Nuussse
R
P

|\
\\\\“y}

\ JEL)

W

i
Ny
\y

\

]

\\‘

\
\

The Finite-Difference Time-Domain
Method for Electromagnetics
with MATLAB® Simulations

2nd Edition

- THE ACES SERIES ON COMPUTATIONAL ELECTROMAGNETICS AND ENGINEERING

The Finite-Difference Time-Domain
Method for Electromagnetics
with MATLAB® Simulations

The ACES Series on Computational Electromagnetics and
Engineering (CEME)

Andrew F. Peterson, PhD — Series Editor

The volumes in this series encompass the development and application of numerical tech-
niques to electrical systems, including the modeling of electromagnetic phenomena over all
frequency ranges and closely-related techniques for acoustic and optical analysis. The scope
includes the use of computation for engineering design and optimization, as well as the
application of commercial modeling tools to practical problems. The series will include titles
for undergraduate and graduate education, research monographs for reference, and practi-
tioner guides and handbooks.

Series Editorial Board

Andrew F. Peterson — Series Editor, Georgia Institute of Technology
Atef Z. Elsherbeni — Associate Series Editor, Colorado School of Mines
James C. Rautio, Associate Series Editor, Sonnet Sofware, Inc.

Branislav M. Notaros, Associate Series Editor, Colorado State University

Titles in the Series

Elsherbeni and Demir — The Finite-Difference Time-Domain Method for Electromagnetics
with MATLAB® Simulations, 2nd Edition (2015)

Elsherbeni, Nayeri, and Reddy — Antenna Analysis and Design Using FEKO Electro-
magnetic Simulation Software (2014)

Yu, Yang, and Li — VALU, AVX and GPU Acceleration Techniques for Parallel FDTD
Methods (2013)

Warnick — Numerical Methods for Engineering: An Introduction Using MATLAB® and
Computational Electromagnetics (2011)

The Finite-Difference Time-Domain
Method for Electromagnetics
with MATLAB® Simulations

ACES Series
2nd Edition

Atef Z. Elsherbeni

Colorado School of Mines

Veysel Demir
Northern lllinois University

@ Scmaﬁ>

PUBLISHING
an imprint of the IET

scitechpub.com

@ ScCITEC

PUBLISHING
an imprint of the IET

Published by SciTech Publishing, an imprint of the IET
www.scitechpub.com
www.theiet.org

The Institution of Engineering and Technology is registered as a Charity in England & Wales (no. 211014) and
Scotland (no. SC038698).

Copyright © 2009, 2016 SciTech Publishing, Edison, NJ. All rights reserved.

First published 2009 (978-1-89112-171-5)
Reprinted 2013
Second edition 2015

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the United States Copyright Act of 1976, without either the prior written permission of the Publisher,
or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at copyright.com. Requests to the
Publisher for permission should be addressed to The Institution of Engineering and Technology, Michael Faraday
House, Six Hills Way, Stevenage, Herts, SG1 2AY, United Kingdom.

While the authors and publisher believe that the information and guidance given in this work are correct, all parties
must rely upon their own skill and judgement when making use of them. Neither the authors nor publisher assumes
any liability to anyone for any loss or damage caused by any error or omission in the work, whether such an error or
omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

ISBN 978-1-61353-175-4 (hardback)

Typeset in India by MPS Limited
Printed in the UK by CPI Antony Rowe Ltd

To my wife, Magda, my daughters, Dalia and Donia, and my son, Tamer.
To the memory of my parents.
Atef Z. Elsherbeni

To my parents, Abdurrahman and Aysan, my wife, Minmei, and
my daughter, Laureen, and my son, Ronnie.
Veysel Demir

This page intentionally left blank

Contents

List of figures
List of tables

Preface

Acknowledgements

1 Introduction to FDTD

1.1
1.2
1.3
1.4
1.5
1.6

The finite-difference time-domain method basic equations
Approximation of derivatives by finite differences

FDTD updating equations for three-dimensional problems
FDTD updating equations for two-dimensional problems
FDTD updating equations for one-dimensional problems

Exercises

2 Numerical stability and dispersion

2.1

2.2
23

Numerical stability

2.1.1 Stability in time-domain algorithm
2.1.2 CFL condition for the FDTD method
Numerical dispersion

Exercises

3 Building objects in the Yee grid

3.1

32
33

Definition of objects

3.1.1 Defining the problem space parameters
3.1.2 Defining the objects in the problem space
Material approximations

Subcell averaging schemes for tangential and normal components

XV
XXiv
XXV
XXViii

1

13
23
27
32

33

33

33
35
37

41

43
43

45
48
50

52

vii

viii

Contents

3.4 Defining objects snapped to the Yee grid

3.4.1

Defining zero-thickness PEC objects

3.5 Creation of the material grid

3.6 Improved eight-subcell averaging

3.7 Exercises

Active and passive lumped elements

4.1 FDTD updating equations for lumped elements

4.1.1
4.1.2
413
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8
4.19

Voltage source

Hard voltage source

Current source

Resistor

Capacitor

Inductor

Lumped elements distributed over a surface or within a volume
Diode

Summary

4.2 Definition, initialization, and simulation of lumped elements

4.2.1
422
423
4.2.4
425
4.2.6
4.2.7
428

Definition of lumped elements

Initialization of FDTD parameters and arrays

Initialization of lumped element components

Initialization of updating coefficients

Sampling electric and magnetic fields, voltages, and currents
Definition and initialization of output parameters

Running an FDTD simulation: The time-marching loop
Displaying FDTD simulation results

4.3 Simulation examples

43.1
432
433

A resistor excited by a sinusoidal voltage source
A diode excited by a sinusoidal voltage source
A capacitor excited by a unit-step voltage source

4.4 Exercises

Source waveforms and time to frequency
domain transformation

5.1 Common source waveforms for FDTD simulations

5.1.1
5.1.2
5.13
5.14

Sinusoidal waveform

Gaussian waveform

Normalized derivative of a Gaussian waveform
Cosine-modulated Gaussian waveform

55
57
58

66
66

71

71

72
74
75
76
77
78
79
81
85
86

86
89
90
97
108
111
119
129
132
132
135
137
141

143

143

144
145
148
151

8

Contents

5.2 Definition and initialization of source waveforms for FDTD
simulations

5.3 Transformation from time domain to frequency domain
5.4 Simulation examples

5.4.1 Recovering a time waveform from its Fourier transform

5.4.2 An RLC circuit excited by a cosine-modulated
Gaussian waveform

5.5 Exercises

S-Parameters

6.1 Scattering parameters
6.2 S-Parameter calculations
6.3 Simulation examples

6.3.1 Quarter-wave transformer
6.4 Exercises

Perfectly matched layer absorbing boundary

7.1 Theory of PML
7.1.1 Theory of PML at the vacuum—PML interface
7.1.2 Theory of PML at the PML-PML interface

7.2 PML equations for three-dimensional problem space

7.3 PML loss functions

7.4 FDTD updating equations for PML and MATLAB®
implementation

7.4.1 PML updating equations — two-dimensional TE, case
7.4.2 PML updating equations — two-dimensional TM, case

743 MATLAB® implementation of the two-dimensional FDTD
method with PML

7.5 Simulation examples

7.5.1 Validation of PML performance

7.5.2 Electric field distribution

7.5.3 Electric field distribution using DFT
7.6 Exercises

Advanced PML formulations

8.1 Formulation of CPML

8.1.1 PML in stretched coordinates
8.1.2 Complex stretching variables in CFS-PML

ix

151
155
158
160

162
167

169

169
170
179

179
184

185

185
185
188
191

192

194

194
197

199
215
215
220
225
227

229

229

229
230

X

Contents

8.1.3 The matching conditions at the PML-PML interface
8.1.4 Equations in the time domain

8.1.5 Discrete convolution

8.1.6 The recursive convolution method

8.2 The CPML algorithm

8.2.1 Updating equations for CPML
8.2.2 Addition of auxiliary CPML terms at respective regions
8.3 CPML parameter distribution
8.4 MATLAB® implementation of CPML in the three-dimensional
FDTD method
8.4.1 Definition of CPML
8.4.2 Initialization of CPML
8.4.3 Application of CPML in the FDTD time-marching loop
8.5 Simulation examples

8.5.1 Microstrip low-pass filter
8.5.2 Microstrip branch line coupler
8.5.3 Characteristic impedance of a microstrip line
8.6 CPML in the two-dimensional FDTD method
8.7 MATLAB® implementation of CPML in the two-dimensional
FDTD method
8.7.1 Definition of CPML
8.7.2 Initialization of CPML
8.7.3 Application of CPML in the FDTD time-marching loop
8.7.4 Validation of CPML performance
8.8 Auxiliary differential equation PML

8.8.1 Derivation of the ADE-PML formulation
8.8.2 MATLAB® implementation of the ADE-PML formulation
8.9 Exercises

Near-field to far-field transformation

9.1 Implementation of the surface equivalence theorem

9.1.1 Surface equivalence theorem
9.1.2 Equivalent surface currents in FDTD simulation
9.1.3 Antenna on infinite ground plane
9.2 Frequency domain near-field to far-field transformation
9.2.1 Time-domain to frequency-domain transformation
9.2.2 Vector potential approach
9.2.3 Polarization of radiation field
9.2.4 Radiation efficiency

231
231
231
232
234
235
236
237

238

239
240
246
249

249
250
258
264

267

268
268
269
271
273
273
275
275

279

281
281
282
285
285

285
286
287
289

Contents

9.3 MATLAB® implementation of near-field to far-field
transformation

9.3.1 Definition of NF-FF parameters

9.3.2 Initialization of NF-FF parameters

9.3.3 NF-FF DFT during time-marching loop

9.3.4 Postprocessing for far-field calculation
9.4 Simulation examples

9.4.1 Inverted-F antenna

9.4.2 Strip-fed rectangular dielectric resonator antenna
9.5 Exercises

10 Thin-wire modeling
10.1 Thin-wire formulation
10.2 MATLAB® implementation of the thin-wire formulation
10.3 Simulation examples
10.3.1 Thin-wire dipole antenna
10.4 An improved thin-wire model

10.5 MATLAB® implementation of the improved
thin-wire formulation

10.6 Simulation example

10.7 Exercises

11 Scattered field formulation
11.1 Scattered field basic equations
11.2 The scattered field updating equations
11.3 Expressions for the incident plane waves
11.4 MATLAB® implementation of the scattered field formulation
11.4.1 Definition of the incident plane wave
11.4.2 Initialization of the incident fields
11.4.3 [Initialization of the updating coefficients
11.4.4 Calculation of the scattered fields
11.4.5 Postprocessing and simulation results
11.5 Simulation examples
11.5.1 Scattering from a dielectric sphere

11.5.2 Scattering from a dielectric cube

11.5.3 Reflection and transmission coefficients of a
dielectric slab

11.6 Exercises

xi

289

289
290
293
297
309
309
315
320

323

323
327
330

330
335

339
339
341

345

345
346
350
354
354
355
358
359
361
365

365
370

376
380

Xii Contents

12 Total field/scattered field formulation
12.1 Introduction
12.2 MATLAB® implementation of the TF/SF formulation

12.2.1 Definition and initialization of incident fields

12.2.2 Updating incident fields

12.2.3 Updating fields on both sides of the TF/SF boundary
12.3 Simulation examples

12.3.1 Fields in an empty problem space

12.3.2 Scattering from a dielectric sphere
12.4 Exercises

13 Dispersive material modeling

13.1 Modeling dispersive media using ADE technique
13.1.1 Modeling Debye medium using ADE technique
13.1.2 Modeling Lorentz medium using ADE technique
13.1.3 Modeling Drude medium using ADE technique

13.2 MATLAB® implementation of ADE algorithm for
Lorentz medium
13.2.1 Definition of Lorentz material parameters
13.2.2 Material grid construction for Lorentz objects
13.2.3 Initialization of updating coefficients
13.2.4 Field updates in time-marching loop

13.3 Simulation examples
13.3.1 Scattering from a dispersive sphere

13.4 Exercises

14 Analysis of periodic structures
14.1 Periodic boundary conditions
14.2 Constant horizontal wavenumber method
14.3 Source excitation
14.4 Reflection and transmission coefficients

14.4.1 TE mode reflection and transmission coefficients

14.4.2 TM mode reflection and transmission coefficients

14.4.3 TEM mode reflection and transmission coefficients
14.5 MATLAB® implementation of PBC FDTD algorithm

14.5.1 Definition of a PBC simulation

381
381

386

386
389
390
393
394
395
396

397

398

398
400
401

402

402
403
406
408
410

410
412

413
413
417
422
424

425
427
428
429

429

15

16

Contents

14.5.2 Initialization of PBC
14.5.3 PBC updates in time-marching loop
14.6 Simulation examples
14.6.1 Reflection and transmission coefficients of a dielectric slab
14.6.2 Reflection and transmission coefficients of a dipole FSS
14.6.3 Reflection and transmission coefficients of a
Jarusalem-cross FSS
Nonuniform grid
15.1 Introduction
15.2 Transition between fine and coarse grid subregions
15.3 FDTD updating equations for the nonuniform grids
15.4 Active and passive lumped elements
15.5 Defining objects snapped to the electric field grid
15.6 MATLAB® implementation of nonuniform grids
15.6.1 Definition of subregions
15.6.2 Initialization of subregions
15.6.3 Initialization of updating coefficients
15.6.4 Initialization of time step duration
15.7 Simulation examples

15.7.1 Microstrip patch antenna
15.7.2 Three-pole microstrip low-pass filter

Graphics processing unit acceleration of finite-difference
time-domain method

16.1 GPU programming using CUDA

16.1.1 Host and device
16.1.2 Thread hierarchy
16.1.3 Memory hierarchy
16.1.4 Performance optimization in CUDA
16.1.5 Achieving parallelism
16.2 CUDA implementation of two-dimensional FDTD

16.2.1 Coalesced global memory access
16.2.2 Thread to cell mapping
16.2.3 Use of shared memory
16.2.4 Optimization of number of threads
16.3 Performance of two-dimensional FDTD on CUDA

xiii

431
434
442
442
443

444
447
447
447
452
454
457
458

459
460
464
466
466

466
467

471

472

472
474
476
477
477
477

479
481
486
487
487

Xiv Contents

APPENDIX A One-dimensional FDTD code

APPENDIX B Convolutional perfectly-matched layer
regions and associated field updates for
a three-dimensional domain

APPENDIX C MATLAB® code for plotting far-field patterns
APPENDIX D MATLAB® GUI for project template
References

About the authors

Index

491

495
505
509
511
519
523

List of figures

1.1

1.2

1.3
1.4

1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

(a) Approximation of the derivative of f(x) at x by finite differences:

forward difference; (b) approximation of the derivative of f(x) at x by finite

differences: backward difference; (c) approximation of the derivative of
f(x) at x by finite differences: central difference

(a) f(x), f'(x), and differences between f”(x) and finite difference
approximations of f(x) for Ax = z/5 and Ax = /10: f(x) = sin(x)e °>";
(b) f(x), f'(x), and differences between f”(x) and finite difference

approximations of f(x) for Ax = z/5 and Ax = 7/10: f'(x) = cos(x)e ***—

0.3 sin(x)e % and finite difference approximations of f’ (x) for Ax = 7/5;
(c) f(x), f'(x), and differences between f”(x) and finite difference
approximations of f(x) for Ax = /5 and Ax = 7/10: error(f”(x)) for

Ax = 7/5; (d) f(x), f'(x), and differences between f’(x) and finite difference

approximations of f'(x) for Ax = /5 and Ax = 7/10: error(f’(x)) for
Ax = 7/10

Sample points of f(x)

A three-dimensional FDTD computational space composed of (N, x N, x N.)

Yee cells

Arrangement of field components on a Yee cell indexed as (i, j, k)
Material parameters indexed on a Yee cell

Field components around E. (i, j, k)

Field components around H,(i, j, k)

Explicit FDTD procedure

Two-dimensional 7F, FDTD field components

Two-dimensional TM, FDTD field components

One-dimensional FDTD — positions of field components £, and H,
One-dimensional FDTD — positions of field components £, and H,

Snapshots of a one-dimensional FDTD simulation: (a) fields observed
after 100 time steps; (b) fields observed after 300 time steps; (c) fields
observed after 615 time steps; and (d) fields observed after 700 time steps

13

14
14
16
17
18
22
24
26
27
28

30

XV

Xvi

2.1
2.2
23
24

25

3.1

3.2
3.3
34
3.5

3.6

3.7

3.8

3.9
3.10
3.11

3.12

3.13

3.14

3.15

4.1

4.2

43

4.4

List of figures

The time—space domain grid with error & propagating with 1 = 1/2
The time—space domain grid with error ¢ propagating with 1 = 1
The time—space domain grid with error & propagating with 1 = 2

Maximum magnitude of E. in the one-dimensional problem space for
simulations with Af = 3.3356 ps and At = 3.3357 ps

(a) Maximum magnitude of £, in the one-dimensional problem space:
simulation with Ax = 1 mm; (b) maximum magnitude of E, in the
one-dimensional problem space: simulation with Ax = 4 mm

Parameters defining a brick and a sphere in Cartesian coordinates:
(a) parameters defining a brick and (b) parameters defining a sphere

An FDTD problem space and the objects defined in it
A cell around material component &.(i, j, k) partially filled with two media
A cell around material component ¢.(i, j, k) divided into eight subcells

Material component &.(i, j, k) parallel to the boundary of two different media
partially filling a material cell

Material component &.(i, j, k) normal to the boundary of two different
media partially filling a material cell

Material component &.(i, j, k) located between four Yee cells filled with four
different material types

Material component u.(i, j, k) located between two Yee cells filled with two
different material types

A PEC plate with zero thickness surrounded by four ¢° material components
An FDTD problem space and the objects approximated by snapping to cells
Positions of the £, components on the Yee grid for a problem space
composed of (Nx x Ny x Nz) cells

Positions of the H, components on the Yee grid for a problem space
composed of (Nx x Ny x Nz) cells

Material grid on three plane cuts: (a) relative permittivity components

and (b) relative permeability components

The FDTD problem space of Exercise 3.1: (a) geometry of the problem

and (b) relative permittivity distribution

The FDTD problem space of Exercise 3.3: (a) geometry of the problem
and (b) electric conductivity distribution

Field components around E.(i, j, k)

Voltage sources placed between nodes (i, j, k) and (i, j, k+ 1): (a) voltage
source with internal resistance (soft source) and (b) voltage source without
internal resistance (hard source)

Lumped elements placed between nodes (i, j, k) and (i, j, K+ 1): (a) current
source with internal resistance and (b) resistor

Lumped elements placed between nodes (i, j, k) and (i, j, k+ 1): (a) capacitor
and (b) inductor

34
35
35

36

40

50
50
51
52

53

53

55

56
57
62

63

64

67

68

69

72

73

75

71

4.5

4.6

4.7

4.8

4.9
4.10

4.11
4.12

4.13

4.14

4.15

4.16

4.17

4.18
4.19
4.20
5.1
52
53

54
55

5.6

5.7

5.8

List of figures

Parallel PEC plates excited by a voltage source at one end and terminated
by a resistor at the other end

A voltage source distributed over a surface and a resistor distributed over a
volume

Diodes placed between nodes (i, j, k) and (i, j, k+ 1): (a) diode oriented in
the positive z direction and (b) diode oriented in the negative z direction

A function f(x) and the points approaching to the root of the function
iteratively calculated using the Newton—Raphson method

A diode defined between the nodes (is, js, ks) and (ie, je, ke)

A z-directed voltage source defined between the nodes (is, Js, ks) and

(ie, je, ke)

A volume between PEC plates where a z-directed sampled voltage is required

A surface enclosed by magnetic field components and z-directed current
flowing through it

The y components of the magnetic and electric fields around the node
(is, js, ks): (a) magnetic field components and (b) electric field components

A voltage source terminated by a resistor

Sinusoidal voltage source waveform with 500 MHz frequency and
sampled voltage and current: (a) source waveform and sampled voltage
and (b) sampled current

Sinusoidal voltage source waveform with 500 MHz frequency and
sampled voltage: (a) a voltage source terminated by a diode and (b) source
waveform and sampled voltage

Unit step voltage source waveform and sampled voltage: (a) a voltage source
terminated by a capacitor and (b) sampled voltage and analytical solution

Dimensions of 50 Q stripline

A 50 Q stripline terminated by a resistor

A circuit composed of a voltage source, a capacitor, and a diode

A sinusoidal waveform excited for 4 s: (a) x(¢) and (b) X(w) magnitude
A sinusoidal waveform excited for 8 s: (a) x(¢) and (b) X(w) magnitude

A Gaussian waveform and its Fourier transform: (a) g(#) and (b) G(w)
magnitude

Gaussian waveform shifted by 7o = 4.57 in time

Normalized derivative of a Gaussian waveform and its Fourier transform:
(a) g(¥) and (b) G(w) magnitude

Cosine-modulated Gaussian waveform and its Fourier transform: (a) g(¢)
and (b) G(w) magnitude

A Gaussian waveform and its Fourier transform: (a) g(¢); (b) G(w); and
(c) g(t) recovered from G(w)

An RLC circuit: (a) circuit simulated in FDTD and (b) lumped element
equivalent circuit

xvii

80

80

82

84
96

99
110

111

127

133

136

137

139
141
142
142
144
146

147
149

150

152

161

162

xviii

5.9
5.10

5.11
6.1
6.2

6.3
6.4
6.5

6.6

6.7

6.8
6.9

7.1
7.2
73
7.4

7.5

7.6

7.7
7.8
7.9
7.10
7.11
7.12

7.13

7.14

List of figures

Time-domain response, V,,, compared with source waveform, V

Frequency-domain response of source waveform V; and output voltage

V,: (a) Fourier transform of V and (b) Fourier transform of ¥,
Vo(w)

Transfer function T'(w) = o)

An N-port network

A microstrip low-pass filter terminated by a voltage source and a resistor
on two ends: (a) three-dimensional view and (b) dimensions

S-parameters of the microstrip low-pass filter: (a) Sy, and (b) S;
Sampled voltage at the second port of the microstrip low-pass filter
Sampled voltage at the second port of the microstrip low-pass filter with
0°=02

S-parameters of the microstrip low-pass filter with ¢° = 0.2: (a) S; and
(b) Sz

The geometry and dimensions of a microstrip quarter-wave transformer
matching a 100 Q line to 50 Q line

The S1; and S,; of the microstrip quarter-wave transformer circuit

The problem space for the low-pass filter with absorbers on the xn, xp,
yn, yp, and zp sides

The field decomposition of a TE, polarized plane wave
The plane wave transition at the interface between two PML media
The loss distributions in two-dimensional PML regions

Nonzero regions of PML conductivities for a three-dimensional FDTD
simulation domain: (a) nonzero 0., and 0,,,,; (b) nonzero o,,, and o,
(c) nonzero oy,. and o,,,.; and (d) overlapping PML regions

Nonzero TE. regions of PML conductivities: (a) nonzero o,.,; (b) nonzero
Opey; (€) NONZETO 0yyy,y; and (d) nonzero oy,

Nonzero TM. regions of PML conductivities: (a) nonzero o,,,; (b) nonzero

Opmy; (€C) NONZETO 0y,ey; and (d) nonzero o,

A two-dimensional FDTD problem space with PML boundaries
TE, field components in the PML regions

Field components updated by PML equations

TM, field components in the PML regions

Field components updated by PML equations

A two-dimensional 7E, FDTD problem terminated by PML boundaries and

its simulation results: (a) an empty two-dimensional problem space and
(b) sampled H. in time

A two-dimensional TE, FDTD problem used as open boundary reference and

its simulation results: (a) an empty two-dimensional problem space and
(b) sampled H, in time

Error in time and frequency domains

165

166
167
170

171
176
177

177

178

179
183

184
186
189
190

193

196

198
203
206
207
209
210

216

218
219

7.15
7.16
7.17
7.18
7.19

7.20

8.1
8.2

8.3
8.4

8.5

8.6

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

8.18

8.19

8.20

8.21

8.22

List of figures

A two-dimensional problem space including a cylinder and a line source
Sampled electric field at a point between the cylinder and the line source
Magnitude of electric field distribution calculated by FDTD

Magnitude of electric field distribution calculated by BVS

Magnitude of electric field distribution calculated by FDTD using DFT at
1 GHz

Magnitude of electric field distribution calculated by FDTD using DFT at
2 GHz

The FDTD flowchart including the steps of CPML algorithm

Regions where CPML parameters are defined: (a) 0pex, Opmys Ooxs Cmys Kexs

and Kmxs (b) Ope‘yo Opmya aeya amya Keya and Kmy; (C) opeza Opmzo Aezs Omzs Kezs
and x,,.; and (d) overlapping CPML regions

A problem space with 20 x 20 X 4 cells brick

Positions of the electric field components updated by CPML in the xp
region

Positions of the magnetic field components updated by CPML in the xp
region

Source voltage and sampled voltages observed at the ports of the low-pass
filter

Sampled currents observed at the ports of the low-pass filter

S of the low-pass filter

S5 of the low-pass filter

An FDTD problem space including a microstrip branch line coupler
S-parameters of the branch line coupler

An FDTD problem space including a microstrip line

Source voltage and sampled voltage of the microstrip line

Current on the microstrip line

S of the microstrip line

Characteristic impedance of the microstrip line

Updated fields and CPML parameters in 7E, case: (a) xn and xp CPML
regions and (b) yn and yp CPML regions

Updated fields and CPML parameters in 7M. case: (a) xn and xp CPML
regions and (b) yn and yp CPML regions

CPML and PML errors of sampled H, in time and frequency domains:
(a) errors in time domain and (b) errors in frequency domain

The problem space for the quarter-wave transformer with CPML boundaries
on the xn, xp, yn, yp, and zp sides

The problem space for the quarter-wave transformer with the substrate
penetrating into the CPML boundaries on the xn and xp sides

The microstrip line reference case

Xix

220
224
224
225

227

227
234

237
240

246

246

250
251
251
252
252
259
259
263
263
264
264

266

267

272

276

276
277

XX

9.1

9.2

9.3

9.4
9.5
9.6

9.7
9.8

9.9

9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
10.1

10.2
10.3
10.4
10.5
10.6
10.7

List of figures

Near-field to far-field transformation technique: equivalent currents on an
imaginary surface

Two paths of the near-field to far-field transformation technique are
implemented to achieve different computation objectives

Surface equivalence theorem: (a) original problem and (b) equivalent
problem for region outside S

An imaginary surface is selected to enclose the antennas or scatterers
Equivalent surface currents on the imaginary closed surface

An imaginary closed surface on an infinite PEC ground plane using the
image theory

The equivalent surface current source and far field

E. field components on the yn face of the NF-FF imaginary surface and the
magnetic currents generated by them

H, field components around the yn face of the NF-FF imaginary surface
and the electric currents generated by them

Position vectors for sources on the zn and zp faces

Position vectors for sources on the xn and xp faces

Position vectors for sources on the yn and yp faces

An inverted-F antenna

Input reflection coefficient of the inverted-F antenna

Radiation patterns in the xy plane cut: (a) 2.4 GHz and (b) 5.8 GHz
Radiation patterns in the xz plane cut: (a) 2.4 GHz and (b) 5.8 GHz
Radiation patterns in the yz plane cut: (a) 2.4 GHz and (b) 5.8 GHz
A strip-fed rectangular DRA

Input reflection coefficient of the strip-fed rectangular DRA
Radiation patterns in the xy plane cut: (a) 3.5 GHz and (b) 4.3 GHz
Radiation patterns in the xz plane cut: (a) 3.5 GHz and (b) 4.3 GHz
Radiation patterns in the yz plane cut: (a) 3.5 GHz and (b) 4.3 GHz
A dipole antenna

A microstrip patch antenna

A microstrip patch antenna with a microstrip line feeding

A thin wire with its axis coinciding with E.(i, j, k) and field components
surrounding H,(i, j, k)

Magnetic field components surrounding the thin wire

A thin-wire dipole antenna

S11 of the thin-wire dipole antenna

Input impedance of the thin-wire dipole antenna

Radiation pattern in the xy plane cut

Radiation pattern in the xz plane cut

280

281

282
283
283

285
286

296

297
302
303
304
309
314
314
315
315
316
319
319
320
320
321
322
322

324
324
330
333
333
334
334

10.8
10.9
10.10
10.11

10.12
10.13
10.14
10.15

10.16
10.17
11.1
11.2
11.3

11.4
11.5
11.6
11.7
11.8
11.9

11.10

11.11

11.12

11.13
11.14
11.15
11.16
11.17
11.18
11.19

List of figures

Radiation pattern in the yz plane cut
Constant magnetic field on a loop circulating around a thin wire
A magnetic field component on the edge of a rectangular loop

Projection of magnetic field from a circular loop to a rectangular edge:
(a) large view and (b) details of the right edge

Electric field component E, at the center of a cell face
Power reflection coefficient of the thin-wire dipole antenna
Input impedance of the thin-wire dipole antenna

Power reflection coefficient of the thin-wire dipole antenna: FDTD
implementation includes the end-caps model [41] and the stabilized RVS
model [42]

An antenna array composed of two thin-wire dipole antennas
A thin-wire loop

An incident plane wave

An incident plane wave delayed in time and shifted in space

Two incident plane waves: one traveling toward the origin and the
other traveling away from the origin

An FDTD problem space including a dielectric sphere

Scattered electric field captured at the origin and the incident field waveform

Bistatic RCS at 1 GHz in the xy plane
Bistatic RCS at 1 GHz in the xz plane
Bistatic RCS at 1 GHz in the yz plane

Calculated RCSy at 1 GHz in the xz plane compared with the analytical
solution

Calculated RCS,, at 1 GHz in the yz plane compared with the analytical
solution

Scattered field due to a sphere captured on the xz plane cut: (a) at time
step 120; (b) at time step 140; (c) at time step 160; and (d) at time step 180

An FDTD problem space including a cube, and the surface mesh of the
cube used by the MoM solver

Bistatic RCS at 1 GHz in the xy plane

Bistatic RCS at 1 GHz in the xz plane

Bistatic RCS at 1 GHz in the yz plane

Calculated RCSp at 1 GHz in the xz plane compared with the MoM solution
Calculated RCS,, at 1 GHz in the xz plane compared with the MoM solution
An FDTD problem space including a dielectric slab

Reflection and transmission coefficients of the dielectric slab

xxi

335
336
336

337
338
341
342

342
343
344
351
352

353
365
368
368
369
369

370

370

371

372
374
374
375
375
376
376
380

XXii

12.1

12.2

12.3

12.4

12.5
12.6

13.1
13.2

133
13.4
13.5
14.1
14.2
14.3
14.4

14.5
14.6
14.7

14.8

14.9

14.10
14.11
14.12
14.13
14.14
14.15
14.16
14.17
14.18

List of figures

Total and scattered field regions for a three-dimensional FDTD
computational domain

Total and scattered field components and regions for a one-dimensional
FDTD computational domain

E, and H, field components that needs incident field compensation on the
yn face of the imaginary surface

E. and H, field components that needs incident field compensation on the
yn face of the imaginary surface

Electric field distribution on a yz plane-cut at three progressive time instants

Electric field distribution on the xz plane: (a) at time step 120; (b) at time
step 140; (c) at time step 160; and (d) at time step 180

Update sequence of fields in the presented Debye modeling algorithm

Update sequence of fields in the presented Lorentz and Drude modeling
algorithms

Complex relative permittivity versus frequency

Co-polarized RCS of a dispersive sphere at three frequencies
Cross-polarized RCS of a dispersive sphere at three frequencies

A periodic structure and a unit cell of two-dimension periodicity
Magnitude of reflection coefficient in the angle-frequency plane
Propagation vector of an incident plane wave and its horizontal component

Magnitude of reflection coefficient in the horizontal wavenumber-frequency
plane

Propagation vectors with the same horizontal wavenumber
An incident plane wave and a unit cell

Field components on an xy plane-cut of a unit cell in a three-dimensional
domain: (a) E,, E,, and H, components and (b) H,, H,, and E. components

Flow chart of PBC FDTD algorithm

Ilustration of incident fields in the TE case

Illustration of incident fields in the TM case

Ilustration of incident fields in the TEM case

Reflection and transmission coefficients of a dielectric slab

TE mode reflection coefficients of a DFSS: FDTD vs Ansoft Designer
TE mode transmission coefficients of a DFSS: FDTD vs Ansoft Designer
TM mode reflection coefficients of a DFSS: FDTD vs Ansoft Designer
TM mode transmission coefficients of a DFSS: FDTD vs Ansoft Designer
A Jarusalem-cross frequency selective circuit

Reflection and transmission coefficients of a Jarusalem-cross FSS: FDTD
vs Ansoft Designer

382

382

384

384
394

395
400

401
410
411
411
414
415
415

416
417
418

419
420
425
427
428
442
443
444
444
445
445

446

15.1

15.2
15.3
15.4
15.5
15.6

15.7

15.8

15.9
15.10

15.11
15.12

16.1

16.2
16.3
16.4

16.5
16.6
16.7

B.1

B.2

B3

B.4

B.5

B.6

D.1

List of figures

(a) An FDTD computational domain with coarse uniform grid; (b) an
FDTD computational domain with fine uniform grid; and (c) an FDTD
computational domain with nonuniform grid

Uniform and nonuniform subregions

Uniform electric and magnetic field grids in a one-dimensional space
Electric and magnetic field positions in a nonuniform grid

A fine grid subregion embedded in a coarse base grid

Electric field grid around E,(i,/, k), and magnetic grid cell sizes used to
update E,(i,j, k)

Material component ¢.(i, j, k) located between four Yee cells filled with
four different material types

Material component u.(i, j, k) located between two Yee cells filled with
two different material types

Cell view of the microstrip rectangular patch antenna

Comparison of power reflection coefficient of fine grid, coarse grid, and
nonuniform grid simulations of a microstrip rectangular patch antenna

Geometry and dimensions of a three-pole low-pass filter

Comparison of scattering parameters of fine grid, coarse grid, and
nonuniform grid simulations of a three-pole low-pass microstrip filter

Parallel threads executing the same code on different set of data identified
by the threadldx.x value

Grid of thread blocks
An extended two-dimensional computational domain

A grid of thread blocks that spans a 48 x 32 cells two-dimensional
problem space

Threads in a thread block
Throughput of CUDA FDTD calculations on a Tesla C1060 card

A snapshot of electric field distribution scattered from a dielectric cylinder
due to a line source with sinusoidal excitation

CPML regions where E, is updated: (a) E, is updated in yn and yp using
Yexy and (b) E, is updated in zn and zp using .

CPML regions where E, is updated: (a) E, is updated in zn and zp using
Yey- and (b) E), is updated in xn and xp using ;.
CPML regions where E. is updated: (a) E. is updated in x#n and xp using
Yez and (b) E. is updated in yn and yp using 9.,

CPML regions where H, is updated: (a) H, is updated in yn and yp using
Yy and (b) H, is updated in zn and zp using ¥,

CPML regions where H,, is updated: (a) H,, is updated in zn and zp using
Y- and (b) H,, is updated in xn and xp using 1y,

CPML regions where H, is updated: (a) H, is updated in xn and xp using
Y and (b) H is updated in yn and yp using ;..

The GUI to create template problem definition files for a project

xxiii

448
450
451
451
451

453

457

458
467

468
468

469

474
475
480

483
485
488

489

496

497

499

500

501

502
509

List of tables

1.1

15.1

15.2

XXiv

Finite difference formulas for the first- and second-order derivatives

where the function f'with the subscript i is an abbreviation of f(x). Similar
notation can be implemented for f(x + Ax), f(x 4+ 2Ax), etc., as shown in
Figure 1.3. FD, forward difference; BD, backward difference; CD, central
difference

Comparison of fine grid, coarse grid, and nonuniform grid simulations of a
microstrip rectangular patch antenna

Comparison of fine grid, coarse grid, and nonuniform grid simulations of a
three-pole low-pass microstrip filter

13

467

469

Preface

The contents of this book have evolved gradually and carefully from many years of teaching
graduate level courses in computational electromagnetics generally, and the Finite-Differ-
ence Time-Domain (FDTD) method specifically. The authors have further refined and
developed the materials by teaching numerous short courses on the FDTD method at various
educational institutions and at a growing number of international conferences. The theore-
tical, numerical, and programming experience of the second author, Veysel Demir, has been
a crucial factor in bringing the book to successful completion.

Objective

The objective of the book is to introduce the powerful FDTD method to students and
interested researchers and readers. An effective introduction is accomplished using a step-
by-step process that builds competence and confidence in developing complete working
codes for the design and analysis of various antennas and microwave devices. This book will
serve graduate students, researchers, and those in industry and government who are using
other electromagnetics tools and methods for the sake of performing independent numerical
confirmation. No previous experience with finite-difference methods is assumed of readers
to use this book.

Important topics
The main topics in the book include the following:

o finite-difference approximation of the differential form of Maxwell’s equations

e geometry construction in discrete space, including the treatment of the normal and
tangential electric and magnetic field components at the boundaries between different media
outer-boundary conditions treatment

appropriate selection of time and spatial increments

selection of the proper source waveform for the intended application

correct parameters for the time-to-frequency-domain transformation

simulation of thin wires

XXV

XXVi Preface

representation of lumped passive and some active elements

total field/scattered field formulation

definition and formulation of fields from near and far zone
modeling of dispersive material

analysis of periodic structures

treatment of nonuniform grid

use of graphical processing units for accelerating the simulations.

MATLAB® code organization

In the first edition of this book the chapters are presented in such a way that, by adding/
developing a new part of the code, chapter by chapter, at the end a well-developed FDTD
simulation package can be constructed. In the second edition, the first 11 chapters are either
the same as the ones in the first edition or extended with additional topics, therefore one can
progressively develop a package by studying the first 11 chapters.

Chapters 12—-16 in the second edition are advanced topics in FDTD, and it is not feasible
to follow the progressive code development approach as implementation of these advanced
concepts, one over another, makes the code development cumbersome and deviate reader’s
attention from learning a concept to getting lost in a pile of complex code. As an alternative,
the functional code that is developed until Chapter 11 is reorganized as a base code and it is
being used as the start point for each of the advanced topics chapters.

Use of MATLAB®

The development of the working code is based on the MATLAB programming language due
to its relative ease of use, widespread availability, familiarity to most electrical engineers,
and its powerful capabilities for providing graphical outputs and visualization. The book
illustrates how the key FDTD equations are derived, provides the final expressions to be
programmed, and also includes sample MATLAB codes developed for these equations.
None of the specialized MATLAB tool boxes is required to run the presented codes in this
book.

The MATLAB M-files for all programming examples shown in the text are available
from the publisher on request by emailing books@theiet.org.

Key strengths
The strengths of the book can be summarized in four points:

o First, the derivations of the FDTD equations are presented in an understandable,
detailed, and complete manner, which makes it easy for beginners to grasp the FDTD
concepts. Further to that point, regardless of the different treatments required for var-
ious objects, such as dielectrics, conductors, lumped elements, active devices, or thin

Preface XXvii

wires, the FDTD updating equations are provided with a consistent and unified
notation.

e Second, many three-dimensional figures are presented to accompany the derived
equations. This helps readers visualize, follow, and link the components of the equa-
tions with the discrete FDTD spatial domain.

o Third, it is well known that readers usually face difficulties while developing numerical
tools for electromagnetics applications even though they understand the theory.
Therefore, we introduce in this book a top-down software design approach that links
the theoretical concepts with program development and helps in constructing an FDTD
simulation tool as the chapters proceed.

e Fourth, fully worked out practical examples showing how the MATLAB codes for each
example is developed to promote both the understanding and the visualization of the
example configuration, its FDTD parameters and setup procedure, and finally the fre-
quency and/or time domain corresponding solutions.

At the end of each chapter, readers will find a set of exercises that will emphasize the key
features presented in that chapter. Since most of these exercises require code developments
and the orientation of geometries and sources can be chosen arbitrarily, a suggested con-
figuration of each in almost all of these exercises is provided in a three-dimensional figure.

The authors hope that with this coverage of the FDTD method, along with the supplied
MATLAB codes in a single book, readers will be able to learn the method, to develop their
own FDTD simulation tool, and to start enjoying, with confidence, the simulation of a
variety of electromagnetic problems.

Instructor resources

Upon adopting this book as the required text, instructors are entitled to obtain the solutions of
the exercises located at the end of each chapter. Most of these solutions are in the form of
MATLAB files, and can be obtained by contacting the publisher at books@theiet.org.

Errors and suggestions

The authors welcome any reader feedback related to suspected errors and to suggestions for
improving the presentation of the topics provided in this book.

Acknowledgements

The authors would like to first thank God for giving us the endurance to initiate and complete
this book. Many thanks go to our family members for their support, patience, and sacrifice
during the preparation and completion of this book. The authors greatly acknowledge the co-
authorship of Chapter 14 with Drs. Khaled Elmahgoub and Fan Yang in the second edition
of the book, and the contribution of Dr. Matthew J. Inman to Chapter 12 in the first edition of
the book. They would also like to thank Dr. Branko Kolundzija for providing a copy of
WIPL-D software package to use for verifications for some of the presented examples.

The first author acknowledges the support and advice over many years of the late Charles
E. Smith. Without his continuous encouragement and support this book would have not been
finalized. He also thanks many of his colleagues, postdoctoral fellows and visiting scholars
who worked with him in topics related to FDTD, the graduate students who participated in
translating ideas into reality, and the undergraduate students who participated in research
projects with this author, in particular, Allen Glisson, Fan Yang, Abdel-Fattah A. Elsohly, Joe
LoVetri, Veysel Demir, Matthew J. Inman, Chun-Wen Paul Huang, Clayborne D. Taylor,
Mohamed Al Sharkawy, Vicente Rodriguez-Pereyra, Jianbing (James) Chen, Adel M. Abdin,
Bradford N. Baker, Asem Mokaddem, Liang Xu, Nithya L. Iyer, Shixiong Dai, Xuexun Hu,
Cuthbert Martindale Allen, Khaled Elmahgoub, and Terry Gerald. Chapter 14 is co-authored
by Drs. Khaled Elmahgoub and Fan Yang.

The authors thank Dudley Kay and Joanna Hughes of SciTech/IET Publishing for their
encouragement, patience, and useful suggestions during the course of the development of the
manuscript and production of this book.

xxviii

CHAPTER 1

Introduction to FDTD

Computational electromagnetics (CEM) has evolved rapidly during the past decade to a
point where now extremely accurate predictions can be given for a variety of electro-
magnetic problems, including the scattering cross-section of radar targets and the precise
design of antennas and microwave devices. In general, commonly used CEM methods today
can be classified into two categories. The first is based on differential equation (DE) meth-
ods, whereas the second is based on integral equation (IE) methods. Both IE and DE solution
methods are based on the applications of Maxwell’s equations and the appropriate boundary
conditions associated with the problem to be solved. The IE methods in general provide
approximations for IEs in terms of finite sums, whereas the DE methods provide approx-
imations for DEs as finite differences.

In previous years, most numerical electromagnetic analysis has taken place in the
frequency domain where time-harmonic behavior is assumed. Frequency domain was
favored over time domain because a frequency-domain approach is more suitable for
obtaining analytical solutions for canonical problems, which are used to verify the numerical
results obtained as a first step before depending on a newly developed numerical method for
generating data for real-world applications. Furthermore, the experimental hardware avail-
able for making measurements in past years was largely confined to the frequency-domain
approach.

The recent development of faster and more powerful computational resources allowed for
more advanced time-domain CEM models. More focus is directed toward DE time-domain
approaches as they are easier to formulate and to adapt in computer simulation models
without complex mathematics. They also provide more physical insight to the characteristics
of the problems.

Therefore, an in-depth analysis and implementation of the commonly used time-domain
DE approach, namely, the finite-difference time-domain (FDTD) method for CEM applica-
tions, is covered in this book, along with applications related to antenna designs, microwave
filter designs, and radar cross-section analysis of three-dimensional targets.

The FDTD method has gained tremendous popularity in the past decade as a tool for
solving Maxwell’s equations. It is based on simple formulations that do not require complex
asymptotic or Green’s functions. Although it solves the problem in time, it can provide
frequency-domain responses over a wide band using the Fourier transform. It can easily
handle composite geometries consisting of different types of materials including dielectric,

2 CHAPTER 1 e Introduction to FDTD

magnetic, frequency-dependent, nonlinear, and anisotropic materials. The FDTD technique
is easy to implement using parallel computation algorithms. These features of the FDTD
method have made it the most attractive technique of CEM for many microwave devices and
antenna applications.

FDTD has been used to solve numerous types of problems arising while studying many
applications, including the following:

scattering, radar cross-section

microwave circuits, waveguides, fiber optics
antennas (radiation, impedance)

propagation

medical applications

shielding, coupling, electromagnetic compatibility (EMC), electromagnetic pulse (EMP)
protection

nonlinear and other special materials
geological applications

inverse scattering

plasma

1.1 The finite-difference time-domain method
basic equations

The starting point for the construction of an FDTD algorithm is Maxwell’s time-domain
equations. The differential time-domain Maxwell’s equations needed to specify the field
behavior over time are

H== 1.1
V x T +J, (1.1a)
~ 9B -
E=———-M 1.1
V x o , (1.1b)
V'szw (11C)
V-B=p,, (1.1d)

where E is the electric field strength vector in volts per meter, D is the electric displacement
vector in coulombs per square meter, H is the magnetic field strength vector in amperes per
meter, B is the magnetic flux density vector in webers per square meter, J is the electric
current density vector in amperes per square meter, M is the magnetic current density vector
in volts per square meter, p, is the electric charge density in coulombs per cubic meter, and
Pm 18 the magnetic charge density in webers per cubic meter.

Constitutive relations are necessary to supplement Maxwell’s equations and characterize
the material media. Constitutive relations for linear, isotropic, and nondispersive materials
can be written as

1.1 « The finite-difference time-domain method basic equations 3

where ¢ is the permittivity, and u is the permeability of the material. In free space

£ = o ~ 8.854 x 107'? farad /meter,
u =y = 4 x 1077 henry/meter.

We only need to consider curl equations (1.1a) and (1.1b) while deriving FDTD
equations because the divergence equations can be satisfied by the developed FDTD
updating equations [1]. The electric current density J is the sum of the conduction current
density J. = 0°E and the 1mpressed current den51ty J as J = J +J Similarly, for the
magnetic current density, M = M, +M ;, where M, = 0" H. Here 0° is the electric con-
ductivity in siemens per meter, and o™ is the magnetic conductivity in ohms per meter. Upon
decomposing the current densities in (1.1) to conduction and impressed components and by
using the constitutive relations (1.2) we can rewrite Maxwell’s curl equations as

_ E .
VXH:S%—t+er+Ji, (1.3a)
. H S
VXE:—,u%—t—omH—Mi. (1.3b)

This formulation treats only the electromagnetic fields E and H and not the fluxes D and B.
All four constitutive parameters ¢, 1, 0°, and ¢™ are present so that any linear isotropic material
can be specified. Treatment of electric and magnetic sources is included through the impressed
currents. Although only the curl equations are used and the divergence equations are not part of
the FDTD formalism, the divergence equations can be used as a test on the predicted field
response, so that after forming D = ¢E and B = uH from the predicted E and H fields, the
resulting D and B must satisfy the divergence equations.

Equation (1.3) is composed of two vector equations, and each vector equation can be
decomposed into three scalar equations for three-dimensional space. Therefore, Maxwell’s
curl equations can be represented with the following six scalar equations in a Cartesian
coordinate system (x, y, z):

"_ <8H ot eEx—J,-x>, (1.4a)
E,
a az OM: _ e, - JW), (1.4b)
OH,
°E. —J, 1.4
(B B (140)
‘9H _ (‘9Ey aEz_a;;Hx_Mx) (1.4d)
z Oy
aH, OE, »
> (= " H, —]V[,y>, (1.4e)
8H E,
%y onH, M, 1.4f
<0y o > (140

4 CHAPTER 1 e Introduction to FDTD

The material parameters &,, ¢, and ¢ are associated with electric field components E,,
E,, and E, through constitutive relations D, = &.E,, D, = &,E,, and D, = &.E_, respectively.
Similarly, the material parameters u,, u,, and u. are associated with magnetic field compo-
nents H,, H,, and H. through constitutive relations B, = w.H,, B, = w,H,, and B, = u.H.,
respectively. Similar decompositions for other orthogonal coordinate systems are possible,
but they are less attractive from the applications point of view.

The FDTD algorithm divides the problem geometry into a spatial grid where electric and
magnetic field components are placed at certain discrete positions in space, and it solves
Maxwell’s equations in time at discrete time instances. This can be implemented by first
approximating the time and space derivatives appearing in Maxwell’s equations by finite
differences and next by constructing a set of equations that calculate the values of fields at a
future time instant from the values of fields at a past time instant, therefore constructing a
time marching algorithm that simulates the progression of the fields in time [2].

1.2 Approximation of derivatives by finite differences

An arbitrary continuous function can be sampled at discrete points, and the discrete function
becomes a good approximation of the continuous function if the sampling rate is sufficient
relative to the function’s variation. Sampling rate determines the accuracy of operations
performed on the discrete function that approximates the operations on the continuous
functions as well. However, another factor that determines the accuracy of an operation on a
discrete function is the choice of the discrete operator. Most of the time it is possible to use
more than one way of performing an operation on a discrete function. Here we will consider
the derivative operation.

Consider the continuous function given in Figure 1.1(a—c), sampled at discrete points.
The expression for the derivative of f(x) at point x can be written as

o S A — 1)

fx) = lim A

(1.5)
However, since Ax is a nonzero fixed number, the derivative of f(x) can be approxi-
mately taken as

/ Nf(x+Ax) _f(x>
J(x) = T A (1.6)

The derivative of f(x) is the slope of the dashed line as illustrated in Figure 1.1(a).
Equation (1.6) is called the forward difference formula since one forward point f(x + Ax) is
used to evaluate f'(x) together with f{(x).

It is evident that another formula for an approximate f'(x) can be obtained by using a
backward point f(x — Ax) rather than the forward point f(x + Ax) as illustrated in Figure 1.1(b),
which can be written as

1oy o JX) —flx — Ax)
PO A 4 A 1.7
f(x) : (1.7)
This equation is called the backward difference formula due to the use of the backward

point f{x — Ax).

1.2 « Approximation of derivatives by finite differences

Fc+Ax) |

(a) x —Ax X X+ Ax

(b) x—Ax X x + Ax

S +Ax) |

(c) x—Ax X x + Ax

Figure 1.1 (a) Approximation of the derivative of f(x) at x by finite differences: forward
difference; (b) approximation of the derivative of /' (x) at x by finite differences:
backward difference; (c) approximation of the derivative of /'(x) at x by finite
differences: central difference.

6 CHAPTER 1 e Introduction to FDTD

The third way of obtaining a formula for an approximate f”(x) is by averaging the for-
ward difference and backward difference formulas, such that

g LA S0, (1)

Equation (1.8) is called the central difference formula since both the forward and back-
ward points around the center are used. The line representing the derivative of f(x) calcu-
lated using the central difference formula is illustrated in Figure 1.1(c). It should be noted
that the value of the function f'(x) at x is not used in central difference formula.

Examination of Figure 1.1 immediately reveals that the three different schemes yield
different values for f”(x), with an associated amount of error. The amount of error introduced
by these difference formulas can be evaluated analytically by using the Taylor series
approach. For instance, the Taylor series expansion of f(x + Ax) can be written as

3 4
(Ax) f///(x)Jr@L)f””(x)Jr---. (1.9)

(Ax)* ,
S0+ =5~ 24

[l &) =/ (x) + Ayf'(x) + =

This equation gives an exact expression for f(x + Ax) as a series in terms of Ax and
derivatives of f(x), if f(x) satisfies certain conditions and infinite number of terms, theore-
tically, are being used. Equation (1.9) can be rearranged to express f”(x) as

/ _f(x+Ax) _f(x) Ax 1/ (Ax)z 1 (Ax)s 111
fo) = S) - W) S) = (110)

Here it can be seen that the first term on the right-hand side of (1.10) is the same as the
forward difference formula given by (1.6). The sum of the rest of the terms is the difference
between the approximate derivative given by the forward difference formula and the exact
derivative f’(x), and hence is the amount of error introduced by the forward difference
formula. Equation (1.10) can be rewritten as

Fi) = LEERD =S oy, (1.11)
Ax

where O(Ax) represents the error term. The most significant term in O(Ax) is Ax/2, and the
order of Ax in this most significant term is one. Therefore, the forward difference formula is
first-order accurate. The interpretation of first-order accuracy is that the most significant
term in the error introduced by a first-order accurate formula is proportional to the
sampling period. For instance, if the sampling period is decreased by half, the error reduces
by half.

A similar analysis can be performed for evaluation of the error of the backward formula

starting with the Taylor series expansion of /'(x — Ax).

/ 1 7 Ax 111
F = &%) = £0) = &) +) — S) + W) e (112)

1.2 « Approximation of derivatives by finite differences 7

This equation can be rearranged to express /' (x) as

il — 2 3
f’(x) _ f(x) j;i AX) +%f”(x) _ %f’"(x) +%f////(x) e (113)

The first term on the right-hand side of (1.13) is the same as the backward difference
formula and the sum of the rest of the terms represents the error introduced by the backward
difference formula to the exact derivative of f(x), such that

(%) :WJF O(Av). (1.14)

The order of Ax in the most significant term of O(Ax) is one; hence the backward dif-
ference formula is first-order accurate.

The difference between the Taylor series expansions of /' (x + Ax) and f(x — Ax) can be
expressed using (1.9) and (1.12) as

3
P+ AY) — f(x — A¥) = 289 (x) + Z(Ag) 1) + - (1.15)
This equation can be rearranged to express f”(x) as
Ax) —f(x —Av) (Ax) Ax) — f(x — Ax
f,(x):f(x+)2A){(x) (6) f,,,(x)+_‘.:f(x+)2A;‘(x)+0((Ax)2>7

(1.16)

where the first term on right-hand side is the same as the central difference formula given in
(1.8) and the order of Ax in the most significant term of the error O((Ax)?) is two; hence the
central difference formula is second-order accurate. The interpretation of second-order
accuracy is that the most significant term in the error introduced by a second-order accurate
formula is proportional to the square of sampling period. For instance, if the sampling period
is decreased by half, the error is reduced by a factor of four. Hence, a second-order accurate
formula such as the central difference formula is more accurate than a first-order accurate
formula.

For an example, consider a function f(x) = sin(x)e °>* as displayed in Figure 1.2(a).
The exact first-order derivative of this function is

£(x) = cos(x)e " — 0.3 sin(x)e .

This function f(x) is sampled with a sampling period Ax = /5, and approximate deri-
vatives are calculated for f(x) using the forward difference, backward difference, and central
difference formulas. The derivative of the function f'(x) and its finite difference approx-
imations are plotted in Figure 1.2(b). The errors introduced by the difference formulas,
which are the differences between f”(x) and its finite difference approximations, are plotted
in Figure 1.2(c) for the sampling interval Ax = /5. It is evident that the error introduced by
the central difference formula is smaller than the errors introduced by the forward difference

8 CHAPTER 1 e Introduction to FDTD

0271~

S
<
0.8 b ool i
-1
0 5 10 15
(a) X
! , : :
! exact
0.8"\’””””””’1 ””””””” - — — . forward difference |~~~
L \ — ‘/5 ‘‘‘‘‘ - backward difference
0.6 AN Ax_”‘ - - o- - - central difference
A ‘ ‘
04F i~ i Tt
Wy |
R S
¥ s - !
3 \ \L //{". = !
N Or--*f------- A7 e -
= AN e :
_02.,,,“,\ ,,,,, O S R
’ N 1
N4 :
04~ RN oS
)Y 3 e Lk T T T TS R PR ETEET
0.8 e R R
71 1 : 1
0 5 10 15
(b) x

Figure 1.2 (a)f(x),f"(x), and differences between f”(x) and finite difference approximations of
f'(x) for Ax = 7/5 and Ax = 7/10: f(x) = sin(x)e °>; (b) f(x), f'(x), and differences between

f'(x) and finite difference approximations of /' (x) for Ax = a/5 and Ax = 7/10: f'(x) =

cos(x)e 03

for Ax = 7/10.

— 0.3 sin(x)e ** and finite difference approximations of f’(x) for Ax = 7/5;

(©) f(x), f'(x), and differences between f”(x) and finite difference approximations of f”(x)

for Ax = n/5 and Ax = 7/10: error(f’(x)) for Ax = 7/5; (d) f(x), f'(x), and differences between
f'(x) and finite difference approximations of /' (x) for Ax = n/5 and Ax = 7/10: error(f’ (x))

1.2 « Approximation

of derivatives by finite differences

0.2 T T T -
\ ! - — — forward difference
015}-- ,‘r ,,,,, Ax=7/5 |-----{ == backward difference | _ _ _ |
\ ! - - o- - central difference
\ | ‘ ‘
0-1 """ “7””7[‘;"7‘ ””””””” : ””””””” V" ””””””
A : :
\ ‘ ‘
0.05F------dem e e P
= Vo T | |
S - »‘:.\9(_ N . 1
R B E AGTIRE i et
g B VR i/ \ ’] !
a5} w R 1 -7 l l
—0.05F------ Ay e ERREEEEEE R IEEEEEEEEE
\ I ‘ ‘
I ;o | |
oal A AR SR
! ; ; ;
! 1 1 1
—0.15F---- pooe-e-- A EEEEEEEEEEEE, R RRREEEEEE,
! 1 1 1
02 ! : : .
5 10 15
() x
0.2 T T T
1 - — — forward difference
0.15F------- Ax=m/10}F------| —— backward difference | - _ _|
N } - - a- - central difference
\ ; ‘ :
01 fF--2--cooon Mmoo e e
! ; ; ;
\ | | ‘
0.05F---- Y T L ECE T bemmee e o
= \\ 7’ N ! !
i N EAPEIN | _ |
= 0 uﬂnﬁﬁﬁ&ﬁ%anﬂnﬂﬂfﬂ‘?‘\‘““m\gﬂﬂéﬂl o ‘
S n ‘ - 1 1
& PN | |
0.05"*”7*”\’”*‘ fffffffffffff e Foooooooo
/ 1 1 1
B T e [——
Lo ‘ | |
Vs 1 1 1
—0.15F------------ dmm e pmmmm e Fmmmmm e
-0.2 J : :
5 10 15
(d) x

Figure 1.2 (Continued)

9

and backward difference formulas. Furthermore, the errors introduced by the difference
formulas for the sampling period Ax = /10 are plotted in Figure 1.2(d). It can be realized
that as the sampling period is halved, the errors of the forward difference and backward

difference formulas are halved as well, and the error of the central difference formula is

reduced by a factor of four.

The MATLAB® code calculating f (x) and its finite difference derivatives, and generat-

ing the plots in Figure 1.2 is shown in Listing 1.1.

10 CHAPTER 1 e Introduction to FDTD

Listing 1.1 MATLAB code generating Figure 1.2(a—d)

(. R R R
i1|% create exact function and its derivative

N_exact = 301; % number of sample points for exact function
5| x_exact = linspace (0,6*pi,N_exact);
f_exact = sin(x_exact).*exp(—0.3*x_exact);

f_derivative_exact = cos(x_exact).*exp(—0.3*x_exact)
—0.3*sin(x_exact).*exp(—0.3*x_exact);

% plot exact function
figure (1);
plot (x_exact,f_exact, k=", linewidth’ ,1.5);
1| set (gca,’ FontSize’ ,12, fontweight’, 'demi’);
axis ([0 6*pi —1 1]); grid on;
3| xlabel ("x’, Interpreter’,’latex’,’ FontSize’ ,16);
ylabel (’$f(x)$’, Interpreter’,’latex’, FontSize’ ,16);

©

% create exact function for pi/5 sampling period

17/% and its finite difference derivatives

N_.a = 31; % number of points for pi/5 sampling period
9| x_a linspace (0,6*pi,N_a);

f_a sin(x_a).*exp(—0.3*x_a);

a| f_derivative_a = cos(x_.a).*exp(—0.3*x_a)
—0.3*sin(x_a).*exp(—0.3*x_a);

dx_a = pi/5;

5| f_derivative_forward_a = zeros(1,N.a);
f_derivative_backward_a = zeros(1,N_a);

| f_derivative_central_a = zeros(1,N.a);
f_derivative_forward_a (1:N.a—1) =

2 (f_a(2:N_a)—f_a(1:N.a—1))/dx_a;
f_derivative_backward_a(2:N.a) =

31 (f_a(2:N_a)—f_a(1:N.a—1))/dx_a;
f_derivative_central_a(2:N.a—1) = ...

3 (f_a(3:N_a)—f_.a(1:N.a—2))/(2+xdx_a);

% create exact function for pi/10 sampling period

71% and its finite difference derivatives
N_b = 61; % number of points for pi/10 sampling period
9| x_b linspace (0,6*pi,N_b);
f_b sin(x_b).*exp(—0.3*x_b);
f_derivative_b = cos(x_b).*exp(—0.3*x_b) .
—0.3*sin (x_b).*exp(—0.3*x_b);

4

#|dx_b = pi/10;
f_derivative_forward_b = zeros(1,N_b);
s| f_derivative_backward_b = zeros(1,N_b);
f_derivative_central_b = zeros(1,N_b);

f_derivative_forward_b (1:N_b—1) ..
(f_b (2:N_b)—f_b(1:N_b—1))/dx_b;
1

+
5

w| f_derivative_backward_b (2:N_b) =

(f_b (2:N_b)—f_b(1:N_b—1))/dx_b;

sif f_derivative_central_b (2:N_b—1) = ...

(f_b (3:N_b)—f_b (1:N_b—2))/(2*dx_b);

®

»
3

8

)

93

9.

99

10

103

1.2 « Approximation of derivatives by finite differences

% plot exact derivative of the function and its finite difference
% derivatives using pi/5 sampling period
figure (2);

7| plot (x_exact ,f_derivative_exact , 'k’,

x_.a(1:N_.a—1),f_derivative_forward_a (1:N_.a—1), 'b—",
x_.a(2:N.a),f_derivative_backward_a(2:N.a), 'r—.",
x_.a(2:N.a—1),f_derivative_central_a(2:N.a—1)," :ms’,
"MarkerSize’ ,4, ’linewidth’ ,1.5);

set (gca, FontSize’,12, fontweight’, demi’);

axis ([0 6*xpi —1 1]);

grid on;

s| legend ("exact’, 'forward._difference’ ,...

"backward._difference’, central_difference’);

7| xlabel ("x’, Interpreter’,’latex’,’FontSize’ ,16);

ylabel ("$f’’(x)$’, Interpreter’,’latex’,’FontSize’ ,16);
text (pi,0.6, $\Delta_x_=_\pi/5%’, Interpreter’,
"latex’, fontsize ' ,16, ’'BackgroundColor’,’w’, EdgeColor’,’k’);

% plot error for finite difference derivatives
% using pi/5 sampling period

error_forward_a = f_derivative_a — f_derivative_forward_a;
s| error_backward_a = f_derivative_a — f_derivative_backward_a;
error_central_a = f_derivative_a — f_derivative_central_a;

figure (3);
plot(x_a(1:N.a—1),error_forward_a(1:N.a—1), 'b—",
x_a(2:N_a),error_backward_a(2:N.a), 'r—.",

x_.a(2:N.a—1),error_central_a(2:N.a—1), :ms’,

"MarkerSize’ ,4, ’linewidth’ ,1.5);

set (gca, FontSize’ ,12, fontweight’, demi’);

s| axis ([0 6*pi —0.2 0.2]);

grid on;

legend ("forward_difference’, ’'backward_difference’,
"central.difference’);

xlabel ("x’, Interpreter’,’latex’,’FontSize’ ,16);

ylabel (’error.$[f’’(x)]$’, Interpreter’, latex’, FontSize’ ,16);

text (pi,0.15, $\Deltaox.=_\pi/5%’, Interpreter’,
"latex’, fontsize’,16, ’'BackgroundColor’,’w’, EdgeColor’,’k’);

% plot error for finite difference derivatives
% using pi/10 sampling period

error_forward_b = f_derivative_b — f_derivative_forward_b;

7lerror_backward_b = f_derivative_b — f_derivative_backward_b;
error_central_b = f_derivative_b — f_derivative_central_b;
figure (4);

plot(x_b(1:N_b—1),error_forward_b (1:N_b—1), 'b— ,
x-b(2:N_b),error_backward_b (2:N_b),’'r—.", ..
x_b(2:N_b—1),error_central_b (2:N_b—1), :ms’,
"MarkerSize’ ,4, ’linewidth’ ,1.5);

set (gca, FontSize’,12, fontweight’, demi’);

11

12 CHAPTER 1 e Introduction to FDTD

7] axis ([0 6xpi —0.2 0.2]);
grid on;
| legend ("forward._difference’, ’backward.difference’,
"central_difference’);
| xlabel ("x’, Interpreter’,’latex’, FontSize’ ,16);
ylabel ("error $[f’ " (x)]$’, Interpreter’,’latex’,’ FontSize’ ,16);
3| text (pi,0.15, $\Delta_x_=_\pi/10$’, Interpreter’,
"latex’, fontsize’ ,16, BackgroundColor’,’w’, EdgeColor’,’k’);

Values of the function f'(x) at two neighboring points around x have been used to obtain a
second-order accurate central difference formula to approximate f'(x). It is possible to obtain
formulas with higher orders of accuracy by including a larger number of neighboring
points in the derivation of a formula for f’(x). However, although there are FDTD
formulations developed based on higher-order accurate formulas, the conventional FDTD is
based on the second-order accurate central difference formula, which is found to be suffi-
ciently accurate for most electromagnetics applications and simple in implementation and
understanding.

It is possible to obtain finite-difference formulas for approximating higher-order
derivatives as well. For instance, if we take the sum of the Taylor series expansions of
f(x + Ax) and f(x — Ax) using (1.9) and (1.12), we obtain

4
Fo A0) 4 £ A0) = 27) + (") + B)

After rearranging the equation to have f”(x) on the left-hand side, we get

[+A%) =2 (x) +/(x — Ax) (Ax)’

f//(x) = (Ax)z 5 f////(x) + ..
_ S+ AY) = 2 () +/(x = Ax) 2
= &) + 0((Ax)?). (1.18)

Using (1.18) we can obtain a central difference formula for the second-order derivative

f"(x) as

S+ AY) =2 (x) +/ (x — Av)
(ax)?

f'x) = ; (1.19)

which is second-order accurate due to O(Ax)>.

Similarly, some other finite difference formulas can be obtained for the first- and
second-order derivatives with different orders of accuracy based on different sampling
points. A list of finite difference formulas is given for the first- and second-order derivatives
in Table 1.1 as a reference (Figure 1.3).

1.3 « FDTD updating equations for three-dimensional problems 13

Table 1.1 Finite difference formulas for the first- and second-order derivatives where the function
fwith the subscript i is an abbreviation of f(x). Similar notation can be implemented
for f(x + Ax), f(x + 2Ax), etc., as shown in Figure 1.3. FD, forward difference; BD,
backward difference; CD, central difference.

Derivative 9f/0x Derivative 8°f/9x>
Difference scheme Type error Difference scheme Type error
fiv1 —f; FD O(Ax) Sfir2 = 2fi1 +fi FD O(Ax)
Ax (Ax)?
Ji —fina BD O(Ax) Jira =21 +fi2 BD O(Ax)
Ax (Ax)?
Jisr = Jia CDO((Ax)’) fir = 2fi +fia CD O((Ax)?)
2Ax (Ax)?
—fir +4fi1 — 3 FD O((Ax)? CD O((Ax)*
Tt () s 160 = 30+ 166 — s (A%
5 12(Ax)?
i1 — i1 +fia BD O((Ax)%)
2Ax
CD O((Ax)")
—fir2 + 8fir1 — i1 +/in
12A x
Jia Jin1 Ji Ji1 S
x—2Ax x—Ax X x+Ax x+2Ax

Figure 1.3 Sample points of f(x).

1.3 FDTD updating equations for three-dimensional
problems

In 1966, Yee originated a set of finite-difference equations for the time-dependent
Maxwell’s curl equations system [2]. These equations can be represented in discrete form,
both in space and time, employing the second-order accurate central difference formula. As
mentioned before, the electric and magnetic field components are sampled at discrete posi-
tions both in time and space. The FDTD technique divides the three-dimensional problem
geometry into cells to form a grid. Figure 1.4 illustrates an FDTD grid composed of
(Ny X N, x N;) cells. A unit cell of this grid is called a Yee cell. Using rectangular Yee
cells, a stepped or “staircase” approximation of the surface and internal geometry of the
structure of interest is made with a space resolution set by the size of the unit cell.

The discrete spatial positions of the field components have a specific arrangement in the
Yee cell, as demonstrated in Figure 1.5. The electric field vector components are placed at

14 CHAPTER 1 e Introduction to FDTD

(N, N, N.)

;o

S
) 1,1, 1) i
L\ i

Figure 1.4 A three-dimensional FDTD computational space composed of (N, x N, X N)
Yee cells.

node(i+ 1,/ +1,k+1)
fh

v

v o
E(i,], k) tHz(lsja k)

node(i, j, k)

z E(i.j. k) /

Figure 1.5 Arrangement of field components on a Yee cell indexed as (i, j, k).

the centers of the edges of the Yee cells and oriented parallel to the respective edges, and the
magnetic field vector components are placed at the centers of the faces of the Yee cells and
are oriented normal to the respective faces. This provides a simple picture of three-
dimensional space being filled by an interlinked array of Faraday’s law and Ampere’s law
contours. It can be easily noticed in Figure 1.5 that each magnetic field vector is surrounded

1.3 « FDTD updating equations for three-dimensional problems 15

by four electric field vectors that are curling around the magnetic field vector, thus simu-
lating Faraday’s law. Similarly, if the neighboring cells are also added to the picture, it
would be apparent that each electric field vector is surrounded by four magnetic field vectors
that are curling around the electric field vector, thus simulating Ampere’s law.

Figure 1.5 shows the indices of the field components, which are indexed as (i, j, k),
associated with a cell indexed as (i, j, k). For a computational domain composed of uniform
Yee cells having dimension Ax in the x direction, Ay in the y direction, and Az in the z
direction, the actual positions of the field components with respect to an origin coinciding
with the position of the node (1, 1, 1) can easily be calculated as

Ec(i,j k) = ((i = 0.5)Ax, (j — DAy, (k- 1)Az),
Ey(i.j, k) = ((i = DAx, (= 0.5)Ap, (k — 1)Az),
E(i,j,k) = ((= DAx, (= DAy, (k- 0.5)Az),
H(i,j, k) = ((i = DAx, (= 0.5)Ap, (k - 0.5)Az),
H,(i,j,k) = ((i —0.5)Ax, (j — 1)Ay, (k —0.5)Az),
H.(i,j,k) = ((i —0.5)Ax, (j — 0.5)Ay, (k —1)Az).

The FDTD algorithm samples and calculates the fields at discrete time instants; how-
ever, the electric and magnetic field components are not sampled at the same time instants.
For a time-sampling period At, the electric field components are sampled at time instants
0, At, 2At, ..., nAt, ...; however, the magnetic field components are sampled at time
instants 1Az, (1 + DA, (n+1)Ar,. ... Therefore, the electric field components are

calculated at integer time steps, and magnetic field components are calculated at half-integer
time steps, and they are offset from each other by A#/2. The field components need to be
referred not only by their spatial indices which indicate their positions in space, but also by
their temporal indices, which indicate their time instants. Therefore, a superscript notation is
adopted to indicate the time instant. For instance, the z component of an electric field vector
positioned at ((i — 1)Ax, (j — 1)Ay, (k — 0.5)Az) and sampled at time instant nA¢ is referred to
as E?(i,j, k). Similarly, the y component of a magnetic field vector positioned at ((— 0.5)Ax,
(j— DAy, (k—0.5)Az) and sampled at time instant (n + })At is referred to as H;'"'/2(i,j, k).

The material parameters (permittivity, permeability, electric, and magnetic con-
ductivities) are distributed over the FDTD grid and are associated with field components;
therefore, they are indexed the same as their respective field components. For instance,
Figure 1.6 illustrates the indices for the permittivity and permeability parameters.
The electric conductivity is distributed and indexed the same as the permittivity, and the
magnetic conductivity is distributed and indexed the same as the permeability.

Having adopted an indexing scheme for the discrete samples of field components in both
time and space, Maxwell’s curl equations (1.4) that are given in scalar form can be expressed
in terms of finite differences. For instance, consider again (1.4a):

OE, 1 (0H. OH,
~ = — - a—— eEx —Jdix |-
o1 (ay oz~ Oxbe)

16 CHAPTER 1 e Introduction to FDTD

g, j+1,k+1)

e(i,], k+1
ASEED tuz(i, Jok+1)
g1, j,k+1)
&l j, k+1)
uy (i, j + 1, k)
ej+1,k) & it 152(i+1,j+1,k)
— it+1,),
. (i, j, k .. ﬁb
(0,], k)t y) w(, j, k)
e+ 1,7k
e(i,j+1,k)
&,(i, j, k) t,uz(i, J> k)
node(i, J, k) gy(z LR
z £X(i,j, k)
e’
X

Figure 1.6 Material parameters indexed on a Yee cell.

The derivatives in this equation can be approximated by using the central difference
formula with the position of E.(i, j, k) being the center point for the central difference
formula in space and time instant (n + %)At as being the center point in time. Considering the
field component positions given in Figure 1.7, we can write

1 1
n+7 Vl+§

E"Vi k) — EMij k) 1 HZ (i k) — HZ (i j— 1,k)
At e k) Ay
_ 1 Hy+;(l7‘]vk) H;l+%(l7]7k - 1)
Ex(l,j,k) AZ
oe(i7j7 k) RS 1 n+l ..
— 2T F (i) k) ———=J 20, k). 1.20
e (i) K) (i.j, k) N (i.j, k) (1.20)

It has already been mentioned that the electric field components are defined at integer
time steps; however, the right-hand side of (1.20) includes an electric field term at time
instant (n + 1)A¢, that is, E"*'/2(i, j, k). This term can be written as the average of the terms
at time instants (z + 1)A¢ and nAt, such that

il En+1k Enk
Eer;(i’j’k): X (17]7)2+ x(lﬂ.]?) (121)

Using (1.21) in (1.20) and arranging the terms such that the future term E"!(i,j, k) is
kept on the left side of the equation and the rest of the terms are moved to the right-hand side
of the equation, we can write

1.3 « FDTD updating equations for three-dimensional problems 17

2

&)
node(i+1, j+1,k+1
(gm/) S |
P
|]
nodew Hz i3 |
node(i, j — 1, k)pHE T~ 1 N

node(i, j, k— 1) >
<

Figure 1.7 Field components around E (i, j, k).

W

2e,(i,j, k) + Atoc(i,j, k)
2e,(i,j, k)

2e,(i,j, k) — Atos(ij, k)
2e,(i,), k)

E i k) =

EY(i,], k)

At n+l n+i
—(H; ? 5 ,k H:° J T 1 k
+ ex<i,j,k)Ay((b7, 6) — HE) = 1)

oA (H;HZ(Jok) = H ok~ 1))

Ex(lvjvk)AZ
At nid
gx(i,j,k) ix (lv]a)
(1.22)
After some manipulations, we get
26.(i,), k) — A0S (i, K)
E”+1 k E" k
(a]a) ZSX(k) —|—Ato—e(k) (a]a)
2At ol eid, |
]—[22,7](HZZ7_17k
- (2€x(i,j, k) + Atoe(i,], k))Ay((i,j,k) — (i,j))
2At L wil
— H 2 k H 3 k . 1
(2e.(i,j, k) + Atoc(i,], k))Az((i, k) — Hy (i,))
= "2, k). (1.23)

_ J
2ec(i,j, k) + Atoe(i,j, k)~ ™

18 CHAPTER 1 e Introduction to FDTD

node(i, j, k+ 1) D
>
E(i,j+|l, k
Az
node(i, j|+ 1,|k)
node(i, j, k)
E 4

Figure 1.8 Field components around H,(i, j, k).

The form of (1.23) demonstrates how the future value of an electric field component can
be calculated by using the past values of the electric field component, the magnetic field
components, and the source components. This form of an equation is called an FDTD
updating equation. Updating equations can easily be obtained for calculating E;’“(i7 j, k)
starting from (1.4b) and E"*!(i,j, k) starting from (1.4c) following the same methodology
that has been used to obtain (1.23).

Similarly, updating equations can be obtained for magnetic field components following
the same methodology. However, while applying the central difference formula to the time
derivative of the magnetic field components, the central point in time shall be taken as nAt.
For instance, (1.4c), which is

8Hx 1 8E) z

=)_ai_ame_A/[ix 5

ot u \0z Oy .

can be approximated using finite differences based on the field positions (as shown in
Figure 1.8) as

ntgo. . n—t, .. nis s s
HX+2(17]7k)7Hx z(lvjvk): 1 Ey(l’]’k+1)_Ey(laJak)

At (i), k) Az

t (i, k) Ay
o 0)”51(1';]} k)
1 (i), k)

(4] (i,) 01 4)

1.3 « FDTD updating equations for three-dimensional problems 19

After some manipulations, the future term H;' +%(i .J, k) in (1.24) can be moved to the left-
hand side and the other terms can be moved to the right-hand side such that

ntyo. . 2:“ (i7j7 k) —At(fm(i,j, k) T
HI) k) = T x HI (i, k
O i)+ dwopti g R

2At
+ E k1) - Bk
(Zﬂx(l%ﬁk)+Ato;1(i,j,k))Az(y (5]) — E(i,J))
2A¢
— En~’-+1’k _En.’.,k
(zﬂx(i7j7k)+At0§1(i,j,k))Ay(: (1)) — EX(i,j, k)
2At

- M2 (i), k). .
2)+ Ao (i,) M K) (1.25)

n 1
This equation is the updating equation for Hy 2(i, j, k). Similarly, updating equations can

easily be obtained for H, +%(i, Jj, k) starting from (1.4e) and H; +%(i, J, k) starting from (1.4f)
following the same methodology used to obtain (1.25).

