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Series Editor Foreword

The ACES series on Computational Electromagnetics and Engineering strives to offer titles
on the development and application of numerical techniques, the use of computation for
engineering design and optimization, and the application of commercial modeling tools to
practical problems. The discipline of computational electromagnetics has always pushed the
limits of the available computer power, and will continue to do so. Recent developments in
multiprocessor computer hardware offer substantial gains in performance, if those features
can be fully utilized by software developers. Unfortunately, compilers that automatically
exploit hardware advances usually lag the development of the hardware.

The present book is a valuable addition that should help readers meet the challenges
provided by modern hardware, and improve the performance of their codes. This text pro-
vides a significant level of detail about issues such as the optimization of cache memory,
control of the vector arithmetic logic unit, and use of the graphical processing unit to
improve computational performance. These techniques are described in the context of the
popular finite-difference time domain (FDTD) method of electromagnetic analysis. The
authors have also included source code to facilitate the implementation of their ideas. While
the authors use the FDTD approach for illustration, readers who are primarily interested in
other methods should also benefit. The book also offers an introduction to cloud computing,
with a discussion of a wide range of issues related to that type of service.

Andrew F. Peterson
July 18, 2013
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Preface

Multi-core CPU computers, multi-CPU workstations, and GPU are popular platforms for
scientific research and engineering applications today. Achieving the best performance
on existing hardware platforms is, however, a major challenge. In addition, distributed
computing has become a primary trend due to its high performance at low cost for hardware
and network devices. This book introduces the vector arithmetic logic unit (VALU), advanced
vector extensions (AVX) and graphics processor unit (GPU) acceleration techniques to (1)
speed up the electromagnetic simulations significantly and (2) use these acceleration techni-
ques to solve practical problems in the parallel finite difference time domain (FDTD) method.
Both VALU and AVX acceleration techniques do not require any extra hardware devices.

Three major computational electromagnetic methods – FDTD method, method of
moments (MoM), and the finite element method (FEM) – are popularly used in solving
various electromagnetic problems concerned with antennas and arrays, microwave devices
and communication components, new electromagnetic materials, and electromagnetic
radiation and scattering problems. Among these methods, the FDTD method has become
most popular due to its simplicity, flexibility, and ability to handle the complex environment
of electromagnetic problems. In this book, we apply VALU and AVX capabilities inside the
standard CPUs and GPU to accelerate the parallel FDTD method. VALU is operated by the
streaming SIMD extensions (SSE) instruction set originally designed by Intel and AMD for
the multimedia area. AVX, released in 2011, is the extension of VALU, and its vector length
is extended from 128 bits to 256 bits. GPU is a popular topic today in computational
techniques, so we discuss its application in the parallel FDTD method in this book.
Compute unified device architecture (CUDA) allows the programming of GPUs for parallel
computation without any graphics knowledge. We introduce how to implement CUDA in the
parallel FDTD method.

Cloud computing is one of the popular computing services that does not require end-user
knowledge of both physical location and configuration of the computing resource. Cloud
computing includes two key aspects, namely, virtual resources and web browser tools. This
book introduces the basic idea of cloud computing related to the electromagnetic simulation
techniques.

A high-performance code is a key to achieve the best simulation performance on a given
hardware platform. This book demonstrates a parallel 3-D FDTD code enhanced by the
VALU acceleration techniques. The superior performance has been validated in Chapter 6
for various engineering problems on both Intel and AMD processors.

ix



This book includes seven chapters and one appendix. The first chapter briefly introduces
the parallel FDTD method. Chapter 2 presents the VALU and AVX acceleration techniques
using the SSE and AVX instruction sets in the parallel FDTD method followed by three
simple examples to demonstrate the acceleration performance. Chapter 3 shows how to
implement the SSE instructions to accelerate the CPML boundary condition. Chapter 4
introduces the three-level parallel processing techniques, including OpenMP, MPI, and their
combination with the SSE instruction set. Chapter 5 presents the basic concept, imple-
mentation, and engineering applications of GPU acceleration techniques. Chapter 6 presents
some engineering problems in various applications such as antenna arrays, radiation and
scattering problems, microwave components, and finite and curved frequency selective
surface (FSS) structures. Finally, Chapter 7 introduces the cloud computing technique and its
applications in the electromagnetic field area. The appendix includes a 3-D parallel FDTD
code with the CPML boundary condition enhanced by the VALU acceleration technique.

This book is appropriate for advanced senior and graduate students in electrical engi-
neering and for professors in areas related to electromagnetic computing techniques, com-
puter science, and hardware acceleration techniques. This book is also good for any students,
engineers, or scientists who seek to accelerate numerical simulation and data processing
techniques.

The authors would like to thank Prof. Atef Elsherbeni and Prof. Veysel Demir for their
contributions to Chapter 5.

The authors would like to thank the following colleagues and friends for their help during
the manuscript preparation: Mr. Yongjun Liu, Mr. Akira Motu, Dr. Yong Zhang, Prof.
Wenwu Cao, Prof. Erping Li, Dr. Jian Wang, Dr. Yan Zhang, and Dr. Xiande Wang.
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CHAPTER 1

Introduction to the Parallel
FDTD Method

The finite-difference time domain (FDTD) method is a numerical technique based on the
finite difference concept. It is employed to solve Maxwell’s equations for the electric and
magnetic field distributions in both the time and spatial domains. The FDTD method utilizes
the central difference approximation to discretize two of Maxwell’s curl equations, namely,
Faraday’s and Ampere’s laws, in both the time and spatial domains, and then solve the
resulting equations numerically to derive the electric and magnetic field distributions at each
time step and spatial point using the explicit leap-frog scheme. The FDTD solution, thus
derived, is second-order accurate, although the difference formulation is first order, and is
stable if the time step size is chosen to satisfy the special criterion [1].

1.1 FDTD Updated Equations

In Yee’s scheme [2] the computational domain is discretized by using the rectangular grids.
The electric fields are located along the edges of electric elements, while the magnetic fields
are sampled at the center of electric element surfaces and are normal to these surfaces. This
is consistent with the duality property of electric and magnetic fields in Maxwell’s equations.
A typical Yee’s electric element is shown in Fig. 1.1.

The FDTD method utilizes the rectangular pulse as the base function in both the time and
spatial domains, indicating that the electric field is uniformly distributed along the edge of
the electric element, while the distribution of the magnetic fields is uniform on the surface of
the electric unit. In addition, in the time domain the electric fields are sampled at times nDt
and are assumed to be uniform in the time period of (n�1/2Dt) to (n+1/2Dt). Similarly, the
magnetic fields that are sampled at (n+1/2Dt) have a shift of a half-time step with respect to
the sampling of the electric fields, and they are assumed to be uniform in the period of nDt to
(n+1)Dt. Two of Maxwell’s curl equations are expressed as follows:

r�E
! ¼ �m

@ H
!

@t
� sM H

! ðFaraday’s lawÞ ð1:1aÞ

1



r� H
! ¼ e

@E
!

@t
þ sE

! ðAmpere’s lawÞ ð1:1bÞ

In the Cartesian coordinate system, we can rewrite (1.1a) and (1.1b) as the following six
coupled partial differential equations:
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Figure 1.1 Positions of the electric and magnetic fields in Yee’s electric element.
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where e and s, m, and sM are the electric and magnetic parameters of the material. The
anisotropic material can be described by using different values of dielectric parameters along
the respective directions. Equations (1.2a)–(1.2f) form the foundation of the FDTD algo-
rithm for modeling propagation of electromagnetic waves and interaction of the electro-
magnetic waves with arbitrary 3-D objects embedded in arbitrary media. Using the
conventional notations, the discretized fields in the time and spatial domains can be written
in the following format:

En
xði þ 1=2; j; kÞ ¼ Ex

�
ði þ 1=2ÞDx; jDy; kDz; nDt

�
ð1:3aÞ

En
yði; j þ 1=2; kÞ ¼ Ey

�
iDx; ðj þ 1=2ÞDy; kDz; nDt

�
ð1:3bÞ

En
z ði; j; k þ 1=2Þ ¼ Ez

�
iDx; jDy; ðk þ 1=2ÞDz; nDt

�
ð1:3cÞ

Hnþ1=2
x ði; j þ 1=2; k þ 1=2Þ ¼ Hx

�
iDx; ðj þ 1=2ÞDy; ðk þ 1=2ÞDz; ðn þ 1=2ÞDt

�
ð1:3dÞ

Hnþ1=2
y ði þ 1=2; j; k þ 1=2Þ ¼ Hy

�
ði þ 1=2ÞDx; jDy; ðk þ 1=2ÞDz; ðn þ 1=2ÞDt

�
ð1:3eÞ

Hnþ1=2
z ði þ 1=2; j þ 1=2; kÞ ¼ Hz

�
ði þ 1=2ÞDx; ðj þ 1=2ÞDy; kDz; ðn þ 1=2ÞDt

�
ð1:3fÞ

It is useful to note that the electric and magnetic fields in the discretized version are
staggered in both time and space. For instance, the electric and magnetic fields are sampled
at the time steps nDt and (n+1/2)Dt, respectively, and are also displaced from each other in
space, as shown in Fig. 1.1. Therefore, we need to interpolate the sampled electric and
magnetic fields in order to measure the electric and magnetic fields in the continuous spatial
and time domains. Ignoring this field-sampling offset in the Fourier transforms may result in
a significant error at high frequencies.

Using the notations in (1.3a)–(1.3f), we can represent Maxwell’s equations (1.2a)–(1.2f)
in the following explicit formats [2–4]:

Hnþ1=2
x ði; j þ 1=2; k þ 1=2Þ ¼ mx � 0:5DtsMx

mx þ 0:5DtsMx
Hn�1=2

x ði; j þ 1=2; k þ 1=2Þ

þ Dt

mx þ 0:5DtsMx

"En
yði; j þ 1=2; k þ 1Þ � En

yði; j þ 1=2; kÞ
Dz

�En
z ði; j þ 1; k þ 1=2Þ � En

z ði; j; k þ 1=2Þ
Dy

#
ð1:4aÞ
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Hnþ1=2
y ði þ 1=2; j; k þ 1=2Þ ¼ my � 0:5DtsMy
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Hn�1=2
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En
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�En
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Dz

#
ð1:4bÞ

Hnþ1=2
z ði þ 1=2; j þ 1=2; kÞ ¼ mz � 0:5DtsMz

mz þ 0:5DtsMz
Hn�1=2

z ði þ 1=2; j þ 1=2; kÞ

þ Dt
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"
En

xði þ 1=2; j þ 1; kÞ � En
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Dy

�En
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yði; j þ 1=2; kÞ
Dx

#
ð1:4cÞ

Enþ1
x ði þ 1=2; j; kÞ ¼ ex � 0:5Dtsx

ex þ 0:5Dtsx
En

xði þ 1=2; j; kÞ

þ Dt

ex þ 0:5Dtsx

"
Hnþ1=2

z ði þ 1=2; j þ 1=2; kÞ � Hnþ1=2
z ði þ 1=2; j � 1=2; kÞ

Dy

�Hnþ1=2
y ði þ 1=2; j; k þ 1=2Þ � Hnþ1=2

y ði þ 1=2; j; k � 1=2Þ
Dz

#
ð1:4dÞ

Enþ1
y ði; j þ 1=2; kÞ ¼ ey � 0:5Dtsy

ey þ 0:5Dtsy
En

yði; j þ 1=2; kÞ

þ Dt

ey þ 0:5Dtsy

"
Hnþ1=2

x ði; j þ 1=2; k þ 1=2Þ � Hnþ1=2
x ði; j þ 1=2; k � 1=2Þ

Dz

�Hnþ1=2
z ði þ 1=2; j þ 1=2; kÞ � Hnþ1=2

z ði � 1=2; j þ 1=2; kÞ
Dx

#
ð1:4eÞ

Enþ1
z ði; j; k þ 1=2Þ ¼ ez � 0:5Dtsz

ez þ 0:5Dtsz
En

z ði; j; k þ 1=2Þ

þ Dt

ez þ 0:5Dtsz

"
Hnþ1=2

y ði þ 1=2; j; k þ 1=2Þ � Hnþ1=2
y ði � 1=2; j; k þ 1=2Þ

Dx

�Hnþ1=2
x ði; j þ 1=2; k þ 1=2Þ � Hnþ1=2

x ði; j � 1=2; k þ 1=2Þ
Dy

#
ð1:4fÞ

We point out that, for simplicity, the explicit indices are omitted for the material para-
meters, which share the same indices with the corresponding field components. Equations
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(1.4a) through (1.4f) are valid at the spatial points and do not contain any explicit boundary
information, and we need to augment them with an appropriate boundary condition in order
to truncate the computational domain. In the FDTD simulation, some of the commonly used
boundary conditions include those associated with the perfect electric conductor (PEC), the
perfect magnetic conductor (PMC), the absorbing boundary condition (ABC), and the peri-
odic boundary condition (PBC). In addition to the above boundary conditions, we also need
to handle the interfaces between different media in an inhomogeneous environment. In
accordance with the assumption of the locations of the electric and magnetic fields, the
magnetic field is located along the line segment joining the two centers of adjacent cells.
Consequently, the effective magnetic parameter corresponding to this magnetic field is the
weighted average of the parameters of the magnetic material that fills in the two adjacent
cells. Unlike the magnetic field, the loop used to compute the electric field is likely to be
distributed among four adjacent cells. Therefore, the effective electric parameter corre-
sponding to this electric field is equal to the weighted average of electric parameters of the
material that fills in these four cells. In addition, the curved PEC and dielectric surfaces
require the use of the conformal FDTD technique [5, 6] for accurate modeling.

In recent years, research on FDTD methods has focused on the following five topics:

1) Improving the conventional FDTD algorithm and instead employing the conformal ver-
sion in order to reduce the error introduced by the staircasing approximation [5, 6].

2) Using a subgridding scheme in the FDTD techniques to increase the local resolution
[7–9].

3) Employing the alternative direction implicit (ADI) FDTD algorithm [10, 11] to increase
the time step size.

4) Utilizing the computer clusters combining with the message passing interface (MPI)
library [4, 12, 13] to speed up the FDTD simulation and solve electrically large and
complex electromagnetic problems.

5) Using hardware [14–16] options to accelerate the FDTD simulation.

In addition, the alternative FDTD algorithms such as the multi-resolution time domain
(MRTD) method [17] and the pseudo-spectrum time domain (PSTD) technique [18] have
been proposed with a view to lowering the spatial sampling. Yet another strategy, which has
been found to be more robust as compared to the MRTD and PSTD, is to parallelize the
conformal code [4, 19, 13] and enhance it with the subgridding, ADI algorithm, and VALU/
AVX/GPU hardware acceleration techniques.

We express the electric and magnetic fields in the updated equations (1.4a)–(1.4f)
according to their positions in space. However, we index both the electric and magnetic
fields from zero rather than using the leap-frog time-stepping scheme in order to reduce the
memory usage. Namely, if there are nx, ny, and nz cells in the x-, y-, and z-directions,
respectively, the electric field arrays Ex, Ey, and Ez, and the magnetic field arrays Hx, Hy, and
Hz are located in the following way:

Ex½nx� ½ny þ 1� ½nz þ 1� ð1:5aÞ

Ey½nx þ 1� ½ny� ½nz þ 1� ð1:5bÞ

1.1 ● FDTD Updated Equations 5



Ez½nx þ 1� ½ny þ 1� ½nz� ð1:5cÞ

Hx½nx þ 1� ½ny� ½nz� ð1:5dÞ

Hy½nx� ½ny þ 1� ½nz� ð1:5eÞ

Hz½nx� ½ny� ½nz þ 1� ð1:5fÞ
Since the data inside memory is continuous in the z-direction, to match the VALU/AVX

format, we usually allocate several more cells in the z-direction. Generally speaking, the
electric fields can start from the index 0 that is allocated on the boundary of the computa-
tional domain, as shown in Fig. 1.2.

Using the definition in Fig. 1.2, the first index of both the electric and magnetic fields
starts from zero. The update of electric fields on the domain boundary requires the magnetic
fields outside the domain. However, these magnetic fields outside the domain are not
available and require special treatment in both the regular FDTD method and the VALU/
AVX acceleration code. We can write the updated equations in the following format:

Electric field update:

Enþ1
x ði; j; kÞ ¼ En

xði; j; kÞ þ
Dt

e

"
Hnþ1=2

z ði; j; kÞ � Hnþ1=2
z ði; j � 1; kÞ

Dy

� Hnþ1=2
y ði; j; kÞ � Hnþ1=2

y ði; j; k � 1Þ
Dz

#
ð1:6aÞ
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Figure 1.2 Relative locations of the electric and magnetic fields in the FDTD method.
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Enþ1
y ði; j; kÞ ¼ En

yði; j; kÞ þ
Dt

e

"
Hnþ1=2

x ði; j; kÞ � Hnþ1=2
x ði; j; k � 1Þ

Dz

� Hnþ1=2
z ði; j; kÞ � Hnþ1=2

z ði � 1; j; kÞ
Dx

#
ð1:6bÞ

Enþ1
z ði; j; kÞ ¼ En

z ði; j; kÞ þ
Dt

e

"
Hnþ1=2

y ði; j; kÞ � Hnþ1=2
y ði � 1; j; kÞ

Dx

� Hnþ1=2
x ði; j; kÞ � Hnþ1=2

x ði; j � 1; kÞ
Dy

#
ð1:6cÞ

Magnetic field update:

Hnþ1=2
x ði; j; kÞ ¼ Hn�1=2

x ði; j; kÞ þ Dt

m

"
En

yði; j; k þ 1Þ � En
yði; j; kÞ

Dz

� En
z ði; j þ 1; kÞ � En

z ði; j; kÞ
Dy

#
ð1:7aÞ

Hnþ1=2
y ði; j; kÞ ¼ Hn�1=2

y ði; j; kÞ þ Dt

m

"
En

z ði þ 1; j; kÞ � En
z ði; j; kÞ

Dx

� En
xði; j; k þ 1Þ � En

xði; j; kÞ
Dz

#
ð1:7bÞ

Hnþ1=2
z ði; j; kÞ ¼ Hn�1=2

z ði; j; kÞ þ Dt

m

"
En

xði; j þ 1; kÞ � En
xði; j; kÞ

Dy

� En
yði þ 1; j; kÞ � En

yði; j; kÞ
Dx

#
ð1:7cÞ

In Fig. 1.2, the electric cell is located most outside and the absorbing boundary is applied
to the electric fields.

1.2 Stability Analysis

One of the challenging issues that we must address in the marching-on-time technique like
the FDTD method is the stability in the time domain solution. The stability characteristic of
the FDTD algorithm depends upon the nature of the physical model, difference scheme
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employed, and the quality of the mesh structure. To understand the nature of the stability
characteristic, we express the dispersion relationship as follows [4]:

w ¼ 2
Dt

sin�1 cDt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Dx2

sin2 kxDx

2

� �
þ 1
Dy2

sin2 kyDy

2

� �
þ 1
Dz2

sin2 kzDz

2

� �s !
ð1:8Þ

If w is an imaginary number, the electromagnetic wave, yðt; r!Þ ¼ y0ejðwt�k
! � r!Þ, either will

attenuate rapidly to zero or will grow exponentially and become divergent, depending on
whether the imaginary part of w is positive or negative. In order to ensure that w is a real number
instead, the expression inside the larger round bracket in (1.8) must satisfy the condition:

cDt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Dx2

sin2 kxDx

2

� �
þ 1
Dy2

sin2 kyDy

2

� �
þ 1
Dz2

sin2 kzDz

2

� �s
� 1 ð1:9Þ

Since the maximum possible value of the sine-square term inside the square root is 1, the
time step size must satisfy:

Dt � 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Dx2

þ 1
Dy2

þ 1
Dz2

r ð1:10Þ

in order for the solution to be stable. The criterion above is called the stability condition for the
FDTD method, and it is referred to as the Courant condition (or the Courant, Friedrichs, and
Lewy criterion) [20]. Equation (1.10) indicates that the time step size is determined by the cell
sizes in the x-, y-, and z-directions and the speed of electromagnetic wave in the medium.

