements. Although the wave-equation form lends itself to more traditional FE representations,
the two coupled curl equations provide a simpler migration from traditional FDTD
representations, and is therefore discussed first. For specific details on the FE method, including
its history and the development of the various variational representations, the reader is referred to
dedicated books on the topic, such as those by Jin [10], Hughes [4], or Zienkiewicz [5].

19.2.1 Coupled Curl Equations

Fig. 19.2 illustrates the problem under consideration. Maxwell's curl equations in the time
domain are given throughout a linear, isotropic, lossless «(J' =0) volume n with boundary an by

v x [~ B(r,,)] = £ :, E(r,t) + J(r,l) r En (19.1)
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Fig. 19.2 Geometry for the electromagnetic boundary-value problem.

v X E(r,t)
a

= - -B(r,t) - M(r,t)
at

r En (19.2)

where E(r, t) and B(r, t) denote the time-dependent electric and magnetic fields, respectively.
For simplicity, a Dirichlet boundary condition on ao is assumed:

"an x E(r,t) = Man(r,t)

along with the initial conditions

rEaO (19.3)

E(r,O) = Eo(r)

B(r,O) = Bo(r)

rEO

rEO

(19.4)

(19.5)

The finite-element representation of (19.1) to (19.5) is based on the construction of a suitable
variational formulation. For this purpose, a weak solution is sought with E E W, B E "j,
where W denotes the space of curl-conforming functions defined by W = H(curl; 0) =
{w E [L2(0)]3, Vx WE [L\0)]3}, and "j denotes the space of divergence-conforming functions
defined by "j = H(div; 0) = {WfE [L\0)]3, V' WfE [L\0)]3} [12, 36]. The edge (curl
conforming) basis functions provide for tangential continuity between elements, whereas facet
(divergence-conforming) basis functions provide for normal continuity. (For the reader familiar
with integral-equation formulations, the basis functions typically used in a method of moments
setting are those of the divergence-conforming type [37].) The functions E and B are unique
solutions to the following variational problem

J[-evXW)'(2. B ) + Ew.i.E]dn + fW.}dn = 0 \7'weW
n ~ at n

(19.6)
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(19.7)

along with (19.3) to (19.5). The system of equations defined by (19.6) and (19.7) can be viewed

as a variational analog of the FDTD method.
An approximate, FE-based solution for the electric and magnetic fields, E

h
and B

h
,

respectively, is obtained by constructing the finite-dimensional subspaces w" and Wfh, such that

EhE w" c H(curl; Q) and Bh E Wfh c H(div; 0). Because practical solutions are based on a

limited number of finite elements, the solutions formally reside in these mathematical subspaces.

For convenience, we will assume that the resulting FE solutions belong to these underlying

subspaces. The superscript h will henceforth be omitted unless the distinction between infinite

and finite-dimensional spaces is important.

The semidiscrete (time-continuous) representation for (19.6) and (19.7) is obtained by

expanding B(r, t) in terms of time-dependent coefficients B; and spatial (facet) basis functions wf;

as

(19.8)

where i = I, 2, ... , N
f

· Similarly, the expansion for E in terms of spatial (edge) basis functions

w. is given by,

(19.9)

where i =1, 2, ... , N
h

. Note that these expansions correspond to a Galerkin formulation for

(19.6) and (19.7) due to the equivalence of the basis and testing functions.

Substituting these expansions into (19.6) and (19.7) leads to the following matrix equations:

d
[M]-{E} - [A]T {B} + {f} = {O}

dt

d
[MIJ-{B} + [A]{E} + {g} = (OJ

dt

(19.10)

(19.11)

M.. = fEW .. W dO
I) n 1 )

f
1

M = -W'w dO
Iii n j1 Ii Ij

A .. =f ..!- W . (V x w) dO
I) n J1 Ii )

(19.12)

(19.13)

(19.14)
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r w. '("!"M)dD.In J, J1

(19.15)

(19.16)

Note that the "mass matrix" [M] should not be confused with the magnetic current density M.
Matrix [M] is of dimension Nh x Nh , matrix [M

J
] is of dimension ~x~, and matrix [A] is of

dimension~ x Nh .

Equations (19.15) and (19.16) can be generalized to accommodate the assumed Dirichlet
condition given by (19.3) [33]. Alternative methods to implement Dirichlet conditions are also
possible [10]. A Dirichlet condition is appropriate for the hybrid FDTD-FE solution method,
which will be discussed in greater detail in Section 19.4. Note that {H} is obtained from {B} by
forming

{H} = [~] {B} (19.17)

This relation will be useful for characterizing thin slots on FE grids, described in Section 19.6.
Because of the fundamental properties relating edge and facet basis functions, which will be

discussed in more detail in Section 19.3, (19.11) can be conveniently rewritten as
dldt{B} =-[C]{E}-[Mtrl{g}, where [C]=[Mtrl[A] is a sparse rectangular (incidence)
matrix with nonzero entries consisting simply of ±1 [32]. Consequently, the magnetic field
becomes clearly related to the circulation of the electric field around the cell faces, and a direct
analogy with the FDTD representation of Faraday's law is apparent.

The fully discrete representation of (19.10) and (19.11) is obtained through the definition of
a suitable time-integration scheme. If a traditional leapfrog method is adopted, then (19.10) to
(19.16) form a conditionally stable scheme that can be considered to be a direct generalization of
FDTD to a conformal FE-based grid. In this case, the fully discrete system is given by

(19.18)

(19.19)

In the following section, matrix [M] is shown to be symmetric positive definite. Consequently,
(19.19) can be efficiently solved by using preconditioned conjugate gradient methods [10].
Convergence of the matrix solution is typically obtained with fewer than 10 iterations, provided
the mesh is suitably uniform.

19.2.2 Wave Equation

In the absence of magnetic current density sources M, the wave equation for the time-dependent
total electric field E(r, t) in the volume D. bounded by the closed surface an is given by

[
1 ] a2 a aVx -VxE(r,t) +E-

2
E(r,t)+a-E(r,t)+-](r,t) = 0

J1 at at at (19.20)
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Possible boundary conditions on aQ include:

nan x E(r,t) = 0

nan x [V x E(r,t)] = 0

nan x E(r,t) = Man(r,t)

E(r,O) = Eo(r)

(19.21)

(19.22)

(19.23)

(19.24)

(19.25)

along with a suitable initial condition on the time-derivative of the electric field. In (19.21),

we note that Yan represents a surface admittance. Defining fan = ~ E/ J1 gives rise to a first-order
radiation boundary condition on aQ (the Silver-Muller condition), which is equivalent to the

first-order Mur ABC commonly used with FDTD formulations [10,38]. Thus, (19.21) can be

used to self-consistently terminate the volume Q. Alternatively, the Dirichlet condition (19.24)

can be used to connect a FE domain to an FDTD domain via a tangential electric field on the

domain interface. Note that boundary condition (19.22) is appropriate for a PEC, whereas
(19.23) is appropriate for a PMC.

The FE representation of (19.20) to (19.25) is again based on the construction of a suitable

variational formulation. Since the defined wave equation is only based on the electric field,

a weak solution is sought with E E W, where W denotes the space of curl-conforming functions
defined by W =B(curl; 0.) ={w E [L\Q)]3, V X W E [L2(Q)]3} such that

[
I a2 a ]f -(Vxw)·(VXE) + EW'-

2
E+ aw·-E dQ +

n J.1 at at

f iiiJflX(.!-VXE).waQ + f(w.i.J)dQ = 0 V'WEW
an J1 n at

(19.26)

along with the additional boundary conditions (19.21) to (19.25) as necessary.

Similar to Section 19.2.1, the electric field is expanded in terms of vector edge basis
functions, W c W (formally, wh c W', E

h
C W') such that

Substituting (19.27) into (19.26) leads to the following semidiscrete matrix equation:

d
2

d
[M]-{E} + [K]-{E} + [SHE} + {f} = {OJ

dt 2 dt

(19.27)

(19.28)
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= f E W.·W. dOn I)
(19.29)

(19.30)

(19.31)

(19.32)

Dirichlet boundary conditions such as (19.24) can also be directly included into (19.32) [10].
In addition, if the third-kind boundary condition given by (19.21) is applicable, then (19.32)
becomes

(19.33)

Further, if, for example fan = ~E/J..l, then the surface integral in (19.33) effectively provides a
contribution to the dE/dt term in (19.28), which physically corresponds to a loss mechanism

(the first"order radiation boundary condition previously noted). Contributions to other terms will

occur for alternative definitions of ran' For example, including frequency dependence in Yiln
may lead to a different time dependency for (19.21), with the specific form being obtained

through Fourier transformations [39]. The use of boundary integrals to terminate the FE domain
is also possible through a suitable definition of (19.21) [10]. Thus, boundary conditions of the
third kind provide for a rich set of conditions.

The fully discrete form for (19.28) can be obtained by a finite-difference representation of

the time derivatives. The Newmark scheme is particularly useful for this purpose [4J.
Specifically:

!!-{EH" == _1 (v {E}f"+' + (1-2v){E}I" - (1- v) (ElI"-I)
dt M

{E}j" == 8{EJI"+1 + (0.5 - 28 + v){E}f" + (0.5 + 8 - V){E}I"-1

Setting v = 0.5 and 8 =0.25 leads to the following fully discrete representation for (19.28):

(19.34)

(19.35)

(19.36)
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(19.37)

Several authors have shown that the Newmark-Beta scheme used to obtain (19.37) is an
unconditionally stable time-integration scheme [27,40]. For convenience and completeness,
this is shown here by following the discussion by Edelvik [23].

First, we show that mass matrix [M] is symmetric and positive definite, and that mass matrix
[K] and stiffness matrix [5] are symmetric and positive semidefinite. Symmetry is easily seen
from (19.29) to (19.31). We note that the components of [M] are given by

= f Ew.·wdQ == (w.,w.)n I} I}

Nh

If {wnj;I.2 ... Nh isabasisforWh,then E
h =LE;Ct)w;(r). Thus,

i=)

Nh Nh

{E}T[M]{E} = L E; M;jEj = L E;{W;h, w;)Ej
i,j=l i.j=l

(19.38)

(19.39)

with equality to zero only if Eh==O (i.e., only if {E} == {OD. Hence, [M] is positive definite.
[K] is also positive definite for a> 0, but, in general, positive semidefinite since a is permitted
to be equal to zero. Using a similar procedure, [5] is shown to be positive semidefinite since the
case E =-Vq> implies V x E =O.

This result can now be used to establish that the Newmark-Beta scheme is unconditionally
stable. For simplicity, assume there are no losses such that a =O. Also assume {f} = {O}.
Multiplying (19.37) by [Mr l gives

([I] + 0.25(~d[Mr'[S]) {El/
n

+
1 = 2 ([1] - 0.25(M)2[Mr

l
[S]) {EW

- ([I] + O,25(~t)2[Mrl[S]) {EJr-' (19.40)

(19.41)

Since [M] is symmetric and positive definite from the previous result, it can be factored as

[M] = [i?r [R]. Hence,

0.25(~t)2[Mrl[S] = 0.25(M)2[Rr'[Rr
T

[SHRr
1
[R] _ [Rr'[PHRl

where

(19.42)
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Since [S] is symmetric and positive semidefinite, [p] also possesses these properties. Thus,
[p] can be diagonalized by an orthogonal matrix [Q] consisting of the eigenvectors of [p],

such that [Q]T[p][QJ = [AJ, where [AJ represents the nonnegative eigenvalues of [PJ. Since
[Q] also diagonalizes [IJ + [PJ and [IJ - [Pl. (19.40) can be written as

(19.43)

where {zlln == [Q]T [R){EW. Because of the diagonalization of (19.43), it is sufficient to

consider the scalar equation

(19.44)

The corresponding characteristic equation is

with solutions

(19.45)

J1 =
I-A

I+A
± (

1- i)2
--_ -1
I +A

(19.46)

- -
By defining sin ¢ == (l - A) / (l + 11.), (19.46) can be written as

it = sin ¢ ± j cos ¢ (19.47)

Since these eigenvalues have unit magnitude Iitl =1, the Newmark-Beta scheme is
unconditionally stable for (J =O. Similarly, the case (J> 0 leads to roots that are strictly less than
one in magnitude. Consequently, as the solution is marched through time, the basic algorithm is
stable independent of the time-step.

We note that, although numerical stability is not dependent upon the choice of the time-step,
the accuracy is dependent upon the time-step [40], as is the number of required iterations.
For applications that involve a wide range of element sizes (greater than 100:1), the use of
advanced preconditioners [41J or simply a modest reduction in the time-step can substantially
reduce the number of required iterations for a given residual error. Reducing the time-step
improves the mass-matrix dominance in the matrix solution.

19.2.3 Equivalences Between Finite Elements and FDTD

Many equivalences exist between the described FE formulations and the traditional FDTD
method. A few of these are stated here. Additional details can be found in the references.

• If linear, rectangular hexahedral elements are adopted, and the spatial integrations
are evaluated using the trapezoidal rule, then the FDTD algorithm is recovered
identically from the coupled curl-equation formulation described by (19.18) and
(19.19) [32, 33J.
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• The coupled curl-equation fonnulation discussed in Section 19.2.1, based on both
edge elements and facet elements, is equivalent to the wave-equation fonnulation
of Section 19.2.2 that is based only on edge elements [42]. This equivalence
holds provided leapfrog time integration is used for the coupled-curl equations
[see (19.18) and (19.19)] and central time-differencing is used for the wave
equation. Note that the central time-difference fonn for the fully discrete wave
equation is obtained by setting 8 = 0 in (19.36), which leads to

([M] + O.5M[K]) {EW+ I = (2[M] - (~d [S]){EW

- ([M] - O.5~t[K]) {E}ln., - (~d {f}r (19.48)

• On a rectangular hexahedral grid, using edge elements and trapezoidal integration
renders the wave-equation representation equivalent to the basic FDTD method,

provided central differencing is used for the time integration for the wave
equation (19.48). This conclusion follows from the previous results.

These equivalences naturally lead to a symmetric, stable interface between FE methods and
FDTD, which is described in greater detail in Section 19.4.

19.3 TETRAHEDRAL, HEXAHEDRAL (BRICK), AND PYRAMIDAL
ZEROTH-ORDER EDGE AND FACET ELEMENTS

This section provides a brief overview of the construction of edge and facet basis functions for

tetrahedral, hexahedral, and pyramidal finite elements. Only the lowest order (linear) elements

are discussed. These basis functions are often referred to as zeroth-order basis functions or first

order mixed basis functions [12]. Higher-order representations are available [43,44]. However,

at the interface with an FDTD grid, the lowest-order linear basis functions are currently required
to preserve the symmetry between the FE and FD regions. The future use of hierarchical basis

functions [45] may pennit mixing the order of the basis functions between these two regions.
It is convenient to construct the mass and stiffness matrices by summing contributions from

the individual elements in the FE grid. Therefore, the integrals In' dO. over the entire

computational domain are divided into a sum of integrals Iv, .dO. + Iv2 'dO. + ... + Iv
Ne

• dO. , where

VI' V
2

, ... ,VN correspond to the volume occupied by the individual elements. Using FE.
tenninology, this is referred to as the "assembling procedure."

The elemental mass and stiffness matrices on the various elemental shapes are often

conveniently computed based on a so-called reference element, where the expressions for the

basis functions are relatively simple. The coordinate system ~ =(~I' ~2' ~3) of the reference
element is related to the physical element and its coordinate system r = (x, y, z) by a mapping

T = TJSJ(~) + T2S2(~) + ... + TNn SNn(~), where Tn is the nth node of the physical element, Sn(~) is
an interpolatory shape function associated with the nth node, and Nn denotes the total number of

nodes on the element. The Jacobian matrix [J] is then easily constructed given this mapping,

and a variable substitution in the integral over the element involves the infinitesimal volume

dxdydz =det[J] d~, d~2d~3'
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The vector edge basis functions can be expressed in terms of gradients of scalar functions.
Consequently, they can be represented in the global domain r by w;(r) = [Jr1ni , where

{lj denotes the edge-element basis function expressed on the reference element [42]. The curl of
the edge elements in the global domain is given by Vxwj(r) =([J]T/det[J])Vx {lj [42].
The facet elements in the global domain r are similarly obtained by forming

wI; (r) =([J]T1det[J]) Ai' where Ai is the facet element basis function on the reference element.
The evaluation of the mass and stiffness matrices is completed by using Gaussian quadrature

over the elemental shape.
Note that it is also possible to use a direct analytical approach to evaluate the FE matrices

for certain elemental shapes. To demonstrate both approaches, the analytical approach will be
used for the tetrahedral element discussed in Section 19.3.1, while the reference-element

transformation will be used for the hexahedral and pyramidal elements discussed in Sections

19.3.2 and 19.3.3, respectively.

19.3.1 Tetrahedral Finite Elements

The FE matrices for the linear tetrahedron can be constructed using either the reference-element

approach in a mapped coordinate system, or a direct approach in the global coordinate system.
The latter approach is adopted in this section. A tetrahedron in the global coordinate system

r =(x, y, z) is shown in Fig. 19.3.

=e--.y
2

x

Fig. 19.3 Tetrahe~ral element. E.dges and faces are denoted by L; and F" respectively. The additional
superscrIpt on the face mdex corresponds to the nodes that define the vertices of the particular
face.
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Within the cell of Fig. 19.3, the electric field is expanded in linear edge elements wj(r) as

Nedges

E(r,t) = I. Ej(t)wj(r)
;=1

(19.49)

where N d =6 denotes the number of edges on the tetrahedron. Using a general referencing
c gcs

scheme, edge i is defined to point from node n, to node n2 , such that the basis function for the
i'th edge is defined by

(19.50)

Edge basis functions preserve tangential continuity across element boundaries. The Lagrange

interpolation polynomials are defined at the vertices (nodes) of the element, and are denoted by

~j and ~j for tetrahedron nodes n l and n2 , respectively. Using linear interpolation,
", III

the polynomials have the following form for node n
l

on edge i :

(19.51)

where r =(x, y, z) denotes spatial position within the element, and aj , b; , Cj , and d; denote
til ", II, "1

coefficients. The coefficients are dependent upon the spatial orientation of the element and can

be determined by either numerical or analytical means [10]. Note that the gradient of the

polynomial is given by V ~j (r) =bj x+ cj Y+ dj Z, which is constant within the element due
III "l "I III

to the choice of linear interpolation functions. Equation (19.50) defines a function with a

tangential component that is constant on the i'th edge and zero on all other edges of the

tetrahedron. Without further normalization of the basis functions by the length of the edge,

the expansion coefficients in (19.49) correspond to the voltage along the edge.

The mass matrix requires the evaluation of terms involving the integral M;j =fn EWj ' wj dO..
When specialized to a particular tetrahedron with volume V, ' the integral is expanded in terms of
the linear basis functions as

(19.52)

The dot products reduce to V~j • V~ = b. b. + c. c. + d. d. , and the integral Iv. E~. ~. dV
III Jn2 Inl Jn2 I nl Jnz In) JII2 t 'nl )111 ~

can be analytically evaluated as [10]

k I If
J £ (~ . )k (; . )' dV = £ .. 6 V

v, 'n 1 I n I • ( k + I + 3 )! '
(19.53)

Note that for the case i =j, k =2, and I =0, the integral evaluates to ~ / 10, whereas when i:l: j
and k = I = 1, the integral evaluates to V, /20. The evaluation of the stiffness matrix elements
(19.31) is similar.
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The magnetic field is expanded in linear facet elements wII(r) as

N races

B(r,t) = I B/(t)wj(r)
1=1 I

(19.54)

where Nr =4 denotes the number of tetrahedron faces. Facet basis functions are represented in
aces

terms of the interpolation functions by the following relationship for tetrahedral elements [46]:

(19.55)

Equation (19.55) is based on the definition that facet l consists of nodes (n I' n2 , n3 ).

As previously noted, facet basis functions preserve normal continuity across element faces.
Equation (19.55) defines a function with normal component that is constant on the lth face of the
tetrahedron and zero on all other faces. Without additional normalization of these basis functions
by the area of the face, the expansion coefficients in (19.54) correspond to the magnetic flux
passing through the face. The Lagrange interpolation functions are given by (19.51), and the
required matrix entries are evaluated by expressions similar to (19.52) and (19.53).

19.3.2 Hexahedral (Brick) Finite Elements

It is often convenient to define a reference hexahedral (brick) element to which arbitrary
hexahedral elements are mapped. Fig. 19.4 illustrates our reference brick element, which
consists of twelve edges (Nedges = 12) and six faces (Nraees = 6).

F(7.6.2.3)
S

(0, 1,0)

F(8,7.3.4)
I

6

(1,0,0)

5

: L3,,,,,,
4:.- _._-- _.. -_. ------.---
/' (0,0,0) L

" 2
/;'

" L s

1 '

F(8.4,1.5)
2

~l
F(s.I.2.6)

4

Fig. 19.4 Referen~~ hexahedral .element. Edges and faces are denoted by L
j

and F" respectively.
The addItIonal superscnpt on the face index corresponds to the nodes that define the vertices of
the particular face.
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Referring to Fig. 19.4. the curl-conforming bases (edge elements) of zeroth order are given
by [43]

D = ): ): V;:· rtJ = ;: ):6V):5 " D3 = ):1 ):3 V):5 " D4 = ):3 )::4 V):21 ':>1 ':>6 ':>5' "'-:2 ':>4 ':> ':> ':> ':> ':> ':> ':> ':> (19.56)

(19.57)

where ~J' ~2' and ~3 denote independent coordinates, and ~4 =1 - ~I' ~5 =1 - ~2' and ~6 =1 - ~3

denote dependent coordinates. Note that, based on the defined reference element, V ~I = (l, 0, 0);

V~2=(0,1,0); V~3=(0,0,1); V~4=(-]'0,0); V~5=(0,-1,0); and V~6=(O,O,-I).

At the vertices of the hexahedron, the interpolatory shape functions can be written as

For the six faces shown in Fig. ]9.4 (F;, l = 1, 2, ... , 6), the divergence-conforming bases (facet
elements) of zeroth order are given, respectively, by

(19.60)

(19.61)

where the vectors L
i
, i =1,2, ... , 12 are defined in Fig. 19.4. Gaussian quadrature over the

reference element is used to complete the evaluation of the FE matrices for either the coupled
curl or wave-equation formulations. As discussed previously, the FDTD algorithm can be
recovered for right-angled hexahedra (i.e., brick-shaped elements), by exploiting trapezoidal
integration over the reference element.

19.3.3 Pyramidal Finite Elements

Fig. 19.5 illustrates a reference pyramidal element that consists of eight edges (NedgeS =8) and
five faces (N

f
=5). The curl-conforming bases (edge elements) of zeroth order are given in

aces

[44], noting that ~3 and ~5 are interchanged with respect to this reference:

D, = (~I ~2 V~5 - ~2 ~5 V~J/(l - ~3) (19.62)

!22 = (~2 ~5 V~4 - ~5 ~4 V~2)/(1 - ~3) (19.63)

!2
3 = (~5 ~4V~1 - ~4 ~,V~5)/(1 - ~J (19.64)

.04 = (~4~JV~2 - ~1~2V~J/(1 - ~J (19.65)
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p(3,5.2)
I

~I

F(5.3,4)
2

4~ ......._~__~.