Finally, (1.4a)—(1.4f) can be expressed using finite differences and can be arranged to
construct the following six FDTD updating equations for the six components of electro-
magnetic fields by introduction of respective coefficient terms:

Er (i, k) = Coxelinj k) x EZ(ij, k)
+ Cexhz(i7j7 k) X (HZ”+%(Z.7].7 k) _HZnJr%(iaj_ 17k))
+ Cexhy(ivjv k) X (H;H—%(ivjv k) _H):H—%(ivjvk - 1))
n 1 o .
+ Coglisj,) X T30, K), (1.26)

where

Zex(ivjv k) - At(’;(ivja k)

Coiii k) —
exe(lJv) ng(ivjvk)'|-At(7§(ivjvk)7
2At
Coxiz(i,), k) = ’
iz (65, K) (2ex(i,j, k) + Ato(i,j, k) Ay 1.27
T % (1.27)
exhy\L,] 5 - (Zé‘x(l',jak) —|—Al(7fc(i7j7k))A27
2At

Cex'<iaja k) =

 2e.(ij, k) + Atoc(ij. k)

Er(i g k) = Coelinj, k) x E(i,j, k)

+ Ceyhx(iaja k) X (H;H—%(ivjv k) - H’:H—%(ivjv k — 1))
o Conelisgi k) x (HEHiogi k) = i = 1,5.4))

n 1 P
+ Coylif k) x 3214, k),

20 CHAPTER 1 e Introduction to FDTD

where
C ik 28y(i7j7 k) - Ata;(i?j?k)
eye(l7]7) - 28y(i7j7 k) +At0;(l’]’ k) ’
2At
Ceyhx(iaja k) =)
(28y(i, J k) + Ato i, k))Az
L 2At
Ceyhz<17]7k) = - 5
(264(1.7.6) + Ao, k)) Ax
. 2At (1.28)
Ce;' P ,k = —
v (,]5 k) 2e,(i,j, k) + Atoe(i,j, k)
EM(i,j, k) = Celi,j, k) x E"(i,j, k)
+ Cezhy(ivjv k) X (H;H_%(iaja k) _H)}’H_%(i - 17j7 k))
.. n+d, .. koL,
+ Cezhx(lajak) X (HX Z(IJak) _HX z(la] - 1,]{))
.. n oL,
+ Cez'(la]ak) X Jiz Z(Ia]ak)a
where

_ 2£z(i7j7 k) - AtO’g(i,j7 k)
- 2e.(i,j, k) + Atoc(i,j, k)’

Ceze<i7j7 k)

2At
2e.(i,j, k) + Ato(i,j, k) Ax’

Cezhy(i7j7 k) = (

2At
2¢e.(i,j, k) + Atoe(i,j, k) Ay’

Cezhx(i7j7 k) = - (

2At
o | (1.29)
e (l,],) 232(i7j7k)+At0§(ivj7k>

n+%

Hx (ivjv k) = C/th(iaja k) X H;H%(la]a k)
+ Chxey(iaja k) X (E;(ivj,k + 1) - E;l(ivjv k))
+ Chwes (i), k) X (E2(ij + 1, k) — E2(i,j, k)

+ Chxm(i7j7 k) X Mﬁ(h]v k)a

1.3 « FDTD updating equations for three-dimensional problems 21

where
. 2u,(i,j, k) — Atoy'(i,j, k)
C k .
mlisfo k) =3 7 k) + Atom (i), k)
QAL
Chey (i1, k) = ’
(01K = i) + e 7,) e
QAL
C xez '7 '7k == 7
el k) = = G R + Mo (o, R)) Ay (130
N QAL
Chxm(lafak) =

2u,(i,j, k) + Atom (i j, k)
H)})H_z(v]vk) = Chyh(ivjv k) X H;_i(i7j7 k) + ChyeZ(iaja k)
x (E2(i+1,j,k) — E*(i,}, k) + Chyex(i,], k)
X (Ep(inj,k + 1) = E3(i,j, k) + Crym(i,j, k) x M} (i,j, k)

where
sl) = 20000 F) — 810261,
]’lyh 7]7 zluy(k)+AtOm(J k)’
Coni) 2At
hyez\1,] = 5
(204,07) + At (i, k)) Ax
Condli) 2A¢t
byex\1,], = - ’
2 (zﬂy(i,j, k) + Ator (i,], k))Az
(1.31)
Comliji k) = — 2At
ST (i,) + Aoy i, k)
H3 (i, k) = Chanlinf k) H"‘%c,ﬁ k)
+ Chzex i,j,k (n a]+1 k (7]7k))
+ Craay(i:7K) x (B2 + 1K) = Ex(i.j. k)
+Chzm(l]7k) M (7]7k)7
where

2My(i7j7 k) - AtO’;n (ivjv k)

Cz .7 .7k = i] ’
(057, K) 2u; (i, k) + Ata? (i,], k)
2At
CZGX) 7k ’
hzex (65, k) = (ZMZ(7],k)+Ato;”(i7jvk))Ay
2At
Cheey(i,j, k) = — ’
hzey (Z /) (zluz(lv.]v k) —|—AtO”Z"(l.,j, k))AX
. 2At
Chzm(l,],k) ==

2u,(i,], k) + Ato(i,j, k)

22 CHAPTER 1 e Introduction to FDTD

Set problem space and define parameters

v

Compute field coefficients
[

v

Update magnetic field components
at time instant (n+0.5)A¢

v

Update electric field components

at time instant (n+1)Az

| Apply boundary conditions

v

Increment time step, # = n+1

Last iteration?

Figure 1.9 Explicit FDTD procedure.

It should be noted that the first two subscripts in each coefficient refer to the
corresponding field component being updated. For three subscripts coefficients, the third
subscript refers to the type of the field or source (electric or magnetic) that this coefficient is
multiplied by. For four subscripts coefficients, the third and fourth subscripts refer to the
type of the field that this coefficient is multiplied by.

Having derived the FDTD updating equations, a time-marching algorithm can be
constructed as illustrated in Figure 1.9. The first step in this algorithm is setting up the
problem space — including the objects, material types, and sources — and defining any other
parameters that will be used during the FDTD computation. Then the coefficient terms
appearing in (1.26)—(1.31) can be calculated and stored as arrays before the iteration is
started. The field components need to be defined as arrays as well and shall be initialized
with zeros since the initial values of the fields in the problem space in most cases are zeros,
and fields will be induced in the problem space due to sources as the iteration proceeds. At
every step of the time-marching iteration the magnetic field components are updated for time
instant (n + 0.5)Af using (1.29)—(1.31); then the electric field components are updated for
time instant (z + 1)At using (1.26)—(1.28). The problem space has a finite size, and specific
boundary conditions can be enforced on the boundaries of the problem space. Therefore, the
field components on the boundaries of the problem space are treated according to the type of
boundary conditions during the iteration. The types of boundary conditions and the

1.4 « FDTD updating equations for two-dimensional problems 23

techniques used to integrate them into the FDTD algorithm are discussed in detail in
Chapters 7 and 8. After the fields are updated and boundary conditions are enforced, the
current values of any desired field components can be captured and stored as output data, and
these data can be used for real-time processing or postprocessing to calculate some other
desired parameters. The FDTD iterations can be continued until some stopping criteria are
achieved.

1.4 FDTD updating equations for two-dimensional problems

The FDTD updating equations given in (1.26)—(1.31) can be used to solve three-dimensional
problems. In the two-dimensional case where there is no variation in the problem geometry
and field distributions in one of the dimensions, a simplified set of updating equations can be
obtained starting from the Maxwell’s curl equations system (1.4). Since there is no variation
in one of the dimensions, the derivative terms with respect to that dimension vanish. For
instance, if the problem is z dimension independent, equations (1.4) reduce to

OE, 1 (OH.
= - eEx —Jix | 1.32
5 e (8y o J) (1.32a)
(e oE, J,y) (1.32b)
(ﬂ _ oE, J,Z> (1.32c)
X
H, OE;
_ nH, M, 132
() (1324
o8,
o (ax "H, - M,y) (1.32¢)

OH. 1 (0E, OE,
FTa (o oV H, M,Z>. (1.32f)
One should notice that equations (1.32a), (1.32b), and (1.32f) are dependent only on the
terms E,, E,, and H., whereas equations (1.32¢), (1.32d), and (1.32¢) are dependent only on
the terms E., H,, and H,. Therefore, the six equations (1.32) can be treated as two separate
sets of equations. In the first set (1.32a), (1.32b), and (1.32f) — all the electric field compo-
nents are transverse to the reference dimension z; therefore, this set of equations constitutes
the transverse electric to z case — TE.. In the second set — (1.32¢), (1.32d), and (1.32¢) — all
the magnetic field components are transverse to the reference dimension z; therefore, this set
of equations constitutes the transverse magnetic to z case — TM.. Most two-dimensional
problems can be decomposed into two separate problems, each including separate field
components that are TE, and TM, for the case under consideration. These two problems can
be solved separately, and the solution for the main problem can be achieved as the sum of the
two solutions.

24 CHAPTER 1 e Introduction to FDTD

—
—-

E(i—1,j+2)

E(i+1,j+2)

_ Ei,j+2)
. = n :1
* *
-1 e I o |
[ot HGj+D TYHG+L D)
L Hz(ifl,j+1);:,\ LG, 7+ 1) E (i j);
5] EN =
53] 53]
EGi—1,j+1) | E(j+1) EGi+1,j+1)
e 3t e St e o
2| o1 F| R LT HGrL) &
Sp Sp
= | EG-1.)) EG)) T | EGHLD =
| = ~ ~
L - :
ay =1 g e I o <t
LHG LD S m- 2 H+1,j-1) &
= ol ol
EG-1j-1) Ej-1 Ei+1,j-1)
hAx—>

Figure 1.10 Two-dimensional 7E, FDTD field components.

The FDTD updating equations for the TE, case can be obtained by applying the central
difference formula to the equations constituting the TE, case based on the field positions
shown in Figure 1.10, which is obtained by projection of the Yee cells in Figure 1.5 on the xy
plane in the z direction. The FDTD updating equations for the TE, case are therefore

obtained as

EP(5,)) = Coneli) % ELi.) + Conielinf) % (HEH0,) — HIH 6, — 1))

.. T
+Cexj(l7]> XJ:; 2(17J)7

where
2‘(3‘:(‘ j) B AfOe(i,j)
C X
w0 = 56 0) + hos(i))
2At
Cex z .7) = ;
=00) = (e i) + biot(i))) Ay
o 2At
Cexj(la]) = -

2e,(i,)) + Atoe(i,j)

nt+d .. ntl . .
EPN (i) = Coeli) % ELi) + Cope(inf) x (HE3(0.) = HH 0 = 1,9))

.o koL,
+ Ceyj(l7]) X Jiy 2(17])7

(1.33)

(1.34)

1.4 « FDTD updating equations for two-dimensional problems 25

where

C (]) 28}’() AtU (a])

avells 2e,(i,j) + Ato;(i)’
Cone(i]) 2At

eyhz\1,J) = — ;

<2ey(z', J) + Ao i, j))Ax
) . 2Al‘ (1.35)

Ceyj(lvf) = -

2¢e,(i,j) + Atoe(i,j) '
n ! R .. nis s nis s
Hz+2() Chzh(7]) X H 2(7]) + Cbzex(lyj) X (Ex(l7j + l) _Ex(l7]))
+ Ciao (i) x (B + 1,) = EYi.))) + Cran(i.) x M),

where
(i,) = 2Lelbsd) = At (i,])
hzn (2, 2u,(i, j) + Ato™ (i, j)
2At
C zex .7 i = ,
zex (1) (2u.(i, j) + Ato2 (i, j)) Ay
2At
Cheen i) = = ’
() = (i) + Aoz (1.])) A
. 2At
Chzm(lJ) = -

2u.(i.j) + Ato2(i.j)

Since the FDTD updating equations for the three-dimensional case are readily available,
they can be used to derive (1.33), (1.34), and (1.35) by simply setting the coefficients
including 1/Az to zero. Hence, the FDTD updating equations for the 7M. case can be
obtained by eliminating the term Cj,,(i, j, k) in (1.29) and eliminating the term Cpy..(i, j, k)
in (1.30) based on the field positions shown in Figure 1.11, such that

. ST +3/. .
En+1(7]) Ceze(la]) X E (7]) + Cezhy(7]) (H;’ 2(17]) _H;l 2(1 - 17]))
1
- Conlinf) % (K1) = B = 1)) + Coglio) < JEH), (136)
where

2¢,(i,j) — Atol(i, f)

Ceze(7]) 282() + Al(fg(l,]) ’
Cozty (i) 5
' l, = . .. ’
P Reing) + bos(i) Ax
2At
Cezx '7) = — .. mi ’
I = " i) + Avos (o) Ay o
N 2At
ngj(lv]) ==

2e.(i,j) + Ato"(ij)
n+2

HI(0,)) = Cualin) % HE 2(6,)) + Cieslin) % (E2(irj + 1) — (i)
+ Chxm(1254) X A/[lx(l7])7

26 CHAPTER 1 e Introduction to FDTD

D » 5D
W <D W e
al P a gl
‘ 7 % Py 0 : P 7 t PY 7
: H(i— 1’j+2),\ Hi, j+2) f H(i+ 1,j+2):
™~ : ~ +
e - - S
i N 2T . nln N n
\f \'/\HS i; R SX\ % (x\ } \; \.xq')
\ A A = \
oo { &2 &’ E T ¢?
= | HG-Lj+D | HG j+2) Hy(i+1,j+1L
— S < =
~ : 3 + - — .
= ./\’D = D N .x\“l\ § "),»D
g8 o g T e N
~¢ 1 i) ¢
[1 H=1,0) H) = | HG+1) =
— ~ ~
- — | = — - .
‘A[: [3/\\ =T R " 3/\\ T
m’* A Efg) 3/ = AN = ,.)’73
\ IS T gl Tee”
Hyi-1,j-1) Hyi,j—1) Hyi+1,j-1)
Figure 1.11 Two-dimensional 7M; FDTD field components.
where
X - . .
’ 2u,(i,)) + Ato™ (i, j)’
Creealis) 2At
hyez\1,]) = — . .
’ (2uy(i.j) + Ato2 (i, j)) Ay’
2At (1.38)

C m .7) = — .
) = = 50) + Mo)
n+%

n—i, " . nls
H,V (i7j) = Chyh(ivj) X Hy 2<lvj) + Chyez(la]) X (Ez (l + 17]) _Ez (17]))
+ Chym(iaj) X Mtryn<l7.])7

where
nyh(1,J) = —)
g 2u,(i,]) + Ato™ (i,)
. 2At
ChyeZ(la]) = . L)
(210,(0.7) + At0 ()) A
2At

hom(0:1) 2u,(i,j) + Ato™ (i)

1.5 « FDTD updating equations for one-dimensional problems 27

1.5 FDTD updating equations for one-dimensional problems

In the one-dimensional case, there is no variation in the problem geometry and field dis-
tributions in two of the dimensions. For instance, if the y and z dimensions have no variation,
the derivative with respect to the y and z dimensions vanish in Maxwell’s curl equations.
Therefore, the two-dimensional curl equations (1.32a)—(1.32f) reduce to

OE, 1

o =g (TOEx —Ju), (1.39a)
%:é<—%—gﬁEy—Ly>, (1.39b)
66% = ei (% — 0B — Jz‘z> 7 (1.39)
agx - % (—ol'Hy — M), (1.39d)
a;[t) = ﬂly (%iz —oyH, - Mz'y> : (1.39%)
agzzi(_%_"ﬁ{z—%) (1.39¢)

It should be noted that (1.39a) and (1.39d) include time derivatives but not space deri-
vatives. Therefore, these equations do not represent propagating fields, hence the field
components £, and H,, which only exist in these two equations, do not propagate. The other
four equations represent propagating fields, and both the electric and magnetic field com-
ponents existing in these equations are transverse to the x dimension. Therefore, transverse
electric and magnetic to x (TEM,) fields exist and propagate as plane waves in the one-
dimensional case under consideration.

Similar to the two-dimensional case, the one-dimensional case as well can be decomposed
into two separate cases, since (1.39b) and (1.39f), which include only the terms £, and H., are
decoupled from (1.39¢) and (1.39¢), which include only the terms E. and H,. FDTD updating
equations can be obtained for (1.39b) and (1.39f) using the central difference formula based on
the field positioning in one-dimensional space as illustrated in Figure 1.12, such that

iy

EM(i) = Celi) x ENi) + Copia (i) % (H:*%(i) CHM (- 1)) 4 Coyi) x I3 (1), (1.40)

| I N a——— |

E(Gi—1) H(i-1) E (i) H(i) E(i+1) H(i+1) Ef(i+2)

——

Figure 1.12 One-dimensional FDTD — positions of field components £, and H..

28 CHAPTER 1 e Introduction to FDTD

where
Conli) = 2¢,(i) — Ata;(i)
T 28, (i) + Atos (i)
Cone(i) 2At
eyhz\l) = —)
<2€y(i) + Aza;(i))Ax
. 2At
Coyi(i) = _23y(i)+—Ato;(i)’
and

C Z = = ’
1) = 50(i) + Aror (i)
2At
Chze)
o) =) + Ao () A
2At
Chzm<i) =

" 2w (0) + A2 (i)

Similarly, FDTD updating equations can be obtained for (1.39c) and (1.39¢) using the
central difference formula based on the field positioning in one-dimensional space as illu-
strated in Figure 1.13, such that

EP(0) = Coell) ¥ E20) + Coa i) x (H0) = B = 1)) + Co() x JE2(0), (1.42)

where
N 2e(i) — Atog(i
Ceze(l) - (')—e(')’
2¢e.(i) + Atos(i)
2At
Cez) =)
() (2e.(i) + Ato<(i)) Ax
2At
Coy(i) =

2e.(i) + Atoc (i)’

¢ {: ° {: ° {- °

EG-1) HG-1) E®) HG) B+ HG+1) E(i+2)

——

Figure 1.13 One-dimensional FDTD — positions of field components E. and H,.

1.5 « FDTD updating equations for one-dimensional problems 29

and

HY () = Coyn(i) % HY72(0) + Coyee (i) X (E*i+ 1) = E'(0)) + Chm(i) x MI(0), (1.43)

iy

where

C (1) 2u,(i) + At (i)’
2At
Chyes (i)
el (2ﬂy(z) +Am;1(z>)Ax
Chym(i) _ 2At

2w, (i) + At (i)

A MATLAB code is given in Appendix A for a one-dimensional FDTD implementation
based on the updating equations (1.42) and (1.43). The code calculates electric and magnetic
field components generated by a z-directed current sheet, J,, placed at the center of a pro-
blem space filled with air between two parallel, perfect electric conductor (PEC) plates
extending to infinity in the y and z dimensions. Figure 1.14 shows snapshots of £, and H,
within the FDTD computational domain demonstrating the propagation of the fields and
their reflection from the PEC plates at the left and right boundaries.

In the demonstrated problem, the parallel plates are 1 m apart. The one-dimensional
problem space is represented by cells having width Ax = 1 mm. The current sheet at the
center excites a current with 1 A/m? density and Gaussian waveform

2
rfleoflo)

JZ([) = ei(Sx10— 1T

The current sheet is excited over a one-cell cross-section (i.e., | mm wide), which
translates J, into a surface current density K. of magnitude 1 x 107> A/m. The surface
current density causes a discontinuity in magnetic field and generates /), which satisfies the
boundary condition K = 71 x H. Therefore, two waves of H,, are generated on both sides of
the current sheet, each of which has magnitude 5 x 10~* A/m. Since the fields are propa-
gating in free space, the magnitude of the generated electric field is 7o x 5 x 10~* ~ 0.1885
V/m, where 7 is the intrinsic impedance of free space (1o =~ 377).

Examining the listing of the one-dimensional FDTD code in Appendix A, one immedi-
ately notices that the sizes of the arrays associated with £, and H,, are not the same. The one-
dimensional problem space is divided into nx intervals; therefore, there are nx + 1 nodes in
the problem space including the left and right boundary nodes. This code is based on the
field positioning scheme given in Figure 1.13, where the £, components are defined at node
positions and the A, components are defined at the center positions of the intervals. There-
fore, arrays associated with E. have the size nx + 1, whereas those associated with H, have
the size nx.

Another point that deserves consideration is the application of the boundary conditions.
In this problem the boundaries are PEC; thus, the tangential electric field component (£, in
this case) vanishes on the PEC surface. Therefore, this condition can be enforced on the
electric field component on the boundaries, £.(1) and E.(nx + 1), as can be seen in the

30 CHAPTER 1 e Introduction to FDTD

Time step = 100, Time = 0.3 ns
e E.
_____ Hvx Mo
02
0.1
g 0
2
—0.1
0.2 | .
o
0.2)
1
0.5
02 o
(a) [A/m] x[m]
Time step = 300, Time = 0.9 ns
Ez
_____ [—[y X 1Mo
0.2 o
0.1
E o0l
2
0.1
0.2 | .
o
0.2 .
1
0.5
02 o
(b) [A/m] x[m]

Figure 1.14 Snapshots of a one-dimensional FDTD simulation: (a) fields observed after 100
time steps; (b) fields observed after 300 time steps; (c) fields observed after 615

time steps; and (d) fields observed after 700 time steps.

1.5 « FDTD updating equations for one-dimensional problems

Time step = 615, Time = 1.845 ns

[V/m]

(©

0.2

02 o

(d) [A/m]
Figure 1.14 (Continued)

31

32

CHAPTER 1 e Introduction to FDTD

code listing. Observing the changes in the fields from time step 650 to 700 in Figure 1.14
reveals the correct behavior of the incident and reflected waves for a PEC plate. This is
evident by the reversal of the direction of the peak value of E, after reflection from the PEC
boundaries, which represents a reflection coefficient equal to —1 while the behavior of the
reflected H, component represents the reflection coefficient that is equal to +1 as expected.

1.6 Exercises

1.1

1.2

1.3

1.4

1.5

Follow the steps presented in Section 1.2 to develop the appropriate approximations for
the first derivative of a function with second-order accuracy using the forward and
backward difference procedure and fourth-order accuracy using the central difference
procedure. Compare your derived expressions with those listed in Table 1.1.

Update the MATLAB program in Listing 1.1 to regenerate Figure 1.2 using the second-
order accurate forward and backward differences and the fourth-order accurate central
difference approximations for the same function.

Update the MATLAB program in Listing 1.1 to generate the corresponding figures to
Figure 1.2, but for the second derivatives of the function. Use the approximate
expressions in the right column of Table 1.1 while updating the program.

The steps of the development of the updating equation for the x component of the
electric field are demonstrated in Section 1.3. Follow the same procedure to show the
steps required to develop the updating equations for the y and z components for the
electric field. Pay sufficient attention to the selection of the indices of each individual
field component in your expressions. The Yee cell presented in Figure 1.5 should help
you in understanding the proper use of these indices.

Repeat Exercise 1.4, but this time for developing the updating equations for the mag-
netic field components.

CHAPTER 2

Numerical stability and dispersion

2.1 Numerical stability

The finite-difference time-domain (FDTD) algorithm samples the electric and magnetic
fields at discrete points both in time and space. The choice of the period of sampling (A7 in
time, Ax, Ay, and Az in space) must comply with certain restrictions to guarantee the stability
of the solution. Furthermore, the choice of these parameters determines the accuracy of
the solution. This section focuses on the stability analysis. First, the stability concept is
illustrated using a simple partial differential equation (PDE) in space and time domain. Next,
the Courant-Friedrichs-Lewy (CFL) condition [3] for the FDTD method is discussed,
accompanied by a one-dimensional FDTD example.

2.1.1 Stability in time-domain algorithm

An important issue in designing a time-domain numerical algorithm is the stability condition.
To understand the stability concept, let’s start with a simple wave equation:

Ou(x, t) n Ou(x,t) 0

o e , ulx,t=0) =uy(x), (2.1)

where u(x, ¢) is the unknown wave function and u(x) is the initial condition at # = 0. Using
the PDE knowledge, the equation can be analytically solved:

u(x,t) = up(x — 1). (2.2)

A time-domain numerical scheme can be developed to solve above wave equation. First,
u(x, t) is discretized in both time and space domains:

X =iAx, i=0,1,2,...
t, =nAt, n=0,1,2,... (2.3)

u! = u(x;,).

33

34 CHAPTER 2 « Numerical stability and dispersion

5¢e/8 —5¢/8
n+s5 o ° o o ° o [
&2 &2 &2
n+d4q © ° o o o o o
&8 5€e/8 —5¢/8 —€/8
n+3 o) o))))
&4 &2 &/4
n+2 o ° o o ° o o
&2 —£/2
n+tl o o o ° o ° °
€
n o ° o o o ° o
n—1 o o o o o o o —p X
i-2 i—1 i i+1 it+2

Figure 2.1 The time—space domain grid with error ¢ propagating with 4 = 1/2.

Here, At and Ax are the time and space cell sizes. Then, the finite-difference scheme is
used to compute the derivatives, and the following equation is obtained:

+1 ~1
= i Ui — U
2At 2Ax

After a simple manipulation, a time-domain numerical scheme can be derived such that

u

=0. (2.4)

= A i), A= 2.5)

Figure 2.1 shows a time and space domain grid, where the horizontal axis represents the x
axis and the vertical axis denotes the ¢ axis. The « values for time index denoted as » and
n — 1 are all assumed to be known. For simplicity we will assume that all these values are
zeros. We will also assume that at one x position denoted by the index i and at time denoted
by the index 7 there is a small error represented by the parameter ¢. As the time evolves, a u
value at n + 1 is computed from two rows lower in accordance with (2.5).

Now let’s analyze the propagation of the assumed numerical error ¢ in this time-domain
algorithm. Note that the error may result from a numerical truncation of a real number. When
A = 1/2, the errors are shown in Figure 2.1. The error will keep propagating in this time-
domain algorithm; however, it can be observed that the errors are always bounded by
the original error &, whereas for the case when 4 = 1, the maximum absolute value of the
propagating error is of the same value as the original error. This is clearly obvious from
the errors propagating in Figure 2.2. On the contrary, when A = 2, the propagation of error as
shown in Figure 2.3 will keep increasing as time evolves. Finally, this error will be large
enough and will destroy the actual u values. As a result, the time-domain algorithm will not
give an accurate result due to a very small initial error. In summary, the numerical scheme in
(2.5) is therefore considered conditionally stable. It is stable for small 4 values but
unstable for large 4 values, and the boundary of stability condition is 4 = 1.

2.1 « Numerical stability 35

t
T £ —£
nts5 o ° ° ° o ° o
—€ —£
n+4 © ° ° o ° ° °
€ —& £
n+3 o o ° ° o o Eo
€ £
n+2 o [o o ° go o
> =3
n+tl o ° & ° ° ° °
n o ° ° 3 o ° °
n—-1 o o o o o ° o — px
i-2 i—1 i i+1 i+2

Figure 2.2 The time—space domain grid with error ¢ propagating with 1 = 1.

~

n+t5 o ° o ° o o o
4e —25¢ 4e
n+4 o o o o o o o
8¢ -8¢ 8e
n+3 o ° ° ° o ° °
4e 3
n+2 o o ° 7og ° 4§ °
2¢ -2¢€
n+1 o o 9] o og o o
&
n o ° o o o o o
n—-1 o o °) ° o 0O —p X
i-2 i—1 i i+1 i+2

Figure 2.3 The time—space domain grid with error ¢ propagating with 1 = 2.

2.1.2 CFL condition for the FDTD method

The numerical stability of the FDTD method is determined by the CFL condition, which
requires that the time increment Az has a specific bound relative to the lattice space incre-
ments, such that

Ar < , (2.6)

36 CHAPTER 2 « Numerical stability and dispersion

where c is the speed of light in free space. Equation (2.6) can be rewritten as

1 | 1
cAt + + <1 (2.7)
\/(M)2 (A (Az)?
For a cubical spatial grid where Ax = Ay = Az, the CFL condition reduces to
Ax
At < ——. (2.8)
V3

One can notice in (2.6) that the smallest value among Ax, Ay, and Az is the dominant
factor controlling the maximum time step and that the maximum time step allowed is always

smaller than min(Ax, Ay, Az)/c.
In the one-dimensional case where Ay — o0 and Az — oo in (2.6), the CFL condition

reduces to
At < Ax/c or cAr < Ax. (2.9)

This equation implies that a wave cannot be allowed to travel more than one cell size in
space during one time step.

The existence of instability exposes itself as the development of divergent spurious fields
in the problem space as the FDTD iterations proceed. For instance, the one-dimensional
FDTD code presented in Chapter 1 simulates a problem space composed of cells having
length Ax = 1 mm. Due to the one-dimensional CFL condition (2.9) the time increment must
be chosen as Ar < 3.3356 ps. This code is run with the values of Ar = 3.3356 ps and
At = 3.3357 ps, and the maximum value of electric field magnitude is captured at every time
step and plotted in Figure 2.4. The spikes of the electric field magnitude are due to the

At =3.3356 ps
- - = At=3.3357 ps

2.5

77

Maximum E, [V/m]
"

0.5

Time [ns]

Maximum magnitude of E, in the one-dimensional problem space for simulations

Figure 2.4
with At = 3.3356 ps and At = 3.3357 ps.

2.2 « Numerical dispersion 37

additive interference of the fields when fields pass through the center of the problem space,
and the nulls are due to the vanishing of electric fields on PEC when the fields hit the PEC
boundary walls. However, while the iterations proceed, the electric field magnitude calcu-
lated by the simulation running with A = 3.3357 ps starts to diverge. This examination
demonstrates how a At value larger than the CFL limit gives rise to instability in the FDTD
computation.

The CFL stability condition applies to inhomogeneous media as well, since the velocity
of propagation in material media is smaller than ¢. However, numerical stability can be
influenced by other factors, such as absorbing boundary conditions, nonuniform spatial
grids, and nonlinear materials.

Even if the numerical solution is stable, satisfaction of the CFL condition does not
guarantee the numerical accuracy of the solution; it only provides a relationship between the
spatial grid size and the time step. One must still satisfy the sampling theory requirements
with respect to the highest frequency present in the excitation.

2.2 Numerical dispersion

The FDTD method provides a solution for the behavior of fields that is usually a good
approximation to the real physical behavior of the fields. The finite-difference approxima-
tion of derivatives of continuous functions introduces an error to the solution. For instance,
even in homogeneous free space, the velocity of propagation of the numerical solution for a
wave will generally differ from c. Furthermore, it will vary with frequency, the spatial grid
size, and direction of propagation of the wave. The differing of phase velocities numerically
obtained by the FDTD method from the actual phase velocities is known as numerical
dispersion.

For instance, consider a plane wave propagating in free space in the x direction, given by

E.(x,1) = Ey cos(kyx — wi), (2.10a)
H,(x,t) = Hy cos(kex — wt). (2.10Db)

Here, E.(x, f) satisfies the wave equation

& &
@EZ _II’LO‘("O@EZ = O (211)
Substituting (2.10a) in (2.11) yields the equation

B = oo = (%) (2.12)

which is called the dispersion relation. The dispersion relation provides the connection
between the spatial frequency £, and the temporal frequency w [4]. The dispersion relation
(2.12) is analytically exact.

A dispersion relation equation, which is called the numerical dispersion relation, can
be obtained based on the finite-difference approximation of Maxwell’s curl equations
as follows. For the one-dimensional case previously discussed, the plane wave expressions

38 CHAPTER 2 « Numerical stability and dispersion

E.(x,) and H,(x, ?) satisfy the Maxwell’s one-dimensional curl equations, which are given
for the source-free region as

OE. 1 0H,

=—— 2.13
ot g Ox'’ (2.132)
OH, 1 OE.
— = . 2.1
ot uy Ox (2.13)

These equations can be rewritten using the central difference formula based on the field
positioning scheme in Figure 1.13 as

1 1
n+s n+s

EX() —ENi) 1 Hy () —Hy “(i—1)
A7 = g Ar , (2.14a)
w0 -0 1 BG) -6 1)

The plane wave equations (2.10) are in continuous time and space, and they can be
expressed in discrete time and space with

E!(i) = Egcos(kyiAx — wnAt), (2.15a)
EM(i) = Egcos(kiAx — w(n + 1)At), (2.15b)
El(i+ 1) = Egcos(ke(i + 1)Ax — wnAt), (2.15¢)
H"™ (i) = Hocos(ky(i +0.5)Ax — w(n + 0.5)A1), (2.15d)
HI2 (i — 1) = Hycos (ks (i — 0.5)Ax — w(n + 0.5)Ar), (2.15¢)
H'3(i) = Hycos(ky(i + 0.5)Ax — w(n — 0.5)Ar), (2.15¢f)

The terms (2.15a), (2.15b), (2.15d), and (2.15¢) can be used in (2.14a) to obtain

E
A_(; {cos(kxiAx — w(n+ 1)At) — cos(kyiAx — a)nAt)}

H,
- [cos(kx(i +0.5)Ax — w(n + 0.5)Ar) — cos(k,(i — 0.5)Ax — w(n + 0.5)At) .
&

(2.16)
Using the trigonometric identity

cos(u — v) — cos(u + v) = 2sin(u)sin(v)

on the left-hand side of (22.16) with u = kiAx — w(n 4+ 0.5)At and v = 0.5A¢, and on the
right-hand side with u = kiAx — w(n + 0.5)Ar and v = —0.5 Ax, one can obtain

Ey . —Hy .
A—(;sm(O.SwAt) = Soﬁsm(O.SkxAx). (2.17)

2.2 « Numerical dispersion 39

Similarly, using the terms (2.15a), (2.15¢), (2.15d), and (2.15f) in (2.14b) leads to

H, —E
A—‘t’ sin(0.5wAr) = MoA(:C sin(0.5k,Ax). (2.18)

Combining (2.17) and (2.18) one can obtain the numerical dispersion relation for the one-

dimensional case as
1 . (oAN\]? 1 . (kAx\]?
|:E sin (T>:| = |:E Sln(5):| . (219)

One should notice that the numerical dispersion relation (2.19) is different from the ideal
dispersion relation (2.12). The difference means that there is a deviation from the actual
solution of a problem and, hence, an error introduced by the finite-difference approximations
to the numerical solution of the problem. However, it is interesting to note that for the one-
dimensional case, if one sets A = Ax/c (2.19) reduces to (2.12), which means that there is no
dispersion error for propagation in free space. However, this is of little practical use, since
the introduction of a material medium will again create dispersion.

So far, derivation of a numerical dispersion relation has been demonstrated for a
one-dimensional case. It is possible to obtain a numerical dispersion relation for the
two-dimensional case using a similar approach:

() () o

where there is no variation of fields or geometry in the z dimension. For the particular case
where

A
Ax=Ay=A, At=——, and k, =k,
Y C\/f 7

the ideal dispersion relation for the two-dimensional case can be recovered as

K41 = (%)2 (2.21)

The extension to the three-dimensional case is straightforward but tedious, yielding

()] -2 [)] e

Similar to the one- and two-dimensional cases, it is possible to recover the three-
dimensional ideal dispersion relation

B4k 41 = (%)2 (2.23)

for specific choices of At, Ax, Ay, Az, and angle of propagation.

40 CHAPTER 2 « Numerical stability and dispersion

Time step = 1000, Time = 3 ns

— Hy X My

0.2

[V/m]

(@) [A/m] 020 x [m]

EZ
— Hy X My

[V/m]

0.2
(b) [A/m] 0

Figure 2.5 (a) Maximum magnitude of E, in the one-dimensional problem space: simulation
with Ax = 1 mm; (b) maximum magnitude of E, in the one-dimensional problem

space: simulation with Ax = 4 mm.

2.3 « Exercises 41

Let’s rewrite (2.22) in the following form:

2 (kAz/2)

Since lim,_,((sin(x)/x) = 1 (2.24) reduces to the ideal dispersion relation (2.23) when
At - 0, Ax —» 0, Ay — 0, and Az — 0. This is an expected result since when the sampling
periods approach zero, the discrete approximation turns into the continuous case. This also
indicates that if the temporal and spatial sampling periods Af, Ax, Ay, and Az are taken
smaller, then the numerical dispersion error reduces.

So far, we have discussed the numerical dispersion in the context of waves propagating in
free space. A more general discussion of numerical stability and dispersion, including the
derivation of two- and three-dimensional numerical dispersion relations, other factors
affecting the numerical dispersion, and strategies to reduce the associated errors, can be
found in [1]. We conclude our discussion with an example demonstrating the numerical
dispersion.

Due to numerical dispersion, waves with different frequencies propagate with different
phase velocities. Any waveform is a sum of sinusoidal waves with different frequencies, and
a waveform does not maintain its shape while propagating since its sinusoidal components
do not propagate with the same velocity due to dispersion. Therefore, the existence of
numerical dispersion exposes itself as distortion of the waveform. For instance, Figure 2.5
shows the electric and magnetic field in the one-dimensional problem space calculated by
the one-dimensional FDTD code presented in Chapter 1. The problem space is 1 m wide, and
At = 3 ps. Figure 2.5(a) shows the field distribution at time instant 3 ns as calculated by
the program when Ax = 1 mm and J, = 1 A/m% Similarly, Figure 2.5(b) shows the field
distribution at time instant 3 ns when Ax = 4 mm. In this second simulation the magnitude of
J. is taken as 0.25 A/m* to maintain the magnitude of the surface current density K. as
1 x 10 A/m; hence, the magnitudes of electric and magnetic fields are almost the same.
Figure 2.5(a) shows that the Gaussian pulse is not distorted; even though there is numerical
dispersion, it is not significant. However, in Figure 2.5(b) the Gaussian pulse is distorted due to
use of a larger cell size, and the error introduced by numerical dispersion is more pronounced.

2¢ (wAt/)2)

2.3 Exercises

2.1 Using the one-dimensional MATLAB® FDTD program listed in Appendix A, verify
the results presented in Figure 2.5.

2.2 Update the one-dimensional FDTD MATLAB program such that the Gaussian pulse
propagates in a medium characterized with electric losses instead of free space.
Observe the decay of the amplitude of the propagating pulse and the effect of losses on
the dispersion shown in Figure 2.5(b) at time = 3 ns.

2.3 Repeat Exercise 2.2, but with the introduction of magnetic losses in the medium,
instead of free space. Record your observations related to the pulse propagation at
time = 3 ns.

This page intentionally left blank

CHAPTER 3

Building objects in the Yee grid

In Chapter 1 we discussed the derivation of the finite-difference time-domain (FDTD)
updating equations based on the staircased grid composed of Yee cells in Cartesian coordi-
nates. We defined material components ¢, u, 0, and o™ associated with the field components
such that they represent linear, anisotropic, and nondispersive media. Due to the staircase
gridding, the objects in an FDTD problem space can be represented in terms of the size of
the cells building the grid. Therefore, the staircased gridding imposes some restrictions on
the accurate representation of the objects in the problem space. Some advanced modeling
techniques called local subcell models are available for defining objects with fine features,
and some other FDTD formulations based on nonorthogonal and unstructured grids have
been introduced for problems that contain objects that do not conform with the staircased
grid [1]. However, the staircased FDTD model can provide sufficiently accurate results for
many practical problems. In this chapter, we discuss construction of objects in the staircased
FDTD grid through some MATLAB® code examples.

3.1 Definition of objects

Throughout this book, while describing the concepts of the FDTD method we illustrate the
construction of an FDTD program as well. After completing this book, the reader should be
able to construct an FDTD program that can be used to solve three-dimensional electro-
magnetics problems of moderate difficulty. In this chapter, we start to provide the blocks of a
three-dimensional FDTD program.

We name the main MATLAB program file that runs an FDTD calculation as
fdtd_solve. The MATLAB code in Listing 3.1 shows the contents of fdtd_solve, in which
the program routines are named by their functions. Usually, it is a good practice to divide a
program into functionally separable modules; this will facilitate the readability of the pro-
grams and will simplify the debugging process. This file is not in the final form for a
complete FDTD program; while we proceed with the chapters we will add more routines
with additional functions, will describe the functions of the routines, and will provide partial
code sections to illustrate the programming of the respective concepts that have been
described in the text. The program structures and codes presented throughout this book are
not necessarily samples of the most efficient ways of programming the FDTD method; there

43

44 CHAPTER 3 « Building objects in the Yee grid

Listing 3.1 fdtd_solve.m

(. .
% initialize the matlab workspace
2| clear all; close all; clc;

% define the problem
define_problem_space_parameters;
define_geometry;
define_sources_and_lumped_elements;
define_output_parameters;

-

>

»

1

% initialize the problem space and parameters
initialize_fdtd_material_grid;

2| display_problem _space;

display_material_mesh;

| if run_simulation
initialize_fdtd_parameters_and_arrays;

16 initialize_sources_and_lumped_elements;
initialize_updating_coefficients;

18 initialize_boundary_conditions;
initialize_output_parameters;

2 initialize_display_parameters;

2 % FDTD time marching loop

run_fdtd_time_marching_loop;

% display simulation results
2% post_process_and_display_results;
end

are many ways of translating a concept into a program, and readers can develop program
structures or algorithms that they think are more efficient while writing their own code.
However, we tried to be as explicit as possible while linking the FDTD concepts with the
respective codes.

In the FDTD algorithm, before the time-marching iterations are performed the problem
should be set up as the first step as indicated in the concise flow chart in Figure 1.9. Problem
setup can be performed in two sets of routines: (1) routines that define the problem; and
(2) routines that initialize the problem space and FDTD parameters. The problem definition
process consists of construction of data structures that store the necessary information about
the electromagnetic problem to be solved. This information would include the geometries of
the objects in the problem space, their material types, electromagnetic properties of these
material types, types of sources and waveforms, types of simulation results sought from the
FDTD computation, and some other simulation parameters specific to the FDTD algorithm,
such as the number of time steps, and types of boundaries of the problem space. The initi-
alization process translates the data structures into an FDTD material grid and constructs and
initializes data structures and arrays representing the FDTD updating coefficients, field
components, and any other data structures that would be used during and after the FDTD
iterations. In other words, it prepares the structural framework for the FDTD computation
and postprocessing.

3.1 « Definition of objects 45

3.1.1 Defining the problem space parameters

Listing 3.1 starts with the initialization of MATLAB workspace. The MATLAB command
clear all removes all items from the current workspace and frees the memory, close all
deletes all open figures, and cle clears the command window. After the MATLAB work-
space initialization, there are four subroutines listed in Listing 3.1 for definition of the pro-
blem and other subroutines for initialization of the FDTD procedure. In this chapter, we
implement the subroutines define_problem_space_parameters, define_geometry, and
initialize_fdtd_material_grid.

The contents of the subroutine define_problem_space_parameters are given in Listing 3.2.
Listing 3.2 starts with the MATLAB command disp, which displays the string in its argument on
MATLAB command window. Here the string argument of disp indicates that the program is

Listing 3.2 define_problem_space_parameters.m

-
disp(’defining_the_problem_space_parameters’);

% maximum number of time steps to run FDTD simulation
number_of_time_steps = 700;

% A factor that determines duration of a time step
% wrt CFL limit
courant_factor = 0.9;

<

% A factor determining the accuracy limit of FDTD results

nfnumber_of_cells_per_wavelength = 20;

135/% Dimensions of a unit cell in x, y, and z directions (meters)
dx=2.4e-3;

15| dy=2.0e—3;
dz=2.2e-3;

% ==<boundary conditions >========

19|% Here we define the boundary conditions parameters

% 'pec’ : perfect electric conductor
| boundary . type_xp = ’'pec’;
boundary.air_buffer_number_of_cells_xp = 5;
23
boundary.type_xn = ’pec’;
5| boundary.air_buffer_number_of_cells_xn = 5;

7| boundary.type_yp = ’'pec’;

boundary.air_buffer_.number_of_cells_yp = 10;
29

boundary.type_yn = ’pec’;
si|boundary. air_buffer_number_of_cells_yn = 5;
53/ boundary . type_zp = ’'pec’;

boundary.air_buffer_number_of_cells_zp = 5;
35

boundary.type_zn = ’pec’;

s7|boundary. air_buffer_.number_of_cells_.zn = 0;

46

39

41

43

45

69

-
3

8

83

CHAPTER 3 « Building objects in the Yee grid

===<material types >============
Here we define and initialize the arrays of material
relative

% eps_r

permittivity

% mu_r

% sigma_e
% sigma_m

% air

material_types
material_types
material_types
material_types
material_types

% PMC :

material_type_index_air
material_type_index_pec
material_type_index_pmc

relative

electric
magnetic

.eps_r
.mu_r

(1)
(1)
(1).
(1)
(1)

sigma_e

.sigma_m
.color

1;
2;
3;

permeability

conductivity
conductivity

% PEC perfect electric conductor
material_types (2). eps_r = 1;

sl material_types (2). mu_r =1;
material_types (2).sigma_e = 1e10;

7l material_types (2).sigma_m = 0;
material_types (2). color =1[1 0 0];

perfect magnetic conductor

material_types (3). eps_r = 1;
material_types (3). mu_r 1;
material_types (3).sigma_e = 0;
material_types (3).sigma_.m = 1e10;

s| material_types (3). color = 1[0 1 0];
% a dielectric

material_types (4). eps_r = 2.2;
material_types (4). mu_r = 1;
material_types (4).sigma_e = 0;
material_types (4).sigma.m = 0.2;
material_types (4). color =100 1];
% a dielectric

sl material_types (5). eps_r = 3.2;
material_types (5). mu_r = 1.4;
material_types (5).sigma_e = 0.5;
material_types (5).sigma_m = 0.3;
material_types (5). color =1[1 1 0];
% indices of material types defining

air, PEC, and PMC

types

executing the routine in which the problem space parameters are defined. Displaying this kind
of informative statement at various stages of the program indicates the progress of the execution
as well as helps for debugging any sources of errors if they exist.

The total number of time steps that the FDTD time-marching iterations will run for is
defined in line 4 of Listing 3.2 with the parameter number_of_time_steps. Line 8 defines a

3.1 « Definition of objects 47

parameter named courant_factor: a factor by which the duration of a time step is deter-
mined with respect to the CFL stability limit as described in Chapter 2. In line 11 another
parameter is defined with the name number_of_cells_per_wavelength. This is a parameter
by which the highest frequency in the Fourier spectrum of a source waveform is determined
for a certain accuracy level. This parameter is described in more detail in Chapter 5, where
the source waveforms are discussed. On lines 14, 15, and 16 the dimensions of a unit cell
constructing the uniform FDTD problem grid are defined as parameters dx, dy, and dz,
respectively.

One of the important concepts in the FDTD technique is the treatment of boundaries
of the problem space. The treatment of perfect electric conductor (PEC) boundaries was
demonstrated in Chapter 1 through a one-dimensional FDTD code. However, some types of
problems may require other types of boundaries. For instance, an antenna problem requires
that the boundaries simulate radiated fields propagating outside the finite problem space to
infinity. Unlike a PEC boundary, this type of boundary requires advanced algorithms, which
is the subject of a separate chapter. However, for now, we limit our discussion to PEC
boundaries. A conventional FDTD problem space composed of uniform Yee cells is a rec-
tangular box having six faces. On lines 21-37 of Listing 3.2 the boundary types of these six
faces are defined using a data structure called boundary. The structure boundary has two
types of fields: type and air_buffer_number_of_cells. These field names have extensions
indicating the specific face of the domain under consideration. For instance, the extension
_xn refers to the face of the problem space for which the normal vector is directed in the
negative x direction, where n stands for negative direction. Similarly, the extension _zp
refers to the face of the problem space for which the normal vector is directed in the positive
z direction, where p stands for positive direction. The other four extensions refer to four
other faces. The field type defines the type of the boundary under consideration, and in this
case all boundaries are defined as PEC by the keyword pec. Other types of boundaries are
identified with other keywords.

Some types of boundary conditions require that the boundaries be placed at a distance
from the objects. Most of the time this space is filled with air, and the distance in between is
given in terms of the number of cells. Hence, the parameter air_buffer_number_of_cells
defines the distance of the respective boundary faces of the rectangular problem space from
the objects placed in the problem space. If the value of this parameter is zero, it implies that
the boundary touches the objects.

Finally, we define different types of materials that the objects in the problem space are
made of. Since more than one type of material may be used to construct the objects, an array
structure with name material_types is used as shown in lines 47-79 of Listing 3.2. An index
i in material_types(i) refers to the ith material type. Later on, every object will be assigned a
material type through the index of the material type. An isotropic and homogeneous material
type can be defined by its electromagnetic parameters: relative permittivity ¢,, relative per-
meability u,, electric conductivity 0¢, and magnetic conductivity o™; hence, fields eps_r,
mu_r, sigma_e, and sigma_m are used with parameter material_types(i), respectively, to
define the electromagnetic parameters of ith material type. In the given example code, a very
high value is assigned to material_types(2).sigma_e to construct a material type simulating
a PEC, and a very high value is assigned to material_types(3).sigma_m to construct
a material type simulating a perfect magnetic conductor (PMC). A fifth field color in
material_types(i) is optional and is used to assign a color to each material type, which will

48 CHAPTER 3 « Building objects in the Yee grid

help in distinguishing different material types when displaying the objects in the problem
space on a MATLAB figure. The field color is a vector of three values corresponding to red,
green, and blue intensities of the red, green, and blue (RGB) color scheme, respectively, with
each color scaled between 0 and 1.

While defining the material_types it is a good practice to reserve some indices for some
common material types. Some of these material types are air, PEC, and PMC, and these
material types are indexed as 1, 2, and 3 in the material_types structure array, respectively.
Then we can define additional parameters material_type_index_air, material_type_
index_pec, and material_type_index_pmc, which store the indices of these materials and
can be used to identify them in the program.

3.1.2 Defining the objects in the problem space

In the previous section, we discussed the definition of some problem space parameters
including the boundary types and material types. In this section we discuss the imple-
mentation of the routine define_geometry contents, which are given in Listing 3.3. Different
types of three-dimensional objects can be placed in a problem geometry. We show example
implementations using prisms and spheres due to their geometrical simplicity, and it is
possible to construct more complicated shapes by using a combination of these simple
objects. Here we will use the term brick to indicate a prism. A brick, which has its faces
parallel to the Cartesian coordinate axes, can be represented by two corner points: (1) the
point with lower x, y, and z coordinates; and (2) the point with upper x, y, and z coordinates
as illustrated in Figure 3.1(a). Therefore, a structure array called bricks is used in Listing 3.3
together with the fields min_x, min_y, min_z, max_x, max_y, and max_z corresponding to
their respective positions in Cartesian coordinates. Each element of the array bricks is a
brick object indexed by i and is referred to by bricks(i). Another field of the parameter
bricks(i) is the parameter material_type, which refers to the index of the material type of
the ith brick. In Listing 3.3 bricks(1).material_type is 4, indicating that brick 1 is made
of material_types(4), which is defined in Listing 3.2 as a dielectric with ¢. = 2.2 and
o™ = 0.2. Similarly, bricks(2).material_type is 2, indicating that brick 2 is made of
material_types(2), which is defined as a PEC.

A sphere can be defined by its center coordinates and radius as illustrated in Figure 3.1(b).
Therefore, a structure array spheres is used in Listing 3.3 together with the fields center_x,
center_y, center_z, and radius which correspond to the respective parameters in Cartesian
coordinates. Similar to the brick case, the field material_type is used together with
spheres(i) to define the material type of the ith sphere. For example, in Listing 3.3 two
spheres are defined with coinciding centers. Sphere 1 is a dielectric of material_types(5)
with a radius of 20 mm, and sphere 2 is a dielectric of material_types(1) with a radius of
15 mm. If these two spheres are created in the problem space in sequence (sphere 1 first and
sphere 2 second), their combination is going to form a hollow shell of thickness 5 mm since
the material type of the inner sphere material_types(1) is air. One should notice that Listing
3.3 starts with two lines defining two arrays, bricks and spheres, and initializes them by
null. Even though we are not going to define an object corresponding to some of these arrays,
we still define them and initialize them as empty arrays. Later, when the program executes,
these arrays will be accessed by some routines of the program.

3.1 « Definition of objects 49

Listing 3.3 define_geometry.m

-
disp ('defining._the_problem_geometry’);

[1;
[

% define a brick with material type 4

bricks
s|spheres

)

EN

bricks (1). min.x = 0;
s|bricks (1). min_y = 0;
bricks (1). min_z = 0;
| bricks (1). max_x = 24e-3;
bricks (1). max_.y = 20e-—3;
2|{bricks (1). max_z = 11e-3;
bricks (1). material_type = 4;
14
% define a brick with material type 2
6| bricks (2). min_x = —20e—3;
bricks (2). min_.y = —20e-3;
is|bricks (2). min_z = —11e—3;
bricks (2). max.x = 0;
w|bricks (2). max.y = 0;
bricks (2). max_z = 0;
2| bricks (2). material_type = 2;
24|% define a sphere with material type 5
spheres (1). radius = 20e-3;
w|spheres(1). center_x = 0;
spheres (1). center_.y = 0;
x| spheres (1). center_z = 40e-3;
spheres (1). material_type = 5;
30
% define a sphere with material type 1
s20spheres(2). radius = 15e-3;
spheres (2). center_x = 0;
s+|spheres (2). center_y = 0;
spheres (2). center_z = 40e-3;
ss|spheres (2). material _type = 1;

If MATLARB tries to access a parameter that does not exist in its workspace, it is going to
fail and stop the execution of the program. To prevent such a runtime error we define these
arrays even though they are empty.

So far we have defined an FDTD problem space and defined some objects existing in
it. Combining the definitions in Listings 3.2 and 3.3 we obtained a problem space, which
is plotted in Figure 3.2. The dimensions of the cells in the grids in Figure 3.2 are the same
as the dimensions of the unit cell making the FDTD grid. Therefore, it is evident that the
boundaries are away from the objects by the distances defined in Listing 3.2. Further-
more, the objects are placed in the three-dimensional space with the positions and
dimensions as defined in Listing 3.3, and their colors are set as their corresponding
material type colors.

50 CHAPTER 3 « Building objects in the Yee grid
(max_x, max_y, max_z)

Radius

(center_x, center_y, center_z)
z
|< y
(min_x, min_y, min_z) x
z
A
(a) (b)

Figure 3.1 Parameters defining a brick and a sphere in Cartesian coordinates: (a) parameters
defining a brick and (b) parameters defining a sphere.

Figure 3.2 An FDTD problem space and the objects defined in it.

3.2 Material approximations

In a three-dimensional FDTD problem space, the field components are defined at discrete
locations, and the associated material components are defined at the same locations as illu-
strated in Figures 1.5 and 1.6. The material components need to be assigned appropriate

3.2 « Material approximations 51

/ - | /'-"‘,..v - \ U
o o 7 . :
Sl 1
&, 1,4)1 | t
G — tsz(w l;i;k)-;

Qniade (1 J» k) : .7

8

/

« T

Material cell for £.(i, j, k) Yee cell (i, /, k)

Figure 3.3 A cell around material component &.(i, j, k) partially filled with two media.

values representing the media existing at the respective positions. However, the medium
around a material component may not be homogeneous, and some approximation strategies
need to be adopted.

One of the strategies is to assume that each material component is residing at the
center of a cell. These cells are offset from the Yee cells, and we refer to them as material
cells. For instance, consider the z-component of permittivity shown in Figure 3.3, which
can be imagined as being at the center of a material cell partially filled with two different
media denoted by subscripts 1 and 2, with permittivity values &; and &,. The simplest
approach is to assume that the cell is completely filled with medium 1 since the material
component &.(i, j, k) resides in the medium 1. Therefore, €.(i, j, k) can be assigned &;;
e(i, J, k) = €.

A better approach would include the effect of €, by employing an averaging scheme. If it
is possible to obtain the volume of each medium filling the material cell, a simple weighted
volume averaging can be used as employed in [5]. In the example case shown in Figure 3.3,
e(i, J, k) can be calculated as €.(i, j, k) = (V1 X &1 + V5 x &)/(V1 + V3), where V; and V,
are the volumes of medium 1 and medium 2 in the material cell, respectively.

In many cases, calculation of the volume of each media in a cell may require tedious
calculations, whereas it may be much simpler to determine the medium in which a point
resides. A crude approximation to the weighted volume averaging scheme is proposed in [6],
which may be useful for such cases. In this approach, every cell in the Yee grid is divided
into eight subcells, and each material component is located in between eight subcells, as
illustrated in Figure 3.4. For every subcell center point the respective medium can be
determined and every subcell can be assigned the respective medium material property. Then
an effective average of the eight subcells surrounding a material component can be calcu-
lated and assigned to the respective material component. For instance, ¢.(i, j, k) in Figure 3.4,
for uniform cell sizes in the x, y, and z directions, can be calculated as

€1+82+€3+84+85+86+£7+88
eli, j, k) = 2 (3.1)

52 CHAPTER 3 « Building objects in the Yee grid

7 1]
------------------- it L&
B

..................

-

X Material cell for £(i, j, k) Yee cell (i, j, k)

Figure 3.4 A cell around material component &.(i, j, k) divided into eight subcells.

The advantage of this method is that objects may be modeled with eight times the
geometrical resolution (two times in each direction) without increasing the size of the
staggered grid and memory requirements.

3.3 Subcell averaging schemes for tangential and normal
components

The methods discussed thus far do not account for the orientation of the field component
associated with the material component under consideration with respect to the boundary
interface between two different media. For instance, Figures 3.5 and 3.6 show two such cases
where a material cell is partially filled with two different types of media. In the first case the
material component is parallel to the boundary of the two media, whereas in the second case
the material component is normal to the boundary. Two different averaging schemes can be
developed to obtain an equivalent medium type to be assigned to the material component.

For instance, Ampere’s law can be expressed in integral form based on the configuration
in Figure 3.5 as

I A d
H-dl=— D -ds=—D,x (4, +4
f dt / gD it A2),
where D, is the electric displacement vector component in the z direction, which is assumed
to be uniform in cross-section, and 4, and A4, are the cross-section areas of the two media
types in the plane normal to D.. The electric field components in the two media are £, and

E_,. The total electric flux through the cell cross-section can be expressed as

D. x (A1 + Ay) = e1E.1 Ay + £2E045 = eggE; X (41 + 43),

3.3 « Subcell averaging schemes for tangential and normal components 53

— A&
D
<
— |y
Hyi~1,), ky £i.j k)
.’ " k
— T !y(z‘,',k)
x(i’j i 1’ kr <
/'.
Ay
z "
B

X

Figure 3.5 Material component ¢.(i, j, k) parallel to the boundary of two different media
partially filling a material cell.

0\ Ax \'
r
|
&
Az |
11 Ez(i9js k) |
th(i +1,j,k)
v |
1, |
{ 4
— —
//
’ C
by

Figure 3.6 Material component &.(i, j, k) normal to the boundary of two different media
partially filling a material cell.

where E. is the electric field component (i, /, k), which is assumed to be uniform in the cross-
section of the cell and associated with the permittivity e, that is equivalent to e.(i, j, k). On
the boundary of the media the tangential components of the electric field are continuous such
that E,, = E,, = E_; therefore, one can write

_ad) + 4

g4 + 624, = Eeff X (Al +A2) = Eeff = Sz(i,j, k) = (Al -}-Az) . (32)

54 CHAPTER 3 « Building objects in the Yee grid

Hence, an equivalent permittivity can be calculated for a material component parallel to
the interface of two different material types of permittivity &, and &, using (3.2), by which
the electric flux conservation is maintained.

For the case where the material component is normal to the media boundary we can
employ Faradays’s law in integral form based on the configuration in Figure 3.6, which reads

- d
E-dl =—= [B-ds
]{ dl = / ds

- _AXEx(iaL k) + AXEx(la]+ la k) +AZEZ(Z>]7 k) - AZEZ(Z+ 17ja k)a

where F, is the equivalent electric field vector component in the z direction, which is
assumed to be uniform in the boundary cross-section. However, in reality there are two
different electric field values, £, and E,,, due to the different material types. We want to
obtain E to represent the equivalent effect of £.; and E., and &, to represent the equivalent
effect of €, and ¢,. The electric field terms shall satisfy

AZE. (i, j, k) = (lh + h) X E.(i, j, k) = hE. + LE. (3.3)

On the boundary of the media the normal components of the electric flux D are con-
tinuous such that D,; = D., = D.(i, j, k); therefore, one can write

Dz(i7j7 k) =&k =6ks = 'Seﬁ”Ez(i7 Js k)v (34)
which can be expressed in the form

_D:(i,j, k) D.(i, j, k)

Eg=—22" p,="200 0 Eik) = 3.5
1 . 2 & (i,j.k) e (3:5)
Using (3.5) in (3.3) and eliminating the terms D.(i, j, k) yields
h+hL L b . 182 X (I +)
——=—+ "=y =6,k = 3.6
Eff &1 & 7 6., &) (hex + hey) (3.6)

Hence, an expression for the equivalent permittivity has been obtained in (3.6), by
which the magnetic flux conservation is maintained.

The averaging schemes given by (3.2) and (3.6) are specific cases of the more general
approaches introduced in [7], [8], and [9].

It can be shown that these schemes can be employed for other material parameters as
well. For instance, the equivalent permeability ¢ can be written as

A A
Uep = % , u parallel to media boundary, (3.7a)
* 1+ 42
gy X (L4 b)

off = , normal to media boundary. 3.7b
He (huy + buy) “ v (3.70)

These schemes serve as good approximations for low values of 0° and 0™ as well, where
they can be written as

3.4 « Defining objects snapped to the Yee grid 55

ol — O’iA] + OEAZ
T (A +4)
e _0ios x (h+h)

= 0 1 to media bound 3.8b
Ocfr (11054_120?) , 0 normal to media boundary, ()

o parallel to media boundary, (3.8a)

and

(i’lnAl —+ ()"2"A2 .
ol =——————=—=_ ¢ parallel to media boundary, 3.9a
efff (Al + A2) p ry ()

m _oroy X (h+5h)

=TT " 1 to media bound 3.9b
Oefy (1107 + o) 0" normal to media boundary, ()

3.4 Defining objects snapped to the Yee grid

The averaging schemes provided in the previous section are usually discussed in the context
of subcell modeling techniques in which effective material parameter values are introduced
while the staircased gridding scheme is maintained. Although there are some other more
advanced subcell modeling techniques that have been introduced for modeling fine features
in the FDTD method, in this section we discuss modeling of three-dimensional objects
assuming that the objects are conforming to the staircased Yee grid. Therefore, each Yee cell
is filled with a single material type. Although this assumption gives a crude model compared
with the subcell modeling techniques discussed before, we consider this case since it does
not require complicated programming effort and since it is sufficient to obtain reliable results
for many problems. Furthermore, we still employ the aforementioned subcell averaging
schemes for obtaining effective values for the material components lying on the boundaries
of cells filled with different material types.

For instance, consider Figure 3.7, where the material component &.(i, j, k) is located in
between four Yee cells, each of which is filled with a material type. Every Yee cell is indexed
by a respective node. Since every cell is filled with a material type, three-dimensional

Yeecell ((—1,7—1, k)

node (i—1,7—1, k)

z mnode(i,j— 1,k
4
ex

Yee cell (i, j— 1, k) -

Figure 3.7 Material component &.(i, j, k) located between four Yee cells filled with four
different material types.

56 CHAPTER 3 « Building objects in the Yee grid

(i, j, k)
Yee cell (i, j, k)

e

1, j)

node (i, j, k)¢ ——__|
—
V4
Y |
X
Yee cell i, j, k— 1) -7 uG,j, k1)

node (i, /, k— 1) \

Figure 3.8 Material component (i, j, k) located between two Yee cells filled with two
different material types.

material arrays can be utilized, each element of which corresponds to the material type filling
the respective cell. For instance, €(i — 1, j — 1, k) holds the permittivity value of the material
filling the cell (i — 1, j — 1, k). Consider the permittivity parameters that are indexed as
ei—1,j—1,k),e(i—1,j,k),ei,j—1, k), and &(i, j, k) in Figure 3.7. The material component
(i, J, k) is tangential to the four surrounding media types; therefore, we can employ (3.2) to
get the equivalent permittivity e.(i, j, k) as
ea(i,) k) = e(i,j k) +e(i—1,j, k) +£(2j— Lk)+e(i—1,7-1, k)_ (3.10)
Since the electric conductivity material components are defined at the same positions
as the permittivity components, the same averaging scheme can be employed to get the
equivalent electric conductivity o<(i, j, k) as

o°(i,j, k) +o(i—1,j,k)+0o°(i,j—1,k)+0°(i—1,j— 1, k)
4 .
Unlike the permittivity and electric conductivity components, the material components
associated with magnetic field components, permeability and magnetic conductivity, are
located between two cells and are oriented normal to the cell boundaries as illustrated in
Figure 3.8. In this case we can use the relation (3.7b) to get u.(i, j, k) as

i, j, k) =

(3.11)

o /,t(l,], k)+:u(l7]ak_1)
Similarly, we can write 0”'(i, j, k) as
Om(- . k)_2><(7m(i7j7 k)X(Im(l',j,kfl)
ST o g k) + o g k= 1)

(3.13)

3.4 « Defining objects snapped to the Yee grid 57

3.4.1 Defining zero-thickness PEC objects

In many electromagnetics problems, especially in planar circuits, some very thin objects
exist, most of the time in the form of microstrip or stripline structures. In these cases, when
constructing an FDTD simulation, it may not be feasible to choose the unit cell size as small
as the thickness of the strip, since this will lead to a very large number of cells and, hence to
an excessive amount of computer memory that prevents practical simulations with current
computer resources. Then if the cell size is larger than the strip thickness, subcell modeling
techniques, some of which are discussed in the previous sections, can be employed for
accurate modeling of the thin strips in the FDTD method. Usually the subcell modeling of
thin strips is studied in the context of thin-sheet modeling techniques. Here we discuss
a simple modeling technique that can be used to obtain results with a reasonable accuracy
for the majority of problems including thin strips where the thin strips are PEC. Here we
assume that the thin-strip thickness is zero, which is a reasonable approximation since most
of the time the strip thicknesses are much smaller than the cell sizes. Furthermore, we
assume that the strips are conforming to the faces of the Yee cells in the problem space.
Consider the PEC plate with zero thickness as shown in Figure 3.9, which conforms to the
face of the Yee cell with index (i, j, k). This plate is surrounded by four electric conductivity
material components, namely, o5(i, j, k), o5(i, j + 1, k), 03(i, j, k), and o5(i + 1,j,k). We

can simply assign the conductivity of PEC, o7, to these material components, such that
Gi(i=j7 k) = G;ew 0§(i7j—|— 1, k) = O;emm
(i;(i,j, k) = Opees and 0;(1' +1,j, k)= Opec-

Therefore, any electric conductivity components surrounding and coinciding with PEC
plates can be assigned the conductivity of PEC to model zero-thickness PEC plates in the
FDTD method.

Similarly, if a PEC object with thickness smaller than a cell size in two dimensions, such
as a thin conductor wire, needs to be modeled in the FDTD method, it is sufficient to assign
the conductivity of PEC to the electric conductivity components coinciding with the object.

PEC with zero thickness

Figure 3.9 A PEC plate with zero thickness surrounded by four ¢° material components.

58 CHAPTER 3 « Building objects in the Yee grid

This approach gives a reasonable approximation to a thin wire in the FDTD method. How-
ever, since the field variation around a thin wire is large, the sampling of the fields at the
discrete points around the wire may not be accurate. Therefore, it is more appropriate to use
more advanced thin-wire modeling techniques, which take into account the wire thickness,
for better accuracy. A thin-wire modeling technique is discussed in Chapter 10.

3.5 Creation of the material grid

At the beginning of this chapter we discussed how we can define the objects using data
structures in MATLAB. We use these structures to initialize the FDTD material grid; we
create and initialize three-dimensional arrays representing the components of the material
parameters ¢, u, 0°, and 0o™. Then we assign appropriate values to these arrays using the
averaging schemes discussed in Section 3.4. Later on these material arrays will be used to
calculate the FDTD updating coefficients.

The routine initialize_fdtd_material_grid, which is used to initialize the material arrays,
is given in Listing 3.4. The material array initialization process is composed of multiple
stages; therefore, initialize_fdtd_material_grid is divided into functional subroutines. We
describe the implementation of these subroutines and demonstrate how the concepts
described in Section 3.4 are coded.

The first subroutine in Listing 3.4 is calculate_domain_size, the implementation of
which is given in Listing 3.5. In this subroutine the dimensions of the FDTD problem space
are determined, including the number of cells (Nx, Ny, and Nz) making the problem space.
Once the number of cells in the x, y, and z dimensions are determined, they are assigned to

Listing 3.4 initialize_fdtd_material_grid.m

-
disp(’initializing .FDTD_material.grid’);

% calculate problem space size based on the object
% locations and boundary conditions
calculate_domain_size;

IS

% Array to store material type indices for every cell
% in the problem space. By default the space is filled
% with air by initializing the array by ones

| material_3d_space = ones(nx, ny, nz);

»

12|% Create the 3D objects in the problem space by
% assigning indices of material types in the cells
14|% to material_3d_space

16|% create spheres
create_spheres;

% create bricks
create_bricks;

S

2% Material component arrays for a problem space
% composed of (nx, ny, nz) cells

u|eps_r_x = ones (nx , nypl , nzpl);
eps_r_y = ones (nxp1l, ny , nzpl);
6| €PS_r_z = ones (nxpl, nypl , nz);

30

3

4

3

o

EN

3.5 « Creation of the material grid 59

mu_r_x = ones (nxpl, ny , nz);
mu_r_y = ones (nx , nypl , nz);
mu.r_z = ones (nx , ny , nzpl);
sigma_e_x = zeros(nx , nypl , nzpl);
sigma_e_y = zeros (nxpl, ny , nzpl);
n|sigma_e_z = zeros (nxpl, nypl , nz);
sigma_m_x = zeros (nxpl, ny , nz);
sigma_m_y = zeros(nx , nypl , nz);
sigma_m_z = zeros(nx , ny , nzpl);

% calculate material component values by averaging
calculate_material_component_values;

% create zero thickness PEC plates
create_PEC_plates;

Listing 3.5 calculate_domain_size.m

-
disp(’calculating._the_number_of_cells_in_the_problem_space’);

number_of_spheres = size(spheres 2);
number_of_bricks = size(bricks ,h2);

% find the minimum and maximum coordinates of a
% box encapsulating the objects
number_of_objects = 1;

for i=1:number_of_spheres

min_x(number_of_objects) = spheres(i). center_x — spheres(i).radius;
min_y(number_of_objects) = spheres(i).center_.y — spheres(i).radius;
min_z(number_of _objects) = spheres(i).center_.z — spheres(i). radius;
max_x(number_of_objects) = spheres(i). center_x + spheres(i).radius;
max_y (number_of_objects) = spheres(i).center_.y + spheres(i).radius;
max_z(number_of_objects) = spheres(i). center_z + spheres(i).radius;

number_of_objects = number_of_objects + 1;

end

for i=1:number_of_bricks
min_x(number_of_objects) = bricks(i). min_x;
min_y(number_of_objects) = bricks(i).min_y;
min_z(number_of_objects) = bricks(i).min_z;
max_x(number_of_objects) = bricks (i).max_x;
max_y (number_of_objects) = bricks (i).max.y;
max_z(number_of_objects) = bricks(i).max_z;
number_of_objects = number_of_objects + 1;

end

fdtd_domain.min_x = min();
fdtd_domain.min_y = min(min_ y)
fdtd_domain.min_z = min(min_z);
fdtd_domain.max_x = max(max_x);
();
();

)

’

fdtd_domain.max_y = max(max_y
fdtd_domain.max_z = max(max_z

’

’

60

36

%

.
&

&
+

48

60

6

2

S
N

68

CHAPTER 3 « Building objects in the Yee grid

% Determine the problem space boundaries

fdtd_domain.min_x

— dx * boundary.

fdtd_domain.min_y

— dy * boundary.

fdtd_domain.min_z

— dz * boundary.

»[fdtd_domain.max_x =

+ dx * boundary.

fdtd_domain.max_y =

+ dy * boundary.

fdtd_domain.max_z =

+ dz * boundary.

including air buffers
fdtd_domain . min_x
air_buffer_number_of_cells_xn;
fdtd_domain.min_y
air_buffer_.number_of_cells_yn;
fdtd_domain.min_z
air_buffer_.number_of_cells_zn;
fdtd_domain . max_x
air_buffer_.number_of_cells_xp;
fdtd _domain.max_y
air_buffer_number_of_cells_yp;
fdtd_domain.max_z

air_buffer_number_of_cells_zp;

% Determining the problem space size
fdtd_domain.size_x =

fdtd_domain.size_y
fdtd_domain.size_z

% number of cells i
nx round (fdtd_dom
ny round (fdtd_dom
nz round (fdtd_dom

% adjust domain siz
fdtd_domain.size_x
fdtd_domain.size_y
fdtd_domain.size_z

fdtd_domain .
fdtd_domain.
fdtd_domain .

max_x
max.y
max_z =
% some
nxpl =
nxm1
nym2

nx+1;
nx—1;
ny —2;

nxm
nzm

n
a
a
a

e

frequently used
nypl =

2
1

fdtd_domain.max_x — fdtd_domain.min_x;
fdtd_domain.max_.y — fdtd_domain.min_y;
fdtd _domain.max_z — fdtd_domain.min_z;

X, y, and z directions
in.size_x/dx);
in.size_y/dy);
in.size_z/dz);

by
nx
ny
nz

snapping to cells
* dx;
* dy;
* dz;

fdtd_domain.min_x + fdtd_domain.size_x;
fdtd_domain.min_y + fdtd_domain.size_y;

fdtd_domain.min_z + fdtd_domain.size_z;

auxiliary parameters

ny+1; nzpl = nz+1;
= nx—2; nym1l = ny—1;
= nz-1; nzm2 = nz-2;

% create arrays storing the center coordinates of the cells

74 |fdtd_domain. cell_center_coordinates_x = zeros(nx,ny,nz);
fdtd_domain.cell_center_coordinates_.y = zeros(nx,ny,nz);

76 |fdtd_domain. cell_center_coordinates_z = zeros(nx,ny,nz);
for ind = 1:nx

78 fdtd_domain.cell_center_coordinates_x(ind,: ,:) =

(ind — 0.5) * dx + fdtd_domain.min_x;

s |end

for ind = 1:ny

fdtd_domain.cell_center_coordinates_y (:,ind,:)
(ind — 0.5) * dy + fdtd_domain.min_y;

end

for

ind = 1:nz
fdtd_domain.cell_center_coordinates_z (:,:
(ind — 0.5) * dz + fdtd_domain.min_z;

86

,ind)

3.5 « Creation of the material grid 61

parameters nx, ny, and nz. Based on the discussion in Section 3.4, we assume that every Yee
cell is filled with a material type. Then in line 10 of Listing 3.4 a three-dimensional array
material_3d_space with size (Nx X Ny x Nz) is initialized with ones. In this array each
element will store the index of the material type filling the corresponding cell in the problem
space. Since material_3d_space is initialized by the MATLAB function ones, all of its
elements have the value 1. Referring to Listing 3.2 one can see that material_types(1) is
reserved for air; therefore, the problem space is initially filled with air.

After this point we find the cells overlapping with the objects defined in define_geometry
and assign the indices of the material types of the objects to the corresponding elements of the
array material_3d_space. This procedure is performed in the subroutines create_spheres,
which is shown in Listing 3.6, and create_bricks, which is shown in Listing 3.7. With the
given implementations, first the spheres are created in the problem space, and then the bricks
are created. Furthermore, the objects will be created in the sequence as they are defined in

Listing 3.6 create_spheres.m

-
disp (’'creating.spheres’);

cx = fdtd_domain.cell_center_coordinates_x;
+lcy = fdtd_domain.cell_center_coordinates_y;
cz = fdtd_domain.cell_center_coordinates_z;

6

for ind=1:number_of_spheres

% distance of the centers of the cells from the center of the sphere
distance = sqrt((spheres(ind). center_.x — cx).”2

10 + (spheres(ind). center.y — cy).”2

+ (spheres(ind). center_.z — cz)."2);

12 I = find (distance<=spheres(ind). radius);

material _3d_space(l) = spheres(ind). material_type;

EY

14| end

clear cx cy cz;

Listing 3.7 create_bricks.m

-
disp ('creating._bricks’);

s|for ind = 1:number_of_bricks
% convert brick end coordinates to node indices

5 blx = round ((bricks(ind).min.x — fdtd_.domain.min_x)/dx) + 1;
bly = round ((bricks(ind).min.y — fdtd_domain.min_y)/dy) + 1;

7 blz = round ((bricks(ind). min_.z — fdtd_domain.min_z)/dz) + 1;

9 bux = round ((bricks(ind). max_x — fdtd_domain.min_x)/dx)+1;
buy = round ((bricks(ind).max.y — fdtd_domain.min_y)/dy)+1;

1 buz = round ((bricks(ind). max.z — fdtd_domain.min_z)/dz)+1;

13 % assign material type of the brick to the cells
material_3d_space (blx:bux—1, bly:buy—1, blz:buz—-1)
15 = bricks (ind). material_type;

62 CHAPTER 3 « Building objects in the Yee grid

define_geometry. This means that if more than one object overlaps in the same cell, the object
defined last will overwrite the objects defined before. So one should define the objects
accordingly. These two subroutines (create_spheres and create_bricks) can be replaced by a
more advanced algorithm in which the objects can be assigned priorities in case of over-
lapping, and changing the priorities would be sufficient to have the objects created in the
desired sequence in the problem space.

For example, the array material_3d_space is filled with the material parameter indices
of the objects that were defined in Listing 3.3 and displayed in Figure 3.2. The cells repre-
sented by material_3d_space are plotted in Figure 3.10, which clearly shows the staircased
approximations of the objects as generated by the subroutine display_problem_space, which
is called in fdtd_solve.

Then in initialize_fdtd_material_grid we create three-dimensional arrays representing the
material parameter components &y, &,, &, y, ty, Uz 0%, O, Oc, 0y, 05, and o7'. Here the

v’ x> Yyo
parameters eps_r_Xx, eps_r_y, eps_r_z, mu_r_x, mu_r_y, and mu_r_z are relative permittivity

Figure 3.10 An FDTD problem space and the objects approximated by snapping to cells.

3.5 « Creation of the material grid 63

(L,ny+1,nz+1)

(nx+1,ny+1,nz+1)

(mx+1Lny+1,1)

node (1, 1, 1)
z

'

node (nx+ 1,1, 1)

Figure 3.11 Positions of the £, components on the Yee grid for a problem space composed of
(Nx x Ny x Nz) cells.

and relative permeability arrays, and they are initialized with 1. The electric and magnetic
conductivity arrays are initialized with 0. One can notice that the sizes of these arrays are not the
same as they correspond to the size of the associated field component. This is due to the specific
positioning scheme of the field components on the Yee cell as shown in Figure 1.5. For instance,
the distribution of the x components of the electric field, E,, in a problem space composed of
(Nx X Ny x Nz) cells is illustrated in Figure 3.11. It can be observed that there exist
(Mx x Ny + 1 x Nz + 1) E, components in the problem space. Therefore, in the program the
three-dimensional arrays representing £, and the material components associated with E, shall
be constructed with size (Mx X Ny + 1 x Nz 4+ 1). Hence, in Listing 3.4 the parameters
eps_r_x and sigma_e_x are constructed with size (nx, nyp 1, nzp 1), where nyp 1 is Ny + 1,
and nzp 1 is Nz + 1. Similarly, it can be observed in Figure 3.12 that there exist
(Mx + 1 x Ny x Nz) H, components in the problem space. Therefore, in Listing 3.4 the para-
meters mu_r_x and sigma_m_x are constructed with size (nxp 1, ny, nz), where nxp 1 is Nx + 1.
Since we have created and filled the array material_3d_space as the staircased repre-
sentation of the FDTD problem space and have initialized material component arrays, we
can proceed with assigning appropriate parameter values to the material component array
elements based on the averaging schemes discussed in Section 3.4 to form the material grid.
This is done in the subroutine calculate_material_component_values; partial implementa-
tion of this subroutine is shown in Listing 3.8. In Listing 3.8 calculations for the x compo-
nents of the material component arrays are illustrated; implementation of other components
is left to the reader. Here one can notice that eps_r_x, sigma_e_x, mu_r_x, and sigma_m_x
are calculated using the forms of equations (3.10), (3.11), (3.12), and (3.13), respectively.
The last step in constructing the material grid is to create the zero-thickness PEC plates in
the material grid. The subroutine create_PEC_plates shown in Listing 3.9 is implemented for

64 CHAPTER 3 « Building objects in the Yee grid

(I,ny+1,nz+1)

o(nx + 1, ny+ 1, nz +1)

s(nx+ 1L,ny+ 1, 1)

node (1,1, 1)}

Snode (nx+ 1,1, 1)

Figure 3.12 Positions of the H, components on the Yee grid for a problem space composed of
(Nx x Ny x Nz) cells.

Listing 3.8 calculate_material_component_values.m

disp (' filling.material _.components_.arrays’);

% creating temporary 1D arrays for storing
% parameter values of material types

IS

for ind = 1:size(material_types ,2)
6 t_eps_r(ind) = material_types(ind).eps_r;
t_mu_r(ind) = material_types(ind).mu_r;
8 t_sigma_e(ind) = material_types(ind).sigma_e;
t_sigma_m (ind) = material_types(ind).sigma_m;

10| end

12| % assign negligibly small values to t_mu_r and t_sigma_m where they are
% zero in order to prevent division by zero error

14 t_mu_r(find (t_mu_r==0)) = 1e-20;

t_sigma_m (find (t_sigma_m==0)) = 1e-20;

disp(’Calculating_eps_r_x’);

18| % eps_r_x(i,j,k) is average of four cells

% (i,j,k),(i,j=1,k), (i,j,k=1), (i,j=1,k=1)

200 eps_r_x(1:nx,2:ny,2:nz) = ...

0.25 * (t_eps_r(material_3d_space(1:nx,2:ny,2:nz))

2| + t_eps_r(material_3d_space(1:nx,1:ny—1,2:nz))
+ t_eps_r(material_3d_space(1:nx,2:ny,1:nz—1))
2 + t_eps_r(material_3d_space (1:nx,1:ny—1,1:nz —1)));

disp (' Calculating.sigma_e_x’);
% sigma_e_x(i,j,k) is average of four cells
% (i,i,k),(i,j=1k), (i,j,k=1), (i,i=1k=1)

2

>

44]

3.5 « Creation of the material grid

sigma_e_x(1:nx,2:ny,2:nz) = ...

0.25 % (t_sigma.e(material_3d_space(1:nx,2:ny,2:nz))
+ t.sigma_e(material_3d_space(1:nx,1:ny—1,2:nz))
+ t_sigma_e(material_3d_space(1:nx,2:ny,1:nz—1))
+ t_sigma_e (material_3d_space(1:nx,1:ny—1,1:nz—1)));

disp (' Calculating_.mu_r_x");
% mu_r_x(i,j,k) is average of two cells (i,j,k),(i—=1,j,k)
mu_r_x(2:nx,1:ny,1:nz) = ...