1.3 Boundary Conditions

It is well known that boundary condition plays a very important role in the FDTD simu-
lations when it is used to truncate the computational domain for open space problems.
Though the original FDTD algorithm was proposed as early as 1966, it was not really
applied to solve practical problems until the early 1980s when Mur’s absorbing boundary
[21] was proposed. Though Mur’s absorbing boundary condition is relatively simple and
has been used successfully to solve many engineering problems, it has room for
improvement in terms of accuracy of the solution it generates. To improve its accuracy,
Mei and Fang [22] have introduced the so-called super-absorption technique, while Chew
[23] has proposed to employ Liao’s boundary condition [24] – both of which exhibit better
characteristics than Mur’s, especially for obliquely incident waves. However, many of
these absorbing boundary conditions were found to suffer from either an instability pro-
blem or an inaccurate solution, and the request for robust and effective boundary condi-
tions continued until the perfectly matched layers (PMLs) were introduced by Berenger
[25], and several other versions [26–28] have been proposed since then. In contrast to the
other boundary conditions such as those of Mur and Liao, PML can absorb the incoming
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waves at all frequencies as well as for all incident angles. PEC is a natural boundary for
electromagnetic waves since it totally reflects the waves falling upon it. When the PEC
condition is applied to truncate the FDTD computational domain, it simply forces the
tangential electric fields on the domain boundary to be zero. In common with PEC, PMC is
also a natural type of boundary condition for electromagnetic waves and it also totally
reflects the waves illuminating upon it. However, unlike PEC, the PMC boundary is not
physical but is merely an artifice. Both the PEC and PMC boundaries are often used to take
advantage of the symmetry of the object geometry with a view toward reducing the size of
the computational domain. In this section, we focus on the convolution PML (CPML) [29],
one of the most popular PML formats. Although the PML boundary is named to be an
absorbing boundary condition, in fact it is an anisotropic material – albeit mathematical –
which is inserted in the periphery of the computational domain in order to absorb the
outgoing waves.

Before introducing the PML boundary conditions, we first investigate their role in the
FDTD simulations. In the FDTD method, Maxwell’s equations that govern the relationship
between the electric and magnetic fields in the time and spatial domains are discretized into a
set of difference equations that do not explicitly contain any boundary information. It is
necessary, therefore, to combine the difference equations with the appropriate boundary
conditions in order to carry out the mesh truncation as a preamble to solving these equations.
Generally speaking, there are two types of boundary conditions required in the FDTD
simulations: (1) the interface condition between different media and (2) the outer boundary
condition for the domain mesh truncation. In this chapter we only discuss the latter, namely,
the boundary that is used to truncate the computational domain.

CPML is based on the stretched coordinate PML [21, 22], and the six coupled Maxwell’s
equations in CPML can be written in the following form:

jwe~Ex þ sx~Ex ¼ 1
Sy

@ ~Hz

@y
� 1

Sz

@ ~Hy

@z
ð1:11aÞ

jwe~Ey þ sy~Ey ¼ 1
Sz

@ ~Hx

@z
� 1

Sx

@ ~Hz

@x
ð1:11bÞ

jwe~Ez þ sz~Ez ¼ 1
Sx

@ ~Hy

@x
� 1

Sy

@ ~Hx

@y
ð1:11cÞ

jwmx
~Hx þ sMx ~Hx ¼ 1

Sz

@~Ey

@z
� 1

Sy

@~Ez

@y
ð1:11dÞ

jwmy
~Hy þ sMy ~Hy ¼ 1

Sx

@~Ez

@x
� 1

Sz

@~Ex

@z
ð1:11eÞ
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jwmz
~H z þ sMz ~H z ¼ 1

Sy

@~Ex

@y
� 1

Sx

@~Ey

@x
ð1:11fÞ

To derive the updated equations for CPML from (1.11a), we first take its Laplace
transform to obtain the following equation in the time domain:

ex
@Ex

@t
þ sxEx ¼ S yðtÞ � @Hz

@y
� SzðtÞ � @Hy

@z
ð1:12Þ

where Sy and Sz are the Laplace transforms of 1/Sy and 1/Sz, respectively. The asterisk ‘‘*’’
indicates the convolution of two time domain terms.

CPML is derived by converting (1.12) to a form that is suitable for explicit updating.
Furthermore, to overcome the shortcomings of the split field and unsplit PML insofar as the
effectiveness at the low frequencies and the absorption of the surface waves are concerned,
we modify Sx, Sy, and Sz as follows:

Sx ¼ Kx þ sx;PML

ax þ jwe0
ð1:13aÞ

Sy ¼ Ky þ sy;PML

ay þ jwe0
ð1:13bÞ

Sz ¼ Kz þ sz;PML

az þ jwe0
ð1:13cÞ

where ax,y,z and sx,y,z,PML are real numbers, and K is greater than 1. Sx, Sy, and Sz can be
obtained from the Laplace transforms:

Sx ¼ dðtÞ
Kx

� sx

e0Kx
exp

h
� sx;PML=e0Kx

þ ax;PML=e0

� �
tuðtÞ

i
¼ dðtÞ

Kx
þ xxðtÞ ð1:14aÞ

Sy ¼ dðtÞ
Ky

� sy

e0Ky
exp

h
� sy;PML=e0Ky

þ ay;PML=e0

� �
tuðtÞ

i
¼ dðtÞ

Ky
þ xyðtÞ ð1:14bÞ

Sz ¼ dðtÞ
Kz

� sz

e0Kz
exp

h
� sz;PML=e0Kz

þ az;PML=e0

� �
tuðtÞ

i
¼ dðtÞ

Kz
þ xzðtÞ ð1:14cÞ

where d(t) and u(t) are an impulse function and a step function, respectively. Substituting
(1.14a) and (1.14c) into (1.12), we have:

exe0
@Ex

@t
þ sxEx ¼ 1

Ky

@Hz

@y
� 1

Kz

@Hy

@z
þ xyðtÞ �

@Hz

@y
� xzðtÞ �

@Hy

@z
ð1:15Þ

It is not numerically efficient to compute the convolution directly appearing in (1.15),
and to address this issue we introduce a quantity Z0y(m) in order to calculate it efficiently, as
follows:
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Z0yðmÞ ¼
ððmþ1ÞDt

mDt
xyðtÞdt

¼ � sy

e0K2
y

ððmþ1ÞDt

mDt
exp
h
� sy;PML=e0Ky

þ ay;PML=e0

� �
t
i
dt

¼ ayexp
h
� sy;PML=Ky

þ ay;PML

� �
mDt
�
e0

� �i
ð1:16Þ

where:

ay ¼ sy;PML

sy;PMLKy þ K2
yay

�
exp½��sy;PML=Ky

þ ay

	
mDt=e0
� 	� � 1

	 ð1:17Þ

A similar expression can be derived for Z0z(m). Using (1.16) and (1.17), (1.15) can be
written as:

exe0
Enþ1

x ði þ 1=2; j; kÞ � En
xði þ 1=2; j; kÞ

Dt
þ sx

Enþ1
x ði þ 1=2; j; kÞ þ En

xði þ 1=2; j; kÞ
2

¼ Hnþ1=2
z ði þ 1=2; j þ 1=2; kÞ � Hnþ1=2

z ði þ 1=2; j � 1=2; kÞ
KyDy

�Hnþ1=2
y ði þ 1=2; j; k þ 1=2Þ � Hnþ1=2

y ði þ 1=2; j; k � 1=2Þ
KzDz

þ
XN�1

m¼0

Z0yðmÞHn�mþ1=2
z ði þ 1=2; j þ 1=2; kÞ � Hn�mþ1=2

z ði þ 1=2; j � 1=2; kÞ
KyDy

�
XN�1

m¼0

Z0zðmÞHn�mþ1=2
y ði þ 1=2; j; k þ 1=2Þ � Hn�mþ1=2

y ði þ 1=2; j; k � 1=2Þ
KzDz

ð1:18Þ

Finally, the updated formula of (1.18) takes the following form:

exe0
Enþ1

x ði þ 1=2; j; kÞ � En
xði þ 1=2; j; kÞ

Dt
þ sx

Enþ1
x ði þ 1=2; j; kÞ þ En

xði þ 1=2; j; kÞ
2

¼ Hnþ1=2
z ði þ 1=2; j þ 1=2; kÞ � Hnþ1=2

z ði þ 1=2; j � 1=2; kÞ
KyDy

�Hnþ1=2
y ði þ 1=2; j; k þ 1=2Þ � Hnþ1=2

y ði þ 1=2; j; k � 1=2Þ
KzDz

þynþ1=2
exy ði þ 1=2; j; kÞ � ynþ1=2

exz ði þ 1=2; j; kÞ
ð1:19Þ
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where:

ynþ1=2
exy ði þ 1=2; j; kÞ ¼ byyn�1=2

exy ði þ 1=2; j; kÞ

þay
Hnþ1=2

z ði þ 1=2; j þ 1=2; kÞ � Hnþ1=2
z ði þ 1=2; j � 1=2; kÞ

Dy

ð1:20Þ

ynþ1=2
exz ði þ 1=2; j; kÞ ¼ bzyn�1=2

exz ði þ 1=2; j; kÞ

þaz

Hnþ1=2
y ði þ 1=2; j; k þ 1=2Þ � Hnþ1=2

y ði þ 1=2; j; k � 1=2Þ
Dz

ð1:21Þ

bx ¼ exp � sx;PML=Kx
þ ax

� �
Dt
�
e0

� �h i
ð1:22aÞ

by ¼ exp � sy;PML=Ky
þ ay

� �
Dt
�
e0

� �h i
ð1:22bÞ

bz ¼ exp � sz;PML=Kz
þ az

� �
Dt
�
e0

� �h i
ð1:22cÞ

Equation (1.19) is the desired updated equation that we have been seeking in order to
retain the advantages of the unsplit PML and overcome its drawback at the same time. In
common with the conventional FDTD method, the electric field updating inside the PML
region only requires the magnetic fields around it and the value of y at the previous time
step. The same statement is true for the magnetic field update as well. CPML does not
require additional information exchange in the parallel FDTD simulation over and above that
in the conventional FDTD method.

Supposing the variable x is the distance measured from the outer boundary of the PML
region, the conductivity distribution in the PML region is given by:

sðxÞ ¼ smax
d � x

d

� �m

ð1:23Þ

where the index m is taken to be either 2 or 4. In addition, in (1.23), d is the thickness of PML
region and smax is the maximum value of the conductivity, which can be expressed as:

smax ¼ m þ 1
200p

ffiffiffiffi
er

p
Dx

ð1:24Þ

Supposing that y is a distance measured from the outer boundary of the PML region, then
the distribution of Ky is given by:

KyðyÞ ¼ 1 þ ðKmax � 1Þ jd � yjm
dm

ð1:25Þ
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The implementation of CPML in the FDTD code is relatively simpler than most of the
other types of PMLs. Also, CPML does not depend on the properties of the materials being
simulated. In addition, it has a good performance at low frequencies.

1.4 Parallel FDTD Method

In this section, we briefly introduce the parallel FDTD method [4], which is widely used in
electromagnetic simulations. The basic idea here is to help readers understand the simulation
procedure when a parallel code runs on a parallel platform. One compute unit can be a
compute core, a compute CPU including multiple physical cores, or a compute node that
contains multiple CPUs. The different partition schemes of the compute units will sig-
nificantly affect the parallel performance that determines the amount of the information
exchange among the compute units.

In the parallel processing technique, the original problem is divided into small pieces that
the FDTD code assigns to each compute unit. Each compute unit in the cluster only needs to
simulate one specified sub-domain, as shown in Fig. 1.3. Each sub-domain is not indepen-
dent and requires the information from its neighbors to calculate the fields on the interface of
sub-domains. The information exchanging procedure is demonstrated in Fig. 1.4.

A complete FDTD simulation is carried out in three steps: project pre-processing,
project simulation, and data post-processing. In the first step, the parallel FDTD code
generates the material distribution based on the geometry information and the specified
mesh distribution. In this procedure, each compute unit in a cluster does not have to wait
for others since it does not need to borrow any information from its neighbors. For the
complex geometry problems, the job load in each sub-domain may be significantly dif-
ferent, and the processing time required in each sub-domain may vary on different compute
units. In order to speed up the pre-processing procedure, we do not have to let the number

Computer clusterSingle computer

Figure 1.3 Basic idea of parallel processing FDTD simulation on a computer cluster. The
original problem is split into small pieces and each compute unit in the cluster only
needs to simulate one piece.
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of sub-domains be equal to the number of compute units. Also, the compute units carrying
on the simple sub-domains can work on more sub-domains without the need to wait for the
other compute units, as illustrated in Fig. 1.5. In contrast to the project pre-processing, the
parallel FDTD update processing in each sub-domain must be synchronized at each time
step. Therefore, we will not allow the compute unit to switch from one sub-domain to
another during the simulation. The data post-processing will not require the data exchange
among the compute units.

Computer 1 Computer 2

Interface
Inner point inside

computer 2
Inner point inside

computer 1

Critical point, calculate twice

Figure 1.4 Field information exchanging on the interface of the sub-domains.

Hard jobs

Hard jobs

Easy jobs

Hard jobs

Easy jobs

Moderate jobs

6

5

4

3

2

1

Figure 1.5 Breaking the original job into small pieces in the project pre-processing, each
compute unit in the cluster will handle one piece at one time. The number of small
pieces may be much larger than the number of compute units in the cluster.
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Since the field update in the FDTD method only requires the information around it, it is
one of the highly parallelized methods. Let us start from one component of Maxwell’s
equations [1, 2]:

@Ez

@t
¼ 1

ez

@Hy

@x
� @Hx

@y
� szEz

� �
ð1:26Þ

Using the central difference scheme, we can get the following discretization formulation
for (1.26):

Enþ1
z ði; j; k þ 1=2Þ ¼ ez � 0:5szDt

ez þ 0:5szDt
En

z ði; j; k þ 1=2Þ

þ 1
ez þ 0:5szDt

"
Hnþ1=2

y ði þ 1=2; j; k þ 1=2Þ � Hnþ1=2
y ði � 1=2; j; k þ 1=2Þ

0:5½DxðiÞ þ Dxði � 1Þ�

�Hnþ1=2
x ði; j þ 1=2; k þ 1=2Þ � Hnþ1=2

x ði; j � 1=2; k þ 1=2Þ
0:5½DyðjÞ þ Dyðj � 1Þ�

#
ð1:27Þ

For a serial code, the field solution in the entire FDTD domain can be solved by forcing
the fields to satisfy the proper condition on the domain boundary. However, for the parallel
code, the fields on the boundary of each sub-domain are unknown, but they are calculated by
borrowing some information from the adjacent sub-domains. Therefore, we need the high-
performance network to transform the information from one compute unit to another one at
each time step. In contrast to other electromagnetic simulation techniques, the parallel FDTD
method only requires passing the fields on the interface between the adjacent compute units.

z

y

x

Ez

Hy2

Hy1

Proces
sor 2

Proces
sor 1

Interf
ace

Figure 1.6 Distribution of the electric and magnetic fields near the interface between two
adjacent processors.
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For example, considering (1.27) in Fig. 1.6, the electric field Ez is located on the interface
between the processors 1 and 2. Update of this electric field needs two magnetic fields: Hy1,
i.e., Hnþ1=2

y ði þ 1=2; j; k þ 1=2Þ, and Hy2, i.e., Hnþ1=2
y ði � 1=2; j; k þ 1=2Þ, which are located

in the processors 1 and 2, respectively.
Rewriting (1.27) for the processors 1 and 2, the electric fields on the interface can be

expressed as:

Enþ1;processor 1
z ði; j; k þ 1=2Þ ¼ ez � 0:5szDt

ez þ 0:5szDt
En

z ði; j; k þ 1=2Þ

þ 1
ez þ 0:5szDt

"
Hnþ1=2

y ði þ 1=2; j; k þ 1=2Þ � Hy1

0:5½DxðiÞ þ Dxði � 1Þ�

�Hnþ1=2
x ði; j þ 1=2; k þ 1=2Þ � Hnþ1=2

x ði; j � 1=2; k þ 1=2Þ
0:5½DyðjÞ þ Dyðj � 1Þ�

#

ð1:28Þ

Enþ1;processor 2
z ði; j; k þ 1=2Þ ¼ ez � 0:5szDt

ez þ 0:5szDt
En

z ði; j; k þ 1=2Þ

þ 1
ez þ 0:5szDt

"
Hy2 � Hnþ1=2

y ði � 1=2; j; k þ 1=2Þ
0:5½DxðiÞ þ Dxði � 1Þ�

�Hnþ1=2
x ði; j þ 1=2; k þ 1=2Þ � Hnþ1=2

x ði; j � 1=2; k þ 1=2Þ
0:5½DyðjÞ þ Dyðj � 1Þ�

#

ð1:29Þ

The magnetic fields Hy1 and Hy2 are exchanged through the high-performance network at
each time step. The data exchange happens only on the interface between two adjacent sub-
domains, and not on the edges and corners of the sub-domains.
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CHAPTER 2

VALU/AVX Acceleration Techniques

Popular central processing units (CPUs) for high-performance workstations and servers are
made by either AMD (www.amd.com) [1] or Intel (www.intel.com) [2]. Both are useful for
general purposes. It is difficult to compare the performance of AMD and Intel CPUs because
there are no absolute rules to judge CPU performance in a given system. Regardless of using
AMD or Intel CPUs, we consider the following important parameters that significantly affect
simulation performance:

● Clock frequency: An important factor for simulation performance, which usually is
directly proportional to simulation performance.

● Number of cores: Determines the number of vector arithmetic logic units (VALUs).
● Manufacturing process: Indicates the different generation manufacturing techniques, for

example, 32-nm CPUs are better than 45-nm CPUs for the same technical specifications.
● L1 cache: Determines the CPU performance. Each core has its own L1 cache.
● L2 cache: Shared by all the cores in an Intel CPU and independent for each core in AMD

CPU. Determines the CPU performance.
● L3 cache: Shared by all the cores and is not important as L1 and L2 caches.
● HyperTransport (AMD)/Quick Path Interconnect (Intel): Significantly affects the per-

formance of multi-CPU workstations. The multi-CPU workstation uses this technique to
extend the memory bandwidth. For parallel FDTD code, this allows a CPU to allocate its
data in its own local memory.

● Memory: Significantly affects the simulation performance. In most cases, the memory
bandwidth is the major simulation performance bottleneck.

● Maximum CPU configuration: Determines how many CPUs we can install on a single
motherboard.

● Thermal design power (TDP): Indicates the power consumption by a CPU.

When an FDTD code starts running, it first allocates memory for the declared variables
and arrays, and then starts executing each statement in a compiler optimized order. The most
often used data will be placed in the L1 and L2 caches in Intel CPUs. The most recently used
data will be placed in the L1 and L2 caches in AMD CPUs. When the arithmetic logic unit
(ALU) needs the data, as shown in Fig. 2.1, it will get the data from the L1 cache. If the
required data is not in the L1 cache, the system will deliver the data from the L2 cache or
memory to the L1 cache. This is an automatic procedure and we do not need to get involved
in the data transfer procedure. What we can do is to make the data continuous inside memory
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wherever it is possible to improve the cache hit ratio. The cache line containing multiple
bytes is a basic unit of cache operation, and therefore the cache hit ratio is determined by the
data continuity inside memory. Usually, L1 cache is much faster than L2 cache, and L2
cache is much faster than regular memory. The amount of the L1 cache is much smaller than
the L2 cache, and the L2 cache is much smaller than the regular memory. The caches usually
occupy the most space on a CPU chip, and the regular memory is outside the CPU and
connected to the CPU through a data bus.

