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Preface

The contents of this book have evolved gradually and carefully from many years of teaching
graduate level courses in computational electromagnetics generally, and the Finite-Differ-
ence Time-Domain (FDTD) method specifically. The authors have further refined and
developed the materials by teaching numerous short courses on the FDTD method at various
educational institutions and at a growing number of international conferences. The theore-
tical, numerical, and programming experience of the second author, Veysel Demir, has been
a crucial factor in bringing the book to successful completion.

Objective

The objective of the book is to introduce the powerful FDTD method to students and
interested researchers and readers. An effective introduction is accomplished using a step-
by-step process that builds competence and confidence in developing complete working
codes for the design and analysis of various antennas and microwave devices. This book will
serve graduate students, researchers, and those in industry and government who are using
other electromagnetics tools and methods for the sake of performing independent numerical
confirmation. No previous experience with finite-difference methods is assumed of readers
to use this book.

Important topics

The main topics in the book include the following:

● finite-difference approximation of the differential form of Maxwell’s equations
● geometry construction in discrete space, including the treatment of the normal and

tangential electric and magnetic field components at the boundaries between different media
● outer-boundary conditions treatment
● appropriate selection of time and spatial increments
● selection of the proper source waveform for the intended application
● correct parameters for the time-to-frequency-domain transformation
● simulation of thin wires

xxv



● representation of lumped passive and some active elements
● total field/scattered field formulation
● definition and formulation of fields from near and far zone
● modeling of dispersive material
● analysis of periodic structures
● treatment of nonuniform grid
● use of graphical processing units for accelerating the simulations.

MATLAB‡ code organization

In the first edition of this book the chapters are presented in such a way that, by adding/
developing a new part of the code, chapter by chapter, at the end a well-developed FDTD
simulation package can be constructed. In the second edition, the first 11 chapters are either
the same as the ones in the first edition or extended with additional topics, therefore one can
progressively develop a package by studying the first 11 chapters.

Chapters 12–16 in the second edition are advanced topics in FDTD, and it is not feasible
to follow the progressive code development approach as implementation of these advanced
concepts, one over another, makes the code development cumbersome and deviate reader’s
attention from learning a concept to getting lost in a pile of complex code. As an alternative,
the functional code that is developed until Chapter 11 is reorganized as a base code and it is
being used as the start point for each of the advanced topics chapters.

Use of MATLAB‡

The development of the working code is based on the MATLAB programming language due
to its relative ease of use, widespread availability, familiarity to most electrical engineers,
and its powerful capabilities for providing graphical outputs and visualization. The book
illustrates how the key FDTD equations are derived, provides the final expressions to be
programmed, and also includes sample MATLAB codes developed for these equations.
None of the specialized MATLAB tool boxes is required to run the presented codes in this
book.

The MATLAB M-files for all programming examples shown in the text are available
from the publisher on request by emailing books@theiet.org.

Key strengths

The strengths of the book can be summarized in four points:

● First, the derivations of the FDTD equations are presented in an understandable,
detailed, and complete manner, which makes it easy for beginners to grasp the FDTD
concepts. Further to that point, regardless of the different treatments required for var-
ious objects, such as dielectrics, conductors, lumped elements, active devices, or thin
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wires, the FDTD updating equations are provided with a consistent and unified
notation.

● Second, many three-dimensional figures are presented to accompany the derived
equations. This helps readers visualize, follow, and link the components of the equa-
tions with the discrete FDTD spatial domain.

● Third, it is well known that readers usually face difficulties while developing numerical
tools for electromagnetics applications even though they understand the theory.
Therefore, we introduce in this book a top-down software design approach that links
the theoretical concepts with program development and helps in constructing an FDTD
simulation tool as the chapters proceed.

● Fourth, fully worked out practical examples showing how the MATLAB codes for each
example is developed to promote both the understanding and the visualization of the
example configuration, its FDTD parameters and setup procedure, and finally the fre-
quency and/or time domain corresponding solutions.

At the end of each chapter, readers will find a set of exercises that will emphasize the key
features presented in that chapter. Since most of these exercises require code developments
and the orientation of geometries and sources can be chosen arbitrarily, a suggested con-
figuration of each in almost all of these exercises is provided in a three-dimensional figure.

The authors hope that with this coverage of the FDTD method, along with the supplied
MATLAB codes in a single book, readers will be able to learn the method, to develop their
own FDTD simulation tool, and to start enjoying, with confidence, the simulation of a
variety of electromagnetic problems.

Instructor resources

Upon adopting this book as the required text, instructors are entitled to obtain the solutions of
the exercises located at the end of each chapter. Most of these solutions are in the form of
MATLAB files, and can be obtained by contacting the publisher at books@theiet.org.

Errors and suggestions

The authors welcome any reader feedback related to suspected errors and to suggestions for
improving the presentation of the topics provided in this book.
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CHAPTER 1

Introduction to FDTD

Computational electromagnetics (CEM) has evolved rapidly during the past decade to a
point where now extremely accurate predictions can be given for a variety of electro-
magnetic problems, including the scattering cross-section of radar targets and the precise
design of antennas and microwave devices. In general, commonly used CEM methods today
can be classified into two categories. The first is based on differential equation (DE) meth-
ods, whereas the second is based on integral equation (IE) methods. Both IE and DE solution
methods are based on the applications of Maxwell’s equations and the appropriate boundary
conditions associated with the problem to be solved. The IE methods in general provide
approximations for IEs in terms of finite sums, whereas the DE methods provide approx-
imations for DEs as finite differences.

In previous years, most numerical electromagnetic analysis has taken place in the
frequency domain where time-harmonic behavior is assumed. Frequency domain was
favored over time domain because a frequency-domain approach is more suitable for
obtaining analytical solutions for canonical problems, which are used to verify the numerical
results obtained as a first step before depending on a newly developed numerical method for
generating data for real-world applications. Furthermore, the experimental hardware avail-
able for making measurements in past years was largely confined to the frequency-domain
approach.

The recent development of faster and more powerful computational resources allowed for
more advanced time-domain CEM models. More focus is directed toward DE time-domain
approaches as they are easier to formulate and to adapt in computer simulation models
without complex mathematics. They also provide more physical insight to the characteristics
of the problems.

Therefore, an in-depth analysis and implementation of the commonly used time-domain
DE approach, namely, the finite-difference time-domain (FDTD) method for CEM applica-
tions, is covered in this book, along with applications related to antenna designs, microwave
filter designs, and radar cross-section analysis of three-dimensional targets.

The FDTD method has gained tremendous popularity in the past decade as a tool for
solving Maxwell’s equations. It is based on simple formulations that do not require complex
asymptotic or Green’s functions. Although it solves the problem in time, it can provide
frequency-domain responses over a wide band using the Fourier transform. It can easily
handle composite geometries consisting of different types of materials including dielectric,
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magnetic, frequency-dependent, nonlinear, and anisotropic materials. The FDTD technique
is easy to implement using parallel computation algorithms. These features of the FDTD
method have made it the most attractive technique of CEM for many microwave devices and
antenna applications.

FDTD has been used to solve numerous types of problems arising while studying many
applications, including the following:

● scattering, radar cross-section
● microwave circuits, waveguides, fiber optics
● antennas (radiation, impedance)
● propagation
● medical applications
● shielding, coupling, electromagnetic compatibility (EMC), electromagnetic pulse (EMP)

protection
● nonlinear and other special materials
● geological applications
● inverse scattering
● plasma

1.1 The finite-difference time-domain method
basic equations

The starting point for the construction of an FDTD algorithm is Maxwell’s time-domain
equations. The differential time-domain Maxwell’s equations needed to specify the field
behavior over time are

r� !
H ¼ @

!
D

@t
þ !

J ; ð1:1aÞ

r � !
E ¼ � @

!
B

@t
� !

M ; ð1:1bÞ

r � !
D ¼ re; ð1:1cÞ

r � !
B ¼ rm; ð1:1dÞ

where
!
E is the electric field strength vector in volts per meter,

!
D is the electric displacement

vector in coulombs per square meter,
!
H is the magnetic field strength vector in amperes per

meter,
!
B is the magnetic flux density vector in webers per square meter,

!
J is the electric

current density vector in amperes per square meter,
!
M is the magnetic current density vector

in volts per square meter, re is the electric charge density in coulombs per cubic meter, and
rm is the magnetic charge density in webers per cubic meter.

Constitutive relations are necessary to supplement Maxwell’s equations and characterize
the material media. Constitutive relations for linear, isotropic, and nondispersive materials
can be written as

!
D ¼ e

!
E; ð1:2aÞ

!
B ¼ m

!
H ; ð1:2bÞ
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where e is the permittivity, and m is the permeability of the material. In free space

e ¼ e0 � 8:854 � 10�12 farad=meter;

m ¼ m0 ¼ 4p� 10�7 henry=meter:

We only need to consider curl equations (1.1a) and (1.1b) while deriving FDTD
equations because the divergence equations can be satisfied by the developed FDTD
updating equations [1]. The electric current density

!
J is the sum of the conduction current

density
!
J c ¼ se !

E and the impressed current density
!
J i as

!
J ¼ !

Jc þ
!
J i: Similarly, for the

magnetic current density,
!
M ¼ !

M c þ
!
M i; where

!
M c ¼ sm !

H: Here se is the electric con-
ductivity in siemens per meter, and sm is the magnetic conductivity in ohms per meter. Upon
decomposing the current densities in (1.1) to conduction and impressed components and by
using the constitutive relations (1.2) we can rewrite Maxwell’s curl equations as

r� !
H ¼ e

@
!
E

@t
þ se !

E þ !
J i; ð1:3aÞ

r � !
E ¼ �m

@
!
H

@t
� sm !

H � !
M i: ð1:3bÞ

This formulation treats only the electromagnetic fields
!
E and

!
H and not the fluxes

!
D and

!
B:

All four constitutive parameters e, m, se, and sm are present so that any linear isotropic material
can be specified. Treatment of electric and magnetic sources is included through the impressed
currents. Although only the curl equations are used and the divergence equations are not part of
the FDTD formalism, the divergence equations can be used as a test on the predicted field
response, so that after forming

!
D ¼ e

!
E and

!
B ¼ m

!
H from the predicted

!
E and

!
H fields, the

resulting
!
D and

!
B must satisfy the divergence equations.

Equation (1.3) is composed of two vector equations, and each vector equation can be
decomposed into three scalar equations for three-dimensional space. Therefore, Maxwell’s
curl equations can be represented with the following six scalar equations in a Cartesian
coordinate system (x, y, z):

@Ex

@t
¼ 1

ex

@Hz

@y
� @Hy

@z
� se

xEx � J ix

� �
; ð1:4aÞ

@Ey

@t
¼ 1

ey

@Hx

@z
� @Hz

@x
� se

yEy � J iy

� �
; ð1:4bÞ

@Ez

@t
¼ 1

ez

@Hy

@x
� @Hx

@y
� se

zEz � J iz

� �
; ð1:4cÞ

@Hx

@t
¼ 1

mx

@Ey

@z
� @Ez

@y
� sm

x Hx � Mix

� �
; ð1:4dÞ

@Hy

@t
¼ 1

my

@Ez

@x
� @Ex

@z
� sm

y Hy � Miy

� �
; ð1:4eÞ

@Hz

@t
¼ 1

mz

@Ex

@y
� @Ey

@x
� sm

z Hz � Miz

� �
: ð1:4fÞ
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The material parameters ex, ey, and ez are associated with electric field components Ex,
Ey, and Ez through constitutive relations Dx ¼ exEx, Dy ¼ eyEy, and Dz ¼ ezEz, respectively.
Similarly, the material parameters mx, my, and mz are associated with magnetic field compo-
nents Hx, Hy, and Hz through constitutive relations Bx ¼ mxHx, By ¼ myHy, and Bz ¼ mzHz,
respectively. Similar decompositions for other orthogonal coordinate systems are possible,
but they are less attractive from the applications point of view.

The FDTD algorithm divides the problem geometry into a spatial grid where electric and
magnetic field components are placed at certain discrete positions in space, and it solves
Maxwell’s equations in time at discrete time instances. This can be implemented by first
approximating the time and space derivatives appearing in Maxwell’s equations by finite
differences and next by constructing a set of equations that calculate the values of fields at a
future time instant from the values of fields at a past time instant, therefore constructing a
time marching algorithm that simulates the progression of the fields in time [2].

1.2 Approximation of derivatives by finite differences

An arbitrary continuous function can be sampled at discrete points, and the discrete function
becomes a good approximation of the continuous function if the sampling rate is sufficient
relative to the function’s variation. Sampling rate determines the accuracy of operations
performed on the discrete function that approximates the operations on the continuous
functions as well. However, another factor that determines the accuracy of an operation on a
discrete function is the choice of the discrete operator. Most of the time it is possible to use
more than one way of performing an operation on a discrete function. Here we will consider
the derivative operation.

Consider the continuous function given in Figure 1.1(a–c), sampled at discrete points.
The expression for the derivative of f ðxÞ at point x can be written as

f 0ðxÞ ¼ lim
Dx!0

fðx þ DxÞ � fðxÞ
Dx

: ð1:5Þ

However, since Dx is a nonzero fixed number, the derivative of f ðxÞ can be approxi-
mately taken as

f 0ðxÞ � fðx þ DxÞ � fðxÞ
Dx

: ð1:6Þ

The derivative of f ðxÞ is the slope of the dashed line as illustrated in Figure 1.1(a).
Equation (1.6) is called the forward difference formula since one forward point f (x þ Dx) is
used to evaluate f 0ðxÞ together with fðxÞ.

It is evident that another formula for an approximate f 0ðxÞ can be obtained by using a
backward point fðx � DxÞ rather than the forward point fðx þ DxÞ as illustrated in Figure 1.1(b),
which can be written as

f 0ðxÞ � fðxÞ � fðx � DxÞ
Dx

: ð1:7Þ

This equation is called the backward difference formula due to the use of the backward
point fðx � DxÞ.
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Figure 1.1 (a) Approximation of the derivative of f ðxÞ at x by finite differences: forward
difference; (b) approximation of the derivative of f ðxÞ at x by finite differences:
backward difference; (c) approximation of the derivative of f ðxÞ at x by finite
differences: central difference.
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The third way of obtaining a formula for an approximate f 0ðxÞ is by averaging the for-
ward difference and backward difference formulas, such that

f 0ðxÞ � f ðx þ DxÞ � f ðx � DxÞ
Dx

: ð1:8Þ

Equation (1.8) is called the central difference formula since both the forward and back-
ward points around the center are used. The line representing the derivative of f ðxÞ calcu-
lated using the central difference formula is illustrated in Figure 1.1(c). It should be noted
that the value of the function f ðxÞ at x is not used in central difference formula.

Examination of Figure 1.1 immediately reveals that the three different schemes yield
different values for f 0ðxÞ, with an associated amount of error. The amount of error introduced
by these difference formulas can be evaluated analytically by using the Taylor series
approach. For instance, the Taylor series expansion of f ðx þ DxÞ can be written as

f ðx þ DxÞ ¼ f ðxÞ þ Dxf 0ðxÞ þ ðDxÞ2

2
f 00ðxÞ þ ðDxÞ3

6
f 000ðxÞ þ ðDxÞ4

24
f 0000ðxÞ þ⋯: ð1:9Þ

This equation gives an exact expression for f ðx þ DxÞ as a series in terms of Dx and
derivatives of f ðxÞ, if f ðxÞ satisfies certain conditions and infinite number of terms, theore-
tically, are being used. Equation (1.9) can be rearranged to express f 0ðxÞ as

f 0ðxÞ ¼ f ðx þ DxÞ � f ðxÞ
Dx

� Dx

2
f 00ðxÞ � ðDxÞ2

6
f 000ðxÞ � ðDxÞ3

24
f 0000ðxÞ �⋯: ð1:10Þ

Here it can be seen that the first term on the right-hand side of (1.10) is the same as the
forward difference formula given by (1.6). The sum of the rest of the terms is the difference
between the approximate derivative given by the forward difference formula and the exact
derivative f 0ðxÞ, and hence is the amount of error introduced by the forward difference
formula. Equation (1.10) can be rewritten as

f 0ðxÞ ¼ f ðx þ DxÞ � f ðxÞ
Dx

þ OðDxÞ; ð1:11Þ

where O(Dx) represents the error term. The most significant term in O(Dx) is Dx/2, and the
order of Dx in this most significant term is one. Therefore, the forward difference formula is
first-order accurate. The interpretation of first-order accuracy is that the most significant
term in the error introduced by a first-order accurate formula is proportional to the
sampling period. For instance, if the sampling period is decreased by half, the error reduces
by half.

A similar analysis can be performed for evaluation of the error of the backward formula
starting with the Taylor series expansion of f ðx � DxÞ:

f ðx � DxÞ ¼ f ðxÞ � Dxf 0ðxÞ þ ðDxÞ2

2
f 00ðxÞ � ðDxÞ3

6
f 000ðxÞ þ ðDxÞ4

24
f 0000ðxÞ þ⋯: ð1:12Þ
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This equation can be rearranged to express f 0ðxÞ as

f 0ðxÞ ¼ f ðxÞ � f ðx � DxÞ
Dx

þ Dx

2
f 00ðxÞ � ðDxÞ2

6
f 000ðxÞ þ ðDxÞ3

24
f 0000ðxÞ �⋯: ð1:13Þ

The first term on the right-hand side of (1.13) is the same as the backward difference
formula and the sum of the rest of the terms represents the error introduced by the backward
difference formula to the exact derivative of f ðxÞ, such that

f 0ðxÞ ¼ f ðxÞ � f ðx � DxÞ
Dx

þ OðDxÞ: ð1:14Þ

The order of Dx in the most significant term of O(Dx) is one; hence the backward dif-
ference formula is first-order accurate.

The difference between the Taylor series expansions of f ðx þ DxÞ and f ðx � DxÞ can be
expressed using (1.9) and (1.12) as

f ðx þ DxÞ � f ðx � DxÞ ¼ 2Dxf 0ðxÞ þ 2ðDxÞ3

6
f 000ðxÞ þ⋯: ð1:15Þ

This equation can be rearranged to express f 0ðxÞ as

f 0ðxÞ ¼ f ðx þ DxÞ � f ðx � DxÞ
2Dx

� ðDxÞ2

6
f 000ðxÞ þ⋯ ¼ f ðx þ DxÞ � f ðx � DxÞ

2Dx
þ O ðDxÞ2

� �
;

ð1:16Þ

where the first term on right-hand side is the same as the central difference formula given in
(1.8) and the order of Dx in the most significant term of the error O((Dx)2) is two; hence the
central difference formula is second-order accurate. The interpretation of second-order
accuracy is that the most significant term in the error introduced by a second-order accurate
formula is proportional to the square of sampling period. For instance, if the sampling period
is decreased by half, the error is reduced by a factor of four. Hence, a second-order accurate
formula such as the central difference formula is more accurate than a first-order accurate
formula.

For an example, consider a function f ðxÞ ¼ sin(x)e�0.3x as displayed in Figure 1.2(a).
The exact first-order derivative of this function is

f 0ðxÞ ¼ cosðxÞe�0:3x � 0:3 sinðxÞe�0:3x:

This function f ðxÞ is sampled with a sampling period Dx ¼ p/5, and approximate deri-
vatives are calculated for f ðxÞ using the forward difference, backward difference, and central
difference formulas. The derivative of the function f 0ðxÞ and its finite difference approx-
imations are plotted in Figure 1.2(b). The errors introduced by the difference formulas,
which are the differences between f 0ðxÞ and its finite difference approximations, are plotted
in Figure 1.2(c) for the sampling interval Dx ¼ p/5. It is evident that the error introduced by
the central difference formula is smaller than the errors introduced by the forward difference

1.2 ● Approximation of derivatives by finite differences 7
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Figure 1.2 (a) f ðxÞ, f 0ðxÞ, and differences between f 0ðxÞ and finite difference approximations of
f 0ðxÞ for Dx ¼ p/5 and Dx ¼ p/10: f ðxÞ ¼ sin(x)e�0.3x; (b) f ðxÞ, f 0ðxÞ, and differences between
f 0ðxÞ and finite difference approximations of f 0ðxÞ for Dx ¼ p/5 and Dx ¼ p/10: f 0ðxÞ ¼
cos(x)e�0.3x – 0.3 sin(x)e�0.3x and finite difference approximations of f 0ðxÞ for Dx ¼ p/5;
(c) f ðxÞ, f 0ðxÞ, and differences between f 0ðxÞ and finite difference approximations of f 0ðxÞ
for Dx ¼ p/5 and Dx ¼ p/10: error(f 0ðxÞ) for Dx ¼ p/5; (d) f ðxÞ, f 0ðxÞ, and differences between
f 0ðxÞ and finite difference approximations of f 0ðxÞ for Dx ¼ p/5 and Dx ¼ p/10: error(f 0ðxÞ)
for Dx ¼ p/10.
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and backward difference formulas. Furthermore, the errors introduced by the difference
formulas for the sampling period Dx ¼ p/10 are plotted in Figure 1.2(d). It can be realized
that as the sampling period is halved, the errors of the forward difference and backward
difference formulas are halved as well, and the error of the central difference formula is
reduced by a factor of four.

The MATLAB� code calculating f ðxÞ and its finite difference derivatives, and generat-
ing the plots in Figure 1.2 is shown in Listing 1.1.
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Figure 1.2 (Continued )

1.2 ● Approximation of derivatives by finite differences 9



Listing 1.1 MATLAB code generating Figure 1.2(a–d)

10 CHAPTER 1 ● Introduction to FDTD



1.2 ● Approximation of derivatives by finite differences 11



Values of the function f ðxÞ at two neighboring points around x have been used to obtain a
second-order accurate central difference formula to approximate f 0(x). It is possible to obtain
formulas with higher orders of accuracy by including a larger number of neighboring
points in the derivation of a formula for f 0ðxÞ. However, although there are FDTD
formulations developed based on higher-order accurate formulas, the conventional FDTD is
based on the second-order accurate central difference formula, which is found to be suffi-
ciently accurate for most electromagnetics applications and simple in implementation and
understanding.

It is possible to obtain finite-difference formulas for approximating higher-order
derivatives as well. For instance, if we take the sum of the Taylor series expansions of
f (x þ Dx) and f (x – Dx) using (1.9) and (1.12), we obtain

f ðx þ DxÞ þ f ðx � DxÞ ¼ 2f ðxÞ þ ðDxÞ2f 00ðxÞ þ ðDxÞ4

12
f 0000ðxÞ þ⋯: ð1:17Þ

After rearranging the equation to have f 00(x) on the left-hand side, we get

f 00ðxÞ ¼ f ðx þ DxÞ � 2f ðxÞ þ f ðx � DxÞ
ðDxÞ2 � ðDxÞ2

12
f 0000ðxÞ þ⋯

¼ f ðx þ DxÞ � 2f ðxÞ þ f ðx � DxÞ
ðDxÞ2 þ O

�ðDxÞ2�: ð1:18Þ

Using (1.18) we can obtain a central difference formula for the second-order derivative
f 00(x) as

f 00ðxÞ � f ðx þ DxÞ � 2f ðxÞ þ f ðx � DxÞ
ðDxÞ2 ; ð1:19Þ

which is second-order accurate due to O(Dx)2.
Similarly, some other finite difference formulas can be obtained for the first- and

second-order derivatives with different orders of accuracy based on different sampling
points. A list of finite difference formulas is given for the first- and second-order derivatives
in Table 1.1 as a reference (Figure 1.3).
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1.3 FDTD updating equations for three-dimensional
problems

In 1966, Yee originated a set of finite-difference equations for the time-dependent
Maxwell’s curl equations system [2]. These equations can be represented in discrete form,
both in space and time, employing the second-order accurate central difference formula. As
mentioned before, the electric and magnetic field components are sampled at discrete posi-
tions both in time and space. The FDTD technique divides the three-dimensional problem
geometry into cells to form a grid. Figure 1.4 illustrates an FDTD grid composed of
(Nx � Ny � Nz) cells. A unit cell of this grid is called a Yee cell. Using rectangular Yee
cells, a stepped or ‘‘staircase’’ approximation of the surface and internal geometry of the
structure of interest is made with a space resolution set by the size of the unit cell.

The discrete spatial positions of the field components have a specific arrangement in the
Yee cell, as demonstrated in Figure 1.5. The electric field vector components are placed at

Table 1.1 Finite difference formulas for the first- and second-order derivatives where the function
f with the subscript i is an abbreviation of f ðxÞ. Similar notation can be implemented
for f (x þ Dx), f (x þ 2Dx), etc., as shown in Figure 1.3. FD, forward difference; BD,
backward difference; CD, central difference.

Derivative ∂f=∂x Derivative ∂2f=∂x2

Difference scheme Type error Difference scheme Type error

fiþ1 � fi
D x

FD OðD xÞ fiþ2 � 2fiþ1 þ fi

ðDxÞ2

FD OðD xÞ

fi � fi�1

D x
BD OðD xÞ fiþ2 � 2fi�1 þ fi�2

ðDxÞ2

BD OðD xÞ

fiþ1 � fi�1

2D x
CD OððD xÞ2Þ fiþ1 � 2fi þ fi�1

ðDxÞ2

CD OððD xÞ2Þ

�fiþ2 þ 4fiþ1 � 3fi

2D x
FD OððD xÞ2Þ �fiþ2 þ 16fiþ1 � 30fi þ 16fi�1 � fi�2

12ðDxÞ2

CD OððD xÞ4Þ

3fiþ1 � 4fi�1 þ fi�2

2D x
BD OððD xÞ2Þ

�fiþ2 þ 8fiþ1 � 8fi�1 þ fi�2

12D x

CD OððD xÞ4Þ

x − 2Δx x − Δx x + Δx x + 2Δxx

fi−2 fi−1 fi+1 fi+2fi

Figure 1.3 Sample points of f ðxÞ.
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the centers of the edges of the Yee cells and oriented parallel to the respective edges, and the
magnetic field vector components are placed at the centers of the faces of the Yee cells and
are oriented normal to the respective faces. This provides a simple picture of three-
dimensional space being filled by an interlinked array of Faraday’s law and Ampere’s law
contours. It can be easily noticed in Figure 1.5 that each magnetic field vector is surrounded

z

y
x

(1, 1, 1)

(i, j, k)

(Nx, Ny, Nz)

Figure 1.4 A three-dimensional FDTD computational space composed of (Nx � Ny � Nz)
Yee cells.

Ey(i, j, k)

Ex(i, j, k)

Hy(i, j, k)Hz(i, j, k)Ez(i, j, k)

node(i, j, k)
z

y
x

node(i + 1, j + 1, k + 1)

Δz

Δy

Δx

Hz(i, j, k)

Figure 1.5 Arrangement of field components on a Yee cell indexed as (i, j, k).
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by four electric field vectors that are curling around the magnetic field vector, thus simu-
lating Faraday’s law. Similarly, if the neighboring cells are also added to the picture, it
would be apparent that each electric field vector is surrounded by four magnetic field vectors
that are curling around the electric field vector, thus simulating Ampere’s law.

Figure 1.5 shows the indices of the field components, which are indexed as (i, j, k),
associated with a cell indexed as (i, j, k). For a computational domain composed of uniform
Yee cells having dimension Dx in the x direction, Dy in the y direction, and Dz in the z
direction, the actual positions of the field components with respect to an origin coinciding
with the position of the node (1, 1, 1) can easily be calculated as

Exði; j; kÞ ) ði � 0:5ÞDx; ðj � 1ÞDy; ðk � 1ÞDzð Þ;
Eyði; j; kÞ ) ði � 1ÞDx; ðj � 0:5ÞDy; ðk � 1ÞDzð Þ;
Ezði; j; kÞ ) ði � 1ÞDx; ðj � 1ÞDy; ðk � 0:5ÞDzð Þ;
Hxði; j; kÞ ) ði � 1ÞDx; ðj � 0:5ÞDy; ðk � 0:5ÞDzð Þ;
Hyði; j; kÞ ) ði � 0:5ÞDx; ðj � 1ÞDy; ðk � 0:5ÞDzð Þ;
Hzði; j; kÞ ) ði � 0:5ÞDx; ðj � 0:5ÞDy; ðk � 1ÞDzð Þ:

The FDTD algorithm samples and calculates the fields at discrete time instants; how-
ever, the electric and magnetic field components are not sampled at the same time instants.
For a time-sampling period Dt, the electric field components are sampled at time instants
0, Dt, 2Dt, . . . , nDt, . . . ; however, the magnetic field components are sampled at time
instants 1

2 Dt; ð1 þ 1
2ÞDt; . . . ; ðn þ 1

2ÞDt; . . . . Therefore, the electric field components are
calculated at integer time steps, and magnetic field components are calculated at half-integer
time steps, and they are offset from each other by Dt/2. The field components need to be
referred not only by their spatial indices which indicate their positions in space, but also by
their temporal indices, which indicate their time instants. Therefore, a superscript notation is
adopted to indicate the time instant. For instance, the z component of an electric field vector
positioned at ((i – 1)Dx, ( j – 1)Dy, (k – 0.5)Dz) and sampled at time instant nDt is referred to
as En

z ði; j; kÞ: Similarly, the y component of a magnetic field vector positioned at ((i – 0.5)Dx,
( j – 1)Dy, (k – 0.5)Dz) and sampled at time instant ðn þ 1

2ÞDt is referred to as Hnþ1=2
y ði; j; kÞ:

The material parameters (permittivity, permeability, electric, and magnetic con-
ductivities) are distributed over the FDTD grid and are associated with field components;
therefore, they are indexed the same as their respective field components. For instance,
Figure 1.6 illustrates the indices for the permittivity and permeability parameters.
The electric conductivity is distributed and indexed the same as the permittivity, and the
magnetic conductivity is distributed and indexed the same as the permeability.

Having adopted an indexing scheme for the discrete samples of field components in both
time and space, Maxwell’s curl equations (1.4) that are given in scalar form can be expressed
in terms of finite differences. For instance, consider again (1.4a):

@Ex

@t
¼ 1

ex

@Hz

@y
� @Hy

@z
� se

xEx � J ix

� �
:
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The derivatives in this equation can be approximated by using the central difference
formula with the position of Ex(i, j, k) being the center point for the central difference
formula in space and time instant ðn þ 1

2ÞDt as being the center point in time. Considering the
field component positions given in Figure 1.7, we can write

Enþ1
x ði; j; kÞ � En

xði; j; kÞ
Dt

¼ 1
exði; j; kÞ

H
nþ1

2
z ði; j; kÞ � H

nþ1
2

z ði; j � 1; kÞ
Dy

� 1
exði; j; kÞ

H
nþ1

2
y ði; j; kÞ � H

nþ1
2

y ði; j; k � 1Þ
Dz

� se
xði; j; kÞ
exði; j; kÞ E

nþ1
2

x ði; j; kÞ � 1
exði; j; kÞ J

nþ1
2

ix ði; j; kÞ: ð1:20Þ

It has already been mentioned that the electric field components are defined at integer
time steps; however, the right-hand side of (1.20) includes an electric field term at time
instant ðn þ 1

2ÞDt, that is, Enþ1=2
x ði; j; kÞ. This term can be written as the average of the terms

at time instants (n þ 1)Dt and nDt, such that

E
nþ1

2
x ði; j; kÞ ¼ Enþ1

x ði; j; kÞ þ En
xði; j; kÞ

2
: ð1:21Þ

Using (1.21) in (1.20) and arranging the terms such that the future term Enþ1
x ði; j; kÞ is

kept on the left side of the equation and the rest of the terms are moved to the right-hand side
of the equation, we can write

ey(i, j, k + 1)

ez(i, j, k)

ex(i, j, k + 1)

ez(i, j + 1, k)

ez(i + 1, j, k)

ey(i + 1, j, k)

ex(i, j, k)

ex(i, j + 1, k)

ey(i, j, k)

uy(i, j + 1, k)

ex(i,  j + 1, k + 1)

ey(i + 1,  j, k + 1)

mz(i,  j, k + 1)

my(i,  j, k)

mz(i,  j, k)

mz(i,  j, k)
mx(i + 1,  j, k)

ez(i + 1, j + 1, k)

node(i, j, k)
z

y
x

Figure 1.6 Material parameters indexed on a Yee cell.
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2exði; j; kÞ þ Dtse
xði; j; kÞ

2exði; j; kÞ Enþ1
x ði; j; kÞ ¼ 2exði; j; kÞ � Dtse

xði; j; kÞ
2exði; j; kÞ En

xði; j; kÞ

þ Dt

exði; j; kÞDy
H

nþ1
2

z ði; j; kÞ � H
nþ1

2
z ði; j � 1; kÞ

� �

� Dt

exði; j; kÞDz
H

nþ1
2

y ði; j; kÞ � H
nþ1

2
y ði; j; k � 1Þ

� �

� Dt

exði; j; kÞ J
nþ1

2
ix ði; j; kÞ

ð1:22Þ

After some manipulations, we get

Enþ1
x ði; j; kÞ ¼ 2exði; j; kÞ � Dtse

xði; j; kÞ
2exði; j; kÞ þ Dtse

xði; j; kÞ
En

xði; j; kÞ

þ 2Dt

2exði; j; kÞ þ Dtse
xði; j; kÞ

� �
Dy

H
nþ1

2
z ði; j; kÞ � H

nþ1
2

z ði; j � 1; kÞ
� �

� 2Dt

2exði; j; kÞ þ Dtse
xði; j; kÞ

� �
Dz

H
nþ1

2
y ði; j; kÞ � H

nþ1
2

y ði; j; k � 1Þ
� �

� 2Dt

2exði; j; kÞ þ Dtse
xði; j; kÞ J

nþ1
2

ix ði; j; kÞ: ð1:23Þ

node(i, j − 1, k)

node(i, j, k − 1)

node(i + 1,  j + 1, k + 1)
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Hy(i, j, k − 1)
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Hy(i, j, k)

Ex(i, j, k)

z
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x
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Δy

Δz

node(i, j, k)

Figure 1.7 Field components around Ex(i, j, k).
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The form of (1.23) demonstrates how the future value of an electric field component can
be calculated by using the past values of the electric field component, the magnetic field
components, and the source components. This form of an equation is called an FDTD
updating equation. Updating equations can easily be obtained for calculating Enþ1

y ði; j; kÞ
starting from (1.4b) and Enþ1

z ði; j; kÞ starting from (1.4c) following the same methodology
that has been used to obtain (1.23).

Similarly, updating equations can be obtained for magnetic field components following
the same methodology. However, while applying the central difference formula to the time
derivative of the magnetic field components, the central point in time shall be taken as nDt.
For instance, (1.4c), which is

@Hx

@t
¼ 1

mx

@Ey

@z
� @Ez

@y
� sm

x Hx � Mix

� �
;

can be approximated using finite differences based on the field positions (as shown in
Figure 1.8) as

H
nþ1

2
x ði; j; kÞ � H

n�1
2

x ði; j; kÞ
Dt

¼ 1
mxði; j; kÞ

En
yði; j; k þ 1Þ � En

yði; j; kÞ
Dz

� 1
mxði; j; kÞ

En
z ði; j þ 1; kÞ � En

z ði; j; kÞ
Dy

� sm
x ði; j; kÞ
mxði; j; kÞ Hn

x ði; j; kÞ �
1

mxði; j; kÞMn
ixði; j; kÞ: ð1:24Þ
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Figure 1.8 Field components around Hx(i, j, k).
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After some manipulations, the future term H
nþ1

2
x ði; j; kÞ in (1.24) can be moved to the left-

hand side and the other terms can be moved to the right-hand side such that

H
nþ1

2
x ði; j; kÞ ¼ 2mxði; j; kÞ � Dtsm

x ði; j; kÞ
2mxði; j; kÞ þ Dtsm

x ði; j; kÞ
H

n�1
2

x ði; j; kÞ

þ 2Dt

2mxði; j; kÞ þ Dtsm
x ði; j; kÞ� �

Dz
En

yði; j; k þ 1Þ � En
yði; j; kÞ

� �

� 2Dt

2mxði; j; kÞ þ Dtsm
x ði; j; kÞ� �

Dy
En

z ði; j þ 1; kÞ � En
z ði; j; kÞ� �

� 2Dt

2mxði; j; kÞ þ Dtsm
x ði; j; kÞ

Mn
ixði; j; kÞ: ð1:25Þ

This equation is the updating equation for H
nþ1

2
x ði; j; kÞ. Similarly, updating equations can

easily be obtained for H
nþ1

2
y ði; j; kÞ starting from (1.4e) and H

nþ1
2

z ði; j; kÞ starting from (1.4f)
following the same methodology used to obtain (1.25).

Finally, (1.4a)–(1.4f) can be expressed using finite differences and can be arranged to
construct the following six FDTD updating equations for the six components of electro-
magnetic fields by introduction of respective coefficient terms:

Enþ1
x ði; j; kÞ ¼ Cexeði; j; kÞ � En

xði; j; kÞ
þ Cexhzði; j; kÞ � H

nþ1
2

z ði; j; kÞ � H
nþ1

2
z ði; j � 1; kÞ

� �

þ Cexhyði; j; kÞ � H
nþ1

2
y ði; j; kÞ � H

nþ1
2

y ði; j; k � 1Þ
� �

þ Cexjði; j; kÞ � J
nþ1

2
ix ði; j; kÞ; ð1:26Þ

where

Cexeði; j; kÞ ¼ 2exði; j; kÞ � Dtse
xði; j; kÞ

2exði; j; kÞ þ Dtse
xði; j; kÞ ;

Cexhzði; j; kÞ ¼ 2Dt
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It should be noted that the first two subscripts in each coefficient refer to the
corresponding field component being updated. For three subscripts coefficients, the third
subscript refers to the type of the field or source (electric or magnetic) that this coefficient is
multiplied by. For four subscripts coefficients, the third and fourth subscripts refer to the
type of the field that this coefficient is multiplied by.

Having derived the FDTD updating equations, a time-marching algorithm can be
constructed as illustrated in Figure 1.9. The first step in this algorithm is setting up the
problem space – including the objects, material types, and sources – and defining any other
parameters that will be used during the FDTD computation. Then the coefficient terms
appearing in (1.26)–(1.31) can be calculated and stored as arrays before the iteration is
started. The field components need to be defined as arrays as well and shall be initialized
with zeros since the initial values of the fields in the problem space in most cases are zeros,
and fields will be induced in the problem space due to sources as the iteration proceeds. At
every step of the time-marching iteration the magnetic field components are updated for time
instant (n þ 0.5)Dt using (1.29)–(1.31); then the electric field components are updated for
time instant (n þ 1)Dt using (1.26)–(1.28). The problem space has a finite size, and specific
boundary conditions can be enforced on the boundaries of the problem space. Therefore, the
field components on the boundaries of the problem space are treated according to the type of
boundary conditions during the iteration. The types of boundary conditions and the

Start

Apply boundary conditions

Set problem space and define parameters

Compute field coefficients

Output data

Last iteration?Stop
Yes No

Update electric field components
at time instant (n+1)Δt

Update magnetic field components
at time instant (n+0.5)Δt

Increment time step, n     n+1

Figure 1.9 Explicit FDTD procedure.

22 CHAPTER 1 ● Introduction to FDTD



techniques used to integrate them into the FDTD algorithm are discussed in detail in
Chapters 7 and 8. After the fields are updated and boundary conditions are enforced, the
current values of any desired field components can be captured and stored as output data, and
these data can be used for real-time processing or postprocessing to calculate some other
desired parameters. The FDTD iterations can be continued until some stopping criteria are
achieved.

1.4 FDTD updating equations for two-dimensional problems

The FDTD updating equations given in (1.26)–(1.31) can be used to solve three-dimensional
problems. In the two-dimensional case where there is no variation in the problem geometry
and field distributions in one of the dimensions, a simplified set of updating equations can be
obtained starting from the Maxwell’s curl equations system (1.4). Since there is no variation
in one of the dimensions, the derivative terms with respect to that dimension vanish. For
instance, if the problem is z dimension independent, equations (1.4) reduce to
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One should notice that equations (1.32a), (1.32b), and (1.32f) are dependent only on the
terms Ex, Ey, and Hz, whereas equations (1.32c), (1.32d), and (1.32e) are dependent only on
the terms Ez, Hx, and Hy. Therefore, the six equations (1.32) can be treated as two separate
sets of equations. In the first set (1.32a), (1.32b), and (1.32f) – all the electric field compo-
nents are transverse to the reference dimension z; therefore, this set of equations constitutes
the transverse electric to z case – TEz. In the second set – (1.32c), (1.32d), and (1.32e) – all
the magnetic field components are transverse to the reference dimension z; therefore, this set
of equations constitutes the transverse magnetic to z case – TMz. Most two-dimensional
problems can be decomposed into two separate problems, each including separate field
components that are TEz and TMz for the case under consideration. These two problems can
be solved separately, and the solution for the main problem can be achieved as the sum of the
two solutions.
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The FDTD updating equations for the TEz case can be obtained by applying the central
difference formula to the equations constituting the TEz case based on the field positions
shown in Figure 1.10, which is obtained by projection of the Yee cells in Figure 1.5 on the xy
plane in the z direction. The FDTD updating equations for the TEz case are therefore
obtained as
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Figure 1.10 Two-dimensional TEz FDTD field components.
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Since the FDTD updating equations for the three-dimensional case are readily available,
they can be used to derive (1.33), (1.34), and (1.35) by simply setting the coefficients
including 1/Dz to zero. Hence, the FDTD updating equations for the TMz case can be
obtained by eliminating the term Chxey(i, j, k) in (1.29) and eliminating the term Chyex(i, j, k)
in (1.30) based on the field positions shown in Figure 1.11, such that
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Figure 1.11 Two-dimensional TMz FDTD field components.
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1.5 FDTD updating equations for one-dimensional problems

In the one-dimensional case, there is no variation in the problem geometry and field dis-
tributions in two of the dimensions. For instance, if the y and z dimensions have no variation,
the derivative with respect to the y and z dimensions vanish in Maxwell’s curl equations.
Therefore, the two-dimensional curl equations (1.32a)–(1.32f) reduce to
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It should be noted that (1.39a) and (1.39d) include time derivatives but not space deri-
vatives. Therefore, these equations do not represent propagating fields, hence the field
components Ex and Hx, which only exist in these two equations, do not propagate. The other
four equations represent propagating fields, and both the electric and magnetic field com-
ponents existing in these equations are transverse to the x dimension. Therefore, transverse
electric and magnetic to x (TEMx) fields exist and propagate as plane waves in the one-
dimensional case under consideration.

Similar to the two-dimensional case, the one-dimensional case as well can be decomposed
into two separate cases, since (1.39b) and (1.39f), which include only the terms Ey and Hz, are
decoupled from (1.39c) and (1.39e), which include only the terms Ez and Hy. FDTD updating
equations can be obtained for (1.39b) and (1.39f) using the central difference formula based on
the field positioning in one-dimensional space as illustrated in Figure 1.12, such that

Enþ1
y ðiÞ ¼ CeyeðiÞ � En

yðiÞ þ CeyhzðiÞ � H
nþ1

2
z ðiÞ � H

nþ1
2

z ði � 1Þ
� �

þ CeyjðiÞ � J
nþ1

2
iy ðiÞ; ð1:40Þ

Ey(i − 1) Ey(i) Hz(i) Hz(i + 1) Ey(i + 2)Ey(i + 1)Hz(i − 1)

Δx

Figure 1.12 One-dimensional FDTD – positions of field components Ey and Hz.
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2eyðiÞ þ Dtse
yðiÞ

� �
Dx

;

CeyjðiÞ ¼ � 2Dt

2eyðiÞ þ Dtse
yðiÞ

;

and

H
nþ1

2
z ðiÞ ¼ ChzhðiÞ � H

n� 1
2

z ðiÞ þ ChzeyðiÞ � En
yði þ 1Þ � En

yðiÞ
� �

þ ChzmðiÞ � Mn
izðiÞ; ð1:41Þ

where

ChzhðiÞ ¼ 2mzðiÞ � Dtsm
z ðiÞ

2mzðiÞ þ Dtsm
z ðiÞ

;

ChzeyðiÞ ¼ � 2Dt

2mzðiÞ þ Dtsm
z ðiÞ

� �
Dx

;

ChzmðiÞ ¼ � 2Dt

2mzðiÞ þ Dtsm
z ðiÞ

:

Similarly, FDTD updating equations can be obtained for (1.39c) and (1.39e) using the
central difference formula based on the field positioning in one-dimensional space as illu-
strated in Figure 1.13, such that

Enþ1
z ðiÞ ¼ CezeðiÞ � En

z ðiÞ þ CezhyðiÞ � H
nþ1

2
y ðiÞ � H

nþ1
2

y ði � 1Þ
� �

þ CezjðiÞ � J
nþ1

2
iz ðiÞ; ð1:42Þ

where

CezeðiÞ ¼ 2ezðiÞ � Dtse
zðiÞ

2ezðiÞ þ Dtse
zðiÞ

;

CezhyðiÞ ¼ 2Dt

2ezðiÞ þ Dtse
zðiÞ

� �
Dx

;

CezjðiÞ ¼ � 2Dt

2ezðiÞ þ Dtse
zðiÞ

;

Ez(i − 1) Ez(i) Hy(i) Hy(i + 1) Ez(i + 2)Ez(i + 1)Hy(i − 1)

Δx

Figure 1.13 One-dimensional FDTD – positions of field components Ez and Hy.
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and

H
nþ1

2
y ðiÞ ¼ ChyhðiÞ � H

n�1
2

y ðiÞ þ ChyezðiÞ � En
z ði þ 1Þ � En

z ðiÞ
� �þ ChymðiÞ � Mn

iyðiÞ; ð1:43Þ

where

ChyhðiÞ ¼
2myðiÞ � Dtsm

y ðiÞ
2myðiÞ þ Dtsm

y ðiÞ
;

ChyezðiÞ ¼ 2Dt

2myðiÞ þ Dtsm
y ðiÞ

� �
Dx

;

ChymðiÞ ¼ � 2Dt

2myðiÞ þ Dtsm
y ðiÞ

:

A MATLAB code is given in Appendix A for a one-dimensional FDTD implementation
based on the updating equations (1.42) and (1.43). The code calculates electric and magnetic
field components generated by a z-directed current sheet, Jz, placed at the center of a pro-
blem space filled with air between two parallel, perfect electric conductor (PEC) plates
extending to infinity in the y and z dimensions. Figure 1.14 shows snapshots of Ez and Hy

within the FDTD computational domain demonstrating the propagation of the fields and
their reflection from the PEC plates at the left and right boundaries.

In the demonstrated problem, the parallel plates are 1 m apart. The one-dimensional
problem space is represented by cells having width Dx ¼ 1 mm. The current sheet at the
center excites a current with 1 A/m2 density and Gaussian waveform

JzðtÞ ¼ e�
t � 2�10�10

5�10�11

� �2

:

The current sheet is excited over a one-cell cross-section (i.e., 1 mm wide), which
translates Jz into a surface current density Kz of magnitude 1 � 10�3 A/m. The surface
current density causes a discontinuity in magnetic field and generates Hy, which satisfies the
boundary condition

!
K ¼ n̂ � !

H : Therefore, two waves of Hy are generated on both sides of
the current sheet, each of which has magnitude 5 � 10�4 A/m. Since the fields are propa-
gating in free space, the magnitude of the generated electric field is h0 � 5 � 10�4 � 0.1885
V/m, where h0 is the intrinsic impedance of free space (h0 � 377).

Examining the listing of the one-dimensional FDTD code in Appendix A, one immedi-
ately notices that the sizes of the arrays associated with Ez and Hy are not the same. The one-
dimensional problem space is divided into nx intervals; therefore, there are nx þ 1 nodes in
the problem space including the left and right boundary nodes. This code is based on the
field positioning scheme given in Figure 1.13, where the Ez components are defined at node
positions and the Hy components are defined at the center positions of the intervals. There-
fore, arrays associated with Ez have the size nx þ 1, whereas those associated with Hy have
the size nx.

Another point that deserves consideration is the application of the boundary conditions.
In this problem the boundaries are PEC; thus, the tangential electric field component (Ez in
this case) vanishes on the PEC surface. Therefore, this condition can be enforced on the
electric field component on the boundaries, Ez(1) and Ez(nx þ 1), as can be seen in the
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Figure 1.14 Snapshots of a one-dimensional FDTD simulation: (a) fields observed after 100
time steps; (b) fields observed after 300 time steps; (c) fields observed after 615
time steps; and (d) fields observed after 700 time steps.
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code listing. Observing the changes in the fields from time step 650 to 700 in Figure 1.14
reveals the correct behavior of the incident and reflected waves for a PEC plate. This is
evident by the reversal of the direction of the peak value of Ez after reflection from the PEC
boundaries, which represents a reflection coefficient equal to �1 while the behavior of the
reflected Hy component represents the reflection coefficient that is equal to þ1 as expected.

1.6 Exercises

1.1 Follow the steps presented in Section 1.2 to develop the appropriate approximations for
the first derivative of a function with second-order accuracy using the forward and
backward difference procedure and fourth-order accuracy using the central difference
procedure. Compare your derived expressions with those listed in Table 1.1.

1.2 Update the MATLAB program in Listing 1.1 to regenerate Figure 1.2 using the second-
order accurate forward and backward differences and the fourth-order accurate central
difference approximations for the same function.

1.3 Update the MATLAB program in Listing 1.1 to generate the corresponding figures to
Figure 1.2, but for the second derivatives of the function. Use the approximate
expressions in the right column of Table 1.1 while updating the program.

1.4 The steps of the development of the updating equation for the x component of the
electric field are demonstrated in Section 1.3. Follow the same procedure to show the
steps required to develop the updating equations for the y and z components for the
electric field. Pay sufficient attention to the selection of the indices of each individual
field component in your expressions. The Yee cell presented in Figure 1.5 should help
you in understanding the proper use of these indices.

1.5 Repeat Exercise 1.4, but this time for developing the updating equations for the mag-
netic field components.
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CHAPTER 2

Numerical stability and dispersion

2.1 Numerical stability

The finite-difference time-domain (FDTD) algorithm samples the electric and magnetic
fields at discrete points both in time and space. The choice of the period of sampling (Dt in
time, Dx, Dy, and Dz in space) must comply with certain restrictions to guarantee the stability
of the solution. Furthermore, the choice of these parameters determines the accuracy of
the solution. This section focuses on the stability analysis. First, the stability concept is
illustrated using a simple partial differential equation (PDE) in space and time domain. Next,
the Courant-Friedrichs-Lewy (CFL) condition [3] for the FDTD method is discussed,
accompanied by a one-dimensional FDTD example.

2.1.1 Stability in time-domain algorithm

An important issue in designing a time-domain numerical algorithm is the stability condition.
To understand the stability concept, let’s start with a simple wave equation:

@uðx; tÞ
@t

þ @uðx; tÞ
@x

¼ 0; uðx; t ¼ 0Þ ¼ u0ðxÞ; ð2:1Þ

where u(x, t) is the unknown wave function and u0(x) is the initial condition at t ¼ 0. Using
the PDE knowledge, the equation can be analytically solved:

uðx; tÞ ¼ u0ðx � tÞ: ð2:2Þ

A time-domain numerical scheme can be developed to solve above wave equation. First,
u(x, t) is discretized in both time and space domains:

xi ¼ iDx; i ¼ 0; 1; 2; . . .

tn ¼ nDt; n¼ 0; 1; 2; . . .

un
i ¼ uðxi; tnÞ:

ð2:3Þ
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Here, Dt and Dx are the time and space cell sizes. Then, the finite-difference scheme is
used to compute the derivatives, and the following equation is obtained:

unþ1
i � un�1

i

2Dt
þ un

i�1 � un
iþ1

2Dx
¼ 0: ð2:4Þ

After a simple manipulation, a time-domain numerical scheme can be derived such that

unþ1
i ¼ un�1

i þ lðun
iþ1 � un

i�1Þ; l ¼ Dt

Dx
: ð2:5Þ

Figure 2.1 shows a time and space domain grid, where the horizontal axis represents the x
axis and the vertical axis denotes the t axis. The u values for time index denoted as n and
n � 1 are all assumed to be known. For simplicity we will assume that all these values are
zeros. We will also assume that at one x position denoted by the index i and at time denoted
by the index n there is a small error represented by the parameter e. As the time evolves, a u
value at n þ 1 is computed from two rows lower in accordance with (2.5).

Now let’s analyze the propagation of the assumed numerical error e in this time-domain
algorithm. Note that the error may result from a numerical truncation of a real number. When
l ¼ 1/2, the errors are shown in Figure 2.1. The error will keep propagating in this time-
domain algorithm; however, it can be observed that the errors are always bounded by
the original error e, whereas for the case when l ¼ 1, the maximum absolute value of the
propagating error is of the same value as the original error. This is clearly obvious from
the errors propagating in Figure 2.2. On the contrary, when l ¼ 2, the propagation of error as
shown in Figure 2.3 will keep increasing as time evolves. Finally, this error will be large
enough and will destroy the actual u values. As a result, the time-domain algorithm will not
give an accurate result due to a very small initial error. In summary, the numerical scheme in
(2.5) is therefore considered conditionally stable. It is stable for small l values but
unstable for large l values, and the boundary of stability condition is l ¼ 1.
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Figure 2.1 The time–space domain grid with error e propagating with l ¼ 1/2.
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2.1.2 CFL condition for the FDTD method

The numerical stability of the FDTD method is determined by the CFL condition, which
requires that the time increment Dt has a specific bound relative to the lattice space incre-
ments, such that

Dt � 1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ðDxÞ2 þ 1

ðDyÞ2 þ 1
ðDzÞ2

q ; ð2:6Þ
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Figure 2.3 The time–space domain grid with error e propagating with l ¼ 2.
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Figure 2.2 The time–space domain grid with error e propagating with l ¼ 1.
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where c is the speed of light in free space. Equation (2.6) can be rewritten as

cDt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðDxÞ2 þ
1

ðDyÞ2 þ
1

ðDzÞ2

s
� 1: ð2:7Þ

For a cubical spatial grid where Dx ¼ Dy ¼ Dz, the CFL condition reduces to

Dt � Dx

c
ffiffiffi
3

p : ð2:8Þ

One can notice in (2.6) that the smallest value among Dx, Dy, and Dz is the dominant
factor controlling the maximum time step and that the maximum time step allowed is always
smaller than min(Dx, Dy, Dz)/c.

In the one-dimensional case where Dy ? ? and Dz ? ? in (2.6), the CFL condition
reduces to

Dt � Dx=c or cDt � Dx: ð2:9Þ
This equation implies that a wave cannot be allowed to travel more than one cell size in

space during one time step.
The existence of instability exposes itself as the development of divergent spurious fields

in the problem space as the FDTD iterations proceed. For instance, the one-dimensional
FDTD code presented in Chapter 1 simulates a problem space composed of cells having
length Dx ¼ 1 mm. Due to the one-dimensional CFL condition (2.9) the time increment must
be chosen as Dt � 3.3356 ps. This code is run with the values of Dt ¼ 3.3356 ps and
Dt ¼ 3.3357 ps, and the maximum value of electric field magnitude is captured at every time
step and plotted in Figure 2.4. The spikes of the electric field magnitude are due to the
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Figure 2.4 Maximum magnitude of Ez in the one-dimensional problem space for simulations
with Dt ¼ 3.3356 ps and Dt ¼ 3.3357 ps.
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additive interference of the fields when fields pass through the center of the problem space,
and the nulls are due to the vanishing of electric fields on PEC when the fields hit the PEC
boundary walls. However, while the iterations proceed, the electric field magnitude calcu-
lated by the simulation running with Dt ¼ 3.3357 ps starts to diverge. This examination
demonstrates how a Dt value larger than the CFL limit gives rise to instability in the FDTD
computation.

The CFL stability condition applies to inhomogeneous media as well, since the velocity
of propagation in material media is smaller than c. However, numerical stability can be
influenced by other factors, such as absorbing boundary conditions, nonuniform spatial
grids, and nonlinear materials.

Even if the numerical solution is stable, satisfaction of the CFL condition does not
guarantee the numerical accuracy of the solution; it only provides a relationship between the
spatial grid size and the time step. One must still satisfy the sampling theory requirements
with respect to the highest frequency present in the excitation.

2.2 Numerical dispersion

The FDTD method provides a solution for the behavior of fields that is usually a good
approximation to the real physical behavior of the fields. The finite-difference approxima-
tion of derivatives of continuous functions introduces an error to the solution. For instance,
even in homogeneous free space, the velocity of propagation of the numerical solution for a
wave will generally differ from c. Furthermore, it will vary with frequency, the spatial grid
size, and direction of propagation of the wave. The differing of phase velocities numerically
obtained by the FDTD method from the actual phase velocities is known as numerical
dispersion.

For instance, consider a plane wave propagating in free space in the x direction, given by

Ezðx; tÞ ¼ E0 cosðkxx � wtÞ; ð2:10aÞ
Hyðx; tÞ ¼ H0 cosðkxx � wtÞ: ð2:10bÞ

Here, Ez(x, t) satisfies the wave equation

@2

@x2
Ez � m0e0

@2

@t2
Ez ¼ 0: ð2:11Þ

Substituting (2.10a) in (2.11) yields the equation

k2
x ¼ w2m0e0 ¼ w

c

� �2
; ð2:12Þ

which is called the dispersion relation. The dispersion relation provides the connection
between the spatial frequency kx and the temporal frequency w [4]. The dispersion relation
(2.12) is analytically exact.

A dispersion relation equation, which is called the numerical dispersion relation, can
be obtained based on the finite-difference approximation of Maxwell’s curl equations
as follows. For the one-dimensional case previously discussed, the plane wave expressions
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Ez(x, t) and Hy(x, t) satisfy the Maxwell’s one-dimensional curl equations, which are given
for the source-free region as

@Ez

@t
¼ 1

e0

@Hy

@x
; ð2:13aÞ

@Hy

@t
¼ 1

m0

@Ez

@x
: ð2:13bÞ

These equations can be rewritten using the central difference formula based on the field
positioning scheme in Figure 1.13 as

Enþ1
z ðiÞ � En

z ðiÞ
Dt

¼ 1
e0

H
nþ1

2
y ðiÞ � H

nþ1
2

y ði � 1Þ
Dx

; ð2:14aÞ

H
nþ1

2
y ðiÞ � H

n�1
2

y ðiÞ
Dt

¼ 1
m0

En
z ði þ 1Þ � En

z ðiÞ
Dx

: ð2:14bÞ

The plane wave equations (2.10) are in continuous time and space, and they can be
expressed in discrete time and space with

En
z ðiÞ ¼ E0cosðkxiDx � wnDtÞ; ð2:15aÞ

Enþ1
z ðiÞ ¼ E0cos kxiDx � wðn þ 1ÞDtð Þ; ð2:15bÞ

En
z ði þ 1Þ ¼ E0cos kxði þ 1ÞDx � wnDtð Þ; ð2:15cÞ

H
nþ1

2
y ðiÞ ¼ H0cos kxði þ 0:5ÞDx � wðn þ 0:5ÞDtð Þ; ð2:15dÞ

H
nþ1

2
y ði � 1Þ ¼ H0cos kxði � 0:5ÞDx � wðn þ 0:5ÞDtð Þ; ð2:15eÞ

H
n�1

2
y ðiÞ ¼ H0cos kxði þ 0:5ÞDx � wðn � 0:5ÞDtð Þ; ð2:15fÞ

The terms (2.15a), (2.15b), (2.15d), and (2.15e) can be used in (2.14a) to obtain

E0

Dt

h
cos kxiDx � wðn þ 1ÞDtð Þ � cos kxiDx � wnDtð Þ

i

¼ H0

e0Dx

h
cos kxði þ 0:5ÞDx � wðn þ 0:5ÞDtð Þ � cos kxði � 0:5ÞDx � wðn þ 0:5ÞDtð Þ

i
:

ð2:16Þ
Using the trigonometric identity

cosðu � vÞ � cosðu þ vÞ ¼ 2sinðuÞsinðvÞ
on the left-hand side of (22.16) with u ¼ kxiDx � w(n þ 0.5)Dt and v ¼ 0.5Dt, and on the
right-hand side with u ¼ kxiDx � w(n þ 0.5)Dt and v ¼ �0.5 Dx, one can obtain

E0

Dt
sinð0:5wDtÞ ¼ �H0

e0Dx
sinð0:5kxDxÞ: ð2:17Þ
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Similarly, using the terms (2.15a), (2.15c), (2.15d), and (2.15f) in (2.14b) leads to

H0

Dt
sinð0:5wDtÞ ¼ �E0

m0Dx
sinð0:5kxDxÞ: ð2:18Þ

Combining (2.17) and (2.18) one can obtain the numerical dispersion relation for the one-
dimensional case as

1
cDt

sin
wDt

2

� �� �2

¼ 1
Dx

sin
kxDx

2

� �� �2

: ð2:19Þ

One should notice that the numerical dispersion relation (2.19) is different from the ideal
dispersion relation (2.12). The difference means that there is a deviation from the actual
solution of a problem and, hence, an error introduced by the finite-difference approximations
to the numerical solution of the problem. However, it is interesting to note that for the one-
dimensional case, if one sets Dt ¼ Dx/c (2.19) reduces to (2.12), which means that there is no
dispersion error for propagation in free space. However, this is of little practical use, since
the introduction of a material medium will again create dispersion.

So far, derivation of a numerical dispersion relation has been demonstrated for a
one-dimensional case. It is possible to obtain a numerical dispersion relation for the
two-dimensional case using a similar approach:

1
cDt

sin
wDt

2

� �� �2

¼ 1
Dx

sin
kxDx

2

� �� �2

þ 1
Dy

sin
kyDy

2

� �� �2

; ð2:20Þ

where there is no variation of fields or geometry in the z dimension. For the particular case
where

Dx ¼ Dy ¼ D; Dt ¼ D
c

ffiffiffi
2

p ; and kx ¼ ky;

the ideal dispersion relation for the two-dimensional case can be recovered as

k2
x þ k2

y ¼ w
c

� �2
: ð2:21Þ

The extension to the three-dimensional case is straightforward but tedious, yielding

1
cDt

sin
wDt

2

� �� �2

¼ 1
Dx

sin
kxDx

2

� �� �2

þ 1
Dy

sin
kyDy

2

� �� �2

þ 1
Dz

sin
kzDz

2

� �� �2

: ð2:22Þ

Similar to the one- and two-dimensional cases, it is possible to recover the three-
dimensional ideal dispersion relation

k2
x þ k2

y þ k2
z ¼ w

c

� �2
ð2:23Þ

for specific choices of Dt, Dx, Dy, Dz, and angle of propagation.
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Figure 2.5 (a) Maximum magnitude of Ez in the one-dimensional problem space: simulation
with Dx ¼ 1 mm; (b) maximum magnitude of Ez in the one-dimensional problem
space: simulation with Dx ¼ 4 mm.
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Let’s rewrite (2.22) in the following form:

w
2c

sinðwDt=2Þ
ðwDt=2Þ

� �2

¼ kx

2
sinðkxDx=2Þ
ðkxDx=2Þ

� �2

þ ky

2

sinðkyDy=2Þ
ðkyDy=2Þ

� �2

þ kz

2
sinðkzDz=2Þ
ðkzDz=2Þ

� �2

: ð2:24Þ

Since limx?0 (sin(x)/x) ¼ 1 (2.24) reduces to the ideal dispersion relation (2.23) when
Dt ? 0, Dx ? 0, Dy ? 0, and Dz ? 0. This is an expected result since when the sampling
periods approach zero, the discrete approximation turns into the continuous case. This also
indicates that if the temporal and spatial sampling periods Dt, Dx, Dy, and Dz are taken
smaller, then the numerical dispersion error reduces.

So far, we have discussed the numerical dispersion in the context of waves propagating in
free space. A more general discussion of numerical stability and dispersion, including the
derivation of two- and three-dimensional numerical dispersion relations, other factors
affecting the numerical dispersion, and strategies to reduce the associated errors, can be
found in [1]. We conclude our discussion with an example demonstrating the numerical
dispersion.

Due to numerical dispersion, waves with different frequencies propagate with different
phase velocities. Any waveform is a sum of sinusoidal waves with different frequencies, and
a waveform does not maintain its shape while propagating since its sinusoidal components
do not propagate with the same velocity due to dispersion. Therefore, the existence of
numerical dispersion exposes itself as distortion of the waveform. For instance, Figure 2.5
shows the electric and magnetic field in the one-dimensional problem space calculated by
the one-dimensional FDTD code presented in Chapter 1. The problem space is 1 m wide, and
Dt ¼ 3 ps. Figure 2.5(a) shows the field distribution at time instant 3 ns as calculated by
the program when Dx ¼ 1 mm and Jz ¼ 1 A/m2. Similarly, Figure 2.5(b) shows the field
distribution at time instant 3 ns when Dx ¼ 4 mm. In this second simulation the magnitude of
Jz is taken as 0.25 A/m2 to maintain the magnitude of the surface current density Kz as
1 � 10�3 A/m; hence, the magnitudes of electric and magnetic fields are almost the same.
Figure 2.5(a) shows that the Gaussian pulse is not distorted; even though there is numerical
dispersion, it is not significant. However, in Figure 2.5(b) the Gaussian pulse is distorted due to
use of a larger cell size, and the error introduced by numerical dispersion is more pronounced.

2.3 Exercises

2.1 Using the one-dimensional MATLAB� FDTD program listed in Appendix A, verify
the results presented in Figure 2.5.

2.2 Update the one-dimensional FDTD MATLAB program such that the Gaussian pulse
propagates in a medium characterized with electric losses instead of free space.
Observe the decay of the amplitude of the propagating pulse and the effect of losses on
the dispersion shown in Figure 2.5(b) at time ¼ 3 ns.

2.3 Repeat Exercise 2.2, but with the introduction of magnetic losses in the medium,
instead of free space. Record your observations related to the pulse propagation at
time ¼ 3 ns.
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CHAPTER 3

Building objects in the Yee grid

In Chapter 1 we discussed the derivation of the finite-difference time-domain (FDTD)
updating equations based on the staircased grid composed of Yee cells in Cartesian coordi-
nates. We defined material components e, m, se, and sm associated with the field components
such that they represent linear, anisotropic, and nondispersive media. Due to the staircase
gridding, the objects in an FDTD problem space can be represented in terms of the size of
the cells building the grid. Therefore, the staircased gridding imposes some restrictions on
the accurate representation of the objects in the problem space. Some advanced modeling
techniques called local subcell models are available for defining objects with fine features,
and some other FDTD formulations based on nonorthogonal and unstructured grids have
been introduced for problems that contain objects that do not conform with the staircased
grid [1]. However, the staircased FDTD model can provide sufficiently accurate results for
many practical problems. In this chapter, we discuss construction of objects in the staircased
FDTD grid through some MATLAB� code examples.

3.1 Definition of objects

Throughout this book, while describing the concepts of the FDTD method we illustrate the
construction of an FDTD program as well. After completing this book, the reader should be
able to construct an FDTD program that can be used to solve three-dimensional electro-
magnetics problems of moderate difficulty. In this chapter, we start to provide the blocks of a
three-dimensional FDTD program.

We name the main MATLAB program file that runs an FDTD calculation as
fdtd_solve. The MATLAB code in Listing 3.1 shows the contents of fdtd_solve, in which
the program routines are named by their functions. Usually, it is a good practice to divide a
program into functionally separable modules; this will facilitate the readability of the pro-
grams and will simplify the debugging process. This file is not in the final form for a
complete FDTD program; while we proceed with the chapters we will add more routines
with additional functions, will describe the functions of the routines, and will provide partial
code sections to illustrate the programming of the respective concepts that have been
described in the text. The program structures and codes presented throughout this book are
not necessarily samples of the most efficient ways of programming the FDTD method; there
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are many ways of translating a concept into a program, and readers can develop program
structures or algorithms that they think are more efficient while writing their own code.
However, we tried to be as explicit as possible while linking the FDTD concepts with the
respective codes.

In the FDTD algorithm, before the time-marching iterations are performed the problem
should be set up as the first step as indicated in the concise flow chart in Figure 1.9. Problem
setup can be performed in two sets of routines: (1) routines that define the problem; and
(2) routines that initialize the problem space and FDTD parameters. The problem definition
process consists of construction of data structures that store the necessary information about
the electromagnetic problem to be solved. This information would include the geometries of
the objects in the problem space, their material types, electromagnetic properties of these
material types, types of sources and waveforms, types of simulation results sought from the
FDTD computation, and some other simulation parameters specific to the FDTD algorithm,
such as the number of time steps, and types of boundaries of the problem space. The initi-
alization process translates the data structures into an FDTD material grid and constructs and
initializes data structures and arrays representing the FDTD updating coefficients, field
components, and any other data structures that would be used during and after the FDTD
iterations. In other words, it prepares the structural framework for the FDTD computation
and postprocessing.

Listing 3.1 fdtd_solve.m
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3.1.1 Defining the problem space parameters

Listing 3.1 starts with the initialization of MATLAB workspace. The MATLAB command
clear all removes all items from the current workspace and frees the memory, close all
deletes all open figures, and clc clears the command window. After the MATLAB work-
space initialization, there are four subroutines listed in Listing 3.1 for definition of the pro-
blem and other subroutines for initialization of the FDTD procedure. In this chapter, we
implement the subroutines define_problem_space_parameters, define_geometry, and
initialize_fdtd_material_grid.

The contents of the subroutine define_problem_space_parameters are given in Listing 3.2.
Listing 3.2 starts with the MATLAB command disp, which displays the string in its argument on
MATLAB command window. Here the string argument of disp indicates that the program is

Listing 3.2 define_problem_space_parameters.m
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executing the routine in which the problem space parameters are defined. Displaying this kind
of informative statement at various stages of the program indicates the progress of the execution
as well as helps for debugging any sources of errors if they exist.

The total number of time steps that the FDTD time-marching iterations will run for is
defined in line 4 of Listing 3.2 with the parameter number_of_time_steps. Line 8 defines a
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parameter named courant_factor: a factor by which the duration of a time step is deter-
mined with respect to the CFL stability limit as described in Chapter 2. In line 11 another
parameter is defined with the name number_of_cells_per_wavelength. This is a parameter
by which the highest frequency in the Fourier spectrum of a source waveform is determined
for a certain accuracy level. This parameter is described in more detail in Chapter 5, where
the source waveforms are discussed. On lines 14, 15, and 16 the dimensions of a unit cell
constructing the uniform FDTD problem grid are defined as parameters dx, dy, and dz,
respectively.

One of the important concepts in the FDTD technique is the treatment of boundaries
of the problem space. The treatment of perfect electric conductor (PEC) boundaries was
demonstrated in Chapter 1 through a one-dimensional FDTD code. However, some types of
problems may require other types of boundaries. For instance, an antenna problem requires
that the boundaries simulate radiated fields propagating outside the finite problem space to
infinity. Unlike a PEC boundary, this type of boundary requires advanced algorithms, which
is the subject of a separate chapter. However, for now, we limit our discussion to PEC
boundaries. A conventional FDTD problem space composed of uniform Yee cells is a rec-
tangular box having six faces. On lines 21–37 of Listing 3.2 the boundary types of these six
faces are defined using a data structure called boundary. The structure boundary has two
types of fields: type and air_buffer_number_of_cells. These field names have extensions
indicating the specific face of the domain under consideration. For instance, the extension
_xn refers to the face of the problem space for which the normal vector is directed in the
negative x direction, where n stands for negative direction. Similarly, the extension _zp
refers to the face of the problem space for which the normal vector is directed in the positive
z direction, where p stands for positive direction. The other four extensions refer to four
other faces. The field type defines the type of the boundary under consideration, and in this
case all boundaries are defined as PEC by the keyword pec. Other types of boundaries are
identified with other keywords.

Some types of boundary conditions require that the boundaries be placed at a distance
from the objects. Most of the time this space is filled with air, and the distance in between is
given in terms of the number of cells. Hence, the parameter air_buffer_number_of_cells
defines the distance of the respective boundary faces of the rectangular problem space from
the objects placed in the problem space. If the value of this parameter is zero, it implies that
the boundary touches the objects.

Finally, we define different types of materials that the objects in the problem space are
made of. Since more than one type of material may be used to construct the objects, an array
structure with name material_types is used as shown in lines 47–79 of Listing 3.2. An index
i in material_types(i) refers to the ith material type. Later on, every object will be assigned a
material type through the index of the material type. An isotropic and homogeneous material
type can be defined by its electromagnetic parameters: relative permittivity er, relative per-
meability mr, electric conductivity se, and magnetic conductivity sm; hence, fields eps_r,
mu_r, sigma_e, and sigma_m are used with parameter material_types(i), respectively, to
define the electromagnetic parameters of ith material type. In the given example code, a very
high value is assigned to material_types(2).sigma_e to construct a material type simulating
a PEC, and a very high value is assigned to material_types(3).sigma_m to construct
a material type simulating a perfect magnetic conductor (PMC). A fifth field color in
material_types(i) is optional and is used to assign a color to each material type, which will
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help in distinguishing different material types when displaying the objects in the problem
space on a MATLAB figure. The field color is a vector of three values corresponding to red,
green, and blue intensities of the red, green, and blue (RGB) color scheme, respectively, with
each color scaled between 0 and 1.

While defining the material_types it is a good practice to reserve some indices for some
common material types. Some of these material types are air, PEC, and PMC, and these
material types are indexed as 1, 2, and 3 in the material_types structure array, respectively.
Then we can define additional parameters material_type_index_air, material_type_
index_pec, and material_type_index_pmc, which store the indices of these materials and
can be used to identify them in the program.

3.1.2 Defining the objects in the problem space

In the previous section, we discussed the definition of some problem space parameters
including the boundary types and material types. In this section we discuss the imple-
mentation of the routine define_geometry contents, which are given in Listing 3.3. Different
types of three-dimensional objects can be placed in a problem geometry. We show example
implementations using prisms and spheres due to their geometrical simplicity, and it is
possible to construct more complicated shapes by using a combination of these simple
objects. Here we will use the term brick to indicate a prism. A brick, which has its faces
parallel to the Cartesian coordinate axes, can be represented by two corner points: (1) the
point with lower x, y, and z coordinates; and (2) the point with upper x, y, and z coordinates
as illustrated in Figure 3.1(a). Therefore, a structure array called bricks is used in Listing 3.3
together with the fields min_x, min_y, min_z, max_x, max_y, and max_z corresponding to
their respective positions in Cartesian coordinates. Each element of the array bricks is a
brick object indexed by i and is referred to by bricks(i). Another field of the parameter
bricks(i) is the parameter material_type, which refers to the index of the material type of
the ith brick. In Listing 3.3 bricks(1).material_type is 4, indicating that brick 1 is made
of material_types(4), which is defined in Listing 3.2 as a dielectric with er ¼ 2.2 and
sm ¼ 0.2. Similarly, bricks(2).material_type is 2, indicating that brick 2 is made of
material_types(2), which is defined as a PEC.

A sphere can be defined by its center coordinates and radius as illustrated in Figure 3.1(b).
Therefore, a structure array spheres is used in Listing 3.3 together with the fields center_x,
center_y, center_z, and radius which correspond to the respective parameters in Cartesian
coordinates. Similar to the brick case, the field material_type is used together with
spheres(i) to define the material type of the ith sphere. For example, in Listing 3.3 two
spheres are defined with coinciding centers. Sphere 1 is a dielectric of material_types(5)
with a radius of 20 mm, and sphere 2 is a dielectric of material_types(1) with a radius of
15 mm. If these two spheres are created in the problem space in sequence (sphere 1 first and
sphere 2 second), their combination is going to form a hollow shell of thickness 5 mm since
the material type of the inner sphere material_types(1) is air. One should notice that Listing
3.3 starts with two lines defining two arrays, bricks and spheres, and initializes them by
null. Even though we are not going to define an object corresponding to some of these arrays,
we still define them and initialize them as empty arrays. Later, when the program executes,
these arrays will be accessed by some routines of the program.
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If MATLAB tries to access a parameter that does not exist in its workspace, it is going to
fail and stop the execution of the program. To prevent such a runtime error we define these
arrays even though they are empty.

So far we have defined an FDTD problem space and defined some objects existing in
it. Combining the definitions in Listings 3.2 and 3.3 we obtained a problem space, which
is plotted in Figure 3.2. The dimensions of the cells in the grids in Figure 3.2 are the same
as the dimensions of the unit cell making the FDTD grid. Therefore, it is evident that the
boundaries are away from the objects by the distances defined in Listing 3.2. Further-
more, the objects are placed in the three-dimensional space with the positions and
dimensions as defined in Listing 3.3, and their colors are set as their corresponding
material type colors.

Listing 3.3 define_geometry.m
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3.2 Material approximations

In a three-dimensional FDTD problem space, the field components are defined at discrete
locations, and the associated material components are defined at the same locations as illu-
strated in Figures 1.5 and 1.6. The material components need to be assigned appropriate

(a) (b)

(max_x, max_y, max_z)

(min_x, min_y, min_z)

y
z

z
y
x

x

(center_x, center_y, center_z)

Radius

Figure 3.1 Parameters defining a brick and a sphere in Cartesian coordinates: (a) parameters
defining a brick and (b) parameters defining a sphere.

x

y

z

Figure 3.2 An FDTD problem space and the objects defined in it.
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values representing the media existing at the respective positions. However, the medium
around a material component may not be homogeneous, and some approximation strategies
need to be adopted.

One of the strategies is to assume that each material component is residing at the
center of a cell. These cells are offset from the Yee cells, and we refer to them as material
cells. For instance, consider the z-component of permittivity shown in Figure 3.3, which
can be imagined as being at the center of a material cell partially filled with two different
media denoted by subscripts 1 and 2, with permittivity values e1 and e2. The simplest
approach is to assume that the cell is completely filled with medium 1 since the material
component ez(i, j, k) resides in the medium 1. Therefore, ez(i, j, k) can be assigned e1;
ez(i, j, k) ¼ e1.

A better approach would include the effect of e2 by employing an averaging scheme. If it
is possible to obtain the volume of each medium filling the material cell, a simple weighted
volume averaging can be used as employed in [5]. In the example case shown in Figure 3.3,
ez(i, j, k) can be calculated as ez(i, j, k) ¼ (V1 � e1 þ V2 � e2)/(V1 þ V2), where V1 and V2

are the volumes of medium 1 and medium 2 in the material cell, respectively.
In many cases, calculation of the volume of each media in a cell may require tedious

calculations, whereas it may be much simpler to determine the medium in which a point
resides. A crude approximation to the weighted volume averaging scheme is proposed in [6],
which may be useful for such cases. In this approach, every cell in the Yee grid is divided
into eight subcells, and each material component is located in between eight subcells, as
illustrated in Figure 3.4. For every subcell center point the respective medium can be
determined and every subcell can be assigned the respective medium material property. Then
an effective average of the eight subcells surrounding a material component can be calcu-
lated and assigned to the respective material component. For instance, ez(i, j, k) in Figure 3.4,
for uniform cell sizes in the x, y, and z directions, can be calculated as

ezði; j; kÞ ¼ e1 þ e2 þ e3 þ e4 þ e5 þ e6 þ e7 þ e8

8
: ð3:1Þ

Material cell for ez(i, j, k)

ez(i + 1, j, k)

z
y
x

Yee cell (i, j, k)

node (i, j, k)
e2, V2

ez(i, j, k)

e1, V1

Figure 3.3 A cell around material component ez(i, j, k) partially filled with two media.
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The advantage of this method is that objects may be modeled with eight times the
geometrical resolution (two times in each direction) without increasing the size of the
staggered grid and memory requirements.

3.3 Subcell averaging schemes for tangential and normal
components

The methods discussed thus far do not account for the orientation of the field component
associated with the material component under consideration with respect to the boundary
interface between two different media. For instance, Figures 3.5 and 3.6 show two such cases
where a material cell is partially filled with two different types of media. In the first case the
material component is parallel to the boundary of the two media, whereas in the second case
the material component is normal to the boundary. Two different averaging schemes can be
developed to obtain an equivalent medium type to be assigned to the material component.

For instance, Ampere’s law can be expressed in integral form based on the configuration
in Figure 3.5 as

I
!
H � dl ¼ d

dt

Z
!
D � ds ¼ d

dt
Dz � ðA1 þ A2Þ;

where Dz is the electric displacement vector component in the z direction, which is assumed
to be uniform in cross-section, and A1 and A2 are the cross-section areas of the two media
types in the plane normal to Dz. The electric field components in the two media are Ez1 and
Ez2. The total electric flux through the cell cross-section can be expressed as

Dz � ðA1 þ A2Þ ¼ e1Ez1A1 þ e2Ez2A2 ¼ eeff Ez � ðA1 þ A2Þ;

Material cell for ez(i, j, k)

e3

e2

ez(i, j, k)

e4

e8
e5

e1

e7

Yee cell (i, j, k)

z

y
x

Figure 3.4 A cell around material component ez(i, j, k) divided into eight subcells.
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where Ez is the electric field component (i, j, k), which is assumed to be uniform in the cross-
section of the cell and associated with the permittivity eeff that is equivalent to ez(i, j, k). On
the boundary of the media the tangential components of the electric field are continuous such
that Ez1 ¼ Ez2 ¼ Ez; therefore, one can write

e1A1 þ e2A2 ¼ eeff � ðA1 þ A2Þ ) eeff ¼ ezði; j; kÞ ¼ e1A1 þ e2A2

ðA1 þ A2Þ : ð3:2Þ

z

y
x
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I2
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e1

ez(i, j, k)

Ez(i, j, k)
Ez(i + 1, j, k)

Ex(i, j + 1, k)

Ex(i, j, k)

Hy(i, j, k)

Δx

Δz

Δy

Figure 3.6 Material component ez(i, j, k) normal to the boundary of two different media
partially filling a material cell.
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Figure 3.5 Material component ez(i, j, k) parallel to the boundary of two different media
partially filling a material cell.
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Hence, an equivalent permittivity can be calculated for a material component parallel to
the interface of two different material types of permittivity e1 and e2 using (3.2), by which
the electric flux conservation is maintained.

For the case where the material component is normal to the media boundary we can
employ Faradays’s law in integral form based on the configuration in Figure 3.6, which reads

I
!
E � dl ¼� d

dt

Z
!
B � ds

¼�DxExði; j; kÞ þ DxExði; j þ 1; kÞ þ DzEzði; j; kÞ � DzEzði þ 1; j; kÞ;

where Ez is the equivalent electric field vector component in the z direction, which is
assumed to be uniform in the boundary cross-section. However, in reality there are two
different electric field values, Ez1 and Ez2, due to the different material types. We want to
obtain Ez to represent the equivalent effect of Ez1 and Ez2 and eeff to represent the equivalent
effect of e1 and e2. The electric field terms shall satisfy

DzEzði; j; kÞ ¼ ðl1 þ l2Þ � Ezði; j; kÞ ¼ l1Ez1 þ l2Ez2: ð3:3Þ

On the boundary of the media the normal components of the electric flux
!
D are con-

tinuous such that Dz1 ¼ Dz2 ¼ Dz(i, j, k); therefore, one can write

Dzði; j; kÞ ¼ e1Ez1 ¼ e2Ez2 ¼ eeff Ezði; j; kÞ; ð3:4Þ

which can be expressed in the form

Ez1 ¼ Dzði; j; kÞ
e1

; Ez2 ¼ Dzði; j; kÞ
e2

; Ezði; j; kÞ ¼ Dzði; j; kÞ
eeff

: ð3:5Þ

Using (3.5) in (3.3) and eliminating the terms Dz(i, j, k) yields

l1 þ l2
eeff

¼ l1

e1
þ l2

e2
) eeff ¼ ezði; j; kÞ ¼ e1e2 � ðl1 þ l2Þ

ðl1e2 þ l2e1Þ : ð3:6Þ

Hence, an expression for the equivalent permittivity has been obtained in (3.6), by
which the magnetic flux conservation is maintained.

The averaging schemes given by (3.2) and (3.6) are specific cases of the more general
approaches introduced in [7], [8], and [9].

It can be shown that these schemes can be employed for other material parameters as
well. For instance, the equivalent permeability m can be written as

meff ¼
m1A1 þ m2A2

ðA1 þ A2Þ ; m parallel to media boundary; ð3:7aÞ

meff ¼
m1m2 � ðl1 þ l2Þ
ðl1m2 þ l2m1Þ

; m normal to media boundary: ð3:7bÞ

These schemes serve as good approximations for low values of se and sm as well, where
they can be written as
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se
eff ¼

se
1A1 þ se

2A2

ðA1 þ A2Þ ; se parallel to media boundary; ð3:8aÞ

se
eff ¼

se
1se

2 � ðl1 þ l2Þ
ðl1se

2 þ l2se
1Þ

; se normal to media boundary; ð3:8bÞ

and

sm
eff ¼

sm
1 A1 þ sm

2 A2

ðA1 þ A2Þ ; sm parallel to media boundary; ð3:9aÞ

sm
eff ¼

sm
1 sm

2 � ðl1 þ l2Þ
ðl1sm

2 þ l2sm
1 Þ

; sm normal to media boundary; ð3:9bÞ

3.4 Defining objects snapped to the Yee grid

The averaging schemes provided in the previous section are usually discussed in the context
of subcell modeling techniques in which effective material parameter values are introduced
while the staircased gridding scheme is maintained. Although there are some other more
advanced subcell modeling techniques that have been introduced for modeling fine features
in the FDTD method, in this section we discuss modeling of three-dimensional objects
assuming that the objects are conforming to the staircased Yee grid. Therefore, each Yee cell
is filled with a single material type. Although this assumption gives a crude model compared
with the subcell modeling techniques discussed before, we consider this case since it does
not require complicated programming effort and since it is sufficient to obtain reliable results
for many problems. Furthermore, we still employ the aforementioned subcell averaging
schemes for obtaining effective values for the material components lying on the boundaries
of cells filled with different material types.

For instance, consider Figure 3.7, where the material component ez(i, j, k) is located in
between four Yee cells, each of which is filled with a material type. Every Yee cell is indexed
by a respective node. Since every cell is filled with a material type, three-dimensional

Yee cell (i – 1, j – 1, k)

Yee cell (i, j – 1, k)

e(i – 1, j – 1, k)

node (i – 1, j, k)

node (i, j – 1, k)z
y
x

node (i – 1, j – 1, k) node (i, j, k)

ez(i, j, k)

e(i – 1, j, k)

e(i, j – 1, k)

e(i, j, k)

Figure 3.7 Material component ez(i, j, k) located between four Yee cells filled with four
different material types.
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material arrays can be utilized, each element of which corresponds to the material type filling
the respective cell. For instance, e(i – 1, j – 1, k) holds the permittivity value of the material
filling the cell (i � 1, j � 1, k). Consider the permittivity parameters that are indexed as
e(i – 1, j – 1, k), e(i – 1, j, k), e(i, j – 1, k), and e(i, j, k) in Figure 3.7. The material component
ez(i, j, k) is tangential to the four surrounding media types; therefore, we can employ (3.2) to
get the equivalent permittivity ez(i, j, k) as

ezði; j; kÞ ¼ eði; j; kÞ þ eði � 1; j; kÞ þ eði; j � 1; kÞ þ eði � 1; j � 1; kÞ
4

: ð3:10Þ
Since the electric conductivity material components are defined at the same positions

as the permittivity components, the same averaging scheme can be employed to get the
equivalent electric conductivity se

zði; j; kÞ as

se
zði; j; kÞ ¼ seði; j; kÞ þ seði � 1; j; kÞ þ seði; j � 1; kÞ þ seði � 1; j � 1; kÞ

4
: ð3:11Þ

Unlike the permittivity and electric conductivity components, the material components
associated with magnetic field components, permeability and magnetic conductivity, are
located between two cells and are oriented normal to the cell boundaries as illustrated in
Figure 3.8. In this case we can use the relation (3.7b) to get mz(i, j, k) as

mzði; j; kÞ ¼ 2 � mði; j; kÞ � mði; j; k � 1Þ
mði; j; kÞ þ mði; j; k � 1Þ : ð3:12Þ

Similarly, we can write sm
z ði; j; kÞ as

sm
z ði; j; kÞ ¼ 2 � smði; j; kÞ � smði; j; k � 1Þ

smði; j; kÞ þ smði; j; k � 1Þ : ð3:13Þ

m(i, j, k)

mz(i, j)

m(i, j, k – 1)

node (i, j, k)

node (i, j, k – 1)

Yee cell (i, j, k – 1)

z
y

x

Yee cell (i, j, k)

Figure 3.8 Material component mz(i, j, k) located between two Yee cells filled with two
different material types.
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3.4.1 Defining zero-thickness PEC objects

In many electromagnetics problems, especially in planar circuits, some very thin objects
exist, most of the time in the form of microstrip or stripline structures. In these cases, when
constructing an FDTD simulation, it may not be feasible to choose the unit cell size as small
as the thickness of the strip, since this will lead to a very large number of cells and, hence to
an excessive amount of computer memory that prevents practical simulations with current
computer resources. Then if the cell size is larger than the strip thickness, subcell modeling
techniques, some of which are discussed in the previous sections, can be employed for
accurate modeling of the thin strips in the FDTD method. Usually the subcell modeling of
thin strips is studied in the context of thin-sheet modeling techniques. Here we discuss
a simple modeling technique that can be used to obtain results with a reasonable accuracy
for the majority of problems including thin strips where the thin strips are PEC. Here we
assume that the thin-strip thickness is zero, which is a reasonable approximation since most
of the time the strip thicknesses are much smaller than the cell sizes. Furthermore, we
assume that the strips are conforming to the faces of the Yee cells in the problem space.

Consider the PEC plate with zero thickness as shown in Figure 3.9, which conforms to the
face of the Yee cell with index (i, j, k). This plate is surrounded by four electric conductivity
material components, namely, se

xði; j; kÞ, se
xði; j þ 1; kÞ, se

yði; j; kÞ, and se
yði þ 1; j; kÞ: We

can simply assign the conductivity of PEC, se
pec, to these material components, such that

se
xði; j; kÞ ¼ se

pec; se
xði; j þ 1; kÞ ¼ se

pec;

se
yði; j; kÞ ¼ se

pec; and se
yði þ 1; j; kÞ ¼ se

pec:

Therefore, any electric conductivity components surrounding and coinciding with PEC
plates can be assigned the conductivity of PEC to model zero-thickness PEC plates in the
FDTD method.

Similarly, if a PEC object with thickness smaller than a cell size in two dimensions, such
as a thin conductor wire, needs to be modeled in the FDTD method, it is sufficient to assign
the conductivity of PEC to the electric conductivity components coinciding with the object.

z
y

x

node (i, j, k)

PEC with zero thickness

s e
y(i, j, k)

s ee
x(i, j, k)

s ee
x(i, j + 1, k)

s ee
y(i + 1, j, k)

node (i + 1, j + 1, k)

 

Figure 3.9 A PEC plate with zero thickness surrounded by four se material components.

3.4 ● Defining objects snapped to the Yee grid 57



This approach gives a reasonable approximation to a thin wire in the FDTD method. How-
ever, since the field variation around a thin wire is large, the sampling of the fields at the
discrete points around the wire may not be accurate. Therefore, it is more appropriate to use
more advanced thin-wire modeling techniques, which take into account the wire thickness,
for better accuracy. A thin-wire modeling technique is discussed in Chapter 10.

3.5 Creation of the material grid

At the beginning of this chapter we discussed how we can define the objects using data
structures in MATLAB. We use these structures to initialize the FDTD material grid; we
create and initialize three-dimensional arrays representing the components of the material
parameters e, m, se, and sm. Then we assign appropriate values to these arrays using the
averaging schemes discussed in Section 3.4. Later on these material arrays will be used to
calculate the FDTD updating coefficients.

The routine initialize_fdtd_material_grid, which is used to initialize the material arrays,
is given in Listing 3.4. The material array initialization process is composed of multiple
stages; therefore, initialize_fdtd_material_grid is divided into functional subroutines. We
describe the implementation of these subroutines and demonstrate how the concepts
described in Section 3.4 are coded.

The first subroutine in Listing 3.4 is calculate_domain_size, the implementation of
which is given in Listing 3.5. In this subroutine the dimensions of the FDTD problem space
are determined, including the number of cells (Nx, Ny, and Nz) making the problem space.
Once the number of cells in the x, y, and z dimensions are determined, they are assigned to

Listing 3.4 initialize_fdtd_material_grid.m
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Listing 3.5 calculate_domain_size.m
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parameters nx, ny, and nz. Based on the discussion in Section 3.4, we assume that every Yee
cell is filled with a material type. Then in line 10 of Listing 3.4 a three-dimensional array
material_3d_space with size (Nx � Ny � Nz) is initialized with ones. In this array each
element will store the index of the material type filling the corresponding cell in the problem
space. Since material_3d_space is initialized by the MATLAB function ones, all of its
elements have the value 1. Referring to Listing 3.2 one can see that material_types(1) is
reserved for air; therefore, the problem space is initially filled with air.

After this point we find the cells overlapping with the objects defined in define_geometry
and assign the indices of the material types of the objects to the corresponding elements of the
array material_3d_space. This procedure is performed in the subroutines create_spheres,
which is shown in Listing 3.6, and create_bricks, which is shown in Listing 3.7. With the
given implementations, first the spheres are created in the problem space, and then the bricks
are created. Furthermore, the objects will be created in the sequence as they are defined in

Listing 3.6 create_spheres.m

Listing 3.7 create_bricks.m
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define_geometry. This means that if more than one object overlaps in the same cell, the object
defined last will overwrite the objects defined before. So one should define the objects
accordingly. These two subroutines (create_spheres and create_bricks) can be replaced by a
more advanced algorithm in which the objects can be assigned priorities in case of over-
lapping, and changing the priorities would be sufficient to have the objects created in the
desired sequence in the problem space.

For example, the array material_3d_space is filled with the material parameter indices
of the objects that were defined in Listing 3.3 and displayed in Figure 3.2. The cells repre-
sented by material_3d_space are plotted in Figure 3.10, which clearly shows the staircased
approximations of the objects as generated by the subroutine display_problem_space, which
is called in fdtd_solve.

Then in initialize_fdtd_material_grid we create three-dimensional arrays representing the
material parameter components ex, ey, ez, mx, my, mz, se

x, se
y, se

z , sm
x , sm

y , and sm
z . Here the

parameters eps_r_x, eps_r_y, eps_r_z, mu_r_x, mu_r_y, and mu_r_z are relative permittivity

x

Figure 3.10 An FDTD problem space and the objects approximated by snapping to cells.
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and relative permeability arrays, and they are initialized with 1. The electric and magnetic
conductivity arrays are initialized with 0. One can notice that the sizes of these arrays are not the
same as they correspond to the size of the associated field component. This is due to the specific
positioning scheme of the field components on the Yee cell as shown in Figure 1.5. For instance,
the distribution of the x components of the electric field, Ex, in a problem space composed of
(Nx � Ny � Nz) cells is illustrated in Figure 3.11. It can be observed that there exist
(Nx � Ny þ 1 � Nz þ 1) Ex components in the problem space. Therefore, in the program the
three-dimensional arrays representing Ex and the material components associated with Ex shall
be constructed with size (Nx � Ny þ 1 � Nz þ 1). Hence, in Listing 3.4 the parameters
eps_r_x and sigma_e_x are constructed with size (nx, nyp 1, nzp 1), where nyp 1 is Ny þ 1,
and nzp 1 is Nz þ 1. Similarly, it can be observed in Figure 3.12 that there exist
(Nx þ 1 � Ny � Nz) Hx components in the problem space. Therefore, in Listing 3.4 the para-
meters mu_r_x and sigma_m_x are constructed with size (nxp 1, ny, nz), where nxp 1 is Nx þ 1.

Since we have created and filled the array material_3d_space as the staircased repre-
sentation of the FDTD problem space and have initialized material component arrays, we
can proceed with assigning appropriate parameter values to the material component array
elements based on the averaging schemes discussed in Section 3.4 to form the material grid.
This is done in the subroutine calculate_material_component_values; partial implementa-
tion of this subroutine is shown in Listing 3.8. In Listing 3.8 calculations for the x compo-
nents of the material component arrays are illustrated; implementation of other components
is left to the reader. Here one can notice that eps_r_x, sigma_e_x, mu_r_x, and sigma_m_x
are calculated using the forms of equations (3.10), (3.11), (3.12), and (3.13), respectively.

The last step in constructing the material grid is to create the zero-thickness PEC plates in
the material grid. The subroutine create_PEC_plates shown in Listing 3.9 is implemented for

(nx + 1, ny + 1, nz + 1)

(1, ny + 1, nz + 1)

(nx + 1, ny + 1, 1)

node (nx + 1, 1, 1)

node (1, 1, 1)

x

yz

Figure 3.11 Positions of the Ex components on the Yee grid for a problem space composed of
(Nx � Ny � Nz) cells.
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(nx + 1, ny + 1, 1)

node (nx + 1, 1, 1)

node (1, 1, 1)

(1, ny + 1, nz + 1)

z y

x

Figure 3.12 Positions of the Hx components on the Yee grid for a problem space composed of
(Nx � Ny � Nz) cells.

Listing 3.8 calculate_material_component_values.m
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Listing 3.9 create_PEC_plates.m
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this purpose. The code checks all of the defined bricks for zero thickness and assigns their
material’s conductivity values to the electric conductivity components overlapping with them.

Using the code sections described in this section, the material grid for the material cell
distribution in Figure 3.10 is obtained and plotted on three plane cuts for relative permittivity
distribution in Figure 3.13(a) and for relative permeability distribution in Figure 3.13(b). The
effects of averaging can be clearly observed on the object boundaries.

3.6 Improved eight-subcell averaging

In Section 3.2 we described how any cell can be divided into eight subcells and how every
material parameter component is located in between eight surrounding cells as illustrated in
Figure 3.4. A simple averaging scheme as (3.1) was used to find an equivalent value for a
given material component. We can combine the averaging schemes discussed in Section 3.3
with the eight-subcell modeling scheme to obtain an improved approach for modeling the
material components in the FDTD grid.

Consider the eight subcells in Figure 3.4, each of which is filled with a material type.
We can assume an equivalent permittivity ep for the four subcells with permittivities e1, e4,
e5, and e8, which can be calculated as ep ¼ 0.25 � (e1 þ e4 þ e5 þ e8). Similarly, we can
assume an equivalent permittivity en for the four subcells with permittivities e2, e3, e6, and
e7 that can be calculated as en ¼ 0.25 � (e2 þ e3 þ e6 þ e7). The permittivity component
ez(i, j, k) is located between the half-cells filled with materials of permittivities ep and en, and
it is oriented normal to the boundaries of these half-cells. Therefore, using (3.6) we can write

ezði; j; kÞ ¼ 2 � ep � en

ep þ en
: ð3:14Þ

The same approach can be used for parameter components permeability and for electric
and magnetic conductivities as well. Furthermore, it should be noted that the improved eight-
subcell averaging scheme presented here is based on the application of the more general
approach for eight subcells [8].