2 = (t_mu_r(material_3d_space(2:nx,1:ny,1:nz))
% t_mu_r(material_3d_space(1:nx—1,1:ny,1:nz)))
J/(t-mu_r(material_3d_space(2:nx,1:ny,1:nz))

+ t_mu_r(material_3d_space(1:nx—1,1:ny,1:nz)));

disp(’Calculating.sigma_m_x");

% sigma_m_x(i,j,k) is average of two cells (i,j,k),(i—1,j,k)

sigma_m_x(2:nx,1:ny,1:nz) =

2 * (t_sigma_m(material_3d_space(2:nx,1:ny,1:nz))
.* t_sigma_m (material_3d_space (1:nx—1,1:ny,1:nz)))
./ (t_sigma_m (material_3d_space(2:nx,1:ny,1:nz))

+ t_sigma_m (material_3d_space(1:nx—1,1:ny,1:nz)));

65

Listing 3.9 create_PEC_plates.m

-
1| disp(’creating .PEC_plates.on.the_material_grid’);

5| for ind = 1:number_of_bricks
5 mtype = bricks(ind). material_type;
sigma_pec = material_types (mtype).sigma_e;

9 bIx = round ((bricks(ind). min_.x — fdtd_domain.
bly round ((bricks (ind). min_y — fdtd_domain.
1 blz = round ((bricks(ind). min_.z — fdtd_domain.

13 bux = round ((bricks (ind). max.x — fdtd_domain.
buy = round ((bricks (ind). max_.y — fdtd_domain.
15 buz = round ((bricks (ind). max_z — fdtd_domain.

17 % find the zero thickness bricks
if (blx == bux)

% convert coordinates to node indices on the FDTD grid

min_x)/dx)+1;
min_y)/dy)+1;
min_z)/dz)+1;

min_x)/dx)+1;
min_y)/dy)+1;
min_z)/dz)+1;

19 sigma_e_y (blx, bly:buy—1,blz:buz) = sigma_pec;
sigma_e_z (blx, bly:buy,blz:buz—1) = sigma_pec;
21 end
if (bly == buy)
23 sigma_e_z (blx:bux, bly, blz:buz—1) = sigma_pec;
sigma_e_x (blx:bux—1, bly, blz:buz) = sigma_pec;
25 end
if (blz == buz)
2 sigma_e_x (blx:bux—1,bly:buy, blz) = sigma_pec;
sigma_e_y (blx:bux, bly:buy—1,blz) = sigma_pec;
29 end

end

66 CHAPTER 3 « Building objects in the Yee grid

this purpose. The code checks all of the defined bricks for zero thickness and assigns their
material’s conductivity values to the electric conductivity components overlapping with them.

Using the code sections described in this section, the material grid for the material cell
distribution in Figure 3.10 is obtained and plotted on three plane cuts for relative permittivity
distribution in Figure 3.13(a) and for relative permeability distribution in Figure 3.13(b). The
effects of averaging can be clearly observed on the object boundaries.

3.6 Improved eight-subcell averaging

In Section 3.2 we described how any cell can be divided into eight subcells and how every
material parameter component is located in between eight surrounding cells as illustrated in
Figure 3.4. A simple averaging scheme as (3.1) was used to find an equivalent value for a
given material component. We can combine the averaging schemes discussed in Section 3.3
with the eight-subcell modeling scheme to obtain an improved approach for modeling the
material components in the FDTD grid.
Consider the eight subcells in Figure 3.4, each of which is filled with a material type.
We can assume an equivalent permittivity e, for the four subcells with permittivities ¢, &4,
&5, and g, which can be calculated as ¢, = 0.25 X (&1 + &4 + &5 + &g). Similarly, we can
assume an equivalent permittivity ¢, for the four subcells with permittivities &,, &3, &, and
&7 that can be calculated as ¢, = 0.25 x (&5 + &3 + €5 + &7). The permittivity component
e-(1,], k) is located between the half-cells filled with materials of permittivities ¢, and ¢, and
it is oriented normal to the boundaries of these half-cells. Therefore, using (3.6) we can write
L 2 X e, X &y
&(i, j, k) = e (3.14)
The same approach can be used for parameter components permeability and for electric
and magnetic conductivities as well. Furthermore, it should be noted that the improved eight-
subcell averaging scheme presented here is based on the application of the more general
approach for eight subcells [8].

3.7 Exercises

3.1 The file fdtd_solve is the main program used to run FDTD simulations. Open this
subroutine and examine its contents. It calls several subroutines that are not imple-
mented yet. In the code disable the lines 7, 8, and 14-27 by “commenting” these lines.
Simply insert “%” sign in front of these lines. Now the code is ready to run with its
current functionality.

Open the subroutine define_problem_space-parameters, and define the problem
space parameters. Set the cell size as 1 mm on a side, boundaries as “pec,” and air
gap between the objects and boundaries as five cells on all sides. Define a material
type with index 4 having the relative permittivity as 4, relative permeability as 2,
electric conductivity as 0.2, and magnetic conductivity as 0.1. Define another mate-
rial type with index 5 having relative permittivity as 6, relative permeability as 3,
electric conductivity as 0.4, and magnetic conductivity as 0.2. Open the subroutine
define_geometry, and define the problem geometry. Define a brick with size

3.7 « Exercises 67

T
i1
[\

(b)

Figure 3.13 Material grid on three plane cuts: (a) relative permittivity components and
(b) relative permeability components.

68

CHAPTER 3 « Building objects in the Yee grid

(a) (b)

Figure 3.14 The FDTD problem space of Exercise 3.1: (a) geometry of the problem and

3.2

(b) relative permittivity distribution.

5 mm X 6 mm X 7 mm, and assign material type index 4 as its material type.
Figure 3.14(a) shows the geometry of the problem in consideration.

In the directory including your code files there are some additional files prepared as

plotting routines that you can use together with your code. These routines are called in
fdtd_solve after the definition routines. Insert the command “show_problem_space
=true;” in line 9 of fdtd_solve temporarily to enable three-dimensional geometry
display. Run the program fdtd_solve. The program will open a figure including a
three-dimensional view of the geometry you have defined and another program named
as “Display Material Mesh” that helps you examine the material mesh created for the
defined geometry. For instance, Figure 3.14(b) shows the relative permittivity dis-
tribution of the FDTD problem space in three plane cuts generated by the program
“Display Material Mesh.” Examine the geometry and the material mesh, and verify
that the material parameter values are averaged on the boundaries as explained in
Chapter 3.
Consider the problem you constructed in Exercise 3.1. Now define another brick with
size 3 mm X 4 mm X 5 mm, assign material type index 5 as its material type, and
place it at the center of the first brick. Run fdtd_solve, and then examine the geometry
and the material mesh and verify that the material parameter values are averaged on the
boundaries as explained in Chapter 3.

Now change the definition sequence of these two bricks in define_geometry; define
the second brick first with index 1 and the first brick as second with its index 2. Run
fdtd_solve, and examine the geometry and the material mesh. Verify that the smaller
brick has disappeared in the material mesh. With the given implementation of the
program, the sequence of defining the objects determines the way the FDTD material
mesh is created.

3.7 Exercises 69

(b)

Figure 3.15 The FDTD problem space of Exercise 3.3: (a) geometry of the problem and

33

34

(b) electric conductivity distribution.

Construct a problem space with the cell size as 1 mm on a side, boundaries as “pec,”
and air gap between the objects and boundaries as five cells on all sides. Define a brick
as a PEC plate with zero thickness placed between the coordinates given in millimeters
as (0, 0, 0) and (8, 8, 0). Define another brick as a plate with zero thickness, material
type air, and placed between the coordinates (3, 0, 0) and (5, 8, 0) as illustrated in
Figure 3.15(a), which shows the geometry of the problem in consideration. Run
fdtd_solve, and then examine the geometry and the material mesh. Examine the electric
conductivity distribution, and verify that on the boundary between the plates the
material components are air as shown in Figure 3.15(b).
Construct a problem space with the cell size as 1 mm on a side, boundaries as “pec,”
and air gap between the objects and boundaries as five cells on all sides. Define a brick
as a PEC plate with zero thickness placed between the coordinates given in millimeters
as (0, 0, 0) and (3, 8, 0). Define another brick as PEC plate and placed between the
coordinates (5, 0, 0) and (8, 8, 0). Run fdtd_solve, and then examine the geometry and
the material mesh. Examine the electric conductivity distribution, and verify that on the
boundaries of the plates facing each other the material components are PEC.
Although the geometry constructed in this example is physically the same as the one
in Exercise 3.3, the material meshes are different since the ways the geometries are
defined are different.

This page intentionally left blank

CHAPTER 4

Active and passive lumped
elements

4.1 FDTD updating equations for lumped elements

Many practical electromagnetics applications require inclusion of lumped circuit elements.
The lumped elements may be active sources in the form of voltage and current sources or
passive in the form of resistors, inductors, and capacitors. Nonlinear circuit elements such as
diodes and transistors are also required to be integrated in the numerical simulation of
antennas and microwave devices. The electric current flowing through these circuit elements
can be represented by the impressed current density term, fl—, in Maxwell’s curl equation

_ OF -
VXH:'SE"‘UeE"‘Jr (4.1

Impressed currents are used to represent sources or known quantities. In this sense, they are the
sources that cause the electric and magnetic fields in the computational domain [10]. A lumped
element component placed between two nodes is characterized by the relationship between the
voltage V across and the current / flowing between these two nodes. This relationship can be
incorporated into Maxwell’s curl equation (4.1) by expressing E in terms of V/ using

E=-VV (4.2)

and by expressing J in terms of / using the relation

1= /Sf- ds, (4.3)

where S is the cross-sectional area of a unit cell normal to the flow of the current /. These
equations can be implemented in discrete time and space and can be incorporated into (4.1),
which are expressed in terms of finite differences. Then, the finite-difference time-domain
(FDTD) updating equations can be obtained that simulate the respective lumped element
characteristics.

In this chapter we discuss the construction of the FDTD updating equations for lumped
element components, and we demonstrate MATLAB® implementation of definition,
initialization, and simulation of these elements.

71

72 CHAPTER 4 « Active and passive lumped elements

4.1.1 Voltage source

In any electromagnetics simulation, one of the necessary components is the inclusion of
sources. Types of sources vary depending on the problem type; scattering problems require
incident fields from far zone sources, such as plane waves, to excite objects in a problem
space, whereas many other problems require near zone sources, which are usually in the
forms of voltage or current sources. In this section we derive updating equations that
simulate the effects of a voltage source present in the problem space.

Consider the scalar curl equation (1.4¢) repeated here for convenience:

OE. 1 (0H, OH,
ot e \Ox Oy
This equation constitutes the relation between the current density J;, flowing in the z direction
and the electric and magnetic field vector components. Application of the central difference

formula to the time and space derivatives based on the field positioning scheme illustrated in
Figure 4.1 yields

- OEEZ - Jiz) . (44)

Engl(la]7 k)_Eg(l7]7 k) _ 1 H;Hr%(h]? k)_H;+%(l_17]7 k)
At e(i, j, k) Ax
ntlo.. nt+lo.
B 1 H,2(i,j, k) —Hy *(i,j— 1, k)
e=(i, J, k) Ay (4.5)
Ue(ivjv k) m+1/: - n(: =
- = (F k E k
282(i)j7 k) (: (l’J7) + 2(17]’))
1 n+t
Tk
ey e Y

Figure 4.1 Field components around E.(i, j, k).

4.1 « FDTD updating equations for lumped elements 73

node(i, j, k+ 1)) node(i, j, k+ 1)

AV AV
Vs Vv,
A A
A ‘ z
+ © node(i, j, k) + @ node (i, /, k)
(a) (b)

Figure 4.2 Voltage sources placed between nodes (i, j, k) and (i, j, k + 1): (a) voltage source
with internal resistance (soft source) and (b) voltage source without internal
resistance (hard source).

We want to place a voltage source with ¥ volts magnitude and R, ohms internal resistance
between nodes (7, /, k) and (i, j, k +1) as illustrated in Figure 4.2(a), where ¥ is a time-varying
function with a predetermined waveform. The voltage—current relation for this circuit can be
written as

AV + Vs

I ;
R

(4.6)

where AV is the potential difference between nodes (i, j, k) and (i, j, k + 1). The term AV can
be expressed in terms of £, using (4.2), which translates to

AV = Az x EX3(i, j, k) = Az

Eli ik E"i. ik
ETG b + B k) 7)
2
in discrete form at time instant (n 4+ 0.5)Ar. Current / is the current flowing through the
surface enclosed by the magnetic field components in Figure 4.1, which can be expressed in

terms of J;, using (4.3) as

" = Axay I, k). (4.8)

One should notice that AV in (4.7) is evaluated at time instant (n + 0.5)A¢, which corre-
sponds to the required time instant of / and J dictated by (4.5). Inserting (4.7) and (4.8) in
(4.6) one can obtain

n+% P _ Az n+%
iz (l7.17 k) - ZAxAyRA

J X Vs 2. (4.9)

En+l i ik E"i ik
x (EZN(i, j, k) + E2(i, J,))+MAyRS

Equation (4.9) includes the voltage—current relation for a voltage source tying V; and R,
to electric field components in the discrete space and time. One can use (4.9) in (4.5) and

74 CHAPTER 4 « Active and passive lumped elements

rearrange the terms such that the future value of the electric field component E"*! can be
calculated using other terms, which yields our standard form updating equations such that

EMN(i, j, k) = Cezeliy j, k) x E"(i, j, k)
1 1
+ CEZhY(ivju k) X (H;H_z(iﬂjv k) _H;H—z(i_ 1,j7 k))
1 1 (4.10)
.. n+s,. . n+s,. .
+ Connliy k) x (G,) = HEH G, =1, 6)

+ Cosliy J, k) x VI3, K),

where
AtAz
282(i,j, k) - Atoﬁ(h ja k) -
N R,AxAy
Ceze(is J, k) = Athz
2e.(i, j, k) + Atoc(i, j, k) +RSAxAy
o 2At
Cezhy(l7]7 k) = AtAz ’
2e.(i, j, k Atoe(i, j, k Ax
(e:(i, J, k) + Atoe(i, j)+RSAxAy>
o 2At
Cezhx(l7]7 k) = - AtAz ’
<2$Z(l7], k) +AfU§(laJ: k) +R AXA_)/)Ay
o B 2At
Cezs(la.]a k) - o L AtAz ’
26:(i, J, k) + M0 (i, J, k) + & (RsAxAy)

Equation (4.10) is the FDTD updating equation modeling a voltage source placed between
the nodes (i, j, k) and (i, j, kK + 1), which is oriented in the z direction. The FDTD updating
equations for voltage sources oriented in other directions can easily be obtained following
the same steps as just illustrated.

The FDTD updating equation (4.10) is given for a voltage source with a polarity in the
positive z direction as indicated in Figure 4.2(a). To model a voltage source with the opposite
polarity, one needs only to use the inverse of the voltage magnitude waveform by changing
Vito —V,.

4.1.2 Hard voltage source

In some applications it may be desired that a voltage difference is enforced between two
points in the problem space. This can be achieved by using a voltage source without any
internal resistances, which is called a hard voltage source. For instance, Figure 4.2(b)
illustrates such a scenario, where a voltage source with ¥ volts magnitude is placed between
the nodes (7, j, k) and (i, j, kK + 1). The FDTD updating equation for this voltage source can
simply be obtained by letting R; — 0 in (4.10), which can be written as

2
EX i, k) = =2),) = VG B (4.11)

4.1 « FDTD updating equations for lumped elements 75

To conform with the general form of the FDTD updating equations, (4.11) can be expressed as

E"V(i, j, k) = Conliy J, k) x E'(i, , k)

1
Vl+5

n+t . .
+ Canlis . k) x (B, b = 130 = 1,), k)

ntd ntd (4.12)
+ Cezhx(ia ja k) X (Hx z(iv ja k) 7Hx 2(1.7].7 17 k))
nt ..
+ Cezs(ia j7 k) X VS +2(lafa k),
where
2
Ceze(ia j7 k) = _1; Cezhy(ia j7 k) = 07 Cezhx(i; j7 k) = 07 Cezs(iv j7 k) = _E'

4.1.3 Current source

Figure 4.3(a) illustrates a current source with /; amperes magnitude and R, internal resis-
tance, where /; is a function of time with a time-varying waveform. The voltage—current
relation for the current source can be written as

r=r+%7 (4.13)
R,

Expressions of AV in (4.7) and / "3 in (4.8) can be used in (4.13), which yields in discrete
time and space

S AZ n .o nie - n+t
J[z+2(17]7 k) = W X (Ez+1(l7]7 k) +Ez(l7]7 k)) +AX—Ay X IS+2- (414)

node (i, 7, k+ 1) node (i, j, k+ 1)

T

Is AV AV
z
. + +
node (i, /, k) © - node (i, j, k)
(a) (b)

Figure 4.3 Lumped elements placed between nodes (i, j, k) and (i, j, k + 1): (a) current source
with internal resistance and (b) resistor.

76 CHAPTER 4 « Active and passive lumped elements

One can use (4.14) in (4.5) and rearrange the terms such that £”*! can be calculated using
other terms, which yields

E" (i, j, k) = Cezeli, j, k) x E"(i, j, k)

+ CCZh}’(iv ja k) X (H;Jr%(iaja k) _H}:H—%(i_ 17j7 k))
n+ n+y (4.15)
+ Cezhx(ivja k) X (Hx Z(iajv k) _Hx Z(ivj_ 17 k))

+ Coliy j, k) % 721, K),

where

AtAz
252(i7 j7 k) - AtUg(i7j7 k) -
N RAxhy
Ceze(la]a k) = AtAz
2e:(i, j, k) + Atoe(i, j, k) +

RAxAy
o 2At
Cezhy(l7]a k) = ANz 3
.. 2At
Cezhx(la]a k) = - AtAz)
(252(1',j7 k) + Atoc(i, j, k) +RSAxAy) Ay
.. 2At
Cezs(lyfa k) = - AtAz)
<2£z(i, J, k) + Atoc(i, j, k) —l—RSAxAy)AxAy

Equation (4.15) is the updating equation modeling a current source. One should notice
that (4.15) is the same as (4.10) except for the source term; that is, replacing the
VI3, j, k) term in (4.10) by Ry x 127, j, k) yields (4.15).

The FDTD updating equation (4.15) is given for a current source with a current flowing
in the positive z direction as indicated in Figure 4.3(a). To model a current source with the
opposite flow direction, one needs only to use the inverse of the current magnitude waveform
by changing I to —1,.

4.1.4 Resistor

Having derived the updating equations for a voltage source or a current source with internal
resistance, it is straightforward to derive updating equations for a resistor. For instance, elim-
inating the current source in Figure 4.3(a) yields the resistor in Figure 4.3(b). Hence, setting the
source term I +7(i , J, k) in (4.15) to zero results the updating equation for a resistor as

E?Jrl(i? j7 k) = nge(i, j; k) X Ef(l; jv k)
n+ oL n+i . .
+ Cezhy(ia Js k) X (Hy+2(l>]7 k) *Hyh(l -1,/ k)) (416)

o Comli J, k) x (30, K) = B, =1, K)),

4.1 « FDTD updating equations for lumped elements

where
AtAz
282(iaj7 k) - Atoﬁ(iv ja k) -
.. RAxAy
Ceze(l,]v k) = AIAZ)
2 Z " '7 k At ¢ '7 " k
ex(i Jy K) + 8102 o K) g
- 2At
Cezhy(l,]a k) = AtAz ,
(2&(Lj,k)+—Au§(nj,k)4—RAxAy)Ax
.. 2At
CEth(lvjv k) = - AtAz .
(2600700 v .)+ il)

4.1.5 Capacitor

77

Figure 4.4(a) illustrates a capacitor with C farads capacitance. The voltage—current relation

for the capacitor can be written as

dAV
I=C—.
dt
This relation can be expressed in discrete time and space as
AV AP
rMr=c/———"
At
Using AV in (4.7) and ["3 in (4.8) together with (4.18), one can obtain
+1o. CAZ .. .o
J?Z 2(l,], k) = AtAxAy X (E:-H(la]v k) _Eg(lm]v k))
) node (i, j, k+ 1) B node (i,j, k+ 1)
C L
AV —_——
4 A
z ‘ 2
T node (i,) T @ node (i,), k)

@ (b)

(4.17)

(4.18)

(4.19)

Figure 4.4 Lumped elements placed between nodes (i, j, k) and (i, j, k + 1): (a) capacitor and

(b) inductor.

78 CHAPTER 4 « Active and passive lumped elements

One can use (4.19) in (4.5) and rearrange the terms such that £”*! can be calculated using
other terms, which yields the updating equation for a capacitor as

Eg+l(i7 j’ k) = CEZE‘(i7 ja k) X Eg(la j7 k)
ntt, .. ntl,. .
+ Ceany (i, J, k) % (Péf+2(l7j, k)= H (-1,), k)) (4.20)

n-‘r%

o+ Comliv j, k) % (HER G, k) = HEHG =1, 0)),

where
2CAz
26.(i, j k) — A0S (i, j k) +
o AxAy
Ceze(la]a k) - 2CAz’°
282<i7 Js k) +At0§(i1j> k) +Ax—Ay
o 2At
Cezhy(laja k) = 2CAz ’
(252(1', J, k) + Atoc(i, j, k) +M—Ay)Ax
o 2At
Cezhx(l7]a k) = - 2CAz ’
(282(ia Js k) + Atag(iv Js k) +AW>A)}

4.1.6 Inductor

Figure 4.4(b) illustrates an inductor with L henrys inductance. The inductor is characterized
by the voltage—current relation

dil
V=L—. 4.21
ol (4.21)
This relation can be expressed in discrete time and space using the central difference
formula at time instant nAf as

L 1 1
AV" == (1”*7 _ 1"7). 422
Ar (4.22)

Using the discrete domain relation (4.7) and (4.8) one can obtain

.. n—%,. . AtAz -
J.? k)y=J." k E" k). 4.23
iz (17]7) iz (l,],)+LAxAy 2(17]7) ()

1
Since we were able to obtain an expression for J ?;2(1' , J, k) in terms of the previous value
of the electric field component E” (i, j, k) and the previous value of the impressed current

4.1 « FDTD updating equations for lumped elements 79

1
density component J lnz 2(i, j, k), we can use the general form of the FDTD updating equation
(1.28) without any modification, which is rewritten here for convenience as

EZN(, o k) = Ceweli,], k) X E2(i,],)

+ Cezhy(i7 j7 k) X (I{;h%(la j7 k) _H;+%(l - 17j7 k))
. . (4.24)
.. n+s,. . n+s,. .
+ Cezhx(’v]v k) X (HX 2(17]7 k) _Hx 2(17] - 17 k))
+ Coylis o k) x T2, B),

where

260, j, k) — Atot(i, j, k)

Ceze(i, J, k) = 2e.(i, j, k) + Ato<(i, j, k)’
Cozny (i, J, k) = (2¢.(i, j, k) +2i§o§(i, Jy k) Ax
Coznx (i, J, k) = — (2¢.(i, j, k) +2iio§(i, Js k))Ay’
Ce(i, J, k) =

~2e.(i, j, k) + Atoc(i, j, k)

One should notice that during the FDTD time-marching iteration, at every time step the
new value of J7. (i, j, k) should be calculated by (4.23) using E"(i, j, k) and J. (i, j, k)
before updating E"1(i, j, k) by (4.24).

4.1.7 Lumped elements distributed over a surface or within
a volume

In previous sections, we have demonstrated the derivation of FDTD updating equations for
common lumped element circuit components. These components were assumed to be placed
between two neighboring nodes along the edge of a cell oriented in a certain direction (x, y,
or z). However, in some applications it may be desired to simulate a lumped element com-
ponent behavior over a surface or within a volume, which extends to a number of cells in the
discrete space.

For instance, consider the voltage source in Figure 4.5. Such a source can be used to feed
a strip with a uniform potential ¥ across its cross-section at its edge. Similarly, a resistor is
illustrated in Figure 4.5, which is distributed over a volume and maintains a resistance R
between the top and bottom strips. Similarly, the other types of lumped elements as well can
be distributed over a surface or a volume. In such cases, the lumped element behavior
extends over a number of cells, and the surfaces or volumes of the elements can be indicated
by the indices of the nodes at the lower points and upper points of the cell groups. For
instance, the voltage source is indicated by the nodes (vis, vjs, vks) and (vie, vje, vke),
whereas the resistor is indicated by the nodes (7is, rjs, rks) and (rie, rje, rke), as illustrated in
Figure 4.6.

80 CHAPTER 4 « Active and passive lumped elements

(vis, vjs, vks)

Figure 4.5 Parallel PEC plates excited by a voltage source at one end and terminated by a
resistor at the other end.

Al
[
VY

AV
v

Figure 4.6 A voltage source distributed over a surface and a resistor distributed over a volume.

The lumped element updating equations derived in previous sections still can be used to
model the elements distributed over a number of cells, but a modification of parameter values
is required to maintain the respective values of the lumped elements. For instance, consider the
voltage source in Figure 4.5. To simulate this source, the electric field components E_(vis : vie,
vjs : vje, vks : vke — 1) need to be updated as shown in Figure 4.6. Hence, the total number of
field components needing to be updated is (vie — vis + 1) x (vje — vjs + 1) x (vke — vks).
Therefore, the main voltage source can be replaced by multiple voltage sources, each of which
is associated with a respective field component. Each individual voltage source in Figure 4.6
then should be assigned a voltage value V7,

/ Vs
Ve = (vke — vks)’ (425)
since the potential difference between the ends of the main voltage source in the z direction
shall be kept the same. If the main voltage source has an internal resistance R,, it should
be maintained as well. Then the main resistance R; will be represented by a network of
(vie — vis + 1) x (vje — vjs + 1) resistors connected in parallel where each element in this

4.1 « FDTD updating equations for lumped elements 81

parallel combination is made of (vke — vks) series resistors. Therefore, the resistance for
each source component R/, shall be set as

(vie —vis + 1) x (vie — vjs + 1)

R =R,
s % (vke — vks)

(4.26)

Having applied these modifications to V' and R,, the electric field components E_(vis :
vie, vjs : vje, vks : vke — 1) can be updated using (4.10).

The same procedure holds for each individual resistor R’ at the other end of the parallel
PEC plates. Thus, the resistance R’ can be given as

(rie—ris+ 1) X (rje —rjs + 1)

R' =R
% (rke — rks) ’

(4.27)

and (4.16) can be used to update the electric field components E_(ris : rie, rjs : rje, rks :
rke — 1).

Similarly, for an inductor with inductance L extending between the nodes (is, js, ks) and
(ie, je, ke), the individual inductance L’ can be defined as

(ile—is+1)x (je—js+1)

L'=1L
% (ke — ks) ’

(4.28)

and (4.24) can be used to update the electric field components E.(is : ie, js : je, ks : ke — 1).
For a capacitor with capacitance C extending between the nodes (is, js, ks) and (ie, je, ke),
each individual capacitance C’ can be defined as

(ke — ks)

c'=cC
X(ie—is—i—l)x(je—js—l—l)’

(4.29)

and (4.19) can be used to update the electric field components E_(is : ie, js : je, ks : ke — 1).
A current source with magnitude /; and resistance R, extending between the nodes (is, Js,
ks) and (ie, je, ke) can be modeled by updating E.(is : ie, js : je, ks : ke — 1) using (4.15) after
modifying /; and resistance R, such that
I

I = 4.30
S (le—is+1)x (je—js+ 1)’ (4.30)

and

(vie—vis + 1) x (vje —vjs + 1)
(vke — vks) '

R, =R, x (4.31)

One should notice that the equations given for modifying the lumped values are all for the
elements oriented in the z direction. The indexing scheme should be reflected appropriately
to obtain equations for lumped elements oriented in other directions.

4.1.8 Diode

Derivation of the FDTD updating equations of some lumped element circuit components
have been presented in previous sections. These circuit components are characterized by

82 CHAPTER 4 « Active and passive lumped elements

_ @ node(ijk+1) _ @ node(ijik+1)

f

* b node (i, j, k) * b node (i, j, k)

(a) (b)

Figure 4.7 Diodes placed between nodes (7, j, k) and (7, j, k + 1): (a) diode oriented in the
positive z direction and (b) diode oriented in the negative z direction.

linear voltage—current relations, and it is straightforward to model their behavior in FDTD by
properly expressing their voltage—current relations in discrete time and space. However, one
of the strengths of the FDTD method is that it is possible to model nonlinear components as
well. In this section we present the derivation of the updating equations for modeling a diode.

Figure 4.7(a) illustrates a diode placed between nodes (i, j, k) and (i, j, k + 1) inan FDTD
problem space. This diode allows currents flowing only in the positive z direction, as indi-
cated by direction of the current /,; and characterized by the voltage—current relation

I=1=1I [er/"T) 1} : (4.32)

where ¢ is the absolute value of electron charge in coulombs, & is Boltzmann’s constant, and
T is the absolute temperature in kelvins. This equation can be expressed in discrete form as

iy _do [(qAZ/ZkT)(E?“(iﬁjﬁk)+E§'(iJ-,k))_1] 4
Jiz 2, J, k) rered ; (4.33)

where the relation V; = AV = AzE. is used. Equation 4.33 can be used in (4.5), which yields

Eg+1(l7]a k)_Eg(la.]7 k)_ 1 H;Jr%(lv]a k)_H;Hr%(l_la]a k)
At e(i, j, k) Ax

1 HI k) — HE G — 1, k)

(i, j, k) Ay (4.34)
_os(i, j, k)
282(1" j7 k)

(B2, j, k) + EZ(i, j, k)

_ ly [ewAz/sz) (B2)+ 0)) 1} .
8Z(i7 j7 k)AXAy

4.1 « FDTD updating equations for lumped elements 83

This equation can be expanded as

os(i, J, k)At oL(i, J, k)At

Ei ik En+1~-k:En~-k_ E"i ik
z (17]?)+ 282(i,j, k) z (17]7) 2(17]7) 2€z(i,j7 k) 2(17]7)
+ At H;+%(l7]7 k)_H}”H%(i_l»jv k)
Ez(i, j7 k) AX'
N HM k)~ H L - 1, k)
82(1.’ j? k) Ay
DAL anepkrimnig) glane 2k ER 1)
Sz(i,j, k)AXAy
TyAt
Sz(ia jv k)AXAy
(4.35)
and can be arranged in the following form
AP+ x4+ C=0, (4.36)

where
x=E"ij, k), A= —Cuali,j, k)eP*E0IR - B = (qAz/2kT),
C = Cuelis j, k) E2i, j, k) + Coay i, J,) x (Hy”*%(i, k) —H -1, k))
o CanmliJ,) x (I,) = HEH =1, 1) + Coaain .)
2e.(i, j, k) — Atot(i, j, k)

Ceze .7 .7 k) = i [, J ’
(l J) 282(15 Js k) =+ Al‘O’g(l,], k)
2At
CEZ .7 .7 k == 7
w000 = = e 0 + Aot g, B)Ax
2At
ng X .a .7 k = ’
il 1K) = e 7o)+ b, Ry
2At

Coaalis]2) = = 7 KAy + Ao (i, J, K)AvAy”

Here the parameters 4 and C are dependent on E” (i, j, k). Therefore, at every time step
the terms 4 and C must be calculated using the past values of magnetic and electric field
components, and then (4.36) must be solved to obtain E"*!(i, j, k).

Equation (4.36) can easily be solved numerically by using the Newton—Raphson method,
which is one of the most widely used methods for finding roots of a nonlinear function. It is
an iterative process that starts from an initial point in the proximity of a root and approaches
to the root by the use of the derivative of the function. For instance, Figure 4.8 shows
a function for which we want to find the value of x that satisfies f(x) = 0. We can start with
an initial guess xo as shown in the figure. The derivative of the function f(x) at point x is

84 CHAPTER 4 « Active and passive lumped elements

60 - 1
f(x)=2x—10+ 0%
7’
50 RE
1
40 + . 2
J'(xo) p
= 30} Sxo) g -7
SN R
/i1
20+ SO ,
/57 VACN)
7
10+ fxp) L/ 4
: ’
Xn = v,
0 —&- =
-7 X X X0
/’ 4
1 2 3 4 5 6 7 8 9 10
X

Figure 4.8 A function f(x) and the points approaching to the root of the function iteratively
calculated using the Newton—Raphson method.

the slope of the tangential line passing through the point f(xo) and intersecting the x axis at
point x;. We can easily calculate point x; as

S (xo)
S (x0)

Then x; can be used as the reference point, and a second point x, can be obtained
similarly by

X1 = X0 — (437)

S(x1)
fa)”

As can be followed from Figure 4.8, the new calculated x leads to the target point where
f(x) intersects with the x axis. Due to the high convergence rate of this procedure a point x,,
can be achieved after couple of iterations, which is in the very close proximity of the exact
root of the function f'(x). This iterative procedure can be continued until a stopping criteria
or a maximum number of iterations is reached. Such a stopping criteria can be given by

|f ()| <e, (4.39)

where ¢ is a very small positive number accepted as the error tolerance accepted for f(x)
approximately equals to zero.

It is very convenient to use the Newton—Raphson method to solve the diode equation
(4.36), since the nature of this equation does not allow local minima or maxima, which can
be an obstacle for the convergence of this method. Furthermore, the value of the electric field
component E" (i, j, k) can be used as the initial guess for E"*!(i, j, k). Since the value of £,
(i, j, k) will change only a small amount between the consecutive time steps, the initial guess

4.1 « FDTD updating equations for lumped elements 85

will be fairly close to the target value, and it would take only a couple of Newton—Raphson
iterations to reach the desired solution.

The diode equation given by (4.36) is for a positive z-directed diode illustrated in
Figure 4.7(a), which is characterized by the voltage—current relation (4.32). A diode oriented
in the negative z direction, as shown in 4.7(b), can be characterized by the voltage—current
relation

[=—I;=—1I [e(‘ﬂ/"/“) - 1} (4.40)

and V; = —AV due to the inversion of the diode polarity. Therefore, one can reconstruct
(4.34) and (4.36) considering the reversed polarities of V,; and /,;, which yields the updating
equation for a negative z-directed diode as

AP +x+C=0, (4.41)

where
x=E"i, j, k), A=—Ceqli,j, k)P ECID B = —(gAz/2kT),
C = Cozeliy j, k) X E2(i, j, k) + Comny(is J, k) % (H;Jr%(i, Gk —HG -1, k))
o Coni J, 1) x (HI36 . 0) = HE 36,7 = 1, 8)) + Coaain .)

2£Z(i,j, k) - At()’g(l', ja k)

Cezelvlvk:_ 17 i ’
G B = = 5, &) + Atoei, 7, k)
2At
CZ .7 .’ k) = —)
e hy(l J) (282(1" j7 k) —|—A10§(i, j, k))AX
2At
CEZ X .7 .7 k = 7
00 = o el 7 BV
2Atl,

Cezd(ia ja k)

" 2e.(i, j, k)AxAy + Ato<(i, j, kK)AxAy

Here, one should notice that only the coefficients B and C,.4(i, j, k) are reversed
when compared with the respective coefficients of (4.36), and the rest of the terms are the
same.

Due to the nonlinear nature of the diode voltage—current relation, it is not convenient to
define a diode extending over a number of cells in the FDTD problem grid. If a diode is
going to be placed between two nodes that are apart from each other more than one cell size,
it is more convenient to place the diode between two neighboring nodes and then to establish
connection between the other nodes by other means, (e.g., by thin wires). The thin-wires
FDTD updating procedure and equations are discussed in Chapter 10.

4.1.9 Summary

In this chapter, we have provided the derivation of FDTD updating equations for modeling
some common lumped element circuit components. We have shown the construction of

86 CHAPTER 4 « Active and passive lumped elements

updating equations for components placed between two neighboring nodes and have illu-
strated how these components can be modeled if they extend over a number of cells on the
problem grid.

It is possible to obtain updating equations for the circuits composed of combinations of
these lumped elements; one only needs to obtain the appropriate voltage—current relations,
express them in discrete time and space, and establish the relation between the impressed
current densities and the field components. Then impressed current density terms can be used
in the general form of the updating equation to obtain the specific updating equations that
model the lumped element circuit under consideration.

4.2 Definition, initialization, and simulation of lumped
elements

We discussed modeling of several types of lumped element components in the FDTD
method in previous sections. In this section we demonstrate the implementation of the
aforementioned concepts in MATLAB. Furthermore, we show the implementation of other
routines that initialize the FDTD problem space, including some auxiliary parameters, field
arrays, and updating coefficient arrays. Then the MATLAB workspace will be ready to run
an FDTD simulation, and we show how the FDTD time-marching loop can be implemented
and some sample results of interest can be obtained.

4.2.1 Definition of lumped elements

First we show the implementation of the definition of the lumped element components. As
discussed before, these components can be defined as prism-like objects distributed over a
volume in the FDTD problem space. Any prism-like object can be defined with its lower and
upper coordinates in the Cartesian coordinate system. Therefore, we define the positions of
the lumped components the same as the brick object, as demonstrated in Section 3.1.
Referring to the FDTD solver main program fdtd_solve, which is shown in Listing 3.1, the
implementation of the definition of lumped element components is done in the subroutine
define_sources_and_lumped_elements, a sample content of which is given as a template in
Listing 4.1. As can be seen in Listing 4.1, the structure arrays voltage_sources, current_
sources, resistors, inductors, capacitors, and diodes are defined to store the properties of
the respective types of lumped components, and these arrays are initialized as empty arrays.
Similar to a brick, the positions and dimensions of these components are indicated by the
parameters min_x, min_y, min_z, max_x, max_y, and max_z. One should be careful when
defining the coordinates of diodes; as discussed in Section 4.8, we assume diodes as objects
having zero thickness in two dimensions.

Besides the parameters defining the positioning, some additional parameters as well are
needed to specify the properties of these components. The lumped element components are
modeled in FDTD by the way the respective electric field components are updated due to the
voltage—current relations. These field components that need specific updates are determined
by the functional directions of these components. For voltage sources, current sources, and
diodes there are six directions in which they can be defined in the staircased FDTD grid:

113 EEINT3 EEINT3 EEINT3 EEINT3

xn,” “xp,” “yn,” “yp,” “zn,” or “zp.” Here “p” refers to positive direction, whereas “n”

4.2 « Definition, initialization, and simulation of lumped elements 87

refers to negative direction. The other lumped elements (resistors, capacitors, and inductors)
can be defined with the directions “x,” “p,” or “z.” The other parameters needed to specify
the lumped components are magnitude, resistance, inductance, and capacitance, which

represent the characteristics of the lumped elements as shown in Listing 4.1.

Listing 4.1 define_sources_and_lumped_elements.m

-
disp ('defining_sources_and_lumped_element_components’);

o

voltage_sources

[1;

+slcurrent_sources = [];
diodes = [];

s|resistors = [];
inductors = [];

s|capacitors = [];

% define source waveform types and parameters
waveforms.sinusoidal (1). frequency 1e9;
2| waveforms.sinusoidal (2). frequency = 5e8;
waveforms. unit_step (1). start_time_step = 50;

% voltage sources
16/% direction: ’xp’, ’'xn’, ’yp’, ’'yn’, ’zp’, or ’'zn’
% resistance : ohms, magitude : volts
is|voltage_sources (1). min_x = 0;
voltage_sources (1). min_y = 0;
w|voltage_sources (1).min_z = 0;
voltage _sources (1). maxx = 1.0e—3;
»|voltage_sources (1).max.y = 2.0e—3;
voltage_sources (1). max_.z = 4.0e—3;
u|voltage_sources (1).direction = "zp’;
voltage_sources (1). resistance = 50;
x| voltage_sources (1). magnitude = 1;
voltage_sources (1). waveform_type = ’sinusoidal ’;
x| voltage_sources (1). waveform_index = 2;
0% current sources
% direction: ’xp’, ’'xn’, ’yp’, ’yn’, ’zp’, or ’zn’
20% resistance : ohms, magitude : amperes
current_sources (1). min_x = 30*dx;
ssfcurrent_sources (1). min_y = 10=dy;
current_sources (1). min_z = 10*dz;
ss|current_sources (1). max_x = 36*dx;
current_sources (1). max_y = 10+dy;
ss|current_sources (1). max_z = 13%dz;
current_sources (1). direction = 'xp’;
current_sources (1). resistance = 50;
current_sources (1). magnitude = 1;
current_sources (1). waveform_type = "unit_step’;
current_sources (1). waveform_index = 1;

3

s
b

1
1
1
1
1
1
1
1
1

44
% resistors

% direction: ’'x’, 'y’, or 'z’
% resistance : ohms
resistors (1). min_x 7.
resistors (1). min_.y = 0;
resistors (1). min_.z = 0

&

44

E3

5

88 CHAPTER 4 « Active and passive lumped elements

resistors (1). max-x = 8.0e—3;
s2|resistors (1). max.y = 2.0e—3;
resistors (1). max_.z = 4.0e-3;
ss|resistors (1). direction = ’z’;
resistors (1). resistance = 50;

% inductors

ss|% direction: 'x’, 'y’, or 'z
% inductance : henrys

e |inductors (1). min_x = 30*%dx;

).

inductors (1). min_y = 10*dy;

e linductors (1). min_z = 10%dz;
inductors (1). max_x = 36%dx;

e |inductors (1). max_y = 10=dy;
inductors (1). max_z = 13*dz;

s |inductors (1).direction = 'x’;
inductors (1).inductance = 1e-9;

68
% capacitors
% direction: 'x’, 'y’, or 'z
% capacitance : farads
n|capacitors (1). min_x = 30%dx;
capacitors (1). min_.y = 10xdy;
#|capacitors (1). min_z = 10*dz;
capacitors (1). max_x = 36x%dx;
s|capacitors (1). max_y = 10*dy;
(1).
(1).
(1).

=

capacitors max_z = 13*dz;
direction = 'x’;
capacitance = 1e—12;

s |capacitors
capacitors
80

% diodes
$20% direction: ’xp’, ’'xn’, ’'yp’, ’yn’, ’zp’, or ’'zn’
diodes (1). min_x = 30*dx;
s |diodes (1). min_y = 10xdy;
diodes (1). min_z = 10*dz;
s |diodes (1). max_x = 36*%dx;
diodes (1). max_.y = 10xdy;
ss [diodes (1). max_z = 13xdz;
diodes(1). direction = "xp’

Another type of parameter that is required for time-domain simulation of sources is the type
of waveforms that the voltages and current sources generate as a function of time. For each
source, the voltage or current value generated at every time step can be stored as the waveform
in a one-dimensional array with the size of number_of_time_steps. However, before asso-
ciating a waveform to a source, we can define the parameters specific to various types of
waveforms in a structure named waveforms as illustrated in Listing 4.1. There are various
options for constructing a waveform in FDTD. Some of the most common types of waveforms
are Gaussian, sinusoidal, cosine modulated Gaussian, and unit step. The definition and con-
struction of these waveforms will be the subject of Chapter 5. However, we provide a template
here showing how the waveform parameters can be defined. In Listing 4.1 two fields are defined
in the parameter waveforms: sinusoidal and unit_step. Later on we can add new parameters
representing other types of waveforms. The parameters representing the waveform types are
arrays of structures as illustrated with the indices waveforms.sinuoidal(i) and waveforms.
unit_step(i). Each waveform type has parameters representing its specific characteristics.

4.2 « Definition, initialization, and simulation of lumped elements 89

Here frequency is a parameter for the sinusoidal waveform waveforms.sinusoidal(i), whereas
start_time_step is a parameter for the waveform waveforms.unit_step(i).

Having defined the types of waveforms and their parameters, we can associate them to
the sources by referring to them with the waveform_type and waveform_index in the
source parameters voltage_sources(i) and current_sources(i). In the example code, we
assign the type of the waveform “sinusoidal” to voltage_sources(l).waveform_type,
and the index of the sinusoidal waveform waveforms.sinusoidal(2), which is 2, to voltage_
sources(1).waveform_index. Similarly, the type of the waveform “unit_step” is assigned
to current_sources(1).waveform_type and the index of the waveform waveforms.unit_
step(1), which is 1, is assigned to current_sources(1).waveform_index.

4.2.2 Initialization of FDTD parameters and arrays

Some constant parameters and auxiliary parameters are needed in various stages of an
FDTD program. These parameters can be defined in the subroutine initialize_ fdtd_
parameters_and_arrays, which is shown in Listing 4.2. The most frequently used ones of
these parameters are permittivity, permeability of free space, and speed of light in free space,
which are represented in the code with the parameters eps_0, mu_0, and ¢, respectively.
Duration of a time step is denoted by dt and is calculated based on the CFL stability limit
(2.7) and the courant_factor described in Section 3.1.1. Once the duration of a time step is
calculated, an auxiliary one-dimensional array, time, of size number_of_time_steps can be
constructed to store the time instant values at the middle of the FDTD time steps. When a
new simulation starts, the initial values of electric and magnetic fields are zero. Therefore,
the three-dimensional arrays representing the vector components of the fields can be created
and initialized using the MATLAB function zeros as illustrated in Listing 4.2. One can

Listing 4.2 initialize_fdtd_parameters_and_arrays.m

-
disp(’initializing _FDTD_.parameters._and_.arrays’);

% constant parameters
eps_0 = 8.854187817e—12; % permittivity of free space
simu_0 = 4*pi*le—7; % permeability of free space

¢ = 1/sqrt(muOxeps_0); % speed of light in free space

% Duration of a time step in seconds
dt = 1/(cxsqrt ((1/dx"2)+(1/dy"2)+(1/dz"2)));
dt = courant_factorxdt;

% time array
is|time = ([1:number_of_time_steps] —0.5)*dt;

15/% Create and initialize field and current arrays
disp (’'creating._.field_arrays’);

Hx = zeros(nxpl1,ny,nz);
vw|Hy = zeros(nx,nypl,nz);
Hz = zeros(nx,ny,nzpl);
x| Ex = zeros(nx,nypl,nzpl);
Ey = zeros(nxp1,ny,nzpl);
;| Ez = zeros (nxp1,nypl,nz);

90 CHAPTER 4 « Active and passive lumped elements

notice that the sizes of the arrays are not the same due to the positioning scheme of field
components on the Yee grid as discussed in Section 3.5.

At this point one can ask if there are any arrays that need to be defined to represent
impressed currents. The answer is that we do not need to define any arrays representing the
impressed currents unless they are explicitly needed in an FDTD simulation. Throughout
Chapter 4 we have shown that the concept of impressed currents is used to establish the
voltage—current relations for the lumped element components and the final updating equa-
tions do not include the impressed current terms except for the inductor. Therefore, we do
not need to create three-dimensional arrays expanded to the problem space to represent
impressed current components. However, for the case of the inductor, there exists an
impressed electric current term. Since an inductor would be expanding only over a couple of
cells and only a small number of field components need to be updated using the inductor
updating equations, it is sufficient to create auxiliary arrays representing these impressed
currents that have the limited size based on the number of field components associated with
the respective inductors. The creation and initialization of these arrays are performed in the
subroutine where the updating coefficients of the lumped element components are
initialized.

4.2.3 Initialization of lumped element components

We have shown templates for defining some types of source waveforms, voltage and current
sources, and other lumped element components. The initialization of these components is
performed in initialize_sources_and_lumped_elements as shown in Listing 4.3.

Listing 4.3 initialize_sources_and_lumped_elements.m

r

disp(’initializing_sources.and_lumped._element_components’);

number_of_voltage_sources
number_of_current_sources size (current_sources ,2);
number_of_resistors = size(resistors ,2);

= size(voltage_sources ,2);
(
number_of_inductors size (inductors ,2);
(
(

7lnumber_of_capacitors size (capacitors ,2);
number_of_diodes size (diodes ,2);

% initialize waveforms
ulinitialize_waveforms;

3|% voltage sources
for ind = 1:number_of_voltage_sources

15 is = round ((voltage_sources(ind). min.x — fdtd_domain.min_x)/dx)+1
js = round ((voltage_sources(ind). min.y — fdtd_domain.min_y)/dy)+1
17 ks = round ((voltage_sources(ind). min_.z — fdtd_domain.min_z)/dz)+1
ie = round ((voltage_sources(ind).max_x — fdtd_domain.min_x)/dx)+1;
19 je = round ((voltage_sources(ind).max.y — fdtd_domain.min_y)/dy)+1
ke = round ((voltage_sources(ind).max_z — fdtd_domain.min_z)/dz)+1

21 voltage_sources(ind).is = is;

29

39

41

43

45

49

69

4.2 « Definition, initialization, and simulation of lumped elements 91

voltage_sources(ind). js = js;
voltage_sources(ind). ks = ks;
voltage_sources(ind).ie = ie;
voltage_sources(ind).je = je;
voltage_sources(ind). ke = ke;

switch (voltage_sources(ind). direction (1))

’

case 'x

n_fields = ie — is;

r.magnitude_factor = (1 + je — js) * (1 + ke — ks) / (ie — is);
case 'y’

n_fields = je — js;

r.magnitude_factor = (1 + ie — is) * (1 + ke — ks) / (je — js);
case 'z’

n_fields = ke — ks;
r.magnitude_factor

(1 + ie —is) = (1 + je — js) [/ (ke — ks);
end
if strcmp(voltage_sources(ind). direction(2),’n’)
v_magnitude_factor =
—1*voltage_sources (ind). magnitude/ n_fields;
else
v_magnitude_factor = .
1*voltage_sources (ind). magnitude/n_fields;
end
voltage_sources(ind). resistance_per_component =
r.magnitude_factor * voltage_sources(ind). resistance;

% copy waveform of the waveform type to waveform of the source
wt_str = voltage_sources(ind).waveform_type;
wi_str = num2str(voltage_sources(ind).waveform_index);
eval_str = [’a_waveform_.=_waveforms.’

wt_str (' wi_str ’).waveform;’];
eval(eval_str);
voltage_sources(ind). voltage_per_e_field =

v_magnitude_factor * a_waveform;
voltage_sources(ind).waveform =

v_magnitude_factor * a_waveform * n_fields;

end

current sources

for ind = 1:number_of_current_sources

is = round ((current_sources (ind). min_x — fdtd_domain.min_x)/dx)+1;
js = round ((current_sources(ind). min_y — fdtd,domain.min,y)/dy)+1
ks = round ((current_sources(ind). min_.z — fdtd_domain.min_z)/dz)+
ie = round ((current_sources(ind). max.x — fdtd_domain.min_x)/dx)
je = round ((current_sources(ind). max_.y — fdtd_domain.min_y)/dy)
(). max_z — fdtd_domain.min_z)/dz)

ke = round ((current_sources (ind

current_sources (ind).is = is;
current_sources (ind).js = js;
current_sources (ind). ks = ks;
current_sources (ind).ie = ie;
current_sources (ind).je = je;

current_sources (ind). ke = ke;

92 CHAPTER 4 « Active and passive lumped elements

switch (current_sources(ind). direction (1))

ot

77] case X
n_fields = (1 + je — js) * (1 + ke — ks);
79 r-.magnitude_factor = (1 + je — js) * (1 + ke — ks) / (ie — is);
case 'y’
81 n_fields = (1 + ie — is) * (1 + ke — ks);
r_.magnitude_factor = (1 + ie — is) * (1 + ke — ks) / (je — js);
8 case 'z’
n_fields = (1 + ie — is) * (1 + je — js);
85 r_.magnitude_factor = (1 + ie — is) * (1 + je — js) / (ke — ks);
end
87 if strcmp(current_sources(ind).direction(2),’n’)
i_magnitude_factor =
89) —1*current_sources (ind). magnitude/n_fields;
else
91 i_magnitude_factor = .
T#current_sources(ind). magnitude/ n_fields;
9 end
current_sources(ind). resistance_per_.component =
05 r_magnitude_factor * current_sources(ind). resistance;
o7 % copy waveform of the waveform type to waveform of the source
wt_str = current_sources(ind).waveform_type;
99) wi_str = num2str(current_sources(ind).waveform_index);
eval_str = [’a_waveform._=_waveforms.’

101 wt_str (" wi_str ’).waveform;’];

eval (eval_str);

103 current_sources (ind). current_per_e_field =
i_magnitude_factor * a_waveform;

105 current_sources (ind).waveform =
i_magnitude_factor * a_waveform * n_fields;
17| end

109) % resistors
for ind = 1:number_of_resistors

I is = round ((resistors (ind). min.x — fdtd_.domain.min_x)/dx)+1
js = round ((resistors (ind). min_.y — fdtd_domain.min_y)/dy)+1
113 ks = round ((resistors(ind).min_z — fdtd_domain.min_z)/dz)+1
ie = round ((resistors(ind). max.x — fdtd_domain.min_x)/dx)+1;
15 je = round ((resistors (ind).max.y — fdtd_-domain.min_y)/dy)+1
ke = round ((resistors(ind). max.z — fdtd_domain.min_z)/dz)+1
117 resistors(ind).is = is;
resistors (ind).js = js;
119 resistors (ind). ks = ks;
resistors (ind).ie = ie;
121 resistors(ind).je = je;
resistors (ind). ke = ke;
123) switch (resistors(ind). direction)
case ’'x’
125 r_.magnitude_factor = (1 + je — js) * (1 + ke — ks) / (ie — is);
case 'y’
127 r.magnitude_factor = (1 + ie — is) * (1 + ke — ks) / (je — js);
case 'z’
129 r.magnitude_factor = (1 + ie — is) * (1 + je — js) / (ke — ks);
end
131 resistors (ind). resistance_per_.component =

r.magnitude_factor * resistors(ind). resistance;
133 end

141

143

145]

149

165]

167

181]

183]

4.2 « Definition, initialization,

{1 % inductors

and simulation of lumped elements

for ind = 1:number_of_inductors

is = round ((inductors(ind). min_x — fdtd_domain.min_x)/dx)+1
js = round ((inductors(ind). min_.y — fdtd_domain.min_y)/dy)+1
ks = round ((inductors(ind). min_.z — fdtd_.domain.min_z)/dz)+1
ie = round ((inductors(ind).max_x — fdtd_domain.min_x)/dx)+1
je = round ((inductors(ind). max.y — fdtd_domain.min_y)/dy)+1
ke = round ((inductors(ind). max.z — fdtd_domain.min_z)/dz)+1
inductors(ind).is = is;

inductors(ind).js = js;

inductors(ind). ks = ks;

inductors (ind).ie = ie;

inductors(ind).je = je;

inductors (ind). ke = ke;

switch (inductors(ind). direction)

ry

case X

I_magnitude_factor =

P

case 'y

I_magnitude_factor =

PR

case z

I_magnitude_factor =

end
inductors(ind).

inductance_per_component =

(1 + je — js) = (1 + ke — ks) / (ie — is);
(1 + ie — is) * (1 + ke — ks) / (je — js);
(1 + ie — is) = (1 + je — js) [/ (ke — ks);

inductance;

I_magnitude_factor * inductors(ind).
end
% capacitors
for ind = 1:number_of_capacitors
is = round ((capacitors(ind). min.x — fdtd_domain.min_x)
js = round ((capacitors(ind). min_.y — fdtd_.domain.min_y)
ks = round ((capacitors(ind).min.z — fdtd_.domain.min_z)
ie = round ((capacitors(ind).max.x — fdtd_domain.min_x)
je = round ((capacitors(ind).max.y — fdtd_domain.min_y)
ke = round((capautors(ind).max_z — fdtd_domain.min_z)
capacitors(ind).is = is;
capacitors(ind).js = js;
capacitors(ind). ks = ks;
capacitors(ind).ie = ie;
capacitors(ind).je = je;
capacitors(ind). ke = ke;
switch (capacitors(ind). direction)
case ’'x’
c_magnitude_factor = (ie — is)
[(1 + je — js) * (1 + ke — ks));
case 'y’
c.magnitude_factor = (je — js)
/(1 + ie — is) * (1 + ke — ks));
case 'z’
c_magnitude_factor = (ke — ks)
[(1 + ie — is) * (1 + je — js));
end
capacitors(ind). capacitance_per_component = .
c_magnitude_factor * capacitors(ind). capacitance;
end
sigma_pec = material_types(material_type_index_pec).sigma_e;

93

94 CHAPTER 4 « Active and passive lumped elements

191
% diodes
3| for ind = 1:number_of_diodes
is = round ((diodes(ind). min.x — fdtd_.domain.min_x)/dx)+1;
195 js = round ((diodes(ind). min_y — fdtd_domain.min_y)/dy)+1
ks = round ((diodes(ind). min_.z — fdtd_domain.min_z)/dz)+
197 ie = round ((diodes(ind).max_x — fdtd_domain.min_x)/dx)+1
je = round ((diodes(ind).max.y — fdtd_.domain.min_y)/dy)+1;
199 ke = round ((diodes(ind). max.z — fdtd_domain.min_z)/dz)+1;
diodes(ind).is = is;
201 diodes(ind).js = js;
diodes(ind). ks = ks;
203 diodes(ind).ie = ie;
diodes(ind).je = je;
205 diodes (ind). ke = ke;
207 switch (diodes(ind). direction (1))
case ’'x’
209 sigma_e_x(is+1:ie —1,js ,ks) = sigma_pec;
case 'y’
211 sigma_e_y (is,js+1:je—1,ks) = sigma_pec;
case 'z’
213 sigma_e_z (is,js,ks+1:ke—1) = sigma_pec;

Listing 4.4 initialize_waveforms.m

(Lo)
i| disp(’initializing._.source_waveforms’);

50% initialize sinusoidal waveforms

for ind=1:size (waveforms.sinusoidal ,2)

5 waveforms.sinusoidal (ind).waveform =

sin(2 * pi * waveforms.sinusoidal (ind). frequency * time);
7| end

9|% initialize unit step waveforms

for ind=1:size (waveforms.unit_step ,2)

1 start_index = waveforms.unit_step(ind). start_time_step;
waveforms. unit_step (ind).waveform (1: number_of_time_steps) = 1;
13 waveforms. unit_step (ind).waveform (1:start_index —1) = 0;

end

Before initializing the sources, the source waveforms need to be initialized. Therefore, a
subroutine, initialize_waveforms, is called in Listing 4.3 before initialization of lumped
components. The sample implementation of initialize_waveforms is given in Listing 4.4, and
this subroutine will be expanded as new source waveform types are discussed in the fol-
lowing chapter. In subroutine initialize_waveforms for every waveform type the respective
waveforms are calculated as functions of time based on the waveform type specific para-
meters. Then the calculated waveforms are stored in the arrays with the associated name
waveform. For instance, in Listing 4.4 the parameter waveforms.sinusoidal(i).waveform is

4.2 « Definition, initialization, and simulation of lumped elements 95

constructed as a sinusoidal waveform using sin(2w X f x f), where f is the frequency
defined with the parameter waveforms.sinusoidal(i).frequency and ¢ is the discrete time
array time storing the time instants of the time steps.

Once the waveform arrays are constructed for the defined waveform types they can be
copied to waveform fields of the structures of sources associated with them as demonstrated in
Listing 4.3. For example, consider the code section in the loop initializing the voltage_sources.
The type of source waveform is stored in voltage_sources(ind).waveform_type as a string,
and the index of the source waveform is stored in voltage_sources(ind).waveform_index as
an integer number. Here we employ the MATLAB function eval, which executes a string
containing MATLAB expression. We construct a string using the following expression:

wt_str = voltage_sources(ind).waveform_type;
wi_str = num2str(voltage_sources(ind).waveform_index);

eval_str = [’a_waveform.=_waveforms.’ wt_str '(’ wi_str ’).waveform;’];

which constructs the string eval_str in the MATLAB workspace for the waveforms and the
voltage source voltage_sources(1) defined in Listing 4.1 as

’

eval_str = "a_waveform.=_waveforms.sinusoidal (2).waveform;

Executing this string using eval as

eval (eval_str);

creates a parameter a_waveform in the MATLAB workspace, which has a copy of the
waveform that the voltage source voltage_sources(1) is associated with. Then we can assign
a_waveform to voltage_sources(1).waveform after multiplying with a factor. This multi-
plication factor is explained in the following paragraphs.

As discussed in Section 4.7, all the lumped element components except the diodes are
assumed to be distributed over surfaces or volumes extending over a number of cells.
Therefore, a number of field components require special updating due to the lumped
elements associated with them. We assume that the surfaces or volumes that the lumped
elements are coinciding with are conforming to the cells composing the FDTD problem
space. Then we can identify the field components that are associated with lumped compo-
nents by the indices of the start node, (is, js, ks), coinciding with the lower coordinates of the
lumped component, and the indices of the end node, (ie, je, ke), coinciding with the upper
coordinates of the lumped component, as illustrated in Figure 4.6. Therefore, for every
lumped element, the start and end node indices are calculated and stored in the parameters is,
js, ks, ie, je, and ke as shown in Listing 4.3.

Based on the discussion in Section 4.7, if a lumped element is associated with more than
one field component, the value of the lumped element should be assigned to the field com-
ponents after a modification. Therefore, new parameters are defined in the structures
representing the lumped elements, which store the value of the lumped element per field

96 CHAPTER 4 « Active and passive lumped elements

component. For instance, resistance_per_component is defined in voltage_sources(i),
which stores the resistance of the voltage source per field component as calculated using the
form of (4.26) by taking into account the direction of the component. Similarly, for a resistor
resistance_per_component is defined and calculated by (4.27). For a current source resis-
tance_per_component is defined and calculated by (4.31). The parameter inductance_
per_component is calculated by (4.28) for an inductor, and capacitance_per_component is
calculated by (4.29) for a capacitor.

Similarly, the voltage_sources(i).voltage_per_e_field is scaled using (4.25), and cur-
rent_sources(i).current_per_e_field is scaled using (4.30). Furthermore, directions of these
components as well are taken into account in the scaling factors; if the direction is negative
the scaling factor is multiplied by —1. Meanwhile, parameters voltage_sources(i).waveform
and current_sources(i).waveform are constructed to store the main voltages and currents of
the lumped sources rather than the values used to update the associated field components.

We assume that a diode is defined as a one-dimensional object, such as a line section,
extending over a number of electric field components on the cell edges as illustrated in
Figure 4.9. Here the diode is extending between the nodes (is, js, ks) and (ie, je, ke) — hence
the field components E,(is, js, ks : ke — 1), where ie = is and je = js. However, as discussed
in Section 4.8, we update only one of these field components, in this case E.(is, Js, ks), using
the diode updating equations, and we establish an electrical connection between other nodes
(is, js, ks + 1) and (e, je, ke). The easiest way of establishing the electrical connection is
considering a PEC line between these nodes. Therefore, we can assign conductivity of
PEC to the material components associated with the electric field components E.(is, js,
ks + 1 : ke — 1), which are 0¢(is, js, ks + 1 : ke — 1). Therefore, the necessary material

(ie, je, ke) £ |

o d(is, js, ke —1)

o (s, js, ke + 1)

I
\
\
\
\
\
\
\.

NN N

(is, js, ks) \
Figure 4.9 A diode defined between the nodes (is, js, ks) and (ie, je, ke).

4.2 « Definition, initialization, and simulation of lumped elements 97

components are assigned the conductivity of PEC in Listing 4.3 while initializing the diodes.
A more accurate representation for a PEC line is presented Chapter 10 where thin PEC wire
updating equations will be developed.

4.2.4 Initialization of updating coefficients

After initializing the lumped element components by determining the indices of nodes identi-
fying their positions in the FDTD problem space grid and by setting other parameters necessary
to characterize them, we can construct the FDTD updating coefficients. We calculate and store
updating coefficients in three-dimensional arrays before the FDTD time-marching loop begins
and use them while updating the fields during the time-marching loop. The initialization of the
updating coefficients is done in the subroutine initialize_updating_coeffcients, which is given
in Listing 4.5.

Listing 4.5 initialize_updating_coefficients.m

-
|| disp(’initializing.general_updating.coefficients’);

% General electric field updating coefficients
% Coeffiecients updating Ex
Cexe = (2#*eps_r_xxeps_.0 — dtx*sigma_e_x)
/(2% eps_r_xxeps.0 + dt*sigma_e_x);
7| Cexhz (2#=dt/dy)./(2* eps_r_x*eps_0 + dtxsigma_e_x);
Cexhy —(2*%dt/dz)./(2* eps_r_x*eps_0 + dt*sigma_e_x);

% Coeffiecients updating Ey
| Ceye = (2*eps-r_y*eps_.0 — dt*sigma_e_y)

J(2%eps_r_y*xeps_0 + dtxsigma_e_y);
5| Ceyhx = (2+dt/dz)./(2* eps_r_y*eps_0 + dt*sigma_e_y);
Ceyhz = —(2*dt/dx)./(2* eps_r_.y*eps_0 + dt*sigma_e_y);
15
% Coeffiecients updating Ez
17| Ceze = (2*eps_.r_zxeps_.0 — dt*sigma_e_z)
/(2*eps_r_zxeps_0 + dt*sigma_e_z);
vl Cezhy = (2#dt/dx)./(2* eps_r_z*xeps_0 + dt*sigma_e_z);
Cezhx = —(2%dt/dy)./(2* eps_r_z*eps_0 + dt*sigma_e_z);

% General magnetic field updating coefficients
5l % Coeffiecients updating Hx

Chxh = (2*mu_r_x*mu.0 — dt*sigma_m_x)
25 (2*mu_r_x*mu_0 + dt*sigma_m_x);

Chxez = —(2*dt/dy)./(2* mu_r_x*mu_0 + dt*sigma.m_x);
;7| Chxey = (2xdt/dz)./(2* mu_r_x*mu_0 + dt*sigma_m_x);

»% Coeffiecients updating Hy

Chyh = (2*mu_r_y*mu.0 — dt*sigma_m_y)
31 J(2*mu_r_y*mu.0 + dt*sigma_m_y);

Chyex = —(2*dt/dz)./(2* mu_r_.y*mu_0 + dt*sigma_m_y);
53] Chyez = (2+dt/dx)./(2* mu_r_.y*mu_0 + dt*sigma_m.y);

550 % Coeffiecients updating Hz
Chzh = (2*mu_r_z#*mu.0 — dt*sigma_-m_z)

98 CHAPTER 4 « Active and passive lumped elements

37 J(2*mu_r_z#=mu_0 + dt*sigma_-m_z);
Chzey —(2*dt/dx)./(2* mu_r_z*=mu_0 + dt*sigma_m_z);
3| Chzex (2#dt/dy)./(2* mu_r_z*=mu_-0 + dt*sigma_m_z);

=

% Initialize coeffiecients for lumped element components
initialize_voltage_source_updating_coefficients;
initialize_current_source_updating_coefficients;
initialize_resistor_updating_coefficients;
initialize_capacitor_updating_coefficients;
initialize_inductor_updating_coefficients;

vl initialize_diode_updating_coefficients;

&

4

In Chapter 1 we obtained the set of equations (1.26)—(1.31) as the general form of the
updating equations. One can notice that the form of the updating equations obtained for the
lumped elements is the same as the general form. The only difference is that for some types
of lumped elements the terms associated with the impressed currents are replaced by some
other terms; for instance, for a voltage source the impressed current term is replaced by a
voltage source term in the updating equation. Furthermore, as discussed in Section 4.2.2, the
impressed current terms in (1.26)—(1.31) are used to establish the voltage—current relations
for the lumped elements, and they vanish in updating equations modeling media that does
not include any lumped components.

Therefore, in an FDTD simulation before the time-marching iteration starts the updating
coefficients can be calculated for the whole problem space using the general updating equa-
tion coefficients appearing in (1.26)—(1.31) and excluding the impressed current terms. Then
the updating coefficients can be recalculated only for the position indices where the lumped
components exist. The additional coefficients required for the lumped elements (e.g., voltage
sources, current sources, and inductors), can be calculated and stored in separate arrays
associated with these components. Then during the FDTD time-marching iterations, at every
time step, the electric field components can be updated using the general updating equations
(1.26)—(1.31) excluding the impressed current terms, and then the additional terms can be
added to the electric field components at the respective position indices where the lumped
elements exist. In this section we illustrate the implementation of the previous discussion in
the MATLAB program. The vector type operation in MATLAB is being used to efficiently
generate these arrays.

In Listing 4.5 the updating coefficients, except for the impressed current terms, defined in
the general updating equations (1.26)—(1.31) are constructed using the material component
arrays that have been initialized in the subroutine initialize_fdtd _material_grid. The sizes of
the coefficient arrays are the same as the sizes of the material component arrays that have
been used to construct them. Then the updating coefficients related to the lumped element
components are constructed in respective subroutines as shown in Listing 4.5.

4.2.4.1 Initialization of voltage source updating coefficients

The updating coefficients related to the voltage sources are constructed in the subroutine
initialize_voltage_source_updating_coefficients as implemented in Listing 4.6. The indices
of the nodes identifying the positions of the voltage sources, is, js, ks, ie, je, and ke, were

4.2 « Definition, initialization, and simulation of lumped elements 99

E(is, js. ks) {

aiaa.
AN A AN A

(is, js, ks)

Figure 4.10 A z-directed voltage source defined between the nodes (is, js, ks) and (Ze, je, ke).

determined while initializing the voltage sources as shown in Listing 4.3. For instance,
consider the z-directed voltage source defined between the nodes (is, js, ks) and (ie, je, ke)
and the associated electric field components as illustrated in Figure 4.10. These indices of the
nodes are used to identify the indices of the field components that need the special updates
due to the voltage sources. The indices of the field components are determined by taking into
account the directions of the voltage sources. Since these field components will be accessed
frequently, they can be stored in a parameter, field_indices, associated with the voltage
sources for an easy access. The field components under consideration are usually accessed
using three index values, such as

Ceze(is:ie,js:je,ks:ke—1)

since the field arrays are three-dimensional. An alternative way of accessing an element of
a multidimensional array is to use the nice feature of MATLAB called linear indexing. Using
linear indexing the three indices of a three-dimensional array can be mapped to a single
index. Therefore, a single index would be sufficient. For the case where a number of
elements need to be indexed, a vector can be constructed in which each value holds the index
of the respective element in the three-dimensional array. Therefore, as shown in Listing 4.6,
a temporary array of indices, fi, is constructed using

fi = create_linear_index_list(eps_r_z,is:ie, js:je, ks:ke—1);

100 CHAPTER 4 « Active and passive lumped elements

Here create_linear_index_list is a function that takes three parameters indicating the
range of indices of a subsection of a three-dimensional array and converts it to a one-
dimensional linear index array. While doing this conversion, it uses the MATLAB function
sub2ind, which needs the size of the three-dimensional array. Therefore, the first argument
of create_linear_index_list is the three-dimensional array under consideration. The imple-
mentation of create_linear_index_list is given in Listing 4.7. After the linear indices array is

constructed, instead of accessing a subsection of an array by

Ceze(is:ie,js:je,ks:ke—1)

one can simply implement

Ceze(fi)

29

Listing 4.6 initialize_voltage_source_updating_coefficients.m

-
disp(’initializing._.voltage.source_updating_coefficients’);

for ind = 1:number_of_voltage_sources
is = voltage_sources(ind). is;
js = voltage_sources (ind). js;

(ind).

ks = voltage_sources(ind). ks;
ie = voltage_sources(ind).ie;
je = voltage_sources(ind). je;
ke = voltage_sources(ind).ke;
R = voltage_sources(ind). resistance_per_component;
if (R==10) R = 1e—-20; end

switch (voltage_sources(ind). direction (1))

yy ?

case ’'x
fi = create_linear_index_list(eps_r_x,is:ie—1,js:je,ks:ke);
a_term = (dt*dx)/(Rxdy*dz);
Cexe (fi) =

(2+eps_0xeps_r_x(fi)—dtxsigma_e_x(fi)—a_term)
./ (2*eps_Oxeps_r_x(fi)+dtxsigma_e_x(fi)+a_term);

Cexhz (fi)= (2=dt/dy)...

./ (2% eps_r_x(fi)xeps_O+dtxsigma_e_x(fi)+a_term);
Cexhy(fi)= —(2*dt/dz)

./ (2*eps_r_x(fi)xeps.0 + dtxsigma_e_x(fi)+a_term);

voltage_sources (ind). Cexs = —(2#dt/(R+dy=dz))
J(2xeps_r_x(fi)xeps_0O+dtxsigma_e_x(fi)+a_term);

PN

case 'y
fi = create_linear_index_list(eps_r_y,is:ie,js:je—1,ks:ke);
a_term = (dt*dy)/(R+dz*dx);
Ceye(fi) =

(2+eps_Oxeps_r_y(fi)—dtxsigma_e_y(fi)—a_term)
./ (2*eps_Oxeps_r_y(fi)+dtxsigma_e_y(fi)+a_term);

41

43

45

49

20

4.2 « Definition, initialization, and simulation of lumped elements 101

Ceyhx (fi)= (2+dt/dz)...

./ (2%eps_r_y(fi)xeps_O+dtxsigma_e_y(fi)+a_term);
Ceyhz(fi)= —(2*dt/dx)

./ (2%eps_r_y(fi)xeps_.0 + dt*sigma_e_y(fi)+ta_term);
voltage_sources(ind). Ceys = —(2*dt/(R*dz*dx))

J(2xeps_r_y(fi)xeps_O+dtxsigma_e_y (fi)+a_term);

)

case 'z’
fi = create_linear_index_list(eps_r_z,is:ie,js:je, ks:ke—1);
a_term = (dt*dz)/(R#dx=*dy);
Ceze(fi) =

(2xeps_0*eps_r_z(fi)—dt*sigma_e_z(fi)—a_-term)
./ (2#eps_Oxeps_r_z(fi)+dtxsigma_e_z(fi)+a_term);

Cezhy (fi)= (2+dt/dx)...

./ (2%eps_r_z(fi)xeps_O+dtxsigma_e_z(fi)+a_term);
Cezhx (fi)= —(2*dt/dy)

.l (2+eps_r_z(fi)*eps_0+dtxsigma_e_z(fi)+a_term);
voltage_sources(ind). Cezs = —(2*dt/(R*dx*dy))

J(2xeps_r_z(fi)xeps_0O+dt*sigma_e_z(fi)+a_term);

end
voltage_sources(ind). field_indices = fi;

Listing 4.7 create_linear_index_list.m

() . . . K .
% a function that generates a list of linear indices

function [fi] = create_linear_index_list(array_3d,i_list ,j_list 6 k_list)
i_size = size(i_list ,2);

josize = size(j_list ,2);

k_size = size(k_list ,2);

number_of_indices = i_size * j_size * k_size;

I = zeros(number_of_indices ,1);

] = zeros(number_of_indices ,1);

K = zeros(number_of_indices ,1);

ind = 1;

2 for mk = k_list (1): k_list (k_size)

for mj = j_list(1):j_list(j-size)

for mi = i_list(1):i_list(i_size)
I(ind) = mi;
J(ind) = mj;
K(ind) = mk;
ind = ind + 1;

end

end
end

fi = sub2ind(size(array_3d), I, J, K);

102 CHAPTER 4 « Active and passive lumped elements

Once the field component indices needing special updates are determined as fi in Listing
4.6, the respective components of the general updating coefficients are recalculated based on
the voltage source updating equations as given in (4.10).

One can notlce that there exists an additional term 1n (4.10), given by
Cossiy J, k) x Vs (z Jj, k), for updating E"*'(i, j, k). The term Vs (z J, k) is the value
of the voltage source waveform at time instant (n + 5) X At, and this value is stored in the
parameter voltage_sources(i).waveform. The other term C,, is the additional coefficient
term for the voltage source. This term is constructed based on (4.10) as the parameter
Cezs and associated with the respective voltage source as voltage sources(i).Cezs.
Similarly, if the voltage source updates the electric field components E, the parameter
voltage_sources(i).Cexs can be constructed, whereas if the voltage source updates £, the
parameter voltage_sources(i).Ceys can be constructed, based on the direction of the
voltage sources as implemented in Listing 4.6. Finally, the parameter voltage_sources(i).
field_indices is constructed from fi. Then the parameter field_indices are used to access
the respective field components while updating the electric field components during the
time-marching loop.

4.2.4.2 Initialization of current source updating coefficients

The initialization of current source updating coefficients is performed in the subroutine
initialize_current_source_updating_coefficients, which is shown in Listing 4.8. The initi-
alization of current source coefficients is the same as the initialization of voltage source
coefficients and follows the updating equation given in (4.15).

Listing 4.8 initialize_current_source_updating_coefficients.m

-
disp(’initializing.current_.source_.updating_.coefficients’);

for ind = 1:number_of_current._ sources
4 is = current_sources(ind).
js = current_sources (ind). jS
6 ks = current_sources (ind). ks;
ie = current_sources(ind). ie;
8 je = current_sources(ind). je;
ke = current_sources(ind). ke;

R = current_sources(ind). resistance_per_component;

switch (current_sources(ind). direction (1))

yy 0

14 case X
fi = create_linear_index_list(eps_r_x,is:ie—1,js:je, ks:ke);
16 a_term = (dt=dx)/(Rxdy*dz);
Cexe (fi) =
18 (2+eps_0xeps_r_x(fi)—dtx*sigma_e_x(fi)—a_term)
./ (2xeps_0*eps_r_x (fi)+dt*sigma_e_x(fi)+a_term);
20 Cexhz (fi)= (2+dt/dy)...
./ (2% eps_r_x(fi)xeps_O+dtxsigma_e_x(fi)+a_term);
2 Cexhy(fi)= —(2*dt/dz)
) (2xeps_r_x(fi)*eps_.0 + dt*sigma_e_x(fi)+a_term);
2% current_sources(ind). Cexs = —(2*dt/(dy=dz))

J(2xeps_r_x(fi)xeps_O+dtxsigma_e_x(fi)+a_term);

4.2 « Definition, initialization, and simulation of lumped elements 103

’

2% case 'y
fi = create_linear_index_list(eps_r_y,is:ie,js:je—1,ks:ke);
2 a_term = (dt+dy)/(R#dz*dx);
Ceye(fi) = ...
30 (2*eps_O*eps_r_y(fi)—dt*sigma_e_y(fi)—a_term)
./ (2#eps_Oxeps_r_y(fi)+dtxsigma_e_y(fi)+a_term);
32 Ceyhx (fi)= (2+dt/dz)...
./ (2xeps_r_y(fi)*eps_0+dt*sigma_e_y (fi)+a_term);
34 Ceyhz (fi)= —(2=dt/dx)
.l (2+eps_r_y (fi)*eps_.0 + dt*sigma_e_y(fi)+a_term);
36 current_sources (ind). Ceys = —(2xdt/(dzxdx))
J(2%xeps_r_y(fi)*eps_O+dtxsigma_e_y (fi)+a_term);
38 case 'z’
fi = create_linear_index_list(eps_r_z,is:ie,js:je, ks:ke—1);
40 a_term = (dt+dz)/(R#dx*dy);
Ceze(fi) = ...
2 (2+eps_O*eps_r_z(fi)—dt*sigma_e_z(fi)—a_term)
./ (2#eps_Oxeps_r_z(fi)+dtxsigma_e_z(fi)+a_term);
4 Cezhy (fi)= (2+dt/dx)...
./ (2xeps_r_z(fi)*eps_0+dt*sigma_e_z(fi)+a_term);
46 Cezhx (fi)= —(2=dt/dy)
./ (2#eps_r_z(fi)xeps_O+dt*sigma_e_z(fi)+a_term);
48 current_sources (ind). Cezs = —(2xdt/(dxxdy))
J(2xeps_r_z(fi)xeps_0+dt*sigma_e_z(fi)+a_term);
50 end
current_sources (ind). field_indices = fi;
s2| end

4.2.4.3 Initialization of inductor updating coefficients
The updating coefficients for modeling inductors are initialized in the subroutine initialize_
inductor_updating_coefficients, which is shown in Listing 4.9, based on the updating equation
(4.29). Comparing (4.24) with (1.28) one can observe that the form of the updating equation
modeling an inductor is the same as the form of the general updating equation. Therefore, there
is no need to recalculate the coefficients that have been initialized as general updating coef-
ficients. However, a coefficient term C,; has not been defined in the implementation of the
general updating equations. Therefore, the coefficient term C,; associated with the inductor is
defined as inductors(i).Cezj in Listing 4.9. Furthermore, the J;, term is also associated with
the inductor, and it is also defined as inductors(i).Jiz and is initialized with zeros.