Each core has its own L1 cache, which ensures fast L1 cache performance. In practical
applications, CPU manufacturers use the L2 cache in different strategies to increase L2
cache performance, as shown in Fig. 2.2. L2 cache in an AMD CPU belongs to each core.

CPU

DDR3

Core 1 Core 2

ALU/VALU ALU/VALU

L2

L1L1

Figure 2.1 A simplified flowchart for the data processing inside an Intel CPU. Each core inside an
AMD CPU has its own L2 cache. All the cores inside an Intel CPU share the L2 cache.

Advanced Smart Cache

Shared L2 Independent L2

Memory Memory

Core 2

L2 Cache
(shared)

Core 1 Core 2

L1 Cache L1 Cache

L2 Cache
(not shared)

L2 Cache
(not shared)

Core 1

L1 Cache L1 Cache

Figure 2.2 Smart L2 cache in the modern processor.
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Intel uses shared L2 cache. In both AMD and Intel CPUs, the L3 cache is not as important as
the L1 and L2 caches.

Most of the time, the system bottleneck is the memory bandwidth. Today, the most
popular memory is DDR3 that has a speed selected to match the CPU. The non-uniform
memory allocation (NUMA) architecture is used in both AMD (hyper transport technology)
[3] and Intel (quick path technology) [4] processors to increase memory bandwidth, as
shown in Fig. 2.3. Inside the NUMA architecture, each CPU can have access to its own
memory independently.

From the Intel Pentium III of the 1990s, Intel added VALU to its processors for multi-
media applications. However, it is rarely used in engineering applications. Since VALU [5]
can produce four result-based 128-bit registers with a single instruction, it can speed up
simulation four or eight times compared to an ALU. Next, we describe how to use VALU to
accelerate FDTD simulation.

2.1 Introduction to SSE Instructions

Previously, microprocessors employed an architecture called single instruction single data
(SISD) [6] where a processor applied an instruction to a single data element. Today, modern
processors are single instruction multiple data (SIMD) CPU and simultaneously handle
multiple data using a single instruction. SIMD extensions called streaming SIMD extensions
(SSE) allow one instruction to operate on multiple data elements. VALU is the hardware
component inside CPU that is controlled by the SSE instruction set. The SSE instruction set
is a kind of assembly language that can be invoked through the high language application
program interface (API). This reduces the burden on programmers.

Intel has a long history of implementing SIMD extensions that include both new
instructions and the microarchitecture resources that can accelerate these instructions.
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Figure 2.3 NUMA architecture in the multi-CPU workstation.
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The trend started with a floating point unit (FPU) first integrated in the 80486 family in
1999, and followed by extended temperature Pentium processor with the multimedia
extensions (MMX) technology, and then several evolutions of SSE. SSE first came to the
Intel Pentium III processor through eight 128-bit registers known as XMM0 through XMM7
with floating point math support. Subsequently SSE2 added double-precision math, and
SSE3 added digital signal processor (DSP)-oriented instructions. Today, the state of the art
are SSE4.1, which was implemented in microarchitecture processors when Intel migrated to
the 45-nm design code named Penryn, and SSE4.2, which was implemented in the newest
microarchitecture code named Nehalem.

Intel offers a library of software functions called Intel integrated performance primitives
(IPP). Combined with a compiler, IPP allows users to write an application code once that
will run on any Intel architecture processor and leverage the most advanced SSE instructions
and the underlying hardware accelerators that are available on the target platform.

AMD added SSE to its Athlon microprocessors in 1999. SSE adds a separate register
space to the microprocessor. Because of this, SSE can only be used on operating systems that
support it. Fortunately, the most recent operating systems support the SSE instruction set. All
versions of Windows since Windows 98 support SSE, as do Linux kernels since version 2.2.

SSE gives users access to 70 new instructions that operate on these 128-bit registers,
MMX registers, and sometimes even regular 32-bit registers.

Multimedia extensions control and status register (MXCSR) is a 32-bit register that
contains masks and flags for control and status information regarding the SSE instructions.
As of SSE3, only 16 bits from 0 to15 have been defined.

Pnemonic Bit Location Description

FZ bit 15 Flush to zero
Rþ bit 14 Round positive
R� bit 13 Round negative
RZ bits 13 and 14 Round to zero
RN bits 13 and 14 are 0 Round to nearest
PM bit 12 Precision mask
UM bit 11 Underflow mask
OM bit 10 Overflow mask
ZM bit 9 Divide by zero mask
DM bit 8 Denormal mask
IM bit 7 Invalid operation mask
DAZ bit 6 Denormals are zero
PE bit 5 Precision flag
UE bit 4 Underflow flag
OE bit 3 Overflow flag
ZE bit 2 Divide by zero flag
DE bit 1 Denormal flag
IE bit 0 Invalid operation flag

FZ mode causes all under flowing operations to simply go to zero. This saves some
processing time, but loses precision.
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Rþ, R�, RN, and RZ rounding modes determine how the lowest bit is generated. Nor-
mally, RN is used.

PM, UM, OM, ZM, DM, and IM are masks that tell the processor to ignore the excep-
tions. They can keep the program from having to deal with problems, but might cause invalid
results.

DAZ tells CPU to force all denormals to zero. A denormal is a number that is so small
that ALU cannot renormalize it due to limited exponent ranges. They are just like normal
numbers, but they take considerably longer time to process.

PE, UE, OE, ZE, DE, and IE are the exception flags that are set if they happen. Programs
can check these to see if something interesting happened. Once these bits are set, they stay
set forever until the program clears them. This means that the indicated exception could have
happened several operations ago, but the program did not clear it.

DAZ was not available in the first version of SSE. Since setting a reserved bit in MXCSR
causes a general protection fault, we need to be able to check the availability of this feature
without causing problems. To do this, we need to set up a 512-byte area of memory to save
the SSE state using the fxsave instruction, and then we need to inspect bytes 28 through 31
for the MXCSR_MASK value.

The category and instructions of the SSE set are listed below:

Arithmetic
addps Adds four single-precision (32-bit) floating-point values to four other single-

precision floating-point values.
adds Adds the lowest single-precision values; the top three values remain

unchanged.
subps Subtracts four single-precision floating-point values from four other single-

precision floating-point values.
subss Subtracts the lowest single-precision values, the top three values remain

unchanged.
mulps Multiplies four single-precision floating-point values with four other single-

precision values.
mulss Multiplies the lowest single-precision values; the top three values remain

unchanged.
divps Divides four single-precision floating-point values by four other single-preci-

sion floating-point values.
divss Divides the lowest single-precision values; the top three values remain

unchanged.
rcpps Reciprocates (1/x) four single-precision floating-point values.
rcpss Reciprocates the lowest single-precision values; the top three values remain

unchanged.
sqrtps Square root of four single-precision values.
sqrtss Square root of lowest value; the top three values remain unchanged.
rsqrtps Reciprocal square root of four single-precision floating-point values.
rsqrtss Reciprocal square root of lowest single-precision value; the top three values

remain unchanged.
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maxps Returns maximum of two values in each of four single-precision values.
maxss Returns maximum of two values in the lowest single-precision value; the top

three values remain unchanged.
minps Returns minimum of two values in each of four single-precision values.
minss Returns minimum of two values in the lowest single-precision value; the top

three values remain unchanged.
pavgb Returns average of two values in each of 8 bytes.
pavgw Returns average of two values in each of four words.
psadbw Returns sum of absolute differences of eight 8-bit values. Result in bottom

16 bits.
pextrw Extracts one of four words.
pinsrw Inserts one of four words.
pmaxsw Returns maximum of two values in each of four signed word values.
pmaxub Returns maximum of two values in each of eight unsigned byte values.
pminsw Returns minimum of two values in each of four signed word values.
pminub Returns minimum of two values in each of eight unsigned byte values.
pmovmskb Builds mask byte from top bit of 8-byte values.
pmulhuw Multiplies four unsigned word values and stores the high 16-bit result.
pshufw Shuffles four word values. Takes two 128-bit values (source and destination)

and an 8-bit immediate value, and then fills in each destination 32-bit value
from a source 32-bit value specified by the immediate. The immediate byte is
broken into four 2-bit values.

Logic
andnps Logically ANDs four single-precision values with the logical inverse (NOT) of

four other single-precision values.
andps Logically ANDs four single-precision values with four other single-precision

values.
orps Logically ORs four single-precision values with four other single-precision values.
xorps Logically XORs four single-precision values with four other single-precision

values.

Compare
cmpxxps Compares four single-precision values.
cmpxxss Compares lowest two single-precision values.
comiss Compares lowest two single-precision values and stores result in EFLAGS.
ucomiss Compares lowest two single-precision values and stores result in EFLAGS.

(QNaNs don’t throw exceptions with ucomiss, unlike comiss).

Compare Codes
eq Equal to.
lt Less than.
le Less than or equal to.
ne Not equal.
nlt Not less than.
nle Not less than or equal to.
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ord Ordered.
unord Unordered.

Conversion
cvtpi2ps Converts two 32-bit integers to 32-bit floating-point values. The top two values

remain unchanged.
cvtps2pi Converts two 32-bit floating-point values to 32-bit integers.
cvtsi2ss Converts one 32-bit integer to 32-bit floating-point value. The top three values

remain unchanged.
cvtss2si Converts one 32-bit floating-point value to 32-bit integer.
cvttps2pi Converts two 32-bit floating-point values to 32-bit integers using truncation.
cvttss2si Converts one 32-bit floating-point value to 32-bit integer using truncation.

State
fxrstor Restores floating-point and SSE state.
fxsave Stores floating-point and SSE state.
ldmxcsr Loads the MXCSR register.
stmxcsr Stores the MXCSR register.

Load/Store
movaps Moves a 128-bit value.
movhlps Moves high half to a low half.
movlhps Moves low half to upper halves.
movhps Moves 64-bit value into top half of an XMM register.
movlps Moves 64-bit value into bottom half of an XMM register.
movmskps Moves top bits of single-precision values into bottom four bits of a 32-bit

register.
movss Moves the bottom single-precision value; the top three values remain

unchanged in another XMM register; otherwise they are set to zero.
movups Moves a 128-bit value. Address can be unaligned.
maskmovq Moves a 64-bit value according to a mask.
movntps Moves a 128-bit value directly to memory, skipping the cache. (NT stands for

‘‘non-temporal.’’)
movntq Moves a 64-bit value directly to memory, skipping the cache.

Shuffling
shufps Shuffles four single-precision values.
unpckhps Unpacks single-precision values from high halves.
unpcklps Unpacks single-precision values from low halves.

Cache Control
prefetchT0 Fetches a cache-line of data into all levels of cache.
prefetchT1 Fetches a cache-line of data into all but the highest levels of cache.
prefetchT2 Fetches a cache-line of data into all but the two highest levels of cache.
prefetchNTA Fetches data into only the highest level of cache, not the lower levels.
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sfence Guarantees that every store instruction that precedes the store fence instruc-
tion in program order is globally visible before any store instruction that
follows the fence.

The prefetches instructions may be used to access an invalid memory location (i.e., off
the end of an array) – however, the address must be generated without error.

2.2 SSE in C and Cþþ
The SSE instructions [7] operate on either all or the least significant pairs of packed data
operands in parallel. The packed instructions (with PS suffix), as shown in Fig. 2.4, operate
on a pair of operands, while the scalar instructions (with SS suffix), as shown in Fig. 2.5,

x4 op y4 x3 op y3 x2 op y2 x1 op y1

x4 x3 x2 x1

y4 y3 y2 y1

opopopop

Figure 2.4 SSE packed instruction works on four pairs of data at the same time.

x4 x3 x2 x1 op y1

x4 x3 x2 x1

y4 y3 y2 y1

op

Figure 2.5 SSE scalar instruction only works on a single pair of data.
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always operate on the least significant pair of two operands. For scalar operations, the three
upper components from the first operand are passed to the destination.

The C version of an SSE register is the user-friendly and self-explanatory type __m128.
All the instructions start with _mm_ (i.e., multimedia). The suffix indicates the data type. We
describe four floats below, which use the suffix _ps (packed single-precision floats). For
example, _mm_load_ps loads four floats into a __m128, and _mm_add_ps adds four corre-
sponding floats together. Major useful operations are listed in Table 2.1.

Table 2.1 Major operations in the SSE instruction set.

__m128 _mm_load_ps(float *src) Load 4 floats from a 16-byte aligned address
(Warning: Segfaults if the address is not
a multiple of 16!)

__m128 _mm_loadu_ps(float *src) Load 4 floats from an unaligned address
(4� slower!)

__m128 _mm_load1_ps(float *src) Load 1 individual float into all 4 fields of an
__m128

__m128 _mm_setr_ps(float a,float b,float c,
float d)

Load 4 separate floats from parameters into an
__m128

void _mm_store_ps(float *dest,__m128 src) Store 4 floats to an aligned address
void _mm_storeu_ps(float *dest,__m128 src) Store 4 floats to unaligned address

__m128 _mm_add_ps(__m128 a,__m128 b)

add

add

add

add

127 96 95 64 63

xmm1 xmm2/mem128

32 31 0 127 96 95 64 63 32 31 0

dest[31-0] dest[31-0] þ src[31-0];
dest[63-32] dest[63-32] þ src[63-32];
dest[95-64] dest[95-64] þ src[95-64];
dest[127-96]  dest[127-96] þ src[127-96];

Add corresponding floats (also ‘‘sub’’)

subtract

subtract

subtract

subtract

127 96 95 64 63

xmm1 xmm2/mem128

32 31 0 127 96 95 64 63 32 31 0

dest[31-0] dest[31-0] � src[31-0];
dest[63-32]  dest[63-32] � src[63-32];
dest[95-64]  dest[95-64] � src[95-64];
dest[127-96]  dest[127-96]�src[127-96];

__m128 _mm_mul_ps(__m128 a,__m128 b)

multiply

multiply

multiply

multiply

127 96 95 64 63

xmm1 xmm2/mem128

32 31 0 127 96 95 64 63 32 31 0

Multiply corresponding floats (also ‘‘div’’,
but it is slow)

divide

divide

divide

divide

127 96 95 64 63

xmm1 xmm2/mem128

32 31 0 127 96 95 64 63 32 31 0
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dest[31-0] dest[31-0] * src[31-0];
dest[63-32] dest[63-32] * src[63-32];
dest[95-64] dest[95-64] * src[95-64];
dest[127-96]  dest[127-96] * src[127-96];

dest[31-0] dest[31-0] / (src[31-0]);
dest[63-32]  dest[63-32] / (src[63-32]);
dest[95-64]  dest[95-64] / (src[95-64]);
dest[127-96] dest[127-96]/(src[127-96]);

__m128 _mm_min_ps(__m128 a,__m128 b)

minimum

minimum

minimum

minimum

127 96 95 64 63

xmm1 xmm2/mem128

32 31 0 127 96 95 64 63 32 31 0

dest[63-0] if ((dest[31-0] ¼ 0.0) and
(src[31-0] ¼ 0.0)) then src[31-0]

else if (dest[31-0] ¼ snan) then src[31-0];
else if src[31-0] ¼ snan) then src[31-0];
else if (dest[31-0] > src[31-0])
then dest[31-0]
else src[31-0];
repeat operation for 2nd and 3rd doublewords
dest[127-64]  if ((dest127-96] ¼ 0.0) and

(src[127-96] ¼ 0.0))
then src[127-96]
else if (dest[127-96] ¼ snan) then src[127-96];
else if src[127-96] ¼ snan) then src[127-96];
else if (dest[127-96] < src[127-96])
then dest[127-96]
else src[127-96];

Take corresponding minimum (also ‘‘max’’)

maximum

maximum

maximum

maximum

127 96 95 64 63

xmm1 xmm2/mem128

32 31 0 127 96 95 64 63 32 31 0

dest[31-0] if ((dest[31-0] ¼ 0.0) and
(src[31-0] ¼ 0.0)) then src[31-0]

else if (dest[31-0] ¼ snan) then src[31-0];
else if src[31-0] ¼ snan) then src[31-0];
else if (dest[31-0] > src[31-0])
then dest[31-0]
else src[31-0];
repeat operation for 2nd and 3rd doublewords
dest[127-64]  if ((dest[127-96] ¼ 0.0) and

(src[127-96] ¼ 0.0))
then src[127-96]
else if (dest[127-96] ¼ snan) then src[127-96];
else if src[127-96] ¼ snan) then src[127-96];
else if (dest[127-96] > src[127-96])
then dest[127-96]
else src[127-96];

__m128 _mm_sqrt_ps(__m128 a)

square root

square root
square root

square root

127 96 95 64 63

xmm1 xmm2/mem128

32 31 0 127 96 95 64 63 32 31 0

dest[31-0] sqrt(src[31-0]);
dest[63-32] sqrt(src[63-32]);

Take square roots of 4 floats
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2.3 SSE Programming Examples

VALU is a hardware vector unit that allows users to place four floating numbers or two
double-precision numbers in a vector register. Today, the second generation Intel i7 and the
latest AMD processors have extended the length of the vector unit to 256 bits (eight floating

dest[95-64] sqrt(src[95-64]);
dest[127-96]  sqrt(src[127-96]);

__m128 _mm_rcp_ps(__m128 a)

reciprocal

reciprocal
reciprocal

reciprocal

127 96 95 64 63

xmm1 xmm2/mem128

32 31 0 127 96 95 64 63 32 31 0

dest[31-0] approximate(1.0/(src[31-0]));
dest[63-32] approximate(1.0/(src[63-32]));
dest[95-64] approximate(1.0/(src[95-64]));
dest[127-96]  approximate(1.0/(src[127-

96]));

Compute rough (12-bit accuracy) reciprocal of all
4 floats (as fast as an add!)

__m128 _mm_rsqrt_ps(__m128 a)

reciprocal
square root

127 96 95 64 63

xmm1 xmm2/mem128

32 31 0 127 96 95 64 63 32 31 0

reciprocal
square root

reciprocal
square root

reciprocal
square root

dest[31-0] approximate(1.0/sqrt(src[31-0]));
dest[63-32] approximate(1.0/sqrt(src[63-32]));
dest[95-64] approximate(1.0/sqrt(src[95-64]));
dest[127-96] approximate(1.0/sqrt(src[127-

96]));

Rough (12-bit) reciprocal-square-root of all
4 floats (fast)

__m128 _mm_shuffle_ps(__m128 lo,__m128 hi,
_mm_shuffle(hi3,hi2,lo1,lo0))

Interleave inputs into low 2 floats and high 2
floats of output. Basically
out[0]=lo[lo0]; out[1]=lo[lo1];
out[2]=hi[hi2]; out[3]=hi[hi3];
For example, _mm_shuffle_ps(a,a,_mm_shuffle
(i, i,i,i)) copies the float a[i] into all 4 output
floats
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numbers or four double-precision numbers). Both AMD and Intel plan to extend the length
of the vector unit to 1,024 bits. One vector unit may include many registers, for example,
eight 128-bit registers in the Intel Pentium III processor. The SSE instructions use the SSE
functions to operate on four numbers in the register. VALU is an SIMD-style arithmetic
logic unit in which a single instruction performs the same operation on all the data elements
in each vector.

2.3.1 SSE

SSE adds a series of packed and scalar single-precision floating-point operations, and some
conversions between single precision and integer. SSE uses the XMM register file, which is
distinct from the MMX register file and does not alias the �87 floating-point stack.

All operations under SSE are done under the control of MXCSR, a special purpose
control register that contains IEEE-754 flags and mask bits. SSE is enabled using the GCC
compiler flag -msse. SSE is enabled by default on gcc-4.0. If SSE is enabled, the C pre-
processor symbol __SSE__ is defined.