F(5,4.1)
3

F(5,I,2)
4

2
·~(-=-O,-I.-O)---+ ~2

Fig.19.5 Reference pyramidal element. Edges and faces are denoted by L j and F;. respectively.
The additional superscript on the face index corresponds to the nodes that define the vertices of
the particular face.

Ds
~l ~2 V~3 - ~2 ~3 V~I - ~l ~3V~2 ~I ~2 ~3 V~=

1 - ~3 (1-~3)2 3

D6

~2 ~5V~3 - ~5 ~3 V~2 - ~2 ~3V~5 ~2 ~s ~3 V~=
1 - ~3 (1-~3Y 3

D7
~s ~4V~3 - ~4 ~3 V~s - ~s ~3V~4 ~s ~4 ~3 V~=

1 - ~3 (1-~3)2 3

DB = ~4 ;1 V~3 - ~l ~3 V~4 - ~4 ~3V~1 ~4 ~I ~3 V~
1 - ~3 (1 - ~3Y 3

(19.66)

(19.67)

(19,68)

(19.69)

where ~4 = 1 - ~2 - ~3 and ~s = 1 - ~I - ~3 denote dependent coordinates. Based on the defined
reference element in Fig. 19.5, V~I =0,0,0), V~2 =(0,1,0), V~3 =(0,0,1), V~4 =(0.-1,-1), and
V~5 = (-1,0.-1). At the pyramid's vertices, the interpolatory shape functions can be written as

For the five faces shown in Fig. 19.5 (F;,l =1, 2, ... ,5), the divergence-conforming bases (facet
elements) of zeroth order are given, respectively, by [44]
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Al = ~3L7 + ~2 ~3 L (2 - ~ - ~, )L
1 - ~3 2 1 1 _ ~3 3

A2 = ~3L8 + ~S ~3 L (2 - ~ - ~, )L
1 - ~3 3 2 1 _ ~3 4

A 3 = ~3LS + ~4 ~3 L (2 - ~ - ~, )L
1 - ~3 4 S 1 - ~3 I

A 4 = ~3L6 + ~'~3 L - (2 - ~ - ~. )L
1 - ~3 I 4 1 - ~3 2

As = ~IL3+ ~2L4-(I-~JL7

(19.71)

(19.72)

(19.73)

(19.74)

(19.75)

where the vectors L j , i =1, 2, ... , 8 are defined in Fig. 19.5. Gaussian quadrature over the
reference pyramid is used to complete the evaluation of the finite-element matrices for either the
coupled-curl or wave-equation formulations [30].

19.4 STABLE HYBRID FDTD·FE INTERFACE

19.4.1 Spatial Discretization

The section is based upon [28, 34, 35] which reported a technique to achieve a stable hybrid of a
Cartesian FDTD space lattice with a time-domain FE mesh consisting of tetrahedra and
pyramids. The tetrahedral elements permit complex boundaries to be modeled in the FE mesh.
These are interfaced with the FDTD "bricks" using pyramidal elements. Each pyramid has
triangular faces that can be connected to the unstructured tetrahedrons, and a rectangular base
that can be fitted to an FDTD cell. A simple example of such a grid is shown in Fig. 19.6, where
the different types of elements are spatially separated to show the interior structure of the grid.

Given such a discretization, the E-field is expressed in terms of edge elements. This yields a
curl-conforming representation, as discussed in Section 19.2. Galerkin's method is then used for
Maxwell's equations, and, as a consequence of reciprocity, the resulting discretized system is
represented in terms of symmetric matrices. In addition to the pyramids, the FDTD-FE interface
exploits the basic observation that the FDTD method (viewed as a scheme for the second-order
wave equation for the E-field) can be derived from this FE formulation by trapezoidal integration
(lumping) for the V x Ji-1V x and e operators on the FDTD bricks. Thus, the vector wave
equation V x Ji-1VxE =w2eE is represented by [S] {E} =w2 [M] {E}, where the mass matrix
[M] is positive definite and the stiffness matrix [S] is positive semidefinite. By virtue of [M] and
[SJ, the numerical eigenvalues 0)2 are guaranteed to be real and nonnegative, which makes it
possible to formulate a stable time-stepping scheme [28, 34, 35]. Moreover, the reciprocity of
the continuous Maxwell's equations is preserved by this discrete representation.
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Fig. 19.6 Example of a hybrid grid that combines tetrahedral, pyramidal, and brick-shaped elements.
Source: Rylander and Bondeson, J. Comput. Phys., 2002, pp. 426-438, © 2002 Elsevier.

The properties of such a spatial discretization are illustrated by calculating the eigenvalues
of a cubic cavity having PEe walls of dimension a. The cavity is discretized as in Fig. 19.6,
with a layer of tetrahedral cells connected to cubic cells on each side with pyramidal cells.
The first 10 normalized cavity eigenvalues (ka/1C)2 for the numerical model are shown as circles
in Fig. 19.7. The analytical eigenvalues (ka/1t)2 = n/ + n/ + n/ are shown by crosses, where at
least two of the mode indices nx ' ny, nz =0, 1, 2, ... are nonzero.
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Fig. 19.7 F,irst 10 norrnali~ed eigenvalues of a cavity resonator discretized by the hybrid grid of Fig. 19.6:
CIrcles - numencal values; crosses - analytical. Source: Rylander and Bondeson, Comput.
Phys. Comm., 2000, pp. 75-82, © 2000 Elsevier.



926 Computational Electrodynamics: The Finite-Difference Time-Domain Method

With regard to the results shown in Fig. 19.7, we note that there is no contamination of the
spectrum, the multiplicity of the lowest modes is correct, and all eigenvalues are real and
nonnegative. There is also a number of zero eigenvalues that are associated with electrostatic
eigenmodes E == -V qJ, which is a well-known and important property of the edge elements [12].

A similar test is to compute the dispersion relation for a PEC parallel-plate waveguide,
where the waveguide plates lie on planes z == a and z = d. The analytical dispersion relation is
P=(w/c)2=k 2+k 2+(nn/d)2, where the mode index n =0,1,2, ... is nonzero for TE

x y Z z
modes. Since a real wavevector in the xy-plane yields a real and nonnegative eigenvalue w2

,

it is desirable that a numerical method preserves this attribute to permit stable time-stepping.
The parallel-plate waveguide is discretized as in Fig. 19.6, wherein layers of cubic cells are
parallel to the metal plates. This grid is constructed so that it is periodic in the x- and
y-directions. Thus, a Floquet representation of the field with an exp(- j k;rx - j kyY) dependence
can be used. This allows the eigenvalues w2 to be computed by solving a one-dimensional
eigenvalue problem along the z-axis. As expected, the stable hybrid of finite differences and
finite elements produces only real and nonnegative eigenvalues for this application.

Note that the stable hybrid classifies the elements, not the edges, as finite elements or finite
differences. Thus, the stable hybrid treats edges on the interface neither as regular FE nor
regular FDTD. Although a possibly more intuitive way of constructing the spatial discretization
is to use finite differences for edges that belong to the bricks and finite elements for all other
edges, this edge-based classification gives nonsymmetric matrices and, therefore, stability can no
longer be guaranteed. This type of hybrid was applied to the parallel-plate example discussed
above. Fig. 19.8 shows the largest imaginary part of the normalized eigenfrequencies k!:l for
Os k/1 S 1t and AS ky!:l S 1t, where the FDTD cells are cubes of side!:l. Clearly, the approach
based on the edges (rather than the elements) yields complex eigenfrequencies (() for real
wavenumbers in the xy-plane, and such a scheme is unstable. Instabilities occur for modes that
are poorly resolved, and their exponential growth occurs rapidly .

.015

~ .01
~
E

~ .005
E

Fig. 19.8 The largest imaginary part of the eigenvalues kli as a function of k Ii and k Ii when finite
differences are used for the edges shared by only cubes, and finite ele~ents elsd'where. Source:
Rylander and Bondeson, Comput. Phys. Comm., 2000, pp. 75-82, © 2000 Elsevier.
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19.4.2 Time-Stepping on a Hybrid Space Lattice

Time-stepping on a mixed-element space lattice could, of course, be formulated directly in terms
of matrices [M] and [5]. However, this is usually computationally inefficient, since large
portions of the lattice may consist of structured brick-shaped elements where classic FDTD can
be applied, and thus where [M] and [5] need not be stored and processed. This can be exploited
by updating the fields in two consecutive substeps. First, every field component that can be
treated by FDTD is updated explicitly in the usual Yee manner. Second, every field component
not advanced in time by FDTD is updated implicitly.

In this process, the FDTD updates require access to specific tangential E-fields from the
unstructured FE lattice, and vice versa. Fig. 19.9 illustrates the relevant geometry in two
dimensions. Here, cell edges shared only by bricks (dashed lines) are treated explicitly by
FDID. All other edges (solid lines) belong to either a pyramid or a tetrahedron, and are treated
implicitly. The following summarizes how the explicit FDTD and implicit FE schemes
interchange field information during one time-step:

I. Field components in the structured part of the lattice are updated explicitly by
FDTD. Specifically, {HFDm Jln+112 and {EFDmJ/n+1 are computed given the
previous FDTD values {EFDmJ /n and {HFDmJ In-112. Computation of {HFDm Jl"+1I2

requires FE values {EFEJ In at the interface of the structured and unstructured parts
of the lattice. Cell edges shown by thick solid lines in Fig. 19.9 provide field
information from the FE region for FDTD updates.

... - - ---, ------,- - - - --,.....
I I I •
I I I •
I Brick I Brick I Brick • Brick
I I I •
I • I •

r-----*·····,·····--·····~---~~
I • • •
I • • •I Brick • Brick • Brick • Brick

I • • •
I • • •r----- ••••••~---~~---~~
I •
I •

I Brick • Brick
I •
I •
L .

- - - - - - E, updated by FDTD

• • • • •• E, updated by FDTD and required for the implicit update

E, updated implicitly and required for the FDTD update

E, updated implicitly

Fig. 19.9 Hybrid space grid. The dashed lines are cell edges where explicit FDTD updates are
implemen~ed, and th~ s~lid lines involve implicit updates. Thick lines denote cell edges
Involved In commUnIcatIOns between the FDTD and implicit solvers. Shaded bricks and
pyramids contribute to the stable hybrid interface. which is neither regular FDTD nor regular FE.
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2. The remaining field components belong to the unstructured part of the space
lattice. These are advanced in time implicitly by a generalized Newmark scheme.
Specifically, {EFElln+1 is computed given the previous FE values {EFEW and
{EFEW- 1

, together with the FDTD solution {EFDmW+] that is associated with the
edges shown as thick dashed lines in Fig. 19.9.

3. One cycle of the time-stepping procedure is now completed. The time-step
counter n is advanced to n + 1 and we return to step 1.

The next section presents the time-stepping scheme in a mathematical form that applies to the
entire computational domain. That is, it covers both the explicit FDTD updates on the brick
elements and the implicit updates on the unstructured part of the space lattice.

19.4.3 Generalized Newmark Scheme

The unconditional stability of the Newmark scheme with () ~ 0.25 is very useful for unstructured
space grids. On the other hand, the choice () =0 gives the standard approximation used by
FDTD (viewed as a scheme for the second-order equation for the E-field). Therefore,
the Newmark scheme is a good candidate for explicit-implicit time-stepping that interfaces
FDTD with unstructured grids. It is attractive to associate the implicitness parameter e in the
Newmark scheme with the finite elements [34, 35]. This follows the successful recipe [28] used
for the spatial discretization. Namely, FDTD can be recovered from FE by the spatial integration
method associated with the elements. In fact, the Newmark scheme can be viewed as a linear
combination of exact and trapezoidal integrations applied to a temporal FE representation based
on Galerkin's method, where the E-field is piecewise linear in time [47].

The implicitness parameter is denoted e , where e =1, 2, ... ,N is an element index and• •
N. is the total number of elements. Note that all bricks, pyramids, and tetrahedra are indexed
bye. Let [5.J be the contribution to [5] from element e; that is, [5] =[51] + [52] + .. , + [5N).

The same partition is applied to the mass matrix [M]. The hybrid explicit-implicit time-stepping
algorithm [34, 35] is then given by

(19.76)

where e. ~ 0.25 for the tetrahedra and pyramids, and e. =0 for the lumped bricks. The time
integration scheme given by (19.76) is stable if the implicitness parameter on the FE space lattice
is sufficiently large, and the time-step does not exceed the FDTD stability limit. We emphasize
that the hybrid allows for local refinement of the FE lattice without reduction of the global time
step. Such refinement may be necessary to resolve geometrical details that are much smaller
than the wavelength, and the singular fields arising near edges and corners.

Note that (19.76) treats the updating of the entire computational domain (i.e., all tetrahedra,
pyramids and bricks). In a computer implementation, the FDTD region of the computational
domain is, of course, not explicitly represented by the matrices in (19.76), but instead is treated
by a standard FDTD subroutine. Equation (19.76) is mainly useful for constructing the FE
matrices and proving stability for the hybrid time-stepping scheme.
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19.4.4 Proof of Stability

The hybrid algorithm based on the time-stepping scheme of (19.76) can be rigorously proven to
be stable up to the FDTD stability limit [34, 35J, The proof is relatively simple. Further, given
the nature of the hybrid method, it also applies to both the FDTD and FE schemes individually.
It is based on the von Neumann analysis for the quadratic form of (19.76). For simplicity,
the permittivity and permeability are taken to be constants.

Eigenvalues ofFDTD for One Brick Element

It is useful to consider a single FDTD cell before proving stability for the hybrid. Specifically,
we require a bound on the 12 eigenvalues of a single FDTD element, which has one degree of
freedom associated with each of its twelve edges. The eigenvalues are computed from the
following:

(19.77)

with [S J and [M J lumped by trapezoidal integration. Here, seven eigenvalues are exactly zero.e t _

These correspond to the "potential modes" E = -VqJ, where the potential qJ is a trilinear
function. The potential can be set to zero at one node, and then there is one eigenmode of
(19.77) with Q) = 0 for each of the remaining seven nodes. For a brick with sides LU, dy, and Az
in the three coordinate directions, the remaining eigenvalues are

2 4[1 1]
ills = EJ1 (dy/ + (Az)2

2 4[ 1 1]
wlO = EJ1 (Lix)2 + (dy/

and the largest eigenvalue is the pair

(19.78)

(19.79)

The largest eigenvalues equal the eigenvalue for the fastest varying exponential function
exp[j1t(xlLix + yldy + zIAz)J on a uniform, infinite space lattice. This mode gives the stability
limit for the FDTD time-step:

!:it ~!:it = 2 I wmax max (19.80)

If &=!:iY=Az=d, (19.80) gives the usual stability limit, dlc.f3. Equation (19.79) for the
largest eigenvalues gives the following inequality, valid for any complex array {E}:
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(19.81)

- H -where {E} is the complex transpose of {E}.

Quadratic Form for the Hybrid Algorithm

The complex eigenmode {E} of the hybrid algorithm (19.76) has a growth factor p such that
{EW = pn {E}. For this mode, (19.76) gives

N,

:L ([S,J(0,p2- (20,-1)p + OJ + [M,](p2_ 2p+ 1)/ (.1t)2){E) = {O}
e=1

(19.82)

Stability is equivalent to Ipi:::; 1 for all modes {E}. With the substitution p = (1 + 1J)/(1 -1J),
this condition becomes SR(1J) :::; 0, and (19.82) is transformed into

N, N,

:L {E}H [S.l {E} = -192:L (4 {E}H[M.] {E} / (~d + (40, - I){E}H [St HE})
e=1 e=1

(19.83)

Since all the matrices are Hermitian, 192 is real. Furthermore, since the left-hand side is non
negative, stability follows if the sum on the right-hand side is positive for all {E}. This sum can
be split into the contribution from the explicit and implicit elements. The contribution from the
implicit elements is nonnegative if e ;::: 0.25. By virtue of (19.81), the contribution from the

t

explicit elements is nonnegative if the time-step satisfies FDTD stability condition (19.80).

Therefore, explicit-implicit algorithm (19.76) with 0t ~ 0.25 on the implicit elements is stable for
time-steps up to the FDTD stability limit.

19.4.5 Alternative Time-Stepping Schemes

There are alternative versions of the explicit-implicit time-stepping scheme that have similar
stability properties. In fact, the original version [28] of the hybrid algorithm used the same

implicitness parameter e for all the edges that are updated implicitly. Consequently, the edges of
the pyramids and tetrahedra are updated implicitly by

[S](e{EW+' - (20 - I){EW + e{E}ln-')

+ [Ml({Elr+ 1
- 2{EW + {EW-')/(t~d = 0 (19.84)

with e;::: 0.25. Stability of a similar explicit-implicit hybrid in acoustics was proven by

Belytschko and Mullen [48]. These authors used the trapezoidal integration rule in time on the

implicit grid, with the displacement ~ and velocity v =a~/at placed on the same time levels.

This is equivalent to the Newmark scheme with 0= 0.25. However, accuracy is often somewhat

better for the case when the implicitness parameter is associated with the elements instead of the

edges [i.e., the time integration scheme described by (19.76)].
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19.4.6 Extensions of the Hybrid FDTD-FE Concept

Explicit-implicit time-stepping is also useful for modeling coaxial transmission lines [49].
The cross section of a coaxial cable normally has small dimensions relative to the wavelength as
well as the size of the driven geometry. It is appealing to use a grid of prisms that conforms to
the cable's cross section, resolves longitudinal wave motion, and connects to an unstructured grid
at the feedpoint. The three-dimensional FE solution on the grid of prisms can be reduced to the
one-dimensional transmission-line equation by means of "macro elements" with the voltage
V.n=V(z., tn) as the unknown for the TEM wave [49]. Trapezoidal integration along the cable's
axis combined with () =0 recovers from the FE representation an explicit FDTD scheme for the,
corresponding transmission-line voltage equation:

2
C

v:.n+l - 2~n + ~n_l

(&)2

1 v.n+
1

_ 2 v.n + v.n-
I

• k k

(M)2
= 0 (19.85)

which can be truncated using techniques developed for FDTD [50]. This procedure combines in
the same physical region finite differences along the coaxial waveguide with finite elements for
the cross section of the waveguide. It enjoys the characteristic features of the stable FDTD-FE
hybrid; for example, it preserves reciprocity. and its stability can be rigorously proved for time
steps up the stability limit of the one-dimensional transmission-line equation.

19.4.7 Reflection at the Interface of FDTD and FE Regions of a Hybrid Space Lattice

Different space-cell shapes possess different numerical dispersion characteristics. Therefore
nonphysical numerical wave reflections can occur at the interface of FDTD and FE regions of a
hybrid space lattice. It is possible that hybrid space lattices could generate nonphysical wave
reflections that are comparable to the physical reflections of interest, especially if the latter are
weak. A simple arrangement to test reflection at the FDTD-FE interface i.s illustrated in
Fig. 19.10, where a thin layer of tetrahedra and pyramids is embedded in a cubic-cell FDTD
space lattice, as was shown in Fig. 19.6. The width of the waveguide is twice its height.

Fig. 19.10 Arrangement to test reflection at the FDTD-FE interface: waveguide with an incident pulse
travelling towards the implicit layer. Source: Rylander and Bondeson, Comput. Phys. Cown.,
2000, pp. 75-82, © 2000 Elsevier.
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Referring to Fig. 19.10, the numerical experiment involves calculating the reflection of a
TE lo-mode pulse from a transverse layer of tetrahedra and pyramids located within the
waveguide. The incident pulse has the time dependence EP) =exp[- (t - to)2/ '[2] sin(21tft),

where or =2.5/fc, to =2.5r, f = ..fifc, and fc is the cut-off frequency for the 1EIO mode.
Fig. 19.11 provides contour plots which display the power-reflection coefficient for the test

geometry of Fig. 19.10 as a function of 8 and the normalized Courant number. Here, the cross
section of the waveguide is discretized by lOx 5 FDTD cells, and the mean spatial resolution is
14 cells per wavelength. From this figure, we see that the power-reflection coefficient is below

-46 dB, a level of reflection error that is acceptable for many applications of interest.
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u
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Q) -46.5 dB.0
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0
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.t!
n1
E .6 -46.85 dB....
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.5.45.4.35.3
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.25
e

Fig. 19.11 Level contours of the power-reflection coefficient for the waveguide test of the hybrid scheme
(see Fig. 19.10) with 14 cells per wavelength resolution. Source: Rylander and Bondeson,
J. Comput. Phys., 2002, pp. 426-438, © 2002 Elsevier.

Fig. 19.12 shows how the power-reflection coefficient depends on the mean space-lattice

resolution for 8 =0.25 and M =.1tmax ' Here, the dimensions of the waveguide remain fixed,
and the thickness of the layer of tetrahedra and pyramids is held constant in number of cells.
Four different techniques are used to discretize the interface between the explicit and implicit
grids. Results indicated by squares and circles correspond to the two hybrid time-stepping

schemes of (19.76) and (19.84), respectively. In addition, the dashed and solid lines correspond

to exact and trapezoidal integrations over the bases of the pyramids, respectively, as proposed by

Riley [51]. A least-squares fit to the results for A/.1~ 17 shows that the power-reflection
coefficient decreases approximately as .15

.
7 as the mesh resolution becomes finer.
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Fig. 19.12 Power-reflection coefficient for () =0.25 and !1t =!1tmax versus the mean number of cells per
wavelength. The results of time-stepping scheme (19.76) are shown as squares, and those of
alternative scheme (19.84) are shown as circles. Dashed lines indicate exact integration over
the base of the pyramids [51] while solid lines indicate trapezoidal integration. Source:
Rylander and Bondeson, J. Comput. Phys., 2002, pp. 426-438, © 2002 Elsevier.

The results depicted in Fig. 19.12 can be interpreted intuitively by considering the space
lattice as a dispersive wave-propagation medium. Spatially varying mesh resolutions and
element shapes yield spatially varying numerical dispersion characteristics. Given a uniform
mesh refinement, the numerical dispersion relations converge towards the analytical result with
an error that is, to lowest order, proportional to !:J,? Thus, the amplitude of the reflection
coefficient from an internal meshing interface is expected to decay as the square of the cell size
in the asymptotic region of convergence. However, the typical mode of operation for the FDTD
FE hybrid uses a mesh layer with a thickness that is constant in terms of the number of cells and
small in relation to the wavelength. The thickness of such a layer is proportional to !:J",
and the reflection coefficient decays as the cube of the cell size, which is faster than the
discretization errors inherent to linear schemes. Consequently, the power reflection coefficient is
expected to decay as !:J,,6, which is in good agreement with the results in Fig. 19.12. Similar levels
of internal mesh reflection have also been obtained for plane-wave scattering from a free-space
block of tetrahedra embedded in a uniform FDTD mesh [51].