As discussed in Section 4.1.6, during the FDTD time-marching iteration, at every

ntt . .
time step the new value of J;Z(i, J, k) is to be calculated by (4.23) using E¥(i, j, k)

n*l
and J;, (i, j, k) before updating E""'(i, j, k) using (4.24). Equation (4.23) can be
rewritten as

v s AT
Jiz (l,], k)_Jiz (h]? k)+LAXAy z(lvf7 k)

= J G,) + Celiy j, K) % B2, J, K),

104

6

10

CHAPTER 4 « Active and passive lumped elements

Listing 4.9 initialize_inductor_updating_coefficients.m

-
disp(’initializing_inductor_updating_coefficients’);

for

end

ind = 1T:number_of_inductors

is = inductors(ind). is;

js = inductors(ind). js;

ks = inductors(ind). ks;

ie = inductors(ind).ie;

je = inductors(ind). je;

ke = inductors(ind). ke;

L = inductors(ind).inductance_per_component;

switch (inductors(ind). direction (1))
case ’'x’
fi = create_linear_index_list(eps_r_x,is:ie—1,js:je,ks:ke);
inductors(ind). Cexj = —(2*dt)
o (2xeps_r_x(fi)*eps_O+dtxsigma_e_x(fi));
inductors(ind). Jix = zeros(size (fi));
inductors(ind). Cjex = (dt=dx)/ (Lxdyxdz);
case 'y’
fi = create_linear_index_list(eps_r_y,is:ie,js:je—1,ks:ke);
inductors(ind). Ceyj = —(2%dt)
. (2xeps_r_y(fi)*eps_0+dtxsigma_e_y (fi));
inductors(ind). Jiy = zeros(size (fi));
inductors(ind). Cjey = (dt=dy)/ (Lxdzxdx);
case 'z’
fi = create_linear_index_list(eps_r_z,is:ie,js:je, ks:ke—1);
inductors(ind). Cezj = —(2*dt)
. (2+eps_r_z(fi)*eps_O+dtxsigma_e_z(fi));
inductors(ind).)iz = zeros(size(fi));
inductors(ind). Cjez = (dtxdz)/ (Lxdxxdy);
end
inductors(ind). field_indices = fi;

where

_ AtAz
 LAxXAy’

C}ez(iv ja k)

Therefore, C;.. is an additional coefficient that can be initialized before the time-

marching loop. Hence, the parameter inductors(i).Cjez is constructed as shown in

Listing 4.9.

4.2.4.4 Initialization of resistor updating coefficients
The initialization of updating coefficients related to resistors is performed in the subroutine
initialize_resistor_updating_coeffcients, which is shown in Listing 4.10. The initialization

4.2 « Definition, initialization, and simulation of lumped elements 105

Listing 4.10 initialize_resistor_updating_coefficients.m

(disp(’initializing._.resistor._.updating._.coefficients’);
for ind = 1:number_of_resistors
4 is = resistors(ind).
js = resistors (ind).j
6 ks = resistors (ind).k
ie = resistors(ind).i
8 je = resistors(ind). je
ke = resistors(ind).k
10
R = resistors(ind). resistance_per_component;
12
switch (resistors(ind).direction (1))
14 case ’'x’
fi = create_linear_index_list(eps_r_x,is:ie—1,js:je,ks:ke);
16 a_term = (dt*dx)/(Rxdy=dz);
Cexe (fi) =
18 (2xeps_0*eps_r_x (fi)—dt*sigma_e_x(fi)—a_term)
./ (2xeps_0*eps_r_x (fi)+dt*sigma_e_x(fi)+a_term);
20 Cexhz (fi)= (2+dt/dy)...
. (2=eps_r_x(fi)*eps_0+dt*sigma_e_x(fi)+a_term);
n Cexhy (fi)= —(2#dt/dz)
./ (2xeps_r_x(fi)*eps_.0 + dt*sigma_e_x(fi)+a_term);
2% case 'y’
fi = create_linear_index_list(eps_r_.y, is:ie,js:je—1,ks:ke);
2 a_term = (dt*dy)/(R#dz=*dx);
Ceye(fi) =
28 (2#eps_Oxeps_r_y(fi)—dtxsigma_e_y(fi)—a_term)
./ (2*eps_Oxeps_r_y(fi)+dt*sigma_e_y(fi)+a_term);
30 Ceyhx (fi)= (2+dt/dz)...
./ (2xeps_r_y(fi)*eps_0+dt*sigma_e_y(fi)+a_term);
3 Ceyhz (fi)= —(2=dt/dx)
./ (2%eps_r_y(fi)xeps_.0 + dt*sigma_e_y(fi)+a_term);
34 case 'z’
fi = create_linear_index_list(eps_r_z,is:ie,js:je, ks:ke—1);
36 a_term = (dt*dz)/(R#dx=dy);
Ceze(fi) =
38 (2#eps_Oxeps_r_z(fi)—dtxsigma_e_z(fi)—a_term)
./ (2*eps_Oxeps_r_z(fi)+dt*sigma_e_z(fi)+a_term);
40 Cezhy (fi)= (2+dt/dx)
./ (2%eps_r_z(fi)xeps_0+dt*sigma_e_z(fi)+a_term)
£ Cezhx (fi)= —(2=dt/dy)
./ (2xeps_r_z(fi)*eps_0+dt*sigma_e_z(fi)+a_term);
44 end
resistors(ind). field_indices = fi;
4| end

of resistor coefficients is straightforward; the indices of field components associated with a
resistor are determined in the temporary parameter fi, and the elements of the general
coefficient arrays are accessed through fi and are recalculated based on the resistor updating
equation (4.16).

106 CHAPTER 4 « Active and passive lumped elements

4.2.4.5 Initialization of capacitor updating coefficients

The initialization of updating coefficients related to capacitors is performed in the subroutine
initialize_capacitor_updating_coefficients, which is shown in Listing 4.11. The initializa-
tion of capacitor coefficients is similar to the initialization of resistor coefficients and is
based on the updating equation (4.20).

6

10

16

20

36

40

42

Listing 4.11 initialize_capacitor_updating_coefficients.m

-
disp(’initializing._.capacitor_updating_coefficients’);

for ind = 1:number_of_capacitors
is = capacitors(ind).is;
js = capacitors(ind). js;
ks = capacitors(ind). ks;
ie = capacitors(ind).ie;
je = capacitors(ind). je;
ke = capacitors(ind). ke;

C = capacitors(ind). capacitance_per_component;

switch (capacitors(ind). direction (1))

P

case ’'x
fi = create_linear_index_list(eps_r_x,is:ie—1,js:je, ks:ke);
a_term = (2#Cxdx)/(dy=dz);
Cexe (fi) =

(2+eps_O*eps_r_x(fi)—dt*sigma_e_x(fi)+a_term)
./ (2xeps_0*eps_r_x (fi)+dt*sigma_e_x(fi)+a_term);

Cexhz (fi)= (2+dt/dy)...

.l (2x=eps_r_x(fi)*eps_0+dt*sigma_e_x(fi)+a_term);
Cexhy (fi)= —(2#dt/dz)

.l (2xeps_r_x(fi)*eps_.0 + dt*sigma_e_x(fi)+a_term);

case 'y’

fi = create_linear_index_list(eps_r_y ,is:ie,js:je—1,ks:ke);
a_term = (2+Cxdy)/(dz=dx);
Ceye (fi) =

(2*eps_O*eps_r_y (fi)—dt*sigma_e_y(fi)+a_term)
./ (2#eps_Oxeps_r_y(fi)+dt*sigma_e_y(fi)+a_term);

Ceyhx (fi)= (2+dt/dz)...

./ (2xeps_r_y(fi)*eps_0+dt*sigma_e_y(fi)+a_term);
Ceyhz (fi)= —(2#dt/dx)

./ (2%eps_r_y(fi)xeps_0 + dtxsigma_e_y(fi)+a_term);

case 'z’

fi = create_linear_index_list(eps_r_z,is:ie,js:je,h ks:ke—1);
a_term = (2#%Cxdz)/(dx=dy);
Ceze(fi) =

(2*eps_O*eps_r_z(fi)—dt*sigma_e_z(fi)+a_term)
./ (2*eps_Oxeps_r_z(fi)+dtxsigma_e_z(fi)+a_term);

Cezhy (fi)= (2+dt/dx)...
./ (2%eps_r_z(fi)xeps_0+dt*sigma_e_z(fi)+a_term);
Cezhx (fi)= —(2=dt/dy)
./ (2xeps_r_z(fi)*eps_0+dt*sigma_e_z(fi)+a_term);
end
capacitors(ind). field_indices = fi;

;| end

4.2 « Definition, initialization, and simulation of lumped elements 107

4.2.4.6 Initialization of diode updating coefficients

The algorithm for modeling diodes is significantly different compared with other lumped
element components, and it requires the initialization of a different set of parameters. The
updating coefficients for modeling diodes are initialized in initialize_diode_updating
coefficients, and implementation of this subroutine is shown in Listing 4.12.

40

)

Listing 4.12 initialize_diode_updating_coefficients.m

-
disp(’initializing_diode_updating_coefficients’);

1.602%*1e—19; % charge of an electron
1.38066e—23; % Boltzman constant, joule/kelvin
273+27; % Kelvin; room temperature

= Te—14; % saturation current

S

q
k
T
I_

for ind = 1:number_of_diodes
is = diodes(ind). is;
js = diodes(ind). js;
ks = diodes(ind). ks;
ie = diodes(ind). ie;
je = diodes(ind). je;
ke = diodes(ind). ke;

if strcmp (diodes(ind). direction(2),’'n’)
sgn = —1;
else
sgn = 1;
end
switch (diodes(ind). direction (1))
case ’'x’
fi = create_linear_index_list(eps_r_x,is,js,ks);
diodes(ind).B = sgn*q*dx/(2+*k*T);
diodes(ind).Cexd = ...
—sgn*(2*dt*1_.0/(dy=*dz))
J(2xeps_rox(fi)xeps.0 + dtrsigma_e_x(fi));
diodes(ind).Exn = 0;
case 'y’
fi = create_linear_index_list(eps_r_y ,is,js, ks);
diodes(ind).B = sgnxq*dy/(2+*k=*T);
diodes(ind). Ceyd = .
—sgn*(2*dt*1_0/(dz*dx))
J(2*%eps_r_y(fi)*eps_0 + dtxsigma_e_y(fi));
diodes(ind).Eyn = 0;
case 'z’
fi = create_linear_index_list(eps_r_z,is,js, ks);
diodes(ind).B = sgnxq*dz/(2+*k=*T);
diodes(ind). Cezd = .
—sgn*(2*dt*1_0/(dx=dy))
J(2%eps_r_z(fi)*eps.0 + dtxsigma_e_z(fi));
diodes(ind).Ezn = 0;
end
diodes (ind). field_indices = fi;

end

108 CHAPTER 4 « Active and passive lumped elements

As mentioned in Section 4.2.3, only one electric field component is associated with a
diode; therefore, it needs a special updating based on the equations in Section 4.1.8. For
example, for a diode oriented in the positive z direction and defined between the nodes (is, Js,
ks) and (ie, je, ke), only the field component E.(is, js, ks) is updated as illustrated in
Figure 4.9.

As discussed in Section 4.1.8, the new value of the electric field component associated
with a diode is obtained by the solution of the equation

AP +x+C =0, (4.42)
where
x=E"i, j, k), A=—Ceqli,], k)P0 B = (qAz/2kT),
C = Ceeliy j, k) x E"(i, j, k) + Cony(i, j, k) x (Hy”%(i, Jo k)~ HY R -1, k))
o+ ConnliJo 8) (3G,) = HEHG, = 1, 8)) + Coaai],)

Here the E"™!(i, j, k) is the electric field component that is sought. The term B is a
constant that can be constructed before the time-marching loop starts and stored as parameter
diodes(i).B. However, the parameters 4 and C are expressions that have to be recalculated at
every time step of the time-marching iteration using the previous values of electric and
magnetic field components.

Comparing the first three terms on the right-hand side of the equation expressing C
in (4.34) with the updating equation for general media (1.28), one can see that their forms
are the same and that the coefficients C,.., Cesy, and C,;, are different only by a minus
sign. These coefficients were initialized as Ceze, Cezhy, and Cezhx in the subroutine
initialize_updating_coeffcients, and there is no need to redefine them. We only need to keep
in mind that the components of these parameters with the indices (s, js, ks) — Ceze(is,js,ks),
Cezhy(is,js,ks), and Cezhz(is,js,ks) — are the negatives of the coefficients that are used to
recalculate C while updating E"+!(is, jis, ks) as associated with a diode.

However, the fourth term in the expression of C includes a coefficient, C,.,(i, j, k), which
has not been defined before. Therefore, a parameter, diodes(i).Cezd, is defined to store the
value of C,,4(is, js, ks) in Listing 4.12.

An additional parameter that is defined and initialized with zero in Listing 4.12 is diodes
(i).Ezn. This parameter stores E” (is, js, ks) which is the value of electric field component at
the previous time step. This parameter is used to recalculate the coefficient C at every time
step, and it should be available when recalculating C. Therefore, at every time step the value
of E”(is, js, ks) is stored in the parameter diodes(i).Ezn to have it available at the next time
step for the calculation of C.

4.2.5 Sampling electric and magnetic fields, voltages, and currents

The reason for performing an FDTD simulation is to obtain some results that characterize the
response of an electromagnetics problem. The types of results that can be obtained from an

4.2 « Definition, initialization, and simulation of lumped elements 109

FDTD simulation vary based on the type of the electromagnetics problem at hand. However,
the fundamental result that can be obtained from an FDTD simulation is the behavior of
electric and magnetic fields in time due to a source exciting the problem space, since these
are the fundamental quantities that the FDTD algorithm is based on. Other types of available
results can be obtained only by the translation of transient electric and magnetic fields into
other parameters. For instance, in a microwave circuit simulation, once the transient electric
and magnetic fields are obtained, it is easy to calculate transient voltages and currents. Then
the transient voltages and currents can be translated into the frequency domain by using the
Fourier transform, and scattering parameters (S-parameters) of the microwave circuit can be
obtained. Similarly, radiation patterns of an antenna or radar cross-section of a scatterer can
be obtained by employing the appropriate transforms.

4.2.5.1 Calculation of sampled voltages

The voltages and currents that will be sampled are represented similar to lumped element
components by prism-like volumes and their directions. The voltages across and the currents
flowing through these volumes will be calculated using the electric field components across
and the magnetic field components around these volumes, respectively, during the time-
marching loop.

For instance, consider the volume defined between the nodes (is, js, ks) and (ie, je, ke).
This volume is placed between two parallel PEC plates. An average value of voltage can be
calculated between the PEC plates across the volume. Here we employ the integral form of
(4.2), which can be given as

V= —/E -dl. (4.43)

This integration is expressed as a summation in the discrete space. For the configuration
in Figure 4.11, the voltage between the upper and lower PEC plates can be expressed in
discrete form as

ke—1
V=—dzx Y Eis, js, k). (4.44)
k=ks

However, it can be seen in Figure 4.11 that there are multiple paths for performing the
discrete summation and that the voltages calculated through these paths should be very close
to each other. Therefore, an average of these voltage values can be calculated by

—dz ie je ke—1
- % E.(i,], k). 4.45
(ie—is+1)x (je—js+1) ;;lczzks (8)

This expression can be written in the form

ie je ke—1

V="Cur x> > Y E,j k), (4.46)

i=is j=js k=ks

110 CHAPTER 4 « Active and passive lumped elements

Figure 4.11 A volume between PEC plates where a z-directed sampled voltage is required.

where

—dz
(ie—is+1) x (je—js+ 1)

Cuy = (4.47)
The coefficient Cj,is a scaling factor multiplied by the sum of the field components E.(is :
ie, s : je, ks : ke — 1) to obtain the average voltage.
The aforementioned equations still hold for the cases where is is equal to ie or js is equal
to je. In those cases the voltage is sampled along a line segment or across a surface.

4.2.5.2 Calculation of sampled currents

To calculate the current flowing through a surface we can employ Ampere’s law in integral
form, which is given by

Liee = 515 H-dl, (4.48)

where I, is the total free current. We need to describe the integral in (4.48) as a summation
of magnetic field components in the discrete space. For instance, consider the case shown in
Figure 4.12. The figure shows magnetic field components enclosing a surface. The positions
of the fields are given with respect to the Yee cell, and indices of the fields are given with
respect to the nodes (is, js, ks) and (ie, je, ke). These fields can be used to calculate the
enclosed total free current by

ie Jje
L(ke—1)=dxx) H(i,js— 1, ke—1)+dyx » H,(ie,j, ke — 1
y
i=is J=Jjs

‘) (4.49)
ie je
—dx x ZHx(i, je, ke — 1) — dy x ZHy(is —1,j, ke —1).

i=is J=Js

4.2 « Definition, initialization, and simulation of lumped elements 111

: /&Hy(ie,je, ke —1)
= H(ie, js, ke — 1)

Figure 4.12 A surface enclosed by magnetic field components and z-directed current flowing
through it.

Here we indexed I, by (ke — 1) since the magnetic field components with the index
(ke — 1) in the z direction are used to calculate ..

As discussed before, we can determine the position of the current sampling by a volume
identified by the node indices (is, js, ks) and (e, je, ke). Then, a surface intersecting with the
cross-section of this volume and enclosing it can be used to determine the magnetic field
components that are used to calculate the current as illustrated in Figure 4.12. It is possible
that the volume identified by the nodes (is, js, ks) and (ie, je, ke) reduces to a surface or a line
segment or even to a point in the case where ie = is, je = js, and ke = ks. The expression in
(4.49) still can be used to calculate the current in those cases. However, one should notice
that the surface represented by the magnetic field components indexed by (ke — 1) is not
coinciding with the nodes; it instead crosses the centers of the cells. Therefore, if sampling of
both the voltage and the current is required at the same position, one should sample one of
these quantities over multiple positions and should take the average to obtain both the vol-
tage and current effectively at the same position.

Furthermore, another point that should be kept in mind is that the voltages and currents
are sampled at different time instants and a half time step apart from each other, since the
voltages are calculated from electric field components and currents are calculated from
magnetic field components, which are offset in time due to the leap-frog Yee algorithm. This
time difference can also be compensated for as pointed out in [11].

4.2.6 Definition and initialization of output parameters

Definition of types of results sought from a simulation is part of the construction of an
electromagnetics problem in the FDTD method. This can be done in the definition stage of

112 CHAPTER 4 « Active and passive lumped elements

the main FDTD program fdtd_solve as shown in Listing 3.1, in the subroutine define_
output_parameters. In this section, we demonstrate how the electric field, magnetic field,
voltages, and currents can be defined as output parameters in Listing 4.13. We also
demonstrate how to set up some auxiliary parameters that would be used to display the three-
dimensional view of the objects in the problem space, the material mesh of the problem
space, and a runtime animation of fields on some plane cuts while the simulation is running.
The definition of other types of parameters is discussed in the subsequent chapters and their
implementation are added to the subroutine define_output_parameters.

Listing 4.13 starts with the definition and initialization of the empty structure arrays
sampled_electric_fields, sampled_magnetic_fields, sampled-voltages, and sampled_
currents for representing the respective parameters to be sampled at every time step of the
FDTD loop as functions of time. As these parameters are captured during the FDTD loop,
they can be plotted on MATLAB figures to display the progress of the sampled parameters.
However, it is not meaningful to display the progress of these parameters at every time step,
as it may slow down the simulation considerably. It is better to refresh the plots at a rate
defined with the parameter plotting_step. For instance, a value of 10 implies that the
figures will be refreshed once every 10 time steps.

Listing 4.13 define_output_parameters.m

-
disp(’defining_output_.parameters’);

I
I

sisampled_electric_fields
sampled_magnetic_fields
s|sampled_voltages = [];
sampled_currents = [];

[
[

% figure refresh rate
9| plotting_step = 10;

1n|% mode of operation
run_simulation = true;

5| show_material_mesh = true;
show_problem_space = true;

% define sampled electric fields

17|% component: vector component 'x’,’y’,’z’, or magnitude 'm’

% display_plot = true, in order to plot field during simulation

w|sampled_electric_fields (1).x 30*%dx;

sampled_electric_fields (1).y 30=dy;

alsampled_electric_fields (1).z = 10*dz;
(1).¢
(1).

yy ?

omponent = 'x’;
display_plot = true;

sampled_electric_fields
n|lsampled_electric_fields

»5|% define sampled magnetic fields
% component: vector component 'x’,’y’,’z’, or magnitude ’'m’
7% display_plot = true, in order to plot field during simulation
sampled_magnetic_fields (1).x = 30*dx;
w|sampled_magnetic_fields (1).y 30*%dy;
sampled_magnetic_fields (1).z = 10*dz;
(1).¢
(1).

’

sifsampled_magnetic_fields omponent = 'm’;
sampled_magnetic_fields display_plot = true;

N

3

4

43

69

=%

4.2 « Definition, initialization, and simulation of lumped elements

% define sampled voltages

sampled_voltages (1). min_x = 5.0e—3;
sampled_voltages (1). min_.y = 0;
sampled_voltages (1). min_.z = 0;
sampled_voltages (1). max.x = 5.0e—3;
sampled_voltages (1). max_.y = 2.0e-3;
sampled_voltages (1). max.z = 4.0e-3;
sampled_voltages (1). direction = ’zp’
sampled_voltages (1). display_plot = true;
% define sampled currents
sampled_currents (1). min_x = 5.0e—3;
sampled_currents (1). min_y = 0;
sampled_currents (1). min_z = 4.0e-3;
sampled_currents (1). max.x = 5.0e—3;
sampled_currents (1). max_.y = 2.0e-3;
sampled_currents (1). max.z = 4.0e—3;
sampled_currents (1). direction = ’xp’
sampled_currents (1). display_plot = true;

% display problem space parameters

1% define animation

s|problem_space_display.labels = true;
problem_space_display.axis_at_origin = false;
problem_space_display.axis_outside_domain = true;
problem_space_display.grid_xn = false;
problem_space_display.grid_xp = true;
problem_space_display.grid_yn = false;
problem_space_display.grid_yp = true;
problem_space_display.grid_zn = true;
problem_space_display.grid_zp = false;
problem_space_display.outer_ boundarles = true;

s|problem_space_display.cpml_boundaries = true;

% field_type shall be e’ or ’'h’

% plane cut shall be ’'xy’, yz, or zx

% component shall be 'x’, ’'y’, ’z’, or 'm;
animation (1). field_type = ’e’;

animation (1).component = 'm’

animation (1). plane_cut (1).ty "Xy’
animation (1). plane_cut (1). p05|t|0n = 0;
animation (1). plane_cut(2).type = ’yz’;
animation (1). plane_cut (2). position = 0;
7lanimation (1). plane_cut (3).type = ’'zx’;
animation (1). plane_cut (3). position = 0;
animation (1). enable = true;

animation (1). display_grid = false;
animation (1). display_objects = true;
slanimation (2). field_type = ’h’;

animation (2).component = 'x’;
s|animation (2). plane_cut (1).type = ’xy’;
animation (2). plane_cut (1). position = —5;

113

114 CHAPTER 4 « Active and passive lumped elements

s7[animation (2). plane_cut (2).type = 'xy’;
animation (2). plane_cut (2). position = 5;

swlanimation (2). enable = true;
animation (2). display_grid = true;

si|animation (2). display_objects = true;

Usually it is a good practice to examine the positioning of the objects in the three-
dimensional problem space before running the simulation. Furthermore, examining the
distribution of the material parameters on the FDTD grid will also reveal if the simulation
is set up correctly. In these cases it is better to run the simulation up to a point where the
three-dimensional view of the problem space and the material mesh can be displayed.
Therefore, a parameter named run_simulation is defined. If this parameter is true, then
the program proceeds with running the simulation; otherwise, it stops after calling the
subroutines display_problem_space and display_material_mesh as shown in Listing 3.1.
The display_problem_space is a subroutine that displays the three-dimensional view of the
problem space, and it is controlled by a logical parameter named show_problem_space. A
set of parameters that can be used to set the view of the problem space is listed at the end of
Listing 4.13. Similarly, display_material_mesh is a subroutine that launches a utility pro-
gram with a graphical user interface, display_material_mesh_gui, and it is controlled by a
parameter named show_material_mesh. For instance, the material grid in Figure 3.13 is
obtained using display_material_mesh_gui.

During the FDTD time-marching loop, the electric and magnetic fields are calculated all
over the problem space at their respective positions on the Yee grid. Since all of the field
components are available, any of them can be captured, plotted, or stored. For instance, some
field components on some plane cuts can be captured and plotted on figures so as to
demonstrate the real-time progression of fields on these plane cuts. Or some fields can be
captured and stored for postprocessing. Here we limit our implementation to field compo-
nents sampled at nodes of the FDTD grid. To define a node, we need its position in the
Cartesian coordinates. Therefore, the parameters x, y, and z are defined in the structures
sampled_electric_fields(i) and sampled_magnetic_fields(i). Since the fields are vectors,
their x, y, and z components or magnitudes can be sampled. Hence, the parameter compo-
nent, which can take one of the values “x,” “y,” “z,” or “m,” is defined with sampled_
electric_fields(i) and sampled_magnetic_fields(i). If the component takes the value “m”
then the magnitude of the field is calculated using

E, = \/E2+EX+E2, H, =, /H?+H?+H?

One additional parameter is display_plot, which takes one of the values true or false and
determines whether this field component will be plotted while the simulation is running or
not.

Meanwhile, the volumes representing the sampled voltages and currents are identified by
the parameters min_x, min_y, min_z, max_x, max_y, and max_z. The directions of the
sampled voltages and currents are defined by the parameter direction, which can take one of

2 ¢ <

the values “xp,” “yp,” “zp,” “xn,

2 <

yn’n or “zn.”

4.2 « Definition, initialization, and simulation of lumped elements 115

As discussed already, since all of the field components are available at every time step of
the simulation, they can be captured on desired plane cuts and plotted; thus, a propagation of
fields on these plane cuts can be simulated. The definition of animation as an output is done
using a parameter animation. The parameter animation is an array so each element in the
array generates a figure that displays the fields. An element animation(i) has the following
subfields that are used to define the properties of the animation. The subfield field_type can
take a value either “e” or “h,” determining whether the electric field or magnetic field will
be animated, respectively. Then the subfield component is used to define which component
of the field to display, and it takes one of the values “x,” “p,” “z,” or “m.” Then several
plane cuts can be defined to be displayed on a figure using the subfield plane_cut(j). The
parameter plane_cut(j).type can take one of the values “xp,” “yz,” or “zx,” describing
which principal plane the plane cut is parallel to. Then the parameter plane_cut(j).position
determines the position of the plane cut. For instance, if type is “yz,” and position is 5, then
the plane cut is the plane at x = 5. Finally, three other subfields of animation(i) are the
logical parameters enable, display_grid, and display_objects. The animation can be dis-
abled by simply setting enable “false,” the FDTD grid can be displayed during the simu-
lation by setting display_grid “true,” and the objects in the problem space can be displayed

by a wire grid by setting display_objects “true.”

4.2.6.1 Initialization of output parameters

The initialization of output parameters is implemented in the subroutine initialize_
output_parameters, as shown in Listing 4.14. Here the parameter sampled_electric_fields
represents the sampled electric field components, and sampled_magnetic_fields represents
the sampled magnetic field components. Similarly, the parameters sampled_voltages and
sampled_currents represent sampled voltages and currents, respectively. As indicated
before, the electric and magnetic field components are sampled at specified positions, which
coincide with respective nodes in the Yee grid. The indices of the sampling nodes are
determined in Listing 4.14 and are stored in the parameters is, js, and ks. Furthermore, a one-
dimensional array with size number_of_time_steps is constructed as sampled_value
and initialized with zeros. This parameter is used to store the new computed values of the
sampled component while the FDTD iterations proceed. Another one-dimensional array with
size number_of_time_steps is time, which is used to store the time instants of the respective
captured values. One should notice that there is a half time step duration (d#/2) shift between
the electric field and magnetic field time arrays.

Listing 4.14 initialize_output_parameters.m

-
disp(’initializing._.the_output_parameters’);

number_of_sampled_electric_fields = size(sampled_electric_fields ,2);
number_of_sampled_magnetic_fields = size(sampled_magnetic_fields ,2);
number_of_sampled_voltages = size(sampled_voltages ,2);

number_of_sampled_currents = size(sampled_currents ,2);

% initialize sampled electric field terms
for ind=1T:number_of_sampled_electric_fields

is = round ((sampled_electric_fields (ind).x
1 — fdtd_domain.min_x)/dx)+1;

116 CHAPTER 4 « Active and passive lumped elements

js = round ((sampled_electric_fields(ind).y

13 — fdtd_domain.min_y)/dy)+1;
ks = round ((sampled_electric_ fields(ind).z

15 — fdtd_domain.min_z)/dz)+
sampled_electric_fields (ind). = is;

17 sampled_electric_fields (ind). = js;
sampled_electric_fields (ind). = ks;

19 sampled_electric_fields (ind). sampled value =

zeros (1, number_of_time_steps);
2 sampled_electric_fields (ind).time =

([1:number_of_time_steps])*dt;
x| end

o

s|% initialize sampled magnetic field terms
for ind=1:number_of_sampled_magnetic_fields

27 is = round ((sampled_magnetic_fields(ind).x
— fdtd_domain.min_x)/dx)+1;
29 js = round ((sampled_magnetic_fields(ind).y
— fdtd_domain.min_y)/dy)+1;
31 ks = round ((sampled_magnetic_fields(ind).z
— fdtd_domain.min_ z)/dz)+1
33 sampled,magnetic,fields(|nd). = is;
sampled_magnetic_fields(ind). = js;
35 sampled_magnetic_fields(ind). = ks;
sampled_magnetic_fields(ind). sampled,value =
37 zeros (1, number_of_time_steps);
sampled_magnetic_fields(ind).time =
39 ([1:number_of_time_steps] —0.5)*dt;
end

41
% initialize sampled voltage terms
;| for ind=1:number_of_sampled_voltages

s

is = round ((sampled_voltages(ind). min.x — fdtd_domain.min_x)/dx)
45 js = round ((sampled_voltages(ind). min_.y — fdtd_domain.min_y)/dy)+1;
ks = round ((sampled_voltages(ind). min_.z — fdtd_domain.min_z)/dz)+1
47 ie = round ((sampled_voltages(ind).max.x — fdtd_domain.min_x)/dx)+1
je = round ((sampled_voltages(ind). max.y — fdtd_domain.min_y)/dy)+1
49 ke = round ((sampled._ voltages(ind).max_z — fdtd_domain.min_z)/dz)+1
sampled_voltages(ind).is = is;
51 sampled_voltages(ind). js = js;
sampled_voltages(ind). ks = ks;
53 sampled_voltages(ind).ie = ie;
sampled_voltages(ind). je = je;
55 sampled_voltages(ind). ke = ke;
sampled_voltages(ind). sampled value =
57 zeros (1, number_of_time_steps);
59 switch (sampled_voltages(ind). direction (1))
case ’'x’
o1 fi = create_linear_index_list (Ex,is:ie—1,js:je,ks:ke);
sampled_voltages(ind). Csvf = —dx/((je—js+1)*(ke—ks+1));
I case 'y’
fi = create_linear_index_list(Ey,is:ie,js:je—1,ks:ke);

65 sampled_voltages(ind). Csvf = —dy/((ke—ks+1)*(ie—is +1));

4.2 « Definition, initialization, and simulation of lumped elements 117

»

case 'z’
1% fi = create_linear_index_list(Ez,is:ie,js:je, ks:ke—1);
sampled_voltages (ind). Csvf = —dz/((ie—is+1)*(je—js +1));
69 end
if strcmp (sampled_voltages(ind). direction(2),’'n’)
7 sampled_voltages(ind). Csvf = .
—1 * sampled_voltages(ind). Csvf;
73 end
sampled_voltages(ind). field_indices = fi;
75 sampled_voltages(ind).time = ([1:number_of_time_steps])=*dt;

end

% initialize sampled current terms
ol for ind=1:number_of_sampled_currents

eros (1, number_of_time_steps);
.time =([1:number_of_time_steps]—0.5)*dt;

93

is = round ((sampled_currents(ind). min_x — fdtd_domain.min_x)/dx)+1
81 js = round ((sampled_currents(ind). min_.y — fdtd_domain.min_y)/dy)+1
ks = round ((sampled_currents(ind). min_z — fdtd_domain.min_z)/dz)+1;
83 ie = round ((sampled_currents(ind). max_x — fdtd_-domain.min_x)/dx)+1;
je = round ((sampled_currents(ind). max.y — fdtd_domain.min_y)/dy)+1
85 ke = round ((sampled_currents(ind). max.z — fdtd_domain.min_z)/dz)+1
sampled_currents(ind).is = is;
87 sampled_currents(ind). js = js;
sampled_currents(ind). ks = ks;
89 sampled_currents(ind).ie = ie;
sampled_currents(ind).je = je;
91 sampled_currents(ind). ke = ke;
sampled_currents(ind).sampled_value =
z
)

sampled_currents (ind

95| end

The indices of the nodes indicating the positions of the sampled voltages are calculated
and assigned to the parameters is, js, ks, ie, je, and ke. The indices of the fields that are used
to calculate sampled voltages are determined and assigned to the parameter field_indices.
Then coefficient Cy, which is a scaling factor as described in Section 4.2.5, is calculated
using (4.47) and is assigned to the parameter Csvf.

4.2.6.2 Initialization of figures for runtime display

So far we have defined four types of outputs for an FDTD simulation: namely, sampled
electric and magnetic fields, voltages, and currents. While the FDTD simulation is running,
the progress of these sampled parameters can be displayed on MATLAB figures. In the
subroutine define_output_parameters, while defining the sampled components, a parameter
display_plot is associated to each defined component indicating whether the real-time
progress of this component displayed. If there are any components defined for runtime dis-
play, figures displaying these components can be opened and their properties can be set
before the FDTD time-marching loop starts. This figure initialization process can be per-
formed in the subroutine initialize_display_parameters, which is given in Listing 4.15. Here
figures are launched for every sampled component that is displayed, and their axis labels are
set. Furthermore, the number of the figure associated with each sampled component is stored
in the parameter figure_number.

118 CHAPTER 4 « Active and passive lumped elements

Listing 4.15 initialize_display_parameters.m

-
disp(’initializing.display_parameters’);

% open figures for sampled electric fields
for ind=1:number_of_sampled_electric_fields

5 if sampled_electric_fields(ind). display_plot == true
sampled_electric_fields (ind).figure_number = figure;

7 sampled_electric_fields (ind). plot_handle = plot (0,0, 'b-");
xlabel (’time.(ns)’, fontsize’ ,12);

9 ylabel (’(volt/meter)’, fontsize’ ,12);

title (['sampled_electric_field.[’

1 num2str(ind) ’]’], fontsize’ ,12);
grid on;

13 hold on;

end

15| end

17|% open figures for sampled magnetic fields
for ind=1:number_of_sampled_magnetic_fields

19 if sampled_magnetic_fields(ind). display_plot == true
sampled_magnetic_fields (ind). figure_number = figure;

21 sampled_magnetic_fields(ind). plot_handle = plot(0,0, 'b—");
xlabel ("time.(ns)’, fontsize’ ,12);

23 ylabel (’(ampere/meter)’, fontsize’ ,12);
title (["sampled_magnetic_field.[’ num2str(ind) ’']’],

25 "fontsize’ ,12);
grid on;

27 hold on;

end
| end

51{% initialize figures for sampled voltages
for ind=1:number_of_sampled_voltages

3 if sampled_voltages(ind). display_plot == true
sampled_voltages(ind). figure_number = figure;
35 sampled_voltages(ind). plot_handle = plot(0,0, b-");
xlabel (time.(ns)’, fontsize’ ,12);
37 ylabel (’(volt)’, ' fontsize’ ,12);
title (['sampled.voltage.[’ num2str(ind) ']’],
39 "fontsize’ ,12);
grid on;
41 hold on;
end
4| end

4|% initialize figures for sampled currents
for ind=1:number_of_sampled_currents

47 if sampled_currents(ind). display_plot == true
sampled_currents(ind). figure_number = figure;

4 sampled_currents(ind). plot_handle = plot(0,0, b-");
xlabel ("time.(ns)’, fontsize’ ,12);

»

,fontsize’ ,12);
" num2str(ind) ']’],

51 ylabel (' (ampere)
title (['sampled.current.|
53 "fontsize’ ,12);

4.2 « Definition, initialization, and simulation of lumped elements 119

grid on;
5 hold on;
end

57| end

9% initialize field animation parameters
initialize_animation_parameters;

Finally, a subroutine initialize_animation_parameters is called, which performs
the initialization of parameters for field animation on the plane cuts defined in
define_output_parameters.

Furthermore, figures and display parameters for other types of sampled outputs can be
initialized in this routine.

4.2.7 Running an FDTD simulation: The time-marching loop

So far we have discussed all definition and initialization routines in fdtd_solve as given in
Listing 3.1 except the subroutines initialize_boundary_conditions and run_fdtd_time_
marching_loop. The only boundary type we have discussed is the PEC boundary. We only
need to ensure that the tangential electric field components on the boundaries of the problem
space are zeros to satisfy the PEC boundary conditions. Therefore, there is no need for special
initialization routines for PEC boundaries. The subroutine run_fdtd_time_marching_loop is
reserved for other types of boundaries we have not discussed yet and are the subject of
another chapter.

Therefore, so far we have constructed the necessary components for starting an FDTD
simulation for a problem space assuming PEC boundaries and including objects of isotropic
and linear materials and lumped element components. Now we are ready to implement
the subroutine run_fdtd_time_marching_loop, which includes the steps of the leap-frog
time-marching algorithm of the FDTD method. The implementation of run_fdtd_time_
marching_loop is given in Listing 4.16. We discuss the functions and provide the imple-
mentation of subroutines of these steps in this section.

Listing 4.16 starts with the definition and initialization of a parameter current_time,
which is used to include the current value of time instant during the FDTD loop. Then the
MATLAB function cputime is used to capture the time on the computer system. This is first
called to capture the start time of the FDTD loop and is stored in start_time. The function
cputime is called one more time to capture the time on the system after the FDTD loop is
completed. The captured value is copied to end_time. Hence, the difference between the
start and end times is used to calculate the total simulation time spent for the time-marching
iterations.

4.2.7.1 Updating magnetic fields
The time-marching iterations are performed number_of_time_steps times. At every iteration,
first the magnetic field components are updated in the subroutine update_magnetic_fields,

120 CHAPTER 4 « Active and passive lumped elements

Listing 4.16 run_fdtd_time_marching_loop.m

-

disp ([’Starting._the_time.marching_.loop’]);

disp (['Total .number_of _time_steps.:.’
num2str(number_of_time_steps)]);

start_time = cputime;
sl current_time = 0;

s| for time_step = 1:number_of_time_steps
update_magnetic_fields;

10 capture_sampled_magnetic_fields;
capture_sampled_currents;

12 update_electric_fields;
update_voltage_sources;

14 update_current_sources;
update_inductors;

16 update_diodes;
capture_sampled_electric_fields;

18 capture_sampled_voltages;

display_sampled_parameters;
20| end

»|end_time = cputime;

total_time_in_minutes = (end_time — start_time)/60;
| disp (['Total.simulation._time_is.’
num2str(total_time_in_minutes) ’_minutes.’]);

Listing 4.17 update_magnetic_fields.m

-
% update magnetic fields

current_time = current_time + dt/2;

Hx = Chxh.#*Hx+Chxey.*(Ey(1:nxp1,1:ny,2:nzp1)—Ey(1:nxp1,1:ny,1:nz))
+ Chxez.*(Ez(1:nxp1,2:nyp1,1:nz)—Ez(1:nxpl1,1:ny,1:nz));

Hy = Chyh.*Hy+Chyez.*(Ez(2:nxp1,1:nyp1,1:nz)—Ez(1:nx,1:nyp1,1:nz))
9 + Chyex.*(Ex(1:nx,1:nyp1,2:nzp1)—Ex(1:nx,1:nypl1,1:nz));

i|Hz = Chzh.*Hz+Chzex .*(Ex(1:nx,2:nyp1,1:nzp1)—Ex(1:nx,1:ny,1:nzp1))
+ Chzey.*(Ey(2:nxp1,1:ny,1:nzp1)—Ey(1:nx,1:ny,1:nzpl1));

as given in Listing 4.17. Here the new values of the magnetic field components are cal-
culated all over the problem space based on the general updating equations (1.29)—(1.31),
excluding the impressed magnetic current terms since there are no impressed magnetic
currents defined.

4.2 « Definition, initialization, and simulation of lumped elements 121

4.2.7.2 Updating electric fields

Then the next important step in an FDTD iteration is the update of electric fields, which is
performed in the subroutine update_electric_fields and is shown in Listing 4.18. The electric
field components are updated using the general updating equations given in (1.26)—(1.28),
except for the impressed electric current terms. While discussing the lumped element com-
ponents, it has been shown that impressed current terms are needed for modeling inductors.
Since only a small number of electric field components need to be updated for modeling the
inductors; these components are recalculated by addition of impressed current related terms
in the subroutine update_inductors.

One should notice that in Listing 4.18, the electric field components that are tangential to
the boundaries are excluded in the updating. The reason is the specific arrangement of field
positions on the Yee cell. While updating an electric field component, the magnetic field
components encircling it are required. However, for an electric field component resting
tangential to the boundary of the problem space, at least one of the required magnetic field
components would be out of the problem space and thus would be undefined. Therefore, the
electric field components tangential to the boundaries cannot be updated using the general
updating equations. However, if these components are not updated, they maintain their initial
values, which are zeros, thus naturally simulating the PEC boundaries. Therefore, there is no
need for any additional effort to enforce PEC boundaries. However, some other types of
boundaries may require special updates for these electric field components.

The updating coefficient values that model the lumped element components were
assigned to the respective positions in the updating coefficient arrays; therefore, the updating
of the electric field in update_electric_fields completes the modeling of capacitors and

Listing 4.18 update_electric_fields.m

-
% update electric fields except the tangential components
% on the boundaries

o

4l current_time = current_time + dt/2;

¢|Ex(1:nx,2:ny,2:nz) = Cexe(1:nx,2:ny,2:nz).*Ex(1:nx,2:ny,2:nz)
+ Cexhz(1:nx,2:ny,2: nz)

8 (Hz(1:nx,2:ny,2:nz)—Hz(1:nx,1:ny—1,2:nz))
+ Cexhy(1 nx,2:ny,2: nz) * .

10 (Hy(1:nx,2:ny,2:nz)—Hy(1:nx, 2 ny,1:nz—1));

2|Ey(2:nx,1:ny,2:nz)=Ceye(2:nx,1:ny,2:nz).*Ey(2: nx,1:ny,2:nz)
+ Ceyhx(2:nx,1:ny,2:nz

). * .
14 (Hx(2:nx,1:ny,2:nz)—Hx(2:nx, 1 ny,1:nz—1))
+ Ceyhz(z nx,l:ny,2:nz).*
16 (Hz(2:nx,1:ny,2:nz)— (1 nx—4 1:ny,2:nz));

s|Ez(2:nx,2:ny,1:nz)=Ceze (2:nx,2:ny,1:nz).*Ez(2: nx,Z:ny,1:nz)
+ Cezhy(Z nx,2:ny,1:nz
20 (Hy(2:nx,2:ny,1:nz)—Hy
+ Cezhx(Z nx,2:ny,1:nz
n (Hx(2:nx,2:ny,1:nz)—Hx

1 nx-—1 ,2:ny ,1:nz))
LR

2:nx 1:ny44,1:nz));

122 CHAPTER 4 « Active and passive lumped elements

resistors. The modeling of other lumped elements requires addition of some other terms to
the electric fields at their respective positions. The following sections elaborate on updates
for these other lumped elements.

4.2.7.3 Updating electric fields associated with voltage sources

The updating equations modeling the voltage sources are derived and represented by (4.10).
This equation includes an additional voltage source specific term,

Consli, J, k) x VI3, J,), (4.50)

which was omitted in the implementation of update_electric_fields in Listing 4.18. This
term can be added to the electric field components that are associated with the voltage
sources. The indices of the electric field components requiring an additional update are
stored in the parameter voltage_sources(i).field_indices. The coefficient terms are con-
structed as Cexs, Ceys, and Cezs, based on the direction of the voltage source. The value
of the voltage at the current time step can be retrieved from the waveform array voltage_
sources(i).waveform. The additional update of electric field components due to voltage
sources is performed in update_voltage_sources as shown in Listing 4.19.

4.2.7.4 Updating electric fields associated with current sources

Updating of the field components associated with the current sources is similar to that for the
voltage sources. The updating equations modeling the current sources are derived and given
by (4.15). This equation includes an additional current source specific term,

Consliy J, k) % 1130, j, k). (4.51)

The additional update of electric field components due to current sources is performed in
update_current_sources as shown in Listing 4.20.

Listing 4.19 update_voltage_sources.m

-
% updating electric field components
% associated with the voltage sources

o

+|for ind = 1:number_of_voltage_sources
fi = voltage_sources(ind). field_indices;
6 switch (voltage_sources(ind). direction (1))
case 'x’
8 Ex(fi) = Ex(fi) + voltage_sources(ind). Cexs
* voltage_sources(ind).voltage_per_e_field (time_step);
10 case 'y’
Ey(fi) = Ey(fi) + voltage_sources(ind). Ceys
12 * voltage_sources(ind).voltage_per_e_field (time_step);
case 'z’
14 Ez(fi) = Ez(fi) + voltage_sources(ind). Cezs

* voltage_sources(ind).voltage_per_e_field (time_step);

16 end

4.2 « Definition, initialization, and simulation of lumped elements 123

Listing 4.20 update_current_sources.m

p
% updating electric field components
% associated with the current sources

for ind = 1:number_of_current_sources
5 fi = current_sources(ind). field_indices;
switch (current_sources(ind). direction (1))
case 'x’
Ex(fi) = Ex(fi) + current_sources(ind). Cexs
9 * current_sources(ind). current_per_e_field (time_step);
case 'y’
1 Ey(fi) = Ey(fi) + current_sources(ind). Ceys
* current_sources(ind). current_per_e_field (time_step);
13 case 'z’
Ez(fi) = Ez(fi) + current_sources(ind). Cezs
15 * current_sources(ind). current_per_e_field (time_step);

4.2.7.5 Updating electric fields associated with inductors

The updating equations modeling the inductors are derived as in equation (4.24), which
includes an additional impressed electric current source term

Cosiliy j, K) x T30, o,). (4.52)

The coefficients in the additional terms have been constructed in Listing 4.9 as Cexj,

1
Ceyj, and Cezj. However, the impressed current term J?;Z should be recalculated at
_1
every time step using the previous value of the impressed current, J :’Z 2

electric field component, £”, based on (4.23), before adding the terms in (4.52) to E"*!.
n+-i
However, since wupdate_electric_ fields overwrites E”,J. "2 must be calculated before

z1Yiz

and the associated

update_electric_fields. Therefore, J?ﬁ can be recalculated after updating the electric
fields due to inductors for use in the following time step. The algorithm for updating
electric field components and calculating the impressed currents can be followed in Listing
4.21, which shows the implementation of update_inductors.

4.2.7.6 Updating electric fields associated with diodes

Update of electric field components for modeling diodes is more complicated compared to
other types of lumped elements. As discussed in Section 4.1.8, the new value of the electric
field component associated with a diode is obtained by the solution of the equation

AP +x+C=0, (4.53)
where
x=E"Yij, k), A= —Cuali,j, k)P E0GI R B = (qAz/2kT),
C = Conelis j, k) % E2i, j, k) + Coy i, J,) x (H;”%(u k) — H G- 1, k))

+ Conlis o &) x (HEH 0, k) = HEH 0, = 1K) + Coaai),).
(4.54)

124 CHAPTER 4 « Active and passive lumped elements

Listing 4.21 update_inductors.m

(4 . . .
1|% updating electric field components
% associated with the inductors

for ind = 1:number_of_inductors
5 fi = inductors(ind). field_indices;
switch (inductors(ind). direction (1))
case ’'x’
Ex(fi) = Ex(fi) + inductors(ind). Cexj
9 % inductors(ind). Jix;
inductors(ind). Jix = inductors(ind). Jix
1 + inductors(ind). Cjex .* Ex(fi);
case 'y’

13 Ey(fi) = Ey(fi) + inductors(ind). Ceyj

.% inductors(ind). Jiy;

15 inductors(ind). Jiy = inductors(ind). Jiy
+ inductors(ind). Cjey .* Ey(fi);

17 case 'z’

Ez(fi) = Ez(fi) + inductors(ind). Cezj

19 .%* inductors(ind). Jiz;

inductors(ind). Jiz = inductors(ind). Jiz

21 + inductors(ind). Cjez .+ Ez(fi);

The coefficients B and C,., are constructed as parameters diodes(i).B and diodes(i).Cezd
in the subroutine initialize_diode_updating_coeffcients. However, the coefficients 4 and C
must be recalculated at every time step using the equations just shown. As discussed before,
the coefficients C,., C,.py, and C..;, are negatives of the corresponding coefficients
appearing in the general updating equations, which were executed in update_electric_fields.
Therefore, after execution of update_electric_fields the electric field component associated
with the diode, £7*!, would be holding the negative value of the sum of first three terms on
the right-hand side of (4.54).

Then the coefficient C can be expressed as

C=—ErYi, j, k) + Ceali, J, k). (4.55)

At this point, to calculate C we need the previous time step value of the electric field
component, E”(i, j, k). Since this component is overwritten in update_electric_fields, we
copy it to the parameter diodes(ind).Ezn before executing update_electrie_fields. There-
fore, at every time step after the value of the electric field component associated with a diode
is obtained, it is copied to diodes(ind).Ezn for use in the following time step. Similarly, the
new value of A4 can be calculated using E”(i, j, k).

Once the parameters 4 and C are recalculated, the new value of electric field component
E"™! can be calculated by solving (4.53). As discussed in Section 4.8, this equation can
easily be solved numerically by using the Newton—Raphson method. The updating procedure

4.2 « Definition, initialization, and simulation of lumped elements 125

Listing 4.22 update_diodes.m

1(% updating electric field components
% associated with the diodes
3
for ind = 1:number_of_diodes
5 fi = diodes(ind). field_indices;
B = diodes(ind).B;
7 switch (diodes(ind). direction (1))
case 'x’
9 E = diodes(ind). Exn;
C = —Ex(fi) + diodes(ind). Cexd;
1 A = —diodes(ind).Cexd * exp(B * E);
E = solve_diode_equation (A, B, C, E);
13 Ex(fi) = E;
diodes(ind).Exn = E;
15 case 'y’
E = diodes(ind). Eyn;
17 C = —Ey(fi) + diodes(ind). Ceyd;
A = —diodes(ind).Ceyd * exp(B * E);
19 E = solve_diode_equation (A, B, C, E);
Ey(fi) = E;
21 diodes(ind).Eyn = E;
case 'z’
3 E = diodes(ind). Ezn;
C = —Ez(fi) + diodes(ind). Cezd;
25 A = —diodes(ind). Cezd * exp(B * E);
E = solve_diode_equation (A, B, C, E);
27 EZ(fi) = E;
diodes(ind).Ezn = E;
29 end
end

of electric field components for modeling diodes is implemented in the subroutine update_
diodes, which is shown in Listing 4.22. Comparing the given implementation with the pre-
vious discussion helps in understanding this complicated updating process. Finally,
a function with name solve_diode_equation is implemented for solving (4.53) based on the
Newton—Raphson method, and its implementation is given in Listing 4.23.

4.2.7.7 Capturing the sampled magnetic field components

After the magnetic field components are updated by update_magnetic_fields, they can be
sampled for the current time step. As mentioned before, although all of the field components
in the problem space can be captured, for now we limit our discussion with sampling the
magnetic field values at predefined positions coinciding with the nodes of the problem space.
The indices of the nodes for which the magnetic field will be sampled are stored in the
parameters is, js, and ks. However, examining the field positioning scheme of the Yee cell
reveals that the magnetic field components are not defined at the node positions. But it is
possible to take the average of the four surrounding field components as the field value of the

126 CHAPTER 4 « Active and passive lumped elements

Listing 4.23 solve_diode_equation.m

(function [x] = solve_diode_equation (A, B, C, x)
% Function used to solve the diode equation

% which is in the form Ae”{Bx}+x+C=0

% using the Newton—Raphson method

~

IS

tolerance = 1e-25;

max_iter = 50;

iter = 0;

f =A % exp(Bx*x) + x + C;

w| while ((iter < max_.iter) && (abs(f) > tolerance))
fp = A = B * exp(B*x) + 1;

>

s

12 x = x — f/fp;
f = A % exp(B*x) + x + C;
14 iter = iter + 1;
end

Listing 4.24 capture_sampled_magnetic_fields.m

p
i1|% Capturing magnetic fields

;| for ind=1:number_of_sampled_magnetic_fields
is = sampled_magnetic_fields(ind). is
5 js = sampled_magnetic_fields(ind). js
ks = sampled_magnetic_fields(ind). ks

switch (sampled_magnetic_fields(ind).component)

ry 0

9 case ’'x
sampled_value = 0.25 * sum(sum(Hx(is,js—1:js,ks—1:ks)));
1 case 'y’
sampled_value = 0.25 * sum(sum(Hy(is —1:is,js , ks—1:ks)));
13 case 'z’
sampled_value = 0.25 * sum(sum(Hz(is —1:is,js—1:js ,ks)));
I case 'm’
svx = 0.25 * sum(sum (Hx(is,js—1:js ,ks—1:ks)));
It svy = 0.25 * sum(sum(Hy(is —1:is,js ,ks—1:ks)));
svz = 0.25 * sum(sum(Hz(ls—1|s,js—1js, s)));
19 sampled_value = sqrt(svx~2 svy“2 + svz~2);
end
21 sampled_magnetic_fields(ind).sampled_value(time_step) =

sampled_value;

node. This procedure is illustrated in Listing 4.24, which shows the implementation of the
subroutine capture_sampled_magnetic_fields. For instance, to sample the y component of
the magnetic field at node (is, js, ks), an average of the components H,(is, js, ks), H,(is — 1,
Js, ks), H(is, js, ks — 1), and Hy(is — 1, js, ks — 1) can be used as the sampled values as
illustrated in Figure 4.13(a).

4.2 « Definition, initialization, and simulation of lumped elements 127

H(is — 1, js, ks)

(is,jsg

H(is— 1, js, ks — 1)

@

Figure 4.13 The y components of the magnetic and electric fields around the node (is, Jjs, ks):
(a) magnetic field components and (b) electric field components.

If the magnitude of the field vector is sought, the x, y, and z components of the
field vector can be sampled, and then their vector magnitude can be calculated as shown in
Listing 4.24.

4.2.7.8 Capturing the sampled currents

As discussed before, the currents flowing through a given surface can be calculated using the
magnetic fields components circling around the surface. Therefore, after the magnetic field
components are updated by update_magnetic_fields, the currents can be calculated for the
current time step. The procedure for capturing the electric current is implemented in the
subroutine capture_sampled_currents as shown in Listing 4.25.

4.2.7.9 Capturing the sampled electric field components

After the electric field components are updated by update_electric_fields, they can be
sampled for the current time step. Since there is not an electric field component defined at
the position of the sampling node (is, js, ks), an average of the two field components around
the node can be used as the sampled value. For instance, to sample the y component of the
electric field, an average of the components E,(is, js, ks) and E,(is, js — 1, ks) can be used as
the sampled value as illustrated in Figure 4.13(b). The sampled electric field components are
captured in the subroutine update_electric_fields, which is shown in Listing 4.26.

4.2.7.10 Capturing the sampled voltages

The indices of the field components that are required for calculating the voltage across a
volume indicated by the nodes (is, js, ks) and (ie, je, ke) are determined in the subroutine
initialize_output_parameters and are stored in the parameter field_indices. Furthermore,
another parameter Csvf is defined as a coefficient that would transform the sum of the
electric field components to a voltage value as discussed in Section 4.2.5. Then a procedure
for calculating the sampled voltages is implemented in the subroutine capture_
sampled_voltages shown in Listing 4.27.

128

10

20

CHAPTER 4 « Active and passive lumped elements

Listing 4.25 capture_sampled_currents.m

for

end

p
% Capturing sampled currents

ind=1:number_of_sampled_currents
is = sampled_currents(ind). is
js = sampled_currents(ind)
ks = sampled_currents(ind)
ie = sampled_currents(ind). ie
je = sampled_currents(ind)
ke = sampled_currents(ind)

switch (sampled_currents(ind). direction (1))

case X
sampled_value

+ dy * sum(sum(sum(Hy(ie —1,js:je ks —1))))
+ dz * sum(sum(sum(Hz(ie —1,je ,ks:ke))))...
— dy * sum(sum(sum(Hy(ie —1,js:je ke))))...
— dz * sum(sum(sum(Hz(ie —1,js —1,ks:ke))));

»

case 'y’
sampled_value =
+ dz * sum(sum(s
+ dx * sum(sum (su
— dz * sum(sum(su
— dx * sum (sum(su

case 'z’
sampled_value

m(Hz(is —1,je—1,ks:ke)))) ...
m(Hx(is:ie,je—1,ke))))...

m (Hz())

m (Hx (1)

)

ie,je—1,ks:ke))
is:ie,je—1,ks —

+ dx * sum(sum(sum(Hx(is:ie,js—1,ke—1)))) ...
+ dy * sum(sum(sum(Hy(ie,js:je,ke—1))))...
— dx * sum(sum(sum(Hx(is:ie,je, ke —1))))...
— dy * sum(sum(sum(Hy(is —1,js:je ke —1))));
end
if strcmp(sampled_currents(ind). direction(2),’n’)
sampled_value = —1 * sampled_value;
end
sampled_currents(ind).sampled_value(time_step) = sampled_value;

Listing 4.26 capture_sampled_electric_fields.m

for

-
% Capturing electric fields

ind=1:number_of_sampled_electric_fields
is sampled_electric_fields (ind). is
js sampled_electric_fields (ind). js
ks = sampled_electric_fields (ind). ks;

switch (sampled_electric_fields(ind).component)

ry ?

case ’'x
sampled_value = 0.5 * sum(Ex(is—1:is,js,ks));
case 'y’

sampled_value 0.5 * sum(Ey(is,js—1:js,ks));

case 'z’

4.2 « Definition, initialization, and simulation of lumped elements 129

14 sampled_value = 0.5 * sum(Ez(is,js,ks—1:ks));
case 'm’

16 svx = 0.5 * sum(Ex(is—1:is,js,ks));

svy = 0.5 * sum(Ey(is,js—1:js,ks));
18 svz = 0.5 * sum(Ez(is,js,ks—1:ks));

sampled_value = sqrt(svx”"2 + svy"2 + svz~2);
20 end

sampled_electric_fields(ind).sampled_value(time_step) = sampled_value;

2| end

Listing 4.27 capture_sampled_voltages.m

-
1|% Capturing sampled voltages

;| for ind=1:number_of_sampled_voltages
fi sampled_voltages(ind). field_indices;

5 Csvf sampled_voltages(ind). Csvf;
switch (sampled_voltages(ind). direction (1))
7 case ’'x’
sampled_value = Csvf * sum(Ex(fi));
9 case 'y’
sampled_value = Csvf %= sum(Ey(fi));
1 case 'z’
sampled_value = Csvf %= sum(Ez(fi));
13 end
sampled_voltages(ind).sampled_value(time_step) = sampled_value;
15| end

4.2.7.11 Displaying the sampled parameters

After all fields are updated and the sampled parameters are captured, the sampled parameters
defined for runtime display can be plotted using the subroutine displayj_sampled_parameters,
which is shown in Listing 4.28.

One should notice that in Listing 4.28 the instructions are executed once every
plotting_step time steps. Then for each sampled parameter requiring display, the respective
figure is activated using the respective figure number. Then the sampled parameter is plotted
from the first time step to current time step using MATLAB plot function.

Finally, at the end of display_sampled_parameters another subroutine display_animation
is called to display the fields captured on the predefined plane cuts.

4.2.8 Displaying FDTD simulation results

After the FDTD time-marching loop is completed, the output parameters can be displayed.
Furthermore, the output parameters may be postprocessed to obtain some other types
of outputs. The postprocessing and display of the simulation results are performed in the
subroutine post_proces_and_display_results following run_fdtd_time_marching_loop

130 CHAPTER 4 « Active and passive lumped elements

6

26

4

46

Listing 4.28 display_sampled_parameters.m

p
% displaying sampled parameters

if mod(time_step, plotting_step) "= 0
return;
end
remaining_time = (number_of_time_steps—time_step)

*(cputime—start_time)/(60*time_step);

disp ([num2str(time_step) ’'_of.’
num2str(number_of_time_steps) ’'_is_.completed, .’
num2str(remaining_time) ’_minutes_.remaining’]);

% display sampled electric fields
for ind = 1:number_of_sampled_electric_fields
if sampled_electric_fields(ind). display_plot == true
sampled_time =
sampled_electric_fields (ind).time(1:time_step)*1e9;
sampled_value =
sampled_electric_fields (ind).sampled_value (1:time_step);
figure(sampled_electric_fields (ind). figure_number);
delete (sampled_electric_fields(ind). plot_handle);
sampled_electric_fields (ind). plot_handle =
plot (sampled_time, sampled_value(1:time_step), 'b—",
"linewidth’ ,1.5);
drawnow ;
end
end

% display sampled magnetic fields
for ind = 1:number_of_sampled_magnetic_fields
if sampled_magnetic_fields(ind). display_plot == true
sampled_time = .
sampled_magnetic_fields(ind).time(1:time_step)*1e9;
sampled_value =
sampled_magnetic_fields(ind).sampled_value (1:time_step);
figure (sampled_magnetic_fields(ind). figure_number);
delete (sampled_magnetic_fields(ind). plot_handle);
sampled_magnetic_fields(ind). plot_handle =
plot (sampled_time, sampled_value(1:time_step), 'b—",
"linewidth’ ,;1.5);
drawnow ;
end
end

% display sampled voltages
for ind = 1:number_of_sampled_voltages
if sampled_voltages(ind). display_plot == true
sampled_time =
sampled_voltages(ind).time(1:time_step)*1e9;
sampled_value =

4.2 « Definition, initialization, and simulation of lumped elements 131

sampled_voltages(ind).sampled_value(1:time_step);

52 figure (sampled_voltages(ind). figure_number);
delete (sampled_voltages(ind). plot_handle);
54 sampled_voltages(ind). plot_handle =
plot (sampled_time, sampled_value(1:time_step), 'b—",
56 "linewidth’ ,1.5);
drawnow ;
58 end
end

% display sampled currents

«|for ind = 1:number_of_sampled_currents
if sampled_currents(ind). display_plot == true
o4 sampled_time = .
sampled_currents(ind).time(1:time_step)*1e9;
66 sampled_value =
sampled_currents(ind).sampled_value (1:time_step);
68 figure (sampled_currents(ind). figure_number);
delete (sampled_currents(ind). plot_handle);
70 sampled_currents(ind). plot_handle =

)

plot (sampled_time, sampled_value(1:time_step), 'b—",...
7 "linewidth ’ ,1.5);

drawnow ;

74 end

end

% display animated fields
display_animation;

=
Ed

Listing 4.29 post_process_and_display_results.m

1|disp (’displaying_simulation_results’);

s|display_transient_parameters;

in fdtd_solve. Listing 4.29 shows the contents of this subroutine. So far we have defined four
types of outputs: sampled electric and magnetic fields, voltages, and currents. All these
outputs are captured during the simulation and are stored in the arrays sampled_value. The
variations of these components are obtained as functions of time; hence, they are called the
transient parameters.

Listing 4.29 includes a subroutine display_transient_parameters, which is used to plot
these sampled transient parameters. As other types of output parameters are defined for the
FDTD solution, new subroutines that implement the postprocessing and displaying of these
output parameters can be added to post_process_and_display_results.

132 CHAPTER 4 « Active and passive lumped elements

Listing 4.30 display_transient_parameters.m

-
disp(’plotting_the_transient_parameters’);

% figures for sampled electric fields

s for ind=1:number_of_sampled_electric_fields

if sampled_electric_fields(ind). display_plot == false

6 sampled_electric_fields (ind). figure_number = figure;
xlabel (’time.(ns)’, fontsize’ ,12);

8 ylabel (' (volt/ meter)’, fontsize’ ,12);

title (["sampled._electric_field.[’

10 num2str(ind) ’]’], fontsize’ ,12);

grid on; hold on;

12 else
figure(sampled_electric_fields(ind).figure_number);
14 delete(sampled_electric_fields(ind). plot_handle);
end
16 sampled_time = ...
sampled_electric_fields(ind).time(1:time_step)*1e9;
18 sampled_value = ...
sampled_electric_fields (ind).sampled_value (1:time_step);
20 plot (sampled_time, sampled_value(1:time_step), 'b—",
"linewidth’ ,1.5);
b3} drawnow ;

The partial implementation of display_transient_parameters is given in Listing 4.30.
Listing 4.30 shows the instructions for plotting only the sampled electric field components.
The other parameters are plotted similarly. One can notice that, if a parameter has not been
displayed during the time-marching loop, a new figure is launched and initialized for it. Then
the sampled data are plotted.

4.3 Simulation examples

So far we have discussed all the basic components for performing an FDTD simulation,
including the definition of the problem, initialization of the problem workspace, running an
FDTD time-marching loop, and capturing and displaying the outputs. In this section we
provide examples of some FDTD simulations. We provide the definitions of the problems
and show the simulation results.

4.3.1 A resistor excited by a sinusoidal voltage source

The first example is a simulation of a resistor excited by a voltage source. The geometry of
the problem is shown in Figure 4.14, and the partial code sections for the definition of the
problem are given in Listings 4.31-4.34. The code sections given next are not complete and
can be completed by the reader referring to the code listings given before.

v

-

2

23

2:

G

2

3

2

>

4.3 « Simulation examples 133

> Sampled current

N
N

LN

N
s

Resistor

Voltage source Sampled voltage

Figure 4.14 A voltage source terminated by a resistor.

Listing 4.31 define_problem_space_parameters.m

% maximum number of time steps to run FDTD simulation
number_of_time_steps = 3000;

% A factor that determines duration of a time step
% wrt CFL limit
courant_factor = 0.9;

% A factor determining the accuracy limit of FDTD results
number_of_cells_per_wavelength = 20;

% Dimensions of a unit cell in x, y, and z directions (meters)
dx=1.0e-3;
dy=1.0e-3;
dz=1.0e-3;

% ==<boundary conditions >========
% Here we define the boundary conditions parameters

% 'pec’ : perfect electric conductor
boundary.type_xp = ’pec’;
boundary.air_buffer_.number_of_cells_xp = 3;

% PEC : perfect electric conductor
material_types (2). eps.r = 1;
material_types (
material_types (
(
(

2). mu_r =1;
2).sigma_e = 1e10;
2).sigma.m = 0;
2).color = [1 0 0];

material_types
material_types

134 CHAPTER 4 « Active and passive lumped elements

o

Listing 4.32 define_geometry.m

% define a PEC plate

bricks (1). min_x = 0;
bricks (1). min_y = 0;
bricks (1). min_z = 0;
bricks (1). max_x = 8e-3;
bricks (1). max_.y = 2e-3;
bricks (1). max_z = 0;

bricks (1). material_type = 2;

% define a PEC plate

bricks (2). min.x = 0;

bricks (2). min_.y = 0;

bricks (2). min_z = 4e-3;
bricks (2). max_x = 8e-—3;
bricks (2). max_.y = 2e-3;
bricks (2). max.z = 4e-3;
bricks (2). material_type = 2;

Listing 4.33 define_source_and_lumped_elements.m

(.
% define source waveform types and parameters

waveforms.sinusoidal (1). frequency = 1e9;
waveforms.sinusoidal (2). frequency = 5e8;
waveforms. unit_step (1). start_time_step = 50;

% voltage sources
% direction: 'xp’, ’'xn’, ’'yp’, ’yn’, ’zp’, or ’'zn’

71% resistance : ohms, magitude : volts

voltage_sources (1). min.x = 0;

voltage_sources (1). min_.y = 0;
voltage_sources (1). min_.z = 0;
voltage_sources (1). maxx = 1.0e—3;
voltage_sources (1). max.y = 2.0e—3;
voltage_sources (1). max_.z = 4.0e—3;
voltage_sources (1).direction = ’"zp’
voltage_sources (1). resistance = 50;
voltage_sources (1). magnitude = 1;
voltage_sources (1). waveform_type = ’sinusoidal ’;
voltage_sources (1). waveform_index = 2;
% resistors

% direction: 'x’, 'y’, or 'z’

% resistance : ohms

resistors (1). min_.x = 7.0e—3;
resistors (1). min_y = 0;
resistors (1). min_z = 0;
resistors (1). max.x = 8.0e—3;
resistors (1). max.y = 2.0e—3;
resistors (1). max.z = 4.0e—3;
resistors (1). direction = ’z’;
resistors (1). resistance = 50;

4.3 « Simulation examples 135

Listing 4.34 define_output_parameters.m

(% figure refresh rate
o| plotting_step = 100;
11|% mode of operation
run_simulation = true;
35| show_material_mesh = true;
show_problem_space = true;
15
% define sampled voltages
v|sampled_voltages(1). min_.x = 5.0e-3;
sampled_voltages (1). min_.y = 0;
w|sampled_voltages(1). min_z = 0;
sampled_voltages (1). max.x = 5.0e—3;
silsampled_voltages (1). max.y = 2.0e—3;
sampled_voltages (1). max.z = 4.0e—3;
i»|sampled_voltages (1).direction = ’zp’;
sampled_voltages (1). display_plot = true;
% define sampled currents
7|sampled_currents (1). min_x = 5.0e—3;
sampled_currents (1). min_y = 0;
w|sampled_currents (1). min_z = 4.0e—3;
sampled_currents (1). max.x = 5.0e—3;
sifsampled_currents (1). max_.y = 2.0e—3;
sampled_currents (1). max.z = 4.0e—3;
sssampled_currents (1). direction = 'xp’;
sampled_currents (1). display_plot = true;

In Listing 4.31, the size of a unit cell is set to 1 mm on each side. The number of time
steps to run the simulation is 3000. In Listing 4.32, two parallel PEC plates are defined as
4 mm apart. Between these two plates a voltage source is placed at one end and a resistor is
placed at the other end. Then in Listing 4.33 sinusoidal and unit step waveforms are defined.
A voltage source with 50 Q internal resistance is defined, and the sinusoidal source wave-
form with frequency 500 MHz is assigned to the voltage source. Then a resistor with 50 Q
resistance is defined. Listing 4.34 shows the outputs defined for this simulation. A sampled
voltage is defined between the parallel PEC plates. Furthermore, a sampled current is defined
for the upper PEC plate.

Figure 4.15 shows the result of this simulation. Figure 4.15(a) shows a comparison of the
source voltage and the sampled voltage. As can be seen, the sampled voltage is half the
source voltage as expected. Furthermore, the sampled current shown in 4.15(b) confirms that
the sum of the resistances is 100 Q.

4.3.2 A diode excited by a sinusoidal voltage source

The second example is the simulation of a diode excited by a sinusoidal voltage source. The
geometry of the problem is given in Figure 4.16, and the partial code sections for the defi-
nition of the problem are given in Listings 4.35-4.37.

136 CHAPTER 4 « Active and passive lumped elements

(volt)

Voltage source
- - - . Sampled voltage

4 5 6

(a) Time (ns)

0.01

0.008 -~ f==\ gt [S AR SEEREEEEES 1
0006 f- -+ deeeeeeche e s
0004 |- 10 S L 1 . VR

A T RREEEE - o EEREEEE (- .

(ampere)
S
|

=0.002 f-- oA SRREEEEEERE CEERERER ZECTTEETES SRt -
ot

0006 [+-oeeedeof oo b e

—0.008 [--------a---\ - I S = P T E
| Sampled current

—0.01 H 1 1
0 1 2 3 4 5 6
(b) Time (ns)

Figure 4.15 Sinusoidal voltage source waveform with 500 MHz frequency and sampled voltage
and current: (a) source waveform and sampled voltage and (b) sampled current.

In Listing 4.35, two parallel PEC plates are defined 1 mm apart. Between these two plates
a voltage source is placed at one end and a diode is placed at the other end. Then in Listing
4.36 sinusoidal and unit step waveforms are defined. A voltage source with 50 Q internal
resistance is defined, and the sinusoidal source waveform with frequency
500 MHz is assigned to the voltage source. Then a diode in the negative z direction is
defined. Listing 4.37 shows the output defined for this simulation; a sampled voltage is
defined across the diode.

Figure 4.16(b) shows the result of this simulation, where the source voltage and the sam-
pled voltage are compared. As can be seen, the sampled voltage demonstrates the response of
a diode; when the source voltage is larger than 0.7 V, the sampled voltage on the diode is
maintained as 0.7 V.

4.3 « Simulation examples 137

(a)

,,,

(volt)

77

Voltage source
- - - . Sampled voltage

0 1 2 3 4 5 6
Time (ns)

(b)

Figure 4.16 Sinusoidal voltage source waveform with 500 MHz frequency and sampled
voltage: (a) a voltage source terminated by a diode and (b) source waveform
and sampled voltage.

4.3.3 A capacitor excited by a unit-step voltage source

The third example is the simulation of a capacitor excited by a unit step voltage source.
The geometry of the problem is given in Figure 4.17, and the partial code sections for the
definition of the problem are given in Listings 4.38 and 4.39.

In Listing 4.38, two parallel PEC plates are defined 1 mm apart. A voltage source with
50 Q internal resistances is places at one end and a capacitor with 10 pF capacitance is
placed at the other end between these two plates as shown in Listing 4.39. A unit step
waveform is assigned to the voltage source. The unit step function is excited 50 time steps
after the start of simulation.

138 CHAPTER 4 « Active and passive lumped elements

-

Listing 4.35 define_geometry.m

% define a PEC plate

bricks (1). min_x = 0;
bricks (1). min_.y = 0;
bricks (1). min_z = 0;
bricks (1). max.x = 2e-3;
bricks (1). max_.y = 2e-3;
bricks (1). max.z = 0;

bricks (1). materlal type = 2;

s|% define a PEC plate

bricks (2). min_x = 0;
7{bricks (2). min_.y = 0;

bricks (2). min_z = 1e-3;

bricks (2). max.x = 2e-3;

bricks (2). max_.y = 2e-3;

bricks (2). max.z = 1e-3;

bricks (2). material_type = 2;

Listing 4.36 define_sources_and_lumped_elements.m

(R
% define source waveform types and parameters

waveforms.sinusoidal (1). frequency = 1e9;
waveforms.sinusoidal (2). frequency = 5e8;
waveforms.unit_step (1). start_time_step = 50;

s|% voltage sources

% direction: ’'xp’, ’'xn’, ’'yp’, ’yn’, ’zp’, or ’zn

7|% resistance : ohms, magitude : volts

voltage_sources (1). min_.x = 0;

’ ’

direction = ’zn’;

diodes

voltage_sources (1). min_y = 0;
voltage_sources (1). min_z = 0;
voltage_sources (1). max.x = 0.0e—3;
voltage_sources (1). max.y = 2.0e—3;
voltage_sources (1). max_.z = 1.0e—3;
voltage_sources (1). direction = ’zp’;
s|voltage_sources (1). resistance = 50;
voltage_sources (1). magnitude = 10;
voltage_sources (1). waveform_type = ’sinusoidal ’;
voltage_sources (1).waveform_index = 2;
% diodes
% direction: ’'xp’, ’'xn’, ’yp’, ’yn’, ’zp’, or ’zn’
diodes (1). min_x = 2.0e-3;
diodes (1). min_.y = 1.0e-3;
diodes (1). min_z = 0.0e—3;
s|diodes (1). max_x = 2.0e—3;
diodes (1). max_.y = 1.0e—3;
7l diodes (1). max_z = 1.0e-3;
(1).

4.3 « Simulation examples 139

Listing 4.37 define_output_parameters.m

-
% figure refresh rate
plotting_step = 10;

©

1 |% mode of operation
run_simulation = true;
i5|show_material_mesh = true;
show_problem_space = true;

% define sampled voltages
iv|sampled_voltages (1). min_.x = 2.0e-3;
sampled_voltages (1). min_.y = 1.0e—3;
w|sampled_voltages(1). min_.z = 0;
sampled_voltages (1). max.x = 2.0e—3;
a|sampled_voltages (1). max.y = 1.0e—3;
sampled_voltages (1). max.z = 1.0e—3;
»|sampled_voltages (1). direction = ’zp’;
sampled_voltages (1). display_plot = true;

(volt)

Sampled voltage
O Analytical solution |
- - - Voltage source

- 0 1 2 3 4 5

Time (ns)

(a) (b)

Figure 4.17 Unit step voltage source waveform and sampled voltage: (a) a voltage source
terminated by a capacitor and (b) sampled voltage and analytical solution.

Figure 4.17(b) shows the result of this simulation, where the sampled voltage across the
capacitor is compared with the analytical solution of the equivalent lumped circuit problem.
A simple circuit analysis reveals that the voltage across a capacitor excited by a unit step
function can be calculated from

(=0

ve(t)=1—e"7, (4.56)

where £, is time delay, which is represented in this example by 50 time steps, and R is 50 Q.

140 CHAPTER 4 « Active and passive lumped elements

7| voltage_sources

Listing 4.38 define_geometry.m

% define a PEC plate

bricks (1). min_x = 0;
bricks (1). min_y = 0;
bricks (1). min_z = 0;
bricks (1). max.x = 1e—3;
bricks (1). max_.y = 1e-3;
bricks (1). max.z = 0;

bricks (1). mater|al type = 2;

s|% define a PEC plate

bricks (2). min_x = 0;

bricks (2). min_.y = 0;

bricks (2). min_z = 1e-3;
bricks (2). max.x = 1e-3;
bricks (2). max_.y = 1e-3;
bricks (2). max.z = 1e-3;
bricks (2). materlal type = 2;

Listing 4.39 define_sources_and_lumped_elements.m

(K
% define source waveform types and parameters

waveforms.sinusoidal (1). frequency = 1e9;
waveforms.sinusoidal (2). frequency = 5e8;
waveforms. unit_step (1). start_time_step = 50;

% voltage sources
% direction: ’xp’, ’'xn’, ’yp’, ’'yn’, ’zp’, or ’zn’

71% resistance : ohms, magitude : volts

voltage_sources (1). min_.x = 0;
voltage_sources (1). min_y = 0;
voltage_sources (1). min_z = 0;
voltage_sources (1). maxx = 0.0e—3;
voltage_sources (1). max.y = 1.0e-3;
voltage_sources (1). max.z = 1.0e—3;
voltage_sources (1). direction = "zp’
voltage_sources (1). resistance = 50;
voltage_sources (1). magnitude = 1;
(1). waveform_type = ’"unit_step’
voltage_sources (1). waveform_index = 1;
% capacitors
% direction: ’'x’, 'y’, or 'z
% capacitance : farads

capacitors(1). min.x = 1.0e-3;
capacitors(1). min_.y = 0.0;
capacitors(1). min_.z = 0.0;
capacitors(1). max.x = 1.0e—3;
capacitors (1). max.y = 1.0e-3;
capacitors(1). max.z = 1.0e-3;
capacitors(1).direction = ’z’;
capacitors (1).capacitance = 10e—12;

4.4 « Exercises 141

Outer boundaries, PEC

Sampled voltage ’

cell size (Ax=0.72 mm, Ay = 1 mm, Az=1 mm)

Figure 4.18 Dimensions of 50 Q stripline.

4.4 Exercises

4.1

4.2

43

4.4

A stripline structure that has width/height ratio of 1.44 and an air substrate is forming a
transmission line with 50 Q characteristic impedance. Construct such a 50 Q stripline
structure, and keep all boundaries as PEC. The geometry and dimensions of such a
stripline is shown in Figure 4.18 as a reference. Feed the stripline with a voltage source
from one end, and let the other end touch the problem space boundary. Capture the
voltage on the stripline around the center of the stripline. Show that if the voltage source is
excited by a unit step waveform with 1 volt magnitude, the sampled voltage will be a
pulse with 0.5 volts.

Consider the stripline in Exercise 4.1. Place a resistor with 50 Q between the end of
stripline and the problem space boundary as shown in Figure 4.19. Show that with the
same excitation, the sampled voltage is going to be 0.5 volts unit step function.
Construct a problem space with the cell size as 1 mm on a side, boundaries as “pec,”
and air gap between the objects and boundaries as five cells on all sides. Connect a
sinusoidal voltage source with 5 Q internal resistance at one end between two parallel
PEC plates. At the other end place a 50 pF capacitor and a diode connected in series
between the plates. The diode is oriented in the positive z direction. The geometry of
the circuit is illustrated in Figure 4.20. Run the simulation with the voltage source
having 2 volts magnitude and 1 GHz frequency. Capture the voltage across the
capacitor. Run the same simulation using a circuit simulator, and verify your simu-
lation result.

Construct a problem space with the cell size as 1 mm on a side, boundaries as “pec,”
and air gap between the objects and boundaries as five cells on all sides. Connect a
sinusoidal voltage source with 10 € internal resistance at one end between two parallel
PEC plates. At the other end place an inductor, a capacitor, and a resistor connected
in series between the plates. For these components use the values L = 10 nH,

142

CHAPTER 4 « Active and passive lumped elements

\

Voltage source Resistor

Figure 4.19 A 50 Q stripline terminated by a resistor.

Figure 4.20 A circuit composed of a voltage source, a capacitor, and a diode.