2.3.2 SSE2

SSE2 adds a series of packed and scalar double-precision floating-point operations. Like
SSE, SSE2 uses the XMM register file. All floating point operations under SSE2 are also
done under the control of MXCSR to set rounding modes, flags, and exception masks. In
addition, SSE2 replicates most of the integer operations in MMX, besides being modified
appropriately to fit the 128-bit XMM register size. SSE2 also adds a large number of data
type conversion instructions.

SSE2 is enabled using the GCC compiler flag -msse2. It is also enabled by default on gcc-
4.0. If SSE2 is enabled, the C preprocessor symbol __SSE2__ is defined.

2.3.3 SSE3

SSE3 adds some instructions mostly geared to making the complex floating-point arithmetic
unit work better in some data layouts. However, since it is possible to get the same or better
performance by repacking data as uniform vectors rather than non-uniform vectors ahead of
time, it is not expected that most developers will need to rely on this feature. Finally, it adds
a small set of additional permutes and some horizontal floating-point adds and subtracts that
may be of use to some developers. SSE3 is enabled using the GCC compiler flag -msse3.

2.3.4 SSE4

SSE4 is an another major enhancement, adding a dot product instruction, additional integer
instructions, a popcnt instruction, and more.

2.3.5 Programming examples

Each core in the multi-core processor has its own cache, ALU and VALU, as shown in
Fig. 2.6. Unlike the ALU, the VALU allows users to operate on four numbers at the same
time. We use a VALU that includes a 128-bit vector unit through the SIMD instruction set to
accelerate parallel FDTD code.
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SIMD computations were introduced to the Intel architecture with the MMX technology.
The MMX technology allows the SIMD computations to be performed on a packed byte. The
Pentium III processor extended the SIMD computation model with the introduction of SSE.
SSE allows SIMD computations to be performed on operands that contain four packed sin-
gle-precision floating-point data elements. The operands can be in memory or in a set of
eight 128-bit XMM registers. Fig. 2.7 shows typical SIMD computation procedure.

The following simple example is employed to demonstrate the advantage of using SSE.
Consider an operation like the vector addition, which is often used in the FDTD update.

a

b

Result

1.0f 2.0f 3.0f 4.0f

5.0f 6.0f 7.0f 8.0f

6.0f 8.0f 10.0f 12.0f

add add add add

Figure 2.7 Flowchart of the SIMD operation on multiple data.

CPU Each Core

ALU VALU

Cache

Vector unit

Scalar unit

+ =

Core 0 Core 1

Core 2 Core 3

+ =

Figure 2.6 CPU architecture including ALU and VALU.
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Adding two single-precision four-component vectors together using �86 code requires four
floating-point addition instructions [8].

vec_res.x ¼ v1.x þ v2.x;
vec_res.y ¼ v1.y þ v2.y;
vec_res.z ¼ v1.z þ v2.z;
vec_res.w ¼ v1.w þ v2.w;

This would correspond to four �86 floating-point ADD (FADD) instructions in the
object code. On the other hand, as the following pseudo-code shows, a single 128-bit packed-
add instruction can replace the four scalar addition instructions.

movaps xmm0, [v1]; xmm0 ¼ v1.w | v1.z | v1.y | v1.x;
addps xmm0, [v2]; xmm0 ¼ v1.wþv2.w | v1.zþv2.z | v1.yþv2.y | v1.xþv2.x;
movaps [vec_res], xmm0;

The various intrinsic functions are available in one of the four headers, one each for MMX,
SSE, SSE2, and SSE3, when the corresponding instruction set architecture (ISA) appeared:

MMX mmintrin.h
SSE xmmintrin.h
SSE2 emmintrin.h
SSE3 pmmintrin.h

Here is a demo code segment that calculates the summation of two vectors without the
SSE acceleration:

#include <iostream>
using namespace std;
int main(int argc, char **argv)
{

//Declare the vectors a and b.
float a[4], b[4];

//Assign the vectors with the given values.
a[0] = 1.0f;
a[1] = 2.0f;
a[2] = 3.0f;
a[3] = 4.0f;
b[0] = 5.0f;
b[1] = 6.0f;
b[2] = 7.0f;
b[3] = 8.0f;

//Execute the multiplication operation four times.
a[0] = a[0] * b[0];
a[1] = a[1] * b[1];
a[2] = a[2] * b[2];
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a[3] = a[3] * b[3];

//Output the results
cout << a[0] << endl;
cout << a[1] << endl;
cout << a[2] << endl;
cout << a[3] << endl;

return 0;

}

The code segment with SSE acceleration is expressed as follows:

#include <iostream>
using namespace std;

//Header file for the SSE intrinsics.
#include <xmmintrin.h>

int main(int argc, char **argv)
{

//The operand is aligned on the 16-byte boundary.
#ifdef LINUX
//FLOAT_ALN16 on LINUX
typedef float FLOAT_ALN16 __attribute__((aligned(16)));
#else
//FLOAT_ALN16 on Windows
typedef __declspec(align(16)) float FLOAT_ALN16;
#endif

//Declare the vectors a and b
FLOAT_ALN16 a[4], b[4];

//Assign the vectors with the given values
a[0] = 1.0f;
a[1] = 2.0f;
a[2] = 3.0f;
a[3] = 4.0f;
b[0] = 5.0f;
b[1] = 6.0f;
b[2] = 7.0f;
b[3] = 8.0f;

//Convert the data type to the SSE format
__m128 *va = (__m128 *)a;
__m128 *vb = (__m128 *)b;

va[0] = _mm_mul_ps(va[0], vb[0]);

//Output the results
cout << a[0] << endl;
cout << a[1] << endl;
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cout << a[2] << endl;
cout << a[3] << endl;

return 0;
}

2.4 Compile and Execute SSE Code

In order to compile SSE code, we add the SSE header file #include <xmmintrin.h>
to the code if the compiler and CPU supports the SSE instructions. Both C/Cþþ and
FORTRAN compilers in the operating system Windows (Windows 98 or newer version) or
Linux (its kernels are newer than version 2.2) support SSE instructions, and so do Intel
Pentium IV or AMD Athlon 64 and newer CPUs. Compiling is exactly same as for C/Cþþ
and FORTRAN code. The SSE executive file can be run on Intel or AMD CPUs in the
Windows or Linux environment.

When the SSE header file #include <xmmintrin.h> is included in the code, the
SSE intrinsic functions are available. The compilation and execution procedure is exactly
same as that for regular C/Cþþ and FORTRAN code. A detailed explanation of the com-
pilation and execution of SSE code is beyond the scope of this book.

There are three popular compilers. Microsoft Visual Studio is a very popular compiler for
Windows because it has a good and user-friendly integrated development environment
(IDE). The Microsoft compiler optimizes reasonably well, but not as well as the Intel and
Gnu compilers.

The Intel Studio/Composer compiler optimizes very well. Intel also provides some of the
best optimized function libraries for mathematical and other purposes. Unfortunately, the
Intel compilers and some of the function libraries favor Intel CPUs, and often produce code
that runs slower on CPUs of other brands.

Gnu Cþþ compiler produces the best optimizations in most cases. The gþþ compiler is
currently available for all �86 and �86-64 platforms.

2.5 VALU Implementation in the FDTD Method

A 3-D array in FDTD code [9] is allocated by using the _aligned_malloc function in the SSE
instructions. For example, if we need a 3-D array array_name[x_size, y_size, z_size], we can
first define one 1-D array array_name_tmp[N] whose size is N=x_size*y_size*z_size, and
then map the 1-D memory address to a 3-D array array_name. The pseudo-code segment is
demonstrated as follows:

//allocate 1-D memory

array_name_tmp=(float*)_aligned_malloc(sizeof(float)*x_size*y_size*

z_size,16);

array_name=(float ***)_aligned_malloc (sizeof(float**)*x_size,16 );

for( i = 0; i < x_size; i++){

array_name[i]=(float **)_aligned_malloc(sizeof(float*)*y_size,16 );

for( j = 0; j < y_size; j++){
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map_address = i * y_size * z_size + j * z_size;

array_name[i][j] = &array_name_tmp[map_address];

}

}

In the C programming language, the data in memory is continuous in the y-z plane.
Suppose that x_size, y_size, and z_size are equal to nx, ny, and nz, respectively, with the data
structure in the y-z plane shown in Fig. 2.8. The memory addresses of the data elements (0, 0,
0), (0, 0, 1), . . . , (0, 0, nz) are continuous. Likewise, the addresses of (0, 1, 0), (0, 1, 1), . . . ,
(0, 1, nz) are continuous too. The address of (0, 0, nx) is followed by the element (0, 1, 0).
When we calculate the electric and magnetic fields in the y-z plane, we only need to know
the address of the first element and the entire array.

Actually, the number of unknowns for the different field components in the different
directions is different; for example, the computational domain is discretized into nx cells in
the x-direction, ny cells in the y-direction, and nz cells in the z-direction, respectively. The
number of the electric and magnetic field unknowns in each direction inside the computa-
tional domain has the following patterns:

● Ex: Number of unknowns is nx, ny þ 1, and nz þ 1 in the x-, y-, and z-directions,
respectively.

● Ey: Number of unknowns is nx þ 1, ny, and nz þ 1 in the x-, y-, and z-directions,
respectively.

● Ez: Number of unknowns is nx þ 1, ny þ 1, and nz in the x-, y-, and z-directions,
respectively.

● Hx: Number of unknowns is nx þ 1, ny, and nz in the x-, y-, and z-directions, respectively.

X

Y

Z

(0,0,0)

(0,0,1)

(0,0,2)

(0,0,nz)

(0,0,nz–1)

(0,0,k)

(0,ny,0)

(0,ny,1)

(0,ny,2)

(0,ny,nz)

(0,ny,nz–1)

(0,ny,k)

(0,1,0)

(0,ny–1,0)

(0, j,0)

(nx,0,0)(nx–1,0,0)(1,0,0) (i,0,0)

Figure 2.8 Data structure inside memory is continuous in the y-z plane.
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● Hy: Number of unknowns is nx, ny þ 1, and nz in the x-, y-, and z-directions, respectively.
● Hz: Number of unknowns is nx, ny, and nz þ 1 in the x-, y-, and z-directions, respectively.

It is important to know that each component shifted in the x- or y-direction is aligned in
the z-direction. That is, we can assign two adjacent array segments to two vectors without
defining new vectors and moving the data from one vector to another. For example, we can
assign Ez(i, j, k) to the vEz vector, and Ez(i, j þ 1, k) to the vEz1 vector as follows:

vEz = (__m128 *)(Ez[i][j]);
vEz1 = (__m128 *)(Ez[i][j+1]);

and then calculate their difference:

xmm1 = _mm_sub_ps(vEz1[kk], vEz[kk]);

which is more efficient than the following:

vEz = (__m128 *)(Ez[i][j]);
xmm1 = _mm_loadu_ps(&Ez[i][j+1]);
xmm1 = _mm_sub_ps(xmm1, vEz[kk]);

If a shift of two array segments occurs in the z-direction, for example, Ey(i, j, k þ 1) and
Ey(i, j, k), we have to define an intermediate vector to store either Ey(i, j, k þ 1) or Ey(i, j, k)
since we cannot align Ey(i, j, k þ 1) and Ey(i, j, k) at the same time.

vEy = (__m128 *)(Ey[i][j]);
xmm0 = _mm_loadu_ps(&Ey[i][j][k+1]);
xmm0 = _mm_sub_ps(xmm0, vEy[kk]);

It is worthwhile to notice that the start index of the six field components is (0, 0, 0).

2.5.1 Magnetic fields

We demonstrate the VALU implementation in the parallel FDTD code next and explain
the programming techniques for both regular and SSE FDTD code development. A complete
parallel FDTD code enhanced by VALU is presented in the appendix. Suppose that
the computational domain is filled with an isotropic and homogenous medium and that the
magnetic field Hx update can be expressed as follows:
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In a regular FDTD update, the magnetic field Hnþ1=2
x ði; jþ 1=2; k þ 1=2Þ is calculated by

using its value Hn�1=2
x ði; jþ 1=2; k þ 1=2Þ at the previous time step, and its four electric field

neighbors En
yði; jþ 1=2; k þ 1Þ, En

yði; jþ 1=2; kÞ, En
z ði; jþ 1; k þ 1=2Þ, and En

z ði; j; k þ 1=2Þ
at the previous half time step, as shown in Fig. 2.9.

In code development, both the electric field E and the magnetic field H have independent
indices, as shown in Fig. 2.10. That is, they are not in a ‘‘leap-frog’’ format to reduce the
memory usage and to maintain data continuity in memory. Therefore, the updates for the
electric field E and the magnetic field H have different expressions.
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Figure 2.9 Distribution of the electric fields Ey and Ez and the magnetic field Hx in (2.1).
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Figure 2.10 Electric and magnetic field indices in the FDTD code.
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Due to the continuous data along the z-direction, the magnetic field Hx update loop in the
regular FDTD update should be written as:

//Hx update
Coefficient_Ey = Dt/(Mu0*Dz);
Coefficient_Ez = Dt/(Mu0*Dy);
for( i = 0; i <= nx; i++){

for( j = 0; j < ny; j++){
for( k = 0; k < nz;k++){

Hx[i][j][k] = Hx[i][j][k] + Coefficient_Ey * (Ey[i][j][k+1] -
Ey[i][j][k])] - Coefficient_Ez *
(Ez[i][j+1][k]- Ez[i][j][k]);

}
}

}

One update procedure in the code above generates one magnetic field at a time. The i
loop is the outside loop and the k loop is the inside loop. This generates better code per-
formance by keeping the data structure together inside memory. Follow the steps below to
use the SSE instructions to accelerate the Hx update.

1) Declare all the variables and arrays as the SSE data type.
2) Load the coefficient of electric field Ey into the SSE vectors. Convert the single floating

number (the coefficient of Ey difference) to one floating vector. The four element values
inside the vector are equal to the single floating number.

3) Load the coefficient of electric field Ez into the SSE registers. Convert a single floating
number (the coefficient of Ez difference) to one floating vector.

4) Convert Hx, Ey, and Ez to SSE 128-bit pointers. The simulation will take four numbers
in each vector in each operation.

5) Since the electric field Ey is not aligned in the z-direction, define an intermediate
vector to store either Ey(i, j, k þ 1) or Ey(i, j, k) in order to carry out the subtraction of
Ey(i, j, k) from Ey(i, j, k þ 1) in the z-direction, as shown in
Fig. 2.11.

6) Carry out the multiplication operation of the difference of the electric field Ey by its
coefficient in the vector format.

Ey(i, j, k) k k+1 k+2 k+3 k+4 k+5 k+6 k+7 k+8 k+9 k+10

k+1 k+2 k+3 k+4 k+5 k+6 k+7 k+8 k+9 k+10 k+11

k+1 k+2 k+3 k+4 k+5 k+6 k+7 k+8 k+9 k+10 k+11

Ey(i, j, k+1) 

Intermediate
vector 

32 bits

Figure 2.11 Ey(i, j, k) and Ey(i, j, k þ 1) cannot be aligned to each other. An intermediate vector
is used to align the two electric fields in the z-direction.
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7) Calculate the difference of the electric field Ez in the y-direction. Since Ez at j and j þ 1
are aligned on 16-byte boundaries, we can carry out the subtraction of the two Ez in the
y-direction directly by assigning Ez(i, j þ 1, k) and Ez(i, j, k) to two different vectors, as
shown in Fig. 2.12.

8) Multiply the difference of two electric fields Ez in the y-direction by its coefficient in
vector format.

9) Calculate the contributions from Ey and Ez to the magnetic field Hx.
10) Calculate the contribution of the previous magnetic field Hx and produce four Hx at one

time.
11) Move four indices forward in the z-direction.

The SSE code segment for the update of the magnetic field Hx is given below:

void Hx_Update_SSE(){

//Hx is continuous along the z-direction and the update should start

//from the z-direction to improve cache hit ratio.

//Hx[*][*][0], Ey[*][*][0] and Ez[*][*][0] are aligned on the 16-byte

//boundary.

int i, j, k, kk;

__m128 *vHx, *vEy, *vEz, *vEz1, vehcoefz, vehcoefy, xmm0, xmm1;

vecoefz = _mm_load1_ps(&ecoefz); //Coefficient of Ey

vecoefy = _mm_load1_ps(&ecoefy); //Coefficient of Ez

for (i = 1; i <= nx; i ++){

for (j = 1; j < ny; j ++){

vHx = (__m128 *)(Hx[i][j]); //convert the floating array

vEy = (__m128 *)(Ey[i][j]); //to the group of 4 numbers.

vEz = (__m128 *)(Ez[i][j]);

vEz1 = (__m128 *)(Ez[i][j+1]);

k = kk = 0;

do {

xmm0 = _mm_loadu_ps(&Ey[i][j][k+1]);

xmm0 = _mm_sub_ps(xmm0, vEy[kk]);

Ez(i, j, k)

Ez(i, j+1, k)

k k+2k+1 k+3 k+4 k+5 k+6 k+7 k+8 k+9 k+10

k k+2k+1 k+3 k+4 k+5 k+6 k+7 k+8 k+9 k+10

Figure 2.12 Ez(i, j, k) and Ez(i, j þ 1, k) can be aligned to each other without requiring an
intermediate vector.

2.5 ● VALU Implementation in the FDTD Method 39



xmm0 = _mm_mul_ps(xmm0, vefoefz);

xmm1 = _mm_sub_ps(vEz1[kk], vEz[kk]);

xmm1 = _mm_mul_ps(xmm1, vecoefy);

xmm0 = _mm_sub_ps(xmm0, xmm1);

vHx[kk] = _mm_add_ps(vHx[kk], xmm0);

k += 4;

kk ++;

} while (k <= nz);

}

}

}

We next explain the important lines in the code segment above:

1) vecoefz ¼ _mm_load1_ps(&ecoefz): Load the single-precision floating-point value of
coefficient ecoefz into the vector vecoefz, and copy it into the vector vecoefz as four
32-bit numbers. The SSE instruction uses SIMD to operate on the four numbers, which
requires that the four numbers in vector 1 and another four numbers in vector 2 should
have the same operation. When we use a floating number to multiply a vector, we need
to convert the floating number to a floating vector.

2) vecoefy ¼ _mm_load1_ps(&ecoefy): Load the single-precision floating-point value of
coefficient ecoefy into the vector vecoefy and copy it into the vector vecoefy as four
32-bit numbers.

Similar to the order found in regular FDTD code, the outside loop index is i fol-
lowed by the index j, and the inner loop index is k. The data structure is determined by
the memory allocation method.

3) vHx ¼ (__m128 *)(Hx[i][j]): Convert the array Hx into the vector format required by
SSE instructions. The SSE instruction then operates on the vectors.

4) vEy ¼ (__m128 *)(Ey[i][j]): Convert the array Ey into the vector format required by
SSE instructions. To calculate the magnetic field Hx, we need two electric field com-
ponents Ey that are at different positions in the spatial domain. Since Ey(i, j, k) and Ey(i,
j, k þ 1) have a 32-bit shift in memory, as shown in Fig. 2.13, we cannot align them at

0127 95 63 31

Ey(i, j, k+3) Ey(i, j, k+2) Ey(i, j, k+1) Ey(i, j, k)

vEy

Figure 2.13 Relative locations of the electric field Ey(i, j, k) inside the vector vEy.
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the same time. To do so, we need to load one of them into a temporary vector xmm0,
and then carry out the operation of two vectors Ey(i, j, k) and xmm0.

5) vEz=(__m128 *)(Ez[i][j]): Convert the array Ez into the vector format required by SSE
instructions. Since the field Ez(i, j, k) inside memory is not continuous along the
y-direction, we need to assign the electric fields Ez(i, j, k) and Ez(i, j þ 1, k) to two
vectors. Hence, the two electric fields Ez(i, j, k) and Ez(i, j þ 1, k) can be subtracted
directly, as shown in Fig. 2.14.