3.7 Exercises

3.1 The file fdtd_solve is the main program used to run FDTD simulations. Open this
subroutine and examine its contents. It calls several subroutines that are not imple-
mented yet. In the code disable the lines 7, 8, and 14–27 by ‘‘commenting’’ these lines.
Simply insert ‘‘%’’ sign in front of these lines. Now the code is ready to run with its
current functionality.

Open the subroutine define_problem_space-parameters, and define the problem
space parameters. Set the cell size as 1 mm on a side, boundaries as ‘‘pec,’’ and air
gap between the objects and boundaries as five cells on all sides. Define a material
type with index 4 having the relative permittivity as 4, relative permeability as 2,
electric conductivity as 0.2, and magnetic conductivity as 0.1. Define another mate-
rial type with index 5 having relative permittivity as 6, relative permeability as 3,
electric conductivity as 0.4, and magnetic conductivity as 0.2. Open the subroutine
define_geometry, and define the problem geometry. Define a brick with size
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Figure 3.13 Material grid on three plane cuts: (a) relative permittivity components and
(b) relative permeability components.
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5 mm � 6 mm � 7 mm, and assign material type index 4 as its material type.
Figure 3.14(a) shows the geometry of the problem in consideration.

In the directory including your code files there are some additional files prepared as
plotting routines that you can use together with your code. These routines are called in
fdtd_solve after the definition routines. Insert the command ‘‘show_problem_space
¼ true;’’ in line 9 of fdtd_solve temporarily to enable three-dimensional geometry
display. Run the program fdtd_solve. The program will open a figure including a
three-dimensional view of the geometry you have defined and another program named
as ‘‘Display Material Mesh’’ that helps you examine the material mesh created for the
defined geometry. For instance, Figure 3.14(b) shows the relative permittivity dis-
tribution of the FDTD problem space in three plane cuts generated by the program
‘‘Display Material Mesh.’’ Examine the geometry and the material mesh, and verify
that the material parameter values are averaged on the boundaries as explained in
Chapter 3.

3.2 Consider the problem you constructed in Exercise 3.1. Now define another brick with
size 3 mm � 4 mm � 5 mm, assign material type index 5 as its material type, and
place it at the center of the first brick. Run fdtd_solve, and then examine the geometry
and the material mesh and verify that the material parameter values are averaged on the
boundaries as explained in Chapter 3.

Now change the definition sequence of these two bricks in define_geometry; define
the second brick first with index 1 and the first brick as second with its index 2. Run
fdtd_solve, and examine the geometry and the material mesh. Verify that the smaller
brick has disappeared in the material mesh. With the given implementation of the
program, the sequence of defining the objects determines the way the FDTD material
mesh is created.

(a) (b)

z

xy

4

3.5

3

2.5

2

1.5

1

Figure 3.14 The FDTD problem space of Exercise 3.1: (a) geometry of the problem and
(b) relative permittivity distribution.
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3.3 Construct a problem space with the cell size as 1 mm on a side, boundaries as ‘‘pec,’’
and air gap between the objects and boundaries as five cells on all sides. Define a brick
as a PEC plate with zero thickness placed between the coordinates given in millimeters
as (0, 0, 0) and (8, 8, 0). Define another brick as a plate with zero thickness, material
type air, and placed between the coordinates (3, 0, 0) and (5, 8, 0) as illustrated in
Figure 3.15(a), which shows the geometry of the problem in consideration. Run
fdtd_solve, and then examine the geometry and the material mesh. Examine the electric
conductivity distribution, and verify that on the boundary between the plates the
material components are air as shown in Figure 3.15(b).

3.4 Construct a problem space with the cell size as 1 mm on a side, boundaries as ‘‘pec,’’
and air gap between the objects and boundaries as five cells on all sides. Define a brick
as a PEC plate with zero thickness placed between the coordinates given in millimeters
as (0, 0, 0) and (3, 8, 0). Define another brick as PEC plate and placed between the
coordinates (5, 0, 0) and (8, 8, 0). Run fdtd_solve, and then examine the geometry and
the material mesh. Examine the electric conductivity distribution, and verify that on the
boundaries of the plates facing each other the material components are PEC.

Although the geometry constructed in this example is physically the same as the one
in Exercise 3.3, the material meshes are different since the ways the geometries are
defined are different.

(a) (b)

z

xy

pec
pecair

Figure 3.15 The FDTD problem space of Exercise 3.3: (a) geometry of the problem and
(b) electric conductivity distribution.
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CHAPTER 4

Active and passive lumped
elements

4.1 FDTD updating equations for lumped elements

Many practical electromagnetics applications require inclusion of lumped circuit elements.
The lumped elements may be active sources in the form of voltage and current sources or
passive in the form of resistors, inductors, and capacitors. Nonlinear circuit elements such as
diodes and transistors are also required to be integrated in the numerical simulation of
antennas and microwave devices. The electric current flowing through these circuit elements
can be represented by the impressed current density term,

!
J i, in Maxwell’s curl equation

r� !
H ¼ e

@
!
E

@t
þ se !

E þ !
J i: ð4:1Þ

Impressed currents are used to represent sources or known quantities. In this sense, they are the
sources that cause the electric and magnetic fields in the computational domain [10]. A lumped
element component placed between two nodes is characterized by the relationship between the
voltage V across and the current I flowing between these two nodes. This relationship can be
incorporated into Maxwell’s curl equation (4.1) by expressing

!
E in terms of V using

!
E ¼ �rV ð4:2Þ

and by expressing
!
J in terms of I using the relation

I ¼
Z

S

!
J � ds; ð4:3Þ

where S is the cross-sectional area of a unit cell normal to the flow of the current I. These
equations can be implemented in discrete time and space and can be incorporated into (4.1),
which are expressed in terms of finite differences. Then, the finite-difference time-domain
(FDTD) updating equations can be obtained that simulate the respective lumped element
characteristics.

In this chapter we discuss the construction of the FDTD updating equations for lumped
element components, and we demonstrate MATLAB� implementation of definition,
initialization, and simulation of these elements.
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4.1.1 Voltage source

In any electromagnetics simulation, one of the necessary components is the inclusion of
sources. Types of sources vary depending on the problem type; scattering problems require
incident fields from far zone sources, such as plane waves, to excite objects in a problem
space, whereas many other problems require near zone sources, which are usually in the
forms of voltage or current sources. In this section we derive updating equations that
simulate the effects of a voltage source present in the problem space.

Consider the scalar curl equation (1.4c) repeated here for convenience:

@Ez

@t
¼ 1

ez

@Hy

@x
� @Hx

@y
� se

zEz � J iz

� �
: ð4:4Þ

This equation constitutes the relation between the current density Jiz flowing in the z direction
and the electric and magnetic field vector components. Application of the central difference
formula to the time and space derivatives based on the field positioning scheme illustrated in
Figure 4.1 yields

Enþ1
z ði; j; kÞ � En

z ði; j; kÞ
Dt

¼ 1
ezði; j; kÞ

H
nþ1

2
y ði; j; kÞ � H

nþ1
2

y ði � 1; j; kÞ
Dx

� 1
ezði; j; kÞ

H
nþ1

2
x ði; j; kÞ � H

nþ1
2

x ði; j � 1; kÞ
Dy

� se
zði; j; kÞ

2ezði; j; kÞ Enþ1
z ði; j; kÞ þ En

z ði; j; kÞ� �

� 1
ezði; j; kÞ J

nþ1
2

iz ði; j; kÞ

ð4:5Þ

Hy(i – 1, j, k)
Hx(i, j, k)

Hx(i, j – 1, k)
Hy(i, j, k)

y
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z
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Dz

Dy

Jz(i, j, k)Ez(i, j, k)

node(i, j, k + 1)

node (i, j, k)

Figure 4.1 Field components around Ez(i, j, k).
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We want to place a voltage source with Vs volts magnitude and Rs ohms internal resistance
between nodes (i, j, k) and (i, j, k þ1) as illustrated in Figure 4.2(a), where Vs is a time-varying
function with a predetermined waveform. The voltage–current relation for this circuit can be
written as

I ¼ DV þ Vs

Rs
; ð4:6Þ

where DV is the potential difference between nodes (i, j, k) and (i, j, k þ 1). The term DV can
be expressed in terms of Ez using (4.2), which translates to

DV ¼ Dz � E
nþ1

2
z ði; j; kÞ ¼ Dz � Enþ1

z ði; j; kÞ þ En
z ði; j; kÞ

2
; ð4:7Þ

in discrete form at time instant (n þ 0.5)Dt. Current I is the current flowing through the
surface enclosed by the magnetic field components in Figure 4.1, which can be expressed in
terms of Jiz using (4.3) as

Inþ1
2 ¼ DxDy J

nþ1
2

iz ði; j; kÞ: ð4:8Þ
One should notice that DV in (4.7) is evaluated at time instant (n þ 0.5)Dt, which corre-
sponds to the required time instant of I and J dictated by (4.5). Inserting (4.7) and (4.8) in
(4.6) one can obtain

J
nþ1

2
iz ði; j; kÞ ¼ Dz

2DxDyRs
� Enþ1

z ði; j; kÞ þ En
z ði; j; kÞ� �þ 1

DxDyRs
� V

nþ1
2

s : ð4:9Þ

Equation (4.9) includes the voltage–current relation for a voltage source tying Vs and Rs

to electric field components in the discrete space and time. One can use (4.9) in (4.5) and

(a) (b)
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+
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Rs
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Z

node(i, j, k + 1) node(i, j, k + 1)

node(i, j, k)
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Vs

node (i, j, k)

Z

I

Figure 4.2 Voltage sources placed between nodes (i, j, k) and (i, j, k þ 1): (a) voltage source
with internal resistance (soft source) and (b) voltage source without internal
resistance (hard source).
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rearrange the terms such that the future value of the electric field component Enþ1
z can be

calculated using other terms, which yields our standard form updating equations such that

Enþ1
z ði; j; kÞ ¼ Cezeði; j; kÞ � En

z ði; j; kÞ
þ Cezhyði; j; kÞ � H

nþ1
2

y ði; j; kÞ � H
nþ1

2
y ði � 1; j; kÞ

� �

þ Cezhxði; j; kÞ � H
nþ1

2
x ði; j; kÞ � H

nþ1
2

x ði; j � 1; kÞ
� �

þ Cezsði; j; kÞ � V
nþ1

2
s ði; j; kÞ;

ð4:10Þ

where

Cezeði; j; kÞ ¼
2ezði; j; kÞ � Dtse

zði; j; kÞ � DtDz

RsDxDy

2ezði; j; kÞ þ Dtse
zði; j; kÞ þ DtDz

RsDxDy

;

Cezhyði; j; kÞ ¼ 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ þ DtDz

RsDxDy

� �
Dx

;

Cezhxði; j; kÞ ¼ � 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ þ DtDz

RsDxDy

� �
Dy

;

Cezsði; j; kÞ ¼ � 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ þ DtDz

RsDxDy

� �
ðRsDxDyÞ

;

Equation (4.10) is the FDTD updating equation modeling a voltage source placed between
the nodes (i, j, k) and (i, j, k þ 1), which is oriented in the z direction. The FDTD updating
equations for voltage sources oriented in other directions can easily be obtained following
the same steps as just illustrated.

The FDTD updating equation (4.10) is given for a voltage source with a polarity in the
positive z direction as indicated in Figure 4.2(a). To model a voltage source with the opposite
polarity, one needs only to use the inverse of the voltage magnitude waveform by changing
Vs to �Vs.

4.1.2 Hard voltage source

In some applications it may be desired that a voltage difference is enforced between two
points in the problem space. This can be achieved by using a voltage source without any
internal resistances, which is called a hard voltage source. For instance, Figure 4.2(b)
illustrates such a scenario, where a voltage source with Vs volts magnitude is placed between
the nodes (i, j, k) and (i, j, k þ 1). The FDTD updating equation for this voltage source can
simply be obtained by letting Rs ? 0 in (4.10), which can be written as

Enþ1
z ði; j; kÞ ¼ �En

z ði; j; kÞ � 2
Dz

V
nþ1

2
s ði; j; kÞ: ð4:11Þ
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To conform with the general form of the FDTD updating equations, (4.11) can be expressed as

Enþ1
z ði; j; kÞ ¼ Cezeði; j; kÞ � En

z ði; j; kÞ
þ Cezhyði; j; kÞ � H

nþ1
2

y ði; j; kÞ � H
nþ1

2
y ði � 1; j; kÞ

� �

þ Cezhxði; j; kÞ � H
nþ1

2
x ði; j; kÞ � H

nþ1
2

x ði; j � 1; kÞ
� �

þ Cezsði; j; kÞ � V
nþ1

2
s ði; j; kÞ;

ð4:12Þ

where

Cezeði; j; kÞ ¼ �1; Cezhyði; j; kÞ ¼ 0; Cezhxði; j; kÞ ¼ 0; Cezsði; j; kÞ ¼ � 2
Dz

:

4.1.3 Current source

Figure 4.3(a) illustrates a current source with Is amperes magnitude and Rs internal resis-
tance, where Is is a function of time with a time-varying waveform. The voltage–current
relation for the current source can be written as

I ¼ Is þ DV

Rs
: ð4:13Þ

Expressions of DV in (4.7) and Inþ1
2 in (4.8) can be used in (4.13), which yields in discrete

time and space

J
nþ1

2
iz ði; j; kÞ ¼ Dz

2DxDyRs
� Enþ1

z ði; j; kÞ þ En
z ði; j; kÞ� �þ 1

DxDy
� I

nþ1
2

s : ð4:14Þ
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Figure 4.3 Lumped elements placed between nodes (i, j, k) and (i, j, k þ 1): (a) current source
with internal resistance and (b) resistor.
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One can use (4.14) in (4.5) and rearrange the terms such that Enþ1
z can be calculated using

other terms, which yields

Enþ1
z ði; j; kÞ ¼ Cezeði; j; kÞ � En

z ði; j; kÞ
þ Cezhyði; j; kÞ � H

nþ1
2

y ði; j; kÞ � H
nþ1

2
y ði � 1; j; kÞ

� �

þ Cezhxði; j; kÞ � H
nþ1

2
x ði; j; kÞ � H

nþ1
2

x ði; j � 1; kÞ
� �

þ Cezsði; j; kÞ � I
nþ1

2
s ði; j; kÞ;

ð4:15Þ

where

Cezeði; j; kÞ ¼
2ezði; j; kÞ � Dtse

zði; j; kÞ � DtDz

RsDxDy

2ezði; j; kÞ þ Dtse
zði; j; kÞ þ DtDz

RsDxDy

;

Cezhyði; j; kÞ ¼ 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ þ DtDz

RsDxDy

� �
Dx

;

Cezhxði; j; kÞ ¼ � 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ þ DtDz

RsDxDy

� �
Dy

;

Cezsði; j; kÞ ¼ � 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ þ DtDz

RsDxDy

� �
DxDy

;

Equation (4.15) is the updating equation modeling a current source. One should notice
that (4.15) is the same as (4.10) except for the source term; that is, replacing the

V
nþ1

2
s ði; j; kÞ term in (4.10) by Rs � I

nþ1
2

s ði; j; kÞ yields (4.15).
The FDTD updating equation (4.15) is given for a current source with a current flowing

in the positive z direction as indicated in Figure 4.3(a). To model a current source with the
opposite flow direction, one needs only to use the inverse of the current magnitude waveform
by changing Is to �Is.

4.1.4 Resistor

Having derived the updating equations for a voltage source or a current source with internal
resistance, it is straightforward to derive updating equations for a resistor. For instance, elim-
inating the current source in Figure 4.3(a) yields the resistor in Figure 4.3(b). Hence, setting the
source term I

nþ1
2

s ði; j; kÞ in (4.15) to zero results the updating equation for a resistor as

Enþ1
z ði; j; kÞ ¼ Cezeði; j; kÞ � En

z ði; j; kÞ
þ Cezhyði; j; kÞ � H

nþ1
2

y ði; j; kÞ � H
nþ1

2
y ði � 1; j; kÞ

� �

þ Cezhxði; j; kÞ � H
nþ1

2
x ði; j; kÞ � H

nþ1
2

x ði; j � 1; kÞ
� �

;

ð4:16Þ
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where

Cezeði; j; kÞ ¼
2ezði; j; kÞ � Dtse

zði; j; kÞ � DtDz

RDxDy

2ezði; j; kÞ þ Dtse
zði; j; kÞ þ DtDz

RDxDy

;

Cezhyði; j; kÞ ¼ 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ þ DtDz

RDxDy

� �
Dx

;

Cezhxði; j; kÞ ¼ � 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ þ DtDz

RDxDy

� �
Dy

:

4.1.5 Capacitor

Figure 4.4(a) illustrates a capacitor with C farads capacitance. The voltage–current relation
for the capacitor can be written as

I ¼ C
dDV

dt
: ð4:17Þ

This relation can be expressed in discrete time and space as

Inþ1
2 ¼ C

DV nþ1 � DV n

Dt
: ð4:18Þ

Using DV in (4.7) and Inþ1
2 in (4.8) together with (4.18), one can obtain

J
nþ1

2
iz ði; j; kÞ ¼ CDz

DtDxDy
� Enþ1

z ði; j; kÞ � En
z ði; j; kÞ� �

: ð4:19Þ
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DV

Figure 4.4 Lumped elements placed between nodes (i, j, k) and (i, j, k þ 1): (a) capacitor and
(b) inductor.

4.1 ● FDTD updating equations for lumped elements 77



One can use (4.19) in (4.5) and rearrange the terms such that Enþ1
z can be calculated using

other terms, which yields the updating equation for a capacitor as

Enþ1
z ði; j; kÞ ¼ Cezeði; j; kÞ � En

z ði; j; kÞ

þ Cezhyði; j; kÞ � H
nþ1

2
y ði; j; kÞ � H

nþ1
2

y ði � 1; j; kÞ
� �

þ Cezhxði; j; kÞ � H
nþ1

2
x ði; j; kÞ � H

nþ1
2

x ði; j � 1; kÞ
� �

;

ð4:20Þ

where

Cezeði; j; kÞ ¼
2ezði; j; kÞ � Dtse

zði; j; kÞ þ 2CDz

DxDy

2ezði; j; kÞ þ Dtse
zði; j; kÞ þ 2CDz

DxDy

;

Cezhyði; j; kÞ ¼ 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ þ 2CDz

DxDy

� �
Dx

;

Cezhxði; j; kÞ ¼ � 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ þ 2CDz

DxDy

� �
Dy

:

4.1.6 Inductor

Figure 4.4(b) illustrates an inductor with L henrys inductance. The inductor is characterized
by the voltage–current relation

V ¼ L
dI

dt
: ð4:21Þ

This relation can be expressed in discrete time and space using the central difference
formula at time instant nDt as

DV n ¼ L

Dt
Inþ1

2 � In�1
2

� �
: ð4:22Þ

Using the discrete domain relation (4.7) and (4.8) one can obtain

J
nþ1

2
iz ði; j; kÞ ¼ J

n�1
2

iz ði; j; kÞ þ DtDz

LDxDy
En

z ði; j; kÞ: ð4:23Þ

Since we were able to obtain an expression for J
nþ1

2
iz ði; j; kÞ in terms of the previous value

of the electric field component En
z ði; j; kÞ and the previous value of the impressed current
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density component J
n�1

2
iz ði; j; kÞ; we can use the general form of the FDTD updating equation

(1.28) without any modification, which is rewritten here for convenience as

Enþ1
z ði; j; kÞ ¼ Cezeði; j; kÞ � En

z ði; j; kÞ
þ Cezhyði; j; kÞ � H

nþ1
2

y ði; j; kÞ � H
nþ1

2
y ði � 1; j; kÞ

� �

þ Cezhxði; j; kÞ � H
nþ1

2
x ði; j; kÞ � H

nþ1
2

x ði; j � 1; kÞ
� �

þ Cezjði; j; kÞ � J
nþ1

2
iz ði; j; kÞ;

ð4:24Þ

where

Cezeði; j; kÞ ¼ 2ezði; j; kÞ � Dtse
zði; j; kÞ

2ezði; j; kÞ þ Dtse
zði; j; kÞ ;

Cezhyði; j; kÞ ¼ 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ� �

Dx
;

Cezhxði; j; kÞ ¼ � 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ� �

Dy
;

Cezjði; j; kÞ ¼ � 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ :

One should notice that during the FDTD time-marching iteration, at every time step the
new value of J

nþ1
2

iz ði; j; kÞ should be calculated by (4.23) using En
z ði; j; kÞ and J

n�1
2

iz ði; j; kÞ
before updating Enþ1

z ði; j; kÞ by (4.24).

4.1.7 Lumped elements distributed over a surface or within
a volume

In previous sections, we have demonstrated the derivation of FDTD updating equations for
common lumped element circuit components. These components were assumed to be placed
between two neighboring nodes along the edge of a cell oriented in a certain direction (x, y,
or z). However, in some applications it may be desired to simulate a lumped element com-
ponent behavior over a surface or within a volume, which extends to a number of cells in the
discrete space.

For instance, consider the voltage source in Figure 4.5. Such a source can be used to feed
a strip with a uniform potential Vs across its cross-section at its edge. Similarly, a resistor is
illustrated in Figure 4.5, which is distributed over a volume and maintains a resistance R
between the top and bottom strips. Similarly, the other types of lumped elements as well can
be distributed over a surface or a volume. In such cases, the lumped element behavior
extends over a number of cells, and the surfaces or volumes of the elements can be indicated
by the indices of the nodes at the lower points and upper points of the cell groups. For
instance, the voltage source is indicated by the nodes (vis, vjs, vks) and (vie, vje, vke),
whereas the resistor is indicated by the nodes (ris, rjs, rks) and (rie, rje, rke), as illustrated in
Figure 4.6.
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The lumped element updating equations derived in previous sections still can be used to
model the elements distributed over a number of cells, but a modification of parameter values
is required to maintain the respective values of the lumped elements. For instance, consider the
voltage source in Figure 4.5. To simulate this source, the electric field components Ez(vis : vie,
vjs : vje, vks : vke � 1) need to be updated as shown in Figure 4.6. Hence, the total number of
field components needing to be updated is (vie � vis þ 1) � (vje � vjs þ 1) � (vke � vks).
Therefore, the main voltage source can be replaced by multiple voltage sources, each of which
is associated with a respective field component. Each individual voltage source in Figure 4.6
then should be assigned a voltage value V 0

s ,

V 0
s ¼

Vs

ðvke � vksÞ ; ð4:25Þ

since the potential difference between the ends of the main voltage source in the z direction
shall be kept the same. If the main voltage source has an internal resistance Rs, it should
be maintained as well. Then the main resistance Rs will be represented by a network of
(vie � vis þ 1) � (vje � vjs þ 1) resistors connected in parallel where each element in this

(vis, vjs, vks)

z

y

x

(ris, rjs, rks)
(vie, vje, vke)

Vs

PEC plate

PEC plate

(rie, rje, rke)

R

Figure 4.6 A voltage source distributed over a surface and a resistor distributed over a volume.
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y
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PEC plate

(ris, rj
s, rks)

(vie, vje, vke)

Vs

(rie, rje, rke)

R

Figure 4.5 Parallel PEC plates excited by a voltage source at one end and terminated by a
resistor at the other end.
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parallel combination is made of (vke � vks) series resistors. Therefore, the resistance for
each source component R0

s shall be set as

R0
s ¼ Rs � ðvie � vis þ 1Þ � ðvje � vjs þ 1Þ

ðvke � vksÞ : ð4:26Þ

Having applied these modifications to Vs and Rs, the electric field components Ez(vis :
vie, vjs : vje, vks : vke � 1) can be updated using (4.10).

The same procedure holds for each individual resistor R0 at the other end of the parallel
PEC plates. Thus, the resistance R 0 can be given as

R 0 ¼ R � ðrie � ris þ 1Þ � ðrje � rjs þ 1Þ
ðrke � rksÞ ; ð4:27Þ

and (4.16) can be used to update the electric field components Ez(ris : rie, rjs : rje, rks :
rke � 1).

Similarly, for an inductor with inductance L extending between the nodes (is, js, ks) and
(ie, je, ke), the individual inductance L 0 can be defined as

L0 ¼ L � ðie � is þ 1Þ � ð je � js þ 1Þ
ðke � ksÞ ; ð4:28Þ

and (4.24) can be used to update the electric field components Ez(is : ie, js : je, ks : ke � 1).
For a capacitor with capacitance C extending between the nodes (is, js, ks) and (ie, je, ke),

each individual capacitance C 0 can be defined as

C 0 ¼ C � ðke � ksÞ
ðie � is þ 1Þ � ð je � js þ 1Þ ; ð4:29Þ

and (4.19) can be used to update the electric field components Ez(is : ie, js : je, ks : ke � 1).
A current source with magnitude Is and resistance Rs extending between the nodes (is, js,

ks) and (ie, je, ke) can be modeled by updating Ez(is : ie, js : je, ks : ke � 1) using (4.15) after
modifying Is and resistance Rs such that

I 0s ¼
Is

ðie � is þ 1Þ � ð je � js þ 1Þ ; ð4:30Þ

and

R 0
s ¼ Rs � ðvie � vis þ 1Þ � ðvje � vjs þ 1Þ

ðvke � vksÞ : ð4:31Þ

One should notice that the equations given for modifying the lumped values are all for the
elements oriented in the z direction. The indexing scheme should be reflected appropriately
to obtain equations for lumped elements oriented in other directions.

4.1.8 Diode

Derivation of the FDTD updating equations of some lumped element circuit components
have been presented in previous sections. These circuit components are characterized by
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linear voltage–current relations, and it is straightforward to model their behavior in FDTD by
properly expressing their voltage–current relations in discrete time and space. However, one
of the strengths of the FDTD method is that it is possible to model nonlinear components as
well. In this section we present the derivation of the updating equations for modeling a diode.

Figure 4.7(a) illustrates a diode placed between nodes (i, j, k) and (i, j, k þ 1) in an FDTD
problem space. This diode allows currents flowing only in the positive z direction, as indi-
cated by direction of the current Id and characterized by the voltage–current relation

I ¼ Id ¼ I0 eðqVd=kTÞ � 1
h i

; ð4:32Þ

where q is the absolute value of electron charge in coulombs, k is Boltzmann’s constant, and
T is the absolute temperature in kelvins. This equation can be expressed in discrete form as

J
nþ1

2
iz ði; j; kÞ ¼ I0

DxDy
eðqDz=2kTÞðEnþ1

z ði; j; kÞþEn
z ði; j; kÞÞ � 1

h i
; ð4:33Þ

where the relation Vd ¼ DV ¼ DzEz is used. Equation 4.33 can be used in (4.5), which yields

Enþ1
z ði; j; kÞ � En

z ði; j; kÞ
Dt

¼ 1
ezði; j; kÞ

H
nþ1

2
y ði; j; kÞ � H

nþ1
2

y ði � 1; j; kÞ
Dx

� 1
ezði; j; kÞ

H
nþ1

2
x ði; j; kÞ � H

nþ1
2

x ði; j � 1; kÞ
Dy

� se
zði; j; kÞ

2ezði; j; kÞ Enþ1
z ði; j; kÞ þ En

z ði; j; kÞ� �

� I0

ezði; j; kÞDxDy
eðqDz=2kTÞ Enþ1

z ði; j; kÞþEn
z ði; j; kÞð Þ � 1

h i
:

ð4:34Þ
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Figure 4.7 Diodes placed between nodes (i, j, k) and (i, j, k þ 1): (a) diode oriented in the
positive z direction and (b) diode oriented in the negative z direction.
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This equation can be expanded as

Enþ1
z ði; j; kÞ þ se

zði; j; kÞDt

2ezði; j; kÞ Enþ1
z ði; j; kÞ ¼ En

z ði; j; kÞ � se
zði; j; kÞDt

2ezði; j; kÞ En
z ði; j; kÞ

þ Dt

ezði; j; kÞ
H

nþ1
2

y ði; j; kÞ � H
nþ1

2
y ði � 1; j; kÞ

Dx

� Dt

ezði; j; kÞ
H

nþ1
2

x ði; j; kÞ � H
nþ1

2
x ði; j � 1; kÞ

Dy

� I0Dt

ezði; j; kÞDxDy
eðqDz=2kTÞEn

z ði; j; kÞeðqDz=2kTÞEnþ1
z ði; j; kÞ

þ I0Dt

ezði; j; kÞDxDy

ð4:35Þ
and can be arranged in the following form

AeBx þ x þ C ¼ 0; ð4:36Þ
where

x ¼ Enþ1
z ði; j; kÞ; A ¼ �Cezdði; j; kÞeB�En

z ði; j; kÞ; B ¼ ðqDz=2kTÞ;
C ¼ Cezeði; j; kÞ � En

z ði; j; kÞ þ Cezhyði; j; kÞ � H
nþ1

2
y ði; j; kÞ � H

nþ1
2

y ði � 1; j; kÞ
� �

þ Cezhxði; j; kÞ � H
nþ1

2
x ði; j; kÞ � H

nþ1
2

x ði; j � 1; kÞ
� �

þ Cezdði; j; kÞ;

Cezeði; j; kÞ ¼ � 2ezði; j; kÞ � Dtse
zði; j; kÞ

2ezði; j; kÞ þ Dtse
zði; j; kÞ ;

Cezhyði; j; kÞ ¼ � 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ� �

Dx
;

Cezhxði; j; kÞ ¼ 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ� �

Dy
;

Cezdði; j; kÞ ¼ � 2DtI0

2ezði; j; kÞDxDy þ Dtse
zði; j; kÞDxDy

:

Here the parameters A and C are dependent on En
z ði; j; kÞ. Therefore, at every time step

the terms A and C must be calculated using the past values of magnetic and electric field
components, and then (4.36) must be solved to obtain Enþ1

z ði; j; kÞ.
Equation (4.36) can easily be solved numerically by using the Newton–Raphson method,

which is one of the most widely used methods for finding roots of a nonlinear function. It is
an iterative process that starts from an initial point in the proximity of a root and approaches
to the root by the use of the derivative of the function. For instance, Figure 4.8 shows
a function for which we want to find the value of x that satisfies f ðxÞ ¼ 0: We can start with
an initial guess x0 as shown in the figure. The derivative of the function f ðxÞ at point x0 is
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the slope of the tangential line passing through the point f ðx0Þ and intersecting the x axis at
point x1. We can easily calculate point x1 as

x1 ¼ x0 � f ðx0Þ
f 0ðx0Þ : ð4:37Þ

Then x1 can be used as the reference point, and a second point x2 can be obtained
similarly by

x2 ¼ x1 � f ðx1Þ
f 0ðx1Þ : ð4:38Þ

As can be followed from Figure 4.8, the new calculated x leads to the target point where
f (x) intersects with the x axis. Due to the high convergence rate of this procedure a point xn

can be achieved after couple of iterations, which is in the very close proximity of the exact
root of the function f ðxÞ: This iterative procedure can be continued until a stopping criteria
or a maximum number of iterations is reached. Such a stopping criteria can be given by

f ðxnÞj j < e; ð4:39Þ
where e is a very small positive number accepted as the error tolerance accepted for f ðxÞ
approximately equals to zero.

It is very convenient to use the Newton–Raphson method to solve the diode equation
(4.36), since the nature of this equation does not allow local minima or maxima, which can
be an obstacle for the convergence of this method. Furthermore, the value of the electric field
component En

z ði; j; kÞ can be used as the initial guess for Enþ1
z ði; j; kÞ: Since the value of Ez

(i, j, k) will change only a small amount between the consecutive time steps, the initial guess
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Figure 4.8 A function f ðxÞ and the points approaching to the root of the function iteratively
calculated using the Newton–Raphson method.
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will be fairly close to the target value, and it would take only a couple of Newton–Raphson
iterations to reach the desired solution.

The diode equation given by (4.36) is for a positive z-directed diode illustrated in
Figure 4.7(a), which is characterized by the voltage–current relation (4.32). A diode oriented
in the negative z direction, as shown in 4.7(b), can be characterized by the voltage–current
relation

I ¼ �Id ¼ �I0 eðqVd=kTÞ � 1
h i

ð4:40Þ

and Vd ¼ �DV due to the inversion of the diode polarity. Therefore, one can reconstruct
(4.34) and (4.36) considering the reversed polarities of Vd and Id, which yields the updating
equation for a negative z-directed diode as

AeBx þ x þ C ¼ 0; ð4:41Þ
where

x ¼ Enþ1
z ði; j; kÞ; A ¼ �Cezdði; j; kÞeB�En

z ði; j; kÞ; B ¼ �ðqDz=2kTÞ;
C ¼ Cezeði; j; kÞ � En

z ði; j; kÞ þ Cezhyði; j; kÞ � H
nþ1

2
y ði; j; kÞ � H

nþ1
2

y ði � 1; j; kÞ
� �

þ Cezhxði; j; kÞ � H
nþ1

2
x ði; j; kÞ � H

nþ1
2

x ði; j � 1; kÞ
� �

þ Cezdði; j; kÞ;

Cezeði; j; kÞ ¼ � 2ezði; j; kÞ � Dtse
zði; j; kÞ

2ezði; j; kÞ þ Dtse
zði; j; kÞ ;

Cezhyði; j; kÞ ¼ � 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ� �

Dx
;

Cezhxði; j; kÞ ¼ 2Dt

2ezði; j; kÞ þ Dtse
zði; j; kÞ� �

Dy
;

Cezdði; j; kÞ ¼ 2DtI0

2ezði; j; kÞDxDy þ Dtse
zði; j; kÞDxDy

:

Here, one should notice that only the coefficients B and Cezd(i, j, k) are reversed
when compared with the respective coefficients of (4.36), and the rest of the terms are the
same.

Due to the nonlinear nature of the diode voltage–current relation, it is not convenient to
define a diode extending over a number of cells in the FDTD problem grid. If a diode is
going to be placed between two nodes that are apart from each other more than one cell size,
it is more convenient to place the diode between two neighboring nodes and then to establish
connection between the other nodes by other means, (e.g., by thin wires). The thin-wires
FDTD updating procedure and equations are discussed in Chapter 10.

4.1.9 Summary

In this chapter, we have provided the derivation of FDTD updating equations for modeling
some common lumped element circuit components. We have shown the construction of
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updating equations for components placed between two neighboring nodes and have illu-
strated how these components can be modeled if they extend over a number of cells on the
problem grid.

It is possible to obtain updating equations for the circuits composed of combinations of
these lumped elements; one only needs to obtain the appropriate voltage–current relations,
express them in discrete time and space, and establish the relation between the impressed
current densities and the field components. Then impressed current density terms can be used
in the general form of the updating equation to obtain the specific updating equations that
model the lumped element circuit under consideration.

4.2 Definition, initialization, and simulation of lumped
elements

We discussed modeling of several types of lumped element components in the FDTD
method in previous sections. In this section we demonstrate the implementation of the
aforementioned concepts in MATLAB. Furthermore, we show the implementation of other
routines that initialize the FDTD problem space, including some auxiliary parameters, field
arrays, and updating coefficient arrays. Then the MATLAB workspace will be ready to run
an FDTD simulation, and we show how the FDTD time-marching loop can be implemented
and some sample results of interest can be obtained.

4.2.1 Definition of lumped elements

First we show the implementation of the definition of the lumped element components. As
discussed before, these components can be defined as prism-like objects distributed over a
volume in the FDTD problem space. Any prism-like object can be defined with its lower and
upper coordinates in the Cartesian coordinate system. Therefore, we define the positions of
the lumped components the same as the brick object, as demonstrated in Section 3.1.
Referring to the FDTD solver main program fdtd_solve, which is shown in Listing 3.1, the
implementation of the definition of lumped element components is done in the subroutine
define_sources_and_lumped_elements, a sample content of which is given as a template in
Listing 4.1. As can be seen in Listing 4.1, the structure arrays voltage_sources, current_
sources, resistors, inductors, capacitors, and diodes are defined to store the properties of
the respective types of lumped components, and these arrays are initialized as empty arrays.
Similar to a brick, the positions and dimensions of these components are indicated by the
parameters min_x, min_y, min_z, max_x, max_y, and max_z. One should be careful when
defining the coordinates of diodes; as discussed in Section 4.8, we assume diodes as objects
having zero thickness in two dimensions.

Besides the parameters defining the positioning, some additional parameters as well are
needed to specify the properties of these components. The lumped element components are
modeled in FDTD by the way the respective electric field components are updated due to the
voltage–current relations. These field components that need specific updates are determined
by the functional directions of these components. For voltage sources, current sources, and
diodes there are six directions in which they can be defined in the staircased FDTD grid:
‘‘xn,’’ ‘‘xp,’’ ‘‘yn,’’ ‘‘yp,’’ ‘‘zn,’’ or ‘‘zp.’’ Here ‘‘p’’ refers to positive direction, whereas ‘‘n’’
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refers to negative direction. The other lumped elements (resistors, capacitors, and inductors)
can be defined with the directions ‘‘x,’’ ‘‘y,’’ or ‘‘z.’’ The other parameters needed to specify
the lumped components are magnitude, resistance, inductance, and capacitance, which
represent the characteristics of the lumped elements as shown in Listing 4.1.

Listing 4.1 define_sources_and_lumped_elements.m
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Another type of parameter that is required for time-domain simulation of sources is the type
of waveforms that the voltages and current sources generate as a function of time. For each
source, the voltage or current value generated at every time step can be stored as the waveform
in a one-dimensional array with the size of number_of_time_steps. However, before asso-
ciating a waveform to a source, we can define the parameters specific to various types of
waveforms in a structure named waveforms as illustrated in Listing 4.1. There are various
options for constructing a waveform in FDTD. Some of the most common types of waveforms
are Gaussian, sinusoidal, cosine modulated Gaussian, and unit step. The definition and con-
struction of these waveforms will be the subject of Chapter 5. However, we provide a template
here showing how the waveform parameters can be defined. In Listing 4.1 two fields are defined
in the parameter waveforms: sinusoidal and unit_step. Later on we can add new parameters
representing other types of waveforms. The parameters representing the waveform types are
arrays of structures as illustrated with the indices waveforms.sinuoidal(i) and waveforms.
unit_step(i). Each waveform type has parameters representing its specific characteristics.
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Here frequency is a parameter for the sinusoidal waveform waveforms.sinusoidal(i), whereas
start_time_step is a parameter for the waveform waveforms.unit_step(i).

Having defined the types of waveforms and their parameters, we can associate them to
the sources by referring to them with the waveform_type and waveform_index in the
source parameters voltage_sources(i) and current_sources(i). In the example code, we
assign the type of the waveform ‘‘sinusoidal’’ to voltage_sources(1).waveform_type,
and the index of the sinusoidal waveform waveforms.sinusoidal(2), which is 2, to voltage_
sources(1).waveform_index. Similarly, the type of the waveform ‘‘unit_step’’ is assigned
to current_sources(1).waveform_type and the index of the waveform waveforms.unit_
step(1), which is 1, is assigned to current_sources(1).waveform_index.

4.2.2 Initialization of FDTD parameters and arrays

Some constant parameters and auxiliary parameters are needed in various stages of an
FDTD program. These parameters can be defined in the subroutine initialize_fdtd_
parameters_and_arrays, which is shown in Listing 4.2. The most frequently used ones of
these parameters are permittivity, permeability of free space, and speed of light in free space,
which are represented in the code with the parameters eps_0, mu_0, and c, respectively.
Duration of a time step is denoted by dt and is calculated based on the CFL stability limit
(2.7) and the courant_factor described in Section 3.1.1. Once the duration of a time step is
calculated, an auxiliary one-dimensional array, time, of size number_of_time_steps can be
constructed to store the time instant values at the middle of the FDTD time steps. When a
new simulation starts, the initial values of electric and magnetic fields are zero. Therefore,
the three-dimensional arrays representing the vector components of the fields can be created
and initialized using the MATLAB function zeros as illustrated in Listing 4.2. One can

Listing 4.2 initialize_fdtd_parameters_and_arrays.m
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notice that the sizes of the arrays are not the same due to the positioning scheme of field
components on the Yee grid as discussed in Section 3.5.

At this point one can ask if there are any arrays that need to be defined to represent
impressed currents. The answer is that we do not need to define any arrays representing the
impressed currents unless they are explicitly needed in an FDTD simulation. Throughout
Chapter 4 we have shown that the concept of impressed currents is used to establish the
voltage–current relations for the lumped element components and the final updating equa-
tions do not include the impressed current terms except for the inductor. Therefore, we do
not need to create three-dimensional arrays expanded to the problem space to represent
impressed current components. However, for the case of the inductor, there exists an
impressed electric current term. Since an inductor would be expanding only over a couple of
cells and only a small number of field components need to be updated using the inductor
updating equations, it is sufficient to create auxiliary arrays representing these impressed
currents that have the limited size based on the number of field components associated with
the respective inductors. The creation and initialization of these arrays are performed in the
subroutine where the updating coefficients of the lumped element components are
initialized.

4.2.3 Initialization of lumped element components

We have shown templates for defining some types of source waveforms, voltage and current
sources, and other lumped element components. The initialization of these components is
performed in initialize_sources_and_lumped_elements as shown in Listing 4.3.

Listing 4.3 initialize_sources_and_lumped_elements.m
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Before initializing the sources, the source waveforms need to be initialized. Therefore, a
subroutine, initialize_waveforms, is called in Listing 4.3 before initialization of lumped
components. The sample implementation of initialize_waveforms is given in Listing 4.4, and
this subroutine will be expanded as new source waveform types are discussed in the fol-
lowing chapter. In subroutine initialize_waveforms for every waveform type the respective
waveforms are calculated as functions of time based on the waveform type specific para-
meters. Then the calculated waveforms are stored in the arrays with the associated name
waveform. For instance, in Listing 4.4 the parameter waveforms.sinusoidal(i).waveform is

Listing 4.4 initialize_waveforms.m

94 CHAPTER 4 ● Active and passive lumped elements



constructed as a sinusoidal waveform using sin(2p � f � t), where f is the frequency
defined with the parameter waveforms.sinusoidal(i).frequency and t is the discrete time
array time storing the time instants of the time steps.

Once the waveform arrays are constructed for the defined waveform types they can be
copied to waveform fields of the structures of sources associated with them as demonstrated in
Listing 4.3. For example, consider the code section in the loop initializing the voltage_sources.
The type of source waveform is stored in voltage_sources(ind).waveform_type as a string,
and the index of the source waveform is stored in voltage_sources(ind).waveform_index as
an integer number. Here we employ the MATLAB function eval, which executes a string
containing MATLAB expression. We construct a string using the following expression:

which constructs the string eval_str in the MATLAB workspace for the waveforms and the
voltage source voltage_sources(1) defined in Listing 4.1 as

Executing this string using eval as

creates a parameter a_waveform in the MATLAB workspace, which has a copy of the
waveform that the voltage source voltage_sources(1) is associated with. Then we can assign
a_waveform to voltage_sources(1).waveform after multiplying with a factor. This multi-
plication factor is explained in the following paragraphs.

As discussed in Section 4.7, all the lumped element components except the diodes are
assumed to be distributed over surfaces or volumes extending over a number of cells.
Therefore, a number of field components require special updating due to the lumped
elements associated with them. We assume that the surfaces or volumes that the lumped
elements are coinciding with are conforming to the cells composing the FDTD problem
space. Then we can identify the field components that are associated with lumped compo-
nents by the indices of the start node, (is, js, ks), coinciding with the lower coordinates of the
lumped component, and the indices of the end node, (ie, je, ke), coinciding with the upper
coordinates of the lumped component, as illustrated in Figure 4.6. Therefore, for every
lumped element, the start and end node indices are calculated and stored in the parameters is,
js, ks, ie, je, and ke as shown in Listing 4.3.

Based on the discussion in Section 4.7, if a lumped element is associated with more than
one field component, the value of the lumped element should be assigned to the field com-
ponents after a modification. Therefore, new parameters are defined in the structures
representing the lumped elements, which store the value of the lumped element per field
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component. For instance, resistance_per_component is defined in voltage_sources(i),
which stores the resistance of the voltage source per field component as calculated using the
form of (4.26) by taking into account the direction of the component. Similarly, for a resistor
resistance_per_component is defined and calculated by (4.27). For a current source resis-
tance_per_component is defined and calculated by (4.31). The parameter inductance_
per_component is calculated by (4.28) for an inductor, and capacitance_per_component is
calculated by (4.29) for a capacitor.

Similarly, the voltage_sources(i).voltage_per_e_field is scaled using (4.25), and cur-
rent_sources(i).current_per_e_field is scaled using (4.30). Furthermore, directions of these
components as well are taken into account in the scaling factors; if the direction is negative
the scaling factor is multiplied by �1. Meanwhile, parameters voltage_sources(i).waveform
and current_sources(i).waveform are constructed to store the main voltages and currents of
the lumped sources rather than the values used to update the associated field components.

We assume that a diode is defined as a one-dimensional object, such as a line section,
extending over a number of electric field components on the cell edges as illustrated in
Figure 4.9. Here the diode is extending between the nodes (is, js, ks) and (ie, je, ke) – hence
the field components Ez(is, js, ks : ke � 1), where ie ¼ is and je ¼ js. However, as discussed
in Section 4.8, we update only one of these field components, in this case Ez(is, js, ks), using
the diode updating equations, and we establish an electrical connection between other nodes
(is, js, ks þ 1) and (ie, je, ke). The easiest way of establishing the electrical connection is
considering a PEC line between these nodes. Therefore, we can assign conductivity of
PEC to the material components associated with the electric field components Ez(is, js,
ks þ 1 : ke � 1), which are se

zðis; js; ks þ 1 : ke � 1Þ: Therefore, the necessary material

(ie, je, ke)

s e
z(is, js, ke – 1)

s e
z(is, js, ke + 1)

(is, js, ks)

z
y

x

Figure 4.9 A diode defined between the nodes (is, js, ks) and (ie, je, ke).
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components are assigned the conductivity of PEC in Listing 4.3 while initializing the diodes.
A more accurate representation for a PEC line is presented Chapter 10 where thin PEC wire
updating equations will be developed.

4.2.4 Initialization of updating coefficients

After initializing the lumped element components by determining the indices of nodes identi-
fying their positions in the FDTD problem space grid and by setting other parameters necessary
to characterize them, we can construct the FDTD updating coefficients. We calculate and store
updating coefficients in three-dimensional arrays before the FDTD time-marching loop begins
and use them while updating the fields during the time-marching loop. The initialization of the
updating coefficients is done in the subroutine initialize_updating_coeffcients, which is given
in Listing 4.5.

Listing 4.5 initialize_updating_coefficients.m
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In Chapter 1 we obtained the set of equations (1.26)–(1.31) as the general form of the
updating equations. One can notice that the form of the updating equations obtained for the
lumped elements is the same as the general form. The only difference is that for some types
of lumped elements the terms associated with the impressed currents are replaced by some
other terms; for instance, for a voltage source the impressed current term is replaced by a
voltage source term in the updating equation. Furthermore, as discussed in Section 4.2.2, the
impressed current terms in (1.26)–(1.31) are used to establish the voltage–current relations
for the lumped elements, and they vanish in updating equations modeling media that does
not include any lumped components.

Therefore, in an FDTD simulation before the time-marching iteration starts the updating
coefficients can be calculated for the whole problem space using the general updating equa-
tion coefficients appearing in (1.26)–(1.31) and excluding the impressed current terms. Then
the updating coefficients can be recalculated only for the position indices where the lumped
components exist. The additional coefficients required for the lumped elements (e.g., voltage
sources, current sources, and inductors), can be calculated and stored in separate arrays
associated with these components. Then during the FDTD time-marching iterations, at every
time step, the electric field components can be updated using the general updating equations
(1.26)–(1.31) excluding the impressed current terms, and then the additional terms can be
added to the electric field components at the respective position indices where the lumped
elements exist. In this section we illustrate the implementation of the previous discussion in
the MATLAB program. The vector type operation in MATLAB is being used to efficiently
generate these arrays.

In Listing 4.5 the updating coefficients, except for the impressed current terms, defined in
the general updating equations (1.26)–(1.31) are constructed using the material component
arrays that have been initialized in the subroutine initialize_fdtd_material_grid. The sizes of
the coefficient arrays are the same as the sizes of the material component arrays that have
been used to construct them. Then the updating coefficients related to the lumped element
components are constructed in respective subroutines as shown in Listing 4.5.

4.2.4.1 Initialization of voltage source updating coefficients
The updating coefficients related to the voltage sources are constructed in the subroutine
initialize_voltage_source_updating_coefficients as implemented in Listing 4.6. The indices
of the nodes identifying the positions of the voltage sources, is, js, ks, ie, je, and ke, were
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determined while initializing the voltage sources as shown in Listing 4.3. For instance,
consider the z-directed voltage source defined between the nodes (is, js, ks) and (ie, je, ke)
and the associated electric field components as illustrated in Figure 4.10. These indices of the
nodes are used to identify the indices of the field components that need the special updates
due to the voltage sources. The indices of the field components are determined by taking into
account the directions of the voltage sources. Since these field components will be accessed
frequently, they can be stored in a parameter, field_indices, associated with the voltage
sources for an easy access. The field components under consideration are usually accessed
using three index values, such as

since the field arrays are three-dimensional. An alternative way of accessing an element of
a multidimensional array is to use the nice feature of MATLAB called linear indexing. Using
linear indexing the three indices of a three-dimensional array can be mapped to a single
index. Therefore, a single index would be sufficient. For the case where a number of
elements need to be indexed, a vector can be constructed in which each value holds the index
of the respective element in the three-dimensional array. Therefore, as shown in Listing 4.6,
a temporary array of indices, fi, is constructed using

Ez(is, js, ks)

Ez(ie, je, ke – 1)

(is, js, ks)

z

y
x

(ie, je, ke)

Figure 4.10 A z-directed voltage source defined between the nodes (is, js, ks) and (ie, je, ke).
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Here create_linear_index_list is a function that takes three parameters indicating the
range of indices of a subsection of a three-dimensional array and converts it to a one-
dimensional linear index array. While doing this conversion, it uses the MATLAB function
sub2ind, which needs the size of the three-dimensional array. Therefore, the first argument
of create_linear_index_list is the three-dimensional array under consideration. The imple-
mentation of create_linear_index_list is given in Listing 4.7. After the linear indices array is
constructed, instead of accessing a subsection of an array by

one can simply implement

Listing 4.6 initialize_voltage_source_updating_coefficients.m
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Listing 4.7 create_linear_index_list.m
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Once the field component indices needing special updates are determined as fi in Listing
4.6, the respective components of the general updating coefficients are recalculated based on
the voltage source updating equations as given in (4.10).

One can notice that there exists an additional term in (4.10), given by
Cezsði; j; kÞ � V

nþ1
2

s ði; j; kÞ; for updating Enþ1
z ði; j; kÞ. The term V

nþ1
2

s ði; j; kÞ is the value
of the voltage source waveform at time instant n þ 1

2

� �� Dt; and this value is stored in the
parameter voltage_sources(i).waveform. The other term Cezs is the additional coefficient
term for the voltage source. This term is constructed based on (4.10) as the parameter
Cezs and associated with the respective voltage source as voltage_sources(i).Cezs.
Similarly, if the voltage source updates the electric field components Ex the parameter
voltage_sources(i).Cexs can be constructed, whereas if the voltage source updates Ey the
parameter voltage_sources(i).Ceys can be constructed, based on the direction of the
voltage sources as implemented in Listing 4.6. Finally, the parameter voltage_sources(i).
field_indices is constructed from fi. Then the parameter field_indices are used to access
the respective field components while updating the electric field components during the
time-marching loop.

4.2.4.2 Initialization of current source updating coefficients
The initialization of current source updating coefficients is performed in the subroutine
initialize_current_source_updating_coefficients, which is shown in Listing 4.8. The initi-
alization of current source coefficients is the same as the initialization of voltage source
coefficients and follows the updating equation given in (4.15).

Listing 4.8 initialize_current_source_updating_coefficients.m
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4.2.4.3 Initialization of inductor updating coefficients
The updating coefficients for modeling inductors are initialized in the subroutine initialize_
inductor_updating_coefficients, which is shown in Listing 4.9, based on the updating equation
(4.29). Comparing (4.24) with (1.28) one can observe that the form of the updating equation
modeling an inductor is the same as the form of the general updating equation. Therefore, there
is no need to recalculate the coefficients that have been initialized as general updating coef-
ficients. However, a coefficient term Cezj has not been defined in the implementation of the
general updating equations. Therefore, the coefficient term Cezj associated with the inductor is
defined as inductors(i).Cezj in Listing 4.9. Furthermore, the Jiz term is also associated with
the inductor, and it is also defined as inductors(i).Jiz and is initialized with zeros.

As discussed in Section 4.1.6, during the FDTD time-marching iteration, at every

time step the new value of J
nþ1

2
iz ði; j; kÞ is to be calculated by (4.23) using En

z ði; j; kÞ
and J

n�1
2

iz ði; j; kÞ before updating Enþ1
z ði; j; kÞ using (4.24). Equation (4.23) can be

rewritten as

J
nþ1

2
iz ði; j; kÞ ¼ J

n�1
2

iz ði; j; kÞ þ DtDz

LDxDy
En

z ði; j; kÞ

¼ J
n�1

2
iz ði; j; kÞ þ Cjezði; j; kÞ � En

z ði; j; kÞ;
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where

Cjezði; j; kÞ ¼ DtDz

LDxDy
:

Therefore, Cjez is an additional coefficient that can be initialized before the time-
marching loop. Hence, the parameter inductors(i).Cjez is constructed as shown in
Listing 4.9.

4.2.4.4 Initialization of resistor updating coefficients
The initialization of updating coefficients related to resistors is performed in the subroutine
initialize_resistor_updating_coeffcients, which is shown in Listing 4.10. The initialization

Listing 4.9 initialize_inductor_updating_coefficients.m
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of resistor coefficients is straightforward; the indices of field components associated with a
resistor are determined in the temporary parameter fi, and the elements of the general
coefficient arrays are accessed through fi and are recalculated based on the resistor updating
equation (4.16).

Listing 4.10 initialize_resistor_updating_coefficients.m
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4.2.4.5 Initialization of capacitor updating coefficients
The initialization of updating coefficients related to capacitors is performed in the subroutine
initialize_capacitor_updating_coefficients, which is shown in Listing 4.11. The initializa-
tion of capacitor coefficients is similar to the initialization of resistor coefficients and is
based on the updating equation (4.20).

Listing 4.11 initialize_capacitor_updating_coefficients.m
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4.2.4.6 Initialization of diode updating coefficients
The algorithm for modeling diodes is significantly different compared with other lumped
element components, and it requires the initialization of a different set of parameters. The
updating coefficients for modeling diodes are initialized in initialize_diode_updating_
coefficients, and implementation of this subroutine is shown in Listing 4.12.

Listing 4.12 initialize_diode_updating_coefficients.m
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As mentioned in Section 4.2.3, only one electric field component is associated with a
diode; therefore, it needs a special updating based on the equations in Section 4.1.8. For
example, for a diode oriented in the positive z direction and defined between the nodes (is, js,
ks) and (ie, je, ke), only the field component Ez(is, js, ks) is updated as illustrated in
Figure 4.9.

As discussed in Section 4.1.8, the new value of the electric field component associated
with a diode is obtained by the solution of the equation

AeBx þ x þ C ¼ 0; ð4:42Þ

where

x ¼ Enþ1
z ði; j; kÞ; A ¼ �Cezdði; j; kÞeB�En

z ði; j; kÞ; B ¼ ðqDz=2kTÞ;
C ¼ Cezeði; j; kÞ � En

z ði; j; kÞ þ Cezhyði; j; kÞ � H
nþ1

2
y ði; j; kÞ � H

nþ1
2

y ði � 1; j; kÞ
� �

þ Cezhxði; j; kÞ � H
nþ1

2
x ði; j; kÞ � H

nþ1
2

x ði; j � 1; kÞ
� �

þ Cezdði; j; kÞ:

Here the Enþ1
z ði; j; kÞ is the electric field component that is sought. The term B is a

constant that can be constructed before the time-marching loop starts and stored as parameter
diodes(i).B. However, the parameters A and C are expressions that have to be recalculated at
every time step of the time-marching iteration using the previous values of electric and
magnetic field components.

Comparing the first three terms on the right-hand side of the equation expressing C
in (4.34) with the updating equation for general media (1.28), one can see that their forms
are the same and that the coefficients Ceze, Cezhy, and Cezhx are different only by a minus
sign. These coefficients were initialized as Ceze, Cezhy, and Cezhx in the subroutine
initialize_updating_coeffcients, and there is no need to redefine them. We only need to keep
in mind that the components of these parameters with the indices (is, js, ks) – Ceze(is,js,ks),
Cezhy(is,js,ks), and Cezhz(is,js,ks) – are the negatives of the coefficients that are used to
recalculate C while updating Enþ1

z ðis; js; ksÞ as associated with a diode.
However, the fourth term in the expression of C includes a coefficient, Cezd(i, j, k), which

has not been defined before. Therefore, a parameter, diodes(i).Cezd, is defined to store the
value of Cezd(is, js, ks) in Listing 4.12.

An additional parameter that is defined and initialized with zero in Listing 4.12 is diodes
(i).Ezn. This parameter stores En

z ðis; js; ksÞ which is the value of electric field component at
the previous time step. This parameter is used to recalculate the coefficient C at every time
step, and it should be available when recalculating C. Therefore, at every time step the value
of En

z ðis; js; ksÞ is stored in the parameter diodes(i).Ezn to have it available at the next time
step for the calculation of C.

4.2.5 Sampling electric and magnetic fields, voltages, and currents

The reason for performing an FDTD simulation is to obtain some results that characterize the
response of an electromagnetics problem. The types of results that can be obtained from an
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FDTD simulation vary based on the type of the electromagnetics problem at hand. However,
the fundamental result that can be obtained from an FDTD simulation is the behavior of
electric and magnetic fields in time due to a source exciting the problem space, since these
are the fundamental quantities that the FDTD algorithm is based on. Other types of available
results can be obtained only by the translation of transient electric and magnetic fields into
other parameters. For instance, in a microwave circuit simulation, once the transient electric
and magnetic fields are obtained, it is easy to calculate transient voltages and currents. Then
the transient voltages and currents can be translated into the frequency domain by using the
Fourier transform, and scattering parameters (S-parameters) of the microwave circuit can be
obtained. Similarly, radiation patterns of an antenna or radar cross-section of a scatterer can
be obtained by employing the appropriate transforms.

4.2.5.1 Calculation of sampled voltages
The voltages and currents that will be sampled are represented similar to lumped element
components by prism-like volumes and their directions. The voltages across and the currents
flowing through these volumes will be calculated using the electric field components across
and the magnetic field components around these volumes, respectively, during the time-
marching loop.

For instance, consider the volume defined between the nodes (is, js, ks) and (ie, je, ke).
This volume is placed between two parallel PEC plates. An average value of voltage can be
calculated between the PEC plates across the volume. Here we employ the integral form of
(4.2), which can be given as

V ¼ �
Z

!
E � dl: ð4:43Þ

This integration is expressed as a summation in the discrete space. For the configuration
in Figure 4.11, the voltage between the upper and lower PEC plates can be expressed in
discrete form as

V ¼ �dz �
Xke�1

k¼ks

Ezðis; js; kÞ: ð4:44Þ

However, it can be seen in Figure 4.11 that there are multiple paths for performing the
discrete summation and that the voltages calculated through these paths should be very close
to each other. Therefore, an average of these voltage values can be calculated by

V ¼ �dz

ðie � is þ 1Þ � ð je � js þ 1Þ �
Xie

i¼is

Xje

j¼js

Xke�1

k¼ks

Ezði; j; kÞ: ð4:45Þ

This expression can be written in the form

V ¼ Csuf �
Xie

i¼is

Xje

j¼js

Xke�1

k¼ks

Ezði; j; kÞ; ð4:46Þ
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where

Csuf ¼ �dz

ðie � is þ 1Þ � ðje � js þ 1Þ : ð4:47Þ

The coefficient Csvf is a scaling factor multiplied by the sum of the field components Ez(is :
ie, js : je, ks : ke � 1) to obtain the average voltage.

The aforementioned equations still hold for the cases where is is equal to ie or js is equal
to je. In those cases the voltage is sampled along a line segment or across a surface.

4.2.5.2 Calculation of sampled currents
To calculate the current flowing through a surface we can employ Ampere’s law in integral
form, which is given by

Ifree ¼ ∮ !
H � dl; ð4:48Þ

where Ifree is the total free current. We need to describe the integral in (4.48) as a summation
of magnetic field components in the discrete space. For instance, consider the case shown in
Figure 4.12. The figure shows magnetic field components enclosing a surface. The positions
of the fields are given with respect to the Yee cell, and indices of the fields are given with
respect to the nodes (is, js, ks) and (ie, je, ke). These fields can be used to calculate the
enclosed total free current by

Izðke � 1Þ ¼ dx �
Xie

i¼is

Hxði; js � 1; ke � 1Þ þ dy �
Xje

j¼js

Hyðie; j; ke � 1Þ

� dx �
Xie

i¼is

Hxði; je; ke � 1Þ � dy �
Xje

j¼js

Hyðis � 1; j; ke � 1Þ:
ð4:49Þ

Ez(is, js, ks)

Ez(ie, je, ke – 1)

(ie, je, ke)

(is, js, ks)

z
y

x

PEC

PEC

Figure 4.11 A volume between PEC plates where a z-directed sampled voltage is required.
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Here we indexed Iz by (ke� 1) since the magnetic field components with the index
(ke� 1) in the z direction are used to calculate Iz.

As discussed before, we can determine the position of the current sampling by a volume
identified by the node indices (is, js, ks) and (ie, je, ke). Then, a surface intersecting with the
cross-section of this volume and enclosing it can be used to determine the magnetic field
components that are used to calculate the current as illustrated in Figure 4.12. It is possible
that the volume identified by the nodes (is, js, ks) and (ie, je, ke) reduces to a surface or a line
segment or even to a point in the case where ie ¼ is, je ¼ js, and ke ¼ ks. The expression in
(4.49) still can be used to calculate the current in those cases. However, one should notice
that the surface represented by the magnetic field components indexed by (ke � 1) is not
coinciding with the nodes; it instead crosses the centers of the cells. Therefore, if sampling of
both the voltage and the current is required at the same position, one should sample one of
these quantities over multiple positions and should take the average to obtain both the vol-
tage and current effectively at the same position.

Furthermore, another point that should be kept in mind is that the voltages and currents
are sampled at different time instants and a half time step apart from each other, since the
voltages are calculated from electric field components and currents are calculated from
magnetic field components, which are offset in time due to the leap-frog Yee algorithm. This
time difference can also be compensated for as pointed out in [11].

4.2.6 Definition and initialization of output parameters

Definition of types of results sought from a simulation is part of the construction of an
electromagnetics problem in the FDTD method. This can be done in the definition stage of

Hz(is – 1, js, ke – 1)

Hx(is, js – 1, ke – 1)
(is, js, ks)

(ie, je, ke)
Hx(ie, je, ke – 1)

Hy(ie, je, ke – 1)

Hy(ie, js, ke – 1)

Iz

z

y
x

Figure 4.12 A surface enclosed by magnetic field components and z-directed current flowing
through it.
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the main FDTD program fdtd_solve as shown in Listing 3.1, in the subroutine define_
output_parameters. In this section, we demonstrate how the electric field, magnetic field,
voltages, and currents can be defined as output parameters in Listing 4.13. We also
demonstrate how to set up some auxiliary parameters that would be used to display the three-
dimensional view of the objects in the problem space, the material mesh of the problem
space, and a runtime animation of fields on some plane cuts while the simulation is running.
The definition of other types of parameters is discussed in the subsequent chapters and their
implementation are added to the subroutine define_output_parameters.

Listing 4.13 starts with the definition and initialization of the empty structure arrays
sampled_electric_fields, sampled_magnetic_fields, sampled-voltages, and sampled_
currents for representing the respective parameters to be sampled at every time step of the
FDTD loop as functions of time. As these parameters are captured during the FDTD loop,
they can be plotted on MATLAB figures to display the progress of the sampled parameters.
However, it is not meaningful to display the progress of these parameters at every time step,
as it may slow down the simulation considerably. It is better to refresh the plots at a rate
defined with the parameter plotting_step. For instance, a value of 10 implies that the
figures will be refreshed once every 10 time steps.

Listing 4.13 define_output_parameters.m
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Usually it is a good practice to examine the positioning of the objects in the three-
dimensional problem space before running the simulation. Furthermore, examining the
distribution of the material parameters on the FDTD grid will also reveal if the simulation
is set up correctly. In these cases it is better to run the simulation up to a point where the
three-dimensional view of the problem space and the material mesh can be displayed.
Therefore, a parameter named run_simulation is defined. If this parameter is true, then
the program proceeds with running the simulation; otherwise, it stops after calling the
subroutines display_problem_space and display_material_mesh as shown in Listing 3.1.
The display_problem_space is a subroutine that displays the three-dimensional view of the
problem space, and it is controlled by a logical parameter named show_problem_space. A
set of parameters that can be used to set the view of the problem space is listed at the end of
Listing 4.13. Similarly, display_material_mesh is a subroutine that launches a utility pro-
gram with a graphical user interface, display_material_mesh_gui, and it is controlled by a
parameter named show_material_mesh. For instance, the material grid in Figure 3.13 is
obtained using display_material_mesh_gui.

During the FDTD time-marching loop, the electric and magnetic fields are calculated all
over the problem space at their respective positions on the Yee grid. Since all of the field
components are available, any of them can be captured, plotted, or stored. For instance, some
field components on some plane cuts can be captured and plotted on figures so as to
demonstrate the real-time progression of fields on these plane cuts. Or some fields can be
captured and stored for postprocessing. Here we limit our implementation to field compo-
nents sampled at nodes of the FDTD grid. To define a node, we need its position in the
Cartesian coordinates. Therefore, the parameters x, y, and z are defined in the structures
sampled_electric_fields(i) and sampled_magnetic_fields(i). Since the fields are vectors,
their x, y, and z components or magnitudes can be sampled. Hence, the parameter compo-
nent, which can take one of the values ‘‘x,’’ ‘‘y,’’ ‘‘z,’’ or ‘‘m,’’ is defined with sampled_
electric_fields(i) and sampled_magnetic_fields(i). If the component takes the value ‘‘m’’
then the magnitude of the field is calculated using

Em ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

x þ E2
y þ E2

z ;
q

Hm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

x þ H2
y þ H2

z

q
:

One additional parameter is display_plot, which takes one of the values true or false and
determines whether this field component will be plotted while the simulation is running or
not.

Meanwhile, the volumes representing the sampled voltages and currents are identified by
the parameters min_x, min_y, min_z, max_x, max_y, and max_z. The directions of the
sampled voltages and currents are defined by the parameter direction, which can take one of
the values ‘‘xp,’’ ‘‘yp,’’ ‘‘zp,’’ ‘‘xn,’’ ‘‘yn,’’ or ‘‘zn.’’
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As discussed already, since all of the field components are available at every time step of
the simulation, they can be captured on desired plane cuts and plotted; thus, a propagation of
fields on these plane cuts can be simulated. The definition of animation as an output is done
using a parameter animation. The parameter animation is an array so each element in the
array generates a figure that displays the fields. An element animation(i) has the following
subfields that are used to define the properties of the animation. The subfield field_type can
take a value either ‘‘e’’ or ‘‘h,’’ determining whether the electric field or magnetic field will
be animated, respectively. Then the subfield component is used to define which component
of the field to display, and it takes one of the values ‘‘x,’’ ‘‘y,’’ ‘‘z,’’ or ‘‘m.’’ Then several
plane cuts can be defined to be displayed on a figure using the subfield plane_cut(j). The
parameter plane_cut(j).type can take one of the values ‘‘xy,’’ ‘‘yz,’’ or ‘‘zx,’’ describing
which principal plane the plane cut is parallel to. Then the parameter plane_cut(j).position
determines the position of the plane cut. For instance, if type is ‘‘yz,’’ and position is 5, then
the plane cut is the plane at x ¼ 5. Finally, three other subfields of animation(i) are the
logical parameters enable, display_grid, and display_objects. The animation can be dis-
abled by simply setting enable ‘‘false,’’ the FDTD grid can be displayed during the simu-
lation by setting display_grid ‘‘true,’’ and the objects in the problem space can be displayed
by a wire grid by setting display_objects ‘‘true.’’

4.2.6.1 Initialization of output parameters
The initialization of output parameters is implemented in the subroutine initialize_
output_parameters, as shown in Listing 4.14. Here the parameter sampled_electric_fields
represents the sampled electric field components, and sampled_magnetic_fields represents
the sampled magnetic field components. Similarly, the parameters sampled_voltages and
sampled_currents represent sampled voltages and currents, respectively. As indicated
before, the electric and magnetic field components are sampled at specified positions, which
coincide with respective nodes in the Yee grid. The indices of the sampling nodes are
determined in Listing 4.14 and are stored in the parameters is, js, and ks. Furthermore, a one-
dimensional array with size number_of_time_steps is constructed as sampled_value
and initialized with zeros. This parameter is used to store the new computed values of the
sampled component while the FDTD iterations proceed. Another one-dimensional array with
size number_of_time_steps is time, which is used to store the time instants of the respective
captured values. One should notice that there is a half time step duration (dt/2) shift between
the electric field and magnetic field time arrays.

Listing 4.14 initialize_output_parameters.m
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The indices of the nodes indicating the positions of the sampled voltages are calculated
and assigned to the parameters is, js, ks, ie, je, and ke. The indices of the fields that are used
to calculate sampled voltages are determined and assigned to the parameter field_indices.
Then coefficient Csvf, which is a scaling factor as described in Section 4.2.5, is calculated
using (4.47) and is assigned to the parameter Csvf.

4.2.6.2 Initialization of figures for runtime display
So far we have defined four types of outputs for an FDTD simulation: namely, sampled
electric and magnetic fields, voltages, and currents. While the FDTD simulation is running,
the progress of these sampled parameters can be displayed on MATLAB figures. In the
subroutine define_output_parameters, while defining the sampled components, a parameter
display_plot is associated to each defined component indicating whether the real-time
progress of this component displayed. If there are any components defined for runtime dis-
play, figures displaying these components can be opened and their properties can be set
before the FDTD time-marching loop starts. This figure initialization process can be per-
formed in the subroutine initialize_display_parameters, which is given in Listing 4.15. Here
figures are launched for every sampled component that is displayed, and their axis labels are
set. Furthermore, the number of the figure associated with each sampled component is stored
in the parameter figure_number.
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Listing 4.15 initialize_display_parameters.m
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Finally, a subroutine initialize_animation_parameters is called, which performs
the initialization of parameters for field animation on the plane cuts defined in
define_output_parameters.

Furthermore, figures and display parameters for other types of sampled outputs can be
initialized in this routine.

4.2.7 Running an FDTD simulation: The time-marching loop

So far we have discussed all definition and initialization routines in fdtd_solve as given in
Listing 3.1 except the subroutines initialize_boundary_conditions and run_fdtd_time_
marching_loop. The only boundary type we have discussed is the PEC boundary. We only
need to ensure that the tangential electric field components on the boundaries of the problem
space are zeros to satisfy the PEC boundary conditions. Therefore, there is no need for special
initialization routines for PEC boundaries. The subroutine run_fdtd_time_marching_loop is
reserved for other types of boundaries we have not discussed yet and are the subject of
another chapter.

Therefore, so far we have constructed the necessary components for starting an FDTD
simulation for a problem space assuming PEC boundaries and including objects of isotropic
and linear materials and lumped element components. Now we are ready to implement
the subroutine run_fdtd_time_marching_loop, which includes the steps of the leap-frog
time-marching algorithm of the FDTD method. The implementation of run_fdtd_time_
marching_loop is given in Listing 4.16. We discuss the functions and provide the imple-
mentation of subroutines of these steps in this section.

Listing 4.16 starts with the definition and initialization of a parameter current_time,
which is used to include the current value of time instant during the FDTD loop. Then the
MATLAB function cputime is used to capture the time on the computer system. This is first
called to capture the start time of the FDTD loop and is stored in start_time. The function
cputime is called one more time to capture the time on the system after the FDTD loop is
completed. The captured value is copied to end_time. Hence, the difference between the
start and end times is used to calculate the total simulation time spent for the time-marching
iterations.

4.2.7.1 Updating magnetic fields
The time-marching iterations are performed number_of_time_steps times. At every iteration,
first the magnetic field components are updated in the subroutine update_magnetic_fields,
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as given in Listing 4.17. Here the new values of the magnetic field components are cal-
culated all over the problem space based on the general updating equations (1.29)–(1.31),
excluding the impressed magnetic current terms since there are no impressed magnetic
currents defined.

Listing 4.16 run_fdtd_time_marching_loop.m

Listing 4.17 update_magnetic_fields.m

120 CHAPTER 4 ● Active and passive lumped elements



4.2.7.2 Updating electric fields
Then the next important step in an FDTD iteration is the update of electric fields, which is
performed in the subroutine update_electric_fields and is shown in Listing 4.18. The electric
field components are updated using the general updating equations given in (1.26)–(1.28),
except for the impressed electric current terms. While discussing the lumped element com-
ponents, it has been shown that impressed current terms are needed for modeling inductors.
Since only a small number of electric field components need to be updated for modeling the
inductors; these components are recalculated by addition of impressed current related terms
in the subroutine update_inductors.

One should notice that in Listing 4.18, the electric field components that are tangential to
the boundaries are excluded in the updating. The reason is the specific arrangement of field
positions on the Yee cell. While updating an electric field component, the magnetic field
components encircling it are required. However, for an electric field component resting
tangential to the boundary of the problem space, at least one of the required magnetic field
components would be out of the problem space and thus would be undefined. Therefore, the
electric field components tangential to the boundaries cannot be updated using the general
updating equations. However, if these components are not updated, they maintain their initial
values, which are zeros, thus naturally simulating the PEC boundaries. Therefore, there is no
need for any additional effort to enforce PEC boundaries. However, some other types of
boundaries may require special updates for these electric field components.

The updating coefficient values that model the lumped element components were
assigned to the respective positions in the updating coefficient arrays; therefore, the updating
of the electric field in update_electric_fields completes the modeling of capacitors and

Listing 4.18 update_electric_fields.m
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resistors. The modeling of other lumped elements requires addition of some other terms to
the electric fields at their respective positions. The following sections elaborate on updates
for these other lumped elements.

4.2.7.3 Updating electric fields associated with voltage sources
The updating equations modeling the voltage sources are derived and represented by (4.10).
This equation includes an additional voltage source specific term,

Cezsði; j; kÞ � V
nþ1

2
s ði; j; kÞ; ð4:50Þ

which was omitted in the implementation of update_electric_fields in Listing 4.18. This
term can be added to the electric field components that are associated with the voltage
sources. The indices of the electric field components requiring an additional update are
stored in the parameter voltage_sources(i).field_indices. The coefficient terms are con-
structed as Cexs, Ceys, and Cezs, based on the direction of the voltage source. The value
of the voltage at the current time step can be retrieved from the waveform array voltage_
sources(i).waveform. The additional update of electric field components due to voltage
sources is performed in update_voltage_sources as shown in Listing 4.19.

4.2.7.4 Updating electric fields associated with current sources
Updating of the field components associated with the current sources is similar to that for the
voltage sources. The updating equations modeling the current sources are derived and given
by (4.15). This equation includes an additional current source specific term,

Cezsði; j; kÞ � I
nþ1

2
s ði; j; kÞ: ð4:51Þ

The additional update of electric field components due to current sources is performed in
update_current_sources as shown in Listing 4.20.

Listing 4.19 update_voltage_sources.m
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4.2.7.5 Updating electric fields associated with inductors
The updating equations modeling the inductors are derived as in equation (4.24), which
includes an additional impressed electric current source term

Cezjði; j; kÞ � J
nþ1

2
iz ði; j; kÞ: ð4:52Þ

The coefficients in the additional terms have been constructed in Listing 4.9 as Cexj,

Ceyj, and Cezj. However, the impressed current term J
nþ1

2
iz should be recalculated at

every time step using the previous value of the impressed current, J
n�1

2
iz ; and the associated

electric field component, En
z ; based on (4.23), before adding the terms in (4.52) to Enþ1

z :

However, since update_electric_ fields overwrites En
z ; J

nþ1
2

iz must be calculated before

update_electric_fields. Therefore, J
nþ1

2
iz can be recalculated after updating the electric

fields due to inductors for use in the following time step. The algorithm for updating
electric field components and calculating the impressed currents can be followed in Listing
4.21, which shows the implementation of update_inductors.

4.2.7.6 Updating electric fields associated with diodes
Update of electric field components for modeling diodes is more complicated compared to
other types of lumped elements. As discussed in Section 4.1.8, the new value of the electric
field component associated with a diode is obtained by the solution of the equation

AeBx þ x þ C ¼ 0; ð4:53Þ
where

x ¼ Enþ1
z ði; j; kÞ; A ¼ �Cezdði; j; kÞeB�En

z ði; j; kÞ; B ¼ ðqDz=2kTÞ;
C ¼ Cezeði; j; kÞ � En

z ði; j; kÞ þ Cezhyði; j; kÞ � H
nþ1

2
y ði; j; kÞ � H

nþ1
2

y ði � 1; j; kÞ
� �

þ Cezhxði; j; kÞ � H
nþ1

2
x ði; j; kÞ � H

nþ1
2

x ði; j � 1; kÞ
� �

þ Cezdði; j; kÞ:
ð4:54Þ

Listing 4.20 update_current_sources.m
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The coefficients B and Cezd are constructed as parameters diodes(i).B and diodes(i).Cezd
in the subroutine initialize_diode_updating_coeffcients. However, the coefficients A and C
must be recalculated at every time step using the equations just shown. As discussed before,
the coefficients Ceze, Cezhy, and Cezhx are negatives of the corresponding coefficients
appearing in the general updating equations, which were executed in update_electric_fields.
Therefore, after execution of update_electric_fields the electric field component associated
with the diode, Enþ1

z , would be holding the negative value of the sum of first three terms on
the right-hand side of (4.54).

Then the coefficient C can be expressed as

C ¼ �Enþ1
z ði; j; kÞ þ Cezdði; j; kÞ: ð4:55Þ

At this point, to calculate C we need the previous time step value of the electric field
component, En

z ði; j; kÞ. Since this component is overwritten in update_electric_fields, we
copy it to the parameter diodes(ind).Ezn before executing update_electrie_fields. There-
fore, at every time step after the value of the electric field component associated with a diode
is obtained, it is copied to diodes(ind).Ezn for use in the following time step. Similarly, the
new value of A can be calculated using En

z ði; j; kÞ:
Once the parameters A and C are recalculated, the new value of electric field component

Enþ1
z can be calculated by solving (4.53). As discussed in Section 4.8, this equation can

easily be solved numerically by using the Newton–Raphson method. The updating procedure

Listing 4.21 update_inductors.m
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of electric field components for modeling diodes is implemented in the subroutine update_
diodes, which is shown in Listing 4.22. Comparing the given implementation with the pre-
vious discussion helps in understanding this complicated updating process. Finally,
a function with name solve_diode_equation is implemented for solving (4.53) based on the
Newton–Raphson method, and its implementation is given in Listing 4.23.

4.2.7.7 Capturing the sampled magnetic field components
After the magnetic field components are updated by update_magnetic_fields, they can be
sampled for the current time step. As mentioned before, although all of the field components
in the problem space can be captured, for now we limit our discussion with sampling the
magnetic field values at predefined positions coinciding with the nodes of the problem space.
The indices of the nodes for which the magnetic field will be sampled are stored in the
parameters is, js, and ks. However, examining the field positioning scheme of the Yee cell
reveals that the magnetic field components are not defined at the node positions. But it is
possible to take the average of the four surrounding field components as the field value of the

Listing 4.22 update_diodes.m
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node. This procedure is illustrated in Listing 4.24, which shows the implementation of the
subroutine capture_sampled_magnetic_fields. For instance, to sample the y component of
the magnetic field at node (is, js, ks), an average of the components Hy(is, js, ks), Hy(is � 1,
js, ks), Hy(is, js, ks � 1), and Hy(is � 1, js, ks � 1) can be used as the sampled values as
illustrated in Figure 4.13(a).

Listing 4.23 solve_diode_equation.m

Listing 4.24 capture_sampled_magnetic_fields.m
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If the magnitude of the field vector is sought, the x, y, and z components of the
field vector can be sampled, and then their vector magnitude can be calculated as shown in
Listing 4.24.

4.2.7.8 Capturing the sampled currents
As discussed before, the currents flowing through a given surface can be calculated using the
magnetic fields components circling around the surface. Therefore, after the magnetic field
components are updated by update_magnetic_fields, the currents can be calculated for the
current time step. The procedure for capturing the electric current is implemented in the
subroutine capture_sampled_currents as shown in Listing 4.25.

4.2.7.9 Capturing the sampled electric field components
After the electric field components are updated by update_electric_fields, they can be
sampled for the current time step. Since there is not an electric field component defined at
the position of the sampling node (is, js, ks), an average of the two field components around
the node can be used as the sampled value. For instance, to sample the y component of the
electric field, an average of the components Ey(is, js, ks) and Ey(is, js � 1, ks) can be used as
the sampled value as illustrated in Figure 4.13(b). The sampled electric field components are
captured in the subroutine update_electric_fields, which is shown in Listing 4.26.

4.2.7.10 Capturing the sampled voltages
The indices of the field components that are required for calculating the voltage across a
volume indicated by the nodes (is, js, ks) and (ie, je, ke) are determined in the subroutine
initialize_output_parameters and are stored in the parameter field_indices. Furthermore,
another parameter Csvf is defined as a coefficient that would transform the sum of the
electric field components to a voltage value as discussed in Section 4.2.5. Then a procedure
for calculating the sampled voltages is implemented in the subroutine capture_
sampled_voltages shown in Listing 4.27.
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Figure 4.13 The y components of the magnetic and electric fields around the node (is, js, ks):
(a) magnetic field components and (b) electric field components.
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Listing 4.25 capture_sampled_currents.m

Listing 4.26 capture_sampled_electric_fields.m
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4.2.7.11 Displaying the sampled parameters
After all fields are updated and the sampled parameters are captured, the sampled parameters
defined for runtime display can be plotted using the subroutine displayj_sampled_parameters,
which is shown in Listing 4.28.

One should notice that in Listing 4.28 the instructions are executed once every
plotting_step time steps. Then for each sampled parameter requiring display, the respective
figure is activated using the respective figure number. Then the sampled parameter is plotted
from the first time step to current time step using MATLAB plot function.

Finally, at the end of display_sampled_parameters another subroutine display_animation
is called to display the fields captured on the predefined plane cuts.

4.2.8 Displaying FDTD simulation results

After the FDTD time-marching loop is completed, the output parameters can be displayed.
Furthermore, the output parameters may be postprocessed to obtain some other types
of outputs. The postprocessing and display of the simulation results are performed in the
subroutine post_proces_and_display_results following run_fdtd_time_marching_loop

Listing 4.27 capture_sampled_voltages.m
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Listing 4.28 display_sampled_parameters.m
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in fdtd_solve. Listing 4.29 shows the contents of this subroutine. So far we have defined four
types of outputs: sampled electric and magnetic fields, voltages, and currents. All these
outputs are captured during the simulation and are stored in the arrays sampled_value. The
variations of these components are obtained as functions of time; hence, they are called the
transient parameters.

Listing 4.29 includes a subroutine display_transient_parameters, which is used to plot
these sampled transient parameters. As other types of output parameters are defined for the
FDTD solution, new subroutines that implement the postprocessing and displaying of these
output parameters can be added to post_process_and_display_results.

Listing 4.29 post_process_and_display_results.m
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The partial implementation of display_transient_parameters is given in Listing 4.30.
Listing 4.30 shows the instructions for plotting only the sampled electric field components.
The other parameters are plotted similarly. One can notice that, if a parameter has not been
displayed during the time-marching loop, a new figure is launched and initialized for it. Then
the sampled data are plotted.

4.3 Simulation examples

So far we have discussed all the basic components for performing an FDTD simulation,
including the definition of the problem, initialization of the problem workspace, running an
FDTD time-marching loop, and capturing and displaying the outputs. In this section we
provide examples of some FDTD simulations. We provide the definitions of the problems
and show the simulation results.

4.3.1 A resistor excited by a sinusoidal voltage source

The first example is a simulation of a resistor excited by a voltage source. The geometry of
the problem is shown in Figure 4.14, and the partial code sections for the definition of the
problem are given in Listings 4.31–4.34. The code sections given next are not complete and
can be completed by the reader referring to the code listings given before.

Listing 4.30 display_transient_parameters.m
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Listing 4.31 define_problem_space_parameters.m
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Figure 4.14 A voltage source terminated by a resistor.
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Listing 4.32 define_geometry.m
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Listing 4.33 define_source_and_lumped_elements.m
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In Listing 4.31, the size of a unit cell is set to 1 mm on each side. The number of time
steps to run the simulation is 3000. In Listing 4.32, two parallel PEC plates are defined as
4 mm apart. Between these two plates a voltage source is placed at one end and a resistor is
placed at the other end. Then in Listing 4.33 sinusoidal and unit step waveforms are defined.
A voltage source with 50 W internal resistance is defined, and the sinusoidal source wave-
form with frequency 500 MHz is assigned to the voltage source. Then a resistor with 50 W
resistance is defined. Listing 4.34 shows the outputs defined for this simulation. A sampled
voltage is defined between the parallel PEC plates. Furthermore, a sampled current is defined
for the upper PEC plate.

Figure 4.15 shows the result of this simulation. Figure 4.15(a) shows a comparison of the
source voltage and the sampled voltage. As can be seen, the sampled voltage is half the
source voltage as expected. Furthermore, the sampled current shown in 4.15(b) confirms that
the sum of the resistances is 100 W.

4.3.2 A diode excited by a sinusoidal voltage source

The second example is the simulation of a diode excited by a sinusoidal voltage source. The
geometry of the problem is given in Figure 4.16, and the partial code sections for the defi-
nition of the problem are given in Listings 4.35–4.37.

Listing 4.34 define_output_parameters.m
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In Listing 4.35, two parallel PEC plates are defined 1 mm apart. Between these two plates
a voltage source is placed at one end and a diode is placed at the other end. Then in Listing
4.36 sinusoidal and unit step waveforms are defined. A voltage source with 50 W internal
resistance is defined, and the sinusoidal source waveform with frequency
500 MHz is assigned to the voltage source. Then a diode in the negative z direction is
defined. Listing 4.37 shows the output defined for this simulation; a sampled voltage is
defined across the diode.

Figure 4.16(b) shows the result of this simulation, where the source voltage and the sam-
pled voltage are compared. As can be seen, the sampled voltage demonstrates the response of
a diode; when the source voltage is larger than 0.7 V, the sampled voltage on the diode is
maintained as 0.7 V.
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Figure 4.15 Sinusoidal voltage source waveform with 500 MHz frequency and sampled voltage
and current: (a) source waveform and sampled voltage and (b) sampled current.
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4.3.3 A capacitor excited by a unit-step voltage source

The third example is the simulation of a capacitor excited by a unit step voltage source.
The geometry of the problem is given in Figure 4.17, and the partial code sections for the
definition of the problem are given in Listings 4.38 and 4.39.

In Listing 4.38, two parallel PEC plates are defined 1 mm apart. A voltage source with
50 W internal resistances is places at one end and a capacitor with 10 pF capacitance is
placed at the other end between these two plates as shown in Listing 4.39. A unit step
waveform is assigned to the voltage source. The unit step function is excited 50 time steps
after the start of simulation.
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Figure 4.16 Sinusoidal voltage source waveform with 500 MHz frequency and sampled
voltage: (a) a voltage source terminated by a diode and (b) source waveform
and sampled voltage.
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Listing 4.35 define_geometry.m

Listing 4.36 define_sources_and_lumped_elements.m
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Figure 4.17(b) shows the result of this simulation, where the sampled voltage across the
capacitor is compared with the analytical solution of the equivalent lumped circuit problem.
A simple circuit analysis reveals that the voltage across a capacitor excited by a unit step
function can be calculated from

vCðtÞ ¼ 1 � e�
t�t0
RC ; ð4:56Þ

where t0 is time delay, which is represented in this example by 50 time steps, and R is 50 W.

Listing 4.37 define_output_parameters.m
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Figure 4.17 Unit step voltage source waveform and sampled voltage: (a) a voltage source
terminated by a capacitor and (b) sampled voltage and analytical solution.
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Listing 4.39 define_sources_and_lumped_elements.m

Listing 4.38 define_geometry.m
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4.4 Exercises

4.1 A stripline structure that has width/height ratio of 1.44 and an air substrate is forming a
transmission line with 50 W characteristic impedance. Construct such a 50 W stripline
structure, and keep all boundaries as PEC. The geometry and dimensions of such a
stripline is shown in Figure 4.18 as a reference. Feed the stripline with a voltage source
from one end, and let the other end touch the problem space boundary. Capture the
voltage on the stripline around the center of the stripline. Show that if the voltage source is
excited by a unit step waveform with 1 volt magnitude, the sampled voltage will be a
pulse with 0.5 volts.

4.2 Consider the stripline in Exercise 4.1. Place a resistor with 50 W between the end of
stripline and the problem space boundary as shown in Figure 4.19. Show that with the
same excitation, the sampled voltage is going to be 0.5 volts unit step function.

4.3 Construct a problem space with the cell size as 1 mm on a side, boundaries as ‘‘pec,’’
and air gap between the objects and boundaries as five cells on all sides. Connect a
sinusoidal voltage source with 5 W internal resistance at one end between two parallel
PEC plates. At the other end place a 50 pF capacitor and a diode connected in series
between the plates. The diode is oriented in the positive z direction. The geometry of
the circuit is illustrated in Figure 4.20. Run the simulation with the voltage source
having 2 volts magnitude and 1 GHz frequency. Capture the voltage across the
capacitor. Run the same simulation using a circuit simulator, and verify your simu-
lation result.

4.4 Construct a problem space with the cell size as 1 mm on a side, boundaries as ‘‘pec,’’
and air gap between the objects and boundaries as five cells on all sides. Connect a
sinusoidal voltage source with 10 W internal resistance at one end between two parallel
PEC plates. At the other end place an inductor, a capacitor, and a resistor connected
in series between the plates. For these components use the values L ¼ 10 nH,
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Outer boundaries, PEC

10 mm Voltage source

Sampled voltage

cell size (Δ x = 0.72 mm, Δ y = 1 mm, Δ z = 1 mm) 

Figure 4.18 Dimensions of 50 W stripline.
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C ¼ 253.3 pF, and R ¼ 10 W, respectively. At 100 MHz the series RLC circuit is in
resonance. Excite the voltage source with a sinusoidal waveform with 100 MHz
frequency, and capture the voltage between the plates approximately at the middle of
the PEC plates. Show that the magnitude of the captured voltage waveform is half the
magnitude of the source waveform when it reaches steady state. Repeat the same
simulation with another frequency, and verify the magnitude of the observed voltage
by calculating the exact expected value.

Voltage source

y

z

x

Resistor

Figure 4.19 A 50 W stripline terminated by a resistor.

Figure 4.20 A circuit composed of a voltage source, a capacitor, and a diode.
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CHAPTER 5

Source waveforms and time
to frequency domain
transformation

Sources are necessary components of a finite-difference time-domain (FDTD) simulation
and their types vary depending on the type of problem under consideration. Usually sources
are of two types: (1) near, such as the voltage and current sources described in Chapter 4;
and (2) far, such as the incident fields appearing in scattering problems. In any case, a source
excites electric and magnetic fields with a waveform as a function of time. The type of
waveform can be selected specific to the problem under consideration. However, some
limitations of the FDTD method should be kept in mind while constructing the source
waveforms to obtain a valid and accurate simulation result.

One of the considerations for the source waveform construction is the spectrum of the
frequency components of the waveform. A temporal waveform is the sum of time-harmonic
waveforms with a spectrum of frequencies that can be obtained using the Fourier transform.
The temporal waveform is said to be in time domain, and its Fourier transformed form is said
to be in frequency domain. The Fourier transform of the source waveforms and other output
parameters can be used to obtain some useful results in the frequency domain. In this
chapter, we discuss selected types of waveforms and then introduce the numerical algorithms
for calculating the Fourier transform of temporal functions in discrete time.

5.1 Common source waveforms for FDTD simulations

A source waveform should be chosen such that its frequency spectrum includes all the
frequencies of interest for the simulation, and it should have a smooth turn-on and turn-off to
minimize the undesired effects of high-frequency components. A sine or a cosine function is
a single-frequency waveform, whereas other waveforms such as Gaussian pulse, time deri-
vative of Gaussian pulse, cosine-modulated Gaussian pulse, and Blackman-Harris window
are multiple frequency waveforms. The type and parameters of the waveforms can be chosen
based on the frequency spectrum of the waveform of interest.
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5.1.1 Sinusoidal waveform

Definition and construction of a sinusoidal waveform was presented in Chapter 4. As
mentioned before, a sinusoidal waveform is ideally a single-frequency waveform. However,
in an FDTD simulation the waveform can be excited for a limited duration, and the turn-on
and turn-off of the finite duration of the waveform is going to add other frequency compo-
nents to the spectrum. The initial conditions for the sources are zero before the simulation is
started in an FDTD simulation, and the sources are active during the duration of simulation.
Therefore, if a sinusoidal signal (sin(2pt), 0 < t < 4) is used for a source its duration is
finite as shown in Figure 5.1(a).
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Figure 5.1 A sinusoidal waveform excited for 4 s: (a) x(t) and (b) X(w) magnitude.
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The Fourier transform of a continuous time function x(t) is X(w) given by

X ðwÞ ¼
Z þ1

�1
xðtÞe� jwtdt; ð5:1Þ

while the inverse Fourier transform is

xðtÞ ¼ 1
2p

Z þ1

�1
X ðwÞe jwtdw: ð5:2Þ

The Fourier transform of the signal in Figure 5.1(a) is a complex function, and its
magnitude is plotted in Figure 5.1(b). The frequency spectrum of the signal in Figure 5.1(a)
covers a range of frequencies while being maximum at 1 Hz, which is the frequency of
the finite sinusoidal function. If the simulation runs for a longer duration as shown in
Figure 5.2(a), the Fourier transform of the waveform becomes more pronounced at 1 Hz as
shown in Figure 5.2(b). In Figure 5.1(b) the ratio of the highest harmonic to the main signal
at 1 Hz is 0.53/2 : �11.53 dB, while in Figure 5.2(b) this ratio is 0.96/4 : �12.39 dB.
In this case, running the simulation twice as long in time reduced the effect of the highest
harmonic.

If it is intended to observe the response of an electromagnetic problem due to a
sinusoidal excitation, the simulation should be run long enough such that the transient
response due to the turn on of the sources die out and only the sinusoidal response
persists.

5.1.2 Gaussian waveform

Running an FDTD simulation will yield numerical results for a dominant frequency as well
as for other frequencies in the spectrum of the finite sinusoidal excitation. However, the
sinusoidal waveform is not an appropriate choice if simulation results for a wideband of
frequencies are sought.

The frequency spectrum of the source waveform determines the range of frequencies for
which valid and accurate results can be obtained. As the frequency increases, the wavelength
decreases and becomes comparable to the cell size of the problem space. If the cell size is too
large compared with a fraction of a wavelength, the signal at that frequency cannot be
sampled accurately in space. Therefore, the highest frequency in the source waveform
spectrum should be chosen such that the cell size is not larger than a fraction of the highest-
frequency wavelength. For many applications, setting the highest-frequency wavelength
larger than 20 cells size is sufficient for a reasonable FDTD simulation. A Gaussian wave-
form is the best choice for a source waveform, since it can be constructed to contain all
frequencies up to a highest frequency that is tied to a cell size by a factor. This factor, which
is the proportion of the highest frequency wavelength to the unit cell size, is referred as
number of cells per wavelength nc.

A Gaussian waveform can be written as a function of time as

gðtÞ ¼ e�
t2

t2 ; ð5:3Þ
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where t is a parameter that determines the width of the Gaussian pulse both in the time
domain and the frequency domain. The Fourier transform of a Gaussian waveform is also a
Gaussian waveform, which can be expressed as a function of frequency as

GðwÞ ¼ t
ffiffiffi
p

p
e�

t2w2
4 : ð5:4Þ

The highest frequency that is available out of an FDTD calculation can be determined by
the accuracy parameter number of cells per wavelength such that

fmax ¼ c

lmin
¼ c

ncDsmax
; ð5:5Þ
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Figure 5.2 A sinusoidal waveform excited for 8 s: (a) x(t) and (b) X(w) magnitude.
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where c is the speed of light in free space, Dsmax is the maximum of the cell dimensions
(Dx, Dy, or Dz), and lmin is the wavelength of the highest frequency in free space. Once the
highest frequency in the spectrum of the frequency domain Gaussian waveform is deter-
mined, it is possible to find a t that constructs the corresponding time-domain Gaussian
waveform. Following is a procedure that determines t, so that one can construct the Gaussian
waveform in the time domain before the simulation starts with a good estimate of the highest
frequency at which the simulation results will be acceptable.

Consider the Gaussian waveform plotted in Figure 5.3(a) and the magnitude of its Fourier
transform pair plotted in Figure 5.3(b) using (5.4). The function (5.4) is real, and its phase
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Figure 5.3 A Gaussian waveform and its Fourier transform: (a) g(t) and (b) G(w)
magnitude.
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vanishes; hence, the phase of the Fourier transform is not plotted here. We consider the
maximum valid frequency of the Gaussian spectrum as the frequency where the magnitude
of G(w) is 10% of its maximum magnitude as illustrated in Figure 5.3(b). Therefore, by
solving the equation

0:1 ¼ e�
t2w2

max
4 ;

we can find a relation between t and fmax, such that

t ¼
ffiffiffiffiffiffiffi
2:3

p

pfmax
: ð5:6Þ

Using (5.5) in (5.6), we can tie nc and Dsmax to t as

t ¼
ffiffiffiffiffiffiffi
2:3

p
ncDsmax

pc
ffi ncDsmax

2c
: ð5:7Þ

Once the parameters nc and Dsmax are defined, the parameter t can be calculated and can
be used in (5.3) to construct the Gaussian waveform spectrum that allows one to obtain a
valid frequency response up to fmax.

Determination of the parameter t is not enough to construct the Gaussian waveform that
can be directly used in an FDTD simulation. One should notice in Figure 5.3(a) that the
Gaussian waveform’s maximum coincides with time instant zero. However, in an FDTD
simulation the initial conditions of the fields are zero; hence, the sources must also be zero.
This can be achieved by shifting the Gaussian waveform in time such that at time instant zero
the waveform value is zero or is (practically) negligible. Furthermore, time shifting preserves
the frequency content of the waveform.