C = 253.3 pF, and R = 10 Q, respectively. At 100 MHz the series RLC circuit is in
resonance. Excite the voltage source with a sinusoidal waveform with 100 MHz
frequency, and capture the voltage between the plates approximately at the middle of
the PEC plates. Show that the magnitude of the captured voltage waveform is half the
magnitude of the source waveform when it reaches steady state. Repeat the same
simulation with another frequency, and verify the magnitude of the observed voltage
by calculating the exact expected value.

CHAPTER 5

Source waveforms and time
to frequency domain
transformation

Sources are necessary components of a finite-difference time-domain (FDTD) simulation
and their types vary depending on the type of problem under consideration. Usually sources
are of two types: (1) near, such as the voltage and current sources described in Chapter 4;
and (2) far, such as the incident fields appearing in scattering problems. In any case, a source
excites electric and magnetic fields with a waveform as a function of time. The type of
waveform can be selected specific to the problem under consideration. However, some
limitations of the FDTD method should be kept in mind while constructing the source
waveforms to obtain a valid and accurate simulation result.

One of the considerations for the source waveform construction is the spectrum of the
frequency components of the waveform. A temporal waveform is the sum of time-harmonic
waveforms with a spectrum of frequencies that can be obtained using the Fourier transform.
The temporal waveform is said to be in time domain, and its Fourier transformed form is said
to be in frequency domain. The Fourier transform of the source waveforms and other output
parameters can be used to obtain some useful results in the frequency domain. In this
chapter, we discuss selected types of waveforms and then introduce the numerical algorithms
for calculating the Fourier transform of temporal functions in discrete time.

5.1 Common source waveforms for FDTD simulations

A source waveform should be chosen such that its frequency spectrum includes all the
frequencies of interest for the simulation, and it should have a smooth turn-on and turn-off to
minimize the undesired effects of high-frequency components. A sine or a cosine function is
a single-frequency waveform, whereas other waveforms such as Gaussian pulse, time deri-
vative of Gaussian pulse, cosine-modulated Gaussian pulse, and Blackman-Harris window
are multiple frequency waveforms. The type and parameters of the waveforms can be chosen
based on the frequency spectrum of the waveform of interest.

143

144 CHAPTER 5 »

5.1.1 Sinusoidal

Definition and construction of a sinusoidal waveform was presented in Chapter 4. As
mentioned before, a sinusoidal waveform is ideally a single-frequency waveform. However,
the waveform can be excited for a limited duration, and the turn-on
and turn-off of the finite duration of the waveform is going to add other frequency compo-
nents to the spectrum. The initial conditions for the sources are zero before the simulation is
started in an FDTD simulation, and the sources are active during the duration of simulation.
Therefore, if a sinusoidal signal (sin(27f), 0 < ¢t < 4) is used for a source its duration is

in an FDTD simulation

Source waveforms and time to frequency

waveform

finite as shown in Figure 5.1(a).

Magnitude

Time (s)

2.5

Magnitude
&

—_—

0.5

(®)

Figure 5.1 A sinusoidal waveform excited for 4 s: (a) x(¢) and (b) X(w) magnitude.

Frequency (Hz)

5.1 « Common source waveforms for FDTD simulations 145

The Fourier transform of a continuous time function x(f) is X(w) given by

X(0) = l e dr, (5.1)

00
while the inverse Fourier transform is

1 +00

x(t) X(w)edw. (5.2)

:ﬂ .

The Fourier transform of the signal in Figure 5.1(a) is a complex function, and its
magnitude is plotted in Figure 5.1(b). The frequency spectrum of the signal in Figure 5.1(a)
covers a range of frequencies while being maximum at 1 Hz, which is the frequency of
the finite sinusoidal function. If the simulation runs for a longer duration as shown in
Figure 5.2(a), the Fourier transform of the waveform becomes more pronounced at 1 Hz as
shown in Figure 5.2(b). In Figure 5.1(b) the ratio of the highest harmonic to the main signal
at 1 Hz is 0.53/2 = —11.53 dB, while in Figure 5.2(b) this ratio is 0.96/4 = —12.39 dB.
In this case, running the simulation twice as long in time reduced the effect of the highest
harmonic.

If it is intended to observe the response of an electromagnetic problem due to a
sinusoidal excitation, the simulation should be run long enough such that the transient
response due to the turn on of the sources die out and only the sinusoidal response
persists.

5.1.2 Gaussian waveform

Running an FDTD simulation will yield numerical results for a dominant frequency as well
as for other frequencies in the spectrum of the finite sinusoidal excitation. However, the
sinusoidal waveform is not an appropriate choice if simulation results for a wideband of
frequencies are sought.

The frequency spectrum of the source waveform determines the range of frequencies for
which valid and accurate results can be obtained. As the frequency increases, the wavelength
decreases and becomes comparable to the cell size of the problem space. If the cell size is too
large compared with a fraction of a wavelength, the signal at that frequency cannot be
sampled accurately in space. Therefore, the highest frequency in the source waveform
spectrum should be chosen such that the cell size is not larger than a fraction of the highest-
frequency wavelength. For many applications, setting the highest-frequency wavelength
larger than 20 cells size is sufficient for a reasonable FDTD simulation. A Gaussian wave-
form is the best choice for a source waveform, since it can be constructed to contain all
frequencies up to a highest frequency that is tied to a cell size by a factor. This factor, which
is the proportion of the highest frequency wavelength to the unit cell size, is referred as
number of cells per wavelength n..

A Gaussian waveform can be written as a function of time as

o

g(t)=e 7, (5:3)

&

146 CHAPTER 5 « Source waveforms and time to frequency

1 :
0.8 f--=------ n

0.6

,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,

04 r-----f -

0.2

,,,,,,,,,,,

Magnitude

,,,,,,,,,,

4
Time (s)

0.4

,,,,,,,,,,,,,,,,,,,,,,,,,,

0.6

(2)

4.5

3.5

,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,

77777777777777777777

,,,,,,,,,,,,,,,,,,

Magnitude

(b)

Frequency (Hz)

Figure 5.2 A sinusoidal waveform excited for 8 s: (a) x(¢) and (b) X(w) magnitude.

where 7 is a parameter that determines the width of the Gaussian pulse both in the time
domain and the frequency domain. The Fourier transform of a Gaussian waveform is also a
Gaussian waveform, which can be expressed as a function of frequency as

G(w) = r\/y—te_#.

The highest frequency that is available out of an FDTD calculation can be determined by
the accuracy parameter number of cells per wavelength such that

(5.4)

c
Amin

Cc
)
ncASmax

fmax = (5.5)

5.1 « Common source waveforms for FDTD simulations 147

where ¢ is the speed of light in free space, Asy.x is the maximum of the cell dimensions
(Ax, Ay, or Az), and A, is the wavelength of the highest frequency in free space. Once the
highest frequency in the spectrum of the frequency domain Gaussian waveform is deter-
mined, it is possible to find a r that constructs the corresponding time-domain Gaussian
waveform. Following is a procedure that determines 7, so that one can construct the Gaussian
waveform in the time domain before the simulation starts with a good estimate of the highest
frequency at which the simulation results will be acceptable.

Consider the Gaussian waveform plotted in Figure 5.3(a) and the magnitude of its Fourier
transform pair plotted in Figure 5.3(b) using (5.4). The function (5.4) is real, and its phase

Q
<
2
‘g
&
=
0 H . | | | . H
-8 -6 —4 -2 0 2 4 6 8
(a) Time (s)
3
max
2.5 freroeroeneno e N
2 ,,
Q
<
2
§ 15 e e
<
=
1 ,,,
10% of max
05 F-rmmmmefrmm e e N ARRREREE,
. I max \é:
-0.5 0 0.5
(b) Frequency (Hz)

Figure 5.3 A Gaussian waveform and its Fourier transform: (a) g(¢) and (b) G(w)
magnitude.

148 CHAPTER 5 « Source waveforms and time to frequency

vanishes; hence, the phase of the Fourier transform is not plotted here. We consider the
maximum valid frequency of the Gaussian spectrum as the frequency where the magnitude
of G(w) is 10% of its maximum magnitude as illustrated in Figure 5.3(b). Therefore, by
solving the equation

2,2
T “max

0.l=e"+

we can find a relation between 7 and f,,,, such that

2.3
T= J;j”m—w (5.6)

Using (5.5) in (5.6), we can tie n. and As,,,, to T as

. \/2.3I’ICASmax ~ ncASmax
B 7 T 2

T (5.7)

Once the parameters n. and As,,.x are defined, the parameter 7 can be calculated and can
be used in (5.3) to construct the Gaussian waveform spectrum that allows one to obtain a
valid frequency response up to fmax-

Determination of the parameter 7 is not enough to construct the Gaussian waveform that
can be directly used in an FDTD simulation. One should notice in Figure 5.3(a) that the
Gaussian waveform’s maximum coincides with time instant zero. However, in an FDTD
simulation the initial conditions of the fields are zero; hence, the sources must also be zero.
This can be achieved by shifting the Gaussian waveform in time such that at time instant zero
the waveform value is zero or is (practically) negligible. Furthermore, time shifting preserves
the frequency content of the waveform.

With time shifting the Gaussian waveform takes the form

_-1p)?

glt)y=e =, (5.8)

where #, is the amount of time shift. We can find #, as the time instant in (5.3) where
g(t = 0) = e °, which is a negligible value and is good for more than 16 digits of numerical
accuracy. Solving (5.8) with g(0) = e % we can find

to = V201 = 4.57. (5.9)

Using the time shift #,, we obtain a Gaussian waveform as illustrated in Figure 5.4, which
can be used as a source waveform in FDTD simulations to obtain acceptable results for
frequencies up to fax-

5.1.3 Normalized derivative of a Gaussian waveform

In some applications it may be desired to excite the problem space with a pulse that has a
wide frequency spectrum but does not include zero frequency or very low-frequency

5.1 « Common source waveforms for FDTD simulations 149

of o
e
S e e e R
oaf ot
R ot S 4 L N S

Magnitude

s s SOty I S
T R e B o e S R .
] ISR ORI NN 35 0 N Mo

AR RS 7 NS VAN S S E,

0 | !
-2 0 2 4 6 8 10 12 14
Time (s)

Figure 5.4 Gaussian waveform shifted by #, = 4.57 in time.

components. Furthermore, if it is not necessary, it is better to avoid the simulation of low-
frequency components since simulation of these components need long simulation time. For
such cases the derivative of the Gaussian waveform is a suitable choice. The derivative of a
Gaussian waveform normalized to the maximum can be found as

g(t) = \/Tz—ete{_i. (5.10)

The Fourier transform of this function can be determined as

Jjot?\/me 2l
= ——F—e .
V2

The normalized derivative of a Gaussian waveform and its Fourier transform are illu-
strated in Figure 5.5(a) and 5.5(b), respectively. One can notice that the function in the
frequency domain vanishes at zero frequency. The form of the function suggests that there is
a minimum frequency, fmi,, and a maximum frequency, fmax, that determine the bounds of
the valid frequency spectrum for an FDTD simulation considering 10% of the maximum as
the limit. Having determined the maximum usable frequency from the number of cells per
wavelength and maximum cell size using (5.5), one can find the parameter 7 that sets G(w) to
10% of its maximum value at f,,x and can use 7 in (5.10) to construct a time-domain
waveform for the FDTD simulation. However, this procedure requires solution of a nonlinear
equation and is not convenient. The equations readily available for a Gaussian waveform can
be used instead for convenience. For instance, 7 can be calculated using (5.7). Similar to the
Gaussian waveform, the derivative of a Gaussian waveform is also centered at time instant
zero as it appears in (5.10) and as shown in Figure 5.5(a). Therefore, it also needs a time shift

G(w) (5.11)

150 CHAPTER 5 « Source waveforms and time to frequency

Magnitude

SRR/ /S A N SRS S

Magnitude
o

e e S Ny Aiti satil T S

E‘/f |:‘nin 3 f [‘rt‘ax \L; :
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
(b) Frequency (Hz)

Figure 5.5 Normalized derivative of a Gaussian waveform and its Fourier transform:
(a) g(¢) and (b) G(w) magnitude.

to have practically zero value at time instant zero; hence, it can be written as

2(r) = “fgo— e (5.12)

The time shift value ¢, can be obtained as well using the readily available equation (5.9).

5.2 « Definition and initialization of source waveforms for FDTD simulations 151

5.1.4 Cosine-modulated Gaussian waveform

Another common waveform used in FDTD applications is the cosine-modulated Gaussian
waveform. A Gaussian waveform includes frequency components over a band centered at
zero frequency as illustrated in Figure 5.3(b). Modulating a signal with a cosine function
having frequency f, corresponds to shifting the frequency spectrum of the modulated signal
by f. in the frequency domain. Therefore, if it is desired to perform a simulation to obtain
results for a frequency band centered at a frequency £, the cosine-modulated Gaussian pulse
is a suitable choice. One can first construct a Gaussian waveform with a desired bandwidth
and then can multiply the Gaussian pulse with a cosine function with frequency f.. Then the
corresponding waveform can be expressed as

2

g(t) = cos(w.t)e 2, (5.13)

while its Fourier transform can be written as

2(/)(!1(‘2 rwwp
Glw) = r\/_ Po-wo)? T\/_ Zotoq? ’ (5.14)

where w. = 2af,.. A cosine-modulated Gaussian waveform and its Fourier transform are
illustrated in Figure 5.6. To construct a cosine-modulated Gaussian waveform with spectrum
having Af bandwidth centered at f., first we find 7 in (5.14) that satisfies the Af bandwidth
requirement. We can utilize (5.6) to find 7 such that

223 0.966
aAN T A

Then 7 can be used in (5.13) to construct the intended waveform. However, we still need
to apply a time shift to the waveform such that initial value of the excitation is zero. We can
use (5.9) to find the required time shift value, #,. Then the final equation for the cosine-
modulated Gaussian waveform takes the form

(5.15)

g(t) =cos(w.(t —ty)) x e = . (5.16)

5.2 Definition and initialization of source waveforms
for FDTD simulations

In the previous section, we discussed some common types of source waveforms that can be
used to excite an FDTD problem space, and we derived equations for waveform function
parameters to construct waveforms for desired frequency spectrum properties. In this sec-
tion, we discuss the definition and implementation of these source waveforms in an FDTD
MATLAB® code.

In Section 4.2.1, we showed that we can define the parameters specific to various types of
waveforms in a structure named waveforms. We have shown how a unit step function and a
sinusoidal waveform can be defined as subfields of the structure waveforms. We can add new

152 CHAPTER 5 « Source waveforms and time to frequency

T B L e
0 - of g

Magnitude

77777777777777777777777777

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

L At MR SRS || S R SRS SR

-8 -6 —4 -2 0 2 4 6 8

777

o
9

Magnitude
o
N

,,,

o
w

,,,

e
S}

R A SO B S -

0 |
4 2 3 4
(b) Frequency (Hz) £
Figure 5.6 Cosine-modulated Gaussian waveform and its Fourier transform: (a) g(¢) and
(b) G(w) magnitude.

subfields to the structure waveforms to define the new types of source waveforms. For
instance, consider the Listing 5.1, where a sample section of the subroutine define_sources_
and_lumped_elements illustrates the definition of the source waveforms. In addition to the
unit step function and sinusoidal waveform, the Gaussian waveform is defined as the subfield
waveforms.gaussian, the derivative of a Gaussian waveform is defined as waveforms.

5.2 « Definition and initialization of source waveforms for FDTD simulations 153

derivative_gaussian, and the cosine-modulated Gaussian waveform is defined as waveforms.
cosine_modulated_gaussian. Each of these subfields is an array, so more than one waveform
of the same type can be defined in the same structure waveforms. For instance, in this listing
two sinusoidal waveforms and two Gaussian waveforms are defined. The Gaussian and the
derivative of Gaussian waveforms have the parameter number_of_cells_per_wavelength,
which is the accuracy parameter n. described in the previous section used to determine
the maximum frequency of the spectrum of the Gaussian waveform. If the number_
of_cells_per_wavelength is assigned zero, then the number_of_cells_per_wavelength
that is defined in the subroutine define_problems_space_parameters will be used as the
default value.

The cosine-modulated Gaussian waveform has the parameter bandwidth, which spe-
cifies the width of the frequency band Af. One more parameter is modulation_frequency,
which is the center frequency of the band, f..

Listing 5.1 define_sources_and_lumped_elements.m

-
disp(’defining_sources.and.lumped_element_.components’);

[
[

voltage_sources
current_sources =

IS

diodes = [];
s| resistors = [];
inductors = [];
s| capacitors = [];

0|% define source waveform types and parameters

waveforms.sinusoidal (1). frequency = 1e9;

2| waveforms.sinusoidal (2). frequency = 5e8;

waveforms. unit_step (1). start_time_step = 50;

14| waveforms. gaussian (1). number_of_cells_per_wavelength 0;

waveforms. gaussian (2). number_of_cells_per_wavelength 15;

1ol waveforms. derivative_gaussian (1). number_of_cells_per_wavelength = 20;
waveforms. cosine_modulated_gaussian (1). bandwidth = 1e9;

18] waveforms. cosine_modulated_gaussian (1). modulation_frequency = 2e9;

0|% voltage sources
% direction: ’xp’, ’xn’, ’yp’, ’'yn’, ’zp’, or ’zn’
2|% resistance : ohms, magitude : volts
voltage_sources (1). min_.x = 0;
| voltage_sources (1). min_y = 0;
voltage_sources (1). min_.z = 0;
| voltage_sources (1). max.x = 1.0e—3;
voltage_sources (1). max_.y = 2.0e-3;
voltage_sources (1). max.z = 4.0e—3;

(1).

(1).

(1).

(1).

(1).

5
3

voltage_sources direction = ’zp’

| voltage_sources resistance = 50;
voltage_sources magnitude = 1;
waveform_type = ’gaussian’;
waveform index = 2;

| voltage_sources
voltage sources

154 CHAPTER 5 « Source waveforms and time to frequency

Once the waveform types are defined, the desired waveform type can be assigned to the
sources as illustrated in Listing 5.1. For instance, for the voltage source voltage_sources(1)
the parameter waveform_type is assigned the value “gaussian,” and the parameter wave-
form_index is assigned the value 2, indicating that the waveform waveforms.gaussian(2) is
the waveform of the voltage source.

The initialization of the waveforms is performed in the subroutine initialize_
waveforms, which is called in initialize_sources_and_lumped_elements before the
initialization of lumped sources as discussed in Section 4.2.3. The implementation of
initialize_waveforms is extended to include the Gaussian, derivative of Gaussian, and
cosine-modulated Gaussian waveforms based on the discussions in Section 5 as shown
in Listing 5.2. After the waveforms are initialized, the constructed waveforms are
copied to appropriate subfields in the source structures in initialize_sources_and_
lumped_elements.

Listing 5.2 initialize_waveforms.m

(T
disp(’initializing._source_.waveforms’);

% initialize sinusoidal waveforms

if isfield (waveforms, 'sinusoidal’)

5 for ind=1:size (waveforms.sinusoidal ,2)
waveforms.sinusoidal (ind). waveform = .

7 sin(2 * pi * waveforms.sinusoidal(ind).frequency * time);
waveforms.sinusoidal (ind).t_0 = 0;

9 end
end

% initialize unit step waveforms
| if isfield (waveforms, ’unit_step’)
for ind=1:size (waveforms.unit_step ,2)

15 start_index = waveforms.unit_step(ind). start_time_step;
waveforms. unit_step (ind).waveform (1: number_of_time_steps) = 1;
17 waveforms. unit_step (ind).waveform (1:start_.index —1) = 0;
waveforms. unit_step (ind).t_.0 = 0;
19 end
end

% initialize Gaussian waveforms

i»|if isfield (waveforms, gaussian’)

for ind=1:size (waveforms.gaussian ,2)

2 if waveforms.gaussian(ind). number_of_cells_per_wavelength ==
nc = number_of_cells_per_wavelength;

27 else

nc = waveforms. gaussian(ind). number_of_cells_per_wavelength;
29 end

waveforms. gaussian (ind). maximum_frequency =

31 c/(ncxmax ([dx,dy,dz]));

tau = (ncxmax([dx,dy,dz]))/(2*c);

3 waveforms. gaussian (ind).tau = tau;

t_.0 = 4.5 * waveforms.gaussian (ind). tau;

5.3 « Transformation from time domain to frequency domain 155

35 waveforms. gaussian(ind).t_.0 = t_0;
waveforms. gaussian (ind).waveform = exp(—((time — t_0)/tau)."~2);
37 end

end

% initialize derivative of Gaussian waveforms
a| if isfield (waveforms, derivative_gaussian’)
for ind=1:size (waveforms. derivative_gaussian ,2)

5 wfrm = waveforms. derivative_gaussian (ind);
if wirm.number_of_cells_per_wavelength ==

45 nc = number_of_cells_per_wavelength;
else

47 nc =

waveforms. derivative_gaussian (ind). number_of_cells_per_wavelength;
49 end
waveforms. derivative_gaussian (ind). maximum_frequency =

51 c/(ncrmax ([dx,dy,dz]));

tau = (ncx*rmax([dx,dy,dz]))/(2*%c);

53 waveforms. derivative_gaussian (ind).tau = tau;

t_.0 = 4.5 * waveforms. derivative_gaussian (ind). tau;

55 waveforms. derivative_gaussian (ind).t_.0 = t_0;

waveforms. derivative_gaussian (ind). waveform = .

57 —(sqrt(2#=exp(1))/tau)*(time — t_0).*exp(—((time — t_0)/tau).~2);
end

50| end

61|% initialize cosine modulated Gaussian waveforms
if isfield (waveforms, cosine_modulated_gaussian’)

I3 for ind=1:size (waveforms.cosine_modulated_gaussian ,2)
frequency =
65 waveforms. cosine_modulated_gaussian(ind). modulation_frequency;
tau = 0.966/waveforms.cosine_modulated_gaussian (ind). bandwidth;
67 waveforms. cosine_modulated_gaussian (ind).tau = tau;
t_.0 = 4.5 * waveforms.cosine_modulated_gaussian(ind). tau;
m waveforms. cosine_modulated_gaussian(ind).t_.0 = t_0;

waveforms. cosine_modulated_gaussian(ind).waveform =

7 cos(2*pixfrequency *(time — t_0)).*exp(—((time — t_0)/tau)."2);
end

7| end

5.3 Transformation from time domain to frequency domain

In the previous sections, we discussed construction of different types of source waveforms
for an FDTD simulation. These waveforms are functions of time, and any primary output
obtained from an FDTD simulation is in the time domain. The input—output relationship is
available in the time domain after an FDTD simulation is completed. The input and output
time functions can be transformed to the frequency domain by the use of the Fourier trans-
form to obtain the response of the system in the case of time-harmonic excitations. The
Fourier transform is an integration applied to a continuous time function. In the FDTD

156 CHAPTER 5 « Source waveforms and time to frequency

method the values are sampled at discrete time instants; therefore, the continuous time
integration can be approximated by a discrete time summation. The Fourier transform of a
continuous time function x(f) is given as X(w) using (5.1). In FDTD the time function is
sampled at a period At; therefore, the values x(nAf) are known. Then the Fourier transform
(5.1) can be expressed for discrete samples x(nAt) as

n=Nyeps
X(w)=At Y x(nAt)e 7, (5.17)

n=1

where Ny, is the number of time steps. It is easy to implement a function based on (5.17)
that calculates the Fourier transform of the discrete samples x(nAf) for a list of frequencies.
Implementation of such a function, time_to_frequency_domain, is shown in Listing 5.3.
This function accepts a parameter x, which is an array of sampled time-domain values of a
function. The parameter frequency_array includes list of frequencies for which the trans-
form is to be performed. The output parameter of the function X is an array including the
transform at the respective frequencies.

Another input parameter that needs consideration is time_shift. As discussed in
previous chapters, the electric field-related values and magnetic field-related values
are sampled at different time instants during the FDTD time-marching scheme. There is
a half time step duration in between, and the function time_to_frequency_domain
accepts a value time_shift to account for this time shift in the Fourier transform. For
electric field-related values (e.g., sampled voltages), time_shift can take the value 0,
whereas for the magnetic field-related values (e.g., sampled currents), time_shift can
take the value —dt/2.

The function implementation given in Listing 5.3 is intended for an easy understanding
of the time-to-frequency-domain transform action, and is not necessarily the best or optimum
algorithm for this purpose. More efficient discrete Fourier transform implementations, such
as fast Fourier transforms, can be used as well.

Listing 5.3 time_to_frequency_domain.m

1(function [X] = time_to_frequency_domain (x,dt,frequency_array ,time_shift)
% x : array including the sampled values at discrete time steps

5% dt : sampling period, duration of an FDTD time step

% frequency_array : list of frequencies for which transform is performed
s % time_shift : a value in order to account for the time shift between

% electric and magnetic fields

number_of_time_steps = size(x,1);
o) number_of_frequencies = size(frequency_array ,2);
X = zeros(1, number_of_frequencies);

ufw =2 * pi * frequency_array;
for n = 1T:number_of_time_steps
13 t =n % dt + time_shift;
X =X+ x(n) * exp(—j*w*t);
15| end

%

X=X

dt;

5.3 « Transformation from time domain to frequency domain 157

Similarly, the inverse Fourier transform can also be implemented. Consider a band-
limited frequency domain function X(w) sampled at uniformly distributed discrete frequency
points with sampling period Aw, where the sampling frequencies include zero and positive
frequencies. Then the inverse Fourier transform (5.2) can be expressed as

o
 2n

m=M-1
x(t) (X(O) + (X (mAw)e’™" +X*(mAw)ef'wf]>, (5.18)
m=1

where X* is the complex conjugate of X, X(0) is the value of X at zero frequency, and M is
the number of sampled frequency points. We have assumed that X includes the samples at
zero and positive frequencies. It is evident from (5.2) that the integration includes the
negative frequencies as well. However, for a causal time function, the Fourier transform at a
negative frequency is the complex conjugate of its positive-frequency counterpart. So, if the
Fourier transform is known for the positive frequencies, the transform at the negative
frequencies can be obtained by the conjugate. Therefore, (5.18) includes summation at
the negative frequencies as well. Since the zero frequency appears once, it is added to the
discrete summation separately. Then a function named as frequency_to_time_domain is
constructed based on (5.18) as shown in Listing 5.4.

Listing 5.4 frequency_to_time_domain.m

(function [x] = frequency_to_time_domain (X, df, time_array)
2% X @ array including the sampled values at discrete frequency steps
% df : sampling period in frequency domain
4% time_array : list of time steps for which

% inverse transform is performed
6

number_of_frequencies = size(X,2);
sl number_of_time_points = size(time_array ,b2);

x = zeros(1, number_of_time_points);
wldw = 2 * pi * df;
x = X(1); % zero frequency component

2| for m = 2:number_of_frequencies
w = (m=1) * dw;
14 X = x + X(m)* exp(j*w*time_array)+ conj(X(m))
* exp(—j*w*time_array);
16| end

x = x * df;

In general, we can define a list of frequencies for which we seek the frequency-domain
response in the define_output_parameters subroutine, which is illustrated in Listing 5.5.
Here a structure frequency_domain is defined to store the frequency-domain-specific
parameters. The subfields start, end, and step correspond to the respective values of a
uniformly sampled list of frequencies.

The desired list of frequencies is calculated and assigned to an array frequency_domain.
frequencies in the initialize_output_parameters subroutine as shown in Listing 5.6. The
initialization of output parameters is implemented in the subroutine initialize output_
parameters, as shown in Listing 5.6.

158 CHAPTER 5 « Source waveforms and time to frequency

Listing 5.5 define_output_parameters.m

16|% frequency domain parameters
frequency_domain.start = 1e7;
15| frequency_domain .end
frequency_domain.step

1e9;
1e7;

Listing 5.6 initialize_output_parameters.m

s/% intialize frequency domain parameters
frequency_domain.frequencies = [frequency_domain.start:

10 frequency_domain.step:frequency_domain.end];
frequency_domain.number_of_frequencies =

12 size (frequency_domain.frequencies ,2);

Listing 5.7 post_process_and_display_results.m

i|disp(’displaying.simulation_results’);

s|display_transient_parameters;

calculate_frequency_domain_outputs;
s|display_frequency_domain_outputs;

The post processing and display of the simulation results are performed in the subroutine
post_process_and_display_results following run_fdtd_time_marching_loop in fdtd_solve.
We can add two new subroutines to post_process_and_display_results as illustrated in
Listing 5.7: calculate_frequency_domain_outputs and display_frequency_domain_
outputs. The time-to-frequency-domain transformations can be performed in calculate_
frequency_domain_outputs, for which the sample code is shown in Listing 5.8. In this
subroutine the time-domain arrays of sampled values are transformed to frequency domain
using the function time_to_frequency_domain, and the calculated frequency-domain arrays
are assigned to the frequency_domain_value subfield of the respective structures. Finally,
the subroutine display_frequency_domain_outputs, a partial section of which is listed in
Listing 5.9, can be called to display the frequency-domain outputs.

5.4 Simulation examples

So far we have discussed some source waveform types that can be used to excite an FDTD
problem space. We considered the relationship between the time- and frequency-domain
representations of the waveforms and provided equations that can be used to construct a
temporal waveform having specific frequency spectrum characteristics. Then we provided
functions that perform time-to-frequency-domain transformation, which can be used to
obtain simulation results in the frequency domain after an FDTD simulation is completed.
In this section we provide examples that utilize source waveforms and transformation
functions.

%)

[

21

5.4 « Simulation examples 159

Listing 5.8 calculate_frequency_domain_outputs.m

r

disp (’generating._frequency_domain_.outputs’);
frequency_array = frequency_domain.frequencies;

% sampled electric fields in frequency domain

for ind=1:number_of_sampled_electric_fields
x = sampled_electric_fields(ind).sampled_value;
time_shift = 0;
[X] = time_to_frequency_-domain (x, dt, frequency_array, time_shift);
sampled_electric_fields (ind).frequency_domain_value = X;
sampled_electric_fields (ind). frequencies = frequency_array;

end

% sampled currents in frequency domain

for ind=1:number_of_sampled_currents
x = sampled_currents(ind).sampled_value;
time_shift = —dt/2;
[X] = time_to_frequency_domain (x, dt, frequency_array, time_shift);
sampled_currents(ind). frequency_domain_value = X;
sampled_currents(ind). frequencies = frequency_array;

end

% voltage sources in frequency domain

for ind=1:number_of_voltage_sources
X = voltage_sources (ind).waveform;
time_shift = 0;
[X] = time_to_frequency_domain (x, dt, frequency_array, time_shift);
voltage_sources(ind). frequency_domain_value = X;
voltage_sources(ind). frequencies = frequency_array;

43

45

49

Listing 5.9 display_frequency_domain_outputs.m

-
% figures for sampled voltages
for ind=1:number_of_sampled_voltages

frequencies = sampled_voltages(ind). frequencies*1e—9;
fd_value = sampled_voltages(ind).frequency_domain_value;
figure;

title (['sampled_voltage.[’ num2str(ind) ’']’], fontsize’ ,12);
subplot(2,1,1);

plot(frequencies , abs(fd_value), ’b—", linewidth’ ,1.5);
xlabel ('frequency.(GHz)’, fontsize’ ,12);

ylabel ('magnitude’, fontsize’ ,12);

grid on;

subplot(2,1,2);

plot (frequencies, angle(fd_value)*180/pi, 'r—", linewidth’ ,1.5);
xlabel ('frequency.(GHz)’ ', fontsize’ ,12);

ylabel (’phase_(degrees)’, fontsize’ ,12);

grid on;

drawnow ;

»

160 CHAPTER 5 « Source waveforms and time to frequency

5.4.1 Recovering a time waveform from its Fourier transform

The first example illustrates how the functions time_to_frequency_domain and
frequency_to_time_domain can be used. Consider the program recover_a_time_waveform
given in Listing 5.10.

Listing 5.10 recover_a_time_waveform.m

1(clc; close all; clear all;

% Construct a Gaussian Waveform in time, frequency spectrum of which
% has its magnitude at 1 GHz as 10% of the maximum.
maximum_frequency = 1e9;

s|tau = sqrt(2.3)/(pi*maximum_frequency);

t.0 = 4.5 * tau;

7l time_array = [1:1000]*1e—11;

g = exp(—((time_array — t_0)/tau)."2);

figure (1);

plot(time_array=1e9, g, ’b—", linewidth’ ,1.5);

title ('g(t)=e"{—((t—t_0)/\tau)"2}’, fontsize’ ,14);
xlabel ("time.(ns)’, fontsize’ ,12);

ylabel (’magnitude’, fontsize’ ,12);

set (gca, 'fontsize’ ,12);

s| grid on;

17| % Perform time to frequency domain transform
frequency_array = [0:1000]*2e6;

vl dt = time_array(2)—time_array(1);

G = time_to_frequency_domain (g, dt, frequency_array, 0);

figure (2);

| subplot(2,1,1);

plot(frequency_array*1e—9, abs(G), 'b—", linewidth’ ,1.5);
x| title ('G(\omega).=_F(g(t))’, fontsize’ ,12);

xlabel ('frequency.(GHz)’, ' fontsize’ ,12);

;7| ylabel (’magnitude’, ’fontsize ' ,12);

set(gca, 'fontsize’ ,12);

»| grid on;

subplot(2,1,2);

sif plot (frequency_array*1e—9, angle(G)*180/pi, 'r—", linewidth’ ,1.5);
xlabel ('frequency.(GHz) , fontsize’ ,12);

;31 ylabel (" phase_(degrees)’, fontsize’ ,12);

set (gca, 'fontsize’ ,12);

;5] grid on;

drawnow ;

% Perform frequency to time domain transform

w| df = frequency_array(2)—frequency_array(1);

g2 = frequency_to_time_domain (G, df, time_array);
41
figure (3);

plot(time_array=1e9, abs(g2), 'b—", linewidth’ ,1.5);
title ('g(t)=_F {—1}(G(\omega)) ', fontsize’ ,14);
xlabel (time_(ns)’, fontsize’);

)

4

4

,12
,12

ylabel ('magnitude’, fontsize’
set (gca, 'fontsize’ ,12);
grid on;

¥

Ed

5.4 « Simulation examples 161

First, a Gaussian waveform, g(f), for which the frequency spectrum is 1 GHz wide, is
constructed and is time shifted as shown in Figure 5.7(a). The Fourier transform of g(¢) is
obtained as G(w), as plotted in Figure 5.7(b), using time_to_frequency_domain. One should
notice that the value of G(w) is 10% of the maximum at 1 GHz. Furthermore, the phase
vanishes for the Fourier transform of a time-domain Gaussian waveform having its center at
time instant zero. However, the phase shown in Figure 5.7(b) is nonzero. This is due to the
time shift introduced to the Gaussian waveform in the time domain. Finally, the time-domain
Gaussian waveform is reconstructed from G(w) using the function frequency_to_time_domain
and is plotted in Figure 5.7(c).

Magnitude
S
W (=)}
g
9
=
I
e
A
7
<
=

<
~

——

e
[

,,,

<
)

R R RERI SRSEERRE B REReERL SERSERRES

(a) Time (ns)

100 G(w) = F(g(1))

Magnitude

0) . :
0 0.5 1 1.5 2
Frequency (GHz)

A

e

&n

Q

=2

Q

3

=

a- 1 1 1
~200 ‘ ‘ :

0 0.5 1 1.5 2
(b) Frequency (GHz)

Figure 5.7 A Gaussian waveform and its Fourier transform: (a) g(¢); (b) G(w); and (c) g(?)
recovered from G(w).

162 CHAPTER 5 « Source waveforms and time to frequency

oo]
AR IS R
R B SRR EELEEELEEE B RSSISEEEEEEEEEE
4 S S SO S
0.5 === f- oeof b) = FUG(@)

R T R

Magnitude

031 e R R
e —

01 e S A R R

4 6 8 10
(c) Time (ns)

Figure 5.7 (Continued)

R,=50Q C=10pF

_ %8 L=10nH

(a) (b)

Figure 5.8 An RLC circuit: (a) circuit simulated in FDTD and (b) lumped element equivalent
circuit.

5.4.2 An RLC circuit excited by a cosine-modulated
Gaussian waveform

The second example is a simulation of a 10 nH inductor and a 10 pF capacitor connected
in series and excited by a voltage source with 50 Q internal resistor. The geometry of the
problem is shown in Figure 5.8(a) as it is simulated by the FDTD program. The equivalent
circuit representation of the problem is illustrated in Figure 5.8(b). The size of a unit

5.4 « Simulation examples 163

cell is set to 1 mm on each side. The number of time steps to run the simulation is
2000. Two parallel PEC plates are defined 2 mm apart from each other as shown in
Listing 5.11. A voltage source is placed in between these plates at one end, and an
inductor and a capacitor are placed in series at the other end as shown in Listing 5.12.

<

Listing 5.11 define_geometry.m

-
disp ('defining.the_problem_.geometry’);

bricks [1;
spheres = []

»

% define a PEC plate

bricks (1). min_x = 0;

brlcks(1) min_.y = 0;

bricks (1).min_.z = 0;

bricks (1). max_x = 1e-3;

bricks (1). max_.y = 1e-3;

bricks (1). max_.z = 0;

bricks (1). materlal type = 2;
s|% define a PEC plate

bricks (2). min_x = 0;

bricks (2). min_y = 0;

bricks (2). min_z = 2e-3;

bricks (2). max.x = 1e—3;

bricks (2). max_.y = 1e—3;

bricks (2). max_.z = 2e-3;

bricks (2). material_type = 2;

Listing 5.12 define_sources_and_lumped_elements.m

(..
disp(’defining._sources.and._.lumped_element_components’);

[1;
[

voltage_sources
current_sources =
diodes = [];
resistors = [];

inductors = [];

capacitors = [];

% define source waveform types and parameters
waveforms.sinusoidal (1). frequency = 1e9;
waveforms.sinusoidal (2). frequency = 5e8;

waveforms. unit_step (1). start_time_step = 50;

waveforms. gaussian (1). number_of_cells_per_wavelength = 0;

waveforms. gaussian (2). number_of_cells_per_wavelength = 15;

waveforms. derivative_gaussian (1). number_of_cells_per_wavelength = 20;

7|waveforms. cosine_modulated_gaussian (1). bandwidth = 4e9;

waveforms. cosine_modulated_gaussian (1). modulation_frequency = 2e9;

164 CHAPTER 5 « Source waveforms and time to frequency

% voltage sources

2% direction: ’xp’, ’'xn’, ’yp’, ’'yn’, ’zp’, or ’'zn’
% resistance : ohms, magitude : volts
i|lvoltage_sources (1). min.x = 0;
voltage_sources (1). min_.y = 0;
| voltage_sources (1). min_z = 0;
voltage_sources (1). maxx = 0;
wivoltage_sources (1). max.y = 1.0e—3;
voltage_sources (1). max.z = 2.0e—3;
wlvoltage_sources (1).direction = ’zp’;
voltage_sources (1). resistance = 50;
sif{voltage_sources (1). magnitude = 1;
voltage_sources (1). waveform_type = ’cosine_modulated_gaussian’;
3l voltage_sources (1). waveform_index = 1;
55/% inductors
% direction: 'x’, 'y’, or 'z’
571% inductance : henrys
inductors (1). min.x = 1.0e—3;
solinductors (1). min_y = 0.0;
inductors (1). min_z = 0.0;
sifinductors (1). max.x = 1.0e—3;
inductors (1). max_.y = 1.0e—3;
slinductors (1). max.z = 1.0e—3;
inductors (1).direction = 'z’;
ss|inductors (1).inductance = 10e—9;

7|% capacitors

% direction: 'x’, 'y’, or 'z’
#9|% capacitance : farads
capacitors(1). min.x = 1.0e—3;

capacitors (1
capacitors (1
capacitors (1
capacitors (1
(1
(1
(1

).

). min_.y = 0.0;

). min_z = 1.0e-3;
). max_x = 1.0e-3;
). max_.y = 1.0e-3;
).
).
).

capacitors
capacitors
s7| capacitors

max.z = 2.0e—3;
direction = ’z’;
capacitance = 10e—12;

A cosine-modulated Gaussian waveform with 2 GHz center frequency is assigned to the
voltage source. A sampled voltage is defined between the parallel PEC plates at the load
end as shown in Listing 5.13.

Figure 5.9 shows the time-domain results of this simulation; V, is compared with
the source waveform, V. The frequency-domain counterparts of these waveforms are cal-
culated using time_to_frequency_domain and are plotted in Figure 5.10. We can find the
transfer function of this circuit by normalizing the output voltage V, to V. Furthermore,
we can perform a circuit analysis to find the transfer function of the equivalent circuit in
Figure 5.8(b), which yields

V,(w) S’LC+ 1
T = = 5.19
(@) =J @) " FLCtsRCT T’ (5.19)

5.4 « Simulation examples 165

Listing 5.13 define_output_parameters.m

p
disp ('defining_output_parameters’);
sampled_electric_fields = [];
sampled_magnetic_fields = [];
sampled_voltages = [];
sampled_currents = [];

% figure refresh rate
plotting_step = 10;

% mode of operation
run_simulation = true;
show_material_mesh = true;
show_problem_space = true;

% frequency domain parameters
7| frequency_domain. start = 2e7;
frequency_domain .end = 4e9;
frequency_domain.step = 2e7;

% define sampled voltages

sampled_voltages (1). min.x = 1.0e—3;
sampled_voltages (1). min_y = 0.0;
sampled_voltages (1). min_.z = 0.0;
s|sampled_voltages (1). max.x = 1.0e-3;
sampled_voltages (1). max_.y = 1.0e-3;
7lsampled_voltages (1). max.z = 2.0e-3;
sampled_voltages (1). direction = ’zp’;
sampled_voltages (1). display_plot = true;

Voltage source
- - - - Sampled voltagef

(Volt)

Time (ns)

Figure 5.9 Time-domain response, V,, compared with source waveform, V.

166 CHAPTER 5 « Source waveforms and time to frequency

x 10710
T T T
Q ' '
o ' '
=] ;
= :
&n '
< T
= : : :
0 H H H
0 1 2 3 4
Frequency (GHz)
g : : :
5
B Ok f N NG N NG
[
g ‘
~ —200 - * -
0 1 2 3 4
(a) Frequency (GHz)
x 10710
Q
=]
2
=
on
<
=
0 . | | | | | |
0 0.5 1 1.5 2 2.5 3 35 4
Frequency (GHz)
200
8 100
g
= 0
2
£ -100
A~ 1 1
200 | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4
(b) Frequency (GHz)

Figure 5.10 Frequency-domain response of source waveform V and output voltage V,;:
(a) Fourier transform of V and (b) Fourier transform of V..

where s = jw. The transfer function obtained from the FDTD simulation and the exact
equation (5.19) are compared as shown in Figure 5.11. These two results agree with each
other very well at low frequencies; however, there is a deviation at high frequencies. One of
the reasons for the difference is that the two circuits in Figure 5.8(a) and 5.8(b) are not
exactly the same. For instance, the parallel plates introduce a capacitance, and the overall
circuit is a loop and introduces an inductance in Figure 5.8(a). However, these additional
effects are not accounted for in the lumped circuit in Figure 5.8(b). Therefore, an electro-
magnetic simulation including lumped element components should account for the addi-
tional effects due to the physical structure of the circuit to obtain more accurate data at

higher frequencies.

5.5 « Exercises 167

1.4 : : : : ' ' '
‘ ‘ ‘ ‘ — |V,/ V| simulated

T S F s Lo - - = |V, exact 4

Magnitude

0 0.5 1 1.5 2 2.5 3 35 4

Frequency (GHz)

Figure 5.11 Transfer function T(w) = 7.

5.5 Exercises

5.1

52

Consider the stripline structure that you constructed in Exercise 4.2. Define a Gaussian
source waveform, assign it to the voltage source and run the FDTD simulation. By the
time the simulation is completed, the sampled voltage and current will be captured,
transformed to frequency domain, and stored in the frequency_domain_value ficld of
the parameters sampled_voltages(i) and sampled_currents(i). Input impedance of
this stripline can be calculated using these sampled voltage and current arrays in the
frequency domain. Since the stripline characteristic impedance is expected to be 50 Q
and the stripline is terminated by a 50 € resistor, the input impedance shall be 50 Q as
well. Calculate and plot the input impedance for a wide frequency band, and verify that
the input impedance is close to 50 Q.

Consider the simulation you performed in Exercise 5.1. When you examine the sam-
pled transient voltage you will observe a Gaussian waveform generated by the voltage
source followed by some reflections due to the imperfect termination of the 50 Q
resistor. If your stripline structure is long enough and the Gaussian waveform is narrow
enough, the Gaussian waveform and reflections should not overlap. Determine from
the transient voltage a number of time steps that would be used to run the FDTD
simulations such that the simulation would end before the reflections are captured and
only the Gaussian waveform would be observed as the sampled transient voltage. This
way you would be simulating an infinitely long stripline structure. Therefore, when you
calculate the input impedance, you would actually be calculating the characteristic
impedance of the stripline. Rerun the FDTD simulation with the time step you have
determined as discussed, calculate and plot the input impedance for a wide frequency
band, and verify that the characteristic impedance of the stripline is 50 Q.

168

53

54

CHAPTER 5 « Source waveforms and time to frequency

Consider the circuit in Exercise 4.4. Set the waveform of the voltage source as the
Gaussian waveform, and define a sampled current to capture the current flowing
through the circuit. Rerun the FDTD simulation, calculate and plot the input impedance
for a wide frequency band, and verify that the circuit resonates at 100 MHz. Note that
you may need to run the simulation for a large number of time steps since it will take a
long time for the low-frequency components in the Gaussian waveform to decay.

Consider Exercise 5.3. Now set the waveform of the voltage-source derivative of
the Gaussian waveform. Rerun the FDTD simulation, calculate and plot the input
impedance for a wide frequency band, and verify that the circuit resonates at 100 MHz.
Note that with the derivative of the Gaussian waveform you should be able to obtain
the results with a much smaller number of time steps compared with the amount of
steps used in Exercise 5.3 since the derivative of the Gaussian waveform does not
include zero frequency and since very low-frequency components are negligible.

CHAPTER 6

S-Parameters

Scattering parameters (S-parameters) are used to characterize the response of radiofrequency
and microwave circuits, and they are more commonly used than other types of network para-
meters (e.g., Y-parameters, Z-parameters) because they are easier to measure and work with at
high frequencies [12]. In this chapter, we discuss the methods to obtain the S-parameters from a
finite-difference time-domain (FDTD) simulation of a single or multiport circuit.

6.1 Scattering parameters

S-parameters are based on the power waves concept. The incident and reflected power waves
a; and b; associated with port i are defined as

Vi+ Zi X I; biVi_Zi*XIi 6.1)
2\/|Re{Z;}| 2\/|Re{Z;}| '

where V; and [; are the voltage and the current flowing into the ith port of a junction and Z; is
the impedance looking out from the ith port as illustrated in Figure 6.1 [13]. In general, Z;

is complex; however, in most of the microwaves applications it is real and equal to 50 Q.
Then the S-parameters matrix can be expressed as

a;

by S Sz oo Sy a

by S S» - S a

.= . ; . } x| .| (6.2)
by Svi Sv2 o Sw an

By definition, the subscripts mn indicate output port number, m, and input port number, 7, of
the scattering parameter S,,,,. If only the port # is excited while all other ports are terminated
by matched loads, the output power wave at port m, b,,, and the input power wave at port #,
a,, can be used to calculate S, using

Spn = —~. (6.3)
This technique can be applied to FDTD simulation results to obtain S-parameters for an input

port n. A multiport circuit can be constructed in an FDTD problem space where all ports
are terminated by matching loads and only the reference port n is excited by a source.

169

170 CHAPTER 6 « S-Parameters

Figure 6.1 An N-port network.

Then sampled voltages and currents can be captured at all ports during the FDTD time-
marching loop. S-parameters are frequency-domain outputs of a network. After the FDTD
iterations are completed, the sampled voltages and currents can be transformed to the frequency
domain using the algorithms described in Chapter 5. Then the frequency-domain sampled
voltages and currents can be used in (6.1) to obtain incident and reflected power waves, a; and
b;, from which the S-parameters can be obtained for the reference port using (6.3). One should
keep in mind that in an FDTD simulation only one of the ports can be excited. Therefore, to
obtain a complete set of S-parameters for all of the port excitations in the circuit, more than one
FDTD run may be required depending on the type and symmetry conditions of the problem.

The S-parameters are complex quantities, as they are obtained using (6.3). Generally,
S-parameters are plotted by their magnitudes in decibels such that |S,,,|ag = 20 log10(|Snl)
and by their phases.

6.2 S-Parameter calculations

In this section, we illustrate the implementation of S-parameter calculations through an
example. S-parameters are associated with ports; therefore, ports are the necessary compo-
nents for the S-parameter calculations. To define a port we need a sampled voltage and a
sampled current defined at the same location and associated with the port. Consider the two-
port circuit shown in Figure 6.2, which has been published in [14] as an example for the
application of the FDTD method to the analysis of planar microstrip circuits. The problem
space is composed of cells having Ax = 0.4064 mm, Ay = 0.4233 mm, and Az = 0.265 mm.
An air gap of 5 cells is left between the circuit and the outer boundary in the xn, xp, yn, and
yp directions and of 10 cells in the zp direction. The outer boundary is perfect electric
conductor (PEC) and touches the ground of the circuit in the zn direction. The dimensions of
the microstrips are shown in Figure 6.2(b) and are implemented in Listing 6.1. The substrate
is 3 x Az thick and has a dielectric constant of 2.2. The microstrip filter is terminated by a
voltage source with 50 Q internal resistance on one end and by a 50 Q resistor on the other
end. The voltage source is excited by a Gaussian waveform with 20 cells per wavelength
accuracy parameter. Two sampled voltages and two sampled currents are defined 10 cells
away from the ends of the microstrip terminations as implemented in Listing 6.2.

6.2 « S-Parameter calculations 171

£ Sampled current 1 Sampled current 2
y
x

(a) Sampled voltage 1 Sampled voltage 2
Ry
“ 6 cells
port 2
6 cells " 14 cells
A
A
10 cells
e — port 1
10 cells
y
X Vs
(b)) 50 cells i

Figure 6.2 A microstrip low-pass filter terminated by a voltage source and a resistor on two
ends: (a) three-dimensional view and (b) dimensions.

Listing 6.1 define_geometry.m

disp('defining_the_problem_.geometry’);

I
I

bricks
spheres

[
[

% define a substrate

7l bricks (1). min_x = 0;
bricks (1). min_.y = 0;

ol bricks (1). min_z = 0;
bricks (1). max_x = 50%dx;

| bricks (1). max_y = 46xdy;
bricks (1). max_z = 3*dz;

3| bricks (1). material_type = 4;

% define a PEC plate
bricks (2). min_x = 14*dx;
bricks (2). min_.y = 0;
bricks (2). min_.z = 3xdz;

S

172 CHAPTER 6 « S-Parameters

| bricks (2). max_x = 20%dx;
bricks (2). max_.y = 20=dy;

afbricks (2). max_z = 3*dz;
bricks (2). material_type = 2;

% define a PEC plate

| bricks (3). min_x = 30*dx;
bricks (3). min_y = 26x%dy;
w|bricks (3). min_z = 3*xdz;
bricks (3). max_x = 36*%dx;
wlbricks (3). max.y = 46+*dy;
bricks (3). max.z = 3*dz;
sifbricks (3). material_type = 2;

53/% define a PEC plate

bricks (4). min_x = 0;
ss{bricks (4). min_y = 20+*dy;
bricks (4). min_z = 3xdz;
s7bricks (4). max_x = 50*dx;
bricks (4). max_.y = 26xdy;
solbricks (4). max_z = 3*dz;
bricks (4). material_type = 2;

41

% define a PEC plate as ground

s bricks (5). min_x = 0;
bricks (5). min_.y = 0;

s bricks (5). min_z = 0;
bricks (5). max_x = 50%dx;

a7 bricks (5). max_.y = 46*dy;
bricks (5). max.z = 0;

w|bricks (5). material_type = 2;

We associate a sampled voltage and sampled current pair to a port, and thus we have two
ports. In Listing 6.2 a new parameter ports is defined and initialized as an empty array. At the
end of the listing, the sampled voltages and currents are associated to ports through their
indices. For instance, the subfield sampled_voltage_index of ports(2) is assigned the value 2,
implying that sampled_voltages(2) is the sampled voltage associated to the second port. The
subfield impedance is assigned the impedance of the respective port, which is supposed to be
equal to the microstrip-line characteristic impedance and the resistance of the voltage source
and resistor terminating the microstrip line. One additional subfield of ports is is_source_port,
which indicates whether the port is the source port or not. In these two ports example, the first
port is the excitation port due to the voltage source; therefore, ports(1).is_source_port is
assigned the value frue whereas for the second port ports(2).is_source_port is false.

One should notice that the direction of the second sampled current sampled_currents(2).
direction is toward the negative x direction as xn. The reference currents are defined as
flowing into the circuit for the purpose of calculating the network parameters, as can be seen
in Figure 6.1.

<

3

4

4

4

s

4

(1

(1).

(1).

(1).
7{sampled_voltages (1). max_.y = 10*dy;

(1).

(1).

(1).
7|sampled_voltages

7lsampled_currents

6.2 « S-Parameter calculations

Listing 6.2 define_output_parameters.m

173

p
disp('defining_output_.parameters’);

sampled_electric_fields = [];
sampled_magnetic_fields = [];
sampled_voltages = [];
sampled_currents = [];

ports = [];

% figure refresh rate
plotting_step = 100;

% mode of operation
run_simulation = true;
show_material_mesh = true;
show_problem_space = true;

% frequency domain parameters
frequency_domain.start = 20e6;
frequency_domain.end = 20e9;
frequency_domain.step = 20e6;

% define sampled voltages
sampled_voltages (1). min_x = 14#*dx;
sampled_voltages min_y = 10*dy;
sampled_voltages min_z = 0;
sampled_voltages max_x = 20%dx;

max_z = 3*dz;
direction = ’zp’
display_plot = false;

sampled_voltages
sampled_voltages
sampled_voltages

sampled_voltages
sampled_voltages
sampled_voltages

(min_x = 30x%dx;

(

(
sampled_voltages (

(

(

(

(

).
). min_y = 36*dy;
). min_z = 0.0;
). max_x = 36%dx;
sampled_voltages (2). max_.y = 36*dy;
). max_z = 3+*dz;
). direction = ’zp’
).

sampled_voltages ;
display_plot = false;

sampled_voltages

% define sampled currents
sampled_currents (1). min_x = 14*dx;
sampled_currents (1). min_y = 10*dy;
sampled_currents (1). min_z = 3xdz;
sampled_currents (1). max_x = 20*dx;
sampled_currents (1). max_.y = 10*dy;
1). max_z = 3xdz;
1).direction = ’yp’
1).

sampled_currents ;
display_plot = false;

sampled_currents

174 CHAPTER 6 « S-Parameters

stysampled_currents
sampled_currents
ss|sampled_currents
sampled_currents

(2). min_x = 30*dx;
(2
(2
(2
ss|sampled_currents (2
(2
(2
(2

)

). min_y 36xdy;

). min_z 3xdz;

). max_x = 36xdx;

). max_y = 36xdy;
sampled_currents (2)
s7|sampled_currents (2)
sampled_currents (2)

.max_z = 3xdz;
.direction = ’'yn’;
.display_plot = false;

% define ports

s|ports (1).sampled_voltage_index = 1;
ports (1).sampled_current_index = 1;
s|ports(1).impedance = 50;
ports (1).is_source_port = true;
65
ports (2).sampled_voltage_index = 2;
o7|ports (2).sampled_current_index = 2;
ports (2).impedance = 50;
ew|ports (2).is_source_port = false;

Furthermore, one should notice that we can compute only the set of S-parameters (S,
and S,;) for which the first port is the excitation port. The other set of S-parameters (S, and
S55) can be obtained from (S7; and S,;) due to the symmetry in the structure. If the structure
is not symmetric, we should assign the voltage source to the second port location and repeat
the simulation. Another approach for obtaining all S-parameters is that, instead of defining
a single source, sources can be defined at every port separately, each having internal
impedance equal to the port impedance. Then the FDTD simulations can be repeated in a
loop a number of times equals the number of ports, where each time one of the ports is
set as the excitation port. Each time, the sources associated with the excitation port are
activated while other sources are deactivated. The inactive sources will not generate power
and serve only as passive terminations. Each time, the S-parameter set for the excitation
port as the input can be calculated and stored.

Listing 6.2 illustrates how we can define the ports. The only initialization required for the
ports is the determination of the number of ports in initialize_output_parameters as illustrated
in Listing 6.3. After the FDTD time-marching loop is completed, the S-parameters are
calculated in calculate_frequency_domain_outputs after frequency-domain transformation of

Listing 6.3 initialize_output_parameters.m

i|disp(’initializing._.the_output_.parameters’);

sinumber_of_sampled_electric_fields = size(sampled_electric_fields ,2);
number_of_sampled_magnetic_fields = size(sampled_magnetic_fields ,2);
sinumber_of_sampled_voltages = size(sampled_voltages ,b2);
number_of_sampled_currents = size(sampled_currents ,b2);
7lnumber_of_ports = size(ports ,2);

6.2 « S-Parameter calculations 175

sampled voltages and currents as shown in Listing 6.4. First, the incident and reflected
power waves are calculated for every port using (6.1). Then the S-parameters are calculated
for the active port using (6.3). The calculated S-parameters are plotted as the last step in
display_frequency_domain_outputs, as shown in Listing 6.5.

Listing 6.4 calculate_frequency_domain_outputs.m

-
s9/% calculation of S—parameters

% calculate incident and reflected power waves
ai| for ind=1:number_of_ports

svi = ports(ind).sampled_voltage_index;
I3 sci = ports(ind).sampled_current_index;
Z = ports(ind).impedance;
65 V = sampled_voltages(svi).frequency_domain_value;
I = sampled_currents(sci).frequency_domain_value;
67 ports(ind).a = 0.5%(V+Z.%1)./sqrt(real(Z));
ports(ind).b = 0.5%(V—conj(Z).*1)./sqrt(real(Z));
6 ports(ind). frequencies = frequency_array;
end

% calculate the S—parameters

5| for ind=1:number_of_ports

if ports(ind).is_source_port == true

75 for oind=1:number_of_ports

ports(ind).S(oind).values = ports(oind).b ./ ports(ind).a;
77 end

end

7| end

Listing 6.5 display_frequency_domain_outputs.m

-
71% figures for S—parameters

for ind=1:number_of_ports

]

19 if ports(ind).is_source_port == true
frequencies = ports(ind).frequencies*1e—9;
121 for oind=1:number_of_ports
S = ports(ind).S(oind).values;
123 Sdb = 20 * log10(abs(S));
Sphase = angle(S)*180/ pi;
125 figure;
subplot(2,1,1);
127 plot(frequencies, Sdb, 'b—",’linewidth’ ,1.5);
title (['S’ num2str(oind) num2str(ind)], fontsize’ ,12);
129 xlabel ('frequency.(GHz)’, ' fontsize’ ,12);
ylabel (’magnitude.(dB)’, fontsize’ ,12);
131 grid on;
subplot(2,1,2);
133 plot(frequencies, Sphase,’r—’, linewidth’ ,1.5);
xlabel ('frequency.(GHz)’, ' fontsize’ ,12);
135 ylabel ('phase_(degrees)’, fontsize’ ,12);
grid on;

137 drawnow ;

139

176 CHAPTER 6 « S-Parameters

The sample circuit in Figure 6.1 is run for 20,000 time steps, and the S-parameters of the
circuit are obtained at the reference planes 10 cells away from the terminations where the
ports are defined. Although the reference planes for the S-parameters are defined away from
the terminations, it is possible to define the planes at the terminations. It is sufficient to place
the sampled voltages and currents on the terminations.

Figure 6.3(a) shows the calculated S;; up to 20 GHz, and Figure 6.3(b) shows the cal-
culated S,;. It can be seen that the circuit acts as a low-pass filter where the pass band is up to
5.5 GHz. Comparing the results in Figure 6.3 with the ones published in [14] it is evident that
there are differences between the sets of results: some spikes appear in Figure 6.3. This is

10

Magnitude (dB)

40 | S ERERSCEREE EEEERIEEERI

(a) Frequency (GHz)

Magnitude (dB)

(b) Frequency (GHz)

Figure 6.3 S-parameters of the microstrip low-pass filter: (a) Sy, and (b) S>;.

6.2 « S-Parameter calculations 177

0.25 T T T

T T
Sampled voltage at port 2|

| B B L T

0.1

(Volt)

0.05

Time (ns)

Figure 6.4 Sampled voltage at the second port of the microstrip low-pass filter.

0.25 T T T

S S
015 f T S

X SO S M— S e

(Volt)

e e

Time (ns)

Figure 6.5 Sampled voltage at the second port of the microstrip low-pass filter with o¢ = 0.2.

because of the PEC boundaries, which make the FDTD simulation space into a cavity that
resonates at certain frequencies. Figure 6.4 shows the sampled voltage captured at the second
port of this microstrip filter. One can notice that, although the simulation is performed in
20,000 time steps, which is a large number of time steps for this problem, the transient
response still did not damp out. This behavior exposes itself as spikes (numerical errors) in the
S-parameter plots at different frequencies as shown in Figure 6.3. If the filter has slight loss,
the attenuation will improve the numerical errors, as the time-domain response will be
diminishing (as shown in Figure 6.5) for the filter lossy dielectric substrate. Therefore, the

178 CHAPTER 6 « S-Parameters

Magnitude (dB)

(@

Magnitude (dB)

(b)

40

10

—40

Frequency (GHz)

0 5 10 15 20

Frequency (GHz)

Figure 6.6 S-parameters of the microstrip low-pass filter with ¢° = 0.2: (a) Sy,
and (b) Sz].

truncation at a diminishing time-domain waveform will not cause significant errors even
though the cavity modes of the PEC closed box still exist. This is clearly shown in Figure 6.6
(a) and 6.6(b). If the simulation had been performed such that boundaries simulate open
space, the simulation time would take less and the S-parameters results would be clear of
these spikes. Chapters 7 and 8 discuss algorithms that simulate open boundaries for FDTD

simulations.

6.3 « Simulation examples 179

6.3 Simulation examples

6.3.1 Quarter-wave transformer

In this example the simulation of a microstrip quarter-wave transformer is presented. The
geometry and the dimensions of the circuit are shown in Figure 6.7. The circuit is con-
structed on a substrate having 1 mm thickness and 4.6 dielectric constant. The index of the
material type of the microstrip substrate is 4. A voltage source with internal resistance 50 Q
is connected to a 50 Q microstrip line having 1.8 mm width and 4 mm length. This line is
matched to a 100 Q line through a 70.7 Q line having 1 mm width and 10 mm length at
4 GHz. The 100 Q line has 0.4 mm width and 4 mm length and is terminated by a 100 Q
resistor. The FDTD problem space is composed of cubic cells with sides each measuring
0.2 mm. The boundaries of the problem space are PEC on all sides; however, to suppress the
cavity resonances another material type is defined as an absorber. The index of the material
type of the absorber is 5. The relative permittivity and permeability of this absorber is 1, the
electric conductivity is 1, and the magnetic conductivity is 142,130, which is the square of
the intrinsic impedance of free space. The air gap between the objects and boundaries is zero
on all sides. The bottom boundary serves as the ground of the microstrip circuit, while the
other five sides are surrounded by the absorber material. The definition of the relevant
problem space parameters and geometry are shown in Listing 6.6. The definition of the
voltage source and the resistor are shown in Listing 6.7. In the previous example, the sam-
pled voltages and sampled currents are defined on the microstrip lines away from the voltage

R =100 Q Absorber
Sampled voltage 2 i
Sampled current 2 ¥ —

Voltage source
Sampled voltage 1
Sampled current 1 4 mm

<
<

10 mm

[
>4

3

1.8 mm

4+—— 10 mm

thickness = 1 mm, dielectric constant = 4.6

Figure 6.7 The geometry and dimensions of a microstrip quarter-wave transformer matching a
100 Q line to 50 Q line.

180 CHAPTER 6 « S-Parameters

Listing 6.6 define_geometry.m

-
disp(’defining_the_problem_geometry’);

bricks = [];
4 spheres = [];

% define a brick with material type 4

>

bricks (1). min_x = 0;

s bricks (1). min_y = 0;
bricks (1). min_z = 0;

of bricks (1). max_-x = 10e—3;
bricks (1). max_.y = 18e-3;

2| bricks (1). max.z = 1e-3;
bricks (1). material_type = 4;

% define a brick with material type 2

16| bricks (2). min_x = 4e-3;
bricks (2). min_y = 0;

8| bricks (2). min_z = 1e-3;
bricks (2). max.x = 5.8e-3;

20| bricks (2). max_.y = 4e-—3;
bricks (2). max.z = 1e-3;

2| bricks (2). material_type = 2;

#|% define a brick with material type 2

bricks (3). min.x = 4.4e-3;

6| bricks (3). min_.y = 4e-3;
bricks (3). min_z = 1e-3;

[bricks (3). max.x = 5.4e-3;
bricks (3). max.y = 14e-3;

| bricks (3). max.z = 1e-3;
bricks (3). material_type = 2;

% define a brick with material type 2

sl bricks (4). min_x = 4.8e-3;
bricks (4). min_.y = 14e-3;

| bricks (4). min_z = 1e-3;
bricks (4). max.x = 5.2e-3;

s3] bricks (4). max.y = 18e—3;
bricks (4). max_z = 1e-3;

s bricks (4). material_type = 2;

2| % define absorber for zp side

bricks (5). min.x = —1e—3;

s bricks (5). min_.y = —2e-3;
bricks (5). min_.z = 3e-3;

46| bricks (5). max_x = 11e-3;
bricks (5). max_.y = 20e-3;

sl bricks (5). max_.z = 4e-3;
bricks (5). material_type = 5;

50

66

68

~
=

<
s}

<
3

-

3
%

7

®
3

»
5

»
k3

% define absorber

for xn side

bricks (6). min_.x = —1e—3;
bricks (6). min_.y = —2e-3;
bricks (6). min_z = 0;

bricks (6). max.x = 0;

bricks (6). max_.y = 20e-3;
bricks (6). max_.z = 4e-3;
bricks (6). material_type = 5;

% define absorber

% define absorber

for xp side

bricks (7). min_x = 10e-3;

2| bricks (7). min_y = —2e-3;
bricks (7). min_z = 0;
bricks (7). max.x = 11e-3;
bricks (7). max_.y = 20e-3;
bricks (7). max_.z = 4e-3;
bricks (7). material_type = 5;

for yn side

bricks (8). min_x = —1e-3;
bricks (8). min_.y = —2e-3;
bricks (8). min_z = 0;

bricks (8). max.x = 11e-3;
bricks (8). max_.y = —1e—3;
bricks (8). max_.z = 4e-3;
bricks (8). material_type = 5;
% define absorber for yp side
bricks (9). min_.x = —1e—3;
bricks (9). min_.y = 19e-3;
bricks (9). min_z = 0;

bricks (9). max.x = 11e-3;
bricks (9). max_.y = 20e-3;
bricks (9). max_.z = 4e-3;
bricks (9). materlal type = 5;

6.3 « Simulation examples

181

Listing 6.7

define_sources_and_lumped_elements.m

-
voltage_sources

(
voltage_sources (
voltage_sources (
voltage_sources (
voltage_sources (
voltage_sources (
voltage_sources (
voltage_sources (

.min_x = 4e-3;
.min_y = 0;
.min_z = 0;
.max_x = 5.8e-3;
.max.y = 0.4e-3;
.max_.z = le-3;
.direction = "zp’
.resistance = 50;

182 CHAPTER 6 « S-Parameters

voltage_sources (1). magnitude = 1;
2| voltage_sources (1). waveform_type = ’'gaussian’;
voltage_sources (1). waveform_index = 1;

min_x = 4.8e-3;
min_.y = 17.6e-3;
min_z = 0;

max_x = 5.2e-—3;

resistors
| resistors
resistors
s resistors

w|resistors
resistors
2| resistors

max_.z = le—3;
direction = 'z
resistance = 100;

’ .

(1).
(1).
(1).
(1).
resistors (1). max_.y = 18e-3;
(1).
(1).
(1).

source and the terminating resistor. In this example, the sampled voltages and sampled
currents are defined on the voltage source and the terminating resistor. Then the sampled
voltages and currents are assigned to ports. The definition of the output parameters is shown
in Listing 6.8.

Listing 6.8 define_output_parameters.m

(% frequency domain parameters
7| frequency_domain.start = 2e7;
frequency_domain.end = 8e9;
frequency_domain.step = 2e7;

S

% define sampled voltages

sampled_voltages (1). min_.x = 4e-3;

| sampled_voltages (1). min_.y = 0;
sampled_voltages (1). min_z = 0;

| sampled_voltages (1). max.x = 5.8e—3;
sampled_voltages (1). max.y = 0.4e-3;

7| sampled_voltages (1). max.z = 1e—3;
sampled_voltages (1). direction = ’zp’;

w|sampled_voltages (1). display_plot = false;

% define sampled voltages
sampled_voltages (2). min_.x = 4.8e—3;
sampled_voltages (2). min_.y = 17.6e—3;
sampled_voltages (2). min_.z = 0;
sl sampled_voltages (2). max_-x = 5.2e—3;
sampled_voltages (2). max.y = 18e—3;

(2).

(2).

(2).

7l sampled_voltages max_z = 1e—3;
sampled_voltages direction = ’zp’;
sampled_voltages display_plot = false;

% define sampled currents
sampled_currents (1). min_x = 4e-3;
sampled_currents (1). min_y = 0;
sampled_currents (1). min_.z = 0.4e-3;
sampled_currents (1). max.x = 5.8e—3;
sampled_currents (1). max.y = 0.4e—3;

(1).

(1).

(1).

4

43

45

7l sampled_currents max_z = 0.6e—3;
sampled_currents direction = ’zp’;
sampled_currents display_plot = false;

'

4

sampled_currents
;) sampled_currents
sampled_currents
ss| sampled_currents

s71 sampled_currents
sampled_currents
s9| sampled_currents

61|% define ports
ports (1
| ports (1).

ports (1).impedance
65| ports (1).

o7| ports (2)
ports (2)
w| ports (2).impedance
ports (2)

(2
(2)
(2)
(2)
sampled_currents (2).
(2)
(2).
(2).

is_source_port

.is_source_port =

% define sampled currents

).

6.3 « Simulation examples

min_x = 4.8e-3;
.min_.y = 17.6e-3;
.min_z = 0.4e-3;
.max_x = 5.2e—3;
max_.y = 18e—3;

.max_.z = 0.6e-3;
direction = "zp’

display_plot = false;

50;

100;

).sampled_voltage_index = 1;
sampled_current_index = 1;

true;

.sampled_voltage_index =
.sampled_current_index = 2;

|
N

false;

183

The FDTD simulation is run for 5,000 time steps, and the S-parameters of the simulation
are plotted in Figure 6.8. The plotted S, indicates that a good match has been obtained at
4 GHz. Furthermore, the results are free of spikes, indicating that the absorbers used in the
simulation suppressed the cavity resonances. However, one should keep in mind that
although the use of absorbers improves the FDTD simulation results, it may introduce some
other undesired errors to the simulation results. In the following chapters, more advanced
absorbing boundaries are discussed that minimize these errors.

Magnitude (dB)

Magnitude (dB)

Figure 6.8 The S;;

3
Frequency (GHz)

and S,; of the microstrip quarter-wave transformer circuit.

184

CHAPTER 6 « S-Parameters

6.4 Exercises

6.1

6.2

Consider the low-pass filter circuit in the example described in Section 6.2. Use the
same type of absorber as shown in the example in Section 6.3.1 to terminate the
boundaries of the low-pass filter circuit. Use absorbers with 5 cells thickness,
and leave at least 5 cells air gap between the circuit and the absorbers in the xn, xp, yn,
and yp directions. Leave at least 10 cells air gap between the circuit and the absorbers
in the zp direction. In the zn direction the PEC boundary will serve as the ground plane
of the circuit. The FDTD problem space is illustrated in Figure 6.9 as a reference.
Rerun the simulation for 3,000 time steps, and verify that the spikes in Figure 6.3 due
to cavity resonances are suppressed.

Consider the quarter-wave transformer circuit shown in Example 6.3.1. Redefine the
voltage source and the resistor such that voltage source will feed the 100 Q line and
will have 100 Q internal resistance, while the resistor will terminate the 50 Q line
and will have 50 Q resistance. Set port 2 as the active port, and run the simulation.
Obtain the figures plotting Si, and S,,, and verify that they are similar to the S,; and
811 in Figure 6.8, respectively.

Figure 6.9 The problem space for the low-pass filter with absorbers on the xn, xp, yn, yp, and

zp sides.

CHAPTER 7

Perfectly matched layer absorbing
boundary

Because computational storage space is finite, the finite-difference time-domain (FDTD)
problem space size is finite and needs to be truncated by special boundary conditions. In
the previous chapters we discussed some examples for which the problem space is termi-
nated by perfect electric conductor (PEC) boundaries. However, many applications, such as
scattering and radiation problems, require the boundaries simulated as open space. The
types of special boundary conditions that simulate electromagnetic waves propagating
continuously beyond the computational space are called absorbing boundary conditions
(ABCs). However, the imperfect truncation of the problem space will create numerical
reflections, which will corrupt the computational results in the problem space after certain
amounts of simulation time. So far, several various types of ABCs have been developed.
However, the perfectly matched layer (PML) introduced by Berenger [15, 16] has been
proven to be one of the most robust ABCs [17-20] in comparison with other techniques
adopted in the past. PML is a finite-thickness special medium surrounding the computa-
tional space based on fictitious constitutive parameters to create a wave-impedance
matching condition, which is independent of the angles and frequencies of the wave inci-
dent on this boundary. The theory and implementation of the PML boundary condition are
illustrated in this chapter.

7.1 Theory of PML

In this section we demonstrate analytically the reflectionless characteristics of PML at the
vacuum-PML and PML-PML interfaces [15] in detail.

7.1.1 Theory of PML at the vacuum-PML interface

We provide the analysis of reflection at a vacuum—PML interface in a two-dimensional case.
Consider the TE, polarized plane wave propagating in an arbitrary direction as shown
in Figure 7.1. In the given TE. case E,, E,, and H. are the only field components that exist in

185

186 CHAPTER 7 « Perfectly matched layer absorbing boundary

v

Figure 7.1 The field decomposition of a TE, polarized plane wave.

the two-dimensional space. These field components can be expressed in the time-harmonic
domain as

Ey, = —Egsin gye/®==M), (7.1a)
E, = Ejcos e/~ (7.1b)
H, = Hye/o=—Py). (7.1c)

Maxwell’s equations for a TE, polarized wave are

OE, OH,
g, =% 72
€ + 0o o (7.2a)
OE, ., OH.
€5, +0°E, = — o (7.2b)
OH. OE, OE
z ng o =—=__2 7.2
o, O o ox (7.2¢)

In a TE. PML medium, H, can be broken into two artificial components associated with
the x and y directions as

H,, = Zxoe_jwﬁye-iw(t_ax), (7.3a)
H.y = Hayge 7" el =), (7.3b)

where H, = H., + H.,. Therefore, a modified set of Maxwell’s equations for a 7E; polarized
PML medium can be expressed as

OE, O(H. + H.y)
8OW+O~peyEx = Ty, (743)
E H..+ H,
& b + OperEy = — w (7.4b)

ot Ox ’

7.1 « Theory of PML 187

OH. OE,

MOWZX‘F%WHM R (7.4¢)
OH, OFE,
,Lto Wy + Upmszy = 87)/, (74d)

Where Opex, Opeys Tpmy, AN 0,y are the introduced fictitious conductivities. With the given
conductivities the PML medium described by (7.4) is an anisotropic medium. When
Opmx = Opmy = 0, merging (7.4c) and (7.4d) yields (7.2¢). Field components E, and H.,
together can represent a wave propagating in the x direction, and field components of £, and
H., represent a wave propagating in the y direction. Substituting the field equations for the
x and y propagating waves in (7.1a), (7.1b), (7.3a), and (7.3b) into the modified Maxwell’s
equations given, one can obtain

ey sin g —j%EO sin gy = B(Hzo + Hzyo), (7.5a)
eoEq cos ¢ fj%Eo cos ¢y = a(H-o + Hy0), (7.5b)
toHzxo fj%Hzxo = akEy cos,, (7.5¢)
oo =] 22 Hoyo = BEo sin . (7.5d)

Using (7.5¢) and (7.5d) to eliminate magnetic field terms from (7.5a) and (7.5b) yields

0.coS Py Bsin g,] (7.6a)

[@) L 7
80#0(]80“) Siftgo =F (1 _j(apm.r/ﬂow)) * (1 _j(opmy/ﬂow))

. Opex o.cos ¢ Bsin¢
1 - L) = 0 + 0 : 7.6b
eoﬂo(Jprey Je0s by = a [(1 iomie)) _j(apn1y/ﬂ0w>)] (7.6b)

The unknown constants a and 3 can be obtained from (7.6a) and (7.6b) as

o= \//?(1 —jijf;;) Cos ¢y, (7.7a)

B = @(1 —jz)p—:;) sin ¢, (7.7b)
where

G= \/wxcos2 bo + wy sin® ¢y, (7.8)
and

1 — jOpex/weg 1 — jOpey/weg

w, = % 0% (7.9)

Wy = .
' 1 _Japn1y/w/"0 ’

1 _j0p111x/wﬂ0 ’

188 CHAPTER 7 « Perfectly matched layer absorbing boundary

Therefore, the generalized field component can be expressed as

1/} _ wogjw(f xc(vs¢0£‘0y’sin¢0)e npe;occ(g%xe "”?;,1'2%/7 (710)
where the first exponential represents the phase of a plane wave and the second and third
exponentials govern the decrease in the magnitude of the wave along the x axis and y axis,
respectively.

Once a and f are determined by (7.7), the split magnetic field can be determined from
(7.5¢) and (7.5d) as

€0 Wy COS% ¢

H,=Ey, | —————, (7.11a)
Mo G
)
£0 Wy SIN” @
Hyo=Eo, | ———. 7.11b
0 =Eo G (7.11b)

The magnitude of the total magnetic field H. is then given as

Hy = Haog + Hopg = Eo, |-2G. (7.12)
Ho

The wave impedance in a 7E, PML medium can be expressed as

L=—=,/—=. 7.13
H() SoG ()

It is important to note that if the conductivity parameters are chosen such that

Tpex _ Tpme 4ng @:@, (7.14)
€0 Ho €0 Mo

then the term G becomes equal to unity as w, and w, becomes equal to unity. Therefore, the
wave impedance of this PML medium becomes the same as that of the interior free space. In
other words, when the constitutive conditions of (7.14) are satisfied, a TE, polarized wave
can propagate from free space into the PML medium without reflection for all frequencies,
and all incident angles as can be concluded from (7.8). One should notice that, when the
electric and magnetic losses are assigned to be zero, the field updating equation (7.4) for the
PML region becomes that of a vacuum region.