19.4.8 Scattering from the PEe Sphere

It is important to characterize and quantify the numerical error of the FDTD-FE hybrid in order
to facilitate the reliable prediction of electromagnetic phenomena. Scattering from a PEC sphere
is a useful test case since analytical results are available. In this section, results based upon the
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hybrid formulation are compared to theory as well as the conventional FDTD scheme with
staircasing. The presentation that follows is based on [34, 35]. Similar and independent
comparisons [22,23] have arrived at essentially the same conclusions. The hybrid FDTD-FE
scheme was run with () =0.25, and M was set at the stability limit for the FDTD region.
The PETSc [52] sparse-matrix package was used to solve the implicit equations in the FE region.

The bistatic RCS of a sphere of radius a =1m was computed on three different meshes with
FDTD cell size Ll = nl(l5.,J3)m for n =9, 6, and 4. A portion of the grid for the case n =9 is
shown in Fig. 19.13. Here, the average edge length for the tetrahedra was roughly equal to the
FDTD cell size L\. Furthermore, the thickness of the FE portion of the space lattice was kept
constant in terms of cells as the resolution was improved.
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Fig. 19.13 Cutaway view of the hybrid FDTDfFE space lattice for a PEC sphere for the case II = ..[315
(coarsest mesh). The discretized surface of the sphere is shown together with some of the
pyramids. The first layer of FDTD cubes, connecting to the bases of the pyramids. is indicated
by lines. Source: Rylander and Bondeson, J. Comput. Phys., 2002, pp. 426-438. © 2002
Elsevier.

Fig. 19.14 shows the relative error e(Ll) = lIa
n

- aa IIz/llaaliz for the wavelength A. =4.16m
(ka = 1.5), where an and (Ja are the numerically computed and analytic bistatic RCS,
respectively, and 11.112 =[fn(·/dn]ll2. Squares and circles denote the results of hybrid schemes
(19.76) and (19.84), respectively. We see that time-stepping scheme (19.76) reduces the error by
20% to 30% compared to (19.84). Least-squares fits to the model e(L\) - Lla, shown by the
dashed lines for a =2, indicate that the FDTD I FE hybrid achieves second-order convergence.
This is expected since the hybrid is based on linear approximations. One effect that contributes

to deviations from second-order convergence is nonuniform refinement of the unstructured grid.
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Fig. 19.14 Relative error in the bistatic RCS of a PEC sphere is shown by squares and circles for time
stepping schemes (19.76) and (19.84), respectively. Fits to the model e(il) _1i2 are shown by
the dashed lines. Three different criteria for an FDTD cell to considered PEC were used for the
staircased FDTD: (1) at least one comer of the cell is inside the physical sphere (shown by il),
(2) the midpoint of the cell is inside the physical sphere (shown by 0), and (3) all corners of
the cell are inside the physical sphere (shown by V). Source: Rylander and Bondeson,
1. Comput. Phys., 2002, pp. 426-438, © 2002 Elsevier.

For the staircased FDTD, some rather arbitrary decisions must be taken for rendering the
sphere. Fig. 19.14 shows results obtained using three different criteria for an FDTD cell to be
classified as PEe: (1) at least one corner of the cell is inside the physical sphere (shown by Ll),
(2) the midpoint of the cell is inside the physical sphere (shown by 0), and (3) all corners of the
cell are inside the physical sphere (shown by V). We see that, at all resolutions, the best FDTD
results are obtained with method (3), which yields errors about 5 to 9 times larger than the
hybrid. This best staircased FDTD model needs more than twice the linear resolution of the
hybrid to achieve the same error level. Moreover, the staircased FDTD schemes do not show a
very clear order of convergence, which reduces the predictive power of extrapolation.

19.5 MESH-GENERATION APPROACHES

In principle, the construction of hybrid meshes is relatively simple. One direct approach is to
start with a structured FDTD space lattice and a triangulation of a complicated boundary.
The triangulated surface is placed in the structured FDTD mesh, and all FDTD cells that contain
one or several triangles are marked. The marked FDTD cells could then be removed from the
FDTD computation, since that region will be treated using FE. In order to allow for a high
quality unstructured mesh, one or more additional layers of FDTD cells that connect to FDTD
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cells cut by triangles are also marked. Thus, a small volume of FDTD cells in the vicinity of the
complex boundary is identified, and then, this volume is discretized by pyramids and tetrahedra.
Pyramids are fitted to the grid of unmarked FDTD cells so that the base of each pyramid
connects to the face of an unmarked FDTD cell. Finally, the volume between the triangular
faces of the pyramids and the triangulated surface is discretized by tetrahedra.

With minor effort, this approach can be implemented for automatic generation of the
pyramids and the cubes that constitute the FE mesh. It is relatively easy to also extract the
triangulated surface that originates from the faces of the pyramids. Commercial mesh generators
can then be used to discretize a closed volume described by its bounding surface expressed in
terms of triangles. There are many commercially available mesh generators that can generate
tetrahedral space lattices, which, in turn, can be modified by adding the necessary pyramids and
cubes. In addition, mesh generators are also currently available that directly create hybrid
lattices by combining hexahedra with tetrahedra with an interfacing layer of pyramids [53].

19.6 SUBCELL WIRE AND SLOT ALGORITHMS FOR TIME-DOMAIN
FINITE ELEMENTS

The ability to model features that are small relative to the cell size is often important in
electromagnetic simulations. In principle, an unstructured mesh can be used to resolve these
small features. However, the increase in number of unknowns can be prohibitive. Thus,
the development of accurate models that characterize the physics of the feature without the need
for a highly resolved space lattice is essential to many applications.

Thin wires are often important parts of electromagnetic compatibility and antenna problems.
A subcell model for thin wires in FDTD using modified telegraphers' equations was developed
by Holland and Simpson [54]. This model has also recently been applied to the FE method
[51, 55]. In this setting, the thin-wire equations become a second-order wave equation for the
current on the wire. This equation is driven by the E-field along the wire, whereas the current on
the wire is a source term for Maxwell's equations. It is shown that a consistent discretization of
the wire equation using nodal basis functions and a radial weighting function results in a
symmetric spatial coupling between the electromagnetic field and the wire.

Practical systems often possess narrow cracks and gaps that are also challenging to include
in an analysis. In [51], a thin-slot model was presented that was based on a dual formulation to
thin wires. Consequently, the thin-wire algorithm can be generalized to model thin slots, thereby
making a unified theory for both thin wires and thin slots possible. Previous thin-slot models
have been susceptible to instabilities. However, by incorporating symmetric coupling between
the electromagnetic field and the slot, and between the electromagnetic field and the wire, it is
possible to establish the stability of the field-wire-slot system [55, 56].

This section presents algorithms for thin wires and thin slots on an unstructured mesh.
The fact that neither the wires nor the slots are required to follow the elemental edges within the
volumetric space lattice gives considerable modeling flexibility when induding these subcellular
features into simulations. Additional details can be found in [55, 56].

19.6.1 Modeling Thin Wires

To derive the wire equation, we follow the approach by Holland and Simpson [54], and assume
an infinitely long cylinder of radius a running in the z-direction. For simplicity, we also assume
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that (J =0 in the neighborhood of the wire. By adopting a cylindrical coordinate system along
with the assumption that the electromagnetic fields Er and H8 are proportional to lIr local to a
thin wire, it follows that [51, 54]

~ +at at
(19.86)

where [ is the wire current, R is the wire resistance per unit length, Vinc
is a voltage source per

unit length, and L is the wire inductance per unit length given by

J1 (ro+ a
)L = -log --

2n 2a
(19.87)

where (ro+ a)/2 is an average distance from the wire to the surrounding E-field components
used to drive the wire. The focus is on arbitrary wires that do not need to follow mesh lines.
Therefore, the E-field needs to be approximated along the wire through interpolation of the
surrounding field components. On the other hand, the current density is approximated by
distributing the wire current to the surrounding field components, as shown in Fig. 19.15.

Fig. 19.15 An arbitrary wire described in cylindrical coordinates. Symmetric coupling between the wire
variables and the surrounding field variables is realized through the use of the P operator,
defined in (19.94), in both directions.

Consistent with the FE framework, the current [ along the wire can be expanded In basis
functions as

f(z,t) = L.fj(t) <l>j(Z)
j

(19.88)
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where ¢ is the standard linear nodal basis function in one dimension [10], and l. is the unknown
) J

current at wire node j. The current density is now expressed as

J(r,Z,t) = " I.(t) <1l.(z) g(r) i£..J) )
j

where r is the radial distance from the wire and g(r) is a weighting function satisfying

f g(r)2nrdr =
r~a

(19.89)

(19.90)

and thus has dimension m-2
• It is important that this function decrease with r, and equal zero for

r ~ ra, which gives a compact support. The function used here is defined by

g(r) =

o

n('o2_ a2) + (2ra
2
/n)[-1 -cos(na/ra) -(na/ra)sin(na/'o)]

o

r<a

(19.91)

Multiplying the wire equation (19.86) with the test function g(r)<1l(z), and then integrating over
)

all space yields [55]

d
2
{I} d{/}

[M ]-- + [K ]- + [5 HI} =
IV dt2 IV dt IV

diE} diVine}
[P]--+--

dt dt
(19.92)

where {I} and {E} are the arrays of unknowns. The mass and stiffness matrices for the wire
equation are given by

M = fL <1l<1lk dz
Wit )

z
K = fR<1l.<1lkdz ;W

jt
)

z
J L d<1lj d<1lk

5 = -----dz
W
jt

l EJ.! dz dz
(19.93)

and the interpolation operator is defined by

~k = f i· wk g(r) <1l/z) dO.
n

(19.94)

For the coupling between the wire and the field, (19.89) is inserted into (19.32), which yields

J aJ "dlj
wk ·-dO = L..JPk-

n at j ) dt
(19.95)
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The interpolation operator is used to approximate the E-field along the wire at each wire node,
as illustrated in Fig. 19.15. Due to the compact support of the basis and weighting functions,
each wire node is surrounded by an interpolation cylinder of radius ro and length given by the
two wire beams sharing the node. Only edge-projected fields belonging to tetrahedra that are
inside or partly inside this cylinder contribute. A sixth-degree Gaussian quadrature formula is
used to calculate the integral in (19.94).

19.6.2 Modeling Thin Slots

The subcell slot model is based on a dual formulation of the thin-wire model. Let a thin slot with
length L, width w, and depth d be located in a conducting wall. It is assumed that L» w, and
wand d are both electrically small. All fields in the wall are set to zero, and the slot is modeled
through the following equation [51]:

C a2v aHdiff
_s __ = __z_

ell ai at
(19.96)

where V is the magnetic current (the voltage across the slot width), Hz
diff is the difference in the

z-component of the magnetic field on opposite sides of the slot wall, and Cs is the slot
capacitance per unit length. The slot capacitance is given by

(19.97)

where as =(w/4) exp(-1td/2w) is an equivalent antenna radius [57], and (ro+ aJ/2 is an
average distance from the slot to the surrounding magnetic fields used to drive the slot.
A possible extension of the slot model permits the inclusion of wall loss [51,58].

Due to the fact that the source term in the slot equation is the difference in the magnetic field
on opposite sides of the slot wall, Maxwell's equations are discretized in their coupled-curl form
using edge and facet basis functions, as shown in (19.10) to (19.16). Being a flux, M can also be
expanded in facet basis functions as

M(r,t) = I Mj(t)w!.(r)
. I
I

(19.98)

which implies that {g} = [M
f

] {M} in (19.16). The voltage V along the slot can be expanded in
linear basis functions as

V(z,t) = ~ V.(t) <I>.(z)£.J} }
j

(19.99)

where \oj. is the unknown voltage at slot node j. By proceeding in a manner similar to that for
thin wires, slot equation (19.96) is multiplied by the test function g(r) <I>.(z). Then, integration
over all space yields the following equation for {V}, the array of nodal volt~ge unknowns [56]:

d 2{V}
[M

S
]-2- + [SJ{V} = [~] (- [C]{E} - {M})

dt
(19.100)
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In (19.100), the mass and stiffness matrices are given by

z

(19.101)

In addition, [C] = [Mfr
l
[A] is the incidence matrix for the relation between the edges and the

faces, and the interpolation operator [PJ is given by

f I A

P = -Z'Wf g(r)<I>.(z)dz
Sjt z J1 k )

(19.102)

for g(r) a weighting function that equals ±2g(r). As shown in Fig. 19.16, the interpolation
between the field and the slot is almost identical to the interpolation between the field and the
wire in (19.94). The only differences are that face elements are used for slots while edge
elements are used for wires, and the sign in the radial weighting function g is changed.
The latter reflects the different normal directions on opposite sides of a slot wall.

"i-I

Slot plant'

Fig. 19.16 An arbitrary slot located in a conducting plane. Symmetric coupling between the slot variables
and the surrounding flux variables is realized through the use of the (Ps] operator defined in
(19.102) in both directions. Note that the tetrahedron has its bottom triangle in the slot plane,
and that several tetrahedra located on both sides of this plane are involved in the coupling.

The magnetic current density M is calculated from the slot voltage, and can be expressed in
cylindrical coordinates as

M(r,z,t) = I\j(t)<I>/z)g(r)i
j

Expressions (19.98) and (19.103) for M are set equal in a weak sense, which implies [56]

(19.103)
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(19.104)

Finally, by using (19.28), (19.92), (19.95), (19.100), and (19.104), as well as the equivalence
between the vector wave equation and the coupled-curl equations, the time-continuous field
wire-slot system in matrix form is given by

[[M] [0] [OJ J [(E] [[K] [p]T
[OJJ [(E1J

[0] [Mw] [0] ;t22
{l} + -[P] [Kw] [0] :t {I} +

[0] [0] [M ] {V} [0] [0] (0] {V}s

[ [S]
(0] [C]T[~]T

rE] [[0][0] [Sw] [0] {I} = {OJ (19.105)

[~][C] (0] (Ss] + [~][Mlrl[J~]T {V} {OJ

To obtain an unconditionally stable field-wire-slot algorithm, this system is discretized by the
second-order-accurate Newmark-Beta scheme defined in (19.34) to (19.36) [55,56]. We note
that the key to stability is the symmetric coupling between field and wires and field and slots.
The preconditioned conjugate gradient (peG) method can be used to solve the system at each
time-step. Since wires and slots are one-dimensional, the additional memory requirements and
arithmetic operations to include them in three-dimensional simulations are generally small.

19.6.3 Numerical Results for Thin Wires and Slots

The thin-wire algorithm is first applied to model aim diameter circular loop antenna having a
wire radius of 1.05 mrn. The loop is discretized using 50 wire segments in an unstructured grid
with an average edge length of 67.4 mm, and is excited at one of the wire nodes with an
impulsive voltage source. Fig. 19.17 shows that the results of the hybrid FDTD-FE calculation
for the loop's driving-point resistance agree well with a method-of-moments benchmark.

The thin-wire and thin-slot algorithms are next applied to model the excitation of a 14-cm
long wire of radius 0.8 mm positioned vertically within a 30 x 22 x 14-cm metal box. The wire
is perpendicular to the upper and lower 30 x 22-cm box surfaces at their centroids. It is fed by a
50Q source at the upper box surface, and is terminated with a 47Q load at the lower box surface.
In addition, the lower box surface is penetrated with a slot of length 12 em, width 1.6 mrn, and
depth 0.5 mm, which is located parallel to, and 16.5 em away from, one of the 30-em edges.
An unstructured tetrahedral mesh is used to discretize the box interior and near exterior. Neither
the wire nor the slot is aligned with this mesh. Four layers of FDTD cells are located between
the unstructured mesh and the absorbing boundary. Fig. 19.18 shows the results for the wire's
load power for two different mesh spatial resolutions, 0.5 and 1 em. There is good agreement
between the hybrid FDTD-FE results and measurements [59] over a wide frequency range.
A small deviation, in particular for the solution on the coarser mesh, is observed around the
resonance at 1.13 GHz. This resonance, as well as the ones at 1.27 and 1.37 GHz, are due to the
slot, and disappear in both simulations and measurements when the slot is removed.
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Fig. 19.17 Comparison of hybrid FDTD-FE and Numerical Electromagnetics Code (NEC) calculations of
the input resistance of aIm diameter circular loop anlenna having a wire radius of 1.05 mm.
Source: Edelvik and Weiland. IEEE APS Inti. Symp. Dig., 2004, pp. 3481-3484. © 2004 IEEE.
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19.7 APPLICATION TO ADVANCED SCATTERING AND RADIATION PROBLEMS

This section demonstrates application of the hybrid FDTD-FE method to three advanced
modeling problems: monostatic RCS of the NASA "almond," bistatic RCS of the Saab Trainer

aircraft, and input impedance of the four-arm sinuous antenna. The hybrid FDTD-FE method is
found to be much more efficient for such problems than using traditional staircased FDTD on a
highly resolved grid [22]. For the same solution accuracy, savings of approximately 10: 1 in
memory requirements and 20: 1 in execution time are possible.

19.7.1 Monostatic RCS of the NASA Almond

A number of electromagnetic wave modeling problems involve structures having sharp corners
that generate local field singularities. Other problems involve calculating the RCS of weakly
scattering structures having reflections comparable in strength to the background numerical
noise. For such modeling challenges, the NASA almond is an excellent test case, since it
possesses both a sharp tip and low-RCS behavior. Therefore, it has been used as a popular
benchmark for RCS codes [19,60-62]. A mathematical description of its surface is given by
Woo et al. [60] together with data sets for measured and calculated monostatic RCS.

This section discusses a test of the stable FDTD-FE hybrid [62] in calculating the monostatic
RCS of the NASA almond for the case when the wavelength equals the length of the almond,
0.2524m. Results for this case are available in the literature [19,60,61]. Fig. 19.19 is a
cutaway view of the hybrid mesh for the NASA almond, showing that the unstructured portion of
the mesh has increased resolution at the almond's tip. In the discussion to follow, vertical and
horizontal polarization refer to cases where the incident E-field is perpendicular and parallel to
the x-y plane, respectively.

0.05

g 0
N

-0.05

-0.1 ,~ . -

x [m] 0.1

....

','.

0.2

" .

o
-0.05

-0.1
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y [m]

Fig. 19.19 The ~AS~ ~Imond embedded within a hybrid FDTD-FE mesh for the case of a vertically
polan zed inCident plane wave. Source: Rylander and Bondeson, IEEE Trans. Antennas and
Propagation, 2002, pp. 141-144, © 2002 IEEE.
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The complex scattering amplitudes No' N¢, Lo' and L¢ for the almond were calculated for
azimuth angles l/Jm = m 1'C /16 (for m = 0, 1, ... , 16) on six different meshes having decreasing

cell size .1 = AJ(5n) (for n = 3, 4,5,6,8, and 12). When changing the FDTD cell size, the mesh

density was kept as a fixed function of space. The computed quantities were extrapolated to zero
cell size. Then, a spline curve was used for interpolation with respect to ¢, with the slope of the

RCS-versus-¢ curve set to zero for l/J =0 and l/J =1t.

Fig. 19.20 depicts the calculated monostatic RCS, cr, of the almond for horizontal and

vertical polarization, as computed on the six different meshes. These results are seen to converge

to the extrapolated values, even at the nulls. Relative to horizontal polarization, the vertical

polarization RCS is less sensitive to cell size despite its lower levels for most monostatic angles.

-10
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-15 polarization

-20

-25

~
CJ)

CD -30
~

b

-35
Vertical
polarization •

-40

-45

18016060 80 100 120 140
Azimuth (Degrees]

-50 L.-_-'--__L.-_-'--_--lL.-_-'--_-----'L..-_--l- L..-_-'

o 20 40

Fig. 19.20 Monostatic RCS of the 0.2524m (one-wavelength long) NASA almond, calculated using the
hybrid FDTD-FE method on six different meshes. The extrapolated results are shown as
circles joined by dashed curves. Source: Rylander and Bondeson, IEEE Trans. Antennas and
Propagation, 2002, pp. 141-144, © 2002 IEEE.

Even though the hybrid FDTD-FE method is a second-order scheme, an O(ll) error cannot

be expected for the NASA almond because of the singularity at the tip of the almond [63].

However, it may be expected that No' N¢, Lo' and L¢ converge to lowest order as Co + cafj,a.

The following procedure was used to find the order of convergence a. For a range of a values,

the coefficients Co and ca at each ¢ m were obtained using a least-squares fit to N¢ and Lo
computed with different resolutions. An error sum e = L¢J IZo(N¢ - N¢)1

2
+ I(Lo - Le)1

2
] was

then evaluated, and the a that minimized e was chosen, where N¢ and Le were numerically

computed, and N¢.f and Le.f denote fitting functions with the form Co + cafj,a.
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Detailed studies of this type have shown that, for horizontally polarized illumination of the
almond (which maximally excites the field singularity at its tip), the order of convergence ex of
the hybrid FDTD-FE model is approximately 1.2 for meshing densities between 30 and 60 per
wavelength [62]. However, for vertical polarization, ex is close to 2 (i.e., indicating second-order
accuracy of the model). This is reasonable, since the field singularity at the almond's tip is much
less excited for vertically polarized illumination; therefore, the model's rate of convergence
should approach that of the underlying hybrid algorithm. Overall, for both polarizations,
a meshing density of 15 per wavelength yields results that are within 1 dB of the asymptotically
converged values for at least 90% of the azimuth angles.

19.7.2 Bistatic ReS of the Saab Trainer Aircraft

This section presents results of the hybrid FDTD-FE technique for the bistatic RCS of the
conceptual Saab aircraft, Trainer [23], shown in Fig. 19.21. The Trainer is 11 m long,
3.4m high, and spans 8m between its wingtips. It is assumed to be a PEC shell, and includes the
jet engine air inlets. Illumination is head-on via a broadband impulse with the incident E-field
either parallel to the wing plane (horizontal polarization) or perpendicular to the wing plane
(vertical polarization).

Fig. 19.21 The Saab Trainer aircraft.

Three different meshes have been applied to this model: (1) a conventional cubic FDTD
space lattice with d =4 cm (9x 10

6
cubes); (2) a hybrid FDTD-FE mesh with d =4 cm in the

FDTD region (8 x 10
6

cubes) and an average edge length of 5 cm in the unstructured FE region
(1.8x 10

6
unknowns); and (3) a fine cubic FDTD space lattice with L\ =1 cm (400 x 106 cubes).

All meshes are terminated by an eight-cell-thick UPML absorbing boundary. The computational
domains are each sized such that the closest distance from the aircraft to the absorbing boundary
is 10 space cells.
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Fig. 19.22 Comparison of FDTD-FE and phasor-domain fast multipole method calculations of the bistatic
RCS of the Saab Trainer at 500 MHz.
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Fig. 19.22 compares the bistatic RCS of the Trainer at 500 MHz with a fast multipole
method [64] solution of the phasor-domain electric field integral equation. Here, the azimuth
sweep is in the horizontal plane starting from the monostatic angle. Note the close
correspondence between the results of the A =1 cm FDTD model (uniform resolution of A/60 at
500 MHz), the A =4 cm (AilS resolution) hybrid FDTD-FE model, and the A =4 cm fast
multipole method calculation. On the other hand, the A = 4 ern FDTD model shows significant
deviations, particularly for vertical polarization. Clearly, the staircased FDTD model requires
finer resolution than the hybrid FDTD-FE model to obtain results of similar accuracy.