6) vEz1=(__m128 *)(Ez[i][jþ1]): Convert the array Ez into the vector format required by
SSE instructions, which is aligned with the vEz vector.

7) xmm0=_mm_loadu_ps(&Ey[i][j][kþ1]): Load the array Ey(i, j, k þ 1) into an inter-
mediate vector xmm0.

8) xmm0=_mm_sub_ps(xmm0, vEy[kk]): Subtract the vector xmm0 from vEy, and store
the four results in the vector xmm0. Since the electric field Ey(i, j, k þ 1) cannot be
aligned with Ey(i, j, k) at the same time, we need to place Ey(i, j, k þ 1) into
an intermediate vector. Then, we can calculate the difference of the two electric fields
Ey(i, j, k þ 1) and Ey(i, j, k), as shown in Fig. 2.15.

9) xmm0=_mm_mul_ps(xmm0, vefoefz): Use the constant vector vefoefz to multiply the
difference of the two electric fields Ey(i, j, k þ 1) and Ey(i, j, k) and store the results in
the xmm0 vector. This removes the difference of the two electric fields Ey(i, j, k þ 1)
and Ey(i, j, k) in the xmm0 vector.

The two electric fields Ez(i, j þ 1, k) and Ez(i, j, k) are in two vectors vEz and vEz1,
respectively. Because they have been aligned with each other, we can carry out the
operation on them directly.

10) xmm1=_mm_sub_ps(vEz1[kk], vEz[kk]): Calculate the difference of the two electric
fields Ez(i, j þ 1, k) and Ez(i, j, k) and store the results in the xmm1 vector.

11) xmm1=_mm_mul_ps(xmm1, vecoefy): Multiply the difference of the two electric fields
Ez(i, j þ 1, k) and Ez(i, j, k) by the constant coefficient vecoefy vector, and store the
results in the xmm1 vector.

0127 95 63 31

Ez(i,  j+1, k+3)

Ez(i, j, k+3) Ez(i, j, k+2) Ez(i, j, k+1) Ez(i, j, k)

Ez(i,  j+1, k+2) Ez(i,  j+1, k+1) Ez(i,  j+1, k)

0127 95 63 31

vEz

vEz1

Figure 2.14 Relative locations of the electric fields Ez(i, j, k) and Ez(i, j, k þ 1) in the vectors
vEz and vEz1.
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12) xmm0=_mm_sub_ps(xmm0, xmm1): Calculate the contribution of electric fields Ey and
Ez to the magnetic field Hx.
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13) vHx[kk]=_mm_add_ps(vHx[kk], xmm0): Add the magnetic field Hx contribution from
the magnetic field Hx determined in the previous time step.

Hn�1=2
x i; jþ 1

2
; k þ 1

2

� �

þDt

m

En
y i; jþ 1

2
; k þ 1

� �
� En

y i; jþ 1
2
; k

� �
Dz

�
En

z i; jþ 1; k þ 1
2

� �
� En

z i; j; k þ 1
2

� �
Dy

2
664

3
775

14) k þ ¼ 4 and kk þþ: Move four grids forward along the z-direction.

The update procedure of magnetic field component Hy is similar to that of Hx. For the
update of component Hz, the electric fields Ex and Ey are aligned in the z-direction. There-
fore, we do not need the intermediate vector to provide alignment for the load operation.
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Figure 2.15 Relative locations of the electric fields Ey(i, j, k) and Ey(i, j, kþ1) in the vectors
xmm0 and vEy.
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2.5.2 Electric fields

Different from the update formulation of the magnetic fields, the electric field Ex update can
be expressed as follows:
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In the regular FDTD update, the electric field Enþ1
x ðiþ 1=2; j; kÞ is calculated by using

En
xðiþ 1=2; j; kÞ from the previous time step, and four magnetic field neighbors

Hnþ1=2
y ðiþ 1=2; j; k þ 1=2Þ, Hnþ1=2

y ðiþ 1=2; j; k � 1=2Þ, Hnþ1=2
z ðiþ 1=2; jþ 1=2; kÞ, and

Hnþ1=2
z ðiþ 1=2; j� 1=2; kÞ from the previous one-half time step, as shown in Fig. 2.16.

Differing from the magnetic field indexing style, the index of the electric field Ex in the
y-direction is the same as that of magnetic field Hz on the right-hand side. Similarly,
the index of electric field Ex in the z-direction is the same as that of magnetic field Hy into the
paper. Because we have continuous data along the z-direction, the electric field Ex update in
the regular FDTD method should be as follows:

//Ex update

Coefficient_Hz = Dt/(Dy*Epsilon0);

Coefficient_Hy = Dt/(Dz*Epsilon0);

for( i = 0; i < nx; i++){

for( j = 0; j <= ny; j++){

for( k = 0; k <= nz; k++){

Hy
n+1/2

Hy
n+1/2

Hy
n+1/2

Hy
n+1/2

Ex
n+1

i + 1/2, j + 1/2, k

i + 1/2, j – 1/2, k

i + 1/2, j,k + 1/2

i + 1/2, j,k – 1/2

i + 1/2, j,k

Magnetic loop

Electric loop

Figure 2.16 Distribution of the magnetic fields Hy and Hz and the electric field Ex in (2.2).
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Ex[i][j][k] = Ex[i][j][k] + Coefficient_Hz * (Hz[i][j][k]-

Hz[i][j-1][k]) - Coefficient_Hy * (Hy[i][j][k]-

Hy[i][j][k-1]);

}

}

}

One update procedure in the code above generates one electric field Ex each time because
the index k moves forward one grid for each operation. For the same reason, we place the
index i in the outmost level of the for loop statement to achieve better code performance.
Since the data is continuous in the z-direction, the index k is always in the inner loop. Follow
the steps below to use the SSE instructions to accelerate the update.

1) Declare variables and arrays to be of the SSE data type, which is required by the SSE
instructions.

2) In the SSE instructions, a constant must be converted to a constant vector to operate
with a constant or a vector; therefore, for a floating constant, load the coefficient of the
magnetic field Hz into the vhcoefy vector and make each element value inside the vector
equal to the constant.

3) Similarly, load other constants into vectors and make each element value inside the
vectors equal to the constant accordingly.

4) Convert Ex, Hy, and Hz to SSE 128-bit pointers so that SSE instructions can operate on
four numbers in a single instruction.

5) Since the magnetic fields Hy(i, j, k þ 1) and Hy(i, j, k) cannot be aligned at the same
time due to their continuous properties, load one of them into an intermediate vector so
that they can be operated on by SSE instructions.

6) Subtract the magnetic field Hy(i, j, k) from Hy(i, j, k þ 1), and store the results in a
temporary vector.

7) Multiply the difference of magnetic field Hy in the z-direction by its coefficient in
vector format and store the results in a temporary vector.

8) Similarly, calculate the term associated with the magnetic field Hz in the Ex update.
However, since the magnetic fields Hz(i, j þ 1, k) and Hz(i, j, k) are aligned with each
other, load them into two separate vectors.

9) Subtract the magnetic fields Hz(i, j, k) from Hz(i, j þ 1, k) and store the result in a
temporary vector.

10) Multiply the difference of the two magnetic fields Hz(i, j, k) and Hz(i, j þ 1, k) in the
y-direction by their coefficient.

11) Calculate the contribution of magnetic fields Hy and Hz to the electric field Ex.
12) Calculate the contribution of electric field Ex from the previous step and assign the

results to the electric field Ex.
13) Move four indices forward in the z-direction.

The SSE code segment for the update of the magnetic field Ex is given below:

void Ex_Update_SSE()

{

//Ex is continuous along the z-direction and the update should start

//from the z-direction to improve cache hit ratio. Ex[*][*][0],

//Hz[*][*][0] and Hy[*][*][0] are aligned on the 16-byte boundary.
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int i, j, k, kk;

__m128 *vEx, *vHz, *vHz1, *vHy, vhcoefy, vhcoefz, xmm0, xmm1;

vhcoefy = _mm_load1_ps(&hcoefy);

vhcoefz = _mm_load1_ps(&hcoefz);

for (i = 0; i < nx; i++) {

for (j = 0; j<= ny; j++){

vEx = (__m128 *)(Ex[i][j]);

vHy = (__m128 *)(Hy[i][j]);

vHz = (__m128 *)(Hz[i][j]);

vHz1 = (__m128 *)(Hz[i][j-1]);

k = kk = 0;

xmm0 = _mm_shuffle_ps(vHy[0], vHy[0], _MM_SHUFFLE(2,1,0,0));

do {

xmm0 = _mm_sub_ps(vHy[kk], xmm0);

xmm0 = _mm_mul_ps(xmm0, vhcoefz);

xmm1 = _mm_sub_ps(vHz[kk], vHz1[kk]);

xmm1 = _mm_mul_ps(xmm1, vhcoefy);

xmm0 = _mm_sub_ps(xmm1, xmm0);

vEx[kk] = _mm_add_ps(vEx[kk], xmm0);

k += 4;

kk ++;

xmm0 = _mm_loadu_ps(&Hy[i][j][k-1]);

} while (k <= nz);

}

}

}

Below, we explain the important line in the code segment above:

1) vhcoefy=_mm_load1_ps(&hcoefy): Load the floating number hcoefy into the vector
vhcoefy and copy into the vector vhcoefy as four 32-bit numbers. The SSE instruction
uses SIMD to accelerate evaluation with the four numbers in vector 1 and four numbers
in vector 2 subject to the same operation. When we use a floating number to multiply a
vector, we need to change the floating number to vector format.

2) vhcoefz=_mm_load1_ps(&hcoefz): Load the floating coefficient hcoefz into the vector
vhcoefz, and copy it into the vector vhcoefz as four 32-bit numbers.

3) vEx=(__m128 *)(Ex[i][j]): Convert the array Ex into the vector format required by SSE
instructions so that we can pick up four numbers each time.

4) vHy=(__m128 *)(Hy[i][j]): Convert the array Hy into the vector format required by SSE
instructions. To calculate the electric field component Ex, the magnetic field component
Hy is required at different locations. For the floating numbers Hy, Hy(i, j, k), and Hy(i, j,
k� 1), there is a 32-bit shift in memory, and therefore these cannot be aligned at the same
time, as shown in Fig. 2.17. In order to perform the operation, load one of them into a
vector xmm0, and then carry out the operation of Hy(i, j, k) and xmm0.
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5) vHz=(__m128 *)(Hz[i][j]): Convert the array Hz into the vector format required by SSE
instructions. Since the magnetic field Hz(i, j, k) inside the memory is not continuous along
the y-direction, place the magnetic fields Hz(i, j, k) and Hz(i, j � 1, k) in different vectors.
Hence, two magnetic fields Hz(i, j, k) and Hz(i, j � 1, k) can be subtracted directly.

6) vHz1=(__m128 *)(Hz[i][j-1]): Convert the array Hz into the vector format required by
SSE instructions, as shown in Fig. 2.18.

7) xmm0=_mm_shuffle_ps(vHy[0], vHy[0], _MM_SHUFFLE(2, 1, 0, 0)): The first index
in the array Hy(i, j, k � 1) is �1 for k ¼ 0. This makes the value of magnetic field Hy(i,
j, �1) invalid. Fortunately, this value is of no use in the Ex update. Here, the
_mm_shuffle_ps function is used to assign the value of Hy(i, j, 0) to Hy(i, j, �1).

8) xmm0=_mm_sub_ps(vHy[kk], xmm0): Subtract Hy(i, j, k) from Hy(i, j, k � 1) in vector
format.

9) xmm0=_mm_mul_ps(xmm0, vhcoefz): Use the constant vector vhcoefz to multiply the
difference of the two magnetic fields Hy(i, j, k) and Hy(i, j, k � 1).

The two magnetic fields Hy(i, j, k) and Hy(i, j, k � 1) are in two vectors vHy and
vHy1, respectively. Because they have been aligned with each other, we can carry out
the operations on them directly, as shown in Fig. 2.19.

10) xmm1=_mm_sub_ps(vHz1[kk], vHz[kk]): Subtract the two magnetic fields Hz(i, j, k)
and Hz(i, j � 1, k) and store the result in the xmm1 vector.

11) xmm1=_mm_mul_ps(xmm1, vhcoefy): Multiply the difference of the two magnetic
fields Hz(i, j, k) and Hz(i, j � 1, k) by the constant coefficient vecoefy vector.

vHy

0127 95 63 31

Hy(i, j, k +3) Hy(i, j, k +2) Hy(i, j, k +1) Hy(i, j, k)

Figure 2.17 Magnetic field Hy(i, j, k) inside the vHy vector.
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Figure 2.18 Magnetic fields Hz(i, j, k) and Hz(i, j � 1, k) inside the vHz and vHz1 vectors.
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12) xmm0=_mm_sub_ps(xmm0, xmm1): Calculate the contribution of magnetic fields Hy

and Hz to the electric field Ex:
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13) vEx[kk] ¼ _mm_add_ps(vEx[kk], xmm0): Add the electric field contribution from the
value in the previous time step and assign the result to the electric field Ex:
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14) k þ ¼ 4 and kk þþ: Move four grids forward along the z-direction.
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Figure 2.19 Using a vector operation on xmm0 and vHy to get four results in a single operation.
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The update procedure of the electric field component Ey is similar to Ex. For the update of
component Ez, the magnetic fields Hx and Hy are aligned with the electric field Ez in the
z-direction. Therefore, we do not need the intermediate vector to realize alignment for the
load operation.

2.6 AVX Instruction Set

Advanced vector extension (AVX) [10–13] is an extension to the �86 instruction set
architecture for microprocessors proposed by Intel in March 2008 and first supported by Intel
with the Sandy Bridge processor shipping in Q1 2011 and later on by AMD with the Bull-
dozer processor shipping in Q3 2011. AVX provides new features, new instructions, and a
new coding scheme. Some of the new instructions in AVX that are distinct from SSE are
listed in the Table 2.2.

The width of the SIMD register file, XMM0–XMM15, is increased from 128 bits to 256
bits and is renamed YMM0–YMM15. In processors with AVX support, the legacy SSE
instructions, which previously operated on 128-bit XMM registers, now operate on the lower
128 bits of the YMM registers, as shown in Fig. 2.20.

Table 2.2 Typical AVX instructions.

Instruction Description

VBROADCASTSS, VBROAD-
CASTSD, VBROADCASTF128

Copy a 32-bit, 64-bit, or 128-bit memory operand to all ele-
ments of an XMM or YMM vector register

VINSERTF128 Replaces either the lower half or the upper half of a 256-bit
YMM register with the value of a 128-bit source operand.
The other half of the destination is unchanged

VEXTRACTF128 Extracts either the lower half or the upper half of a 256-bit
YMM register and copies the value to a 128-bit destination
operand

VMASKMOVPS, VMASKMOVPD Conditionally reads any number of elements from an SIMD
vector memory operand into a destination register, leaving
the remaining vector elements unread and setting the
corresponding elements in the destination register to zero.
Alternatively, conditionally writes any number of elements
from an SIMD vector register operand to a vector memory
operand, leaving the remaining elements of the memory
operand unchanged

VPERMILPS, VPERMILPD Shuffle 32-bit or 64-bit vector elements, with a register or
memory operand as selector

VPERM2F128 Shuffle the four 128-bit vector elements of two 256-bit source
operands into a 256-bit destination operand, with an
immediate constant as selector

VZEROALL Set all YMM registers to zero and tag them as unused. Used
when switching between 128-bit use and 256-bit use

VZEROUPPER Set the upper half of all YMM registers to zero. Used when
switching between 128-bit use and 256-bit use
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AVX introduces a three-operand SIMD instruction format, where the destination register
is distinct from the two source operands. For example, the SSE instruction using the con-
ventional two-operand form a ¼ a þ b can now use a non-destructive three-operand form,
c ¼ a þ b. This preserves both source operands, as shown in Fig. 2.21. AVX’s three-
operand format is limited to instructions with SIMD operands (YMM) and does not include
instructions using the general-purpose registers.

AVX is a new 256-bit instruction set extension to the Intel SSE and is designed for
applications that are floating-point intensive. It was released in early 2011 as part of the Intel
microarchitecture processor family code named Sandy Bridge and is present on platforms
ranging from notebooks to servers. Intel AVX improves performance due to wider vectors,
new extensible syntax, and rich functionality.

Figure 2.22 illustrates the data types used in the SSE and AVX instructions. Typically,
for AVX, any multiple of 32-bit or 64-bit floating-point types whose total length adds up to
128 or 256 bits is allowed as well as multiples of any integer type whose total length adds up
to 128 bits or 256 bits.
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Figure 2.20 XMM registers overlay the YMM registers.
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Figure 2.21 Results can be stored in the third vector in AVX operations.
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Next, we use the AVX instructions to write the update code segment for the Ez

component.

void Ez_Update_AVX(){

//Ez is continuous along the z-direction and the update should start

//from the z-direction to improve cache hit ratio.

//Ez[*][*][0], Hx[*][*][0] and Hy[*][*][0] are aligned on the 16-byte

//boundary.

int i, j, k, kk;

__m256 *vEz,*vHx,*vHx1,*vHy,*vHy1,vhcoefx,vhcoefy,ymm0,ymm1;

vhcoefx = _mm256_broadcast_ss(&hcoefx);

vhcoefy = _mm256_broadcast_ss(&hcoefy);

for (i = 0; i <= nx; i++){

for (j = 0; j <= ny; j++){

vEz = (__m256 *)(Ey[i][j]);

vHx = (__m256 *)(Hx[i][j]);

vHx1 = (__m256 *)(Hx[i][j-1]);

vHy = (__m256 *)(Hy[i][j]);

vHy1 = (__m256 *)(Hy[i-1][j]);

k = kk = 0;

do {

ymm0 = _mm256_sub_ps(vHy[kk], vHy1[kk]);

ymm0 = _mm256_mul_ps(ymm0, vhcoefx);

ymm1 = _mm256_sub_ps(vHx[kk], vHx1[kk]);

ymm1 = _mm256_mul_ps(ymm1, vhcoefy);

ymm0 = _mm256_sub_ps(ymm0, ymm1);

vEz[kk] = _mm256_add_ps(vEz[kk], ymm0);

k += 8;

kk ++;

} while (k < nz);

}

}

}

SSE and AVX-128 types

AVX-256 types

4 × float

2 × double

8 × float

4 × double

16 × byte

8 × 16-bit word

4 × 32-bit doubleword

2 × 64-bit quadword

1 × 128-bit doublequadword

Figure 2.22 AVX and SSE data types.
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It is evident from the AVX code segment above that AVX is about eight times faster than
a single floating-point unit.

2.7 VALU Performance Investigation

In this section, we first use an ideal case to investigate the performance of the parallel
FDTD code enhanced by VALU on the same hardware platform using different operating
systems. Then we explore the performance of AMD and Intel processors enhanced by the
VALU acceleration. The parallel FDTD code used for these comparisons runs on a 2-CPU
workstation for Windows and Linux operating systems, respectively. The test problem is
a hollow box that is discretized into a uniform mesh of 300 � 300 � 300 to 800 � 800 �
800. The performance on Windows and Linux operating systems is shown in Fig. 2.23. We
see that the performance of parallel FDTD code with the SSE acceleration on a
Linux platform is two times faster than that with the SSE acceleration on a Windows
platform.