7.1.2 Theory of PML at the PML-PML interface

The reflection of fields at the interface between two different PML media can be analyzed as
follows. A TE, polarized wave of arbitrary incidence traveling from PML layer “1” to PML
layer “2” is depicted in Figure 7.2, where the interface is normal to the x axis. The reflection
coefficient for an arbitrary incident wave between two lossy media can be expressed as

Z;cos ¢, — Z) cos ¢
ry, =)
P 7,008 ¢py + Z; cos

(7.15)

7.1 « Theory of PML 189

Gpe.xl’ Gprnxl O-pex2= Gprch
O-pey1= O‘pmyl O-pey2= Gpmy2
)
o
L
X

Figure 7.2 The plane wave transition at the interface between two PML media.

where Z, and Z, are the intrinsic impedances of respective mediums. Applying (7.13), the
reflection coefficient r,, becomes

_ G cosp, — G cos ¢,

= . 7.16
T G cos ¢, + Gy cos ¢, (7.16)

The Snell-Descartes law at the interface normal to x of two lossy media can be described as

(_iﬂ>%_ (1_i"y2>%. (7.17)

Eo G1 Eg Gz

When the two media have the same conductivities Opep1 = Opeyz = Opey AN Oy =

Opmy2 = Opmy, (7.17) becomes

P

sing, sing,
=12, 7.18
G, G (7.18)

Moreover, when (Opexi> Opmx1)s (Opex2s Tpmx2)> a0d (Opey, Opmy) satisfy the matching con-
dition in (7.14), G; = G, = 1. Then (7.18) reduces to ¢; = ¢,, and (7.16) reduces to
r, = 0. Therefore, theoretically when two PML media satisfy (7.14) and lie at an interface
normal to the x axis with the same (0,¢y, Opmy), @ Wave can transmit through this interface
with no reflections, at any angle of incidence and any frequency. When (0ex1, Opmxis Opeyis
Opmy1) are assigned to be (0, 0, 0, 0), the PML medium 1 becomes a vacuum. Therefore,
when (0pex2, Opmx2) satisfies (7.14), the reflection coefficient at this interface is also null,
which agrees with the previous vacuum—PML analysis. However, if the two media have the
same (0pey, Opmy) but do not satisfy (7.14), then the reflection coefficient becomes

_sing; cos ¢, — sin ¢, cos ¢, (7.19)

P sing, cos ¢, + sing, cos ¢

190 CHAPTER 7 « Perfectly matched layer absorbing boundary

Substituting (7.18) into (7.19), the reflection coefficient of two unmatched PML media
becomes

= M (7.20)
VWil + /Wi
Equation (7.20) shows that the reflection coefficient for two unmatched PML media is
highly dependent on frequency, regardless of the incident angle. When the two PML media
follow the reflectionless condition in (7.14), w,; = w,, = 1, the reflection coefficient
becomes null.
The analysis can be applied to two PML media lying at the interface normal to the y axis
as well. The Snell-Descartes law related to this interface is

<l—ioﬂ>%:<l—iaxz>%. (7.21)
gw) G o) Gy

If the two media have the same conductivities such that 0,eci = Opex2 = Opex and
Opmxl = Opmx2 = Opmy, (7.21) reduces to (7.18). Similarly, if (0pepi, Opmy1)s (Opey2s Tpmy2),
and (0pex, Oppy) satisfy the matching condition in (7.14), then G; = G, = 1. Equation (7.21)
then reduces to ¢; = ¢, and the reflection coefficient at this interface is r, = 0. To match
the vacuum—PML interface normal to the y axis, the reflectionless condition can be achieved
when (0,2, Opmy2) of the PML medium satisfies (7.14).

Based on the previous discussion, if a two-dimensional FDTD problem space is attached
with an adequate thickness of PML media as shown in Figure 7.3, the outgoing waves will be
absorbed without any undesired numerical reflections. The PML regions must be assigned
appropriate conductivity values satisfying the matching condition (7.14); the positive and

(O-pex’ 0-17””’ O-PQV’ Gpmy) (0’ 0’ O-Pe}” GP’V’J") (Gpex! Gpmx’ Gpey’ O}:my)
\ /

\ X PML ./
PEC
PML V'

(Gpexs Opmxs 0, 0) X Y (Gpex’ Opmyx> 0,0)

v, TR

(Gpep 6[)”1)(7 0}7({\7’ Gpmy) (0,0, Gpey! Gpmy) (Gpex’ Gpm):! Gpey’ Gpmy)

Figure 7.3 The loss distributions in two-dimensional PML regions.

7.2 « PML equations for three-dimensional problem space 191

negative x boundaries of the PML regions have nonzero o,,.,, and 0,,,., whereas the positive
and negative y boundaries of the PML regions have nonzero o, and o,,, values. The
coexistence of nonzero values of 0,ex, Opyxs Opey, a0d 0,y 18 required at the four corner PML
overlapping regions. Using a similar analysis, the conditions of (7.14) can be applied to a
TM, polarized wave to travel from free space to PML and from PML to PML without
reflection [21]. Using the same impedance matching condition in (7.14), the modified
Maxwell’s equations for two-dimensional 7M, PML updating equations are obtained as

& agt” + OpexEzy = %, (7.22a)
€ 85? + OpeyEzy = 88_1;)57 (7.22b)
Ho % + OpmyHy = — MZ"TJ;E”), (7.22¢)
o % + OpmeHy, = W . (7.22d)

The finite difference approximation schemes can be applied to the modified Maxwell’s
equations (7.4) and (7.22) to obtain the field-updating equations for the PML regions in the
two-dimensional FDTD problem space.

7.2 PML equations for three-dimensional problem space

For a three-dimensional problem space, each field component of the electric and magnetic
fields is broken into two field components similar to the two-dimensional case. Therefore,
the modified Maxwell’s equations have 12 field components instead of the original six
components. These modified split electric field equations presented in [16] are

0 a;::y + OpeyEry = 8(1{”‘87;#”), (7.23a)
€0 BaE;‘Z + OpesB: = — W, (7.23b)
€0 agtyx + Opex By = — W7 (7.23¢)
€ agfz + Ope:Ey. = W, (7.23d)
€0 ag;x + OpexEzx = W, (7.23¢)
€ % + OpeyEzy = — 8(%67:1{“) : (7.23f)

192 CHAPTER 7 « Perfectly matched layer absorbing boundary

whereas the modified Maxwell’s split magnetic field equations are

OH, O(E- + E)
ﬂowy—‘r opmnyy = _T’ (7243)
OH,, O(Ey + Ey:)
- mzHrz =) 7.24b
Ho ot + Op Oz ()
OH,, O(Ex +E..)
o Tty + OpmzHy; = — S (7.24¢)
OH,x O(E + Es)
Ko 81}) + Opmx[_]yx = Tv (724d)
a]_Iz 8<Exy + Exz)
o 8—tv + OpmyH;, = T, (7.24e)
OH., O(Ey + E,2)
e = — — - 7.24f
Ko ot + Op Ox ()
Then the matching condition for a three-dimensional PML is given by
Tpex _ Tpmx — Tper _ Tper 4 Tpez _ Opmz (7.25)

€0 Ho €0 Ho €0 Ho

If a three-dimensional FDTD problem space is attached with adequate thickness of PML
media as shown in Figure 7.4, the outgoing waves will be absorbed without any undesired
numerical reflections. The PML regions must be assigned appropriate conductivity values
satisfying the matching condition (7.25); the positive and negative x boundaries of PML
regions have nonzero o, and 0,,,, the positive and negative y boundaries of PML regions
have nonzero o,,, and 0,,,,, and the positive and negative z boundaries of PML regions have
NONZETO Oy, and 0y, values as illustrated in Figure 7.4. The coexistence of nonzero values
of Opexs Opmxs Tpeys Opmys Opez> AN Oy is required at the PML overlapping regions.

Finally, applying the finite difference schemes to the modified Maxwell’s equations (7.23)
and (7.24), one can obtain the FDTD field updating equations for the three-dimensional PML
regions.

7.3 PML loss functions

As discussed in the previous sections, PML regions can be formed as the boundaries of an
FDTD problem space where specific conductivities are assigned such that the outgoing
waves penetrate without reflection and attenuate while traveling in the PML medium. The
PML medium is governed by the modified Maxwell’s equations (7.4), (7.22), (7.23), and
(7.24), which can be used to obtain the updating equations for the field components in the
PML regions. Furthermore, the outer boundaries of the PML regions are terminated by PEC
walls. When a finite-thickness PML medium backed by a PEC wall is adopted, an incident
plane wave may not be totally attenuated within the PML region, and small reflections to the
interior domain from the PEC back wall may occur. For a finite-width PML medium where

7.3 « PML loss functions 193

(©) (d)

Figure 7.4 Nonzero regions of PML conductivities for a three-dimensional FDTD simulation
domain: (a) nonzero o,,, and 0,,,,; (b) nonzero o, and o,,,,; (c) nonzero o,.. and
Opmz; and (d) overlapping PML regions.

the conductivity distribution is uniform, there is an apparent reflection coefficient, which is
expressed as

R(gg) = & X2, (7.26)
where o is the conductivity of the medium. Here the exponential term is the attenuation
factor of the field magnitudes of the plane waves as shown in (7.10), and 9 is the thickness
of the PML medium. The factor 2 in the exponent is due to the travel distance, which is twice
the distance between the vacuum—PML interface and the PEC backing. If ¢ is 0, (7.26) is
the reflection coefficient for a finite-thickness PML medium at normal incidence. If ¢ is
m/2, the incident plane wave is grazing to the PML medium and is attenuated by the per-
pendicular PML medium. From (7.26), the effectiveness of a finite-width PML is dependent
on the losses within the PML medium. In addition, (7.26) can be used not only to predict the
ideal performance of a finite-width PML medium but also to compute the appropriate loss
distribution based on the loss profiles described in the following paragraphs.

194 CHAPTER 7 « Perfectly matched layer absorbing boundary

As presented in [15], significant reflections were observed when constant uniform
losses are assigned throughout the PML media, which is a result of the discrete approx-
imation of fields and material parameters at the domain—PML interfaces and sharp varia-
tion of conductivity profiles. This mismatch problem can be tempered using a spatially
gradually increasing conductivity distribution, which is zero at the domain—PML interface
and tends to be a maximum conductivity o, at the end of the PML region. In [18] two
major types of mathematical functions are proposed as the conductivity distributions or loss
profiles: power and geometrically increasing functions. The power-increasing function is
defined as

ON Mo

o(p) = (Tmax<5) , (7.27a)
. (I’lpml + 1)806‘ ln(R(O))

Omax = 2ASN) (727b)

where p is the distance from the computational domain—PML interface to the position of the
field component, and 9 is the thickness of the PML cells. The parameter N is the number of
PML cells, As is the cell size used for a PML cell, and R(0) is the reflection coefficient of
the finite-width PML medium at normal incidence. The distribution function is linear for
nym = 1 and parabolic for n,,,; = 2. To determine the conductivity profile using (7.27a) the
parameters R(0) and n,,,; must be predefined. These parameters are used to determine oy,ax
using (7.27b), which is then used in the calculation of o(p). Usually #,,, takes a value such
as 2, 3, or 4 and R(0) takes a very small value such as 10 for a satisfactory PML
performance.
The geometrically increasing distribution for o(p) is given by

o(p) = o0g~, (7.28a)
oo = —22’;4;@1111(1«0)), (7.28b)

where the parameter g is a real number used for a geometrically increasing function.

7.4 FDTD updating equations for PML and MATLAB®
implementation

7.4.1 PML updating equations — two-dimensional TE, case

The PML updating equations can be obtained for the two-dimensional 7E, case by applying
the central difference approximation to the derivatives in the modified Maxwell’s equations
(7.4). After some manipulations one can obtain the two-dimensional TE, PML updating
equations based on the field positioning scheme given in Figure 1.10 as

B,) = Cenelis) X B2) + Conein) x (HEHG) = HEP G = 1)), (7.29)

7.4 « FDTD updating equations for PML and MATLAB® implementation 195

where

Coneli J) = 2e9 — Atoye (i, J)
eren 280 + Atope, (i,)’

2At
2e9 + Atat, (i, j))Ay

Cexhz(i7j) = (

nlo .. n+d . .
B,) = Conelis) X B J) + Caelin) x (HIG) = B = 1,))), (7.30)
where

230 — Ato, ex(i7j)
Coi iy = 20 = Atope(is j)
eye(l’]) 28() —+ Atopex(i7j) ’

2At
260 4 Atope (i, j)) Ax

Ceyhz(iaj) = - (

T . n—t,.
HEZ (i, j) = Chaanliy) x Hox 2(i, j) + Chaxey(i, J) X (E;’(z +1,/)— E;(l,])), (7.31)
where

o 2#0 — AtOpmx(i?j)
Croxn (i, J) = i, j)
e (1, J) 2uy + Atop(i,)
2At

2uy + At”pmx(ia]))Ax .

Chzxey(iaj) = _(

ntl, n—t, .. .o nee nye
sz+2(l>]) = Chzyh(la]) X Hzy 2(17]) + ChzyEX(lJ) X (Ex(l,] +1) — Ex(l,j)), (7'32)

where

.. 2,“0 - Atapmy(i7j)
Chzyn(i, J) = s
! () 21“0 +Ato'pmy(lvj)

2At
2/"0 + Atopmy(ivj))Ay.

One should recall that A.(i, j) = H..(i, j) + H.(i, j). As illustrated in Figure 7.3 certain
PML conductivities are defined at certain regions. Therefore, each of the equations (7.29)—
(7.32) is applied in a two-dimensional problem space where its respective PML conductivity
is defined. Figure 7.5 shows the PML regions where the conductivity parameters are nonzero
and the respective field components that need to be updated at each region. Figure 7.5(a)
shows the regions where o,,, is defined. These regions are denoted as xn and xp. One can
notice from (7.4b) and (7.30) that 0, appears in the equation where E,, is updated. There-
fore, the components of £, lying in the xn and xp regions are updated at every time step using
(7.30). The other components of E,, that are located in the intermediate region can be updated
using the regular non-PML updating equation (1.34). Similarly, 0, is nonzero in the regions
that are denoted as yn and yp in Figure 7.5(b). The components of E, lying in the yn and yp

Chzyex(ia]) = (

196 CHAPTER 7 « Perfectly matched layer absorbing boundary

w E, NONZEro Oy,
S) S) €10 O,
2 ZCIO O,y 2
o pe)
N N E,
g E. = ;
g y 2
y E, £, y
I xn xp I yn E, NONZEro Oy,
X X
(@) (b)
yp H.. = Zero Gy, w H, NONZETO Oy,
sz H, zy
: :
° °
5 ZETO Oy 5 2 ZET0 Oy g
S s = =
S S 2 H N
=] HZ =] N z N
xn xp
y HZ)C HZX y
I xn yn H, zero 0y, xp I yn H,, NONZETO 0,
X X
(© (d)

Figure 7.5 Nonzero TE. regions of PML conductivities: (a) nonzero o,,.,; (b) nonzero o,
(C) nonzero 0,,,,; and (d) nonzero o,,,,.

eys

regions are updated at every time step using (7.29), and the components located in the
intermediate region are updated using the regular non-PML updating equation (1.33).

Since the magnetic field H. is the sum of two split fields H., and H., in the PML regions,
its update is more complicated. The PML regions and non-PML regions are shown in
Figure 7.5(c) and 7.5(d), where the PML regions are denoted as xn, xp, yn, and yp. The
magnetic field components of H, lying in the non-PML region can be updated using the
regular updating equation (1.35). However, the components of H, in the PML regions are not
directly calculated; the components of H., and H., are calculated in the PML regions using
the appropriate updating equations, and then they are summed up to yield H, in the PML
region. The conductivity o, is nonzero in the xn and xp regions as shown in Figure 7.5(c).
The components of H.,, are calculated in the same regions using (7.31). However, compo-
nents of H, need to be calculated in the yn and yp regions as well. Since 0y, is zero in these
regions setting o, zero in (7.31) will yield the required updating equation for ., in the
yn and yp regions as

1 1
HL2 (i, j) = Chzn(iy /) % Hox (i,) + Chexey (i,) X (E;’(i +1,))—E) <i,j)), (7.33)

7.4 « FDTD updating equations for PML and MATLAB® implementation 197

where

At
Chzx [,] :17 Chzxey(i, j) = ———.
hew (1,) hexey (1 J) e

Similarly, the conductivity o,,, is nonzero in the yn and yp regions as shown in
Figure 7.5(d). The components of ., are calculated in these regions using (7.32). The
components of H, need to be calculated in the xn and xp regions as well. Since 0,,,,, is zero
in these regions, setting 0,,,, to zero in (7.32) will yield the required updating equation for
H.,, in the xn and xp regions as

ntl, n—t, noe . Nl .
H (i,) = Chaniy /) % Hay (i, j) + Chayen iy J) % (E2(0,j + 1) — E7(i, /), (7.34)
where

At
Holy”

Chzyh(iaj) = 17 ChzyeX(iaj)

After all the components of H., and H.,, are updated in the PML regions, they are added
to calculate H,.

7.4.2 PML updating equations — two-dimensional TM, case

The PML updating equations can be obtained for the two-dimensional 7M., case by applying
the central difference approximation to the derivatives in the modified Maxwell’s equations
(7.22). After some manipulations one can obtain the two-dimensional 7M, PML updating
equations based on the field positioning scheme given in Figure 1.11 as

1 n+t . R
B2) = Coneli) % Eais) + Conan (i) % (H) 30,) = 3= 1)), (735)
where

Cone(i,) = 220 A10pe(0,))
ezxe\ly 280 + At()‘pex(iaj) ’

2At
2¢&0 + Ata,,ex(i,j))Ax'

Cethy(iv]) = (

ntlo. . ntlo. .
30, J) = CayelisJ) X B2,) + ConlisJ) % (HE3(0,) = HIG,) = 1)), (7.36)
where

C (l]) _ 280(i7 J) B Atap@}’(ivj)
e 2¢0(i, j) + Atopey(i,)’
2At

280 + Atopey(iaj))Ay '

Cezyhx(ivj) = - (

n+d n—%,. . .. noe o - nye s
Hx+2(17]) - Chxh(la]) X HX Z(Za]> + Chxez(l7]) X (Ez(l7]+ 1) _Ez(l7]))a (737)

198 CHAPTER 7 « Perfectly matched layer absorbing boundary

where
Chal) = Rl)
e 2uy + At(’pmy(iaj) 7
Cieer (i) 2At
xez\1, = - . .
! / (2:“0 + Atopmy(la]))Ay
ntd L. .. n—t nys . nye s
Hy+2(la.]) :Chyh(lvj) XH)’ 2(17])+Chy62(l7]) X (Ez(l+17])_Ez(l7J))7 (738)
where

2uy — Ato (i,]
Conli) =207 Aroimxgi,ﬁ ’
2A¢
2uy + Atapmx(ivj))Ax.
One should recall that E.(i, j) = E..(i, j) + E.,(i, j). Consider the nonzero PML con-
ductivity regions given in Figure 7.6. Figure 7.6(a) shows that 0,,,, is defined in the regions

Chyf-’Z(ia f) = (

w H, nonzero oy,
]]
© ©
<] S Zero O-pmy
0[\)] Zero Gpmx 0[3]
5 5 H,
= H y |
Y H, Hy y
I xn xp I yn H, nonzero oy,
x X
(a) (b)
yp E. zero 0y, w E, NONZETO G,
Ezy Ezy
4 4
© © g §
]]
5 Z€10 O, 5 © Ze10 O, S)
N pex N [e] o
g g g 8
(= E. =} N E. N
xn xp
y sz sz v
I xn |yn E, zero 0, xp I yn E, NONZEro Gy,
x X
() (d)

Figure 7.6 Nonzero TM. regions of PML conductivities: (a) NONZEro 0,,y; (b) NONZETO 0,y

(c) nonzero 0,.,; and (d) nonzero o,,,.

7.4 « FDTD updating equations for PML and MATLAB® implementation 199

denoted as xn and xp. Therefore, components of H, lying in these regions are updated at
every time step using the PML updating equation (7.38). The components of H,, lying in the
intermediate region are updated using the regular updating equation (1.38). The conductivity
Opmy 18 nonzero in the yn and yp regions shown in Figure 7.6(b); therefore, the components of
H, lying in the yn and yp regions are updated using the PML updating equation (7.37). The
components of H, lying in the intermediate region are updated using the regular updating
equation (1.37).

The components of E. are the sum of two split fields E., and £, in all of the PML regions
xn, xp, yn, and yp as illustrated in Figure 7.6(c) and 7.6(d). The components of E, in the
intermediate non-PML region are updated using the regular updating equation (1.36). The
conductivity o, is nonzero in the xn and xp regions as shown in Figure 7.6(c); therefore,
components of £, in these regions are updated using (7.35). Furthermore, the components of
E., in the yn and yp regions need to be calculated as well. Since o0, is zero in these regions,
setting 0, to zero in (7.35) yields the updating equation for E., in the yn and yp regions as

n+l/. .o n o[s .o koL, n+i . .
N0, /) = Comelis J) % E2(i,J) + Conan (i) % (H 30,) = T3 = 1)), (7:39)

where
. .. At
Cezxe(l7]) = la Cethy(l7]) :m
Similarly, o,., is nonzero in the yn and yp regions as shown in Figure 7.6(d); therefore,

components of £, in these regions are updated using (7.36). Furthermore, the components of
E., in the xn and xp regions need to be calculated as well. Since 0,,, is zero in these regions,
setting 0,,,, to zero in (7.36) yields the updating equation for £, in the xn and xp regions as

n+%

n 1 . .
EZ\;‘—I(L]) = Cezye(i7j) X Eg<la]) + Cezyhx(i>j) X (Hx (i>j) - Hx+2(l>] - 1))7 (740)
where

At
Ceze.a.zlv Cezx.a.:_i'
ye i, J) vie (05 J) tohy
After all the components of ., and E., are updated in the PML regions, they are added to
calculate E..

7.4.3 MATLAB® implementation of the two-dimensional FDTD
method with PML

In this section we demonstrate the implementation of a two-dimensional FDTD MATLAB
code including PML boundaries. The main routine of the two-dimensional program is named
fdtd_solve_2d and is given in Listing 7.1. The general structure of the two-dimensional
FDTD program is the same as the three-dimensional FDTD program; it is composed of
problem definition, initialization, and execution sections. Many of the routines and notations
of the two-dimensional FDTD program are similar to their three-dimensional FDTD coun-
terparts; thus, the corresponding details are provided only when necessary.

200 CHAPTER 7 « Perfectly matched layer absorbing boundary

Listing 7.1 fdtd_solve_2d.m

(.
% initialize the matlab workspace
clear all; close all; clc;

~

IS

% define the problem
define_problem_space_parameters_2d;
define_geometry_2d;
define_sources_2d;
define_output_parameters_2d;

EN

»

1

% initialize the problem space and parameters
initialize_fdtd_material_grid_2d;
n|initialize_fdtd_parameters_and_arrays_2d;
initialize_sources_2d;
initialize_updating_coefficients_2d;
initialize_boundary_conditions_2d;
w|initialize_output_parameters_2d;
initialize_display_parameters_2d;

s

% draw the objects in the problem space
draw_objects_2d;

-
S

2|% FDTD time marching loop
run_fdtd_time_marching_loop_2d;

% display simulation results
post_process_and_display_results_2d;

o
S

7.4.3.1 Definition of the two-dimensional FDTD problem
The types of boundaries surrounding the problem space are defined in the subroutine
define_problem_space_parameters_2d, a partial code of which is shown in Listing 7.2. Here if
a boundary on one side is defined as PEC, the variable boundary.type takes the value “pec,”
whereas for PML it takes the value “pml.” The parameter air_buffer_number_of cells
determines the distance in number of cells between the objects in the problem space and the
boundaries, whether PEC or PML. The parameter pml_number_of cells determines
the thickness of the PML regions in number of cells. In this implementation the power
increasing function (7.27a) is used for the PML conductivity distributions along the
thickness of the PML regions. Two additional parameters are required for the PML,
the theoretical reflection coefficient (R(0)) and the order of PML (7,,;), as discussed in
Section 7.3. These two parameters are defined as boundary_pml_R_0 and boundary.
pml_order, respectively.

In the subroutine define_geometry_2d two-dimensional geometrical objects such as cir-
cles and rectangles can be defined by their coordinates, sizes, and material types.

The sources exciting the two-dimensional problem space are defined in the subroutine
define_sources_2d. Unlike the three-dimensional case, in this implementation the impressed
current sources are defined as sources explicitly as shown in Listing 7.3.

=

IS

EY

S

7.4 « FDTD updating equations for PML and MATLAB® implementation

Listing 7.2 define_problem_space_parameters_2d.m

201

p
% ==<boundary conditions>========
% Here we define the boundary conditions parameters

% 'pec’ : perfect electric conductor

% 'pml’ : perfectly matched layer
>|boundary.type_xn = “pml’;
boundary.air_buffer_.number_of_cells_xn = 10;
boundary.pml_number_of_cells_xn = 5;
boundary.type_xp = 'pml’;
boundary.air_buffer_number_of_cells_xp = 10;
boundary.pml_number_of_cells_xp = 5;

boundary.type_.yn = ‘pml’;
boundary.air_buffer_.number_of_cells_.yn = 10;

2| boundary. pml_number_of_cells_yn = 5;
boundary.type_yp = 'pml’;
boundary.air_buffer_.number_of_cells_.yp = 10;

boundary.pml_number_of_cells_.yp = 5;

boundary.pml_order = 2;
boundary.pmlI_R_.0 = 1e-8;

Listing 7.3 define_sources_2d.m

-
disp ('defining_sources’);

[1;
[

% define source waveform types and parameters
waveforms. gaussian (1). number_of_cells_per_wavelength = 0;
waveforms. gaussian (2). number_of_cells_per_wavelength = 15;

impressed_)
impressed_M

’

% electric current sources

% direction: ’xp’, ’'xn’, ’yp’, ’'yn’, ’zp’, or ’zn’
impressed_J (1). min_x = —0.1e-3;

impressed_]) (1). min.y = —0.1e-3;

impressed_] (1). max.x = 0.1e—3;

impressed_] (1). max.y = 0.1e—3;
impressed_] (1). direction = "zp’;

impressed_] (1). magnitude = 1;

impressed_] (1). waveform_type = ’gaussian’;
impressed_] (1). waveform_index = 1;

% % magnetic current sources

) ’ ’) ’ ’ ’) ’ ’)

% % direction: ’xp’, ’'xn’, ’yp’, ’'yn’, ’zp’, or ’zn

202 CHAPTER 7 « Perfectly matched layer absorbing boundary

% impressed_M (1). min_x = —0.1e—3;
2#|% impressed_M (1). min_y = —0.1e-3;
% impressed_M (1). max_x = 0.1e—3;
26|% impressed_M (1). max_.y = 0.1e—3;
% impressed_M (1). direction = ’zp’;
%% impressed_M (1). magnitude = 1;
% impressed_M (1). waveform_type = ’gaussian’;
50|% impressed_M (1). waveform_index = 1;

Outputs of the program are defined in the subroutine define_output_parameters_2d.
In this implementation the output parameters are sampled_electric_fields and
sampled_magnetic_fields captured at certain positions.

7.4.3.2 Initialization of the two-dimensional FDTD problem

The steps of the initialization process are shown in Listing 7.1. This process starts with the
subroutine initialize_fdtd_material_grid_2d. In this subroutine the first task is the calculation
of the dimensions of the two-dimensional problem space and the number of cells nx and ny in
the x and y dimensions, respectively. If some of the boundaries are defined as PML, the PML
regions are also included in the problem space. Therefore, nx and ny include the PML number
of cells as well. Then the material component arrays of the two-dimensional problem space are
constructed using the material averaging schemes that were discussed in Section 3.2. Next,
while creating the material grid, the PML regions are assigned free-space parameters. At this
point the PML regions are treated as if they are free-space regions; however, later PML
conductivity parameters are assigned to these regions, and special updating equations are used
to update fields in these regions. Furthermore, new parameters are defined and assigned
appropriate values as n_pml_xn, n_pml_xp, n_pml_yn, and n_pml_yp to hold the numbers
of cells for the thickness of the PML regions. Four logical parameters, is_pml_xn, is_pml_xp,
is_pml_yn, and is_pml_yp, are defined to indicate whether the respective side of the com-
putational boundary is PML or not. Since these parameters are used frequently, shorthand
notations are more appropriate to use. Figure 7.7 illustrates a problem space composed of two
circles, two rectangles, an impressed current source at the center, and 5 cells thick PML
boundaries. The air gap between the objects and the PML is 10 cells.

The subroutine initialize_fdtd_parameters_and_arrays_2d includes the definition of
some parameters such as &g, o, ¢, and At that are required for the FDTD calculation and
definition and initialization of field arrays Ex, Ey, Ez, Hx, Hy, and Hz. The field arrays are
defined for all the problem space including the PML regions.

In the subroutine initialize_sources_2d the indices indicating the positions of the
impressed electric and magnetic currents are determined and stored as the subfields of the
respective parameters impressed_J and impressed_M. Since the impressed currents are
used as explicit sources, their source waveforms are also computed. A two-dimensional
problem can have two modes of operation as TE and 7M. The mode of operation is deter-
mined by the sources. For instance, an impressed electric current J;, excites E, fields in the
problem space, thus giving rise to a 7M. operation. Similarly, impressed magnetic currents
M, and M;, also give rise to TM. operation. The impressed currents M., J;, and J;, give rise
to TE. operation. Therefore, the mode of operation is determined by the 1rnpressed currents
as shown in Listing 7.4, which includes the partial code of initialize_sources_2d. Here a

64

66

68

76

80

7.4 « FDTD updating equations for PML and MATLAB® implementation

n_pml_xn n_pml_xp
<> <

A

in_pml_yp

ny

in_pml_yn

A
v

nx

Figure 7.7 A two-dimensional FDTD problem space with PML boundaries.

Listing 7.4 initialize_sources_2d.m

203

IS) 3

% determine if TEz or TMz
is_.TEz = false;

is.TMz = false;

2| for ind = T:number_of_impressed_]
switch impressed_] (ind). direction (1)
case ’'x’
is_.TEz = true;
case 'y’
is_.TEz = true;
case 'z’

is_TMz = true;
end
end
for ind = 1:number_of_impressed_M
switch impressed_M(ind). direction (1)

’y !

case ’'x

is_ TMz = true;
case 'y’

is_.TMz = true;
case 'z’

is_.TEz = true;

end

end

204 CHAPTER 7 « Perfectly matched layer absorbing boundary

logical parameter is_TEz is defined to indicate that the mode of operation is TE,, whereas
another logical parameter is_TMz is defined to indicate that the mode of operation is TM..

The regular updating coefficients of the two-dimensional FDTD method are calculated in
the subroutine initialize_updating coefficients_2d based on the updating equations (1.33)—
(1.38), including the impressed current coefficients as well.

Some coefficients and field arrays need to be defined and initialized for the application of
the PML boundary conditions. The PML initialization process is performed in the subroutine
initialize_boundary_conditions_2d, which is shown in Listing 7.5. The indices of the nodes
determining the non-PML rectangular region as illustrated in Figure 7.7 are calculated as
(pis, pjs) and (pie, pje). Then two separate subroutines dedicated to the initialization of the
TE, and TM, cases are called based on the mode of operation.

The coefficients and fields required for the 7E, PML boundaries are initialized in the
subroutine initialize_pml_boundary_conditions_2d_TEz, and partial code for this case is
shown in Listing 7.6. Figure 7.8 shows the field distribution for the TE, case. The field
components in the shaded region are updated by the PML updating equations. The field
components on the outer boundary are not updated and are kept at zero value during the
FDTD iterations since they are simulating the PEC boundaries. The magnetic field compo-
nents H., and H., are defined in the four PML regions shown in Figure 7.5; therefore, the
corresponding field arrays Hzx_xn, Hzx_xp, Hzx_yn, Hzx_yp, Hzy_xn, Hzy_xp, Hzy_yn,
and Hzy_yp are initialized in Listing 7.6.

Then for each region the corresponding conductivity parameters and PML updating
coefficients are calculated. Listing 7.6 shows the initialization for the x» and yp regions.

One should take care while calculating the conductivity arrays. The conductivities 0
and o, are associated with the electric fields £, and E,, respectively, whereas 0,,,,, and 0,y
are associated with the magnetic field H,. Therefore, the conductivity components are
located in different positions. As mentioned before, the conductivity o(p) is zero at the PML
interior-domain interface, and it increases to a maximum value o,,,, at the end of the PML

Listing 7.5 initialize_boundary_conditions_2d.m

-
ifdisp(’initializing_boundary.conditions’);

% determine the boundaries of the non—pml region

pis = n_pml_xn+1;

s| pie = nx—n_pml_xp+1;
pjs = n_pml_yn+1;

7l pje = ny—n_pml_yp+1;

o if is_any_side_pml
if is_ TEz
1 initialize_pml_boundary_conditions_2d_TEz;

end
13 if is_.TMz
initialize_pml_boundary_conditions_2d_TMz;
15 end

end

16

3

22

24

28

32

36

44

46

50

7.4 « FDTD updating equations for PML and MATLAB® implementation

Listing 7.6 initialize_pml_boundary_conditions_2d_TEz.m

205

p
% initializing PML boundary conditions for TEz

disp(’initializing._.PML_boundary_conditions.for_TEz");

Hzx_xn = zeros(n_pml_xn, ny);
Hzy_xn = zeros(n_pml_xn,ny—n_pml_yn—n_pml_yp);
Hzx_xp = zeros(n_pml_xp,ny);
Hzy_xp = zeros(n_pml_xp,ny—n_pml_yn—n_pml_yp);
Hzx_yn = zeros(nx—n_pml_xn—n_pml_xp, n_pml_yn);
Hzy_yn = zeros(nx,n_pml_yn);
Hzx_yp = zeros(nx—n_pml_xn—n_pml_xp, n_pml_yp);
Hzy_yp = zeros(nx,n_pml_yp);

pml_order = boundary.pml_order;
R_0 = boundary.pml_R_0;

if is_pml_xn
sigma_pex_xn = zeros(n_pml_xn,ny);
sigma_pmx_xn = zeros(n_pml_xn,ny);

sigma_max = —(pml_order+1)*eps_Oxcxlog(R_-0)/(2*dx*n_pml_xn);
rho_e = ([n_pml_xn:—=1:1] — 0.75)/n_pml_xn;
rhoom = ([n_pml_xn:—=1:1] — 0.25)/n_pml_xn;
for ind = 1:n_pml_xn

sigma_pex_xn (ind ,:) = sigma_max * rho_e(ind)" pml_order;

sigma_pmx_xn(ind ,:) = ...

(mu_0/eps_-0) * sigma_max * rho_m(ind)” pml_order;

end

% Coeffiecients updating Ey
Ceye_xn = (2#eps_0 — dtxsigma_pex_xn)./(2* eps_0+dt*sigma_pex_xn);
Ceyhz_xn= —(2*dt/dx)./(2* eps_0 + dt*sigma_pex_xn);

% Coeffiecients updating Hzx
Chzxh_xn = (2*mu.0 — dt*sigma_pmx_xn)./(2* mu_0+dt*sigma_pmx_xn);
Chzxey_xn = —(2*dt/dx)./(2*mu_0 + dt*sigma_pmx_xn);

% Coeffiecients updating Hzy
Chzyh_xn = 1;
Chzyex_xn = dt/(dy*mu.0);

end

if is_.pml_yp
sigma_pey_yp = zeros(nx,n_pml_yp);
sigma_pmy_yp = zeros(nx,n_pml_yp);

sigma_max = —(pml_order+1)xeps_0*c*log(R_0)/(2*dy*n_pml_yp);
rho_e = ([1:n_pml_yp] — 0.75)/n_pml_yp;
rho.m = ([1:n_pml_yp] — 0.25)/n_pml_yp;
for ind = 1:n_pml_yp
sigma_pey_yp (:,ind) = sigma_max * rho_e(ind)” pml_order;
sigma_pmy_yp (:,ind)

206 CHAPTER 7 « Perfectly matched layer absorbing boundary

(mu_0/eps_0) * sigma_max * rho_m(ind)” pml_order;

52 end
54 % Coeffiecients updating Ex

Cexe_.yp = (2*eps.0 — dt*sigma_pey_yp)./(2* eps_0+dt*sigma_pey_yp);
56 Cexhz_yp = (2%dt/dy)./(2*eps_.0 + dtxsigma_pey_yp);
58 % Coeffiecients updating Hzx

Chzxh_yp = 1;
60 Chzxey_yp = —dt/(dx*mu_0);
02 % Coeffiecients updating Hzy

Chzyh_yp = (2#*mu.0 — dt*sigma_pmy_yp)./(2* mu_0+dt+sigma_pmy_yp);
64 Chzyex_yp = (2%dt/dy)./(2*mu.0 + dtxsigma_pmy_yp);

end

PML regions

(nx+1,ny+1)

-
-
-
-y
-
-y
-
-y
-
-y

pototeted

-)
-y
-)
-y
-
-y
-)
-y
-
-y

pofototod

-)
-y
-)
-y
-b
-y

potototer (pie: pe)

XE ¥ X X%

-y
-
-y

JodeoelejoJoelelledol}oe]

-
-y

Joedoededeoedeoeleoeljledeoeleoel

JodoJdJolledoedJodoeJoeodol

-
-y

JojJoJolleJoJoJoeojJoeoJgoel

-)

-
=)
-
=)-
-
=)
-
=)-
-
=)-

XS XE

R
| o

-y

-
-y
(]
-
-
-
-
-
-
-
-

(pis, pjs) —y ' _.. 1 _.. 1

SEXE XS

-
=)-
-
=-

1

-
-y
-
-y
-
-y
-)
-y

o Hz’ Hzx’ sz

-
b
[)
-
-
-p-
-
-=p-

1]

-y
-)
-y
-
-y
-y
-

XEXE sz
- - - 'y

.
Jododobodododlodotbod

1]

-y
-
-y
-
-y

Yodojoje]

-

X XS -,

(1, 1)
Figure 7.8 TE. field components in the PML regions.

region. In this implementation the imaginary PML regions are shifted inward by a quarter
cell size as shown in Figure 7.8. If the thickness of the PML region is N cells, this shift
ensures that NV electric field components and N magnetic field components are updated across
the PML thickness. For instance, consider the cross-section of a two-dimensional problem
space shown in Figure 7.9, which illustrates the field components updated in the x» and xp
regions. The distance of the electric field components E, from the interior boundary of the
PML is denoted as p, whereas for the magnetic field components H, it is denoted as p,,. The
distances p, and p,, are used in (7.27a) to calculate the values of 0., and 0,,,,, respectively.
These values are stored in arrays sigma_pex_xn and sigma_pmx_xn for the xn region as

7.4 « FDTD updating equations for PML and MATLAB® implementation 207

1D

(pis, 1) (pie, 1) |

N
f Ey ® sz Hzx’ sz

Figure 7.9 Field components updated by PML equations.

shown in Listing 7.6 and in sigma_pex_xp and sigma_pmx_xp for the xp region. Calcula-
tion of oy, and 0,,,, follows the same logic. Then these parameters are used to calculate the
respective PML updating coefficients in (7.29)—(7.32).

The initialization of the auxiliary split fields and the PML updating coefficients for the two-
dimensional 7M., case is performed in the subroutine initialize_pml_boundary_
conditions_2d_Tmz, a partial code of which is given for the xp and yn regions in Listing 7.7.
The initialization of the TM. case follows the same logic as the TE, case. The field positioning
and PML regions are shown in Figure 7.10, while the positions of the field components updated
by the PML equations and conductivity positions are shown in Figure 7.11 as a reference.

7.4.3.3 Running the two-dimensional FDTD simulation: the time-marching
loop

After the initialization process is completed, the subroutine run_fdtd_time_marching

loop_2d including the time-marching loop of FDTD procedure is called. The implementation

of the FDTD updating loop is shown in Listing 7.8.

During the time-marching loop the first step at every iteration is the update of magnetic
field components using the regular updating equations in update_magnetic_fields_2d as
shown in Listing 7.9. In the TE, case the H, field components in the intermediate regions of
Figure 7.5(c) and 7.5(d) are updated based on (1.35). In the TM, case the H, field compo-
nents in the intermediate region of Figure 7.6(b) and H, field components in the intermediate
region of Figure 7.6(a) are updated based on (1.37) and (1.38), respectively.

Then in update_impressed_M the impressed current terms appearing in (1.35), (1.37),
and (1.38) are added to their respective field terms H., H,, and H, as shown in Listing 7.10.

The subroutine update_magnetic_fields_for PML_2d is used to update the magnetic
field components needing special PML updates. As can be followed in Listing 7.11 the TE,
and TM, cases are treated in separate subroutines.

The TM, case is implemented in Listing 7.12, where H, is updated in the yn and yp regions of
Figure 7.6(b) using (7.37). H, is updated in the xn and xp regions of Figure 7.6(a) using (7.38).

The TE, case is implemented in Listing 7.13. H_, is updated in the x»n and xp regions of
Figure 7.5(c) using (7.31). H., is updated in the yn and yp regions of Figure 7.5(c) using

208 CHAPTER 7 « Perfectly matched layer absorbing boundary

Listing 7.7 initialize_pml_boundary_conditions_2d_TMz.m

p
% initializing PML boundary conditions for TMz
o disp(’initializing _.PML_boundary.conditions._for.TMz’);

4| Ezx_xn = zeros(n_pml_xn ,nym1);
Ezy_xn = zeros(n_pml_xn ,nyml—n_pml_yn—n_pml_yp);
6| Ezx_xp = zeros(n_pml_xp,nym1);

(
(
(
Ezy_xp = zeros(n_pml_xp,nyml—n_pml_yn—n_pml_yp);
s| Ezx_yn = zeros (nxml—n_pml_xn—n_pml_xp, n_pml_yn);
Ezy_yn = zeros(nxml,n_pml_yn);

0| Ezx_yp = zeros (nxml—n_pml_xn—n_pml_xp, n_pml_yp);
Ezy_yp = zeros(nxml,n_pml_yp);

pml_order = boundary.pml_order;

14| R_0 = boundary.pmlI_R.0;

6| if is_pml_xp
sigma_pex_xp = zeros(n_pml_xp,nym1);

18 sigma_pmx_xp = zeros(n_pml_xp,nym1);

20 sigma_max = —(pml_order+1)*eps_0*c*log(R_0)/(2*dx*n_pml_xp);
rho_e = ([1:n_pml_xp] — 0.25)/n_pml_xp;

2 rhom = ([1:n_pml_xp] — 0.75)/n_pml_xp;
for ind = 1:n_pml_xp

24 sigma_pex_xp (ind ,:) = sigma_max * rho_e(ind) pml_order;

sigma_pmx_xp(ind ,:) = ...

2 (mu0/eps_0) +* sigma_max * rho_m(ind)" pml_order;

end

28
% Coeffiecients updating Hy

30 Chyh_xp = (2#*mu.0 — dt*sigma_pmx_xp)./(2*mu_.0 + dt*sigma_pmx_xp);
Chyez_xp = (2*dt/dx)./(2*mu.0 + dt*sigma_pmx_xp);

% Coeffiecients updating Ezx
34 Cezxe_xp = (2%*eps_.0 — dt*sigma_pex_xp)./(2* eps_O+dt*sigma_pex_xp);
Cezxhy_xp = (2*dt/dx)./(2*eps-0 + dt*sigma_pex_xp);

% Coeffiecients updating Ezy
38 Cezye_xp = 1;

Cezyhx_xp = —dt/(dy*eps_0);
40| end

2| if is_pml_yn
sigma_pey_yn = zeros(nxml,n_pml_yn);

44 sigma_pmy_yn = zeros(nxml,n_pml_yn);

46 sigma_max = —(pml_order+1)*eps_0*c*log(R_0)/(2*dy*n_pml_yn);
rho_e = ([n_pml_yn:—1:1] — 0.25)/n_pml_yn;

48 rhoom = ([n_pml_yn:—1:1] — 0.75)/n_pml_yn;

for ind = 1:n_pml_yp
50 sigma_pey_yn(:,ind) = sigma_max * rho_e(ind) pml_order;

7.4 « FDTD updating equations for PML and MATLAB® implementation 209

end
54|

58]

62|

66| end

% Coeffiecients

updating Ezy

sigma_pmy_yn (:,ind) .
52 (mu_0/eps_0) * sigma_max * rho_m(ind)” pml_order;

% Coeffiecients updating Hx
56 Chxh_yn = (2*mu.0 — dt*sigma_pmy_yn)./(2* mu_0+dt*sigma_pmy_yn);
Chxez_yn= —(2%dt/dy)./(2*mu_0 + dt*sigma_pmy_yn);

% Coeffiecients updating Ezx
60 Cezxe_.yn = 1;
Cezxhy_yn = dt/(dx*eps.0);

PML regions
V' V'S V' V' V'S V' V'S V' A &
1 1 1 1 1 1 1 1 1
- > - - -
V' V' V' V'S V'S V' V'S V' V'
T 1 1 1 1 1 1 1 1
- > - - -
V'S V' V' V'S V' V' V' V' V'
T 1 1 1 1 1 1 1 1
- 'S - - -
V'S V' V' V' V' V' V' V' V'
T 1 1 1 1 1 1 1 1
- 'S - - -
V' V' V' V' V' V'S V' V' V'
]]]]] L}]]]
- > - - -
V' V' V' V' V' V' V' V' V'
]]]]] L}]]]
N 4 > - - =»>
(pis, pjs) 4 4 2 4 4 4 & 4 4 4 4
L] | | L] | L} | | |
- > - - -
4 44 ¢4 64 0200 ladad e
L] | | L] | L} | | |
- > - - -
V'S V' V' V'S V' V' V' V' V'
T 1 1 1 1 1 1 1 1
- > - - -
(1,1) e4—o4o 4ottt ot ottt

64 Cezye_yn = (2%xeps_0 — dt*sigma_pey_yn)./(2*eps_O+dt*sigma_pey_yn);
Cezyhx_yn= —(2xdt/dy)./(2*eps_.0 + dt*sigma_pey_yn);

(nx+1,ny+1)

(pie, pje)

® E,E.E,
t 4

4 H,

Figure 7.10 TM, field components in the PML regions.

(7.33). H., is updated in the yn and yp regions of Figure 7.5(d) using (7.32). H., is updated
in xn and xp regions of Figure 7.5(d) using (7.34). After all these updates are completed,
located at the same positions, are added to obtain H, at the

the components of H,, and

same positions.

H

The update of the electric field components using the regular updating equations is per-
formed in update_electric_fields_2d as shown in Listing 7.14. In the TM, case the E, field
components in the intermediate regions of Figure 7.6(c) and 7.6(d) are updated based on

210 CHAPTER 7 « Perfectly matched layer absorbing boundary

N N
.@Q Q@ ,,30' QQ) .QQ Q@
ST TS
& e‘*”Q& Q&’Q& il
&‘,S&S&w&w&w&ﬁ L p (1)
RSOOSR O
L] — 0
11 (mx+1,1)
(pis, 1) pie, 1) || | |
SO PO
tH eEE,E, S LR
e,./ &7 a,/ &7 éip/&ﬁ.
&tzy ‘,3 ‘w&‘bs S
& %&s‘% & e\""

Figure 7.11 Field components updated by PML equations.

Listing 7.8 run_fdtd_time_marching_loop_2d.m

-

disp ([’ Starting._the_time_.marching_.loop’]);

disp (['Total .number_of _time._steps.:.’
num2str(number_of_time_steps)]);

start_time = cputime;
sl current_time = 0;

s| for time_step = 1:number_of_time_steps
update_magnetic_fields_2d;

10 update_impressed_M;
update_magnetic_fields_for_.PML_2d;

12 capture_sampled_magnetic_fields_2d;
update_electric_fields_2d;

14 update_impressed_];
update_electric_fields_for_.PML_2d;

16 capture_sampled_electric_fields_2d;

display_sampled_parameters_2d;
15| end

wlend_time = cputime;

total_time_in_minutes = (end_time — start_time)/60;
2| disp (['Total.simulation_time_is.’
num2str (total_time_in_minutes) ’'_minutes.’]);

(1.36). In the TE. case the E, field components in the intermediate region of Figure 7.5(b)
and £, field components in the intermediate region of Figure 7.5(a) are updated based on
(1.33) and (1.34), respectively.

Then in update_impressed_J the impressed current terms appearing in (1.36), (1.33), and
(1.34) are added to their respective field terms £, E,, and E,.

~

19

7.4 « FDTD updating equations for PML and MATLAB® implementation 211

Listing 7.9 update_magnetic_fields_2d.m

p
% update magnetic fields

current_time = current_time + dt/2;

% TEz
if is_ TEz
Hz(pis:pie—1,pjs:pje—1) = ..

Chzh (pis:pie—1,pjs: pJe—1)* Hz(pis:pie—1,pjs:pje—1)
+ Chzex(pis:pie—1,pjs:pje—1)
% (Ex(pis:pie—=1,pjs+1:pje)—Ex(pis:pie—1,pjs:pje —1))
+ Chzey(pis:pie—1,pjs:pje—1)
*(Ey(pis+1:pie, pjs:pje—1)—Ey(pis:pie—1,pjs:pje —1));

end
% TMz
if is.TMz
x(:,pjs:pje—1) = Chxh(:, pjs:pje—1) .* Hx(:,pjs:pje—1)
+ Chxez(:,pjs:pje—1) .* (Ez(:,pjs+1:pje)—Ez(:,pjs:pje —1));
Hy(pis:pie —1,:) = Chyh(pis:pie—1,:) .* Hy(pis:pie—1,:) ..
+ Chyez(pis:pie—1,:) .* (Ez(pis+1:pie,:)—Ez(pis: p|e71)
end

Listing 7.10 update_impressed_M.m

-
% updating magnetic field components

% associated with the impressed magnetic currents

for ind = 1:number_of_ impressed,M
is = impressed,M(lnd).
js = impressed_M (ind).
ie = impressed_M (ind)
je = impressed_M (ind).j
switch (impressed,M(lnd).direction(1))
case ’'x’

Hx(is:ie,js:je—1) = Hx(is:ie,js:je—1)

+ impressed_M (ind).Chxm * impressed_M (ind).waveform(time_step);
case 'y’

Hy(is:ie—1,js:je) = Hy(is:ie—1,js:je)

+ impressed_M (ind).Chym * impressed_M (ind).waveform(time_step);
case 'z’

Hz(is:ie—1,js:je—1) = Hz(is:ie—1,js:je—1)

+ impressed_M (ind).Chzm * impressed_M (ind).waveform(time_step);
end

end

212 CHAPTER 7 « Perfectly matched layer absorbing boundary

Listing 7.11 update_magnetic_fields_for_ PML_2d.m

1(% update magnetic fields at the PML regions
if is_any_side_pml == false
3 return;
end
s|if is_TEz
update_magnetic_fields_for_.PML_2d_TEz;

7| end

if is.TMz
9 update_magnetic_fields_for_.PML_2d_TMz;
end

Listing 7.12 update_magnetic_fields_for_ PML_2d_TMz.m

-
% update magnetic fields at the PML regions

2% TMz
if is_pml_xn
4 Hy(1:pis —1,2:ny) = Chyh_xn .* Hy(1:pis—1,2:ny)
+ Chyez_xn .* (Ez(2:pis,2:ny)—Ez(1:pis—1,2:ny));
s end

s| if is_pml_xp
Hy(pie:nx,2:ny) = Chyh_xp .* Hy(pie:nx,2:ny)

10 + Chyez_xp .* (Ez(pie+1:nxp1,2:ny)—Ez(pie:nx,2:ny));
end

12
if is_.pml_yn

14 Hx(2:nx,1:pjs —1) = Chxh_yn .* Hx(2:nx,1:pjs—1)

+ Chxez_yn.*(Ez(2:nx,2:pjs)—Ez(2:nx,1:pjs —1));
16| end

| if is_pml_yp

Hx(2:nx,pje:ny) = Chxh_yp .* Hx(2:nx,pje:ny)

20 + Chxez_yp.*(Ez(2:nx,pje+1:nyp1)—Ez(2:nx,pje:ny));
end

The subroutine update_electric_fields_for_PML_2d is used to update the electric field
components needing special PML updates. As can be followed in Listing 7.15 the TE, and
TM, cases are treated in separate subroutines.

The TE, case is implemented in Listing 7.16, where E| is updated in the yrn and yp regions of
Figure 7.5(b) using (7.29). E), is updated in the x» and xp regions of Figure 7.5(a) using (7.30).

The TM, case is implemented in Listing 7.17, where E_, is updated in the xn and xp
regions of Figure 7.6(c) using (7.35). E., is updated in the yn and yp regions of Figure 7.6(c)
using (7.39). E., is updated in the yn and yp regions of Figure 7.6(d) using (7.36). E.,, is
updated in the xn and xp regions of Figure 7.6(d) using (7.40). After all these updates are
completed, the components of £., and E.), located at the same positions, are added to obtain
E_ at the same positions.

29

7.4 « FDTD updating equations for PML and MATLAB® implementation 213

Listing 7.13 update_magnetic_fields_for PML_2d_TEz.m

(% update magnetic fields at the PML regions
% TEz
if is_.pml_xn
Hzx_xn = Chzxh_xn .* Hzx_xn+Chzxey_xn .*(Ey(2: pis,:)—Ey(1:pis —1,:));
Hzy_xn = Chzyh_xn .* Hzy_xn
+ Chzyex_xn.*(Ex(1:pis—1,pjs+1:pje)—Ex(1:pis—1,pjs:pje —1));

end
if is_pml_xp
Hzx_xp = Chzxh_xp .* Hzx_xp
+ Chzxey_xp.*(Ey(pie+1:nxp1,:) —Ey(pie:nx,:));
Hzy_xp = Chzyh_xp .* Hzy_xp
+ Chzyex_xp.*(Ex(pie:nx,pjs+1:pje)—Ex(pie:nx, pjs:pje —1));
end
if is_.pml_yn
Hzx_yn = Chzxh_yn .* Hzx_yn
+ Chzxey_yn.*(Ey(pis+1:pie,1:pjs—1)—Ey(pis:pie—1,1:pjs —1));
Hzy_yn = Chzyh_yn .* Hzy_yn
+ Chzyex_yn .*(Ex(:,2:pjs)—Ex(:,1:pjs —1));
end
if is_.pml_yp
Hzx_yp = Chzxh_yp .* Hzx_yp
+ Chzxey_yp.*(Ey(pis+1:pie,pje:ny)—Ey(pis:pie—1,pje:ny));
Hzy_yp = Chzyh_yp .* Hzy_yp
+ Chzyex_yp.*(Ex(:, pje+1:nyp1)—Ex(:, pje:ny));
end
Hz(1:pis —1,1:pjs —1) = Hzx_xn(:,1:pjs—1) + Hzy_yn(1:pis —1,:);
Hz(1:pis —1,pje:ny) = Hzx_xn(:,pje:ny) + Hzy_yp(1:pis—1,:);
Hz(pie:nx,1:pjs—1) = Hzx_xp(:,1:pjs—1) + Hzy_yn(pie:nx,:);
Hz(pie:nx, pje:ny) = Hzx_xp(:,pje:ny) + Hzy_yp(pie:nx,:);
Hz(1: pis —1,pjs:pje—1) = Hzx_xn(:, pjs:pje—1) + Hzy_xn;
Hz(pie:nx, pjs:pje—1) = Hzx_xp(:, pjs:pje—1) + Hzy_xp;
Hz(pis:pie—1,1:pjs—1) = Hzx_yn + Hzy_yn(pis:pie —1,:);
Hz(pis:pie—1,pje:ny) = Hzx_yp + Hzy_yp(pis:pie—1,:);

Listing 7.14 update_electric_fields_2d.m

-
current_time = current_time + dt/2;

if is_TEz
Ex(:, pjs+1:pje —1) Cexe (:,pjs+1:pje —1).*Ex(:, pjs+1:pje—1)
+ Cexhz (:, pjs+1:pje —1).*...

(Hz(:, pjs+1:pje—T)=Hz(:, pjs:pje —2));

Ey(pis+1:pie —1,:) = Ceye(pis+1:pie —1,:).*Ey(pis+1:pie —1,:)
+ Ceyhz (pis+1:pie —1,:).x ...
(Hz(pis+1:pie —1,:)—Hz(pis:pie —2,:));
end

214 CHAPTER 7 « Perfectly matched layer absorbing boundary

19

o

6

if is.TMz
Ez(pis+1:pie—1,pjs+1:pje—1) = ...
Ceze(pis+1:pie—1,pjs+1:pje —1).%*Ez(pis+1:pie—1,pjs+1:pje—1)
+ Cezhy(pis+1:pie—1,pjs+1:pje—1)
% (Hy(pis+1:pie—=1,pjs+1:pje—1)—Hy(pis:pie—2,pjs+1:pje —1))
+ Cezhx(pis+1:pie—1,pjs+1:pje—1)
% (Hx(pis+1:pie—=1,pjs+1:pje—1)—Hx(pis+1:pie—1,pjs:pje —2));

Listing 7.15 update_electric_fields_for PML_2d.m

p
% update electric fields at the PML regions
% update magnetic fields at the PML regions

if is_any_side_pml == false
return;

end

if is_.TEz
update_electric_fields_for_.PML_2d_TEz;

end

if is_.TMz
update_electric_fields_for_.PML_2d_TMz;

end

Listing 7.16 update_electric_fields_for PML_2d_TEz.m

p
% update electric fields at the PML regions

% TEz
if is_.pml_xn
Ey (2:pis,:) = Ceye_xn .* Ey(2:pis,:)
+ Ceyhz_xn .* (Hz(2:pis,:)—Hz(1:pis —1,:));
end

if is_pml_xp

9 Ey(pie:nx,:) = Ceye_xp .* Ey(pie:nx,:)

+ Ceyhz_xp .* (Hz(pie:nx,:)—Hz(pie—1:nx—1,:));
end

if is_pml_yn
Ex(:,2:pjs) = Cexe_yn .* Ex(:,2:pjs)
+ Cexhz_yn .* (Hz(:,2:pjs)—Hz(:,1:pjs —1));
end

if is_pml_yp

19 Ex(:,pje:ny) = Cexe_yp .* Ex(:,pje:ny)

+ Cexhz_yp .* (Hz(:,pje:ny)—Hz(:,pje—1:ny—1));

end

7.5 « Simulation examples 215

Listing 7.17 update_electric_fields_for PML_2d_TMz.m

p
% update electric fields at the PML regions

2% TMz
if is_pml_xn
4 Ezx_xn = Cezxe_xn .* Ezx_xn
+ Cezxhy_xn .* (Hy(2:pis,2:ny)—Hy(1:pis—1,2:ny));
6 Ezy_xn = Cezye_xn .* Ezy_xn
+ Cezyhx_xn .* (Hx(2:pis,pjs+1:pje—1)—Hx(2:pis,pjs:pje —2));
s|end
if is_pml_xp

10 Ezx_xp = Cezxe_xp .* Ezx_xp + Cezxhy_xp.*
(Hy(pie:nx,2:ny)—Hy(pie—=1:nx—1,2:ny));

12 Ezy_xp = Cezye_xp .* Ezy Xp

+ Cezyhx_xp .* (Hx(pie:nx,pjs+1:pje—1)—Hx(pie:nx,pjs:pje —2));

14| end

if is_.pml_yn

16 Ezx_yn = Cezxe_yn .* Ezx_yn
+ Cezxhy_yn .* (Hy(pis+1:pie—1,2:pis)—Hy(pis:pie—2,2:pjs));

18 Ezy_yn = Cezye_yn .* Ezy_yn ..

+ Cezyhx_yn .* (Hx(2:nx,2:pjs)—Hx(2:nx,1:pjs —1));

0| end
if is_pml_yp
2 Ezx_yp = Cezxe_yp .* Ezx_yp
+ Cezxhy_yp .* (Hy(pis+1:pie—1,pje:ny)—Hy(pis:pie—2,pje:ny));
24 Ezy_yp = Cezye_yp .* Ezy_yp
+ Cezyhx_yp .* (Hx(2:nx,pje:ny)—Hx(2:nx,pje—1:ny—1));
26 end
Ez(2: pis,2:pjs) = Ezx_xn (:,1:pjs—1) + Ezy_yn(1:pis —1,:);
| Ez(2: pis,pje:ny) = Ezx_xn(:,pje—1:nym1) + Ezy_yp (1:pis —1,:);
Ez(pie:nx,pje:ny) = Ezx_xp (:,pje—T:nym1) + Ezy_yp(pie—1:nxm1,:);
w|Ez(pie:nx,2:pjs) = Ezx_xp(:,1:pjs—1) + Ezy_yn(pie—T:nxm1,:);
Ez(pis+1:pie—1,2:pjs) = Ezx_.yn + Ezy_yn(pis:pie—2,:);
2|Ez(pis+1:pie—1,pje:ny) = Ezx_yp + Ezy_yp(pis:pie —2,:);
Ez(2:pis,pjs+1:pje—1) = Ezx_xn(:,pjs:pje—2) + Ezy_xn;
s«|Ez(pie:nx,pjs+1:pje—1) = Ezx_xp (:, pjs:pje—2) + Ezy_xp;

7.5 Simulation examples

7.5.1 Validation of PML performance

In this section, we evaluate the performance of the two-dimensional PML for the TE, case.
A two-dimensional problem is constructed as shown in Figure 7.12(a). The problem space is
empty (all free space) and is composed of 36 x 36 cells with cell size | mm on a side. There
are eight cell layers of PML on the four sides of the boundaries. The order of the PML
parameter 7,,,,; is 2, and the theoretical reflection coefficient R(0) is 10, The problem space
is excited by a z-directed impressed magnetic current as defined in Listing 7.18. The
impressed magnetic current is centered at the origin and has a Gaussian waveform. A sam-
pled magnetic field with z component is placed at the position x = 8 mm and y = 8 mm, two
cells away from the upper right corner of the PML boundaries as defined in Listing 7.19. The
problem is run for 1,800 time steps. The captured sampled magnetic field H. is plotted in

216 CHAPTER 7 « Perfectly matched layer absorbing boundary

(@

x 1077

(ampere/meter)

13 05 1 Is 2 25 3 35 4
(b) Time (ns)
Figure 7.12 A two-dimensional 7E, FDTD problem terminated by PML boundaries and its
simulation results: (a) an empty two-dimensional problem space and (b) sampled
H_ in time.

Figure 7.12(b) as a function of time. The captured field includes the effect of the reflected
fields from the PML boundaries as well.

To determine how well the PML boundaries simulate the open boundaries, a reference case
is constructed as shown in Figure 7.13(a). The cell size, the source, and the output of this
problem space are the same as the previous one, but in this case the problem space size is
600 x 600 cells, and it is terminated by PEC boundaries on four sides. Any fields excited by
the source will propagate, will hit the PEC boundaries, and will propagate back to the center.
Since the problem size is large, it will take some time until the reflected fields arrive at the

7.5 « Simulation examples 217

Listing 7.18 define_sources_2d.m

-
disp(’defining.sources’);

impressed_] = [];
impressed_.M = []

s

)

% define source waveform types and parameters
waveforms. gaussian (1). number_of_cells_per_wavelength = 0;
s|waveforms.gaussian (2). number_of_cells_per_wavelength = 25;

EN

10|% magnetic current sources

% direction: ’xp’, ’'xn’, ’yp’, ’yn’, ’zp’, or ’zn’

zlimpressed_M (1). min_x = —1e-3;

impressed_M (1). min_.y = —1le—3;

ulimpressed_M (1). max_x = 1e—3;
impressed_M (1). max.y = le—3;

is|impressed_M (1). direction = "zp’;

impressed_M (1). magnitude = 1;

is|impressed_M (1). waveform_type = ’'gaussian’;
impressed_M (1). waveform_index = 2;

Listing 7.19 define_output_parameters_2d.m

-
disp ('defining_output_parameters’);

sampled_electric_fields 1;
sampled_magnetic_fields 1;
sampled_transient_E_planes = [];
sampled_frequency_E_planes = []

)

% figure refresh rate
plotting_step = 10;

% frequency domain parameters
frequency_domain.start = 20e6;
frequency_domain .end = 20e9;
frequency_domain.step = 20e6;

% define sampled magnetic fields

sampled_magnetic_fields (1).x = 8e-3;
sampled_magnetic_fields (1).y = 8e-3;
sampled_magnetic_fields (1).component = 'z’;

=]

sampling point. Therefore, the fields captured at the sampling point before any reflected fields
arrive are the same as the fields that would be observed if the boundaries are open space. In the
given example no reflection is observed in the 1,800 time steps of simulation. Therefore, this
case can be considered as a reference case for an open space during the 1,800 time steps. The
captured sampled magnetic field is shown in Figure 7.13(b) as a function of time.

218 CHAPTER 7 « Perfectly matched layer absorbing boundary

o M, ny = 600
v
(a) +— =600 ——M>»
x 1077
1 .
5
[
£
o
2
g
&
71 A g
~15 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4
(b) Time (ns)

Figure 7.13 A two-dimensional 7E, FDTD problem used as open boundary reference and its

simulation results: (a) an empty two-dimensional problem space and (b) sampled
H_ in time.

No difference can be seen by looking at the responses of the PML case and the reference
case. The difference between the two cases is a measure for the amount of reflection from the
PML and can be determined numerically. The difference denoted as error, is the error as a
function of time and calculated by

| — HY |

error; = 20 x logo| ——F—"~
max<|HZref|>

(7.41)

7.5 « Simulation examples 219

0 T T T T T T T
=20
—40
—60
m 80
2
£ —100
N
=-120
—140
—160
—180
=200
(a)
O T T T
) !
Z ‘
N .
N |
80 H H H
0 5 10 15 20
(b) Frequency (GHz)

Figure 7.14 Error in time and frequency domains.

where HP™ is the sampled magnetic field in the PML problem case and H’¢ is the sampled
magnetic field in the reference case. The error as a function of time is plotted in Figure 7.14(a).
The error in frequency domain as well is obtained as errory from the difference between the
Fourier transforms of the sampled magnetic fields from the PML and reference cases by

| F(HE™) — F(H)|

errory = 20 x logy, ") (7.42)
P12

220 CHAPTER 7 « Perfectly matched layer absorbing boundary

where the operator £(-) denotes the Fourier transform. The error in frequency-domain erroryis
plotted in Figure 7.14(b). The errors obtained in this example can further be reduced by using a
larger number of cells of PML thickness, a better choice of R(0), and a higher order of PML 7,,,,,;.
One can see in Figure 7.14(b) that the performance of the PML degrades at low frequencies.

7.5.2 Electric field distribution

Since the fields are calculated on a plane by the two-dimensional FDTD program, it is
possible to capture and display the electric and magnetic field distributions as a runtime
animation while the simulation is running. Furthermore, it is possible to calculate the field
distribution as a response of a time-harmonic excitation at predefined frequencies. Then the
time-harmonic field distribution can be compared with results obtained from simulation of
the same problem using frequency-domain solvers. In this example the two-dimensional
FDTD program is used to calculate the electric field distribution in a problem space
including a cylinder of circular cross-section with radius 0.2 m, and dielectric constant 4, due
to a current line source placed 0.2 m away from the cylinder and excited at | GHz frequency.
Figure 7.15 illustrates the geometry of the two-dimensional problem space. The problem
space is composed of square cells with 5 mm on a side and is terminated by PML boundaries
with 8 cells thickness. The air gap between the cylinder and the boundaries is 30 cells in the
xn, yn, and yp directions and 80 cells in the xp direction. The definition of the geometry is
shown in Listing 7.20. The line source is an impressed current density with a sinusoidal
waveform as shown in Listing 7.21.

In this example we define two new output types: (1) transient electric field distributions
represented with a parameter named sampled_transient_E_planes; and (2) electric field
distributions calculated at certain frequencies represented with a parameter named sampled_
frequency_E_planes. The definition of these parameters is shown in Listing 7.22, and
the initialization of these parameters are performed in the subroutine initialize_output_
parameters_2d is shown in Listing 7.23.

xEy o’i

Figure 7.15 A two-dimensional problem space including a cylinder and a line source.

7.5 « Simulation examples 221

Listing 7.20 define_geometry_2d.m

% define circle
circles .center_x =
circles .center_y

circles .radius
circles . material_ty

Listing 7.21 define_sources_2d.m

(waveforms.sinusoidal (1).frequency = 1e9;
10
% electric current sources
2% direction: ’xp’, ’xn’, ’yp’, ’yn’, ’zp’, or ’zn’
impressed_J (1). min_x = 0.8;
i4|impressed_J (1). min_y = 0.5;
impressed_J (1). max_x = 0.8;
i6|impressed_J (1). max_.y = 0.5;
impressed_J (1). direction = "zp’;
s|impressed_J (1). magnitude = 1;
impressed_] (1). waveform_type = ’sinusoidal ’;
wlimpressed_) (1). waveform_index = 1;

Listing 7.22 define_output_parameters_2d.m

-
disp(’defining_output_parameters’);

sampled_electric_fields = [];
s|sampled_magnetic_fields = [];

sampled_transient_E_planes = [];
s|sampled_frequency_E_planes = [];

% define sampled electric field distributions
53|% component can be 'x’, ’'y’, ’z’, or 'm’ (magnitude)

% transient
s|sampled_transient_E_planes (1).component

Il
N

% frequency domain
sampled _frequency_E_planes (1).component = ’z’;
sampled _frequency_E_planes (1). frequency = 1e9;

~
5

o
3

The electric fields at node positions are captured and displayed as an animation while the
simulation is running in the subroutine display_sampled_parameters_2d as shown in Listing
7.24.

The electric fields at node positions are captured and calculated as the frequency-domain
response at the given frequency in the subroutine capture_sampled_electric_fields_2d as
shown in Listing 7.25. One should notice in the given code that the fields are being captured

222 CHAPTER 7 « Perfectly matched layer absorbing boundary

[

-

©

39

41

43

45

Listing 7.23 initialize_output_parameters_2d.m

(.
disp(’initializing._the_output_parameters’);

sampled_electric_fields ,2);
sampled_magnetic_fields ,2);

number_of_sampled_electric_fields = size

number_of_sampled_magnetic_fields = size

number_of_sampled_transient_E_planes=size (sampled_transient_E_planes ,2);

number_of_sampled_frequency_E_planes=size (sampled_frequency_E_planes ,2);

% initialize sampled transient electric field

for ind=1:number_of_sampled_transient_E_planes
sampled_transient_E_planes(ind). figure = figure;

end

% initialize sampled time harmonic electric field
for ind=1:number_of_sampled_frequency_E_planes
sampled_frequency_E_planes(ind).sampled_field = zeros(nxp1,nyp1);

end
xcoor = linspace (fdtd_domain.min_x, fdtd_domain.max_x,nxp1);
ycoor = linspace (fdtd_domain.min_y, fdtd_domain.max_y,nyp1);

Listing 7.24 display_sampled_parameters_2d.m

p
% display sampled electric field distribution

7| for ind=1:number_of_sampled_transient_E_planes

figure (sampled_transient_E_planes(ind). figure);

Es = zeros(nxpl1, nypl);

component = sampled_transient_E_planes(ind).component;
switch (component)

ry ?

case ’'x
Es(2:nx,:) = 0.5 * (Ex(1:nx—1,:) + Ex(2:nx,:));
case 'y’
Es(:,2:ny) = 0.5 * (Ey(:,1:ny—=1) + Ey(:,2:ny));
case 'z’
Es = Ez;
case 'm’
Exs(2:nx,:) = 0.5 * (Ex(1:nx—1,:) + Ex(2:nx,:));
Eys(:,2:ny) = 0.5 * (Ey(:,1:ny—1) + Ey(:,2:ny));
Ezs = Ez;

Es = sqrt(Exs.”2 + Eys.”2 + Ezs."2);

end

imagesc (xcoor ,ycoor ,Es.’);

axis equal; axis xy; colorbar;

title (["Electric.field <’ component ’'>[’ num2str(ind) ’]’]);
drawnow ;

after 6,000 time steps. Here it is assumed that the time-domain response of the sinusoidal
excitation has reached the steady state after 6,000 time steps. Then the magnitude of the steady
fields is captured. Therefore, with the given code it is possible to capture the magnitude of the
frequency-domain response and only at the single excitation frequency. The given code cannot

7.5 « Simulation examples 223

Listing 7.25 capture_sampled_electric_fields_2d.m

-
% capture sampled time harmonic electric fields on a plane
u| if time_step >6000

for ind=1:number_of_sampled_frequency_E_planes

2 Es = zeros(nxpl, nypl);
component = sampled_frequency_E_planes(ind).component;
28 switch (component)
case 'x’
30 Es(2:nx,:) = 0.5 * (Ex(1T:nx—1,:) + Ex(2:nx,:));
case 'y’
32 Es(:,2:ny) = 0.5 * (Ey(:,1:ny—1) + Ey(:,2:ny));
case 'z’
34 Es = Ez;
case 'm’
36 Exs(2:nx,:) = 0.5 * (Ex(1:nx—1,:) + Ex(2:nx,:));
Eys(:,2:ny) = 0.5 * (Ey(:,1:ny—1) + Ey(:,2:ny));
38 Ezs = Ez;
Es = sqrt(Exs."2 + Eys.”2 + Ezs."2);
40 end
I = find (Es > sampled_frequency_E_planes(ind).sampled_field);
£ sampled_frequency_E_planes(ind).sampled_field () = Es(1);
end
4| end

Listing 7.26 display_frequency_domain_outputs_2d.m

(% display sampled time harmonic electric fields on a plane
2| for ind=1:number_of_sampled_frequency_E_planes
figure;
44 f = sampled_frequency_E_planes(ind). frequency;
component = sampled_frequency_E_planes(ind).component;
46 Es = abs(sampled_frequency_E_planes(ind).sampled_field);
Es = Es/max(max(Es));
48 imagesc(xcoor ,ycoor ,Es.’);
axis equal; axis xy; colorbar;
50 title (["Electric.field_at_fo=."
num2str(f*1e—9) '_GHz,_<’ component ’>[’ num2str(ind) ']’]);
5 drawnow ;

calculate the phase of the response. The given algorithm can further be improved to calculate
the phases as well; however, in the following example, a more efficient method based on
discrete Fourier transform (DFT) is presented, which can be used to calculate both the mag-
nitude and phase responses concurrently. After the simulation is completed, the calculated
magnitude response can be plotted using the code shown in Listing 7.26.

224 CHAPTER 7 « Perfectly matched layer absorbing boundary

0.05 T T T :
| Sampled electric field | ‘
004 -———7-"-- Rt R i

0.03 {rerdH | I

0.02 H i I
0.01 ‘ |
|

(volt/meter)
S

10 20 30 40 50 60 70 80 90
Time (ns)

Figure 7.16 Sampled electric field at a point between the cylinder and the line source.

Figure 7.17 Magnitude of electric field distribution calculated by FDTD.

The two-dimensional FDTD program is excited for 8,000 time steps, and the transient
electric field is sampled at a point between the cylinder and the line source as shown in
Figure 7.15. The sampled electric field is plotted in Figure 7.16, which shows that the
simulation has reached the steady state after 50 ns. Furthermore, the magnitude of the
electric field distribution is captured for 1 GHz as discussed already is shown in Figure 7.17
as a surface plot. The same problem is solved using boundary value solution (BVS) [22], and

7.5 « Simulation examples 225

0 0

Figure 7.18 Magnitude of electric field distribution calculated by BVS.

the result is shown in Figure 7.18 for comparison. It can be seen that the results agree very
well. The levels of the magnitudes are different since these figures are normalized to dif-
ferent values.

7.5.3 Electric field distribution using DFT

The previous example demonstrated how the magnitude of electric field distribution can be
calculated as a response of a time-harmonic excitation. As discussed before, it is only pos-
sible to obtain results for a single frequency with the given technique. However, if the
excitation is a waveform including a spectrum of frequencies, then it should be possible to
obtain results for multiple frequencies using DFT. We modify the previous example to be
able to calculate field distributions for multiple frequencies.

The output for the field distribution is defined in the subroutine define_output_
parameters as shown in Listing 7.27. One can notice that it is possible to define multiple field
distributions with different frequencies. The excitation waveform as well shall include the
desired frequencies in its spectrum. An impressed current line source is defined as shown in
Listing 7.28. To calculate field distributions for multiple frequencies we have to implement an

Listing 7.27 define_output_parameters_2d.m

27|% frequency domain

sampled _frequency_E_planes (1).component = ’z’;
w|sampled_frequency_E_planes(1). frequency = 1e9;
sampled_frequency_E_planes (2).component = ’'z’;
sif{sampled _frequency_E_planes (2). frequency = 2e9;

226 CHAPTER 7 « Perfectly matched layer absorbing boundary

%

=

40

)

(R
% define source waveform types and parameters

Listing 7.28 define_sources_2d.m

waveforms.gaussian (1). number_of_cells_per_wavelength =
waveforms. gaussian (2). number_of_cells_per_wavelength
waveforms.sinusoidal (1). frequency = 1e9;

(L]
N ©
o -

% magnetic current sources

) » ’ ’) » ’)) »

% direction: ’xp’, ’xn’, ’yp’, ’'yn’, ’zp’, or ’zn
impressed_] (1). min_x = 0.8;

impressed_] (1). min_.y = 0.5;

impressed_J (1). max_x = 0.8;

impressed_] (1). max_.y = 0.5;

impressed_J (1). direction = ’zp’;

impressed_] (1). magnitude = 1;

impressed_J (1). waveform_type = ’gaussian’;
impressed_] (1). waveform_index = 2;

Listing 7.29 capture_sampled_electric_fields_2d.m

(R R R R
% capture sampled time harmonic electric fields on a plane

for ind=1:number_of_sampled_frequency_E_planes
w =2 % pi * sampled_frequency_E_planes(ind). frequency;
Es = zeros(nxpl, nypl);
component = sampled_frequency_E_planes(ind).component;
switch (component)

P

case X
(2 nx,:) = 0.5 % (Ex(1:nx—1,:) + Ex(2:nx,:));
case 'y’
Es(:,2:ny) = 0.5 * (Ey(:,1T:ny—1) + Ey(:,2:ny));
case 'z’
Es = Ez;
case 'm’
Exs (2 1) 0.5 * (Ex(1:nx—1,:) + Ex(2:nx,:));
Eys (: 2 ny) = 0.5 * (Ey(:,1:ny—=1) + Ey(:,2:ny));
Ezs = Ez;

Es = sqrt(Exs.”2 + Eys.”2 + Ezs. 2);

end

sampled_frequency_E_planes(ind).sampled_field =
sampled_frequency_E_planes(ind).sampled_field
+ dt * Es * exp(—j*w*dtxtime_step);

on-the-fly DFT. Therefore, the subroutine capture_sampled_electric_fields_2d is modified as
shown in Listing 7.29.

The FDTD simulation is run, and electric field distributions are calculated for 1 and

2 GHz and are plotted in Figures 7.19 and 7.20, respectively. One can notice that the result
obtained at 1 GHz using the on-the-fly DFT technique is the same as the ones shown in
Section 7.5.2.

7.6 « Exercises 227

0.1

0.05

Figure 7.19 Magnitude of electric field distribution calculated by FDTD using DFT at 1 GHz.

0.1

0054

Figure 7.20 Magnitude of electric field distribution calculated by FDTD using DFT at 2 GHz.

7.6 Exercises

7.1 The performance of the two-dimensional PML for the 7E. case is evaluated in
Section 7.5.1. Follow the same procedure, and evaluate the performance of the two-
dimensional PML case for the 7M. case. You can use the same parameters as the given

228

7.2

CHAPTER 7 « Perfectly matched layer absorbing boundary

example. Notice that you need to use an electric current source to excite the 7M, mode,
and you can sample E, at a point close to the PML boundaries.

In Sections 7.5.2 and 7.5.3 new code sections are added to the two-dimensional FDTD
program to add the functionality of displaying the electric field distributions. Follow
the same procedure, and add new code sections to the program such that the program
will display magnetic field distributions as animations while the simulation is running
and it will display the magnitude of the magnetic field distribution as the response of
time-harmonic excitations at a number of frequencies.

CHAPTER 8

Advanced PML formulations

In the previous chapter, we discussed the perfectly matched layers (PMLs) as a boundary
to terminate the finite-difference time-domain (FDTD) lattices to simulate open boundary
problems. However, the PML is shown to be ineffective for absorbing evanescent waves. As a
result, the PML must be placed sufficiently far from an obstacle such that the evanescent
waves have sufficiently decayed [23]. However, this increases the number of cells in an FDTD
computational domain and, hence, the computational memory and time requirements. Another
problem reported for PML is that it suffers from late-time reflections when terminating highly
elongated lattices or when simulating fields with very long time signatures [23]. This is partly
due to the weakly causal nature of the PML [24].

A strictly causal form of the PML, which is referred to as the complex frequency-shifted
PML (CFS-PML) was developed in [25]. It has been shown that the CFS-PML is highly
effective at absorbing evanescent waves and signals with a long time signature. Therefore,
using the CFS-PML, the boundaries can be placed closer to the objects in the problem space
and a time and memory saving can be achieved, thus avoiding the aforementioned weak-
nesses of the PML. An efficient implementation of the CFS-PML, known as the convolu-
tional PML (CPML), is introduced in [23]. The theoretical analyses of the CPML and other
forms of PML can be found in [26]. In this chapter we introduce the formulation of the
CPML based on [23] and provide a MATLAB® implementation of the concept.

8.1 Formulation of CPML

In Chapter 7 we provided the PML equations for terminating a problem space surrounded by
free space. However, in general a PML can be constructed to terminate a problem space
surrounded by an arbitrary media. Furthermore, it can even simulate infinite length structures;
these structures penetrate into the PML, and the PML absorbs the waves traveling on them.

8.1.1 PML in stretched coordinates

Without loss of generality, the PML equations for a lossy medium are posed in the stretched
coordinate space [27] as
1 0H. 1 OH,

jweEy °F, = — -, 8.1
JOExka o+ 0y Sey Oy Sz Oz (8.1a)

229

230 CHAPTER 8 « Advanced PML formulations

. 1 OH, 1 OH,
]a)syEy + O';Ey = S—E — S_ 8)(5 (Slb)

(8.1c)
where S, S, and S, are the stretched coordinate metrics, and o, oj, and of are the electric
conductivities of the terminating media. One can notice that (8.1) is in the frequency domain
with ¢/“' time-harmonic convention.