With time shifting the Gaussian waveform takes the form

gðtÞ ¼ e�
ðt�t0Þ2

t2 ; ð5:8Þ

where t0 is the amount of time shift. We can find t0 as the time instant in (5.3) where
g(t ¼ 0) ¼ e�20, which is a negligible value and is good for more than 16 digits of numerical
accuracy. Solving (5.8) with g(0) ¼ e�20 we can find

t0 ¼
ffiffiffiffiffi
20

p
t ffi 4:5t: ð5:9Þ

Using the time shift t0, we obtain a Gaussian waveform as illustrated in Figure 5.4, which
can be used as a source waveform in FDTD simulations to obtain acceptable results for
frequencies up to fmax.

5.1.3 Normalized derivative of a Gaussian waveform

In some applications it may be desired to excite the problem space with a pulse that has a
wide frequency spectrum but does not include zero frequency or very low-frequency
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components. Furthermore, if it is not necessary, it is better to avoid the simulation of low-
frequency components since simulation of these components need long simulation time. For
such cases the derivative of the Gaussian waveform is a suitable choice. The derivative of a
Gaussian waveform normalized to the maximum can be found as

gðtÞ ¼ �
ffiffiffiffiffi
2e

p

t
te�

t2

t2 : ð5:10Þ

The Fourier transform of this function can be determined as

GðwÞ ¼ jwt2 ffiffiffiffiffiffi
pe

p
ffiffiffi
2

p e�
t2w2

4 : ð5:11Þ

The normalized derivative of a Gaussian waveform and its Fourier transform are illu-
strated in Figure 5.5(a) and 5.5(b), respectively. One can notice that the function in the
frequency domain vanishes at zero frequency. The form of the function suggests that there is
a minimum frequency, fmin, and a maximum frequency, fmax, that determine the bounds of
the valid frequency spectrum for an FDTD simulation considering 10% of the maximum as
the limit. Having determined the maximum usable frequency from the number of cells per
wavelength and maximum cell size using (5.5), one can find the parameter t that sets G(w) to
10% of its maximum value at fmax and can use t in (5.10) to construct a time-domain
waveform for the FDTD simulation. However, this procedure requires solution of a nonlinear
equation and is not convenient. The equations readily available for a Gaussian waveform can
be used instead for convenience. For instance, t can be calculated using (5.7). Similar to the
Gaussian waveform, the derivative of a Gaussian waveform is also centered at time instant
zero as it appears in (5.10) and as shown in Figure 5.5(a). Therefore, it also needs a time shift
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Figure 5.4 Gaussian waveform shifted by t0 ¼ 4.5t in time.
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to have practically zero value at time instant zero; hence, it can be written as

gðtÞ ¼ �
ffiffiffiffiffi
2e

p

t
ðt � t0Þe�

ðt�t0Þ2
t2 : ð5:12Þ

The time shift value t0 can be obtained as well using the readily available equation (5.9).
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Figure 5.5 Normalized derivative of a Gaussian waveform and its Fourier transform:
(a) g(t) and (b) G(w) magnitude.
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5.1.4 Cosine-modulated Gaussian waveform

Another common waveform used in FDTD applications is the cosine-modulated Gaussian
waveform. A Gaussian waveform includes frequency components over a band centered at
zero frequency as illustrated in Figure 5.3(b). Modulating a signal with a cosine function
having frequency fc corresponds to shifting the frequency spectrum of the modulated signal
by fc in the frequency domain. Therefore, if it is desired to perform a simulation to obtain
results for a frequency band centered at a frequency fc, the cosine-modulated Gaussian pulse
is a suitable choice. One can first construct a Gaussian waveform with a desired bandwidth
and then can multiply the Gaussian pulse with a cosine function with frequency fc. Then the
corresponding waveform can be expressed as

gðtÞ ¼ cosðwctÞe�t2

t2 ; ð5:13Þ
while its Fourier transform can be written as

GðwÞ ¼ t
ffiffiffi
p

p
2

e�
t2ðw�wcÞ2

4 þ t
ffiffiffi
p

p
2

e�
t2ðwþwcÞ2

4 ; ð5:14Þ

where wc ¼ 2pfc. A cosine-modulated Gaussian waveform and its Fourier transform are
illustrated in Figure 5.6. To construct a cosine-modulated Gaussian waveform with spectrum
having D f bandwidth centered at fc, first we find t in (5.14) that satisfies the D f bandwidth
requirement. We can utilize (5.6) to find t such that

t ¼ 2
ffiffiffiffiffiffiffi
2:3

p

pDf
ffi 0:966

Df
: ð5:15Þ

Then t can be used in (5.13) to construct the intended waveform. However, we still need
to apply a time shift to the waveform such that initial value of the excitation is zero. We can
use (5.9) to find the required time shift value, t0. Then the final equation for the cosine-
modulated Gaussian waveform takes the form

gðtÞ ¼ cos wcðt � t0Þð Þ � e�
ðt�t0Þ2

t2 : ð5:16Þ

5.2 Definition and initialization of source waveforms
for FDTD simulations

In the previous section, we discussed some common types of source waveforms that can be
used to excite an FDTD problem space, and we derived equations for waveform function
parameters to construct waveforms for desired frequency spectrum properties. In this sec-
tion, we discuss the definition and implementation of these source waveforms in an FDTD
MATLAB� code.

In Section 4.2.1, we showed that we can define the parameters specific to various types of
waveforms in a structure named waveforms. We have shown how a unit step function and a
sinusoidal waveform can be defined as subfields of the structure waveforms. We can add new
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subfields to the structure waveforms to define the new types of source waveforms. For
instance, consider the Listing 5.1, where a sample section of the subroutine define_sources_
and_lumped_elements illustrates the definition of the source waveforms. In addition to the
unit step function and sinusoidal waveform, the Gaussian waveform is defined as the subfield
waveforms.gaussian, the derivative of a Gaussian waveform is defined as waveforms.
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Figure 5.6 Cosine-modulated Gaussian waveform and its Fourier transform: (a) g(t) and
(b) G(w) magnitude.
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derivative_gaussian, and the cosine-modulated Gaussian waveform is defined as waveforms.
cosine_modulated_gaussian. Each of these subfields is an array, so more than one waveform
of the same type can be defined in the same structure waveforms. For instance, in this listing
two sinusoidal waveforms and two Gaussian waveforms are defined. The Gaussian and the
derivative of Gaussian waveforms have the parameter number_of_cells_per_wavelength,
which is the accuracy parameter nc described in the previous section used to determine
the maximum frequency of the spectrum of the Gaussian waveform. If the number_
of_cells_per_wavelength is assigned zero, then the number_of_cells_per_wavelength
that is defined in the subroutine define_problems_space_parameters will be used as the
default value.

The cosine-modulated Gaussian waveform has the parameter bandwidth, which spe-
cifies the width of the frequency band Df. One more parameter is modulation_frequency,
which is the center frequency of the band, fc.

Listing 5.1 define_sources_and_lumped_elements.m
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Once the waveform types are defined, the desired waveform type can be assigned to the
sources as illustrated in Listing 5.1. For instance, for the voltage source voltage_sources(1)
the parameter waveform_type is assigned the value ‘‘gaussian,’’ and the parameter wave-
form_index is assigned the value 2, indicating that the waveform waveforms.gaussian(2) is
the waveform of the voltage source.

The initialization of the waveforms is performed in the subroutine initialize_
waveforms, which is called in initialize_sources_and_lumped_elements before the
initialization of lumped sources as discussed in Section 4.2.3. The implementation of
initialize_waveforms is extended to include the Gaussian, derivative of Gaussian, and
cosine-modulated Gaussian waveforms based on the discussions in Section 5 as shown
in Listing 5.2. After the waveforms are initialized, the constructed waveforms are
copied to appropriate subfields in the source structures in initialize_sources_and_
lumped_elements.

Listing 5.2 initialize_waveforms.m
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5.3 Transformation from time domain to frequency domain

In the previous sections, we discussed construction of different types of source waveforms
for an FDTD simulation. These waveforms are functions of time, and any primary output
obtained from an FDTD simulation is in the time domain. The input–output relationship is
available in the time domain after an FDTD simulation is completed. The input and output
time functions can be transformed to the frequency domain by the use of the Fourier trans-
form to obtain the response of the system in the case of time-harmonic excitations. The
Fourier transform is an integration applied to a continuous time function. In the FDTD
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method the values are sampled at discrete time instants; therefore, the continuous time
integration can be approximated by a discrete time summation. The Fourier transform of a
continuous time function x(t) is given as X(w) using (5.1). In FDTD the time function is
sampled at a period Dt; therefore, the values x(nDt) are known. Then the Fourier transform
(5.1) can be expressed for discrete samples x(nDt) as

X ðwÞ ¼ Dt
Xn¼Nsteps

n¼1

xðnDtÞe�jwnDt; ð5:17Þ

where Nsteps is the number of time steps. It is easy to implement a function based on (5.17)
that calculates the Fourier transform of the discrete samples x(nDt) for a list of frequencies.
Implementation of such a function, time_to_frequency_domain, is shown in Listing 5.3.
This function accepts a parameter x, which is an array of sampled time-domain values of a
function. The parameter frequency_array includes list of frequencies for which the trans-
form is to be performed. The output parameter of the function X is an array including the
transform at the respective frequencies.

Another input parameter that needs consideration is time_shift. As discussed in
previous chapters, the electric field-related values and magnetic field-related values
are sampled at different time instants during the FDTD time-marching scheme. There is
a half time step duration in between, and the function time_to_frequency_domain
accepts a value time_shift to account for this time shift in the Fourier transform. For
electric field-related values (e.g., sampled voltages), time_shift can take the value 0,
whereas for the magnetic field-related values (e.g., sampled currents), time_shift can
take the value �dt/2.

The function implementation given in Listing 5.3 is intended for an easy understanding
of the time-to-frequency-domain transform action, and is not necessarily the best or optimum
algorithm for this purpose. More efficient discrete Fourier transform implementations, such
as fast Fourier transforms, can be used as well.

Listing 5.3 time_to_frequency_domain.m
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Similarly, the inverse Fourier transform can also be implemented. Consider a band-
limited frequency domain function X(w) sampled at uniformly distributed discrete frequency
points with sampling period Dw, where the sampling frequencies include zero and positive
frequencies. Then the inverse Fourier transform (5.2) can be expressed as

xðtÞ ¼ Dw
2p

X ð0Þ þ
Xm¼M�1

m¼1

X ðmDwÞe jwt þ X �ðmDwÞe�jwt
� � !

; ð5:18Þ

where X* is the complex conjugate of X, X(0) is the value of X at zero frequency, and M is
the number of sampled frequency points. We have assumed that X includes the samples at
zero and positive frequencies. It is evident from (5.2) that the integration includes the
negative frequencies as well. However, for a causal time function, the Fourier transform at a
negative frequency is the complex conjugate of its positive-frequency counterpart. So, if the
Fourier transform is known for the positive frequencies, the transform at the negative
frequencies can be obtained by the conjugate. Therefore, (5.18) includes summation at
the negative frequencies as well. Since the zero frequency appears once, it is added to the
discrete summation separately. Then a function named as frequency_to_time_domain is
constructed based on (5.18) as shown in Listing 5.4.

In general, we can define a list of frequencies for which we seek the frequency-domain
response in the define_output_parameters subroutine, which is illustrated in Listing 5.5.
Here a structure frequency_domain is defined to store the frequency-domain-specific
parameters. The subfields start, end, and step correspond to the respective values of a
uniformly sampled list of frequencies.

The desired list of frequencies is calculated and assigned to an array frequency_domain.
frequencies in the initialize_output_parameters subroutine as shown in Listing 5.6. The
initialization of output parameters is implemented in the subroutine initialize_output_
parameters, as shown in Listing 5.6.

Listing 5.4 frequency_to_time_domain.m
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The post processing and display of the simulation results are performed in the subroutine
post_process_and_display_results following run_fdtd_time_marching_loop in fdtd_solve.
We can add two new subroutines to post_process_and_display_results as illustrated in
Listing 5.7: calculate_frequency_domain_outputs and display_frequency_domain_
outputs. The time-to-frequency-domain transformations can be performed in calculate_
frequency_domain_outputs, for which the sample code is shown in Listing 5.8. In this
subroutine the time-domain arrays of sampled values are transformed to frequency domain
using the function time_to_frequency_domain, and the calculated frequency-domain arrays
are assigned to the frequency_domain_value subfield of the respective structures. Finally,
the subroutine display_frequency_domain_outputs, a partial section of which is listed in
Listing 5.9, can be called to display the frequency-domain outputs.

5.4 Simulation examples

So far we have discussed some source waveform types that can be used to excite an FDTD
problem space. We considered the relationship between the time- and frequency-domain
representations of the waveforms and provided equations that can be used to construct a
temporal waveform having specific frequency spectrum characteristics. Then we provided
functions that perform time-to-frequency-domain transformation, which can be used to
obtain simulation results in the frequency domain after an FDTD simulation is completed.
In this section we provide examples that utilize source waveforms and transformation
functions.

Listing 5.5 define_output_parameters.m

Listing 5.6 initialize_output_parameters.m

Listing 5.7 post_process_and_display_results.m
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Listing 5.8 calculate_frequency_domain_outputs.m
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Listing 5.9 display_frequency_domain_outputs.m
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5.4.1 Recovering a time waveform from its Fourier transform

The first example illustrates how the functions time_to_frequency_domain and
frequency_to_time_domain can be used. Consider the program recover_a_time_waveform
given in Listing 5.10.

Listing 5.10 recover_a_time_waveform.m
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First, a Gaussian waveform, g(t), for which the frequency spectrum is 1 GHz wide, is
constructed and is time shifted as shown in Figure 5.7(a). The Fourier transform of g(t) is
obtained as G(w), as plotted in Figure 5.7(b), using time_to_frequency_domain. One should
notice that the value of G(w) is 10% of the maximum at 1 GHz. Furthermore, the phase
vanishes for the Fourier transform of a time-domain Gaussian waveform having its center at
time instant zero. However, the phase shown in Figure 5.7(b) is nonzero. This is due to the
time shift introduced to the Gaussian waveform in the time domain. Finally, the time-domain
Gaussian waveform is reconstructed from G(w) using the function frequency_to_time_domain
and is plotted in Figure 5.7(c).
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Figure 5.7 A Gaussian waveform and its Fourier transform: (a) g(t); (b) G(w); and (c) g(t)
recovered from G(w).

5.4 ● Simulation examples 161



5.4.2 An RLC circuit excited by a cosine-modulated
Gaussian waveform

The second example is a simulation of a 10 nH inductor and a 10 pF capacitor connected
in series and excited by a voltage source with 50 W internal resistor. The geometry of the
problem is shown in Figure 5.8(a) as it is simulated by the FDTD program. The equivalent
circuit representation of the problem is illustrated in Figure 5.8(b). The size of a unit
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Figure 5.7 (Continued )
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Figure 5.8 An RLC circuit: (a) circuit simulated in FDTD and (b) lumped element equivalent
circuit.
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cell is set to 1 mm on each side. The number of time steps to run the simulation is
2000. Two parallel PEC plates are defined 2 mm apart from each other as shown in
Listing 5.11. A voltage source is placed in between these plates at one end, and an
inductor and a capacitor are placed in series at the other end as shown in Listing 5.12.

Listing 5.11 define_geometry.m

Listing 5.12 define_sources_and_lumped_elements.m
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A cosine-modulated Gaussian waveform with 2 GHz center frequency is assigned to the
voltage source. A sampled voltage is defined between the parallel PEC plates at the load
end as shown in Listing 5.13.

Figure 5.9 shows the time-domain results of this simulation; Vo is compared with
the source waveform, Vs. The frequency-domain counterparts of these waveforms are cal-
culated using time_to_frequency_domain and are plotted in Figure 5.10. We can find the
transfer function of this circuit by normalizing the output voltage Vo to Vs. Furthermore,
we can perform a circuit analysis to find the transfer function of the equivalent circuit in
Figure 5.8(b), which yields

TðwÞ ¼ VoðwÞ
VsðwÞ ¼

s2LC þ 1
s2LC þ sRC þ 1

; ð5:19Þ
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Listing 5.13 define_output_parameters.m
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Figure 5.9 Time-domain response, Vo, compared with source waveform, Vs.
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where s ¼ jw. The transfer function obtained from the FDTD simulation and the exact
equation (5.19) are compared as shown in Figure 5.11. These two results agree with each
other very well at low frequencies; however, there is a deviation at high frequencies. One of
the reasons for the difference is that the two circuits in Figure 5.8(a) and 5.8(b) are not
exactly the same. For instance, the parallel plates introduce a capacitance, and the overall
circuit is a loop and introduces an inductance in Figure 5.8(a). However, these additional
effects are not accounted for in the lumped circuit in Figure 5.8(b). Therefore, an electro-
magnetic simulation including lumped element components should account for the addi-
tional effects due to the physical structure of the circuit to obtain more accurate data at
higher frequencies.
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Figure 5.10 Frequency-domain response of source waveform Vs and output voltage Vo:
(a) Fourier transform of Vs and (b) Fourier transform of Vo.
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5.5 Exercises

5.1 Consider the stripline structure that you constructed in Exercise 4.2. Define a Gaussian
source waveform, assign it to the voltage source and run the FDTD simulation. By the
time the simulation is completed, the sampled voltage and current will be captured,
transformed to frequency domain, and stored in the frequency_domain_value field of
the parameters sampled_voltages(i) and sampled_currents(i). Input impedance of
this stripline can be calculated using these sampled voltage and current arrays in the
frequency domain. Since the stripline characteristic impedance is expected to be 50 W
and the stripline is terminated by a 50 W resistor, the input impedance shall be 50 W as
well. Calculate and plot the input impedance for a wide frequency band, and verify that
the input impedance is close to 50 W.

5.2 Consider the simulation you performed in Exercise 5.1. When you examine the sam-
pled transient voltage you will observe a Gaussian waveform generated by the voltage
source followed by some reflections due to the imperfect termination of the 50 W
resistor. If your stripline structure is long enough and the Gaussian waveform is narrow
enough, the Gaussian waveform and reflections should not overlap. Determine from
the transient voltage a number of time steps that would be used to run the FDTD
simulations such that the simulation would end before the reflections are captured and
only the Gaussian waveform would be observed as the sampled transient voltage. This
way you would be simulating an infinitely long stripline structure. Therefore, when you
calculate the input impedance, you would actually be calculating the characteristic
impedance of the stripline. Rerun the FDTD simulation with the time step you have
determined as discussed, calculate and plot the input impedance for a wide frequency
band, and verify that the characteristic impedance of the stripline is 50 W.
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Figure 5.11 Transfer function TðwÞ ¼ VoðwÞ
VsðwÞ.
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5.3 Consider the circuit in Exercise 4.4. Set the waveform of the voltage source as the
Gaussian waveform, and define a sampled current to capture the current flowing
through the circuit. Rerun the FDTD simulation, calculate and plot the input impedance
for a wide frequency band, and verify that the circuit resonates at 100 MHz. Note that
you may need to run the simulation for a large number of time steps since it will take a
long time for the low-frequency components in the Gaussian waveform to decay.

5.4 Consider Exercise 5.3. Now set the waveform of the voltage-source derivative of
the Gaussian waveform. Rerun the FDTD simulation, calculate and plot the input
impedance for a wide frequency band, and verify that the circuit resonates at 100 MHz.
Note that with the derivative of the Gaussian waveform you should be able to obtain
the results with a much smaller number of time steps compared with the amount of
steps used in Exercise 5.3 since the derivative of the Gaussian waveform does not
include zero frequency and since very low-frequency components are negligible.
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CHAPTER 6

S-Parameters

Scattering parameters (S-parameters) are used to characterize the response of radiofrequency
and microwave circuits, and they are more commonly used than other types of network para-
meters (e.g., Y-parameters, Z-parameters) because they are easier to measure and work with at
high frequencies [12]. In this chapter, we discuss the methods to obtain the S-parameters from a
finite-difference time-domain (FDTD) simulation of a single or multiport circuit.

6.1 Scattering parameters

S-parameters are based on the power waves concept. The incident and reflected power waves
ai and bi associated with port i are defined as

ai ¼ Vi þ Zi � Ii

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re Zif gj jp ; bi ¼ Vi � Z�

i � Ii

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re Zif gj jp ; ð6:1Þ

where Vi and Ii are the voltage and the current flowing into the ith port of a junction and Zi is
the impedance looking out from the ith port as illustrated in Figure 6.1 [13]. In general, Zi

is complex; however, in most of the microwaves applications it is real and equal to 50 W.
Then the S-parameters matrix can be expressed as
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By definition, the subscripts mn indicate output port number, m, and input port number, n, of
the scattering parameter Smn. If only the port n is excited while all other ports are terminated
by matched loads, the output power wave at port m, bm, and the input power wave at port n,
an, can be used to calculate Smn using

Smn ¼ bm

an
: ð6:3Þ

This technique can be applied to FDTD simulation results to obtain S-parameters for an input
port n. A multiport circuit can be constructed in an FDTD problem space where all ports
are terminated by matching loads and only the reference port n is excited by a source.
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Then sampled voltages and currents can be captured at all ports during the FDTD time-
marching loop. S-parameters are frequency-domain outputs of a network. After the FDTD
iterations are completed, the sampled voltages and currents can be transformed to the frequency
domain using the algorithms described in Chapter 5. Then the frequency-domain sampled
voltages and currents can be used in (6.1) to obtain incident and reflected power waves, ai and
bi, from which the S-parameters can be obtained for the reference port using (6.3). One should
keep in mind that in an FDTD simulation only one of the ports can be excited. Therefore, to
obtain a complete set of S-parameters for all of the port excitations in the circuit, more than one
FDTD run may be required depending on the type and symmetry conditions of the problem.

The S-parameters are complex quantities, as they are obtained using (6.3). Generally,
S-parameters are plotted by their magnitudes in decibels such that |Smn|dB ¼ 20 log10(|Smn|)
and by their phases.

6.2 S-Parameter calculations

In this section, we illustrate the implementation of S-parameter calculations through an
example. S-parameters are associated with ports; therefore, ports are the necessary compo-
nents for the S-parameter calculations. To define a port we need a sampled voltage and a
sampled current defined at the same location and associated with the port. Consider the two-
port circuit shown in Figure 6.2, which has been published in [14] as an example for the
application of the FDTD method to the analysis of planar microstrip circuits. The problem
space is composed of cells having Dx ¼ 0.4064 mm, Dy ¼ 0.4233 mm, and Dz ¼ 0.265 mm.
An air gap of 5 cells is left between the circuit and the outer boundary in the xn, xp, yn, and
yp directions and of 10 cells in the zp direction. The outer boundary is perfect electric
conductor (PEC) and touches the ground of the circuit in the zn direction. The dimensions of
the microstrips are shown in Figure 6.2(b) and are implemented in Listing 6.1. The substrate
is 3 � Dz thick and has a dielectric constant of 2.2. The microstrip filter is terminated by a
voltage source with 50 W internal resistance on one end and by a 50 W resistor on the other
end. The voltage source is excited by a Gaussian waveform with 20 cells per wavelength
accuracy parameter. Two sampled voltages and two sampled currents are defined 10 cells
away from the ends of the microstrip terminations as implemented in Listing 6.2.
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Figure 6.1 An N-port network.

170 CHAPTER 6 ● S-Parameters



Sampled current 1

Sampled voltage 1(a) Sampled voltage 2

Sampled current 2

port 2 RL = 50 Ω

port 1

z

y

Vs

x

y
x

50 cells

port 1

port 2

10 cells

10 cells

6 cells

14 cells

RL

Vs

6 cells

(b)

Figure 6.2 A microstrip low-pass filter terminated by a voltage source and a resistor on two
ends: (a) three-dimensional view and (b) dimensions.

Listing 6.1 define_geometry.m

6.2 ● S-Parameter calculations 171



We associate a sampled voltage and sampled current pair to a port, and thus we have two
ports. In Listing 6.2 a new parameter ports is defined and initialized as an empty array. At the
end of the listing, the sampled voltages and currents are associated to ports through their
indices. For instance, the subfield sampled_voltage_index of ports(2) is assigned the value 2,
implying that sampled_voltages(2) is the sampled voltage associated to the second port. The
subfield impedance is assigned the impedance of the respective port, which is supposed to be
equal to the microstrip-line characteristic impedance and the resistance of the voltage source
and resistor terminating the microstrip line. One additional subfield of ports is is_source_port,
which indicates whether the port is the source port or not. In these two ports example, the first
port is the excitation port due to the voltage source; therefore, ports(1).is_source_port is
assigned the value true whereas for the second port ports(2).is_source_port is false.

One should notice that the direction of the second sampled current sampled_currents(2).
direction is toward the negative x direction as xn. The reference currents are defined as
flowing into the circuit for the purpose of calculating the network parameters, as can be seen
in Figure 6.1.
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Listing 6.2 define_output_parameters.m
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Furthermore, one should notice that we can compute only the set of S-parameters (S11

and S21) for which the first port is the excitation port. The other set of S-parameters (S12 and
S22) can be obtained from (S11 and S21) due to the symmetry in the structure. If the structure
is not symmetric, we should assign the voltage source to the second port location and repeat
the simulation. Another approach for obtaining all S-parameters is that, instead of defining
a single source, sources can be defined at every port separately, each having internal
impedance equal to the port impedance. Then the FDTD simulations can be repeated in a
loop a number of times equals the number of ports, where each time one of the ports is
set as the excitation port. Each time, the sources associated with the excitation port are
activated while other sources are deactivated. The inactive sources will not generate power
and serve only as passive terminations. Each time, the S-parameter set for the excitation
port as the input can be calculated and stored.

Listing 6.2 illustrates how we can define the ports. The only initialization required for the
ports is the determination of the number of ports in initialize_output_parameters as illustrated
in Listing 6.3. After the FDTD time-marching loop is completed, the S-parameters are
calculated in calculate_frequency_domain_outputs after frequency-domain transformation of

Listing 6.3 initialize_output_parameters.m
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sampled voltages and currents as shown in Listing 6.4. First, the incident and reflected
power waves are calculated for every port using (6.1). Then the S-parameters are calculated
for the active port using (6.3). The calculated S-parameters are plotted as the last step in
display_frequency_domain_outputs, as shown in Listing 6.5.

Listing 6.4 calculate_frequency_domain_outputs.m

Listing 6.5 display_frequency_domain_outputs.m
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The sample circuit in Figure 6.1 is run for 20,000 time steps, and the S-parameters of the
circuit are obtained at the reference planes 10 cells away from the terminations where the
ports are defined. Although the reference planes for the S-parameters are defined away from
the terminations, it is possible to define the planes at the terminations. It is sufficient to place
the sampled voltages and currents on the terminations.

Figure 6.3(a) shows the calculated S11 up to 20 GHz, and Figure 6.3(b) shows the cal-
culated S21. It can be seen that the circuit acts as a low-pass filter where the pass band is up to
5.5 GHz. Comparing the results in Figure 6.3 with the ones published in [14] it is evident that
there are differences between the sets of results: some spikes appear in Figure 6.3. This is
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Figure 6.3 S-parameters of the microstrip low-pass filter: (a) S11 and (b) S21.
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because of the PEC boundaries, which make the FDTD simulation space into a cavity that
resonates at certain frequencies. Figure 6.4 shows the sampled voltage captured at the second
port of this microstrip filter. One can notice that, although the simulation is performed in
20,000 time steps, which is a large number of time steps for this problem, the transient
response still did not damp out. This behavior exposes itself as spikes (numerical errors) in the
S-parameter plots at different frequencies as shown in Figure 6.3. If the filter has slight loss,
the attenuation will improve the numerical errors, as the time-domain response will be
diminishing (as shown in Figure 6.5) for the filter lossy dielectric substrate. Therefore, the
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Figure 6.4 Sampled voltage at the second port of the microstrip low-pass filter.
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Figure 6.5 Sampled voltage at the second port of the microstrip low-pass filter with se ¼ 0.2.
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truncation at a diminishing time-domain waveform will not cause significant errors even
though the cavity modes of the PEC closed box still exist. This is clearly shown in Figure 6.6
(a) and 6.6(b). If the simulation had been performed such that boundaries simulate open
space, the simulation time would take less and the S-parameters results would be clear of
these spikes. Chapters 7 and 8 discuss algorithms that simulate open boundaries for FDTD
simulations.
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Figure 6.6 S-parameters of the microstrip low-pass filter with se ¼ 0.2: (a) S11

and (b) S21.
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6.3 Simulation examples

6.3.1 Quarter-wave transformer

In this example the simulation of a microstrip quarter-wave transformer is presented. The
geometry and the dimensions of the circuit are shown in Figure 6.7. The circuit is con-
structed on a substrate having 1 mm thickness and 4.6 dielectric constant. The index of the
material type of the microstrip substrate is 4. A voltage source with internal resistance 50 W
is connected to a 50 W microstrip line having 1.8 mm width and 4 mm length. This line is
matched to a 100 W line through a 70.7 W line having 1 mm width and 10 mm length at
4 GHz. The 100 W line has 0.4 mm width and 4 mm length and is terminated by a 100 W
resistor. The FDTD problem space is composed of cubic cells with sides each measuring
0.2 mm. The boundaries of the problem space are PEC on all sides; however, to suppress the
cavity resonances another material type is defined as an absorber. The index of the material
type of the absorber is 5. The relative permittivity and permeability of this absorber is 1, the
electric conductivity is 1, and the magnetic conductivity is 142,130, which is the square of
the intrinsic impedance of free space. The air gap between the objects and boundaries is zero
on all sides. The bottom boundary serves as the ground of the microstrip circuit, while the
other five sides are surrounded by the absorber material. The definition of the relevant
problem space parameters and geometry are shown in Listing 6.6. The definition of the
voltage source and the resistor are shown in Listing 6.7. In the previous example, the sam-
pled voltages and sampled currents are defined on the microstrip lines away from the voltage

Voltage source
Sampled voltage 1
Sampled current 1

RL = 100 Ω
Sampled voltage 2
Sampled current 2

Absorbers

Absorber

70.7 Ω line50 Ω line 100 Ω line

1.8 mm 1 mm 0.4 mm

4 mm 10 mm 4 mm

thickness = 1 mm, dielectric constant = 4.6

x
y

z

10
 m

m

Figure 6.7 The geometry and dimensions of a microstrip quarter-wave transformer matching a
100 W line to 50 W line.
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Listing 6.6 define_geometry.m
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Listing 6.7 define_sources_and_lumped_elements.m
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source and the terminating resistor. In this example, the sampled voltages and sampled
currents are defined on the voltage source and the terminating resistor. Then the sampled
voltages and currents are assigned to ports. The definition of the output parameters is shown
in Listing 6.8.

Listing 6.8 define_output_parameters.m
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The FDTD simulation is run for 5,000 time steps, and the S-parameters of the simulation
are plotted in Figure 6.8. The plotted S11 indicates that a good match has been obtained at
4 GHz. Furthermore, the results are free of spikes, indicating that the absorbers used in the
simulation suppressed the cavity resonances. However, one should keep in mind that
although the use of absorbers improves the FDTD simulation results, it may introduce some
other undesired errors to the simulation results. In the following chapters, more advanced
absorbing boundaries are discussed that minimize these errors.

0 1 2 3 4 5 6 7 8
–40

–20

0

Frequency (GHz)

M
ag

ni
tu

de
 (d

B
)

0 1 2 3 4 5 6 7 8
–1.5

–1

–0.5

0

Frequency (GHz)

M
ag

ni
tu

de
 (d

B
)

S11

S21

Figure 6.8 The S11 and S21 of the microstrip quarter-wave transformer circuit.
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6.4 Exercises

6.1 Consider the low-pass filter circuit in the example described in Section 6.2. Use the
same type of absorber as shown in the example in Section 6.3.1 to terminate the
boundaries of the low-pass filter circuit. Use absorbers with 5 cells thickness,
and leave at least 5 cells air gap between the circuit and the absorbers in the xn, xp, yn,
and yp directions. Leave at least 10 cells air gap between the circuit and the absorbers
in the zp direction. In the zn direction the PEC boundary will serve as the ground plane
of the circuit. The FDTD problem space is illustrated in Figure 6.9 as a reference.
Rerun the simulation for 3,000 time steps, and verify that the spikes in Figure 6.3 due
to cavity resonances are suppressed.

6.2 Consider the quarter-wave transformer circuit shown in Example 6.3.1. Redefine the
voltage source and the resistor such that voltage source will feed the 100 W line and
will have 100 W internal resistance, while the resistor will terminate the 50 W line
and will have 50 W resistance. Set port 2 as the active port, and run the simulation.
Obtain the figures plotting S12 and S22, and verify that they are similar to the S21 and
S11 in Figure 6.8, respectively.

z
y

x

Figure 6.9 The problem space for the low-pass filter with absorbers on the xn, xp, yn, yp, and
zp sides.
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CHAPTER 7

Perfectly matched layer absorbing
boundary

Because computational storage space is finite, the finite-difference time-domain (FDTD)
problem space size is finite and needs to be truncated by special boundary conditions. In
the previous chapters we discussed some examples for which the problem space is termi-
nated by perfect electric conductor (PEC) boundaries. However, many applications, such as
scattering and radiation problems, require the boundaries simulated as open space. The
types of special boundary conditions that simulate electromagnetic waves propagating
continuously beyond the computational space are called absorbing boundary conditions
(ABCs). However, the imperfect truncation of the problem space will create numerical
reflections, which will corrupt the computational results in the problem space after certain
amounts of simulation time. So far, several various types of ABCs have been developed.
However, the perfectly matched layer (PML) introduced by Berenger [15, 16] has been
proven to be one of the most robust ABCs [17–20] in comparison with other techniques
adopted in the past. PML is a finite-thickness special medium surrounding the computa-
tional space based on fictitious constitutive parameters to create a wave-impedance
matching condition, which is independent of the angles and frequencies of the wave inci-
dent on this boundary. The theory and implementation of the PML boundary condition are
illustrated in this chapter.

7.1 Theory of PML

In this section we demonstrate analytically the reflectionless characteristics of PML at the
vacuum–PML and PML–PML interfaces [15] in detail.

7.1.1 Theory of PML at the vacuum–PML interface

We provide the analysis of reflection at a vacuum–PML interface in a two-dimensional case.
Consider the TEz polarized plane wave propagating in an arbitrary direction as shown
in Figure 7.1. In the given TEz case Ex, Ey, and Hz are the only field components that exist in
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the two-dimensional space. These field components can be expressed in the time-harmonic
domain as

Ex ¼ �E0 sinf0e jwðt�ax�byÞ; ð7:1aÞ
Ey ¼ E0 cosf0e jwðt�ax�byÞ; ð7:1bÞ

Hz ¼ H0e jwðt�ax�byÞ: ð7:1cÞ

Maxwell’s equations for a TEz polarized wave are

e0
@Ex

@t
þ seEx ¼ @Hz

@y
; ð7:2aÞ

e0
@Ey

@t
þ seEy ¼ � @Hz

@x
; ð7:2bÞ

m0
@Hz

@t
þ smHz ¼ @Ex

@y
� @Ey

@x
: ð7:2cÞ

In a TEz PML medium, Hz can be broken into two artificial components associated with
the x and y directions as

Hzx ¼ Hzx0e�jwbye jwðt�axÞ; ð7:3aÞ
Hzy ¼ Hzy0e�jwaxe jwðt�byÞ; ð7:3bÞ

where Hz ¼ Hzx þ Hzy. Therefore, a modified set of Maxwell’s equations for a TEz polarized
PML medium can be expressed as

e0
@Ex

@t
þ speyEx ¼ @ðHzx þ HzyÞ

@y
; ð7:4aÞ

e0
@Ey

@t
þ spexEy ¼ � @ðHzx þ HzyÞ

@x
; ð7:4bÞ

Ey

Ex

k̂

Hz

E

f0

Figure 7.1 The field decomposition of a TEz polarized plane wave.
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m0
@Hzx

@t
þ spmxHzx ¼ � @Ey

@x
; ð7:4cÞ

m0
@Hzy

@t
þ spmyHzy ¼ @Ex

@y
; ð7:4dÞ

where spex, spey, spmx, and spmy are the introduced fictitious conductivities. With the given
conductivities the PML medium described by (7.4) is an anisotropic medium. When
spmx ¼ spmy ¼ sm, merging (7.4c) and (7.4d) yields (7.2c). Field components Ey and Hzx

together can represent a wave propagating in the x direction, and field components of Ex and
Hzy represent a wave propagating in the y direction. Substituting the field equations for the
x and y propagating waves in (7.1a), (7.1b), (7.3a), and (7.3b) into the modified Maxwell’s
equations given, one can obtain

e0E0 sinf0 � j
spey

w
E0 sinf0 ¼ bðHzx0 þ Hzy0Þ; ð7:5aÞ

e0E0 cosf0 � j
spex

w
E0 cosf0 ¼ aðHzx0 þ Hzy0Þ; ð7:5bÞ

m0Hzx0 � j
spmx

w
Hzx0 ¼ aE0 cosf0; ð7:5cÞ

m0Hzy0 � j
spmy

w
Hzy0 ¼ bE0 sinf0: ð7:5dÞ

Using (7.5c) and (7.5d) to eliminate magnetic field terms from (7.5a) and (7.5b) yields

e0m0 1 � j
spey

e0w

� �
sinf0 ¼ b

a cosf0

1 � jðspmx=m0wÞ
� �þ b sinf0

1 � jðspmy=m0wÞ
� �

" #
; ð7:6aÞ

e0m0 1 � j
spex

e0w

� �
cosf0 ¼ a

a cosf0

1 � jðspmx=m0wÞ
� �þ b sinf0

1 � jðspmy=m0wÞ
� �

" #
: ð7:6bÞ

The unknown constants a and b can be obtained from (7.6a) and (7.6b) as

a ¼
ffiffiffiffiffiffiffiffiffim0e0

p
G

1 � j
spex

we0

� �
cosf0; ð7:7aÞ

b ¼
ffiffiffiffiffiffiffiffiffim0e0

p
G

1 � j
spey

we0

� �
sinf0; ð7:7bÞ

where

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wx cos2 f0 þ wy sin2 f0

q
; ð7:8Þ

and

wx ¼ 1 � jspex=we0

1 � jspmx=wm0
; wy ¼ 1 � jspey=we0

1 � jspmy=wm0
; ð7:9Þ
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Therefore, the generalized field component can be expressed as

y ¼ y0e jw t�x cosf0þy sinf0
cGð Þe�

spex cosf0
e0cG xe�

spey sinf0
e0cG y

; ð7:10Þ
where the first exponential represents the phase of a plane wave and the second and third
exponentials govern the decrease in the magnitude of the wave along the x axis and y axis,
respectively.

Once a and b are determined by (7.7), the split magnetic field can be determined from
(7.5c) and (7.5d) as

Hzx0 ¼ E0

ffiffiffiffiffi
e0

m0

r
wx cos2 f0

G
; ð7:11aÞ

Hzy0 ¼ E0

ffiffiffiffiffi
e0

m0

r
wy sin2 f0

G
: ð7:11bÞ

The magnitude of the total magnetic field Hz is then given as

H0 ¼ Hzx0 þ Hzy0 ¼ E0

ffiffiffiffiffi
e0

m0

r
G: ð7:12Þ

The wave impedance in a TEz PML medium can be expressed as

Z ¼ E0

H0
¼

ffiffiffiffiffi
m0

e0

r
1
G
: ð7:13Þ

It is important to note that if the conductivity parameters are chosen such that

spex

e0
¼ spmx

m0
and

spey

e0
¼ spmy

m0
; ð7:14Þ

then the term G becomes equal to unity as wx and wy becomes equal to unity. Therefore, the
wave impedance of this PML medium becomes the same as that of the interior free space. In
other words, when the constitutive conditions of (7.14) are satisfied, a TEz polarized wave
can propagate from free space into the PML medium without reflection for all frequencies,
and all incident angles as can be concluded from (7.8). One should notice that, when the
electric and magnetic losses are assigned to be zero, the field updating equation (7.4) for the
PML region becomes that of a vacuum region.

7.1.2 Theory of PML at the PML–PML interface

The reflection of fields at the interface between two different PML media can be analyzed as
follows. A TEz polarized wave of arbitrary incidence traveling from PML layer ‘‘1’’ to PML
layer ‘‘2’’ is depicted in Figure 7.2, where the interface is normal to the x axis. The reflection
coefficient for an arbitrary incident wave between two lossy media can be expressed as

rp ¼ Z2 cosf2 � Z1 cosf1

Z2 cosf2 þ Z1 cosf1
; ð7:15Þ
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where Z1 and Z2 are the intrinsic impedances of respective mediums. Applying (7.13), the
reflection coefficient rp becomes

rp ¼ G1 cosf2 � G2 cosf1

G1 cosf2 þ G2 cosf1
: ð7:16Þ

The Snell–Descartes law at the interface normal to x of two lossy media can be described as

1 � i
sy1

e0w

� �
sinf1

G1
¼ 1 � i

sy2

e0w

� �
sinf2

G2
: ð7:17Þ

When the two media have the same conductivities spey1 ¼ spey2 ¼ spey and spmy1 ¼
spmy2 ¼ spmy, (7.17) becomes

sinf1

G1
¼ sinf2

G2
: ð7:18Þ

Moreover, when (spex1, spmx1), (spex2, spmx2), and (spey, spmy) satisfy the matching con-
dition in (7.14), G1 ¼ G2 ¼ 1. Then (7.18) reduces to f1 ¼ f2, and (7.16) reduces to
rp ¼ 0. Therefore, theoretically when two PML media satisfy (7.14) and lie at an interface
normal to the x axis with the same (spey, spmy), a wave can transmit through this interface
with no reflections, at any angle of incidence and any frequency. When (spex1, spmx1, spey1,
spmy1) are assigned to be (0, 0, 0, 0), the PML medium 1 becomes a vacuum. Therefore,
when (spex2, spmx2) satisfies (7.14), the reflection coefficient at this interface is also null,
which agrees with the previous vacuum–PML analysis. However, if the two media have the
same (spey, spmy) but do not satisfy (7.14), then the reflection coefficient becomes

rp ¼ sinf1 cosf2 � sinf2 cosf1

sinf1 cosf2 þ sinf2 cosf1
: ð7:19Þ

x

y

spex1, spmx1

spey1, spmy1

spex2, spmx2

spey2, spmy2

f2

f1

Figure 7.2 The plane wave transition at the interface between two PML media.
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Substituting (7.18) into (7.19), the reflection coefficient of two unmatched PML media
becomes

rp ¼
ffiffiffiffiffiffiffi
wx1

p � ffiffiffiffiffiffiffi
wx2

p
ffiffiffiffiffiffiffi
wx1

p þ ffiffiffiffiffiffiffi
wx2

p : ð7:20Þ

Equation (7.20) shows that the reflection coefficient for two unmatched PML media is
highly dependent on frequency, regardless of the incident angle. When the two PML media
follow the reflectionless condition in (7.14), wx1 ¼ wx2 ¼ 1, the reflection coefficient
becomes null.

The analysis can be applied to two PML media lying at the interface normal to the y axis
as well. The Snell–Descartes law related to this interface is

1 � i
sx1

e0w

� �
sinf1

G1
¼ 1 � i

sx2

e0w

� �
sinf2

G2
: ð7:21Þ

If the two media have the same conductivities such that spex1 ¼ spex2 ¼ spex and
spmx1 ¼ spmx2 ¼ spmx, (7.21) reduces to (7.18). Similarly, if (spey1, spmy1), (spey2, spmy2),
and (spex, spmx) satisfy the matching condition in (7.14), then G1 ¼ G2 ¼ 1. Equation (7.21)
then reduces to f1 ¼ f2, and the reflection coefficient at this interface is rp ¼ 0. To match
the vacuum–PML interface normal to the y axis, the reflectionless condition can be achieved
when (spey2, spmy2) of the PML medium satisfies (7.14).

Based on the previous discussion, if a two-dimensional FDTD problem space is attached
with an adequate thickness of PML media as shown in Figure 7.3, the outgoing waves will be
absorbed without any undesired numerical reflections. The PML regions must be assigned
appropriate conductivity values satisfying the matching condition (7.14); the positive and

(spex, spmx, spey, spmy) (0, 0, spey, spmy)

(spex, spmx, 0, 0) (spex, spmx, 0, 0)

(spex, spmx, spey, spmy) (0, 0, spey, spmy)

(spex, spmx, spey, spmy)

(spex, spmx, spey, spmy)

PML

PML

PEC

PML

PML

y

x

Figure 7.3 The loss distributions in two-dimensional PML regions.
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negative x boundaries of the PML regions have nonzero spex, and spmx, whereas the positive
and negative y boundaries of the PML regions have nonzero spey, and spmy values. The
coexistence of nonzero values of spex, spmx, spey, and spmy is required at the four corner PML
overlapping regions. Using a similar analysis, the conditions of (7.14) can be applied to a
TMz polarized wave to travel from free space to PML and from PML to PML without
reflection [21]. Using the same impedance matching condition in (7.14), the modified
Maxwell’s equations for two-dimensional TMz PML updating equations are obtained as

e0
@Ezx

@t
þ spexEzx ¼ @Hy

@x
; ð7:22aÞ

e0
@Ezy

@t
þ speyEzy ¼ � @Hx

@y
; ð7:22bÞ

m0
@Hx

@t
þ spmyHx ¼ � @ Ezx þ Ezy

� �
@y

; ð7:22cÞ

m0
@Hy

@t
þ spmxHy ¼

@ Ezx þ Ezy

� �
@x

: ð7:22dÞ

The finite difference approximation schemes can be applied to the modified Maxwell’s
equations (7.4) and (7.22) to obtain the field-updating equations for the PML regions in the
two-dimensional FDTD problem space.

7.2 PML equations for three-dimensional problem space

For a three-dimensional problem space, each field component of the electric and magnetic
fields is broken into two field components similar to the two-dimensional case. Therefore,
the modified Maxwell’s equations have 12 field components instead of the original six
components. These modified split electric field equations presented in [16] are

e0
@Exy

@t
þ speyExy ¼

@ Hzx þ Hzy

� �
@y

; ð7:23aÞ

e0
@Exz

@t
þ spezExz ¼ � @ Hyx þ Hyz

� �
@z

; ð7:23bÞ

e0
@Eyx

@t
þ spexEyx ¼ � @ Hzx þ Hzy

� �
@x

; ð7:23cÞ

e0
@Eyz

@t
þ spezEyz ¼

@ Hxy þ Hxz

� �
@z

; ð7:23dÞ

e0
@Ezx

@t
þ spexEzx ¼

@ Hyx þ Hyz

� �
@x

; ð7:23eÞ

e0
@Ezy

@t
þ speyEzy ¼ � @ Hxy þ Hxz

� �
@y

; ð7:23fÞ
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whereas the modified Maxwell’s split magnetic field equations are

m0
@Hxy

@t
þ spmyHxy ¼ � @ Ezx þ Ezy

� �
@y

; ð7:24aÞ

m0
@Hxz

@t
þ spmzHxz ¼

@ Eyx þ Eyz

� �
@z

; ð7:24bÞ

m0
@Hyz

@t
þ spmzHyz ¼ � @ Exy þ Exz

� �
@z

; ð7:24cÞ

m0
@Hyx

@t
þ spmxHyx ¼

@ Ezx þ Ezy

� �
@x

; ð7:24dÞ

m0
@Hzy

@t
þ spmyHzy ¼

@ Exy þ Exz

� �
@y

; ð7:24eÞ

m0
@Hzx

@t
þ spmxHzx ¼ � @ Eyx þ Eyz

� �
@x

: ð7:24fÞ

Then the matching condition for a three-dimensional PML is given by

spex

e0
¼ spmx

m0
;

spey

e0
¼ spey

m0
; and

spez

e0
¼ spmz

m0
: ð7:25Þ

If a three-dimensional FDTD problem space is attached with adequate thickness of PML
media as shown in Figure 7.4, the outgoing waves will be absorbed without any undesired
numerical reflections. The PML regions must be assigned appropriate conductivity values
satisfying the matching condition (7.25); the positive and negative x boundaries of PML
regions have nonzero spex and spmx, the positive and negative y boundaries of PML regions
have nonzero spey and spmy, and the positive and negative z boundaries of PML regions have
nonzero spez and spmz values as illustrated in Figure 7.4. The coexistence of nonzero values
of spex, spmx, spey, spmy, spez, and spmz is required at the PML overlapping regions.

Finally, applying the finite difference schemes to the modified Maxwell’s equations (7.23)
and (7.24), one can obtain the FDTD field updating equations for the three-dimensional PML
regions.

7.3 PML loss functions

As discussed in the previous sections, PML regions can be formed as the boundaries of an
FDTD problem space where specific conductivities are assigned such that the outgoing
waves penetrate without reflection and attenuate while traveling in the PML medium. The
PML medium is governed by the modified Maxwell’s equations (7.4), (7.22), (7.23), and
(7.24), which can be used to obtain the updating equations for the field components in the
PML regions. Furthermore, the outer boundaries of the PML regions are terminated by PEC
walls. When a finite-thickness PML medium backed by a PEC wall is adopted, an incident
plane wave may not be totally attenuated within the PML region, and small reflections to the
interior domain from the PEC back wall may occur. For a finite-width PML medium where
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the conductivity distribution is uniform, there is an apparent reflection coefficient, which is
expressed as

Rðf0Þ ¼ e�2
s cos f0

e0c d
; ð7:26Þ

where s is the conductivity of the medium. Here the exponential term is the attenuation
factor of the field magnitudes of the plane waves as shown in (7.10), and d is the thickness
of the PML medium. The factor 2 in the exponent is due to the travel distance, which is twice
the distance between the vacuum–PML interface and the PEC backing. If f0 is 0, (7.26) is
the reflection coefficient for a finite-thickness PML medium at normal incidence. If f0 is
p/2, the incident plane wave is grazing to the PML medium and is attenuated by the per-
pendicular PML medium. From (7.26), the effectiveness of a finite-width PML is dependent
on the losses within the PML medium. In addition, (7.26) can be used not only to predict the
ideal performance of a finite-width PML medium but also to compute the appropriate loss
distribution based on the loss profiles described in the following paragraphs.

(a) (b)

(c) (d)

z
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x
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Figure 7.4 Nonzero regions of PML conductivities for a three-dimensional FDTD simulation
domain: (a) nonzero spex and spmx; (b) nonzero spey and spmy; (c) nonzero spez and
spmz; and (d) overlapping PML regions.
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As presented in [15], significant reflections were observed when constant uniform
losses are assigned throughout the PML media, which is a result of the discrete approx-
imation of fields and material parameters at the domain–PML interfaces and sharp varia-
tion of conductivity profiles. This mismatch problem can be tempered using a spatially
gradually increasing conductivity distribution, which is zero at the domain–PML interface
and tends to be a maximum conductivity smax at the end of the PML region. In [18] two
major types of mathematical functions are proposed as the conductivity distributions or loss
profiles: power and geometrically increasing functions. The power-increasing function is
defined as

sðrÞ ¼ smax
r
d

� �npml

; ð7:27aÞ

smax ¼ �ðnpml þ 1Þe0c ln Rð0Þð Þ
2DsN

; ð7:27bÞ

where r is the distance from the computational domain–PML interface to the position of the
field component, and d is the thickness of the PML cells. The parameter N is the number of
PML cells, Ds is the cell size used for a PML cell, and R(0) is the reflection coefficient of
the finite-width PML medium at normal incidence. The distribution function is linear for
npml ¼ 1 and parabolic for npml ¼ 2. To determine the conductivity profile using (7.27a) the
parameters R(0) and npml must be predefined. These parameters are used to determine smax

using (7.27b), which is then used in the calculation of s(r). Usually npml takes a value such
as 2, 3, or 4 and R(0) takes a very small value such as 10–8 for a satisfactory PML
performance.

The geometrically increasing distribution for s(r) is given by

sðrÞ ¼ s0g
r
Ds; ð7:28aÞ

s0 ¼ � e0c lnðgÞ
2DsgN � 1

ln Rð0Þð Þ; ð7:28bÞ

where the parameter g is a real number used for a geometrically increasing function.

7.4 FDTD updating equations for PML and MATLAB‡

implementation

7.4.1 PML updating equations – two-dimensional TEz case

The PML updating equations can be obtained for the two-dimensional TEz case by applying
the central difference approximation to the derivatives in the modified Maxwell’s equations
(7.4). After some manipulations one can obtain the two-dimensional TEz PML updating
equations based on the field positioning scheme given in Figure 1.10 as

Enþ1
x ði; jÞ ¼ Cexeði; jÞ � En

xði; jÞ þ Cexhzði; jÞ � H
nþ1

2
z ði; jÞ � H

nþ1
2

z ði; j � 1Þ
� �

; ð7:29Þ
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where

Cexeði; jÞ ¼ 2e0 � Dtspeyði; jÞ
2e0 þ Dtspeyði; jÞ ;

Cexhzði; jÞ ¼ 2Dt

2e0 þ Dtse
peyði; jÞ

� �
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:

Enþ1
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2
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2

z ði � 1; jÞ
� �

; ð7:30Þ

where

Ceyeði; jÞ ¼ 2e0 � Dtspexði; jÞ
2e0 þ Dtspexði; jÞ ;

Ceyhzði; jÞ ¼ � 2Dt

2e0 þ Dtspexði; jÞ� �
Dx

:
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where

Chzxhði; jÞ ¼ 2m0 � Dtspmxði; jÞ
2m0 þ Dtspmxði; jÞ ;

Chzxeyði; jÞ ¼ � 2Dt
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Dx
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zy ði; jÞ ¼ Chzyhði; jÞ � H
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zy ði; jÞ þ Chzyexði; jÞ � En
xði; j þ 1Þ � En
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; ð7:32Þ

where

Chzyhði; jÞ ¼ 2m0 � Dtspmyði; jÞ
2m0 þ Dtspmyði; jÞ ;

Chzyexði; jÞ ¼ 2Dt

2m0 þ Dtspmyði; jÞ� �
Dy

:

One should recall that Hz(i, j) ¼ Hzx(i, j) þ Hzy(i, j). As illustrated in Figure 7.3 certain
PML conductivities are defined at certain regions. Therefore, each of the equations (7.29)–
(7.32) is applied in a two-dimensional problem space where its respective PML conductivity
is defined. Figure 7.5 shows the PML regions where the conductivity parameters are nonzero
and the respective field components that need to be updated at each region. Figure 7.5(a)
shows the regions where spex is defined. These regions are denoted as xn and xp. One can
notice from (7.4b) and (7.30) that spex appears in the equation where Ey is updated. There-
fore, the components of Ey lying in the xn and xp regions are updated at every time step using
(7.30). The other components of Ey that are located in the intermediate region can be updated
using the regular non-PML updating equation (1.34). Similarly, spey is nonzero in the regions
that are denoted as yn and yp in Figure 7.5(b). The components of Ex lying in the yn and yp
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regions are updated at every time step using (7.29), and the components located in the
intermediate region are updated using the regular non-PML updating equation (1.33).

Since the magnetic field Hz is the sum of two split fields Hzx and Hzy in the PML regions,
its update is more complicated. The PML regions and non-PML regions are shown in
Figure 7.5(c) and 7.5(d), where the PML regions are denoted as xn, xp, yn, and yp. The
magnetic field components of Hz lying in the non-PML region can be updated using the
regular updating equation (1.35). However, the components of Hz in the PML regions are not
directly calculated; the components of Hzx and Hzy are calculated in the PML regions using
the appropriate updating equations, and then they are summed up to yield Hz in the PML
region. The conductivity spmx is nonzero in the xn and xp regions as shown in Figure 7.5(c).
The components of Hzx are calculated in the same regions using (7.31). However, compo-
nents of Hzx need to be calculated in the yn and yp regions as well. Since spmx is zero in these
regions setting spmx zero in (7.31) will yield the required updating equation for Hzx in the
yn and yp regions as
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2
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2

zx ði; jÞ þ Chzxeyði; jÞ � En
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; ð7:33Þ
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where

Chzxhði; jÞ ¼ 1; Chzxeyði; jÞ ¼ � Dt

m0Dx
:

Similarly, the conductivity spmy is nonzero in the yn and yp regions as shown in
Figure 7.5(d). The components of Hzy are calculated in these regions using (7.32). The
components of Hzy need to be calculated in the xn and xp regions as well. Since spmy is zero
in these regions, setting spmy to zero in (7.32) will yield the required updating equation for
Hzy in the xn and xp regions as

H
nþ1

2
zy ði; jÞ ¼ Chzyhði; jÞ � H

n�1
2

zy ði; jÞ þ Chzyexði; jÞ � En
xði; j þ 1Þ � En

xði; jÞ� �
; ð7:34Þ

where

Chzyhði; jÞ ¼ 1; Chzyexði; jÞ ¼ Dt

m0Dy
:

After all the components of Hzx and Hzy are updated in the PML regions, they are added
to calculate Hz.

7.4.2 PML updating equations – two-dimensional TMz case

The PML updating equations can be obtained for the two-dimensional TMz case by applying
the central difference approximation to the derivatives in the modified Maxwell’s equations
(7.22). After some manipulations one can obtain the two-dimensional TMz PML updating
equations based on the field positioning scheme given in Figure 1.11 as
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where
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where

Chxhði; jÞ ¼ 2m0 � Dtspmyði; jÞ
2m0 þ Dtspmyði; jÞ ;

Chxezði; jÞ ¼ � 2Dt

2m0 þ Dtspmyði; jÞ� �
Dy

:

H
nþ1

2
y ði; jÞ ¼ Chyhði; jÞ � H

n�1
2

y ði; jÞ þ Chyezði; jÞ � En
z ði þ 1; jÞ � En

z ði; jÞ� �
; ð7:38Þ

where

Chyhði; jÞ ¼ 2m0 � Dtspmxði; jÞ
2m0 þ Dtspmxði; jÞ ;

Chyezði; jÞ ¼ 2Dt

2m0 þ Dtspmxði; jÞ� �
Dx

:

One should recall that Ez(i, j) ¼ Ezx(i, j) þ Ezy(i, j). Consider the nonzero PML con-
ductivity regions given in Figure 7.6. Figure 7.6(a) shows that spmx is defined in the regions
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denoted as xn and xp. Therefore, components of Hy lying in these regions are updated at
every time step using the PML updating equation (7.38). The components of Hy lying in the
intermediate region are updated using the regular updating equation (1.38). The conductivity
spmy is nonzero in the yn and yp regions shown in Figure 7.6(b); therefore, the components of
Hx lying in the yn and yp regions are updated using the PML updating equation (7.37). The
components of Hx lying in the intermediate region are updated using the regular updating
equation (1.37).

The components of Ez are the sum of two split fields Ezx and Ezy in all of the PML regions
xn, xp, yn, and yp as illustrated in Figure 7.6(c) and 7.6(d). The components of Ez in the
intermediate non-PML region are updated using the regular updating equation (1.36). The
conductivity spex is nonzero in the xn and xp regions as shown in Figure 7.6(c); therefore,
components of Ezx in these regions are updated using (7.35). Furthermore, the components of
Ezx in the yn and yp regions need to be calculated as well. Since spex is zero in these regions,
setting spex to zero in (7.35) yields the updating equation for Ezx in the yn and yp regions as
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2
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� �

; ð7:39Þ

where

Cezxeði; jÞ ¼ 1; Cezxhyði; jÞ ¼ Dt

e0Dx
:

Similarly, spey is nonzero in the yn and yp regions as shown in Figure 7.6(d); therefore,
components of Ezy in these regions are updated using (7.36). Furthermore, the components of
Ezy in the xn and xp regions need to be calculated as well. Since spey is zero in these regions,
setting spey to zero in (7.36) yields the updating equation for Ezy in the xn and xp regions as
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where

Cezyeði; jÞ ¼ 1; Cezyhxði; jÞ ¼ � Dt

e0Dy
:

After all the components of Ezx and Ezy are updated in the PML regions, they are added to
calculate Ez.

7.4.3 MATLAB‡ implementation of the two-dimensional FDTD
method with PML

In this section we demonstrate the implementation of a two-dimensional FDTD MATLAB
code including PML boundaries. The main routine of the two-dimensional program is named
fdtd_solve_2d and is given in Listing 7.1. The general structure of the two-dimensional
FDTD program is the same as the three-dimensional FDTD program; it is composed of
problem definition, initialization, and execution sections. Many of the routines and notations
of the two-dimensional FDTD program are similar to their three-dimensional FDTD coun-
terparts; thus, the corresponding details are provided only when necessary.
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7.4.3.1 Definition of the two-dimensional FDTD problem
The types of boundaries surrounding the problem space are defined in the subroutine
define_problem_space_parameters_2d, a partial code of which is shown in Listing 7.2. Here if
a boundary on one side is defined as PEC, the variable boundary.type takes the value ‘‘pec,’’
whereas for PML it takes the value ‘‘pml.’’ The parameter air_buffer_number_of_cells
determines the distance in number of cells between the objects in the problem space and the
boundaries, whether PEC or PML. The parameter pml_number_of_cells determines
the thickness of the PML regions in number of cells. In this implementation the power
increasing function (7.27a) is used for the PML conductivity distributions along the
thickness of the PML regions. Two additional parameters are required for the PML,
the theoretical reflection coefficient (R(0)) and the order of PML (npml), as discussed in
Section 7.3. These two parameters are defined as boundary_pml_R_0 and boundary.
pml_order, respectively.

In the subroutine define_geometry_2d two-dimensional geometrical objects such as cir-
cles and rectangles can be defined by their coordinates, sizes, and material types.

The sources exciting the two-dimensional problem space are defined in the subroutine
define_sources_2d. Unlike the three-dimensional case, in this implementation the impressed
current sources are defined as sources explicitly as shown in Listing 7.3.

Listing 7.1 fdtd_solve_2d.m
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Listing 7.2 define_problem_space_parameters_2d.m

Listing 7.3 define_sources_2d.m
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Outputs of the program are defined in the subroutine define_output_parameters_2d.
In this implementation the output parameters are sampled_electric_fields and
sampled_magnetic_fields captured at certain positions.

7.4.3.2 Initialization of the two-dimensional FDTD problem
The steps of the initialization process are shown in Listing 7.1. This process starts with the
subroutine initialize_fdtd_material_grid_2d. In this subroutine the first task is the calculation
of the dimensions of the two-dimensional problem space and the number of cells nx and ny in
the x and y dimensions, respectively. If some of the boundaries are defined as PML, the PML
regions are also included in the problem space. Therefore, nx and ny include the PML number
of cells as well. Then the material component arrays of the two-dimensional problem space are
constructed using the material averaging schemes that were discussed in Section 3.2. Next,
while creating the material grid, the PML regions are assigned free-space parameters. At this
point the PML regions are treated as if they are free-space regions; however, later PML
conductivity parameters are assigned to these regions, and special updating equations are used
to update fields in these regions. Furthermore, new parameters are defined and assigned
appropriate values as n_pml_xn, n_pml_xp, n_pml_yn, and n_pml_yp to hold the numbers
of cells for the thickness of the PML regions. Four logical parameters, is_pml_xn, is_pml_xp,
is_pml_yn, and is_pml_yp, are defined to indicate whether the respective side of the com-
putational boundary is PML or not. Since these parameters are used frequently, shorthand
notations are more appropriate to use. Figure 7.7 illustrates a problem space composed of two
circles, two rectangles, an impressed current source at the center, and 5 cells thick PML
boundaries. The air gap between the objects and the PML is 10 cells.

The subroutine initialize_fdtd_parameters_and_arrays_2d includes the definition of
some parameters such as e0, m0, c, and Dt that are required for the FDTD calculation and
definition and initialization of field arrays Ex, Ey, Ez, Hx, Hy, and Hz. The field arrays are
defined for all the problem space including the PML regions.

In the subroutine initialize_sources_2d the indices indicating the positions of the
impressed electric and magnetic currents are determined and stored as the subfields of the
respective parameters impressed_J and impressed_M. Since the impressed currents are
used as explicit sources, their source waveforms are also computed. A two-dimensional
problem can have two modes of operation as TE and TM. The mode of operation is deter-
mined by the sources. For instance, an impressed electric current Jiz excites Ez fields in the
problem space, thus giving rise to a TMz operation. Similarly, impressed magnetic currents
Mix and Miy also give rise to TMz operation. The impressed currents Miz, Jix, and Jiy give rise
to TEz operation. Therefore, the mode of operation is determined by the impressed currents
as shown in Listing 7.4, which includes the partial code of initialize_sources_2d. Here a
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Listing 7.4 initialize_sources_2d.m

n_ pml_xp

n_ pml_ yp

n_ pml_ yn

node ( pie, pje)

node ( pis, pjs)

J1

n_ pml_xn

ny

nx

Figure 7.7 A two-dimensional FDTD problem space with PML boundaries.
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logical parameter is_TEz is defined to indicate that the mode of operation is TEz, whereas
another logical parameter is_TMz is defined to indicate that the mode of operation is TMz.

The regular updating coefficients of the two-dimensional FDTD method are calculated in
the subroutine initialize_updating_coefficients_2d based on the updating equations (1.33)–
(1.38), including the impressed current coefficients as well.

Some coefficients and field arrays need to be defined and initialized for the application of
the PML boundary conditions. The PML initialization process is performed in the subroutine
initialize_boundary_conditions_2d, which is shown in Listing 7.5. The indices of the nodes
determining the non-PML rectangular region as illustrated in Figure 7.7 are calculated as
(pis, pjs) and (pie, pje). Then two separate subroutines dedicated to the initialization of the
TEz and TMz cases are called based on the mode of operation.

The coefficients and fields required for the TEz PML boundaries are initialized in the
subroutine initialize_pml_boundary_conditions_2d_TEz, and partial code for this case is
shown in Listing 7.6. Figure 7.8 shows the field distribution for the TEz case. The field
components in the shaded region are updated by the PML updating equations. The field
components on the outer boundary are not updated and are kept at zero value during the
FDTD iterations since they are simulating the PEC boundaries. The magnetic field compo-
nents Hzx and Hzy are defined in the four PML regions shown in Figure 7.5; therefore, the
corresponding field arrays Hzx_xn, Hzx_xp, Hzx_yn, Hzx_yp, Hzy_xn, Hzy_xp, Hzy_yn,
and Hzy_yp are initialized in Listing 7.6.

Then for each region the corresponding conductivity parameters and PML updating
coefficients are calculated. Listing 7.6 shows the initialization for the xn and yp regions.

One should take care while calculating the conductivity arrays. The conductivities spex

and spey are associated with the electric fields Ex and Ey, respectively, whereas spmx and spmy

are associated with the magnetic field Hz. Therefore, the conductivity components are
located in different positions. As mentioned before, the conductivity s(r) is zero at the PML
interior-domain interface, and it increases to a maximum value smax at the end of the PML

Listing 7.5 initialize_boundary_conditions_2d.m
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Listing 7.6 initialize_pml_boundary_conditions_2d_TEz.m
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region. In this implementation the imaginary PML regions are shifted inward by a quarter
cell size as shown in Figure 7.8. If the thickness of the PML region is N cells, this shift
ensures that N electric field components and N magnetic field components are updated across
the PML thickness. For instance, consider the cross-section of a two-dimensional problem
space shown in Figure 7.9, which illustrates the field components updated in the xn and xp
regions. The distance of the electric field components Ey from the interior boundary of the
PML is denoted as re whereas for the magnetic field components Hz it is denoted as rm. The
distances re and rm are used in (7.27a) to calculate the values of spex and spmx, respectively.
These values are stored in arrays sigma_pex_xn and sigma_pmx_xn for the xn region as
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Figure 7.8 TEz field components in the PML regions.
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shown in Listing 7.6 and in sigma_pex_xp and sigma_pmx_xp for the xp region. Calcula-
tion of spey and spmy follows the same logic. Then these parameters are used to calculate the
respective PML updating coefficients in (7.29)–(7.32).

The initialization of the auxiliary split fields and the PML updating coefficients for the two-
dimensional TMz case is performed in the subroutine initialize_pml_boundary_
conditions_2d_Tmz, a partial code of which is given for the xp and yn regions in Listing 7.7.
The initialization of the TMz case follows the same logic as the TEz case. The field positioning
and PML regions are shown in Figure 7.10, while the positions of the field components updated
by the PML equations and conductivity positions are shown in Figure 7.11 as a reference.

7.4.3.3 Running the two-dimensional FDTD simulation: the time-marching
loop

After the initialization process is completed, the subroutine run_fdtd_time_marching_
loop_2d including the time-marching loop of FDTD procedure is called. The implementation
of the FDTD updating loop is shown in Listing 7.8.

During the time-marching loop the first step at every iteration is the update of magnetic
field components using the regular updating equations in update_magnetic_fields_2d as
shown in Listing 7.9. In the TEz case the Hz field components in the intermediate regions of
Figure 7.5(c) and 7.5(d) are updated based on (1.35). In the TMz case the Hx field compo-
nents in the intermediate region of Figure 7.6(b) and Hy field components in the intermediate
region of Figure 7.6(a) are updated based on (1.37) and (1.38), respectively.

Then in update_impressed_M the impressed current terms appearing in (1.35), (1.37),
and (1.38) are added to their respective field terms Hz, Hx, and Hy as shown in Listing 7.10.

The subroutine update_magnetic_fields_for_PML_2d is used to update the magnetic
field components needing special PML updates. As can be followed in Listing 7.11 the TEz

and TMz cases are treated in separate subroutines.
The TMz case is implemented in Listing 7.12, where Hx is updated in the yn and yp regions of

Figure 7.6(b) using (7.37). Hy is updated in the xn and xp regions of Figure 7.6(a) using (7.38).
The TEz case is implemented in Listing 7.13. Hzx is updated in the xn and xp regions of

Figure 7.5(c) using (7.31). Hzx is updated in the yn and yp regions of Figure 7.5(c) using
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Figure 7.9 Field components updated by PML equations.
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Listing 7.7 initialize_pml_boundary_conditions_2d_TMz.m
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(7.33). Hzy is updated in the yn and yp regions of Figure 7.5(d) using (7.32). Hzy is updated
in xn and xp regions of Figure 7.5(d) using (7.34). After all these updates are completed,
the components of Hzx and Hzy, located at the same positions, are added to obtain Hz at the
same positions.

The update of the electric field components using the regular updating equations is per-
formed in update_electric_fields_2d as shown in Listing 7.14. In the TMz case the Ez field
components in the intermediate regions of Figure 7.6(c) and 7.6(d) are updated based on
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Figure 7.10 TMz field components in the PML regions.
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(1.36). In the TEz case the Ex field components in the intermediate region of Figure 7.5(b)
and Ey field components in the intermediate region of Figure 7.5(a) are updated based on
(1.33) and (1.34), respectively.

Then in update_impressed_J the impressed current terms appearing in (1.36), (1.33), and
(1.34) are added to their respective field terms Ez, Ex, and Ey.
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Figure 7.11 Field components updated by PML equations.

Listing 7.8 run_fdtd_time_marching_loop_2d.m
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Listing 7.9 update_magnetic_fields_2d.m

Listing 7.10 update_impressed_M.m
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The subroutine update_electric_fields_for_PML_2d is used to update the electric field
components needing special PML updates. As can be followed in Listing 7.15 the TEz and
TMz cases are treated in separate subroutines.

The TEz case is implemented in Listing 7.16, where Ex is updated in the yn and yp regions of
Figure 7.5(b) using (7.29). Ey is updated in the xn and xp regions of Figure 7.5(a) using (7.30).

The TMz case is implemented in Listing 7.17, where Ezx is updated in the xn and xp
regions of Figure 7.6(c) using (7.35). Ezx is updated in the yn and yp regions of Figure 7.6(c)
using (7.39). Ezy is updated in the yn and yp regions of Figure 7.6(d) using (7.36). Ezy is
updated in the xn and xp regions of Figure 7.6(d) using (7.40). After all these updates are
completed, the components of Ezx and Ezy, located at the same positions, are added to obtain
Ez at the same positions.

Listing 7.11 update_magnetic_fields_for_PML_2d.m

Listing 7.12 update_magnetic_fields_for_PML_2d_TMz.m
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Listing 7.13 update_magnetic_fields_for_PML_2d_TEz.m

Listing 7.14 update_electric_fields_2d.m
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Listing 7.15 update_electric_fields_for_PML_2d.m

Listing 7.16 update_electric_fields_for_PML_2d_TEz.m
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7.5 Simulation examples

7.5.1 Validation of PML performance

In this section, we evaluate the performance of the two-dimensional PML for the TEz case.
A two-dimensional problem is constructed as shown in Figure 7.12(a). The problem space is
empty (all free space) and is composed of 36 � 36 cells with cell size 1 mm on a side. There
are eight cell layers of PML on the four sides of the boundaries. The order of the PML
parameter npml is 2, and the theoretical reflection coefficient R(0) is 10–8. The problem space
is excited by a z-directed impressed magnetic current as defined in Listing 7.18. The
impressed magnetic current is centered at the origin and has a Gaussian waveform. A sam-
pled magnetic field with z component is placed at the position x ¼ 8 mm and y ¼ 8 mm, two
cells away from the upper right corner of the PML boundaries as defined in Listing 7.19. The
problem is run for 1,800 time steps. The captured sampled magnetic field Hz is plotted in

Listing 7.17 update_electric_fields_for_PML_2d_TMz.m
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Figure 7.12(b) as a function of time. The captured field includes the effect of the reflected
fields from the PML boundaries as well.

To determine how well the PML boundaries simulate the open boundaries, a reference case
is constructed as shown in Figure 7.13(a). The cell size, the source, and the output of this
problem space are the same as the previous one, but in this case the problem space size is
600 � 600 cells, and it is terminated by PEC boundaries on four sides. Any fields excited by
the source will propagate, will hit the PEC boundaries, and will propagate back to the center.
Since the problem size is large, it will take some time until the reflected fields arrive at the
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Figure 7.12 A two-dimensional TEz FDTD problem terminated by PML boundaries and its
simulation results: (a) an empty two-dimensional problem space and (b) sampled
Hz in time.
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sampling point. Therefore, the fields captured at the sampling point before any reflected fields
arrive are the same as the fields that would be observed if the boundaries are open space. In the
given example no reflection is observed in the 1,800 time steps of simulation. Therefore, this
case can be considered as a reference case for an open space during the 1,800 time steps. The
captured sampled magnetic field is shown in Figure 7.13(b) as a function of time.

Listing 7.18 define_sources_2d.m

Listing 7.19 define_output_parameters_2d.m
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No difference can be seen by looking at the responses of the PML case and the reference
case. The difference between the two cases is a measure for the amount of reflection from the
PML and can be determined numerically. The difference denoted as errort is the error as a
function of time and calculated by

errort ¼ 20 � log10
jHpml

z � Href
z j

max jHref
z j

� �
0
@

1
A; ð7:41Þ
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Figure 7.13 A two-dimensional TEz FDTD problem used as open boundary reference and its
simulation results: (a) an empty two-dimensional problem space and (b) sampled
Hz in time.
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where Hpml
z is the sampled magnetic field in the PML problem case and Href

z is the sampled
magnetic field in the reference case. The error as a function of time is plotted in Figure 7.14(a).
The error in frequency domain as well is obtained as errorf from the difference between the
Fourier transforms of the sampled magnetic fields from the PML and reference cases by

errorf ¼ 20 � log10
jFðHpml

z Þ � FðHref
z Þ j

F jHref
z j

� �
0
@

1
A; ð7:42Þ
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Figure 7.14 Error in time and frequency domains.

7.5 ● Simulation examples 219



where the operator F(�) denotes the Fourier transform. The error in frequency-domain errorf is
plotted in Figure 7.14(b). The errors obtained in this example can further be reduced by using a
larger number of cells of PML thickness, a better choice of R(0), and a higher order of PML npml.
One can see in Figure 7.14(b) that the performance of the PML degrades at low frequencies.

7.5.2 Electric field distribution

Since the fields are calculated on a plane by the two-dimensional FDTD program, it is
possible to capture and display the electric and magnetic field distributions as a runtime
animation while the simulation is running. Furthermore, it is possible to calculate the field
distribution as a response of a time-harmonic excitation at predefined frequencies. Then the
time-harmonic field distribution can be compared with results obtained from simulation of
the same problem using frequency-domain solvers. In this example the two-dimensional
FDTD program is used to calculate the electric field distribution in a problem space
including a cylinder of circular cross-section with radius 0.2 m, and dielectric constant 4, due
to a current line source placed 0.2 m away from the cylinder and excited at 1 GHz frequency.
Figure 7.15 illustrates the geometry of the two-dimensional problem space. The problem
space is composed of square cells with 5 mm on a side and is terminated by PML boundaries
with 8 cells thickness. The air gap between the cylinder and the boundaries is 30 cells in the
xn, yn, and yp directions and 80 cells in the xp direction. The definition of the geometry is
shown in Listing 7.20. The line source is an impressed current density with a sinusoidal
waveform as shown in Listing 7.21.

In this example we define two new output types: (1) transient electric field distributions
represented with a parameter named sampled_transient_E_planes; and (2) electric field
distributions calculated at certain frequencies represented with a parameter named sampled_
frequency_E_planes. The definition of these parameters is shown in Listing 7.22, and
the initialization of these parameters are performed in the subroutine initialize_output_
parameters_2d is shown in Listing 7.23.

y

× E1
J1

x

Figure 7.15 A two-dimensional problem space including a cylinder and a line source.
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The electric fields at node positions are captured and displayed as an animation while the
simulation is running in the subroutine display_sampled_parameters_2d as shown in Listing
7.24.

The electric fields at node positions are captured and calculated as the frequency-domain
response at the given frequency in the subroutine capture_sampled_electric_fields_2d as
shown in Listing 7.25. One should notice in the given code that the fields are being captured

Listing 7.20 define_geometry_2d.m

Listing 7.21 define_sources_2d.m

Listing 7.22 define_output_parameters_2d.m
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after 6,000 time steps. Here it is assumed that the time-domain response of the sinusoidal
excitation has reached the steady state after 6,000 time steps. Then the magnitude of the steady
fields is captured. Therefore, with the given code it is possible to capture the magnitude of the
frequency-domain response and only at the single excitation frequency. The given code cannot

Listing 7.23 initialize_output_parameters_2d.m
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17

Listing 7.24 display_sampled_parameters_2d.m
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calculate the phase of the response. The given algorithm can further be improved to calculate
the phases as well; however, in the following example, a more efficient method based on
discrete Fourier transform (DFT) is presented, which can be used to calculate both the mag-
nitude and phase responses concurrently. After the simulation is completed, the calculated
magnitude response can be plotted using the code shown in Listing 7.26.

Listing 7.25 capture_sampled_electric_fields_2d.m

Listing 7.26 display_frequency_domain_outputs_2d.m
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The two-dimensional FDTD program is excited for 8,000 time steps, and the transient
electric field is sampled at a point between the cylinder and the line source as shown in
Figure 7.15. The sampled electric field is plotted in Figure 7.16, which shows that the
simulation has reached the steady state after 50 ns. Furthermore, the magnitude of the
electric field distribution is captured for 1 GHz as discussed already is shown in Figure 7.17
as a surface plot. The same problem is solved using boundary value solution (BVS) [22], and
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Figure 7.16 Sampled electric field at a point between the cylinder and the line source.
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Figure 7.17 Magnitude of electric field distribution calculated by FDTD.
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the result is shown in Figure 7.18 for comparison. It can be seen that the results agree very
well. The levels of the magnitudes are different since these figures are normalized to dif-
ferent values.

7.5.3 Electric field distribution using DFT

The previous example demonstrated how the magnitude of electric field distribution can be
calculated as a response of a time-harmonic excitation. As discussed before, it is only pos-
sible to obtain results for a single frequency with the given technique. However, if the
excitation is a waveform including a spectrum of frequencies, then it should be possible to
obtain results for multiple frequencies using DFT. We modify the previous example to be
able to calculate field distributions for multiple frequencies.

The output for the field distribution is defined in the subroutine define_output_
parameters as shown in Listing 7.27. One can notice that it is possible to define multiple field
distributions with different frequencies. The excitation waveform as well shall include the
desired frequencies in its spectrum. An impressed current line source is defined as shown in
Listing 7.28. To calculate field distributions for multiple frequencies we have to implement an
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Figure 7.18 Magnitude of electric field distribution calculated by BVS.

Listing 7.27 define_output_parameters_2d.m
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on-the-fly DFT. Therefore, the subroutine capture_sampled_electric_fields_2d is modified as
shown in Listing 7.29.

The FDTD simulation is run, and electric field distributions are calculated for 1 and
2 GHz and are plotted in Figures 7.19 and 7.20, respectively. One can notice that the result
obtained at 1 GHz using the on-the-fly DFT technique is the same as the ones shown in
Section 7.5.2.

Listing 7.28 define_sources_2d.m

Listing 7.29 capture_sampled_electric_fields_2d.m
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7.6 Exercises

7.1 The performance of the two-dimensional PML for the TEz case is evaluated in
Section 7.5.1. Follow the same procedure, and evaluate the performance of the two-
dimensional PML case for the TMz case. You can use the same parameters as the given
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Figure 7.19 Magnitude of electric field distribution calculated by FDTD using DFT at 1 GHz.
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Figure 7.20 Magnitude of electric field distribution calculated by FDTD using DFT at 2 GHz.
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example. Notice that you need to use an electric current source to excite the TMz mode,
and you can sample Ez at a point close to the PML boundaries.

7.2 In Sections 7.5.2 and 7.5.3 new code sections are added to the two-dimensional FDTD
program to add the functionality of displaying the electric field distributions. Follow
the same procedure, and add new code sections to the program such that the program
will display magnetic field distributions as animations while the simulation is running
and it will display the magnitude of the magnetic field distribution as the response of
time-harmonic excitations at a number of frequencies.
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CHAPTER 8

Advanced PML formulations

In the previous chapter, we discussed the perfectly matched layers (PMLs) as a boundary
to terminate the finite-difference time-domain (FDTD) lattices to simulate open boundary
problems. However, the PML is shown to be ineffective for absorbing evanescent waves. As a
result, the PML must be placed sufficiently far from an obstacle such that the evanescent
waves have sufficiently decayed [23]. However, this increases the number of cells in an FDTD
computational domain and, hence, the computational memory and time requirements. Another
problem reported for PML is that it suffers from late-time reflections when terminating highly
elongated lattices or when simulating fields with very long time signatures [23]. This is partly
due to the weakly causal nature of the PML [24].

A strictly causal form of the PML, which is referred to as the complex frequency-shifted
PML (CFS-PML) was developed in [25]. It has been shown that the CFS-PML is highly
effective at absorbing evanescent waves and signals with a long time signature. Therefore,
using the CFS-PML, the boundaries can be placed closer to the objects in the problem space
and a time and memory saving can be achieved, thus avoiding the aforementioned weak-
nesses of the PML. An efficient implementation of the CFS-PML, known as the convolu-
tional PML (CPML), is introduced in [23]. The theoretical analyses of the CPML and other
forms of PML can be found in [26]. In this chapter we introduce the formulation of the
CPML based on [23] and provide a MATLAB� implementation of the concept.

8.1 Formulation of CPML

In Chapter 7 we provided the PML equations for terminating a problem space surrounded by
free space. However, in general a PML can be constructed to terminate a problem space
surrounded by an arbitrary media. Furthermore, it can even simulate infinite length structures;
these structures penetrate into the PML, and the PML absorbs the waves traveling on them.

8.1.1 PML in stretched coordinates

Without loss of generality, the PML equations for a lossy medium are posed in the stretched
coordinate space [27] as

jwexEx þ se
xEx ¼ 1

Sey

@Hz

@y
� 1

Sez

@Hy

@z
; ð8:1aÞ
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jweyEy þ se
yEy ¼ 1

Sez

@Hx

@z
� 1

Sex

@Hz

@x
; ð8:1bÞ

jwezEz þ se
zEz ¼ 1

Sex

@Hy

@x
� 1

Sey

@Hx

@y
; ð8:1cÞ

where Sex, Sey, and Sez are the stretched coordinate metrics, and se
x; se

y; and se
z are the electric

conductivities of the terminating media. One can notice that (8.1) is in the frequency domain
with e jwt time-harmonic convention.

Equations (8.1) reduce to Berenger’s PML in the case where

Sex ¼ 1 þ spex

jwe0
; Sey ¼ 1 þ spey

jwe0
; and Sez ¼ 1 þ spez

jwe0
: ð8:2Þ

Here spex, spey, and spez are the PML conductivities.
It should be noted that (8.1a)–(8.1c) and 8.2 follow the form given in [23], but the

subscript notations have been modified to indicate the electric and magnetic parameters
separately. This form of notation facilitates establishing the connection between the para-
meters in the formulations and their counterparts in program implementation.

The other three scalar equations that are used to construct the magnetic field update
equations are

jwmxHx þ sm
x Hx ¼ � 1

Smy

@Ez

@y
þ 1

Smz

@Ey

@z
; ð8:3aÞ

jwmyHy þ sm
y Hy ¼ � 1

Smz

@Ex

@z
þ 1

Smx

@Ez

@x
; ð8:3bÞ

jwmzHz þ sm
z Hz ¼ � 1

Smx

@Ey

@x
þ 1

Smy

@Ex

@y
: ð8:3cÞ

Equations (8.3) reduce to the PML in the case where

Smx ¼ 1 þ spmx

jwm0
; Smy ¼ 1 þ spmy

jwm0
; and Smz ¼ 1 þ spmz

jwm0
: ð8:4Þ

8.1.2 Complex stretching variables in CFS-PML

In the CPML method, the choice of the complex stretching variables follows the new defi-
nition proposed by Kuzuoglu and Mittra [25], such that

Sex ¼ 1 þ spex

jwe0
; ) Sex ¼ kex þ spex

aex þ jwe0
:

Then the complex stretching variables are given as

Sei ¼ kei þ spei

aei þ jwe0
; Smi ¼ kmi þ spmi

ami þ jwm0
; i ¼ x; y; or z;

where the parameters kei, kmi, aei, and ami are the new parameters taking the values

kei � 1; kmi � 1; aei � 0; and ami � 0:
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8.1.3 The matching conditions at the PML–PML interface

For zero reflection at the PML–PML interface, one should have

Sei ¼ Smi: ð8:5Þ
This condition leads to

kei ¼ kmi; ð8:6aÞ
spei

aei þ jwe0
¼ spmi

ami þ jwm0
: ð8:6bÞ

To satisfy (8.6b), we must have
spei

e0
¼ spmi

m0
; and

aei

e0
¼ ami

m0
: ð8:7Þ

8.1.4 Equations in the time domain

As mentioned before, (8.1) and (8.3) are in frequency domain. We need to have them
expressed in time to obtain the field updating equations from them. For instance, (8.1a) is
expressed in the time domain as

ex
@Ex

@t
þ se

xEx ¼ Sey � @Hz

@y
� Sez � @Hy

@z
; ð8:8Þ

where S ey is a function of time that is the inverse Laplace transform of S�1
ey ; and Sez is the inverse

Laplace transform of S�1
ez : One should notice that the product operations in the frequency-

domain equations (8.1) and (8.3) are expressed as convolution operations in the time domain.
The terms Sei and Smi are then given in open form as

SeiðtÞ ¼ dðtÞ
kei

� spei

e0k2
ei

e
� spei

e0kei
þ apei

e0

� �
t
uðtÞ ¼ dðtÞ

kei
þ xeiðtÞ; ð8:9aÞ

SmiðtÞ ¼ dðtÞ
kmi

� spmi

m0k2
mi

e
� spmi

m0kmi
þapmi

m0

� �
t
uðtÞ ¼ dðtÞ

kmi
þ xmiðtÞ; ð8:9bÞ

where d(t) is the unit impulse function and u(t) is the unit step function. Inserting (8.9) in
(8.8) leads to

ex
@Ex

@t
þ se

xEx ¼ 1
key

@Hz

@y
� 1
kez

@Hy

@z
þ xeyðtÞ �

@Hz

@y
� xezðtÞ �

@Hy

@z
: ð8:10Þ

At this point, the central difference approximation of the derivatives can be used to express
(8.10) in discrete time and space and then to obtain the field updating equation for Enþ1

x :
However, (8.10) includes two convolution terms, and these terms also need to be expressed in
discrete time and space before proceeding with the construction of the updating equations.

8.1.5 Discrete convolution

The convolution terms in (8.10) can be written in open form, for instance, as

xey �
@Hz

@y
¼

Z t¼t

t¼0
xeyðtÞ

@Hzðt � tÞ
@y

dt: ð8:11Þ
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In the discrete domain, (8.11) takes the form

Z t¼t

t¼0
xeyðtÞ

@Hzðt � tÞ
@y

dt ’
Xm¼n�1

m¼0

Z0eyðmÞ H
n�mþ1

2
z ði; j; kÞ � H

n�mþ1
2

z ði; j � 1; kÞ
� �

; ð8:12Þ

where

Z0ey mð Þ ¼ 1
Dy

Z t¼ mþ1ð ÞDt

t¼mDt

xey tð Þdt ¼ � spey

Dye0k2
ey

Z t¼ mþ1ð ÞDt

t¼mDt

e
� spey

e0key
þaey

e0

� �
t
dt

¼ aeye
� spey

key
þaey

� �
m Dt
e0

ð8:13Þ

and

aey ¼ spey

Dy speykey þ aeyk2
ey

� � e
� spey

key
þaey

� �
Dt
e0 � 1

" #
: ð8:14Þ

Having derived the expression for Z0ey(m), we can express the discrete convolution term

in (8.12) with a new parameter ynþ1
2

exy ði; j; kÞ; such that

ynþ1
2

exy ði; j; kÞ ¼
Xm¼n�1

m¼0

Z0eyðmÞ H
n�mþ1

2
z ði; j; kÞ � H

n�mþ1
2

z ði; j � 1; kÞ
� �

: ð8:15Þ

Here the subscript exy indicates that this term is updating Ex and is associated with the
derivative of the magnetic field term with respect to y. Then (8.10) can be written in discrete
form as

exði; j; kÞEnþ1
x ði; j; kÞ � En

xði; j; kÞ
Dt

þ se
xði; j; kÞEnþ1

x ði; j; kÞ þ En
xði; j; kÞ

2

¼ 1
keyði; j; kÞ

H
nþ1

2
z ði; j; kÞ � H

nþ1
2

z ði; j � 1; kÞ
Dy

� 1
kezði; j; kÞ

H
nþ1

2
y ði; j; kÞ � H

nþ1
2

y ði; j; k � 1Þ
Dz

þ ynþ1
2

exy ði; j; kÞ � ynþ1
2

exz ði; j; kÞ:

ð8:16Þ

8.1.6 The recursive convolution method

As can be followed from (8.16), the parameter yexy has to be recalculated at every time step
of the FDTD time-marching loop. However, observing expression (8.15) one can see that the
values of the magnetic field component Hz calculated at all previous time steps have to be
readily available to perform the discrete convolution. This implies that all the previous
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history of Hz must be stored in the computer memory, which is not feasible with the current
computer resources. The recursive convolution technique, which is frequently used to over-
come the same problem while modeling dispersive media in the FDTD method, is employed
to obtain a new expression for yexy that does not require all the previous history of Hz.

The general form of the discrete convolution (8.15) can be written as

yðnÞ ¼
Xm¼n�1

m¼0

AemT Bðn � mÞ; ð8:17Þ

where, for instance,

A ¼ aey

T ¼ � sey

key
þ aey

� �
Dt

e0

B ¼ H
n�mþ1

2
z ði; j; kÞ � H

n�mþ1
2

z ði; j � 1; kÞ:
Equation (8.17) can be written in open form as

yðnÞ ¼ ABðnÞ þ AeT Bðn � 1Þ þ Ae2T Bðn � 2Þ þ⋯þ Aeðn�2ÞT Bð2Þ þ Aeðn�1ÞT Bð1Þ:
ð8:18Þ

We can write the same equation in open form for one previous time step value y(n � 1) as

yðn� 1Þ ¼ ABðn� 1Þ þAeT Bðn� 2Þ þAe2T Bðn� 3Þ þ⋯þAeðn�2ÞT Bð2Þ þAeðn�2ÞT Bð1Þ:
ð8:19Þ

Comparing the right-hand side of (8.18) with (8.19), one can realize that the right-hand
side of (8.18), except the first term, is nothing but a multiplication of eT by y(n � 1).
Therefore, (8.18) can be rewritten as

yðnÞ ¼ ABðnÞ þ eTyðn � 1Þ: ð8:20Þ
In this form only the previous time step value y(n � 1) is required to calculate the new

value of y(n). Hence, the need for the storage of all previous values is eliminated. Since the
new value of y(n) is calculated recursively in (8.20), this technique is known as recursive
convolution.

After applying this technique to simplify (8.15), we obtain

ynþ1
2

exy ði; j; kÞ ¼ beyy
n�1

2
exy ði; j; kÞ þ aey H

nþ1
2

z ði; j; kÞ � H
nþ1

2
z ði; j � 1; kÞ

� �
; ð8:21Þ

where

aey ¼ spey

Dy speykey þ aeyk2
ey

� � bey � 1
� �

; ð8:22Þ

bey ¼ e
� spey

key
þaey

� �
Dt
e0 : ð8:23Þ
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8.2 The CPML algorithm

Examining the discrete domain equation (8.16), one can see that the form of the equation is
the same as the one for a lossy medium except that two new auxiliary terms are added to the
expression. This form of equation indicates that the CPML algorithm is independent of the
material medium and can be extended for dispersive media, anisotropic media, or nonlinear
media. In each of these cases, the left-hand side must be modified to treat the specific host
medium. Yet the application of the CPML remains unchanged [23].

The FDTD flowchart can be modified to include the steps of the CPML as shown in
Figure 8.1. The auxiliary parameters and coefficients required by the CPML are initialized
before the time-marching loop. During the time-marching loop, at every time step, first the
magnetic field components are updated in the problem space using the regular updating
equation derived for the host medium. Then the CPML terms (ymxy, ymxz, ymyx, ymyz, ymzx,
ymzy) are calculated using their previous time step values and the new electric field values.
Afterward, these terms are added to their respective magnetic field components only at the

Start

Update magnetic field components
at time instant (n + 0.5)Δt

Increment time step, n     n + 1 

Calculate the new values of CPML parameters ψm*,
and add them to the magnetic field components

Update electric field components
at time instant (n + 1)Δt

Set problem space and define parameters

Compute field coefficients

Output data

Last iteration?Stop
Yes No

Initialize CPML parameters and coefficients

Calculate the new values of CPML parameters ψe*,
and add them to the electric field components

Figure 8.1 The FDTD flowchart including the steps of CPML algorithm.
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CPML regions for which they were defined. The next step is updating the electric field
components in the problem space using the regular updating equation derived for the
host medium. Then the CPML terms (yexy, yexz, yeyx, yeyz, yezx, yezy) are calculated using
their previous time step values and the new magnetic field values and are added to
their respective electric field components only at the CPML regions for which they
were defined. The details of the steps of this algorithm are discussed further in subsequent
sections of this chapter.

8.2.1 Updating equations for CPML

The general form of the updating equation for a non-CPML lossy medium is given in
Chapter 1 and is repeated here for the Ex component for convenience as

Enþ1
x ði; j; kÞ ¼ Cexeði; j; kÞ � En

xði; j; kÞ
þ Cexhzði; j; kÞ � H

nþ1
2

z ði; j; kÞ � H
nþ1

2
z ði; j � 1; kÞ

� �

þ Cexhyði; j; kÞ � H
nþ1

2
y ði; j; kÞ � H

nþ1
2

y ði; j; k � 1Þ
� �

: ð8:24Þ

Then the updating equation for the CPML region takes the form

Enþ1
x ði; j; kÞ ¼ Cexeði; j; kÞ � En

xði; j; kÞ
þ 1=keyði; j; kÞ� 	� Cexhzði; j; kÞ � H

nþ1
2

z ði; j; kÞ � H
nþ1

2
z ði; j � 1; kÞ

� �

þ 1=kezði; j; kÞð Þ � Cexhyði; j; kÞ � H
nþ1

2
y ði; j; kÞ � H

nþ1
2

y ði; j; k � 1Þ
� �

þ DyCexhzði; j; kÞð Þ � ynþ1
2

exy ði; j; kÞ þ DzCexhyði; j; kÞ� 	� ynþ1
2

exz ði; j; kÞ:
ð8:25Þ

Notice that the negative sign in front of the ynþ1
2

exz ði; j; kÞ term in (8.16) is embedded in
the coefficient Cexhy(i, j, k) as can be followed from (1.26). Here two new coefficients can be
defined such that

Cyexyði; j; kÞ ( DyCexhzði; j; kÞ: ð8:26aÞ
Cyexzði; j; kÞ ( DzCexhyði; j; kÞ: ð8:26bÞ

Then (8.25) reduces to

Enþ1
x ði; j; kÞ ¼ Cexeði; j; kÞ � En

xði; j; kÞ

þ 1=keyði; j; kÞ� 	� Cexhzði; j; kÞ � H
nþ1

2
z ði; j; kÞ � H

nþ1
2

z ði; j � 1; kÞ
� �

þ 1=kezði; j; kÞð Þ � Cexhyði; j; kÞ � H
nþ1

2
y ði; j; kÞ � H

nþ1
2

y ði; j; k � 1Þ
� �

þCyexyði; j; kÞ � ynþ1
2

exy ði; j; kÞ þ Cyexzði; j; kÞ � ynþ1
2

exz ði; j; kÞ:
ð8:27Þ
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Furthermore, the terms (1/key(i, j, k)) and (1/kez(i, j, k)) can be embedded into Cexhz(i, j, k)
and Cexhy(i, j, k), respectively, such that

Cexhzði; j; kÞ ( 1=keyði; j; kÞ� 	� Cexhzði; j; kÞ; ð8:28aÞ

Cexhyði; j; kÞ ( 1=kezði; j; kÞð Þ � Cexhyði; j; kÞ: ð8:28bÞ

These modifications are applied to the coefficients only at the positions overlapping with
the respective CPML regions and further reduce (8.27) to

Enþ1
x ði; j; kÞ ¼ Cexeði; j; kÞ � En

xði; j; kÞ

þCexhzði; j; kÞ � H
nþ1

2
z ði; j; kÞ � H

nþ1
2

z ði; j � 1; kÞ
� �

þCexhyði; j; kÞ � H
nþ1

2
y ði; j; kÞ � H

nþ1
2

y ði; j; k � 1Þ
� �

þCyexyði; j; kÞ � ynþ1
2

exy ði; j; kÞ þ Cyexzði; j; kÞ � ynþ1
2

exz ði; j; kÞ: ð8:29Þ

With the given form of updating equation and coefficients, Enþ 1
x ði; j; kÞ is updated using

the first three terms on the right side in the entire domain as usual. Then ynþ 1
2

exy ði; j; kÞ and

ynþ 1
2

exz ði; j; kÞ are calculated (e.g., using (8.21) for ynþ 1
2

exy ði; j; kÞÞ, and the last two terms of
(8.29) are added to Enþ1

x ði; j; kÞ at their respective CPML regions. It should be mentioned that
the same procedure applies for updating the other electric and magnetic field components as
well by using their respective updating equations and CPML parameters.