An Intel Xeon X5550 contains four physical and four logical cores. If each physical core
includes 8 VALUs, an Intel Xeon X5550 CPU has total 32 VALUs. However, an AMD
Opteron 6168 CPU includes 12 physical cores; therefore, it has total 96 VALUs. We have
four workstations with eight Intel Xeon X5550 CPUs, which are connected by using the
Infiniband network system. The AMD workstation includes four AMD Opteron 6168 CPUs.
The test problem is a hollow box discretized into a uniform mesh of 300� 300� 300 to
1,000� 1,000� 1,000. The performance on an eight Intel Xeon X5550 cluster and an AMD
workstation is shown in Fig. 2.24. We see that the performance of eight Intel Xeon X5550
cluster has similar performance to that of the four AMD Opteron 6168 CPU workstation for
the same problem. However, the price for eight Intel CPUs is much more than that for four
AMD CPUs with comparable performance.
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Figure 2.23 Performance comparison of Windows and Linux on a 2-CPU workstation.
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Next, we use three simple examples to demonstrate the performance of VALU accel-
eration in the FDTD simulations. The hardware platform is a laptop whose configuration is:

CPU: Intel Core i7 2.3 GHz
Memory: 8 GB
Operating system: 64-bit Windows 7

In the simulations, the computational domain is divided into one single sub-domain, and
OpenMP (open multi-processing) is employed to use all the cores inside the computer. The
ideal performance of VALU acceleration should be four times faster than the case without
the VALU acceleration. However, it will be less than four due to the following three reasons:

1) Memory bandwidth is the major bottleneck limiting simulation performance. The CPU
performance determines only a portion of the overall performance.

2) The Intel compiler has partially used VALU to improve simulation performance even if
VALU has not been explicitly used in the FDTD code. In all the examples in this book,
the reference is a fully optimized parallel FDTD code. Therefore, the improvement due
to VALU is the real benefit from the VALU acceleration.

3) The data in memory might not be continuous in practical problems such as the equivalent
currents on the Huygens’ surface [9], and hence, its performance is degraded accordingly.

2.7.1 Hollow box benchmark

The first example is a hollow box, as shown in Fig. 2.25, which includes only a simple voltage
excitation source and a voltage output. The domain size is 300 mm� 300 mm� 300 mm that
is discretized into 300� 300� 300 uniform cells. The domain is truncated by a PEC bound-
ary. We run the problem twice, with and without the VALU acceleration option, and check the
VALU performance for this simple problem. For the multi-core processor, we use OpenMP to
speed up the simulation for both cases with and without the VALU acceleration option.

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Pe
rf

or
m

an
ce

 (M
ce

lls
/s

)

Problem size (Mcells)

8 Intel Xeon X5550 (2.66 GHz)
4 AMD 6168 (1.9 GHz)

Figure 2.24 Performance comparison of an eight Intel Xeon X5550 cluster and a four AMD
CPU workstation.
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A differential Gaussian pulse is selected as the excitation signature, which does not
generate a DC component in the frequency domain. We run the problem for 1,000 time steps
and summarize the performance of the VALU acceleration in Table 2.3. The time domain
signature measured at an observation point is shown in Fig. 2.26. VALU accelerates the
simulation almost two times with the same memory usage.
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Figure 2.25 Test benchmark for the VALU acceleration.
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Figure 2.26 Measured time domain voltage signature at the observation point.

Table 2.3 Simulation summary for the hollow box benchmark.

Simulation Time Memory Usage Problem Size Number of
Time Steps

With VALU 175 s 744 MB 27 Mcells 1,000
Without VALU 328 s 744 MB 27 Mcells 1,000
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2.7.2 Dipole antenna

The second example is a dipole antenna, as shown in Fig. 2.27(a), whose length and cross
section are 100 mm and 1 mm� 1 mm, respectively. A voltage source with a pure resistor at
the feed gap is used to excite the dipole, as shown in Fig. 2.27(b). The internal impedance
helps reduce the absorption of the resonant power inside the feed gap and speeds up the
simulation convergence. The computational domain is larger than the space occupied by
the dipole antenna structure to achieve a good simulation result. The equivalent current on
the Huygens’ surface is calculated through the interpolation of electric and magnetic fields
near the Huygens’ surface. If the Huygens’ surface is designed to be too close to the antenna,
this interpolation introduces error into the equivalent currents. The radiation pattern is not

(a) (b) 

y y

z

x
x

Figure 2.27 Dipole antenna with a length of 100 mm is excited by a voltage source: (a) dipole
configuration, (b) zoomed feed area.
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Figure 2.28 Reflection coefficient of the dipole antenna.
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sensitive to the variation of equivalent currents. However, the calculations of the antenna
directivity and gain require the value of the radiated power, but the radiated power is usually
calculated from the equivalent currents on the Huygens’ surface instead of directly from the
far fields in order to improve the simulation performance. The number of non-uniform
meshes in the x-, y- and z-directions are 22, 22, and 88, respectively. A six-layer CPML is
used to truncate the computational domain in the six directions.
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Figure 2.29 Directivity pattern of the dipole antenna at 1.37 GHz.
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Figure 2.30 3-D directivity pattern of the dipole antenna at 1.37 GHz.
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A differential Gaussian pulse is selected as the excitation signature. We run the problem
for 4,650 time steps corresponding to �30 dB convergent criterion. The output parameters
include the reflection coefficient and far-field patterns at selected frequencies, as shown in
Figs. 2.28–2.30. Simulation performance with and without the VALU acceleration option is
summarized in Table 2.4.

2.7.3 Patch antenna

The last example, as shown in Fig. 2.31, is a patch antenna whose horizontal dimensions
are much larger than its vertical dimensions. The dimensions of substrate in the x-, y-, and
z-directions are 25 mm, 50 mm, and 0.794 mm, respectively. For the finite size of substrate
and ground plane, the white space between the antenna and domain boundary is selected to
ensure an accurate simulation result. The surface mesh for the surface current distributions is
shown in Fig. 2.32(a) and (b). The surface mesh is employed to calculate the surface current
distribution on the conductor surface.

A voltage source between the feed stripline and the ground plane is used to excite the
patch antenna, and a 50-W internal resistance is placed inside the feed gap. The patch
structure is a perfect electric conductor without thickness. The output parameters include the
current distributions on the patch, reflection coefficients, and far-field patterns at the spe-
cified frequencies.

16 mm
12.45 mm

z

2.45 mm

PEC Ground

x

y

2.095 mm

0.794 mm

50 mm

50 mm

Figure 2.31 Configuration of the patch antenna.

Table 2.4 Simulation summary for the dipole antenna.

Simulation Time Memory Usage Problem Size Number of
Time Steps

With VALU 3 s 5.96 MB 0.04 Mcells 4,650
Without VALU 13 s 5.96 MB 0.04 Mcells 4,650
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A differential Gaussian pulse is selected as the excitation source. We run the problem for
7,080 time steps corresponding to a �30 dB convergence criterion. The surface current
distribution at 10 GHz is plotted in Fig. 2.33. The reflection coefficient and directivity
patterns are plotted in Figs. 2.34–2.36. The simulation performance with and without the
VALU acceleration is summarized in Table 2.5.

It is obvious from the three simple examples that the VALU acceleration technique can
significantly improve the FDTD simulation without requiring any extra hardware devices.

(a) (b)

Figure 2.32 Surface mesh distribution of the patch structure: (a) mesh distribution on the entire
patch, (b) mesh distribution on the partial patch.
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Figure 2.33 Surface current distribution at 10 GHz on the patch surface.
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Figure 2.35 3-D directivity pattern of the patch antenna at 10 GHz.
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Figure 2.34 Reflection coefficient of the patch antenna array.
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Table 2.5 Simulation summary for the patch antenna.

Simulation Time Memory Usage Problem Size Number of
Time Steps

With VALU 49 s 18.5 MB 0.225 Mcells 7,080
Without VALU 91 s 18.5 MB 0.225 Mcells 7,080

References 59



[9] W. Yu and R. Mittra, Conformal Finite-Difference Time-Domain Maxwell’s Equations Solver:
Software and User’s Guide, Artech House, Norwood, MA, 2004.

[10] http://en.wikipedia.org/wiki/Advanced_Vector_Extensions

[11] http://software.intel.com/en-us/avx

[12] http://devgurus.amd.com/thread/159669

[13] http://lomont.org/Math/Papers/2011/Intro%20to%20Intel%20AVX-Final.pdf

60 CHAPTER 2 ● VALU/AVX Acceleration Techniques



CHAPTER 3

PML Acceleration Techniques

Perfectly matched layers (PMLs) [1–5] play an important role in the FDTD method for
simulation of the open space problems. PML is a special anisotropic absorbing material
located outside the computational domain, as shown in Fig. 3.1.

3.1 Field Update Equations in CPML Layers

We describe how to use VALU to accelerate the CPML simulation in the parallel FDTD
method. In the CPML equations, there are two extra terms inside the CPML layers compared
to the regular FDTD updated equations. One of the updated equations inside the CPML
region can be expressed as [6–8]:
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where Yn
hxy and Yn

hxz terms can be expressed as follows:
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The coefficients a and b are related to the y- and z-directions, respectively. The coefficients
in the equations above are defined as:
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z

x y

Figure 3.1 Relative location of the PML region and the computational domain in the FDTD
method.
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Ky ¼ 1 þ Kmax 1 þ jd � yj4
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 !
ð3:3eÞ

bz ¼ e
� sz;PML

e0Kz
þ az

e0

� �
ð3:3fÞ

az ¼ sz;PML

sz;PMLKz þ K2
zaz

exp � sz;PML

e0Kz
þ az

e0

� �
Dt

� �
�1

� �
ð3:3gÞ

Kz ¼ 1 þ Kmax 1 þ jd � zj4
d4

 !
ð3:3hÞ
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where sx;y;z;PML and ax;y;z are real numbers, d is the thickness of CPML region, and the vari-
ables y and z are measured from the outer boundary of the PML region. The Kmax value is 1 by
default and should increase (larger than 1) when the late time instability occurs, caused by the
CPML layers. smax is a real number related to the cell size and conductivity distribution inside
the CPML region. The expression (3.3d) is selected based on authors’ experience.

We can observe from (3.1) that the electric field update inside the PML region has the
formulation similar to the update inside the computational domain. However, there is one
difference, namely, the K factor is an extra term in the denominator of the electric fields. The
K factor corresponds to the dielectric constant distribution inside the PML region, which
varies from one at the interface between the computational domain and the PML region to
the maximum value at the outer boundary of the CPML region. If we introduce the K factor
in the update inside the computational domain and set it to 1, then we can carry on the
regular update formula in the entire domain, including the computational domain and the
CPML region. We only need to add two Y terms to the magnetic field inside the CPML
region, as shown in Fig. 3.2.

Computational domain

PML region Second update region for Ψ 

First update region for the E and
H fields (Take K distribution 
into account)

(a) (b) (c) 

Figure 3.2 Update procedure in the FDTD domain and the CPML regions: (a) PML and regular
regions, (b) update inside entire domain, (c) update in the PML region only.

3.1 ● Field Update Equations in CPML Layers 63



The magnetic field update is split into two steps [2]. In the first step, the contribution
from the electric fields is calculated in the entire computational domain.
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In the second step, the contribution from two Y terms is calculated inside the CPML
region.
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The Hy component inside the CPML layers can be written in the following format:
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hyx and Yn
hyz terms can be expressed as follows:
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The coefficients az and bz for the magnetic fields Hx and Hy have the same location and
value along the z-direction. The coefficients ax and bx for the magnetic fields Hy and Hz

along the x-direction can be expressed as:
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The Hz component inside the PML layers can be written in the following format:
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The coefficients ay and by for the magnetic fields Hx and Hz have the same location and
value along the y-direction. The coefficients ax and bx for the magnetic fields Hy and Hz have
the same location and value along the x-direction. The Ex component inside the CPML
region can be written in the following format:

Enþ1
x i þ 1

2
; j; k

� �
¼ En

x i þ 1
2
; j; k

� �

þ Dt

e

Hnþ1=2
z i þ 1

2
; j þ 1

2
; k þ 1

� �
� Hnþ1=2

z i þ 1
2
; j þ 1

2
; k

� �
KyDy

�
Hnþ1=2

y i þ 1
2
; j þ 1; k þ 1

2

� �
� Hnþ1=2

y i þ 1
2
; j; k þ 1

2

� �
KzDz

þ Ynþ1=2
exy i þ 1

2
; j; k

� �
�Ynþ1=2

exz i þ 1
2
; j; k

� �

2
666666666664

3
777777777775

ð3:9Þ

where Ynþ1=2
exy and Ynþ1=2

exz terms can be expressed as follows:

Ynþ1=2
exy i þ 1

2
; j; k

� �
¼ byYn�1=2

exy i þ 1
2
; j; k

� �

þ ay

Hnþ1=2
z i þ 1

2
; j þ 1

2
; k

� �
� Hnþ1=2

z i þ 1
2
; j � 1

2
; k

� �
KyDy

2
664

3
775

ð3:10aÞ

Ynþ1=2
exz i þ 1

2
; j; k

� �
¼ bzYn�1=2

exz i þ 1
2
; j; k

� �

þ az

Hnþ1=2
y i þ 1

2
; j; k þ 1

2

� �
� Hnþ1=2

y i þ 1
2
; j; k � 1

2

� �
KzDz

2
664

3
775
ð3:10bÞ

The coefficients ay and by for the electric field Ex and the magnetic field Hy have the
same location and value along the y-direction. The coefficients az and bz for the electric field
Ex and the magnetic field Hz have the same location and value along the z-direction. The Ey

component inside the PML region can be written in the following format:
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The coefficients ax and bx for the electric field Ey and the magnetic field Hx have the
same location and value along the x-direction. The coefficients az and bz for the electric field
Ey and the magnetic field Hz have the same location and value along the z-direction. The Ez

component inside the CPML layers can be written in the following format:
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The coefficients ax and bx for the electric field Ez and magnetic field Hx have the same
location and value along the x-direction. The coefficients ay and by for the electric field Ez

and the magnetic field Hy have the same location and value along the y-direction.

3.2 CPML SSE Code Implementation

Because the update inside the CPML region for the electric or magnetic fields is similar to
that in the computational domain, the field update inside the CPML region can be carried out
together with the field update inside the computational domain, namely, the field update
inside the entire domain will be processed together without considering the CPML region
separately. We only need to take care of the two Y terms inside the CPML region after the
updates of regular E and H fields are completed.

It is not necessary to show the complete code inside the CPML region because they are
similar in three directions, and here, we only need to show the SSE code in the minimum and
the maximum z-direction. The start point in the minimum z-direction always starts from 0;
therefore, it has the same processing method as the regular field update inside the computa-
tional domain. However, in the maximum CPML region direction, the start position varies
with the number of cells in the z-direction and may be different in other simulations. It is
worthwhile to mention that the termination point (interface between the CPML region and
computational domain) might not provide 128-bit alignment. The four points inside an SSE
vector might be located in both the CPML region and the computational domain. In order to
avoid overwriting the values inside the computational domain, the increment (two Y terms) for
the points inside the computational domain during the PML update should be set to zero.

Without the SSE acceleration, the CPML programming is relatively simple. Most
important job is to prepare the coefficient distribution in (3.3). Once we get the correct
coefficient distributions, the update code inside the CPML region for Ex component is shown
as follows:
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void updatePMLExZMin()

{

int i, j, k;

for (i = Index_E_Boundary[XMIN]; i <= Index_E_Boundary[XMAX] - 1; i ++)
{

for (j = Index_E_Boundary[YMIN]; j <= Index_E_Boundary[YMAX]; j ++)

{

for (k = Index_E_Boundary[ZMIN]; k < Index_E_Boundary[ZMIN] +

BoundaryLayerNum[ZMIN]; k ++)

{

// CoeffE = 1.0 / Eps0

Pusai_Exy_Zmin[i][j][k] = Beta_PML_ZGrid[k] *

Pusai_Exy_Zmin[i][j][k] + pEk_PML_Coeff[k] * (Hy[i][j][k]

- Hy[i][j][k-1]);

Ex[i][j][k] += - CoeffE * Pusai_Exy_Zmin[i][j][k];

}

}

}

}

The Ex component inside the minimum z-direction region with the SSE acceleration is
shown below. We will explain the important lines inside the code segment.

void updatePMLExZMinSSE()

{

// mask for skip outside PML region

INT_ALN16 mask[4] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF};

int n = Index_E_Boundary[ZMIN] + BoundaryLayerNum[ZMIN];

int m = n & 3;

for (n = 3; n >= m; n –) mask[n] = 0x0;

Declare the variables and arrays as the SSE data type __m128.

__m128 vCoeffE, *vPusai_Exy_Zmin, *vEx, *vHy, *vBeta_PML_ZGrid,

*vEk_PML_Coeff, xmm0, xmm1, *vmask;

Convert the variables, Beta_PML_ZGrid and Ek_PML_Coeff, to SSE variable format.

vmask = (__m128 *)mask;

vBeta_PML_ZGrid = (__m128 *)Beta_PML_ZGrid;

vEk_PML_Coeff = (__m128 *)pEk_PML_Coeff;

Load the CoeffE variable and generate four 32-bit variables in the vCoefffE vector.
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vCoeffE = _mm_load1_ps(&CoeffE);

int i, j, k, kk;

for (i = Index_E_Boundary[XMIN]; i <= Index_E_Boundary[XMAX] - 1; i ++)
{

for (j = Index_E_Boundary[YMIN]; j <= Index_E_Boundary[YMAX]; j ++)

{

Convert the Pusai_Exy_Zmin array to the SSE __m128 format.

vPusai_Exy_Zmin = (__m128 *)Pusai_Exy_Zmin[i][j];

Assign the Ex and Hy arrays to the vectors vEx and vHy, respectively.

vEx = (__m128 *)Ex[i][j];

vHy = (__m128 *)Hy[i][j];

k = kk = 0;

Since the first element in the vHy vector is out of range, replace the first element at index
¼ �1 in the vector with the value at index ¼ 0 using the SSE shuffle function, as shown in

Fig. 3.3.

xmm0 = _mm_shuffle_ps(vHy[0], vHy[0], _MM_SHUFFLE(2,1,0,0));

The SSE acceleration can only work on four layers (for a 128-bit vector) inside the
CPML region at one time. For a six-layer CPML, the following code segment works on the
first four layers, as shown in Fig. 3.4.

while (k + 3 < Index_E_Boundary[ZMIN] + BoundaryLayerNum[ZMIN])

{

xmm0 = _mm_sub_ps(vHy[kk], xmm0);

0127 95 63 31

Hy(2, j, k)

Hy(2, j, k) Hy(1, j, k) Hy(0, j, k) Hy(0, j, k)

Hy(1, j, k) Hy(0, j, k) Hy(–1, j, k)vHy

0127 95 63 31

vHy

Shuffle

Figure 3.3 Use the shuffle function to initialize the invalid value in an array.
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Multiply the difference of the magnetic field Hy in the z-direction by its coefficient
vEk_PML_Coeff.

xmm0 = _mm_mul_ps(vEk_PML_Coeff[kk], xmm0);

Multiply Y by its coefficient vBeta_PML_ZGrid.

vPusai_Exy_Zmin[kk] = _mm_mul_ps(vBeta_PML_ZGrid[kk],

vPusai_Exy_Zmin[kk]);

Add two Y to the xmm0 vector.

vPusai_Exy_Zmin[kk] = _mm_add_ps(vPusai_Exy_Zmin[kk], xmm0);

Multiply Y by its coefficient vCoeffE.

xmm1 = _mm_mul_ps(vPusai_Exy_Zmin[kk], vCoeffE);

Subtract the contribution of Y from the electric field Ex.

vEx[kk] = _mm_sub_ps(vEx[kk], xmm1);

Move four cells in the z-direction.

k += 4;

kk ++;

0127 95 63 31

Hy(i, j, 4) Hy(i, j, 3) Hy(i, j, 2) Hy(i, j, 1)

Hy(i, j, 3) Hy(i, j, 2) Hy(i, j, 1) Hy(i, j, 0)