Equations (8.1) reduce to Berenger’s PML in the case where

O, g O
Sex:1+j£:‘0, Sey:1+jﬁ), and SeZ:IJrij:Z. (8.2)

Here 0pex, Opey» and o0y, are the PML conductivities.

It should be noted that (8.1a)—(8.1c) and 8.2 follow the form given in [23], but the
subscript notations have been modified to indicate the electric and magnetic parameters
separately. This form of notation facilitates establishing the connection between the para-
meters in the formulations and their counterparts in program implementation.

The other three scalar equations that are used to construct the magnetic field update
equations are

1 OE 1 OFE
o, H. = —————t ——Z 8.3
SO O Smy Oy +sz oz’ (8.32)
. m 1 OE, 1 OE;
jwﬂyHy +O’yHy = —S—MZE‘FS—WE, (83b)
1 OE 1 OE.
jou,H, + o"H, = — ——~ =, 8.3
]wﬂz +Oz Smx ax +Smy ay (C)
Equations (8.3) reduce to the PML in the case where
S =1+ 25 g LI and S, = 142 (8.4)

JWH JWR JOR

8.1.2 Complex stretching variables in CFS-PML

In the CPML method, the choice of the complex stretching variables follows the new defi-
nition proposed by Kuzuoglu and Mittra [25], such that

Opex Opex

Sele"_ia = Sex = Kex +

Jwéo Aex +jw€0 '
Then the complex stretching variables are given as

Opmi
.)
Ui+ J DUy

Opei

Sei = Kej +——7—,
Aei +JWE)

Smi:Kmi+ izx, y,orz,

where the parameters x.;, K, 0, and a,,; are the new parameters taking the values

Kei Z 17 Kmi Z la Aei Z 07 and Qi Z 0.

8.1 « Formulation of CPML 231

8.1.3 The matching conditions at the PML-PML interface

For zero reflection at the PML-PML interface, one should have

Sei = Smi~ (85)

This condition leads to
Kei = Kmi, (863)
Opei _ __ Opmi (8.6b)

Aej +jCU8() B Ui +]w:uO .
To satisfy (8.6b), we must have
% o Upmi and Aei o Ui

) T . 8.7
€0 Mo & Mo ®.7)

8.1.4 Equations in the time domain

As mentioned before, (8.1) and (8.3) are in frequency domain. We need to have them
expressed in time to obtain the field updating equations from them. For instance, (8.1a) is
expressed in the time domain as

OE, ., - OH - OH
g O = Sl = Se Tt

where Eey is a function of time that is the inverse Laplace transform of Se}l ,and S is the inverse

Laplace transform of S,.'. One should notice that the product operations in the frequency-

domain equations (8.1) and (8.3) are expressed as convolution operations in the time domain.
The terms S,; and S,,; are then given in open form as

5.0 220 _ o (), 00

& (8.8)

Sui(t) = =g, 8.9

(1) ——) e TE (1) (8.9a)

_ 8) o st). S(1)

Si(t) === ——L2-e N0y (1) = =2+ £,,(1), 8.9b
0 Kmi ﬂo"%me (1) Kmi Y ()

where 0(7) is the unit impulse function and u(7) is the unit step function. Inserting (8.9) in
(8.8) leads to

OE. .. 1 0H 1 0H, OH, OH,
EXE+0XEX _Key ay _Kez BZ +§ey(t) ¥ ay _EeZ(t) * BZ ' (810)

At this point, the central difference approximation of the derivatives can be used to express
(8.10) in discrete time and space and then to obtain the field updating equation for E"".
However, (8.10) includes two convolution terms, and these terms also need to be expressed in
discrete time and space before proceeding with the construction of the updating equations.

8.1.5 Discrete convolution

The convolution terms in (8.10) can be written in open form, for instance, as

OH,(t — 1)

OH. [T
ge}’*a_y*/,zo olr) =5, (8.11)

232 CHAPTER 8 « Advanced PML formulations

In the discrete domain, (8.11) takes the form

8H man! i’l m n—m
/ Eop(7) Ot = 1) 4 Z Zoey(m (G k) — HE TG - 1, k)), (8.12)

where
1 [r=(mtDA O r=(m+1)A, 7(% +)
Zoey(m) = */ &, (1)dr = — 22 / e o w0)T g
A T=m. 7 A & KZ =m
o Yy ot (8.13)
p— aeye_ ((:(p;;‘-’_aey) mFOA/
and
| 2 A
Ay (Opeykey + aengy)

Having derived the expression for Zy,,(m), we can express the discrete convolution term

1
in (8.12) with a new parameter wzxt,z(i, J, k), such that

m=n—1

Wi j, k Z Zoey(m (HIT" G g k) — G - 1, k)) (8.15)

Here the subscript exy indicates that this term is updating E, and is associated with the
derivative of the magnetic field term with respect to y. Then (8.10) can be written in discrete
form as

E;'+1(i7j7 k) —E)':(l',j, k)
At

EMNi, j, k) + ENi, j, k)
2

5x<i7j7 k)

+0.(i, J, k)
U HG R - HG 1,k
Key(i7j7 k) Ay (816)

o H™ G k) — H G k- 1)
Kez(i, J, k) Az

nt ..
+w€)€y (l]7)71/)6;;2(13]5 k)

8.1.6 The recursive convolution method

As can be followed from (8.16), the parameter 1., has to be recalculated at every time step
of the FDTD time-marching loop. However, observing expression (8.15) one can see that the
values of the magnetic field component H, calculated at all previous time steps have to be
readily available to perform the discrete convolution. This implies that all the previous

8.1 « Formulation of CPML 233

history of H, must be stored in the computer memory, which is not feasible with the current

computer resources. The recursive convolution technique, which is frequently used to over-

come the same problem while modeling dispersive media in the FDTD method, is employed

to obtain a new expression for .., that does not require all the previous history of H..
The general form of the discrete convolution (8.15) can be written as

m=n—1
yn) = Z A" B(n — m), (8.17)
m=0
where, for instance,

A = ae

Oey At
T - — (ﬁ + aey) -
Key &0

nfer%

n—m+4
B=H"""(j, k)—H "7, j— 1, k).
Equation (8.17) can be written in open form as

w(n) = AB(n) + Ae"B(n — 1) + A*"B(n — 2) + -+ + 4e""~DTB(2) 4+ 4"~ VT B(1).
(8.18)

We can write the same equation in open form for one previous time step value y(rn — 1) as

Y(n—1)=AB(n—1)+Ae"B(n —2) + 4e*"B(n —3) + - + 4" 2TB(2) + 42T B(1).
(8.19)

Comparing the right-hand side of (8.18) with (8.19), one can realize that the right-hand
side of (8.18), except the first term, is nothing but a multiplication of e’ by y(n — 1).
Therefore, (8.18) can be rewritten as

y(n) = AB(n) 4+ e yp(n —1). (8.20)

In this form only the previous time step value y(n — 1) is required to calculate the new
value of y(n). Hence, the need for the storage of all previous values is eliminated. Since the
new value of y(n) is calculated recursively in (8.20), this technique is known as recursive
convolution.

After applying this technique to simplify (8.15), we obtain

VI, K) = bl (1),) + ao(HI G) — HEG = 1,8), (821)
where
Opey
oy = [bey — 1], (8.22)
Ay (Opgykey + aengy>
(g, A
bey = e (*)o (8.23)

234 CHAPTER 8 « Advanced PML formulations

8.2 The CPML algorithm

Examining the discrete domain equation (8.16), one can see that the form of the equation is
the same as the one for a lossy medium except that two new auxiliary terms are added to the
expression. This form of equation indicates that the CPML algorithm is independent of the
material medium and can be extended for dispersive media, anisotropic media, or nonlinear
media. In each of these cases, the left-hand side must be modified to treat the specific host
medium. Yet the application of the CPML remains unchanged [23].

The FDTD flowchart can be modified to include the steps of the CPML as shown in
Figure 8.1. The auxiliary parameters and coefficients required by the CPML are initialized
before the time-marching loop. During the time-marching loop, at every time step, first the
magnetic field components are updated in the problem space using the regular updating
equation derived for the host medium. Then the CPML terms (¥,xy, Yimxz> Winyxs Yinpz> Winzxs
Ymzy) are calculated using their previous time step values and the new electric field values.
Afterward, these terms are added to their respective magnetic field components only at the

Set problem space and define parameters
v
Compute field coefficients
v
Initialize CPML parameters and coefficients
|

v

Update magnetic field components
at time instant (# + 0.5)A¢

v

Calculate the new values of CPML parameters y,,,*,
and add them to the magnetic field components

(Output data § Update .elect_ric field components
at time instant (n + 1)A¢

v

Calculate the new values of CPML parameters /.,
and add them to the electric field components

v

Increment time step, #n = n + 1

Last iteration?

Figure 8.1 The FDTD flowchart including the steps of CPML algorithm.

8.2 « The CPML algorithm 235

CPML regions for which they were defined. The next step is updating the electric field
components in the problem space using the regular updating equation derived for the
host medium. Then the CPML terms (Yexy, Wexz> Weyxs Yeyzs Yezxs Yezy) are calculated using
their previous time step values and the new magnetic field values and are added to
their respective electric field components only at the CPML regions for which they
were defined. The details of the steps of this algorithm are discussed further in subsequent
sections of this chapter.

8.2.1 Updating equations for CPML

The general form of the updating equation for a non-CPML lossy medium is given in
Chapter 1 and is repeated here for the £, component for convenience as

E"(i, j, k) = Coe(i, j, k) x E"(i,], k)
o Coneli,j, k) x (HEH0,) = HEH = 1, 8)
+ Coy(isj,) % (HG . 0) = B G k= 1) (8.24)
Then the updating equation for the CPML region takes the form
EM(i, j, k) = Cexe(i, J, k) x EXi, J, k)
+ (1/kep(i J, K)) X Copeliy j, k) X (Hﬁ(i,j, k) — H3 (0 - 1, k))
(/e . 1)) Cony i, 0 x (HEH0, /) = 76 k= 1)
+ (AyCana(iy . k) X Wit (i, . &) + (AzCauny (i, . B)) X 9 (i, g,).
(8.25)

Notice that the negative sign in front of the z/;Z;%(i, J, k) term in (8.16) is embedded in
the coefficient C,.,(i, j, k) as can be followed from (1.26). Here two new coefficients can be
defined such that

Cyew iy j, k) <= AyCous (i, j, k). (8.26a)
Cyexz(is J, k) <= DzCouy (i, J, k). (8.26b)
Then (8.25) reduces to
E(i, j, k) = Cexe(iy j, k) X E(i, j, k)

n+%

+ (1/%ey (i, j, k) X Conpz(is j, k) x (H:+7(i,j, k) —H: (i, j— 1, k))
, . . . n+% , n+% ..
(1l o B) X Comp i) x (H2G g0 1) = B k= 1)

1 1
+ Cpoxy (i, J, k) X o2 (is J, k) + Cpenz(iy J, k) X (i J,).
(8.27)

236 CHAPTER 8 « Advanced PML formulations

Furthermore, the terms (1/x.,(i, j, k)) and (1/%..(i, j, k)) can be embedded into C,;-(7, /, k)
and Ce.p(i, , k), respectively, such that

Conz iy, k) = (1/xep (i j, k) X Coe (i, j, §), (8.28a)
Cexhy(ivjv k) < (I/Kez(ivjv k)) X Cexhy(ivjv k)~ (8-28b)

These modifications are applied to the coefficients only at the positions overlapping with
the respective CPML regions and further reduce (8.27) to

E;l+1(i7j7 k) = Cexe(i,j, k) X E;l(lajv k)

n+%

+C€x}lz(ivj7 k) X (Hzn-%(ivjv k) —H: (iaj_ 17 k))
n+so n+s o
o+ Counlis j, k) x (H,J, 0) = Y30,k = 1)
ntl, ntl, ..
+ Cpoxy(is jy k) X Yo (i, j, k) + Cpexz (i, j, k) X o(iy j, k). (8:29)

With the given form of updating equation and coefficients, £”* ' (i,j, k) is updated using
the first three terms on the right side in the entire domain as usual. Then 1/)2); %(i, Jj,k) and
ngﬁ(i,j7 k) are calculated (e.g., using (8.21) for wzx;%(i,j, k)), and the last two terms of
(8.29) are added to E"*1(i,j, k) at their respective CPML regions. It should be mentioned that
the same procedure applies for updating the other electric and magnetic field components as
well by using their respective updating equations and CPML parameters.

8.2.2 Addition of auxiliary CPML terms at respective regions

While discussing the PML we showed in Figure 7.4 that certain PML conductivity para-
meters take nonzero value at certain respective regions. In the CPML case there are three
types of parameters, and the regions for which they are defined are shown in Figure 8.2,
which is similar to Figure 7.4. In the CPML case the parameters 0,;, Oppis Aeir and a.,,,; are
nonzero, whereas the parameters x,; and «,,; take values larger than one at their respective
regions. These regions are named xn, xp, yn, yp, zn, and zp. The CPML auxiliary terms are
associated with these CPML parameters. Therefore, each term 1 is defined at the region
where its associated parameters are defined. For instance, .., is associated with oy, a.),
and «,, as can be observed in (8.21). Then the term 9, is defined for the yn and yp regions.
Similarly, the term ., is defined for the zn and zp regions. One should notice in (8.27) that
both the ., and ... terms are added to E, as the requirement of the CPML algorithm;
however, .., and ... are defined in different regions. This implies that the terms .., and
Yex- should be added to E, only in their respective regions. Therefore, one should take care
while determining the regions where the CPML terms are added to the field components. For
instance, .., should be added to E, in the yn and yp regions, whereas .. should be added
to E, in the zn and zp regions. A detailed list of the CPML updating equations for all six
electric and magnetic field components and the regions at which these equations are applied
is given in Appendix B.

8.3 « CPML parameter distribution 237

Figure 8.2 Regions where CPML parameters are defined: (2) Opex, Opmys Gexs Qs Kexs AN Ky
(b) Cpeys Tpmys Ceys Cmys Keys AN K3 (€) Opezs Opmzs Qezs Cmzs Kezr AN K25 and (d)
overlapping CPML regions.

8.3 CPML parameter distribution

As described in the previous chapter, the PML conductivities are scaled along the PML
region starting from a zero value at the inner domain—PML interface and increasing to a
maximum value at the outer boundary. In the CPML case there are two additional types of
parameter scaling profiles, which are different from the conductivity scaling profiles.

The maximum conductivity of the conductivity profile is computed in [23] using 0. =
Ofactor X Oopr, Where

oo Hpmi + 1
P 1500 Je Al

Here 7,,, is the order of the polynomial scaling, and &, is the relative permittivity of the
background material. Then the CPML conductivity o,,.; can be calculated by

Opei(P) = Omax (%))”Pm’, (8.31)

(8.30)

238 CHAPTER 8 « Advanced PML formulations

where p is the distance from the computational domain—PML interface to the position
of the field component and 9 is the thickness of the CPML layer. Similarly, o,,, can be
calculated by

Npml
Upmi(p) = gomax (g) ! 5 (832)

which satisfies the reflectionless condition (8.7).
The value of x,; is unity at the inner domain—CPML interface, and it increases to a
maximum value x,,,, such that

-
KEi(p) =1+ (Kmax - 1)(%)) (8.33)
whereas x,,; is given by
Npmi
Kmi(p) = 1+ (Kmax — l)(g) o (8.34)

In these equations, p indicates the distances of the respective field components from the
inner domain—CPML interface. It should be noted that the values that p can take in (8.33) and
(8.34) are different since the electric and magnetic field components are located at different
positions.

The parameter a.; takes a maximum value o, at the inner domain—CPML interface and
is linearly scaled to a minimum value, a.,;,, at the outer boundary such that

Aei(P) = min + (Cmax — Amin) (1 — g) (8.35)

Similarly, a,,; is calculated as

ami(p) = o (amin + (amax - amin) (1 - e)) (836)
&0 o

This scaling of the CPML parameter profile is chosen as before specifically to reduce the
reflection error of evanescent modes; a must be nonzero at the front boundary interface.
However, for the CFS-PML to absorb purely propagating modes at low frequency, o should
actually decrease to zero away from the boundary interface [23].

The choice of the parameters oyucor, Kmax> %maxs Gmin» and 71,,,,; and the thickness of the
CPML layer in terms of number of cells determine the performance of the CPML. In [23]
parametric studies have been performed to evaluate the effects of these parameters. Usually,
Ofactor Can be taken in the range 0.7-1.5, kmax in the range 5-11, amay in the range 0-0.05,
thickness of CPML as 8 cells, and #,,,; as 2, 3, or 4.

8.4 MATLAB® implementation of CPML in the
three-dimensional FDTD method

In this section, we demonstrate the implementation of the CPML in the three-dimensional
FDTD MATLAB code.

8.4 « MATLAB® implementation of CPML in the three-dimensional FDTD 239

8.4.1 Definition of CPML

In the previous chapters, the only type of boundary available in our three-dimensional
program was perfect electric conductor (PEC). The type of the boundaries were defined
as PEC by assigning “pec” to the parameter boundary.type, and the air gap between the
objects and the outer boundary was assigned to boundary.air_buffer_number_of _cells
in the define_problem_space_parameters subroutine. To define the boundaries as CPML,
we can update define_problem_space_parameters as shown in Listing 8.1. The type of
a boundary is determined as CMPL by assigning “cpml” to boundary.type. It should be
noted that the PEC boundaries can be used together with CPML boundaries; that is, some
sides can be assigned PEC while the others are CPML. In Listing 8.1, the zn and zp sides are
PEC while other boundaries are CPML.

Listing 8.1 define_problem_space_parameters

(% ==<boundary conditions>========
9|% Here we define the boundary conditions parameters
% 'pec’ : perfect electric conductor
u|% ‘cpml’ : conlvolutional PML
% if cpml_number_of_cells is less than zero
55|% CPML extends inside of the domain rather than outwards
»s|boundary.type_xn = 'cpml’;
boundary.air_buffer_.number_of_cells_xn = 4;
»boundary.cpml_number_of_cells_xn = 5;
| boundary.type_xp = ‘cpml’;
boundary.air_buffer_number_of_cells_xp = 4;
si{boundary. cpml_number_of_cells_xp = 5;
53| boundary. type_.yn = “cpml’;
boundary. air_buffer_number_of_cells_.yn = 0;
ss|boundary. cpml_number_of_cells_yn = —5;

;7/boundary . type_yp = “cpml’;

boundary.air_buffer_.number_of_cells_.yp = 0;
39| boundary. cpml_number_of_cells_.yp = —5;
s1|boundary.type_zn = ’pec’;

boundary.air_buffer_number_of_cells_zn = 0;
#|boundary.cpml_number_of_cells_zn = 5;
ss|boundary.type_zp = ’'pec’;

boundary.air_buffer_number_of_cells_zp = 6;
| boundary.cpml_number_of_cells_zp = 5;

boundary.cpml_order = 3;
boundary.cpml_sigma_factor = 1.5;

41

si|boundary. cpml_kappa_max = 7;
boundary.cpml_alpha_min = 0;
ss|boundary.cpml_alpha_max = 0.05;

240 CHAPTER 8 « Advanced PML formulations

Figure 8.3 A problem space with 20 x 20 x 4 cells brick.

Another parameter required for a boundary defined as CPML is the thickness of the
CPML layer in terms of number of cells. A new parameter cpml_number_of_cells is
defined as a subfield of the parameter boundary, and the thicknesses of the CPML regions
are assigned to this new parameter. One can notice that the thickness of CPML is 5 cells in
the xn and xp regions and —5 cells in the yn and yp regions. As discussed before, objects in
an FDTD problem space can be defined as penetrating into CPML; thus, these objects
resemble structures extending to infinity. As a convention, if cpml_number_of_cells is
defined as a negative number, it is assumed that the CPML layers are extending to inside of
the domain rather than extending outside from the end of the air buffer region. For instance,
if air_buffer_number_of_cells is zero, and the cpml_number_of_cells is a negative
number at the yn region, then the objects on the yn side will be penetrating to the CPML
region. Figure 8.3 illustrates a problem space including a 20 x 20 x 4 cells brick and
having its boundaries defined as shown in Listing 8.1. The solid thick line shows the
boundaries of the problem space. The dash-dot thick line shows the inner boundaries of the
CPML regions. The brick penetrates into the CPML in yn and yp regions. The zn and zp
boundaries are PEC. The other parameters described in Section 8.3 are defined in define_
problem_space_parameters as well. The order of the polynomial distribution 7,,, is defined
as boundary.cpml_order as shown in Listing 8.1. The 0y is defined as boundary.
cpml_sigma_factor, x,,,, is defined as boundary.cpml_kappa_max, o, is defined as
boundary.cpml_alpha_max, and similarly, a,;, is defined as boundary.cpml_alpha_min.

8.4.2 Initialization of CPML

To employ the CPML algorithm in the time-marching loop, several coefficient and auxiliary
parameter arrays need to be defined and initialized for the respective CPML regions before the
time-marching loop starts. Before defining these arrays, the size of the FDTD problem space
should be determined by taking the thicknesses of the CPML regions into account. The size of
the problem space and the number of cells in the domain are determined in the subroutine
calculate_domain_size, which was called in initialize_fdtd_material_grid. The implementa-
tion of calculate_domain_size is given in Listing 3.5, where the boundaries are assumed to be
PEC. As discussed in the previous section, if the thickness of the CPML is negative on a side, the
CPML region extends into the problem space on this side; therefore, the position of the outer
boundary of the problem space remains the same, and the calculation given for determining the

8.4 « MATLAB® implementation of CPML in the three-dimensional FDTD 241

position of the outer boundary in Listing 3.5 remains the same. However, if the thickness of the
CPML is positive on a side, the CPML adds to the problem space on that side, and the calcu-
lation of the position of the outer boundary needs to be updated accordingly. The necessary
modifications are implemented in calculate_domain_size, and the modified section of the code
is given in Listing 8.2. It can be noticed in the code that, for the sides where the boundary type is
CPML, the problem space boundary is extended outward by the thickness of the CPML.

Listing 8.2 calculate_domain_size

(% Determine the problem space boundaries including air buffers
56| fdtd_domain.min_x = fdtd_domain.min_x

— dx * boundary.air_buffer_.number_of_cells_xn;
fdtd_domain.min_y = fdtd_domain.min_y .

— dy * boundary.air_buffer_number_of_cells_yn;
fdtd_domain.min_z = fdtd_domain.min_z

— dz * boundary.air_buffer_.number_of_cells_zn;
fdtd_domain.max_x = fdtd_domain.max_x

+ dx * boundary.air_buffer_number_of_cells_xp;
«#| fdtd_domain.max.y = fdtd_domain.max.y

+ dy * boundary.air_buffer_number_of_cells_yp;
fdtd_domain.max_.z = fdtd_domain.max_z

+ dz * boundary.air_buffer_.number_of_cells_zp;

3

4

S

42

4

ES

48

% Determine the problem space boundaries including cpml layers

so| if stremp (boundary.type_xn, ’'cpml’) && ...

(boundary.cpml_number_of_cells_xn >0)

52 fdtd_domain.min_x = fdtd_domain.min_x

— dx * boundary.cpml_number_of_cells_xn;

54| end

if strcmp (boundary.type_xp, ‘cpml’) && .

56 (boundary.cpml_number_of_cells_xp >0)

fdtd_domain.max_x = fdtd_domain.max_x

58 + dx * boundary.cpml_number_of_cells_xp;

end

e| if strcmp (boundary.type_yn, ’‘cpml’) && ...

(boundary.cpml_number_of_cells_yn >0)

62 fdtd _domain.min_y = fdtd_domain.min_y

— dy * boundary.cpml_number_of_cells_yn;

| end

if strcmp (boundary.type_yp, ‘cpml’) && ...

66 (boundary.cpml_number_of_cells_yp >0)

fdtd_domain.max_.y = fdtd_domain.max_y

o8 + dy * boundary.cpml_number_of_cells_yp;

end

if strcmp (boundary.type_zn, ‘cpml’) && ..
(boundary.cpml_number_of_cells_zn >0)

7 fdtd_domain.min_z = fdtd_domain.min_z

— dz * boundary.cpml_number_of_cells_zn;

=
S

74| end

if strcmp (boundary.type_zp, ‘cpml’) && ...

76 (boundary.cpml_number_of_cells_zp >0)
fdtd_domain.max_z = fdtd_domain.max_z

78 + dz * boundary.cpml_number_of_cells_zp;

242 CHAPTER 8 « Advanced PML formulations

The initialization process of the CPML continues in initialize_boundary_conditions,
which is a subroutine called in the main program fdtd_solve as shown in Listing 3.1. So far
we have not implemented any code in initialize_boundary_conditions, since the only type of
boundary we have considered is PEC; which does not require any special treatment; the
tangential electric field components on the outer faces of the problem space are not updated,
and their values are left zero during the time-marching loop which naturally simulates the
PEC boundaries. However, the CPML requires special treatment, and the initialization of
the CPML is coded in initialize_boundary_conditions accordingly as shown in Listing 8.3.

Listing 8.3 initialize_boundary_conditions

-
% initialize boundary parameters

% define logical parameters for the conditions that will be used often
sfis_cpml_xn = false; is_cpml_xp = false; is_.cpml_yn = false;

is_.cpml_yp = false; is_cpml_zn = false; is_.cpml_zp = false;
s|is_any_side_cpml = false;

if strcmp (boundary.type_xn, ’‘cpml’)
8 is_.cpml_xn = true;

n_cpml_xn = abs(boundary.cpml_number_of_cells_xn);
0| end

if strcmp (boundary.type_xp, ‘cpml’)

12 is_.cpml_xp = true;

n_cpml_xp = abs(boundary.cpml_number_of_cells_xp);

14| end
if strcmp (boundary.type_yn, ’‘cpml’)
16 is_.cpml_yn = true;
n_cpml_yn = abs(boundary.cpml_number_of_cells_yn);
15| end
if strcmp (boundary.type_yp, ‘cpml’)
20 is_.cpml_yp = true;
n_cpml_yp = abs(boundary.cpml_number_of_cells_yp);
2| end
if strcmp (boundary.type_zn, ’‘cpml’)
24 is_.cpml_zn = true;
n_cpml_zn = abs(boundary.cpml_number_of_cells_zn);
2%| end
if strcmp (boundary.type_zp, 'cpml’)
28 is_.cpml_zp = true;
n_cpml_zp = abs(boundary.cpml_number_of_cells_zp);
30| end
| if (is_cpml_xn || is_cpml_xp || is_cpml_yn
[| is_ccpml_yp || is_cpml_zn || is_cpml_zp)
34 is_any_side_cpml = true;
end

% Call CPML initialization routine if any side is CPML
| if is_any_side_cpml
initialize _.CPML_ABC;

s0| end

8.4 « MATLAB® implementation of CPML in the three-dimensional FDTD 243

In this subroutine several frequently used parameters are defined for convenience. For instance,
the parameter is_cpml_xn is a logical parameter that indicates whether the x» boundary is
CPML, and n_cpml_xn stores the thickness of the CPML for the xn region. Similar parameters
are defined for other sides as well. Then another subroutine, initialize. CPML_ABC, is called
to continue the CPML specific initialization process.

Listing 8.4 shows the contents of initialize CPML_ABC for the xn and xp regions. The
code listing for the other sides follows the same procedure. Let us consider the xp region, for
example. In the code, distribution of the CPML parameters 0pex, Opmxs Kexs Kpxs Aoy, AN Qe
along the CPML thickness are calculated as one-dimensional arrays first, with the respective
names sigma_pex_xp, sigma_pmx_xp, kappa_ex_xp, kappa_mx_xp, alpha_ex_xp, and

Listing 8.4 initialize. CPML_ABC

-
% Initialize CPML boundary condition

p-order = boundary.cpml_order; % order of the polynomial distribution
sigma_ratio = boundary.cpml_sigma_factor;

kappa_-max = boundary.cpml_kappa_max;

alpha_min = boundary.cpml_alpha_min;

alpha_max = boundary.cpml_alpha_max;

IS

% Initialize cpml for xn region
ofif is_cpml_xn

12 % define one—dimensional temporary cpml parameter arrays
sigma_max = sigma_ratio * (p_order+1)/(150%pi*dx);

14 ncells = n_cpml_xn;
rho_e = ([ncells:—1:1]-0.75)/ ncells;

16 rhoom = ([ncells:—1:1]-0.25)/ncells;
sigma_pex_xn = sigma_max * rho_e. p_order;

18 sigma_pmx_xn = sigma_max * rho_m. " p_order;
sigma_pmx_xn = (mu-0/eps_0) * sigma_pmx_xn;

20 kappa_ex_.xn = 1 + (kappa-max — 1) * rho_e. p_order;
kappa.mx_xn = 1 + (kappa_-max — 1) * rho_m. p_order;

2 alpha_ex_xn = alpha_min + (alpha_max — alpha_min) * (1—rho_.e);
alpha_mx_xn = alpha_min + (alpha_max — alpha_min) * (1—rho_m);

2% alpha_mx_xn = (mu.0/eps_-0) * alpha_mx_xn;

2 % define one—dimensional cpml parameter arrays
cpml_b_ex_xn = exp((—dt/eps_0)

28 *((sigma_pex_xn ./ kappa_ex_xn)+ alpha_ex_xn));
cpml_a_ex_xn = (1/dx)*(cpml_b_ex_xn —1.0).* sigma_pex_xn

30 ./(kappa_ex_xn.*(sigma_pex_xn+kappa_ex_xn.*alpha_ex_xn));
cpml_b_mx_xn = exp((—dt/mu_0)

32 *((sigma_pmx_xn ./ kappa-mx_xn)+ alpha_mx_xn));
cpml_a_mx_xn = (1/dx)*(cpml_b_mx_xn —1.0) .* sigma_pmx_xn

34 ./ (kappa-mx_xn.*(sigma_pmx_xn+kappa-mx_xn.*alpha_mx_xn));

36 % Create and initialize 2D cpml convolution parameters
Psi_eyx_xn = zeros(ncells ny,nzp1);

38 Psi_ezx_xn = zeros(ncells ,nypl1,nz);

Psi_hyx_xn = zeros(ncells ,nyp1,nz);

244 CHAPTER 8 « Advanced PML formulations

40 Psi_hzx_xn = zeros(ncells ,ny,nzp1);
2 % Create and initialize 2D cpml convolution coefficients
% Notice that Ey(1,:,:) and Ez(1,:,:) are not updated by cmpl
44 CPsi_eyx_xn = Ceyhz(2:ncells+1,:,:)*dx;
CPsi_ezx_xn = Cezhy(2:ncells+1,:,:)*dx;
46 CPsi_hyx_xn = Chyez(1:ncells ,:,:)*dx;
CPsi_hzx_xn = Chzey(1:ncells ,:,:)*dx;

48

% Adjust FDTD coefficients in the CPML region

50 % Notice that Ey(1,:,:) and Ez(1,:,:) are not updated by cmpl
for i = 1: ncells
52 Ceyhz(i+1,:,:) = Ceyhz(i+1,:,:)/ kappa_ex_xn(i);
Cezhy (i+1,:,:) = Cezhy(i+1,:,:)/ kappa_ex_xn(i);
54 Chyez(i,:,:) = Chyez(i,:,:)/ kappa_mx_xn(i);
Chzey(i,:,:) = Chzey(i,:,:)/ kappa_mx_xn(i);
56 end
58 % Delete temporary arrays. These arrays will not be used any more.
clear sigma_pex_xn sigma_pmx_xn;
60 clear kappa-ex_xn kappa-mx_xn;

clear alpha_ex_xn alpha_mx_xn;
«| end

6|% Initialize cpml for xp region
if is_.cpml_xp

% define one—dimensional temporary cpml parameter arrays

o8 sigma_max = sigma_ratio * (p-order+1)/(150% pi*dx);
ncells = n_cpml_xp;
70 rho_e = ([1:ncells]—0.25)/ncells;
rhoom = ([1:ncells]—0.75)/ ncells;
7 sigma_pex_xp = sigma_max * rho_e. p_order;
sigma_pmx_xp = sigma_max * rho_m . p_order;
74 sigma_pmx_xp = (mu_0/eps_0) * sigma_pmx_xp;
kappa_-ex_xp = 1 + (kappa-max — 1) * rho_e. p_order;
76 kappa_mx_xp = 1 + (kappa.max — 1) * rho_m. " p_order;
alpha_ex_xp = alpha_min + (alpha_max — alpha_min) * (1—rho_e);
78 alpha_mx_xp = alpha_min + (alpha_max — alpha_min) * (1—rho_m);
alpha_mx_xp = (mu_0/eps_0) * alpha_mx_xp;

% define one—dimensional cpml parameter arrays

82 cpml_b_ex_xp = exp((—dt/eps_0)
*((sigma_pex_xp ./ kappa_ex_xp)+ alpha_ex_xp));
84 cpml_a_ex_xp = (1/dx)*(cpml_b_ex_xp —1.0).* sigma_pex_xp
./(kappa_ex_xp .*(sigma_pex_xp+kappa_ex_xp.*alpha_ex_xp));
86 cpml_b_mx_xp = exp((—dt/mu_0)
*((sigma_pmx_xp ./ kappa-mx_xp)+ alpha_mx_xp));
88 cpml_a_mx_xp = (1/dx)*(cpml_b_mx_xp —1.0) .* sigma_pmx_xp

./ (kappa-mx_xp.*(sigma_pmx_xp+kappa_mx_xp.*alpha_mx_xp));
920
% Create and initialize 2D cpml convolution parameters

8.4 « MATLAB® implementation of CPML in the three-dimensional FDTD 245

) Psi_eyx_xp = zeros(ncells ,ny,nzp1);
Psi_ezx_xp = zeros(ncells ,nypl,nz);
o4 Psi_hyx_xp = zeros(ncells nypl,nz);
Psi_hzx_xp = zeros(ncells , ny,nzp1);
96
% Create and initialize 2D cpml convolution coefficients
98 % Notice that Ey(nxp1,:,:) and Ez(nxpl1,:,:) are not updated by cmpl
CPsi_eyx_xp = Ceyhz(nxpl—ncells:nx,:,:)*dx;
100 CPsi_ezx_xp = Cezhy(nxpl—ncells:nx,:,:)*dx;
CPsi_hyx_xp = Chyez(nxpl—ncells:nx,:,:)*dx;
102 CPsi_hzx_xp = Chzey(nxpl—ncells:nx,:,:)*dx;
104 % Adjust FDTD coefficients in the CPML region
% Notice that Ey(nxp1,:,:) and Ez(nxp1,:,:) are not updated by cmpl
106 for i = 1: ncells
Ceyhz (nx—ncells+i,:,:) = Ceyhz(nx—ncells+i,:,:)/ kappa-ex_xp(i);
108 Cezhy (nx—ncells+i,:,:) = Cezhy(nx—ncells+i,: ,:)/ kappa_ex_xp(i);
Chyez (nx—ncells+i,:,:) = Chyez(nx—ncells+i,: ,:)/ kappa_mx_xp(i);
110 Chzey (nx—ncells+i,: ,:) = Chzey(nx—ncells+i,:,:)/ kappa_mx_xp(i);
end
112
% Delete temporary arrays. These arrays will not be used any more.
114 clear sigma_pex_xp sigma_pmx_xp;
clear kappa_ex_xp kappa-mx_xp;
116 clear alpha_ex_xp alpha_mx_xp;
end

alpha_mx_xp, using the equations given in Section 8.3. The parameters 0., K., and a,, are
used to update the £, and E. field components, and the distances of these field components
from the interior interface of the CPML are used in (8.31), (8.33), and (8.35) as p.. The
positions of the field components and the respective distances of the field components from
the CPML interface are illustrated in Figure 8.4. One can see that CPML interface is assumed to
be offset from the first CPML cell by a quarter cell size. This is to ensure that the same number
of electric and magnetic field components is updated by the CPML algorithm. Similarly,
Figure 8.5 illustrates the magnetic field components of H, and H. being updated using the
CPML in the xp region. The distances of these field components from the CPML interface are
denoted as p;, and are used in (8.32), (8.34), and (8.36) to calculate 0y, Ky, AN pyy.

Then Listing 8.4 continues with calculation of a.,, b, a,,, and b,,, as cpml_a_ex_xp,
cpml_b_ex_xp, cpml_a_mx_xp, and cpml_b_mx_xp using the equations in Appendix B.
Then the CPML auxiliary parameters ey, Yezvs Wiy, and ., are defined as two-dimen-
sional arrays with the names Psi_eyx_xp, Psi_ezx_xp, Psi_hyx_xp, and Psi_hzx_xp and are
initialized with zero value. The coefficients Cyepx, Cyezvs Cypiyx, and Cyp-, are calculated and
stored as two-dimensional arrays with the respective names CPsi_eyx_xp, CPsi_ezx_xp,
CPsi_hyx_xp, and CPsi_hzx_xp. Then the FDTD updating coefficients Ceyhz, Cezhy,
Chyez, and Chzey are scaled with the respective x values in the xp region. Finally, the
parameters that will not be used anymore during the FDTD calculations are cleared from
MATLAB workspace.

246 CHAPTER 8 « Advanced PML formulations

PML region o
T T B B
P Jo A ¢ node (Nx+1, j, k)
v > 1.2) |
1 —
— X pA1)

node (Nx + 1, j, k)

Ey and Ez components
z updated by CPML

Figure 8.4 Positions of the electric field components updated by CPML in the xp region.

PML region
T - —
C f et et et e |PEC
el e 1 I S $—< node (Nx + 1, /,)
Y —»n(2) |
Lo > 0,(1)

node (Nx + 1, /, k)

Hy and Hz components
updated by CPML
Y \] X

Figure 8.5 Positions of the magnetic field components updated by CPML in the xp region.

8.4.3 Application of CPML in the FDTD time-marching loop

The necessary CPML arrays and parameters are initialized in initialize_ CPML_ABC, and they
are ready to use for applying the CPML in the FDTD time-marching loop. Two new subroutines
are added to the subroutine run_fdtd_time_marching_loop as shown in Listing 8.5. The first
one is update_magnetic_field_ CPML_ABC, and it follows update_magnetic_fields. The
second one is update_electric_field CPML_ABC, and it follows update_electric_fields.

8.4 « MATLAB® implementation of CPML in the three-dimensional FDTD 247

Listing 8.5 run_fdtd_time_marching_loop

-
disp ([’Starting._the_time_marching_.loop’]);
2| disp (["Total_.number_of_time_steps.:.’
num2str(number_of_time_steps)]);

start_time = cputime;
6| current_time = 0;

s| for time_step = 1:number_of_time_steps
update_magnetic_fields;

10 update_magnetic_field_CPML_ABC;
capture_sampled_magnetic_fields;
12 capture_sampled_currents;
update_electric_fields;

14 update_electric_field _CPML_ABC;
update_voltage_sources;

16 update_current_sources;
update_inductors;

18 update_diodes;
capture_sampled_electric_fields;
20 capture_sampled_voltages;
display_sampled_parameters;
»|end

| end_time = cputime;

total_time_in_minutes = (end_time — start_time)/60;
6| disp (['Total_simulation_time.is.’
num2str(total_time_in_minutes) ’_minutes.’]);

The implementation of update_magnetic_field CPML_ABC is given in Listing 8.6. The
magnetic field components are updated for the current time step using the regular updating
equations in update_magnetic_fields, and then in update_magnetic_field CPML_ABC, first
the auxiliary 1y parameters are calculated using the current values of the electric field com-
ponents. These terms are then added to the appropriate magnetic field components in their
respective CPML regions.

Similarly, the implementation of update_electric_field CPML_ABC is given in Listing 8.7.
The electric field components are updated for the current time step using the regular updating
equations in update_electric_fields, and then in update_electric_field CPML_ABC, first the
auxiliary ¥ parameters are calculated using the current values of the magnetic field components.
These terms are then added to the appropriate electric field components in their respective
CPML regions.

One can notice in the code listings that the arrays representing vy, and v, are two-
dimensional, whereas the arrays representing a.,, @, b.;, and b,, are one-dimensional.
Therefore, 1, and v, are updated in a “for” loop using the one-dimensional arrays; if they
were defined as two-dimensional arrays, the “for” loop would be avoided, which would
speed up the calculation with the trade-off of increased memory. In the two-dimensional
array case, the coefficients representing C,,. and C,,, can be distributed over a;, a.;, be;, and
b,,; in the initialization process initialize_ CPML_ABC, which further reduces the amount of
calculations during the CPML updates.

248 CHAPTER 8 « Advanced PML formulations

Listing 8.6 update_magnetic_field CPML_ABC

1(% apply CPML to magnetic field components
if is_.cpml_xn
3 for i = 1: n_cpml_xn
Psi_hyx_xn(i,:,:) = cpml_b_mx_xn (i) * Psi_hyx_xn(i,:,:)
5 + cpml_a_mx_xn (i)*(Ez(i+1,:,:)—Ez(i,:,:));
Psi_hzx_xn(i,:,:) = cpml_b_mx_xn (i) * Psi_hzx_xn(i,:,:)
7 + cpml_a_mx_xn (i)*(Ey(i+1,:,:)—Ey(i,:,:));
end
9 Hy(1:n_cpml_xn,:,:) = Hy(1:n_cpml_xn,:,:) ...
+ CPsi_hyx_xn (:,:,:) .* Psi_hyx_xn(:,:,:);
1 Hz(1:n_cpml_xn ,: ,:) = Hz(1:n_cpml_xn ,:,:) ...
+ CPsi_hzx_xn (:,:,:) .* Psi_hzx_xn(:,:,:);
13| end
is| if is_cpml_xp
n_st = nx — n_cpml_xp;
17 for i = 1:n_cpml_xp
Psi_hyx_xp (i,:,:) = cpml_b_mx_xp (i) * Psi_hyx_xp(i,:,:)
19 + cpml_a_mx_xp (i)*(Ez(i+n_st+1,:,:)—Ez(i+n_st ,:,:));
Psi_hzx_xp (i,:,:) = cpml_b_mx_xp (i) * Psi_hzx_xp (i,:,:)
21 + cpml_a_mx_xp (i)*(Ey(i+n_st+1,:,:)—Ey(i+n_st ,:,:));
end
23
Hy(n_st+1:nx,:,:) = Hy(n_st+1:nx,:,:) ...
25 + CPsi_hyx_xp (:,:,:) .* Psi_hyx_xp(:,:,:);
Hz(n_st+1:nx,:,:) = Hz(n_st+1:nx,:,:) ...
27 + CPsi_hzx_xp (:,:,:) .* Psi_hzx_xp (:,:,:);
end

Listing 8.7 update_electric_field CPML_ABC

-
% apply CPML to electric field components
if is_.cpml_xn

~

for i = 1:n_cpml_xn
4 Psi_eyx_xn(i,:,:) = cpml_b_ex_xn (i) * Psi_eyx_xn(i,:,:)
+ cpml_a_ex_xn (i)*(Hz(i+1,:,:)—=Hz(i,:,:));
6 Psi_ezx_xn(i,:,:) = cpml_b_ex_ xn(l) * Psi_ezx_xn (i,:,:)
+ cpml_a_ex_xn (i)*(Hy(i+1,:,:)=Hy(i,:,:));
8 end
Ey(2:n_cpml_xn+1,:,:) = Ey(2:n_cpml_xn+1,:,:)
10 + CPsi_eyx_xn .* Psi_eyx_xn;
Ez(2:n_cpml_xn+1,:,:) = Ez(2:n_cpml_xn+1,:,:)
12 + CPsi_ezx_xn .* Psi_ezx_xn;
end

if is_.cpml_xp

16 n_st = nx — n_cpml_xp;
for i = 1:n_cpml_xp
18 Psi_eyx_xp (i,:,:) = cpml b_ex_ xp() * Psi_eyx_xp(i,:,:)
+ cpml_a_ex_xp(i)* (i+n_st,:,:) —Hz(i+n_st —1,:,:));
20 Psi_ezx_xp (i,:,:) = cpml b ex._ xp() * Psi_ezx_xp(i,:,:) ...
+ cpml_a_ex_xp (i)*(Hy(i+n_st,:,:) —Hy(i+n_st —1,:,:));

end

o
3

8.5 « Simulation examples 249

Ey(n_st+1:nx,:,:) = Ey(n_st+1:nx,:,:)
24 + CPsi_eyx_xp .* Psi_eyx_xp;

Ez(n_st+1:nx,:,:) = Ez(n_st+1:nx,:,:)
2% + CPsi_ezx_xp .* Psi_ezx_xp;

end

8.5 Simulation examples

So far we have discussed the CPML algorithm and have demonstrated its implementation in
the MATLAB program. In this section, we provide examples in which the boundaries are
realized by the CPML.

8.5.1 Microstrip low-pass filter

In Section 6.2, we demonstrated a low-pass filter geometry, which is illustrated in Figure 6.2.
We assumed that the boundaries of the problem space were PEC. In this section we repeat
the same example but assume that the boundaries are CPML. The section of the code that
defines the boundaries in define_problem_space_parameters is shown in Listing 8.8. As can
be followed in the listing, an air gap of 5 cells thickness is surrounding the filter circuit, and
the boundaries are terminated by 8 cells thickness of the CPML.

Listing 8.8 define_problem_space_parameters.m

% ==<boundary conditions>========
19/% Here we define the boundary conditions parameters
% ’'pec’ : perfect electric conductor
2u|% “cpml’ @ conlvolutional PML
% if cpml_number_of_cells is less than zero
5|% CPML extends inside of the domain rather than outwards
»s|boundary.type_xn = ’cpml’;
boundary.air_buffer_.number_of_cells_xn = 5;
27| boundary. cpml_number_of_cells_.xn = 8;
»|boundary.type_xp = ‘cpml’;
boundary.air_buffer_number_of_cells_xp = 5;
si|boundary. cpml_number_of_cells_xp = 8;
53| boundary. type_yn = ’cpml’;
boundary.air_buffer_.number_of_cells_.yn = 5;
ss|boundary. cpml_number_of_cells_.yn = 8;
37| boundary . type_yp = ‘cpml’;
boundary.air_buffer_.number_of_cells_yp = 5;
sw|boundary.cpml_number_of_cells_yp = 8;
si|boundary.type_zn = “cpml’;
boundary.air_buffer_.number_of_cells_zn = 5;
s|boundary. cpml_number_of_cells_zn = 8;

250 CHAPTER 8 « Advanced PML formulations

ss|boundary.type_zp = ’cpml’;
boundary.air_buffer_.number_of_cells_zp = 5;
47 |boundary.cpml_number_of_cells_zp = 8;

s |boundary.cpml_order = 3;
boundary.cpml_sigma_factor = 1.3;
si|{boundary.cpml_kappa_max =
boundary.cpml_alpha_min
s3[boundary.cpml_alpha_max

1l
o o

1.2 :
Sampled voltage at port 1
T T - - - - Sampled voltage at port 2|
§ [Source voltage
] s
] S SR SR

%)

oalil SR S

1 \
HHEN T ' ' '
il ‘/\,‘ ' '
e AW . e .
WP AN a e

O'VV ! !
02 : : :

0 0.5 1 1.5 2
Time (ns)

Figure 8.6 Source voltage and sampled voltages observed at the ports of the low-pass filter.

The simulation of the circuit is performed for 3,000 time steps. The results of this simulation
are plotted in the Figures 8.6-8.9. Figure 8.6 shows the source voltage and sampled voltages
observed at the ports of the low-pass filter, whereas Figure 8.7 shows the sampled currents
observed at the ports of the low-pass filter. It can be seen that the signals are sufficiently
decayed after 3,000 time steps. After the transient voltages and currents are obtained, they are
used for postprocessing and scattering parameter (S-parameter) calculations. Figure 8.8 shows
S11, whereas Figure 8.9 shows S,; of the circuit. Comparing these figures with the plots in
Figure 6.3 one can observe that the S-parameters calculated for the case where the boundaries
are CPML are smooth and do not include glitches. This means that resonances due to the closed
PEC boundaries are eliminated and the circuit is simulated as if it is surrounded by open space.

8.5.2 Microstrip branch line coupler

The second example is a microstrip branch line coupler, which was published in [14].
The circuit discussed in this section is illustrated in Figure 8.10. The cell sizes are

8.5 « Simulation examples 251

x1073
12 .
' Sampled current at port 1
10 |- *********** - - - - Sampled current at port 2|---
8 | [

Time (ns)

Figure 8.7 Sampled currents observed at the ports of the low-pass filter.

o
=
o
=]
2
‘s
3
<
=
—60 H H H
5 10 15 20
Frequency (GHz)
200 T T T
5
2 0
[0}
S
=
~ | ‘
—200 . : *
0 5 10 15 20
Frequency (GHz)

Figure 8.8 S, of the low-pass filter.

Ax = 0.406 mm, Ay = 0.406 mm, and Az = 0.265 mm. In this circuit the wide lines are
10 cells wide and the narrow lines are 6 cells wide. The center-to-center distances between the
strips in the square coupler section are 24 cells. The dielectric substrate has 2.2 dielectric con-
stant and 3 cells thickness. The definition of the geometry of the problem is shown in Listing 8.9.

The boundaries of the problem space are the same as those in Listing 8.8: that is, an
8 cells thick CPML, which terminates a 5 cells thick air gap surrounding the circuit.

252 CHAPTER 8 « Advanced PML formulations

0
)
=
L 20
2
‘s
&
s 40
0 5 10 15 20
Frequency (GHz)
200
5
2 0 -
]
£
=
Ay
—200 . . :
0 5 10 15 20
Frequency (GHz)

Figure 8.9 S,; of the low-pass filter.

Figure 8.10 An FDTD problem space including a microstrip branch line coupler.

The voltage source with a 50 Q internal resistance is placed at the input of the circuit
indicated as port 1 as shown in Figure 8.10. The outputs of the circuit are terminated by 50 Q
resistors. The definition of the voltage source and resistors is shown in Listing 8.10.

Four sampled voltages and four sampled currents are defined as the outputs of the circuit
as shown in Listing 8.11. One should notice that the sampled voltages and currents are
defined directly on the voltage source and the termination resistors. Therefore, the reference
planes for the S-parameter calculations are at the positions of the source and resistor ter-
minations. Then four 50 Q ports are defined by associating sampled voltage—current pairs
with them. Then port 1 is set to be the excitation port for this FDTD simulation.

After the definition of the problem is completed, the FDTD simulation is performed for
4,000 time steps, and the S-parameters of this circuit are calculated. Figure 8.11 shows the
results of this calculation, where S;1, S>1, S31, and S4; are plotted. There is a good agreement
between the plotted results and those published in [14].

IS

EN

B3

4

=

4

44

4

4

E3

2| bricks (6

8.5 « Simulation examples

Listing 8.9 define_geometry.m

253

-
disp(’defining_the_problem_geometry’);

bricks = [];
spheres = [];

% define a substrate

bricks (1). min_x = —20*dx;
bricks (1). min_y = —25*dy;
bricks (1). min_z = 0;
bricks (1). max_x = 20*dx;
bricks (1). max_.y = 25xdy;

2l bricks (1). max.z = 3*dz;
bricks (1). material_type = 4;

% define a PEC plate

bricks (2). min_x = —12*dx;
bricks (2). min_y = —15+dy;
bricks (2). min_z = 3*dz;
bricks (2). max_x = 12xdx;
bricks (2). max_.y = —9+dy;
bricks (2). max_.z = 3*dz;
bricks (2). material_type = 2;

% define a PEC plate

bricks (3). min_x = —12*dx;
bricks (3). min_y = 9*dy;
bricks (3). min_z = 3xdz;
bricks (3). max_x = 12*xdx;
bricks (3). max_.y = 15xdy;
bricks (3). max_.z = 3*dz;
bricks (3). material_type = 2;
% define a PEC plate
bricks (4). min_x = —17+dx;
bricks (4). min_.y = —12*dy;
bricks (4). min_z = 3*dz;
bricks (4). max_x = —7+dx;
bricks (4). max_.y = 12xdy;
bricks (4). max_.z = 3xdz;
bricks (4). materlal type = 2;

% define a PEC plate

bricks (5). min_x = 7*dx;
bricks (5). min_y = —12+dy;
bricks (5). min_z = 3*dz;
bricks (5). max_x = 17*dx;
bricks (5). max_.y = 12=%dy;
bricks (5). max_.z = 3*dz;
bricks (5). material_type = 2;

% define a PEC plate

). min_x = —15%dx;
bricks (6). min_.y = —25xdy;
bricks (6). min_.z = 3xdz;
bricks (6). max_x = —9*dx;

254 CHAPTER 8 « Advanced PML formulations

so[bricks (6). max.y = —12xdy;
bricks (6). max_z = 3*dz;
ss|bricks (6). material_type = 2;

w|% define a PEC plate

bricks (7). min_x = 9*dx;

e |bricks (7). min_y = —25*dy;
bricks (7). min_z = 3*dz;

e |bricks (7). max_.x = 15+dx;
bricks (7). max_.y = —12*dy;

s [bricks (7). max.z = 3*dz;
bricks (7). material_type = 2;

68

% define a PEC plate

o|bricks (8). min_x = —15*dx;
bricks (8). min_y = 12+dy;
nlbricks (8). min_z = 3*dz;
bricks (8). max_x = —9*dx;
| bricks (8). max_.y = 25*dy;
bricks (8). max_.z = 3*dz;
(8)

| bricks . material_type = 2;

s|% define a PEC plate

bricks (9). min_x = 9*dx;
so|bricks (9). min_y = 12*dy;
bricks (9). min_z = 3*dz;
s2(bricks (9). max_x = 15*dx;
bricks (9). max_.y = 25xdy;
s |bricks (9). max_z = 3*dz;
bricks (9). material_type = 2;
86
% define a PEC plate as ground
ss[bricks (10). min_x = —20*dx;
bricks (10). min_.y = —25dy;
w|bricks (10). min_z = 0;
bricks (10). max_x = 20*dx;
o |bricks (10). max_.y = 25xdy;
bricks (10). max_.z = 0;
s |bricks (10). material_type = 2;

Listing 8.10 define_sources_and_lumped_elements.m

-
disp ('defining.sources_and.lumped._element_.components’);

voltage_sources = [];
current_sources = [];
diodes = [];
resistors = [];
inductors = [];
capacitors = [];

-

% define source waveform types and parameters
waveforms. gaussian (1). number_of_cells_per_wavelength = 0;
waveforms. gaussian (2). number_of_cells_per_wavelength

Il
-
Ul

=

4

4

&
5

£

8.5 « Simulation

examples

% voltage sources
s|% direction: ’xp’, ’'xn’, ’yp’, ’'yn’, ’zp’, or ’zn’
% resistance ohms, magitude volts
7| voltage_sources (1). min_x = —15*dx;
voltage_sources (1). min_y = —25*dy;
voltage_sources (1). min_z = 0;
voltage_sources (1). max_x = —9*dx;
voltage_sources (1). max.y = —25*dy;
voltage_sources (1). max_.z = 3*dz;
voltage_sources (1).direction = ’zp’
voltage_sources (1). resistance = 50;
s|voltage_sources (1). magnitude = 1;
voltage_sources (1). waveform_type = ’gaussian’;
voltage_sources (1). waveform_index = 1;
% resistors
% direction: ’'x’, 'y’, or 'z’
% resistance ohms
resistors (1). min_x = 9%dx;
resistors (1). min_y = —25*dy;
resistors (1). min_z = 0;
resistors (1). max_x = 15%dx;
resistors (1). max_.y = —25*dy;
resistors (1). max.z = 3*dz;
resistors (1). direction = ’z’;
resistors (1). resistance = 50;
% resistors
% direction: ’'x’, 'y’, or 'z’
% resistance ohms
resistors (2). min_x = 9%dx;
resistors (2). min_y = 25xdy;
resistors (2). min_z = 0;
resistors (2). max_-x = 15%dx;
resistors (2). max_.y = 25*xdy;
resistors (2). max.z = 3*dz;
resistors (2). direction = ’z’;
resistors (2). resistance = 50;
% resistors
% direction: 'x’, 'y’, or 'z’
% resistance ohms
resistors (3). min_x = —15%dx;
resistors (3). min_.y = 25x%dy;
resistors (3).min_z = 0;
resistors (3). max_.x = —9#dx;
resistors (3). max_.y = 25xdy;
resistors (3). max_z = 3*dz;
resistors (3). direction = ’z’;
resistors (3). resistance = 50;

255

256 CHAPTER 8 « Advanced PML formulations
Listing 8.11 define_output_parameters.m
(disp ("defining_output_parameters’);

ES

40

48

sampled_electric_fi
sampled_magnetic_f
sampled_voltages
sampled_currents
ports = [];

% figure refresh
plotting_step

ra
5;

% mode of operation
run_simulation tr
show_material_mesh
show_problem_space

ields

elds

[
[1;

te

ue;

true;
true;

[.
[.

’

)

% frequency domain parameters

frequency_domain.start = 20e6;
frequency_domain.end = 10e9;
frequency_domain.step = 20e6;

2|% define sampled voltages
sampled_voltages (1). min_x = —15*%dx;
sampled_voltages (1). min_.y = —25xdy;
sampled_voltages (1). min_z = 0;
sampled_voltages (1). max_x = —9*dx;
sampled_voltages (1). max_.y = —25dy;
sampled_voltages (1). max_.z = 3xdz;
sampled_voltages (1). direction = ’zp’
sampled_voltages (1). display_plot = false;
% define sampled voltages
sampled_voltages (2). min_x = 9=dx;
sampled_voltages (2). min_.y = —25xdy;
sampled_voltages (2). min_z = 0;
sampled_voltages (2). max_x = 15%dx;
sampled_voltages (2). max.y = —25x%dy;
sampled_voltages (2). max.z = 3*dz;
sampled_voltages (2). direction = ’zp’
sampled_voltages (2). display_plot = false;
% define sampled voltages
sampled_voltages (3). min_x = 9=%dx;
sampled_voltages (3). min_.y = 25xdy;
sampled_voltages (3). min_z = 0;
sampled_voltages (3). max_x = 15%dx;
sampled_voltages (3). max_.y = 25xdy;
sampled_voltages (3). max.z = 3*dz;
sampled_voltages (3). direction = ’zp’
sampled_voltages (3). display_plot = false;

520% define sampled voltages
sampled_voltages (4). min_x = —15%dx;

=

3

S
3

2

66

94

96

98

10

3

104

106

8.5 « Simulation examples

sampled_voltages
sampled_voltages

min_y = 25=dy;
min_z = 0;

sampled_voltages max_x = —9*dx;
= 25%dy;

sampled_voltages max_z = 3xdz;

sampled_voltages direction = ’zp’

(4).

(4).

(4).
sampled_voltages (4). max_y

(4).

(4).

(4).

sampled_voltages display_plot = false;

2|% define sampled currents

sampled_currents (1). min_x = —15%dx;
sampled_currents (1). min_y = —25*dy;
sampled_currents (1). min_z = 2xdz;
sampled_currents (1). max_x = —9%dx;
sampled_currents (1). max_y —25*dy;

1).

1).

1).

sampled_currents max_z = 2xdz;
sampled_currents direction = ’zp’;
sampled_currents display_plot = false;

% define sampled currents
sampled_currents (2). min_x = 9*dx;
sampled_currents (2). min_y = —25*dy;
sampled_currents (2). min_z = 2xdz;
sampled_currents (2). max_x = 15%dx;
sampled_currents (2). max_y —25*dy;

(2).

(2).

(2).

sampled_currents max_z = 2xdz;
sampled_currents direction = ’zp’
sampled_currents display_plot = false;

% define sampled currents
sampled_currents (3). min_x = 9+*dx;

(

sampled_currents (3). min_y = 25*dy;
sampled_currents (3). min_z = 2xdz;
sampled_currents (3). max_x = 15*%dx;
sampled_currents (3). max_.y = 25*dy;
sampled_currents (3). max_z = 2*dz;
sampled_currents (3). direction = ’zp’;
sampled_currents (3). display_plot = false;

2|% define sampled currents

sampled_currents
sampled_currents
sampled_currents

(4). min_x = —15*dx;
(
(
sampled_currents (
(
(
(
(

4).min_y = 25%dy;
4). min_z = 2*dz;
4). max_x = —9*dx;
sampled_currents (4). max_.y = 25*dy;
sampled_currents (4).
sampled_currents (4).
4).

sampled_currents

max_z = 2*dz;
direction = ’zp’;
display_plot = false;

% define ports

ports (1).sampled_voltage_index = 1;
ports (1).sampled_current_index = 1;
ports (1).impedance = 50;

ports (1).is_source_port = true;

257

258 CHAPTER 8 « Advanced PML formulations
ws| ports (2).sampled_voltage_index = 2;
ports (2).sampled_current_index = 2;
mo| ports (2).impedance = 50;
ports (2).is_source_port = false;
112
ports (3).sampled_voltage_index = 3;
ns| ports (3). sampled_current_index = 3;
ports (3).impedance = 50;
ne| ports (3).is_source_port = false;
ns| ports (4). sampled_voltage_index = 4;
ports (4).sampled_current_index = 4;
0| ports (4).impedance = 50;
ports (4).is_source_port = false;
122
% define animation
24|% field_type shall be e’ or ’h’
% plane cut shall be ’xy’, yz, or zx
126|% component shall be ’x’, ’'y’, ’z’, or 'm;
animation (1). field_type = ’e’;
ps|animation (1). component = 'm’;
animation (1). plane_cut (1).type = ’'xy’;
o] animation (1). plane_cut (1). position = 2+dz;
animation (1). enable = true;
i2|animation (1). display_grid = false;
animation (1). display_objects = true;
134
% display problem space parameters
ss| problem_space_display.labels = false;
problem_space_display.axis_at_origin = false;
ps| problem_space_display.axis_outside_domain = false;
problem_space_display.grid_xn = false;
o|problem_space_display.grid_xp = false;
problem_space_display.grid_yn = false;
w2 |problem_space_display.grid_yp = false;
problem_space_display.grid_zn = false;
i problem_space_display.grid_zp = false;
problem_space_display.outer_boundaries = false;
us|problem_space_display.cpml_boundaries = false;

8.5.3 Characteristic impedance of a microstrip line

We have demonstrated the use of CPML for two microstrip circuits in the previous exam-
ples. These circuits are fed using microstrip lines, the characteristic impedance of which is
assumed to be 50 Q. In this section we provide an example showing the calculation of
characteristic impedance of a microstrip line.

We use the same microstrip feeding line as the one used in previous example; the line is
2.4 mm wide, and the dielectric substrate has 2.2 dielectric constant and 0.795 mm thickness. A
single line microstrip circuit is constructed in the FDTD method as illustrated in Figure 8.12.
The microstrip line is fed with a voltage source. There is a 5 cells air gap on the yn and zp sides

8.5 « Simulation examples 259

Magnitude (dB)

Frequency (GHz)

Figure 8.11 S-parameters of the branch line coupler.

Sampled voltage and current

Outer boundaries

Figure 8.12 An FDTD problem space including a microstrip line.

of the substrate. On the zn side of the substrate the boundary is PEC, which serves as the ground
plane for the microstrip line. The other sides of the geometry are terminated by CPML. One
should notice that the substrate and microstrip line penetrate into the CPML regions on the yp,
xn, and xp sides, thus simulating structures extending to infinity in these directions. The defi-
nition of the problem space including the cell sizes and boundaries is shown in Listing 8.12.
The definition of the geometry is given in Listing 8.13. The microstrip line is fed with voltage
source as defined in Listing 8.14. A sampled voltage and a sampled current are defined 10 cells
away from the source, and they are tied to form a port as shown in Listing 8.15.

260 CHAPTER 8 « Advanced PML formulations

o

IS

ES

E3

16

i3

40

44

4

=

48

Listing 8.12 define_problem_space_parameters.m

-
disp ('defining_the_problem_space_parameters’);

% maximum number of time steps to run FDTD simulation
number_of_time_steps = 1000;

% A factor that determines duration of a time step
% wrt CFL limit

courant_factor = 0.9;

% A factor determining the accuracy limit of FDTD results

number_of_cells_per_wavelength = 20;

% Dimensions of a unit cell in x, y, and z directions (meters)
dx = 2.030e—4;

dy = 2.030e—4;

dz = 1.325e—4;

% ==<boundary conditions >========

% Here we define the boundary conditions parameters

% 'pec’ : perfect electric conductor

% 'cpml’ : conlvolutional PML

% if cpml_number_of_cells is less than zero

% CPML extends inside of the domain rather than outwards

boundary.type_xn = 'cpml’;
boundary.air_buffer_.number_of_cells_xn = 0;
boundary.cpml_number_of_cells_xn = —8;
boundary.type_xp = 'cpml’;
boundary. air_buffer_number_of_cells_xp = 0;
boundary.cpml_number_of_cells_xp = —8;
boundary.type_yn = 'cpml’;
boundary.air_buffer_number_of_cells_yn = 8;
boundary.cpml_number_of_cells_.yn = 8;
boundary.type_yp = ‘cpml’;
boundary.air_buffer_number_of_cells_yp = 0;
boundary.cpml_number_of_cells_.yp = —8;
boundary.type_zn = ’pec’;

2| boundary. air_buffer_number_of_cells_zn = 0;
boundary.cpml_number_of_cells_zn = 8;
boundary.type_zp = 'cpml’;
boundary.air_buffer_number_of_cells_zp = 10;

boundary.cpml_number_of_cells_zp = 8;

boundary.cpml_order = 3;
boundary.cpml_sigma_factor = 1;
boundary.cpml_kappa_-max = 10;

boundary.cpml_alpha_min =
boundary.cpml_alpha_max

I
o o
(=}
N

~

10

16

EN

B3

5

8.5 « Simulation examples 261

Listing 8.13 define_geometry.m

p
disp ('defining._.the_problem_geometry’);

bricks
spheres =

[1;
[l

% define a substrate

bricks (1). min_x = 0;
bricks (1). min_y = 0;
bricks (1). min_z = 0;
bricks (1). max_x = 60*dx;
bricks (1). max_.y = 60xdy;
bricks (1). max_z = 6*dz;
bricks (1). material_type = 4;

% define a PEC plate

bricks (2). min_x = 24*dx;
bricks (2). min_.y = 0;
bricks (2). min_z = 6*dz;
bricks (2). max_x = 36*dx;
bricks (2). max_.y = 60xdy;
bricks (2). max_z = 6.02*dz;
bricks (2). materlal type = 2;

Listing 8.14 define_sources_and_lumped_elements.m

-
disp ('defining.sources_and.lumped._element_.components’);

voltage_sources
current_sources

[
[

diodes = [];

resistors = [];
inductors = [];
capacitors = [];

% define source waveform types and parameters
waveforms. gaussian (1). number_of_cells_per_wavelength
waveforms. gaussian (2). number_of_cells_per_wavelength

1
- o
w1

% voltage sources

% direction: ’xp’, ’'xn’, ’yp’, ’'yn’, ’zp’, or ’zn’
% resistance : ohms, magitude : volts
voltage_sources (1). min_x = 24xdx;
voltage_sources (1). min_.y = 0;
voltage_sources .min_z = 0;
voltage_sources .max_x = 36+%dx;
voltage_sources .max.y = 0;
voltage_sources .max_z = 6*dz;
.direction = ’zp’

.resistance = 50;

. magnitude = 1;
.waveform_type = ’gaussian’;
.waveform_index = 1;

voltage_sources
voltage_sources
voltage_sources

(
(
(
(
(
voltage_sources (
(
(
(
voltage_sources (

262 CHAPTER 8 « Advanced PML formulations

41

s|sampled_currents

(1

(1).
(1).
(1).

7| sampled_currents (1). max_.y = 40=dy;

(1).
(1).
(1).

Listing 8.15 define_output_parameters.m

p
disp(’defining_output_.parameters’);

sampled_electric_fields = [];
sampled_magnetic_fields = [];
sampled_voltages = [];
sampled_currents = [];

ports = [];

% figure refresh rate
plotting_step = 20;

% mode of operation
run_simulation = true;
show_material_mesh = true;
show_problem_space = true;

7|% frequency domain parameters

frequency_domain.start = 20e6;
frequency_domain.end = 10e9;
frequency_domain.step = 20e6;

% define sampled voltages

sampled_voltages
sampled_voltages
sampled_voltages

.max_z = 6*dz;
.direction = "zp’
.display_plot = false;

sampled_voltages (1). min_x = 24*dx;
sampled_voltages (1). min_.y = 40xdy;
s|sampled_voltages (1). min_.z = 0;

sampled_voltages (1). max_x = 36*dx;
sampled_voltages (= 40+*dy;

(

(

(

1)
1)
1)
1). max.y
1)
1)
1)

% define sampled currents
sampled_currents (1). min_x = 24*dx;
sampled_currents min_y = 40=*dy;
min_z = 6*dz;
sampled_currents max_x = 36%dx;

max_.z = 6*dz;
direction = 'yp’;
display_plot = false;

sampled_currents
sampled_currents
sampled_currents

% define ports

ports (1).sampled_voltage_index = 1;

ports (1).sampled_current_index = 1;
s| ports (1).impedance = 50;

ports (1).is_source_port = true;

An FDTD simulation of the microstrip line is performed for 1,000 time steps. Figure 8.13

shows the source voltage and sampled voltage captured at the port position, whereas Figure 8.14
shows the sampled current. The sampled voltages and currents are transformed to the frequency
domain, and S;; of the circuit is calculated using these frequency-domain voltage and

8.5 « Simulation examples 263

1.2 .
Sampled voltage
o N T SO S Lt Source voltage
S
7] SRS S R SR AR S

(Volt)

0 0.05 0.1 0.15 0.2 0.25 0.3
Time (ns)

Figure 8.13 Source voltage and sampled voltage of the microstrip line.

10

Sampled current

(ampere)

0 0.05 0.1 0.15 0.2 0.25 0.3
Time (ns)

Figure 8.14 Current on the microstrip line.

current values. The S;; of the circuit is plotted in Figure 8.15 and indicates that there is better
than —35 dB matching of'the line to 50 Q. Furthermore, these frequency-domain values are used
to calculate the input impedance of the microstrip line. Since there is no visible reflection
observed from the CPML terminated end of the microstrip line, the input impedance of the line
is equivalent to the characteristic impedance of the line. The characteristic impedance is plotted
in Figure 8.16, which again indicates a good matching to 50 Q.

264 CHAPTER 8 « Advanced PML formulations

—30 T T
) ! !
< s —
] ‘ :
E e R LR AR R .
= :
on
< '
= !

750 1

0 2 4 6 8 10
Frequency (GHz)

=50
8
)
Q
=i
[
<
=
[=%}

Frequency (GHz)

Figure 8.15), of the microstrip line.

60

C1) SR SRS S AT S

P Real{Zo} | |

R Imaginary {Z}

1 E— RS S . S— .

Q)

o S S S e

Frequency (GHz)

Figure 8.16 Characteristic impedance of the microstrip line.

8.6 CPML in the two-dimensional FDTD method

In Chapter 7, we presented the two-dimensional FDTD method along with the absorbing
boundaries based on the PML technique. Since we already have developed the CPML for-
mulations for the three-dimensional FDTD in this chapter, it is straightforward to reduce the
CPML formulations to the two-dimensional case. As illustrated in Chapter 7, there is no field
and geometric variation in one of the dimensions in a two-dimensional space; any partial
derivative with respect to the constant dimension becomes zero. Thus, one needs to start with

8.6 « CPML in the two-dimensional FDTD method 265

three-dimensional equations, and just eliminate the respective terms, which become zero, in
these equations. For instance, if z is the constant dimension, (8.1) and (8.3) reduce to

1 OH,
JjweEx + 00Ey = S—W ay’ (8.37a)
. 1 OH,
_](,U((JyEy + 0§Ey = — S-ﬁg, (837b)
1 OH, 1 OH,
we.E. + 0E, = — o — T 8.37
Joekz +0; Sex Ox S,y Oy ()
and
1 OE
o Hy +0"H, = —— % 8.38
Jw/ux + O’)\, Smy ay (a)
. 1 OE,
ja),uyHy + 0';1]'[)) = S—ma, (838b)
1 OE 1 OF
JouH, + o"H, = ———>+ ul (8.38¢)

Spx Ox Sy Oy’

where (8.37a), (8.37b), and (8.38c) constitute the two-dimensional TE. case, whereas
(8.37¢), (8.38a), and (8.38b) constitute the 7M. case. One can start with (8.37) and (8.38),
follow the steps discussed in Sections 8.1 and 8.2, and obtain the updating equations sought
for CPML, however, as a short cut, it is sufficient to start with the three-dimensional CPML
updating equations, and just eliminate the terms associated with the partial derivatives of z.
For instance, (8.29) can be modified to obtain

BN gy k) = Coxei,) X B3 (i i K)
o Conrelisj, k) x (HEH 0, k) = HE G — 1, 8)

1
+ Cpeny (i J, k) X e (i, J, k). (8.39)

The remaining updating equations can be obtained in a similar fashion.

In Chapter 7 it has been discussed that the two-dimensional updating equations update the
fields in partial regions of a problem space because of the split field PML algorithm, and one
should be very careful determining which equation updates which partial region. Unlike the
two-dimensional PML case, in the CPML algorithm, the main terms of an updating equation is
applied to the entire problem space, and the additional CPML parameters, such as Cy,,, and
Yoy are defined only at their respective CPML regions, and are used to update fields at these
regions only. The updating coefficients, such as C,,;,, are also modified as in (8.28) at the
respective regions. Figures 8.17 and 8.18 illustrate these CPML regions for the 7E, and TM,
cases, respectively. For instance, as shown in Figure 8.17, H, is first updated in the entire
problem space using normal two-dimensional equations, and then additional components
using ., in the xn and xp regions and using .., in the yn and yp regions are added. £ and
E, are first updated in the entire problem space, and then E, is modified using the term

266 CHAPTER 8 « Advanced PML formulations

(2)

y

L.

(®)

Figure 8.17 Updated fields and CPML parameters in TE, case: (a) xn and xp CPML regions and

=
|CIR) ISERE)
SRS TN
xn xp
E Cexys Yery
yp
Hz’ Cy/hzy’ Yhzy
Ex7 H,
Ex> Cu/exy’ Vexy
yn
st thzy’ thy

(b) yn and yp CPML regions.

containing ¥,,, in the xn and xp regions while £, is modified using the term containing ¥,,,

in the yn and yp regions.

The other CPML parameters (Opei, Opmi> Kei> Kmi» Cleis Omi), Which have specific distribution
profiles along the CPML regions, can be calculated using (8.31)<(8.36) as discussed in

Section 8.3.

8.7 « MATLAB® implementation of CPML in the two-dimensional FDTD 267

82 = 5 5
= & o =
O o SIS
TR S
y
xn xp
X
(a)
Hv’ Cu/hxy’ Yhxy
yp
E, Cu/ezy’ Vezy
H‘(’ EZ
y
Hx’ Cu/hxy’ Yhxy
yn
E, Cu/ezy: Vezy
X

(b)

Figure 8.18 Updated fields and CPML parameters in TM, case: (a) xn and xp CPML regions
and (b) yn and yp CPML regions.

8.7 MATLAB® implementation of CPML in the
two-dimensional FDTD method

We have presented a two-dimensional FDTD code in Chapter 7, where PML is used as the
absorbing boundary. Since we have already implemented CPML in the three-dimensional
FDTD program in Section 8.4, it is easy to modify the two-dimensional FDTD code to
replace PML by CPML by using the code sections from the three-dimensional program.

268 CHAPTER 8 « Advanced PML formulations

8.7.1 Definition of CPML

In Listing 7.2, define_problem_space_parameters_2d is modified to accommodate CPML
instead of PML. First, boundary.type parameter is set as “cpml,” then cpml_order,
cpml_sigma_factor, cpml_kappa_max, cpml_alpha_max, and cpml_alpha_min para-
meters are added similar to Listing 8.1. The modified code is shown in Listing 8.16.

Listing 8.16 define_problem_space_parameters_2d.m

(% ==<boundary conditions>========

1% Here we define the boundary conditions parameters

% 'pec' : perfect electric conductor

3% 'cpml' @ convolutional PML

% if coml_number_of_cells is less than zero

5% CPML extends inside of the domain rather than outwards

-

boundary.type_xn = 'cpml';
boundary.air_buffer_number_of_cells_xn = 10;
boundary.cpml_number_of_cells_xn = 8;

boundary.type_xp = 'cpml';
boundary.air_buffer_number_of_cells_xp = 10;
Bl boundary.cpml_number_of_cells_xp = 8;

i5boundary.type_yn = 'cpml’;
boundary.air_buffer_number_of_cells_yn = 10;
17lboundary.cpml_number_of_cells_yn = 8;

19/boundary.type_yp = 'cpml’;
boundary.air_buffer_number_of_cells_yp = 10;
alboundary.cpml_number_of_cells_yp = 8;

boundary.cpml_order = 3;
boundary.cpml_sigma_factor
boundary.cpml_kappa_max
boundary.cpml_alpha_min
boundary.cpml_alpha_max

9
<

)
S

27

Unlike the PML boundaries implemented in the two-dimensional FDTD program presented
in Chapter 7, it is allowed to have objects in the problem space to penetrate into the CPML
regions to simulate structures extending to infinity in the current CPML implementation.
Relevant code for the three-dimensional case can be copied from Listing 8.2 into calculate_
domain_size_2d for the two-dimensional domain size calculations in x and y directions.

8.7.2 Initialization of CPML

Next is the initialization of boundary conditions. Some Boolean parameters that will be used
throughout the program execution are initialized in initialize_boundary_conditions_2d as
shown in Listing 8.17.

At the end of Listing 8.17 two separate subroutines are used to initialize the CPML
parameters: one for 7E, case and one for 7M. case. Code sections from Listing 8.4 can

8.7 « MATLAB® implementation of CPML in the two-dimensional FDTD 269

Listing 8.17 initialize_boundary_conditions_2d.m

1(% define logical parameters for the conditions that will be used often
is_cpml_xn = false; is_cpml_xp = false;

is_cpml_yn = false; is_cpml_yp = false;

is_any_side_cpml = false;

w

if strcmp(boundary.type_xn, 'cpml')

7 is_cpml_xn = true;

n_cpml_xn = abs(boundary.cpml_number_of_cells_xn);
ofend

if strcmp(boundary.type_xp, 'cpml’')

1 is_cpml_xp = true;

n_cpml_xp = abs(boundary.cpml_number_of_cells_xp);

i3lend
if strcmp(boundary.type_yn, 'cpml')
15 is_cpml_yn = true;
n_cpml_yn = abs(boundary.cpml_number_of_cells_yn);
17l end
if strcmp(boundary.type_yp, 'cpml’)
19 is_cpml_yp = true;
n_cpml_yp = abs(boundary.cpml_number_of_cells_yp);
alend
alif (is_cpml_xn || is_cpml_xp || is_cpml_yn || is_cpml_yp)
is_any_side_cpml = true;
sl end

% Call CPML initialization routine if any side is CPML
if is_any_side_cpml

29 ifis_TEz
initialize_cpml_boundary_conditions_2d_TEz;

2

3

31 end
if is_TMz

33 initialize_cpml_boundary_conditions_2d_TMz;
end

sl end

be copied into these subroutines and adopted for the respective two-dimensional case.
Listing 8.18 shows a section of such a code modified for the TE, case. One should notice that
parameters such as Psi_eyx_xn and Psi_hzx_xn are two-dimensional arrays in Listing 8.18
while they are three-dimensional arrays in Listing 8.4.

8.7.3 Application of CPML in the FDTD time-marching loop

Once the initializations are complete, the field updating and boundary updating routines
in the FDTD time-marching loop can be modified as follows: the fields need to be updated
in the entire problem space. Listing 8.19 illustrates the subroutine that updates the
magnetic fields. Magnetic field updates are followed by boundary updates. A section of the
code that recalculates CPML parameters Psi_hzx_xn and Psi_hzx_xn for the current time
step and adds their contribution to Hz in xn and xp CPML regions is shown in Listing 8.20.