8.2.2 Addition of auxiliary CPML terms at respective regions

While discussing the PML we showed in Figure 7.4 that certain PML conductivity para-
meters take nonzero value at certain respective regions. In the CPML case there are three
types of parameters, and the regions for which they are defined are shown in Figure 8.2,
which is similar to Figure 7.4. In the CPML case the parameters spei, spmi, aei, and ami are
nonzero, whereas the parameters kei and kmi take values larger than one at their respective
regions. These regions are named xn, xp, yn, yp, zn, and zp. The CPML auxiliary terms y are
associated with these CPML parameters. Therefore, each term y is defined at the region
where its associated parameters are defined. For instance, yexy is associated with spey, aey,
and key as can be observed in (8.21). Then the term yexy is defined for the yn and yp regions.
Similarly, the term yexz is defined for the zn and zp regions. One should notice in (8.27) that
both the yexy and yexz terms are added to Ex as the requirement of the CPML algorithm;
however, yexy and yexz are defined in different regions. This implies that the terms yexy and
yexz should be added to Ex only in their respective regions. Therefore, one should take care
while determining the regions where the CPML terms are added to the field components. For
instance, yexy should be added to Ex in the yn and yp regions, whereas yexz should be added
to Ex in the zn and zp regions. A detailed list of the CPML updating equations for all six
electric and magnetic field components and the regions at which these equations are applied
is given in Appendix B.
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8.3 CPML parameter distribution

As described in the previous chapter, the PML conductivities are scaled along the PML
region starting from a zero value at the inner domain–PML interface and increasing to a
maximum value at the outer boundary. In the CPML case there are two additional types of
parameter scaling profiles, which are different from the conductivity scaling profiles.

The maximum conductivity of the conductivity profile is computed in [23] using smax ¼
sfactor � sopt, where

sopt ¼ npml þ 1

150p
ffiffiffiffi
er

p
Di

: ð8:30Þ

Here npml is the order of the polynomial scaling, and er is the relative permittivity of the
background material. Then the CPML conductivity spei can be calculated by

speiðrÞ ¼ smax
r
d

� �npml

; ð8:31Þ
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Figure 8.2 Regions where CPML parameters are defined: (a) spex, spmx, aex, amx, kex, and kmx;
(b) spey, spmy, aey, amy, key, and kmy; (c) spez, spmz, aez, amz, kez, and kmz; and (d)
overlapping CPML regions.
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where r is the distance from the computational domain–PML interface to the position
of the field component and d is the thickness of the CPML layer. Similarly, spmi can be
calculated by

spmiðrÞ ¼ m0

e0
smax

r
d

� �npml

; ð8:32Þ

which satisfies the reflectionless condition (8.7).
The value of kei is unity at the inner domain–CPML interface, and it increases to a

maximum value kmax such that

keiðrÞ ¼ 1 þ ðkmax � 1Þ r
d

� �npml

; ð8:33Þ

whereas kmi is given by

kmiðrÞ ¼ 1 þ ðkmax � 1Þ r
d

� �npml

: ð8:34Þ

In these equations, r indicates the distances of the respective field components from the
inner domain–CPML interface. It should be noted that the values that r can take in (8.33) and
(8.34) are different since the electric and magnetic field components are located at different
positions.

The parameter aei takes a maximum value amax at the inner domain–CPML interface and
is linearly scaled to a minimum value, amin, at the outer boundary such that

aeiðrÞ ¼ amin þ ðamax � aminÞ 1 � r
d

� �
: ð8:35Þ

Similarly, ami is calculated as

amiðrÞ ¼ m0

e0
amin þ ðamax � aminÞ 1 � r

d

� �� �
: ð8:36Þ

This scaling of the CPML parameter profile is chosen as before specifically to reduce the
reflection error of evanescent modes; a must be nonzero at the front boundary interface.
However, for the CFS-PML to absorb purely propagating modes at low frequency, a should
actually decrease to zero away from the boundary interface [23].

The choice of the parameters sfactor, kmax, amax, amin, and npml and the thickness of the
CPML layer in terms of number of cells determine the performance of the CPML. In [23]
parametric studies have been performed to evaluate the effects of these parameters. Usually,
sfactor can be taken in the range 0.7–1.5, kmax in the range 5–11, amax in the range 0–0.05,
thickness of CPML as 8 cells, and npml as 2, 3, or 4.

8.4 MATLAB‡ implementation of CPML in the
three-dimensional FDTD method

In this section, we demonstrate the implementation of the CPML in the three-dimensional
FDTD MATLAB code.
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8.4.1 Definition of CPML

In the previous chapters, the only type of boundary available in our three-dimensional
program was perfect electric conductor (PEC). The type of the boundaries were defined
as PEC by assigning ‘‘pec’’ to the parameter boundary.type, and the air gap between the
objects and the outer boundary was assigned to boundary.air_buffer_number_of_cells
in the define_problem_space_parameters subroutine. To define the boundaries as CPML,
we can update define_problem_space_parameters as shown in Listing 8.1. The type of
a boundary is determined as CMPL by assigning ‘‘cpml’’ to boundary.type. It should be
noted that the PEC boundaries can be used together with CPML boundaries; that is, some
sides can be assigned PEC while the others are CPML. In Listing 8.1, the zn and zp sides are
PEC while other boundaries are CPML.

Listing 8.1 define_problem_space_parameters
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Another parameter required for a boundary defined as CPML is the thickness of the
CPML layer in terms of number of cells. A new parameter cpml_number_of_cells is
defined as a subfield of the parameter boundary, and the thicknesses of the CPML regions
are assigned to this new parameter. One can notice that the thickness of CPML is 5 cells in
the xn and xp regions and �5 cells in the yn and yp regions. As discussed before, objects in
an FDTD problem space can be defined as penetrating into CPML; thus, these objects
resemble structures extending to infinity. As a convention, if cpml_number_of_cells is
defined as a negative number, it is assumed that the CPML layers are extending to inside of
the domain rather than extending outside from the end of the air buffer region. For instance,
if air_buffer_number_of_cells is zero, and the cpml_number_of_cells is a negative
number at the yn region, then the objects on the yn side will be penetrating to the CPML
region. Figure 8.3 illustrates a problem space including a 20 � 20 � 4 cells brick and
having its boundaries defined as shown in Listing 8.1. The solid thick line shows the
boundaries of the problem space. The dash-dot thick line shows the inner boundaries of the
CPML regions. The brick penetrates into the CPML in yn and yp regions. The zn and zp
boundaries are PEC. The other parameters described in Section 8.3 are defined in define_
problem_space_parameters as well. The order of the polynomial distribution npml is defined
as boundary.cpml_order as shown in Listing 8.1. The sfactor is defined as boundary.
cpml_sigma_factor, kmax is defined as boundary.cpml_kappa_max, amax is defined as
boundary.cpml_alpha_max, and similarly, amin is defined as boundary.cpml_alpha_min.

8.4.2 Initialization of CPML

To employ the CPML algorithm in the time-marching loop, several coefficient and auxiliary
parameter arrays need to be defined and initialized for the respective CPML regions before the
time-marching loop starts. Before defining these arrays, the size of the FDTD problem space
should be determined by taking the thicknesses of the CPML regions into account. The size of
the problem space and the number of cells in the domain are determined in the subroutine
calculate_domain_size, which was called in initialize_fdtd_material_grid. The implementa-
tion of calculate_domain_size is given in Listing 3.5, where the boundaries are assumed to be
PEC. As discussed in the previous section, if the thickness of the CPML is negative on a side, the
CPML region extends into the problem space on this side; therefore, the position of the outer
boundary of the problem space remains the same, and the calculation given for determining the

z
y

x

Figure 8.3 A problem space with 20 � 20 � 4 cells brick.
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position of the outer boundary in Listing 3.5 remains the same. However, if the thickness of the
CPML is positive on a side, the CPML adds to the problem space on that side, and the calcu-
lation of the position of the outer boundary needs to be updated accordingly. The necessary
modifications are implemented in calculate_domain_size, and the modified section of the code
is given in Listing 8.2. It can be noticed in the code that, for the sides where the boundary type is
CPML, the problem space boundary is extended outward by the thickness of the CPML.

Listing 8.2 calculate_domain_size
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The initialization process of the CPML continues in initialize_boundary_conditions,
which is a subroutine called in the main program fdtd_solve as shown in Listing 3.1. So far
we have not implemented any code in initialize_boundary_conditions, since the only type of
boundary we have considered is PEC; which does not require any special treatment; the
tangential electric field components on the outer faces of the problem space are not updated,
and their values are left zero during the time-marching loop which naturally simulates the
PEC boundaries. However, the CPML requires special treatment, and the initialization of
the CPML is coded in initialize_boundary_conditions accordingly as shown in Listing 8.3.

Listing 8.3 initialize_boundary_conditions
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In this subroutine several frequently used parameters are defined for convenience. For instance,
the parameter is_cpml_xn is a logical parameter that indicates whether the xn boundary is
CPML, and n_cpml_xn stores the thickness of the CPML for the xn region. Similar parameters
are defined for other sides as well. Then another subroutine, initialize_CPML_ABC, is called
to continue the CPML specific initialization process.

Listing 8.4 shows the contents of initialize_CPML_ABC for the xn and xp regions. The
code listing for the other sides follows the same procedure. Let us consider the xp region, for
example. In the code, distribution of the CPML parameters spex, spmx, kex, kmx, aex, and amx

along the CPML thickness are calculated as one-dimensional arrays first, with the respective
names sigma_pex_xp, sigma_pmx_xp, kappa_ex_xp, kappa_mx_xp, alpha_ex_xp, and

Listing 8.4 initialize_CPML_ABC
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alpha_mx_xp, using the equations given in Section 8.3. The parameters spex, kex, and aex are
used to update the Ey and Ez field components, and the distances of these field components
from the interior interface of the CPML are used in (8.31), (8.33), and (8.35) as re. The
positions of the field components and the respective distances of the field components from
the CPML interface are illustrated in Figure 8.4. One can see that CPML interface is assumed to
be offset from the first CPML cell by a quarter cell size. This is to ensure that the same number
of electric and magnetic field components is updated by the CPML algorithm. Similarly,
Figure 8.5 illustrates the magnetic field components of Hy and Hz being updated using the
CPML in the xp region. The distances of these field components from the CPML interface are
denoted as rh and are used in (8.32), (8.34), and (8.36) to calculate spmx, kmx, and amx.

Then Listing 8.4 continues with calculation of aex, bex, amx, and bmx as cpml_a_ex_xp,
cpml_b_ex_xp, cpml_a_mx_xp, and cpml_b_mx_xp using the equations in Appendix B.
Then the CPML auxiliary parameters yeyx, yezx, yhyx, and yhzx are defined as two-dimen-
sional arrays with the names Psi_eyx_xp, Psi_ezx_xp, Psi_hyx_xp, and Psi_hzx_xp and are
initialized with zero value. The coefficients Cyeyx, Cyezx, Cyhyx, and Cyhzx are calculated and
stored as two-dimensional arrays with the respective names CPsi_eyx_xp, CPsi_ezx_xp,
CPsi_hyx_xp, and CPsi_hzx_xp. Then the FDTD updating coefficients Ceyhz, Cezhy,
Chyez, and Chzey are scaled with the respective k values in the xp region. Finally, the
parameters that will not be used anymore during the FDTD calculations are cleared from
MATLAB workspace.
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8.4.3 Application of CPML in the FDTD time-marching loop

The necessary CPML arrays and parameters are initialized in initialize_CPML_ABC, and they
are ready to use for applying the CPML in the FDTD time-marching loop. Two new subroutines
are added to the subroutine run_fdtd_time_marching_loop as shown in Listing 8.5. The first
one is update_magnetic_field_CPML_ABC, and it follows update_magnetic_fields. The
second one is update_electric_field_CPML_ABC, and it follows update_electric_fields.

Hy and Hz components
updated by CPML

ρh(2)
ρh(1)

PEC

node (Nx + 1, j, k)
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y x
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Figure 8.5 Positions of the magnetic field components updated by CPML in the xp region.
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Figure 8.4 Positions of the electric field components updated by CPML in the xp region.
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The implementation of update_magnetic_field_CPML_ABC is given in Listing 8.6. The
magnetic field components are updated for the current time step using the regular updating
equations in update_magnetic_fields, and then in update_magnetic_field_CPML_ABC, first
the auxiliary y parameters are calculated using the current values of the electric field com-
ponents. These terms are then added to the appropriate magnetic field components in their
respective CPML regions.

Similarly, the implementation of update_electric_field_CPML_ABC is given in Listing 8.7.
The electric field components are updated for the current time step using the regular updating
equations in update_electric_fields, and then in update_electric_field_CPML_ABC, first the
auxiliary y parameters are calculated using the current values of the magnetic field components.
These terms are then added to the appropriate electric field components in their respective
CPML regions.

One can notice in the code listings that the arrays representing ye and yh are two-
dimensional, whereas the arrays representing aei, ami, bei, and bmi are one-dimensional.
Therefore, ye and yh are updated in a ‘‘for’’ loop using the one-dimensional arrays; if they
were defined as two-dimensional arrays, the ‘‘for’’ loop would be avoided, which would
speed up the calculation with the trade-off of increased memory. In the two-dimensional
array case, the coefficients representing Cye and Cym can be distributed over aei, ami, bei, and
bmi in the initialization process initialize_CPML_ABC, which further reduces the amount of
calculations during the CPML updates.

Listing 8.5 run_fdtd_time_marching_loop
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Listing 8.6 update_magnetic_field_CPML_ABC

Listing 8.7 update_electric_field_CPML_ABC
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8.5 Simulation examples

So far we have discussed the CPML algorithm and have demonstrated its implementation in
the MATLAB program. In this section, we provide examples in which the boundaries are
realized by the CPML.

8.5.1 Microstrip low-pass filter

In Section 6.2, we demonstrated a low-pass filter geometry, which is illustrated in Figure 6.2.
We assumed that the boundaries of the problem space were PEC. In this section we repeat
the same example but assume that the boundaries are CPML. The section of the code that
defines the boundaries in define_problem_space_parameters is shown in Listing 8.8. As can
be followed in the listing, an air gap of 5 cells thickness is surrounding the filter circuit, and
the boundaries are terminated by 8 cells thickness of the CPML.

Listing 8.8 define_problem_space_parameters.m
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The simulation of the circuit is performed for 3,000 time steps. The results of this simulation
are plotted in the Figures 8.6–8.9. Figure 8.6 shows the source voltage and sampled voltages
observed at the ports of the low-pass filter, whereas Figure 8.7 shows the sampled currents
observed at the ports of the low-pass filter. It can be seen that the signals are sufficiently
decayed after 3,000 time steps. After the transient voltages and currents are obtained, they are
used for postprocessing and scattering parameter (S-parameter) calculations. Figure 8.8 shows
S11, whereas Figure 8.9 shows S21 of the circuit. Comparing these figures with the plots in
Figure 6.3 one can observe that the S-parameters calculated for the case where the boundaries
are CPML are smooth and do not include glitches. This means that resonances due to the closed
PEC boundaries are eliminated and the circuit is simulated as if it is surrounded by open space.

8.5.2 Microstrip branch line coupler

The second example is a microstrip branch line coupler, which was published in [14].
The circuit discussed in this section is illustrated in Figure 8.10. The cell sizes are
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Figure 8.6 Source voltage and sampled voltages observed at the ports of the low-pass filter.
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Dx ¼ 0.406 mm, Dy ¼ 0.406 mm, and Dz ¼ 0.265 mm. In this circuit the wide lines are
10 cells wide and the narrow lines are 6 cells wide. The center-to-center distances between the
strips in the square coupler section are 24 cells. The dielectric substrate has 2.2 dielectric con-
stant and 3 cells thickness. The definition of the geometry of the problem is shown in Listing 8.9.

The boundaries of the problem space are the same as those in Listing 8.8: that is, an
8 cells thick CPML, which terminates a 5 cells thick air gap surrounding the circuit.
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Figure 8.7 Sampled currents observed at the ports of the low-pass filter.
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Figure 8.8 S11 of the low-pass filter.
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The voltage source with a 50 W internal resistance is placed at the input of the circuit
indicated as port 1 as shown in Figure 8.10. The outputs of the circuit are terminated by 50 W
resistors. The definition of the voltage source and resistors is shown in Listing 8.10.

Four sampled voltages and four sampled currents are defined as the outputs of the circuit
as shown in Listing 8.11. One should notice that the sampled voltages and currents are
defined directly on the voltage source and the termination resistors. Therefore, the reference
planes for the S-parameter calculations are at the positions of the source and resistor ter-
minations. Then four 50 W ports are defined by associating sampled voltage–current pairs
with them. Then port 1 is set to be the excitation port for this FDTD simulation.

After the definition of the problem is completed, the FDTD simulation is performed for
4,000 time steps, and the S-parameters of this circuit are calculated. Figure 8.11 shows the
results of this calculation, where S11, S21, S31, and S41 are plotted. There is a good agreement
between the plotted results and those published in [14].
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Figure 8.10 An FDTD problem space including a microstrip branch line coupler.
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Figure 8.9 S21 of the low-pass filter.
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Listing 8.9 define_geometry.m
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Listing 8.10 define_sources_and_lumped_elements.m
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Listing 8.11 define_output_parameters.m
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8.5.3 Characteristic impedance of a microstrip line

We have demonstrated the use of CPML for two microstrip circuits in the previous exam-
ples. These circuits are fed using microstrip lines, the characteristic impedance of which is
assumed to be 50 W. In this section we provide an example showing the calculation of
characteristic impedance of a microstrip line.

We use the same microstrip feeding line as the one used in previous example; the line is
2.4 mm wide, and the dielectric substrate has 2.2 dielectric constant and 0.795 mm thickness. A
single line microstrip circuit is constructed in the FDTD method as illustrated in Figure 8.12.
The microstrip line is fed with a voltage source. There is a 5 cells air gap on the yn and zp sides
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of the substrate. On the zn side of the substrate the boundary is PEC, which serves as the ground
plane for the microstrip line. The other sides of the geometry are terminated by CPML. One
should notice that the substrate and microstrip line penetrate into the CPML regions on the yp,
xn, and xp sides, thus simulating structures extending to infinity in these directions. The defi-
nition of the problem space including the cell sizes and boundaries is shown in Listing 8.12.
The definition of the geometry is given in Listing 8.13. The microstrip line is fed with voltage
source as defined in Listing 8.14. A sampled voltage and a sampled current are defined 10 cells
away from the source, and they are tied to form a port as shown in Listing 8.15.
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Figure 8.11 S-parameters of the branch line coupler.
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Figure 8.12 An FDTD problem space including a microstrip line.
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Listing 8.12 define_problem_space_parameters.m
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Listing 8.13 define_geometry.m

Listing 8.14 define_sources_and_lumped_elements.m
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An FDTD simulation of the microstrip line is performed for 1,000 time steps. Figure 8.13
shows the source voltage and sampled voltage captured at the port position, whereas Figure 8.14
shows the sampled current. The sampled voltages and currents are transformed to the frequency
domain, and S11 of the circuit is calculated using these frequency-domain voltage and

Listing 8.15 define_output_parameters.m
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current values. The S11 of the circuit is plotted in Figure 8.15 and indicates that there is better
than�35 dB matching of the line to 50W. Furthermore, these frequency-domain values are used
to calculate the input impedance of the microstrip line. Since there is no visible reflection
observed from the CPML terminated end of the microstrip line, the input impedance of the line
is equivalent to the characteristic impedance of the line. The characteristic impedance is plotted
in Figure 8.16, which again indicates a good matching to 50 W.
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Figure 8.13 Source voltage and sampled voltage of the microstrip line.
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8.6 CPML in the two-dimensional FDTD method

In Chapter 7, we presented the two-dimensional FDTD method along with the absorbing
boundaries based on the PML technique. Since we already have developed the CPML for-
mulations for the three-dimensional FDTD in this chapter, it is straightforward to reduce the
CPML formulations to the two-dimensional case. As illustrated in Chapter 7, there is no field
and geometric variation in one of the dimensions in a two-dimensional space; any partial
derivative with respect to the constant dimension becomes zero. Thus, one needs to start with
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Figure 8.15 S11 of the microstrip line.
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Figure 8.16 Characteristic impedance of the microstrip line.
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three-dimensional equations, and just eliminate the respective terms, which become zero, in
these equations. For instance, if z is the constant dimension, (8.1) and (8.3) reduce to

jwexEx þ se
xEx ¼ 1

Sey

@Hz

@y
; ð8:37aÞ

jweyEy þ se
yEy ¼ � 1

Sex

@Hz

@x
; ð8:37bÞ

jwezEz þ se
zEz ¼ 1

Sex

@Hy

@x
� 1

Sey

@Hx

@y
; ð8:37cÞ

and

jwmxHx þ sm
x Hx ¼ � 1

Smy

@Ez

@y
; ð8:38aÞ

jwmyHy þ sm
y Hy ¼ 1

Smx

@Ez

@x
; ð8:38bÞ

jwmzHz þ sm
z Hz ¼ � 1

Smx

@Ey

@x
þ 1

Smy

@Ex

@y
; ð8:38cÞ

where (8.37a), (8.37b), and (8.38c) constitute the two-dimensional TEz case, whereas
(8.37c), (8.38a), and (8.38b) constitute the TMz case. One can start with (8.37) and (8.38),
follow the steps discussed in Sections 8.1 and 8.2, and obtain the updating equations sought
for CPML, however, as a short cut, it is sufficient to start with the three-dimensional CPML
updating equations, and just eliminate the terms associated with the partial derivatives of z.
For instance, (8.29) can be modified to obtain

Enþ1
x i; j; kð Þ ¼ Cexe i; j; kð Þ � En

x i; j; kð Þ
þ Cexhz i; j; kð Þ � H

nþ1
2

z i; j; kð Þ � H
nþ1

2
z i; j � 1; kð Þ

� �

þ Cyexy i; j; kð Þ � ynþ1
2

exy i; j; kð Þ: ð8:39Þ
The remaining updating equations can be obtained in a similar fashion.
In Chapter 7 it has been discussed that the two-dimensional updating equations update the

fields in partial regions of a problem space because of the split field PML algorithm, and one
should be very careful determining which equation updates which partial region. Unlike the
two-dimensional PML case, in the CPML algorithm, the main terms of an updating equation is
applied to the entire problem space, and the additional CPML parameters, such as Cyexy and
yexy, are defined only at their respective CPML regions, and are used to update fields at these
regions only. The updating coefficients, such as Cexhz, are also modified as in (8.28) at the
respective regions. Figures 8.17 and 8.18 illustrate these CPML regions for the TEz and TMz

cases, respectively. For instance, as shown in Figure 8.17, Hz is first updated in the entire
problem space using normal two-dimensional equations, and then additional components
using yhzx in the xn and xp regions and using yhzy in the yn and yp regions are added. Ex and
Ey are first updated in the entire problem space, and then Ey is modified using the term
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containing yeyx in the xn and xp regions while Ex is modified using the term containing yexy

in the yn and yp regions.
The other CPML parameters (spei, spmi, kei, kmi, aei, smi), which have specific distribution

profiles along the CPML regions, can be calculated using (8.31)–(8.36) as discussed in
Section 8.3.
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Figure 8.17 Updated fields and CPML parameters in TEz case: (a) xn and xp CPML regions and
(b) yn and yp CPML regions.
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8.7 MATLAB‡ implementation of CPML in the
two-dimensional FDTD method

We have presented a two-dimensional FDTD code in Chapter 7, where PML is used as the
absorbing boundary. Since we have already implemented CPML in the three-dimensional
FDTD program in Section 8.4, it is easy to modify the two-dimensional FDTD code to
replace PML by CPML by using the code sections from the three-dimensional program.
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Figure 8.18 Updated fields and CPML parameters in TMz case: (a) xn and xp CPML regions
and (b) yn and yp CPML regions.
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8.7.1 Definition of CPML

In Listing 7.2, define_problem_space_parameters_2d is modified to accommodate CPML
instead of PML. First, boundary.type parameter is set as ‘‘cpml,’’ then cpml_order,
cpml_sigma_factor, cpml_kappa_max, cpml_alpha_max, and cpml_alpha_min para-
meters are added similar to Listing 8.1. The modified code is shown in Listing 8.16.

Unlike the PML boundaries implemented in the two-dimensional FDTD program presented
in Chapter 7, it is allowed to have objects in the problem space to penetrate into the CPML
regions to simulate structures extending to infinity in the current CPML implementation.
Relevant code for the three-dimensional case can be copied from Listing 8.2 into calculate_
domain_size_2d for the two-dimensional domain size calculations in x and y directions.

8.7.2 Initialization of CPML

Next is the initialization of boundary conditions. Some Boolean parameters that will be used
throughout the program execution are initialized in initialize_boundary_conditions_2d as
shown in Listing 8.17.

At the end of Listing 8.17 two separate subroutines are used to initialize the CPML
parameters: one for TEz case and one for TMz case. Code sections from Listing 8.4 can

Listing 8.16 define_problem_space_parameters_2d.m

%  = = < b o u n d a r y  c o n d i t i o n s > = = = = = = = =
%  H e r e  w e  d e fi n e  t h e  b o u n d a r y  c o n d i t i o n s  p a r a m e t e r s  
%  ' p e c '  :  p e r f e c t  e l e c t r i c  c o n d u c t o r
%  ' c p m l '  :  c o n v o l u t i o n a l  P M L
%  i f  c p m l _ n u m b e r _ o f _ c e l l s  i s  l e s s  t h a n  z e r o
%  C P M L  e x t e n d s  i n s i d e  o f  t h e  d o m a i n  r a t h e r  t h a n  o u t w a r d s

b o u n d a r y . t y p e _ x n  =  ' c p m l ' ;
b o u n d a r y . a i r _ b u f f e r _ n u m b e r _ o f _ c e l l s _ x n  =  1 0 ;
b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ x n  =  8 ;

b o u n d a r y . t y p e _ x p  =  ' c p m l ' ;
b o u n d a r y . a i r _ b u f f e r _ n u m b e r _ o f _ c e l l s _ x p  =  1 0 ;
b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ x p  =  8 ;

b o u n d a r y . t y p e _ y n  =  ' c p m l ' ;
b o u n d a r y . a i r _ b u f f e r _ n u m b e r _ o f _ c e l l s _ y n  =  1 0 ;
b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ y n  =  8 ;

b o u n d a r y . t y p e _ y p  =  ' c p m l ' ;
b o u n d a r y . a i r _ b u f f e r _ n u m b e r _ o f _ c e l l s _ y p  =  1 0 ;
b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ y p  =  8 ;

b o u n d a r y . c p m l _ o r d e r  =  3 ;  
b o u n d a r y . c p m l _ s i g m a _ f a c t o r  =  1 . 5 ;
b o u n d a r y . c p m l _ k a p p a _ m a x  =  7 ;
b o u n d a r y . c p m l _ a l p h a _ m i n  =  0 ;
b o u n d a r y . c p m l _ a l p h a _ m a x  =  0 . 0 5 ;
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be copied into these subroutines and adopted for the respective two-dimensional case.
Listing 8.18 shows a section of such a code modified for the TEz case. One should notice that
parameters such as Psi_eyx_xn and Psi_hzx_xn are two-dimensional arrays in Listing 8.18
while they are three-dimensional arrays in Listing 8.4.

8.7.3 Application of CPML in the FDTD time-marching loop

Once the initializations are complete, the field updating and boundary updating routines
in the FDTD time-marching loop can be modified as follows: the fields need to be updated
in the entire problem space. Listing 8.19 illustrates the subroutine that updates the
magnetic fields. Magnetic field updates are followed by boundary updates. A section of the
code that recalculates CPML parameters Psi_hzx_xn and Psi_hzx_xn for the current time
step and adds their contribution to Hz in xn and xp CPML regions is shown in Listing 8.20.

Listing 8.17 initialize_boundary_conditions_2d.m

%  d e fi n e  l o g i c a l  p a r a m e t e r s  f o r  t h e  c o n d i t i o n s  t h a t   w i l l  b e  u s e d  o f t e n  
i s _ c p m l _ x n  =  f a l s e ;  i s _ c p m l _ x p  =  f a l s e ;  
i s _ c p m l _ y n  =  f a l s e ;  i s _ c p m l _ y p  =  f a l s e ;  
i s _ a n y _ s i d e _ c p m l  =  f a l s e ;

i f  s t r c m p ( b o u n d a r y . t y p e _ x n ,  ' c p m l ' )
    i s _ c p m l _ x n  =  t r u e ;
    n _ c p m l _ x n  =  a b s ( b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ x n ) ;
e n d
i f  s t r c m p ( b o u n d a r y . t y p e _ x p ,  ' c p m l ' )
    i s _ c p m l _ x p  =  t r u e ;
    n _ c p m l _ x p  =  a b s ( b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ x p ) ;
e n d
i f  s t r c m p ( b o u n d a r y . t y p e _ y n ,  ' c p m l ' )
    i s _ c p m l _ y n  =  t r u e ;
    n _ c p m l _ y n  =  a b s ( b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ y n ) ;
e n d
i f  s t r c m p ( b o u n d a r y . t y p e _ y p ,  ' c p m l ' )
    i s _ c p m l _ y p  =  t r u e ;
    n _ c p m l _ y p  =  a b s ( b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ y p ) ;
e n d

i f  ( i s _ c p m l _ x n  | |  i s _ c p m l _ x p  | |  i s _ c p m l _ y n  | |  i s _ c p m l _ y p )
    i s _ a n y _ s i d e _ c p m l  =  t r u e ;
e n d

%  C a l l  C P M L  i n i t i a l i z a t i o n  r o u t i n e  i f  a n y  s i d e  i s  C P M L
i f  i s _ a n y _ s i d e _ c p m l
    i f  i s _ T E z
        i n i t i a l i z e _ c p m l _ b o u n d a r y _ c o n d i t i o n s _ 2 d _ T E z ;
    e n d
    i f  i s _ T M z
        i n i t i a l i z e _ c p m l _ b o u n d a r y _ c o n d i t i o n s _ 2 d _ T M z ;
    e n d
e n d
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Listing 8.18 initialize_cpml_boundary_conditions_2d_TEz.m

%  I n i t i a l i z e  C P M L  b o u n d a r y  c o n d i t i o n     

p _ o r d e r  =  b o u n d a r y . c p m l _ o r d e r ;  %  o r d e r  o f  t h e  p o l y n o m i a l  d i s t r i b u t i o n
s i g m a _ r a t i o  =  b o u n d a r y . c p m l _ s i g m a _ f a c t o r ;
k a p p a _ m a x  =  b o u n d a r y . c p m l _ k a p p a _ m a x ;
a l p h a _ m i n  =  b o u n d a r y . c p m l _ a l p h a _ m i n ;
a l p h a _ m a x  =  b o u n d a r y . c p m l _ a l p h a _ m a x ;

%  I n i t i a l i z e  c p m l  f o r  x n  r e g i o n
i f  i s _ c p m l _ x n

    %  d e fi n e  o n e - d i m e n s i o n a l  t e m p o r a r y  c p m l  p a r a m e t e r  a r r a y s  
    s i g m a _ m a x  =  s i g m a _ r a t i o   *  ( p _ o r d e r + 1 ) / ( 1 5 0 * p i * d x ) ;
    n c e l l s  =  n _ c p m l _ x n ;
    r h o _ e  =  ( [ n c e l l s : - 1 : 1 ] - 0 . 7 5 ) / n c e l l s ;
    r h o _ m  =  ( [ n c e l l s : - 1 : 1 ] - 0 . 2 5 ) / n c e l l s ;
    s i g m a _ p e x _ x n  =  s i g m a _ m a x  *  r h o _ e . ^ p _ o r d e r ;
    s i g m a _ p m x _ x n  =  s i g m a _ m a x  *  r h o _ m . ^ p _ o r d e r ;
    s i g m a _ p m x _ x n  =  ( m u _ 0 / e p s _ 0 )  *  s i g m a _ p m x _ x n ;
    k a p p a _ e x _ x n  =  1  +  ( k a p p a _ m a x  -  1 )  *  r h o _ e . ^ p _ o r d e r ;
    k a p p a _ m x _ x n  =  1  +  ( k a p p a _ m a x  -  1 )  *  r h o _ m . ^ p _ o r d e r ;
    a l p h a _ e x _ x n  =  a l p h a _ m i n  +  ( a l p h a _ m a x  -  a l p h a _ m i n )  *  ( 1 - r h o _ e ) ;
    a l p h a _ m x _ x n  =  a l p h a _ m i n  +  ( a l p h a _ m a x  -  a l p h a _ m i n )  *  ( 1 - r h o _ m ) ;
    a l p h a _ m x _ x n  =  ( m u _ 0 / e p s _ 0 )  *  a l p h a _ m x _ x n ;
    
    %  d e fi n e  o n e - d i m e n s i o n a l  c p m l  p a r a m e t e r  a r r a y s  
    c p m l _ b _ e x _ x n  =  e x p ( ( - d t / e p s _ 0 )  . . .
        * ( ( s i g m a _ p e x _ x n . / k a p p a _ e x _ x n ) +  a l p h a _ e x _ x n ) ) ;  
    c p m l _ a _ e x _ x n  =  ( 1 / d x ) * ( c p m l _ b _ e x _ x n - 1 . 0 ) . *  s i g m a _ p e x _ x n  . . .
        . / ( k a p p a _ e x _ x n . * ( s i g m a _ p e x _ x n + k a p p a _ e x _ x n . * a l p h a _ e x _ x n ) ) ;
    c p m l _ b _ m x _ x n  =  e x p ( ( - d t / m u _ 0 )  . . .
        * ( ( s i g m a _ p m x _ x n . / k a p p a _ m x _ x n ) +  a l p h a _ m x _ x n ) ) ;  
    c p m l _ a _ m x _ x n  =  ( 1 / d x ) * ( c p m l _ b _ m x _ x n - 1 . 0 )  . *  s i g m a _ p m x _ x n  . . .
        . / ( k a p p a _ m x _ x n . * ( s i g m a _ p m x _ x n + k a p p a _ m x _ x n . * a l p h a _ m x _ x n ) ) ;

    %  C r e a t e  a n d  i n i t i a l i z e  c p m l  c o n v o l u t i o n  p a r a m e t e r s  
    P s i _ e y x _ x n  =  z e r o s ( n c e l l s , n y ) ;  
    P s i _ h z x _ x n  =  z e r o s ( n c e l l s , n y ) ;  

    %  C r e a t e  a n d  i n i t i a l i z e  c p m l  c o n v o l u t i o n  c o e f fi c i e n t s  
    C P s i _ e y x _ x n  =  C e y h z ( 2 : n c e l l s + 1 , : ) * d x ;
    C P s i _ h z x _ x n  =  C h z e y ( 1 : n c e l l s , : ) * d x ;
    
    %  A d j u s t  F D T D  c o e f fi c i e n t s  i n  t h e  C P M L  r e g i o n  
    f o r  i  =  1 :  n c e l l s                                            
        C e y h z ( i + 1 , : )  =  C e y h z ( i + 1 , : ) / k a p p a _ e x _ x n ( i ) ;
        C h z e y ( i , : )  =  C h z e y ( i , : ) / k a p p a _ m x _ x n ( i ) ;
    e n d
    
    %  D e l e t e  t e m p o r a r y  a r r a y s .  T h e s e  a r r a y s  w i l l  n o t  b e  u s e d  a n y  m o r e .
    c l e a r  s i g m a _ p e x _ x n  s i g m a _ p m x _ x n ;
    c l e a r  k a p p a _ e x _ x n  k a p p a _ m x _ x n ;
    c l e a r  a l p h a _ e x _ x n  a l p h a _ m x _ x n ;
e n d
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Similarly, electric fields as well are updated in the entire problem space and respective
CPML parameters and boundary updates are added to them.

8.7.4 Validation of CPML performance

In this section, we evaluate the performance of the two-dimensional CPML for the TEz case.
The test case that is illustrated in Section 7.5.1 is repeated here except that the PML
boundaries are replaced by CPML boundaries. The CPML specific parameters npml, sfactor,

Listing 8.19 update_magnetic_fields_2d.m

%  u p d a t e  m a g n e t i c  fi e l d s
c u r r e n t _ t i m e   =  c u r r e n t _ t i m e  +  d t / 2 ;
    
i f  i s _ T E z
H z ( 1 : n x , 1 : n y )  =  C h z h ( 1 : n x , 1 : n y ) . *  H z ( 1 : n x , 1 : n y )  . . .
    +  C h z e x ( 1 : n x , 1 : n y )  . *  ( E x ( 1 : n x , 2 : n y p 1 ) - E x ( 1 : n x , 1 : n y ) )   . . .
    +  C h z e y ( 1 : n x , 1 : n y )  . * ( E y ( 2 : n x p 1 , 1 : n y ) - E y ( 1 : n x , 1 : n y ) ) ;  
e n d
 
i f  i s _ T M z
    H x ( 1 : n x p 1 , 1 : n y )  =  C h x h ( 1 : n x p 1 , 1 : n y )  . *  H x ( 1 : n x p 1 , 1 : n y )  . . .
        +  C h x e z ( 1 : n x p 1 , 1 : n y )  . *  ( E z ( 1 : n x p 1 , 2 : n y p 1 ) - E z ( 1 : n x p 1 , 1 : n y ) ) ;  
 
    H y ( 1 : n x , 1 : n y p 1 )  =  C h y h ( 1 : n x , 1 : n y p 1 )  . *  H y ( 1 : n x , 1 : n y p 1 )  . . .
        +  C h y e z ( 1 : n x , 1 : n y p 1 )  . *  ( E z ( 2 : n x p 1 , 1 : n y p 1 ) - E z ( 1 : n x , 1 : n y p 1 ) ) ;  
e n d                
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Listing 8.20 update_magnetic_fields_for_CPML_2d_TEz.m

%  T E z :  a p p l y  C P M L  t o  m a g n e t i c  fi e l d  c o m p o n e n t s
i f  i s _ c p m l _ x n
    f o r  i  =  1 :  n _ c p m l _ x n
        P s i _ h z x _ x n ( i , : , : )  =  c p m l _ b _ m x _ x n ( i )  *  P s i _ h z x _ x n ( i , : , : )  . . .
            +  c p m l _ a _ m x _ x n ( i ) * ( E y ( i + 1 , : , : ) - E y ( i , : , : ) ) ;  
    e n d
        H z ( 1 : n _ c p m l _ x n , : , : )  =  H z ( 1 : n _ c p m l _ x n , : , : )  . . .
            +  C P s i _ h z x _ x n ( : , : , : )  . *  P s i _ h z x _ x n ( : , : , : ) ;     
e n d
 
i f  i s _ c p m l _ x p
    n _ s t  =  n x  -  n _ c p m l _ x p ;
    f o r  i  =  1 : n _ c p m l _ x p
        P s i _ h z x _ x p ( i , : , : )  =  c p m l _ b _ m x _ x p ( i )  *  P s i _ h z x _ x p ( i , : , : )  . . .
            +  c p m l _ a _ m x _ x p ( i ) * ( E y ( i + n _ s t + 1 , : , : ) - E y ( i + n _ s t , : , : ) ) ;  
    e n d
 
        H z ( n _ s t + 1 : n x , : , : )  =  H z ( n _ s t + 1 : n x , : , : )  . . .
            +  C P s i _ h z x _ x p ( : , : , : )  . *  P s i _ h z x _ x p ( : , : , : ) ;     
e n d
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kmax, amin, and amax are set as 3, 1.5, 7, 0, and 0.05, respectively. The problem space is
excited by a z-directed impressed magnetic current and a sampled Hz field component is
captured at the position x ¼ 8 mm and y ¼ 8 mm while running the simulation for 1,800
time steps. The captured Hz is then compared with the corresponding results from the case
discussed in Section 7.5.1 and errors are obtained in time and frequency domains using
(7.41) and (7.42), respectively. These errors are plotted in Figure 8.19(a) and (b) where they
are compared with PML errors shown in Figure 7.14. The figures validate the performance
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Figure 8.19 CPML and PML errors of sampled Hz in time and frequency domains: (a) errors in
time domain and (b) errors in frequency domain.
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of the implemented CPML and show the significant improvement CPML has provided over
the split field PML in terms of accuracy and ease of implementation.

8.8 Auxiliary differential equation PML

The CPML, discussed above, was introduced by Roden and Gedney [23] as an efficient
implementation of the CFS-PML, and has been the most popular implementation used since
then. However, derivation of the updating equations for the CPML is very complicated as
illustrated in Section 8.1. Recently, another formulation for the CFS-PML has been presented
by Gedney and Zhao in [28], which uses an auxiliary differential equation (ADE), thus
referred to as ADE-PML. As will be shown in the following section, the final updating
equations of the ADE-PML are the same as those of the CPML. Moreover, numerical simu-
lations presented in [28] shows that the ADE-CPML has comparable reflection error as the
CPML for the same constitutive parameters. Besides these similarities, the updating equations
of the ADE-PML are easier to derive and this approach is presented here to show that alternate
formulation can be developed to solve the same problem with the same simulation accuracy.

8.8.1 Derivation of the ADE-PML formulation

Derivation of CPML formulation starts with the PML equations for a lossy medium posed in
the stretched coordinate space as shown in (8.1) and (8.3). For instance, repeated here for
convenience, (8.1a) is

jwexEx þ se
xEx ¼ 1

Sey

@Hz

@y
� 1

Sez

@Hy

@z
; ð8:40Þ

where Sey is expressed for CFS-PML as

Sey ¼ key þ spey

aey þ jwe0
: ð8:41Þ

Therefore,

1
Sey

¼ 1
key

þ xey

jwþ zey
; ð8:42Þ

where

xey ¼
�spey

e0k2
ey

; ð8:43aÞ

zey ¼
speykey þ aeyk2

ey

e0k2
ey

: ð8:43bÞ

Using (8.42) in (8.40) yields

jwexEx þ se
xEx ¼ 1

key

@Hz

@y
þ xey

jwþ zey

@Hz

@y
� 1
kez

@Hy

@z
� xez

jwþ zez

@Hy

@z
: ð8:44Þ
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When (8.44) is transformed to time domain, the following convolution is obtained for the
second term on the right-hand side:

xey

jwþ zey

@Hz

@y
) xeye�zeyt � @Hz

@y
ð8:45Þ

Direct convolution is costly if programmed as is, however recursive convolution makes
the convolution computationally convenient. Thus, the discrete recursive convolution is
proposed to handle this convolution, hence the CPML is used as shown in the previous
sections.

An alternate approach can be developed as follows. One can notice that the term in (8.45)
is an additional term in (8.44). We can denote this additional term as

yexy ¼
xey

jwþ zey

@Hz

@y
; ð8:46Þ

the same way as shown in (8.10) or (8.16). In discrete time, this additional term yexy has to
be calculated at every time step and added to the Enþ1

x as in (8.16).
Equation (8.46) can be arranged as

jwyexy þ zeyyexy ¼ xey
@Hz

@y
; ð8:47Þ

and transformed to time domain as

@

@t
yexy þ zeyyexy ¼ xey

@Hz

@y
: ð8:48Þ

One should notice that when representing (8.44) in discrete time domain the time deriva-
tive of Ex will be expressed in terms of finite difference about the time instant n þ 0:5ð ÞDt,
therefore the value of ynþ0:5

exy is needed to be added to the future value of Enþ1
x in the final

updating equation. It is also important to decide on the finite difference approximation for the
partial derivative of time in (8.48) when transforming to discrete time domain. One choice is
to use backward difference with n þ 0:5 being the reference, as done in [28], and obtain

ynþ0:5
exy � yn�0:5

exy

Dt
þ zeyynþ0:5

exy ¼ xey

Dy
Hnþ0:5

z i; j; kð Þ � Hnþ0:5
z i; j � 1; kð Þ� 	

; ð8:49Þ

which can be rearranged such that

ynþ0:5
exy i; j; kð Þ ¼ beyyn�0:5

exy i; j; kð Þ þ aey Hnþ0:5
z i; j; kð Þ � Hnþ0:5

z i; j � 1; kð Þ� 	
; ð8:50Þ

where

bey ¼ 1

1 þ Dtzey

� 	 ; ð8:51aÞ

aey ¼
Dtxey

Dy

1

1 þ Dtzey

� 	 : ð8:51bÞ

274 CHAPTER 8 ● Advanced PML formulations



The terms bey and aey can be written in open form as

bey ¼ e0key

e0key þ Dt spey þ aeykey

� 	 ; ð8:52aÞ

aey ¼ �speyDt

keyDy e0key þ Dt spey þ aeykey

� 	� 	 : ð8:52bÞ

The form of the equation to update ynþ0:5
exy at every time step of the FDTD time-marching

loop is derived through the ADE approach as (8.50), which is the same as (8.21) that is
derived through the discrete convolution approach; the difference is in the terms bey and aey.

8.8.2 MATLAB‡ implementation of the ADE-PML formulation

As illustrated, the only difference between the CPML and the ADE-PML is the terms bei, aei,
bmi and ami, and besides that everything is the same. Since the MATLAB implementation of
CPML is already available, as discussed in Section 8.4, it only requires to redefine these terms
following (8.52) to convert a CPML code to ADE-PML code. For instance, the associated
one-dimensional arrays are defined as cpml_b_ex_xn, cpml_a_ex xn, cpml_b_mx_xn,
and cpml_a_mx_xn, respectively, on lines 26–34 in Listing 8.4 for the xn boundary of the
problem space. These lines can be modified as shown in Listing 8.21 to obtain the ADE-PML
code. Here the one-dimensional arrays are renamed to reflect the ADE-PML as ade_pml_b_
ex_xn, ade_pml_a_ex xn, ade_pml_b_mx_xn, and ade_pml_a_mx_xn.

8.9 Exercises

8.1 Consider the quarter-wave transformer circuit in Section 6.3.1. Remove the absorbers
from the circuit, and use 8 cells thick CPML boundaries instead. Leave 5 cells air gap
between the substrate and the CPML on the xn, xp, yn, and yp sides. Leave 10 cells air
gap on the zp side. The geometry of the problem is illustrated in Figure 8.20 as a
reference. Run the simulation, obtain the S-parameters of the circuit, and compare the
results with those shown in Section 6.3.1.

8.2 Consider the quarter-wave transformer circuit in Exercise 8.1. Redefine the CPML
absorbing boundary condition (ABC) such that the substrate penetrates into the CPML
on the xn and xp sides. The geometry of the problem is illustrated in Figure 8.21. Run
the simulation, obtain the S-parameters of the circuit, and compare the results with
those you obtained for Exercise 8.1.

Listing 8.21 initialize_ADE_PML_ABC.m

    %  d e fi n e  o n e - d i m e n s i o n a l  a d e _ p m l  p a r a m e t e r  a r r a y s  
    a d e _ p m l _ b _ e x _ x n  =  ( e p s _ 0 * k a p p a _ e x _ x n )  . . .
        . / ( e p s _ 0 * k a p p a _ e x _ x n + d t * ( s i g m a _ p e x _ x n + a l p h a _ e x _ x n . * k a p p a _ e x _ x n ) ) ;  
    a d e _ p m l _ a _ e x _ x n  =  ( - d t * s i g m a _ p e x _ x n ) . / ( d y * k a p p a _ e x _ x n  . . .
  . *  ( e p s _ 0 * k a p p a _ e x _ x n + d t * ( s i g m a _ p e x _ x n + a l p h a _ e x _ x n . * k a p p a _ e x _ x n ) ) ) ;  
    a d e _ p m l _ b _ m x _ x n  =  ( m u _ 0 * k a p p a _ m x _ x n )  . . .
        . / ( m u _ 0 * k a p p a _ m x _ x n + d t * ( s i g m a _ p m x _ x n + a l p h a _ m x _ x n . * k a p p a _ m x _ x n ) ) ;  
    a d e _ p m l _ a _ m x _ x n  =  ( - d t * s i g m a _ p m x _ x n ) . / ( d y * k a p p a _ m x _ x n  . . .
  . *  ( m u _ 0 * k a p p a _ m x _ x n + d t * ( s i g m a _ p m x _ x n + a l p h a _ m x _ x n . * k a p p a _ m x _ x n ) ) ) ;  
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8.3 Consider the microstrip line circuit in Section 8.5.3. In this example, the performance
of the CPML is not examined numerically. We need a reference case to examine the
CPML performance. Extend the length of the circuit twice on the yp side, and change
the boundary type on that side to PEC such that the microstrip line is touching the PEC
boundary. The geometry of the problem is illustrated in Figure 8.22. Run the simula-
tion a number of time steps such that the reflected pulse from the PEC termination will
not be observed at the sampled voltage. This simulation result serves as the reference
case since it does not include any reflected signals as if the microstrip line is infinitely
long. Compare the sampled voltage that you obtained from the circuit in Section 8.5.3
with the reference case. The difference between the sampled voltage magnitudes is the
reflection. Find the maximum value of the reflection.

8.4 In Exercise 8.3 you constructed a reference case for examining the CPML perfor-
mance. Change the thickness of the CPML to 5 cells on the yp side in the microstrip

z y

x

Figure 8.21 The problem space for the quarter-wave transformer with the substrate penetrating
into the CPML boundaries on the xn and xp sides.

z
x y

Figure 8.20 The problem space for the quarter-wave transformer with CPML boundaries on the
xn, xp, yn, yp, and zp sides.
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line circuit in Section 8.5.3. Run the simulation, and then calculate the reflected voltage
as described in Exercise 8.3. Examine whether the reflection increases or decreases.
Then repeat the same exercise by increasing the CPML thickness to 10 cells. Examine
whether the reflection increases or decreases.

8.5 The CPML parameters sfactor, kmax, amax, amin, and npml used in the example in
Section 8.5.3 are not necessarily the optimum parameters for the CPML performance.
Change the values of some of these parameters, and examine whether the reflections
from the 8 cell thick CPML boundary increases or decreases. For instance, try
sfactory ¼ 1.5, kmax ¼ 11, amin ¼ 0, amax ¼ 0.02, and npml ¼ 3.

z
y
x

Figure 8.22 The microstrip line reference case.
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CHAPTER 9

Near-field to far-field
transformation

In previous chapters, the finite-difference time-domain (FDTD) method is used to compute
electric and magnetic fields within a finite space around an electromagnetic object (i.e., the
near-zone electromagnetic fields). In many applications, such as antennas and radar cross-
section, it is necessary to find the radiation or scattered fields in the region that is far away
from an antenna or scatterer. With the FDTD technique, the direct evaluation of the far field
calls for an excessively large computational domain, which is not practical in applications.
Instead, the far-zone electromagnetic fields are computed from the near-field FDTD data
through a near-field to far-field (NF–FF) transformation technique [1].

A simple condition for the far field is defined as follows:

kR � 1 ) 2pR

l
� 1; ð9:1Þ

where R is the distance from radiator to the observation point, k is the wavenumber in free
space, and l is the wavelength. For an electrically large antenna such as a parabolic reflector,
the aperture size D is often used to determine the far-field condition [29]:

r >
2D2

l
; ð9:2Þ

where r is the distance from the center of the antenna aperture to the observation point. In the
far-field region, the electromagnetic field at an observation point (r, q, f) can be expressed
as

!
Eðr; q; fÞ ¼ e� jkr

4pr

!
Fðq; fÞ; ð9:3aÞ

!
H ¼ r̂ �

!
E

h0
; ð9:3bÞ

where h0 is the wave impedance of free space, and
!
Fðq; fÞ is a term determining the angular

variations of the far-field pattern of the electric field. Thus, the radiation pattern of the
antenna is only a function of the angular position (q, f) and is independent of the distance r.
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In general, the near-field to far-field transformation technique is implemented in a two-
step procedure. First, an imaginary surface is selected to enclose the antenna, as shown in
Figure 9.1. The currents

!
J and

!
M on the surface are determined by the computed

!
E and

!
H

fields inside the computational domain. According to the equivalence theorem, the radiation
field from the currents is equivalent to the radiation field from the antenna. Next, the vector
potentials

!
A and

!
F are used to compute the radiation fields from the equivalent currents

!
J and

!
M: The far-field conditions are used in the derivations to obtain the appropriate

analytical formulas.
Compared with the direct FDTD simulation that requires a mesh extending many

wavelengths from the object, a much smaller FDTD mesh is needed to evaluate the
equivalent currents

!
J and

!
M: Thus, it is much more computationally efficient to use this

near-field to far-field transformation technique.
According to different computation objectives, the transformation technique can be

applied in both the time and frequency domains, as shown in Figure 9.2. When transient or
broadband frequency-domain results are required at a limited number of observation angles,
the left path in Figure 9.2 is adopted. For these situations, the time-domain transformation is
used and the transient far-zone fields at each angle of interest are stored while updating the
field components [30,31].

In contrast, when the far fields at all observation angles are required for a limited number
of frequencies, the right path in Figure 9.2 is adopted. For each frequency of interest a
running discrete Fourier transform (DFT) of the tangential fields (surface currents) on a
closed surface is updated at each time step. The complex frequency-domain currents
obtained from the DFT are then used to compute the far-zone fields at all observation angles
through the frequency-domain transformation.

This chapter is organized as follows. First, the surface equivalence theorem is discussed,
and the equivalent currents

!
J and

!
M are obtained from the near-field FDTD data. Then the

important radiation formulas are presented to calculate the far fields from the equivalent
currents. The implementation procedure is illustrated with full details. Finally, two antenna
examples are provided to demonstrate the validity of the near- to far-field technique.

Surround the object by 
an imaginary surface

Define fictitious electric 
and magnetic currents

J
M

Equivalence principle

Figure 9.1 Near-field to far-field transformation technique: equivalent currents on an imaginary
surface.
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9.1 Implementation of the surface equivalence theorem

9.1.1 Surface equivalence theorem

The surface equivalence theorem was introduced in 1936 by Sckelkunoff [32] and is now
widely used in electromagnetic and antenna problems [33]. The basic idea is to replace the
actual sources such as antennas or scatterers with fictitious surface currents on a surrounding
closed surface.

Within a specific region, the fields generated by the fictitious currents represent the
original fields.

Figure 9.3 illustrates a typical implementation of the surface equivalent theorem. Assume
that fields generated by an arbitrary source are ð !

E;
!
H Þ. An imaginary surface S is selected to

enclose all the sources and scattering objects, as shown in Figure 9.3(a). Outside the surface
S is only free space. An equivalent problem is set up in Figure 9.3(b), where the fields
outside the surface S remain the same but inside the surface S are set to zero. It is obvious
that this setup is feasible because the fields satisfy Maxwell’s equations both inside and
outside the surface S. To comply with the boundary conditions on the surface, equivalent
surface currents must be introduced on S:

!
JS ¼ n̂ � !

H
out � !

H
in

� �
¼ n̂ � !

H ; ð9:4aÞ
!
M S ¼ �n̂ � !

E
out � !

E
in

� �
¼ �n̂ � !

E: ð9:4bÞ

It is worthwhile to emphasize that Figures 9.3(a) and 9.3(b) have the same fields outside
the surface S but different fields inside the surface S.

Currents (J, M) in 
time domain

Currents (J, M) in
frequency domain at
a specific frequency

DFT

Far field at a selected number
of observation points, but for
all valid frequencies

Far field at all observation
angles for selected number of
frequencies

Transformation ofTransformation of
(J, M) (E, H)

J

M

DFT

(J, M)          (E, H) 

Figure 9.2 Two paths of the near-field to far-field transformation technique are implemented to
achieve different computation objectives.
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If the field values on the surface S in the original problem Figure 9.3(a) can be
accurately obtained by some means, the surface currents in Figure 9.3(b) can be determined
from (9.4). Then the fields at any arbitrary far observation point in Figure 9.3(b) can be
readily calculated from the vector potential approach. Based on the uniqueness theorem,
the computed fields are the only solution of the problem in Figure 9.3(b). According to the
relations between Figures 9.3(a) and 9.3(b), the computed fields outside the surface S are
also the solution for the original problem.

The implementation of the surface equivalence theorem simplifies the far-field
calculation. In the original Figure 9.3(a) problem, materials with different permittivities
and permeabilities may exist inside the surface S. Thus, a complex Green’s function needs
to be derived to calculate the radiating field. In the problem in Figure 9.3(b), the fields
inside the surface are zero, and the permittivity and permeability can be set the same as the
outside free space. Hence, the simple free space Green’s function is used to compute the
radiating field.

9.1.2 Equivalent surface currents in FDTD simulation

From the previous discussion, it is clear that the key point of the equivalence theorem
implementation is to accurately obtain the equivalent currents on the imaginary surface S. In
the FDTD simulation, the surface currents can be readily computed from the following
procedure.

First, a closed surface is selected around the antennas or scatterers, as shown in
Figure 9.4. The selected surface is usually a rectangular box that fits the FDTD grid. It is set
between the analyzed objects and the outside absorbing boundary. The location of the box
can be defined by two corners: lowest coordinate (li, lj, lk) corner and upper coordinate
(ui, uj, uk) corner. It is critical that all the antennas or scatterers must be enclosed by this
rectangular box so that the equivalent theorem can be implemented. It is also important to
have this box in the air buffer area between all objects and the first interface of the absorbing
boundary.

Once the imaginary closed surface is selected, the equivalent surface currents are
computed next. There are six surfaces of the rectangular box, and each surface has four

S

scatterers
and sources

E, H

(a)

E = 0,

H = 0.

ˆJs = n × H
S

E, H

n̂

(b)

Ms = −n × Êˆ

Figure 9.3 Surface equivalence theorem: (a) original problem and (b) equivalent problem for
region outside S.
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scalar electric and magnetic currents, as shown in Figure 9.5. For the top surface, the normal
direction is ẑ: From (9.4), the equivalent surface currents are calculated as

!
J S ¼ ẑ � !

H ¼ ẑ � x̂Hx þ ŷHy þ ẑHzÞ ¼ � x̂Hy þ ŷHx;
� ð9:5aÞ

!
M S ¼ �ẑ � !

E ¼ �ẑ � x̂Ex þ ŷEy þ ẑEzÞ ¼ x̂Ey � ŷEx:
� ð9:5bÞ

FDTD computational domain

Imaginary closed surface

Scatterer or antenna

(li, lj, lk)

(ui, uj, uk)

x

y
z

Figure 9.4 An imaginary surface is selected to enclose the antennas or scatterers.

x y

z

face zp ⇒ Jx, Jy, Mx, My

face yn ⇒ Jx, Jz, Mx, Mz

face xp ⇒ Jy, Jz, My, Mz

face zn ⇒ Jx, Jy, Mx, My

face yp ⇒ Jx, Jz, Mx, Mz

face xn ⇒ Jy, Jz, My, Mz

Imaginary closed surface

Figure 9.5 Equivalent surface currents on the imaginary closed surface.
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Thus, the scalar surface currents can be obtained:

!
JS ¼ x̂J x þ ŷJ y ) J x ¼ �Hy; Jy ¼ Hx; ð9:6aÞ
!
M S ¼ x̂Mx þ ŷMy ) Mx ¼ Ey; My ¼ �Ex: ð9:6bÞ

Note that the E and H fields used in (9.6) are computed from the FDTD simulation. For a
time-domain far-field calculation, the time-domain data are used directly. For a frequency-
domain far-field calculation, a DFT needs to be carried out to obtain the desired frequency
components of the fields.

Similar methodology is used to obtain the surface currents on the other five surfaces. On
the bottom surface,

!
JS ¼ x̂J x þ ŷJ y ) Jx ¼ Hy; Jy ¼ �Hx; ð9:7aÞ
!
M S ¼ x̂Mx þ ŷMy ) Mx ¼ �Ey; My ¼ Ex: ð9:7bÞ

On the left surface,

!
JS ¼ x̂J x þ ẑJ z ) Jx ¼ �Hz; Jz ¼ Hx; ð9:8aÞ
!
M S ¼ x̂Mx þ ẑMz ) Mx ¼ Ez; Mz ¼ �Ex: ð9:8bÞ

On the right surface,

!
JS ¼ x̂J x þ ẑJ z ) Jx ¼ Hz; J z ¼ �Hx; ð9:9aÞ
!
M S ¼ x̂Mx þ ẑMz ) Mx ¼ �Ez; Mz ¼ Ex: ð9:9bÞ

On the front surface,

!
JS ¼ ŷJ y þ ẑJ z ) Jy ¼ �Hz; Jz ¼ Hy; ð9:10aÞ
!
M S ¼ ŷMy þ ẑMz ) My ¼ Ez; Mz ¼ �Ey: ð9:10bÞ

On the back surface,

!
JS ¼ ŷJ y þ ẑJ z ) Jy ¼ Hz; Jz ¼ �Hy; ð9:11aÞ
!
M S ¼ ŷMy þ ẑMz ) My ¼ �Ez; Mz ¼ Ey: ð9:11bÞ

To obtain complete source currents for the far-field calculation, (9.6)–(9.11) must be
calculated at every FDTD cell on the equivalent closed surface. It is preferable that the
magnetic and electric currents should be located at the same position, namely, the center of
each Yee’s cell surface that touches the equivalent surface S. Because of the spatial offset
between the components of the E and H field locations on Yee’s cell, averaging of the field
components may be performed to obtain the value of the current components at the center
location. The obtained surface currents are then used to compute the far-field pattern in the
next section.
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9.1.3 Antenna on infinite ground plane

It was mentioned earlier that the imaginary surface must surround all the scatterers or
antennas so that the equivalent currents radiate in a homogeneous medium, usually free
space. For many antenna applications, the radiator is mounted on a large or infinite ground
plane. In this situation, it is impractical to select a large surface to enclose the ground plane.
Instead, the selected surface that encloses the radiator lies on top of the ground plane, and the
ground plane effect is considered using image theory, as shown in Figure 9.6. The image
currents have the same direction for horizontal magnetic current and vertical electric current.
In contrast, the image currents flow along the opposite direction for horizontal electric
current and vertical magnetic currents. This arrangement is valid for ground planes simu-
lating infinite perfect electric conductor (PEC).

9.2 Frequency domain near-field to far-field transformation

In this section, the obtained equivalent surface currents are used to calculate the far-field
radiation patterns. Antenna polarization and radiation efficiency are also discussed.

9.2.1 Time-domain to frequency-domain transformation

This section focuses on the frequency-domain far-field calculation. For the time-domain
analysis, readers are suggested to study [30, 31]. The first thing in the frequency-domain
calculation is to convert the time-domain FDTD data into frequency-domain data using the
DFT. For example, the surface current Jy in (9.6) can be calculated as follows:

J yðu; v; w; f1Þ ¼ Hxðu; v; w; f1Þ ¼
XNsteps

n¼1

Hxðu; v; w; nÞe�j2pf1nDtDt: ð9:12Þ

Here (u, v, w) is the index for the space location, and n is the time step index. Nsteps is the
maximum number of the time steps used in the time-domain simulation. Similar formulas
can be applied in calculating other surface currents in (9.6)–(9.11). Therefore, the frequency-
domain patterns are calculated after all the time steps of the FDTD computation is finished.
For a cubic imaginary box with N � N cells on each surface, the total required storage size
for the surface currents is 4 � 6 � N2. Note that the frequency-domain data in (9.12) have
complex values.

Ground plane

Imaginary
closed surface

Imaginary
closed surface

Image

Figure 9.6 An imaginary closed surface on an infinite PEC ground plane using the image theory.
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If radiation patterns at multiple frequencies are required, a pulse excitation is used in the
FDTD simulation. For each frequency of interest, the DFT in (9.12) is performed with the
corresponding frequency value. One round of FDTD simulation is capable to provide surface
currents and radiation patterns at multiple frequencies.

9.2.2 Vector potential approach

For radiation problems, a vector potential approach is well developed to compute the
unknown far fields from the known electric and magnetic currents [33]. A pair of vector
potential functions is defined as

!
A ¼ m0e�jkR

4pR

!
N ; ð9:13aÞ

!
F ¼ e0e�jkR

4pR

!
L; ð9:13bÞ

where

!
N ¼

Z
S

!
J Se�jkr0cosðyÞdS0; ð9:14aÞ

!
L ¼

Z
S

!
M Se�jkr0cosðyÞdS0: ð9:14bÞ

As illustrated in Figure 9.7, the vector !r ¼ rr̂ denotes the position of the observation point
(x, y, z), whereas the vector !r 0 ¼ r0r̂ 0 denotes the position of source point (x0, y0, z0) on
the surface S. The vector

!
R ¼ RR̂ is between the source point and the observation point, and

x

y

z

ψ

→r
→r '

→
REquivalent surface

Observation
point

(x', y', z')
(x, y, z)

Figure 9.7 The equivalent surface current source and far field.
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the angle y represents the angle between !r and !r 0. In the far-field calculation, the distance R
is approximated by

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðr0Þ2 � 2rr0 cosðyÞ

q
¼ r � r0 cosðyÞ

r
for the phase term
for the amplitude term

�
ð9:15Þ

The computation of the components of E and H in the far fields can then be obtained
using the vector potentials, which are expressed as

Er ¼ 0; ð9:16aÞ

Eq ¼ � jke�jkr

4pr
Lf þ h0Nq
� �

; ð9:16bÞ

Ef ¼ þ jke�jkr

4pr
Lq � h0Nf
� �

; ð9:16cÞ

Hr ¼ 0; ð9:16dÞ

Hq ¼ þ jke�jkr

4pr
Nf � Lq

h0

� 	
; ð9:16eÞ

Hf ¼ � jke�jkr

4pr
Nq þ Lf

h0

� 	
: ð9:16fÞ

When the closed surface S is chosen as in Figure 9.4, the equivalent surface currents are
computed based on (9.6)–(9.11), and the DFT in (9.12) is performed to obtain frequency-
domain components; the auxiliary functions N and L are calculated as

Nq ¼
Z

S
Jx cosðqÞ cosðfÞ þ Jy cosðqÞ sinðfÞ � J z sinðqÞ� �

e jkr0cosðyÞdS0; ð9:17aÞ

Nf ¼
Z

S
�Jx sinðfÞ þ J y cosðfÞ� �

e jkr0cosðyÞdS0; ð9:17bÞ

Lq ¼
Z

S
Mx cosðqÞ cosðfÞ þ My cosðqÞ sinðfÞ � Mz sinðqÞ� �

e jkr0cosðyÞdS0; ð9:17cÞ

Lf ¼
Z

S
�Mx sinðfÞ þ My cosðfÞ� �

e jkr0cosðyÞdS0: ð9:17dÞ

Substituting (9.17) into (9.16), the far-field pattern can be obtained at any observation point
(r, q, f).

9.2.3 Polarization of radiation field

The E and H fields calculated in (9.16) are linearly polarized (LP) components. In some
antenna applications such as satellite communications, it is desired to obtain circularly
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polarized (CP) field components. This can be done through unit vector transformations
between LP and CP components, such that

q̂ ¼ q̂ � j
f̂
2
þ q̂ þ j

f̂
2
¼ ÊRffiffiffi

2
p þ ÊLffiffiffi

2
p ; ð9:18aÞ

f̂ ¼ q̂ þ j
f̂
2j

� q̂ � j
f̂
2j

¼ ÊL

j
ffiffiffi
2

p � ÊR

j
ffiffiffi
2

p ; ð9:18bÞ

where ÊR and ÊL are unit vectors for the right-hand circularly polarized (RHCP) field and
left-hand circularly polarized (LHCP) field. Substituting (9.18) into (9.16), we obtain

!
E ¼ q̂Eq þ f̂Ef ¼ ÊRffiffiffi

2
p þ ÊLffiffiffi

2
p

 !
Eq þ ÊL

j
ffiffiffi
2

p � ÊR

j
ffiffiffi
2

p
 !

Ef

¼ ÊR
Eqffiffiffi

2
p � Ef

j
ffiffiffi
2

p
� 	

þ ÊL
Eqffiffiffi

2
p þ Ef

j
ffiffiffi
2

p
� 	

¼ ÊRER þ ÊLEL;

ER ¼ Eqffiffiffi
2

p � Ef

j
ffiffiffi
2

p ; ð9:19Þ

EL ¼ Eqffiffiffi
2

p þ Ef

j
ffiffiffi
2

p : ð9:20Þ

The magnitudes of the RHCP component (ER) and the LHCP component (EL) are then
obtained. The axial ratio is defined to describe the polarization purity of the propagating
waves and is calculated as follows [33]:

AR ¼ � jER j þ jEL j
jER j � jEL j : ð9:21Þ

For an LP wave, AR goes to infinity. For an RHCP wave AR ¼ �1 and for an LHCP wave
AR ¼ 1. For a general elliptically polarized wave, 1 � |AR| � ?. Other expressions for
direct computation of the AR from the far-field components Eq and Ef are given in [34]:

AR ¼ 20 log10

1
2

E2
f þ E2

q þ E4
q þ E4

f þ 2E2
qE2

f cosð2dÞ
h i1

2

� 	
 �1
2

1
2

E2
f þ E2

q þ E4
q þ E4

f � 2E2
qE2

f cosð2dÞ
h i1

2

� 	
 �1
2

0
BBB@

1
CCCA; ð9:22Þ

and in [35]

AR ¼ 20 log10
jEf j2sin2ðtÞ þ jEq j2cos2ðtÞ þ jEf jjEq jcosðdÞsinð2tÞ
jEf j2sin2ðtÞ þ jEq j2cos2ðtÞ � jEf jjEq jcosðdÞsinð2tÞ

 !
; ð9:23Þ

where

2t ¼ tan�1 2jEf jjEq jcosðdÞ
jEq j2 � jEfj2

 !
;

and d is the phase difference between Eq and Ef.
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9.2.4 Radiation efficiency

The radiation efficiency is a very important indication for the effectiveness of an antenna,
which can also be obtained using the FDTD technique. First of all, the radiation power of an
antenna is obtained by applying the surface equivalence theorem to obtain

Prad ¼ 1
2

Re

Z
S

!
E � !

H
� � n̂dS0

� �
¼ 1

2
Re

Z
S

!
J � � !

M � n̂dS0
� �

: ð9:24Þ

The delivered power to an antenna is determined by the product of the voltage and current
provided from the voltage source and can be expressed as

Pdel ¼ 1
2

Re VsðwÞI�s ðwÞ

 �

; ð9:25Þ

where Vs(w) and Is(w) represent the Fourier transformed values of the source voltage and
current. The antenna’s radiation efficiency ha is then defined as [36]:

ha ¼ Prad

Pdel
: ð9:26Þ

9.3 MATLAB‡ implementation of near-field
to far-field transformation

In this section we demonstrate the implementation of near-field to far-field transformation in
the three-dimensional FDTD MATLAB code.

9.3.1 Definition of NF–FF parameters

The implementation of the CPML boundary in the three-dimensional code is demonstrated in
Chapter 8. The availability of CPML makes it possible to simulate open boundary problems;
the electric and magnetic fields in a problem space can be calculated as if the boundaries are
free space extending to infinity. Moreover, the near-field to far-field transformation techni-
que described in the previous section can be used to compute the far-field patterns for a
number of frequencies. The desired frequencies as well as some other parameters for far-
field radiation are defined in the definition section of the FDTD program. The definition
of certain NF–FF transformation parameters is implemented in the subroutine define_
output_parameters, partial implementation of which is shown in Listing 9.1.

In Listing 9.1, a structure named farfield is defined with a field frequencies, which is
initialized as an empty array. Then the frequencies for which the far-field patterns are sought
are assigned to the array farfield.frequencies. Another variable for farfield that needs to be
initialized is number_of_cells_from_outer_boundary, which indicates the position of the
imaginary NF–FF transformation surface enclosing the radiators or scatterers existing in the
problem space. This imaginary surface must not coincide with any objects in the problem
space or with the CPML boundaries. Therefore, number_of_cells_from_outer_boundary
should be chosen such that it is larger than the thickness of the CPML medium and less than
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the sum of the thicknesses of the CPML medium and the air gap surrounding the objects as
illustrated in Figure 9.4. This parameter is used to determine the nodes (li, lj, lk) and (ui, uj, uk)
indicating the boundaries of the imaginary surface in Figure 9.4.

9.3.2 Initialization of NF–FF parameters

A new subroutine, initialize_farfield_arrays, is added to the main FDTD program
fdtd_solve as shown in Listing 9.2. Implementation of initialize_farfield_arrays is given in
Listing 9.3.

The first step in the NF–FF initialization process is to determine the nodes indicating
the boundaries of the imaginary NF–FF surface: (li, lj, lk) and (ui, uj, uk). Once the start
and end nodes are determined they are used to construct the NF–FF auxiliary arrays. Two
sets of arrays are needed for the NF–FF transformation: The first set is used to capture and
store the fictitious electric and magnetic currents on the faces of the imaginary surface at
every time step of the FDTD time-marching loop, and the second set is used to store the
on-the-fly DFTs of these currents. The naming conventions of these arrays are elaborated
as follows.

There are six faces on the imaginary surface, and the fictitious electric and magnetic currents
are calculated for each face. Therefore, 12 two-dimensional arrays are needed. The names of
these arrays start with the letter ‘‘t,’’ which is followed by a letter ‘‘j’’ or ‘‘m.’’ Here ‘‘j’’ indicates
the electric current whereas ‘‘m’’ indicates the magnetic current being stored in the array.

Listing 9.1 define_output_parameters
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Listing 9.2 fdtd_solve

Listing 9.3 initialize_farfield_arrays
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The third character in the array name is a letter ‘‘x,’’ ‘‘y,’’ or ‘‘z,’’ which indicates the direction
of the current in consideration. The last two characters are ‘‘xn,’’ ‘‘yn,’’ ‘‘zn,’’ ‘‘xp,’’ ‘‘yp,’’ or
‘‘zp’’ indicating the face of the imaginary surface with which the array is associated. These
arrays are four-dimensional, though they are effectively two-dimensional. The size of the first
dimension is 1; this dimension is added to facilitate the on-the-fly DFT calculations, as is
illustrated later. The fields are calculated in three-dimensional space and are stored in three-
dimensional arrays. However, it is required to capture the fields coinciding with the faces of
the imaginary surface. Therefore, the sizes of the other three dimensions of the fictitious
current arrays are determined by the number of field components coinciding with imaginary
surface faces.

The fictitious current arrays are used to calculate DFTs of these currents. Then the
currents obtained in the frequency domain are stored in their respective arrays. Thus, each
fictitious current array is associated with another array in the frequency domain. Therefore,
the naming conventions of the frequency-domain arrays are the same as for the ones in time
domain except that they are preceded by a letter ‘‘c.’’ Furthermore, the sizes of the first
dimension of the frequency domain arrays are equal to the number of frequencies for which
the far-field calculation is sought.

One additional parameter defined in Listing 9.3 is farfield_w. Since the far-field frequencies
are used as angular frequencies, with the unit radians/second, during the calculations they are
calculated once and stored in farfield_w for future use.

9.3.3 NF–FF DFT during time-marching loop

While the FDTD time-marching loop is running, the electric and magnetic fields are cap-
tured and used to calculate fictitious magnetic and electric currents using (9.6)–(9.11) on the
NF–FF imaginary surface. A new subroutine called calculate_JandM is added to
run_fdtd_time_marching_loop as shown in Listing 9.4. The implementation of calculate_
JandM is given in Listing 9.5.

One can notice in Listing 9.5 that an average of two electric field components is used
to calculate the value of a fictitious magnetic current component. Here the purpose is
to obtain the values of electric field components at the centers of the faces of the cells
coinciding with the NF–FF surface. For instance, Figure 9.8 illustrates the electric field
components Ex on the yn face of the imaginary NF–FF surface. The Ex components are
located on the edges of the faces of cells coinciding with the NF–FF surface. To obtain an
equivalent Ex value at the centers of the faces of the cells, the average of two Ex compo-
nents are calculated for each cell. Thus, the fictitious magnetic current components Mz

generated by the averaged Ex components using (9.10b) are located at the centers of the
faces of the cells.

Similarly, every fictitious electric current component is calculated at the centers of the
faces of the cells by averaging four magnetic field components. For example, Figure 9.9
illustrates the magnetic field components Hx around the yn face of the imaginary NF–FF
surface. The Hx components are located at the centers of the faces of cells, which are not
coinciding with the NF–FF surface. To obtain equivalent Hx values at the centers of the cell
faces, the average of four Hx components are calculated for each cell. Thus, the fictitious
electric current components Jz generated by the averaged Hx components using (9.10a) are
located at the centers of the cell faces.
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Listing 9.4 run_fdtd_time_marching_loop

Listing 9.5 calculate_JandM
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After the fictitious electric and magnetic currents are sampled on the NF–FF surface at
the current time step, they are used to update the on-the-fly DFTs for the far-field fre-
quencies defined in the subroutine define_output_parameters. For instance, one iteration of
(9.12) is performed at each time step for calculating Jy in frequency domain. Therefore,
when the FDTD time-marching loop is completed, the DFT of Jy is completed together.

(ui, uj, uk)

(ui, lj, uk)

(li, lj, lk)Imaginary surface

y
z

x

Figure 9.8 Ex field components on the yn face of the NF–FF imaginary surface and the
magnetic currents generated by them.
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9.3.4 Postprocessing for far-field calculation

As the FDTD time-marching loop is completed, the frequency-domain values of fictitious
currents for the far-field frequencies over the NF–FF surface are available. Then they can be
used at the postprocessing stage of the FDTD simulation to calculate the far-field auxiliary
fields based on (9.17). Then these fields can be used to calculate the desired far-field patterns
and to plot them.

A new subroutine named calculate_and_display_farfields is added to the postprocessing
routine post_process_and_display_results as shown in Listing 9.6, which performs the tasks
of far-field calculation and display.

Implementation of calculate_and_display_farfields is given in Listing 9.7. This sub-
routine initializes necessary arrays and parameters for calculation and display of far-field
patterns at three principal planes: namely, the xy, xz, and yz planes. For instance, to calculate

Listing 9.6 post_process_and_display_results

(ui, lj, uk)

(li, lj, lk)Imaginary surface

(ui, uj, uk)

y
z

x

Figure 9.9 Hx field components around the yn face of the NF–FF imaginary surface and the
electric currents generated by them.
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Listing 9.7 calculate_and_display_farfields

298 CHAPTER 9 ● Near-field to far-field transformation



9.3 ● MATLAB‡ implementation of near-field to far-field transformation 299



the far-fields in the xy plane, two arrays, farfield_theta and farfield_phi, are constructed to
store the angles that represent the xy plane. For the xy plane E is 90� and f sweeps from
�180� to 180�. Then a function calculate_farfields_per_plane is called to calculate far-field
directivity data at the given angles. These data are plotted using another function polar_
plot_constant_theta. For the xy plane E is a constant value of p/2 radians. For the xz and yz
planes f takes constant values of 0 and p/2 radians, respectively, hence another function,
which is called for plotting patterns in the xz and yz planes is polar_plot_constant_phi. The
implementations of polar_plot_constant_theta and polar_plot_constant_phi are given in
Appendix C.

The near-field to far-field calculations are performed mainly in the function calculate_
farfields_per_plane, implementation of which is given in Listing 9.9.

One of the initial tasks in calculate_farfields_per_plane is the calculation of total radi-
ated power. A subroutine named calculate_radiated_power is called to perform this task.
The total radiated power is stored in the parameter radiated_power, as can be seen in
Listing 9.8. Calculation of radiated power is based on the discrete summation representation
of (9.24).

Before calculating any far-field data, the auxiliary fields Nq, Nf, LE, and Lf need to be
calculated based on (9.17). In (9.17) the parameters E and f are angles indicating the posi-
tion vector of the observation point !r as illustrated in Figure 9.7. The parameters Jx, Jy, Jz,
Mx, My, and Mz are the fictitious currents, which have already been calculated at the center
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points of the faces of the cells coinciding with the NF–FF surface for the given far-field
frequencies. The parameter k is the wavenumber expressed by

k ¼ 2pf
ffiffiffiffiffiffiffiffiffi
m0e0

p
; ð9:27Þ

where f is the far-field frequency under consideration. Yet another term in (9.17) is r0 cos(y),
which needs to be further defined explicitly. As shown in Figure 9.7, r is the position vector
indicating the observation point while r 0 is the position vector indicating the source point.
The term r 0 cos(y) is actually obtained from r 0 � r̂ where r̂ is a unit vector in the direction of r.
The unit vector r̂ can be expressed in Cartesian coordinates as

r̂ ¼ sinðqÞcosðfÞx̂ þ sinðqÞsinðfÞŷ þ cosðqÞẑ: ð9:28Þ

As mentioned already, the vector r 0 is the position vector indicating the source point and
is expressed in terms of source positions. The sources are located at the centers of the faces,
and the source position vectors can be expressed as follows. A position vector for a source
point located on the zn face of the NF–FF surface can be expressed as

r 0 ¼ ðmi þ 0:5 � ciÞDxx̂ þ ðmj þ 0:5 � cjÞDyŷ þ ðlk � ckÞDzẑ; ð9:29Þ

Listing 9.8 calculate_radiated_power
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as can be observed in Figure 9.10. Here (ci, cj, ck) is the center node of the problem space,
which is assumed to be the origin for the far-field calculations. The parameters mi and mj
are the indices of the nodes of the faces, which include the sources under consideration. Then
the term r 0 cos(y) in (9.17) can be expressed explicitly using (9.28) and (9.29) as

r0cosðyÞ ¼ r 0 � r̂ ¼ ðmi þ 0:5 � ciÞDx sinðqÞ cosðfÞ
þ ðmj þ 0:5 � cjÞDy sinðqÞ sinðfÞ þ ðlk � ckÞDz cosðqÞ: ð9:30Þ

Similarly, r0 cos(y) can be obtained for the zp face as

r0cosðyÞ ¼ r 0 � r̂ ¼ ðmi þ 0:5 � ciÞDx sinðqÞ cosðfÞ
þ ðmj þ 0:5 � cjÞDy sinðqÞ sinðfÞ þ ðuk � ckÞDz cosðqÞ: ð9:31Þ

The equations in (9.17) are integrations of continuous current distributions over the ima-
ginary surface. However, we have obtained the currents at discrete points. Therefore, these
integrations can be represented by discrete summations. For instance, for the zn and zp faces
(9.17) can be rewritten as

Nq ¼
Xui�1

mi¼li

Xuj�1

mj¼lj

DxDy Jx cosðqÞ cosðfÞ þ Jy cosðqÞ sinðfÞ� �
e jkr0cosðyÞ; ð9:32aÞ

Nf ¼
Xui�1

mi¼li

Xuj�1

mj¼lj

DxDy �J x sinðfÞ þ J y cosðfÞ� �
e jkr0cosðyÞ; ð9:32bÞ
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Figure 9.10 Position vectors for sources on the zn and zp faces.
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Lq ¼
Xui�1

mi¼li

Xuj�1

mj¼lj

DxDy Mx cosðqÞ cosðfÞ þ My cosðqÞ sinðfÞ� �
e jkr0cosðyÞ; ð9:32cÞ

Lf ¼
Xui�1

mi¼li

Xuj�1

mj¼lj

DxDy �Mx sinðfÞ þ My cosðfÞ� �
e jkr0cosðyÞ: ð9:32dÞ

Referring to Figure 9.11 one can obtain r0 cos(y) for the xn and xp faces, respectively, as

r0cosðyÞ ¼ r 0 � r̂ ¼ ðli � ciÞDx sinðqÞ cosðfÞ
þ ðmj þ 0:5 � cjÞDy sinðqÞ sinðfÞ þ ðmk þ 0:5 � ckÞDz cosðqÞ; ð9:33Þ

r0cosðyÞ ¼ r 0 � r̂ ¼ ðui � ciÞDx sinðqÞ cosðfÞ
þ ðmj þ 0:5 � cjÞDy sinðqÞ sinðfÞ þ ðmk þ 0:5 � ckÞDz cosðqÞ; ð9:34Þ

where mj and mk are the indices of the nodes of the faces that include the sources. Then the
summations in 9.32 are expressed in terms of these indices mj and mk as

Nq ¼
Xuj�1

mj¼lj

Xuk�1

mk¼lk

DyDz Jy cosðqÞ sinðfÞ � J z sinðqÞ� �
e jkr0cosðyÞ; ð9:35aÞ

Nf ¼
Xuj�1

mj¼lj

Xuk�1

mk¼lk

DyDz Jy cosðfÞ� �
e jkr0cosðyÞ; ð9:35bÞ

(ui, uj, jk)

(ui, lj, uk)

(ci, cj, ck)

(li, lj, lk)

y
z

x

Figure 9.11 Position vectors for sources on the xn and xp faces.
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Lq ¼
Xuj�1

mj¼lj

Xuk�1

mk¼lk

DyDz My cosðqÞ sinðfÞ � Mz sinðqÞ� �
e jkr0cosðyÞ; ð9:35cÞ

Lf ¼
Xuj�1

mj¼lj

Xuk�1

mk¼lk

DyDz My cosðfÞ� �
e jkr0cosðyÞ: ð9:35dÞ

Similarly, referring to Figure 9.12 r0 cos(y) can be obtained for the yn and yp faces,
respectively, as

r0cosðyÞ ¼ ðmi þ 0:5 � ciÞr 0 � r̂ ¼ Dx sinðqÞ cosðfÞ
þ ðlj � cjÞDy sinðqÞ sinðfÞ þ ðmk þ 0:5 � ckÞDz cosðqÞ; ð9:36Þ

r0cosðyÞ ¼ ðmi þ 0:5 � ciÞr 0 � r̂ ¼ Dx sinðqÞ cosðfÞ
þ ðuj � cjÞDy sinðqÞ sinðfÞ þ ðmk þ 0:5 � ckÞDz cosðqÞ; ð9:37Þ

Then the summations in (9.32) are expressed in terms of these indices mi and mk as

Nq ¼
Xui�1

mi¼li

Xuk�1

mk¼lk

DxDz Jx cosðqÞ cosðfÞ � J z sinðqÞð Þe jkr0cosðyÞ; ð9:38aÞ

Nf ¼
Xui�1

mi¼li

Xuk�1

mk¼lk

DxDz �Jx sinðfÞð Þe jkr0cosðyÞ; ð9:38bÞ
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Figure 9.12 Position vectors for sources on the yn and yp faces.
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Lq ¼
Xui�1

mi¼li

Xuk�1

mk¼lk

DxDz Mx cosðqÞ cosðfÞ � Mz sinðqÞð Þejkr0cosðyÞ; ð9:38cÞ

Lf ¼
Xui�1

mi¼li

Xuk�1

mk¼lk

DxDz �Mx sinðfÞð Þejkr0cosðyÞ: ð9:38dÞ

The implementation of the discrete summation just described can be followed in Listing 9.9.
Finally, having obtained the auxiliary fields Nq, Nf, LE, and Lf and the total radiated

power, the far-field directivity data are calculated based on [1] as

Dq ¼ k2

8ph0Prad
jLf þ h0Nq j2; ð9:39aÞ

Df ¼ k2

8ph0Prad
jLq � h0Nf j2: ð9:39bÞ

Listing 9.9 calculate_farfields_per_plane
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9.4 Simulation examples

In the previous sections we discussed the NF–FF transformation algorithm and demonstrated
its implementation in MATLAB programs. In this section we provide examples of antennas
and their simulation results including the radiation patterns.

9.4.1 Inverted-F antenna

In this section an inverted-F antenna is discussed, and its FDTD simulation results are pre-
sented and compared with the published results in [37]. The antenna layout and dimensions
are shown in Figure 9.13; the dimensions are slightly modified compared with the ones in
[37] to have the conductor patches snapped to a 0.4 mm � 0.4 mm grid in the yz plane. The
antenna substrate is 0.787 mm thick and has 2.2 dielectric constant.

The FDTD problem space is composed of cells with Dx ¼ 0.262 mm, Dy ¼ 0.4 mm, and
Dz ¼ 0.4 mm. The boundaries are terminated by an 8 cells thickness convolutional perfectly
matched layer (CPML) and a 10 cells air gap is left between the objects in the problem space
and the CPML boundaries. The definition of the cell sizes, material types, and CPML para-
meters are illustrated in Listing 9.10, and the definition of the geometry is given in Listing 9.11.
The antenna is excited using a voltage source, and a sampled voltage and a sampled current are
defined on and around the voltage source to form an input port. The definitions of the source as
well as the outputs are shown in Listings 9.12 and 9.13, respectively. One can notice in Listing
9.13 that the definition of the NF–FF transformation is part of the define_outputs_parameters
routine. In this example the far-field frequencies are 2.4 and 5.8 GHz. One additional
parameter for the NF–FF transform is the number_of_cells_from_outer_boundary.
The value of this parameter is 13, which means that the imaginary NF–FF surface is 13

xy

z

Dimensions are in mm
Substrate thickness = 0.787 mm
Strip widths = 2.4 mm

er = 2.2

40

24

16

7.6

13.6
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16.4

12.4

Voltage source

Ground

40

Figure 9.13 An inverted-F antenna.
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Listing 9.10 define_problem_space_parameters.m
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Listing 9.11 define_geometry.m
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Listing 9.12 define_sources_and_lumped_elements.m
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Listing 9.13 define_output_parameters.m
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cells away from the outer boundaries, thus 5 cells away from the CPML interface and
residing in the air gap region.

The FDTD simulation of the inverted-F antenna is performed with 7,000 time steps, and
S11 of the input port is calculated. The calculated input reflection coefficient is plotted in
Figure 9.14 and shows a good agreement with the published measurement data in [37].

Furthermore, the directivity patterns are calculated in the xy, xz, and yz plane cuts at 2.4 and
5.8 GHz. These patterns are plotted in Figures 9.15–9.17, respectively. The simulated FDTD
radiation patterns show very good agreement with the published measurement data [37].
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Figure 9.14 Input reflection coefficient of the inverted-F antenna.
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Figure 9.15 Radiation patterns in the xy plane cut: (a) 2.4 GHz and (b) 5.8 GHz.
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9.4.2 Strip-fed rectangular dielectric resonator antenna

In this section, the FDTD simulation of a strip-fed dielectric resonator antenna (DRA) is
discussed [38]. The example antenna is illustrated in Figure 9.18 together with its dimensions.
The rectangular dielectric resonator has dimensions of 14.3 mm, 25.4 mm, and 26.1 mm
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Figure 9.16 Radiation patterns in the xz plane cut: (a) 2.4 GHz and (b) 5.8 GHz.
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Figure 9.17 Radiation patterns in the yz plane cut: (a) 2.4 GHz and (b) 5.8 GHz.
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in x, y, and z directions, respectively, and dielectric constant of 9.8. The resonator stands on a
ground plane and is fed by a strip having 1 mm width and 10 mm height. The antenna is
simulated by a probe feeding. To simulate the probe feeding, a 1 mm gap is left between the
ground plane and the strip, and a voltage source is placed in this gap. Voltage and current
are sampled across and around the voltage source, and they are tied together to form a port.
The boundaries are terminated by an 8 cells thickness CPML, and a 10 cells air gap is left
between the objects in the problem space and the CPML boundaries. The dimensions of a unit
cell are Dx ¼ 0.715 mm, Dy ¼ 0.508 mm, and Dz ¼ 0.5 mm. The definition of the geometry
is described in Listing 9.14, and the definition of the voltage source is shown in Listing 9.15.

PEC boundary
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Figure 9.18 A strip-fed rectangular DRA.

Listing 9.14 define_geometry.m
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The definition of the output parameters is performed in define_output_parameters,
the contents of which are shown in Listing 9.16. The output parameters to be defined are
a sampled voltage, a sampled current, and a port. Furthermore, far-field frequencies
are defined for the NF–FF transformation. The far-field frequencies are 3.5 and 4.3 GHz.

Listing 9.15 define_sources_and_lumped_elements.m

9.4 ● Simulation examples 317



Listing 9.16 define_output_parameters.m
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Similar to the previous example, the value of number_of_cells_from_outer_boundary is 13,
which means that the imaginary NF–FF surface is 13 cells away from the outer boundaries.

The FDTD simulation of the DRA is performed with 10,000 time steps, and S11 of the input
port is calculated. The calculated input reflection coefficient is plotted in Figure 9.19, and it
shows good agreement with the published simulation and measurement data in [38].

Furthermore, the directivity patterns are calculated in the xy, xz, and yz plane cuts at 3.5 and
4.3 GHz. These patterns are plotted in Figures 9.20, 9.21, and 9.22, respectively. The simulated
FDTD radiation patterns show good agreement with the published data as well [38].
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Figure 9.19 Input reflection coefficient of the strip-fed rectangular DRA.
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Figure 9.20 Radiation patterns in the xy plane cut: (a) 3.5 GHz and (b) 4.3 GHz.
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9.5 Exercises

9.1 In this exercise we construct and study the characteristics of a half-wave dipole
antenna. Create a problem space composed of a cubic Yee cell with 0.5 mm size on a
side. Set the boundaries as CPML, and leave 10 cells air gap between the antenna and
the CPML boundaries on all sides. Place a brick of square cross-section with 1 mm
width and 14.5 mm height 0.5 mm above the origin. Place another brick with the same
dimensions 0.5 mm below the origin. Thus, the dipole will be oriented in the z direction
with 1 mm gap between its poles. Place a voltage source with 50 W internal impedance
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Figure 9.21 Radiation patterns in the xz plane cut: (a) 3.5 GHz and (b) 4.3 GHz.
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Figure 9.22 Radiation patterns in the yz plane cut: (a) 3.5 GHz and (b) 4.3 GHz.
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between the poles. Then define a sampled voltage and a sampled current across
and around the voltage source and associate them to a port. The geometry of the
problem is illustrated in Figure 9.23. Run the simulation, and calculate the input
impedance of the antenna using the frequency-domain simulation results. Identify the
resonance frequency of the antenna from the input impedance results. Then rerun the
simulation to calculate the radiation pattern at the resonance frequency.

9.2 Consider the dipole antenna that you constructed in Exercise 9.1. Examine the input
impedance that you calculated, and record the real part of the input impedance at
resonance frequency. Then change the resistance of the voltage source and the port to
the resistance you recorded. Rerun the simulation, and obtain the scattering parameter
(S-parameter) and radiation pattern results. Examine whether the S-parameters and the
radiation patterns have changed.

9.3 In this exercise we try to construct a microstrip rectangular microstrip rectangular patch
antenna. Define a problem space with grid size Dx ¼ 2 mm, Dy ¼ 2 mm, and Dz ¼ 0.95
mm. Place a rectangular brick in the problem space as the substrate of the antenna with
dimensions 60 mm � 40 mm � 1.9 mm and 2.2 dielectric constant. Place a PEC plate as
the ground of the antenna on the bottom side of the substrate covering the entire surface
area. Then place a PEC patch on the top surface of the substrate with 56 mm width and 20
mm length in the x and y directions, respectively. Make sure that the top patch is centered
on the top surface of the substrate. The feeding point to the top patch will be at the center
of one of the long edges of the patch. Place a voltage source with 50 W internal resistance
between the ground plane and the feeding point, define a sampled voltage and a sampled
current on the voltage source, and associate them to a port. The geometry of the problem
is illustrated in Figure 9.24. Run the simulation, and obtain the input reflection coefficient
(S11) of the antenna. Verify that the antenna operates around 4.35 GHz. Then rerun the
simulation to obtain the radiation patterns at the operation frequency.

z

Figure 9.23 A dipole antenna.
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9.4 Consider the microstrip rectangular square patch antenna you constructed in Exercise
9.3. In this configuration the patch feeding is placed right at the center of the edge of
the antenna. In this example the antenna will be fed through a microstrip line. Place a
microstrip line with 6 mm width between the antenna feeding point and the edge of
the substrate. This microstrip line with 6 mm width will simulate a characteristic
impedance of 50 W. Notice that you will need to place the microstrip line off center by
1 mm to have it conforming to the FDTD grid. Move the voltage source, the sampled
voltage, and the sampled current to the edge of the substrate where the microstrip line
is extended. The geometry of the problem is illustrated in Figure 9.25. Run the
simulation, and obtain the input reflection coefficient and the radiation pattern at
the corresponding operating frequency. Does the existence of a feeding line change
the radiation pattern?

z y

x

Voltage source

Figure 9.24 A microstrip patch antenna.

Voltage source

z
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x

Figure 9.25 A microstrip patch antenna with a microstrip line feeding.
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CHAPTER 10

Thin-wire modeling

So far we have assumed that all of the objects in the finite-difference time-domain (FDTD)
problem space conform to the FDTD grid. Some subcell modeling techniques are developed
to model geometries that do not conform to the grid or have dimensions smaller than cell
dimensions. One of the most common such geometries is a thin wire that has a radius less
than a cell size. In this chapter we discuss one of the subcell modeling techniques that is
proposed to model thin wires in FDTD simulations.

There are various techniques proposed for modeling thin wires. However, we discuss the
one proposed in [39], which is based on Faraday’s law contour-path formulation. This model
is easy to understand and to implement in the FDTD program.

10.1 Thin-wire formulation

Figure 10.1 illustrates a thin wire of radius a with its axis coinciding with a field component
Ez(i, j, k) on the FDTD grid. In the given example the radius a is smaller than the x and y cell
dimensions. There are four magnetic field components circulating around Ez(i, j, k): namely,
Hy(i, j, k), Hx(i, j, k), Hy(i – 1, j, k), and Hx(i, j – 1, k) as shown in Figure 10.2. The thin wire
model proposes special updating equations for these magnetic field components. We now
demonstrate the derivation of the updating equation for the component Hy(i, j, k); the deri-
vation of updating equations for other field components follows the same procedure.

Figure 10.1 shows the magnetic field component Hy(i, j, k) and four electric field
components circulating around Hy(i, j, k). Faraday’s law given in integral form as

�m
Z

S

@
!
H

@t
: d

!
s ¼

I
L

!
E � d

!
l ð10:1Þ

can be applied on the enclosed surface shown in Figure 10.1 to establish the relation between
Hy(i, j, k) and the electric field components located on the boundaries of the enclosed sur-
face. Before utilizing (10.1) it should be noted that the variation of the fields around the thin
wire is assumed to be a function of 1/r, where r represents the distance to the field position
from the thin-wire axis [39]. In more explicit form Hy can be expressed as

HyðrÞ ¼ Hy0

r
; ð10:2Þ
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and, similarly, Ex can be expressed as

ExðrÞ ¼ Ex0

r
; ð10:3Þ

where Hy0 and Ex0 are constants. In Figure 10.1 one can observe that the field components
Hy(i, j, k), Ex(i, j, k), and Ex(i, j, k þ 1) are located at r ¼ Dx/2. For instance,

Hy
Dx

2

� �
¼ 2Hy0

Dx
¼ Hyði; j; kÞ: ð10:4Þ
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Figure 10.2 Magnetic field components surrounding the thin wire.
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Figure 10.1 A thin wire with its axis coinciding with Ez(i, j, k) and field components
surrounding Hy(i, j, k).