Hy(i, j, 4) Hy(i, j, 3) Hy(i, j, 2) Hy(i, j, 1)

–Hy(i, j, 3) –Hy(i, j, 2) –Hy(i, j, 1) –Hy(i, j, 0)

XMM0

0127 95 63 31

vHy

Subtract Subtract Subtract Subtract

0127 95 63 31

XMM0

Figure 3.4 Subtraction procedure for two vectors xmm0 and vHy.
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Load the magnetic field Hy to the xmm0 vector.

xmm0 = _mm_loadu_ps(&Hy[i][j][k-1]);

}

The following code segment works on the remaining two layers. Since the SSE accel-
eration can only work on four layers at one time, we need to remove the last two numbers in
the vector and then add the contributions to the fields using the statement _mm_and_ps
(xmm1, vmask[0]). The following code segment is same as the code above; the only dif-
ference is the statement _mm_and_ps(xmm1, vmask[0]), which removes the last two num-
bers in the vector.

if (k < Index_E_Boundary[ZMIN] + BoundaryLayerNum[ZMIN])

{

xmm0 = _mm_sub_ps(vHy[kk], xmm0);

xmm0 = _mm_mul_ps(vEk_PML_Coeff[kk], xmm0);

vPusai_Exy_Zmin[kk] = _mm_mul_ps(vBeta_PML_ZGrid[kk],

vPusai_Exy_Zmin[kk]);

vPusai_Exy_Zmin[kk] = _mm_add_ps(vPusai_Exy_Zmin[kk], xmm0);

xmm1 = _mm_mul_ps(vPusai_Exy_Zmin[kk], vCoeffE);

xmm1 = _mm_and_ps(xmm1, vmask[0]); // apply mask

vEx[kk] = _mm_sub_ps(vEx[kk], xmm1);

}

}

}

}

Since it is different from the CPML code in the minimum z-direction region, we explain
how to use SSE instructions to accelerate the CPML code in the maximum z-direction. The
CPML code in the C language for the Ex component is relatively simple.

void updatePMLExZMax()

{

int i, j, k, k1;

for (i = Index_E_Boundary[XMIN]; i <= Index_E_Boundary[XMAX] - 1; i ++)

{

for (j = Index_E_Boundary[YMIN]; j <= Index_E_Boundary[YMAX]; j ++)

{

for (k = Index_E_Boundary[ZMAX] - BoundaryLayerNum[ZMAX] + 1; k <=
Index_E_Boundary[ZMAX]; k ++)

{

k1 = k - (Index_E_Boundary[ZMAX] - BoundaryLayerNum[ZMAX]);

// CoeffE = 1.0 / Eps0

Pusai_Exy_Zmax[i][j][k1] = Beta_PML_ZGrid[k] *
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Pusai_Exy_Zmax[i][j][k1] + pEk_PML_Coeff[k] * (Hy[i][j][k] -

Hy[i][j][k-1]);

Ex[i][j][k] += - CoeffE * Pusai_Exy_Zmax[i][j][k1];

}

}

}

}

The Ex component inside the maximum z-direction region with the SSE acceleration is
shown below. We next explain the important lines inside the code segment.

void updatePMLExZMaxSSE()

{

// mask for skip outside PML region

INT_ALN16 mask[4] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF};

int n = Index_E_Boundary[ZMAX] - BoundaryLayerNum[ZMAX] + 1;

int m = n & (~3);

int l;

If the index at the CPML start point is divided by 4, the reminder may be 0, 1, 2, or 3. We
use different schemes to handle the four cases in the SSE implementation using the SSE
mask function.

for (l = m; l < n; l ++) mask[l-m] = 0x0;

__m128 vCoeffE, *vPusai_Exy_Zmax, *vEx, *vHy, *vBeta_PML_ZGrid,

*vEk_PML_Coeff, xmm0, xmm1, *vmask;

Convert the variables Beta_PML_ZGrid and pEk_PML_Coeff to the SSE __m128 type.

vmask = (__m128 *)mask;

vBeta_PML_ZGrid = (__m128 *)Beta_PML_ZGrid;

vEk_PML_Coeff = (__m128 *)pEk_PML_Coeff;

Convert the constant floating number CoeffE to the constant vCoeffE vector.

vCoeffE = _mm_load1_ps(&CoeffE);

int i, j, k, kk, kk1;

for (i = Index_E_Boundary[XMIN]; i <= Index_E_Boundary[XMAX] - 1; i ++)

{

for (j = Index_E_Boundary[YMIN]; j <= Index_E_Boundary[YMAX]; j ++)

{

Convert the arrays Pusai_Exy_Zmax, Ex, and Hy to the SSE __m128 vectors
vPusai_Exy_Zmax, vEx, and vHy, respectively.
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vPusai_Exy_Zmax = (__m128 *)Pusai_Exy_Zmax[i][j];

vEx = (__m128 *)Ex[i][j];

vHy = (__m128 *)Hy[i][j];

Calculate the integer generated from the index k divided by 4.

k = m;

kk = k >> 2;

kk1 = 0;

Calculate the contribution of Hy to the variable Y.

xmm0 = _mm_load_ps(&Hy[i][j][k-1]);

xmm0 = _mm_sub_ps(vHy[kk], xmm0);

xmm0 = _mm_mul_ps(vEk_PML_Coeff[kk], xmm0);

Calculate the contribution from Y at the previous time step.

vPusai_Exy_Zmax[kk1] = _mm_mul_ps(vBeta_PML_ZGrid[kk],

vPusai_Exy_Zmax[kk1]);

Multiply Y by the coefficient vCoeffE.

xmm1 = _mm_mul_ps(vCoeffE, vPusai_Exy_Zmax[kk1]);

If the number of CPML layers is not a multiple of 4, the mask function helps reset the
value outside the CPML region to zero. The reset part is located inside the CPML region.

xmm1 = _mm_and_ps(xmm1, vmask[0]);

Add the contribution from Y to the field Ex inside the CPML region.

vEx[kk] ¼ _mm_sub_ps(vEx[kk], xmm1);

Move four cells forward in the z-direction.

k += 4;

kk ++;

kk1 ++;

The code segment above is used to handle the exception where the CPML region starts
with a number that is not a multiple of 4.

while (k <= Index_E_Boundary[ZMAX])

{

xmm0 = _mm_loadu_ps(&Hy[i][j][k-1]);

xmm0 = _mm_sub_ps(vHy[kk], xmm0);
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xmm0 = _mm_mul_ps(vEk_PML_Coeff[kk], xmm0);

vPusai_Exy_Zmax[kk1] = _mm_mul_ps(vBeta_PML_ZGrid[kk],

vPusai_Exy_Zmax[kk1]);

xmm1 = _mm_mul_ps(vCoeffE, vPusai_Exy_Zmax[kk1]);

vEx[kk] = _mm_sub_ps(vEx[kk], xmm1);

k += 4;

kk ++;

kk1 ++;

}

}

}

}

Without SSE acceleration, the CPML programming for the Hx component is relatively
easy, and is shown below without further explanation.

void updatePMLHxZMin()

{

int i, j, k;

for (i = Index_H_Boundary[XMIN]; i <= Index_H_Boundary[XMAX] + 1; i ++){

for (j = Index_H_Boundary[YMIN]; j <= Index_H_Boundary[YMAX]; j ++){

for (k = Index_H_Boundary[ZMIN]; k < Index_H_Boundary[ZMIN] +

BoundaryLayerNum[ZMIN]; k ++) {

// CoeffM = 1.0 / Mu0

Pusai_Hxy_Zmin[i][j][k] = Beta_PML_ZHalf[k] *
Pusai_Hxy_Zmin[i][j][k] + pHk_PML_Coeff[k] * (Ey[i][j][k+1]

- Ey[i][j][k]);

Hx[i][j][k] += CoeffM * Pusai_Hxy_Zmin[i][j][k];

}

}

}

}

Now, we describe how to develop the CPML code for the magnetic field Hx calculation
based on the SSE instructions. With the SSE acceleration, the PML code for the Hx com-
ponent in the minimum z-direction is similar to the SSE code for the electric field Ex com-
ponent. However, we give a complete description to help the reader fully understand the SSE
acceleration techniques.

void updatePMLHxZMinSSE()

{

// mask to skip the outside PML region

INT_ALN16 mask[4] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF};

int n = Index_H_Boundary[ZMIN] + BoundaryLayerNum[ZMIN];

int m = n & 3;
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We assume that the number of CPML layers may change from problem to problem, and
we ensure that the SSE vector values outside the computational domain are reset to zero
using the SSE mask function. For example, the remainder for a six-layer PML is 2. The case
for handling the lower CPML boundary is illustrated in Fig. 3.5.

for (n = 3; n >= m; n –) mask[n] = 0x0;

Declare the variables to be SSE __m128 variables.

__m128 vCoeffM, *vPusai_Hxy_Zmin, *vHx, *vEy, *vBeta_PML_ZHalf,

*vHk_PML_Coeff, xmm0, xmm1, *vmask;

Convert the constants to the constant vectors required by the SSE instructions.

vmask = (__m128 *)mask;

vBeta_PML_ZHalf = (__m128 *)Beta_PML_ZHalf;

vHk_PML_Coeff = (__m128 *)pHk_PML_Coeff;

vCoeffM = _mm_load1_ps(&CoeffM);

int i, j, k, kk;

for (i = Index_H_Boundary[XMIN]; i <= Index_H_Boundary[XMAX] + 1; i ++)

{

for (j = Index_H_Boundary[YMIN]; j <= Index_H_Boundary[YMAX]; j ++)

{

Convert the arrays to the vectors required by the SSE instructions.

z

PML region

Computational domain

128-bit aligned, k = 0

128-bit aligned, k = 4

Termination point

Figure 3.5 Exception handling in the lower boundary in the z-direction.
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vPusai_Hxy_Zmin = (__m128 *)Pusai_Hxy_Zmin[i][j];

vHx = (__m128 *)Hx[i][j];

vEy = (__m128 *)Ey[i][j];

k = kk = 0;

while (k + 3 < Index_H_Boundary[ZMIN] + BoundaryLayerNum[ZMIN])

{

Load the Ey array, calculate the difference of Ey(i, j, k þ 1) and Ey(i, j, k), and then
multiply it by its coefficient.

xmm0 = _mm_loadu_ps(&Ey[i][j][k+1]);

xmm0 = _mm_sub_ps(xmm0, vEy[kk]);

xmm0 = _mm_mul_ps(vHk_PML_Coeff[kk], xmm0);

Multiply the Y variable by its coefficient, add it to the Ey above, multiply it by the
coefficient vCoeffM, and then add the result to the Hx component.

vPusai_Hxy_Zmin[kk] = _mm_mul_ps(vBeta_PML_ZHalf[kk],

vPusai_Hxy_Zmin[kk]);

vPusai_Hxy_Zmin[kk] = _mm_add_ps(vPusai_Hxy_Zmin[kk], xmm0);

xmm1 = _mm_mul_ps(vCoeffM, vPusai_Hxy_Zmin[kk]);

vHx[kk] = _mm_add_ps(vHx[kk], xmm1);

Move forward four cells along the z-direction.

k += 4;

kk ++;

}

The following code segment is designed for exception handling, in which the number of
CPML layers is less than 4.

if (k < Index_E_Boundary[ZMIN] + BoundaryLayerNum[ZMIN])

{

Load the Ey array to the vector xmm0, calculate the difference of Ey in the z-direction, and
multiply it by its coefficient.

xmm0 = _mm_loadu_ps(&Ey[i][j][k+1]);

xmm0 = _mm_sub_ps(xmm0, vEy[kk]);

xmm0 = _mm_mul_ps(vHk_PML_Coeff[kk], xmm0);

Multiply Y by its coefficient.
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vPusai_Hxy_Zmin[kk] = _mm_mul_ps(vBeta_PML_ZHalf[kk],

vPusai_Hxy_Zmin[kk]);

Add the contribution of vector xmm0 from Y.

vPusai_Hxy_Zmin[kk] = _mm_add_ps(vPusai_Hxy_Zmin[kk], xmm0);

Multiply it by its coefficient.

xmm1 = _mm_mul_ps(vCoeffM, vPusai_Hxy_Zmin[kk]);

Apply the mask function to reset the values outside the CPML region to zero.

xmm1 = _mm_and_ps(xmm1, vmask[0]);

Add the total contribution from Y to the magnetic field Hx inside the CPML region.

vHx[kk] = _mm_add_ps(vHx[kk], xmm1);

}

}

}

}

Without the SSE acceleration, the CPML programming for the Hx component is rela-
tively easy, and is shown below without further explanation.

void updatePMLHxZMax()

{

int i, j, k, k1;

for (i = Index_H_Boundary[XMIN]; i <= Index_H_Boundary[XMAX] + 1; i ++)

{

for (j = Index_H_Boundary[YMIN]; j <= Index_H_Boundary[YMAX]; j ++)

{

for (k = Index_H_Boundary[ZMAX]-BoundaryLayerNum[ZMAX]+1; k<=

Index_H_Boundary[ZMAX]; k ++)

{

k1 = k - (Index_H_Boundary[ZMAX] - BoundaryLayerNum[ZMAX]);

// CoeffM = 1.0 / Mu0

Pusai_Hxy_Zmax[i][j][k1] = Beta_PML_ZHalf[k] *

Pusai_Hxy_Zmax[i][j][k1] + pHk_PML_Coeff[k] *

(Ey[i][j][k+1] - Ey[i][j][k]);

Hx[i][j][k] += CoeffM * Pusai_Hxy_Zmax[i][j][k1];

}

}

}

}
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We describe how to develop the CPML code for the magnetic field Hx calculation in the
maximum z-direction using SSE instructions. With SSE acceleration, the CPML program-
ming for the Hz component in the maximum z-direction is similar to the SSE code for the
electric field Ex component. However, we give a complete description to help the reader
fully understand the SSE acceleration techniques.

void updatePMLHxZMaxSSE()

{

// mask for skip outside PML region

INT_ALN16 mask[4] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF};

int n = Index_H_Boundary[ZMAX] - BoundaryLayerNum[ZMAX] + 1;

int m = n & (~3);

int l;

In the regular computational domain, the termination point of the CPML layer varies
from case to case in the practical problems. If the domain is not terminated at a number k that
is a multiple of 4, the CPML region must start from the termination point k, which might not
be aligned, as shown in Fig. 3.6. We use different ways to handle the four cases in the SSE
implementation using the SSE mask function.

for (l = m; l < n; l ++) mask[l-m] = 0x0;

__m128 vCoeffM, *vPusai_Hxy_Zmax, *vHx, *vEy, *vBeta_PML_ZHalf,

*vHk_PML_Coeff, xmm0, xmm1, *vmask;

vmask = (__m128 *)mask;

vBeta_PML_ZHalf = (__m128 *)Beta_PML_ZHalf;

vHk_PML_Coeff = (__m128 *)pHk_PML_Coeff;

z

PML region

Computational domain

128-bit aligned, k = m

128-bit aligned, k = m + 1

128-bit aligned, k = m + 2

Termination point

Figure 3.6 Exception handling in the upper boundary in the z-direction.
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vCoeffM = _mm_load1_ps(&CoeffM);

int i, j, k, kk, kk1;

for (i = Index_H_Boundary[XMIN]; i <= Index_H_Boundary[XMAX] + 1; i ++)

{

for (j = Index_H_Boundary[YMIN]; j <= Index_H_Boundary[YMAX]; j ++)

{

Convert the arrays to the vectors required by the SSE instructions.

vPusai_Hxy_Zmax = (__m128 *)Pusai_Hxy_Zmax[i][j];

vHx = (__m128 *)Hx[i][j];

vEy = (__m128 *)Ey[i][j];

k = m;

kk = k >> 2;

kk1 = 0;

Load the Ey array into the xmm0 vector, calculate the difference of the two vectors xmm0
and vEy, and multiply by its coefficient.

xmm0 = _mm_loadu_ps(&Ey[i][j][k+1]);

xmm0 = _mm_sub_ps(xmm0, vEy[kk]);

xmm0 = _mm_mul_ps(vHk_PML_Coeff[kk], xmm0);

Multiply Y by its coefficient, and add it to Ey, and then multiply the result by the coef-
ficient vCoeffM.

vPusai_Hxy_Zmax[kk1] = _mm_mul_ps(vBeta_PML_ZHalf[kk],

vPusai_Hxy_Zmax[kk1]);

vPusai_Hxy_Zmax[kk1] = _mm_add_ps(vPusai_Hxy_Zmax[kk1], xmm0);

xmm1 = _mm_mul_ps(vCoeffM, vPusai_Hxy_Zmax[kk1]);

Apply the mask function to reset the values outside the CPML region to zero.

xmm1 = _mm_and_ps(xmm1, vmask[0]);

Add the total contribution from Y to the magnetic field Hx inside the CPML region.

vHx[kk] = _mm_add_ps(vHx[kk], xmm1);

k += 4;

kk ++;

kk1 ++;

The code segment above is used to handle the exception where the CPML region starts
with a number that is not a multiple of 4.
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while (k <= Index_H_Boundary[ZMAX])

{

xmm0 = _mm_loadu_ps(&Ey[i][j][k+1]);

xmm0 = _mm_sub_ps(xmm0, vEy[kk]);

xmm0 = _mm_mul_ps(vHk_PML_Coeff[kk], xmm0);

vPusai_Hxy_Zmax[kk1] = _mm_mul_ps(vBeta_PML_ZHalf[kk],

vPusai_Hxy_Zmax[kk1]);

vPusai_Hxy_Zmax[kk1] = _mm_add_ps(vPusai_Hxy_Zmax[kk1], xmm0);

xmm1 = _mm_mul_ps(vCoeffM, vPusai_Hxy_Zmax[kk1]);

vHx[kk] = _mm_add_ps(vHx[kk], xmm1);

k += 4;

kk ++;

kk1 ++;

}

}
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CHAPTER 4

Parallel Processing Techniques

Parallel computing [1–5] has become a popular topic today for various engineering appli-
cations and scientific researches due to the fast development of computer technologies such
as multi-core CPUs, multi-CPU workstations, computer clusters, and high-performance
network systems. Traditionally, software written for serial computation:

● Runs on a single computer with a single CPU.
● Breaks the problem into a discrete series of instructions.
● Executes the instructions one after another.

Parallel computing, in the simplest sense, is the simultaneous use of multiple computing
resource to solve a computational problem; therefore it:

● Uses multiple CPUs.
● Breaks the problem into discrete parts that can be solved concurrently.
● Breaks each part down to a series of instructions.
● Executes the instructions from each part simultaneously on different CPUs.
● Uses the same code on different CPUs.

The compute resources might be:

● A single computer with multiple processors.
● An arbitrary number of computers connected by a high-performance network.
● A combination of both.

According to the so-called Moore’s Dividend, while the number of transistors on a chip is
doubling every two years, the gain in the number of transistors can no longer be used to
increase individual processor performance due to insufficient instruction level parallelism in
a program and a chip power dissipation limit. In 2005, Gordon Moore stated in an interview
that his law cannot be sustained indefinitely because transistors would eventually reach the
limits of miniaturization at atomic levels. Instead, the gain has been used to increase the
number of processors on a chip. Therefore, unless the application itself is highly parallel in
nature, the potential performance improvement from increased hardware capacity has
reached its limit. Maybe it is time for Koomey’s law [6] to replace Moore’s law. Koomey
says that energy efficiency doubles every 18 months. For fixed computing load, the amount
of battery you need will fall by a factor of 2 every year and a half. The parallel computing
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technique is fast developed with the distributed computing and high-performance network.
Following are the incentives for the parallel computing:

● Save time and/or money: Using more resources for a single task will shorten the com-
puting time.

● Solve larger problems: Many problems are so large and/or complex that it is impractical
or impossible to solve them on a single computer in a reasonable time.