Fig. 19.23 provides snapshot visualizations of the induced surface currents on the Trainer
calculated by the FDTD-FE technique for head-on illumination by a horizontally polarized
Gaussian pulse. The corresponding color visualizations are in Fig. 1.5 of Chapter 1.

(a) Outer surface of aircraft.

(b) Within ajet engine air inlet.

Fig. 19.23 Grayscale visualizat~ons of the induced surface currents on the Trainer aircraft calculated by
the FDTD-FE techmque for head-on illumination by a horizontally polarized Gaussian pulse.
The observation time is just as the illuminating pulse reaches the aircraft's tail.
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Implementing the .1. =4 em hybrid FDTD-FE model discussed above requires 1.9 GB of
memory and 8 hr execution time on a single processor of an HP Itanium2 cluster with 900-MHz
processors. In comparison, the .1. =4 em traditional FDID model requires 0.56 GB of memory
and 1 hr execution time on the same processor, and the high-resolution .1. =1 em traditional
FDTD model requires 23.4 GB of memory and 15 hr execution time on 12 such processors.
It is clear that the hybrid FDID-FE model is much more efficient than the high-resolution FDID
model.

We note that, for good efficiency of the hybrid FDTD-FE method, it is important to keep the
FE region as small as possible. In the present example, approximately three layers of
unstructured cells are used to obtain an accurate geometrical representation of the aircraft, while
4-cm FDTD bricks are used throughout the remainder of the computational domain.

19.7.3 Input Impedance of the Four-Arm Sinuous Antenna

The sinuous antenna represents a challenging problem for any analysis method. This is because
of the very wide range in length scales from the outer boundary of the antenna into the feed
region. The variation of the edge lengths required to mesh this type of antenna is often greater
than 100: 1, depending upon the spatial extent of the feed region, which controls the high
frequency performance of the antenna.

Sinuous antennas are typically driven to obtain right- or left-hand circular polarization.
Coaxial feeds are applied to each arm, and are generally phased in increments of 90° with respect
to one another. Four-, six-, and eight-arm sinuous antennas are commonly used in practice.
Fig. 19.24 illustrates a four-arm design that has been modeled using the hybrid FDTD-FE
technique. The use of a local unconditionally stable solution method is particularly beneficial in
this example, because the time-step need not be reduced for numerical stability as the element
size progressively becomes smaller into the feed region.

Fig. 19.24 Coaxial-fed four-arm sinuous antenna etched on a 20-mil-thick dielectric substrate.



Chapter 19: Advances in Hybrid FDTD-FE Techniques 949

Over the 4 to 8 GHz operating bandwidth of the antenna of Fig. 19.24, the hybrid FDTD-FE
modeling results for the real and imaginary parts of the average active input impedance are in
very good agreement with laboratory measurements: 84.0 predicted resistance versus 80.0
measured, and +4.5.0 predicted reactance versus on measured. We note that, for ideal four-arm
self-complementary antennas in free space, the "sum-mode" active impedance is theoretically
133.3.0. The presence of the thin-dielectric substrate in this example significantly affects the
input impedance, and is properly accounted by the hybrid FDTD-FE model.

19.8 SUMMARY

This chapter presented a hybrid FDTD-FE technique for the numerical solution of Maxwell's
equations that combines the computational efficiency of FDTD with the body-conforming
meshing that is possible using FE. The hybrid method is free from spectral contamination and
nonphysical numerical dissipation. It allows arbitrary unstructured meshes in the FE region, and
yet is provably stable up to the FDTD stability limit. It also allows local spatial refinement of the
FE mesh generally without the need to reduce the global time-step. Such refinement can be
needed to resolve geometrical details that are much smaller than the wavelength, or to properly
model field singularities near sharp comers, edges, or points.

In the hybrid technique, the FDTD "brick" elements are connected to the FE tetrahedrons by
a layer of pyramids, and the E-field is expanded in edge elements to obtain a curl-conforming
representation everywhere in the computational domain. The FE formulation is based on
Galerkin's method, and trapezoidal integration is used for the structured bricks to recover the
FDTD scheme formulated in terms of only the E-field. Consequently, the reciprocity of
Maxwell's equations is preserved by construction. This is represented by the symmetric matrices
that characterize the formulation of the hybrid method. Reciprocity reflects important properties
of Maxwell's equations, and its preservation makes it feasible to formulate stable time-stepping
schemes. Furthermore, it poses no restrictions on the materials that exist at the interface between
the structured and unstructured grids [65]. Examples of other FDTD-FE hybridizations that
preserve reciprocity and are provably stable include the subcell wire/slot algorithms and the
coaxial waveguide ports presented in this chapter. These algorithms makes the hybrid FDTD-FE
technique a suitable choice for many practical electromagnetic compatibility applications.

The hybrid FDTD-FE method has been tested on a broad range of applications, and has
exhibited second-order convergence for problem geometries that possess smooth boundaries.
As a specific example, the bistatic RCS of a PEC sphere was shown to converge to the analytical
solution with 0(/)/ error. However, as with other numerical methods, the order of convergence
is lowered for geometries having sharp corners, edges, or points due to the presence of locally
singular fields. As an example of applying the FDTD-FE hybrid to model a scalterer with a
sharp tip, a computation of the monostatic RCS of the NASA almond demonstrated that a
meshing density of 15 per wavelength yields results that are within 1 dB of the asymptotically
converged values (i.e., infinitely fine spatial resolution) for at least 90% of the azimuth angles.

The scattering and antenna examples presented in this chapter demonstrate that the FDTD
FE hybrid provides reliable, accurate, and efficient computational results for real-world
applications. Practical applications often possess a very wide range in local length scales that
can be problematic for purely conditionally stable solution methods. The FDTD-FE hybrid
method presented in this chapter can be used to analyze these structures often with no reduction
in the time-step prescribed by the FDTD grid that surrounds the body-conforming FE mesh.
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However, the convergence rate of an iterative solver is usually reduced in the case of widely
varying edge lengths. Therefore, the development of improved matrix preconditioners is an
active area of research. In addition, the choice of the time-step can influence the accuracy of the
solution. The combination of a conditionally stable FDTD scheme with an unconditionally
stable FE formulation provides for a reasonable limitation on the largest selectable time-step that
balances both efficiency and accuracy.
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Chapter 20 

Advances in Hardware Acceleration for FDTD 
Ryan Schneider, Sean Krakiwsky, Laurence Turner, and Michal Okoniewski 

20.1 INTRODUCTION 

Over the past 40 years, the FDTD computational Solution of Maxwell 's equations has evolved 
from a fringe concept to an actively pursued, mainstream technique in academic, industrial, and 
government laboratories. Today, FDTD is a tool of choice for electromagnelic simulations in 
such diverse areas as wireless technologies, Computer hardware, photonics, lilhographic mask 
design, biomedicine, and biophotonics. The current popularity of FDTD has been facilitated by 
phenomenal advances in personal Computer (PC) technology, No longer need a designer send a 
Simulation job to a Supercomputer; it can be run on a desktop PC equipped with superb graphical 
and processing capabilities. However, as PCs become more powerful , FDTD modelcrs are 
emboldened to simulate ever more complex and realistic structures. It seems that the problems 
of real interest always require 10 times the memory and speed of the best available machines. 

Because FDTD models (especially in three dimensions) generally require large allocations 
of fast memory and significant run times, the use of FDTD to date has been primarily limited to 
problem analysis, rather than design through optimization. In the basic formulation of FDTD, 
memory requirements scale as O(N), where N = N^x Ny x N Space cells; and the required time-
step count scales approximately as 0(Nuy) [ 1 , 2 ] . t h i s translates to 0(Nm) floating-poinl 
Operations (flops) for a given Simulation. It is easy to show that FDTD simulations involving 
tens of millions of grid cells require gigaflops of processing capability. 

When the first edition of this book was published in 1995, supercomputers and 
high-performance Workstations capable of such demands served an important segment of the 
FDTD Simulation market, and the development of Software for such systems was an important 
topic [1 ,2] . However, for most industrial users, supercomputers carried prohibitive access costs, 
limited availability, and lack of commercial Software. Therefore, the past decade has seen ihe 
migration of most commercial and academic FDTD codes from supercomputers onto generic 
PCs because of their multipurpose functionality and low cost. However, today's PCs have 
limited memory capacity (2 GB for 32-bit systems), limited memory bandwidth, and limited 
speed, even for those machines featuring two processors. In an attempt to address these 
limitations, researchers have organized PCs into Clusters that divide an FDTD Simulation among 
many nodes [3, 4]. Here, che main disadvantage is that Performance gains saturate with 
increasing numbers of processors in the Clusters due to the interprocessor communications 
overhead. Furthermore, FDTD Cluster implementations add additional Software complexity and 
portability issues, as well as the need for potentially costly Cluster maintenance. 
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Ultimately, whether running simulations on a generic PC or a multiprocessor cluster, many
FDTD users experience lengthy run times. In response, and noting the inherent parallelism,
symmetry, and simplicity of the FDTD algorithm, a number of researchers are pursuing run-time

reduction via implementing FDTD in custom hardware. This activity leverages favorable
industry trends, wherein the speed and complexity of special purpose hardware is rising more

rapidly than that of general purpose processors.
In this chapter, we discuss the concept of hardware acceleration of the FDTD method.

Two distinct techniques are considered:

• Construction of special-purpose hardware using field-programmable gate-arrays
(FPGAs). Here, Maxwell's equations are actually rendered in logic gates.

• Use of available graphics processor units (GPUs). Here, Maxwell's equations

are expressed in a graphical language such as OpenGL.

Both approaches have succeeded in demonstrating significant accelerations of large, nontrivial

FDTD simulations. Accelerations approaching 10: 1 (as compared with fully optimized FDTD
code running on a top-of-the-line PC) should be possible in the near future.

FPGA-based hardware is currently more costly than GPU-based acceleration because
special-purpose cards need to be built and populated with large and expensive FPGA chips.

While FPGA accelerators are capable of handling large memory, they are limited as to the type
of FDTD algorithm features that can be incorporated. On the other hand, GPU accelerators are

currently based on mass-produced, consumer graphics cards. While having limited memory,
GPUs provide more flexible implementation than FPGA hardware, allowing advanced FDTD

features to be readily implemented. The future will likely see a hybrid approach that combines
the benefits of both techniques.

20.2 BACKGROUND LITERATURE

Research in hardware-acceleration concepts for FDTD has blossomed since the early 1990s.
The following papers mark key developments in this area:

1. As early as 1992, [5] reported the simulation of a very large-scale integration
(VLSI) circuit that could accelerate FDTD updates by 5: 1.

2. References [6-8] reported hardware description language (HDL) simulations of

two different VLSI designs achieving FDTD updating rates of 6 to 10 million

cells per second. Both assumed VSLI application-specific integrated circuits
(ASICs) designed to connect to the host computer via the peripheral component

interconnect (PCI) bus.

3. Reference [9] reported a hardware implementation of a two-dimensional FDTD

engine. This implementation was a bench prototype, with handwired registers

and arithmetic units. Although its throughput was slower than running FDTD

software on a general-purpose processor, it was predicted that the implementation

could update 6.25 million cells per second for a system clock of 100 MHz.
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4. References [10, 11] reported the first FDTD accelerators implemented in
commercially available hardware. These accelerators employed bit-serial integer
arithmetic and an XESS development board [12] with a Xilinx XCV300 FPGA
(3,072 slices). An updating throughput of 8 million two-dimensional grid cells
per second was achieved.

5. References [13 - 15] reported what appear to be the first successful three
dimensional FDTD accelerators to be implemented in physical hardware. Here,
front-end software sends appropriate data (such as the mesh size and the number
of time-steps) to the hardware via a PCI bus. The FDTD accelerator proceeds to
update the fields, periodically sending results back to the host computer for post
processing and visualization. In the most recent work of this group, updating
throughputs as high as 30 million three-dimensional cells per second were
achieved using a custom circuit board and FPGA implementation.

We see that early research into FDTD hardware accelerators focused on simulation of the
hardware architecture, whereas more recent work has achieved successful hardware
implementations. Currently, progress is steady in the latter area, with commercial products
already available [16,17].

20.3 FUNDAMENTAL DESIGN CONSIDERATIONS

Reference [14] outlines tradeoffs that must be considered during the design of an FDTD
accelerator system. In the analysis, it is assumed that the FDTD accelerator is a peripheral

device in a host computer. The host computer is responsible for setting up the FDTD problem
and for the communication of the data to and from the accelerator. On the other hand,
the accelerator is responsible for the FDTD updates at every time-step and for periodically
sending results for postprocessing. Three major areas of concern are identified which must be
considered in the design of an FDTD accelerator: (1) the hardware computational engine,
(2) the data storage, and (3) the treatment of special nodes.

A hardware computational engine replaces the field-update procedures conventionally
implemented in software. The acceleration potential of the hardware is related to the number of
FDTD cells that can be updated simultaneously. This yields two extremes. The first is a
massively parallel hardware engine that is capable of simultaneously computing all of the field
updates in parallel. Achieving this high level of acceleration is not feasible for reasonably sized
simulations, since it would require an impractical amount of hardware. At the other extreme is

single-field-update (serial-processing) hardware. While simple and inexpensive to implement,

this would not make use of the parallelism inherent in the FDTD algorithm, and would suffer

from too substantial a communication overhead to provide a significant speedup. Current
research trends indicate the desirability of a hybrid approach, wherein enough hardware is

provided to exploit the FDTD parallelism to achieve significant acceleration while keeping the
hardware cost reasonable.
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With respect to data storage, key issues include the amount of data to be stored on the
accelerator, the host-accelerator interconnect speed, and the amount of data that must be
transferred to and from the host computer. A central problem stems from the fact that while the
host computer offers excellent data-storage solutions, the bus speed between the host and the
accelerator is slow-as much as an order of magnitude slower than the memory bus-even with
the recently introduced PCI Express standard. Ideally, the accelerator would have a large
amount of fast memory sufficient to store the entire data space of the problem. This memory
would be connected to the update hardware through special-purpose, high-throughput buses.
In cases where intermediate data values are not required, as in some steady-state analysis
problems, the onboard memory would completely eliminate the overhead of the host-accelerator
data transfer. While such large onboard memory is expensive, a compromise solution, wherein a
significant fraction of the field data values are stored in the accelerator, would still allow for a
useful reduction of the overhead associated with the slower data transfer rate.

The treatment of special FDTD field updates involving sources, subcell models, absorbing
boundary conditions, lumped-circuit elements, and so forth, complicates hardware design.
Hardware capable of handling all types of field updates would be expensive and difficult to
implement, and would eventually rival the complexity of a standard central processing unit.
Moreover, it would be very challenging to incorporate new special-purpose field updates
introduced by the FDTD research community. We observe, however, that special cells typically
occupy only a small fraction of the computational domain. Thus, although the overhead
associated with data transfer to and from the accelerator degrades the overall accelerator
performance, it may be best to implement most of the special field updates via software in the
host computer.

References [10] and [13] explored the "massively parallel" approach to FDTD acceleration.
The next section describes the derivation and implementation of such an FDTD accelerator
system and computational engine, where every field-update equation is implemented in an
individual hardware component. The strong advantage of this approach is that the computation
time for a single field update is constant, while the acceleration achieved is directly proportional
to the n~mber of cells in the simulation. Thus, larger simulations achieve greater accelerations
but require more hardware. In addition, in this particular implementation, the FDTD field
updates are implemented using fixed-point arithmetic.

20.4 CONCEPTUAL MASSIVELY PARALLEL FPGA IMPLEMENTATION

Historically, FDTD originated from the field-theory point of view. However, as early as the
1980s, [18] reported an equivalent lumped-circuit representation of FDTD. As shown in
Fig. 20.1, for the lossless, two-dimensional TM case, this representation is simply a network of
inductors and capacitors similar to a filter. Here, the capacitors and inductors represent energy
storage in the electric and magnetic fields, respectively. Through impedance scaling, there are
direct relationships between the capacitor and inductor values and the dielectric and magnetic
material properties of the FDTD grid.

For discussion purposes, it is easier to analyze the one-dimensional FDTD update equations,
a special case of Fig. 20.1. (The same concepts apply to three-dimensional FDTD updates, albeit
the interconnected meshes of inductors and capacitors for that case are more difficult to
graphically depict.) Fig. 20.2 illustrates the lumped-circuit equivalence and voltage / current
signal flow graph for the one-dimensional FDTD grid cell.

-------------------------
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Fig. 20.2 One-dimensional FDTD grid-cell representations.
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Note that, in Fig. 20.2(b), the lis term denotes Laplacian integration. Here, the capacitor is
replaced by a current integrator, while the inductor is replaced by a voltage integrator. Voltages
are represented by the signals along the top of the graph, and currents are represented by the
signals along the bottom. Now, following [19], the integrators can be replaced by lossless
discrete integrators (LDIs) of the form shown in Fig. 20.3.

T/2 t----..,--...

'-----I T/2 ~__--J

Fig. 20.3 Lossless discrete integrator.

Fig. 20.4 illustrates the digital filter form of a one-dimensional FDTD update after some
manipulation of the delays. Here, the value of current is defined at time-point k + 1, while the
value of voltage is defined at k, where k is one-half of a simulation time-step. We note that this
filter contains common building blocks such as adders, multipliers, registers, and delays, which
can be efficiently implemented using pipelined bit-serial technology [10]. This has a relatively
low level of complexity. and thus reduced hardware cost; or alternatively, allows more
computational cells for a given FPGA size. The resulting cell is illustrated in Fig. 20.5.
Many such cells with selected inductive and capacitive properties can be interconnected to create
a large-scale, massively accelerated FDTD simulation.
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Fig. 20.4 Digital filter form of a one-dimensional FDTD update.
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Fig. 20.5 (a) One-dimensional, bit-serial FDTD cell (32-bit system word length); (b) structure for the
capacitor and inductor.

The design in Fig. 20.5 uses signed integers with a 32-bit system word length and 12-bit
coefficients. The boxes following each block represent the delay through that block. Control
signals are distributed around the circuit to mark the arrival of the least significant bit (LSB) at
each point in the loop. Each delay loop in Fig. 20.5 is 32 bits (system word length) long.
The capacitor's delay is distributed between its adder and the rest of the inductor/capacitor loop,
requiring 31 bits of delay in the feedback path. The inductor's delay represents the desired
system word length delay before it is added back into the data path. The multipliers are followed
by a multiply by four, which is used to change the range of coefficients (magnitude larger than
one) that can be represented. Due to the symmetrical nature of the design and calculation of the
two fields, the structures are identical. It is expected that this is not always the case.

As a conceptual example, consider implementing this design using a current Xilinx FPGA,
which has a maximum clock frequency of 37.7 MHz. Each two-dimensional FDTD cell would
require 120 Virtex slices (a measure of hardware usage in Xilinx FPGAs). Operating at a serial
clock of 32 MHz and with a 40-bit system word length, new results would be available every
1.25 flS (i.e., 100,000 iterations would be completed in 0.125 sec). Each three-dimensional
FDTD cell would require 265 slices to represent the six field components, and have a
comparable calculation rate. Here, a 100 x 100 x 100-cell FDTD model would require 4,300
FPGAs to update its 6 x 10

6
field components in parallel. While this scale of hardware is

currently impractical, progressive increases in semiconductor densities could make this approach
feasible in the future. A nearer-term option could be to implement the required hardware as a
smaller collection of ASICs, since the programmability of an FPGA requires dedication of a
significant portion of its available silicon area.
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20.5 CASE STUDY OF USING THE FPGA AS A COPROCESSOR

As noted above, it is impractical at present to provide dedicated logic gates to individually
update each FDTD cell in a three-dimensional mesh, thereby achieving the ultimate parallel
computation. Thus, current research is pursuing a coprocessor approach using: (l) FPGAs to
speed prototyping and development, (2) onboard, collocated memory to improve memory

bandwidth, and (3) resource-sharing to trade off acceleration for hardware requirements.
This section describes a case history of the board-level design issues and results for such an

FDTD accelerator developed at the University of Calgary. Although this accelerator currently
implements two-dimensional field updates, it could be extended to compute fully three
dimensional field updates as a series of two-dimensional planes. The current development
platform [20] consists of an Altera Stratix EPI S25 FPGA, multiple PC 133 memory banks
(128 MB total), and a PCI bridge for communication with the host computer. The accelerator is
now described from a software perspective, followed by brief details of the hardware.

Field variables are located as close to the accelerator hardware as possible by storing these
data in the accelerator's dedicated memory banks. A typical simulation is executed as follows.
The field variables are initially transferred from the host computer software I memory into the
accelerator's memory. The accelerator is activated by a software call, and performs the FDTD
field updates for the entire simulation space for a single time-step. Then, the host computer
software and the accelerator interactively exchange data. Observations and requested field data
are transferred to the host computer, and the local copy of the simulation data is updated.
Fields modified by the host computer software are transferred back to the accelerator memory
and then another time-step is initiated. This process is repeated until the simulation is complete.

We note that only data accessed or recorded by the host PC is transferred from the
accelerator to the host. This saves time between iterations, and works within the limited
bandwidth constraint of the PCI channel. Interaction with the host PC allows important,
nonstandard FDTD computations (i.e., excitations, absorbing boundaries, and so forth) to be

performed in special regions and updated to the accelerator between time-steps. As long as the
regions requiring nonstandard computations are small compared with the overall simulation
space, acceleration is still feasible. Furthermore, the host PC is free to perform its own
computations in parallel with the hardware accelerator, which provides further acceleration.

Conceptually, the hardware architecture consists of three levels. At the first (lowest) level is
the implementation of a single FDTD field-update equation. This is followed by, at the second
level, the connection of many FDTD update equations in parallel to form a "window" of M x N
two-dimensional FDTD cells. Finally, at the third (highest) level, a supervisory state machine
transfers data between the computation engine and local cache, and between local cache and

external memories. Each level is described briefly in the following paragraphs.
At the first level, a generic Yee update for an E or H component (see Chapter 3, Section

3.6.4) is implemented as a hardware circuit. Here, the computer word length (precision) of the
field component and the updating coefficients can be specified independently. Data are also
double-buffered at the inputs to the computation circuit. This two-register architecture allows
simulation data to be concurrently loaded from, and stored to, memory while FDTD

computations are being performed. New input values and results are exchanged between
iterations by swapping the two registers. Thus, the load I store of the structure is overlapped with

the computation of updated fields.
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Fig. 20.6 Connection of M x N two-dimensional FDTD cells to construct a "window."

At the second conceptual level, illustrated in Fig. 20.6, three of the FDTD update equations
are combined to form two-dimensional cells, which are then interconnected to form an M x N
cell simulator. This smaller window of cells is moved throughout the larger simulation space

until all fields are updated.
The current platform implements a 3 x 3 window of cells, due to the finite size of the FPGA.

Most internal field values are loaded once per update sweep, except for edge values, which are
loaded twice. Thus, the larger the accelerator window, the better the ratio of internal cells to
edge cells. While an 8 x 8 window size is more desirable, beyond a crossover point, the
load/store time exceeds that for computation. These must be balanced for optimum acceleration.