324 CHAPTER 10 ● Thin-wire modeling



Then

Hy0 ¼ Hyði; j; kÞDx

2
; ð10:5Þ

hence,

HyðrÞ ¼ Hyði; j; kÞDx

2r
: ð10:6Þ

Similarly,

ExðrÞjj;k ¼ Exði; j; kÞDx

2r
; ð10:7Þ

and

ExðrÞjj;kþ1 ¼ Exði; j; k þ 1ÞDx

2r
: ð10:8Þ

Using (10.6), (10.7), and (10.8) in (10.1) one can obtain

� m
Z z¼Dz

z¼0

Z r¼Dx

r¼a

@

@t

Hyði; j; kÞDx

2r
drdz

¼
Z z¼Dz

z¼0
Ezði; j; kÞdz þ

Z z¼0

z¼Dz
Ezði þ 1; j; kÞdz

þ
Z r¼Dx

r¼a

Exði; j; k þ 1ÞDx

2r
dr þ

Z r¼a

r¼Dx

Exði; j; kÞDx

2r
dr: ð10:9Þ

Notice that the electric field should vanish inside the wire; therefore, the integration
limits are from a to Dx. Due to the same reasoning, Ez(i, j, k) is zero as well. Then evaluation
of (10.9) yields

�mDzDx

2
ln

Dx

a

� �
@Hyði; j; kÞ

@t
¼ �DzEzði þ 1; j; kÞ

þ ln
Dx

a

� �
Dx

2
Exði; j; k þ 1Þ � ln

Dx

a

� �
Dx

2
Exði; j; kÞ: ð10:10Þ

After applying the central difference approximation to the time derivative of magnetic
field component and rearranging the terms, one can obtain the new value of Hy(i, j, k) in
terms of other components as

Hnþ1=2
y ði; j; kÞ ¼ Hn�1=2

y ði; j; kÞ þ 2Dt

mDxln Dx
a

� �En
z ði þ 1; j; kÞ

� Dt

mDz
En

xði; j; k þ 1Þ � En
xði; j; kÞ

� �
:

ð10:11Þ

10.1 ● Thin-wire formulation 325



Equation (10.12) can be written in the same form as the general updating equation for Hy

(1.30), such that

H
nþ 1

2
y ði; j; kÞ ¼ Chyhði; j; kÞ � H

n�1
2

y ði; j; kÞ
þ Chyezði; j; kÞ � En

z ði þ 1; j; kÞ � En
z ði; j; kÞ

� �
þ Chyexði; j; kÞ � En

xði; j; k þ 1Þ � En
xði; j; kÞ� �

;

ð10:12Þ

where

Chyhði; j; kÞ ¼ 1;Chyezði; j; kÞ ¼ 2Dt

myði; j; kÞDxln
Dx

a

� � ;

Chyexði; j; kÞ ¼ � Dt

myði; j; kÞDz
:

Then one only need to modify the updating coefficients before the FDTD time-marching

loop according to (10.12) to have H
nþ 1

2
y ði; j; kÞ updated due to a thin wire between nodes

(i, j, k) and (i, j, k þ 1). Furthermore, we have enforced Ez(i, j, k) to be zero. This can be
accomplished similarly by setting the updating coefficients for En

z ði; j; kÞ in (1.28) as zero.
That means Ceze(i, j, k), Cezby(i, j, k), and Cezby(i, j, k) should be assigned zeros before the
FDTD time-marching procedure begins.

As mentioned before, there are four magnetic field components circulating around
En

z ði; j; kÞ as illustrated in Figure 10.2; therefore, all these magnetic field components need
to be updated based on thin-wire modeling. The updating equation for Hy(i, j, k) is given in
(10.11). Similarly, updating equations can be obtained for the other three components as

H
nþ1

2
y ði � 1; j; kÞ ¼ Chyhði � 1; j; kÞ � H

n�1
2

y ði � 1; j; kÞ
þ Chyezði � 1; j; kÞ � En

z ði; j; kÞ � En
z ði � 1; j; kÞ� �

þ Chyexði � 1; j; kÞ � En
xði � 1; j; k þ 1Þ � En

xði � 1; j; kÞ� �
;

ð10:13Þ

where

Chyhði � 1; j; kÞ ¼ 1;Chyezði � 1; j; kÞ ¼ 2Dt

myði � 1; j; kÞDxln
Dx

a

� � ;

Chyexði � 1; j; kÞ ¼ � Dt

myði � 1; j; kÞDz
:

H
nþ 1

2
x ði; j; kÞ ¼ Chxhði; j; kÞ � H

n�1
2

x ði; j; kÞ
þ C hxeyði; j; kÞ � En

yði; j; k þ 1Þ � En
yði; j; kÞ

� �

þ Chxezði; j; kÞ � En
z ði; j þ 1; kÞ � En

z ði; j; kÞ
� �

; ð10:14Þ
where

Chxhði; j; kÞ ¼ 1; Chyeyði; j; kÞ ¼ Dt

mxði; j; kÞDz
;

Chxezði; j; kÞ ¼ � 2Dt

mxði; j; kÞDyln
Dy

a

� � :
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and

H
nþ 1

2
x ði; j � 1; kÞ ¼ Chxhði; j � 1; kÞ � H

n�1
2

x ði; j � 1; kÞ

þ Chxeyði; j � 1; kÞ � En
yði; j � 1; k þ 1Þ � En

yði; j � 1; kÞ
� �

þ Chxezði; j � 1; kÞ � En
z ði; j; kÞ � En

z ði; j � 1; kÞ� �
;

ð10:15Þ

where

Chxhði; j � 1; kÞ ¼ 1; Chxeyði; j � 1; kÞ ¼ Dt

mxði; j � 1; kÞDz
;

Chxezði; j � 1; kÞ ¼ � 2Dt

mxði; j � 1; kÞDyln
Dy

a

� � :

10.2 MATLAB‡ implementation of the thin-wire formulation

Having derived the updating equations for modeling thin wires, these equations can be
implemented in the FDTD program. The first step is the definition of the thin-wire para-
meters. The thin wires are defined as a part of the geometry, and their definition imple-
mentation is provided in the subroutine define_geometry, as shown in Listing 10.1.

Listing 10.1 define_geometry.m
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A new parameter called thin_wires is defined and initialized as an empty structure array.
This parameter is used to hold the respective thin-wire parameter values. It is assumed that
thin wires are aligned parallel to either the x, y, or z axis; therefore, the direction field of
thin_wires is set accordingly. Then other parameters min_x, min_y, min_z, max_x, max_y,
and max_z are assigned values to indicate the position of the thin wire in three-dimensional
space. Since a thin wire is like a one-dimensional object, its length is determined by the
given position parameters, while its thickness is determined by its radius. Therefore, radius
is another field of thin_wires that holds the value of the radius. Although there are six
position parameters, two of these are actually redundant in the current implementation. For
instance, if the thin wire is aligned in the x direction, the parameters min_x, min_y, min_z,
and max_x are sufficient to describe the location of the thin wire. The other two parameters
max_y and max_z are assigned the same values as min_y and min_z as shown in
Listing 10.1.

After the definition process, the initialization process is performed. Since the thin wire is
a new type of geometry that would determine the size of the problem space, necessary codes
must be implemented in the subroutine calculate_domain_size. The code for this task is
shown in Listing 10.2.

The next step in the thin-wire implementation is the initialization of the thin-wire
parameters through the updating coefficients. A new subroutine named initialize_thin_wire_
updating_coefficients is implemented for initialization of the thin-wire updating coeffi-
cients. This subroutine is named initialize_updating_coefficients and is called after the
initialization subroutines for the updating coefficients of other types of objects are called.
The implementation of initialize_thin_wire_updating_coefficients is shown in Listing 10.3.
In this subroutine, the electric and magnetic field coefficients associated with thin wires are
updated based on the equations derived in Section 10.1.

As the updating coefficients associated with the thin wires are updated appropriately,
the implementation of the thin-wire formulation is completed. The thin-wire implementa-
tion only requires an extra preprocessing step. Then during the FDTD time-marching
loop the updating coefficients will manipulate the fields for modeling the thin-wire
behavior.

Listing 10.2 calculate_domain_size.m
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11
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Listing 10.3 initialize_thin_wire_updating_coefficients.m



10.3 Simulation examples

10.3.1 Thin-wire dipole antenna

Simulation of a thin-wire dipole antenna is presented in this section. The problem space is
composed of cells with Dx ¼ 0.25 mm, Dy ¼ 0.25 mm, and Dz ¼ 0.25 mm. The boundaries
are CPML with 8 cells thickness and a 10 cells air gap on all sides. The dipole is composed
of two thin wires having 0.05 mm radius and 9.75 mm length. There is a 0.5 mm gap
between the wires where a voltage source is placed. Figure 10.3 illustrates the problem
geometry. The definition of the geometry is illustrated in Listing 10.4. The definition of the
voltage source is given in Listing 10.5, and the definitions of the output parameters are given
in Listing 10.6. One can notice in Listing 10.6 that a far-field frequency is defined as 7 GHz
to obtain the far-field radiation patterns at this frequency.

The simulation of this problem is performed for 4,000 time steps. The same problem
is simulated using WIPL-D [40], which is a three-dimensional EM simulation software.
Figure 10.4 shows the S11 of the thin-wire antenna calculated by FDTD and WIPL-D. The
magnitude and phase curves show a good agreement. The input impedance of a dipole
antenna is very much affected by the thickness of the dipole wires. The input impedances
obtained from the two simulations are compared in Figure 10.5, and they show very good
agreement over the simulated frequency band from zero to 20 GHz.

Since this is a radiation problem the far-field patterns are also calculated, as indicated
before, at 7 GHz. The directivity patterns are plotted in Figures 10.6, 10.7, and 10.8 for xy,
xz, and yz planes, respectively.

Voltage source

CPML boundaries

Outer boundaries

z

xy

Figure 10.3 A thin-wire dipole antenna.
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Listing 10.4 define_geometry.m

Listing 10.5 define_secources_and_lumped_elements.m
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Listing 10.6 define_output_parameters.m
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Figure 10.5 Input impedance of the thin-wire dipole antenna.
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Figure 10.4 S11 of the thin-wire dipole antenna.
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–20

–10

0

100

30

60

120120

90 90

60

30

150150

180

f = 0°

dB

→
q

←
q

x
→

z↑

xz plane

Dq, f = 7 GHz

Df, f = 7 GHz

Figure 10.7 Radiation pattern in the xz plane cut.

334 CHAPTER 10 ● Thin-wire modeling



10.4 An improved thin-wire model

In this section, we will discuss an improvement on the thin-wire model of [39], discussed in
the previous sections, as presented in [41]. As in [39], the formulation that updates the
magnetic field components circulating around a thin-wire is modified to account for the thin-
wire in [41], albeit with a correction. In this section the formulation by [39] is referred to as
the original thin-wire formulation while the one by [41] is referred to as the improved thin-
wire formulation.

In Section 10.1, the field variation around a thin-wire is assumed to be a function of 1=r as
in (10.2) and (10.3), which follows a static field distribution around a perfect electric conductor
wire. The magnetic field component Hy i; j; kð Þ in Figure 10.1, as calculated using (10.12), is
the point-wise value of the field at the center of the surface S. It is also a constant value of
magnetic field on a circular arc illustrated in Figure 10.9 due to the 1=r dependence assump-
tion. When Hy i; j; kð Þ is used in the update of an electric field as in (1.26) or (1.28), it is
assumed to be an average of Hy along the edge of a rectangular path surrounding the electric
field components, as illustrated in Figure 10.10 for Ez. This is due to the fact that Ampere’s law
is being imposed on a Cartesian grid in FDTD. Since magnetic field is constant on the circular
loop, thus variable on the Cartesian cell edge due to the 1=r dependence, Hy i; j; kð Þ is not an
accurate average value of the field along the edge. As a solution to this contradiction, the
looping magnetic field is projected on the respective cell edge and an average value of Hy that
can be used to update the neighboring electric field components is obtained.
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Figure 10.8 Radiation pattern in the yz plane cut.
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Consider the circular contour on which Hy i; j; kð Þ is constant and the cross-section of a
cell where Dx 6¼ Dy in Figure 10.11(a). Figure 10.11(b) shows the arc between the angles 0
and f0 radians zoomed in. Notice that the constant value of Hy i; j; kð Þ is Hf on the arc while
the magnetic field on the right edge is a function of y as Hy yð Þ. The distance between Hy yð Þ
and the cell center is r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx=2ð Þ2 þ y2

q
. To accurately compute Hy yð Þ, the Hf is to be

wire radius = a

x

y

z

node (i, j, k + 1)

Ez(i, j, k) Hy(i, j, k)

Ex(i, j, k + 1)

Ez(i + 1, j, k)

Ex(i, j, k)

node (i, j, k)

Figure 10.9 Constant magnetic field on a loop circulating around a thin wire.
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)
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de

 (i
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Figure 10.10 A magnetic field component on the edge of a rectangular loop.
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scaled by the factor Dx
2r ¼ Dx=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dx=2ð Þ2þy2
p and then projected on the y axis using

_

f � ŷ ¼ cos f

which then leads to

Hy yð Þ ¼ cos f
Dx=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dx=2ð Þ2 þ y2

q Hf ¼ Dx=2ð Þ2

Dx=2ð Þ2 þ y2
Hf: ð10:16Þ

To find an average value for Hy yð Þ on the right edge, we can integrate Hy yð Þ along the
right edge and divide by Dy as

Hy;avg ¼ 1
Dy

Z Dy=2

y¼�Dy=2
Hy yð Þdy ¼ Hf

Dy

Z Dy=2

y¼�Dy=2

Dx=2ð Þ2

Dx=2ð Þ2 þ y2
dy: ð10:17Þ

The solution of the integral (10.17) yields

Hy;avg ¼ kHyHf ¼ kHyHy i; j; kð Þ; ð10:18Þ

Hy(i, j, k)Δy

Δx

f¢

Hy(i, j, k)

Hy(y)

C1

C2

Hf
r

f¢

2
Δy

2
Δx

(a)

(b)

Figure 10.11 Projection of magnetic field from a circular loop to a rectangular edge: (a) large
view and (b) details of the right edge.
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where

kHy ¼ Dx

Dy
tan�1 Dy

Dx

� �
: ð10:19Þ

Notice that kHy is just a scaling factor. Thus, to scale Hy i; j; kð Þ by kHy one can simply
scale the coefficients Chyez i; j; kð Þ and Chyex i; j; kð Þ in (10.12) by kHy as

Chyez i; j; kð Þ ¼ kHy
2Dt

my i; j; kð ÞDxln
Dx

a

� � ; ð10:20Þ

Chyex i; j; kð Þ ¼ �kHy
Dt

my i; j; kð ÞDz
: ð10:21Þ

Note that Hy i � 1; j; kð Þ in Figure 10.2 as well need to be scaled by kHy, whereas

Hx i; j; kð Þ and Hx i; j � 1; kð Þ need to be scaled by a factor of kHx ¼ Dy
Dx tan�1 Dx

Dy

� �
.

The presented modification to the original thin-wire formulation in terms of the calculation
of magnetic field components led to more accurate update values of electric field components
adjacent to the thin wire. The expressions of the electric field components updates remain
unchanged as the standard FDTD updating equations in the original thin-wire formulation.

In the standard FDTD updating equation for an electric field component it is assumed that
the field component is an average value of the field distribution on the face of a cell face
through which it flows. For instance, the radial electric field component Ex i; j; kð Þ, illustrated
in Figure 10.12, is an average value of Ex on the surface S1. However, when developing the
thin-wire updating equation for Hy i; j; kð Þ, the radial component of electric field as well is
assumed to vary with 1=r. Thus, when using Ex i; j; kð Þ and Ex i; j; k þ 1ð Þ in (10.12), their 1=r
dependent values at half-cell distance from the thin-wire axis need to be used instead of their

z

y

x

Ez(i, j, k)
Hy(i, j, k)

Ex(i, j, k)

Hy(i, j, k − 1)

node (i, j, k)

surface S1

surface S2

Figure 10.12 Electric field component Ex at the center of a cell face.
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average values on respective cell faces. The radial electric field component Er is constant on
the cylindrical surface S2 in Figure 10.12, thus its projection on the surface S1 is a function
of y. Note that Ex i; j; kð Þ is the average of the projection of Er on surface S1, while the value
of Er at the position of Ex i; j; kð Þ is needed in (10.12). To obtain Er one needs to project
Ex i; j; kð Þ from surface S1 to surface S2. Since the fields are constant in the z-direction, the
required projection for Ex i; j; kð Þ is the reverse of the projection done with Hy i; j; kð Þ illu-
strated in Figure 10.11. Thus, utilizing (10.19), a scaling factor can be defined as

kEx ¼ Dx

Dy
tan�1 Dy

Dx

� �� ��1

; ð10:22Þ

which can be used to scale Ex i; j; kð Þ and Ex i; j; k þ 1ð Þ before they are used to update
Hy i; j; kð Þ. This scaling can be performed simply by multiplying the coefficient Chyex i; j; kð Þ
given in (10.21) by kEx. Since kHy and kEx are inverse, scaling Chyex i; j; kð Þ by kEx returns it to
its original value before it was scaled by kHy as

Chyex i; j; kð Þ ¼ � Dt

my i; j; kð ÞDz
: ð10:23Þ

Thus, the only modification needed for the improved thin-wire formulation over the
original thin-wire formulation in updating Hy i; j; kð Þ is an adjustment to the updating coef-
ficient as in (10.20). Similar adjustments are needed for the respective updating coefficients
that update Hy i � 1; j; kð Þ, Hx i; j; kð Þ, and Hx i; j � 1; kð Þ.

It should be noted that the presented improvement of thin-wire formulation is not the
only contribution presented in [41]. Also presented in [41] is an end-cap model that
includes the effect of charge accumulation at wire end caps which further improves
the accuracy of modeling unconnected thin wires. Moreover, Mâkinen et al. employed the
precepts of the improved thin-wire formulation to develop a stabilized resistive voltage
source (RVS) model in [42] to feed thin wires that further improves the stability and
accuracy of thin-wire simulations.

10.5 MATLAB‡ implementation of the improved thin-wire
formulation

The only modification needed for the improved thin-wire formulation is the scaling of the
coefficients used to update the magnetic field components circulating around the thin wire
due to the electric field components parallel to the thin-wire axis. Listing 10.3 shows the
initialization of thin wire updating coefficients based on the original thin-wire formulation as
in (10.20). This code is modified to accommodate the scaling factors introduced by the
improved thin-wire formulation as shown in Listing 10.7.

10.6 Simulation example

Simulation of a thin-wire dipole antenna is presented in Section 10.3.1. The same example is
repeated here with the simulation performed using the improved thin-wire formulation. The
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Listing 10.7 initialize_thin_wire_updating_coefficients.m

d i s p ( ' i n i t i a l i z i n g  t h i n  w i r e  u p d a t i n g  c o e f fi c i e n t s ' ) ;
 
d t m  =  d t / m u _ 0 ;
 
f o r  i n d  =  1 : n u m b e r _ o f _ t h i n _ w i r e s
     i s    =  r o u n d ( ( t h i n _ w i r e s ( i n d ) . m i n _ x  -  f d t d _ d o m a i n . m i n _ x ) / d x ) + 1 ;
     j s    =  r o u n d ( ( t h i n _ w i r e s ( i n d ) . m i n _ y  -  f d t d _ d o m a i n . m i n _ y ) / d y ) + 1 ;
     k s   =  r o u n d ( ( t h i n _ w i r e s ( i n d ) . m i n _ z  -  f d t d _ d o m a i n . m i n _ z ) / d z ) + 1 ;
     i e    =  r o u n d ( ( t h i n _ w i r e s ( i n d ) . m a x _ x  -  f d t d _ d o m a i n . m i n _ x ) / d x ) + 1 ;
     j e    =  r o u n d ( ( t h i n _ w i r e s ( i n d ) . m a x _ y  -  f d t d _ d o m a i n . m i n _ y ) / d y ) + 1 ;
     k e   =  r o u n d ( ( t h i n _ w i r e s ( i n d ) . m a x _ z  -  f d t d _ d o m a i n . m i n _ z ) / d z ) + 1 ;
     r _ o  =  t h i n _ w i r e s ( i n d ) . r a d i u s ;
    
    s w i t c h  ( t h i n _ w i r e s ( i n d ) . d i r e c t i o n ( 1 ) )
        c a s e  ' x '
            k h y  =  ( d z / d y ) * a t a n ( d y / d z ) ;
            k h z  =  ( d y / d z ) * a t a n ( d z / d y ) ;
            C e x e  ( i s : i e - 1 , j s , k s )    =  0 ;
            C e x h y ( i s : i e - 1 , j s , k s )   =  0 ;
            C e x h z ( i s : i e - 1 , j s , k s )   =  0 ;
            C h y h  ( i s : i e - 1 , j s , k s - 1 : k s )  =  1 ;
            C h y e x ( i s : i e - 1 , j s , k s - 1 : k s )  =  – 2  *  d t m  *  k h y . . .
                . /  ( m u _ r _ y ( i s : i e - 1 , j s , k s - 1 : k s )  *  d z  *  l o g ( d z / r _ o ) ) ;
            C h z h (  i s : i e - 1 , j s - 1 : j s , k s )  =  1 ;
            C h z e x ( i s : i e - 1 , j s - 1 : j s , k s )  =  2  *  d t m  *  k h z . . .
                . /  ( m u _ r _ z ( i s : i e - 1 , j s - 1 : j s , k s )  *  d y  *  l o g ( d y / r _ o ) ) ;
        c a s e  ' y '
            k h z  =  ( d x / d z ) * a t a n ( d z / d x ) ;
            k h x  =  ( d z / d x ) * a t a n ( d x / d z ) ;
            C e y e  ( i s , j s : j e - 1 , k s )   =  0 ;
            C e y h x ( i s , j s : j e - 1 , k s )  =  0 ;
            C e y h z ( i s , j s : j e - 1 , k s )  =  0 ;
            C h z h  ( i s - 1 : i s , j s : j e - 1 , k s )  =  1 ;
            C h z e y ( i s - 1 : i s , j s : j e - 1 , k s )  =  - 2  *  d t m  *  k h z . . .
                . /  ( m u _ r _ z ( i s - 1 : i s , j s : j e - 1 , k s )  *  d x  *  l o g ( d x / r _ o ) ) ;
            C h x h  ( i s , j s : j e - 1 , k s - 1 : k s )  =  1 ;
            C h x e y ( i s , j s : j e - 1 , k s - 1 : k s )  =  2  *  d t m  * k h x . . .
                . /  ( m u _ r _ x ( i s , j s : j e - 1 , k s - 1 : k s )  *  d z  *  l o g ( d z / r _ o ) ) ;
        c a s e  ' z '
            k h x  =  ( d y / d x ) * a t a n ( d x / d y ) ;
            k h y  =  ( d x / d y ) * a t a n ( d y / d x ) ;
            C e z e  ( i s , j s , k s : k e - 1 )   =  0 ;
            C e z h x ( i s , j s , k s : k e - 1 )  =  0 ;
            C e z h y ( i s , j s , k s : k e - 1 )  =  0 ;
            C h x h  ( i s , j s - 1 : j s , k s : k e - 1 )  =  1 ;
            C h x e z ( i s , j s - 1 : j s , k s : k e - 1 )  =  – 2  *  d t m  *  k h x . . .
                . /  ( m u _ r _ x ( i s , j s - 1 : j s , k s : k e - 1 )  *  d y  *  l o g ( d y / r _ o ) ) ;
            C h y h  ( i s - 1 : i s , j s , k s : k e - 1 )  =  1 ;
            C h y e z ( i s - 1 : i s , j s , k s : k e - 1 )  =  2  *  d t m  *  k h y . . .
                . /  ( m u _ r _ y ( i s - 1 : i s , j s , k s : k e - 1 )  *  d x  *  l o g ( d x / r _ o ) ) ;
    e n d
e n d
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calculated power reflection coefficient of the dipole antenna is plotted in Figure 10.13 along
with the results previously presented in Figure 10.4. One can notice the improvement of
agreement between the FDTD and WIPL-D results when the improved thin-wire formulation
is used. Moreover, the input impedance as well calculated and compared with the results in
Figure 10.5. The comparison is shown in Figure 10.14.

As mentioned in Section 10.5, accuracy of thin-wire simulations can further be improved
by including the end-cap model [41] and the stabilized RVS model [42]. Although these
models are not presented here, they are implemented in an FDTD code, although not presented
here, and the presented thin-wire dipole antenna is resimulated. Figure 10.15 shows the power
reflection coefficient of the thin-wire dipole antenna including the effects of the end-caps and
the stabilized RVS model, and illustrates the further improvement in accuracy.

10.7 Exercises

10.1 Construct a problem space composed of cells with size 1 mm on a side. Define
a dipole antenna using thin wires similar to the dipole antenna discussed in
Section 10.3.1. Set the length of each wire to 10 mm, and leave a 1 mm gap between
the wires. Place a voltage source, a sampled voltage, and a sampled current in the gap
between the wires, and associate them to a port. Set the radius of the wire as 0.1 mm,
run the simulation, and obtain the input reflection coefficient of the antenna. Then
increase the radius of the wire by 0.2 mm, repeat the simulation, and observe the
change in the input reflection coefficient with incremented increase of wire radius by
0.2 mm until the increased wire radius causes instability in the simulation. Can you
determine the maximum wire radius for accurate results in this configuration?
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Figure 10.13 Power reflection coefficient of the thin-wire dipole antenna.
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Figure 10.14 Input impedance of the thin-wire dipole antenna.
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Figure 10.15 Power reflection coefficient of the thin-wire dipole antenna: FDTD
implementation includes the end-caps model [41] and the stabilized RVS
model [42].

342 CHAPTER 10 ● Thin-wire modeling



10.2 In this example we construct an antenna array composed of two thin-wire dipole
antennas. Consider the dipole antenna that you constructed in Exercise 10.1. Run the
dipole simulation using the 0.1 mm wire radius, and record the operation frequency.
Rerun the simulation, and obtain the radiation pattern at the frequency of operation.
Then define another thin-wire dipole antenna with the same dimensions as the current
one, and place it 2 mm above the current one, such that the center to center distance
between antennas will be 23 mm. Place a voltage source at the feeding gap of the
second antenna that has the same properties of the voltage source of the first antenna.
Do not define any ports, and if there are already defined ports, remove them. The
geometry of the problem is illustrated in Figure 10.16. Run the simulation, and cal-
culate the radiation patterns at the frequency of operation. Examine the directivity
patterns of the single- and two-dipole configurations.

10.3 Consider the dipole antenna array that you constructed in Exercise 10.2. Invert the
polarity of one of the voltage sources. For instance, if the direction of the voltage
source is ‘‘zp,’’ set the direction as ‘‘zn.’’ This will let the antennas be excited by 180�

phase difference. Run the simulation, and obtain the radiation pattern at the frequency
of operation.

10.4 In this exercise we construct a square loop inductor. Construct a problem space
composed of cells with size 1 mm on a side. Place three thin wires, each of which is
10 mm long, such that they will form the three sides of a square loop. Then place two
thin wires, each of which is 4 mm long, on the fourth side, leaving a 2 mm gap in
between at the center of the fourth side. Place a voltage source, a sampled voltage, and
a sampled current in this gap. Set the radius of the wires as 0.1 mm. The geometry of
the problem is illustrated in Figure 10.17. Run the simulation, and calculate the input
impedance. At low frequencies the imaginary part of the input impedance is positive
and linear, which implies that the inductance is constant at low frequencies. Calculate

Voltage
source

Voltage
source

z

Figure 10.16 An antenna array composed of two thin-wire dipole antennas.
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the inductance of the loop. The inductance of such a square loop can be calculated as
30.7 nH using the formula in [43].

10.5 Consider the square loop that you constructed in Exercise 10.4. Now reduce the cell
size to 0.5 mm on a side, and reduce the length of the source gap to 1 mm. Run the
simulation, and then calculate the inductance of the loop. Examine if the calculated
inductance got closer to the expected value.

Voltage source

z y

x

Figure 10.17 A thin-wire loop.
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CHAPTER 11

Scattered field formulation

As discussed before, sources are the necessary components of a finite-difference time-
domain (FDTD) simulation, and their types vary depending on the type of the problem under
consideration. Usually sources are of two types: (1) near-zone sources, such as the voltage
and current sources described in Chapter 4; and (2) far-zone sources, such as the incident
fields in scattering problems. In the previous chapters we demonstrated several examples
utilizing near-zone sources. In this chapter we present scattered field formulation, one of the
techniques that integrates far-zone sources into the FDTD method.

11.1 Scattered field basic equations

Far-zone sources are the fields generated somewhere outside the FDTD problem space that
illuminate the objects in the problem space. Therefore, they are the incident fields exciting the
FDTD problem space. The incident field exists in a problem space in which there are no
scatterers. Therefore, they are the fields that can be described by analytical expressions and
would satisfy Maxwell’s curl equations where the problem space medium is free space, such that

r� !
H inc ¼ e0

@
!
Einc

@t
; ð11:1aÞ

r � !
Einc ¼ �m0

@
!
H inc

@t
: ð11:1bÞ

The most common type of incident field is the plane wave. The expressions for the field
components generated by plane waves are discussed in a subsequent section.

When the incident field illuminates the objects in an FDTD problem space, scattered
fields are generated and thus need to be calculated. The scattered field formulation is one of
the simplest techniques that can be used for calculating scattered fields.

The fields in a problem space are referred to in general as total fields. The total fields
satisfy Maxwell’s curl equations for a general medium, such that

r� !
H tot ¼ e

@
!
Etot

@t
þ se !

Etot; ð11:2aÞ

r � !
Etot ¼ �m

@
!
H tot

@t
� sm !

H tot: ð11:2bÞ
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Then the scattered fields are defined as the difference between the total fields and inci-
dent fields. Therefore, one can write

Etot ¼ Einc þ Escat; and Htot ¼ Hinc þ Hscat; ð11:3Þ
where Escat and Hscat are the scattered electric and magnetic fields. In light of (11.3), (11.2)
can be rewritten in terms of incident and scattered field terms as

r� !
H scat þr� !

H inc ¼ e
@

!
Escat

@t
þ e

@
!
Einc

@t
þ se !

Escat þ se !
Einc; ð11:4aÞ

r � !
Escat þr� !

Einc ¼ �m
@

!
H scat

@t
� m

@
!
H inc

@t
� sm !

H scat � sm !
H inc: ð11:4bÞ

The curls of the incident fields in (11.4) can be replaced by the time-derivative terms
from (11.1), which yields

r� !
H scat þ e0

@
!
Einc

@t
¼ e

@
!
Escat

@t
þ e

@
!
Einc

@t
þ se !

Escat þ se !
Einc; ð11:5aÞ

r � !
Escat � m0

@
!
H inc

@t
¼ �m

@
!
H scat

@t
� m

@
!
H inc

@t
� sm !

H scat � sm !
H inc: ð11:5bÞ

After rearranging the terms in (11.5) one can obtain

e
@

!
Escat

@t
þ se !

Escat ¼ r� !
H scat þ ðe0 � eÞ @

!
Einc

@t
� se !

Einc; ð11:6aÞ

m
@

!
H scat

@t
þ sm !

H scat ¼ �r� !
Escat þ ðm0 � mÞ @

!
H inc

@t
� sm !

H inc: ð11:6bÞ

At this point the derivatives in (11.6) can be represented by central finite difference
approximations, and updating equations can be obtained for the scattered field formulation.

11.2 The scattered field updating equations

After applying the central finite difference approximation, (11.6a) can be expressed for the x
component as

ex i; j; kð ÞEnþ1
scat;xði; j; kÞ � En

scat;xði; j; kÞ
Dt

þ se
xði; j; kÞEnþ1

scat;xði; j; kÞ þ En
scat;xði; j; kÞ

2

¼ H
nþ1

2
scat;zði; j; kÞ � H

nþ1
2

scat;xði; j � 1; kÞ
Dy

� H
nþ1

2
scat;yði; j; kÞ � H

nþ1
2

scat;yði; j; k � 1Þ
Dz

þ ðe0 � exði; j; kÞÞ
Enþ1

inc;xði; j; kÞ þ En
inc;xði; j; kÞ

Dt

� se
xði; j; kÞEnþ1

inc;xði; j; kÞ þ En
inc;xði; j; kÞ

2
;

ð11:7Þ
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Equation (11.7) can be arranged such that the new value of the scattered electric field
component Enþ1

scat;xði; j; kÞ is calculated using other terms as

Enþ1
scat;xði; j; kÞ ¼ Cexeði; j; kÞ � En

scat;x i; j; kð Þ

þ Cexhzði; j; kÞ � H
nþ1

2
scat;z i; j; kð Þ � H

nþ1
2

scat;z i; j � 1; kð Þ
h i

þ Cexhyði; j; kÞ � H
nþ1

2
scat;y i; j; kð Þ � H

nþ1
2

scat;y i; j; k � 1ð Þ
h i

þ Cexeicði; j; kÞ � Enþ1
inc;xði; j; kÞ þ Cexeipði; j; kÞ � En

inc;xði; j; kÞ;

ð11:8Þ

where

Cexeði; j; kÞ ¼ 2exði; j; kÞ � se
xði; j; kÞDt

2exði; j; kÞ þ se
xði; j; kÞDt

;

Cexhzði; j; kÞ ¼ 2Dt

Dy 2exði; j; kÞ þ se
xði; j; kÞDt

� � ;

Cexhyði; j; kÞ ¼ � 2Dt

Dz 2exði; j; kÞ þ se
xði; j; kÞDt

� � ;

Cexeicði; j; kÞ ¼ 2 e0 � exði; j; kÞð Þ � se
xði; j; kÞDt

2exði; j; kÞ þ se
xði; j; kÞDt

;

Cexeipði; j; kÞ ¼ � 2 e0 � exði; j; kÞð Þ þ se
xði; j; kÞDt

2exði; j; kÞ þ se
xði; j; kÞDt

:

In this equation, the ic term in the subscript of the coefficient Cexeic indicates that this
coefficient is multiplied with the current value of the incident field component, whereas the
ip term in the subscript of the coefficient Cexeip indicates that this coefficient is multiplied
with the previous value of the incident field component.

Similarly the updating equation can be written for Enþ1
scat;yði; j; kÞ as

Enþ1
scat;yði; j; kÞ ¼ Ceyeði; j; kÞ � En

scat;yði; j; kÞ

þ Ceyhxði; j; kÞ � H
nþ1

2
scat;xði; j; kÞ � H

nþ1
2

scat;xði; j; k � 1Þ
h i

þ Ceyhzði; j; kÞ � H
nþ1

2
scat;zði; j; kÞ � H

nþ1
2

scat;zði � 1; j; kÞ
h i

þ Ceyeicði; j; kÞ � Enþ1
inc;yði; j; kÞ þ Ceyeipði; j; kÞ � En

inc;yði; j; kÞ;

ð11:9Þ

where

Ceyeði; j; kÞ ¼ 2eyði; j; kÞ � se
yði; j; kÞDt

2eyði; j; kÞ þ se
yði; j; kÞDt

;

Ceyhxði; j; kÞ ¼ 2Dt

Dz 2eyði; j; kÞ þ se
yði; j; kÞDt

� � ;
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Ceyhzði; j; kÞ ¼ � 2Dt

Dx 2eyði; j; kÞ þ se
yði; j; kÞDt

� � ;

Ceyeicði; j; kÞ ¼ 2 e0 � eyði; j; kÞ� �� se
yði; j; kÞDt

2eyði; j; kÞ þ se
yði; j; kÞDt

;

Ceyeipði; j; kÞ ¼ � 2 e0 � eyði; j; kÞ� �þ se
yði; j; kÞDt

2eyði; j; kÞ þ se
yði; j; kÞDt

:

The updating equation can be written for Enþ1
scat;zði; j; kÞ as

Enþ1
scat;zði; j; kÞ ¼ Cezeði; j; kÞ � En

scat;zði; j; kÞ

þ Cezhyði; j; kÞ � H
nþ1

2
scat;yði; j; kÞ � H

nþ1
2

scat;yði; j; k � 1Þ
h i

þ Cezhxði; j; kÞ � H
nþ1

2
scat;xði; j; kÞ � H

nþ1
2

scat;xði � 1; j; kÞ
h i

þ Cezeicði; j; kÞ � Enþ1
inc;zði; j; kÞ þ Cezeipði; j; kÞ � En

inc;zði; j; kÞ;

ð11:10Þ

where

Cezeði; j; kÞ ¼ 2ezði; j; kÞ � se
zði; j; kÞDt

2ezði; j; kÞ þ se
zði; j; kÞDt

;

Cezhyði; j; kÞ ¼ 2Dt

Dx 2ezði; j; kÞ þ se
zði; j; kÞDt

� � ;

Cezhxði; j; kÞ ¼ � 2Dt

Dy 2ezði; j; kÞ þ se
zði; j; kÞDt

� � ;

Cezeicði; j; kÞ ¼ 2 e0 � ezði; j; kÞð Þ � se
zði; j; kÞDt

2ezði; j; kÞ þ se
zði; j; kÞDt

;

Ceyeipði; j; kÞ ¼ � 2 e0 � ezði; j; kÞð Þ þ se
zði; j; kÞDt

2ezði; j; kÞ þ se
zði; j; kÞDt

:

Following a similar procedure, the updating equations for the magnetic field components

can be obtained as follows. The updating equation for H
nþ1

2
scat;xði; j; kÞ is

H
nþ1

2
scat;xði; j; kÞ ¼ Chxhði; j; kÞ � H

n�1
2

scat; xði; j; kÞ

þ Chxezði; j; kÞ � En
scat; zði; j þ 1; kÞ � En

scat;zði; j; kÞ
h i

þ Chxeyði; j; kÞ � En
scat; yði; j; k þ 1Þ � En

scat;yði; j; kÞ
h i

þ Chxhicði; j; kÞ � H
nþ1

2
inc; xði; j; kÞ þ Chxhipði; j; kÞ � H

n�1
2

inc; xði; j; kÞ

ð11:11Þ
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where

Chxhði; j; kÞ ¼ 2mxði; j; kÞ � sm
x ði; j; kÞDt

2mxði; j; kÞ þ sm
x ði; j; kÞDt

;

Chxezði; j; kÞ ¼ � 2Dt

Dy 2mxði; j; kÞ þ sm
x ði; j; kÞDt

� � ;

Chxeyði; j; kÞ ¼ 2Dt

Dz 2mxði; j; kÞ þ sm
x ði; j; kÞDt

� � ;

Chxhicði; j; kÞ ¼ 2 m0 � mxði; j; kÞð Þ � sm
x ði; j; kÞDt

2mxði; j; kÞ þ sm
x ði; j; kÞDt

;

Chxhipði; j; kÞ ¼ � 2 m0 � mxði; j; kÞð Þ þ sm
x ði; j; kÞDt

2mxði; j; kÞ þ sm
x ði; j; kÞDt

:

The updating equation for H
nþ1

2
scat;yði; j; kÞ is

H
nþ1

2
scat; yði; j; kÞ ¼ Chyhði; j; kÞ � H

n�1
2

scat; yði; j; kÞ

þ Chyexði; j; kÞ � En
scat;xði; j þ 1; kÞ � En

scat;xði; j; kÞ
h i

þ Chyezði; j; kÞ � En
scat;zði; j; k þ 1Þ � En

scat;zði; j; kÞ
h i

þ Chyhicði; j; kÞ � H
nþ1

2
inc;yði; j; kÞ þ Chyhipði; j; kÞ � H

n�1
2

inc;yði; j; kÞ;

ð11:12Þ

where

Chyhði; j; kÞ ¼ 2myði; j; kÞ � sm
y ði; j; kÞDt

2myði; j; kÞ þ sm
y ði; j; kÞDt

;

Chyexði; j; kÞ ¼ � 2Dt

Dz 2myði; j; kÞ þ sm
y ði; j; kÞDt

� � ;

Chyezði; j; kÞ ¼ 2Dt

Dx 2myði; j; kÞ þ sm
y ði; j; kÞDt

� � ;

Chyhicði; j; kÞ ¼
2 m0 � myði; j; kÞ
� �

� sm
y ði; j; kÞDt

2myði; j; kÞ þ sm
y ði; j; kÞDt

:

Chyhipði; j; kÞ ¼ �
2 m0 � myði; j; kÞ
� �

þ sm
y ði; j; kÞDt

2myði; j; kÞ þ sm
y ði; j; kÞDt

;
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Finally, the updating equation for H
nþ1

2
scat;zði; j; kÞ is

H
nþ1

2
scat;zði; j; kÞ ¼ Chzhði; j; kÞ � H

n�1
2

scat;zði; j; kÞ

þ Chzeyði; j; kÞ � En
scat;yði; j þ 1; kÞ � En

scat;yði; j; kÞ
h i

þ Chzexði; j; kÞ � En
scat;xði; j; k þ 1Þ; �En

scat;xði; j; kÞ
h i

þ Chzhicði; j; kÞ � H
nþ1

2
inc;zði; j; kÞ þ Chzhipði; j; kÞ � H

n�1
2

inc;zði; j; kÞ

ð11:13Þ

where

Chzhði; j; kÞ ¼ 2mzði; j; kÞ � sm
z ði; j; kÞDt

2mzði; j; kÞ þ sm
z ði; j; kÞDt

;

Chzeyði; j; kÞ ¼ � 2Dt

Dx 2mzði; j; kÞ þ sm
z ði; j; kÞDt

� � ;

Chzexði; j; kÞ ¼ 2Dt

Dy 2mzði; j; kÞ þ sm
z ði; j; kÞDt

� � ;

Chzhicði; j; kÞ ¼ 2 m0 � mzði; j; kÞð Þ � sm
z ði; j; kÞDt

2mzði; j; kÞ þ sm
z ði; j; kÞDt

;

Chzhipði; j; kÞ ¼ � 2 m0 � mzði; j; kÞð Þ þ sm
z ði; j; kÞDt

2mzði; j; kÞ þ sm
z ði; j; kÞDt

:

Equations (11.8)–(11.13) are the updating equations with corresponding definitions for
associated coefficients for the scattered field formulation. Comparing these equations with
the set of general updating (1.26)–(1.31) one can realize that the forms of the equations and
expressions of the coefficients are the same except that (11.8)–(11.13) include additional
incident field terms.

11.3 Expressions for the incident plane waves

The aforementioned scattered field updating equations are derived to calculate scattered
electric fields in a problem space in response to an incident field. The incident field in
general can be any far-zone source that can be expressed by analytical expressions. In this
context, incident plane waves are the most commonly used type of incident field. This
section discusses the incident plane wave field expressions.

Figure 11.1 illustrates an incident plane wave traveling in the direction denoted by a unit
vector k̂ : The incident electric field in general may have a q component and a f component
when expressed in a spherical coordinate system denoting its polarization. The incident
electric field can be expressed for a given point denoted by a position vector !r as

!
Einc ¼

�
Eqq̂ þ Eff̂

�
f

�
t � 1

c
k̂ � !r

�
; ð11:14Þ
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where f is a function determining the waveform of the incident electric field. This equation
can be rewritten by allowing a time delay t0 and spatial shift l0 as

!
Einc ¼

�
Eqq̂ þ Eff̂

�
f

�
ðt � t0Þ � 1

c

�
k̂ � !r � l0

��
: ð11:15Þ

The vectors !r and k̂ can be written in Cartesian coordinates as

!r ¼ x̂x þ ŷy þ ẑz; k̂ ¼ x̂ sin qinc cosfinc þ ŷ sin qinc sinfinc þ ẑ cos qinc; ð11:16Þ
where qinc and finc are the angles indicating the direction of propagation of the incident
plane wave as shown in Figure 11.1. The components of the incident electric field Eq and Ef
can also be expressed in Cartesian coordinates. Therefore, after using (11.16) in (11.15) and
applying the spherical to Cartesian coordinates transformation, one can obtain the compo-
nents of the incident electric field for any point (x, y, z) in space as

Einc;x ¼ ðEq cos qinc cosfinc � EfsinfincÞfwf ; ð11:17aÞ
Einc;y ¼ ðEq cos qinc sinfinc þ Ef cosfincÞfwf ; ð11:17bÞ

Einc;z ¼ ð�Eqsin qincÞfwf ; ð11:17cÞ

where fwf is given by

fwf ¼ f ðt � t0Þ � 1
c
ðx sin qinc cosfinc þ y sin qinc sinfinc þ z cos qinc � l0Þ

� �
: ð11:18Þ

Once the expressions for the incident electric field components are obtained, the
expressions for magnetic field components can be obtained using

!
H inc ¼ 1

h0
k̂ � !

Einc;

where n0 is the intrinsic impedance of free space, and the � denotes the cross-product
operator. Then the magnetic field components are

Hinc;x ¼ �1
h0

ðEf cos qinc cosfinc þ Eq sinfincÞfwf ; ð11:19aÞ

x

y

z

r Ef

k̂

qinc
Eq

finc

Figure 11.1 An incident plane wave.
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Hinc;y ¼ �1
h0

ðEf cos qinc sinfinc � Eq cosfincÞfwf ; ð11:19bÞ

Hinc;z ¼ 1
h0

ðEf sin qincÞfwf : ð11:19cÞ

Equations (11.17)–(11.19) express an incident field with a polarization determined by
ðEqq̂ þ Eff̂Þ, propagating in a direction determined by the angles qinc and finc and having a
waveform described by fwf. In general, the waveform can be a function that has the desired
bandwidth characteristics as discussed in Chapter 5. However, there are two additional para-
meters in (11.18) we have not discussed yet: t0 and l0. These parameters are used to shift the
given waveform in time and space such that when the FDTD iterations start the incident field in
the problem space is zero, and as time proceeds the incident field propagates into the FDTD
problem space.

Consider Figure 11.2, which illustrates a plane wave with a Gaussian waveform propa-
gating in a direction k̂ toward an FDTD problem space. This waveform is expressed by a
function

f

�
t � 1

c

�
k̂ � !r

��
;

where the maximum of the waveform appears on a plane including the origin and normal to
k̂ at t ¼ 0. Clearly the leading edge of this waveform is closer to the FDTD problem space.
A time delay t0 can be applied to this function such that

f

�
ðt � t0Þ � 1

c

�
k̂ � !r

��
;

and the leading edge of the waveform coincides with the origin. The value of the waveform
can be calculated as explained in Chapter 5. After applying the time delay, there is a distance
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to the problem space 
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l0 = k ⋅ r0 ˆ
f   (t − t0) − c

k ⋅ r − l0ˆ

f   (t − t0) − c
k ⋅ r ˆ

f   t − c
k ⋅ r ˆ

Figure 11.2 An incident plane wave delayed in time and shifted in space.
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between the leading edge of the waveform and the problem space that needs to be accounted
for; otherwise, it may take considerable time after the simulation is started until the wave-
form enters to the problem space. The distance between the waveform and the problem space
can be found as l0 ¼ k̂ � !r0; where !r0 is the position vector indicating the closest point of the
problem space to the waveform. A problem space has eight corners, and one of these corners
will be closest to the waveform approaching from an arbitrary direction. If !r0 indicates the
corner points of the problem space, then the minimum distance for l0 can be calculated by
l0 ¼ min ½k̂ � !r0�: After l0 is determined, the waveform equation can be modified as

f

�
ðt � t0Þ � 1

c

�
k̂ � !r � l0

��
;

which leads to (11.18).
In some scattering applications, a scatterer is placed at the origin and the scattered field due

to an incident plane wave is calculated. The direction of propagation of the plane wave must be
defined appropriately in such applications. Consider Figure 11.3, where two plane waves are
illustrated. Although these two plane waves are traveling in the same direction, one of them is
illustrated as traveling toward the origin while the other one is traveling away from the origin.
The equations given in this section are derived based on the wave traveling away from the
origin; the angles determining the propagation, qinc and finc, and amplitudes of the incident
field components Eq and Ef are as shown in this figure. If it is desired to define the angles and
field components based on the wave traveling toward the origin such as q0inc;f0

inc;E
0
q; and E0

f;
then the following conversions need to be employed to use the aforementioned equations as is:

qinc ¼ p� q0inc; ð11:20aÞ
finc ¼ pþ f0

inc; ð11:20bÞ
Eq ¼ E0

q; ð11:20cÞ
Ef ¼ �E0

f: ð11:20dÞ
One of the types of results that can be obtained from the scattered field due to an incident

plane wave is the radar cross-section (RCS) of a scatterer. The near-field to far-field NF-FF
transformation algorithm discussed in Chapter 9 is used for this purpose. In this case the
scattered near fields calculated in a problem space are captured on an imaginary surface

x

y

z

A plane wave traveling 
towards origin

A plane wave traveling 
away from origin

Ef¢
k̂¢

qinc

Eq¢

finc

k̂

EfEq

Figure 11.3 Two incident plane waves: one traveling toward the origin and the other traveling
away from the origin.
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enclosing the scatterer to determine the equivalent fictitious surface currents. These currents
are transformed to the frequency domain while being captured. After the time-marching loop
is completed, the far-field terms Lq, Lf, Nq, and Nf are calculated following the procedure
described in Chapter 9.

At this point the components of the bistatic RCS can be calculated using

RCSq ¼ k2

8ph0Pinc
jLf þ h0Nqj2 ð11:21aÞ

RCSf ¼ k2

8ph0Pinc
jLq � h0Nfj2; ð11:21bÞ

which is very similar to (9.39). The only difference is that Prad is replaced by Pinc, which is
the power carried by the incident plane wave. The Pinc can be calculated as

Pinc ¼ 1
2h0

jEincðwÞj2; ð11:22Þ

where Einc(w) is the discrete Fourier transform of the incident electric field waveform at the
frequency for which the RCS calculation is sought.

11.4 MATLAB‡ implementation of the scattered field
formulation

The scattered field formulation is presented in the previous sections. In this section the
implementation of the scattered field formulation is discussed.

11.4.1 Definition of the incident plane wave

For a scattering problem it is necessary to define an incident field as the source. In Sec-
tion 11.3 the equations necessary to construct a plane wave are presented, and the plane wave
is used as the incident field in this discussion. In the FDTD program an incident plane wave
is defined in the subroutine define_sources_and_lumped_elements as shown in Listing 11.1.
In the given code first a new empty structure, incident_plane_wave, is defined. Then the
parameters of the incident plane wave are defined as fields of this structure. Here E_theta
denotes the maximum amplitude of the q component, whereas E_phi denotes the maximum
amplitude of the f component of the electric field waveform. The fields theta_incident and
phi_incident denote the angles indicating the direction of propagation, qinc and finc, of the
incident plane wave. It should be noted here that these parameters are based on the
convention that the plane wave is propagating in a direction away from the origin rather
than toward the origin. If the parameters are readily available for the convention wave tra-
veling toward the origin, then the necessary transformation needs to be performed based on
(11.20). Finally, the waveform of the incident plane wave need to be defined. The definition
of the waveform for the incident plane wave follows the same procedure as the voltage
source or the current source waveform. The types of waveforms are defined as structure
waveforms, and the fields waveform_type and waveform_index are defined under
incident_plane_wave, which point to a specific waveform defined under waveforms.
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11.4.2 Initialization of the incident fields

The next step is the initialization of the incident fields and the updating coefficients. The initi-
alization of the incident fields is performed in the subroutine initialize_sources_and_
lumped_elements. The section of the code listed in Listing 11.2 is added to this subroutine.

Listing 11.1 define_sources_and_lumped_elements

Listing 11.2 initialize_sources_and_lumped_elements
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In this code the first step is to determine whether an incident plane wave is defined. If an
incident plane wave is defined, then it indicates that the FDTD simulation is running a
scattering problem and, therefore, the algorithm of the scattered field formulation will be
employed. Here a logical parameter incident_plane_wave.enabled is assigned a value
‘‘true’’ or ‘‘false’’ indicating the mode of the FDTD simulation.
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The calculation of the scattered field components using the scattered field updating
equation is the same as the calculation of the total field components using the general
updating equation, except for the additional incident field terms. Therefore, the parameters
corresponding to the field arrays Ex, Ey, Ez, Hx, Hy, and Hz can be assumed as scattered
fields if the mode of the simulation is scattering. Then the field arrays corresponding to
incident fields must be defined. The new field arrays are thus defined as Exi, Eyi, Ezi, Hxi,
Hyi, and Hzi and are initialized as zeros. One should notice that the sizes of these three-
dimensional arrays are the same as their corresponding scattered field arrays.

In the next step the amplitudes of the electric and magnetic field waveforms are trans-
formed from the spherical coordinates to Cartesian coordinates based on (11.17) and (11.19),
yielding Exi0, Eyi0, Ezi0, Hxi0, Hyi0, and Hzi0.

The incident field components are computed at different positions in a three-dimensional
space. The coordinates of these field components can be determined with respect to positions
of the nodes of the FDTD grid. Three three-dimensional arrays are constructed, each of
which stores the x, y, and z coordinates of the nodes.

As discussed in Section 11.3 the waveform of the incident field should be shifted in time
and space to ensure that the leading edge of the waveform enters into the problem space
after the simulation has started. These shifts are indicated as t0 and l0, respectively. The
temporal shift t0 is determined in the subroutine initialize_waveforms, which has been
called in initialize_sources_and_lumped_elements before. Thus, t0 for a specific waveform
is readily available. The spatial shift, however, needs to be calculated. Eight corners
determine the boundaries of the problem space, and an incident plane wave will enter to the
problem space from one of these corers. The coordinates of these corners are stored in an
array denoted as r0. The value of l0 is calculated by l0 ¼ min½k̂ � !r0�; where k̂ is the pro-
pagation vector indicating the direction of propagation. The components of the vector k̂ are
calculated based on (11.16) and are stored in the parameters k_vec_x, k_vec_y, and
k_vec_z. Then these parameters are used together with r0 to calculate l0 and to store it in
the parameter 1_0.

Another term that determines the three-dimensional distribution of the waveform is k̂ � !r
as shown in (11.18). Here the vector !r is the position vector. In the three-dimensional case
this dot product would yield three-dimensional arrays. Since all field components are located
at different positions, this dot product would yield a different three-dimensional array for
each component. Therefore, the dot product is performed separately for each field and is
stored in the arrays k_dot_r_ex, k_dot_r_ey, k_dot_r_ez, k_dot_r_hx, k_dot_r_hy, and
k_dot_r_hz. Then the spatial shift l0 appearing in (11.18) is embedded in these arrays.

Finally, the waveform of the incident plane wave is acquired from the structure wave-
forms and is stored in the structure incident_plane_wave. This waveform is used only for
plotting purposes after the FDTD calculation is completed. The distribution of the waveform
and incident plane wave has to be recalculated at every time step and stored in the three-
dimensional incident field arrays for use in the scattered field updating equations.

11.4.3 Initialization of the updating coefficients

The scattered field formulation algorithm requires a new set of updating coefficients. As dis-
cussed in Section 11.2 the updating equations for the scattered field formulation are the same
as the general updating equations except that the scattered field updating equations have
additional terms. These terms consist of incident fields multiplied by incident field coefficients.
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The incident field coefficients are initialized in a subroutine initialize_incident_field_
updating_coefficients, the implementation of which is shown in Listing 11.3. This subroutine
is called in initialize_updating_coefficients after all other updating coefficient subroutines are
called. Here a set of new three-dimensional arrays is constructed representing the updating
coefficients related to the incident field components based on (11.8)–(11.13).

11.4.4 Calculation of the scattered fields

As the iterations proceed in the FDTD time-marching algorithm, the incident plane
wave enters the FDTD problem space and propagates such that at every time instant the
values of the incident field components change. Therefore, the values of the incident
field components need to be recalculated at every time step. A new subroutine named
update_incident_fields is implemented for this purpose and is provided in Listing 11.4.

Listing 11.3 initialize_incident_field_updating_coefficients
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Listing 11.4 update_incident_fields
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This subroutine is called in run_fdtd_time_marching_loop, in the time-marching loop,
before calling update_magnetic_fields and therefore before updating the magnetic field
components. Since the waveform needs to be recalculated at every time step, this subroutine
is composed of several sections, each of which pertains to a specific type of waveform. For
instance, this implementation supports the Gaussian, derivative of Gaussian, and cosine-
modulated Gaussian waveforms. Thus, at every iteration only the section pertaining to the
type of the waveform of the incident plane wave is executed. At every time step all the six
incident electric and magnetic field arrays are recalculated. One should notice that the
electric and magnetic field components are calculated at time instants a half time step off
from each other since the magnetic field components are evaluated at half-integer time steps
while the electric field components are evaluated at integer time steps.

After update_incident_fields is called in run_fdtd_time_marching_loop, the subroutine
update_magnetic_fields is called in which the magnetic field components are updated for
the current time step. The implementation of update_magnetic_fields is modified as shown
in Listing 11.5 to accommodate the scattered field formulation. Here the general updating
equation is kept as is; however, an additional section is added that will be executed if the
mode of the simulation is scattering. In this additional section the incident field arrays are
multiplied by the corresponding coefficients and are added to the magnetic field compo-
nents, which in this case are assumed to be scattered fields. Similarly, the implementation of
update_electric_fields is modified as shown in Listing 11.6 to accommodate the scattered
field formulation for updating the scattered electric field components.

11.4.5 Postprocessing and simulation results

The scattered electric and magnetic field components at desired locations can be captured
as the FDTD simulation is running by defining sampled_electric_fields and sampled_
magnetic_fields in the subroutine define_output_parameters before the FDTD simulation
is started. Another type of output from a scattering simulation is the RCS as discussed in
Section 11.3. The calculation of RCS follows the same procedure as the NF–FF transformation.
Only a slight modification of the code is required at the last stage of the NF–FF transformation.
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Listing 11.5 update_magnetic_fields

Listing 11.6 update_electric_fields
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However, before discussing this modification, it should be noted that if the calculation of
the RCS is desired, the frequencies for which the RCS calculation is sought must be defined
in the subroutine define_output_parameters as the parameter farfield.frequencies(i).
Furthermore, the parameter farfield.number_of_cells_from_outer_boundary must be
defined as well.

The calculation of RCS from the captured NF–FF fictitious currents and display of results
are performed in the subroutine calculate_and_display_farfields. The initial lines of this
subroutine are modified as shown in Listing 11.7. In the last part of the given code section it
can be seen that if the mode of the simulation is scattering, then the plotted radiation patterns
are RCS; otherwise, plots show the directivity of the field patterns. Another modification is
that a new subroutine named calculate_incident_plane_wave_power is called after the sub-
routine calculate_radiated_power. The RCS calculation is based on (11.21), which requires
the value of the incident field power. Hence, the subroutine calculate_incident_plane_
wave_power, which is shown in Listing 11.8, is implemented to calculate the power of the
incident plane wave at the desired frequency or frequencies based on (11.22).

The actual calculation of RCS is performed in the subroutine calculate_farfields_
per_plane. The last part of this subroutine is modified as shown in Listing 11.9. If the mode
of the simulation is scattering then RCS is calculated using (11.21); otherwise, the directivity
is calculated.

Finally, a section of code is added to subroutine display_transient_parameters, as shown
in Listing 11.10, to display the waveform of the incident plane wave that would be observed
at the origin. It should be noted that the displayed waveform includes the temporal shift t0
but not the spatial shift l0.

Listing 11.7 calculate_and_display_farfields
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Listing 11.8 calculate_incident_plane_wave_power

Listing 11.9 calculate_farfields_per_plane

Listing 11.10 display_transient_parameters
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11.5 Simulation examples

In the previous sections we discussed scattered field algorithm and demonstrated its imple-
mentation using MATLAB� programs. In this section we provide examples of scattering
problems.

11.5.1 Scattering from a dielectric sphere

In this section we present the calculation of the bistatic RCS of a dielectric sphere.
Figure 11.4 shows an FDTD problem space including a dielectric sphere illuminated by an x
polarized plane wave traveling in the positive z direction. The problem space is composed of
cells with size Dx ¼ 0.75 cm, Dy ¼ 0.75 cm, and Dz ¼ 0.75 cm. The dielectric sphere radius
is 10 cm, relative permittivity is 3, and relative permeability is 2. The definition of the
problem space is shown in Listing 11.11. The incident plane wave source is defined as shown
in Listing 11.12. The waveform of the plane wave is Gaussian. The output of the FDTD
simulation is defined as far field at 1 GHz, which indicates that the RCS will be calculated.
Furthermore, the x component of the scattered electric field at the origin is defined as the
output as shown in Listing 11.13.

The simulation is run for 2,000 time steps, and the sampled electric field at the origin and
the RCS plots are obtained. Figure 11.5 shows the sampled scattered electric field captured at
the origin and shows the waveform of the incident plane wave. Figures 11.6, 11.7, and 11.8
show the RCS of the dielectric sphere in the xy, xz, and yz planes, respectively.

To verify the accuracy of the calculated RCSs, the results are compared with the analytical
solution presented in [44]. The q component of the RCS in the xz plane calculated by the

CPML inner boundaries

z

x
y

Outer PEC boundaries

Einc

Figure 11.4 An FDTD problem space including a dielectric sphere.
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FDTD simulation is compared with the analytical solution in the Cartesian plot in Figure 11.9,
whereas the f component of the RCS in the yz plane calculated by the FDTD simulation is
compared with the analytical solution in the Cartesian plot in Figure 11.10. Both comparisons
show very good agreement.

Listing 11.13 shows that an animation is also defined as an output. The scattered electric
field is thus captured on the xz plane displayed during the simulation. Figure 11.11 shows the
snapshots of the animation captured at time steps 120, 140, 160, and 180.

Listing 11.11 define_geometry.m

Listing 11.12 define_sources_and_lumped_elements.m
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Listing 11.13 define_output_parameters.m
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Figure 11.5 Scattered electric field captured at the origin and the incident field waveform.
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Figure 11.8 Bistatic RCS at 1 GHz in the yz plane.
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11.5.2 Scattering from a dielectric cube

In the previous section calculation of the bistatic RCS of a dielectric sphere is presented. In
this section we present calculation of the RCS of a cube using the FDTD method and com-
parison with results obtained by a method of moments (MoM) solver [45]. In Figure 11.12 the
FDTD problem space including a dielectric cube is illustrated. In the same figure the triangular
meshing of the surface of the cube used by the MoM solver is shown as well.
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Figure 11.9 Calculated RCSq at 1 GHz in the xz plane compared with the analytical solution.
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Figure 11.10 Calculated RCSf at 1 GHz in the yz plane compared with the analytical solution.
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The FDTD problem space is composed of cubic cells 0.5 cm on a side. The definition of
the problem geometry is shown in Listing 11.14. Each side of the cube is 16 cm. The relative
permittivity of the cube is 5, and the relative permeability is 1. The incident plane wave is
defined as shown in Listing 11.15. The incident plane wave illuminating the cube is q
polarized and propagates in a direction expressed by angles q ¼ 45� and f ¼ 30�. The
waveform of the plane wave is Gaussian. The far-field output is defined at 1 GHz as shown
in Listing 11.16. Finally, a sampled electric field is defined at the origin to observe whether
the fields in the problem space are sufficiently decayed.

After the FDTD time-marching loop is completed, the far-field patterns are obtained as
shown in Figures 11.13, 11.14, and 11.15; for the RCS at 1 GHz in the xy, xz, and yz planes,
respectively. The same problem is simulated at 1 GHz using the MoM solver. Figure 11.16
shows the compared RCSq in the xz plane, whereas Figure 11.17 shows the compared RCSf.
The results show a good agreement.
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Figure 11.11 Scattered field due to a sphere captured on the xz plane cut: (a) at time step 120;
(b) at time step 140; (c) at time step 160; and (d) at time step 180.
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Figure 11.12 An FDTD problem space including a cube, and the surface mesh of the cube used
by the MoM solver.

Listing 11.14 define_geometry.m

Listing 11.15 define_sources_and_lumped_elements.m
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Listing 11.16 define_output_parameters.m
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Figure 11.13 Bistatic RCS at 1 GHz in the xy plane.
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Figure 11.15 Bistatic RCS at 1 GHz in the yz plane.
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Figure 11.16 Calculated RCSq at 1 GHz in the xz plane compared with the MoM solution.
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11.5.3 Reflection and transmission coefficients of a dielectric slab

Chapter 8 demonstrated that the objects with infinite length can be simulated by letting the
objects penetrate into the convolutional perfectly matched layer (CPML) boundaries. In this
example we show the simulation of a dielectric slab, which is essentially a one-dimensional
problem. The availability of incident plane wave allows us to calculate the reflection and
transmission coefficients of the slab.

The geometry of the problem in consideration is shown in Figure 11.18. A dielectric slab,
having dielectric constant 4 and thickness 20 cm, penetrates into the CPML boundaries in
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Figure 11.17 Calculated RCSf at 1 GHz in the xz plane compared with the MoM solution.

x
y

z

CPML inner boundaries

Sample electric
field point 1

Outer PEC boundaries

Sample electric
field point 2

Dielectric
slab

Einc

Figure 11.18 An FDTD problem space including a dielectric slab.
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xn, xp, yn, and yp directions. The problem space is composed of cells having 0.5 cm size on a
side. The source of the simulation is an x-polarized incident field traveling in the positive z
direction. Two sampled electric fields are defined to capture the x component of the electric
field at two points, each 5 cm away from the slab – one below the slab and the other above the
slab as illustrated in Figure 11.18. The definition of the problem space boundary conditions,
incident field, the slab, and the sampled electric fields are shown in Listings 11.17–11.20,
respectively. Notice that the CPML parameters have been modified for better performance.

In the previous sections, scattered field formulation has been demonstrated for calculat-
ing the scattered field when an incident field is used to excite the problem space. The
sampled electric field therefore is the one being captured while the simulation is running.

Listing 11.17 define_problem_space_parameters.m
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The reflected field from the slab is the scattered field, and the ratio of the reflected field to
incident field is required to calculate the reflection coefficient using

jGj ¼ j !
Escatj
j !
Eincj ; ð11:23Þ

Listing 11.18 define_geometry.m

Listing 11.19 define_sources_and_lumped_elements.m

Listing 11.20 define_output_parameters.m
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where G is the reflection coefficient. Here the scattered field is the one sampled at a
point below the slab, and the incident field shall be sampled at the same point as well.
Therefore, the section of code shown in Listing 11.21 is added to the subroutine capture_
sampled_electric_fields to sample the incident electric field as the time-marching loop
proceeds.

The ratio of the transmitted field to incident field is required to calculate the transmission
coefficient, where the transmitted field is the total field that is the sum of the incident and
scattered fields. Then the transmission coefficient can be calculated using

jT j ¼ j !
Etotj
j !
Eincj ¼

j !
Escat þ

!
Eincj

j !
Eincj ; ð11:24Þ

where T is the transmission coefficient. Here the scattered field is the one sampled at a point
above the slab, and the incident field is sampled at the same point as well.

The simulation for this problem is executed, the incident and scattered fields are cap-
tured at two points above and below the slab and transformed to frequency domain, and the
reflection and transmission coefficients are calculated using (11.23) and (11.24), respec-
tively. The calculation results are plotted in Figure 11.19 together with the exact solution of
the same problem. The exact solution is obtained using the program published in [46]. A
very good agreement can be observed between the simulated results and exact solution up
to 1 GHz.

Listing 11.21 capture_sampled_electric_fields.m
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11.6 Exercises

11.1 Consider the problem demonstrated in Section 11.5.1, where the RCS of a dielectric
sphere is calculated due to an incident field traveling in the positive z direction. In the
given example the direction of incidence is defined as q ¼ 0� and f ¼ 0�. Change the
incident angle such that q ¼ 45� and f ¼ 0�, run the simulation, and obtain the RCS
at 1 GHz. Examine the RCS plots, and verify that the RCS in the xz plane is the same
as the one shown in Figure 11.7, except that it is rotated by 45� about the y axis.

11.2 Consider the scattering problem constructed for Exercise 11.1, where the RCS of a
dielectric sphere is calculated due to an incident field. The RCS calculations are based
on the scattered fields; the fictitious electric and magnetic current densities used for
NF–FF transformation are calculated using the scattered field electric and magnetic
fields. The total field in the problem space is the sum of the incident field and the
scattered field. Modify the program such that the RCS calculations are performed based
on the total fields rather than on the scattered fields. It is necessary to modify the code
of the subroutine calculate_JandM. Run the simulation and obtain the RCS of the
sphere. Verify that the RCS data are the same as the ones obtained from Exercise 11.1.
Notice that the incident field does not contribute to far-field scattering at all.

11.3 Consider the dielectric slab problem demonstrated in Section 11.5.3. You can perform
the reflection and transmission coefficient calculation for stacked slabs composed of
multiple layers with different dielectric constants. For instance, create two slabs in the
problem space, each 10 cm thick. Then set the dielectric constant of the bottom slab as
4 and the dielectric constant of the top slab as 2. Run the simulation, and then cal-
culate the reflection and transmission coefficients. Compare your result with the exact
solution of the same problem. For the exact solution you can refer to [46]. As an
alternative, you can construct a one-dimensional FDTD code similar to the one pre-
sented in Chapter 1 based on the scattered field formulation to solve the same
problem.
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|T| FDTD
|Γ| exact
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Figure 11.19 Reflection and transmission coefficients of the dielectric slab.
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CHAPTER 12

Total field/scattered field
formulation

12.1 Introduction

Another technique that introduces far-zone sources (plane wave) into the FDTD computa-
tional domain is the Total Field/Scattered Field (TF/SF) method presented by Umashankar
and Taflove [47]. In the scattered field (SF) method, discussed before, the scattered fields are
defined in the entire computational domain and the incident fields are imposed on the entire
computational domain. Unlike the SF method, in the TF/SF method the computational
domain is divided into two regions: a total fields region, in which all objects are placed, and
a scattered fields region that surrounds the total fields region as shown in Figure 12.1. Then,
the incident plane wave is imposed on the boundary between these two regions to com-
pensate for the discontinuity that arises due to the difference in the field values on the two
sides of the boundary. The concept will be illustrated for the one-dimensional case first, and
then the discussion will be extended to the three-dimensional case in the following sections.

Figure 12.2 illustrates total and scattered field regions and the field components for one-
dimensional computational space. The TF/SF boundaries are indicated with the lower and
upper nodes, ‘‘li’’ and ‘‘ui,’’ respectively. The field components inside the total field region
are considered as the total field components, whereas the field components inside the scat-
tered field region are considered as the scattered field components and they are indicated
with a ‘‘scat’’ subscript. The scattered field region does not contain any objects, thus it is free
space as material type and it is surrounded by absorbing boundaries such as CPML. Thus the
scattered fields satisfy Maxwell’s equations for free space, which is translated into a one-
dimensional updating equations, for instance, as

Enþ1
scat;z ið Þ ¼ En

scat;z ið Þ þ Cezhy ið Þ H
nþ1

2
scat;y ið Þ � H

nþ1
2

scat;y i � 1ð Þ
� �

; ð12:1aÞ

Hnþ0:5
scat;y ið Þ ¼ Hn�0:5

scat;y ið Þ þ Chyez ið Þ En
scat;z i þ 1ð Þ � En

scat;z ið Þ
� �

; ð12:1bÞ

where

Chyez ið Þ ¼ Dt

m0Dx
; and Cezhy ið Þ ¼ Dt

e0Dx
: ð12:2Þ
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One should notice that these updating equations are the same as the ones in (1.42) and
(1.43), used for total fields, except that they are defined for free space. Since the total and
scattered field components are distinct and complementary in space, and they follow the
same form of the updating equations, there is no need to use separate arrays to store the total
and scattered field components, as well as their respective coefficients. The updating coef-
ficients in (1.42) and (1.43) can be simply set as the ones in (12.2) for respective scattered
field components, and the field updates can be performed as usual based on (1.42) and
(1.43), while implicitly considering that the field components that correspond to the scattered
field region are the scattered field components and the other field components are the total
field components.

Total field region

Scattered fied region

TF/SF boundary

Figure 12.1 Total and scattered field regions for a three-dimensional FDTD computational domain.

Scattered field
region

x

y

Scattered field
regionTotal field region

no
de

 li

E s
ca
t, 
z(l
i −

 1
)

H
sc
at

, y
(li

 −
 1

)

E z
(li

)

H
y(
li)

E z
(..

.)

H
y(
ui

 −
 1

)

E z
(u
i)

H
sc
at

, y
(u
i)

E s
ca
t, 
z(u
i +

 1
)

no
de

 u
i

Figure 12.2 Total and scattered field components and regions for a one-dimensional FDTD
computational domain.
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After the field updates in the entire computational domain, one needs to compensate for
the discontinuity between the scattered and total fields on the TF/SF boundary by using the
incident field. For instance, when the field component Ez lið Þ in Figure 12.2 is updated, the
first step would be

Enþ1
z lið Þ ¼ En

z lið Þ þ Dt

e0Dx
H

nþ1
2

y lið Þ � H
nþ1

2
scat;y li � 1ð Þ

� �
: ð12:3Þ

Here, the magnetic field component with index li � 1ð Þ is a scattered field component,
since it is in the scattered field region, where a total field component, Hy li � 1ð Þ, is needed to
be used. Since the required Hy li � 1ð Þ is the sum of Hscat;y li � 1ð Þ and an incident field
component, Hinc;y li � 1ð Þ, which can be calculated analytically, the second step required to
complete the Enþ1

z lið Þ update would be

Enþ1
z lið Þ ¼ Enþ1

z lið Þ � Dt

e0Dx
H

nþ1
2

inc;y li � 1ð Þ: ð12:4Þ

A similar compensation is needed for the magnetic component, Hscat;y li � 1ð Þ, in the
scattered field region. Regular field update performs

Hnþ0:5
scat;y li � 1ð Þ ¼ Hn�0:5

scat;y li � 1ð Þ þ Dt

m0Dx
En

z lið Þ � En
scat;z li � 1ð Þ

� �
; ð12:5Þ

where En
z lið Þ is used instead of the needed En

scat;z lið Þ component. Similar to (12.4), an addi-
tional update as

Hnþ0:5
scat;y li � 1ð Þ ¼ Hnþ0:5

scat;y li � 1ð Þ � Dt

m0Dx
En

inc;z lið Þ; ð12:6Þ

compensates for the needed field component.
The same kind of additional updates are required on the other (right) TF/SF boundary as

well. In that case, the additional updates can be listed as

Enþ1
z uið Þ ¼ Enþ1

z uið Þ þ Dt

e0Dx
H

nþ1
2

inc;y uið Þ; ð12:7Þ

Hnþ0:5
scat;y uið Þ ¼ Hnþ0:5

scat;y uið Þ þ Dt

m0Dx
En

inc;z uið Þ: ð12:8Þ

As illustrated above, the values of the incident fields are needed only at the two sides of
the TF/SF boundaries, unlike the scattered field formulation, which requires the values of the
incident fields to be computed in the entire computational domain.

It is straightforward to extend the TF/SF concept to two- and three-dimensional
domains. In the three-dimensional case, the incident field corrections are needed on the six
faces of a TF/SF boundary surface that surrounds all scatterers in the computational space.

Figures 12.3 and 12.4 illustrate the field components that need compensation using the
incident fields after performing the regular field updates. In these figures, the boundaries of
the imaginary surface are indicated by the node indices li, lj, lk, ui, uj, and uk, where ‘‘i’’,
‘‘j’’, and ‘‘k’’ denote the indices in x, y, and z directions, respectively, while ‘‘l’’ and ‘‘u’’
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Imaginary surface (li, lj, lk)

(ui, lj, uk)

Ex(li : ui − 1, lj, lk : uk)

Hz(li : ui − 1, lj − 1, lk : uk)

(ui, uj, uk)

z

x
y

Figure 12.3 Ex and Hz field components that needs incident field compensation on the yn face
of the imaginary surface.

Imaginary surface (li, lj, lk)

(ui, lj, uk)

Ez(li : ui, lj, lk : uk − 1)

Hx(li : ui, lj − 1, lk : uk − 1)

(ui, uj, uk)

z

x
y

Figure 12.4 Ez and Hx field components that needs incident field compensation on the yn face
of the imaginary surface.
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denote lower and upper limits of the boundaries. One can visualize in Figure 12.3 that the
additional field updates for the yn boundary would be as

Enþ1
x li : ui � 1; lj; lk : ukð Þ ¼ Enþ1

x li : ui � 1; lj; lk : ukð Þ
� Dt

e0Dx
H

nþ1
2

inc;z li : ui � 1; lj � 1; lk : ukð Þ; ð12:9Þ

and

Hnþ0:5
scat;z li : ui � 1; lj � 1; lk : ukð Þ ¼ Hnþ0:5

scat;z li : ui � 1; lj � 1; lk : ukð Þ

� Dt

m0Dx
En

inc;x li : ui � 1; lj; lk : ukð Þ; ð12:10Þ

where ‘‘:’’ denotes the range of indices similar to its usage in FORTRAN and MATLAB�.
Similarly, one can visualize in Figure 12.4 that the additional field updates would be

Enþ1
z li : ui; lj; lk : uk � 1ð Þ ¼ Enþ1

z li : ui; lj; lk : uk � 1ð Þ
þ Dt

e0Dx
H

nþ1
2

inc;x li : ui; lj � 1; lk : uk � 1ð Þ; ð12:11Þ

and

Hnþ0:5
scat;x li : ui; lj � 1; lk : uk � 1ð Þ ¼ Hnþ0:5

scat;x li : ui; lj � 1; lk : uk � 1ð Þ

þ Dt

m0Dx
En

inc;z li : ui; lj; lk : uk � 1ð Þ: ð12:12Þ

Equations (12.9)–(12.12) can be modified for the yp boundary as

Enþ1
x li : ui � 1; uj; lk : ukð Þ ¼ Enþ1

x li : ui � 1; uj; lk : ukð Þ
þ Dt

e0Dx
H

nþ1
2

inc;z li : ui � 1; uj; lk : ukð Þ; ð12:13Þ

Hnþ0:5
scat;z li : ui � 1; uj; lk : ukð Þ ¼ Hnþ0:5

scat;z li : ui � 1; uj; lk : ukð Þ

þ Dt

m0Dx
En

inc;x li : ui � 1; uj; lk : ukð Þ; ð12:14Þ

Enþ1
z li : ui; uj; lk : uk � 1ð Þ ¼ Enþ1

z li : ui; uj; lk : uk � 1ð Þ
� Dt

e0Dx
H

nþ1
2

inc;x li : ui; uj; lk : uk � 1ð Þ; ð12:15Þ

Hnþ0:5
scat;x li : ui; uj; lk : uk � 1ð Þ ¼ Hnþ0:5

scat;x li : ui; uj; lk : uk � 1ð Þ

� Dt

m0Dx
En

inc;z li : ui; uj; lk : uk � 1ð Þ: ð12:16Þ

Equations for other boundaries can be obtained similarly.
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12.2 MATLAB‡ implementation of the TF/SF formulation

In Section 11.4, the MATLAB implementation of a scattered field formulation was presented
including the definition of an incident plane wave, initialization of the incident fields,
initialization of updating coefficients and calculation of the scattered fields. Thus it will be
easy to modify the code of the scattered field formulation and develop a code for the TF/SF
formulation since there is a significant overlap among the elements of these methods. In
particular, the way the incident field is defined and implemented is the same except that the
incident fields are defined on the entire problem space in the former, while they are defined
on only both sides of the TF/SF surface in the latter.

12.2.1 Definition and initialization of incident fields

A plane wave with a Gaussian waveform will be considered as the incident field in this
implementation. The definition of an incident plane wave was illustrated in Listing 11.1.
The same definition can be retained. However, the initialization of the incident fields
will be significantly different for the implementation for the TF/SF formulation since the
fields need to be known only around the six sides of the rectangular surface defining
the TF/SF boundary.

The first task in the initialization of the incident plane wave is to determine the location
of the TF/SF boundary. This surface should reside in the air gap between the objects and the
absorbing boundary regions enclosing the problem space. Listing 12.1 shows the part of the
initialization subroutine initialize_incident_plane_wave, where this boundary is placed three
cells away from CPML absorbing boundaries and the values of the node indices li, lj, lk, ui,
uj, and uk are updated accordingly.

Listing 12.1 initialize_incident_plane_wave.m: Locate the TF/SF boundary

%  l e a v i n g  t h r e e  c e l l s  b e t w e e n  t h e  o u t e r  b o u n d a r y  a n d  t h e  T F / S F  b o u n d a r y
l i  =  3 ;      l j  =  3 ;      l k  =  3 ;  
u i  =  n x - 3 ;   u j  =  n y - 3 ;   u k  =  n z - 3 ;
i f  s t r c m p ( b o u n d a r y . t y p e _ x n ,  ' c p m l ' )
    l i  =  b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ x n  +  3 ;  
e n d
i f  s t r c m p ( b o u n d a r y . t y p e _ y n ,  ' c p m l ' )
    l j  =  b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ y n  +  3 ;  
e n d
i f  s t r c m p ( b o u n d a r y . t y p e _ z n ,  ' c p m l ' )
    l k  =  b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ z n  +  3 ;  
e n d
i f  s t r c m p ( b o u n d a r y . t y p e _ x p ,  ' c p m l ' )
    u i  =  n x - b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ x p  -  3 ;
e n d
i f  s t r c m p ( b o u n d a r y . t y p e _ y p ,  ' c p m l ' )
    u j  =  n y - b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ y p  -  3 ;  
e n d
i f  s t r c m p ( b o u n d a r y . t y p e _ z p ,  ' c p m l ' )
    u k  =  n z - b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ z p  -  3 ;
e n d
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The next step is to allocate incident field arrays for the six sides of the TF/SF surface.
For instance, as illustrated in Figures 12.3 and 12.4, arrays for Einc;x, Einc;z, Hinc;x, and Hinc;z

need to be defined for the yn boundary. Each of these arrays is three dimensional, while its
size in the y dimension is equal to one, thus making it effectively a two-dimensional array.
Similarly, four incident field arrays are needed for each of other sides, thus in total 24 arrays
are defined as illustrated in Listing 12.2.

Then the amplitudes of the incident electric and magnetic field waveforms are trans-
formed from spherical coordinates to Cartesian coordinates to yield Exi0, Eyi0, Ezi0, Hxi0,
Hyi0, and Hzi0 as shown in Listing 12.3. Moreover, the components of the propagation
vector are calculated and stored in k_vec_x, k_vec_y, k_vec_z parameters. Also, the spatial
shift required for the plane wave, which ensures that the wave is outside the computational
domain when the time-marching loop starts and lets the wave enter to the computational
domain on its leading front as the time-marching loop proceeds, is calculated and stored as
the parameter l_0. It should be noted that these calculations are the same as the corre-
sponding ones in Listing 11.2.

Listing 11.3 also includes the calculation of three-dimensional arrays k_dot_r_ex,
k_dot_r_ey, k_dot_r_ez, k_dot_r_hx, k_dot_r_hy, and k_dot_r_hz as discussed in Sec-
tion 11.4.2. These arrays need to be defined on the six faces of TF/SF boundary as two-
dimensional arrays for the case of TF/SF formulation. For instance, Listing 12.4 shows the
allocation and initialization of these arrays for the yn side of the TF/SF boundary.

Listing 12.2 initialize_incident_plane_wave.m: Allocate incident field arrays

E x i _ y n  =  z e r o s ( u i - l i , 1 , u k - l k + 1 ) ;  
E x i _ y p  =  z e r o s ( u i - l i , 1 , u k - l k + 1 ) ;  
E x i _ z n  =  z e r o s ( u i - l i , u j - l j + 1 , 1 ) ;  
E x i _ z p  =  z e r o s ( u i - l i , u j - l j + 1 , 1 ) ;  
 
E y i _ x n  =  z e r o s ( 1 , u j - l j , u k - l k + 1 ) ;  
E y i _ x p  =  z e r o s ( 1 , u j - l j , u k - l k + 1 ) ;  
E y i _ z n  =  z e r o s ( u i - l i + 1 , u j - l j , 1 ) ;  
E y i _ z p  =  z e r o s ( u i - l i + 1 , u j - l j , 1 ) ;  
 
E z i _ x n  =  z e r o s ( 1 , u j - l j + 1 , u k - l k ) ;  
E z i _ x p  =  z e r o s ( 1 , u j - l j + 1 , u k - l k ) ;  
E z i _ y n  =  z e r o s ( u i - l i + 1 , 1 , u k - l k ) ;  
E z i _ y p  =  z e r o s ( u i - l i + 1 , 1 , u k - l k ) ;  
 
H z i _ y n  =  z e r o s ( u i - l i , 1 , u k - l k + 1 ) ;  
H z i _ y p  =  z e r o s ( u i - l i , 1 , u k - l k + 1 ) ;  
H y i _ z n  =  z e r o s ( u i - l i , u j - l j + 1 , 1 ) ;  
H y i _ z p  =  z e r o s ( u i - l i , u j - l j + 1 , 1 ) ;  
 
H z i _ x n  =  z e r o s ( 1 , u j - l j , u k - l k + 1 ) ;  
H z i _ x p  =  z e r o s ( 1 , u j - l j , u k - l k + 1 ) ;  
H x i _ z n  =  z e r o s ( u i - l i + 1 , u j - l j , 1 ) ;  
H x i _ z p  =  z e r o s ( u i - l i + 1 , u j - l j , 1 ) ;  
 
H y i _ x n  =  z e r o s ( 1 , u j - l j + 1 , u k - l k ) ;  
H y i _ x p  =  z e r o s ( 1 , u j - l j + 1 , u k - l k ) ;  
H x i _ y n  =  z e r o s ( u i - l i + 1 , 1 , u k - l k ) ;  
H x i _ y p  =  z e r o s ( u i - l i + 1 , 1 , u k - l k ) ;  
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Listing 12.3 initialize_incident_plane_wave.m: Calculate amplitudes and propagation
vector

%  c a l c u l a t e  t h e  a m p l i t u d e  f a c t o r s  f o r  fi e l d  c o m p o n e n t s
t h e t a _ i n c i d e n t  =  i n c i d e n t _ p l a n e _ w a v e . t h e t a _ i n c i d e n t * p i / 1 8 0 ;
p h i _ i n c i d e n t  =  i n c i d e n t _ p l a n e _ w a v e . p h i _ i n c i d e n t * p i / 1 8 0 ;
E _ t h e t a  =  i n c i d e n t _ p l a n e _ w a v e . E _ t h e t a ;
E _ p h i  =  i n c i d e n t _ p l a n e _ w a v e . E _ p h i ;
e t a _ 0  =  s q r t ( m u _ 0 / e p s _ 0 ) ;
E x i 0  =  E _ t h e t a  *  c o s ( t h e t a _ i n c i d e n t )  *  c o s ( p h i _ i n c i d e n t )  . . .
    -  E _ p h i  *  s i n ( p h i _ i n c i d e n t ) ;
E y i 0  =  E _ t h e t a  *  c o s ( t h e t a _ i n c i d e n t )  *  s i n ( p h i _ i n c i d e n t )  . . .
    +  E _ p h i  *  c o s ( p h i _ i n c i d e n t ) ;
E z i 0  =  - E _ t h e t a  *  s i n ( t h e t a _ i n c i d e n t ) ;
H x i 0  =  ( - 1 / e t a _ 0 ) * ( E _ p h i  *  c o s ( t h e t a _ i n c i d e n t )  . . .
    *  c o s ( p h i _ i n c i d e n t )  +  E _ t h e t a  *  s i n ( p h i _ i n c i d e n t ) ) ;
H y i 0  =  ( - 1 / e t a _ 0 ) * ( E _ p h i  *  c o s ( t h e t a _ i n c i d e n t )  . . .
    *  s i n ( p h i _ i n c i d e n t )  -  E _ t h e t a  *  c o s ( p h i _ i n c i d e n t ) ) ;
H z i 0  =  ( 1 / e t a _ 0 ) * ( E _ p h i  *  s i n ( t h e t a _ i n c i d e n t ) ) ;
 
%  c a l c u l a t e  s p a t i a l  s h i f t ,  l _ 0 ,  r e q u i r e d  f o r  i n c i d e n t  p l a n e  w a v e
r 0  = [ f d t d _ d o m a i n . m i n _ x  f d t d _ d o m a i n . m i n _ y  f d t d _ d o m a i n . m i n _ z ;
f d t d _ d o m a i n . m i n _ x  f d t d _ d o m a i n . m i n _ y  f d t d _ d o m a i n . m a x _ z ;
f d t d _ d o m a i n . m i n _ x  f d t d _ d o m a i n . m a x _ y  f d t d _ d o m a i n . m i n _ z ;
f d t d _ d o m a i n . m i n _ x  f d t d _ d o m a i n . m a x _ y  f d t d _ d o m a i n . m a x _ z ;
f d t d _ d o m a i n . m a x _ x  f d t d _ d o m a i n . m i n _ y  f d t d _ d o m a i n . m i n _ z ;
f d t d _ d o m a i n . m a x _ x  f d t d _ d o m a i n . m i n _ y  f d t d _ d o m a i n . m a x _ z ;
f d t d _ d o m a i n . m a x _ x  f d t d _ d o m a i n . m a x _ y  f d t d _ d o m a i n . m i n _ z ;
f d t d _ d o m a i n . m a x _ x  f d t d _ d o m a i n . m a x _ y  f d t d _ d o m a i n . m a x _ z ; ] ;
 
k _ v e c _ x  =   s i n ( t h e t a _ i n c i d e n t ) * c o s ( p h i _ i n c i d e n t ) ;     
k _ v e c _ y  =   s i n ( t h e t a _ i n c i d e n t ) * s i n ( p h i _ i n c i d e n t ) ;     
k _ v e c _ z  =   c o s ( t h e t a _ i n c i d e n t ) ;
 
k _ d o t _ r 0  =  k _ v e c _ x  *  r 0 ( : , 1 )  . . .
    +  k _ v e c _ y  *  r 0 ( : , 2 )  . . .
    +  k _ v e c _ z  *  r 0 ( : , 3 ) ;
 
l _ 0  =  m i n ( k _ d o t _ r 0 ) / c ;
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Listing 12.4 initialize_incident_plane_wave.m: Calculate k^ � r arrays

k _ d o t _ r _ e x _ y n  =  z e r o s ( u i - l i , 1 , u k - l k + 1 ) ;  
k _ d o t _ r _ e z _ y n  =  z e r o s ( u i - l i + 1 , 1 , u k - l k ) ;  
k _ d o t _ r _ h x _ y n  =  z e r o s ( u i - l i + 1 , 1 , u k - l k ) ;  
k _ d o t _ r _ h z _ y n  =  z e r o s ( u i - l i , 1 , u k - l k + 1 ) ;  

%  c a l c u l a t e  k . r  f o r  e v e r y  fi e l d  c o m p o n e n t  o n  t h e  T F / S F  b o u n d a r y
f o r  m k = l k : u k
        f o r  m i = l i : u i - 1
        m i i  =  m i  -  l i  +  1 ;
        m j j  =  1 ;
        m k k  =  m k  -  l k  +  1 ;
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12.2.2 Updating incident fields

The incident field arrays and other auxiliary arrays are allocated and initialized in the sub-
routine initialize_incident_plane_wave as discussed in the previous section. Now these
arrays are ready for use in the time-marching loop of the FDTD method, which is imple-
mented in the subroutine run_fdtd_time_marching_loop. The incident electric and magnetic
field components on the TF/SF boundary need to be recalculated at every iteration of the
time-marching loop before they are used to update the total or scattered fields on both sides
of the boundary. Listing 12.5 shows the subroutine update_incident_fields, which is used to
recalculate these boundary field components. First, the total electric and magnetic field

  m j  =  l j ;
        x  =  m i n _ x  +  d x  *  ( m i - 0 . 5 ) ;
        y  =  m i n _ y  +  d y  *  ( m j - 1 ) ;
        z  =  m i n _ z  +  d z  *  ( m k - 1 ) ;
        
        k _ d o t _ r _ e x _ y n ( m i i , m j j , m k k )  =  . . .
            ( x * k _ v e c _ x  +  y * k _ v e c _ y  +  z * k _ v e c _ z ) / c ;
 
        y  =  m i n _ y  +  d y  *  ( m j - 1 . 5 ) ;
        k _ d o t _ r _ h z _ y n ( m i i , m j j , m k k )  =  . . .
            ( x * k _ v e c _ x  +  y * k _ v e c _ y  +  z * k _ v e c _ z ) / c ;
 
    e n d  
e n d  

f o r  m i = l i : u i
    f o r  m k = l k : u k - 1
        m j j  =  1 ;
        m i i  =  m i  -  l i  +  1 ;
        m k k  =  m k  -  l k  +  1 ;
 
        m j  =  l j ;                         
        x  =  m i n _ x  +  d x  *  ( m i - 1 ) ;
        y  =  m i n _ y  +  d y  *  ( m j - 1 ) ;
        z  =  m i n _ z  +  d z  *  ( m k - 0 . 5 ) ;
        k _ d o t _ r _ e z _ y n ( m i i , m j j , m k k )  =  . . .
            ( x * k _ v e c _ x  +  y * k _ v e c _ y  +  z * k _ v e c _ z ) / c ;
 
        y  =  m i n _ y  +  d y  *  ( m j - 1 . 5 ) ;
        k _ d o t _ r _ h x _ y n ( m i i , m j j , m k k )  =  . . .
            ( x * k _ v e c _ x  +  y * k _ v e c _ y  +  z * k _ v e c _ z ) / c ;
 
    e n d
e n d

%  e m b e d  s p a t i a l  s h i f t  i n  k . r
k _ d o t _ r _ e x _ y n  =  k _ d o t _ r _ e x _ y n  -  l _ 0 ;    
k _ d o t _ r _ e z _ y n  =  k _ d o t _ r _ e z _ y n  -  l _ 0 ;    
k _ d o t _ r _ h x _ y n  =  k _ d o t _ r _ h x _ y n  -  l _ 0 ;    
k _ d o t _ r _ h z _ y n  =  k _ d o t _ r _ h z _ y n  -  l _ 0 ;    
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components are defined at time instants that are referred to as ‘‘te’’ and ‘‘tm,’’ respectively, in
Listing 12.5. One should notice that ‘‘te’’ used to calculate incident magnetic field compo-
nents. Incident magnetic field components are needed at the time instants at which total/
scattered electric field components are defined since these components are added to (or
subtracted from) the total/scattered electric field components as (12.9), (12.11), (12.13), and
(12.15). Similarly, ‘‘tm’’ used to calculate incident electric field components since these
components are added to (or subtracted from) the total/scattered magnetic field components
as (12.10), (12.12), (12.14), and (12.16).