270 CHAPTER 8 « Advanced PML formulations

1

w

o

-

©

21

23

25

27

29

31

33

37

39

41

43

45

47

49,

53

Listing 8.18 initialize_cpml_boundary_conditions_2d_TEz.m

P
% Initialize CPML boundary condition

p_order = boundary.cpml_order; % order of the polynomial distribution
sigma_ratio = boundary.cpml_sigma_factor;

kappa_max = boundary.cpml_kappa_max;

alpha_min = boundary.cpml_alpha_min;

alpha_max = boundary.cpml_alpha_max;

% Initialize cpml for xn region
if is_cpml_xn

% define one-dimensional temporary cpml parameter arrays
sigma_max = sigma_ratio * (p_order+1)/(150%pi*dx);

ncells = n_cpml_xn;

rho_e = ([ncells:-1:1]-0.75)/ncells;

rho_m = ([ncells:-1:1]-0.25)/ncells;

sigma_pex_xn = sigma_max * rho_e.”p_order;

sigma_pmx_xn = sigma_max * rho_m.~p_order;

sigma_pmx_xn = (mu_0/eps_0) * sigma_pmx_xn;

kappa_ex_xn =1 + (kappa_max - 1) * rho_e.”~p_order;
kappa_mx_xn =1 + (kappa_max - 1) * rho_m.~p_order;
alpha_ex_xn = alpha_min + (alpha_max - alpha_min) * (1-rho_e);
alpha_mx_xn = alpha_min + (alpha_max - alpha_min) * (1-rho_m);
alpha_mx_xn = (mu_0/eps_0) * alpha_mx_xn;

% define one-dimensional cpml parameter arrays

cpml_b_ex_xn = exp((-dt/eps_0) ...
*((sigma_pex_xn./kappa_ex_xn)+ alpha_ex_xn));

cpml_a_ex_xn = (1/dx)*(cpml_b_ex_xn-1.0).* sigma_pex_xn ...
/(kappa_ex_xn.*(sigma_pex_xn+kappa_ex_xn.¥alpha_ex_xn));

cpml_b_mx_xn = exp((-dt/mu_0) ...
*((sigma_pmx_xn./kappa_mx_xn)+ alpha_mx_xn));

cpmli_a_mx_xn = (1/dx)*(cpml_b_mx_xn-1.0) .* sigma_pmx_xn ...
J(kappa_mx_xn.*(sigma_pmx_xn+kappa_mx_xn.*alpha_mx_xn));

% Create and initialize cpml convolution parameters
Psi_eyx_xn = zeros(ncells,ny);
Psi_hzx_xn = zeros(ncells,ny);

% Create and initialize cpml convolution coefficients
CPsi_eyx_xn = Ceyhz(2:ncells+1,:)*dx;
CPsi_hzx_xn = Chzey(1:ncells,:)*dx;

% Adjust FDTD coefficients in the CPML region
for i = 1: ncells
Ceyhz(i+1,:) = Ceyhz(i+1,:)/kappa_ex_xn(i);
Chzey(i,:) = Chzey(i,:)/kappa_mx_xn(i);
end

% Delete temporary arrays. These arrays will not be used any more.
clear sigma_pex_xn sigma_pmx_xn;
clear kappa_ex_xn kappa_mx_xn;
clear alpha_ex_xn alpha_mx_xn;
end

8.7 « MATLAB® implementation of CPML in the two-dimensional FDTD 271

Listing 8.19 update_magnetic_fields_2d.m

(- R .
i|% update magnetic fields
current_time = current_time + dt/2;

if is_TEz
Hz(1:nx,1:ny) = Chzh(1:nx,1:ny).* Hz(1:nx,1:ny) ...

+ Chzex(1:nx,1:ny) .* (Ex(1:nx,2:nyp1)-Ex(1:nx,1:ny))
7 + Chzey(1:nx,1:ny) .*(Ey(2:nxp1,1:ny)-Ey(1:nx,1:ny));
end

w

if is_TMz
1 Hx(1:nxp1,1:ny) = Chxh(1:nxp1,1:ny) .* Hx(1:nxp1,1:ny) ...
+ Chxez(1:nxp1,1:ny) .* (Ez(1:nxp1,2:nyp1)-Ez(1:nxp1,1:ny));

Hy(1:nx,1:nyp1) = Chyh(1:nx,1:nyp1) .* Hy(1:nx,1:nyp1) ...
15 + Chyez(1:nx,T:nyp1) .* (Ez(2:nxp1,1:nyp1)-Ez(1:nx,1:nyp1));
end

Listing 8.20 update_magnetic_fields_for CPML_2d_TEz.m

p
1|% TEz: apply CPML to magnetic field components
if is_cpml_xn

3 for i =1: n_cpml_xn
Psi_hzx_xn(i,:,:) = cpml_b_mx_xn(i) * Psi_hzx_xn(i,:,:) ...
5 + cpml_a_mx_xn(i)*(Ey(i+1,:,:)-Ey(i,:,:));
end
7 Hz(1:n_cpml_xn,:,:) = Hz(1:n_cpml_xn,:,:) ...
+ CPsi_hzx_xn(:,:,:) .* Psi_hzx_xn(:,:,:);
ofend

nlif is_cpml_xp
n_st = nx - n_cpml_xp;
13 for i = 1:n_cpml_xp

Psi_hzx_xp(i,:,:) = cpml_b_mx_xp(i) * Psi_hzx_xp(i,:,:) ...
15 + cpml_a_mx_xp(i)*(Ey(i+n_st+1,:,:)-Ey(i+n_st,:,:));
end

Hz(n_st+1:nx,:,:) = Hz(n_st+1:nx,:,:) ...
19 + CPsi_hzx_xp(:,:,:) .* Psi_hzx_xp(:,:,:);
end

Similarly, electric fields as well are updated in the entire problem space and respective
CPML parameters and boundary updates are added to them.

8.7.4 Validation of CPML performance

In this section, we evaluate the performance of the two-dimensional CPML for the 7F, case.
The test case that is illustrated in Section 7.5.1 is repeated here except that the PML
boundaries are replaced by CPML boundaries. The CPML specific parameters npui, Ofucior

272 CHAPTER 8 « Advanced PML formulations

Kmax> Omin, aNd amax are set as 3, 1.5, 7, 0, and 0.05, respectively. The problem space is
excited by a z-directed impressed magnetic current and a sampled H. field component is
captured at the position x = 8§ mm and y = 8 mm while running the simulation for 1,800
time steps. The captured H, is then compared with the corresponding results from the case
discussed in Section 7.5.1 and errors are obtained in time and frequency domains using
(7.41) and (7.42), respectively. These errors are plotted in Figure 8.19(a) and (b) where they
are compared with PML errors shown in Figure 7.14. The figures validate the performance

......

—100 [

Error, (dB)

—120 |

~140 |

—-160 | g

—180 | 1

-200 1 L 1 L L 1 1
0 1 2 3 4

(a) Time (ns)

PP
PR X VY
e

e
at?

760 L

Error; (dB)

—100 | 8

-120
0 5 10 15 20

(b) Frequency (GHz)

Figure 8.19 CPML and PML errors of sampled /. in time and frequency domains: (a) errors in
time domain and (b) errors in frequency domain.

8.8 « Auxiliary differential equation PML 273

of the implemented CPML and show the significant improvement CPML has provided over
the split field PML in terms of accuracy and ease of implementation.

8.8 Auxiliary differential equation PML

The CPML, discussed above, was introduced by Roden and Gedney [23] as an efficient
implementation of the CFS-PML, and has been the most popular implementation used since
then. However, derivation of the updating equations for the CPML is very complicated as
illustrated in Section 8.1. Recently, another formulation for the CFS-PML has been presented
by Gedney and Zhao in [28], which uses an auxiliary differential equation (ADE), thus
referred to as ADE-PML. As will be shown in the following section, the final updating
equations of the ADE-PML are the same as those of the CPML. Moreover, numerical simu-
lations presented in [28] shows that the ADE-CPML has comparable reflection error as the
CPML for the same constitutive parameters. Besides these similarities, the updating equations
of the ADE-PML are easier to derive and this approach is presented here to show that alternate
formulation can be developed to solve the same problem with the same simulation accuracy.

8.8.1 Derivation of the ADE-PML formulation

Derivation of CPML formulation starts with the PML equations for a lossy medium posed in
the stretched coordinate space as shown in (8.1) and (8.3). For instance, repeated here for
convenience, (8.1a) is

1 0H. 1 0H,

iweEy + 0B = — 2~ Ty 8.40
JWEx x+(7x X Sey 8y Sez BZ) ()

where S,, is expressed for CFS-PML as

o

Sep = — 8.41

ey Key + aey _’_ngo ()

Therefore,
1 1 ey
— =4 , 8.42
Sey Key JW + Cey ()
where
_ “Opey
Eey - Sokgy) (8.43&)

2

OpeyKey + QeyK
Cy=——5—. (8.43b)
SQKey

Using (8.42) in (8.40) yields

1 OH. I3 OH, 1 OH, 3 OH,
weEy 4 0, = — ey e O 1 Oy Ge OMy 8.44
S O = o+ T Oy kw02 o+ B Oz (8.44)

274 CHAPTER 8 « Advanced PML formulations

When (8.44) is transformed to time domain, the following convolution is obtained for the
second term on the right-hand side:

: Eey OH: = -’Eeye_;’”t %

jo + &, Oy dy

(8.45)

Direct convolution is costly if programmed as is, however recursive convolution makes
the convolution computationally convenient. Thus, the discrete recursive convolution is
proposed to handle this convolution, hence the CPML is used as shown in the previous
sections.

An alternate approach can be developed as follows. One can notice that the term in (8.45)
is an additional term in (8.44). We can denote this additional term as

gey aI_]z
jo +Cop Oy’

U)exy = (846)

the same way as shown in (8.10) or (8.16). In discrete time, this additional term ,,, has to
be calculated at every time step and added to the £ as in (8.16).
Equation (8.46) can be arranged as

OH.

jwngy + Ceywexy = geya—yzv (847)
and transformed to time domain as

0 OH,

51/1.@ + Ceyl/}exy = geya—y . (848)

One should notice that when representing (8.44) in discrete time domain the time deriva-
tive of E, will be expressed in terms of finite difference about the time instant (n + 0.5)A¢,
therefore the value of y7: is needed to be added to the future value of E7*' in the final
updating equation. It is also important to decide on the finite difference approximation for the
partial derivative of time in (8.48) when transforming to discrete time domain. One choice is
to use backward difference with n 4 0.5 being the reference, as done in [28], and obtain

gey
Ay

n+0.5 n—0.5
wexy - wexy

- (HO5(j, k) — HIPOGi, = 1,K)), (849

+ LW =
which can be rearranged such that
Ve (1], K) = beyog” (i,], k) + ey (HIT 02 (i j, k) = HIY (0, = 1, k), (8.50)

where

1

Pe =1 ¥a,)

(8.51a)

4 :Atgey 1
Ay (1+Ag,)

(8.51b)

8.9 « Exercises 275

The terms b, and a,, can be written in open form as

E0Key
by, = 2 , (8.52a)
’ €0Key + At (Upey + aey"ey)
oA
ey Oper (8.52b)

Kl (eokey + At(0pey + Ceykey))
The form of the equation to update 1/):;0'5 at every time step of the FDTD time-marching
loop is derived through the ADE approach as (8.50), which is the same as (8.21) that is
derived through the discrete convolution approach; the difference is in the terms b, and a.,.

8.8.2 MATLAB® implementation of the ADE-PML formulation

As illustrated, the only difference between the CPML and the ADE-PML is the terms b,;, a.;,
b, and a,,;, and besides that everything is the same. Since the MATLAB implementation of
CPML is already available, as discussed in Section 8.4, it only requires to redefine these terms
following (8.52) to convert a CPML code to ADE-PML code. For instance, the associated
one-dimensional arrays are defined as cpml_b_ex_xn, cpml_a_ex xn, cpml_b_mx_xn,
and cpml_a_mx_xn, respectively, on lines 26—34 in Listing 8.4 for the xn boundary of the
problem space. These lines can be modified as shown in Listing 8.21 to obtain the ADE-PML
code. Here the one-dimensional arrays are renamed to reflect the ADE-PML as ade_pml_b_
ex_xn, ade_pml_a_ex xn, ade_pml_b_mx_xn, and ade_pml_a_mx_xn.

Listing 8.21 initialize_ ADE_PML_ABC.m

1 % define one-dimensional ade_pm/| parameter arrays

ade_pml_b_ex_xn = (eps_O*kappa_ex_xn) ...
J(eps_O0*kappa_ex_xn+dt*(sigma_pex_xn+alpha_ex_xn.*kappa_ex_xn));
ade_pml_a_ex_xn = (-dt*sigma_pex_xn)./(dy*kappa_ex_xn ...
5 .* (eps_O*kappa_ex_xn+dt*(sigma_pex_xn+alpha_ex_xn.*kappa_ex_xn)));
ade_pml_b_mx_xn = (mu_0*kappa_mx_xn) ...
7 J(mu_0*kappa_mx_xn+dt*(sigma_pmx_xn+alpha_mx_xn.*kappa_mx_xn));
ade_pml_a_mx_xn = (-dt*sigma_pmx_xn)./(dy*kappa_mx_xn ...

9 * (mu_O*kappa_mx_xn+dt*(sigma_pmx_xn+alpha_mx_xn.*kappa_mx_xn)));

8.9 Exercises

8.1 Consider the quarter-wave transformer circuit in Section 6.3.1. Remove the absorbers
from the circuit, and use 8 cells thick CPML boundaries instead. Leave 5 cells air gap
between the substrate and the CPML on the xn, xp, yn, and yp sides. Leave 10 cells air
gap on the zp side. The geometry of the problem is illustrated in Figure 8.20 as a
reference. Run the simulation, obtain the S-parameters of the circuit, and compare the
results with those shown in Section 6.3.1.

8.2 Consider the quarter-wave transformer circuit in Exercise 8.1. Redefine the CPML
absorbing boundary condition (ABC) such that the substrate penetrates into the CPML
on the xn and xp sides. The geometry of the problem is illustrated in Figure 8.21. Run
the simulation, obtain the S-parameters of the circuit, and compare the results with
those you obtained for Exercise 8.1.

276

CHAPTER 8 « Advanced PML formulations

Figure 8.20 The problem space for the quarter-wave transformer with CPML boundaries on the

xn, xp, yn, yp, and zp sides.

Figure 8.21 The problem space for the quarter-wave transformer with the substrate penetrating

8.3

8.4

into the CPML boundaries on the xn and xp sides.

Consider the microstrip line circuit in Section 8.5.3. In this example, the performance
of the CPML is not examined numerically. We need a reference case to examine the
CPML performance. Extend the length of the circuit twice on the yp side, and change
the boundary type on that side to PEC such that the microstrip line is touching the PEC
boundary. The geometry of the problem is illustrated in Figure 8.22. Run the simula-
tion a number of time steps such that the reflected pulse from the PEC termination will
not be observed at the sampled voltage. This simulation result serves as the reference
case since it does not include any reflected signals as if the microstrip line is infinitely
long. Compare the sampled voltage that you obtained from the circuit in Section 8.5.3
with the reference case. The difference between the sampled voltage magnitudes is the
reflection. Find the maximum value of the reflection.

In Exercise 8.3 you constructed a reference case for examining the CPML perfor-
mance. Change the thickness of the CPML to 5 cells on the yp side in the microstrip

8.5

8.9 « Exercises 277

Figure 8.22 The microstrip line reference case.

line circuit in Section 8.5.3. Run the simulation, and then calculate the reflected voltage
as described in Exercise 8.3. Examine whether the reflection increases or decreases.
Then repeat the same exercise by increasing the CPML thickness to 10 cells. Examine
whether the reflection increases or decreases.

The CPML parameters Oscrom Kmax> Omax> Omin, and Ry, used in the example in
Section 8.5.3 are not necessarily the optimum parameters for the CPML performance.
Change the values of some of these parameters, and examine whether the reflections
from the 8 cell thick CPML boundary increases or decreases. For instance, try
Ofactory = 1.5, Kmax = 11, min = 0, amax = 0.02, and n,,,,; = 3.

This page intentionally left blank

CHAPTER 9

Near-field to far-field
transformation

In previous chapters, the finite-difference time-domain (FDTD) method is used to compute
electric and magnetic fields within a finite space around an electromagnetic object (i.e., the
near-zone electromagnetic fields). In many applications, such as antennas and radar cross-
section, it is necessary to find the radiation or scattered fields in the region that is far away
from an antenna or scatterer. With the FDTD technique, the direct evaluation of the far field
calls for an excessively large computational domain, which is not practical in applications.
Instead, the far-zone electromagnetic fields are computed from the near-field FDTD data
through a near-field to far-field (NF-FF) transformation technique [1].
A simple condition for the far field is defined as follows:

27R
R>1 === 1, (9.1)
where R is the distance from radiator to the observation point, k is the wavenumber in free
space, and 4 is the wavelength. For an electrically large antenna such as a parabolic reflector,
the aperture size D is often used to determine the far-field condition [29]:
2D?
r>—, 9.2

: 92)
where r is the distance from the center of the antenna aperture to the observation point. In the
far-field region, the electromagnetic field at an observation point (r, 6, ¢) can be expressed
as

— ef./.kr .
E(r,0,¢) = Aoy F (0, ¢), (9.3a)
H=7#x E, (9.3b)

Mo

where 7 is the wave impedance of free space, and F (6, ¢) is a term determining the angular
variations of the far-field pattern of the electric field. Thus, the radiation pattern of the
antenna is only a function of the angular position (6, ¢) and is independent of the distance r.

279

280 CHAPTER 9 « Near-field to far-field transformation

In general, the near-field to far-field transformation technique is implemented in a two-
step procedure. First, an imaginary surface is selected to enclose the antenna, as shown in
Figure 9.1. The currents J and M on the surface are determined by the computed E and H
fields inside the computational domain. According to the equivalence theorem, the radiation
field from the currents is equivalent to the radiation field from the antenna. Next, the vector
potentials A and F are used to compute the radiation fields from the equivalent currents
J and M. The far-field conditions are used in the derivations to obtain the appropriate
analytical formulas.

Compared with the direct FDTD simulation that requires a mesh extending many
wavelengths from the object, a much smaller FDTD mesh is needed to evaluate the
equivalent currents J and M. Thus, it is much more computationally efficient to use this
near-field to far-field transformation technique.

According to different computation objectives, the transformation technique can be
applied in both the time and frequency domains, as shown in Figure 9.2. When transient or
broadband frequency-domain results are required at a limited number of observation angles,
the left path in Figure 9.2 is adopted. For these situations, the time-domain transformation is
used and the transient far-zone fields at each angle of interest are stored while updating the
field components [30,31].

In contrast, when the far fields at all observation angles are required for a limited number
of frequencies, the right path in Figure 9.2 is adopted. For each frequency of interest a
running discrete Fourier transform (DFT) of the tangential fields (surface currents) on a
closed surface is updated at each time step. The complex frequency-domain currents
obtained from the DFT are then used to compute the far-zone fields at all observation angles
through the frequency-domain transformation.

This chapter is organized as follows. First, the surface equivalence theorem is discussed,
and the equivalent currents J and M are obtained from the near-field FDTD data. Then the
important radiation formulas are presented to calculate the far fields from the equivalent
currents. The implementation procedure is illustrated with full details. Finally, two antenna
examples are provided to demonstrate the validity of the near- to far-field technique.

Equivalence principle

% Surround the object by
an imaginary surface

» Define fictitious electric
and magnetic currents

Figure 9.1 Near-field to far-field transformation technique: equivalent currents on an imaginary
surface.

9.1 « Implementation of the surface equivalence theorem 281

._>J

/’ M

DFT
i A Currents (J, M) in
Currents (J.’ M) in - R ¢ ‘ frequency domain at
time domain P a specific frequency

Transformation of Transformation of

, M) 5 (E, H) , M) (£, H)

s !

Far field at all observation
angles for selected number of
frequencies

Far field at a selected number
of observation points, but for
all valid frequencies

Figure 9.2 Two paths of the near-field to far-field transformation technique are implemented to
achieve different computation objectives.

9.1 Implementation of the surface equivalence theorem

9.1.1 Surface equivalence theorem

The surface equivalence theorem was introduced in 1936 by Sckelkunoff [32] and is now
widely used in electromagnetic and antenna problems [33]. The basic idea is to replace the
actual sources such as antennas or scatterers with fictitious surface currents on a surrounding
closed surface.

Within a specific region, the fields generated by the fictitious currents represent the
original fields.

Figure 9.3 illustrates a typical implementation of the surface equivalent theorem. Assume
that fields generated by an arbitrary source are (E JH). An imaginary surface S is selected to
enclose all the sources and scattering objects, as shown in Figure 9.3(a). Outside the surface
S is only free space. An equivalent problem is set up in Figure 9.3(b), where the fields
outside the surface S remain the same but inside the surface S are set to zero. It is obvious
that this setup is feasible because the fields satisfy Maxwell’s equations both inside and
outside the surface S. To comply with the boundary conditions on the surface, equivalent
surface currents must be introduced on S:

jS:ﬁX(Hout—Hin):ﬁ XH, (9.43)
Mg = —ii x (E"”’ - E) — _ixE. (9.4b)

It is worthwhile to emphasize that Figures 9.3(a) and 9.3(b) have the same fields outside
the surface S but different fields inside the surface S.

282 CHAPTER 9 « Near-field to far-field transformation

E.H

&=
naf]

//Q | =i

scatterers g
and sources M=-nxE

T My
T
o o

(@) (b)

Figure 9.3 Surface equivalence theorem: (a) original problem and (b) equivalent problem for
region outside S.

If the field values on the surface S in the original problem Figure 9.3(a) can be
accurately obtained by some means, the surface currents in Figure 9.3(b) can be determined
from (9.4). Then the fields at any arbitrary far observation point in Figure 9.3(b) can be
readily calculated from the vector potential approach. Based on the uniqueness theorem,
the computed fields are the only solution of the problem in Figure 9.3(b). According to the
relations between Figures 9.3(a) and 9.3(b), the computed fields outside the surface S are
also the solution for the original problem.

The implementation of the surface equivalence theorem simplifies the far-field
calculation. In the original Figure 9.3(a) problem, materials with different permittivities
and permeabilities may exist inside the surface S. Thus, a complex Green’s function needs
to be derived to calculate the radiating field. In the problem in Figure 9.3(b), the fields
inside the surface are zero, and the permittivity and permeability can be set the same as the
outside free space. Hence, the simple free space Green’s function is used to compute the
radiating field.

9.1.2 Equivalent surface currents in FDTD simulation

From the previous discussion, it is clear that the key point of the equivalence theorem
implementation is to accurately obtain the equivalent currents on the imaginary surface S. In
the FDTD simulation, the surface currents can be readily computed from the following
procedure.

First, a closed surface is selected around the antennas or scatterers, as shown in
Figure 9.4. The selected surface is usually a rectangular box that fits the FDTD grid. It is set
between the analyzed objects and the outside absorbing boundary. The location of the box
can be defined by two corners: lowest coordinate (/i, lj, k) corner and upper coordinate
(ui, uj, uk) corner. It is critical that all the antennas or scatterers must be enclosed by this
rectangular box so that the equivalent theorem can be implemented. It is also important to
have this box in the air buffer area between all objects and the first interface of the absorbing
boundary.

Once the imaginary closed surface is selected, the equivalent surface currents are
computed next. There are six surfaces of the rectangular box, and each surface has four

9.1 « Implementation of the surface equivalence theorem 283

‘ Imaginary closed surface ‘

f
P

/ i
2 1
1
|

‘
:
' 4

i ! // .

L l 3 @ (ui, uj, uk)
‘ g
‘
‘

‘ FDTD computational domain ‘ ‘ Scatterer or antenna ‘

Figure 9.4 An imaginary surface is selected to enclose the antennas or scatterers.

Imaginary closed surface ’ face zp = J,, J,, My, M, ‘

" - a

’ face xn = J,, J., My, M,

Yo

faceyn = J,, J,, M, M, ’ face yp = J,, J., M, M,

’ face zn = J,, J,, My, M, ‘

face xp = J,, J., My, M.

Figure 9.5 Equivalent surface currents on the imaginary closed surface.

scalar electric and magnetic currents, as shown in Figure 9.5. For the top surface, the normal
direction is z. From (9.4), the equivalent surface currents are calculated as

—

Jy=2xH =2 x (%H, +H, +2H,) = —%H, + yHi, (9.5a)

Ms=—2xE =—2x (RE, + JE, + 2E.) = XE, — JE,. (9.5b)

284 CHAPTER 9 « Near-field to far-field transformation

Thus, the scalar surface currents can be obtained:
Jy=%J,+3J,=J,=—H, J,=H, (9.6a)
Mg =M, +3M, = M, = E,, M, = —E,. (9.6b)

Note that the £ and H fields used in (9.6) are computed from the FDTD simulation. For a
time-domain far-field calculation, the time-domain data are used directly. For a frequency-
domain far-field calculation, a DFT needs to be carried out to obtain the desired frequency
components of the fields.

Similar methodology is used to obtain the surface currents on the other five surfaces. On
the bottom surface,

Jg =%+, = J=H, J,=—H, (9.7a)
Mg =M, +3M, = M, = —E,, M, =E,. (9.7b)
On the left surface,
Jg=xJ+2).=J = —H., J.=H,, (9.8a)
Mg =3iM,+:M. = M, =E., M,=—E,. (9.8b)
On the right surface,
Jg=%J +2).=>J, =H,, J.=—H, (9.9a)
Mg =M, +:M, = M, = —E., M. =E,. (9.9b)
On the front surface,
Js =)y 2l = Jy = ~H., J.=H, (9.10a)
Mg =M, +:M, = M, =E., M,=—E,. (9.10b)
On the back surface,
Jg=pJ,+2).=>J,=H., J.=—H,, (9.11a)
Mg =3yM, +:M, = M, = —E., M,=E,. (9.11b)

To obtain complete source currents for the far-field calculation, (9.6)—(9.11) must be
calculated at every FDTD cell on the equivalent closed surface. It is preferable that the
magnetic and electric currents should be located at the same position, namely, the center of
each Yee’s cell surface that touches the equivalent surface S. Because of the spatial offset
between the components of the £ and H field locations on Yee’s cell, averaging of the field
components may be performed to obtain the value of the current components at the center
location. The obtained surface currents are then used to compute the far-field pattern in the
next section.

9.2 « Frequency domain near-field to far-field transformation 285

9.1.3 Antenna on infinite ground plane

It was mentioned earlier that the imaginary surface must surround all the scatterers or
antennas so that the equivalent currents radiate in a homogeneous medium, usually free
space. For many antenna applications, the radiator is mounted on a large or infinite ground
plane. In this situation, it is impractical to select a large surface to enclose the ground plane.
Instead, the selected surface that encloses the radiator lies on top of the ground plane, and the
ground plane effect is considered using image theory, as shown in Figure 9.6. The image
currents have the same direction for horizontal magnetic current and vertical electric current.
In contrast, the image currents flow along the opposite direction for horizontal electric
current and vertical magnetic currents. This arrangement is valid for ground planes simu-
lating infinite perfect electric conductor (PEC).

Imaginary
I . closed surface
maginary
closed surface
v) >> T
—» *f >
—> N if DY i

Ground plane >

Figure 9.6 An imaginary closed surface on an infinite PEC ground plane using the image theory.

9.2 Frequency domain near-field to far-field transformation

In this section, the obtained equivalent surface currents are used to calculate the far-field
radiation patterns. Antenna polarization and radiation efficiency are also discussed.

9.2.1 Time-domain to frequency-domain transformation

This section focuses on the frequency-domain far-field calculation. For the time-domain
analysis, readers are suggested to study [30, 31]. The first thing in the frequency-domain
calculation is to convert the time-domain FDTD data into frequency-domain data using the
DFT. For example, the surface current J,, in (9.6) can be calculated as follows:

Nsteps
Jy(u, v, wy fi) = He(u, v, w; fi) = ZHX(u7 v, w; n)e JEAAL, (9.12)

n=1

Here (u, v, w) is the index for the space location, and 7 is the time step index. Ny, is the
maximum number of the time steps used in the time-domain simulation. Similar formulas
can be applied in calculating other surface currents in (9.6)—(9.11). Therefore, the frequency-
domain patterns are calculated after all the time steps of the FDTD computation is finished.
For a cubic imaginary box with N x N cells on each surface, the total required storage size
for the surface currents is 4 x 6 x N°. Note that the frequency-domain data in (9.12) have
complex values.

286 CHAPTER 9 « Near-field to far-field transformation

If radiation patterns at multiple frequencies are required, a pulse excitation is used in the
FDTD simulation. For each frequency of interest, the DFT in (9.12) is performed with the
corresponding frequency value. One round of FDTD simulation is capable to provide surface
currents and radiation patterns at multiple frequencies.

9.2.2 Vector potential approach

For radiation problems, a vector potential approach is well developed to compute the
unknown far fields from the known electric and magnetic currents [33]. A pair of vector
potential functions is defined as

A :“Zi;f v, (9.13a)
F E‘if];f L (9.13b)
where
N = /S Jge st g/ (9.14a)
L= /S M geFeos)gs’ (9.14b)

As illustrated in Figure 9.7, the vector 7= r# denotes the position of the observation point
(x, ¥, z), whereas the vector ¥’ = ¥#' denotes the position of source point (¥, y/, z') on
the surface S. The vector R = RR is between the source point and the observation point, and

Observation
point

Equivalent surface (x,»,2)

Figure 9.7 The equivalent surface current source and far field.

9.2 « Frequency domain near-field to far-field transformation 287

the angle 1 represents the angle between 7 and 7. In the far-field calculation, the distance R
is approximated by

r—1r'cos(yp) for the phase term

r for the amplitude term (9-15)

R =\/r2+ (¥)* = 21 cos(yp) = {

The computation of the components of £ and H in the far fields can then be obtained
using the vector potentials, which are expressed as

E =0, (9.16a)
Jke
Ep=—=— (Ly + 10Ns), (9.16b)
Jke Ik
By =+ — (Lo — moNy), (9.16¢)
H, =0, (9.16d)
Jjke 7 Lo
Hy = Ny ——2 9.16
=+ (e=30): 0160
Hy = 2y, L (9.16f)
¢ dnr o A '

When the closed surface S is chosen as in Figure 9.4, the equivalent surface currents are
computed based on (9.6)—(9.11), and the DFT in (9.12) is performed to obtain frequency-
domain components; the auxiliary functions N and L are calculated as

Ny = /S (J cos(8) cos() +J, cos(8) sin(¢) — J. sin()) e < W)ds’, (9.17a)
Ny = /S (—Jsin(g) +J, cos()) e/ Vs, (9.17b)
Ly = /S (M, cos(6) cos(@) + M, cos(6) sin(¢) — M. sin(8)) Vs’ (9.17¢)
L, — /S (=M, sin(g) + M, cos(¢))W s’ (9.17d)

Substituting (9.17) into (9.16), the far-field pattern can be obtained at any observation point
(r, 0, ¢).

9.2.3 Polarization of radiation field

The E and H fields calculated in (9.16) are linearly polarized (LP) components. In some
antenna applications such as satellite communications, it is desired to obtain circularly

288 CHAPTER 9 « Near-field to far-field transformation

polarized (CP) field components. This can be done through unit vector transformations
between LP and CP components, such that

. b . 9 Ex E
0=0—j=4+0+jc=—+—=, 9.18a
J% 3= 5 A (9.18a)
a0 . b E Ep
¢:9+]—,_9_]_.:__—7 9.18b
2j Y V2 OV2 O180)

where E and E; are unit vectors for the right-hand circularly polarized (RHCP) field and
left-hand circularly polarized (LHCP) field. Substituting (9.18) into (9.16), we obtain

L Er Er Er ER

E=0Ey+¢pEy=|—=+—=|Eg+| —=———= |E
1ok (ﬁ ﬁ)" <N§ jﬂ)"’
. (E E . ([E E . .

_ER<H ¢> +EL<6 +¢> = EpER +ELE],

V2 V2 V2 V2
_Ey Ey

ER—\/E I (9.19)
_Ey Ey

E, = \/EJ“]- 5 (9.20)

The magnitudes of the RHCP component (ER) and the LHCP component (E£;) are then
obtained. The axial ratio is defined to describe the polarization purity of the propagating
waves and is calculated as follows [33]:

|Er| + | EL]

AR = — [ERITIELL
|Er| — |EL|

(9.21)
For an LP wave, AR goes to infinity. For an RHCP wave AR = —1 and for an LHCP wave
AR = 1. For a general elliptically polarized wave, 1 < |[AR| < oo. Other expressions for
direct computation of the AR from the far-field components E, and E,, are given in [34]:

1

1 AWK
{2 (E; + B3+ B} + B + 2E32 cos(20)] ﬂ

1 L, (9.22)
B
L <E§, +E; + [E;; + E, — 2E;E; cos(26)] ﬂ
and in [35]
2. 2 .
AR = 20 log;, |Ey |zs?nz(r) + |Eg |zcos2(r) +|Ey||Eg |cos((3)s?n(2r) ’ (9.23)
|Ey|"sin”(7) + |Eg | cos?(t) — |Ey || Eo |cos(0)sin(27)

where
2|E,||E, o
ST A AETON
|Eo|” — | Ey|*

and 9 is the phase difference between E, and E,.

9.3 « MATLAB® implementation of near-field to far-field transformation 289

9.2.4 Radiation efficiency

The radiation efficiency is a very important indication for the effectiveness of an antenna,
which can also be obtained using the FDTD technique. First of all, the radiation power of an
antenna is obtained by applying the surface equivalence theorem to obtain

1 . 1 _
Prod :Re{/E x H -fzdS’} :Re{/J* X M - fzdS’}. (9.24)
2 s 2 s

The delivered power to an antenna is determined by the product of the voltage and current
provided from the voltage source and can be expressed as

Py = %Re{ V(o) ()}, (9.25)

where Vy(w) and Iy(w) represent the Fourier transformed values of the source voltage and
current. The antenna’s radiation efficiency 7, is then defined as [36]:

n, = Prad
P

(9.26)

9.3 MATLAB® implementation of near-field
to far-field transformation

In this section we demonstrate the implementation of near-field to far-field transformation in
the three-dimensional FDTD MATLAB code.

9.3.1 Definition of NF-FF parameters

The implementation of the CPML boundary in the three-dimensional code is demonstrated in
Chapter 8. The availability of CPML makes it possible to simulate open boundary problems;
the electric and magnetic fields in a problem space can be calculated as if the boundaries are
free space extending to infinity. Moreover, the near-field to far-field transformation techni-
que described in the previous section can be used to compute the far-field patterns for a
number of frequencies. The desired frequencies as well as some other parameters for far-
field radiation are defined in the definition section of the FDTD program. The definition
of certain NF-FF transformation parameters is implemented in the subroutine define_
output_parameters, partial implementation of which is shown in Listing 9.1.

In Listing 9.1, a structure named farfield is defined with a field frequencies, which is
initialized as an empty array. Then the frequencies for which the far-field patterns are sought
are assigned to the array farfield.frequencies. Another variable for farfield that needs to be
initialized is number_of_cells_from_outer_boundary, which indicates the position of the
imaginary NF-FF transformation surface enclosing the radiators or scatterers existing in the
problem space. This imaginary surface must not coincide with any objects in the problem
space or with the CPML boundaries. Therefore, number_of_cells_from_outer_boundary
should be chosen such that it is larger than the thickness of the CPML medium and less than

290 CHAPTER 9 « Near-field to far-field transformation

Listing 9.1 define_output_parameters

-
1| disp(’defining_output_parameters’);

E
[

sampled_electric_fields
sampled_magnetic_fields

)

s|sampled_voltages = [];
sampled_currents = [];

7l ports = [];
farfield.frequencies = [];

% figure refresh rate
u| plotting_step = 10;

135/ % mode of operation
run_simulation = true;

15l show_material_mesh = true;
show_problem_space = true;

% far field calculation parameters

| farfield .frequencies (1) = 3e9;
farfield.frequencies (2) = 5e9;
u| farfield.frequencies(3) = 6e9;
farfield.frequencies(4) = 9e9;

| farfield.number_of_cells_from_outer_boundary = 10;

the sum of the thicknesses of the CPML medium and the air gap surrounding the objects as
illustrated in Figure 9.4. This parameter is used to determine the nodes (7, Ij, k) and (ui, uj, uk)
indicating the boundaries of the imaginary surface in Figure 9.4.

9.3.2 Initialization of NF-FF parameters

A new subroutine, initialize_farfield_arrays, is added to the main FDTD program
fdtd_solve as shown in Listing 9.2. Implementation of initialize_farfield_arrays is given in
Listing 9.3.

The first step in the NF-FF initialization process is to determine the nodes indicating
the boundaries of the imaginary NF-FF surface: (/i, Ij, lk) and (ui, uj, uk). Once the start
and end nodes are determined they are used to construct the NF-FF auxiliary arrays. Two
sets of arrays are needed for the NF-FF transformation: The first set is used to capture and
store the fictitious electric and magnetic currents on the faces of the imaginary surface at
every time step of the FDTD time-marching loop, and the second set is used to store the
on-the-fly DFTs of these currents. The naming conventions of these arrays are elaborated
as follows.

There are six faces on the imaginary surface, and the fictitious electric and magnetic currents
are calculated for each face. Therefore, 12 two-dimensional arrays are needed. The names of

17342

these arrays start with the letter “t,” which is followed by a letter “j” or “m.” Here “j” indicates

I3t

the electric current whereas “m” indicates the magnetic current being stored in the array.

<

19

9.3 « MATLAB® implementation of near-field to far-field transformation 291

Listing 9.2 fdtd_solve

-
% initialize the matlab workspace

clear all; close all; clc;

% define the problem
define_problem_space_parameters;
define_geometry;
define_sources_and_lumped_elements;
define_output_parameters;

% initialize the problem space and parameters

initialize_fdtd_material_grid;

display_problem_space;

display_material_mesh;

if run_simulation
initialize_fdtd_parameters_and_arrays;
initialize_sources_and_lumped_elements;
initialize_updating_coefficients;
initialize_boundary_conditions;
initialize_output_parameters;
initialize_farfield_arrays;
initialize_display_parameters;

% FDTD time marching loop
run_fdtd_time_marching_loop;

% display simulation results
post_process_and_display_results;

end

Listing 9.3 initialize_farfield_arrays

-
% initialize farfield arrays

number_of_farfield_frequencies = size(farfield.frequencies ,2);

if number_of_farfield_frequencies ==
return;
end
nc_farbuffer = farfield.number_of_cells_from_outer_boundary;
li = nc_farbuffer + 1;

Ij = nc_farbuffer + 1;
lk = nc_farbuffer + 1;
ui = nx — nc_farbuffer+1;

uj = ny — nc_farbuffer+1;
uk = nz — nc_farbuffer+1;

farfield_w = 2*pi=farfield.frequencies;

292

40

%2

46

64

tixyp
tixzp
tjiyxp
tjiyzp
tjzxp
tizyp
tixyn
tjxzn
tjyxn
tjyzn
tjzxn
tjzyn
tmxyp
tmxzp
tmyxp
tmyzp
tmzxp
tmzyp
tmxyn
tmxzn
tmyxn
tmyzn
tmzxn
tmzyn

CJ:Xyp
cjxzp
cjyxp
cjyzp
cjzxp
C]:Zyp
cjxyn
cjxzn
cjyxn
cjyzn

2[cjzxn

cjzyn
cmxyp

cmxzp =

cmyxp

cmyzp =

cmzxp

cmzyp =
cmxyn =
cmxzn =
2| cmyxn =

cmyzn

camzxn =

cmzyn

CHAPTER 9 « Near-field to far-field transformation

= zeros(1,ui—li ,1,uk=Ik);
= zeros(1,ui—li ,uj—1j ,1);
= zeros (1,1 ujf|j ,uk—1lk);
= zeros (1, UI—|I ,uj—lj ,1);
= zeros (1,1 u1—IJ ,uk—1k);
= zeros(1,U|—I| 1,uk—Ik);
= zeros(1,ui—li 1 uk—Ik),
= zeros(1,ui—li ,uj—Ilj,1);
= zeros(1,1,uj—Ij ,uk—Ik),
= zeros (1, |—I| ,uj—=lj ,1);
= zeros (1,1, u1—lj ,uk—1k);
= zeros(1,u |—I| 1, uk—1k);
= zeros(1,ui—li 1 ukflk),
= zeros(1,ui—li ,uj—1j ,1);
= zeros (1,1 u1—|1 ,uk—Ik),
= zeros (1, UI—|I ,uj—lj ,1);
= zeros (1,1 u1—IJ ,uk—1lk);
= zeros(1,U|7I| 1,uk—Ik);
= zeros (1 ui—I|, uk—Ik),
= zeros(1,ui—li ,uj—I1j ,1);
= zeros (1, 1 u]—|j ,uk—lk),
= zeros(1,ui—li ,uj—1j ,1);
= zeros (1, 1 u1—lj ,uk—Ik),
= zeros(1 ,U|—I| 1, uk—1Ik);

= Zeros
= Zeros
= Zeros
= zeros
= Zeros
= Zeros
= Zeros
= Zeros
= Zeros

’

number_of_farfield_frequencies ,
number_of_farfield_frequencies ,
number_of_farfield_frequencies ,
number_of_farfield_frequencies
number_of_farfield_frequencies ,
number_of_farfield_frequencies
number_of_farfield_frequencies ,
number_of_farfield_frequencies ,

= Ze€eros
= Zeros

= Zeros

(

(

(

(

(

(

(

(

(number_of_farfield_frequencies,

(number_of_farfield_frequencies ,

(number_of_farfield_frequencies,

(number_of_farfield_frequencies
zeros(number_of _farfield_frequencies
zeros(number_of_farfield_frequencies ,
zeros (number_of_farfield_frequencies ,
zeros (number_of_farfield_frequencies ,
zeros (number_of_farfield_frequencies
zeros(number_of_farfield_frequencies
zeros (
zeros (
zeros (
zeros (
zeros (
zeros (

number_of_farfield_frequencies ,
number_of_farfield_frequencies ,
number_of_farfield_frequencies ,
number_of_farfield_frequencies ,
number_of_farfield_frequencies

ui—li ,1,uk—1lk
ui—li u;—IJ 1
1, u1—IJ ,uk—=1k);
,U|—I| uj—lj ,1
1,uj—lj ,uk—Ik
,U|—I| 1,uk—Ik
ui—I| 1, uk—Ik

=i, uj—=Ij ,1
1 u1—IJ ,uk—lk

number_of_farfield_frequencies ,

U|—I| ,uj—=lj ,
1 ujf|j ,uk—1k
,U|—|| 1, uk—Ik
,ui—Il 1, uk—Ik

=1j ;1

1 u1—|j ,uk—Ik

1 u1—IJ ,uk—Ik ;

,U|—I|
ui—li
ui—li

—1j ;1

1, uk—1Ik
,1,uk—1k
UJ—|J ,

1 ujf|j ,uk—1k

UI—|I

suj=1j 1

1 ujf|j ,uk—1k

,U|—||

1, uk—1Ik

);
);
);
);
);
);
);
);
);
1);
);
);
)
);
);
);
);
)
);
1);
);
);
);
);

)

’

’

)

)

)

)

)

)

)

)

)

)

)

’

)

)

’

)

)

)

)

9.3 « MATLAB® implementation of near-field to far-field transformation 293

9 <

The third character in the array name is a letter “x,” “y,” or “z,” which indicates the direction
of the current in consideration. The last two characters are “xn,” “yn,” “zn,” “xp,” “yp,” or
“zp” indicating the face of the imaginary surface with which the array is associated. These
arrays are four-dimensional, though they are effectively two-dimensional. The size of the first
dimension is 1; this dimension is added to facilitate the on-the-fly DFT calculations, as is
illustrated later. The fields are calculated in three-dimensional space and are stored in three-
dimensional arrays. However, it is required to capture the fields coinciding with the faces of
the imaginary surface. Therefore, the sizes of the other three dimensions of the fictitious
current arrays are determined by the number of field components coinciding with imaginary
surface faces.

The fictitious current arrays are used to calculate DFTs of these currents. Then the
currents obtained in the frequency domain are stored in their respective arrays. Thus, each
fictitious current array is associated with another array in the frequency domain. Therefore,
the naming conventions of the frequency-domain arrays are the same as for the ones in time
domain except that they are preceded by a letter “c.” Furthermore, the sizes of the first
dimension of the frequency domain arrays are equal to the number of frequencies for which
the far-field calculation is sought.

One additional parameter defined in Listing 9.3 is farfield_w. Since the far-field frequencies
are used as angular frequencies, with the unit radians/second, during the calculations they are
calculated once and stored in farfield_w for future use.

9.3.3 NF-FF DFT during time-marching loop

While the FDTD time-marching loop is running, the electric and magnetic fields are cap-
tured and used to calculate fictitious magnetic and electric currents using (9.6)—(9.11) on the
NF-FF imaginary surface. A new subroutine called calculate_JandM is added to
run_fdtd_time_marching_loop as shown in Listing 9.4. The implementation of calculate_
JandM is given in Listing 9.5.

One can notice in Listing 9.5 that an average of two electric field components is used
to calculate the value of a fictitious magnetic current component. Here the purpose is
to obtain the values of electric field components at the centers of the faces of the cells
coinciding with the NF-FF surface. For instance, Figure 9.8 illustrates the electric field
components E, on the yn face of the imaginary NF-FF surface. The E, components are
located on the edges of the faces of cells coinciding with the NF-FF surface. To obtain an
equivalent E, value at the centers of the faces of the cells, the average of two E, compo-
nents are calculated for each cell. Thus, the fictitious magnetic current components M,
generated by the averaged E, components using (9.10b) are located at the centers of the
faces of the cells.

Similarly, every fictitious electric current component is calculated at the centers of the
faces of the cells by averaging four magnetic field components. For example, Figure 9.9
illustrates the magnetic field components H, around the yn face of the imaginary NF—FF
surface. The H, components are located at the centers of the faces of cells, which are not
coinciding with the NF-FF surface. To obtain equivalent H, values at the centers of the cell
faces, the average of four H, components are calculated for each cell. Thus, the fictitious
electric current components J; generated by the averaged H, components using (9.10a) are
located at the centers of the cell faces.

294 CHAPTER 9 « Near-field to far-field transformation

<

5

~

6

16

Listing 9.4 run_fdtd_time_marching_loop

-
disp ([’Starting._the_time_marching_.loop’]);

disp (['Total .number_of _time._steps.:.’
num2str(number_of_time_steps)]);

start_time = cputime;
current_time = 0;

for time_step = 1:number_of_time_steps
update_magnetic_fields;
update_magnetic_field_CPML_ABC;
capture_sampled_magnetic_fields;
capture_sampled_currents;
update_electric_fields;
update_electric_field _CPML_ABC;
update_voltage_sources;
update_current_sources;
update_inductors;
update_diodes;
capture_sampled_electric_fields;
capture_sampled_voltages;
calculate_JandM ;
display_sampled_parameters;

end

slend_time = cputime;

total_time_in_minutes = (end_time — start_time)/60;

disp (['Total_simulation_time._is.’
num2str(total_time_in_minutes) ’_minutes.’]);

Listing 9.5 calculate_JandM

p
% Calculate J and M on the imaginary farfiled surface

if number_of_farfield_frequencies ==
return;

tmyxp (1,1,:,:) = 0.5%(Ez(ui,lj:uj—1,lk:uk—=1)+Ez(u J+1 uj,lk:uk—=1));
tmzxp (1,1,:,:) = —0.5%(Ey(ui, lj:uj—=1,lk:uk—="1)+Ey(ui, lj:uj—1,Ik+1:uk));
tmxyp (1,:,1,:) = 70.5*(Ez(li:U|71,uj,lk:uk—1)+Ez(I|+1 ui,uj,lk:uk—1));
tmzyp (1,:,1,:) = 0.5%(Ex(li:ui—1,uj,lk:uk—="1)+Ex(I —1,uj, lk+1:uk));
tmxzp (1,:,:,1) = 0‘5*(Ey(li:ui—1,|j:uj—1,uk)+Ey(I|+1 ui, lj:uj—1,uk));
tmyzp (1,:,:,1) —0.5%(Ex(li:zui—=1,1j:uj—=1,uk)+Ex(li:ui—=1,1j+1:uj,uk));

tjiyxp (1,1,:,:) =—=0.25%(Hz(ui, lj:uj—1,lk:uk—1)+Hz(ui, Ij:uj—1,Ik+1:uk)
+ Hz (ui—1,1j:uj—1,lk:uk=1) + Hz (ui—=1,1j:uj—=1,1k+1:uk));

tjzxp (1 ,i,0) =0.25%(Hy(ui, lj:uj—1,Ik:uk=1)+Hy(ui, lj+1:uj, lk:uk—1)
+ Hy (U|—1 lj:uj—1,lk:uk—1) + Hy (ui—1,1j+1:uj,lk:uk—1));

tjizyp (1,:,1,:) ==0.25%(Hx(li:ui—=1,uj,lk:uk="1)+Hx(li+1:ui,uj,Ilk:uk—1)

40

4.

44

46

4

E3

64

66

-
IS}

9.3 « MATLAB® implementation of near-field to far-field transformation

+ Hx (li

tixyp (1,:
+ Hz (i

tjiyzp (1,:
+ Hx (i

tixzp (1,:
+ Hy (i

2| tmyxn (1,1

tmzxn (1,1

tmxyn (1,:
tmzyn (1,:

tmxzn (1,:
tmyzn (1,:

tjyxn (1,1

cui—1,uj—1,lk:uk—=1) + Hx (li+1:ui,uj—1,lk:uk—1));

,1,:) = 0.25%(Hz(li:ui—1,uj, lk:uk=1)+Hz(li:ui—1,uj, lk+1:uk)

cui—=1,uj—1,lk:uk=1) + Hz (li:ui—1,uj—1,lk+1:uk));

,o,1) = 0.25%(Hx(lizui—=1,1j:uj—=1,uk)+Hx(li+1:ui, lj:uj—1,uk)

cui—1,1j:uj—1,uk—=1) + Hx (li+1:ui,lj:uj—1,uk—1));

Ly, 1) =—=0.25%(Hy (li:ui—=1,1j:uj—=1,uk)+Hy(li:ui—=1,1j+1:uj,uk)

cui—=1,1j:uj—1,uk—=1) + Hy (li:ui—=1,1j+1:uj,uk—1));

,i,t) = =05 % (Ez(li,lj:uj—=1,Ik:uk=1)+Ez(li,lj+1:uj,lk:uk—1));
i) = 0.5 % (Ey(li, ljruj—=1,1k:uk=1)+Ey(li,Ij:uj—1,Ik+1:uk));
,1,:) = 0.5 % (Ez(li:ui=1,1j,lk:uk="1)+Ez(li+1:ui,lj,lk:uk—=1));
J1,:) = —0.5 « (Ex(li:ui—=1,1j,1k:uk=1)+Ex(li:ui—1,1j,lk+1:uk));
,io,1) = =05 % (Ey(lizui=1,1j:uj=1,1k)+Ey(li+1:ui,lj:uj—1,1k));
,ou1) = 0.5 % (Ex(lizui—=1,1j:uj—=1,1k)+Ex(li:ui—=1,1j+1:uj,lk));
yi,t) = 0.25%(Hz(li, lj:uj—=1,lk:uk=1)+Hz(li,lj:uj—1,Ik+1:uk)

+ Hz (li =1,1j:uj—1,lk:uk—=1) + Hz (li =1,1j:uj—1,lk+1:uk));

tjzxn (1,1

,i,t) ==0.25%(Hy (li, Ij:uj—=1,lk:uk=1)+Hy(li, lj+1:uj, lk:uk—1)

+ Hy (li=1,1j:uj—1,lk:uk=1) + Hy (li =1,1j+1:uj,lk:uk—1));

tjzyn (1,:
+ Hx (i

tixyn (1,:
+ Hz (li

tjiyzn (1,:
+ Hx ([li

tixzn (1,:
+ Hy (i

% fourier

J1,:) = 0.25%(Hx(li:ui—=1,1j, Ik:uk=1)+Hx(li+1:ui,lj,lk:uk—1)

SUi =1, 1§ =1, 1k :uk—1) + Hx (li+1:ui, lj =1,1k:uk—1));

,1,:1) ==0.25%(Hz(li:ui—=1,1j,lk:uk="1)+Hz(li:ui—=1,1j,lk+1:uk)

cui—1,1j =1,lk:uk—=1) + Hz (li:ui—=1,1j =1,1k+1:uk));

,o, 1) ==0.25%(Hx (li:ui—=1,1j:uj—1,1k)+Hx(li+1:ui, Ij:uj—1,1k)
cui =1, 1 cuj =1,k =1)+Hx(li+1:ui, Ij:uj—1,1k =1));

,o,1) = 0.25%(Hy(li:ui—=1,1j:uj—=1,1k)+Hy(li:ui—=1,1j+1:uj, k)

cui—=1,1j:uj—=1,1k=1) + Hy (li:ui—=1,1j+1:uj,lk —1));

transform

for mi=1:number_of_farfield_frequencies

exp-h
cjxyp
cjxzp
cjyxp
cjyzp
cjzxp
cjzyp

cjxyn
cjxzn
cjyxn
cjyzn

= dt * exp(—j*farfield_w (mi)*(time_step —0.5)xdt);

(mi,:,:,:) = cjxyp(mi,:,:,:) + exp_h * tjxyp (1,:,:,:);
(mi,:,:,:) = cjxzp(mi,:,:,:) + exp_h * tjxzp (1,:,:,:);
(mi,:,:,:) = cjyxp(mi,:,:,:) + exp-h * tjyxp (1,:,:,:);
(mi,:,:,:) = cjyzp(mi,:,:,:) + exp_h * tjyzp(1,:,:,:);
(mi,:,:,:) = cjzxp(mi,:,:,:) + exp_h * tjzxp (1,:,:,:);
(mi,:,:,:) = cjzyp(mi,:,:,:) + exp_h * tjzyp (1,:,:,:);
(mi,:,:,:) = cjxyn(mi,:,:,:) + exp_h * tjxyn(1,:,:,:);
(mi,:,:,:) = cjxzn(mi,:,:,:) + exp_h * tjxzn (1,:,:,:);
(mi,:,:,:) = cjyxn(mi,:,:,:) + exp_h * tjyxn(1,:,:,:);
(mi,:,:,:) = cjyzn(mi,:,:,:) + exp_h * tjyzn (1,:,:,:);

295

296 CHAPTER 9 « Near-field to far-field transformation

cjzxn (mi,:,:,:) = cjzxn(mi,:,:,:) + exp_h * tjzxn(1,:,:,:);
74 cjzyn(mi,:,:,:) = cjzyn(mi,:,:,:) + exp_h * tjzyn(1,:,:,:);
76 exp-e = dt * exp(—j*farfield_w (mi)*time_step=*dt);
78 cmxyp (mi,:,:,:) = cmxyp(mi,: ,:,:) + exp_e * tmxyp(1,:,:,:);
cmxzp (mi,:,:,:) = cmxzp(mi,:,:,:) + exp_-e * tmxzp(1,:,:,:);
80 cmyxp (mi,: ,:,:) = cmyxp(mi,: ,:,:) + exp_e * tmyxp(1,:,:,:);
cmyzp (mi,:,:,:) = cmyzp(mi,: ,:,:) + exp-e * tmyzp(1,:,:,:);
82 cmzxp (mi,:,:,:) = cmzxp(mi,: ,:,:) + exp_e * tmzxp(1,:,:,:);
cmzyp (mi,:,:,:) = cmzyp(mi,: ,:,:) + exp_e * tmzyp(1,:,:,:);
84
cmxyn (mi,: L ,:) = cmxyn(mi,: ,:,:) + exp_e * tmxyn(1,:,:,:);
86 cmxzn (mi,:,:,:) = cmxzn(mi,: ,:,:) + exp-e * tmxzn(1,:,:,:);
cmyxn (mi,: ,:,:) = cmyxn(mi,: ,:,:) + exp_e * tmyxn(1,:,:,:);
88 cmyzn (mi,:,:,:) = cmyzn(mi,: ,:,:) + exp-e * tmyzn(1,:,:,:);
cmzxn (mi,:,:,:) = cmzxn(mi,: ,:,:) + exp_e * tmzxn(1,:,:,:);
90 cmzyn (mi,: L ,:) = cmzyn(mi,: ,:,:) + exp_e * tmzyn(1,:,:,:);
end

(ui, uj, uk)

(ui, [j, uk)

\
#
ol

\ =it -t -3

Imaginary surface (1, Ij, k)
z
y

A

Figure 9.8 E, field components on the yn face of the NF-FF imaginary surface and the
magnetic currents generated by them.

After the fictitious electric and magnetic currents are sampled on the NF-FF surface at
the current time step, they are used to update the on-the-fly DFTs for the far-field fre-
quencies defined in the subroutine define_output_parameters. For instance, one iteration of
(9.12) is performed at each time step for calculating J, in frequency domain. Therefore,
when the FDTD time-marching loop is completed, the DFT of J, is completed together.

9.3 « MATLAB® implementation of near-field to far-field transformation 297

(ui, uj, uk)

I
J______ g(ui,lj,uk)
=
R g gl o
el =
»1 = — —
= {"’\{ >
-'-71#-'1 =l =N
Imaginary surface Z(l i, k)

A

Figure 9.9 H, field components around the yn face of the NF-FF imaginary surface and the
electric currents generated by them.

9.3.4 Postprocessing for far-field calculation

As the FDTD time-marching loop is completed, the frequency-domain values of fictitious
currents for the far-field frequencies over the NF-FF surface are available. Then they can be
used at the postprocessing stage of the FDTD simulation to calculate the far-field auxiliary
fields based on (9.17). Then these fields can be used to calculate the desired far-field patterns
and to plot them.

A new subroutine named calculate_and_display_farfields is added to the postprocessing
routine post_process_and_display_results as shown in Listing 9.6, which performs the tasks
of far-field calculation and display.

Implementation of calculate_and_display_farfields is given in Listing 9.7. This sub-
routine initializes necessary arrays and parameters for calculation and display of far-field
patterns at three principal planes: namely, the xy, xz, and yz planes. For instance, to calculate

Listing 9.6 post_process_and_display_results

i|disp(’postprocessing._and_displaying.simulation_results’);

s|display_transient_parameters;
calculate_frequency_domain_outputs;

s|display_frequency_domain_outputs;
calculate_and_display_farfields;

298 CHAPTER 9 « Near-field to far-field transformation

Listing 9.7 calculate_and_display_farfields

(% This file calls the routines necessary for calculating

2|% farfield patterns in xy, xz, and yz plane cuts, and displays them.
% The display can be modified as desired.

4+|/% You will find the instructions the formats for

% radiation pattern plots can be set by the user.

if number_of_farfield_frequencies == 0
8 return;
end

calculate_radiated_power;

jo= sqrt(=1);
u[number_of_angles = 360;

16|% parameters used by polar plotting functions

step_size = 10; % increment between the rings in the polar grid
8| Nrings = 4; % number of rings in the polar grid

line_stylel = ’b-"; % line style for theta component
w|line_style2 = 'r—"; % line style for phi component

scale_type = ’dB’; % linear or dB
n|plot_type = 'D’; % the calculated data is directivity

2#|% xy plane
%
farfield_theta = zeros(number_of_angles, 1);
farfield_phi = zeros(number_of_angles, 1);
x| farfield_theta = farfield_theta + pi/2;
farfield_phi = (pi/180)*[—-180:1:179].";

| const_theta = 90; % used for plot

o
S

20% calculate farfields
calculate_farfields_per_plane;

% plotting the farfield data

s for mi=1:number_of_farfield_frequencies
f = figure;

| patl = farfield_dataTheta (mi,:).’;
pat2 = farfield_dataPhi(mi,:).’;

40
% if scale_type is db use these, otherwise comment these two lines
2| patl = 10*log10 (pat1);

pat2 = 10*log10 (pat2);

max_val = max(max ([pat1 pat2]));
46| max_val = step_size * ceil (max_val/step_size);

| legend_str1 = [plot_type ’_{\theta},_f=" ..
num2str(farfield.frequencies(mi)*1e—9) ’_.GHz’];
sof legend_str2 = [plot_type ’“_{\phi},_f=’

62

64

S
S

90

94

96

98

100

1

S
S

9.3 « MATLAB® implementation of near-field to far-field transformation

num2str(farfield.frequencies(mi)*x1e—9) '_GHz’];

polar_plot_constant_theta (farfield_phi ,pat1,pat2,max_val,
step_size , Nrings,line_style1l ,line_style2 ,const_theta,
legend_str1 ,legend_str2 ,scale_type);
end

% xz plane
%

farfield_theta = zeros(number_of_angles, 1);
farfield_phi = zeros(number_of_angles, 1);
farfield_theta = (pi/180)*[—180:1:179].";
const_phi = 0; % used for plot

% calculate farfields
calculate_farfields_per_plane;

% plotting the farfield data

for mi=1:number_of_farfield_frequencies
f = figure;

pat1 = farfield_dataTheta(mi,:).’;
pat2 = farfield_dataPhi(mi,:). " ;

% if scale_type is db use these, otherwise comment these two lines
pat1 = 10*log10 (pat1);
pat2 = 10%xlog10 (pat2);

max_val = max(max([pat1 pat2]));
max_val = step_size * ceil(max_val/step_size);
legend_str1 =

[plot_type ’_{\theta},.f=" ..
num2str(farfield.frequencies(mi)*1e—9) '_.GHz’];
legend_str2 = ...

[plot_type '_{\phi},.f=’
num2str(farfield.frequencies(mi)*1e—9) '_.GHz’];

polar_plot_constant_phi(farfield_theta ,pat1l,pat2,max_val,
step_size , Nrings,line_style1l ,line_style2 ,const_phi,,
legend_str1 ,legend_str2 ,scale_type);
end

% yz plane
%
farfield_theta = zeros(number_of_angles, 1);
farfield_phi = zeros(number_of_angles, 1);
farfield_phi = farfield_phi + pi/2;
farfield_theta = (pi/180)*[—-180:1:179].";
const_phi = 90; % used for plot

% calculate farfields
calculate_farfields_per_plane;

299

300 CHAPTER 9 « Near-field to far-field transformation

% plotting the farfield data
for mi=1:number_of_farfield_frequencies
ws| f = figure;
pat1 = farfield_dataTheta(mi,:).’;
ws| pat2 = farfield_dataPhi(mi,:). ;

1

5
b4

10|% if scale_type is db use these, otherwise comment these two lines
pat1 = 10*log10(pat1);
12| pat2 = 10%log10 (pat2);

4| max_val = max(max ([pat1 pat2]));

max_val = step_size * ceil (max_val/step_size);
116

legend_str1 = ..

us| [plot_type ’'_{\theta},. f="’
num2str(farfield.frequencies(mi)*1e—9) '_GHz’];
10| legend_str2 =

[plot_type ’"_{\phi},_f=’

22| num2str(farfield.frequencies(mi)*x1e—9) '_GHz’];

24| polar_plot_constant_phi(farfield_theta ,patl1,pat2,max_val,
step_size , Nrings,line_stylel ,line_style2 ,const_phi,
126 legend_str1 ,legend_str2 ,scale_type);

end

the far-fields in the xy plane, two arrays, farfield_theta and farfield_phi, are constructed to
store the angles that represent the xy plane. For the xy plane E is 90° and ¢ sweeps from
—180° to 180°. Then a function calculate_farfields_per_plane is called to calculate far-field
directivity data at the given angles. These data are plotted using another function polar_
plot_constant_theta. For the xy plane E is a constant value of 7/2 radians. For the xz and yz
planes ¢ takes constant values of 0 and 7/2 radians, respectively, hence another function,
which is called for plotting patterns in the xz and yz planes is polar_plot_constant_phi. The
implementations of polar_plot_constant_theta and polar_plot_constant_phi are given in
Appendix C.

The near-field to far-field calculations are performed mainly in the function calculate_
farfields_per_plane, implementation of which is given in Listing 9.9.

One of the initial tasks in calculate_farfields_per_plane is the calculation of total radi-
ated power. A subroutine named calculate_radiated_power is called to perform this task.
The total radiated power is stored in the parameter radiated_power, as can be seen in
Listing 9.8. Calculation of radiated power is based on the discrete summation representation
of (9.24).

Before calculating any far-field data, the auxiliary fields Ny, Ny, Lg, and Ly need to be
calculated based on (9.17). In (9.17) the parameters £ and ¢ are angles indicating the posi-
tion vector of the observation point 7 as illustrated in Figure 9.7. The parameters J,, J,, J.,
M,, M,, and M. are the fictitious currents, which have already been calculated at the center

9.3 « MATLAB® implementation of near-field to far-field transformation 301

Listing 9.8 calculate_radiated_power

1(% Calculate total radiated power
radiated_power = zeros(number_of_farfield_frequencies ,1);
3
for mi=1:number_of_farfield_frequencies
5 powr = 0;
powr = dx*dy+* sum(sum (sum(cmyzp(mi,: ,:,:).*
7 conj(cjxzp (mi,:,:,:)) — cmxzp(mi,:,:,:)
xoconj(cjyzp (mi,:,:,1)))));
9 powr = powr — dx*dy#* sum(sum(sum(cmyzn(mi,: ,:,:)
% oconj(cjxzn(mi,:,:,:)) — cmxzn(mi,:,:,:)
1 % oconj(cjyzn(mi,: ,:,:)))));
powr = powr + dx*dz* sum(sum(sum(cmxyp(mi,: ,:,:)
13 % oconj(cjzyp (mi,:,:,:)) — cmzyp(mi,:,:,:)
S oconj(cjxyp (mi,:,:,1)))));
15 powr = powr — dx*dz* sum(sum(sum(cmxyn(mi,: ,:,:)
% conj(cjzyn(mi,:,:,:)) — cmzyn(mi,: ,:,:)
17 & oconj(cjxyn(mi,:,:,:)))));
powr = powr + dy*dz* sum (sum(sum(cmzxp(mi,: ,:,:)
19 % oconj(cjyxp(mi,:,:,:)) — cmyxp(mi,:,:,:)
xoconj(cjzxp(mi,:,:,:)))));
2 powr = powr — dy*dz* sum(sum(sum(cmzxn(mi,: ,:,:)
% oconj(cjyxn(mi,:,:,:)) — cmyxn(mi,:,:,:)
3 % oconj(cjzxn(mi,: ,:,:)))));
radiated_power (mi) = 0.5 * real (powr);

points of the faces of the cells coinciding with the NF-FF surface for the given far-field
frequencies. The parameter & is the wavenumber expressed by

k = 2nf \/iigEo, (9.27)

where fis the far-field frequency under consideration. Yet another term in (9.17) is ' cos(y),
which needs to be further defined explicitly. As shown in Figure 9.7, 7 is the position vector
indicating the observation point while 7 is the position vector indicating the source point.
The term 7’ cos(y) is actually obtained from 7' - 7 where 7 is a unit vector in the direction of 7.
The unit vector 7 can be expressed in Cartesian coordinates as

7 = sin(0)cos(¢)x + sin(0)sin(¢p)y + cos(0)z. (9.28)

As mentioned already, the vector 7' is the position vector indicating the source point and
is expressed in terms of source positions. The sources are located at the centers of the faces,
and the source position vectors can be expressed as follows. A position vector for a source
point located on the zn face of the NF-FF surface can be expressed as

7 = (mi + 0.5 — ci)Axk + (mj + 0.5 — ¢) Ay + (lk — ck)Azz, (9.29)

302 CHAPTER 9 « Near-field to far-field transformation

(U1, U], k)

.
.
.
. . . e o
. € -
. . S (ui, 1, uk)
® L
(ci, ¢f, ck) [
. bl s
. s b
> .
. ¢ : -

Figure 9.10 Position vectors for sources on the zn and zp faces.

as can be observed in Figure 9.10. Here (ci, ¢j, ck) is the center node of the problem space,
which is assumed to be the origin for the far-field calculations. The parameters mi and mj
are the indices of the nodes of the faces, which include the sources under consideration. Then
the term »’ cos(y) in (9.17) can be expressed explicitly using (9.28) and (9.29) as

Feos(y) =77 = (mi + 0.5 — ci)Axsin(6) cos(¢p)

9.30
+ (mj + 0.5 — ¢j)Aysin(0) sin(¢) + (Ik — ck)Azcos(6). (5-30)
Similarly, # cos(y) can be obtained for the zp face as
r'ecos(y) =77 = (mi + 0.5 — ci)Axsin(0) cos
(v) (Jasin(6) cos) 031)

+ (mj 4+ 0.5 — ¢j)Aysin(0) sin(¢) + (uk — ck)Azcos(H).

The equations in (9.17) are integrations of continuous current distributions over the ima-
ginary surface. However, we have obtained the currents at discrete points. Therefore, these
integrations can be represented by discrete summations. For instance, for the zn and zp faces
(9.17) can be rewritten as

wi—1 uj—1

No =YY AxAy(J.cos(6) cos(p) +J, cos(6) sin(¢)) e/ <), (9.32a)
mi=li mj=Ij
ui—1 uj—1 »

Ny =" AxAy(—J,sin(g) +J, cos(¢)) e/ W), (9.32b)

mi=li mj=lj

9.3 « MATLAB® implementation of near-field to far-field transformation 303

ui—1 uj—1

Lo = Z Z AxAy (M, cos() cos(¢) + M, cos() sin(gp) e/ W), (9.32¢)
mi=li mj=lj
wi—1 wj—1 y

Ly =YY AxAy(—M,sin(¢) + M, cos(p)) e/ W), (9.32d)
mi=li mj=Ij

Referring to Figure 9.11 one can obtain 7/ cos(y) for the xn and xp faces, respectively, as

reos(yp) =7 -7 = (li — ci)Axsin(60) cos(¢)
+ (mj + 0.5 — ¢j)Aysin(0) sin(¢) + (mk + 0.5 — ck)Azcos(6), (9.33)

r'eos(yp) =7 - 7 = (ui — ci)Axsin(6) cos(¢)
+ (mj + 0.5 — ¢j)Aysin(0) sin(¢) + (mk + 0.5 — ck)Azcos(6), (9.34)

where mj and mk are the indices of the nodes of the faces that include the sources. Then the
summations in 9.32 are expressed in terms of these indices mj and mk as

wj—1 uk—1

No=) Y AyAz(J,cos(6)sin(¢) — J.sin(6))e” W), (9.35a)
mj=1lj mk=Ilk

w—1 uk—1

Np= > AvAz(J,cos(p))e/), (9.35b)

mj=lj mk=Ilk

v
7

AR iRy

(ui, Ij, uk)

°>_-—-——"""l

¢ . (ci, ¢j, ck)

® “x ~
T -
A\ b

\ o /
(li,/j,”}
-

Figure 9.11 Position vectors for sources on the xn and xp faces.

304 CHAPTER 9 « Near-field to far-field transformation

w—1 uk—1

Lo=Y_ " AyAz(M,cos(6)sin(¢) — M.sin(6)) e/ W), (9.35¢)
mj=Ilj mk=Ik
w—1 uk—1 »

Ly=" " AyAz(M,cos(g))e/). (9.35d)
mj=lj mk=Ik

Similarly, referring to Figure 9.12 # cos(y) can be obtained for the yn and yp faces,
respectively, as
¥eos(y) = (mi+ 0.5 — ci)7 - 7 = Axsin(0) cos(¢)

i) (9.36)
+ (§j — ¢j)Aysin(0) sin(¢) + (mk 4+ 0.5 — ck)Azcos(6),

rcos(y) = (mi+ 0.5 — ci)7 - 7 = Axsin(6) cos(¢)

o (9.37)
+ (W — ¢j)Aysin(0) sin(¢p) + (mk + 0.5 — ck)Az cos(6),

Then the summations in (9.32) are expressed in terms of these indices mi and mk as

ui—1 uk—1
Np = Z Z AxAz(J, cos(6) cos(¢p) — J. sin(0))e/ s, (9.38a)
mi=li mk=Ilk
ui—1 uk—1 ~/
Np= " D Avhz(—Jsin(g))e”), (9.38b)
mi=li mk=Ik
(ui, uj, uk)
/
/ . (ui, uj, uk)
A% e
¢ 74‘.“\// ¢
. .
. . .
. ° (ci, cj, ck) .

.‘7"-_\.. .
. .}§§§ x‘o

./4
7 .
/

e

Z

(71, j, Ik)
J’<J/' *

Figure 9.12 Position vectors for sources on the yn and yp faces.

9.3 « MATLAB® implementation of near-field to far-field transformation 305

wi—1 uk—1
Ly=) > AxAz(M,cos(6)cos(p) — M.sin(6))e ™), (9.38¢)

mi=li mk=Ik

ui—1 uk—1

Ly =YY AxAz(—M,sin(¢))e W), (9.38d)

mi=li mk=Ik

The implementation of the discrete summation just described can be followed in Listing 9.9.
Finally, having obtained the auxiliary fields Ny, Ny, Lz, and L, and the total radiated
power, the far-field directivity data are calculated based on [1] as

2
Dg=——|L No ? 9.39
6 87”70Prad| o + 1MoNo |, (a)
p, =% |Lg — 1N, | (9.39b)
¢78‘7”70Pmd o 170 ol ’

Listing 9.9 calculate_farfields_per_plane

-
i|if number_of_farfield_frequencies ==

return;
;| end
C = 2.99792458e+8; % speed of light in free space
simu0 = 4 * pi * le—7; % permeability of free space
eps_.0 = 1.0/(c*c*mu0); % permittivity of free space
7leta_.0 = sqrt(mu_0/eps_0); % intrinsic impedance of free space

ol exp_jk_rpr = zeros(number_of_angles ,1);

dx_sinth_cosphi = zeros(number_of_angles ,1);
nldy_sinth_sinphi = zeros(number_of_angles ,1);

dz_costh = zeros(number_of_angles ,1);

3| dy_dz_costh_sinphi = zeros(number_of_angles ,1);

dy_dz_sinth = zeros(number_of_angles ,1);

is| dy_dz_cosphi = zeros(number_of_angles ,1);
dx_dz_costh_cosphi = zeros(number_of_angles ,1);

7| dx_dz_sinth = zeros(number_of_angles ,1);

dx_dz_sinphi = zeros(number_of_angles ,1);

| dx_dy_costh_cosphi = zeros(number_of_angles ,1);
dx_dy_costh_sinphi = zeros(number_of_angles ,1);

a| dx_dy_sinphi = zeros(number_of_angles ,1);

dx_dy_cosphi = zeros(number_of_angles ,1);

;| farfield_dataTheta = .
zeros(number_of_farfield_frequencies ,number_of_angles);
| farfield _dataPhi =

zeros(number_of_farfield_frequencies ,number_of_angles);

dx_sinth_cosphi = dx*sin(farfield_theta).*cos(farfield_phi);
widy_sinth_sinphi = dy*sin(farfield_theta).*sin(farfield_phi);
dz_costh = dzxcos(farfield_theta);

306 CHAPTER 9 « Near-field to far-field transformation

41

43

4

49

67

69

81

dy_dz_costh_sinphi = dy*dz+*cos(farfield_theta).*sin(farfield_phi);
dy_dz_sinth = dy*dz*sin(farfield_theta);
dy_dz_cosphi = dy*dz*cos(farfield_phi);
dx_dz_costh_cosphi = dx*dz*cos(farfield_theta).*cos(farfield_phi);
dx_dz_sinth = dx*dz*sin(farfield_theta);
dx_dz_sinphi = dx*dz*sin(farfield_phi);

7| dx_dy_costh_cosphi = dx*dy*cos(farfield_theta).*cos(farfield_phi);

dx_dy_costh_sinphi = dx*dy*cos(farfield_theta).*sin(farfield_phi);
dx_dy_sinphi = dx*dy*sin(farfield_phi);

dx_dy_cosphi = dx*dy*cos(farfield_phi);

ci = 0.5%(ui+li);

¢j = 0.5%(uj+lj);

ck = 0.5%(uk+lk);

% calculate directivity
for mi=1:number_of_farfield_frequencies
disp (["Calculating._directivity.for.’ , ...
num2str(farfield.frequencies(mi)) ’_Hz']);
k = 2+=pi*farfield.frequencies(mi)*(mu_0*eps_0)-0.5;

Ntheta = zeros(number_of_angles ,1);
Ltheta = zeros(number_of_angles ,1);
Nphi = zeros(number_of_angles ,1);
Lphi = zeros(number_of_angles ,1);
rpr = zeros(number_of_angles ,1);

for nj = Ij:uj—1
for nk =lk:uk-1
% for +ax direction

rpr = (ui — ci)*dx_sinth_cosphi
+ (nj—cj+0.5)*dy_sinth_sinphi
+ (nk—ck+0.5)*dz_costh;
exp_jk_rpr = exp(j*k*rpr);
Ntheta = Ntheta
+ (cjyxp (mi,1,nj—1j+1,nk—lk+1).*dy_dz_costh_sinphi

— cjzxp (mi,1,nj—1j+1,nk=lk +1).*dy_dz_sinth).* exp_jk_rpr;

Ltheta = Ltheta
+ (cmyxp (mi,1,nj—1j+1,nk—lk +1).*dy_dz_costh_sinphi

— cmzxp(mi,1,nj—lj+1,nk—=lk+1).*dy_dz_sinth).xexp_jk_rpr;

Nphi = Nphi

+ (cjyxp (mi,1,nj—1j+1,nk—lk+1).#*dy_dz_cosphi).*exp_jk_rpr;

Lphi = Lphi

+ (cmyxp(mi,1,nj—1j+1,nk—lk+1).#dy_dz_cosphi).*exp_jk_rpr;

% for —ax direction
rpr = (li — ci)*dx_sinth_cosphi
+ (nj—cj+0.5)xdy_sinth_sinphi
+ (nk—ck+0.5)*dz_costh;
exp_jk_rpr = exp(j*kxrpr);
Ntheta = Ntheta
+ (cjyxn(mi,1,nj—1j+1,nk—lk+1).#dy_dz_costh_sinphi

83

85

91

93

99

101

103

107

109

111

113

115

117

119

121

129

131

133

9.3 « MATLAB® implementation of near-field to far-field transformation

end
for

end

for

— cjzxn (mi,1,nj—1j+1,nk=lk+1).*dy_dz_sinth).*exp_jk_rpr;
Ltheta = Ltheta

+ (cmyxn(mi,1,nj—1j+1,nk—lk+1).#*dy_dz_costh_sinphi

— cmzxn(mi,1,nj—lj+1,nk—=lk+1).*dy_dz_sinth).*exp_jk_rpr;
Nphi = Nphi

+ (cjyxn (mi,1,nj—1j+1,nk—lk+1).*dy_dz_cosphi).*exp_jk_rpr;
Lphi = Lphi

+ (cmyxn(mi,1,nj—1j+1,nk—lk+1).%*dy_dz_cosphi).*exp_jk_rpr;
end

ni =li:ui—1
for nk =lk:uk-1
% for +ay direction

= (ni — ci + 0.5)*dx_sinth_cosphi
+ (uj—cj)*dy_sinth_sinphi

+ (nk—ck+0.5)*dz_costh;
exp_jk_rpr = exp(j*k*rpr);

rpr

Ntheta = Ntheta

+ (cjxyp (mi,ni—li+1,1,nk—lk+1).*dx_dz_costh_cosphi

— cjzyp (mi,ni—li+1,1,nk—=lk+1).*dx_dz_sinth).*exp_jk_rpr;
Ltheta = Ltheta

+ (cmxyp (mi,ni—li+1,1,nk—lk+1).*dx_dz_costh_cosphi
— cmzyp (mi,ni—1i+1,1,nk—=lk+1).*dx_dz_sinth).*exp_jk_rpr;
Nphi = Nphi

+ (—cjxyp (mi,ni—li+1,1,nk—lk+1).*dx_dz_sinphi).*exp_jk_rpr;
Lphi = Lphi
+ (—cmxyp (mi,ni—1i+1,1,nk—lk+1).*dx_dz_sinphi).*exp_jk_rpr;

% for —ay direction
rpr = (ni — ¢i + 0.5)*dx_sinth_cosphi
+ (lj—cj)*dy_sinth_sinphi
+ (nk—ck+0.5)*xdz_costh;
exp_jk_rpr = exp(j*k*rpr);

Ntheta = Ntheta

+ (cjxyn (mi,ni—li+1,1,nk=lk+1).*dx_dz_costh_cosphi

— c¢jzyn(mi,ni—li+1,1,nk—=lk+1).*dx_dz_sinth).*exp_jk_rpr;
Ltheta = Ltheta

+ (cmxyn(mi,ni—li+1,1,nk—lk+1).*dx_dz_costh_cosphi
— cmzyn(mi,ni—li+1,1,nk—=lk+1).*dx_dz_sinth).*exp_jk_rpr;
Nphi = Nphi

+ (—cjxyn (mi,ni—li+1,1,nk—=lk+1).*dx_dz_sinphi).*exp_jk_rpr;
Lphi = Lphi

+ (—cmxyn (mi, ni—li+1,1,nk—=lk+1).*dx_dz_sinphi).*exp_jk_rpr;
end

ni =li:ui-1
for nj =lj:uj-1
% for +az direction

307

308

139

141

143

147

149

151

155

159

161

165

167

169

181

183

end

CHAPTER 9 « Near-field to far-field transformation