The third and final conceptual level, illustrated in Fig. 20.7, controls the flow of data into
and out of the computation engine. From this figure, we see that data are moved from off-chip,
SDRAM memory to an internal cache, which is then accessed to exchange data with the FDTD
"window" described earlier. Another strategy of note is the use of coefficient lookup tables
located in the accelerator to eliminate the memory bandwidth required for coefficients. The
lookup tables are loaded at the start of the simulation and can be updated between time-steps, if
necessary. Finally. it is possible to duplicate a number of the described memory channels to
exchange data with the computation engine as quickly as possible.

The FDTD accelerator described above has achieved a throughput of 75 million two
dimensional cells per second. This exceeds the performance of FDTD software run on a top-of
the-line Pentium 4 system. However, FPGA-based hardware accelerators such as this one have
one key drawback: While they can be extremely well-optimized to perform a certain type of
FDTD update, they are rather inflexible in dealing with the special updates that may be required
in a given simulation. For example, changing from a simple dielectric update to a Debye
dispersion or a thin-wire special cell would require a different hardware configuration. Although
on-the-fly hardware reconfiguration is possible, the associated overhead is currently excessive.
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Fig. 20.7 Block diagram of memory channel to transfer simulation data into lout of computation engine.

20.6 PERFORMANCE OF CUSTOM HARDWARE IMPLEMENTATIONS

We now summarize the reported performance (as of January 2005) of several FDTD hardware
accelerator implementations. The figure of merit is the number of Yee cells updated per second,
with the caveat that the two-dimensional implementations perform three field updates per cell
while the three-dimensional implementations perform six field updates per cell. All comparisons
have been obtained when modeling free-space, metal-box resonators of varying sizes, and some
implementations may optimize coefficients. The semi-optimized software performance was
achieved via compiler optimization without specific tailoring for streaming I vectorized
instruction sets or cache performance.

For the two-dimensional implementations, [9] reported an update rate of 6.25 million cells
per second (6.25 Mcells/sec). Subsequently, [21] reported 13.79 McelIs/sec, and (22] reported
75 McelIs/sec.

For the three-dimensional implementations, [6-8] reported 6.25 McelIs/sec, [15] reported
30 Mcells/sec, and [17] reported 150 Mcells/sec. By way of comparison. semi-optimized three
dimensional software running on a 2.8-GHz Pentium-4 with DDR 400 memory benchmarked at
22.54 Mcells/sec, and several commercial three-dimensional software packages (including
Empire and SEMCAD) benchmarked at 35 to 40 Mcells/sec when run on the same computer.

The results of the research to date on FDTD hardware accelerators are very promising.
It is clear that these accelerators can surpass the performance of a top-end Pentium-4 processor.
Therefore, it is reasonable to expect that specialized FDTD acceleration processors will become
commonplace in the next decade. The next section describes another potential approach to
accelerating FDTD with slightly different hardware.
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20.7 FUNDAMENTALS OF GRAPlllCS PROCESSOR UNITS

In the remainder of this chapter, we discuss the use of graphics processor units (GPUs) as
accelerators for FDTD computations. Unlike special-purpose FPGA hardware, GPU accelerators
are based on mass-produced, consumer graphics cards. Here, Maxwell's equations are expressed
in a graphical language such as OpenGL, rather than in hardware logic gates. While currently
having more limited memory than FPGAs, GPUs provide more flexible implementation,
allowing advanced FDTD features to be readily implemented. This is leading to accelerations
approaching 7: 1 relative to fully optimized FDTD code running on a top-of-the-line PC [23].

20.7.1 Overview

Over the past decade, the need for processing massive amounts of data has exposed a weakness
of conventional von Neumann computer architectures: inadequate memory bandwidth. While in
the 1980s and 1990s the number of "instructions per second" was the metric of interest,
the current need is to quickly process many gigabytes of data. Mass-market PC architectures are
not well-suited for such data processing, because they are designed for generality (i.e., to support
operating systems, for example).

GPUs are actually stream computers [24] optimized for parallelism and memory bandwidth.
An example is the n VIDIA 6800 series GPU with 220 million transistors (the largest mass
marketed processor as of its debut in June 2004). The ability to exploit parallelism comes from
constraining the functionality of the processor to support only the needs of graphics applications.
Therefore, not only are GPUs the most powerful widely available processors, but because of
their constrained functionality, their computational power is concentrated in fewer functional
blocks. Currently, GPUs are being designed with dramatically increasing memory bandwidths
(greater than 35 GB/sec on high-end boards) to satisfy developers in the graphics community
who would otherwise be memory-bound, rather than computation-bound.

Precise architectural descriptions of commercial GPUs are proprietary to the manufacturers.
Therefore, exact specifications analogous to what are available for microprocessors are not in the
public domain. However, enough of a GPU's architecture is revealed through vendor-neutral
program interfaces to understand how it can be used as a fast-streaming FDTD coprocessor.

20.7.2 Graphics Pipeline

The graphics card architecture is referred to as the graphics pipeline. The word "pipeline" here is
used at a much higher level than when referred to by microprocessor documentation. It simply
refers to how data are processed when streamed from an originating location in memory to a
destination in memory, called the render target.

Fig. 20.8 is a high-level view of the graphics pipeline of a typical modern graphics card.
The interface between the central processor unit (CPU) and the GPU is shown on the left of the
figure. The application running on the system CPU is typically a C program using one of two
application programmable interfaces (APIs): OpenGL or Microsoft's Direct X. These APIs
allow the programmer to store data and invoke programs on the graphics card. Currently,
the physical interface to the graphics card is the accelerated graphics port (AGP) bus. In the
near future, the new PCI express bus [25] will constitute a much faster interface, with multiple
OPUs per motherboard supported.
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In a typical graphics program, there are several geometric models consisting of vertices

(and their attributes) making up various shapes, such as balls, cubes, cars, tables, and so forth.

As these shapes move and change scale, geometric transformations are required. In the graphics
card, the vertex processor is responsible for performing these geometric transformations in real
lime. These transformations tend to be mostly operations such as 4 x 4 matrix multiplies of

four-element vectors. The vertex processor is a programmable multiple-instruction multiple-data
(MIMD) stream processor that is optimized to do these kinds of instructions rapidly. The vertex
processor's job is to accept a stream of vertices, process them, and output a transformed stream

of vertices and their attributes, such as primary color, texture coordinate, and fog.
The next stage in the pipeline is the triangle setup. This stage, which is not programmable,

accepts the stream of vertices and turns them into triangles. The rasterizer then takes the
triangles and turns them into fragments. Fragments are defined as potential pixels with red,

green, blue, and translucency components. They are called potential pixels, since they mayor

may not become real pixels resident in the frame buffer displayed on the screen. Subsequent

stages can change the colors of these fragments, or remove them from the scene completely.

Fig. 20.9 illustrates the function of the triangle setup and rasterization stages. This figure shows

the vertices of an octagon being changed into a set of triangles and ultimately rasterized into
fragments.
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Fig. 20.9 From vertices to triangles then fragments.

The next stage identified in Fig. 20.8 is the programmable fragment processor. This single
instruction multiple-data (SIMD) streaming processor accepts the stream of fragments and
changes their color, based on instructions of the fragment program that include fetches to
textures resident in video memory. The fragment program instructions may be as simple as
replacing the fragment color with the color from a particular texture, or may be more
complicated to achieve a special visual effect.

There are several other hardware stages in the pipeline such as fog, alpha translucency tests,
shadowing, antialiasing, and depth buffering. However, these are not relevant to our nongraphics
use of the GPU, and are therefore not discussed. The fragments modified by the fragment
processor that survive subsequent stages are written to the render target and can then be
displayed on the screen. However, in some applications, these data are not displayed but are
instead bound as a texture to be used in subsequent passes as source data. This multipass
rendering technique is used in our implementation of FDTD, as discussed in Section 20.8.6.

20.7.3 Memory Interface

The memory interface between onboard DDR chips and the GPU chip is a critical contributor to
the fast-streaming capabilities of graphics cards. The memory interfaces for two high-end
nVIDIA-based cards and one ATI board are given in Table 20.1 below.

TABLE 20.1

Memory Interface Characteristics

nVIDIA nVIDIA ATl
Characteristic GeForce 6800 GeForce FX5950 Ultra Radeon 9800XT

Bus width 256 bit 256 bit 256 bit

Memory clock speed 1.1 GHz DDR-3 950 MHz DDR-2 730 MHz DDR-2

Peak memory bandwidth 35.2 GB/s 30.4 GB/s 23.4 GB/s
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By way of comparison, the peak memory bandwidth of current 3-GHz CPU-based motherboards
is only:;; 6 GB/sec. Along with the parallelism of the GPU computation blocks, it is the fast
memory access of the GPU that constitutes its potential for better overall FDTD performance.

20.7.4 Programmable Fragment and Vertex Processors

As stated in Section 20.7.2, two of the stages in the graphics pipeline are programmable:
the vertex processor and the fragment processor. The MIMD and SIMD architectures of these
processors are inspired in part by data-flow diagrams and systolic arrays [24]. Therefore,
the focus has been on developing chips with high throughput while sacrificing generality.
This approach yields processors that are highly optimized for stream computations. The left side
of Fig. 20.10 shows the program model for modern programmable fragment processors.

Fragment Processor (FP)

Textures

Constant Registers

Variable Registers

....----

FP1 32 bits

500 MHz !
<

Cache
0:• CD

32 bits 256 bits 0

• L1 & L2 ~

950 MHz
CD• 3
0
-<

iFP8 32 bits

500 MHz

-

Fig. 20.10 Programming model for fragment processor.

The nVIDIA GeForce FX 5950 Ultra has eight fragment processors operating in parallel.
Therefore, eight fragments can be processed simultaneously, each one executing the same
instructions defined in a fragment program. Fragment program instructions are user-definable
via OpenGL or Direct X APIs. A fragment program has access to a set of input registers and
must output to at least one output register (shaded color for fragment), and may write to more
output registers constituting fragment attributes. In order to calculate the final value for the
output register(s), the fragment program can access textures from texture memory (via cache),
a set of constants, and variables that can be set from the main C program each pass.

If a fragment program attempts to execute a texture fetch, the cache receives eight requests
simul taneously. If the data is in the cache, then all fragment programs receive their data in one
clock cycle. However, if the data is not in cache, then a stall occurs. This caching is critical to
GPU performance for data processing applications. It is not clear how this caching works and
what must be done to exploit it. as the documentation is not available. The standard explanation
given by nVIOlA and ATlas to why they do not release their caching specifications is that the
architecture changes significantly with every release, and they are leery of developers designing
for a specific architecture. Therefore, the cache architecture and design needs to be determined
by experimentation on a chipset-by-chipset basis [26].
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20.8 IMPLEMENTING FDTD ON A GRAPIDCS PROCESSOR UNIT

The main tasks in the GPU implementation of FDTD are almost identical with the classic FDTD
algorithm:

1. Initialization; 5. Update interior H-field nodes;

2. Update interior E-field nodes; 6. Update boundary H-field nodes;

3. Update boundary E-field nodes; 7. Archive observation nodes.

4. Update excitation E-field nodes;

One nuance must be understood when using a GPU with a frame buffer (i.e., the buffer used
for display) that does not support floating-point numbers, but supports only 8-bit fixed-point
values. This amounts to clamping all numbers to a range between zero and one. Here, if one
wishes to display the physics of wave propagation without any extra processing, it is important to
make sure that clamping of the field values does not occur upon display. To avoid clamping:
(1) the updating coefficients in the Yee time-stepping algorithm implemented in the GPU should
be scaled (i.e., normalized) so that the E- and H-field values occupy a similar numerical range;
and (2) the magnitude of the modeled excitation should be adjusted so that any properly
occurring physical enhancements of the E- and H- fields do not result in field magnitudes that go
outside the range of zero to one. The latter requirement is a bit tricky, since field enhancements
(e.g., radial E-fields near PEe edges and corners; looping H-fields near thin wires; both E- and
H-fields at standing-wave peaks, especially within resonant structures) may not be quantifiable
before the problem is actually run.

20.8.1 Initialization

The first step in implementing FDTD on a GPU is to load all the required fragment and vertex
programs used for the field updates and the boundary conditions. This is done with the following
function calls which are made available through nVIDIA-specific or Architecture Review Board
(ARB) OpenGL extensions:

1 unsigned char *Ez.J)rograrn_buff = readFile("Ez_fp_float.txt");
2 unsigned int Ez_fpID;
3 glGenPrograrnsNV(l, &Ez_fpID);

4 glLoadPrograrnNV(GL_FRAGMENT_PROGRAM_NV, Ez_fpID,

5 strlen((const char*)Ez.J)rograrn_buff), EZ.J)rogram_buff);

The first line of code is responsible for reading in a text file called Ez_fp_float. txt,
containing the assembly instructions constituting the E (or H ) update equations written as

~ ;r.y
fragment programs. Examples of these fragment programs are provided in Sections 20.8.2 to
20.8.4. The second and third lines of code generate a fragment program identifier, EZ_fpID,
which can be used later to activate or deactivate the program. The fourth line actually loads the
fragment program into video memory, but does not invoke or make the program active.
That step is done before the rendering pass which constitutes an update of all nodes.

The next step in the initialization is to load the field arrays and material properties into
data/texture memory. The following OpenGL function calls are an example of how this is done:
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unsi1gned iot EzHxli'yText.ureID;
2 glGenT'e:xtures (1, 'SzHxHyTextureIDI;
3 GLfloat "pEzHxHyBuffer:o: new GLfloat (i,Width, '. _Hei,gbt!!' ;

4 9 BindTexture (GL_TEXTUREJECTANGLEJN. EzHxHyTe:x,tur D);

5 glTexImage2~ IGL_TEXTURE_RECTANGLEJN. O.GI..JLO"T_RG8A.32c~_

6 iwidth. iHeight. O. GL_,RGBAi G~ LOA'1'. p£zHxH,yBuff );

As with the frag.ment programs. the texture identifiers are manAged b using the fu ti n
call in Line 2. glGenTextures. to g,enerate the texture 10. Line 3' I SlUdard, C 10

build an empty buffer of the correct size. Its factor of four creates cnough room to ~ E:,. H.. ,
H. and one other attribute of the field. such a a ,split field (Eu and E ) Of oeffiient,, -

information. In Line 4, the glBindTexture caU make lbc particular IUtwe .l0 - :" e..
that any future texture-related call affect the attributes of thai particuw ID. lD l.iDe S. me
glTexlmage2D call loads lhe texture data into video memory. AJI parame:len in lbesc uncti
are standard and eXlended OpenGl parameters relaled to texture size and ~&e formaL

In an analogou manner. the coefficients corresponding 10 maaeriaJ propenjc:s for the E·md
H-nodes on the FDTD grid can be loaded as lexture using lhe same calls. It' the C anm
thai builds the material propenies array before loading the data to ideo mem im the
91T'e"'Image2D call. The coeffIcients arc Ieee sed via the E, H. or bounduy-fj - ~t proJRID
as required in lhc related FDTO equation.

In addition to loading the required fragment programs andtext~.thc iDilia-lizati D

involves a series of OpenGL-specific initializations (271. such - opening. . lisbing
a coordinate system. and defining the required rendering larJe15. whicb in our ff-SICftC:8

32-bit floating point wgets (28).

20.8.2 E1edrk and Magnetic Field Updates

Once all of the initialization tasles are accomplished. the POID imul lion ,i e cculcd b
invoking a loop of rendering passe. The equations for the inltrior E~ and HI.. ' in .are
implemented via shon assembly language fragment programs. Consider the rouo in $1.IDple
code thai updates interior E

l
nodes (lines beginning with •.,... are cOllUDen

1 ! ! FPl. 0
2 DEFiNE MY_offset. = (-LO. -1.0. 0.0. 0.0) l

3 • Add offsets to texture coordinate etr d fr r .... e r z: r
4 ADD'Rl.O. f(TEXO).xyxy. ntY_oUset.xny;
5, • Access required H neighbors, old Ez. and CEb <;0 ff c
6 T£X RD. f (TEXO J. TEXO. RECT i

7 TEX RI. z. RlO. xyw%. TEXO j RECT;

8 TEX Rl.y. RIO.zwxy. TEXO. RECTi
9 • Add the dH component. togeth r
10 ADD R:3 .xyzw. RO. zYXW•.Rl.yzxw;

11 ADD Rt .x, RJ .x. -RJ.y;
12 • Multiply dH c0:D1'0nent8 by CEb coefficient stor tI RD.
13 • and add, old £% va u (,00 1088 in this ca. - )
14H:A,D1 o'lCO'~,I.XY%w, R.O.wxyz. R4.xyzw•.RO.xyzw;
15 END



Lin I leU the OpenQL compiler that this is a vl.O fragment program. The DEFINE

MtnK:tj"ion decl· - aeon lant vector used ('0 access neighbors in subsequent texture fetches.
Tb firsl, ADD In truction in Line 4 adds the offsets previously declared to the fragment

. nlin th I are lie· med through from the rasterizer stage (see Section 20.7.2).
reliDI are cal ulaledvia interpolation based on the vertex texture coordinate pairs

iacfuded in the glBeg n,() /glEnd () block in the C program. In order to improve perfonnance.
il ". ible 10 rno c the ,DEFINE and fU'St ADD instrUction 10 the vertex processor. and thereby
stream lhe cr I rdtRales lhroUlh as vcrtcx attributes. After this flfSt ADD instruction is

. uled lh rdiftllC. of two neighbors arcSlored in the xy and zw elements of the RIO

reister.
1M. nc .l du'ec TEX instructions are used 10 access texture memory for the neighbors and one

fi l ient required for Ihc E~ update equation. The next two ADD instructions implement and
sum the H and H ,fimlc-elifferences, and place the resuJI in the x-component of the R4 register.,.
Sub uenUy; Ihc multiply and add (MAD) insU'Uction in Line J4 performs the final III and +
uilbmeti -operations oC the Ez Vee update. Because the three R4. yzw elements are assured 10 be
UfO (28], H

j
, H , and eBb or 'R2. ynr are allowed to flow through unmodified along with the

upda1ed E{ value. All four values arc written to the 0 (COLR) register, which in tum gets written
lO Ihe n .n ·point render IatJCI.

Once the inluior Ez nodes ~ upelaled. the E
t

boundary conditions must be executed.
The iftttri H

j
and H nodes are chen updated via the following fragment program:

I !PP1.O

2 DEf'INE lIlY_offset. {l.0, 1.0, 0.0, O.O};

• Add Q__••t8 to texture coordinate streamed from rast.erizer
4 ADD RIO, f('TEXOJ .xyxy, lIIY_offset.zyxz;

5 I Acce•• r quired E neighbors and old Hxy values
6 TEX RO, f(TEXO), TEXO, RECTi
7 TEX Rl.x, RIO.xywz. TEXO, RECT;
8 TEX R2.x. RIO.zwxy, TElCO, RECT;
9 t Add the dE co~onent8 together
o ADD R3 .y. RO .x. -Rl.x;

ADD RJ.~. R2.x, -RO.x;
2 • Mult ply dE components by hardcoded CHb coefficient

13 and add old Kx,y value. (no 1088 in this case)
14, MAD o(Ci>LRJ, (0 .• 0, 0.697622, 0.697622, O. OL R3, RO;

15 END

The ignificant difference between the H•. r and Et fragment programs is that in the H.."
program, two fields are updaled simultaneously via the vcctor aril.hmetic intrinsic to the fragment
program. Once the neighbors arc arranged appropriately in the TEX instructions and swizzled
i.e., once lheirx, y, z. and w components are reordered) in the two ADD instructions, the MAD

in$lruction calculates H, and H" at the same time. In the sample program above. the coefficients
re hard-coded. rather Ihan being stor:cd in texture memory. as was done in the E

t
program.

Again. the Ec va)ue stored in ao .x is allowed to flow through unmodified.



20.8.3 .8ouDdaria

At orne boundarie . such as PEC surface·. only a single field component requires spt:etJlJ

treatment. (lbe PEC boundary is enforced simply by setting i Er aJues to Al UUI'''''~

u h a within a PML ab orber. aU three field componen . requite peci- band1ing. In l.be
context of the GPU accelerator, all boundary condition are enfo cd . f gmeal programs.
The following section provide ample programs that implement three - un odilio
commonly used by F01'D modelers: the wraparound periodi boundary. the Ii .Uf

absorbing boundary. and the Berenger split-field PML ab rbing boundary.

Wraparound Periodic .Boundary Condition

The approach used here entails using the regula.r E FOTD update. exc.ept th I onc:of the H.
values is taken not from an adjacent node. which does not cICi t 'because we are at the u
but from the H.. node on the opposite side of the domain. Hence. the Ii II iog (t:agmerll

program is exactly the same as that used for E:, except thai one of lhe off . the beigJu . r
domain rather man one. In this example. the, periodic boundary' assumed to be imp led .
the maximum y-coordinate plane of the grid (the "north boundary"):

1 ! ! FPl. 0

2 • Off••t 1. tbe Height (121 in tbi. c•••)
3 ~~_off••t • (1.0, -121.0, 0.0, 0.0),

4 ADD R O. f(TEXO).xyxy, my_offset.xzzYi
5 t Access required li n igbbors and old Ez valu
6 TEX RO, f(TEXO). TEXO. RECT;

i T:EJ{ :Rl. 1.. RIO.)(jIW1.. TExO, FlECT i

8 TEX Rl.y. RlO. zwxy. TEXO. RECTi

9' • Add the dH componentetogether
10 ADD RJ .XYZ'#I. RO .. zyxw •. Rl.yzX\II;

.1 ADD R4.x, RJ.x, -RJ.y;

2 • Hultiply dH components by CEb coeffici nt • or
13 t and add old Ez valu lno 10s8 in this cas )
14 MAD O(CO~R) .xyzw. RO.wxyz. R4.xyzw, RO.xy~w;

5 END

n O.

or course. the other major difference between thi (ragment pr gram the
the £: interior nod . i that it i executed only on the periodi boundar)'. llus'
in OpenGL by drawing a thin rectangle on the edge of the d main.