12.2.3 Updating fields on both sides of the TF/SF boundary

In the FDTD time-marching loop, the magnetic field components in the entire problem
space are updated in the subroutine update_magnetic_fields, as shown in Listing 12.6,

Listing 12.5 update_incident_fields.m

t m  =  c u r r e n t _ t i m e  +  d t / 2 ;
t e  =  c u r r e n t _ t i m e  +  d t ;
 
%  i f  w a v e f o r m  i s  G a u s s i a n  w a v e f o r m s
t a u  =  i n c i d e n t _ p l a n e _ w a v e . t a u ;
t _ 0  =  i n c i d e n t _ p l a n e _ w a v e . t _ 0 ;
 
E x i _ y n  =  E x i 0  *  e x p ( - ( ( t m  -  t _ 0  -  k _ d o t _ r _ e x _ y n  ) / t a u ) . ^ 2 ) ;
E x i _ y p  =  E x i 0  *  e x p ( - ( ( t m  -  t _ 0  -  k _ d o t _ r _ e x _ y p  ) / t a u ) . ^ 2 ) ;
E x i _ z n  =  E x i 0  *  e x p ( - ( ( t m  -  t _ 0  -  k _ d o t _ r _ e x _ z n  ) / t a u ) . ^ 2 ) ;
E x i _ z p  =  E x i 0  *  e x p ( - ( ( t m  -  t _ 0  -  k _ d o t _ r _ e x _ z p  ) / t a u ) . ^ 2 ) ;
 
E y i _ z n  =  E y i 0  *  e x p ( - ( ( t m  -  t _ 0  -  k _ d o t _ r _ e y _ z n  ) / t a u ) . ^ 2 ) ;
E y i _ z p  =  E y i 0  *  e x p ( - ( ( t m  -  t _ 0  -  k _ d o t _ r _ e y _ z p  ) / t a u ) . ^ 2 ) ;
E y i _ x n  =  E y i 0  *  e x p ( - ( ( t m  -  t _ 0  -  k _ d o t _ r _ e y _ x n  ) / t a u ) . ^ 2 ) ;
E y i _ x p  =  E y i 0  *  e x p ( - ( ( t m  -  t _ 0  -  k _ d o t _ r _ e y _ x p  ) / t a u ) . ^ 2 ) ;
 
E z i _ x n  =  E z i 0  *  e x p ( - ( ( t m  -  t _ 0  -  k _ d o t _ r _ e z _ x n  ) / t a u ) . ^ 2 ) ;
E z i _ x p  =  E z i 0  *  e x p ( - ( ( t m  -  t _ 0  -  k _ d o t _ r _ e z _ x p  ) / t a u ) . ^ 2 ) ;
E z i _ y n  =  E z i 0  *  e x p ( - ( ( t m  -  t _ 0  -  k _ d o t _ r _ e z _ y n  ) / t a u ) . ^ 2 ) ;
E z i _ y p  =  E z i 0  *  e x p ( - ( ( t m  -  t _ 0  -  k _ d o t _ r _ e z _ y p  ) / t a u ) . ^ 2 ) ;
 
H x i _ y n  =  H x i 0  *  e x p ( - ( ( t e  -  t _ 0  -  k _ d o t _ r _ h x _ y n  ) / t a u ) . ^ 2 ) ;
H x i _ y p  =  H x i 0  *  e x p ( - ( ( t e  -  t _ 0  -  k _ d o t _ r _ h x _ y p  ) / t a u ) . ^ 2 ) ;
H x i _ z n  =  H x i 0  *  e x p ( - ( ( t e  -  t _ 0  -  k _ d o t _ r _ h x _ z n  ) / t a u ) . ^ 2 ) ;
H x i _ z p  =  H x i 0  *  e x p ( - ( ( t e  -  t _ 0  -  k _ d o t _ r _ h x _ z p  ) / t a u ) . ^ 2 ) ;
 
H y i _ z n  =  H y i 0  *  e x p ( - ( ( t e  -  t _ 0  -  k _ d o t _ r _ h y _ z n  ) / t a u ) . ^ 2 ) ;
H y i _ z p  =  H y i 0  *  e x p ( - ( ( t e  -  t _ 0  -  k _ d o t _ r _ h y _ z p  ) / t a u ) . ^ 2 ) ;
H y i _ x n  =  H y i 0  *  e x p ( - ( ( t e  -  t _ 0  -  k _ d o t _ r _ h y _ x n  ) / t a u ) . ^ 2 ) ;
H y i _ x p  =  H y i 0  *  e x p ( - ( ( t e  -  t _ 0  -  k _ d o t _ r _ h y _ x p  ) / t a u ) . ^ 2 ) ;
 
H z i _ x n  =  H z i 0  *  e x p ( - ( ( t e  -  t _ 0  -  k _ d o t _ r _ h z _ x n  ) / t a u ) . ^ 2 ) ;
H z i _ x p  =  H z i 0  *  e x p ( - ( ( t e  -  t _ 0  -  k _ d o t _ r _ h z _ x p  ) / t a u ) . ^ 2 ) ;
H z i _ y n  =  H z i 0  *  e x p ( - ( ( t e  -  t _ 0  -  k _ d o t _ r _ h z _ y n  ) / t a u ) . ^ 2 ) ;  
H z i _ y p  =  H z i 0  *  e x p ( - ( ( t e  -  t _ 0  -  k _ d o t _ r _ h z _ y p  ) / t a u ) . ^ 2 ) ;
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Listing 12.6 update_magnetic_fields.m

%  u p d a t e  m a g n e t i c  fi e l d s
 
c u r r e n t _ t i m e   =  c u r r e n t _ t i m e  +  d t / 2 ;
    
H x  =  C h x h . * H x + C h x e y . * ( E y ( 1 : n x p 1 , 1 : n y , 2 : n z p 1 ) - E y ( 1 : n x p 1 , 1 : n y , 1 : n z ) )  . . .
    +  C h x e z . * ( E z ( 1 : n x p 1 , 2 : n y p 1 , 1 : n z ) - E z ( 1 : n x p 1 , 1 : n y , 1 : n z ) ) ;  
                  
H y  =  C h y h . * H y + C h y e z . * ( E z ( 2 : n x p 1 , 1 : n y p 1 , 1 : n z ) - E z ( 1 : n x , 1 : n y p 1 , 1 : n z ) )  . . .
    +  C h y e x . * ( E x ( 1 : n x , 1 : n y p 1 , 2 : n z p 1 ) - E x ( 1 : n x , 1 : n y p 1 , 1 : n z ) ) ;  
               
H z  =  C h z h . * H z + C h z e x . * ( E x ( 1 : n x , 2 : n y p 1 , 1 : n z p 1 ) - E x ( 1 : n x , 1 : n y , 1 : n z p 1 ) )   . . .
    +  C h z e y . * ( E y ( 2 : n x p 1 , 1 : n y , 1 : n z p 1 ) - E y ( 1 : n x , 1 : n y , 1 : n z p 1 ) ) ;  
 
i f  i n c i d e n t _ p l a n e _ w a v e . e n a b l e
   x u i  =  i n c i d e n t _ p l a n e _ w a v e . u i ;
   x u j  =  i n c i d e n t _ p l a n e _ w a v e . u j ;
   x u k  =  i n c i d e n t _ p l a n e _ w a v e . u k ;
   x l i  =  i n c i d e n t _ p l a n e _ w a v e . l i ;
   x l j  =  i n c i d e n t _ p l a n e _ w a v e . l j ;
   x l k  =  i n c i d e n t _ p l a n e _ w a v e . l k ;
    %  H x _ y n
        H x ( x l i : x u i , x l j - 1 , x l k : x u k - 1 )  =  . . .
        H x ( x l i : x u i , x l j - 1 , x l k : x u k - 1 )  +  d t / ( m u _ 0 * d y )  *  E z i _ y n ( : , 1 , : ) ;  
    %  H x _ y p
        H x ( x l i : x u i , x u j , x l k : x u k - 1 )  =  . . .
        H x ( x l i : x u i , x u j , x l k : x u k - 1 )  -  d t / ( m u _ 0 * d y )  *  E z i _ y p ( : , 1 , : ) ;  
    %  H x _ z n
        H x ( x l i : x u i , x l j : x u j - 1 , x l k - 1 )  =  . . .
        H x ( x l i : x u i , x l j : x u j - 1 , x l k - 1 )  -  d t / ( m u _ 0 * d z )  *  E y i _ z n ( : , : , 1 ) ;  
    %  H x _ z p
        H x ( x l i : x u i , x l j : x u j - 1 , x u k )  =  . . .
        H x ( x l i : x u i , x l j : x u j - 1 , x u k )  +  d t / ( m u _ 0 * d z )  *  E y i _ z p ( : , : , 1 ) ;  
 
    %  H y _ x n
        H y ( x l i - 1 , x l j : x u j , x l k : x u k - 1 )  =  . . .
        H y ( x l i - 1 , x l j : x u j , x l k : x u k - 1 )  -  d t / ( m u _ 0 * d x )  *  E z i _ x n ( 1 , : , : ) ;
    %  H y _ x p
        H y ( x u i , x l j : x u j , x l k : x u k - 1 )  =  . . .
        H y ( x u i , x l j : x u j , x l k : x u k - 1 )  +  d t / ( m u _ 0 * d x )  *  E z i _ x p ( 1 , : , : ) ;
    %  H y _ z n
        H y ( x l i : x u i - 1 , x l j : x u j , x l k - 1 )  =  . . .
        H y ( x l i : x u i - 1 , x l j : x u j , x l k - 1 )  +  d t / ( m u _ 0 * d z )  *  E x i _ z n ( : , : , 1 ) ;  
    %  H y _ z p
        H y ( x l i : x u i - 1 , x l j : x u j , x u k )  =  . . .
        H y ( x l i : x u i - 1 , x l j : x u j , x u k )  -  d t / ( m u _ 0 * d z )  *  E x i _ z p ( : , : , 1 ) ;  
 
    %  H z _ y n
        H z ( x l i : x u i - 1 ,  x l j - 1 , x l k : x u k )  =  . . .
        H z ( x l i : x u i - 1 ,  x l j - 1 , x l k : x u k )  -  d t / ( m u _ 0 * d y )  *  E x i _ y n ( : , 1 , : ) ;
    %  H z _ y p
        H z ( x l i : x u i - 1 ,  x u j , x l k : x u k )  =  . . .
        H z ( x l i : x u i - 1 ,  x u j , x l k : x u k )  +  d t / ( m u _ 0 * d y )  *  E x i _ y p ( : , 1 , : ) ;
    %  H z _ x n
        H z ( x l i - 1 , x l j : x u j - 1 , x l k : x u k )  =  . . .
        H z ( x l i - 1 , x l j : x u j - 1 , x l k : x u k )  +  d t / ( m u _ 0 * d x )  *  E y i _ x n ( 1 , : , : ) ;
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using the usual updating equations. These field components will be implicitly regarded as
total fields inside the TF/SF boundaries and scattered fields outside. Once the update is
completed, the incident field components can be added or subtracted from the boundary
components as illustrated in Listing 12.6. In the code the lines denoted as updating
Hz_yn, Hx_yn, Hz_yp, and Hx_yp correspond to (12.10), (12.12), (12.14), and (12.16),
respectively.

Similarly, the electric field components in the entire problem space are updated in
the subroutine update_electric_fields, as shown in Listing 12.7, using the usual updating
equations. Once the update is completed, the incident field components can be added or

 
    %  H z _ x p
        H z ( x u i , x l j : x u j - 1 , x l k : x u k )  =  . . .
        H z ( x u i , x l j : x u j - 1 , x l k : x u k )  -  d t / ( m u _ 0 * d x )  *  E y i _ x p ( 1 , : , : ) ;  
e n d

57

59

Listing 12.7 update_electric_fields.m

%  u p d a t e  e l e c t r i c  fi e l d s  e x c e p t  t h e  t a n g e n t i a l  c o m p o n e n t s
%  o n  t h e  b o u n d a r i e s  
 
c u r r e n t _ t i m e  =  c u r r e n t _ t i m e  +  d t / 2 ;
 
E x ( 1 : n x , 2 : n y , 2 : n z )  =  C e x e ( 1 : n x , 2 : n y , 2 : n z ) . * E x ( 1 : n x , 2 : n y , 2 : n z )  . . .
 +  C e x h z ( 1 : n x , 2 : n y , 2 : n z ) . * . . .
  ( H z ( 1 : n x , 2 : n y , 2 : n z ) - H z ( 1 : n x , 1 : n y - 1 , 2 : n z ) )  . . .
 +  C e x h y ( 1 : n x , 2 : n y , 2 : n z ) . * . . .
  ( H y ( 1 : n x , 2 : n y , 2 : n z ) - H y ( 1 : n x , 2 : n y , 1 : n z - 1 ) ) ;    
                  
E y ( 2 : n x , 1 : n y , 2 : n z )  =  C e y e ( 2 : n x , 1 : n y , 2 : n z ) . * E y ( 2 : n x , 1 : n y , 2 : n z )  . . .
 +  C e y h x ( 2 : n x , 1 : n y , 2 : n z ) . *   . . .
  ( H x ( 2 : n x , 1 : n y , 2 : n z ) - H x ( 2 : n x , 1 : n y , 1 : n z - 1 ) )  . . .
 +  C e y h z ( 2 : n x , 1 : n y , 2 : n z ) . *   . . .
  ( H z ( 2 : n x , 1 : n y , 2 : n z ) - H z ( 1 : n x - 1 , 1 : n y , 2 : n z ) ) ;  
               
E z ( 2 : n x , 2 : n y , 1 : n z )  = C e z e ( 2 : n x , 2 : n y , 1 : n z ) . * E z ( 2 : n x , 2 : n y , 1 : n z )  . . .
 +  C e z h y ( 2 : n x , 2 : n y , 1 : n z ) . *   . . .
  ( H y ( 2 : n x , 2 : n y , 1 : n z ) - H y ( 1 : n x - 1 , 2 : n y , 1 : n z ) )  . . .
 +  C e z h x ( 2 : n x , 2 : n y , 1 : n z ) . * . . .
  ( H x ( 2 : n x , 2 : n y , 1 : n z ) - H x ( 2 : n x , 1 : n y - 1 , 1 : n z ) ) ;
 
i f  i n c i d e n t _ p l a n e _ w a v e . e n a b l e
   x u i  =  i n c i d e n t _ p l a n e _ w a v e . u i ;
   x u j  =  i n c i d e n t _ p l a n e _ w a v e . u j ;
   x u k  =  i n c i d e n t _ p l a n e _ w a v e . u k ;
   x l i  =  i n c i d e n t _ p l a n e _ w a v e . l i ;
   x l j  =  i n c i d e n t _ p l a n e _ w a v e . l j ;
   x l k  =  i n c i d e n t _ p l a n e _ w a v e . l k ;
    %  E x _ y n
        E x ( x l i : x u i - 1 , x l j , x l k : x u k )  =  . . .
        E x ( x l i : x u i - 1 , x l j , x l k : x u k )  -  d t / ( e p s _ 0 * d y )  *  H z i _ y n ( : , 1 , : ) ;    
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subtracted from the boundary components as illustrated in Listing 12.7. In the code, the lines
denoted as updating Ex_yn, Ez_yn, Ex_yp, and Ez_yp correspond to (12.9), (12.11),
(12.13), and (12.15), respectively.

12.3 Simulation examples

The presented TF/SF formulation can be used to solve general scattering problems in which
the objects float in free space, that is, objects do not touch the boundaries or do not penetrate
into the absorbing boundaries of the problem space. Although the same types of problems
can be solved by the scattered field formulation, discussed in Chapter 11, as well, solution
using the TF/SF formulation is much faster while it also requires less memory. Two exam-
ples are presented in the following sections.

    %  E x _ y p
        E x ( x l i : x u i - 1 , x u j , x l k : x u k )  =  . . .  
        E x ( x l i : x u i - 1 , x u j , x l k : x u k )  +  d t / ( e p s _ 0 * d y )  *  H z i _ y p ( : , 1 , : ) ;
    %  E x _ z n
        E x ( x l i : x u i - 1 , x l j : x u j , x l k )  =  . . .
        E x ( x l i : x u i - 1 , x l j : x u j , x l k )  +  d t / ( e p s _ 0 * d z )  *  H y i _ z n ( : , : , 1 ) ;  
    %  E x _ z p
        E x ( x l i : x u i - 1 , x l j : x u j , x u k )  =  . . .
        E x ( x l i : x u i - 1 , x l j : x u j , x u k )  -  d t / ( e p s _ 0 * d z )  *  H y i _ z p ( : , : , 1 ) ;  
 
    %  E y _ x n
        E y ( x l i , x l j : x u j - 1 , x l k : x u k )  =  . . .
        E y ( x l i , x l j : x u j - 1 , x l k : x u k )  +  d t / ( e p s _ 0 * d x )  *  H z i _ x n ( 1 , : , : ) ;
    %  E y _ x p
        E y ( x u i , x l j : x u j - 1 , x l k : x u k )  =  . . .
        E y ( x u i , x l j : x u j - 1 , x l k : x u k )  -  d t / ( e p s _ 0 * d x )  *  H z i _ x p ( 1 , : , : ) ;
    %  E y _ z n
        E y ( x l i : x u i , x l j : x u j - 1 , x l k )  =  . . .  
        E y ( x l i : x u i , x l j : x u j - 1 , x l k )  -  d t / ( e p s _ 0 * d z )  *  H x i _ z n ( : , : , 1 ) ;
    %  E y _ z p
        E y ( x l i : x u i , x l j : x u j - 1 , x u k )  =  . . .
        E y ( x l i : x u i , x l j : x u j - 1 , x u k )  +  d t / ( e p s _ 0 * d z )  *  H x i _ z p ( : , : , 1 ) ;                              
 
    %  E z _ x n
        E z ( x l i , x l j : x u j , x l k : x u k - 1 )  =  . . .  
        E z ( x l i , x l j : x u j , x l k : x u k - 1 )  -  d t / ( e p s _ 0 * d x )  *  H y i _ x n ( 1 , : , : ) ;
    %  E z _ x p
        E z ( x u i , x l j : x u j , x l k : x u k - 1 )  =  . . .
        E z ( x u i , x l j : x u j , x l k : x u k - 1 )  +  d t / ( e p s _ 0 * d x )  *  H y i _ x p ( 1 , : , : ) ;
    %  E z _ y n
        E z ( x l i : x u i , x l j , x l k : x u k - 1 )  =  . . .  
        E z ( x l i : x u i , x l j , x l k : x u k - 1 )  +  d t / ( e p s _ 0 * d y )  *  H x i _ y n ( : , 1 , : ) ;
    %  E z _ y p
        E z ( x l i : x u i , x u j , x l k : x u k - 1 )  =  . . .
        E z ( x l i : x u i , x u j , x l k : x u k - 1 )  -  d t / ( e p s _ 0 * d y )  *  H x i _ y p ( : , 1 , : ) ;
e n d  
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12.3.1 Fields in an empty problem space

The distribution of total and scattered fields in an empty problem space is illustrated in
this example. A brick of size 20, 20, 100 mm and material type of air is surrounded by 10
cells of air gap and 8 cells of CPML in all directions. The cell size of the grid is 1 mm
on a side. An incident field that propagates in q ¼ 30� and f ¼ 90� direction with a
Gaussian waveform is defined as the source in the subroutine define_sources_
and_lumped_elements as shown in Listing 12.8. The transient fields are captured and
displayed using animation on a yz plane-cut. Figure 12.5 shows the magnitude of the
electric fields at 130, 230, and 330 time steps. One can notice that a wave of Gaussian
waveform travels in the q ¼ 30� direction as the time-marching loop proceeds. The field
displayed inside the TF/SF boundary is the total field and any field that would be dis-
played outside the TF/SF boundary is the scattered field. In this example, the scattered
field does not exist due to the absence of scatterers in the problem space therefore the
displayed field is actually the incident field, which is also the total field. One can also
notice the discontinuity of the field on the TF/SF boundary; the scattered field is zero
outside the TF/SF boundary.

Listing 12.8 define_sources_and_lumped_elements.m

%  D e fi n e  i n c i d e n t  p l a n e  w a v e ,  a n g l e s  a r e  i n  d e g r e e s
i n c i d e n t _ p l a n e _ w a v e . E _ t h e t a  =  1 ;
i n c i d e n t _ p l a n e _ w a v e . E _ p h i  =  0 ;
i n c i d e n t _ p l a n e _ w a v e . t h e t a _ i n c i d e n t  =  3 0 ;
i n c i d e n t _ p l a n e _ w a v e . p h i _ i n c i d e n t  =  9 0 ;
i n c i d e n t _ p l a n e _ w a v e . w a v e f o r m _ t y p e  =  ' g a u s s i a n ' ;
i n c i d e n t _ p l a n e _ w a v e . n u m b e r _ o f _ c e l l s _ p e r _ w a v e l e n g t h  =  2 0 ;
i n c i d e n t _ p l a n e _ w a v e . e n a b l e  =  t r u e ;
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Figure 12.5 Electric field distribution on a yz plane-cut at three progressive time instants.
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12.3.2 Scattering from a dielectric sphere

Scattering from a dielectric sphere is presented in Section 11.5.1, where bistatic RCS of a sphere
is calculated using the scattered field formulation. The same example is repeated here by
employing the TF/SF formulation. The RCS on xy, xz, and yz planes are obtained the same as
the ones shown in Figures 11.6, 11.7, and 11.8, respectively, using the TF/SF formulation. This
example is repeated using both formulations on a personal computer with Intel(R) Core(TM)2
Quad CPU Q9550 running at 2.83 GHz and calculation times are recorded as 10 min using the
scattered field formulation while it is recorded as about 7 minutes using the TF/SF formulation.

The electric fields on a xz plane are captured and displayed in Figure 12.6 at progressive
time steps of the simulation with TF/SF formulation. One can notice the discontinuity on the
TF/SF boundary between the total and scattered fields in these images.
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Figure 12.6 Electric field distribution on the xz plane: (a) at time step 120; (b) at time step 140;
(c) at time step 160; and (d) at time step 180.
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12.4 Exercises

12.1 Consider the problem in Section 12.3.2. The outputs definition file
define_output_parameters includes the definition of far-field calculation parameters.
The variable that indicates the position of the imaginary NF–FF surface is number_
of_cells_from_outer_boundary. This variable can be set such that the NF–FF surface
is inside the TF/SF boundary or outside the TF/SF boundary. If the NF–FF surface is
inside the TF/SF boundary the total field is used for far-field calculations, otherwise,
the scattered field is used for calculations. Run the simulation and obtain the RCS of the
sphere at 1 GHz once using the total field and once using the scattered field. Verify that
the RCS data are the same in both cases. You should obtain the same results as the ones
in Figures 11.6–11.8. Make sure that the NF–FF surface does not overlap with the
CPML boundaries. Notice that this exercise is similar to Exercise 11.1.

12.2 Consider the dipole antenna in Exercise 9.1. Replace the voltage source at the term-
inal of the antenna by 50�Ohms resistor. Run the simulation using a theta polarized
plane wave that propagates in the theta ¼ 90� direction. Capture sampled voltage at
the terminal of the dipole and store it as V90�. Then, rerun the simulation using a theta
polarized plane wave that propagates in the theta ¼ 45� direction, capture sampled
voltage at the terminal of the dipole and store it as V45�. Transform the sampled
voltages to frequency domain and find their ratio VR ¼ V45�/V90�.

At very low frequencies, the dipole antenna acts like an ideal dipole. Verify that the
voltage ratio VR is sin qð Þ, the radiation pattern expression of an ideal dipole, where q ¼ 45�.

At 4.5 GHz, the dipole antenna acts like a half-wave dipole. Verify that the voltage ratio
VR is cos p

2 cosq
� �

=sin qð Þ, the radiation pattern expression of a half-wave dipole, where
q ¼ 45�.

396 CHAPTER 12 ● Total field/scattered field formulation



CHAPTER 13

Dispersive material modeling

One of the attractive features of the finite-difference time-domain (FDTD) method is that it
allows for modeling behavior of complex media such as dispersion and nonlinearity.
Accurate algorithms can be developed to model the electromagnetic properties of these
media and to integrate within the discrete time domain solution. In this chapter we will
present the simulation of dispersive materials using the FDTD method.

The electromagnetic material properties – permittivity, permeability, and conductivities –
were treated as constants for a medium while developing the updating equations throughout
the previous chapters. In many applications these parameters are relatively constant over the
frequency band of interest and simulations based on constant parameter assumption yield
sufficiently accurate results in many applications. On the other hand, in some applications, the
values of material parameters vary significantly as functions of frequency in the frequency
band of interest. For instance, electromagnetic properties of biological tissues, earth, and
artificial metamaterials are highly dependent on frequency and their dispersive nature needs
to be modeled accurately in FDTD simulations.

Dispersion modeling has been one of the key topics in FDTD research over the years and
many algorithms have been introduced by researchers. Most of these algorithms are classified
mainly under the auxiliary differential equation (ADE) [48–52], recursive convolution (RC)
[53–57], and Z-transform [58,59] techniques. An in-depth review of these techniques for
modeling dispersive and other complex media in the FDTD method is presented in [60].

In general, frequency dependence of permittivity, permeability, or conductivity can be
expressed as a sum of rational functions of angular frequency, w. The most common types of
these rational functions are referred to as Debye, Lorentz, or Drude model. Debye models
are commonly used to approximate the frequency behavior of biological tissues and soil
permittivities. Lorentz models describe the frequency behavior of some metamaterials such
as Double-Negative media close to resonances, while Drude models are useful in describing
the behavior of metals at optical frequencies, and they can sometimes also be augmented by
Lorentz terms [60]. It should be noted that some applications employ some other dispersion
models described in the literature besides these three models. For instance, Cole-Cole is
another model, yet a more general one than Debye, for biological applications, while Condon
is a model used to describe chiral media.

In the following sections, we will present integration of Debye, Lorentz, and Drude
models into FDTD by using the ADE technique. Then, we will illustrate an implementation
of the resulting algorithms in the MATLAB� FDTD code.
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13.1 Modeling dispersive media using ADE technique

13.1.1 Modeling Debye medium using ADE technique

In this section we illustrate an algorithm to model Debye medium based on the ADE tech-
nique as presented by [51]. Here we consider dispersive permittivity, while development of
an algorithm for dispersive permeability or conductivity follows the same procedure.

Ampere’s law is expressed for a dispersive medium with P poles as

r� ~H ¼ jwe0e1~E þ s~E þ
XP

k¼1

~J k ð13:1Þ

in frequency domain, while in the time domain

r� H ¼ e0e1
@

@t
E þ sE þ

XP

k¼1

J k ; ð13:2Þ

where e1 is the relative permittivity of the medium at infinite frequencies, and J k is the kth
polarization current. In the frequency domain, the polarization current ~J k can be written for
Debye model as

~J k ¼ jwe0
Ak es � e1ð Þ

1 þ jwtk

~E ¼ jw
zk

1 þ jwtk

~E: ð13:3Þ

where es is the static relative permittivity, Ak is the amplitude of the kth term, and tk is the
relaxation time of the kth term. Here we define zk ¼ Ake0 es � e1ð Þ for brevity. While
developing the FDTD updating equations, as the first step, we need to express (13.2) in
discrete time at time step n þ 0:5 as

r� H
nþ0:5 ¼ e0e1

@

@t
E

nþ0:5 þ sE
nþ0:5 þ

XP

k¼1

J
nþ0:5
k ; ð13:4Þ

which requires the value of J
nþ0:5
k . This value can be retrieved as follows. One can arrange

(13.3) as

jwtk~J k þ ~J k ¼ jwzk
~E; ð13:5Þ

which, then, can be transformed to time domain as a differential equation

tk
@

@t
J k þ J k ¼ zk

@

@t
E: ð13:6Þ

This equation is called an ADE, which can be used to retrieve a value for J
nþ0:5
k . It should

be noted that various approaches can be employed to retrieve a value for the polarization
current term in (13.6). The following approach is employed in [51].
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Equation (13.6) can be represented in discrete time at time step n þ 0:5 as

tk
J

nþ1
k � J

n
k

Dt
þ J

nþ1
k þ J

n
k

2
¼ zk

E
nþ1 � E

n

Dt
; ð13:7Þ

which leads to

J
nþ1
k ¼ 2tk � Dtð Þ

2tk þ Dtð Þ J
n
k þ

2zk

2tk þ Dtð Þ E
nþ1 � E

n
� �

: ð13:8Þ

This equation yields J
nþ1
k if the values of J

n
k , E

nþ1
, and E

n
are known, however, the value

at n þ 0:5, J
nþ0:5
k , is needed in (13.4). One can write

J
nþ0:5
k ¼ J

nþ1
k þ J

n
k

2
; ð13:9Þ

which can be expressed, using J
nþ1
k from (13.8), as

J
nþ0:5
k ¼ 2tk

2tk þ Dtð Þ J
n
k þ

zk

2tk þ Dtð Þ Enþ1 � En
� � ð13:10Þ

Now, (13.10) can be integrated into (13.4) as

r� H
nþ0:5 ¼ e0e1

E
nþ1 � E

n

Dt
þ s

E
nþ1 þ E

n

2

þ
XP

k¼1

2tk

2tk þ Dtð Þ J
n
k þ

zk

2tk þ Dtð Þ Enþ1�En
� �� �

:

ð13:11Þ

which can be arranged, by moving the E
nþ1

term to left-hand side, to obtain an updating
equation for the electric field as

E
nþ1 ¼ 2Dt

2e0e1 þ sDt þ xð Þr � H
nþ0:5 þ 2e0e1 � sDt þ x

2e0e1 þ sDt þ x
E

n

� 2Dt

2e0e1 þ sDt þ xð Þ
XP

k¼1

2tk

2tk þ Dtð Þ J
n
k ;

ð13:12Þ

where

x ¼
XP

k¼1

2Dtzk

2tk þ Dtð Þ : ð13:13Þ

An algorithm can be constructed using (13.8) and (13.12) as illustrated in Figure 13.1.
At every time step, magnetic field components are updated as usual. Next, electric field
components are updated using the past values of electric and magnetic field components,
as well as the polarization current components following (13.12). Then, the polarization
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current components are calculated using the current and past values of electric field
components and the past values of the polarization current components following (13.8).
One should notice that this formulation requires an additional array to store E

n
in order to

implement (13.8).

13.1.2 Modeling Lorentz medium using ADE technique

In this section we illustrate an algorithm to model Lorentz medium based on the ADE
technique. It should be noted that the procedure to develop an ADE and find a solution to
the developed ADE is not unique. Here we discuss a procedure presented by [52] as an
alternative to the one introduced by [51] that is presented in the previous section.

Ampere’s law can be expressed for a dispersive medium with P poles, alternatively, as

r� ~H ¼ jwe0e1~E þ s~E þ jw
XP

k¼1

~Qk ð13:14Þ

in frequency domain, while in time domain

r� H ¼ e0e1
@

@t
E þ sE þ

XP

k¼1

@

@t
Qk : ð13:15Þ

Comparing (13.14) with (13.1), one can notice that they are the same when ~J k ¼ jw~Qk .
The difference is that ~J k terms are used in [51] to develop ADEs for Debye and Lorentz
dispersion models while ~Qk terms are used in [52] instead.

In the frequency domain, the term ~Qk can be written for Lorentz model as

~Qk ¼ Ake0 es � e1ð Þw2
k

w2
k þ 2jwdk � w2

~E ¼ yk

w2
k þ 2jwdk � w2

~E; ð13:16Þ

where wk is the pole location and dk is the damping factor of the kth term. Here we define
yk ¼ Ake0 es � e1ð Þw2

k for brevity. An ADE can be constructed from (13.16) as

@2

@t2
þ 2dk

@

@t
þ w2

k

� �
Qk ¼ ykE;

k

En

kJ n−1 J n

En−1

H n−0.5 H n+0.5

kJ n+1

E n+1

Figure 13.1 Update sequence of fields in the presented Debye modeling algorithm.
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which can be expressed in discrete time using central difference approximation at time
step n as

Q
nþ1
k � 2Q

n
k þ Q

n�1
k

Dt2
þ dk

Q
nþ1
k � Q

n�1
k

Dt
þ w2

kQ
n
k ¼ ykE

n
: ð13:17Þ

Equation (13.17) can be arranged to calculate the future value of Qk , such that

Q
nþ1
k ¼ 2 � Dtð Þ2w2

k

dkDt þ 1ð Þ Q
n
k þ

dkDt � 1ð Þ
dkDt þ 1ð ÞQ

n�1
k þ Dtð Þ2yk

dkDt þ 1ð ÞE
n
: ð13:18Þ

Meanwhile, (13.15) can be represented in discrete time at time step n þ 0:5 as

r� H
nþ0:5 ¼ e0e1

E
nþ1 � E

n

Dt
þ s

E
nþ1 þ E

n

2
þ 1
Dt

XP

k¼1

Qnþ1
k � Qn

k

� �
; ð13:19Þ

which can be arranged, by moving the E
nþ1

term to left-hand side, to obtain an updating
equation for the electric field as

E
nþ1 ¼ 2Dt

2e0e1 þ Dts
r� H

nþ0:5 þ 2e0e1 � Dts
2e0e1 þ Dts

E
n � 2

2e0e1 þ Dts

XP

k¼1

Qnþ1
k � Qn

k

� �

ð13:20Þ

An algorithm can be constructed using (13.18) and (13.20) as illustrated in Figure 13.2.
At every time step, magnetic field components are updated as usual. Next, the new values of
Qk are calculated using their past values and the past values of the electric field components
following (13.18). Then, electric field components are updated using the past values
of electric and magnetic field components as well as the new and past values of Qk following
(13.20). One should notice that this formulation requires additional arrays to store Qk

n
and

Qk
n�1

in order to implement (13.18).

13.1.3 Modeling Drude medium using ADE technique

The ADE technique introduced by [52], discussed above, was employed to model Drude
medium in [61]. In this section we illustrate the formulation presented in [61].

kQn

En

kQn−1

En−1

Hn−0.5 Hn+0.5

n+1
kQ

n+1E

Figure 13.2 Update sequence of fields in the presented Lorentz and Drude modeling
algorithms.
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Here we consider (13.15) as the starting point to develop an algorithm for Drude
medium. In the frequency domain, the term ~Qk can be written for Drude model as

~Qk ¼ e0w2
k

w2 � jwgk

~E; ð13:21Þ

where wk is the plasma frequency, and gk is the inverse of the pole relaxation time. An ADE
can be constructed from (13.21) as

� @2

@t2
� gk

@

@t

� �
Qk ¼ e0w2

kE: ð13:22Þ

Then, (13.22) can be expressed in discrete time using central difference approximation at
time step n, and rearranged to calculate the future value of Qk as

Q
nþ1
k ¼ 4

Dtgk þ 2
Q

n
k þ

Dtgk � 2
Dtgk þ 2

Q
n�1
k � 2Dt2e0w2

k

Dtgk þ 2
E

n
: ð13:23Þ

Equation (13.23) is in the same form as (13.18), while its coefficients are different.
Therefore, we can use (13.23) and (13.20) to construct an ADE algorithm to model Drude
medium, which is essentially the same as the one constructed for Lorentz medium as shown
in Figure 13.2: at every time step, magnetic field components are updated as usual. Next, the
new values of Qk are calculated following (13.23). Then, electric field components are
updated following (13.20).

13.2 MATLAB‡ implementation of ADE algorithm for
Lorentz medium

The presented Lorentz medium modeling ADE algorithm is implemented into the MATLAB
FDTD code that also includes the TF/SF formulation. While a Lorentz model of a single
term (P ¼ 1 in (13.14)) is considered in the presented implementation, it is possible to
extend the implementation to accommodate multiple terms as well, where P > 1. The details
of the implementation are presented in the following subsections.

13.2.1 Definition of Lorentz material parameters

A dispersive material is described using additional parameters along with the standard
permittivity, permeability, and conductivity parameters. In the case of the Lorentz model
infinite relative permittivity e1, static relative permittivity es, amplitude Ak , pole location
wk , and damping factor dk of the kth term are the parameters that need to be defined for an
FDTD simulation.

In the MATLAB FDTD code, the material parameters are defined in the subroutine
define_problem_space_parameters, where a structure array, referred to as material_types,
is constructed to store the electromagnetic parameters of materials that are used in the simulation.
In the presented implementation, new fields are added to the material_types structure
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to support Lorentz media modeling. Listing 13.1 shows an element of the material_types
array including the Lorentz parameters. Here, lorentz_eps_s refers to the static relative
permittivity, lorentz_A refers to the amplitude, lorentz_omega refers to the pole location, and
lorentz_delta refers to the damping factor. The parameter lorentz_dispersive is used to
identify the material type if it is Lorentz dispersive or not. As for the infinite permittivity, one
can realize in (13.1) and (13.2) that it is actually the same as the relative permittivity of a
nondispersive medium. Therefore, the parameter eps_r is used to store the relative infinite
permittivity if the material is of Lorentz type.

13.2.2 Material grid construction for Lorentz objects

The FDTD material grid is constructed in the subroutine initialize_fdtd_material_grid,
where three-dimensional arrays are constructed for permittivity, permeability, and
conductivity distributions in the problem space. Later, these arrays are used to calculate
updating coefficients. In order to account for Lorentz modeling, a new subroutine, referred to
as create_dispersive_objects, is implemented and called at the end of the subroutine
initialize_ fdtd_material_grid.

Listing 13.2 shows the subroutine create_dispersive_objects. At the first part of the
code, three-dimensional arrays are created to store the x, y, and z coordinates of the electric
field components. These arrays are then used to calculate the distances of the field com-
ponents from the center of a sphere, and identify the indices of the field components
that are located inside the sphere. Once the indices of these field components are identified,
corresponding elements in three-dimensional arrays dispersive_Ex, dispersive_Ey, and
dispersive_Ez are assigned with the material index of the sphere if the sphere is dispersive.
Then similarly, the field components that are located in a brick are identified and the
corresponding elements in dispersive_Ex, dispersive_Ey, and dispersive_Ez are assigned
with the material index of the brick if the brick is dispersive. Once these calculations are
completed, these three arrays will include distribution of the material type indices of the
dispersive material types.

Next, a new structure array, referred to as lorentz, is constructed. Each element in this array
corresponds to a dispersive material type in the material_types structure array. Here, for a
dispersive material type, the dispersive_Ex, dispersive_Ey, and dispersive_Ez arrays are

Listing 13.1 define_problem_sec_parameters.m

%  l o r e n t z  m a t e r i a l  
m a t e r i a l _ t y p e s ( 4 ). e p s _ r  =  2 ;  %  e p s _ i n f  f o r  d i s p e r s i v e  m a t e r i a l
m a t e r i a l _ t y p e s ( 4 ). m u _ r  =  1 ;
m a t e r i a l _ t y p e s ( 4 ). s i g m a _ e  =  0 ;
m a t e r i a l _ t y p e s ( 4 ). s i g m a _ m  =  0 ;  
m a t e r i a l _ t y p e s ( 4 ). c o l o r  =  [ 0  0  1 ] ;
m a t e r i a l _ t y p e s ( 4 ). l o r e n t z _ d i s p e r s i v e  =  t r u e ;
m a t e r i a l _ t y p e s ( 4 ). l o r e n t z _ e p s _ s  =  5 ;
m a t e r i a l _ t y p e s ( 4 ). l o r e n t z _ A  =  1 ;
m a t e r i a l _ t y p e s ( 4 ). l o r e n t z _ o m e g a  =  2 * p i * 2 e 9 ;
m a t e r i a l _ t y p e s ( 4 ). l o r e n t z _ d e l t a  =  p i * 2 e 9 ;
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Listing 13.2 create_dispersive_objects.m

%  T h r e e  d i m e n s i o n a l  a r r a y s  t o  s t o r e  fi e l d  c o o r d i n a t e s
%  U s e d  t o  i d e n t i f y  fi e l d  c o m p o n e n t s  t h a t  a r e  i n s i d e  a  s p h e r e
E x _ x _ c o o r d i n a t e s  =  z e r o s ( n x ,  n y p 1 ,  n z p 1 ) ;
E x _ y _ c o o r d i n a t e s  =  z e r o s ( n x ,  n y p 1 ,  n z p 1 ) ;
E x _ z _ c o o r d i n a t e s  =  z e r o s ( n x ,  n y p 1 ,  n z p 1 ) ;
 
E y _ x _ c o o r d i n a t e s  =  z e r o s ( n x p 1 ,  n y ,  n z p 1 ) ;
E y _ y _ c o o r d i n a t e s  =  z e r o s ( n x p 1 ,  n y ,  n z p 1 ) ;
E y _ z _ c o o r d i n a t e s  =  z e r o s ( n x p 1 ,  n y ,  n z p 1 ) ;
 
E z _ x _ c o o r d i n a t e s  =  z e r o s ( n x p 1 ,  n y p 1 ,  n z ) ;
E z _ y _ c o o r d i n a t e s  =  z e r o s ( n x p 1 ,  n y p 1 ,  n z ) ;
E z _ z _ c o o r d i n a t e s  =  z e r o s ( n x p 1 ,  n y p 1 ,  n z ) ;
 
%  A r r a y s  t o  s t o r e  m a t e r i a l  i n d i c e s  d i s t r i b u t i o n  o f  d i s p e r s i v e  o b j e c t s
d i s p e r s i v e _ E x  =  z e r o s ( n x ,  n y p 1 ,  n z p 1 ) ;
d i s p e r s i v e _ E y  =  z e r o s ( n x p 1 ,  n y ,  n z p 1 ) ;
d i s p e r s i v e _ E z  =  z e r o s ( n x p 1 ,  n y p 1 ,  n z ) ;
 
%  c a l c u l a t e  fi e l d  c o o r d i n a t e s
f o r  i n d  =  1 : n x
    E x _ x _ c o o r d i n a t e s ( i n d , : , : )  =  ( i n d  -  0 . 5 )  *  d x  +  f d t d _ d o m a i n . m i n _ x ;
e n d
f o r  i n d  =  1 : n y p 1
    E x _ y _ c o o r d i n a t e s ( : , i n d , : )  =  ( i n d  -  1 )  *  d y  +  f d t d _ d o m a i n . m i n _ y ;
e n d
f o r  i n d  =  1 : n z p 1
    E x _ z _ c o o r d i n a t e s ( : , : , i n d )  =  ( i n d  -  1 )  *  d z  +  f d t d _ d o m a i n . m i n _ z ;
e n d
 
f o r  i n d  =  1 : n x p 1
    E y _ x _ c o o r d i n a t e s ( i n d , : , : )  =  ( i n d  -  1 )  *  d x  +  f d t d _ d o m a i n . m i n _ x ;
e n d
f o r  i n d  =  1 : n y
    E y _ y _ c o o r d i n a t e s ( : , i n d , : )  =  ( i n d  -  0 . 5 )  *  d y  +  f d t d _ d o m a i n . m i n _ y ;
e n d
f o r  i n d  =  1 : n z p 1
    E y _ z _ c o o r d i n a t e s ( : , : , i n d )  =  ( i n d  -  1 )  *  d z  +  f d t d _ d o m a i n . m i n _ z ;
e n d
 
f o r  i n d  =  1 : n x p 1
    E z _ x _ c o o r d i n a t e s ( i n d , : , : )  =  ( i n d  -  1 )  *  d x  +  f d t d _ d o m a i n . m i n _ x ;
e n d
f o r  i n d  =  1 : n y p 1
    E z _ y _ c o o r d i n a t e s ( : , i n d , : )  =  ( i n d  -  1 )  *  d y  +  f d t d _ d o m a i n . m i n _ y ;
e n d
f o r  i n d  =  1 : n z
    E z _ z _ c o o r d i n a t e s ( : , : , i n d )  =  ( i n d  -  0 . 5 )  *  d z  +  f d t d _ d o m a i n . m i n _ z ;
e n d
 
d i s p ( ' c r e a t i n g  d i s p e r s i v e  s p h e r e s ' ) ;
f o r  i n d = 1 : n u m b e r _ o f _ s p h e r e s
    m a t _ i n d  =  s p h e r e s ( i n d ) . m a t e r i a l _ t y p e ;
    m a t e r i a l  =  m a t e r i a l _ t y p e s ( m a t _ i n d ) ;
    i f  m a t e r i a l . l o r e n t z _ d i s p e r s i v e  
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        %  d i s t a n c e  o f  t h e  E x  c o m p o n e n t s  f r o m  t h e  c e n t e r  o f  t h e  s p h e r e
        d i s t a n c e  =  s q r t ( ( s p h e r e s ( i n d ) . c e n t e r _ x  -  E x _ x _ c o o r d i n a t e s ) . ^ 2  . . .
                +  ( s p h e r e s ( i n d ) . c e n t e r _ y  -  E x _ y _ c o o r d i n a t e s ) . ^ 2  . . .
                +  ( s p h e r e s ( i n d ) . c e n t e r _ z  -  E x _ z _ c o o r d i n a t e s ) . ^ 2 ) ;
        I  =  fi n d ( d i s t a n c e < = s p h e r e s ( i n d ) . r a d i u s ) ;
        d i s p e r s i v e _ E x ( I )  =  m a t _ i n d ;
 
        %  d i s t a n c e  o f  t h e  E y  c o m p o n e n t s  f r o m  t h e  c e n t e r  o f  t h e  s p h e r e
        d i s t a n c e  =  s q r t ( ( s p h e r e s ( i n d ) . c e n t e r _ x  -  E y _ x _ c o o r d i n a t e s ) . ^ 2  . . .
                +  ( s p h e r e s ( i n d ) . c e n t e r _ y  -  E y _ y _ c o o r d i n a t e s ) . ^ 2  . . .
                +  ( s p h e r e s ( i n d ) . c e n t e r _ z  -  E y _ z _ c o o r d i n a t e s ) . ^ 2 ) ;
        I  =  fi n d ( d i s t a n c e < = s p h e r e s ( i n d ) . r a d i u s ) ;
        d i s p e r s i v e _ E y ( I )  =  m a t _ i n d ;
 
        %  d i s t a n c e  o f  t h e  E z  c o m p o n e n t s  f r o m  t h e  c e n t e r  o f  t h e  s p h e r e
        d i s t a n c e  =  s q r t ( ( s p h e r e s ( i n d ) . c e n t e r _ x  -  E z _ x _ c o o r d i n a t e s ) . ^ 2  . . .
                +  ( s p h e r e s ( i n d ) . c e n t e r _ y  -  E z _ y _ c o o r d i n a t e s ) . ^ 2  . . .
                +  ( s p h e r e s ( i n d ) . c e n t e r _ z  -  E z _ z _ c o o r d i n a t e s ) . ^ 2 ) ;
        I  =  fi n d ( d i s t a n c e < = s p h e r e s ( i n d ) . r a d i u s ) ;
        d i s p e r s i v e _ E z ( I )  =  m a t _ i n d ;
    e n d
e n d
 
d i s p ( ' c r e a t i n g  d i s p e r s i v e  b r i c k s ' ) ;
f o r  i n d  =  1 : n u m b e r _ o f _ b r i c k s
    m a t _ i n d  =  b r i c k s ( i n d ) . m a t e r i a l _ t y p e ;
    m a t e r i a l  =  m a t e r i a l _ t y p e s ( m a t _ i n d ) ;
    i f  m a t e r i a l . l o r e n t z _ d i s p e r s i v e  
        %  c o n v e r t  b r i c k  e n d  c o o r d i n a t e s  t o  n o d e  i n d i c e s  
        n i  =  g e t _ n o d e _ i n d i c e s ( b r i c k s ( i n d ) ,  f d t d _ d o m a i n ) ;
        i s  =  n i . i s ;  j s  =  n i . j s ;  k s  =  n i . k s ;  
        i e  =  n i . i e ;  j e  =  n i . j e ;  k e  =  n i . k e ;  
 
        d i s p e r s i v e _ E x  ( i s : i e - 1 ,  j s : j e ,  k s : k e )  =  m a t _ i n d ;  
        d i s p e r s i v e _ E y  ( i s : i e ,  j s : j e - 1 ,  k s : k e )  =  m a t _ i n d ;   
        d i s p e r s i v e _ E z  ( i s : i e ,  j s : j e ,  k s : k e - 1 )  =  m a t _ i n d ;   
    e n d
e n d
 
%  c r e a t e  a  n e w  s t r u c t u r e  a r r a y  t o  s t o r e  i n d i c e s  o f  fi e l d  c o m p o n e n t s  
%  t h a t  n e e d  t o  b e  u p d a t e d  u s i n g  L o r e n t z  f o r m u l a t i o n
n u m b e r _ o f _ l o r e n t z  =  0 ;
f o r  i n d  =  1 : n u m b e r _ o f _ m a t e r i a l _ t y p e s
    m a t e r i a l  =  m a t e r i a l _ t y p e s ( i n d ) ;
    i f  m a t e r i a l . l o r e n t z _ d i s p e r s i v e
        n u m b e r _ o f _ l o r e n t z  =  n u m b e r _ o f _ l o r e n t z  +  1 ;
 
        l o r e n t z ( n u m b e r _ o f _ l o r e n t z ) . m a t e r i a l  =  i n d ;
        
        I  =  fi n d ( d i s p e r s i v e _ E x  = =  i n d ) ;
        l o r e n t z ( n u m b e r _ o f _ l o r e n t z ) . E x _ i n d i c e s  =  I ;
        e p s _ r _ x ( I )  =  m a t e r i a l . e p s _ r ;
        s i g m a _ e _ x ( I )  =  m a t e r i a l . s i g m a _ e ;    
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queried for the index of the material type in consideration, and the indices of the elements
associated with this material type are identified. Then these indices are stored as linear arrays
Ex_indices, Ey_indices, and Ez_indices in the lorentz structure. The indices of the field
components that need to be updated using Lorentz formulation are now known through the
arrays Ex_indices, Ey_indices, and Ez_indices.

13.2.3 Initialization of updating coefficients

The updating coefficients are initialized in the subroutine initialize_updating_coefficients
in the MATLAB FDTD code. A new subroutine, initialize_dispersive_coefficients, is
implemented and called after the calculation of general updating coefficients in
initialize_updating_coefficients.

It should be noted that (13.18) and (13.20) are vector equations and they need to
decomposed as scalar equations in terms of x, y, and z components. For instance, (13.18) can
be expressed for the x, y, and z components as

Qnþ1
k;x ði; j; kÞ ¼ CqqQn

k;xði; j; kÞ þ CqqmQn�1
k;x ði; j; kÞ þ CqeEn

xði; j; kÞ; ð13:24aÞ

Qnþ1
k;y ði; j; kÞ ¼ CqqQn

k; yði; j; kÞ þ CqqmQn�1
k; y ði; j; kÞ þ CqeEn

yði; j; kÞ; ð13:24bÞ

Qnþ1
k;z ði; j; kÞ ¼ CqqQn

k;zði; j; kÞ þ CqqmQn�1
k;z ði; j; kÞ þ CqeEn

z ði; j; kÞ: ð13:24cÞ

Here, Cqq, Cqqm, and Cqe are coefficients associated with the respective field components
and they are defined as

Cqq ¼ 2 � Dtð Þ2w2
k

dkDt þ 1ð Þ ; Cqqm ¼ dkDt � 1ð Þ
dkDt þ 1ð Þ ; Cqe ¼ Dtð Þ2yk

dkDt þ 1ð Þ :

        I  =  fi n d ( d i s p e r s i v e _ E y  = =  i n d ) ;
        l o r e n t z ( n u m b e r _ o f _ l o r e n t z ) . E y _ i n d i c e s  =  I ;
        e p s _ r _ y ( I )  =  m a t e r i a l . e p s _ r ;
        s i g m a _ e _ y ( I )  =  m a t e r i a l . s i g m a _ e ;    
    
        I  =  fi n d ( d i s p e r s i v e _ E z  = =  i n d ) ;
        l o r e n t z ( n u m b e r _ o f _ l o r e n t z ) . E z _ i n d i c e s  =  I ;
        e p s _ r _ z ( I )  =  m a t e r i a l . e p s _ r ;
        s i g m a _ e _ z ( I )  =  m a t e r i a l . s i g m a _ e ;
    e n d
e n d
 
c l e a r  E x _ x _ c o o r d i n a t e s  E x _ y _ c o o r d i n a t e s  E x _ z _ c o o r d i n a t e s  
c l e a r  E y _ x _ c o o r d i n a t e s  E y _ y _ c o o r d i n a t e s  E y _ z _ c o o r d i n a t e s  
c l e a r  E z _ x _ c o o r d i n a t e s  E z _ y _ c o o r d i n a t e s  E z _ z _ c o o r d i n a t e s  
c l e a r  d i s p e r s i v e _ E x  d i s p e r s i v e _ E y  d i s p e r s i v e _ E z  
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Similarly, (13.20) can be expressed for Enþ1
x as

Enþ1
x ði; j; kÞ ¼ Cexeði; j; kÞEn

xði; j; kÞ

þ Cexhz i; j; kð Þ Hnþ0:5
z i; j; kð Þ � Hnþ0:5

z i; j � 1; kð Þ� �

þ Cexhy i; j; kð Þ�Hnþ0:5
y i; j; kð Þ � Hnþ0:5

y i; j; k � 1ð Þ�

� Dy

Dt
Cexhz i; j; kð Þ

XP

k¼1

�
Qnþ1

k;x � Qn
k;x

�
:

ð13:25Þ

One can notice that Cexe, Cexhz, and Cexhy are the same as the general updating coefficients
(i.e., Chapter 1 (1.26)). Also, the coefficient that is multiplied by the summation of
the differences of Qnþ1

k;x and Qn
k;x terms is simply Cexhz scaled by Dy

Dt. Equation (13.25) is
essentially the same as (1.26) in Chapter 1, except that it has an additional last term due to
the dispersion.

Similarly, (13.20) can be expressed for Enþ1
y as

Enþ1
y i; j; kð Þ ¼ Ceye i; j; kð ÞEn

y i; j; kð Þ

þCeyhx i; j; kð Þ Hnþ0:5
x i; j; kð Þ � Hnþ0:5

x i; j; k � 1ð Þ� �

þCeyhz i; j; kð Þ Hnþ0:5
z i; j; kð Þ � Hnþ0:5

z i � 1; j; kð Þ� �

� Dz

Dt
Ceyhx i; j; kð Þ

XP

k¼1

�
Qnþ1

k;y � Qn
k;y

�
;

ð13:26Þ

and for Enþ1
z as

Enþ1
z i; j; kð Þ ¼ Ceze i; j; kð ÞEn

z i; j; kð Þ

þCezhy i; j; kð Þ�Hnþ0:5
y i; j; kð Þ � Hnþ0:5

y i � 1; j; kð Þ�

þCezhx i; j; kð Þ Hnþ0:5
x i; j; kð Þ � Hnþ0:5

x i; j � 1; kð Þ� �

� Dx

Dt
Cezhy i; j; kð Þ

XP

k¼1

�
Qnþ1

k;z � Qn
k;z

�
:

ð13:27Þ

Listing 13.3 shows the implementation of initialize_dispersive_coefficients. First, for
each Lorentz medium, arrays are constructed to store the additional terms Q

nþ1
k and Q

n
k

required by the Lorentz ADE algorithm and initialized to zero. Then, the coefficients Cqq,
Cqqm, and Cqe in (13.24) are calculated and stored. Since the coefficients in (13.25) are the
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same as the already calculated general updating coefficients, they do not need to be stored
separately.

13.2.4 Field updates in time-marching loop

Electric fields are updated in the subroutine update_electric_fields at every time step of the
FDTD time-marching loop. This subroutine is modified based on the sequence of field
updates illustrated in Figure 13.2.

Listing 13.4 shows the modified section of the code in update_electric_fields. In the first
part of the code the Q

nþ1
k terms are calculated using Q

n
k , Q

n�1
k , and E

n
following (13.18).

Then regular field updates are performed, where the components of E
nþ1

are calculated for
the current time step. Then, the difference of Lorentz terms Q

nþ1
k and Q

n
k is multiplied by the

associated coefficients and added to the electric field components following (13.20). One can
notice in the code that the arrays Ex_indices, Ey_indices, and Ez_indices are used to access
to the electric field components that are associated with the Lorentz materials in the problem
space.

Listing 13.3 initialize_dispersive_coefficients.m

%  i n i t i a l i z e  L o r e n t z  u p d a t i n g  c o e f fi c i e n t s
 
f o r  i n d  =  1 : n u m b e r _ o f _ l o r e n t z
    
    m a t e r i a l  =  m a t e r i a l _ t y p e s ( l o r e n t z ( i n d ) . m a t e r i a l ) ;
   
    n _ e l e m e n t s  =  s i z e ( l o r e n t z ( i n d ) . E x _ i n d i c e s , 2 ) ;
    l o r e n t z ( n u m b e r _ o f _ l o r e n t z ). Q x p  =  z e r o s ( 1 ,  n _ e l e m e n t s ) ;  
    l o r e n t z ( n u m b e r _ o f _ l o r e n t z ). Q x  =  z e r o s ( 1 ,  n _ e l e m e n t s ) ;  
 
    n _ e l e m e n t s  =  s i z e ( l o r e n t z ( i n d ) . E y _ i n d i c e s , 2 ) ;
    l o r e n t z ( n u m b e r _ o f _ l o r e n t z ). Q y p  =  z e r o s ( 1 ,  n _ e l e m e n t s ) ;  
    l o r e n t z ( n u m b e r _ o f _ l o r e n t z ). Q y  =  z e r o s ( 1 ,  n _ e l e m e n t s ) ;  
 
    n _ e l e m e n t s  =  s i z e ( l o r e n t z ( i n d ) . E z _ i n d i c e s , 2 ) ;
    l o r e n t z ( n u m b e r _ o f _ l o r e n t z ). Q z p  =  z e r o s ( 1 ,  n _ e l e m e n t s ) ;  
    l o r e n t z ( n u m b e r _ o f _ l o r e n t z ). Q z  =  z e r o s ( 1 ,  n _ e l e m e n t s ) ;  
 
    p s i  =  e p s _ 0  *  m a t e r i a l . l o r e n t z _ A  . . .
        *  ( m a t e r i a l . l o r e n t z _ e p s _ s  -  m a t e r i a l . e p s _ r )  . . .
        *  m a t e r i a l . l o r e n t z _ o m e g a ^ 2 ;
 
    d e n  =  m a t e r i a l . l o r e n t z _ d e l t a  *  d t  +  1 ;
    l o r e n t z ( n u m b e r _ o f _ l o r e n t z ) . C q q  =   ( 2  -  d t ^ 2  . . .
        *  m a t e r i a l . l o r e n t z _ o m e g a ^ 2 ) / d e n ;
    l o r e n t z ( n u m b e r _ o f _ l o r e n t z ) . C q q m  =   . . .
        ( m a t e r i a l . l o r e n t z _ d e l t a  *  d t  -  1 ) / d e n ;
    l o r e n t z ( n u m b e r _ o f _ l o r e n t z ) . C q e  =   . . .
        d t ^ 2  *  p s i  /  d e n ;                     
e n d
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Listing 13.4 update_electric_fields.m

%  u p d a t e  t h e  a d d i t i o n a l  L o r e n t s  t e r m s
f o r  i n d  =  1 : n u m b e r _ o f _ l o r e n t z
 
    C q q  =  l o r e n t z ( n u m b e r _ o f _ l o r e n t z ) . C q q ;
    C q q m  =  l o r e n t z ( n u m b e r _ o f _ l o r e n t z ) . C q q m ;
    C q e  =  l o r e n t z ( n u m b e r _ o f _ l o r e n t z ) . C q e ;
    
    Q x  =   l o r e n t z ( i n d ) . Q x p ;
    l o r e n t z ( i n d ) . Q x p  =  . . .
            C q q  *  l o r e n t z ( i n d ) . Q x p  . . .
          +  C q q m  *  l o r e n t z ( i n d ) . Q x   . . .
          +  C q e  *  E x ( l o r e n t z ( i n d ) . E x _ i n d i c e s ) ;
    l o r e n t z ( i n d ) . Q x  =  Q x ;
        
    Q y  =   l o r e n t z ( i n d ) . Q y p ;
    l o r e n t z ( i n d ) . Q y p  =  . . .
            C q q  *  l o r e n t z ( i n d ) . Q y p  . . .
          +  C q q m  *  l o r e n t z ( i n d ) . Q y   . . .
          +  C q e  *  E y ( l o r e n t z ( i n d ) . E y _ i n d i c e s ) ;
    l o r e n t z ( i n d ) . Q y  =  Q y ;
 
    Q z  =   l o r e n t z ( i n d ) . Q z p ;
    l o r e n t z ( i n d ) . Q z p  =  . . .
            C q q  *  l o r e n t z ( i n d ) . Q z p  . . .
          +  C q q m  *  l o r e n t z ( i n d ) . Q z   . . .
          +  C q e  *  E z ( l o r e n t z ( i n d ) . E z _ i n d i c e s ) ;
    l o r e n t z ( i n d ) . Q z  =  Q z ;                  
e n d
 
%  R e g u l a r  fi e l d  u p d a t e s
E x ( 1 : n x , 2 : n y , 2 : n z )  =  C e x e ( 1 : n x , 2 : n y , 2 : n z ) . * E x ( 1 : n x , 2 : n y , 2 : n z )  . . .
                       +  C e x h z ( 1 : n x , 2 : n y , 2 : n z ) . * . . .
  ( H z ( 1 : n x , 2 : n y , 2 : n z ) - H z ( 1 : n x , 1 : n y - 1 , 2 : n z ) )  . . .
  +  C e x h y ( 1 : n x , 2 : n y , 2 : n z ) . * . . .
  ( H y ( 1 : n x , 2 : n y , 2 : n z ) - H y ( 1 : n x , 2 : n y , 1 : n z - 1 ) ) ;    
                  
E y ( 2 : n x , 1 : n y , 2 : n z )  =  C e y e ( 2 : n x , 1 : n y , 2 : n z ) . * E y ( 2 : n x , 1 : n y , 2 : n z )  . . .
  +  C e y h x ( 2 : n x , 1 : n y , 2 : n z ) . *   . . .
  ( H x ( 2 : n x , 1 : n y , 2 : n z ) - H x ( 2 : n x , 1 : n y , 1 : n z - 1 ) )  . . .
  +  C e y h z ( 2 : n x , 1 : n y , 2 : n z ) . *   . . .
  ( H z ( 2 : n x , 1 : n y , 2 : n z ) - H z ( 1 : n x - 1 , 1 : n y , 2 : n z ) ) ;  
               
E z ( 2 : n x , 2 : n y , 1 : n z )  =  C e z e ( 2 : n x , 2 : n y , 1 : n z ) . * E z ( 2 : n x , 2 : n y , 1 : n z )  . . .
  +  C e z h y ( 2 : n x , 2 : n y , 1 : n z ) . *   . . .
  ( H y ( 2 : n x , 2 : n y , 1 : n z ) - H y ( 1 : n x - 1 , 2 : n y , 1 : n z ) )  . . .
  +  C e z h x ( 2 : n x , 2 : n y , 1 : n z ) . * . . .
  ( H x ( 2 : n x , 2 : n y , 1 : n z ) - H x ( 2 : n x , 1 : n y - 1 , 1 : n z ) ) ;
 
%  A d d  a d d i t i o n a l  L o r e n t z  t e r m s  t o  e l e c t r i c  fi e l d  c o m p o n e n t s
f o r  i n d  =  1 : n u m b e r _ o f _ l o r e n t z
    i n d i c e s  =  l o r e n t z ( i n d ) . E x _ i n d i c e s ;
    E x ( i n d i c e s )  =  E x ( i n d i c e s )  . . .
        -  ( d y / d t )  *  C e x h z ( i n d i c e s )  . *  ( l o r e n t z ( i n d ) . Q x p  -  l o r e n t z ( i n d ) . Q x ) ;
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13.3 Simulation examples

13.3.1 Scattering from a dispersive sphere

In this first example, we consider a single-term Lorentz dispersive sphere with a radius of
10 cm. The Lorentz parameters of the sphere are e1 ¼ 2, es ¼ 5, A1 ¼ 1, w1 ¼ 4p� 109,
and d1 ¼ 2p� 109. The definition of these parameters in the FDTD code is shown in Listing
13.1. Examining (13.14) and (13.16), one can describe an equivalent complex relative
permittivity for a single term Lorentz medium as

er wð Þ ¼ e1 þ s
jwe0

þ A1 es � e1ð Þw2
1

w2
1 þ 2jwd1 � w2

: ð13:28Þ

The relative permittivity is calculated using (13.28) for the above parameter values as a
function of frequency and plotted in Figure 13.3.

    i n d i c e s  =  l o r e n t z ( i n d ) . E y _ i n d i c e s ;
    E y ( i n d i c e s )  =  E y ( i n d i c e s )  . . .
        -  ( d z / d t )  *  C e y h x ( i n d i c e s )  . *  ( l o r e n t z ( i n d ) . Q y p  -  l o r e n t z ( i n d ) . Q y ) ;
 
    i n d i c e s  =  l o r e n t z ( i n d ) . E z _ i n d i c e s ;
    E z ( i n d i c e s )  =  E z ( i n d i c e s )  . . .
        -  ( d x / d t )  *  C e z h y ( i n d i c e s )  . *  ( l o r e n t z ( i n d ) . Q z p  -  l o r e n t z ( i n d ) . Q z ) ;
e n d
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The sphere is illuminated by an x-polarized plane wave with a Gaussian waveform that
propagates in the positive z direction. The problem space is modeled using a cell size
of 5 mm on a side and the simulation is performed for 3,000 time steps. The bistatic radar
cross-section of the sphere is calculated at frequencies 1, 2, and 3 GHz. At these frequencies,
the relative permittivity values are er 1 GHzð Þ ¼ 4:769 � 1:846j, er 2 GHzð Þ ¼ 2 � 3j, and
er 3 GHzð Þ ¼ 1:016 � 1:18j, as can be verified from Figure 13.3.

The results for sqq in the xz-plane are shown in Figure 13.4, whereas the results for sfq in
the yz-plane are shown in Figure 13.5 along with the analytical solutions obtained using the
program presented in [62]. A very good agreement can be observed between the FDTD
simulation results and the analytical solutions except for the slight differences at the back-
scatter angles at highest frequency. The simulation accuracy can be improved by using
smaller cells or by employing an averaging scheme for media properties on the boundary
between the sphere surface and surrounding media. For instance, such a method to determine
effective permittivity at the interface of dispersive dielectrics is presented in [63].

13.4 Exercises

13.1 Consider the problem in Section 13.3.1. The dispersive sphere material has the rela-
tive permittivity of er ¼ 4:769 � 1:846j at 1 GHz. A lossy and nondispersive medium
can be imagined to have this particular relative permittivity value 1 GHz. For
instance, the complex relative permittivity of such a medium can be expressed as
erc ¼ e0r � j s

we0
. Hence, e0r ¼ 4:769 and s ¼ 1:846 we0 ¼ 0:1027 at 1 GHz. Model the

sphere as a lossy and nondispersive by using these relative permittivity and con-
ductivity values and run the simulation to calculate the co- and cross-polarized RCS
of the sphere. Verify that the results match with the ones in 13.4 and 13.5 at 1 GHz.
Note that the results will match only at 1 GHz.

13.2 Consider the dielectric cube example in Section 11.5.2, and assume that it is made of a
dispersive material described by the one in Figure 13.3. Run the simulation and obtain
the RCS of the cube at 1, 2, and 3 GHz.

One can employ the procedure discussed in Exercise 13.1 to verify that the calcu-
lated results are correct: run the simulation for each of these frequencies and each
time model the cube as a lossy and nondispersive object that has the corresponding
complex permittivity at the frequency of interest. Result of the dispersive media
simulation and the equivalent lossy and nondispersive media simulation should be the
same at a frequency of interest.

Follow this approach and verify the results of the dispersive cube simulation.
Notice that the complex relative permittivity values at 1, 2, and 3 GHz are listed in
Section 13.3.1.
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CHAPTER 14

Analysis of periodic structures

Many electromagnetic applications require the use of periodic structures such as frequency
selective surfaces (FSS), electromagnetic band gap structures, corrugated surfaces, phased
antenna arrays, periodic absorbers or negative index materials. These structures extend to
several wavelengths in size therefore their analyses are time-consuming and memory-extensive
using the conventional FDTD method. To overcome the limitation of the conventional FDTD
method, first, a periodic structure is considered as infinitely periodic. For instance, Figure 14.1
illustrates a unit cell of a two-dimensional periodic structure on a substrate that extends to
infinity in the x and y directions. Then the assumption of infinite periodicity is utilized to
develop FDTD algorithms that analyze only one unit cell of the periodicity instead of the entire
structure and obtain results for the entire infinite size structure or structures composed of large
number of unit cells with approximations. These algorithms mainly deal with the boundaries of
a unit cell, therefore they are referred to as periodic boundary conditions (PBC).

14.1 Periodic boundary conditions

The PBC algorithms are divided into two main categories: field transformation methods and
direct field methods [64]. The field transformation methods introduce auxiliary fields to
eliminate the need for time-advanced data. The transformed field equations are then dis-
cretized and solved using FDTD techniques. The split-field method [65] and multispatial grid
method [66] are two approaches in this category. The direct field category methods work
directly with Maxwell’s equations, and hence there is no need for any field transformation.
The sine-cosine method [67] is an example of this category. In this method the structure is
excited simultaneously with sine and cosine waveforms, therefore it is a single frequency
method that does not maintain the wide-band capability of FDTD.

A simple and efficient PBC algorithm that belongs to the direct field category, referred
to as constant horizontal wavenumber approach, is introduced in [68–70] and yet has a
wideband capability. In this chapter, we will demonstrate the constant horizontal wave-
number approach and its MATLAB� implementation to calculate reflection and transmission
coefficients of an infinite periodic structure.

It should be noted that in most applications that use periodic structures the reflection and/or
transmission properties are of interest due to incident plane waves with a number of incident
angles and a number of frequencies. One would seek to obtain the reflection and/or
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transmission coefficient distribution as a two-dimensional figure on which the axes are the
frequency and angle of incidence. For instance, Figure 14.2 shows the magnitude of reflection
coefficient of a dielectric slab with a thickness of 1 cm and relative permittivity of 4 due to
obliquely incident TE plane waves. In this example the figure displays data up to 20 GHz for
incident angles range from 0 to 90�. Here the figure is constructed using Nf � Na data points
where Nf ¼ 200 is the number of frequencies and Na ¼ 90 is the number of incident angles
for which the reflection coefficients are calculated.

The sine-cosine method can be used to perform calculations at a single frequency and a
single angle, therefore, to obtain an angle-frequency plane figure such as the one in
Figure 14.2 it is needed to run the PBC FDTD program Nf � Na times, which makes it
inefficient. For instance, Figure 14.2 shows a data point calculated by the sine-cosine method
for 12 GHz and 60� using a single run.

On the other hand, for instance, the split-field method preserves the wideband capability
and one can obtain wideband results for a wide frequency band in a single program run for one
incident angle. Therefore, to obtain an angle-frequency plane figure one needs to run the split-
field PBC FDTD program Na times. For instance, Figure 14.2 shows the line on which data
points, calculated by a single run of split-field method when the angle of incidence is 30�.

The split-field method and multispatial grid method have the wideband capability; how-
ever, there are two main limitations with these methods. First, the transformed equations have
additional terms that require special handling such as splitting the field or using a multigrid
algorithm to implement the FDTD, which increases the complexity of the problem. Second, as
the angle of incidence increases from normal incidence (0�) to grazing incidence (90�), the
stability factor needs to be reduced, so the FDTD time step decreases significantly [64]. As a
result, smaller time steps are needed for oblique incidence to generate stable results, which
increases the computational time for such cases [71].

y

x

Figure 14.1 A periodic structure and a unit cell of two-dimension periodicity.
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While one way to display reflection and transmission coefficient distributions is to plot
them on angle-frequency planes, an alternative way, which essentially shows the same data,
is to plot them on horizontal wavenumber-frequency planes. Figure 14.3 illustrates the

propagation vector, k̂ , of an incident plane wave. One can imagine an infinitely periodic
structure in the x and y directions with z direction as the normal to the interface between the

x
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ˆ k = kk
qinc

finckx

ky
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kh

Figure 14.3 Propagation vector of an incident plane wave and its horizontal component.
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Figure 14.2 Magnitude of reflection coefficient in the angle-frequency plane.
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periodic structure and free space. Also shown in the figure is the horizontal component of the

propagation vector, denoted with length kh, such that kh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
. The relation between

the wavenumber, k, and its horizontal component, kh, is fixed through the angle qinc such that

kh ¼ k sin qinc ¼ w
ffiffiffiffiffiffiffiffiffi
m0e0

p
sin qinc ¼ w

c
sin qinc: ð14:1Þ

where w is the angular frequency of the wave propagating in free space. Therefore, one can use
this fixed relationship between qinc and kh to display reflection and transmission coefficient
distributions on horizontal wavenumber-frequency planes instead of the angle-frequency
planes. For instance, the data in Figure 14.2 is displayed on a horizontal wavenumber-frequency
plane in Figure 14.4. The set of data points calculated using the split-field method in Figure 14.2
is also projected to the data display in Figure 14.4.

It is possible to imagine many incident plane waves all with the same horizontal wave-
number. Figure 14.5 illustrates a number of propagation vectors all with the same horizontal
wavenumber. Although the horizontal wavenumbers of these vectors are the same, but their
wavenumbers, angles of incidence, as well as frequencies are different. In the constant hor-
izontal wavenumber PBC algorithm an FDTD simulation is performed by setting a constant
horizontal wavenumber instead of a specific angle of incidence. Therefore, it yields results
supporting a number of angles each with a different frequency in a single PBC FDTD run.
For instance, Figure 14.4 shows the data points on a vertical line that can be obtained with
a single run of this method for the constant horizontal wavenumber of 100 radian/meter.
To obtain the data distribution on the entire horizontal wavenumber-frequency plane, the
simulation needs to be repeated for a number of constant horizontal wavenumbers, Nchw.

20

18

16

14

12

10

8

6

4

2

0 100 200

Fr
eq

ue
nc

y 
(G

H
z)

kh (radian/meter)
300 400

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

C
on

st
an

t k
h

m
et

ho
d

Sp
lit

-fi
eld

m
eth

od

Figure 14.4 Magnitude of reflection coefficient in the horizontal wavenumber-frequency plane.
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The idea of using a constant wavenumber in FDTD was originated from guided wave
analysis and eigenvalue problems in [72], and it was extended to the plane wave scattering
problems in [73–75]. The approach offers many advantages, such as implementation
simplicity, stability condition, and numerical errors similar to the conventional FDTD,
computational efficiency near the grazing incident angles, and the wide-band capability [71].
The formulation of the constant horizontal wavenumber method and its MATLAB imple-
mentation are presented in the following sections.

14.2 Constant horizontal wavenumber method

Consider the example shown in Figure 14.6, where a unit cell of a periodic structure is
shown. The periodic structure is a dielectric slab and a rectangular PEC patch is placed on
top of the slab in this case. A time harmonic plane wave with angular frequency w is incident
on the periodic structure with oblique incidence. The direction of incoming wave can be
denoted by qinc and finc. The unit cell is terminated by CPML boundaries at the top and
bottom sides. The other sides will be treated as periodic boundaries. Also shown in the
figure below, the upper CPML region is a plane, referred to as the source plane, where
incident field is injected into the computational space.

Figure 14.7 shows the field components on an xy plane-cut of the grid of this problem
space. The size of the problem space is Px ¼ NxDx in the x direction and Py ¼ NyDy in the
y direction. At steady state, a field component on the right boundary of the grid is a time-
delayed equivalent of a field on the left boundary. For instance, one can write

Eyðx ¼ Px; y; z; tÞ ¼ Ey

�
x ¼ 0; y; z; t � Px

c
sin qinc

�
; ð14:2Þ

and

Hz x ¼ Px � Dx

2
; y; z; t

� �
¼ Hz x ¼ �Dx

2
; y; z; t � Px

c
sin qinc

� �
: ð14:3Þ

x
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k3 = kk3
ˆ

kh
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k1 = kk1
ˆ

k2 = kk2
ˆ

Figure 14.5 Propagation vectors with the same horizontal wavenumber.
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Similarly, a field component on the back boundary of the grid is a time-delayed
equivalent of a field on the front boundary such that

Exðx; y ¼ Py; z; tÞ ¼ Ex x; y ¼ 0; z; t � Py

c
sin qinc

� �
; ð14:4Þ

and

Hz x; y ¼ Py � Dy

2
; z; t

� �
¼ Hz x; y ¼ �Dy

2
; z; t � Py

c
sin qinc

� �
: ð14:5Þ

When transformed from time-domain to frequency-domain (14.2) can be written as

Eyðx ¼ Px; y; z; tÞ ¼ Eyðx ¼ 0; y; z; tÞe�jwc sin qincPx ; ð14:6Þ
which can be expressed using (14.1) as

Eyðx ¼ Px; y; zÞ ¼ Eyðx ¼ 0; y; zÞe�jk sin qincPx ¼ Eyðx ¼ 0; y; zÞe�jkxPx : ð14:7Þ
This is how the fields on a periodic structure can be expressed according to the Floquet

theory, and it implies that any field component in the problem space of a periodic structure is
a phase shifted equivalent of another field component that is distant by Px in the x direction
by a phase shift of kxPx or �kxPx. Similarly, any field component is a phase shifted
equivalent of another field component that is distant by Py in the y direction by a phase shift
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y z
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are terminated by CPML.
All other sides are 
periodic boundaries.

PBC source plane
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k
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Figure 14.6 An incident plane wave and a unit cell.
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of kyPy or �kyPy. We can make use of this relationship between the field components and
develop a PBC algorithm: while updating a field component on the boundary of a unit cell
during an iteration of the FDTD time-marching loop, if we need to use the value of a
neighboring field component for which the value is not readily available we can use a phase

Back boundary

Back boundary

Front boundary
(a)

(b) Front boundary

Right boundary

Right boundary

Left boundary

Left boundary

(Nx + 1, Ny + 1) 

(Nx + 1, Ny + 1) 

Hz(Nx, j, k) 

Ey(1, j, k)e– jkxPx

Ez(1, j, k)e–jkxPx

Hz(Nx, j, k)e jkxPx

(1,1)

(1,1)

Ex(i, 1, k)

Ez(i, 1, k)

Hz(i, Ny, k)e jky Py

Ex(i, 1, k)e–jky Py

Ez(i, 1, k)e–jky Py

Hz(i, Ny, k)

Ey(1, j, k)

Ez(1, j, k)

Hz

Ey

Ex

Ez

Hy

Hx

Figure 14.7 Field components on an xy plane-cut of a unit cell in a three-dimensional domain:
(a) Ex, Ey, and Hz components and (b) Hx, Hy, and Ez components.
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shifted equivalent of another field component for which the value is known. This procedure
will be elaborated in details in this section.

The general flow chart of PBC FDTD algorithm is illustrated in Figure 14.8. During an
iteration of the FDTD time-marching loop, first, the magnetic field components on the
source plane are updated to excite an incident wave, details of which are discussed in the
next section. Then, all magnetic field components in the computational domain are updated
for the new time step. Also, the components in the CPML regions are updated using the
CPML equations. Afterwards, the electric field components on the source plane are updated,
and all electric field components, except the ones lying on the PBC boundaries, are updated
for the new time step followed by CPML updates. Then, the electric field components on the
PBC boundaries are updated, with reference to Figure 14.7, as follows:

1. Update Ex components on the front and back boundaries.
2. Update Ey components on the left and right boundaries.
3. Update Ez components on all boundaries except for the corners.
4. Update Ez components at the corners.

Figure 14.7 shows the field components of a unit cell, the shaded regions, as well as the
neighboring magnetic field components outside the unit cell. In order to calculate an electric
field component on the front boundary, that is indexed as Enþ1

x i; 1; kð Þ, one needs the value of the

magnetic field component below it, that could be indexed as H
nþ1

2
z i; 0; kð Þ. While H

nþ1
2

z i; 0; kð Þ is
not in the computational space of the unit cell in consideration and its value is not known, a phase

shifted equivalent of it, H
nþ1

2
z i; Ny; k

� �
, can be used instead following the Floquet theory as

H
nþ1

2
z i; 0; kð Þ ¼ H

nþ1
2

z i; Ny; k
� �

e jkyPy : ð14:8Þ
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Update magnetic field source

Increment time step, n � n + 1

Set problem space and compute field coefficients
Set constant kx and/or ky

Output

Last iteration?

Stop

Yes

No

Update magnetic fields

Update magnetic fields in CPML regions

Update electric field source

Update electric fields

Update electric fields in CPML regions

Update electric fields on PBC boundaries

Figure 14.8 Flow chart of PBC FDTD algorithm.
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Then the electric field updating equation can be written for Enþ1
x i; 1; kð Þ as

Enþ1
x ði; 1; kÞ ¼ Cexeði; 1; kÞ � En

xði; 1; kÞ þ Cexhzði; 1; kÞ
� H

nþ1
2

z ði; 1; kÞ � H
nþ1

2
z ði; Ny; kÞe jkyPy

h i
þ Cexhyði; 1; kÞ

� H
nþ1

2
y ði; 1; kÞ � H

nþ1
2

y ði; 1; k � 1Þ
h i

: ð14:9Þ
Similarly, to update an electric field component on the back boundary, Enþ1

x i; Ny þ 1; k
� �

,

the value of H
nþ1

2
z i; Ny þ 1; k

� �
is needed, which is not available. One can notice that

Enþ1
x i; Ny þ 1; k

� �
is a phase shifted equivalent of Enþ1

x i; 1; kð Þ, which has already been cal-

culated using (14.9). Therefore, as a shortcut, Enþ1
x i; Ny þ 1; k

� �
can be updated as

Enþ1
x i;Ny þ 1; k

� � ¼ Enþ1
x i; 1; kð Þe�jkyPy : ð14:10Þ

The Ey components on the left boundary can be updated using the periodicity in the
x direction as

Enþ1
y ð1; j; kÞ ¼ Ceyeð1; j; kÞ � En

yð1; j; kÞ

þCeyhxð1; j; kÞ � H
nþ1

2
x ð1; j; kÞ � H

nþ1
2

x ð1; j; k � 1Þ
h i

þCeyhzð1; j; kÞ � H
nþ1

2
z ð1; j; kÞ � H

nþ1
2

z ðNx; j; kÞ � e jkxPx

h i
: ð14:11Þ

Then, Enþ1
y ð1; j; kÞ can be used to calculate the electric field component on the right

boundary as

Enþ1
y Nx þ 1; j; kð Þ ¼ Enþ1

y 1; j; kð Þe�jkyPy : ð14:12Þ
The same procedure can be repeated for the Ez components as well. The field compo-

nents on the left boundary, except the corners, can be updated as

Enþ1
z 1; j; kð Þ ¼ Cezeð1; j; kÞ � En

z ð1; j; kÞ
þCezhyð1; j; kÞ � H

nþ1
2

y 1; j; kð Þ � H
nþ1

2
y Nx; j; kð Þ � e jkxPx

h i

þCezhxð1; j; kÞ � H
nþ1

2
x 1; j; kð Þ � H

nþ1
2

x 1; j � 1; kð Þ
h i

; ð14:13Þ
while the components on the right boundary, except the corners, can be updated as

Enþ1
z Nx þ 1; j; kð Þ ¼ Enþ1

z 1; j; kð Þ � e�jkxPx : ð14:14Þ
For the components on the front boundary, except the corners, one can write

Enþ1
z ði; 1; kÞ ¼ Cezeði; 1; kÞ � En

z ði; 1; kÞ

þ Cezhyði; 1; kÞ � H
nþ1

2
y ði; 1; kÞ � H

nþ1
2

y ði � 1; 1; kÞ
� �

þ Cezhxði; 1; kÞ � H
nþ1

2
x ði; 1; kÞ � H

nþ1
2

x ði; Ny; kÞ � e jkyPy

� �
ð14:15Þ
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while for the components on the back boundary, except the corners,

Enþ1
z ði; Ny þ 1; kÞ ¼ Enþ1

z ði; 1; kÞ � e�jkyPy : ð14:16Þ
The component of Ez at the front left corner, Enþ1

z ð1; 1; kÞ, needs the values of
H

nþ1
2

x ð1; 0; kÞ and H
nþ1

2
y ð0; 1; kÞ that are unknown. Therefore, instead, following the Floquet

theory, one can write

Enþ1
z ð1; 1; kÞ ¼ Cezeð1; 1; kÞ � En

z ð1; 1; kÞ
þ Cezhyð1; 1; kÞ � H

nþ1
2

y ð1; 1; kÞ � H
nþ1

2
y ðNx; 1; kÞ � e jkxPx

h i

þ Cezhxð1; 1; kÞ � H
nþ1

2
x ð1; 1; kÞ � H

nþ1
2

x ð1; Ny; kÞ � e jkyPy

h i
: ð14:17Þ

Once the component of Ez at the front left corner is known, the components at the other
corners can be calculated as

Enþ1
z ðNx þ 1; 1; kÞ ¼ Enþ1

z ð1; 1; kÞ � e�jkxPx ; ð14:18Þ

Enþ1
z ð1; Ny þ 1; kÞ ¼ Enþ1

z ð1; 1; kÞ � e�jkyPy ; ð14:19Þ

Enþ1
z ðNx þ 1; Ny þ 1; kÞ ¼ Enþ1

z ð1; 1; kÞ � e�jkyPy � e�jkxPx : ð14:20Þ

The above PBC update equations are derived for obliquely incident plane waves. Thus, in
the case of normal incidence, the horizontal wavenumbers are kx ¼ ky ¼ 0 radian/meter,
therefore all exponential terms in the field component update equations become equal to one.

14.3 Source excitation

In Section 14.1 we discussed that many incident waves with different frequencies can have
the same horizontal wavenumber, while each of these waves will have a different angle of
incidence. Therefore, one can imagine that if a wave with a time waveform which has a wide
frequency band is incident on a unit cell, all these frequency components of the wave can
have the same horizontal wavenumber, i.e., kx and ky, while each component will have a
different angle of incidence that satisfies (14.1). If we excite a computational domain with
such a waveform and apply the presented PBC conditions, we can obtain the results for the
frequencies in the spectrum of the incident wave at their associated angles of incidence in
one FDTD simulation. The results of such a simulation will lie on a vertical line on the
horizontal wavenumber-frequency plane as shown in Figure 14.4. In Figure 14.4, a vertical
data line starts from a minimum frequency: At grazing angle, where q ¼ 90�, (14.1) becomes

kh ¼ k ¼ w
c
; ð14:21Þ

which implies that w is at its minimum value, wmin ¼ ckh, therefore the minimum frequency
that can be calculated is

fmin ¼ ckh

2p
: ð14:22Þ
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Consequently, a wideband waveform that is constructed to excite the FDTD computa-
tional space should have a minimum frequency of fmin in its spectrum. This also avoids the
problem of horizontal resonance in which the fields do not decay to zero over time. There-
fore, for instance, a cosine-modulated Gaussian waveform with a proper bandwidth, BW , can
be considered as a source waveform, which has a modulation frequency of

fc ¼ khc

2p
þ BW

2
: ð14:23Þ

Some considerations that need to be taken into account while determining the bandwidth
and the modulation frequency are discussed in Section 14.5.2.

The incident waveform can be injected into a computational domain at the location of a
source plane, shown in Figure 14.6. An easy way for this implementation is to calculate the
tangential field components of the incident wave on the source plane and add them to the
field components on the source plane at every time step. As a result the source plane will
radiate the incident field in the lower direction toward the periodic structure. The source
plane will radiate a mirror image of the incident field in the upper direction as well, however,
since the upper boundary is terminated by CPML, the mirror image field will be absorbed by
CPML and it will not interfere with the fields below the source plane.

This incident waveform can be constructed to simulate TE, TM, or TEM mode. It is
straightforward to excite the TEM mode: the tangential electric field components on the
source plane, i.e., Einc;x and Einc;y, are uniform over the source plane, therefore all compo-
nents of incident Einc;x will be the same as well as all components of incident Einc;y will have
the same value, which will be added to the respective field components on the source plane.

For the TE mode with the oblique incidence, and the incident field satisfies the peri-
odicity condition such that

Einc;x i; Ny þ 1; ks
� � ¼ Einc;x i; 1; ksð Þ � e�jkyPy ; ð14:24aÞ

Einc;y Nx þ 1; j; ksð Þ ¼ Einc;x 1; j; ksð Þ � e�jkxPx ; ð14:24bÞ

where ks is the k index of the source plane. To excite the incident field, we can choose a
point, for instance, node (1,1) at the lower left corner shown in Figure 14.7, as a reference
and apply the phase shift to all Einc;x and Einc;y components on the source plane with refer-
ence to this point. For instance, if the value of x component of the incident field is En

0x at time
step n then,

En
inc;x i; j; ksð Þ ¼ En

0x � e�jkx i�0:5ð ÞDx � e�jky j�1ð ÞDy: ð14:25Þ

Similarly, if the value of y component of the incident field is En
0y at time step n then,

En
inc;y i; j; ksð Þ ¼ En

0y � e�jkx i�1ð ÞDx � e�jky j�0:5ð ÞDy: ð14:26Þ

For the TM mode, we can add incident magnetic field component to the respective tan-
gential magnetic field components on the source plane. In this case, the source plane can be
chosen to be on the magnetic field grid. To excite the incident field, again choose the point at
node (1,1) as a reference and apply the phase shift to all Hinc;x and Hinc;y components on the
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source plane with reference to this point. For instance, if the value of x component of the
incident field is H

nþ1
2

0x at time step n þ 1
2 then,

H
nþ1

2
inc;x i; j; ksð Þ ¼ H

nþ1
2

0x � e�jkx i�1ð ÞDx � e�jky j�0:5ð ÞDy: ð14:27Þ

Similarly, if the value of y component of the incident field is H
nþ1

2
0y at time step n þ 1

2 then,

H
nþ1

2
inc;y i; j; ksð Þ ¼ H

nþ1
2

0y � e�jkx i�0:5ð ÞDx � e�jky j�1ð ÞDy: ð14:28Þ

It should be noted that the presented constant horizontal wavenumber method integrates
complex exponential phase terms into a time domain simulation, therefore, unlike a con-
ventional FDTD algorithm, the fields values are all complex rather than real. Hence, while
the simulation results are not meaningful in time domain, the results are meaningful on a
wide frequency-band in frequency domain.

14.4 Reflection and transmission coefficients

The reflection and/or transmission properties of periodic structures due to obliquely incident
plane waves are sought in many applications. Figure 14.6 shows two planes, referred to as
reflection and transmission planes, on which the fields can be captured and they can be used
to calculate reflection and transmission coefficients. In this section we will discuss the
equations to be used for the calculation of these coefficients.

It is possible to calculate co-polarized reflection, cross-polarized reflection, co-polarized
transmission, as well as the cross-polarized transmission coefficients. Equations for these
coefficients depend on the mode of excitation, i.e., TE, TM, or TEM modes.

Reflection coefficient of a periodic structure is usually presented in the frequency
domain. The value of captured field components at a single point is sufficient to calculate the
reflection coefficient, while the field components can be captured anywhere on the reflection
plane illustrated in Figure 14.6. In the MATLAB implementation of the PBC FDTD, that
will be discussed in the subsequent sections, an average of field components on the reflection
plane is captured and used for reflection coefficient calculations. It should be noted that the
field components on the reflection plane as well are subject to the phase shift discussed
above. Before averaging, this phase shifts need to be adjusted so that all field components are
at the same phase. Similar to the source excitation, we can choose the point at node (1,1) as a
reference and update the phase shifts with reference to this point. The field components used
for averaging after phase adjustments are represented as

En
rp;x i; j; krð Þ ¼ En

x i; j; krð Þ � e jkx i�0:5ð ÞDx � e jky j�1ð ÞDy; ð14:29aÞ

En
rp;y i; j; krð Þ ¼ En

y i; j; krð Þ � e jkx i�1ð ÞDx � e jky j�0:5ð ÞDy; ð14:29bÞ

En
rp;z i; j; krð Þ ¼ 0:5 En

z i; j; kr � 1ð Þ þ En
z i; j; krð Þ� �� e jkx i�1ð ÞDx � e jky j�1ð ÞDy; ð14:29cÞ

H
nþ1

2
rp;x i; j; krð Þ ¼ 0:5 H

nþ1
2

x i; j; krð Þ þH
nþ1

2
x i; j; kr � 1ð Þ

	 

� ejkx i�1ð ÞDx � ejky j�0:5ð ÞDy; ð14:29dÞ
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H
nþ1

2
rp;y i; j; krð Þ ¼ 0:5 H

nþ1
2

y i; j; krð Þ þH
nþ1

2
y i; j; kr � 1ð Þ

	 

� ejkx i�0:5ð ÞDx � ejky j�1ð ÞDy; ð14:29eÞ

H
nþ1

2
rp;z i; j; krð Þ ¼ H

nþ1
2

z i; j; krð Þ � e jkx i�0:5ð ÞDx � e jky j�0:5ð ÞDy; ð14:29fÞ
where the subscript ‘‘rp’’ denotes the captured fields on the reflection plane. It should be
noted that the reflection plane is considered to be an xy plane-cut of a unit cell that includes
Ex, Ey, and Hz components as illustrated in Figure 14.7(a) for the above equations, where the
plane-cut is indicated with the index kr. Therefore, Ex, Ey, and Hz components with kr index
are used in (14.29a), (14.29b), and (14.29f), respectively, to calculate the respective phase
adjusted fields. The components of Ez, Hx, and Hy do not lie on the same plane cut as the
reflection plane. To obtain equivalent values for these field components on the reflection
plane, the components above (with index kr) and below (with index kr � 1) the reflection
plane are averaged and used in (14.29c), (14.29d), and (14.29e), respectively.

Similarly, the fields on the transmission plane can be captured and phase adjusted as well.
After phase reversals, the field components are averaged and stored versus time in terms of
the time step. After the FDTD time-marching loop is completed, these transient fields are
transformed to frequency domain by discrete Fourier transform (DFT) and then the reflection
and transmission coefficient calculations are performed.

One should notice that the fields that are captured on the reflection plane are total fields,
such that

Erp ¼ Einc þ Eref ; ð14:30Þ
while the incident and reflected fields are needed for reflection coefficient calculations.
Moreover, in particular, the co- and cross-polarized components of incident and reflected
fields are needed for co- and cross-polarized reflection coefficient calculations.

14.4.1 TE mode reflection and transmission coefficients

Figure 14.9 illustrates the incident field in the TE mode. For the TE mode, the co-polarized
total fields can be determined using the x and y components of the captured fields as

Erp;co ¼ Erp;y
kx

kh
� Erp;x

ky

kh
; ð14:31aÞ

Hrp;co ¼ Hrp;x
kx

kh
þ Hrp;y

ky

kh
; ð14:31bÞ
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Figure 14.9 Illustration of incident fields in the TE case.
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while the cross-polarized total electric field is the same as the cross-polarized reflected
electric field, therefore

Eref ;cr ¼ Erp;cr ¼ Erp;x
kx

kh
þ Erp;y

ky

kh
: ð14:32Þ

The next step is to construct incident electric field such that

Einc ¼ 1
2

Erp;co þ h0Hrp;co
k

kz

� �
; ð14:33Þ

where kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

h

q
. Once the incident electric field is computed, it can be subtracted from

the co-polarized total electric to find the co-polarized reflected electric field as

Eref ;co ¼ Erp;co � Einc; ð14:34Þ
which can be used to calculate the co-polarized reflection coefficient as

Gco ¼ Eref ;co

Einc
: ð14:35Þ

Then, the cross-polarized reflected electric field can be used to determine the cross-
polarized reflection coefficient as

Gcr ¼ Eref ;cr

Einc
: ð14:36Þ

The fields captured on the transmission plane are the co- and cross-polarized components
of the transmitted electric field which are similar to (14.31) and (14.32) such that

Etra;co ¼ Etra;y
kx

kh
� Etra;x

ky

kh
; ð14:37aÞ

Etra;cr ¼ Etra;x
kx

kh
þ Etra;y

ky

kh
: ð14:37bÞ

Then, Etra;co and Etra;cr can be used together with Einc to calculate the co- and cross-
polarized transmission coefficients, respectively. However, one should notice that Einc is
calculated on the reflection plane while Etra;co and Etra;cr are obtained on the transmission
plane. To calculate the transmission coefficients with the correct phases, Einc should be
evaluated on the transmission plane. If the distance between the refection and transmission
planes is drt, the incident field on the transmission plane can be obtained by shifting the
phase of previously defined Einc by kzdrt, and hence co- and cross-polarized transmission
coefficients can be calculated as

Tco ¼ Etra;co

Eince jkzdrt
; ð14:38Þ

Tcr ¼ Etra;cr

Eince jkzdrt
: ð14:39Þ
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14.4.2 TM mode reflection and transmission coefficients

Figure 14.10 shows the incident field components for the TM mode. For the TM mode, the
co-polarized total fields can be determined using the x and y components of the captured
fields as

Erp;co ¼ �Erp;x
kx

kh
� Erp;y

ky

kh
; ð14:40aÞ

Hrp;co ¼ Hrp;y
kx

kh
� Hrp;x

ky

kh
; ð14:40bÞ

while the cross-polarized total magnetic field is the same as the cross-polarized reflected
magnetic field, therefore

Href ;cr ¼ Hrp;cr ¼ Hrp;x
kx

kh
þ Hrp;y

ky

kh
: ð14:41Þ

The next step is to construct the incident magnetic field such that

Hinc ¼ 1
2

Hrp;co þ Erp;co
k

h0kz

� �
; ð14:42Þ

Once the incident magnetic field is known, it can be subtracted from the co-polarized
total magnetic field to find the co-polarized reflected magnetic field as

Href ;co ¼ Hrp;co � Hinc; ð14:43Þ
which can be used to calculate the co-polarized reflection coefficient as

Gco ¼ Href ;co

Hinc
: ð14:44Þ

Then, the cross-polarized reflected magnetic field can be used to determine the cross-
polarized reflection coefficient as

Gcr ¼ Href ;cr

Hinc
: ð14:45Þ
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Figure 14.10 Illustration of incident fields in the TM case.

14.4 ● Reflection and transmission coefficients 427



The fields captured on the transmission plane are transmitted fields, and the co- and
cross-polarized components of the transmitted magnetic field can be found as

Htra;co ¼ Htra;y
kx

kh
� Htra;x

ky

kh
; ð14:46aÞ

Htra;cr ¼ Htra;x
kx

kh
þ Htra;y

ky

kh
: ð14:46bÞ

Then, the co- and cross-polarized transmission coefficients can be written as

Tco ¼ Htra;co

Hince jkzdrt
; ð14:47Þ

Tcr ¼ Htra;cr

Hince jkzdrt
: ð14:48Þ

14.4.3 TEM mode reflection and transmission coefficients

Figure 14.11 illustrates the incident field in the TEM mode. For the TEM mode, the
co-polarized total fields can be determined using the x and y components of the captured
fields as

Erp;co ¼ Erp;x cosfþ Erp;y sinf; ð14:49aÞ
Hrp;co ¼ Hrp;x sinf� Hrp;y cosf; ð14:49bÞ

while the cross-polarized total electric field is the same as the cross-polarized reflected
electric field, therefore

Eref ;cr ¼ Erp;x sinf� Erp;y cosf: ð14:50Þ
Here, f is the angle between the incident electric field vector and the x axis, which can be

expressed as

f ¼ tan�1 Einc;y

Einc;x

� �
: ð14:51Þ
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Figure 14.11 Illustration of incident fields in the TEM case.
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The next step is the extraction of incident field as

Einc ¼ 1
2

Erp;co þ h0Hrp;co

� �
: ð14:52Þ

Once the incident electric field is known, it can be subtracted from the co-polarized total
electric field to find the co-polarized reflected electric field as

Eref ;co ¼ Erp;co � Einc; ð14:53Þ
which can be used to calculate the co-polarized reflection coefficient as

Gco ¼ Eref ;co

Einc
: ð14:54Þ

Then, the cross-polarized reflected electric field can be used to find the cross-polarized
reflection coefficient as

Gcr ¼ Eref ;cr

Einc
: ð14:55Þ

The fields captured on the transmission plane are transmitted fields, and the co- and
cross-polarized components of the transmitted electric field can be found as

Etra;co ¼ Etra;x cosfþ Etra;y sinf; ð14:56aÞ

Etra;cr ¼ Etra;x sinf� Etra;y cosf: ð14:56bÞ

Then, the co- and cross-polarized transmission coefficients can be written as

Tco ¼ Etra;co

Eince jkzdrt
; ð14:57Þ

Tcr ¼ Etra;cr

Eince jkzdrt
: ð14:58Þ

14.5 MATLAB‡ implementation of PBC FDTD algorithm

The presented constant horizontal wavenumber PBC algorithm is implemented into the base
MATLAB FDTD code. The details of implementation are presented in the following
subsections.

14.5.1 Definition of a PBC simulation

The parameters of a PBC simulation are specified in the subroutine define_problem_
space_parameters, as shown in Listing 14.1. Here, a parameter named as periodic_
boundary is defined to store the several fields to specify various simulation parameters.
First, a field mode is used to specify whether the mode of excitation will be TE, TM, or
TEM. Depending on the mode, the relevant fields of periodic_boundary are further used to
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set simulation settings. For instance, if the mode is TEM, then the fields E_x and E_y are set
with the values of the x and y components of the incident plane wave. If the mode is TE, then
the field E_phi is the magnitude of the incident electric field, while parameters k_x and k_y
are x and y components, kx and ky, of the constant horizontal wavenumber respectively.
Similarly, if the mode is TM, then the field H_phi is the magnitude of the incident magnetic
field, while parameters k_x and k_y are x and y components kx and ky. The parameters

Listing 14.1 define_problem_space_parameters.m

%  ==< p e r i o d i c  b o u n d a r y  s i m u l a t i o n  p a r a m e t e r s > ========
d i s p ( ' D e fi n i n g  p e r i o d i c  b o u n d a r y  s i m u l a t i o n ' ) ;  

p e r i o d i c _ b o u n d a r y . m o d e  =  ' T E ' ;  %  T E ,  T M ,  o r  T E M
p e r i o d i c _ b o u n d a r y . E _ p h i  =  1 ;
p e r i o d i c _ b o u n d a r y . H _ p h i  =  0 ;
p e r i o d i c _ b o u n d a r y . E _ x  =  0 ;
p e r i o d i c _ b o u n d a r y . E _ y  =  0 ;
p e r i o d i c _ b o u n d a r y . k x  =  1 0 0 ;
p e r i o d i c _ b o u n d a r y . k y  =  0 ;
p e r i o d i c _ b o u n d a r y . s o u r c e _ z  =  0 . 0 2 5 ;
p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ z  =  0 . 0 2 ;
p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ z  =  - 0 . 0 0 5 ;
 
%  ==< b o u n d a r y  c o n d i t i o n s > ========
%  H e r e  w e  d e fi n e  t h e  b o u n d a r y  c o n d i t i o n s  p a r a m e t e r s  
%  ' p e c '  :  p e r f e c t  e l e c t r i c  c o n d u c t o r
%  ' c p m l '  :  c o n v o l u t i o n a l  P M L  
%  ' p b c '  :  P e r i o d i c  B o u n d a r y  C o n d i t i o n  
%  i f  c p m l _ n u m b e r _ o f _ c e l l s  i s  l e s s  t h a n  z e r o
%  C P M L  e x t e n d s  i n s i d e  o f  t h e  d o m a i n  r a t h e r  t h a n  o u t w a r d s
 
b o u n d a r y . t y p e _ x n  =  ' p b c ' ;
b o u n d a r y . a i r _ b u f f e r _ n u m b e r _ o f _ c e l l s _ x n  =  0 ;
b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ x n  =  8 ;
 
b o u n d a r y . t y p e _ x p  =  ' p b c ' ;
b o u n d a r y . a i r _ b u f f e r _ n u m b e r _ o f _ c e l l s _ x p  =  0 ;
b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ x p  =  8 ;
 
b o u n d a r y . t y p e _ y n  =  ' p b c ' ;
b o u n d a r y . a i r _ b u f f e r _ n u m b e r _ o f _ c e l l s _ y n  =  0 ;
b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ y n  =  1 0 ;
 
b o u n d a r y . t y p e _ y p  =  ' p b c ' ;
b o u n d a r y . a i r _ b u f f e r _ n u m b e r _ o f _ c e l l s _ y p  =  0 ;
b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ y p  =  8 ;
 
b o u n d a r y . t y p e _ z n  =  ' c p m l ' ;
b o u n d a r y . a i r _ b u f f e r _ n u m b e r _ o f _ c e l l s _ z n  =  2 0 ;
b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ z n  =  8 ;
 
b o u n d a r y . t y p e _ z p  =  ' c p m l ' ;
b o u n d a r y . a i r _ b u f f e r _ n u m b e r _ o f _ c e l l s _ z p  =  6 0 ;
b o u n d a r y . c p m l _ n u m b e r _ o f _ c e l l s _ z p  =  8 ;
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source_z, reflection_z, and transmission_z are the z coordinates of the source, reflection,
and transmission planes, respectively.

The presented PBC formulation assumes that four sides of the problems space – namely
xn, xp, yn, and yp sides – are periodic boundaries while the other two sides, zn and zp, are
CPML. These boundaries as well are specified in the define_problem_space_parameters, as
shown in Listing 14.1.

14.5.2 Initialization of PBC

A subroutine called as initialize_periodic_boundary_conditions is implemented to perform
initialization for the PBC algorithm before the FDTD time-matching loop starts. Listing 14.2
shows the details of this subroutine.

First, the k indices of the source, reflection, and transmission planes are calculated and
stored in respective parameters. Also, one-dimensional arrays are created for all six field
components that will be used to store the transient fields captured on the reflection and
transmission planes.

As discussed in the previous section, the field components need to be phase adjusted
before they are averaged on the reflection and transmission planes. Since the phase correc-
tion is performed at every time step, it may be more practical to calculate and store the phase

Listing 14.2 initialize_periodic_boundary_conditions.m

p e r i o d i c _ b o u n d a r y . s o u r c e _ k s  =  . . .
    1 + r o u n d ( ( p e r i o d i c _ b o u n d a r y . s o u r c e _ z  -  . . .
    f d t d _ d o m a i n . m i n _ z ) / f d t d _ d o m a i n . d z ) ;

i f  i s fi e l d ( p e r i o d i c _ b o u n d a r y , ' r e fl e c t i o n _ z ' )
    p e r i o d i c _ b o u n d a r y . c a l c u l a t e _ r e fl e c t i o n  =  t r u e ;
    p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ k s  =  . . .
    1 + r o u n d ( ( p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ z  -
    f d t d _ d o m a i n . m i n _ z ) / f d t d _ d o m a i n . d z ) ;
    p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ e x  =  z e r o s ( 1 , n u m b e r _ o f _ t i m e _ s t e p s ) ;
    p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ e y  =  z e r o s ( 1 , n u m b e r _ o f _ t i m e _ s t e p s ) ;
    p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ e z  =  z e r o s ( 1 , n u m b e r _ o f _ t i m e _ s t e p s ) ;
    p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ h x  =  z e r o s ( 1 , n u m b e r _ o f _ t i m e _ s t e p s ) ;
    p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ h y  =  z e r o s ( 1 , n u m b e r _ o f _ t i m e _ s t e p s ) ;
    p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ h z  =  z e r o s ( 1 , n u m b e r _ o f _ t i m e _ s t e p s ) ;
e l s e
        p e r i o d i c _ b o u n d a r y . c a l c u l a t e _ r e fl e c t i o n  =  f a l s e ;
e n d

i f  i s fi e l d ( p e r i o d i c _ b o u n d a r y , ' t r a n s m i s s i o n _ z ' )
    p e r i o d i c _ b o u n d a r y . c a l c u l a t e _ t r a n s m i s s i o n  =  t r u e ;
    p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ k s  =  . . .
    1 + r o u n d ( ( p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ z  -
    f d t d _ d o m a i n . m i n _ z ) / f d t d _ d o m a i n . d z ) ;
    p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ e x  =  z e r o s ( 1 , n u m b e r _ o f _ t i m e _ s t e p s ) ;
    p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ e y  =  z e r o s ( 1 , n u m b e r _ o f _ t i m e _ s t e p s ) ;
    p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ e z  =  z e r o s ( 1 , n u m b e r _ o f _ t i m e _ s t e p s ) ;
    p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ h x  =  z e r o s ( 1 , n u m b e r _ o f _ t i m e _ s t e p s ) ;
    p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ h y  =  z e r o s ( 1 , n u m b e r _ o f _ t i m e _ s t e p s ) ;
    p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ h z  =  z e r o s ( 1 , n u m b e r _ o f _ t i m e _ s t e p s ) ;
    p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ t r a n s m i s s i o n _ d i s t a n c e  =  . . .
        d z * ( p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ k s  -  . . .    
        p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ k s ) ;
e l s e
    p e r i o d i c _ b o u n d a r y . c a l c u l a t e _ t r a n s m i s s i o n  =  f a l s e ;
e n d
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terms of the field components on a plane in two-dimensional arrays before the time-
marching loop, and use these arrays at every time step. Two-dimensional phase arrays are
defined and set following (14.29) as shown in Listing 14.2. One should notice that the phase
array of Hx is the same as the phase array of Ey, since components of these fields are at the
same coordinates in the xy plane, thus they experience the same amount of phase delay.
Similarly, the phase array of Hy is the same as the phase array of Ex.

Finally, in Listing 14.2, another subroutine, initialize_plane_wave_source_for_pbc,
shown in Listing 14.3, is called to initialize the plane wave source. First, Ex and Ey, or Hx and
Hy, components of the incident field are determined based on the mode of excitation. Then
the excitation waveform, which is cosine-modulated Gaussian, is constructed. As discussed
before in Section 5.1.4, one needs to determine mainly the center frequency and the band-
width to construct a cosine-modulated Gaussian waveform. The minimum frequency in the
spectrum of the waveform can be calculated using (22). The maximum frequency can be
calculated using a predefined number of cells per wavelength at the highest frequency, as
discussed in Section 5.1.2. In Listing 14.3, 40 cells per wavelength is used to determine the
maximum frequency.

In Sections 5.1.2–5.1.4, the time constant t was determined such that at the minimum
and maximum frequencies the value of the waveform would be 10% of the maximum

i f  s t r c m p ( p e r i o d i c _ b o u n d a r y . m o d e , ' T E M ' )
    p e r i o d i c _ b o u n d a r y . k x  =  0 ;
    p e r i o d i c _ b o u n d a r y . k y  =  0 ;
e n d
 
k x  =  p e r i o d i c _ b o u n d a r y . k x ;
k y  =  p e r i o d i c _ b o u n d a r y . k y ;
 
p e x  =  z e r o s ( n x , n y ) ;
p e y  =  z e r o s ( n x , n y ) ;
p e z  =  z e r o s ( n x , n y ) ;
p h z  =  z e r o s ( n x , n y ) ;

f o r  m i = 1 : n x
     f o r  m j = 1 : n y
          p e x ( m i , m j )  =  e x p ( j * k x * ( m i - 0 . 5 ) * d x ) * e x p ( j * k y * ( m j - 1 ) * d y ) ;
          p e y ( m i , m j )  =  e x p ( j * k x * ( m i - 1 ) * d x ) * e x p ( j * k y * ( m j - 0 . 5 ) * d y ) ;
          p e z ( m i , m j )  =  e x p ( j * k x * ( m i - 1 ) * d x ) * e x p ( j * k y * ( m j - 1 ) * d y ) ;
          p h z ( m i , m j )  =  e x p ( j * k x * ( m i - 0 . 5 ) * d x ) * e x p ( j * k y * ( m j - 0 . 5 ) * d y ) ;
     e n d
e n d
 
p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ e x  =  p e x ;
p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ e y  =  p e y ;
p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ e z  =  p e z ;

p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ h x  =  p e y ;
p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ h y  =  p e x ;
p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ h z  =  p h z ;
    
p e r i o d i c _ b o u n d a r y . P x  =  n x * d x ;
p e r i o d i c _ b o u n d a r y . P y  =  n y * d y ;
 
i n i t i a l i z e _ p l a n e _ w a v e _ s o u r c e _ f o r _ p b c ;
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value, in other words 20 dB less than the maximum value, in the frequency spectrum of
the waveform. The problem of horizontal resonance, in which the fields do not decay to
zero over time, needs to be avoided in a PBC simulation. The horizontal resonance would
occur due to the frequencies lower than fmin in the spectrum. To filter out these lower
frequencies better a more conservative figure than 20 dB is preferred and t is calculated
using 40 dB as a reference.

Listing 14.3 initialize_plane_wave_source_for_pbc.m

%  H e r e  t h e  i n c i d e n t  p l a n e  w a v e  i s  a s s u m e d  t o  p r o p a g a t e  i n  t h e  - z  d i r e c t i o n
k x  =  p e r i o d i c _ b o u n d a r y . k x ;
k y  =  p e r i o d i c _ b o u n d a r y . k y ;
p e r i o d i c _ b o u n d a r y . k x y  =  s q r t ( k x ^ 2 + k y ^ 2 ) ;
p h i _ i n c i d e n t  =  a t a n 2 ( k y , k x ) ;
 
i f  s t r c m p ( p e r i o d i c _ b o u n d a r y . m o d e , ' T E ' )
    p h i _ i n c i d e n t  =  a t a n 2 ( k y , k x ) ;
    E _ p h i  =  p e r i o d i c _ b o u n d a r y . E _ p h i ;
    p e r i o d i c _ b o u n d a r y . E x i 0  =  - E _ p h i  *  s i n ( p h i _ i n c i d e n t ) ;
    p e r i o d i c _ b o u n d a r y . E y i 0  =  E _ p h i  *  c o s ( p h i _ i n c i d e n t ) ;
    E x i  =  z e r o s ( n x ,  n y p 1 ) ;  
    E y i  =  z e r o s ( n x p 1 ,  n y ) ;  
e n d
i f  s t r c m p ( p e r i o d i c _ b o u n d a r y . m o d e , ' T M ' )
    p h i _ i n c i d e n t  =  a t a n 2 ( k y , k x ) ;
    H _ p h i  =  p e r i o d i c _ b o u n d a r y . H _ p h i ;
    p e r i o d i c _ b o u n d a r y . H x i 0  =  - H _ p h i  *  s i n ( p h i _ i n c i d e n t ) ;
    p e r i o d i c _ b o u n d a r y . H y i 0  =   H _ p h i  *  c o s ( p h i _ i n c i d e n t ) ;
    H x i  =  z e r o s ( n x p 1 ,  n y ) ;  
    H y i  =  z e r o s ( n x ,  n y p 1 ) ;  
e n d
i f  s t r c m p ( p e r i o d i c _ b o u n d a r y . m o d e , ' T E M ' )
    p h i _ i n c i d e n t  =  0 ;
    p e r i o d i c _ b o u n d a r y . E x i 0  =  p e r i o d i c _ b o u n d a r y . E _ x ;
    p e r i o d i c _ b o u n d a r y . E y i 0  =  p e r i o d i c _ b o u n d a r y . E _ y ;
    E x i  =  z e r o s ( n x ,  n y p 1 ) ;  
    E y i  =  z e r o s ( n x p 1 ,  n y ) ;  
e n d
 
p e r i o d i c _ b o u n d a r y . p h i _ i n c i d e n t  =  p h i _ i n c i d e n t ;
f _ m i n  =  c * p e r i o d i c _ b o u n d a r y . k x y / ( 2 * p i ) ;
f _ m a x  =  c / ( 4 0 * m a x ( [ d x , d y , d z ] ) ) ; % 4 0  c e l l s  p e r  w a v e l e n g t h
b a n d w i d t h  =  f _ m a x - f _ m i n ;
f r e q u e n c y  =  ( f _ m a x + f _ m i n ) / 2 ;
t a u  =  ( 2 * 4 . 2 9 / p i ) . / b a n d w i d t h ;   % f o r  e d g e  o f  G a u s s i a n  4 0  d B  b e l o w  m a x
t _ 0  =  4 . 5  *  t a u ;
p e r i o d i c _ b o u n d a r y . f r e q u e n c y _ s t a r t  =  f _ m i n ;
p e r i o d i c _ b o u n d a r y . f r e q u e n c y _ e n d  =  f _ m a x ;
p e r i o d i c _ b o u n d a r y . m o d u l a t i o n _ f r e q u e n c y  =  f r e q u e n c y ;
p e r i o d i c _ b o u n d a r y . b a n d w i d t h  =  b a n d w i d t h ;
p e r i o d i c _ b o u n d a r y . t a u  =  t a u ;
p e r i o d i c _ b o u n d a r y . t _ 0  =  t _ 0 ;
p e r i o d i c _ b o u n d a r y . w a v e f o r m  =  . . .
    c o s ( 2 * p i * f r e q u e n c y * ( t i m e  -  t _ 0 ) ) . * e x p ( - ( ( t i m e  -  t _ 0 ) / t a u ) . ^ 2 ) ;
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14.5.3 PBC updates in time-marching loop

Once the initializations are completed the marching loop can be modified for the PBC
implementation.

14.5.3.1 Updating magnetic field PBC source on the source plane
As illustrated in Figure 14.8, first, magnetic fields are updated on the source plane to excite
the source waveform if the excitation mode is TM. Listing 14.4 shows the subroutine
update_magnetic_field_PBC_source. Here, Hinc;x and Hinc;y are calculated and phase shifted
following (14.27) and (14.28). Then, these field components are added to the corresponding
field components on the source plane.

It should be noted that, the same shift is applied to field components at every time step,
therefore, the phase shift terms could be stored as two-dimensional arrays and they could be
used at every time step without recalculation, as done for the phase correction terms dis-
cussed in Section 14.5.2. In Listing 14.4 the phase shifts are recalculated to explicitly
demonstrate the connection to (14.27) and (14.28).

14.5.3.2 Updating electric field PBC source on the source plane
As the next step in the time-marching loop, magnetic fields are updated in the entire com-
putational domain followed by CPML updates. Afterwards, the electric field components on
the source plane are updated in a subroutine update_electric_field_PBC_source as shown in

Listing 14.4 update_magnetic_field_PBC_source.m

%  u p d a t e  m a g n e t i c  fi e l d  s o u r c e  f o r  T M  m o d e  P B C
i f  s t r c m p ( p e r i o d i c _ b o u n d a r y . m o d e , ' T M ' )

    k s  =  p e r i o d i c _ b o u n d a r y . s o u r c e _ k s ;

    H x i ( : , : )  =  p e r i o d i c _ b o u n d a r y . H x i 0  . . .
         *  p e r i o d i c _ b o u n d a r y . w a v e f o r m ( t i m e _ s t e p ) ;
    H y i ( : , : )  =  p e r i o d i c _ b o u n d a r y . H y i 0  . . .
         *  p e r i o d i c _ b o u n d a r y . w a v e f o r m ( t i m e _ s t e p ) ;

    f o r  m  =  1 : n x
         H y i ( m , : )  =  H y i ( m , : )  *  e x p ( - j * k x * ( m - 0 . 5 ) * d x ) ;
         H x i ( m , : )  =  H x i ( m , : )  *  e x p ( - j * k x * ( m - 1 ) * d x ) ;
    e n d
    H x i ( n x p 1 , : )  =  H x i ( n x p 1 , : ) * e x p ( - j * k x * n x * d x ) ;

    f o r  m  =  1 : n y
         H y i ( : , m )  =  H y i ( : , m )  *  e x p ( - j * k y * ( m - 1 ) * d y ) ;
         H x i ( : , m )  =  H x i ( : , m )  *  e x p ( - j * k y * ( m - 0 . 5 ) * d y ) ;
    e n d
    H y i ( : , n y p 1 )  =  H y i ( : , n y p 1 )  *  e x p ( - j * k y * n y * d y ) ;

    H x ( : , : , k s )  =  H x ( : , : , k s )  +   H x i ;
    H y ( : , : , k s )  =  H y ( : , : , k s )  +   H y i ;

e n d  
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Listing 14.5. Here, Einc;x and Einc;y are calculated and phase shifted following (14.25) and
(14.26). Then, these field components are added to the corresponding field components on
the source plane.

14.5.3.3 Updating electric field on PBC boundaries
The electric fields are then updated in the entire computational domain, except for the com-
ponents lying on the PBC boundaries, followed by CPML updates. Afterwards, the electric
field components are updated on the PBC boundaries in a subroutine update_electric_
field_PBC_ABC as shown in Listing 14.6. Here, the components of Ex, Ey, and Ez are
updated based on (14.9)–(14.20).

Listing 14.5 update_electric_field_PBC_source.m

%  u p d a t e  e l e c t r i c  fi e l d  s o u r c e  f o r  T E  a n d  T E M  m o d e  P B C

i f  s t r c m p ( p e r i o d i c _ b o u n d a r y . m o d e , ' T E ' )
    k s  =  p e r i o d i c _ b o u n d a r y . s o u r c e _ k s ;

    E x i ( : , : )  =  p e r i o d i c _ b o u n d a r y . E x i 0  . . .
         *  p e r i o d i c _ b o u n d a r y . w a v e f o r m ( t i m e _ s t e p ) ;
    E y i ( : , : )  =  p e r i o d i c _ b o u n d a r y . E y i 0  . . .
         *  p e r i o d i c _ b o u n d a r y . w a v e f o r m ( t i m e _ s t e p ) ;

    f o r  m  =  1 : n x
         E y i ( m , : )  =  E y i ( m , : )  *  e x p ( - j * k x * ( m - 1 ) * d x ) ;
         E x i ( m , : )  =  E x i ( m , : )  *  e x p ( - j * k x * ( m - 0 . 5 ) * d x ) ;
    e n d
    E y i ( n x p 1 , : )  =  E y i ( n x p 1 , : )  *  e x p ( - j * k x * n x * d x ) ;

    f o r  m  =  1 : n y
         E y i ( : , m )  =  E y i ( : , m )  *  e x p ( - j * k y * ( m - 0 . 5 ) * d y ) ;
         E x i ( : , m )  =  E x i ( : , m )  *  e x p ( - j * k y * ( m - 1 ) * d y ) ;
    e n d
    E x i ( : , n y p 1 )  =  E x i ( : , n y p 1 )  *  e x p ( - j * k y * n y * d y ) ;

    E x ( : , : , k s )  =  E x ( : , : , k s )  +   E x i ;
    E y ( : , : , k s )  =  E y ( : , : , k s )  +   E y i ;

e n d    
i f  s t r c m p ( p e r i o d i c _ b o u n d a r y . m o d e , ' T E M ' )
    k s  =  p e r i o d i c _ b o u n d a r y . s o u r c e _ k s ;

    E x i ( : , : )  =  p e r i o d i c _ b o u n d a r y . E x i 0  . . .
         *  p e r i o d i c _ b o u n d a r y . w a v e f o r m ( t i m e _ s t e p ) ;
    E y i ( : , : )  =  p e r i o d i c _ b o u n d a r y . E y i 0  . . .
         *  p e r i o d i c _ b o u n d a r y . w a v e f o r m ( t i m e _ s t e p ) ;

    E x ( : , : , k s )  =  E x ( : , : , k s )  +   E x i ;
    E y ( : , : , k s )  =  E y ( : , : , k s )  +   E y i ;

e n d
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Listing 14.6 update_electric_field_PBC_ABC.m

i f  s t r c m p ( p e r i o d i c _ b o u n d a r y . m o d e , ' T E M ' )
    E x ( 1 : n x , 1 , 2 : n z )  =  C e x e ( 1 : n x , 1 , 2 : n z ) . * E x ( 1 : n x , 1 , 2 : n z )  . . .
         +  C e x h z ( 1 : n x , 1 , 2 : n z ) . * . . .
                ( H z ( 1 : n x , 1 , 2 : n z ) - H z ( 1 : n x , n y , 2 : n z ) )  . . .
         +  C e x h y ( 1 : n x , 1 , 2 : n z ) . * . . .
                ( H y ( 1 : n x , 1 , 2 : n z ) - H y ( 1 : n x , 1 , 1 : n z - 1 ) ) ;

    E x ( 1 : n x , n y p 1 , 2 : n z )  =  E x ( 1 : n x , 1 , 2 : n z ) ;

    E y ( 1 , 1 : n y , 2 : n z )  =  C e y e ( 1 , 1 : n y , 2 : n z ) . * E y ( 1 , 1 : n y , 2 : n z )  . . .
         +  C e y h x ( 1 , 1 : n y , 2 : n z ) . *   . . .
                ( H x ( 1 , 1 : n y , 2 : n z ) - H x ( 1 , 1 : n y , 1 : n z - 1 ) )  . . .
         +  C e y h z ( 1 , 1 : n y , 2 : n z ) . *   . . .
                ( H z ( 1 , 1 : n y , 2 : n z ) - H z ( n x , 1 : n y , 2 : n z ) ) ;  

    E y ( n x p 1 , 1 : n y , 2 : n z )  =  E y ( 1 , 1 : n y , 2 : n z ) ;  

    E z ( 1 , 2 : n y , 1 : n z )  =  C e z e ( 1 , 2 : n y , 1 : n z ) . * E z ( 1 , 2 : n y , 1 : n z )  . . .
         +  C e z h y ( 1 , 2 : n y , 1 : n z ) . *   . . .
                ( H y ( 1 , 2 : n y , 1 : n z ) - H y ( n x , 2 : n y , 1 : n z ) )  . . .
         +  C e z h x ( 1 , 2 : n y , 1 : n z ) . * . . .
                ( H x ( 1 , 2 : n y , 1 : n z ) - H x ( 1 , 1 : n y - 1 , 1 : n z ) ) ;

    E z ( n x p 1 , 2 : n y , 1 : n z )  =  E z ( 1 , 2 : n y , 1 : n z ) ;  . . .

    E z ( 2 : n x , 1 , 1 : n z )  =  C e z e ( 2 : n x , 1 , 1 : n z ) . * E z ( 2 : n x , 1 , 1 : n z )  . . .
         +  C e z h y ( 2 : n x , 1 , 1 : n z ) . *   . . .
                ( H y ( 2 : n x , 1 , 1 : n z ) - H y ( 1 : n x - 1 , 1 , 1 : n z ) )  . . .
         +  C e z h x ( 2 : n x , 1 , 1 : n z ) . * . . .
                ( H x ( 2 : n x , 1 , 1 : n z ) - H x ( 2 : n x , n y , 1 : n z ) ) ;                   

    E z ( 2 : n x , n y p 1 , 1 : n z )  =  E z ( 2 : n x , 1 , 1 : n z ) ;

    E z ( 1 , 1 , 1 : n z )  =  C e z e ( 1 , 1 , 1 : n z ) . * E z ( 1 , 1 , 1 : n z )  . . .
         +  C e z h y ( 1 , 1 , 1 : n z ) . *   . . .
               ( H y ( 1 , 1 , 1 : n z ) - H y ( n x , 1 , 1 : n z ) )  . . .
         +  C e z h x ( 1 , 1 , 1 : n z ) . * . . .
               ( H x ( 1 , 1 , 1 : n z ) - H x ( 1 , n y , 1 : n z ) ) ;

    E z ( n x p 1 , 1 , 1 : n z )  =  E z ( 1 , 1 , 1 : n z ) ;

    E z ( 1 , n y p 1 , 1 : n z )  =  E z ( 1 , 1 , 1 : n z ) ;

    E z ( n x p 1 , n y p 1 , 1 : n z )  =  E z ( 1 , 1 , 1 : n z ) ;
e n d

i f  s t r c m p ( p e r i o d i c _ b o u n d a r y . m o d e , ' T E ' )  . . .
           | |  s t r c m p ( p e r i o d i c _ b o u n d a r y . m o d e , ' T M ' )

    k x  =  p e r i o d i c _ b o u n d a r y . k x ;
    k y  =  p e r i o d i c _ b o u n d a r y . k y ;
    P x  =  p e r i o d i c _ b o u n d a r y . P x ;
    P y  =  p e r i o d i c _ b o u n d a r y . P y ;

    E x ( 1 : n x , 1 , 2 : n z )  =  C e x e ( 1 : n x , 1 , 2 : n z ) . * E x ( 1 : n x , 1 , 2 : n z )  . . .
         +  C e x h z ( 1 : n x , 1 , 2 : n z ) . * . . .
               ( H z ( 1 : n x , 1 , 2 : n z ) - H z ( 1 : n x , n y , 2 : n z ) * e x p ( j * k y * P y ) )  . . .
         +  C e x h y ( 1 : n x , 1 , 2 : n z ) . * . . .
               ( H y ( 1 : n x , 1 , 2 : n z ) - H y ( 1 : n x , 1 , 1 : n z - 1 ) ) ;

    E x ( 1 : n x , n y p 1 , 2 : n z )  =  E x ( 1 : n x , 1 , 2 : n z ) * e x p ( - j * k y * P y ) ;
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14.5.3.4 Capturing fields on the reflection and transmission planes
Listing 14.7 shows the implementation of a subroutine, capture_fields_for_PBC, used to
capture fields on the reflection and transmission planes after the field updates at every time
step. First, all field components on the reflection plane are captured and multiplied by two-
dimensional phase correction arrays based on (14.29) as discussed in Section 14.4. Then the
results are averaged and stored in transient reflection arrays. The same calculations are
repeated to capture transmitted fields on the transmission plane.

14.5.3.5 Calculation of reflection and transmission coefficients
The transient fields on reflection and transmission planes are available in one-dimensional
arrays after the FDTD time-marching loop is completed. These transients are used to calculate
the reflection and transmission coefficients during the post-processing phase of the
FDTD simulation in a subroutine calculate_reflection_and_transmission_for_PBC, shown
in Listing 14.8. The transient fields are transformed to frequency domain using DFT. Then,
co- and cross-polarized reflection and transmission coefficients are calculated based on the

    E y ( 1 , 1 : n y , 2 : n z )  =  C e y e ( 1 , 1 : n y , 2 : n z ) . * E y ( 1 , 1 : n y , 2 : n z )  . . .
         +  C e y h x ( 1 , 1 : n y , 2 : n z ) . *   . . .
               ( H x ( 1 , 1 : n y , 2 : n z ) - H x ( 1 , 1 : n y , 1 : n z - 1 ) )  . . .
         +  C e y h z ( 1 , 1 : n y , 2 : n z ) . *   . . .
               ( H z ( 1 , 1 : n y , 2 : n z ) - H z ( n x , 1 : n y , 2 : n z ) * e x p ( j * k x * P x ) ) ;  

    E y ( n x p 1 , 1 : n y , 2 : n z )  =  E y ( 1 , 1 : n y , 2 : n z ) * e x p ( - j * k x * P x ) ;  

    E z ( 1 , 2 : n y , 1 : n z )  =  C e z e ( 1 , 2 : n y , 1 : n z ) . * E z ( 1 , 2 : n y , 1 : n z )  . . .
         +  C e z h y ( 1 , 2 : n y , 1 : n z ) . *   . . .
               ( H y ( 1 , 2 : n y , 1 : n z ) - H y ( n x , 2 : n y , 1 : n z ) * e x p ( j * k x * P x ) )  . . .
         +  C e z h x ( 1 , 2 : n y , 1 : n z ) . * . . .
               ( H x ( 1 , 2 : n y , 1 : n z ) - H x ( 1 , 1 : n y - 1 , 1 : n z ) ) ;

    E z ( n x p 1 , 2 : n y , 1 : n z )  =  E z ( 1 , 2 : n y , 1 : n z ) * e x p ( - j * k x * P x ) ;  . . .

    E z ( 2 : n x , 1 , 1 : n z )  =  C e z e ( 2 : n x , 1 , 1 : n z ) . * E z ( 2 : n x , 1 , 1 : n z )  . . .
         +  C e z h y ( 2 : n x , 1 , 1 : n z ) . *   . . .
                ( H y ( 2 : n x , 1 , 1 : n z ) - H y ( 1 : n x - 1 , 1 , 1 : n z ) )  . . .
         +  C e z h x ( 2 : n x , 1 , 1 : n z ) . * . . .
                ( H x ( 2 : n x , 1 , 1 : n z ) - H x ( 2 : n x , n y , 1 : n z ) * e x p ( j * k y * P y ) ) ;                   

    E z ( 2 : n x , n y p 1 , 1 : n z )  =  E z ( 2 : n x , 1 , 1 : n z ) * e x p ( - j * k y * P y ) ;

    E z ( 1 , 1 , 1 : n z )  =  C e z e ( 1 , 1 , 1 : n z ) . * E z ( 1 , 1 , 1 : n z )  . . .
         +  C e z h y ( 1 , 1 , 1 : n z ) . *   . . .
                ( H y ( 1 , 1 , 1 : n z ) - H y ( n x , 1 , 1 : n z ) * e x p ( j * k x * P x ) )  . . .
         +  C e z h x ( 1 , 1 , 1 : n z ) . * . . .
                ( H x ( 1 , 1 , 1 : n z ) - H x ( 1 , n y , 1 : n z ) * e x p ( j * k y * P y ) ) ;

    E z ( n x p 1 , 1 , 1 : n z )  =  E z ( 1 , 1 , 1 : n z ) * e x p ( - j * k x * P x ) ;

    E z ( 1 , n y p 1 , 1 : n z )  =  E z ( 1 , 1 , 1 : n z ) * e x p ( - j * k y * P y ) ;

    E z ( n x p 1 , n y p 1 , 1 : n z )  =  E z ( 1 , 1 , 1 : n z ) * e x p ( - j * k x * P x ) * e x p ( - j * k y * P y ) ;
e n d  
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Listing 14.7 capture_fields_for_PBC.m

n x y  =  n x * n y ;
 
i f  p e r i o d i c _ b o u n d a r y . c a l c u l a t e _ r e fl e c t i o n
 
    k s  =  p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ k s ;    
    
    e x  =  E x ( 1 : n x , 1 : n y , k s ) . * p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ e x ;
    e y  =  E y ( 1 : n x , 1 : n y , k s ) . * p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ e y ;
    e z  =  0 . 5 * ( E z ( 1 : n x , 1 : n y , k s ) + E z ( 1 : n x , 1 : n y , k s - 1 ) )  . . .
            . * p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ e z ;
 
    h x  =  0 . 5 * ( H x ( 1 : n x , 1 : n y , k s ) + H x ( 1 : n x , 1 : n y , k s - 1 ) )  . . .
        . * p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ h x ;
    h y  =  0 . 5 * ( H y ( 1 : n x , 1 : n y , k s ) + H y ( 1 : n x , 1 : n y , k s - 1 ) )  . . .
        . * p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ h y ;
    h z  =  H z ( 1 : n x , 1 : n y , k s ) . * p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ h z ;
 
    p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ e x ( t i m e _ s t e p )  =  s u m ( s u m ( e x ) ) / n x y ;
    p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ e y ( t i m e _ s t e p )  =  s u m ( s u m ( e y ) ) / n x y ;
    p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ e z ( t i m e _ s t e p )  =  s u m ( s u m ( e z ) ) / n x y ;
 
    p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ h x ( t i m e _ s t e p )  =  s u m ( s u m ( h x ) ) / n x y ;
    p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ h y ( t i m e _ s t e p )  =  s u m ( s u m ( h y ) ) / n x y ;
    p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ h z ( t i m e _ s t e p )  =  s u m ( s u m ( h z ) ) / n x y ;
e n d

i f  p e r i o d i c _ b o u n d a r y . c a l c u l a t e _ t r a n s m i s s i o n
    k s  =  p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ k s ;    
   
    e x  =  E x ( 1 : n x , 1 : n y , k s ) . * p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ e x ;
    e y  =  E y ( 1 : n x , 1 : n y , k s ) . * p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ e y ;
    e z  =  0 . 5 * ( E z ( 1 : n x , 1 : n y , k s ) + E z ( 1 : n x , 1 : n y , k s - 1 ) )  . . .
            . * p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ e z ;
 
    h x  =  0 . 5 * ( H x ( 1 : n x , 1 : n y , k s ) + H x ( 1 : n x , 1 : n y , k s - 1 ) )  . . .
        . * p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ h x ;
    h y  =  0 . 5 * ( H y ( 1 : n x , 1 : n y , k s ) + H y ( 1 : n x , 1 : n y , k s - 1 ) )  . . .
        . * p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ h y ;
    h z  =  H z ( 1 : n x , 1 : n y , k s ) . * p e r i o d i c _ b o u n d a r y . p h a s e _ c o r r e c t i o n _ h z ;
 
    p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ e x ( t i m e _ s t e p )  =  s u m ( s u m ( e x ) ) / n x y ;
    p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ e y ( t i m e _ s t e p )  =  s u m ( s u m ( e y ) ) / n x y ;
    p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ e z ( t i m e _ s t e p )  =  s u m ( s u m ( e z ) ) / n x y ;
 
    p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ h x ( t i m e _ s t e p )  =  s u m ( s u m ( h x ) ) / n x y ;
    p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ h y ( t i m e _ s t e p )  =  s u m ( s u m ( h y ) ) / n x y ;
    p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ h z ( t i m e _ s t e p )  =  s u m ( s u m ( h z ) ) / n x y ;    
e n d
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Listing 14.8 calculate_reflection_and_transmission_for_PBC.m

f r e q u e n c i e s  =  l i n s p a c e ( p e r i o d i c _ b o u n d a r y . f r e q u e n c y _ s t a r t ,  . . .
      p e r i o d i c _ b o u n d a r y . f r e q u e n c y _ e n d ,  2 0 0 ) ;

t i m e _ s h i f t  =  0 ;
r e fl e c t i o n _ e x _ d f t  =  t i m e _ t o _ f r e q u e n c y _ d o m a i n (  . . .
     p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ e x ,  d t ,  f r e q u e n c i e s ,  t i m e _ s h i f t ) ;
r e fl e c t i o n _ e y _ d f t  =  t i m e _ t o _ f r e q u e n c y _ d o m a i n (  . . .
     p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ e y ,  d t ,  f r e q u e n c i e s ,  t i m e _ s h i f t ) ;
r e fl e c t i o n _ e z _ d f t  =  t i m e _ t o _ f r e q u e n c y _ d o m a i n (  . . .
     p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ e z ,  d t ,  f r e q u e n c i e s ,  t i m e _ s h i f t ) ;
t i m e _ s h i f t  =  - d t / 2 ;
r e fl e c t i o n _ h x _ d f t  =  t i m e _ t o _ f r e q u e n c y _ d o m a i n (  . . .
     p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ h x ,  d t ,  f r e q u e n c i e s ,  t i m e _ s h i f t ) ;
r e fl e c t i o n _ h y _ d f t  =  t i m e _ t o _ f r e q u e n c y _ d o m a i n (  . . .
     p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ h y ,  d t ,  f r e q u e n c i e s ,  t i m e _ s h i f t ) ;
r e fl e c t i o n _ h z _ d f t  =  t i m e _ t o _ f r e q u e n c y _ d o m a i n (  . . .
    p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ h z ,  d t ,  f r e q u e n c i e s ,  t i m e _ s h i f t ) ;     

i f  p e r i o d i c _ b o u n d a r y . c a l c u l a t e _ t r a n s m i s s i o n
     t i m e _ s h i f t  =  0 ;
     t r a n s m i s s i o n _ e x _ d f t  =  t i m e _ t o _ f r e q u e n c y _ d o m a i n (  . . .
          p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ e x ,  d t ,  f r e q u e n c i e s ,  t i m e _ s h i f t ) ;
     t r a n s m i s s i o n _ e y _ d f t  =  t i m e _ t o _ f r e q u e n c y _ d o m a i n (  . . .
          p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ e y ,  d t ,  f r e q u e n c i e s ,  t i m e _ s h i f t ) ;
     t r a n s m i s s i o n _ e z _ d f t  =  t i m e _ t o _ f r e q u e n c y _ d o m a i n (  . . .
          p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ e z ,  d t ,  f r e q u e n c i e s ,  t i m e _ s h i f t ) ;
     t i m e _ s h i f t  =  - d t / 2 ;
     t r a n s m i s s i o n _ h x _ d f t  =  t i m e _ t o _ f r e q u e n c y _ d o m a i n (  . . .
          p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ h x ,  d t ,  f r e q u e n c i e s ,  t i m e _ s h i f t ) ;
     t r a n s m i s s i o n _ h y _ d f t  =  t i m e _ t o _ f r e q u e n c y _ d o m a i n (  . . .
          p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ h y ,  d t ,  f r e q u e n c i e s ,  t i m e _ s h i f t ) ;
     t r a n s m i s s i o n _ h z _ d f t  =  t i m e _ t o _ f r e q u e n c y _ d o m a i n (  . . .
          p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ h z ,  d t ,  f r e q u e n c i e s ,  t i m e _ s h i f t ) ;
e n d

%  w a v e n u m b e r  c o m p o n e n t s
k  =  f r e q u e n c i e s * 2 * p i / c ;
k x  =  p e r i o d i c _ b o u n d a r y . k x ;
k y  =  p e r i o d i c _ b o u n d a r y . k y ;
k h  =  s q r t ( k x ^ 2 + k y ^ 2 ) ;
k z  =  s q r t ( k . ^ 2 - k h ^ 2 ) ;

p h i _ i n c i d e n t  =  a t a n 2 ( k y , k x ) ;

e t a _ 0  =  s q r t ( m u _ 0 / e p s _ 0 ) ;

i f  s t r c m p ( p e r i o d i c _ b o u n d a r y . m o d e , ' T E ' )
    E r p _ c o  =  ( r e fl e c t i o n _ e y _ d f t * k x / k h - r e fl e c t i o n _ e x _ d f t * k y / k h ) ;
    H r p _ c o  =  ( r e fl e c t i o n _ h x _ d f t * k x / k h + r e fl e c t i o n _ h y _ d f t * k y / k h ) ;
    E r e f _ c r  =  ( r e fl e c t i o n _ e x _ d f t * k x / k h + r e fl e c t i o n _ e y _ d f t * k y / k h ) ;
    
    E i n c  =  ( E r p _ c o + e t a _ 0 * H r p _ c o . * k . / k z ) / 2 ;
    E r e f _ c o  =  E r p _ c o - E i n c ;

    G a m m a _ c o  =  E r e f _ c o . / E i n c ;
    a G a m m a _ c o  =  a b s ( G a m m a _ c o ) ;                     %  M a g n i t u d e
    p G a m m a _ c o  =  a n g l e ( G a m m a _ c o ) / p i * 1 8 0 ;        %  P h a s e  i n  d e g r e e

    G a m m a _ c r   =  E r e f _ c r . / E i n c ;
    a G a m m a _ c r  =  a b s ( G a m m a _ c r ) ;                      %  M a g n i t u d e
    p G a m m a _ c r  =  a n g l e ( G a m m a _ c r ) / p i * 1 8 0 ;         %  P h a s e  i n  d e g r e e

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

14.5 ● MATLAB‡ implementation of PBC FDTD algorithm 439



63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

    i f  p e r i o d i c _ b o u n d a r y . c a l c u l a t e _ t r a n s m i s s i o n
        E t r a _ c o  =  ( t r a n s m i s s i o n _ e y _ d f t * k x / k h - t r a n s m i s s i o n _ e x _ d f t * k y / k h ) ;
        E t r a _ c r  =  ( t r a n s m i s s i o n _ e x _ d f t * k x / k h + t r a n s m i s s i o n _ e y _ d f t * k y / k h ) ;
        
        E i n c  =  E i n c  . *  . . .
            e x p ( j * k z * p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ t r a n s m i s s i o n _ d i s t a n c e ) ;
        
        T _ c o  =  E t r a _ c o . / E i n c ;
        a T _ c o  =  a b s ( T _ c o ) ;                          %  M a g n i t u d e
        p T _ c o  =  a n g l e ( T _ c o ) / p i * 1 8 0 ;             %  P h a s e  i n  d e g r e e

        T _ c r  =  E t r a _ c r . / E i n c ;
        a T _ c r  =  a b s ( T _ c r ) ;                           %  M a g n i t u d e
        p T _ c r  =  a n g l e ( T _ c r ) / p i * 1 8 0 ;              %  P h a s e  i n  d e g r e e
    e n d
e n d

i f  s t r c m p ( p e r i o d i c _ b o u n d a r y . m o d e , ' T M ' )
    E r p _ c o   =  ( - r e fl e c t i o n _ e x _ d f t * k x / k h - r e fl e c t i o n _ e y _ d f t * k y / k h ) ;
    H r p _ c o   =  ( r e fl e c t i o n _ h y _ d f t * k x / k h - r e fl e c t i o n _ h x _ d f t * k y / k h ) ;
    H r e f _ c r  =  ( r e fl e c t i o n _ h x _ d f t * k x / k h + r e fl e c t i o n _ h y _ d f t * k y / k h ) ;
        
    H i n c  =  ( H r p _ c o + E r p _ c o . * k . / ( e t a _ 0 * k z ) ) / 2 ;
    H r e f _ c o  =  H r p _ c o - H i n c ;

    G a m m a _ c o  =  H r e f _ c o . / H i n c ;
    a G a m m a _ c o  =  a b s ( G a m m a _ c o ) ;                         %  M a g n i t u d e
    p G a m m a _ c o  =  a n g l e ( G a m m a _ c o ) / p i * 1 8 0 ;            %  P h a s e  i n  d e g r e e
  
    G a m m a _ c r  =  H r e f _ c r . / H i n c ;
    a G a m m a _ c r  =  a b s ( G a m m a _ c r ) ;                         %  M a g n i t u d e
    p G a m m a _ c r  =  a n g l e ( G a m m a _ c r ) / p i * 1 8 0 ;            %  P h a s e  i n  d e g r e e
           
    i f  p e r i o d i c _ b o u n d a r y . c a l c u l a t e _ t r a n s m i s s i o n
        H t r a _ c o  =  ( t r a n s m i s s i o n _ h y _ d f t * k x / k h - t r a n s m i s s i o n _ h x _ d f t * k y / k h ) ;
        H t r a _ c r  =  ( t r a n s m i s s i o n _ h x _ d f t * k x / k h + t r a n s m i s s i o n _ h y _ d f t * k y / k h ) ;

        H i n c  =  H i n c  . *  . . .
            e x p ( j * k z * p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ t r a n s m i s s i o n _ d i s t a n c e ) ;

        T _ c o  =  H t r a _ c o . / H i n c ;
        a T _ c o  =  a b s ( T _ c o ) ;                          %  M a g n i t u d e
        p T _ c o  =  a n g l e ( T _ c o ) / p i * 1 8 0 ;             %  P h a s e  i n  d e g r e e

        T _ c r  =  H t r a _ c r . / H i n c ;
        a T _ c r  =  a b s ( T _ c r ) ;                           %  M a g n i t u d e
        p T _ c r  =  a n g l e ( T _ c r ) / p i * 1 8 0 ;              %  P h a s e  i n  d e g r e e
    e n d
e n d

i f  s t r c m p ( p e r i o d i c _ b o u n d a r y . m o d e , ' T E M ' )
    
    E x i 0  =  p e r i o d i c _ b o u n d a r y . E x i 0 ;
    E y i 0  =  p e r i o d i c _ b o u n d a r y . E y i 0 ;
    E i 0  =  s q r t ( E x i 0 ^ 2 + E y i 0 ^ 2 ) ;
    p h i  =  a t a n 2 ( E y i 0 , E x i 0 ) ;
    
    E r p _ c o   =  r e fl e c t i o n _ e x _ d f t * c o s ( p h i )  +  r e fl e c t i o n _ e y _ d f t * s i n ( p h i ) ;
    H r p _ c o   =  r e fl e c t i o n _ h x _ d f t * s i n ( p h i )  -  r e fl e c t i o n _ h y _ d f t * c o s ( p h i ) ;
    E r e f _ c r  =  r e fl e c t i o n _ e x _ d f t * s i n ( p h i )  -  r e fl e c t i o n _ e y _ d f t * c o s ( p h i ) ;
    
    E i n c  =  ( E r p _ c o + e t a _ 0 * H r p _ c o ) / 2 ;
    E r e f _ c o  =  E r p _ c o - E i n c ;
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    G a m m a _ c o  =  E r e f _ c o . / E i n c ;
    a G a m m a _ c o  =  a b s ( G a m m a _ c o ) ;                      %  M a g n i t u d e
    p G a m m a _ c o  =  a n g l e ( G a m m a _ c o ) / p i * 1 8 0 ;         %  P h a s e  i n  d e g r e e
    
    G a m m a _ c r   =  E r e f _ c r . / E i n c ;
    a G a m m a _ c r  =  a b s ( G a m m a _ c r ) ;                       %  M a g n i t u d e
    p G a m m a _ c r  =  a n g l e ( G a m m a _ c r ) / p i * 1 8 0 ;          %  P h a s e  i n  d e g r e e

    i f  p e r i o d i c _ b o u n d a r y . c a l c u l a t e _ t r a n s m i s s i o n
        E t r a _ c o  =  t r a n s m i s s i o n _ e x _ d f t * c o s ( p h i )  +  t r a n s m i s s i o n _ e y _ d f t * s i n ( p h i ) ;
        E t r a _ c r  =  t r a n s m i s s i o n _ e x _ d f t * s i n ( p h i )  -  t r a n s m i s s i o n _ e y _ d f t * c o s ( p h i ) ;

        E i n c  =  E i n c  . *  . . .
            e x p ( j * k z * p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ t r a n s m i s s i o n _ d i s t a n c e ) ;
        
        T _ c o  =  E t r a _ c o . / E i n c ;
        a T _ c o  =  a b s ( T _ c o ) ;                          %  M a g n i t u d e
        p T _ c o  =  a n g l e ( T _ c o ) / p i * 1 8 0 ;             %  P h a s e  i n  d e g r e e

        T _ c r  =  E t r a _ c r . / E i n c ;
        a T _ c r  =  a b s ( T _ c r ) ;                           %  M a g n i t u d e
        p T _ c r  =  a n g l e ( T _ c r ) / p i * 1 8 0 ;              %  P h a s e  i n  d e g r e e
    e n d
e n d     

f G H z  =  f r e q u e n c i e s * 1 e - 9 ;

fi g u r e ;
p l o t ( f G H z , a G a m m a _ c o , ' b - ' , f G H z , a G a m m a _ c r , ' r - - ' , ' l i n e w i d t h ' , 1 . 5 ) ;
    l e g e n d ( ' | \ G a m m a _ { c o } | ' , ' | \ G a m m a _ { c r } | ' ) ;
i f  p e r i o d i c _ b o u n d a r y . c a l c u l a t e _ t r a n s m i s s i o n
    h o l d  o n ;
    p l o t ( f G H z , a T _ c o , ' g - . ' , f G H z , a T _ c r , ' m : ' , ' l i n e w i d t h ' , 1 . 5 ) ;
    l e g e n d ( ' | \ G a m m a _ { c o } | ' , ' | \ G a m m a _ { c r } | ' , ' | T _ { c o } | ' ,  ' | T _ { c r } | ' ) ;
e n d
g r i d  o n ;
x l a b e l ( ' f r e q u e n c y  [ G H z ] ' , ' f o n t s i z e ' , 1 2 ) ;
y l a b e l ( ' m a g n i t u d e ' , ' f o n t s i z e ' , 1 2 ) ;

fi g u r e ;
p l o t ( f G H z , p G a m m a _ c o , ' b - ' , f G H z , p G a m m a _ c r , ' r - - ' , ' l i n e w i d t h ' , 1 . 5 ) ;
l e g e n d ( ' | \ G a m m a _ { c o } | ' , ' | \ G a m m a _ { c r } | ' ) ;
i f  p e r i o d i c _ b o u n d a r y . c a l c u l a t e _ t r a n s m i s s i o n
    h o l d  o n ;
    p l o t ( f G H z , p T _ c o , ' g - . ' , f G H z , p T _ c r , ' m : ' , ' l i n e w i d t h ' , 1 . 5 ) ;
    l e g e n d ( ' | \ G a m m a _ { c o } | ' , ' | \ G a m m a _ { c r } | ' , ' | T _ { c o } | ' ,  ' | T _ { c r } | ' ) ;
e n d
g r i d  o n ;
x l a b e l ( ' f r e q u e n c y  [ G H z ] ' , ' f o n t s i z e ' , 1 2 ) ;
y l a b e l ( ' p h a s e  [ d e g r e e s ] ' , ' f o n t s i z e ' , 1 2 ) ;
s e t ( g c a , ' f o n t s i z e ' , 1 2 ) ;

fi g u r e ;
t i m e n s  =  t i m e * 1 e 9 ;
p l o t ( t i m e n s ,  a b s ( p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ e x ) , ' b - ' ,  . . .
     t i m e n s ,  a b s ( p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ e y ) , ' r - - ' ,  . . .
     t i m e n s ,  a b s ( p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ e z ) , ' k - . ' ,  . . .
    ' l i n e w i d t h ' , 1 . 5 ) ;
x l a b e l ( ' t i m e  [ n s ] ' , ' f o n t s i z e ' , 1 2 ) ;
y l a b e l ( ' m a g n i t u d e ' , ' f o n t s i z e ' , 1 2 ) ;
g r i d  o n ;
l e g e n d ( ' r e fl e c t i o n  E _ { x } ' , ' r e fl e c t i o n  E _ { y } ' , ' r e fl e c t i o n  E _ { z } ' ) ;
s e t ( g c a , ' f o n t s i z e ' , 1 2 ) ;
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equations discussed in Sections 14.4.1–14.4.3 for TE, TM, and TEM modes, respectively.
Once the reflection and transmission coefficients are calculated, their magnitudes and phases
are displayed in separate figures.

14.6 Simulation examples

14.6.1 Reflection and transmission coefficients of a dielectric slab

A simple example that can be verified against analytical solutions is simulation of a dielectric
slab. Here, we consider a dielectric slab case with thickness of 1 cm and relative permittivity
of 4, for which reflection coefficient distribution is shown in Figures 14.2 and 14.4. The slab is
illuminated by a TE waveform with horizontal wavenumber of kx ¼ 100 radian/meter and
ky ¼ 0 radian/meter, as shown in Listing 14.1. Figure 14.12 shows magnitudes of the
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Figure 14.12 Reflection and transmission coefficients of a dielectric slab.

i f  p e r i o d i c _ b o u n d a r y . c a l c u l a t e _ t r a n s m i s s i o n
     fi g u r e ;
     p l o t ( t i m e n s ,  a b s ( p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ e x ) , ' b - ' ,  . . .
           t i m e n s ,  a b s ( p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ e y ) , ' r - - ' ,  . . .
           t i m e n s ,  a b s ( p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ e z ) , ' k - . ' ,  . . .
          ' l i n e w i d t h ' , 1 . 5 ) ;
    x l a b e l ( ' t i m e  [ n s ] ' , ' f o n t s i z e ' , 1 2 ) ;
    y l a b e l ( ' m a g n i t u d e ' , ' f o n t s i z e ' , 1 2 ) ;
    g r i d  o n ;
    l e g e n d ( ' t r a n s m i s s i o n  E _ { x } ' , ' t r a n s m i s s i o n  E _ { y } ' , ' t r a n s m i s s i o n  E _ { z } ' ) ;
    s e t ( g c a , ' f o n t s i z e ' , 1 2 ) ;
e n d
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reflection and transmission coefficients calculated by FDTD and compared with the analytical
solution. It should be noted that the minimum frequency that can be calculated using the
presented PBC FDTD code is 4.8 GHz based on (14.22), hence the results are shown starting
from 5 GHz in Figure 14.12.

14.6.2 Reflection and transmission coefficients of a dipole FSS

Figure 14.6 illustrates a unit cell in which a PEC rectangular patch placed on a dielectric
slab. A periodic structure built on this kind of a unit cell is referred to as a Dipole Frequency
Selective Surface (DFSS). In this example we consider a DFSS with a PEC patch of size
3 mm by 12 mm, on a 6 mm thick slab with 2.2 dielectric constant. The unit cell is 15 mm
wide in x and y directions. The source plane is located 18 mm above the slab and it excites TE
mode waves with horizontal wavenumbers kx ¼ 20 radian/meter and ky ¼ 7:8 radian/meter.
The fields are captured 16 mm above and 3 mm below the slab as reflected and transmitted
fields, respectively. FDTD simulation is run for 5000 time steps using a cell size of 0.5 mm
on a side. Figure 14.13 shows the co- and cross-polarized reflection coefficients whereas
Figure 14.14 shows the transmission coefficients calculated over the frequency range
2–15 GHz compared with solutions obtained from Ansoft Designer (AD) [76].

Next, the DFSS is simulated using TM mode waves with horizontal wavenumbers
kx ¼ 20 radian/meter and ky ¼ 7:8 radian/meter as the excitation. To simulate the TM mode
one can simply change the value of periodic_boundary.mode as ’TM’ and set periodic_
boundary.H_phi as 1 in Listing 14.1. Figure 14.15 shows the reflection coefficients whereas
Figure 14.16 shows the transmission coefficients calculated by FDTD and compared with
solutions obtained from Ansoft Designer.
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Figure 14.13 TE mode reflection coefficients of a DFSS: FDTD vs Ansoft Designer.
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14.6.3 Reflection and transmission coefficients of a
Jarusalem-cross FSS

In this example we consider a Jarusalem-Cross Frequency Selective Surface (JC-FSS)
dimensions of which are illustrated in Figure 14.17. The PEC cross patch is in free-space
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Figure 14.15 TM mode reflection coefficients of a DFSS: FDTD vs Ansoft Designer.
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Figure 14.14 TE mode transmission coefficients of a DFSS: FDTD vs Ansoft Designer.

444 CHAPTER 14 ● Analysis of periodic structures



5.7 mm

15.2 mm

1.9 mm

y

xz

Figure 14.17 A Jarusalem-cross frequency selective circuit.
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Figure 14.16 TM mode transmission coefficients of a DFSS: FDTD vs Ansoft Designer.
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without a dielectric slab support. The unit cell is 15.2 mm wide in x and y directions. The
source plane is located 8 mm above the slab and it excites TEM mode waves with y
polarization, as shown in Listing 14.9. The fields are captured 6 mm above and 3 mm
below the patch as reflected and transmitted fields, respectively. FDTD simulation is run
for 3,000 time steps using a cell size of 0.475 mm in x and y directions while 0.5 mm in
z direction. Figure 14.18 shows the co- and cross-polarized reflection and transmission
coefficients calculated over the frequency range 2–15 GHz compared with solutions
obtained from Ansoft Designer.
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Figure 14.18 Reflection and transmission coefficients of a Jarusalem-cross FSS: FDTD vs
Ansoft Designer.

Listing 14.9 define_problem_space_parameters.m

1

3

5

7

%  ==< p e r i o d i c  b o u n d a r y  s i m u l a t i o n  p a r a m e t e r s > ========
d i s p ( ' D e fi n i n g  p e r i o d i c  b o u n d a r y  s i m u l a t i o n ' ) ;  
 
p e r i o d i c _ b o u n d a r y . m o d e  =  ' T E M ' ;
p e r i o d i c _ b o u n d a r y . E _ x  =  0 ;
p e r i o d i c _ b o u n d a r y . E _ y  =  1 ;
p e r i o d i c _ b o u n d a r y . s o u r c e _ z  =  8 e - 3 ;
p e r i o d i c _ b o u n d a r y . r e fl e c t i o n _ z  =  6 e - 3 ;
p e r i o d i c _ b o u n d a r y . t r a n s m i s s i o n _ z  =  - 3 e - 3 ;
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CHAPTER 15

Nonuniform grid

15.1 Introduction

Choice of the FDTD grid cell size is a trade-off between reduced solution time and improved
accuracy. For problems in which there are no fine geometrical details or any fine details that
affect the solution accuracy, this trade-off can be well balanced by choosing a cell size which
is not too small to keep reasonable solution time and accuracy. If fine details are expected to
affect the accuracy, some advanced techniques can be used. For instance, subgridding
techniques can be employed within the uniform FDTD grid, or a nonuniform grid can be
used instead of the uniform grid.

One of the methods to model fine geometrical details in an FDTD problem, while
keeping the solution time reasonable, is nonuniform grids: Instead of using the same cell size
all over the computational domain, different cell sizes can be used at different regions. For
instance consider the problem shown in Figure 15.1(a), where a coarse uniform grid is used.
In this geometry there are two fine strips which are narrower than a cells size. Moreover,
some parts of the geometry do not conform to the underlying grid. An approximate geometry
that would conform to this grid will be used in the conventional FDTD, hence the loss of
modeling accuracy will reflect into the results of the calculations.

To model the geometry more accurately, one can use a fine uniform grid, as shown in
Figure 15.1(b), which will increase the problem size – in number of cells – significantly, and
increase the calculation time much more. For instance, if the cell size is halved for a three-
dimensional domain, the calculations will take about 16 times longer.

Figure 15.1(c) illustrates a nonuniform grid where coarse cells are used in the background
of the problem space and fine cells are used only at the fine geometrical regions. Transitions
between fine cell regions and coarse cell regions are made smooth by gradually changing the
cell sizes between these regions, thus numerical reflections that might occur due to transitions
can be minimized. Moreover, by appropriately shifting the mesh lines, the grid is made to
conform to the objects completely. Compared with the uniform fine grid, the total number of
cells in this grid is much less, thus the total simulation time will be less while maintaining a
level of accuracy comparable to the one obtained with the fine uniform grid.

15.2 Transition between fine and coarse grid subregions

It is essential to set a smooth transition between the fine grid regions and coarse grid regions
to minimize numerical reflections that would be generated due to the transition.

447



In this chapter, a transition scheme will be discussed in which the cell sizes in the transition
region are gradually increased starting with the fine cell size on one end and ending with the
coarse cell size at the other end. While this scheme will be illustrated for a one-dimensional
grid, it applies to all directions of two and three-dimensional grids as well.

Figure 15.1 (a) An FDTD computational domain with coarse uniform grid; (b) an FDTD
computational domain with fine uniform grid; and (c) an FDTD computational
domain with nonuniform grid.
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In what is called the uniform case all cells in the problem space have the same size in
each coordinate direction Dx, Dy, or Dz. While each cell can have a different size in the
nonuniform case, it is better to define subregions in the problem space, where needed, with
uniform cells and establish nonuniform transition between the uniform subregions.

Figure 15.2 shows a nonuniform transition subregion (DT) between two uniform
subregions. While performing the transition, the cell sizes, i.e., the distances between the
subsequent electric field components, can be gradually changed. One can start with a cell
size, shown as Ds length in Figure 15.2, just before the transition subregion. The length of
first cell in the transition subregion can be set as

D1 ¼ RDs; ð15:1Þ
where R is rate of change between subsequent half cells. Thus the lengths of the cells in the
transition subregion can be expressed as

DM ¼ RMDs; ð15:2Þ
where M is an index denoting a cell in the transition subregion. At the end of the transition
the length of the first cell of the next uniform subregion is

De ¼ RNnuþ1Ds; ð15:3Þ
where Nnu is the number of cells in the transition subregion. If the transition is desired to
happen on a given transition length DT , then it is needed to determine the rate R and the
number of cells Nnu.

Figure 15.1 (Continued )
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The total length of the transition subregion, in addition to one cell at both ends from the
uniform regions is

DT þ Ds þ De ¼
XNnuþ1

k¼0

DsRk ¼ Ds � DsRNnuþ2

1 � R
¼ Ds � DeR

1 � R
: ð15:4Þ

Equation (15.4) can be used to find R as

R ¼ DT þ De

DT þ Ds
: ð15:5Þ

Then, the number of cells, Nnu, can be determined using (15.3) as

Nnu ¼ log De=Dsð Þ
logðRÞ � 1: ð15:6Þ

One should notice that Nnu may not be found as an integer number by (15.6), however, it
has to be an integer number. In this case, Nnu can be rounded to the closest appropriate
integer. It should be noted that, if Nnu is rounded to a larger integer number, the transition
cell sizes will be smaller than they are supposed to be and consequently a transition cell may
become smaller than the fine uniform subregion cell size. Similarly, if Nnu is rounded to a
smaller integer number, the cell sizes will be larger and a transition cell may get larger than
the coarse uniform subregion cell size. In either case, there may be an abrupt transition
between the uniform and nonuniform subregions, which may enhance the numerical error
due to the transition. A smoother transition may be achieved if the transition region is
selected to be appropriately long.

Since in a Yee cell the electric and magnetic field components are located at distinct
positions, we can define a grid of electric field components as wells as a grid of magnetic field
components. Figure 15.3 illustrates these two grids for a uniform one-dimensional space of Nx

cells in the x direction. In the figure ‘‘nc_xe’’ denotes the coordinates of electric field grid
points, whereas ‘‘nc_xh’’ denotes the coordinates of magnetic field points. The nonuniform
electric field grid can be set up by determining the sizes of the cells (i.e., distances between
the neighboring electric field components) as discussed above. Once the positions of
the electric field components are determined, magnetic field components can be placed
at the centers of the cells of the electric field grid and the magnetic field grid can be

Fine
uniform

subregion

Δs Δs ΔNnu Δe Δe

ΔT

Δ1 Δ2

Coarse
uniform

subregion

Nonuniform
subregion

Figure 15.2 Uniform and nonuniform subregions.
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constructed as shown in Figure 15.4. A representation of a fine grid with nonuniform sur-
rounding regions is illustrated in Figure 15.5.

This kind of field positioning on a dual grid, where magnetic fields are located at the
midpoints of electric field grid cells, has been discussed and analyzed in [77] in terms of its
accuracy. Since magnetic fields are at the midpoints, as it is also the case in a uniform grid,
the corresponding updating equations that update magnetic fields are second order accurate.
The electric fields are off-centered between the magnetic field components, which leads to
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Figure 15.3 Uniform electric and magnetic field grids in a one-dimensional space.

Δxh(i) Δxh(i + 1)

E y
(i 

– 
1)

H
z(i

 –
 1

)

E y
(i)

H
z(i

)

E y
(i 

+ 
1)

H
z(i

 +
 1

)

Δxe(i –1)

Δxh(i –1)

Δxe(i) Δxe(i + 1)

Figure 15.4 Electric and magnetic field positions in a nonuniform grid.

Coarse uniform base grid

Coarse
uniform

subregion

Nonuniform
transition

Fine
uniform

subregion

Nonuniform
transition

Coarse
uniform

subregion
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first order accurate updating equations. However, it has been shown in [77] that, despite
being first order accurate locally, Yee’s scheme is second-order convergent regardless of
mesh nonuniformity.

15.3 FDTD updating equations for the nonuniform grids

From Figure 15.4, one should notice that electric field components are located about the
middle of the magnetic field grid cells, while the magnetic field components are located at
the middle of the electric field grid cells. The cells in these two grids are different in size in
the nonuniform regions, thus the cell sizes are denoted as Dxe and Dxh for electric and
magnetic grids, respectively. Similarly, for a three-dimensional case we would have Dye,
Dyh, Dze, and Dzh for the respective directions.

It is straightforward to construct general FDTD updating equations using the field and
cell indexing scheme shown in Figure 15.4 for the one-dimensional case. Here, the Ey and Hz

updating equations become

Enþ1
y ið Þ ¼ Ceye ið Þ�En

y ið ÞþCeyhz ið Þ� H
nþ1

2
z ið Þ�H

nþ1
2

z i� 1ð Þ
� �

þCeyj ið Þ� J
nþ1

2
iy ið Þ; ð15:7Þ

where

Ceye ið Þ ¼ 2ey ið Þ � Dtse
y ið Þ

2ey ið Þ þ Dtse
y ið Þ

Ceyhz ið Þ ¼ � 2Dt

2ey ið Þ þ Dtse
y ið Þ

� �
Dxh ið Þ

Ceyj ið Þ ¼ � 2Dt

2ey ið Þ þ Dtse
y ið Þ

and

H
nþ1

2
z ið Þ ¼ Chzh ið Þ � H

n�1
2

z ið Þ þ Cezhy ið Þ � En
y i þ 1ð Þ � En

y ið Þ
� �

þ Chzm ið Þ � Mn
iz ið Þ; ð15:8Þ

where

Chzh ið Þ ¼ 2mz ið Þ � Dtsm
z ið Þ

2mz ið Þ þ Dtsm
z ið Þ

Chzey ið Þ ¼ � 2Dt

2mz ið Þ þ Dtsm
z ið Þ� �

Dxe ið Þ

Chzm ið Þ ¼ � 2Dt

2mz ið Þ þ Dtsm
z ið Þ :

Comparing (15.7) and (15.8) with those of the uniform case in (1.40) and (1.41) one can notice
that the only difference is the usage of Dxe ið Þ and Dxh ið Þ instead of a constant Dx; The spatial

distance between H
nþ1

2
z ið Þ and H

nþ1
2

z i � 1ð Þ is Dxh ið Þ, therefore Dxh ið Þ is used in (15.7), whereas
the spatial distance between En

y i þ 1ð Þ and Dxe ið Þ is Dxe ið Þ, therefore Dxe ið Þ is used in (15.8).
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Updating equations for nonuniform two and three-dimensional cases can be obtained
easily by modifying the equations of the uniform case. For instance, the updating equation
for Ex in the three-dimensional case (see Chapter 1 (1.26)) can be written as

Enþ1
x i; j; kð Þ ¼ Cexe i; j; kð Þ � En

x i; j; kð Þ

þ Cexhz i; j; kð Þ � H
nþ1

2
z i; j; kð Þ � H

nþ1
2

z i; j � 1; kð Þ
� �

þ Cexhy i; j; kð Þ � H
nþ1

2
y i; j; kð Þ � H

nþ1
2

y i; j; k � 1ð Þ
� �

þ Cexj i; j; kð Þ � J
nþ1

2
ix i; j; kð Þ; ð15:9Þ

where

Cexe i; j; kð Þ ¼ 2ex i; j; kð Þ � Dtse
x i; j; kð Þ

2ex i; j; kð Þ þ Dtse
x i; j; kð Þ

Cexhz i; j; kð Þ ¼ 2Dt

2ex i; j; kð Þ þ Dtse
x i; j; kð Þ� �

Dyh jð Þ

Cexhy i; j; kð Þ ¼ � 2Dt

2ex ið Þ þ Dtse
x ið Þ� �

Dzh kð Þ

Cexj i; j; kð Þ ¼ � 2Dt

2ex i; j; kð Þ þ Dtse
x i; j; kð Þ :

Hy(i, j, k)

z

y
x

Hz(i, j – 1, k)

Δze(k – 1)

Δzh(k)

Δze(k)
Δyh( j)

Δxe(i)

Δye(j)

Hz(i, j, k)

Hy(i, j, k – 1)

Ex(i, j, k)

node(i, j, k)

node(i, j, k – 1)

node(i, j – 1, k)

Figure 15.6 Electric field grid around Ex i; j; kð Þ, and magnetic grid cell sizes used to update
Ex i; j; kð Þ.
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Here the cell sizes Dyh jð Þ and Dzh kð Þ are used instead of Dy and Dz of the equation for the
uniform grid. Figure 15.6 illustrates how the magnetic field components that surround the
electric field component simulate Ampere’s law and the path along which magnetic field
curls conforms to the magnetic field grid.

Similarly, the updating equation for Hx in the three-dimensional case (Chapter 1, (1.29))
can be written as

H
nþ1

2
x i; j; kð Þ ¼ Chxh i; j; kð Þ � H

n�1
2

x i; j; kð Þ
þ Chxey i; j; kð Þ � �

En
y i; j; k þ 1ð Þ � En

y i; j; kð Þ�
þ Chxez i; j; kð Þ � En

z i; j þ 1; kð Þ � En
z i; j; kð Þ� �

þ Chxm i; j; kð Þ � Mn
ix i; j; kð Þ;

ð15:10Þ

where

Chxh i; j; kð Þ ¼ 2mx i; j; kð Þ � Dtsm
x i; j; kð Þ

2mx i; j; kð Þ þ Dtsm
x i; j; kð Þ

Chxey i; j; kð Þ ¼ 2Dt

2mx i; j; kð Þ þ Dtsm
x i; j; kð Þ� �

Dze kð Þ

Chxez i; j; kð Þ ¼ � 2Dt

2mx ið Þ þ Dtsm
x ið Þ� �

Dye jð Þ

Chxm i; j; kð Þ ¼ � 2Dt

2mx i; j; kð Þ þ Dtse
x i; j; kð Þ :

15.4 Active and passive lumped elements

In the previous section, it is shown that updating equations for nonuniform grid can be
obtained by slightly modifying the updating equations of the uniform grid by using the right
cell sizes. Readily available updating equations that model lumped elements on a uniform
grid also can be modified appropriately and equations for the nonuniform case can be
obtained by replacing the constant cell sizes by the indexed cell sizes of electric or magnetic
field grids. For instance, for a voltage source in the z-direction the equation that updates Ez

becomes (see Chapter 4 (4.10))

Enþ1
z i; j; kð Þ ¼ Ceze i; j; kð Þ � En

z i; j; kð Þ

þ Cezhy i; j; kð Þ � H
nþ1

2
y i; j; kð Þ � H

nþ1
2

y i � 1; j; kð Þ
� �

þ Cezhx i; j; kð Þ � H
nþ1

2
x i; j; kð Þ � H

nþ1
2

x i; j � 1; kð Þ
� �

þCezs i; j; kð Þ � V
nþ1

2
s i; j; kð Þ;

ð15:11Þ
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where

Ceze i; j; kð Þ ¼
2ez i; j; kð Þ � Dtse

z i; j; kð Þ � Dze kð ÞDt

RsDxh ið ÞDyh jð Þ
2ez i; j; kð Þ þ Dtse

z i; j; kð Þ þ Dze kð ÞDt

RsDxh ið ÞDyh jð Þ

Cezhy i; j; kð Þ ¼ 2Dt

2ez i; j; kð Þ þ Dtse
z i; j; kð Þ þ Dze kð ÞDt

RsDxh ið ÞDyh jð Þ
� �

Dxh ið Þ

Cezhx i; j; kð Þ ¼ � 2Dt

2ez ið Þ þ Dtse
z ið Þ þ Dze kð ÞDt

RsDxh ið ÞDyh jð Þ
� �

Dyh jð Þ

Cezs i; j; kð Þ ¼ � 2Dt

2ez i; j; kð Þ þ Dtse
z i; j; kð Þ þ Dze kð ÞDt

RsDxh ið ÞDyh jð Þ
� �

RsDxh ið ÞDyh jð Þ
:

In (15.11), the cell size Dze in the electric field grid is used since the voltage source is
along the z direction and conforming to the electric field grid. Other cell sizes Dxh and Dyh

arise from the finite difference approximations of partial derivatives with respect to x and y,
respectively, as discussed before.

Setting the source term in (15.11) to zero results in the updating equation for a resistor
with resistance R as (see Chapter 4 (4.16))

Enþ1
z i; j; kð Þ ¼ Ceze i; j; kð Þ � En

z i; j; kð Þ

þCezhy i; j; kð Þ � H
nþ1

2
y i; j; kð Þ � H

nþ1
2

y i � 1; j; kð Þ
� �

þCezhx i; j; kð Þ � H
nþ1

2
x i; j; kð Þ � H

nþ1
2

x i; j � 1; kð Þ
� �

;

ð15:12Þ

where

Ceze i; j; kð Þ ¼
2ez i; j; kð Þ � Dtse

z i; j; kð Þ � Dze kð ÞDt

RDxh ið ÞDyh jð Þ
2ez i; j; kð Þ þ Dtse

z i; j; kð Þ þ Dze kð ÞDt

RDxh ið ÞDyh jð Þ

Cezhy i; j; kð Þ ¼ 2Dt

2ez i; j; kð Þ þ Dtse
z i; j; kð Þ þ Dze kð ÞDt

RDxh ið ÞDyh jð Þ
� �

Dxh ið Þ

Cezhx i; j; kð Þ ¼ � 2Dt

2ez ið Þ þ Dtse
z ið Þ þ Dze kð ÞDt

RDxh ið ÞDyh jð Þ
� �

Dyh jð Þ
:
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The equation for a capacitor with capacitance C can be obtained as (see Chapter 4 (4.20))

Enþ1
z i; j; kð Þ ¼ Ceze i; j; kð Þ � En

z i; j; kð Þ

þ Cezhy i; j; kð Þ � H
nþ1

2
y i; j; kð Þ � H

nþ1
2

y i � 1; j; kð Þ
� �

þ Cezhx i; j; kð Þ � H
nþ1

2
x i; j; kð Þ � H

nþ1
2

x i; j � 1; kð Þ
� �

; ð15:13Þ

where

Ceze i; j; kð Þ ¼
2ez i; j; kð Þ � Dtse

z i; j; kð Þ � 2CDze kð Þ
Dxh ið ÞDyh jð Þ

2ez i; j; kð Þ þ Dtse
z i; j; kð Þ þ 2CDze kð Þ

Dxh ið ÞDyh jð Þ

Cezhy i; j; kð Þ ¼ 2Dt

2ez i; j; kð Þ þ Dtse
z i; j; kð Þ þ 2CDze kð Þ

Dxh ið ÞDyh jð Þ
� �

Dxh ið Þ

Cezhx i; j; kð Þ ¼ � 2Dt

2ez ið Þ þ Dtse
z ið Þ þ 2CDze kð Þ

Dxh ið ÞDyh jð Þ
� �

Dyh jð Þ
:

The equation for an inductor with an inductance L becomes (see Chapter 4 (4.24))

Enþ1
z i; j; kð Þ ¼ Ceze i; j; kð Þ � En

z i; j; kð Þ

þCezhy i; j; kð Þ � H
nþ1

2
y i; j; kð Þ � H

nþ1
2

y i � 1; j; kð Þ
� �

þCezhx i; j; kð Þ � H
nþ1

2
x i; j; kð Þ � H

nþ1
2

x i; j � 1; kð Þ
� �

þCezj i; j; kð Þ � J
nþ1

2
iz i; j; kð Þ; ð15:14Þ

where

Ceze i; j; kð Þ ¼ 2ez i; j; kð Þ � Dtse
z i; j; kð Þ

2ez i; j; kð Þ þ Dtse
z i; j; kð Þ

Cezhy i; j; kð Þ ¼ 2Dt

2ez i; j; kð Þ þ Dtse
z i; j; kð Þ� �

Dxh ið Þ

Cezhx i; j; kð Þ ¼ � 2Dt

2ez ið Þ þ Dtse
z ið Þ� �

Dyh jð Þ

Cezj i; j; kð Þ ¼ � 2Dt

2ez i; j; kð Þ þ Dtse
z i; j; kð Þ� � :
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It should be noted that during the FDTD time-marching iteration, at every time step the

new value of J
nþ1

2
iz i; j; kð Þ should be calculated using

J
nþ1

2
iz i; j; kð Þ ¼ J

n�1
2

iz i; j; kð Þ þ DtDzeðkÞ
LDxhðiÞDyhðjÞEn

z i; j; kð Þ: ð15:15Þ

15.5 Defining objects snapped to the electric field grid

In Chapter 3, Section 3.4, the definition of material parameters is discussed for the case
where all objects in the FDTD space are assumed to snap to the uniform electric field grid.
The subcell averaging schemes discussed in Section 3.3 can be employed for the case of
nonuniform grid as well. Figure 15.7 shows four Yee cells, each of which has a different size
and a different permittivity. Since the material component ez i; j; kð Þ is tangential to the four
surrounding media types the equivalent permittivity for ez i; j; kð Þ can be given as

ez i; j; kð Þ

¼ Dx1Dy1e i � 1; j � 1; kð Þ þ Dx1Dy2e i � 1; j; kð Þ þ Dx2Dy1e i; j � 1; kð Þ þ Dx2Dy2e i; j; kð Þ
Dx1 þ Dx2ð Þ � Dy1 þ Dy2ð Þ :

ð15:16Þ
Similarly the electric conductivity material components are defined at the same positions

as the permittivity components, the same averaging scheme can be employed to get the
equivalent electric conductivity se

z i; j; kð Þ as

se
z i; j; kð Þ

¼ Dx1Dy1se i� 1; j� 1; kð ÞþDx1Dy2se i� 1; j; kð ÞþDx2Dy1se i; j� 1; kð ÞþDx2Dy2se i; j; kð Þ
Dx1 þDx2ð Þ� Dy1 þDy2ð Þ :

ð15:17Þ
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Yee cell(i, j – 1, k)

node(i, j, k)
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ε(i, j, k)
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Figure 15.7 Material component ez(i, j, k) located between four Yee cells filled with four
different material types.
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Since all objects are assumed to snap to the electric field grid, then the material com-
ponents associated with magnetic field components, permeability and magnetic conductivity,
are located between two cells and are oriented normal to the cell boundaries as illustrated in
Figure 15.8. In this case, the permeability mz i; j; kð Þ can be given as

mz i; j; kð Þ ¼ m i; j; k � 1ð Þm i; j; kð Þ � Dz1Dz2ð Þ
m i; j; k � 1ð ÞDz2 þ m i; j; kð Þ � Dz1

; ð15:18Þ

similarly, the magnetic conductivity sm
z i; j; kð Þ becomes

sm
z i; j; kð Þ ¼ sm i; j; k � 1ð Þsm i; j; kð Þ � Dz1Dz2ð Þ

sm i; j; k � 1ð ÞDz2 þ sm i; j; kð Þ � Dz1
: ð15:19Þ

So far we have discussed the development of the updating equations and construction of
the material grids for the case of nonuniform cell sizes. It is straightforward to develop the
required equations for other types of calculations within FDTD, such as near-field to far-field
transformation, plane-wave incidence etc., since the same principles apply.

15.6 MATLAB‡ implementation of nonuniform grids

The previously presented base MATLAB program, which uses constant values of Dx, Dy,
and Dz over the entire problem space, can be modified to support nonuniform grids. In the
following sections, an implementation of nonuniform grids will be presented, which assumes
that a problem space is initially constructed based on a uniform coarse grid that uses constant

Yee cell(i, j, k)

Yee cell(i, j, k – 1)

z
y

x

node(i, j, k – 1)

node(i, j, k)

μ(i, j, k)

μz(i, j)

Δz1

Δz2

μ(i, j, k – 1)

Figure 15.8 Material component mz(i, j, k) located between two Yee cells filled with two
different material types.
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Dx, Dy, and Dz values as the base cell sizes. Then fine uniform grid subregions are inserted
into the main coarse grid and nonuniform transitions are established between the coarse and
fine subregions as illustrated in Figure 15.5.

15.6.1 Definition of subregions

In the presented implementation, first it is assumed that the problem space is constructed
based on a uniform grid and the base uniform grid cell size is defined as usual by assigning
values to Dx, Dy, and Dz in the define_problem_space_parameters subroutine, as illustrated
in Listing 15.1. Then subregions that will be inserted into the base grid are defined in the
same file. Listing 15.1 shows definition of five subregions: three along the x direction while
the other two along the y direction using a structure named as subregions. The field cell_size

Listing 15.1 define_problem_space_parameters.m

%  D i m e n s i o n s  o f  a  u n i t  c e l l  i n  x ,  y ,  a n d  z  d i r e c t i o n s  ( m e t e r s )
d x  =  0 . 0 0 2 ;
d y  =  0 . 0 0 2 ;
d z  =  0 . 0 0 0 9 5 ;

%  d i r e c t i o n  c a n  b e  ' x ' ,  ' y ' ,  o r  ' z '
s u b r e g i o n s ( 1 ) . d i r e c t i o n  =  ' x ' ;
s u b r e g i o n s ( 1 ) . c e l l _ s i z e  =  1 e - 3 ;
s u b r e g i o n s ( 1 ) . r e g i o n _ s t a r t  =  2 7 e - 3 ;
s u b r e g i o n s ( 1 ) . r e g i o n _ e n d    =   3 3 e - 3 ;
s u b r e g i o n s ( 1 ) . t r a n s i t i o n _ l e n g t h  =  5 e - 3 ;
 
s u b r e g i o n s ( 2 ) . d i r e c t i o n  =  ' y ' ;
s u b r e g i o n s ( 2 ) . c e l l _ s i z e  =  1 e - 3 ;
s u b r e g i o n s ( 2 ) . r e g i o n _ s t a r t  =  7 e - 3 ;
s u b r e g i o n s ( 2 ) . r e g i o n _ e n d    =   1 3 e - 3 ;
s u b r e g i o n s ( 2 ) . t r a n s i t i o n _ l e n g t h  =  5 e - 3 ;

s u b r e g i o n s ( 3 ) . d i r e c t i o n  =  ' x ' ;
s u b r e g i o n s ( 3 ) . c e l l _ s i z e  =  1 e - 3 ;
s u b r e g i o n s ( 3 ) . r e g i o n _ s t a r t  =  - 2 e - 3 ;
s u b r e g i o n s ( 3 ) . r e g i o n _ e n d    =   4 e - 3 ;
s u b r e g i o n s ( 3 ) . t r a n s i t i o n _ l e n g t h  =  5 e - 3 ;
 
s u b r e g i o n s ( 4 ) . d i r e c t i o n  =  ' x ' ;
s u b r e g i o n s ( 4 ) . c e l l _ s i z e  =  1 e - 3 ;
s u b r e g i o n s ( 4 ) . r e g i o n _ s t a r t  =  5 6 e - 3 ;
s u b r e g i o n s ( 4 ) . r e g i o n _ e n d    =   6 2 e - 3 ;
s u b r e g i o n s ( 4 ) . t r a n s i t i o n _ l e n g t h  =  5 e - 3 ;
 
s u b r e g i o n s ( 5 ) . d i r e c t i o n  =  ' y ' ;
s u b r e g i o n s ( 5 ) . c e l l _ s i z e  =  1 e - 3 ;
s u b r e g i o n s ( 5 ) . r e g i o n _ s t a r t  =  2 8 e - 3 ;
s u b r e g i o n s ( 5 ) . r e g i o n _ e n d    =   3 2 e - 3 ;
s u b r e g i o n s ( 5 ) . t r a n s i t i o n _ l e n g t h  =  5 e - 3 ;
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defines the size of a cell of the uniform fine subregion along the respective direction. These
cells will fill the region determined by fixed coordinates region_start and region_end. The
transition_length is the length on which the cell sizes are gradually increased or decreased
to establish a smooth transition between the base cell size and the subregion cell size.

15.6.2 Initialization of subregions

As discussed in Chapter 3, one of the first tasks is to determine the size of a problem space,
based on the objects in the domain and the boundary definitions, in the subroutine
initialize_fdtd_material_grid by calling the subroutine calculate_domain_size. Then
another subroutine, named as initialize_subregions, is called to initialize the subregions.

Listing 15.2 shows implementation of initialize_subregions. Here, the base uniform grid
is constructed using the problem space coordinates and dimensions, and the base cell sizes:
three arrays are constructed to store the coordinates of the nodes of the electric field
grid along x, y, and z directions (node_coordinates_xe, node_coordinates_ye, and

Listing 15.2 initialize_subregions.m

n u m b e r _ o f _ s u b r e g i o n s  =  0 ;
i f  e x i s t ( ' s u b r e g i o n s ' , ' v a r ' )
    n u m b e r _ o f _ s u b r e g i o n s  =  s i z e ( s u b r e g i o n s , 2 ) ;
e n d
 
%  n u m b e r  o f  c e l l s  i n  x ,  y ,  a n d  z  d i r e c t i o n s
n x  =  r o u n d ( f d t d _ d o m a i n . s i z e _ x / d x ) ;   
n y  =  r o u n d ( f d t d _ d o m a i n . s i z e _ y / d y ) ;
n z  =  r o u n d ( f d t d _ d o m a i n . s i z e _ z / d z ) ;
n o d e _ c o o r d i n a t e s _ x e  =  ( 0 : n x ) * d x  +  f d t d _ d o m a i n . m i n _ x ;
n o d e _ c o o r d i n a t e s _ y e  =  ( 0 : n y ) * d y  +  f d t d _ d o m a i n . m i n _ y ;
n o d e _ c o o r d i n a t e s _ z e  =  ( 0 : n z ) * d z  +  f d t d _ d o m a i n . m i n _ z ;
 
n o d e _ c o o r d i n a t e s _ x h  =  ( 0 : n x + 1 ) * d x  +  f d t d _ d o m a i n . m i n _ x  -  d x / 2 ;
n o d e _ c o o r d i n a t e s _ y h  =  ( 0 : n y + 1 ) * d y  +  f d t d _ d o m a i n . m i n _ y  -  d y / 2 ;
n o d e _ c o o r d i n a t e s _ z h  =  ( 0 : n z + 1 ) * d z  +  f d t d _ d o m a i n . m i n _ z  -  d z / 2 ;
    
f o r  i n d  =  1 : n u m b e r _ o f _ s u b r e g i o n s
    s w i t c h  ( s u b r e g i o n s ( i n d ) . d i r e c t i o n )
    c a s e  ' x '
    [ n o d e _ c o o r d i n a t e s _ x e ,  n o d e _ c o o r d i n a t e s _ x h ]  . . .
     =  i n s e r t _ s u b r e g i o n _ i n t o _ d o m a i n  . . .
    ( n o d e _ c o o r d i n a t e s _ x e ,  n o d e _ c o o r d i n a t e s _ x h ,  s u b r e g i o n s ( i n d ) ,  d x ) ;
    c a s e  ' y '
    [ n o d e _ c o o r d i n a t e s _ y e ,  n o d e _ c o o r d i n a t e s _ y h ]  . . .
     =  i n s e r t _ s u b r e g i o n _ i n t o _ d o m a i n  . . .
    ( n o d e _ c o o r d i n a t e s _ y e ,  n o d e _ c o o r d i n a t e s _ y h ,  s u b r e g i o n s ( i n d ) ,  d y ) ;
    c a s e  ' z '
    [ n o d e _ c o o r d i n a t e s _ z e ,  n o d e _ c o o r d i n a t e s _ z h ]  . . .
    =  i n s e r t _ s u b r e g i o n _ i n t o _ d o m a i n  . . .
    ( n o d e _ c o o r d i n a t e s _ z e ,  n o d e _ c o o r d i n a t e s _ z h ,  s u b r e g i o n s ( i n d ) ,  d z ) ;
    e n d     
e n d
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node_coordinates_ze), whereas three other arrays are constructed to store the coordinates of
the nodes of the magnetic field grid (node_coordinates_xh, node_coordinates_yh, and
node_coordinates_zh). Then a function, insert_subregion_into_domain, is called to insert
nonuniform subregions into the base grid and node coordinate arrays are determined
accordingly. After node coordinates are obtained, the distances between the consecutive grid
nodes are evaluated and stored as cell size arrays. For instance, cell_sizes_xe corresponds to
the cells sizes Dxe in Figure 15.4, whereas, cell_sizes_xh corresponds to the cells sizes Dxh.

Listing 15.3 shows the implementation of insert_subregion_into_domain. In this
implementation, first, the cell size of the uniform part of the subregion is adjusted: if the
distance between region_start and region_end is not an integer multiple of the subregion.
cell_size, then the subregion.cell_size is adjusted such that the cells fit between the
region_start and region_end. Then, the length of the transition region that is before the
uniform subregion is adjusted: The node of the base electric field grid that is closest to
the transition start point is set as the new transition start point. Then, the transition cell
sizes are calculated according to the procedure described in Section 15.2.

i f  i s f  i e l d ( b o u n d a r y , ' i s _ n o n u n i f o r m _ c p m l ' )
    i f  ( b o u n d a r y . i s _ n o n u n i f o r m _ c p m l )     
        s e t _ n o n u n i f o r m _ c p m l _ g r i d ;    
    e n d
e n d
 
%  r e s e t  n u m b e r  o f  c e l l s
n x  =  s i z e ( n o d e _ c o o r d i n a t e s _ x e ,  2 ) - 1 ;
n y  =  s i z e ( n o d e _ c o o r d i n a t e s _ y e ,  2 ) - 1 ;
n z  =  s i z e ( n o d e _ c o o r d i n a t e s _ z e ,  2 ) - 1 ;
 
%  c r e a t e  c e l l  s i z e  a r r a y s
c e l l _ s i z e s _ x e  =  n o d e _ c o o r d i n a t e s _ x e ( 2 : n x + 1 )  -  n o d e _ c o o r d i n a t e s _ x e ( 1 : n x ) ;
c e l l _ s i z e s _ y e  =  n o d e _ c o o r d i n a t e s _ y e ( 2 : n y + 1 )  -  n o d e _ c o o r d i n a t e s _ y e ( 1 : n y ) ;
c e l l _ s i z e s _ z e  =  n o d e _ c o o r d i n a t e s _ z e ( 2 : n z + 1 )  -  n o d e _ c o o r d i n a t e s _ z e ( 1 : n z ) ;
 
%  c r e a t e  c e l l  s i z e  a r r a y s  c o n f o r m i n g  t h e  m a g n e t i c  fi e l d  g r i d
c e l l _ s i z e s _ x h  =  n o d e _ c o o r d i n a t e s _ x h ( 2 : n x + 2 )  -  n o d e _ c o o r d i n a t e s _ x h ( 1 : n x + 1 ) ;
c e l l _ s i z e s _ y h  =  n o d e _ c o o r d i n a t e s _ y h ( 2 : n y + 2 )  -  n o d e _ c o o r d i n a t e s _ y h ( 1 : n y + 1 ) ;
c e l l _ s i z e s _ z h  =  n o d e _ c o o r d i n a t e s _ z h ( 2 : n z + 2 )  -  n o d e _ c o o r d i n a t e s _ z h ( 1 : n z + 1 ) ;

f d t d _ d o m a i n . n o d e _ c o o r d i n a t e s _ x e  =  n o d e _ c o o r d i n a t e s _ x e ;
f d t d _ d o m a i n . n o d e _ c o o r d i n a t e s _ y e  =  n o d e _ c o o r d i n a t e s _ y e ;
f d t d _ d o m a i n . n o d e _ c o o r d i n a t e s _ z e  =  n o d e _ c o o r d i n a t e s _ z e ;
 
f d t d _ d o m a i n . n o d e _ c o o r d i n a t e s _ x h  =  n o d e _ c o o r d i n a t e s _ x h ;
f d t d _ d o m a i n . n o d e _ c o o r d i n a t e s _ y h  =  n o d e _ c o o r d i n a t e s _ y h ;
f d t d _ d o m a i n . n o d e _ c o o r d i n a t e s _ z h  =  n o d e _ c o o r d i n a t e s _ z h ;
 
%  s o m e  f r e q u e n t l y  u s e d  a u x i l i a r y  p a r a m e t e r s  
n x p 1    =  n x + 1 ;     n y p 1  =  n y + 1 ;     n z p 1  =  n z + 1 ;
n x m 1  =  n x - 1 ;     n x m 2  =  n x - 2 ;     n y m 1  =  n y - 1 ;
n y m 2  =  n y - 2 ;     n z m 1  =  n z - 1 ;     n z m 2  =  n z - 2 ;
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Listing 15.3 insert_subregion_into_domain.m

f u n c t i o n  [ n o d e _ c o o r d i n a t e s _ e ,  n o d e _ c o o r d i n a t e s _ h ]  . . .
    =  i n s e r t _ s u b r e g i o n _ i n t o _ d o m a i n  . . .
    ( n o d e _ c o o r d i n a t e s _ e ,  n o d e _ c o o r d i n a t e s _ h ,  s u b r e g i o n ,  b a s e _ c e l l _ s i z e )
 
%  a d j u s t  s u b r e g i o n  c e l l  s i z e
s u b r e g i o n _ l e n g t h  =  . . .
    s u b r e g i o n . r e g i o n _ e n d  -  s u b r e g i o n . r e g i o n _ s t a r t ;
n _ s u b r e g i o n _ c e l l s  =  . . .
    r o u n d ( s u b r e g i o n _ l e n g t h / s u b r e g i o n . c e l l _ s i z e ) ;
s u b r e g i o n . c e l l _ s i z e  =  s u b r e g i o n _ l e n g t h / n _ s u b r e g i o n _ c e l l s ;
 
b c s   =  b a s e _ c e l l _ s i z e ;
s r c s  =  s u b r e g i o n . c e l l _ s i z e ;
 
n _ n o d e s _ e  =  s i z e ( n o d e _ c o o r d i n a t e s _ e , 2 ) ;  
 
%  t r a n s i t i o n  b e f o r e  t h e  s u b r e g i o n  ( i n d i c a t e d  w i t h  b s r )
%  a d j u s t  t r a n s i t i o n  l e n g t h
t r _ s t a r t _ p o s i t i o n  =  ( s u b r e g i o n . r e g i o n _ s t a r t  -  . . .
    s u b r e g i o n . t r a n s i t i o n _ l e n g t h ) ;
[ m v a l ,  I ]  =  m i n ( a b s ( n o d e _ c o o r d i n a t e s _ e  -  t r _ s t a r t _ p o s i t i o n ) ) ;
I  =  fi n d ( n o d e _ c o o r d i n a t e s _ e  = =  n o d e _ c o o r d i n a t e s _ e ( I ( 1 ) ) ) ;
t r _ s t a r t _ n o d e  =  I ;
t r _ l e n g t h  =  s u b r e g i o n . r e g i o n _ s t a r t  . . .
    -  n o d e _ c o o r d i n a t e s _ e ( t r _ s t a r t _ n o d e ) ;
 
%  fi n d  n u m b e r  o f  c e l l s  f o r  t r a n s i t i o n
R  =  ( t r _ l e n g t h  +  b c s ) / ( t r _ l e n g t h  +  s r c s ) ;
n u m b e r _ o f _ t r a n s i t i o n _ c e l l s  =  . . .
    fl o o r ( l o g 1 0 ( b c s / s r c s ) / l o g 1 0 ( R ) ) - 1 ;
 
%  fi n d  t r a n s i t i o n  c e l l  s i z e s
t r a n s i t i o n _ c e l l _ s i z e s  =  . . .
    s r c s * R . ^ ( 1 : n u m b e r _ o f _ t r a n s i t i o n _ c e l l s ) ;
 
%  a d j u s t  c e l l  s i z e s  s o  t h a t  t o t a l  l e n g t h  i s  e q u a l  t o
%  t r a n s i t i o n  l e n g t h
t r a n s i t i o n _ c e l l _ s i z e s  =  t r a n s i t i o n _ c e l l _ s i z e s  . . .
    *  ( t r _ l e n g t h  /  s u m ( t r a n s i t i o n _ c e l l _ s i z e s ) ) ;
 
b s r _ t r a n s i t i o n _ c e l l _ s i z e s  =  f  l i p l r ( t r a n s i t i o n _ c e l l _ s i z e s ) ;
b s r _ t r _ s t a r t _ n o d e  =  t r _ s t a r t _ n o d e ;
 
%  t r a n s i t i o n  a f t e r  t h e  s u b r e g i o n  ( i n d i c a t e d  w i t h  a s r )
%  a d j u s t  t r a n s i t i o n  l e n g t h
t r _ e n d _ p o s i t i o n  =  ( s u b r e g i o n . r e g i o n _ e n d  +  . . .
    s u b r e g i o n . t r a n s i t i o n _ l e n g t h ) ;
[ m v a l , I ]  =  m i n ( a b s ( n o d e _ c o o r d i n a t e s _ e  -  t r _ e n d _ p o s i t i o n ) ) ;
I  =  fi n d ( n o d e _ c o o r d i n a t e s _ e  = =  n o d e _ c o o r d i n a t e s _ e ( I ( 1 ) ) ) ;
t r _ e n d _ n o d e  =  I ( 1 ) ;
t r _ l e n g t h  =  n o d e _ c o o r d i n a t e s _ e ( t r _ e n d _ n o d e )  . . .
    -  s u b r e g i o n . r e g i o n _ e n d ;
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Similarly, the transition cell sizes are calculated for the transition region after the uniform
region part as well. Once the cell sizes in the entire nonuniform subregion are obtained,
corresponding nodes are inserted in the positions, where nonuniform subregion overlaps with
the base grid, and the electric field grid array is updated. After the coordinates of the nodes in
the electric field grid are determined, the coordinates of the nodes of the magnetic field grid

%  fi n d  n u m b e r  o f  c e l l s  f o r  t r a n s i t i o n
R  =  ( t r _ l e n g t h  +  b c s ) / ( t r _ l e n g t h + s r c s ) ;
n u m b e r _ o f _ t r a n s i t i o n _ c e l l s  =  . . .
    fl o o r ( l o g 1 0 ( b c s / s r c s ) / l o g 1 0 ( R ) ) - 1 ;
 
%  fi n d  t r a n s i t i o n  c e l l  s i z e s
t r a n s i t i o n _ c e l l _ s i z e s  =  . . .
    s r c s * R . ^ ( 1 : n u m b e r _ o f _ t r a n s i t i o n _ c e l l s ) ;
 
%  a d j u s t  c e l l  s i z e s  s o  t h a t  t o t a l  l e n g t h  i s  e q u a l  t o
%  t r a n s i t i o n  l e n g t h
t r a n s i t i o n _ c e l l _ s i z e s  =  t r a n s i t i o n _ c e l l _ s i z e s  . . .
    *  ( t r _ l e n g t h  /  s u m ( t r a n s i t i o n _ c e l l _ s i z e s ) ) ;
 
a s r _ t r a n s i t i o n _ c e l l _ s i z e s  =  t r a n s i t i o n _ c e l l _ s i z e s ;
a s r _ t r _ e n d _ n o d e  =  t r _ e n d _ n o d e ;
 
%  c r e a t e  c e l l  s i z e  a r r a y  f o r  s u b r e g i o n
s u b r e g i o n _ c e l l _ s i z e s _ e  =  . . .
    s r c s  *  o n e s ( 1 ,  n _ s u b r e g i o n _ c e l l s ) ;
 
%  a d j u s t  n o d e  c o o r d i n a t e s
s r _ a l l _ c s _ e  =  [ b s r _ t r a n s i t i o n _ c e l l _ s i z e s  . . .
    s u b r e g i o n _ c e l l _ s i z e s _ e  a s r _ t r a n s i t i o n _ c e l l _ s i z e s ] ;
 
n o d e s _ b e f o r e _ s u b r e g i o n _ e  =  n o d e _ c o o r d i n a t e s _ e ( 1 : b s r _ t r _ s t a r t _ n o d e ) ;
n o d e s _ a f t e r _ s u b r e g i o n _ e  =  n o d e _ c o o r d i n a t e s _ e ( a s r _ t r _ e n d _ n o d e : e n d ) ;
a _ n o d e  =  n o d e _ c o o r d i n a t e s _ e ( b s r _ t r _ s t a r t _ n o d e ) ;
 
n _ s u b r e g i o n _ c e l l s  =  s i z e ( s r _ a l l _ c s _ e , 2 ) ;
s u b r e g i o n _ n o d e _ c o o r d i n a t e s _ e  =  z e r o s ( 1 ,  n _ s u b r e g i o n _ c e l l s - 1 ) ;
 
f o r  s i  =  1 : n _ s u b r e g i o n _ c e l l s - 1
    a _ n o d e  =  a _ n o d e  +  s r _ a l l _ c s _ e ( s i ) ;
    s u b r e g i o n _ n o d e _ c o o r d i n a t e s _ e ( s i )  =  a _ n o d e ;
e n d
 
n o d e _ c o o r d i n a t e s _ e  =  [ n o d e s _ b e f o r e _ s u b r e g i o n _ e  . . .
    s u b r e g i o n _ n o d e _ c o o r d i n a t e s _ e  n o d e s _ a f t e r _ s u b r e g i o n _ e ] ;
 
n _ n o d e s  =  s i z e ( n o d e _ c o o r d i n a t e s _ e ,  2 ) ;
 
%  m a g n e t i c  fi e l d  c o m p o n e n t s  a r e  p l a c e d  a t  t h e  c e n t e r s  o f  t h e  c e l l s
n o d e _ c o o r d i n a t e s _ h  =  . . .
    0 . 5 * ( n o d e _ c o o r d i n a t e s _ e ( 1 : n _ n o d e s - 1 ) + n o d e _ c o o r d i n a t e s _ e ( 2 : n _ n o d e s ) ) ;
 
n o d e _ c o o r d i n a t e s _ h  =  [ n o d e _ c o o r d i n a t e s _ e ( 1 ) - b c s / 2  n o d e _ c o o r d i n a t e s _ h  . . .
    n o d e _ c o o r d i n a t e s _ e ( n _ n o d e s ) + b c s / 2 ] ;
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are calculated as the center points of the electric field grid cells. It should be noted that two
more cells are padded to the magnetic field grid, each on one side of the grid. Therefore, the
first and the last electric field components are located in the middle of these two cells, and
the lengths of these two cells can be used to update the corresponding electric field
components.