First-Order MilT Absorbin, Boundary Conditio"

The firsl-order Mur absorbing boundary condition i cnf. reed in lbe _.
boundary: by rendering a thin rectangle on the boundary region wilh fragmenl PfOtuam
execute Ihc relevant equation. However. the form of the r...gmcnl prograttl ,m,plc.lC1
different than that used for the periodic boundary. Consider the (ollow;OB mph: fngmem
program fo.r a firsH>rder Mur absorbing boundary implemented It the ma:dmum
plane of lhe grid (the: "eas'" boundary):



1 J !FP1.0

2 '. Def n ofhet for i:nt.erior node
J DEY NB lQ)'_offaet ,. (O. 0, -1. 0, 0.0, 0.0);
4 Add of aets to texture coordinate streamed from rasterizer

ADD Ril, f(TEXO). my_of.fseti
f ,n· pre-calculated Hur 1st-order constant

7 D PINE It (-0.222:198, 0.0, 0.0, 0.0);
• Ace 88 the required E neighbors

S T£X RO.x, f(TEX.O). TEXO, RECTi
o TEX Rl ..x. Rll, TEllO, RECT;

TEX R2. \iii. Rll, TElCO, :RECT;

12 I Add n Interior and old boundary nodes
3 ADD R3.x. Rl.x; -RO.Xi
4 ,Multiply Hur constant byR3 and add old interior node
5 lOU) oICOLR,), K, R3,R2.~zx;

16 END

Only one neighbor is needed to implement the first-order Mur condition. Hence, the offset
n:Jister in the DEPINE instruction in LiDe 3 contains only one v,alue. -I. The other DEFINE

instruction in Line 1 declares thcfirst-order Mur constant K. In Lines 9. 10. and II, three TEX
insuuctions felCh the old Er value at the boundary and the new and old Ez values at the
neighboring interior nodc, and place these in the RO, Rl. and R2 registers, respectively. In Line
I • th ADD in-ttUclion sums the new E: value at the interior node and the old Ez value at the
boundary. Subsequcntly, in Line 1,5, the MAD instruction performs the K multiplication, and adds
I thi ull the old value of E, at the interior node, thereby completing the updating of Ez at the
boundary. The final result is written to the floating-point render target along with the
unmodified H values.

B~r~ngtr Sp1i'-Fi~ld PML Absorbing Boundary Condition

Unlike the other boundary conditions discussed. Berenger's split-field PML absorbing boundary
c odilion requires that both E and H field components must be updated (with the exception of
the OUlermo t grid boundary planes. which are PEe). The E It and E updates are implementedz .zy
via a fragment program similar to the one shown below:

1 I IFPl. 0

2 DEFINE my:.-offset = {-1.0, -1. O. 0.0, O. O};
3 I Add. offsets to texture coordinate streamed fromrasterizer
4 ADD RlO, f(TEXO) .xyxy, my_offset.xzzYi
5 • Acce8s the required H neighbors and old Ezx and Ezy values
6 TEX RO. f[TEXO), TEXO, RECTi
"1 TEX :Rl. z, Rl0. xywz, TEXO, RECTi
8 TEXRl.y, R10.zwxy. TEXO, RECTi

9 • Access CEa, CEb, CHa, CHb coefficients
10 TEX R4. f[TEXO), TEX1, RECTi
11 Ez,x: The next four instructions calculate Ezx
12 • [Hyl-Hy2,J
13 ADD R2.y,RO.z, -Rl.zi



4. CEb·dHy

.5 HlJL, R). 'i • R4 . y. R2. y ;

6 t CEa"Ez:xold

17 M'ULR'J.y, R4.:x. RO.XI

8 • Ezxnew = CEa~Ezxold .. CEb+dHy

~ ADD RS,x i R7.y, lU.y;
20 • Ezy: The next four instructions caleula,te B%y

2 (Hxl-Hx2]
22 ADDR2.z, Rl.y. -:RO.y;

23 • CEb+dH.x: CEb is hard-coded because it8i~ is zro
24 MOL R6. {O.O, 0 .. 0, 0.100036 i O.O),R2;

25, • Ezynew = Ezyold + cEb-dHx

26 ADD RS.w. RO.w, R6.z;
27 Write Ez. £z:x, Ezy to render target
28 o(COLR]i, (0, 1. I, 0), RO, R5;

29 END

The E, and Eo field' are calculated and stored in tne x a.nd w componenLS of '. S
(and sub equently written to 0 (COLR) along with the unmodified H,I.~ fields. The P .
boundary regions, are not reclangle of single-cell width. with me Mur lid PEe undari
but are instead typically a number of grid cells thick. Therefore. in a sense. the P regions~
reetangl anaJogou to the interior region.

20.8.4 Socuu Excitation

Source excitations are aJsoimplemenled via fragment program. Bceausc une:nl GP .do
suppon 918,1 end [28 J (or 32-bil noating point render largclS. it i nee 1.0 ulale lbe
E:..field forlhe fragments con tituting, the source r,cajon. Then, the. uroc aJu is~ I I.be
E-field. 1be folJowing code implements a soft source cl(c1tation thaI is m ullied in

! ! 'PP1. 0

2 I Dec arat on 0:£ source variabl set every step by C

:) DECLARE SourceVa1ue;

4 DEF1NE my_offset = (-1.0, -1.0, 0,0. 0.0);
5 • Add offsets to t xtur coord1nat atr amed fro
6 ADD R10, f (TEXO') . xyxy, my_oU's t. xzzy;
7 • Acce'se required. H ne,ighborB and old Ez value
8 TEX RO, f(TEXO]I, TEXO, RECTI

9 TEX Rl. z. 'R10. xywz, TEXO, RECT ;

o TO Rl.y, R10.zW'XY, TEXO. RECTI
1 Ace 59 texture U8 d for sinusoidal spatial lDOdul 0.

2 TEX R2.x, f(T£XOJ, TEXl, RECTI

3 • Add the dH components tog tber
14 ADD R3 .X'J%.W. RO.zyx'fol, Rl.yzxw:
15 ADD R4.x, R3 .. x, -R3.y;

ll6 '•.HUil tip)y by coefficient and add old Ez valu
11 MADR5, CO. 691' 6 2 2 , O. 0, O. O. O. 0 ) ,. R4, RO I
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th , sou-rce value in space
19 'L SourceValue "x. R2.Xi
20. lAOdulat.cS source to Ez and write to render target
2 ADD o (COLR) • RS. R6;
22

A llilble passed in h time-step via the main C program is stored as a register, in this
11 - ureeVaJue. All the insarucnons used for the E( update are included in the source

fi_ -ment gram. However, TBXl contains a texture used for spatial modulation, such as is
required with. wa"eguide. These data are stored in R2. x and multiplied by the SouroeValue to

nstilule the spaL; lIy modulated SOUfCe value. This source value is added to the 'calculated
E field and wriUen to the render wgel In the future, it will not be necessary to recalculate the
E. field. _u it will be possible to blend the source value with the updated E

t
value already

~idi.Dg in the render wlel Of course, the source fragment program only operates on the
fragments corresponding to the nodes at which excitation is desired-typically a very small
pcrccn e f the total number of nodes.

In rder to archive observation nodes, it is preferable to store them in video memory until the
imulation ._complete. After the simulation, the data from all the observed time-steps are read

inlO y tem memory for analysis. It is possible to read data back into system memory every
lime (CP. but chis has a negative :impacl on performance.

A ICXlUle for the storagc of observation points is made using the samc OpenGL calls made
tn S ti n 20.8.1. After the E- or H-field has been updated into the render wget, the results
texlure' bound as in Line I below:

glBindT xture(G4-TEXTURB-RECTANGLE-NV. ResultsTextureID)i
2 glCopyTexsubimage2D (GL_'J'EXTt1R.ILREC'I'ANGLE-NV, 0, iU096, i/4096.
3 ProbePoint(O), ProbePoint(l], 1, 1);

line 2 how the function used to copy the data from the render target to the archive or
re ul tUlUR. Consider the data for a particular range of pixels corresponding to the
ob rv . tion Jocalion(). These data are copied from the render target to a range of pixels
c:orrespondinglo Ihe current time-step in the bound archive or results teltturc.Altematively, it is
!possible 10 render an observation point from a texture containing the field values into a render
W'get that is ubsequently released and bound as a texture.

20.8.6 MuJdpass Readeriaa

While: the: rendering sequence varies slightly depending on what kind of boundary conditions are
used. in general the Itmultipass" rendering approach to FDTD is as shown in Fig. 20.11.
Aller initialization, the E( field is updated by invoking a rendering pass over the geometry
com:sponding to the entire two-dimensional FOTD domain., or in other words. ,a rectangle.
Typical OpenGL code used 10 invoke such a rendering pass follows:
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H update

Off-screen
Target 2

Off-screen
Target 1

IE update

Observation
...... ...... ......

... ..., ....... ..........
Off-screen
Target 3

Fia. 10.11 Muhipass rendering.

) ;

I :

1 :glV rtex.2lf •
glVer't,ex2f U... t..

glVertex2 (I ig

glV rtex2 f IRg

EzKxHyT tur.IO);

glBindProgramNVIGL_FRAGMEN'I'_PROGR.A!LN\',
gl'E:nAb e IGL_.FRAGHBNT_PROGRAHJN) ;
glActiveTextureARB(GL_TEXTUREO-ARB);
9 BindTexture(GL_TEXTUREJl.ECTANGLEJN,
glBeginIGL_QUADJ;

glT'exCoo,rd2f 10, iHeight) ;
glTe:xCoord2f 10,0)';

glTexCoord2f(iWidth,O) ;

glTexCoord2f (iWidth, iH ightJ;

gIEnd() ;

gIOi8ableIGL-FRAGHENT_PROG~);

1

2

3
4

S

6

7

8

9

o

The first four line Qf code activate and cboose lhe: Ippropri Ie le IUJU and f I

programs. The glBegin/End block teU the GPU to draw. ~lUlgle with d-'imr:mi,oas lW:LOt<b

)( iHeight pixels. and map the (our comers of teluure unit zero to lbe r Uf COImen;

rectangJe. Thi block of code invokes one rendering pus. During lb' IJJ (the tun::
data arctreamed through the (ragment proce=sor (executing the_me fragment pn)vaml.
allowing the active fragment program to execute the cqual'ion implemented b ,_
After thi pass. aU of the node inside the geometry provided are updated.

Before: the nellt pass. the render tArgct buffer conlaining the updated is
released as a render wget. and bound a lexturc 10 be used wee data (I

Subsequently•. a $Cpar&le p can be used 10 archive ob t\'aljon poin .
constirUleS one imulation lime-Slep. and is repealed for u man,)' time IepI
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2U.7 Display

The GPU be used solely u a coprocessor without 8fty display capabilities whatsoever.
H· ef. it i- po- ible 10 make usc of the inhelent display capabilities with little performance
penalty. IJ1 .rdcr 10 harveSt 'lhe :intrinsic display capabilities of the graphics card. a useful
mappins must be made between the E- and H-field components and the ROB pixel components.
_ hi b ultimalely are lhe only values lhal can be displayed. One possible mapping for lhe
- o-dime ;0 J discussed here is (E

t
, H

K
, H.) -+ (red, green, blue). Furthermore, before

an ROB· CCIO _ are di played, NCb elemenl should be clamped to the numerical range [0, 1],
pre i y discussed.

20.9 PERFORMANCE MEASUREMENTS OF THE GPU ACCELERATOR

The folio ins two~imcnsionaJFOTD simulations were performed to validate the accuracy and
meuurelhe speed of the GPU FOTD accelerator described in Sections 20.7 and 20.8:

1. 1..0 less 512 x 5'12-celJ cavity wilh PEe walls, excited by a step impulse source.
Run duration; 100.000 time-steps.

2. Single 1024 x I28-cell (x x y) row of an EBG strucwre comprised of an array of
circular dielectric cylinders of permittivity s, =4.2 ananged in a square pattern.
Periodic boundary c,onditions applied at the ±y-cdges of the row. First-order Mur
ab orbing boundaries applied at the n-edges oflhe row. Run duration: 20,000
time- (cPS.

3, 2381)( 101-«11 (x x y) rectangular waveguide with PEe walls. Small rectangular
ceramic "fingers" (sr = 5.6, a= 0.01277 S/m) placed at intervals along each wall.
'TE

IO
,euilation with eight~ceJl-thick ,PMLs terminating the waveguide model at

its ±X outee boundaries. Run duration: 30,000 time-steps.

The GPU used was an nVlDlA GeForce PX5950 with 256 MB RAM on a Gainward 5950
Ultra/1800 Golden Sample board. The benchmark system used to compare with the GPU
performance w a 1.6~GHz [ntel Pentium 4 running Windows XP Professional with 256 MB
RAM. 512 KB L2 Cache, and C code compiled by MS VC++ 6.0.

In the three cues siudied, the GPU accelerated the FDTD processing speed by 7.78:1,
7.71:1. and 7.74:1. respectively, relative to FDTD software running on the benchmark PC.
These accelerations imply measured GPU throughputs of 240 to 250 million field updates per
s~cond (MFUPS). Note that lhesc very similar performance levels were achieved even though
the three applications required implementing very different boundary conditions and materials.

A calculation of the maximum attainable throughput of the GPU (without any cache stalls)
indicales dlat 8S7 MFUPS should be possible. Thus, it appears that ,cache-missing may be
responsible for the measured performance being lower by a factor of approximately 3.4:1 relative
to the theoretical value. It is expected that improVed cache and memory models should allow
impro ed performance approachins the lheoretical limit. In addition, analysis of the measured
GPU performAnce indicates that the OpenGL overhead faclor becomes negligible when the field
updating time per complele iteration greatly exccedsthe measured 0.3-ms overhead per iteration
(independent of grid sizc) that supports ,the multipass rendering scheme. This is a factor favoring
the processing of 'large grids.



978 Computational Electrodynamics: The Anile-Difference TIme-Domain, ctbod

20.10 SUMMARY AND CONCLUSIONS

This chapteT discus5ed the concept of hardware acceleration of the FDTD method.
(undamentaUy different techniques were con idered: (I) ~ial·pwposeFPG . and GPU
While FPGAs implement Maxwell's equations in logic gates. with GPU 11 cq1Wi
expressed in graphical languages such as OpenGL. Both pproa.eh ha -e in
demonstrating acceleration of large. nontrivial FOTD _imulation . Order
accelerations relali\lc to optimiud (but conventional) fOTD software runninB, n I . IiDe
PC should be possible in the near future.

FPGA-based accelerator appea.r to be con iderably m re tJ than m - OP ,-
inee special-puqwJse cards, needlO be buih wiLh large a:nd expen i ,e FPOA chi .

While FPGA-based accelerator are capable of handling large mem ry. the ~ Y«)' limited
adaptabilit)'co the special field update needed 10 model the ad need . lIfIe': ,1 U

condition. ii.nd material propertie of importance to FOTO pra liuoDer$. On lbc lbcr haod~

GPU accelerators are based on rna -produced consumer gnphi ards. While OP
currently short on memory. they allow advanced FOTO fealu~ 10 be imp i.n
uaighlforward manner.

The future wiU likely see a hybrid approach tNt combines thebencfi_ of
Industry trends indicate that the hardware acceleration of FOTO should me m
with time. because the speed and complexity of pecial-purpose twd~ Ippcar IJ

faster than those of general CPUs.
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Acronyms and Common Symbols

10
20
3D
It.
ABC
A.DB
Al)1
AFP
It.GP
AlAs
AIGaAs
API
AR
ARB
ASIC
ATR
B
BCGS·FFr
8IT
BOR
c
C
CAD
CCOM
CBM
CFDTD
CPS
CMOS
COM
CP-FOTD
CPML
CPW
D
OBR
OFT
DaM
DG-PSTD
DNA
OSI
E
BSG
ELF
BMP
BXPAR
FCT
PD-NTFF
FDTD

oDC4imensionai
tW04imcosional
lhree4imensional
ampere
absorbing boundary condition
auxiliary differential equation
altemating4ircction implicit
analytical field propagation
accelerated graphics port
aluminum arsenide
aluminum gallium arsenide
application programmable interface
autoregressive
Architecture Review Board
application-specific integrated circuit
attenuated total reflection
magnetic flux density
stabilized biconjugate-gradient fast Fourier transform
bipolar junction transistor
body of revolution
free-space (vacuum) speed of light
capacitance
computer-aided design
concurrent complementary operator method
computational electromagnetics
conformal FOID
complex frequency-shifted
complementary metal oxide semiconductor
complementary operator melhod
contour-palh FDTD
convolutional perfectl.y matched layer
coplanar waveguide
electric flux density
distributed Bragg reflection (or reflector)
discrete Fourier transform
discontinuous Galerkin method
discontinuous Galerkin pseudospectral time-domain
deoxyribonucleic acid
disacte surface integral
electric field intensity
electromagnetic bandgap
extremely low frequency
electromagnetic pulse
exponential autoregressive
fast cosine transform
frequency-domain Dear-'to-far-field
finite-difference time-domain
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FE
FET
FEiD
FFT
FMM
FPGA
f
FSR
FSS
FV
FVTD
FWHM
G
GilAs
G8
GC
GCL
GHl
GLL
GMT
G LSE
GPR
GPU
GY
H
HDL
H-H
HPM
H-pol
I
InGaAs
InGaAsP
lnP
J
KB
L
lC
lCD
LCR
LDI
LiNbOJ
LSB
lTSA
1.1
MB
MCM
MESFET
MFUPS
MHz
M1MI)
MMP
MD

finilC Ckmcnl

field-cffect uantlJlOf

fini II: -elemenl timc-domaln
r t Fourier trlMform
fast multipole rndhod
field-programmable pic am
fenuOkc,ond
free spec1l1J ruge
frequenc)t-selcdivc sutfllCiC
finite volume
finhe·volume timc,..domain
full-width al half-imujmum
conductance
galJium lrKDidc
J;igabytc
c:onduct&nCC capacitaDCe
G uu Chebyshev Lobatto
ligahcrtz
G~~ Legendre lobano
generalized muJlipok lechnique
gcnenHzcd nonhnear Sctuodin
pound-penetrating rad&r
J1lPbi proc unil
&eDCraJiz.ed Yee
mlgnccic field intcmil
hardware dcJcripUOD I IUl&C
borizoolal·boriz.onW
bigh-power miaowavc
hOtllOnlal polaril.luon
current. ampc:m
indium galliumancnidc
indium ,aJliumancnidc: pboipbidc
indium phosphide
electric current dctuhy
kilobyte
induaaocc
inductAnCC CI ~ 't:ana:

tiquid.cry uJ display
indU((or-capKilor-
I le~ disactc inleplOf

lithium n obate
leut Jignificant bit
li~ t per~ I tC'JlB&

IDllfledc cuneO! deAsit
IDCa,byte
mullicbjp module
mctal-semJcooducsor rtdd
million fidd updald PC'.'
mel_hem
multiple-hu'lrud _.~mub!JPN.:>-GIg

multiple muhipole
matched nummca1 dlIpem



MOCVD
MoM
MRI
MR,TD
N-PDTD

",.sA
NBC
NLSE
om
NPC
OS

NTFP
NTNF
NUFFT
PBG
'PC
PC
,PCB
PC(

PCS
PDE
Pee
PEP
PaS
POY
PIC
PLRC
pm
PMC
PML
PPW
pi

PSTD
PWC
Q
QED
QPM
QW
R
RAM
RC
'RCS
RF
RGB
,RLC
.s
SAM
SAR
SSM
SERS
SFr
SHG
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mctalorganic chemical vapor deposition
method :of moments
magnetic resonance imaging
mulliresolution time-domain
nonorLhogon~FDTD

National Aeronautics and Space Adnrinisuation
Numerical ElcoLromagnctics Code
nonlinear SchJl6dinger equation
nanometer
nonlinear photonic Cl)'staJ
nanosecond
oear-to-far-field
neaN~near-field

nonuniform fast :Follrier transfonn
photoDic bandgap
penonal computer
phOlonic crystal
printed circuit board
peripheral component interconnect
person~ communications services
partial differential equation
peJfecc electric conductor
Pauli Exclusion Principle
periodic-gain sllUcwre
planar generalized Vee
particle-in-cell
piecewise-linear recursive ,convolution
picometer
perfect magnetic conductor
perfectly mlUched layer
points per wavelength
picosecond
pseudospectrallime-domain
personal wireless communications
quality factor
quantum electrodynamics
quasi phase ,matching
quantum well
resistance
random.access memory
recursive convolution
:1'IIdar cross section
r$iio frequency
red green blue
resistor inductor capacitor
sca~tering (parameter)
standard anthropomorphic model
specific absorption rale
scanning electron microscope
surface-enhanced Raman spectroscopy
spatialFOuriertnlDsform
second.harmonicgeneration
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SIBC
SIMD
SWR
~NTfF

TE
TE,
TEM
TF/Sf
THz
TIR
TLM
TM
TM

1

TSA
TSCS
TSF
UGS
UHF
ULF
UPML
trrD
UWB
V
VeSEL
VLF
VLSI
V-pol
VSWR
V-v
WDM
WGI
WG2
WGM
WWW
Z
ZCl
A
A.,
~
Ad
-\...
pm

J1S
QI

surf ;e-imped&nct bouncbry COOdUJl:JO

in&le~il\llJUCllon multiple-.-d.W,
standin,-w ye nUo
tirne-domain ncar'·IOo! ·6 Jd
lrIIl ene eleari
trlD verse electric ~llliyc co &he l-dJIlUJIJQII

tnn· :verse electrOmlpc:ti
total-field IlCIIlmd·f1cld
lerahmz
toW iotemaJ renct'li
lrIIlmU ion-line mauia
tAMyene mgneti
tranSYeJ1C m.gne:ti ~!Ili c .:he ~'-du

tapered 5101 anlcn~

loW . nerioS . . ion
thin-Joe (annuJllion
uniform·,pn lttUC't\R

uhrabigb frequency
ullraJow {requc:ocy
unibiaJ perfectly mMCbcd Cf

uniform theory of d frn.c.u
uhnwidcbud
voltage, volu
vcrtic.:al-QVilYIWf ,-'-CmillJn 1uc:f
very low (requmcy
Ycry large Jc iruql'llion
vcrtiw polariuti
voltAIc ltandin'.WI c f'1U

vertica1-vmjcaJ
wavclcnJlh-diy" mWupiurn
waycguide number I
wlvcpide ,number 2
whi pct1nS-gaikry
World Wide Web
impedance
Zhcn,-Cbco-Zlwl,
wavcle.n,th
f~-JpKe (yacuum wa dcnp
Bra" wavclmp
d d«1ric wavdenJ1b
I '01 wavdm'lh
micrometer em .
microsecond
an,ular freq
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to the ,present., visit his Web page at http://www.ece.northwestem.edulecefaculty/Allenl.html
or contacl bim via c>mail at taflove@ece.Dorthwestem.edu.

SIUaD C. BaJDea is an. associate professor in the Department of Electrical and Computer
Engineering and a faculty affiliate of the Department of Biomedical Engineering at the
Uoiversityof Wisconsin-Madison. She received B.S. (with highest honors) and Ph.D. degrees in
electrical engineering from Northwesl.em University, Evanston, Illinois, in 1993 and 1998,
respectively. While working toward her Ph.D.• she was a National Science Foundation Graduate
Fellow. Her current research interests include time-domain computational electromagnetics
algorithms and applications in photonics and bioe)ectromagnetics, as well as electromagnetic
imag,ing. sensing. and thenna) therapy techniques in biological and medical applications.
She has been actively involved in FOID research since 1990, and has coauthored over 130
journal and conlerenc~ publications.

In 2000, Professor Hagness was the recipient of the National Science Foundation CAREER
aWard. and the Presidential Early Career Award for Scientists and Engineers. Subsequently,
sbe wu an. invited panicipanl, in the National Academy of Engi;neering's Seventh Annual
Symposium on Frontiers of Engineering. In 2002, she received the Henry G. Booker Fellowship
from the United States National Committee (USNC) of the Intcmational Union of Radio Science
(URSI). That year, she was also named one of the 100 top yOUDg innovators in science and
engineering in the world by MIT's Technology Review magazine. In 2003, she received the
Universi~y of Wisconsin Emil Steiger Distinguished Teaching Award. In 2004, she received the

98S



9 6 CompulatiQoaJ ElcetrodynamL: The finile-DiffcfCDCC TIJDe·Dom&in d.bod

ement A\liard
omput U D I
ion r

lEEE Engineering in Medicine and Biology Society Barl Care r A -hie
"for out landing contribution to the development and application of
ele tromagneti - technique and microwave diagnostic technologi for the del
an cr."

Pr fe r H Inc ian clc led member of Ihe lEE Antenn I.nd Pro
peS) Admini [f tj ...e Committee 2003-2005. a Member-at.Large r 'S,'

2(07). and the lEEE AP-S Rcpresentative to me USNClURSI 2005- 1. - be .
ociate editor of IEEE Anltnnas and Wirtltss Propa,tJlio12Ulltrs. ~ 5eni r if

IE ,and a member of USNClURSl Commijons A~ B. D. and K. be be
e-mail at hagne engr.wi .edu,

Jeffrey Blaschak (Chapter 12) i' a .ystem architect wim me Ad need Defe i S'Yl~u
Technology Center at Nonhrop-Gromman Corporation. Rolling Me . Oli ..
performs re earch and development (or next-generation CICClJ'()-()pUc . Pre
i e pre-ident. Capital Marlcet Sy tem . at BanlcOne. Chicago. BIino·. b

trading y tern. analytic . and market risle-asse ment tool to mao ge portfoli r in-
and equit)' derivative in lruments. Dr. Blaschak received an M.S. degree from :Purduc' _11... "1
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Geoffrey Burr (Chapter 16) ha been a re earch staff member at Ihc IBM AJmadc:n R
Center. San Jose. California. -ince 1999.Prcviou ly. he received Ph,D. dc,rcc in c:lecJlricaJ
engineering from the California Institute of Technology in 1996. and j incd m, 4 Allm.a.k1I
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Malgorula CeJueh-Mareyslak (Chapter 10) i an i tant prof. __ f'"
Te hnology (WUT). Waraw. Poland. She received an Inttmalionl Bacc:ahw.n:a
United World College of the Atlantic in 1983. Ind M.Sc. nd Ph.D. de
engineering from WUT i.n 1988 and 1996. re pectjYcly. She i one: fie oWn .
Quid:Wave and Concerto electromagnetic- imulati n rtw.re . ell ' 1M
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..ice pmsidcnl of QWBD, I company lhat .is commercializing these tools. She has contributed to
OVCT 80 teehnical publications, and is a reviewer for IEEE Transactions on Microwave Theory
and Te JutiqUtts•.IEEE Transactions on Antennas and Propagation, and IEEE Microwave and
WlrtJus Compoll4tJlS utrers. In addition, she has served as a member of the Technical Program
CommJttee of lhc IEBE Microwave Theory and Techniques Society International Microwave
Symposium. Het research intereslS include numerical modeling of eleccromagnetic problems.

Sblh.Hw(GUbert) Chana (Chapter 9) is a joint postdoctoral research fellow in ,the Department
of Chemistry of Northwestern University and the Center for Nanoscale Materials of Argonne
National laboratory. Pl'cviously, he received a B.S. degree in physics from National Taiwan
URi mily (1994), an M.S.. degree in physics from die University ofCaJifornia, Riverside (1996),
and a Pb.D. degree in electrical engineering from Northwestern University (2004). During his
grad" lcresearch. be studied optical propagat.ion and lasing processes in random media.
His cum:nt research interests include nanopholonics. surface plasmons in metal nanostructures.
sun; -enhaned Raman scallering for single-molecule detection, and parallel-processing
muluphy.sics and 'multiscale FOTD implementations.

Nleolas Cuvanae5 (Chapters .1 I and 14) has been with the Foundation for Research on
Information Technologies in Society at the Swiss Federal Institute of Techno'iogy (ETII). Zurich.
Switz.erl nd. since 1999. Here, he is leading the software and computationa] techniques group.
Previously, he received M.S. and Ph.D. degrees in electrical. engineering from ETH in )'998 and
2002. respectively. In 1996, he joined the Bioelcctromagnetics I EMC Group at ETH, where he
wa involved in computational electrodynamics and related dosimetric applications.
From 1998 to 2002, be was with the Laboratory for Electromagnetic Fields and Microwave
Electronics, as well as the Laboratory for Integrated Systems, both located at ETH Zurich.
Tberc •. bi research acnviti.es were focused on the development of FOro local mesh-refinement
techniques and their application to numerical near-field analysis. In early 2002, he joined
Schmid &. Partner Engineering AG (SP.EAG) Zurich as head of the software R&D team.
focusing on innovations and implementations for SPEAO's experimental assessment and
numerical simulation tools. His primary research interests include the development,
implementation, and application of computati.onal modeling and simulation techniques in
eleelrOmagnetics, in particular, antennas and bioelccrromagnetic interaction mechanisms.

Bans De Raedl (Chapter J8) is professor of computational physics in the Department of Applied
Phy i. . Materials Science Centre, University of Groningen. the Netherlands. He received
hi university deg.ree in physics from the University of Antwerp, Belgium. where, in 1976,
he received a Ph.D. degree for theoretical work on magnetic phenomena in one dimension.
He has held visiting scie.ntistlprofessor positions at the Max Planck Institute, Munich; IBM
ResearcbLaborat.ory, Zurich; and at the Universities of Osaka and Tokyo., Japan. He served two
years as a director of the School of Physics at the University of Groningen. Professor De Raedt
has been the thesis advisor of six Ph.D. recipients, has served as principal investigator of
11 grants and EU contracts, and has coauthored more than 150 publications. After contributing
to the early development of quantum Monte Carlo methods, his interest shifted towards the
imulanon of physical phenomena in the time domain. His main current research interests are

the development of time-domain algorithms for solVing Maxwell's equations. the simulation of
physical models ,for quantum computers, the dynamic properties of nanoscale magnets. and
general quantum phenomena. Professor De Rledt can be contacted at h.a.de.raedt@rug.nl.
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Predrill Edeh1k Chapter 19) L with the fraunhofer-Chalmers Research Centre for lndu.suia1
Mathematic . Gothenburg. Sweden. He received an M.S. degree in engineering pb . . aDd •
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Mualuml Fujii Chapter 9) has been a junior -.sociatc prof. r in the Dq:wtmca
Electrical, Electronic. and S)'lcm Engineering at Toyama Uni ,c: ity. J-pao. j

He received B.E. and M.E. degree (rom Kobe University, Hyo,o, Japan. in J
respectively; and a Ph.D. degree from the University of Victori _ Canada. in I
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eleclromag,netic -, nonlinear optics, and application of wavelecs to scienti6 ~
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Research Award from the University o( Utah (1979-1980; the d' D\lal

Bioelectromagnetics Society for pioneering contribu'Lion lOme field of bilectrollul:ftC:Itic:s
(1995)~ the MiCtowave Pioneer Award of the IEEE Microwave 1bcory and ~ _M".
(2001); and the State of Utah Governor's Medal for SCience and Technolo 2002 "

Stephen Gedney (ChapteT 7 and 11) is a profu_ r in the De-panmenl. r
Computer Engineering at the University of Kenruck)'" where been ,- r:- uh mem
1991. He received a .B.Eng.-Honors degree from M Gill Uni er il . M ntreat Quc:bl:lC
in 1985, and M.S. and Ph.D. degree in electrical engineering from the oj '1,

Urbana-Champaign. Dlinoi . in 1987 and 1991. re_pc lively. He ASAJ
fellow at lhe Jet Propul ion Laboratory. Pasadena, California, in the ummttl I
and was a vi iring professor at HRL laboratone -. Malibu, Calif mia" in 1'996. In 2000, be __
named the Reese Terry Profe or of Electrical and Computer Enlinemnlu "[
Kenlucky. In 2004, he was named an IEEE Fellow for hi eonm uti in
computational electromagnetic. Hi current research i in the I Id of
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and electromagnetic scattering, He can be contacled via e.-mail at godne'y en "

Wojdecb Gwarek (Chapters 9 and 15) i-a professor at W Una - II

(WUl). Warsaw. Poland. He received a B.Sc. degree from WUT in 1970" an
M1T. Cambridge. MusachustU , in 1974, and a Ph.D. degree from - in I
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mid 19 - , be bu ~n engaged in research on electromagnetic analysis in the time domain.
and is Ihe ulbor of about 150 publications in this area. Since 1990. his activity also includes the
de d _nt of the commercial software tools QuickWave and Concerto. which have become
popular wortdwide. Professor Gwarek is the founder and president of QWED, which
cOlJlJDtrCialius et tromagnetic modeling software and consults on industrial design using such

{rware. In 1998. QWED won the prestigious European IT Prize. During his entire
pfi fe ion I carUt. he bas also been involved in teaching field theory, microwaves. and
1- -trom gnetic compatibility. He is a coauthor of an undergraduate textbook on field theory
j I used in PolAnd. Since 200I. he has been a Fellow of the IEEE.

BUD Bou.hm-nci (ChaptcrlS) is a senior principal engineer w,ith DAE Systems. and an
~un -tiltc professor in the Electrical Engineering Department of UCLA. He received

B.S•• M.S .• and Ph.D. dcsrees in electrical and computer engineering from the University of
Dlino' • Urbana..cbampaign, in ,1984, 1985, and 1990, respectively. Until 2002. he was with ,the
Jl Propul ion Laboratory. There. he was a principal investigator for the urban remote sensing
project He also contributed to the space shuttle radar topography mission and the hazard
. voidan e radar system for the Mars-ll.nding project. He was a visiting professor at Ecole
Nation.le Sup6ricure des Tel~ommunications (ENST), Paris, F~ance, in 2000. He has
contributed to two books and more than 100 other publications in the area of computational
elect.romagnetics. His research interests are computational electromagnetics. radar systems,
remote sensing, waveguides and antennas, and applications of FOTD in the design of optical
w ~ vcguides. Dr. Houshmand is a SCnior Member of the IEEE.

Tatsuo Jtob (Chapter 15) is a professor of electrical engineering and holder of the
TRW Endowed Chair in Microwave and Millimeter Wave Electronics at UCLA, which he joined
in 1991. He received a Ph.D. degree in electrical engineering from the University of Illinois,
Urbana. in 1969. From 1966 to 1976, he was with the Electrical Engineering Department of the
Uni ersil.y of llJinois. From 1976 to 1917, he was a senior research engineer in the Radio
Phy ics Laboratory, SRJ International, Menlo Park, California. From 1977 to 1978, he was
a.n associate professor at the University of Kentucky. Lexington. In 1978. he joined the
University of Texas-Austin. where he became a professor of electrica.1 engineering in 1981.
the Hayden Head Cenlennial Professor of Engineering in 1983, and Director of the Electrical
Engineering Research Laboratory in 1984. He received the Shida Award from Japanese Ministty
of Po I and Telecommunications (1998); the Japan Microwave Prize (1998); the IEEE Third
Millennium Medal (2000); and the IEEE Microwave Theory and Techniques Society
Oi languished Educator Award (2000). He was elected to the U.S. National Academy of
Engineering in 2003.

Profes or Iloh is a Fellow of the IEEE. a member of the Institute of Electronics and
Communication Engineers of Japan, and a member of Commissions B and D of USNC/URSI.
He bas served as the editor of IEEE Transactions on Microwave Theory and Techniques
(1983- 1985); the chairman of USNC/URSI Commission D (1988-1990); the vice president
and then president of the IEEE Microwave Theory and Techniques Society (1989. 1990);
the edilor-in-chief of IEEE Microwave and Guided Wave Leners (1991-1994); and the chairman
of URSI Commission 0 (1993-1996). Currently, he is the chairman of the Long-Range
Planning Commiuee of URSL and also serves on the advisory boards and committees of a
nu.mber of organizations. Dr. Itoh has 350 journal publications and 650 refereed conference
presentations, and has written 30 bookslbook chapters in the area of microwaves, millimeter
waves, antennas, and numerical electromagnetics. He has graduated 64 Ph.D. students.
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electrical engineering and computer science from MIT. Cambrid. MilS,s.cl~w;e

Subsequently. be was a po Idoctoral fellow at the IBM Zurich R h L..IUIIlUID

ludied semiconductor quantum well lasers. From 1990 to 2000. be IN
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eng.ineering from T inghua University. Beijing. China in I ; and ( m
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Foundation Graduale Fellow _hip from UW-Madi on in 199 • and the
Student-Paper Competition of lhe 2003 lEEE Intern_donal Micr'Ow. e m urn.
coauthored .7 rdeIced journal publicaljon , three book chapters. and, number-
paper '. Dr. Li' currenl research anrete IS include:, appl.ied a.nd mputa.lional lea:rorM,ttDCticL
bioelectroma,gnetic ,and biophotonics.
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Uta Cbapcer 17) is a professor in the Department of Electrical and Computer Engineering
of Duke Uni ersity, ha,ving joined lbe department in 1999. He received a Ph.D. degree in
elecui -I coginecrin. fTOm the University of DIinois, Urbana-Champaign, in 1989. He was a
postd loral research associate in me Elcctr()magnetics Laboratory of the University of Dlinois,
Urbana-Champaign (1989-1990); a research scientist and program leader with Schlumberger
Doll Research, Ridgefield. Connecticut (1990-1995): and an associate professor with New

exi 0 State UnivCfSity (1996-1999).
Profi- r :Liu·s research interests include computational ,electromagnetics and acoustics,

in erR problems, gcophysical subsurface sensing, biomedical imaging, electronic packaging,
and l.be imulation ofphotonic and nanodevices. He has ,published more than 290 ,papers in
:rer~ joumals and conference proceedin,gs. He is a Fellow of the IEEE and a member of the
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Index

Absorbing boundary conditions (ABCs), 229, 273
analytical, 229
perfectly matched layer (PML), 273 (see also

Perfectly matched layer absorbing
boundary conditions)

Accuracy, order of, 25,45,60,62
Active impedance, antenna array, 599, 644
Alternating-direction implicit (ADI) algorithm,

154,888
Alternative grids

Cartesian, pseudospectral time-domain
(PSTD),150

Cartesian, Yee-like, 80
curvilinear, 471
generalized, 487, 494
geodesic, 99
hexagonal, 82
nonorthogonal, 471, 480, 486
nonuniform, 464
spherical, 86

Analytical absorbing boundary conditions, 229
Bayliss-Turkel, 230
Engquist-Majda, 236
Higdon, 252
Liao,255
Mur,240
one-way wave equations, 236
Ramahi,259
Trefethen-Halpern, 243

Analytical field propagation (AFP), 213, 218
Antennas

active impedance, antenna array, 599, 644
arrays,597,634,640
biomedical applications, 669
cellphone, 508, 647, 653
dipole, 418, 649, 650, 652, 662, 664
dipole array, infinite, 597
EBG reflector, 662
effective area, 631
excitation, 611
feed models, 612
gain, 623
grating lobes, 644
ground-penetrating radar, 663
helical, generic cellphone, 900 MHz, 508
helical, Motorola T250 cellphone, 654

997

hom, standard gain, 628
monopole, PEC, 620
monopole, resistively loaded, 432
near-field simulations, 647
near-to-far-field transformations, 329,621
plane-wave source, 204, 625
radome interaction, 12, 667
receiving, 609, 616
reciprocity, 631
scan blindness, 600
slotline, 634
specific absorption rate (SAR), II, 647, 650,

652,658
symmetry, 610, 621
thin-wire subcell model, 418
transmitting, 607. 615
Vivaldi,634
voltage standing-wave ratio (VSWR), 647

Autoregressive models, 697
covariance method, 699
forward-backward method, 70 I
nonlinear predictor, 702

Auxiliary differential equation methods, 361, 376,
387,394

four-level two-electron atomic system, 394
linear dispersive materials, 361
nonlinear dispersive materials, 376
optical gain materials, 387, 394

Backscattering from strongly forward-scattering
objects, 348

Band diagrams, photonic crystal, 774, 775, 782,
793, 796

Bayliss-Turkel radiation operators, 230
cylindrical coordinates, 234
spherical coordinates, 231

Berenger's perfectly matched layer (PML)
absorbing boundary condition (ABC), 273, 276,
282

stretched-coordinate formulation, 282
three-dimensional case, 281
two-dimensional TEz case, 276
two-dimensional TMz case, 281

Biophotonics, 822
Blackman window, 779, 788,801,866
Bloch boundaries, 776, 797, 808



998 Computational Electrodynamics: The Finite-Difference Time-Domain Method

Bloch equation, 394
Bodies of revolution (BOR), 517

difference equations, off-axis, 519, 525
difference equations, on-axis, 529
field expansion, 517
numerical stability, 535
particle accelerator physics, application, 543
PMLABC, 536

Bootstrapped waveguide source, 224, 745
Born-Oppenheimer approximation, 378
Bragg wavelength, 766, 767
Breast cancer detection, microwave, 11, 669
Brillouin zone, 774, 782, 793, 796, 798, 802

Cancer detection, 11,669,824
breast cancer, ultrawideband microwave, II,

669
cervical cancer, optical scattering, 824

Capacitance, differential, 681
Capacitance, intrinsic space cell, 179
Capacitor, lumped, 709
Cell phone models, 11,508,647,653
Characteristics of FDTD methods

classes of algorithms
dynamic range
scaling to large problems

Chebyshev polynomial algorithm, unconditional
stability, 892

Chebyshev pseudospectral time-domain (PSTD)
method, multidomain, 861

Chebyshev PSTD method, single domain, 857
Chimera grid, 908
Circuit elements, lumped, 706 (see also Lumped

circuit elements)
Circuits, 677 (see also Electronic circuits, high-

speed)
Coatings, subcell models, 447
Complementary operator method (COM), 259
Complex-frequency analysis, 40, 130

Courant factor normalization, 133
stability bounds, 132, 154
stable and unstable ranges, 131

Complex frequency-shifted (CFS) tensor, 294
Complex-valued numerical wavenumbers, 32, 120

one-dimensional scalar wave equation, 32
propagation along principal lattice axes, 121
propagation along grid diagonals, 123

Concurrent complementary operator method
(CCOM),261

Contour-path grid-cell technique, 86, 408, 411,
415,420,427,432,447,450,519

average properties model of diagonal and

curved dielectric surfaces, 410
bodies of revolution, 519, 521, 523, 528, 529,

532
coatings on PEC surfaces, 447
diagonal/curved-surface models, 410, 420,

424,528
latitude-longitude grid, 86
material sheets, 427
relativistically moving PEC surfaces, 450
slots in PEC screens, 411
surface impedance, 432
wires, 415

Contravariant and covariant field components, 474
Convolutional PML (CPML), 302, 310, 313

computer implementation, 307
finite-difference expressions, 302
general media, 310
numerical experiments, 313
photonics applications, 794

Courant factor, 30, 109, 133, 142
Courant stability bound, 42, 132, 154
Current, definition, 679
Curved surfaces, subcell models, 410, 420, 424
Curvilinear coordinates, 471,858

Debye media, 354, 358, 361, 380
Diagonal/curved-surface subcell models, 410,

420,424
Differential capacitance, 681
Differential inductance, 682
Digital signal processing, 694
Diode, lumped, 714
Dipole antenna models, 418, 649, 650, 652, 662,

664
Dirichlet boundary, 911, 913
Discontinuous Galerkin method (DGM), 873
Discrete Fourier transform (OFT), 335
Disk resonators, photonie, 748, 756
Dispersion (see Numerical dispersion)
Dispersion compensation, TF/SF technique, 213
Dispersive materials, 353

auxiliary differential equation (ADE)
methods, 361, 376, 387, 394

Debye media, 354, 358, 361
Drude media, 355, 365
four-level two-electron atomic system, 394
gain materials, optical, 387, 394
Lorentz media, 354, 358, 363
magnetized ferrites, 369
nonlinear dispersive media, 376
piecewise-linear recursive-convolution

(PLRC) method, 355



Dispersive numerical wave propagation in one
dimension, 29

complex numerical wavenumber regime, 32
example of calculation of numerical phase

velocity and attenuation, 34
examples of calculations of wave propagation,

34
general solution, 30
real numerical wavenumber regime, 31
sample values of numerical wavenumber and

phase velocity, 29
superluminal propagation, 33, 38

Dispersive numerical wave propagation in two and
three dimensions, 107, 110

anisotropy of numerical phase velocity, 111
comparison with ideal dispersion case, III
complex-valued numerical wavenumbers, 120
derivation of dispersion relation, 107
extension to three dimensions, 110
intrinsic grid velocity anisotropy, 116
numerical phase velocity, sample values, III
superluminal propagation, 126-129

Distributed Bragg reflection (DBR), 400, 765, 770,
798, 802

Double-Doppler effect, 454
Drude media, 355, 365
Dynamic range, predictive, 7

Earth-ionosphere waveguide. 10, 85
Effective area, antenna, 631
Electric and magnetic current sources, 175

sinusoidal sources. 178
sources and charging, 176
transient (pulse) sources, 178

Electromagnetic-bandgap (EBG) structures, 13,
553,560,595,662,731,877

interconnect, 30 to 70 GHz, 13,731
reflector, antenna, 662
reflector, microwave. 560, 877
woodpile, 595

Electromagnetic pulse (EMP), 2
Electronic circuits. high-speed, 677

capacitance, differential, 681
capacitance, intrinsic space cell. 179
capacitor, lumped, 709
circuit elements, lumped, 706
circuit parameters, basic, 679
current, definition, 679
digital signal processing, 694
diode, lumped, 714
electromagnetic bandgap (EBG) interconnect,

13, 731
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impedance, definition, 680
inductance, differential. 682
inductance, intrinsic space cell, 183
inductance, lumped, due to a circuit

discontinuity, 682
inductance, power-distribution system, 685
inductor, lumped, 711
interconnect, multilayered, 690
lumped circuit elements, modeling, 706
MESFET amplifier model, 723
microstrips, parallel coplanar, 688
resistive voltage source, lumped, 708
resistor, lumped, 708
S-parameters, definition, 680
S-parameter extraction for general

waveguides, 692
signal integrity, 678
spectrum estimation, 694
SPICE, linkage to FDTD, 717
transistor, bipolar junction, lumped, 715
transmission line parameters, definition, 679
two-terminal network, arbitrary linear,

lumped,711
voltage, definition, 679

ELF propagation, 10,85,96
Engquist-Majda one-way wave equations, 236

Mur finite-difference scheme, 240
numerical experiments, 247
one- and two-term Taylor series, 237
theoretical reflection coefficient analysis. 245
Trefethen-Halpern generalization, 243