15.6.3 Initialization of updating coefficients

For nonuniform cell sizes the FDTD program code needs to be modified accordingly
wherever cell sizes are used. In this section, we will discuss the modification of the basic
updating equations to illustrate the application of nonuniform grids. The same logic can be
employed to modify other parts of the code as well wherever needed.

The modified implementation of the subroutine initialize_updating_coefficients is shown
in Listing 15.4. For instance, the updating coefficient Ceyhz requires a division by Dx.

Listing 15.4 initialize_updating_coefficients.m

%  G e n e r a l  e l e c t r i c  fi e l d  u p d a t i n g  c o e f fi c i e n t s
%  C o e f fi e c i e n t s  u p d a t i n g  E x
[ D X ,  D Y ,  D Z ]  =  n d g r i d ( c e l l _ s i z e s _ x e ,  c e l l _ s i z e s _ y h ,  c e l l _ s i z e s _ z h ) ;  
C e x e   =   ( 2 * e p s _ r _ x * e p s _ 0  -  d t * s i g m a _ e _ x ) . / ( 2 * e p s _ r _ x * e p s _ 0  +  d t * s i g m a _ e _ x ) ;
C e x h z  =   ( 2 * d t / D Y ) . / ( 2 * e p s _ r _ x * e p s _ 0  +  d t * s i g m a _ e _ x ) ;
C e x h y  =  - ( 2 * d t / D Z ) . / ( 2 * e p s _ r _ x * e p s _ 0  +  d t * s i g m a _ e _ x ) ;
 
%  C o e f fi e c i e n t s  u p d a t i n g  E y
[ D X ,  D Y ,  D Z ]  =  n d g r i d ( c e l l _ s i z e s _ x h ,  c e l l _ s i z e s _ y e ,  c e l l _ s i z e s _ z h ) ;  
C e y e   =   ( 2 * e p s _ r _ y * e p s _ 0  -  d t * s i g m a _ e _ y ) . / ( 2 * e p s _ r _ y * e p s _ 0  +  d t * s i g m a _ e _ y ) ;
C e y h x  =   ( 2 * d t / D Z ) . / ( 2 * e p s _ r _ y * e p s _ 0  +  d t * s i g m a _ e _ y ) ;
C e y h z  =  - ( 2 * d t / D X ) . / ( 2 * e p s _ r _ y * e p s _ 0  +  d t * s i g m a _ e _ y ) ;
 
%  C o e f fi e c i e n t s  u p d a t i n g  E z
[ D X ,  D Y ,  D Z ]  =  n d g r i d ( c e l l _ s i z e s _ x h ,  c e l l _ s i z e s _ y h ,  c e l l _ s i z e s _ z e ) ;  
C e z e   =   ( 2 * e p s _ r _ z * e p s _ 0  -  d t * s i g m a _ e _ z ) . / ( 2 * e p s _ r _ z * e p s _ 0  +  d t * s i g m a _ e _ z ) ;
C e z h y  =   ( 2 * d t / D X ) . / ( 2 * e p s _ r _ z * e p s _ 0  +  d t * s i g m a _ e _ z ) ;
C e z h x  =  - ( 2 * d t / D Y ) . / ( 2 * e p s _ r _ z * e p s _ 0  +  d t * s i g m a _ e _ z ) ;
 
%  G e n e r a l  m a g n e t i c  fi e l d  u p d a t i n g  c o e f fi c i e n t s
%  C o e f fi e c i e n t s  u p d a t i n g  H x
[ D X ,  D Y ,  D Z ]  =  n d g r i d ( c e l l _ s i z e s _ x h ,  c e l l _ s i z e s _ y e ,  c e l l _ s i z e s _ z e ) ;  
C h x h   =   ( 2 * m u _ r _ x * m u _ 0  -  d t * s i g m a _ m _ x ) . / ( 2 * m u _ r _ x * m u _ 0  +  d t * s i g m a _ m _ x ) ;
C h x e z  =  - ( 2 * d t / D Y ) . / ( 2 * m u _ r _ x * m u _ 0  +  d t * s i g m a _ m _ x ) ;
C h x e y  =   ( 2 * d t / D Z ) . / ( 2 * m u _ r _ x * m u _ 0  +  d t * s i g m a _ m _ x ) ;
 
%  C o e f fi e c i e n t s  u p d a t i n g  H y
[ D X ,  D Y ,  D Z ]  =  n d g r i d ( c e l l _ s i z e s _ x e ,  c e l l _ s i z e s _ y h ,  c e l l _ s i z e s _ z e ) ;  
C h y h   =   ( 2 * m u _ r _ y * m u _ 0  -  d t * s i g m a _ m _ y ) . / ( 2 * m u _ r _ y * m u _ 0  +  d t * s i g m a _ m _ y ) ;
C h y e x  =  - ( 2 * d t / D Z ) . / ( 2 * m u _ r _ y * m u _ 0  +  d t * s i g m a _ m _ y ) ;
C h y e z  =   ( 2 * d t / D X ) . / ( 2 * m u _ r _ y * m u _ 0  +  d t * s i g m a _ m _ y ) ;
 
%  C o e f fi e c i e n t s  u p d a t i n g  H z
[ D X ,  D Y ,  D Z ]  =  n d g r i d ( c e l l _ s i z e s _ x e ,  c e l l _ s i z e s _ y e ,  c e l l _ s i z e s _ z h ) ;  
C h z h   =   ( 2 * m u _ r _ z * m u _ 0  -  d t * s i g m a _ m _ z ) . / ( 2 * m u _ r _ z * m u _ 0  +  d t * s i g m a _ m _ z ) ;
C h z e y  =  - ( 2 * d t / D X ) . / ( 2 * m u _ r _ z * m u _ 0  +  d t * s i g m a _ m _ z ) ;
C h z e x  =   ( 2 * d t / D Y ) . / ( 2 * m u _ r _ z * m u _ 0  +  d t * s i g m a _ m _ z ) ;
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Ceyhz is used to update Ey, which requires the distance between the Hz components before
and after Ey as illustrated in Figure 15.4. These Hz components are on the magnetic field
grid, thus the distance between them is denoted as Dxh, which corresponds to the cell_si-
zes_xh array in the code. Then, Ceyhz can be constructed as a three-dimensional array in
open form as

f o r  i = 1 : n x + 1
f o r  j = 1 : n y
 f o r  k = 1 : n z + 1
  C e y h z ( i , j , k )  =  - ( 2 * d t / c e l l _ s i z e s _ x h ( i ) )  . . .
   . / ( 2 * e p s _ r _ y ( i , j , k ) * e p s _ 0 + d t * s i g m a _ e _ y ( i , j , k ) ) ;
  e n d
 e n d
e n d

1

3

5

7

Here, if cell_sizes_xh can be reshaped as a three-dimensional array of size (nx þ 1, ny,
nz þ 1), which varies only in the x direction, then the for loops in the above code can be
eliminated. For instance, a three-dimensional array, named as DX, that has the size (nx þ 1, ny,
nz þ 1) and values of cell_sizes_xh in the x direction is used below to replace the above code:

C e y h z ( i , j , k )  =  - ( 2 * d t / D X ) . / ( 2 * e p s _ r _ y * e p s _ 0  +  d t * s i g m a _ e _ y ) ;

Similarly, a three-dimensional array, named as DZ, that has the size (nx þ 1, ny, nz þ 1)
and values of cell_sizes_zh in the z direction can be used to update Ceyhx:

C e y h x  =   ( 2 * d t / D Z ) . / ( 2 * e p s _ r _ y * e p s _ 0  +  d t * s i g m a _ e _ y ) ;

The three-dimensional arrays DX and DZ, used to update Ceyhz and Ceyhx above, can
be constructed simultaneously by using MATLAB function ndgrid as

[ D X ,  D Y ,  D Z ]  =  n d g r i d ( c e l l _ s i z e s _ x h ,  c e l l _ s i z e s _ y e ,  c e l l _ s i z e s _ z h ) ;  

Here, ndgrid generates three-dimensional arrays as DX, DY, and DZ, using the
size and data of the one-dimensional arrays cell_sizes_xh, cell_sizes_ye, cell_
sizes_zh. For instance, the length of cell_sizes_xh is Nx þ 1, the length of cell_sizes_ye is
Ny, and the length of cell_sizes_zh is Nz þ 1. Then each of DX, DY, and DZ has the size of
Nx þ 1ð Þ � Ny � Nz þ 1ð Þ. DX contains the data of cell_sizes_xh listed along its first

dimension that is copied Ny � Nz þ 1ð Þ times on other dimensions. DY contains the data of
cell_sizes_ye listed along its second dimension that is copied Nx þ 1ð Þ � Nz þ 1ð Þ times on
other dimensions. Similarly, DZ contains the data of cell_sizes_zh listed along its third
dimension that is copied Nx þ 1ð Þ � Ny times on other dimensions. One can refer to
MATLAB help for further details of the ndgrid function.
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Similarly, the updating coefficient of a magnetic field component requires the distances
between the neighboring electric field components, which lie on the electric field grid, as
illustrated in Figure 15.4. Thus, the cell sizes of the electric field grid are used in the
updating equations of the magnetic field components as shown in Listing 15.4.

15.6.4 Initialization of time step duration

The Courant-Friedrichs-Lewy (CFL) condition requires that the time increment Dt has a
value given by (2.6) as discussed in Section 2.1. If nonuniform grid is used, then the
dimensions of the smallest cell need to be used in (2.6) to determine Dt. The subroutine
initialize_fdtd_parameters_and_arrays can be modified as shown in Listing 15.5 such that
the minimum values of Dx,Dy, and Dz are obtained from the respective cell size arrays and
are used to determine dt.

15.7 Simulation examples

Two simulation examples will be presented here. These simulations were executed on
personal computer with Intel(R) Core(TM)2 Quad CPU Q9550 running at 2.83 GHz.

15.7.1 Microstrip patch antenna

In this demonstration, the microstrip rectangular patch antenna discussed in Exercise 9.3 is
simulated by using a fine grid, a coarse grid, and a nonuniform grid to evaluate the accuracy
and computational advantage of the nonuniform grid. Table 15.1 shows the details of these
three grids. It should be noted that the base grid of the nonuniform grid simulation is the
same as the grid of the coarse grid simulation, which has Dx and Dy as 2 mm. In the non-
uniform grid simulation, a fine grid subregion with a cell size of Dx and Dy equal to 1 mm is
used around the port and along the four edges of the microstrip patch. Using finer cells
improve the accuracy of the input impedance as well as the return loss calculations.
Figure 15.9 illustrates the cell view of the patch antenna based on the nonuniform grid,
where the fine regions and the nonuniform transitions to the coarse underlying grid can be
observed. The definitions of the nonuniform subregions for this particular example are
shown in Listing 15.1. In the fine grid simulation, the entire problem space has a cell size of
Dx and Dy equal to 1 mm.

Listing 15.5 initialize_fdtd_parameters_and_arrays.m

%  D u r a t i o n  o f  a  t i m e  s t e p  i n  s e c o n d s
m i n _ d x  =  m i n ( c e l l _ s i z e s _ x e ) ;
m i n _ d y  =  m i n ( c e l l _ s i a z e s _ y e ) ;
m i n _ d z  =  m i n ( c e l l _ s i z e s _ z e ) ;
 
d t  =  1 / ( c * s q r t ( ( 1 / m i n _ d x ^ 2 ) + ( 1 / m i n _ d y ^ 2 ) + ( 1 / m i n _ d z ^ 2 ) ) ) ;
d t  =  c o u r a n t _ f a c t o r * d t ;
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The fine grid and the nonuniform grid simulations are performed for 8,000 time steps,
while the coarse grid simulation is performed for 5,755 time steps using a Gaussian pulse
with t ¼ 3:336 � 10�11 as a source. It should be noted that in the fine grid and the non-
uniform grid simulations the minimum cell sizes are the same, thus the duration of a time
step, Dt, that is dictated by the CFL stability condition, is the same. Since the minimum cell
size in the coarse grid simulation is larger, the time step is larger. The different numbers of
time steps chosen in these simulations are necessary in order to simulate the transient
response of these three cases for the same duration, which is 13.62 ns.

Each of these three cases is simulated and computation time is recorded in Table 15.1.
Compared with the coarse grid simulation, the computational overhead of nonuniform grid is
significantly less than that of the fine grid.

Figure 15.10 shows the comparison of the power reflection coefficient of fine grid, coarse
grid, and nonuniform grid simulations of this patch antenna. Here we can use the fine grid
simulation result as a reference for accuracy comparison with the coarse and the nonuniform
grids. The results imply that accuracy of simulations can be improved by modeling critical
areas of a geometry using fine grid subregions, thus employing nonuniform grids, compared
with coarse grid simulations with the overhead of increased memory requirement and
computation time, which are still significantly less than the fine grid requirements.

15.7.2 Three-pole microstrip low-pass filter

The second example is a three-pole low-pass filter presented in [78]. Dimensions of this filter
are shown in Figure 15.11. The boundaries of the problem space are terminated by PEC on

z

y
x

Port 1

Figure 15.9 Cell view of the microstrip rectangular patch antenna.

Table 15.1 Comparison of fine grid, coarse grid, and nonuniform grid simulations of a microstrip
rectangular patch antenna.

Grid type (Dx, Dy, Dz)
(mm)

(Nx�Ny�Nz) Total number
of cells

Number of
time steps

Simulation time
(minutes)

Fine (1,1,0.95) 96 � 76 � 38ð Þ 277,248 8,000 33.0
Coarse (2,2,0.95) 66 � 56 � 38ð Þ 140,448 5,755 10.6
Nonuniform (2,2,0.95) 77 � 62 � 38ð Þ 181,412 8,000 19.6
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all sides. The most critical dimension in this circuit is the 0.2 mm wide microstrip lines that
connect the center stub to the wide feeding lines on each side. Similar to the previous
example, the circuit is simulated by using a fine grid, a coarse grid, and a nonuniform grid to
evaluate the performance of the nonuniform grid.

Table 15.2 shows the details of these three grids. Here, the base grid of the nonuniform
grid simulation is the same as the grid of the coarse grid simulation. In the nonuniform grid
simulation, as shown in Listing 15.6, a fine grid subregion with a cell size of Dy equal to 0.1
mm is used around the narrow strip to model that region more accurately.
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Figure 15.10 Comparison of power reflection coefficient of fine grid, coarse grid, and
nonuniform grid simulations of a microstrip rectangular patch antenna.
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Figure 15.11 Geometry and dimensions of a three-pole low-pass filter.
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Table 15.2 Comparison of fine grid, coarse grid, and nonuniform grid simulations of a three-pole
low-pass microstrip filter.

Grid type (Dx, Dy, Dz)
(mm)

(Nx�Ny�Nz) Total number
of cells

Number
of time
steps

Simulation
time
(minutes)

Fine (0.1,0.1,0.127) 300 � 120 � 20ð Þ 720; 000 200,000 1,800
Coarse (0.2,0.2,0.127) 150 � 60 � 20ð Þ 180,000 130,764 275
Nonuniform (0.2,0.2,0.127) 150 � 76 � 20ð Þ 228,000 168,966 460

Listing 15.6 define_problem_space_parameters.m

%  D i m e n s i o n s  o f  a  u n i t  c e l l  i n  x ,  y ,  a n d  z  d i r e c t i o n s  ( m e t e r s )
d x  =  0 . 2 e - 3 ;
d y  =  0 . 2 e - 3 ;
d z  =  0 . 1 2 7 e - 3 ;
 
%  d i r e c t i o n  c a n  b e  ' x ' ,  ' y ' ,  o r  ' z '
s u b r e g i o n s ( 1 ) . d i r e c t i o n  =  ' y ' ;
s u b r e g i o n s ( 1 ) . c e l l _ s i z e  =  0 . 1 e - 3 ;
s u b r e g i o n s ( 1 ) . r e g i o n _ s t a r t  =  7 . 4 e - 3 ;
s u b r e g i o n s ( 1 ) . r e g i o n _ e n d    =   9 . 4 e - 3 ;
s u b r e g i o n s ( 1 ) . t r a n s i t i o n _ l e n g t h  =  2 e - 3 ;
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Figure 15.12 Comparison of scattering parameters of fine grid, coarse grid, and nonuniform
grid simulations of a three-pole low-pass microstrip filter.
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Each of these three cases is simulated for 37 ns using a Gaussian pulse with
t ¼ 4:2362 � 10�12 as a source. The number of time steps and total computation times are
recorded in Table 15.2. Time results show that although the nonuniform simulation takes
longer time than the coarse simulation, it takes much shorter time than the fine grid simu-
lation. Figure 15.12 shows the scattering parameters of these three cases compared with each
other, which further justifies the benefit of appropriate use of fine grid subregions through
nonuniform grids where needed despite the slightly increased computational overhead.
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CHAPTER 16

Graphics processing unit
acceleration of finite-difference
time-domain method

Recent developments in the design of graphics processing units (GPUs) have been occurring
at a much greater pace than with central processor units (CPUs) and very powerful proces-
sing units have been designed solely for the processing of computer graphics. For instance,
the Tesla� K40 GPU includes 2,880 cores and 12 GB memory, and it can reach to 4.29
Tflops peak single precision floating point performance. Due to this potential in faster
computations, the GPUs have received the attention of the scientific computing community.
Initially these cards were designed for computer graphics and floating precision arithmetic
has been sufficient for such applications. Due to the demand of higher precision arithmetic
from the scientific community, the vendors have started to develop graphics cards that
support double precision arithmetic as well by introducing a new generation of graphical
computation cards.

The computational electromagnetics community as well has started to utilize the
computational power of graphics cards, and in particular, several implementations of
finite-difference time-domain (FDTD) [79–89] method have been reported in the literature.
For instance, Brook is used as the programming language in [79–85], High Level Shader
Language (HLSL) is reported in [86], while the FDTD implementations in [87–89] are based
on OpenGL. Relatively recently, the introduction of the Compute Unified Device Archi-
tecture (CUDA) [90] development environment from NVIDIA made GPU computing much
easier. CUDA is a general purpose parallel computing architecture. To program the CUDA
architecture, developers can use C, which can then be run at great performance on a CUDA-
enabled processor [91]. CUDA has been reported as the programming environment for
implementation of FDTD in several publications, while [92] and [93] illustrate methods
to improve the efficiency of FDTD using CUDA, which can be used as guidelines while
programming FDTD using CUDA.

It should be noted that OpenCL [94] has been introduced recently as a programming
platform to develop codes on parallel devices. It enables programming on parallel archi-
tectures including GPU. It has been used to develop FDTD implementations as well [95].
Although OpenCL provides an alternative platform to CUDA, there is a large community
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that uses CUDA and the technical support for CUDA is well established, therefore, CUDA
will keep its position as the prominent GPU programming platform for the near future.

16.1 GPU programming using CUDA

CUDA, as other languages or programming platforms, has its advantages and disadvantages.
As the major advantages: CUDA is easier to learn compared with other alternatives and
NVIDIA provides extensive support to developers and users. One major disadvantage is that
CUDA can run only on CUDA-enabled NVIDIA cards. While OpenCL and DirectCompute
are becoming the new alternatives to CUDA as programming languages on modern GPU-
based architectures, CUDA may keep its popularity for scientific computing due to vast
learning resources available for developers. In this chapter we will illustrate an imple-
mentation of a two-dimensional FDTD program using CUDA.

In order to start programming with CUDA, one need to install CUDA drivers, CUDA
Toolkit that would include C/Cþþ compiler, Visual Profiler, and GPU-accelerated BLAS,
FFT, Sparse Matrix, and RNG libraries. Another crucial component is GPU Computing
Software Development Kit (SDK), which includes several tools and code samples. All these
components are available at NVIDIA’s web portal for Windows, Linux, and Mac OS X
operating systems.

In order to program using CUDA, one needs to know the CUDA terminology and
architecture. NVIDIA CUDA Programming Guide [96], available at NVIDIA’s web portal,
is a good resource to learn CUDA. In this section, brief descriptions of some concepts in
CUDA are summarized from the Programming Guide in order to prepare the reader for the
discussions that follow.

16.1.1 Host and device

CUDA provides an extended version of C language for programming. Thus it is relatively
easy for a C programmer to develop codes for CUDA. In CUDA’s programming model the
part of the computer architecture which includes CPU is referred to as ‘‘host’’, while the
GPU based card is referred to as ‘‘device’’. A CUDA program would consist of parts that
would run on the host and the device: the main C program would run on the host, while the
code including parallel computations would execute on the device. Basically, the ‘‘device’’ is
a physically separate device on which the CUDA threads execute. These threads can be
launched by the program running on the host.

Both the host and the device maintain their own DRAM, referred to as host memory and
device memory, respectively. Generally, for data parallel computations, data is transferred
from the host memory to the device memory, computations are performed on the device, and
results are transferred back to host memory. For instance, Listing 16.1 shows a small pro-
gram which adds two vectors. First, vectors A, B, and C are allocated on host (CPU)
memory, and A and B are initialized with some numbers. Then corresponding vectors are
allocated on device (GPU) memory. Vectors A and B are copied to device memory. Then a
function is executed on the device which adds these vectors and stores the results in a vector
on the device memory. The resulting vector is then copied back to vector C on the host
memory to provide the expected results.
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Listing 16.1 Addition of two vectors in CUOA.

# i n c l u d e  < s t d l i b . h >
# i n c l u d e  < s t d i o . h >

/ /  K e r n e l  d e fi n i t i o n
_ _ g l o b a l _ _  v o i d  A d d V e c t o r s ( i n t *  A ,  i n t *  B ,  i n t *  C )
{
 i n t  i  =  t h r e a d I d x . x ;
 C [ i ]  =  A [ i ]  +  B [ i ] ;
}

i n t  m a i n ( )
{
 i n t  N  =  2 5 6 ;
 i n t  m e m _ s i z e  =  N * s i z e o f ( i n t ) ;

 / /  A l l o c a t e  m e m o r y  f o r  1 D  a r r a y s  o n  h o s t  m e m o r y
 i n t *  A  =  ( i n t * )  m a l l o c ( m e m _ s i z e ) ;
 i n t *  B  =  ( i n t * )  m a l l o c ( m e m _ s i z e ) ;
 i n t *  C  =  ( i n t * )  m a l l o c ( m e m _ s i z e ) ;
 
 / /  i n i t i a l i z e  a r r a y s
 f o r  ( i n t  i = 0 ;  i < N ;  i + + )  A [ i ]  =  2 * i ;  
 f o r  ( i n t  i = 0 ;  i < N ;  i + + )  B [ i ]  =  3 * i ;  

 / /  a l l o c a t e  d e v i c e  m e m o r y
    i n t *  d _ A ;
    i n t *  d _ B ;
    i n t *  d _ C ;
 c u d a M a l l o c (  ( v o i d * * )  & d _ A ,  m e m _ s i z e ) ;
 c u d a M a l l o c (  ( v o i d * * )  & d _ B ,  m e m _ s i z e ) ;
 c u d a M a l l o c (  ( v o i d * * )  & d _ C ,  m e m _ s i z e ) ;

    / /  c o p y  h o s t  m e m o r y  t o  d e v i c e
 c u d a M e m c p y (  d _ A ,  A ,  m e m _ s i z e ,  c u d a M e m c p y H o s t T o D e v i c e ) ;
 c u d a M e m c p y (  d _ B ,  B ,  m e m _ s i z e ,  c u d a M e m c p y H o s t T o D e v i c e ) ;

 / /  A d d  v e c t o r s  o n  d e v i c e
 A d d V e c t o r s < < < 1 ,  N > > > ( d _ A ,  d _ B ,  d _ C ) ;

    / /  c o p y  r e s u l t  f r o m  d e v i c e  t o  h o s t
    c u d a M e m c p y (  C ,  d _ C ,  m e m _ s i z e ,  c u d a M e m c p y D e v i c e T o H o s t ) ;

 / /  d s i p l a y  r e s u l t s
 f o r  ( i n t  i = 0 ; i < N ; i + + )  p r i n t f ( " % d  " , C [ i ] ) ;

    / /  c l e a n u p  m e m o r y
    f r e e ( A ) ;  f r e e ( B ) ;  f r e e ( C ) ;
 c u d a F r e e ( d _ A ) ;
 c u d a F r e e ( d _ B ) ;
 c u d a F r e e ( d _ C ) ;
}
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16.1.1.1 Kernels
A C function defined to run on the device is called a kernel. A kernel is defined using the
__global__ declaration specifier as shown in Listing 16.1. A kernel, when called, as illu-
strated in Figure 16.1, executes N times in parallel by N different CUDA threads, as opposed
to only once like regular C functions. Each CUDA thread executes the same kernel code, but
for a different section of data accessed by an index identifying the thread. The number of
CUDA threads for each call is specified using <<< . . .>>> syntax. In the example code,
<<<1, N>>> indicates that N threads are executed in parallel. In each thread a pair-wise
addition of elements in arrays A and B are performed. Here each thread has a unique thread
ID, which is an integer number between 0 and N�1 in the given example. The thread ID is
accessible within the kernel through the built-in threadIdx variable. A thread uses its specific
thread ID, and uses it to access the array elements with the same index as the thread ID, and
perform calculations on them. If the number of threads is the same as the number of array
elements, then the entire array is processed through one-to-one mapping between array
elements and the threads.

16.1.2 Thread hierarchy

The thread ID threadIdx can be used to map threads to data elements in arrays that these
threads process. This mapping enables data parallel computations, i.e., running the same code
for different sets of data. The variable threadIdx is a 3-component vector, so that threads can be
identified using a one-dimensional, two-dimensional, or three-dimensional thread index,
forming a one-dimensional, two-dimensional, or three-dimensional thread block. This provides
a natural way to invoke computation across the elements in a domain such as a vector (one-
dimensional array), matrix (two-dimensional array), or field (three-dimensional array). As an
example, the following code in Listing 16.2 adds two three-dimensional arrays A and B of size
M � N � P and stores the result into array C. Here there is a one-to-one mapping between
array elements and the threads in a three-dimensional thread block.

void AddVectors
(int* A, int* B, int* C)
{
int i = threadIdx.x;
C[i] = A[i] + B[i];
}

threadIdx.x = 0;
void AddVectors
(int* A, int* B, int* C)
{
int i = threadIdx.x;
C[i] = A[i] + B[i];
}

threadIdx.x = 1;
void AddVectors
(int* A, int* B, int* C)
{
int i = threadIdx.x;
C[i] = A[i] + B[i];
}

threadIdx.x = N-1;

AddVectors<<<1, N>>>(d_A, d_B, d_C);

Parallel threads running on device

Figure 16.1 Parallel threads executing the same code on different set of data identified by the
threadIdx.x value.
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In CUDA, a number of threads form a thread block. For instance, in this example code, a
thread block of M � N � P threads is defined by the statement ‘‘dim3 block_size
(M, N, P);’’. However, there is a limit for the number of threads that can form a block: in
NVIDIA graphics cards with compute capability 1.x, the maximum number of threads in a block
is 512, while it is 1024 in cards with compute capability 2.x. In order to map larger number of
threads, one can define a grid which consists of a number of equally-shaped thread blocks, so
that the total number of threads in the grid is equal to the number of threads per block times
the number of blocks. The grid of thread blocks can be one-, two-, or three-dimensional.
For instance, Figure 16.2 illustrates a two-dimensional grid of 2�2 blocks, where each block is a
two-dimensional array of 2�2 threads. The given grid thus includes 16 threads.

Listing 16.2 Addition of three dimensional arrays.

_ _ g l o b a l _ _  v o i d  A d d A r r a y s 3 D  ( i n t  A [ M ] [ N ] [ P ] ,  i n t  B [ M ] [ N ] [ P ] ,  i n t
C [ M ] [ N ] [ P ] )
{
 i n t  i  =  t h r e a d I d x . x ;
 i n t  j  =  t h r e a d I d x . y ;
 i n t  k  =  t h r e a d I d x . z ;
 C [ i ] [ j ] [ k ]  =  A [ i ] [ j ] [ k ]  +  B [ i ] [ j ] [ k ] ;
}
i n t  m a i n ( )
{
. . .
 i n t  M  =  8 ;
 i n t  N  =  8 ;
 i n t  P  =  4 ;
 d i m 3  b l o c k _ s i z e ( M ,  N ,  P ) ;
 A d d A r r a y s 3 D < < < 1 ,  b l o c k _ s i z e > > > ( A ,  B ,  C ) ;
. . .
}
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Figure 16.2 Grid of thread blocks.
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The dimension of the grid is specified by the first parameter of the <<< . . .>>> syntax.
Listing 16.3 shows a code that performs pair-wise addition of two-dimensional arrays. In this
example code below, a 3�4 grid is defined, where each thread block in the grid includes
16�32 threads. Thus the threads can be easily mapped to two-dimensional 48�128 size
arrays. Each block within the grid can be identified by a one-dimensional or two-dimen-
sional index accessible within the kernel through the built-in blockIdx variable. The
dimension of the thread block is accessible within the kernel through the built-in blockDim
variable. It is straightforward to map threads to data elements in arrays using the blockDim,
blockIdx, and threadIdx internal variables as shown in the kernel of Listing 16.3.

It should be noted that thread blocks execute independent from each other; therefore, one
should consider this independence while developing an algorithm in CUDA. The number of
thread blocks in a grid is generally determined by the size of the data being processed.

For instance, if an array of size 256�128 is to be processed by thread blocks of 16�16,
one can use a grid of size 16�8.

16.1.3 Memory hierarchy

CUDA threads may access data from multiple memory spaces on the GPU card.

Global memory:

1. The main memory space on the device is called global memory.
2. All threads can access the global memory to read and write data.
3. The read and write operations to the global memory are long latency, thus should be

minimized.

Shared memory:

1. This is a memory space that is available to a block throughout the lifetime as the block.
2. All threads in the block can access the shared memory of the block.
3. Shared memory is a cached memory space; it is computationally much more efficient to

access the shared memory.
4. It is better to copy data from global memory to shared memory and process the data while

it resides on the shared memory if the data are reused.

Listing 16.3 Addition of two dimensional arrays.

_ _ g l o b a l _ _  v o i d  A d d A r r a y s 2 D ( i n t  A [ M ] [ N ] ,  i n t  B [ M ] [ N ] ,  i n t  C [ M ] [ N ] )
{
i n t  i  =  b l o c k I d x . x  *  b l o c k D i m . x  +  t h r e a d I d x . x ;
i n t  j  =  b l o c k I d x . y  *  b l o c k D i m . y  +  t h r e a d I d x . y ;
C [ i ] [ j ]  =  A [ i ] [ j ]  +  B [ i ] [ j ] ;
}
i n t  m a i n ( )
{
. . .
 d i m 3  g r i d _ s i z e ( 3 ,  4 ) ;
 d i m 3  b l o c k _ s i z e ( 1 6 , 3 2 ) ;
 A d d A r r a y s 2 D < < <  g r i d _ s i z e ,  b l o c k _ s i z e > > > ( A ,  B ,  C ) ;
. . .
}
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Two other memory spaces are called ‘‘constant memory’’ and ‘‘texture memory’’, which
are read-only memory spaces on the device. For instance, if threads will access some data
only in read-only mode, the data can be copied to the ‘‘constant memory’’ before the
execution of the threads, and can be accessed by the threads during execution. Moreover,
each thread has a private local memory, which is a set of local 32-bit registers. It is important
to use these memory spaces effectively according to the capabilities they provide in order to
achieve an algorithm with high computational efficiency in CUDA.

16.1.4 Performance optimization in CUDA

One should be familiar with the CUDA architecture to some extent in order to develop a
program with optimum performance. CUDA Best Practices Guide, available at NVIDIA’s web
portal, is a good reference for programmers; it provides recommendations for optimization and
a list of best practices for programming with CUDA. While not all of these recommendations
are applicable to the case of FDTD programming; the following list of recommendations is
taken into consideration to develop an FDTD implementation discussed in the next section:

(R1) structure the algorithm in a way that exposes as much data parallelism as possible.
Once the parallelism of the algorithm has been exposed, it needs to be mapped to the
hardware as efficiently as possible.

(R2) ensure global memory accesses are coalesced whenever possible.
(R3) minimize the use of global memory. Prefer shared memory access where possible.
(R4) use shared memory to avoid redundant transfers from global memory.
(R5) hide latency arising from register dependencies, maintain at least 25 percent occupancy

on devices with CUDA compute capability 1.1 and lower, and 18.75 percent occupancy
on later devices.

(R6) use a multiple of 32 threads for the number of threads per block as this provides
optimal computing efficiency and facilitates coalescing.

16.1.5 Achieving parallelism

At every iteration of the FDTD loop, new values of three magnetic field components are
calculated at every cell simultaneously using the past values of electric field components.
After magnetic field updates are completed, values of three electric field components are
updated at every cell simultaneously in a separate function using the past values of magnetic
field components. Since the calculations for each cell can be performed independent from
the other cells, a CUDA algorithm can be developed by assigning each cell calculation to a
separate thread, and the highest level of parallelism can be achieved to satisfy the recom-
mendation R1. Therefore, the data parallelism required to benefit from CUDA is inherently
satisfied by FDTD.

16.2 CUDA implementation of two-dimensional FDTD

In this section we will present an implementation of a two-dimensional FDTD program in
CUDA. The program consists of two parts: the first is a MATLAB� code that is based on the
two-dimensional FDTD code that has been illustrated in Chapters 7 and 8 while discussing
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absorbing boundary conditions, and the second is a C code using CUDA that is developed to
run FDTD time-marching loop calculations on a graphics card. These codes are available on the
CD accompanying this book in folders ‘‘fdtd_2d_with_cuda’’ and ‘‘fdtd_2d_cuda_code’’,
respectively.

The two-dimensional FDTD code that has been presented in Chapter 8 is modified such that
problem definitions, initializations, and results postprocessing is done in MATLAB as usual,
while the program launches an executable that runs the time-marching loop on a graphics card.
The executable, ‘‘fdtd2d.exe’’, is implemented in C and it is compiled and built using CUDA’s
nvcc compiler. The C code can perform FDTD time-marching loop in one of two modes: either
on CPU or on GPU. A parameter, named as computation_platform, is added to define_
problem_space_parameters_2d to set the computation platform as shown in Listing 16.4. If this
parameter is set as 1, the program will run as usual in MATLAB. If the parameter is set as 2 or 3,
then the ‘‘fdtd2d.exe’’ will be launched. If the parameter is 2, the executable will perform FDTD
computations on CPU, otherwise on GPU. Listing 16.5 illustrates the modified code in the
subroutine run_fdtd_time_marching_loop_2d.

Listing 16.6 shows the subroutine launch_executable. Since the parameters and arrays
that FDTD calculations require are initialized in MATLAB, they need to be transferred to the
executable for use. This transfer is performed through a binary file defined as ‘‘exe_
data_file_name’’ in Listing 16.6: All required arrays and parameters are adjusted and
written to this data file, the data file is read by ‘‘fdtd2d.exe’’, and FDTD calculations are
performed either on CPU or on GPU. The intermediate data file is accessed in binary format,
instead of ASCII format, to transfer data as is without loss of precision between the
MATLAB and the C programs, and binary files require less space for storage. Once the

Listing 16.4 define_problem_space_parameters_2d

%  t h e  p l a t f o r m  o n  w h i c h  t h e  c a l c u l a t i o n s  w i l l  b e  p e r f o r m e d
%  1 :  m a t l a b  o n  c p u ,  2 :  C  e x e c u t a b l e  o n  c p u ,  3 :  C  e x e c u t a b l e  o n  g p u  
c o m p u t a t i o n _ p l a t f o r m   =  3 ;  

1

3

Listing 16.5 run_fdtd_time_marching_loop_2d

i f  c o m p u t a t i o n _ p l a t f o r m  ~ = 1
    l a u n c h _ e x e c u t a b l e ;
e l s e
    f o r  t i m e _ s t e p  =  1 : n u m b e r _ o f _ t i m e _ s t e p s   
        u p d a t e _ m a g n e t i c _ fi e l d s _ 2 d ;
        u p d a t e _ i m p r e s s e d _ M ;
        u p d a t e _ m a g n e t i c _ fi e l d s _ f o r _ C P M L _ 2 d ;
        c a p t u r e _ s a m p l e d _ m a g n e t i c _ fi e l d s _ 2 d ;
        u p d a t e _ e l e c t r i c _ fi e l d s _ 2 d ;
        u p d a t e _ i m p r e s s e d _ J ;
        u p d a t e _ e l e c t r i c _ fi e l d s _ f o r _ C P M L _ 2 d ;
        c a p t u r e _ s a m p l e d _ e l e c t r i c _ fi e l d s _ 2 d ;
        d i s p l a y _ s a m p l e d _ p a r a m e t e r s _ 2 d ;
    e n d  
e n d
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calculations are completed by ‘‘fdtd2d.exe’’ results are written to an output data file, which
then is read by MATLAB for postprocessing and displaying the results. In Listing 16.6,
MATLAB system command is used to launch the executable.

16.2.1 Coalesced global memory access

In CUDA, memory instructions are the instructions that read from or write to shared, con-
stant, or global memory. When accessing global memory, there are 400 to 600 clock cycles
of memory latency. Much of this global memory latency can be hidden by the thread sche-
duler if there are sufficient independent arithmetic instructions that can be issued while
waiting for the global memory access to complete [96]. Unfortunately when FDTD calcu-
lations are performed on a computer the operations are dominated by memory accesses
rather than arithmetic instructions. Hence, the memory access inefficiency is the main bottle
neck that reduces efficiency of FDTD on GPU. Global memory bandwidth is used most
efficiently when the simultaneous memory accesses by threads in a half-warp (during the
execution of a single read or write instruction) can be coalesced into a single memory
transaction of 32, 64, or 128 bytes [96].

If the size of two-dimensional arrays, thus the size of the FDTD domain in number of
cells, in the x and y directions, is a multiple of 16, then the coalesced memory access is
ensured. In general an FDTD domain size would be an arbitrary number. In order to achieve

Listing 16.6 launch_executable

%  s a v e  t h e  d a t a  t o  a  fi l e  t o  p r o c e s s  o n  g p u
e x e _ d a t a _ fi l e _ n a m e  =  ' e x e _ d a t a _ fi l e . d a t ' ;
s a v e _ p r o j e c t _ d a t a _ t o _ fi l e ;
 
c m d  =  [ ' f d t d 2 d _ o n _ g p u . e x e  '  e x e _ d a t a _ fi l e _ n a m e ] ;
s t a t u s  =  s y s t e m ( c m d ) ;
i f  s t a t u s
    d i s p ( ' C a l c u l a t i o n s  a r e  n o t  s u c c e s s f u l ! ' ) ;
    r e t u r n ;
e n d
 
t i m e _ s t e p  =  n u m b e r _ o f _ t i m e _ s t e p s ;
 
r e s u l t _ d a t a _ fi l e _ n a m e  =  [ ' r e s u l t _ '  e x e _ d a t a _ fi l e _ n a m e ] ;
fi d  =  f o p e n ( r e s u l t _ d a t a _ fi l e _ n a m e ,  ' r ' ) ;
 
f o r  i n d  =  1 : n u m b e r _ o f _ s a m p l e d _ e l e c t r i c _ fi e l d s
    s a m p l e d _ e l e c t r i c _ fi e l d s ( i n d ) . s a m p l e d _ v a l u e  =  . . .
        f r e a d ( fi d ,  n u m b e r _ o f _ t i m e _ s t e p s ,  ' fl o a t 3 2 ' ) . ' ;
e n d
 
f o r  i n d  =  1 : n u m b e r _ o f _ s a m p l e d _ m a g n e t i c _ fi e l d s
    s a m p l e d _ m a g n e t i c _ fi e l d s ( i n d ) . s a m p l e d _ v a l u e  =  . . .
        f r e a d ( fi d ,  n u m b e r _ o f _ t i m e _ s t e p s ,  ' fl o a t 3 2 ' ) . ' ;
e n d
 
f c l o s e ( fi d ) ;
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coalesced memory access, the FDTD domain can be extended by padded cells such that the
number of cells in x and y directions is an integer multiple of 16 as illustrated in Figure 16.3.
Although, padding these cells increases the amount of memory needed to store arrays, it
improves the efficiency of the kernel functions tremendously. Thus the recommendation R2
is satisfied.

It should be noted that, these padded cells are beyond the boundaries of the original
domain and they should be electrically isolated from the original domain. As long as the
original domain boundaries are kept as PEC, such as in the case of CPML boundaries, the
fields in the original domain will be isolated from the padded cells, thus padded cells can be
assumed to be filled with any type of material. The easiest way is to set these padded cells as
free space.

If the size of a two-dimensional FDTD domain is Nx � Ny cells, where Nx and Ny are the
numbers of cells in x and y directions, respectively, then the modified size of the FDTD
domain becomes Nxx � Nyy, where Nxx and Nyy are the new numbers of cells. In the pre-
sented example code, the extended size of the problem space is determined in the subroutine
save_project_data_to_file as

% extend the domain and adjust number of cells for gpu
nxx ¼ (floor(nx/16)þ1)*16;
nyy ¼ (floor(ny/16)þ1)*16;

Then the two-dimensional arrays of fields and coefficients can be extended to Nxx � Nyy.
However, in fact, the two-dimensional arrays are extended to Nxx � Nyy þ 2ð Þ in the sub-
routine save_project_data_to_file before they are copied to the binary data file. The reason
for the additional padded cells in the y direction will be explained in the subsequent sections.

Nyy

Nx
Nxx

Ny

y

x

Figure 16.3 An extended two-dimensional computational domain.
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16.2.2 Thread to cell mapping

The ‘‘fdtd2d_on_gpu.exe’’ program starts with reading the binary data file; first arrays are
allocated on the CPU memory for two-dimensional arrays, then the coefficient and field data
are read into these arrays. These arrays initially reside on the host (CPU) memory and they need
to be copied to device (GPU) global memory. The cudaMalloc() function of CUDA is used
to allocate memory on the device global memory for these arrays and cudaMemcpy()
function is used to copy the data to the global memory. Once these arrays are ready on the
global memory, they are ready for processing on the graphics card by kernel functions.

Listing 16.7 shows a function that performs an iteration of the time-marching loop on
GPU. Similarly, Listing 16.8 shows a function that performs an iteration on CPU. It can be
seen that main components of an iteration, such as electric and magnetic field updates,
source updates, boundary condition updates, etc., are performed by calls to associated
functions. We will discuss the electric and magnetic field updating functions in detail for the
TMz case to illustrate an implementation using CUDA.

Listing 16.7 FDTD iteration on GPU

b o o l  f d t d I t e r a t i o n O n G p u ( )
{
 i n t  n _ b x  =  ( n x x / T I L E _ S I Z E )  +  ( n x x % T I L E _ S I Z E  = =  0  ?  0  :  1 ) ;
 i n t  n _ b y  =  ( n y y / T I L E _ S I Z E )  +  ( n y y % T I L E _ S I Z E  = =  0  ?  0  :  1 ) ;
 d i m 3  t h r e a d s  =  d i m 3 ( T I L E _ S I Z E ,  T I L E _ S I Z E ,  1 ) ;
 d i m 3  g r i d  =  d i m 3 ( n _ b x ,  n _ b y ,  1 ) ;

 d i m 3  t h r e a d s _ s e f  =  d i m 3 ( n u m b e r _ o f _ s a m p l e d _ e l e c t r i c _ fi e l d s ,  1 ,  1 ) ;
 d i m 3  t h r e a d s _ s m f  =  d i m 3 ( n u m b e r _ o f _ s a m p l e d _ m a g n e t i c _ fi e l d s ,  1 ,  1 ) ;
 d i m 3  g r i d _ s e f  =  d i m 3 ( 1 ,  1 ,  1 ) ;
 d i m 3  g r i d _ s m f  =  d i m 3 ( 1 ,  1 ,  1 ) ;
 
 i f  ( i s _ T E z )
 u p d a t e _ m a g n e t i c _ fi e l d s _ o n _ g p u _ T E z < < < g r i d ,
t h r e a d s > > > ( d v C h z h ,  d v C h z e x ,  d v C h z e y ,  d v H z ,  d v E x ,  d v E y ,  n x x ) ;

           i f  ( i s _ T M z )
 u p d a t e _ m a g n e t i c _ fi e l d s _ o n _ g p u _ T M z < < < g r i d ,
t h r e a d s > > > ( d v C h x h ,  d v C h x e z ,  d v C h y h ,  d v C h y e z ,  d v H x ,   d v H y ,  d v E z ,  n x x ) ;

 u p d a t e _ i m p r e s s e d _ m a g n e t i c _ c u r r e n t s _ o n _ g p u ( t i m e _ s t e p ) ;
 
 u p d a t e _ m a g n e t i c _ fi e l d s _ f o r _ C P M L _ o n _ g p u ( ) ;

 c a p t u r e _ s a m p l e d _ m a g n e t i c _ fi e l d s _ o n _ g p u < < < g r i d _ s m f ,  t h r e a d s _ s m f > > >
 ( d v H x ,  d v H y ,  d v H z ,  d v s a m p l e d _ m a g n e t i c _ fi e l d s _ c o m p o n e n t ,
d v s a m p l e d _ m a g n e t i c _ fi e l d s _ i s ,  
  d v s a m p l e d _ m a g n e t i c _ fi e l d s _ j s ,
d v s a m p l e d _ m a g n e t i c _ fi e l d s _ s a m p l e d _ v a l u e ,  t i m e _ s t e p ,
n u m b e r _ o f _ t i m e _ s t e p s ,  n x x ) ;

 i f  ( i s _ T E z )
 u p d a t e _ e l e c t r i c _ fi e l d s _ o n _ g p u _ T E z < < < g r i d ,  t h r e a d s > > >
( d v C e x e ,  d v C e x h z ,  d v C e y e ,  d v C e y h z ,   d v E x ,  d v E y ,  d v H z ,  n x x ) ;

 i f  ( i s _ T M z )
 u p d a t e _ e l e c t r i c _ fi e l d s _ o n _ g p u _ T M z < < < g r i d ,  t h r e a d s > > >
( d v C e z e ,  d v C e z h y ,  d v C e z h x ,  d v H x ,   d v H y ,  d v E z ,  n x x ) ;
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The kernel function that updates the magnetic field components is called

update_magnetic_fields_on_gpu_TMz<<<grid, threads>>>
(dvChxh, dvChxez, dvChyh, dvChyez, dvHx, dvHy, dvEz, nxx);

Here the parameter names preceded with ‘‘dv’’ are pointers to respective arrays on the
global memory of the graphics card. The CUDA notation <<<grid, threads>>>

Listing 16.8 FDTD iteration on CPU

b o o l  f d t d I t e r a t i o n O n C p u ( )
{
 i f  ( i s _ T E z )  u p d a t e _ m a g n e t i c _ fi e l d s _ o n _ c p u _ T E z ( ) ;

 i f  ( i s _ T M z )  u p d a t e _ m a g n e t i c _ fi e l d s _ o n _ c p u _ T M z ( ) ;

 u p d a t e _ i m p r e s s e d _ m a g n e t i c _ c u r r e n t s _ o n _ c p u ( t i m e _ s t e p ) ;
  
 u p d a t e _ m a g n e t i c _ fi e l d s _ f o r _ C P M L _ o n _ c p u ( ) ;

 c a p t u r e _ s a m p l e d _ m a g n e t i c _ fi e l d s _ o n _ c p u ( t i m e _ s t e p ) ;

 i f  ( i s _ T E z )  u p d a t e _ e l e c t r i c _ fi e l d s _ o n _ c p u _ T E z ( ) ;

 i f  ( i s _ T M z )  u p d a t e _ e l e c t r i c _ fi e l d s _ o n _ c p u _ T M z ( ) ;

 u p d a t e _ i m p r e s s e d _ e l e c t r i c _ c u r r e n t s _ o n _ c p u ( t i m e _ s t e p ) ;

 u p d a t e _ e l e c t r i c _ fi e l d s _ f o r _ C P M L _ o n _ c p u ( ) ;

 c a p t u r e _ s a m p l e d _ e l e c t r i c _ fi e l d s _ o n _ c p u ( t i m e _ s t e p ) ;

 p r i n t f ( " t i m e s t e p :  % d  \ n " ,  t i m e _ s t e p ) ;
 t i m e _ s t e p + + ;

 r e t u r n  t r u e ;
}

1

3

5

7

9

11

13

15

17

19

21

23

25

27

39

41

43

45

47

49

51

53

 u p d a t e _ i m p r e s s e d _ e l e c t r i c _ c u r r e n t s _ o n _ g p u ( t i m e _ s t e p ) ;
 
 u p d a t e _ e l e c t r i c _ fi e l d s _ f o r _ C P M L _ o n _ g p u ( ) ;

 c a p t u r e _ s a m p l e d _ e l e c t r i c _ fi e l d s _ o n _ g p u < < < g r i d _ s e f ,  t h r e a d s _ s e f > > >
  ( d v E z ,  d v E y ,  d v E z ,  d v s a m p l e d _ e l e c t r i c _ fi e l d s _ c o m p o n e n t ,
d v s a m p l e d _ e l e c t r i c _ fi e l d s _ i s ,  
 d v s a m p l e d _ e l e c t r i c _ fi e l d s _ j s ,  
d v s a m p l e d _ e l e c t r i c _ fi e l d s _ s a m p l e d _ v a l u e ,  t i m e _ s t e p ,
n u m b e r _ o f _ t i m e _ s t e p s ,  n x x ) ;

 p r i n t f ( " t i m e s t e p :  % d  \ n " ,  t i m e _ s t e p ) ;
 t i m e _ s t e p + + ;

 r e t u r n  t r u e ;
}
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describes the grid of threads that will be launched for this kernel. The parameter threads
is initialized as

dim3 threads ¼ dim3(TILE_SIZE, TILE_SIZE, 1);

which means that a thread block consists of TILE_SIZExTILE_SIZE square shaped array
of threads. In this implementation the TILE_SIZE is set as 16, thus the recommendation R6
in Section 16.1 is satisfied. The parameter grid is initialized as

int n_bx ¼ (nxx/TILE_SIZE) þ (nxx%TILE_SIZE ¼¼ 0 ? 0 : 1);
int n_by ¼ (nyy/TILE_SIZE) þ (nyy%TILE_SIZE ¼¼ 0 ? 0 : 1);
dim3 grid ¼ dim3(n_bx, n_by, 1);

which means that the grid is composed of n bx � n by thread blocks. This thread grid
scheme helps to conveniently map threads to cells. Figure 16.4 illustrates such a grid that
spans a problem space.

Listing 16.9 shows the kernel function that updates the magnetic field components for the
TMz case, whereas Listing 16.10 shows the kernel that updates the electric field components.
Respective functions that perform magnetic and electric field updates on CPU are shown in
Listings 16.11 and 16.12 for comparison. In this implementation for GPU each cell is processed
by an associated thread. The CUDA internal variablesthreadIdx andblockIdx are used to
identify the threads and data elements which they will update. The variable blockIdx is used
to identify the thread blocks as illsutrated in Figure 16.4. Similarly, the variable threadIdx
is used to identify threads within a thread block as shown in Figure 16.5. Thus, one can identify
any thread, and also cell, in a two-dimensional array with indices i and j such that

int i ¼ blockIdx.x * blockDim.x þ threadIdx.x;
int j ¼ blockIdx.y * blockDim.y þ threadIdx.y;

At this point it should be noted that although the arrays that are being processed are two-
dimensional, they are stored in device (GPU) global memory as one-dimensional arrays and
elements of these arrays are accessed in kernel functions in a linear fashion. Thus a conversion
from i and j indices to the linear index, denoted as ‘‘ci’’ in the Listing 16.4, is required.

n_bx = 3

blockldx.x = 0
blockldx.y = 0

blockldx.x = 1
blockldx.y = 0

blockldx.x = 2
blockldx.y = 0

blockldx.x = 0
blockldx.y = 1

blockldx.x = 1
blockldx.y = 1

blockldx.x = 2
blockldx.y = 1

n_by = 2

y

x

Figure 16.4 A grid of thread blocks that spans a 48�32 cells two-dimensional problem space.
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Listing 16.10 update_electric_fields_on_gpu_TEz

_ _ g l o b a l _ _  v o i d
u p d a t e _ e l e c t r i c _ fi e l d s _ o n _ g p u _ T E z ( fl o a t *  C e x e ,  fl o a t *  C e x h z ,  fl o a t *
C e y e ,  fl o a t *  C e y h z ,   fl o a t *  E x ,  fl o a t *  E y ,  fl o a t *  H z ,  i n t  n x x )
{
 _ _ s h a r e d _ _  fl o a t  s H z [ T I L E _ S I Z E ] [ 2 * T I L E _ S I Z E + 1 ] ;

 i n t  t x  =  t h r e a d I d x . x ;
 i n t  t y  =  t h r e a d I d x . y ;
 i n t  i  =  b l o c k I d x . x  *  b l o c k D i m . x  +  t x ;
 i n t  j  =  b l o c k I d x . y  *  b l o c k D i m . y  +  t y ;

 i n t  c i  =  ( j + 1 ) * n x x + i ;
 
 s H z [ t y ] [ t x ]  =  H z [ c i - T I L E _ S I Z E ] ;
 s H z [ t y ] [ t x + T I L E _ S I Z E ]  =  H z [ c i ] ;

 _ _ s y n c t h r e a d s ( ) ;

 E x [ c i ]  =  C e x e [ c i ]  *  E x [ c i ]  +  C e x h z [ c i ]  *  ( H z [ c i ] - H z [ c i - n x x ] ) ;
 E y [ c i ]  =  C e y e [ c i ]  *  E y [ c i ]  +  C e y h z [ c i ]  *  ( s H z [ t y ] [ t x + T I L E _ S I Z E ] -
s H z [ t y ] [ t x + T I L E _ S I Z E - 1 ] ) ;
  }
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Listing 16.9 update_magnetic_fields_on_gpu_TMz

_ _ g l o b a l _ _  v o i d
u p d a t e _ m a g n e t i c _ fi e l d s _ o n _ g p u _ T M z ( fl o a t *  C h x h ,  fl o a t *  C h x e z ,  fl o a t *  
C h y h ,  fl o a t *  C h y e z ,  fl o a t *  H x ,   fl o a t *  H y ,  fl o a t *  E z ,  i n t  n x x )
{
 _ _ s h a r e d _ _  fl o a t  s E z [ T I L E _ S I Z E ] [ 2 * T I L E _ S I Z E + 1 ] ;

 i n t  t x  =  t h r e a d I d x . x ;
 i n t  t y  =  t h r e a d I d x . y ;
 i n t  i  =  b l o c k I d x . x  *  b l o c k D i m . x  +  t x ;
 i n t  j  =  b l o c k I d x . y  *  b l o c k D i m . y  +  t y ;

 i n t  c i  =  ( j + 1 ) * n x x + i ;

 s E z [ t y ] [ t x ]  =  E z [ c i ] ;
 s E z [ t y ] [ t x + T I L E _ S I Z E ]  =  E z [ c i + T I L E _ S I Z E ] ;

 _ _ s y n c t h r e a d s ( ) ;

 H x [ c i ]  =  C h x h [ c i ]  *  H x [ c i ]  +  C h x e z [ c i ]  *  ( E z [ c i + n x x ] - s E z [ t y ] [ t x ] ) ;  
 H y [ c i ]  =  C h y h [ c i ]  *  H y [ c i ]  +  C h y e z [ c i ]  *  ( s E z [ t y ] [ t x + 1 ]  -  s E z [ t y ] [ t x ] ) ;
}
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In MATLAB the index i runs faster than the index j, i.e., the data stored at (i, j) is adjacent to
(iþ1, j) on the physical memory, thus the conversion to linear index can be done simply as

int ci ¼ j*nxxþi;

However, in Listings 16.9 and 16.10 one can notice that the linear index is calculated as

int ci ¼ (jþ1)*nxxþi;

Listing 16.11 update_magnetic_fields_on_gpu_TMz

v o i d  u p d a t e _ m a g n e t i c _ fi e l d s _ o n _ c p u _ T M z ( )
{
 f o r  ( i n t  i = 0 ; i < n u m b e r _ o f _ c e l l s - n x x ; i + + )
  H x [ i ]  =  C h x h [ i ]  *  H x [ i ]  +  C h x e z [ i ]  *  ( E z [ i + n x x ] - E z [ i ] ) ;  

 f o r  ( i n t  i = 0 ; i < n u m b e r _ o f _ c e l l s - n x x ; i + + )
  H y [ i ]  =  C h y h [ i ]  *  H y [ i ]  +  C h y e z [ i ]  *  ( E z [ i + 1 ]  -  E z [ i ] ) ;
}
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Listing 16.12 update_electric_fields_on_gpu_TMz

v o i d  u p d a t e _ e l e c t r i c _ fi e l d s _ o n _ c p u _ T M z ( )
{
 f o r  ( i n t  i = n x x ; i < n u m b e r _ o f _ c e l l s ; i + + )
  E z [ i ]  =  C e z e [ i ]  *  E z [ i ]  +  C e z h y [ i ]  *  ( H y [ i ] - H y [ i - 1 ] )  +  
C e z h x [ i ]  *  ( H x [ i ] - H x [ i - n x x ] ) ;
}

1

3

5

threadldx.x = 0
threadldx.y = 15

threadldx.x = 3
threadldx.y = 8

threadldx.x = 0
threadldx.y = 3

threadldx.x = 0
threadldx.y = 0

y

x

threadldx.x = 15
threadldx.y = 0

Figure 16.5 Threads in a thread block.
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The reason is as follows: Consider the equation used to update Ez as shown in (1.36). In
order to update Ez i; jð Þ one needs Hx i; j � 1ð Þ, hence one cannot update Ez i; 1ð Þ since Hx i; 0ð Þ
does not exist. Here MATLAB array indexing scheme is used which starts from 1, unlike C,
which starts from 0. The update of Ez i; jð Þ, therefore, shall be performed starting from j ¼ 2,
which can be controlled in the kernel code using an if statement. An if statement would
reduce the efficiency of a kernel function considerably, thus to avoid such a situation, in the
given FDTD algorithm one layer of cells is padded to the two-dimensional arrays in the �y
direction. This means that all field components that are being processed are shifted by one
cell in the þy direction, so final results would not be affected. Hence the calculation of ci is
adjusted. Similar situation happens when updating Hz. In order to update Hz i; nyyð Þ one
needs Ex i; nyy þ 1ð Þ, which does not exist on the physical memory if the arrays are of size
nxx � nyy. A straightforward solution is to pad another layer of cells to the two-dimensional
arrays in the þy direction. These two additional layers of cells are appended to the arrays in
the subroutine save_project_data_to_file.

16.2.3 Use of shared memory

Because it is on the GPU chip, the access to shared memory is much faster than the local and
global memory. Parameters that reside in the shared memory space of a thread block have the
lifetime of the block, and are accessible from all the threads within the block [96]. Therefore if a
data block on global memory is going to be used frequently in a kernel, it is better to load the
data to shared memory and reuse the data from the shared memory. Here it should be reminded
that, shared memory is available only through the lifetime of a thread, thus the relevant field
data have to be reloaded to the shared memory every time a kernel function is called.

Shared memory is especially useful when threads need to access to unaligned data. For
instance, examining (1.38) reveals that in order to calculate Hy i; jð Þ, a thread mapped to the
cell i; jð Þ needs Ez at i; jð Þ as well as Ez at i þ 1; jð Þ. In the kernel code the index of a thread
that is processing the cell i; jð Þ is indexed as ‘‘ci’’. A cell with index i þ 1; jð Þ can be accessed
by ciþ1, while a cell with index (i, jþ1) can be accessed by ciþnxx. Access to (i, jþ1) is
coalesced, however (iþ1, j) is not. If an access to a field component at a neighboring cell in
the x direction is needed, i.e. (iþ1, j), then shared memory can be used to load the data block
mapped by the thread block, and then the neighboring field value is accessed from the shared
memory. At this point one need to use the CUDA function __syncthreads() to ensure
that all threads in the block are synchronized; thus all necessary data are loaded to the shared
memory before they are used by the neighboring threads.

As discussed above, uncoalesced memory accesses can be prevented by using shared
memory. However, a problem arises when accessing the neighboring cells’ data through
shared memory. While loading the shared memory, each thread copies one element from the
global memory to the shared memory. If the thread on the boundary of the thread block
needs to access the data in the neighboring cell, this data will not be available since it has not
been loaded to the shared memory. One way to overcome this problem is to load another set
of data, which includes the neighboring cell’s data, to the shared memory. In the presented
implementation shown in Listing 16.9, two square blocks of data are copied from global
memory to the shared memory as

sEz[ty][tx] ¼ Ez[ci];
sEz[ty][txþTILE_SIZE] ¼ Ez[ciþTILE_SIZE];
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Then Ez at i þ 1; jð Þ is safely accessed from the shared memory to update Hy i; jð Þ as

Hy[ci] ¼ Chyh[ci] * Hy[ci] þ Chyez[ci] * (sEz[ty][txþ1] -
sEz[ty][tx]);

A similar treatment is shown in Listing 16.10, where Ey i; jð Þ is updated by Hz i � 1; jð Þ
through an effective use of shared memory: First two blocks of data is from global memory
to the shared memory as

sHz[ty][tx] ¼ Hz[ci-TILE_SIZE];
sHz[ty][txþTILE_SIZE] ¼ Hz[ci];

Then Ey i; jð Þ is updated as

Ey[ci] ¼ Ceye[ci] * Ey[ci] þ Ceyhz[ci] * (sHz[ty][txþTILE_
SIZE]-sHz[ty][txþTILE_SIZE-1]);

16.2.4 Optimization of number of threads

As pointed out in recommendations R5 and R6 in Section 16.1, occupancy of the micro-
processors and number of threads in a block are two other important parameters that affect
the performance of a CUDA program. Number of threads and occupancy are tightly con-
nected. It is possible to set the number of threads as a desired value while it may not be
possible to control the occupancy; it is a function of number of threads, number of registers
used in the kernel, amount of shared memory used by the kernel, compute capability of the
device, etc. A good practice is to optimize the number of threads while keeping the occu-
pancy at a reasonable value. As a rule of thumb, it is better to keep kernel functions small
such that they do not use many registers.

CUDA Visual Profiler is a graphical user interface based profiling tool provided by
NVIDIA that can be used to measure performance and find potential opportunities for
optimization in order to achieve maximum performance of kernels in a CUDA program. It
can show information such as total GPU and CPU times of a thread, memory read-write
throughputs, global memory load and store efficiencies, occupancy, etc. Therefore, the
kernel functions can be profiled using the Visual Profiler and, if not satisfactory, their effi-
ciencies can be improved.

In the presented code the block size is chosen as 16 � 16 ¼ 256. One can choose a
different configuration and test with Visual Profiler to evaluate the efficiency. It should also
be noted that the presented grid scheme, i.e., two-dimensional array of square thread blocks,
is not the only way to map threads to cells. It is possible to use other grid configurations,
such as using one-dimensional thread blocks in a one-dimensional grid, develop algorithms
based on these configurations, and evaluate if the developed algorithms are superior.

16.3 Performance of two-dimensional FDTD on CUDA

The main purpose of developing a code to run FDTD program on a graphics card is to run it
faster by utilizing the parallel processing capability of GPU. The performance of the
developed CUDA code is examined as a function of problem size. The analysis is performed
on an NVIDIA� TeslaTM C1060 Computing Processor installed on a 64-bit Windows XP
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computer. This card has 240 streaming processor cores operating at 1.3 GHz. Size of a two-
dimensional FDTD problem domain has been swept and the throughputs of the program are
calculated as number of million cells processed per second (NMCPS) as a measure of the
performance of the CUDA program. Number of million cells is calculated as [97]

NMCPS ¼ nsteps � Nxx � Nyy

ts
� 10�6; ð16:1Þ

where nsteps is the number of time steps the program has been run and ts is the total time of
program run in seconds. Here, the problem that is discussed in Section 7.5.2, illustrated in
Figure 7.15, is simulated for performance evaluation. The problem space is terminated by
PEC boundaries. The results, shown in Figure 16.6, reveal that as the problem size is
increased, the throughput of the CUDA calculations increase to about 900 million cells per
second. Figure 16.6 also shows the throughput of the FDTD program when all calculations
are performed on the CPU. The average throughput on CPU is about 25 million cells per
second. For the presented implementations, GPU calculations are more than 36 times faster
than the CPU calculations.

CUDA and OpenGL are two software platforms both of which operate on the GPU
hardware, while their intended use are different; CUDA is to improve the performance of
data parallel computations, while OpenGL is to manipulate data to produce 2D and 3D
computer graphics. While running an FDTD simulation, it is possible to capture electro-
magnetic fields and display them as an on-the-fly animation. If the FDTD calculations are
performed on a graphics card, which is used also to perform the OpenGL operations to
display the field, one can copy the field data from graphics card memory (device global
memory) to computer’s main memory that is processed by CPU (host memory), process the
data, and copy back to GPU memory to display via OpenGL. Thanks to CUDA/OpenGL
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Figure 16.6 Throughput of CUDA FDTD calculations on a Tesla C1060 card.
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interoperability provided by CUDA, it is possible to avoid the back and forth data transfer
between the host and device memories, and perform all processing required for the display
on the graphics card.

The presented CUDA code also utilizes the CUDA/OpenGL interoperability to capture
and display electromagnetic fields. The test case presented above is run with electromagnetic
field animation enabled, and electric field distribution is captured and displayed on a window
while the program is running. The snapshot of the display window is shown in Figure 16.7.
The details for CUDA-OpenGL interoperability can be found in [98].

Figure 16.7 A snapshot of electric field distribution scattered from a dielectric cylinder due to a
line source with sinusoidal excitation.
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APPENDIX A

One-dimensional FDTD code

Listing A.1 MATLAB� code for one-dimensional FDTD

491
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Listing A.2 initialize_plotting_parameters

Listing A.3 plot_fields
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APPENDIX B

Convolutional perfectly-matched
layer regions and associated field
updates for a three-dimensional
domain

B.1 Updating Ex at convolutional perfectly-matched layer
(CPML) regions

Initialization

Create new coefficient arrays for Cyexy and Cyexz:

Cyexy ¼ DyCexhz Cyexz ¼ DzCexhy:

Modify the coefficient arrays for Cexhy and Cexhz in the CPML regions:

Cexhz ¼ ð1=keyÞCexhz; in the yn and yp regions:

Cexhy ¼ ð1=kezÞCexhy; in the zn and zp regions:

Finite-difference time-domain (FDTD) time-marching loop

Update Ex in the full domain using the regular updating equation:

Enþ1
x ði; j; kÞ ¼ Cexeði; j; kÞ � En

xði; j; kÞ
þ Cexhzði; j; kÞ � �Hnþ1

2
z ði; j; kÞ � H

nþ1
2

z ði; j � 1; kÞ�
þ Cexhyði; j; kÞ � �Hnþ1

2
y ði; j; kÞ � H

nþ1
2

y ði; j; k � 1Þ�:
Calculate ynþ1

2
exy for the yn and yp regions:

ynþ1
2

exy ði; j; kÞ ¼ beyy
n�1

2
exy ði; j; kÞ þ aey H

nþ1
2

z ði; j; kÞ � Hnþ
z ði; j � 1; kÞ

� �
;
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where

aey ¼ spey

Dyðspeykey þ aeyk2
eyÞ

bey � 1
� �

;

bey ¼ e
� spey

key
þapey

� �
Dt
e0 :

Calculate ynþ1
2

exz for the zn and zp regions:

ynþ1
2

exz ði; j; kÞ ¼ bezy
n�1

2
exz ði; j; kÞ þ aez

�
H

nþ1
2

y ði; j; kÞ � H
nþ1

2
y ði; j; k � 1Þ�;

where

aez ¼ spez

Dzðspezkez þ aezk2
ezÞ

bez � 1½ �;

bez ¼ e�
spez
kez

þapezð ÞDt
e0 :

Add the CPML auxiliary term to Ex in the yn and yp regions:

Enþ1
x ¼ Enþ1

x þ Cyexy � ynþ1
2

exy :

Add the CPML auxiliary term to Ex in the zn and zp regions:

Enþ1
x ¼ Enþ1

x þ Cyexz � ynþ1
2

exz :

(a)

z
y
x

(b)

z
y
x

yn

zn

zp

yp

Figure B.1 CPML regions where Ex is updated: (a) Ex is updated in yn and yp using yexy and
(b) Ex is updated in zn and zp using yexz.
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B.2 Updating Ey at CPML regions

Initialization

Create new coefficient arrays for Cyeyz and Cyeyx:

Cyeyz ¼ DzCeyhx Cyeyx ¼ DxCeyhz:

Modify the coefficient arrays for Ceyhz and Ceyhx in the CPML regions:

Ceyhx ¼ ð1=kezÞCeyhx; in the zn and zp regions:

Ceyhz ¼ ð1=keyÞCeyhz; in the xn and xp regions:

FDTD time-marching loop

Update Ey in the full domain using the regular updating equation:

Enþ1
y ði; j; kÞ ¼ Ceyeði; j; kÞ � En

yði; j; kÞ

þ Ceyhxði; j; kÞ � �Hnþ1
2

x ði; j; kÞ � H
nþ1

2
x ði; j; k � 1Þ�

þ Ceyhzði; j; kÞ � �Hnþ1
2

z ði; j; kÞ � H
nþ1

2
z ði � 1; j; kÞ�:

Calculate ynþ1
2

eyz for the zn and zp regions:

ynþ1
2

eyz ði; j; kÞ ¼ bezy
n�1

2
eyz ði; j; kÞ þ aez

�
H

nþ1
2

x ði; j; kÞ � H
nþ1

2
x ði; j; k � 1Þ�;

(a) (b)

zp

zn

xn

xp

z
y
x

z
y
x

Figure B.2 CPML regions where Ey is updated: (a) Ey is updated in zn and zp using yeyz and
(b) Ey is updated in xn and xp using yeyx.
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where

aez ¼ spez

Dzðspezkez þ aezk2
ezÞ

bez � 1½ �;

bez ¼ e�
spez
kez

þapezð ÞDt
e0 :

Calculate ynþ1
2

eyx for the xn and xp regions:

ynþ1
2

eyx ði; j; kÞ ¼ bexy
n�1

2
eyx ði; j; kÞ þ aex

�
H

nþ1
2

z ði; j; kÞ � H
nþ1

2
z ði � 1; j; kÞ�;

where

aex ¼ spex

Dxðspexkex þ aexk2
exÞ

bex � 1½ �;

bex ¼ e�
spex
kex

þapexð ÞDt
e0 :

Add the CPML auxiliary term to Ey in the zn and zp regions:

Enþ1
y ¼ Enþ1

y þ Cyeyz � ynþ1
2

eyz :

Add the CPML auxiliary term to Ey in the xn and xp regions:

Enþ1
y ¼ Enþ1

y þ Cyeyx � ynþ1
2

eyx :

B.3 Updating Ez at CPML regions

Initialization

Create new coefficient arrays for Cyezx and Cyezy:

Cyezx ¼ DxCezhy Cyezy ¼ DyCeyhx:

Modify the coefficient arrays for Cezhx and Cezhy in the CPML regions:

Cezhy ¼ ð1=kexÞCezhy; in the xn and xp regions:

Cezhx ¼ ð1=kezÞCezhx; in the yn and yp regions:

FDTD time-marching loop

Update Ez in the full domain using the regular updating equation:

Enþ1
z ði; j; kÞ ¼ Cezeði; j; kÞ � En

z ði; j; kÞ þ Cezhyði; j; kÞ � �Hnþ1
2

y ði; j; kÞ � H
nþ1

2
y ði � 1; j; kÞ�

þ Cezhxði; j; kÞ � �Hnþ1
2

x ði; j; kÞ � H
nþ1

2
x ði; j � 1; kÞ�
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Calculate ynþ1
2

ezx for the xn and xp regions:

ynþ1
2

ezx ði; j; kÞ ¼ bexy
n�1

2
ezx ði; j; kÞ þ aex

�
H

nþ1
2

y ði; j; kÞ � H
nþ1

2
y ði � 1; j; kÞ�;

where

aex ¼ spex

Dxðspexkex þ aexk2
exÞ

bex � 1½ �;

bex ¼ e�
spex
kex

þapexð ÞDt
e0 :

Calculate ynþ1
2

ezy for the yn and yp regions:

ynþ1
2

ezy ði; j; kÞ ¼ beyy
n�1

2
ezy ði; j; kÞ þ aey

�
H

nþ1
2

x ði; j; kÞ � H
nþ1

2
x ði; j � 1; kÞ�;

where

aey ¼ spey

Dyðspeykey þ aeyk2
eyÞ

bey � 1
� �

;

bey ¼ e
� spey

key
þapey

� �
Dt
e0 :

Add the CPML auxiliary term to Ez in the xn and xp regions:

Enþ1
z ¼ Enþ1

z þ Cyezx � ynþ1
2

ezx :

Add the CPML auxiliary term to Ez in the yn and yp regions:

Enþ1
z ¼ Enþ1

z þ Cyezy � ynþ1
2

ezy :

z
y
x

z
y
x

(a) (b)

yn

yp

xp

xn

Figure B.3 CPML regions where Ez is updated: (a) Ez is updated in xn and xp using yezx and
(b) Ez is updated in yn and yp using yezy.
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B.4 Updating Hx at CPML regions

Initialization

Create new coefficient arrays for Cyhxy and Cyhxz:

Cyhxy ¼ DyChxez Cyhxz ¼ DzChxey:

Modify the coefficient arrays for Chxey and Chxez in the CPML regions:

Chxez ¼ ð1=kmyÞChxez; in the yn and yp regiones:

Chxey ¼ ð1=kmzÞChxey; in the zn and zp regiones:

FDTD time-marching loop

Update Hx in the full domain using the regular updating equation:

H
nþ1

2
x ði; j; kÞ ¼ Chxhði; j; kÞ � H

n�1
2

x ði; j; kÞ
þ Chxezði; j; kÞ � En

z ði; j þ 1; kÞ � En
z ði; j; kÞ� �

þ Chxeyði; j; kÞ � �En
yði; j; k þ 1Þ � En

yði; j; kÞ�:
Calculate yn

hxy for the yn and yp regions:

yn
hxyði; j; kÞ ¼ bmyyn�1

hxy ði; j; kÞ þ amy En
z ði; j þ 1; kÞ � En

z ði; j; kÞ� �
;

where

amy ¼ spmy

Dyðspmykmy þ amyk2
myÞ

bmy � 1
� �

;

bmy ¼ e
� spmy

kmy
þapmy

� �
Dt
m0 :

z
y
x

z
y
x

yn

yp

zn

zp

(a) (b)

Figure B.4 CPML regions where Hx is updated: (a) Hx is updated in yn and yp using yhxy and
(b) Hx is updated in zn and zp using yhxz.
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Calculate yn
hxz for the zn and zp regions:

yn
hxzði; j; kÞ ¼ bmzyn�1

hxz ði; j; kÞ þ amz

�
En

yði; j; k þ 1Þ � En
yði; j; kÞ�;

where

amz ¼ spmz

Dzðspmzkmz þ amzk2
mzÞ

bmz � 1½ �;

bmz ¼ e�
spmz
kmz

þapmzð ÞDt
m0 :

Add the CPML auxiliary term to Hx in the yn and yp regions:

H
nþ1

2
x ¼ H

nþ1
2

x þ Cyhxy � yn
hxy:

Add the CPML auxiliary term to Hx in the zn and zp regions:

H
nþ1

2
x ¼ H

nþ1
2

x þ Cyhxz � yn
hxz:

B.5 Updating Hy at CPML regions

Initialization

Create new coefficient arrays for Cyhyz and Cyhyx:

Cyhyz ¼ DzChyex Cyhyx ¼ DxChyez:

Modify the coefficient arrays for Chyez and Chyex in the CPML regions:

Chyex ¼ ð1=kmzÞChyex; in the zn and zp regions:

Chyez ¼ ð1=kmxÞChyez; in the xn and xp regions:

z
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z
y
x

xp

xn

zn

zp

(a) (b)

Figure B.5 CPML regions where Hy is updated: (a) Hy is updated in zn and zp using yhyz and
(b) Hy is updated in xn and xp using yhyx.
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FDTD time-marching loop

Update Hy in the full domain using the regular updating equation

H
nþ1

2
y ði; j; kÞ ¼ Chyhði; j; kÞ � H

n�1
2

y ði; j; kÞ
þ Chyexði; j; kÞ � En

xði; j; k þ 1Þ � En
xði; j; kÞ� �

þ Chyezði; j; kÞ � En
z ði þ 1; j; kÞ � En

z ði; j; kÞ� �
:

Calculate yn
hyz for the zn and zp regions:

yn
hyzði; j; kÞ ¼ bmzyn�1

hyz ði; j; kÞ þ amz En
xði; j; k þ 1Þ � En

xði; j; kÞ� �
;

where

amz ¼ spmz

Dzðspmzkmz þ amzk2
mzÞ

bmz � 1½ �;

bmz ¼ e�
spmz
kmz

þapmzð ÞDt
m0 :

Calculate yn
hyx for the xn and xp regions:

yn
hyxði; j; kÞ ¼ bmxyn�1

hyx ði; j; kÞ þ amx En
z ði þ 1; j; kÞ � En

z ði; j; kÞ� �
;

where

amx ¼ spmx

Dxðspmxkmx þ amxk2
mxÞ

bmx � 1½ �;

bmx ¼ e�
spmx
kmx

þapmxð ÞDt
m0 :

Add the CPML auxiliary term to Hy in the zn and zp regions:

H
nþ1

2
y ¼ H

nþ1
2

y þ Cyhyz � yn
hyz:

Add the CPML auxiliary term to Hy in the xn and xp regions:

H
nþ1

2
y ¼ H

nþ1
2

y þ Cyhyx � yn
hyx:

z
y
x

z
y

x

xp

xn
yn

yp

(a) (b)

Figure B.6 CPML regions where Hz is updated: (a) Hz is updated in xn and xp using yhzx and (b)
Hz is updated in yn and yp using yhzy.
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B.6 Updating Hz at CPML regions

Initialization

Create new coefficient arrays for Cyhzx and Cyhzy:

Cyhzy ¼ DxChzey Cyhzy ¼ DyChzex:

Modify the coefficient arrays for Chzex and Chzey in the CPML regions:

Chzey ¼ ð1=kmxÞChzey; in the xn and xp regions:

Chzex ¼ ð1=kmyÞChzex; in the yn and yp regions:

FDTD time-marching loop

Update Hz in the full domain using the regular updating equation:

H
nþ1

2
z ði; j; kÞ ¼ Chzhði; j; kÞ � H

n�1
2

z ði; j; kÞ
þ Chzeyði; j; kÞ � �En

yði þ 1; j; kÞ � En
yði; j; kÞ�

þChzexði; j; kÞ � En
xði; j þ 1; kÞ � En

xði; j; kÞ� �
:

Calculate yn
hzx for the xn and xp regions:

yn
hzxði; j; kÞ ¼ bmxyn�1

hzx ði; j; kÞ þ amx

�
En

yði þ 1; j; kÞ � En
yði; j; kÞ�;

where

amx ¼ spmx

Dxðspmxkmx þ amxk2
mxÞ

bmx � 1½ �;

bmx ¼ e�
spmx
kmx

þapmxð ÞDt
m0 :

Calculate yn
hzy for the yn and yp regions:

yn
hzyði; j; kÞ ¼ bmyyn�1

hzy ði; j; kÞ þ amy

�
En

yði; j þ 1; kÞ � En
yði; j; kÞ�;

where

amy ¼ spmy

Dyðspmykmy þ amyk2
myÞ

bmy � 1
� �

;

bmy ¼ e
� spmy

kmy
þapmy

� �
Dt
m0 :

Add the CPML auxiliary term to Hz in the xn and xp regions:

H
nþ1

2
z ¼ H

nþ1
2

z þ Cyhzx � yn
hzx:

Add the CPML auxiliary term to Hz in the yn and yp regions:

H
nþ1

2
z ¼ H

nþ1
2

z þ Cyhzy � yn
hzy:
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APPENDIX C

MATLAB‡ code for plotting far-field
patterns

Listing C.1 Code for plotting far-field patterns on a constant q plane

f u n c t i o n  p o l a r _ p l o t _ c o n s t a n t _ t h e t a ( p h i , p a t t e r n _ 1 , p a t t e r n _ 2 ,  . . .
        m a x _ v a l ,  s t e p _ s i z e ,  n u m b e r _ o f _ r i n g s , . . .
        l i n e _ s t y l e _ 1 ,  l i n e _ s t y l e _ 2 , c o n s t a n t _ t h e t a ,  . . .
        l e g e n d _ 1 , l e g e n d _ 2 , s c a l e _ t y p e )

%  t h i s  f u n c t i o n  p l o t s  t w o  p o l a r  p l o t s  i n  t h e  s a m e  fi g u r e
p l o t _ r a n g e  =  s t e p _ s i z e  *  n u m b e r _ o f _ r i n g s ;
m i n _ v a l  =  m a x _ v a l  -  p l o t _ r a n g e ;  

h o l d  o n ;
t h  =  0 : ( p i / 5 0 ) : 2 * p i ;  c i r c l e _ x  =  c o s ( t h ) ;  c i r c l e _ y  =  s i n ( t h ) ;
f o r  m i  =  1 : n u m b e r _ o f _ r i n g s
    r  =  ( 1 / n u m b e r _ o f _ r i n g s )  *  m i ;  
    p l o t ( r * c i r c l e _ x , r * c i r c l e _ y , ' : ' , ' c o l o r ' , ' k ' , ' l i n e w i d t h ' , 1 ) ;
    t e x t ( 0 . 0 4 , r , [ n u m 2 s t r ( m i n _ v a l + s t e p _ s i z e * m i ) ] , . . .
        ' v e r t i c a l a l i g n m e n t ' , ' b o t t o m ' , ' c o l o r ' , ' k ' , . . .
        ' f o n t w e i g h t ' , ' d e m i ' , ' f o n t s i z e ' , 1 0 ) ;
e n d

r = [ 0 : 0 . 1 : 1 ] ;
f o r  m i  =  0 : 1 1
    t h = m i * p i / 6 ;
    p l o t ( r * c o s ( t h ) , r * s i n ( t h ) , ' : ' , ' c o l o r ' , ' k ' , ' l i n e w i d t h ' , 1 ) ;
t e x t ( 1 . 1 * c o s ( t h ) , 1 . 1 * s i n ( t h ) , [ n u m 2 s t r ( 3 0 * m i ) ] , . . .
        ' h o r i z o n t a l a l i g n m e n t ' , ' c e n t e r ' , ' c o l o r ' , ' k ' , . . .
        ' f o n t w e i g h t ' , ' d e m i ' , ' f o n t s i z e ' , 1 0 ) ;
e n d

p a t t e r n _ 1 ( fi n d ( p a t t e r n _ 1  <  m i n _ v a l ) )  =  m i n _ v a l ;   
p a t t e r n _ 1  =  ( p a t t e r n _ 1  -  m i n _ v a l ) / p l o t _ r a n g e ;
p a t t e r n _ 2 ( fi n d ( p a t t e r n _ 2  <  m i n _ v a l ) )  =  m i n _ v a l ;   
p a t t e r n _ 2  =  ( p a t t e r n _ 2  -  m i n _ v a l ) / p l o t _ r a n g e ;

%  t r a n s f o r m  d a t a  t o  C a r t e s i a n  c o o r d i n a t e s
x 1  =  p a t t e r n _ 1 . * c o s ( p h i ) ;
y 1  =  p a t t e r n _ 1 . * s i n ( p h i ) ;

x 2  =  p a t t e r n _ 2 . * c o s ( p h i ) ;
y 2  =  p a t t e r n _ 2 . * s i n ( p h i ) ;

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39
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%  p l o t  d a t a  o n  t o p  o f  g r i d
p  =  p l o t ( x 1 , y 1 , l i n e _ s t y l e _ 1 , x 2 , y 2 , l i n e _ s t y l e _ 2 , ' l i n e w i d t h ' , 2 ) ;
t e x t ( 1 . 2 * c o s ( p i / 4 ) , 1 . 2 * s i n ( p i / 4 ) , . . .
    [ ' \ t h e t a  =  '  n u m 2 s t r ( c o n s t a n t _ t h e t a )  ' ^ o ' ] , . . .
    ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
l e g e n d ( p , l e g e n d _ 1 , l e g e n d _ 2 , ' l o c a t i o n ' , ' s o u t h e a s t ' ) ;
t e x t ( - 1 ,  - 1 . 1 ,  s c a l e _ t y p e , ' f o n t s i z e ' , 1 2 ) ;
t e x t ( 1 . 0 2  *  1 . 1 ,   0 . 1 3  *  1 . 1 , ' \ u p a r r o w ' , . . .
    ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
t e x t ( 1 . 0 8  *  1 . 1 ,   0 . 1 3  *  1 . 1 , ' \ p h i ' , . . .
    ' f o n t n a m e ' , ' a r i a l ' , ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' , ' f o n t s i z e ' , 1 2 ) ;

i f  c o n s t a n t _ t h e t a  = =  9 0
    t e x t ( 1 . 2 ,   0 . 0 6 , ' x ' , ' f o n t n a m e ' , ' a r i a l ' , . . .
        ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
    t e x t ( 1 . 2 ,  0 , ' \ r i g h t a r r o w ' , ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
    t e x t ( 0 . 0 6 , 1 . 2 3 , ' y ' , ' f o n t n a m e ' , ' a r i a l ' , . . .
        ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
    t e x t ( 0 , 1 . 2 3 , ' \ u p a r r o w ' , ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
    t e x t ( 1 . 2 * c o s ( p i / 4 ) , 1 . 1 8 * s i n ( p i / 4 ) - 0 . 1 2 , . . .
        ' x y  p l a n e ' , ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
e n d

a x i s ( [ - 1 . 2  1 . 2  - 1 . 2  1 . 2 ] ) ;
a x i s ( ' e q u a l ' ) ; a x i s ( ' o f f ' ) ;
h o l d  o f f ;
s e t ( g c f , ' P a p e r P o s i t i o n M o d e ' , ' a u t o ' ) ;
s e t ( g c a , ' f o n t s i z e ' , 1 2 ) ;

41
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45

47

49

51

53

54

55

57

59

61

63

65

Listing C.2 Code for plotting far-field patterns on a constant f plane

f u n c t i o n  p o l a r _ p l o t _ c o n s t a n t _ p h i ( t h e t a , p a t t e r n _ 1 , p a t t e r n _ 2 ,  . . .
        m a x _ v a l ,  s t e p _ s i z e ,  n u m b e r _ o f _ r i n g s , . . .
        l i n e _ s t y l e _ 1 ,  l i n e _ s t y l e _ 2 , c o n s t a n t _ p h i ,  . . .
        l e g e n d _ 1 , l e g e n d _ 2 , s c a l e _ t y p e )

%  t h i s  f u n c t i o n  p l o t s  t w o  p o l a r  p l o t s  i n  t h e  s a m e  fi g u r e
p l o t _ r a n g e  =  s t e p _ s i z e  *  n u m b e r _ o f _ r i n g s ;
m i n _ v a l  =  m a x _ v a l  -  p l o t _ r a n g e ;  

h o l d  o n ;
t h  =  0 : ( p i / 5 0 ) : 2 * p i ;  c i r c l e _ x  =  c o s ( t h ) ;  c i r c l e _ y  =  s i n ( t h ) ;
f o r  m i  =  1 : n u m b e r _ o f _ r i n g s
r  =  ( 1 / n u m b e r _ o f _ r i n g s )  *  m i ;  
    p l o t ( r * c i r c l e _ x , r * c i r c l e _ y , ' : ' , ' c o l o r ' , ' k ' , ' l i n e w i d t h ' , 1 ) ;
    t e x t ( 0 . 0 4 , r , [ n u m 2 s t r ( m i n _ v a l + s t e p _ s i z e * m i ) ] , . . .
        ' v e r t i c a l a l i g n m e n t ' , ' b o t t o m ' , ' c o l o r ' , ' k ' , . . .
        ' f o n t w e i g h t ' , ' d e m i ' , ' f o n t s i z e ' , 1 0 ) ;
e n d

r = [ - 1 : 0 . 1 : 1 ] ;
f o r  m i  =  3 : 8
    t h = m i * p i / 6 ;      
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    p l o t ( r * c o s ( t h ) , r * s i n ( t h ) , ' : ' , ' c o l o r ' , ' k ' , ' l i n e w i d t h ' , 1 ) ;
    t e x t ( 1 . 1 * c o s ( t h ) , 1 . 1 * s i n ( t h ) , [ n u m 2 s t r ( 3 0 * ( m i - 3 ) ) ] , . . .         
        ' h o r i z o n t a l a l i g n m e n t ' , ' c e n t e r ' , ' c o l o r ' , ' k ' , . . .
        ' f o n t w e i g h t ' , ' d e m i ' , ' f o n t s i z e ' , 1 0 ) ;
    t e x t ( - 1 . 1 * c o s ( t h ) , 1 . 1 * s i n ( t h ) , [ n u m 2 s t r ( 3 0 * ( m i - 3 ) ) ] , . . .
        ' h o r i z o n t a l a l i g n m e n t ' , ' c e n t e r ' , ' c o l o r ' , ' k ' , . . .
        ' f o n t w e i g h t ' , ' d e m i ' , ' f o n t s i z e ' , 1 0 ) ;     
e n d
    t e x t ( 0 , - 1 . 1 , ' 1 8 0 ' , . . .
        ' h o r i z o n t a l a l i g n m e n t ' , ' c e n t e r ' , ' c o l o r ' , ' k ' , . . .
        ' f o n t w e i g h t ' , ' d e m i ' , ' f o n t s i z e ' , 1 0 ) ;     
    
p a t t e r n _ 1 ( fi n d ( p a t t e r n _ 1  <  m i n _ v a l ) )  =  m i n _ v a l ;   
p a t t e r n _ 1  =  ( p a t t e r n _ 1  -  m i n _ v a l ) / p l o t _ r a n g e ;
p a t t e r n _ 2 ( fi n d ( p a t t e r n _ 2  <  m i n _ v a l ) )  =  m i n _ v a l ;   
p a t t e r n _ 2  =  ( p a t t e r n _ 2  -  m i n _ v a l ) / p l o t _ r a n g e ;
%  t r a n s f o r m  d a t a  t o  C a r t e s i a n  c o o r d i n a t e s
x 1  =  - p a t t e r n _ 1 . * c o s ( t h e t a + p i / 2 ) ;
y 1  =  p a t t e r n _ 1 . * s i n ( t h e t a + p i / 2 ) ;

x 2  =  - p a t t e r n _ 2 . * c o s ( t h e t a + p i / 2 ) ;
y 2  =  p a t t e r n _ 2 . * s i n ( t h e t a + p i / 2 ) ;

%  p l o t  d a t a  o n  t o p  o f  g r i d
p  =  p l o t ( x 1 , y 1 , l i n e _ s t y l e _ 1 , x 2 , y 2 , l i n e _ s t y l e _ 2 , ' l i n e w i d t h ' , 2 ) ;
t e x t ( 1 . 2 * c o s ( p i / 4 ) , 1 . 2 * s i n ( p i / 4 ) , . . .
    [ ' \ p h i  =  '  n u m 2 s t r ( c o n s t a n t _ p h i )  ' ^ o ' ] , . . .
    ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
l e g e n d ( p , l e g e n d _ 1 , l e g e n d _ 2 , ' l o c a t i o n ' , ' s o u t h e a s t ' ) ;
t e x t ( - 1 ,  - 1 . 1 ,  s c a l e _ t y p e , ' f o n t s i z e ' , 1 2 ) ;
t e x t ( 0 . 2 , 1 . 0 2 , ' \ r i g h t a r r o w ' , ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
t e x t ( 0 . 2 ,  1 . 0 8 , ' \ t h e t a ' , ' f o n t n a m e ' , ' a r i a l ' , ' c o l o r ' , ' b ' , . . .
    ' f o n t w e i g h t ' , ' d e m i ' , ' f o n t s i z e ' , 1 2 ) ;
t e x t ( - 0 . 2 1 , 1 . 0 2 , ' \ l e f t a r r o w ' , ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
t e x t ( - 0 . 2 ,  1 . 0 8 , ' \ t h e t a ' , ' f o n t n a m e ' , ' a r i a l ' , ' c o l o r ' , ' b ' , . . .
    ' f o n t w e i g h t ' , ' d e m i ' , ' f o n t s i z e ' , 1 2 ) ;

i f  c o n s t a n t _ p h i  = =  0
    t e x t ( 1 . 2 , 0 . 0 6 , ' x ' , ' f o n t n a m e ' , ' a r i a l ' , ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
    t e x t ( 1 . 2 , 0 , ' \ r i g h t a r r o w ' , ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
    t e x t ( 0 . 0 6 , 1 . 2 3 , ' z ' , ' f o n t n a m e ' , ' a r i a l ' , ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
    t e x t ( 0 , 1 . 2 3 , ' \ u p a r r o w ' , ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
    t e x t ( 1 . 2 * c o s ( p i / 4 ) , 1 . 1 8 * s i n ( p i / 4 ) - 0 . 1 2 , ' x z  p l a n e ' , . . .
         ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
e n d
i f  c o n s t a n t _ p h i  = =  9 0
    t e x t ( 1 . 2 , 0 . 0 6 , ' y ' , ' f o n t n a m e ' , ' a r i a l ' , ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
    t e x t ( 1 . 2 ,  0 , ' \ r i g h t a r r o w ' , ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
    t e x t ( 0 . 0 6 , 1 . 2 3 , ' z ' , ' f o n t n a m e ' , ' a r i a l ' , ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
    t e x t ( 0 , 1 . 2 3 , ' \ u p a r r o w ' , ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
    t e x t ( 1 . 2 * c o s ( p i / 4 ) , 1 . 1 8 * s i n ( p i / 4 ) - 0 . 1 2 , ' y z  p l a n e ' , . . .
        ' c o l o r ' , ' b ' , ' f o n t w e i g h t ' , ' d e m i ' ) ;
e n d
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a x i s ( [ - 1 . 2  1 . 2  - 1 . 2  1 . 2 ] ) ;
a x i s ( ' e q u a l ' ) ; a x i s ( ' o f f ' ) ;
h o l d  o f f ;
s e t ( g c f , ' P a p e r P o s i t i o n M o d e ' , ' a u t o ' ) ;
s e t ( g c a , ' f o n t s i z e ' , 1 2 ) ;

79

81
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APPENDIX D

MATLAB‡ GUI for project template

The supplementary files (available on request from the publisher by emailing books@theiet.
org) include a base code for Chapters 12–16 in the ‘‘codelisting\Appendix_D’’ folder. Also
placed in this folder is a utility code with a graphical user interface (GUI), named as
create_project_template, which helps the user create template definition files for a new
project. Running the file create_project_template.m in MATLAB will launch the GUI
shown in Figure D.1 below. Here the user can specify some properties of the project such
as simulation parameters, cell sizes, boundary conditions, types of objects, sources,
lumped components, and output parameters. Also, the user enters a name for the project.
Clicking on the ‘‘create template file’’ button will generate a folder with a name which is
the same as the project name that includes the problem definition files. These files are not
complete yet they can be used as template files to define the problem for which the
simulation is sought: the user can open these problem definition files and complete them
with the details. With this code organization, the problem definition files for each project

Figure D.1 The GUI to create template problem definition files for a project.
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will be located in a separate folder. Meanwhile, other parts of the FDTD code are located
in a folder named as ‘‘fdtd_files’’.

To run the simulation for a project, one needs to open the ‘‘fdtd_solve.m’’ file and
specify the name of the project in it. Running the code ‘‘fdtd_solve.m’’ will add the project
folder and the ‘‘fdtd_files’’ folder in MATLAB path list, run the problem definition files, and
then run the rest of the FDTD code.
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