Equivalence theorem, surface, 338
Exponential autoregressive (EXPAR) model, 702
Extended FDTD formulation, lumped circuit

elements, 706
Extinction ratio, optical resonators, 755

Fabry-Perot cavities, 390, 765
Fast Fourier transform, nonuniform, 855
FDTD acronym, origination, 4
FDTD modeling applications

antenna, dipole, driving-point characteristics,
418

antenna, dipole, 12 cm, 900 MHz, E-field in
layered bone-brain half-space, 649

antenna, dipole, 17.4 em, 840 MHz, SAR in
rectangular brain phantom, 650

antenna, dipole, 7.7 cm, 1.9 GHz, SAR in
spherical brain phantom, 652

antenna, dipole, infinitesimal. 900 MHz,
SAR in spherical brain phantom, 650

antenna, dipole, EBG reflector, 662
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antenna feed, one-way signal injector, 618
antenna, helical, generic cellphone, 900 MHz,

508
antenna, helical, Motorola T250 cellphone,

654
antenna, horn, standard gain, 628
antenna, infinite array of dipoles, 597
antenna, monopole, PEC, 620
antenna, monopole, resistively loaded, 432
antenna, Vivaldi slotline, 634, 640
antenna-radome interaction, 12, 667
breast cancer detection, microwave, 11, 669
capacitor, lumped, microstrip termination, 710
cavity, rectangular PEC, dielectric loaded, 705
cavity, twisted elliptical PEC, 421
cellphone, generic, 900 MHz, helical antenna,

508
cellphone, generic, 900 MHz, monopole

antenna, 647
cellphone, Motorola T250, II, 653
cervical cancer detection, optical, 824
circuit-board, meshed multiplane, power-

distribution system, 687
coaxial line, transmission de to 20 GHz, skin

effect modeled, 444
computer circuit-board module, 690
dielectric resonator, isolated cylindrical, 697
diode, lumped, microstrip termination, hard

clipping, 715
electromagnetic bandgap (EBG) interconnect,

30 to 70 GHz, 13,731
EBG reflector, antenna, 662
EBG reflector, microwave, 560
EBG, woodpile, 595
extremely low frequency (ELF) propagation,

10,96
frequency-selective surface (FSS), 597
gain medium, optical, 390
ground-penetrating radar, 663
line current above lossy half-space, 440
laser, ID Fabry-Perot microcavity, classical

gain model, 390
laser, ID distributed Bragg reflector (DBR)

microcavity, semi-classical gain model. 400
laser, ID vertical-cavity surface-emitting

(VCSEL), 765
laser, photonic crystal microcavity, 14,810
MESFET amplifier, 6 GHz, 723
microstrip bandpass filter, 699
microstrip double-stub structure, 702
microstrip low-pass filter, 469
microstrips, parallel coplanar, 688

particle accelerators, 547
particles, micron size. nanometer-scale

refractive-index fluctuations, optical
backscattering. 827

periodic screen. lossy, two-dimensional, 563,
566,577,583

photonic crystal, square lattice, 774
photonic crystal, triangular lattice, 782
photonic crystal, triangular lattice, finite-

thickness slab, 793
photonic switch, cross-waveguide, 15, 812
racetrack, photonic, 752, 761
radar cross section (RCS), closely spaced

pair of PEC spheres, 424
radar cross section, PEC winglike object, 422
radome-antenna interaction, 12, 667
relativistically moving I vibrating PEC

surfaces, plane-wave scattering, 454
resonator, air-bridge. photonic, quasi-I D

DBR structure, 770
resonator, circular disk, photonic, 756
resonator, circular ring, photonic, 750, 752
retinal rod, vertebrate, 822
slotted PEC screen, penetrating fields, 413
solitons, spatial optical, 383
solitons, temporal optical, 381
transistor, bipolar junction, 717
two-terminal linear lumped network, arbitrary,

parallel microstrip termination, 712
waveguide, cylindrical PEC, PML ABC, 543
waveguide, defect mode, triangular-lattice

photonic crystal, 795
waveguide, dielectric slab, photonic, 746
waveguide, lossy sheet loading, 430
waveguide, lossy walls, 440
waveguides, defect mode, square-lattice and

triangular-lattice photonic crystals, PML
terminations, 804

Wilkinson power divider, 32 GHz, 499
woodpile EBG structure, 595

FDTD I finite-element (FE) hybrid techniques 907
FDTD I FE interface, stable, 924
finite elements, time domain, 910
hexahedral (brick) finite elements, 918, 921
mesh generation, 935
pyramidal finite elements, 918. 922
subcell thin-slot model, 939
subcell thin-wire model, 936
tetrahedral finite elements, 918, 919

FDTD I FE hybrid techniques, modeling
applications

loop antenna, thin wire, 941



radar cross section, NASA almond, 943
radar cross section, Saab Trainer aircraft, 12,

945
scattering from PEC sphere, 933
sinuous antenna, four arm, 948
thin-wire / thin-slot coupling, 941

FDTD / FE interface, stable hybrid, 924
alternative time-stepping schemes, 930
extensions of hybrid FDTD-FE concept, 931
generalized Newmark scheme, 928
proof of stability, 929
reflection at FDTD-FE interface, 931
spatial discretization, 924
time stepping, 927

FDTD, hardware acceleration, 955
background literature, 956
design considerations, 957
field-programmable gate-array (FPGA)

implementations, 958, 962
graphics processor units (GPUs),

fundamentals, 965
GPU, FDTD implementation, 969
performance, custom hardware, 964
performance, GPU, 977

Ferrites, linear magnetized, 369
Field-programmable gate-array (FPGA) hardware

acceleration of FDTD, 958, 962
Filter diagonalization method, 780, 800
Fine geometrical features, modeling, 407
Finesse, 747
Finite differences, 23, 24, 60
Finite-difference time-domain (FDTD) methods

characteristics, 3, 6
history, partial, 4
modeling applications (see Examples of

FDTD modeling applications)
Finite elements, time domain, 910, 918

coupled curl equations, 910
equivalences between finite elements and

FDTD,917
hexahedral (brick) finite elements. 918,921
pyramidal finite elements, 918, 922
tetrahedral finite elements, 918, 919
wave equation, 913

Finite-volume time-domain (FYTD) methods, 480,
908

FIoquet boundaries, 776, 784. 797, 802, 808
FIoquet modes, 555, 600. 926
Four-level two-electron atomic system, 394
Fourier PSTD method, single domain, 150, 854
Fourth-order accurate spatial differences, 139
Free spectral range (FSR), 747
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Frequency conversion, 813
Frequency-domain near-to-far-field (FD-NTFF)

transformation, 329, 340, 624
Frequency-selective surface (FSS), 553, 597

Gain, antenna, 623
Gain materials. optical, 387. 394
Galerkin's method, 910, 912, 928, 949
Gauss-Chebyshev-Lobatto (GCL) points, 851, 865
Gauss-Legendre-Lobatto (GLL) points, 873
Generalized multipole technique, 424
Generalized Newmark scheme, 928
Generalized Yee algorithm. 487, 494
Geodesic grid, 99
Graphics processor unit (GPU) hardware

acceleration of FDTD, 965
Grating lobes, 555.644
Green functions, 171,331,340,806
Green's theorem, 330
Grids

alternative. 80, 86,99, 146, 150,463
bodies of revolution, 517
contour-path subcell models, 408
generalized Yee. 487, 494
nononhogonal and unstructured, 463
periodic, 553
Yee, 58, 59

Ground-penetrating radar, 663

Hamiltonian, 394
Hard sources, 169
Hardware acceleration of FDTD, 955 (see FDTD,

hardware acceleration)
Hexagonal FDTD grids, 82.99, 146
Higdon radiation operators, 252
High-order methods, 47, 139, 150
High-power microwaves (HPM)
High-speed electronic circuits, 677 (see also

Electronic circuits, high-speed)
History of FDTD methods, partial, 4
Hom antenna model, 628
Hybrid FDTD I FE techniques, 907 (see FDTD /

FE hybrid techniques)

Impedance, definition, 680
Incident-wave source conditions, 169,625

dispersion compensation, total-field /
scattered-field technique, 213

electric and magnetic current sources, 175
hard sources. 169, 171
plane-wave source condition. 185,625
scattered-field formulation, 220
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total-field / scattered-field (TF/SF) technique,
186,193,204,213,628

waveguide source conditions, 223
Index-contrast guided-wave structures, 743
Inductance, differential, 682
Inductance, intrinsic space cell, 183
Inductance, lumped, circuit discontinuity, 682
Inductance, power-distribution system, 685
Inductor, lumped, 711
Intrinsic grid velocity anisotropy, 116
Irregular nonorthogona1 FDTD grids, 480, 486

structured. 480
unstructured, 486

Kerr nonlinearity, 378, 380, 383

Lasers, microcavity
gain model, classical, 390
gain model, semiclassical, 400
photonic crystal microcavity, 14, 810
vertical-cavity surface-emitting (VCSEL), 765

Latitude-longitude grid, 86
Lattice cell capacitance, intrinsic, 179
Lattice cell inductance, intrinsic, 183
Lax-Richtmyer equivalence theorem, 47
Leontovich impedance boundary condition, 434
Liao absorbing boundary condition, 255
Light line, photonic crystal, 793, 795,802, 803
Linear dispersive materials, 361
Linear tapered slot antenna, 634
Lobatto quadrature. 910
Lorentz media, 354, 358, 363, 380
Lumped circuit elements, modeling, 708

capacitor, 709
diode, 714
extended FDTD formulation, 706
inductor, 711
resistive voltage source, 708
resistor, 708
SPICE linkage to FDTD, 717
transistor, bipolar junction, 715
two-terminal linear network, arbitrary, 711

Magic time-step, 25, 29
Magnetized ferrites, 369
Matched numerical dispersion (MND), 213, 214
Material sheets, subcell models, 427
Matrix-exponential solution, Maxwell's equations,

884
Maxwell's equations, 1,51,858,871,873,884

Ampere's law, 51
conservation form, 858

curvilinear coordinates, 473, 858
electric and magnetic loss, 53
electric and magnetic source currents, 53
Faraday's law, 51
Gauss' law for the electric field, 52
Gauss' law for the magnetic field, 52
matrix-exponential solution. 884
one-dimensional case, 56
Riemann solver, 871
three-dimensional case, 51
two-dimensional cases, 54
weak form, 873, 875
Yee algorithm, 58

MESFET amplifier model, 6 GHz, 723
Mesh generation, hybrid FDTD / FE, 935
Microcavities, photonic, index-contrast, 747, 756,

761
Microcavities, photonic crystal, 14,807,810
Microcavity lasers, 14,390,400, 765, 810
Modeling applications, FDTD (see FDTD

modeling applications)
Modified Yee algorithms, 138

centered phase-velocity distribution, 138
fourth-order spatial differences, 139
generalized, 487, 494
hexagonal grids, 146
pseudospectral time-domain (PSTD), 150,847

Monopole antenna models, 432, 620
Mur ABC, 240, 914

Nanoplasmonic devices, 820
Near-to-far field (NTFF) transformations, 329, 621

backscattering from strongly forward-
scattering objects, 348

frequency domain, three dimensions, 340, 624
frequency domain, two dimensions, 329
obtaining phasor quantities using the discrete

Fourier transform, 335
radar cross section, definition, 335. 343
surface equivalence theorem, 338
symmetry, use of, 621
time domain, three dimensions, 343, 622

Newmark-Beta scheme, 916
Newmark scheme, 915, 930
Newmark scheme, generalized, 928
Nonlinear electronic circuit elements, 714, 715,

717
Nonlinear dispersive materials, 376, 387, 394
Nonlinear materials, second-order, optical, 813
Nonlinear photonic crystal (NPC), 817
Nonlinear Schr6dinger equation (NLSE), 384



Nonorthogonal and unstructured grids, 463
generalized Vee algorithm. 487. 494
global curvilinear coordinates, 471
irregular nonorthogonal structured grids. 480
irregular nonorthogonal unstructured grids,

486
locally confonnal grids. globally orthogonal,

471
nonunifonn orthogonal grids, 464
planar generalized Vee (pGY) algorithm, 494
subgrids, Cartesian, 50 I

Norton equivalent circuit. FDTD space lattice, 719
Numerical dispersion. 27, 107,213,856

compensation for total-fieldlscattered-field
technique. 213

complex-valued wavenumbers, 32, 120
fourth-order spatial differences. 139
hexagonal grids. 146
modified Vee algorithms, 138 .
numerical phase velocity, III
numerical wavevector, 109
one-dimensional scalar wave equation. 27
periodic-structure models. 559. 569, 574, 581
pseudospectral time-domain method, 150. 856
three-dimensional propagation. 110
two-dimensional propagation, 107
wave-propagation examples, 34, 126

Numerical instability, examples
one-dimensional propagation. 43
two-dimensional propagation, 135, 136

Numerical phase velocity, 30. III
anisotropy, III
intrinsic grid anisotropy, 116
sample values, 29, 111
superluminal, 38, 123. 126-129

Numerical stability, 39. 128.535.856,883
alternating-direction implicit (AD!)

algorithms, 154
body-of-revolution algorithms. 535
complex-frequency analysis. 40. 130
Courant factor, 30. 109, 132-134, 142
Courant stability bound. 42, 132-134, 142,

154
examples of numerical instability, 43. 135
generalized stability problem, 137
generalized Vee algorithm, 491
irregular nonorthogonal structured grids, 485
nonorthogonal curvilinear grids. global

coordinates. 477
periodic-structure models. 570. 573, 580, 589
planar generalized Vee algorithm, 499
pseudospectral time-domain method. 856

Index 1003

subcell models. 457
unconditionally stable techniques. 883
Vee algorithm, 128
Zheng-Chen-Zhang alternating-direction

implicit algorithm. 155

One-dimensional scalar wave equation (see Scalar
wave equation, one-dimensional)

One-way wave equations, 236
Optical gain media. 387, 394
Optical spatial solitons, 383
Optical temporal solitons, 381
Order-N method, photonic crystal band structure,

775, 806
Order of accuracy, 25.45,60,62.468

Pade approximation, 702
Particle accelerators, application. 547
Particle-in-cell (PIC) algorithms, 546
Pauli Exclusion Principle, 394
Penalty methods, 868, 908
Pencil-of-function technique, 702
Perfectly matched layer (PML) absorbing

boundary conditions (ABCs), 273, 536, 590
anisotropic PML, 285
Berenger's PML, 273, 276. 282
body-of-revolution algorithm. 536
complex frequency-shifted (CFS) tensor, 294
convolutional PML (CPML), 302, 310, 313
numerical experiments. 313
periodic structures, 590
photonics, applications, 744, 794. 804
stretched-coordinate fonnulation, 282
theoretical perfonnance. 291
uniaxial PML (UPML), 285. 297, 590

Periodic structures, 553. 765
absorbing boundary condition, 590
dipole antenna array, infinite, 597
direct field methods, 559
distributed Bragg reflector (DBR) structures,

765. 770
electromagnetic bandgap (EBG) structures,

13.553,560,595
field-transfonnation techniques, 567
FJoquet modes. 555
frequency-selective surface (FSS). 553
grating lobes, 555
lossy materials, 575, 582
multiple-grid approach. 571
numerical dispersion, 559, 569. 574,581
numerical stability. 570, 573, 580, 589
photonic crystals. 14, 743, 772, 817
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scattering from, review of, 555
split-field method, 578, 583
woodpile EBG structure, 595

Photonic bandgap, 772
Photonic crystals, 14, 15,743,772,817

band-structure calculation, 774
mode-pattern calculation, 787
nonlinear, 817
resonators, 14, 807
variational approach, 790
waveguides, defect mode, 15,791

Photonics, 14, 15,743
band structure, photonic crystals, 774, 790,

793, 795
biophotonics, 743, 822
cross-waveguide switch, 15, 812
defect-mode waveguides, photonic crystals,

15, 791
disks, laterally coupled, 756
distributed Bragg reflector (DBR) structures,

765, 770
FDTD modeling issues. 744, 748, 778, 784,

820
frequency conversion, 743,813
lasers, microcavity, 14,743,765,810
microcavities, DBR, 765, 767, 770
microcavities, index-contrast, 747, 756, 761
microcavities, photonic crystal, 14, 807, 810
mode patterns, photonic crystals, 787
nanoplasmonic devices, 743, 820
nonlinear materials, second-order, 743, 813,

817
periodic structures, 743, 765
photonic crystals, 14, 15,743,772,817
plasmons, surface, 820
quasi-phase-matching (QPM) techniques, 813
racetracks, laterally coupled, 752
racetracks, vertically coupled, 761
rings, laterally coupled. 747, 752
second-harmonic generation (SHG), 814
tissue optics, 828
variational approach, computation of band

structure of photonic crystals, 790
vertical-cavity surface-emitting lasers

(YCSELS), 743, 765
waveguides, index contrast, 744, 750, 760
waveguides, photonic crystals, defect-mode,

15,791,795,798,803,806
whispering-gallery modes, disks, 743, 756,

760
Piecewise-linear recursive-convolution (PLRC)

method, 355

Planar generalized Vee (PGY) algorithm, 494
Plane-wave source, 185, 201, 625
Plasmons, surface, 820
PML (see Perfectly matched layer absorbing

boundary conditions)
Prony's method, 438, 695, 780
Pseudospectral time-domain (PSTD) method, 150,

813,828,847
approximation of derivatives, 847, 855, 860,

862
Chebyshev method, multidomain, 861
Chebyshev method, single domain, 857
discontinuous Galerkin method, 873
Fourier method, single domain, 150,854
numerical stability and dispersion, 150, 856
penalty method, multidomain, 868

PSTD modeling applications
bistatic radar cross section of finite-length

lossy dielectric cylinder, 868
electric dipole adjacent to heat sink slab, 878
electric dipole adjacent to PEC cube, 868
electromagnetic bandgap structure, 877
line current source in cylindrical hole within

infinite lossy dielectric medium, 866
plane wave impinging upon dielectric cube,

868
point electric dipole in cylindrical hole within

infinite lossy dielectric medium, 866
second-harmonic generation (SHG), 814. 817
tissue optics, 828

Quasi-phase-matching (QPM) techniques, 813

Radar, military defense applications, 2
Radar cross section (RCS), 12, 335, 343, 422, 424,

943,945
Radome-antenna interaction, 12, 667
Raman nonlinearity, 378, 379, 380
Rate equations, 397
Reciprocity, 631
Rejection ratio, optical resonator, 756
Relativistically moving PEC surface, 450
Resistive voltage source, lumped, 708
Resistor, lumped, 708
Riemann solver, Maxwell's equations, 871
Runge-Kutta method, 855, 861, 879

S-parameters, definition, 680
Scalar wave equation, one-dimensional, 21

dispersion relation, 22
finite differences, 23, 24
magic time-step, 25, 29



numerical dispersion, 27
numerical stability, 39
order of accuracy of finite-difference

approximation, 25, 45
propagating-wave solutions, 21

Scaling of FDTD models to large sizes
Scan blindness, antenna array, 600
Scattered-field formulation, 220

application to dielectric structures, 221
application to PEC structures, 220

Scattering (see Radar cross section)
Second-harmonic generation (SHG), 814
Second-order nonlinear optical materials, 813
Semi-implicit approximation, 63
Sidewall roughness, optical resonator, 755
Signal integrity, 678
Silver-Muller condition, 914
Slots, subcell models, 411
Siotline antennas, 634
Solitons, optical

spatial, 383
temporal, 381

Sources (see lncident wave source conditions)
Spatial optical solitons, 383
Specific absorption rate, 647, 650, 652, 658
Spectrum estimation, 694, 780

autoregressive models, 697
filter diagonalization method, 780
Pade approximation, 702
Prony's method, 695

SPICE, linkage to FDTD, 717
basic idea, 718
Norton equivalent circuit, FDTD space lattice,

719
Thevenin equivalent circuit, FDTD space

lattice, 721
Stability (see Numerical stability)
Subcell models, 407,936

bodies of revolution, 528
coatings, 447
contour-path models, 408, 411, 415, 420, 427,

432,447,450
diagonal and curved surfaces, 410, 420, 424
material sheets, 427
relativistically moving PEC surfaces, 450
surface impedance, 432
thin slots in PEC screens, 411, 939
thin wires, 415,936

Subgrids, Cartesian, 50 I
Superluminal propagation, 34, 126
Supraconvergence, 464, 467
Surface equivalence theorem, 338
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Surface impedance, subcell models, 432
frequency-dependent, convolution-based, 436
frequency-dependent, equivalent-circuit

model,442
monochromatic, 434

Symmetry, 610, 621, 794

Tapered slot antenna, 634
Temporal optical solitons. 381
Thevenin equivalent circuit, FDTD space lattice.

721
Time-domain near-to-far-field (TD-NTFF)

transformation, 343. 622
Tissue optics, 828
Total-field / scattered-field (TF/SF) technique, 186,

193,204,213,628
numerical dispersion compensation, 213
one-dimensional formulation, 188
three-dimensional formulation, 204, 628
two-dimensional formulation, 193

Transistor, bipolar junction, modeling, 715
Transmission line parameters, 679
Trefethen-Halpern absorbing boundary conditions,

243

Unconditionally stable techniques, 154, 883
alternating-direction implicit algorithm, 154,

888
Chebyshev polynomial algorithm, 892
Fourier-space approach, 891
general framework, 883
linear dispersive media, extension, 895
matrix-exponential concepts, 884
product-formula approach, 887
real-space approach, 889
uniaxial PML, extension, 898

Uniaxial PML (UPML) ABC, 285, 297, 590
Unstructured grids (see Nonorthogonal and

unstructured grids)

Vertical-cavity surface-emitting lasers (VCSELs),
743, 765

Vivaldi slotline antennas, 634
planar element, 635
planar elements, pair, 637
quad element, 639
quad elements, linear phased array, 640

Voltage, definition, 679
Voltage standing-wave ratio (VSWR), 647

Wake fields, particle accelerator, 545
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Wave source conditions (see Incident wave source
conditions)

Waveguides, photonic, index contrast, 744, 750,
760

Waveguides, photonic crystal, defect mode, 15,
791

aperiodic, 806
band diagram, 795
band diagram, photonie-crystal slab, 793
cross-waveguide switch, 15
extrinsic scattering loss, 806
intrinsic loss, 798
transmission, 803

Waveguide source conditions, 223
Wavelength-division multiplexing (WDM), 747
Whispering-gallery modes, microcavity disk

resonator, 743
Wires, subcell models, 415

Yee algorithm, 58, 887
alternative grids, 80
basic ideas, 58
divergence-free nature, 78
finite-difference expressions, 62, 67, 69, 71,

73
finite-differences and notation, 60
generalized, 487, 494
interpretation as Faraday's and Ampere's

laws in integral form, 75
modified for reduced dispersion, 138
numerical dispersion, 107
numerical stability, 128
planar generalized Yee (pay) algorithm, 494
product-formula approach realization, 887
semi-implicit approximation, 63
space lattice, 59

space region with continuous variation of
material properties, 67

space region with finite number of distinct
media, 69

space region with nonpermeable media, 71
space-time chart, 61
three dimensions, 62
two-dimensional TM

l
and TEl modes, 73

Zheng-Chen-Zhang (ZCZ) ADI algorithm, 155
additional accuracy limitations, 164
formulation, 155
numerical dispersion, 163
numerical stability, 161
sources, 161
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