● Provide concurrency: A single compute resource can only do one thing at a time. Mul-
tiple computing resources can work on many things simultaneously.

● Use of non-local resources: Using compute resources on a wide area network, or even the
Internet when local compute resources are scarce.

● Limit to serial computing: It is impossible to get a faster serial computer:
* Transmission speed: The speed of a serial computer is directly dependent upon how

fast data can move through hardware.
* Limit to miniaturization: Processor technology allows an increasing number of

transistors to be placed on a chip. However, even with molecular or atomic-level
components, a limit will be reached on how small components can be made.

* Economic limitation: It is increasingly expensive to make a single processor faster.
Using a larger number of moderately fast commodity processors to achieve the same
(or better) performance is less expensive.

* Current computer architectures are increasingly relying upon hardware level paral-
lelism to improve performance.

In this chapter, we will introduce parallel processing techniques including OpenMP, MPI
(message processing interface), and their combination with SSE. Today, most computers are
designed based on single instruction multiple data (SIMD) [7].

4.1 Single Instruction Single Data

Using the single instruction single data (SISD) instruction set, the processor can handle one
data at one time. For example, follow the steps below to calculate AþB and DþE:

(1) Load the value A;
(2) Load the value B;
(3) Calculate AþB ¼ C;
(4) Store the value C;
(5) Load the value E;
(6) Load the value E;
(7) Calculate DþE ¼ F;
(8) Store the value F.

4.2 Single Instruction Multiple Data

Unlike the SISD instruction set, the SIMD instruction can handle multiple data in a single
instruction; that is, a single instruction can generate multiple results. The VALU
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accelerations use the SIMD instruction set. For example, follow the steps below to calculate
A[2]þB[2]:

(1) Load the value A[1] and the value A[2] at the same time;
(2) Load the value B[1] and the value B[2] at the same time;
(3) Calculate A[1]þB[1] and A[2]þB[2] at the same time;
(4) Store the value C[1] and the value C[2] at the same time.

4.3 OpenMP

OpenMP [8] is an API, jointly defined by a group of major computer hardware and software
vendors. OpenMP provides a portable and scalable model for developers of shared memory
parallel applications. API supports C/Cþ þ and FORTRAN on a wide variety of archi-
tectures. In the OpenMP parallel processing, the computing resource is shared by the
applications dynamically. OpenMP has the following features:

(1) API may be used to explicitly direct the multi-threaded and shared memory parallelism.
(2) It is composed of three primary API components:

● Compiler directives
● Runtime library routines
● Environment variables

(3) Portable
● API is specified for C/Cþ þ and FORTRAN.
● Most major platforms, including Unix/Linux and Windows, support MPI.

(4) Standardized
● It is jointly defined and endorsed by a group of major computer hardware and soft-

ware vendors.
(5) OpenMP

● Short version: open Multi-Processing
● Long version: open specifications for multi-processing via collaborative work

between interested parties from the hardware and software industry, government,
and academia.

OpenMP is a fine-grid parallel processing technique, which is based on the loop state-
ment. For example, a loop in a C code is given as:

for (n=0; n<=100; n++)

{

A[n] = B[n] * C[n];

}

Using OpenMP, the code above can be rewritten as follows:

#include <omp.h>

#pragma omp parallel private n

for (n=1; n<=100; n++)
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{

A[n] = B[n] * C[n];

}

If the system checks and finds four cores available currently, it will split the loop into
four parts equally and assign each part to each core for the calculation. The system also will
get a shared space inside the memory to exchange the information. The general structure of
an OpenMP code is shown below:

#include <omp.h>

main () {

int var1, var2, var3;

Serial code

.

.

.

Beginning of parallel section. Fork a team of threads.

Specify variable scoping

#pragma omp parallel private(var1, var2) shared(var3)

{

Parallel section executed by all threads

.

.

.

All threads join master thread and disband

}

Resume serial code

.

.

.

}

A parallel FDTD code using OpenMP can be written in the following format:

//Ex update

#include <omp.h>

#pragma omp parallel private i,j

for( i = 0; i < nx; i++){

for( j = 0; j < ny; j++) {

for( k = 0; k < nz; k++) {

Ex[i][j][k] = Ex[i][j][k] + Dt/Epsilon0((Hz[i][j][k+1]-
Hz[i][j][k])/Dy - (Hy[i][j+1][k]- Hy[i][j][k])/Dz);

}

}

}
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4.4 MPI

MPI [9, 10] is an international standard library for the message passing, which is proposed as
a standard by a broadly based committee of vendors, implementers, and users.

(1) The MPI standard and information on MPI is available to implementers.
(2) MPI is designed for high performance on both massively parallel machines and work-

station clusters.
(3) MPI is widely available with both freely available and vendor-supplied

implementations.
(4) Test suites for MPI implementations.

MPI provides the parallel hardware vendors with a clearly defined base set of routines
that can be efficiently implemented. As a result, hardware vendors can build upon this
collection of standard low-level routines to create higher level routines for the distributed-
memory communication environment supplied with their parallel machines. MPI provides a
simple-to-use portable interface for the basic user, yet powerful enough to allow pro-
grammers to use the high-performance message passing operations available on advanced
machines.

//"Hello World" MPI Test Program

#include <mpi.h>

#include <stdio.h>

#include <string.h>

#define BUFSIZE 128

#define TAG 0

int main(int argc, char *argv[])

{

char idstr[32], buff[BUFSIZE];

int numprocs, myid, i;

MPI_Status stat;

MPI_Init(&argc,&argv); /*all MPI programs start with MPI_Init; all

’N’ processes exist thereafter */

MPI_Comm_size(MPI_COMM_WORLD,&numprocs); /* find out how big the SPMD

world is */

MPI_Comm_rank(MPI_COMM_WORLD,&myid); /*and this processes’ rank is*/

// At this point, all programs are running equivalently, the rank

//distinguishes the roles of the programs in the SPMD model, with

//rank 0 often used specially...

if(myid == 0){

printf("%d: We have %d processors\n", myid, numprocs);

4.4 ● MPI 87



for(i=1; i<numprocs; i++)

{

sprintf(buff, "Hello %d! ", i);

MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD);

}

for(i=1; i<numprocs; i++)

{

MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD, &stat);

printf("%d: %s\n", myid, buff);

}

}

else

{

/* receive from rank 0: */

MPI_Recv(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD, &stat);

sprintf(idstr, "Processor %d ", myid);

strncat(buff, idstr, BUFSIZE - 1);

strncat(buff, "reporting for duty\n", BUFSIZE - 1);

/* send to rank 0: */

MPI_Send(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD);

}

MPI_Finalize(); /* MPI programs end with MPI Finalize; this is a weak

synchronization point */

return 0;

}

MPI includes six basic functions, from which other functions can be derived:

MPI_INIT: Initialize the MPI environment.
MPI_FINALIZE: Terminate the MPI environment.
MPI_COMM_SIZE: Determine the number of processes.
MPI_COMM_RANK: Determine the process identifier.
MPI_SEND: Send a message.
MPI_RECV: Receive a message.

MPI has a number of send modes. These represent different choices of buffering (where
the data kept is until it is received) and synchronization (when a send statement is com-
pleted). Next, we explain these send functions:

MPI_Send
MPI_Send will not return until we can use the send buffer.

MPI_Bsend
MPI_Bsend returns immediately and we can use the send buffer.
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MPI_Ssend
MPI_Ssend will not return until the matching receive is posted.

MPI_Rsend
MPI_Rsend is used only if the matching receive has been already posted.

MPI_Isend
MPI_Isend is a non-blocking send, but not necessarily asynchronous. We cannot
reuse the send buffer until the message has been received.

MPI_Ibsend
MPI_Ibsend is a buffered non-blocking send.

MPI_Issend
MPI_Issend is a synchronous non-blocking send.

MPI_Irsend
MPI_Irsend is same as MPI_Rsend, but is a non-blocking send.

It is required to exchange magnetic or electric field data between sub-domains when
using the MPI library for parallel processing. A typical code to exchange the field data is
shown as follows:

void transfer_H()

{

if( id != p - 1 ) {

MPI_Isend( hy[memory_size - 2][0], 1, new_dtype, id + 1, 0,

MPI_COMM_WORLD, &req[0]);

MPI_Isend( hz[memory_size - 2][0], 1, new_dtype, id + 1, 1,

MPI_COMM_WORLD, &req[1]);

}

if( id != 0 ){

MPI_Irecv( hy[0][0], 1, new_dtype, id - 1, 0, MPI_COMM_WORLD,

&req[0]);

MPI_Irecv( hz[0][0], 1, new_dtype, id - 1, 1, MPI_COMM_WORLD,

&req[1]);

}

MPI_Waitall( 2, req, status );

}

void transfer_E()

{

if( id != 0 ){

MPI_Isend( ey[1][0], 1, new_dtype, id - 1, 0, MPI_COMM_WORLD,

&req[0] );

MPI_Isend( ez[1][0], 1, new_dtype, id - 1, 1, MPI_COMM_WORLD,

&req[1] );

}

if( id != p - 1 ) {
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MPI_Irecv( ey[memory_size - 1][0], 1, new_dtype, id + 1, 0,

MPI_COMM_WORLD, &req[0]);

MPI_Irecv( ez[memory_size - 1][0], 1, new_dtype, id + 1, 1,

MPI_COMM_WORLD, &req[1]);

}

MPI_Waitall( 2, req, status );

}

4.5 Three-Level Parallel Architecture

The ordinary parallel FDTD code based on the MPI library or OpenMP is either a one-level
or a two-level parallel processing technique [11]. The parallel FDTD code can be con-
structed as a three-level parallel processing technique in which SSE is involved.

The first-level parallelism is based on the MPI library in which the computational domain
is broken into small sub-domains according to the number of cores, CPUs, or nodes. The
field update on the interface of each sub-domain is not independent; that is, the field update
on the interface requires the information from its neighbors through the MPI functions.
However, the internal field updates are independent, which results in the high efficient
parallel performance.

The second-level parallelism is based on OpenMP. First, several threads are generated by
OpenMP based on the number of available cores, then each thread is assigned to each core
for the simulation. The framework of the algorithm is described as follows:

#pragma omp parallel private( num_threads, thread_num)

thread_num = omp_get_thread_num();

num_threads = omp_get_num_threads();

float imaxf = (float)imax / (float)num_threads;

for ( i = imin + (int)((float)thread_num * imaxf); i <=

(int)((float)(thread_num + 1) * imaxf); i ++) {

for( j = jmin; j <= jmax; j++) {

for( k = kmin; k <= kmax; k ++ ) {

E or H field update;

}

}

}

The third-level parallelism is based on VALU using the SSE instruction set. The length
of VALU is either 128 bits in 45-mm lithography or earlier and 256 bits in 32-mm litho-
graphy or latter.
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CHAPTER 5

GPU Acceleration Techniques
Veysel Demir, Atef Elsherbeni and Wenhua Yu

In this chapter, we introduce the basic concept, implementation, and engineering applica-
tions of graphics processor unit (GPU) acceleration of parallel FDTD method based on
compute unified device architecture (CUDA). Several typical examples are employed to
demonstrate the performance of GPU and VALU acceleration techniques.

5.1 Introduction to GPU Architecture

It is a well-known fact that GPU is a specialized processor that is considered as a multi-
threaded and massively data parallel co-processor. A general-purpose computation on GPU
(GPGPU) is the use of a GPU to perform computation traditionally handled by the CPU.
NVIDIA Geforce, Quadro, and Tesla series are capable of general-purpose computing using
CUDA. A typical NVIDIA GPU card is shown in Fig. 5.1. CUDA is an integrated host
(CPU) and device (GPU) application programming interface based on the C language
developed by NVIDIA.

GPUs are similar to multi-core CPUs but with two main differences. CPUs try to improve
the execution of a single instruction stream while GPUs take the opposite route obtaining
benefits from massively threaded streams of instructions. The second difference is how
threads are scheduled. The operating system schedules threads over different cores of a CPU
in a pre-emptive fashion. GPUs have dedicated hardware for the cooperative scheduling of
threads. Table 5.1 shows the ideal performance and major technical specifications of several
typical CPUs and GPUs.

There are three layers, namely, grid, block, and thread, in the GPU programming model.
Thread is an execution of a kernel with a given index. Each thread uses its index to access
elements in an array such that the collection of all threads cooperatively processes the entire
data set of the array. Block is a group of threads, which executes concurrently or serially
and yet in no particular order. One can coordinate the threads, somewhat, using the
_syncthreads() function that makes a thread stop at a certain point in the kernel until
all the other threads in its block reach the same point. Grid is a group of blocks. All threads
within a block execute the same kernel via shared memory and barrier synchronization, as
shown in Fig. 5.2.
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5.2 Introduction to GPU Acceleration Techniques

Since the dawn of the computing age, research has relied on the power of CPU to perform a
variety of computational tasks. Over the years great progress has been made in harnessing
the power of the CPU by introducing faster clock speeds, larger caches, faster memory,
multiple processors, and even multiple cores in a single chip. This, however, has also been
accompanied by users’ need: from browsing the Internet to watching videos and playing
games. Due to these needs of the general computer user, the instruction set of the average
commercial processor has expanded well past 300 separate instructions in addition to the
core instructions of the processor. The CPU has been forced to be a jack-of-all-trades for
computing tasks, allowing it to do a greater number of tasks but not specializing in any
particular area.

Conversely, GPU is designed to be very narrow in nature in which it only needs to
perform relatively few operations. The video card has been designed with only one purpose:
to process instructions and data necessary to provide graphics to the user. Over the past few
years, advancement in the design of GPUs has occurred at a much greater pace than with
CPUs due to the narrow nature in which it was intended to be used. This has led to the
development of very powerful processing units for computer graphics. It must be noted that

Figure 5.1 A typical NVIDIA GPU card. For example, NVIDIA Tesla C1060 – number of
streaming multiprocessors (SMs): 30; number of cores (or streaming processors,
SPs) per SM: 8; total number of cores: 30 � 8 ¼ 240; clock rate: 1.3 GHz; global
memory: 4 GB; shared memory per SM: 16 KB.
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Figure 5.2 Thread relationship with memory in GPU: read/write thread registers; read/write
thread local memory; read/write block shared memory; read/write grid global
memory; and read-only grid constant memory.

Table 5.1 Performance and specification of several typical CPUs and GPUs.

Manufacturer
and Model

Transistor
Count
(106)

Die
Size

(mm2)

Shader
Cores
(ALUs)

Clock Rate
(GHz)

RAM
Bandwidth

(GB/s)

Performance
(GFLOPS)

TDP
(W)

AMD Opteron
6128 1,200 315 8 2.0 42.7 256 115

AMD A8-3850
758 258 4/400 2.9/0.6 29.8 355 100

Intel Xeon E5540
731 263 4/8 2.53 25.6 40.5/45 80

Intel Core i7
990X 1,170 240 6 3.46–3.7 24.5 107.58 130

Intel Core i7
2600K 995 216 4/48 3.4/0.85 24.5 129.6 95

NVIDIA Tesla
C1060 1,400 576 240 1.296 102.4 622.08 187

NVIDIA Tesla
C2070 3,100 529 448 1.150 144 1,030.40 238

NVIDIA GeForce
GTX 480 3,200 529 480 1.41 177.4 1,345 250

NVIDIA GeForce
GTX 580 3,000 520 512 1.544 192.4 1,581.1 244

NVIDIA GeForce
GTX 690 2 � 3,540 2 � 294 915 1.019 2 � 192.3 2 � 2,810 300
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the GPU was designed specifically for rendering graphics, not for doing computational
electromagnetics. Luckily, the different processes used in rendering graphics are analogous
to many generic vector math operations. Here we look at how to relate the various functions
available in the graphics card to various computational electromagnetic applications.

Several implementations of FDTD method have been reported in the literature to run on
GPU architecture based on various programming languages. For instance, Brook is used as
the programming language in References 1–7, high level shader language (HLSL) is reported
in Reference 8, while the FDTD implementations in References 9–11 are based on OpenGL.
CUDA [12] development environment from NVIDIA made GPU computing much easier
recently, which is a general-purpose parallel computing architecture. To program the CUDA
architecture, developers can use C, which can then be run at great performance on a CUDA-
enabled processor [13]. CUDA has been reported as the programming environment for
implementation of FDTD in a number of publications, while References 14 and 15 illustrate
methods to improve the efficiency of FDTD using CUDA. These can be used as guidelines
while programming FDTD using CUDA.

CUDA, as other languages or programming platforms, has its advantages and dis-
advantages. The major advantage is that CUDA is easier to learn compared with other
alternatives, and NVIDIA provides extensive support to developers and users. One major
disadvantage is that CUDA can run only on CUDA-enabled NVIDIA cards. Although
OpenCL and Direct Compute are becoming the new alternatives to CUDA as programming
languages on modern GPU-based architectures, CUDA may keep its popularity for scientific
computing due to vast learning resources available for developers. In this chapter, we
illustrate an implementation of FDTD using CUDA.

In order to start programming with CUDA, one needs to install CUDA drivers and CUDA
Toolkit that would include C/Cþþ compiler, Visual Profiler, and GPU-accelerated BLAS,
FFT, Sparse Matrix, and RNG libraries. Another crucial component is GPU computing
software development kit (SDK), which includes several tools and code samples. All these
components are available at NVIDIA’s web portal for Windows, Linux, and Mac OS X
operating systems.

In order to program using CUDA, one needs to know the CUDA terminology and
architecture. NVIDIA CUDA Programming Guide, available at NVIDIA’s web portal, is a
good resource to learn CUDA.

5.2.1 Performance optimization in CUDA

One should be familiar with the CUDA architecture to some extent in order to develop a
program with optimum performance. CUDA Best Practices Guide is a good reference for
programmers; it provides recommendations for optimization and a list of best practices for
programming with CUDA. Although not all of these recommendations are applicable to the
case of FDTD programming, the following list of recommendations is taken into con-
sideration while developing an FDTD implementation:

R1) Structure the algorithm in a way that exposes as much data parallelism as possible.
Once the parallelism of the algorithm has been exposed, it needs to be mapped to
the hardware as efficiently as possible.

R2) Ensure that the global memory accesses are coalesced whenever possible.
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R3) Minimize the use of global memory. Prefer shared memory access where possible.
R4) Use shared memory to avoid redundant transfers from global memory.
R5) Hide latency arising from register dependencies, maintain at least 25 percent

occupancy on devices with CUDA compute capability 1.1 and lower, and 18.75
percent occupancy on later devices.

R6) Use a multiple of 32 threads for the number of threads per block as this provides
optimal computing efficiency and facilitates coalescing.

5.2.2 Achieving parallelism

At every time iteration of the FDTD loop, new values of three magnetic field components are
calculated at every cell simultaneously using the past values of electric and magnetic field
components. After magnetic field updates are completed, new values of three electric field
components are updated at every cell simultaneously in a separate function using the past
values of magnetic and electric field components. Since the calculations for each cell can be
performed independently from the other cells, a CUDA algorithm can be developed by
assigning each cell calculation to a separate thread, and the highest level of parallelism can
be achieved to satisfy the recommendation R1.

5.3 CUDA Implementation of FDTD Method

In this section, we present a CUDA implementation of 2-D FDTD program. CUDA allows
the programming of GPUs for parallel processing without any graphics knowledge [16]. The
stream processors are fully capable of executing integer and single-precision floating-point
arithmetic, with additional cores used for double precision. All multiprocessors have access
to global device memory, which is not cached by the hardware.

CUDA arranges threads into thread blocks. All threads in a thread block can read and
write any shared memory location assigned to that thread block. Consequently, threads
within a thread block can communicate via shared memory, or use shared memory as a user-
managed cache, since shared memory latency is two orders of magnitude lower than that of
global memory. A barrier primitive is provided so that all threads in a thread block can
synchronize their execution.

5.3.1 Coalesced global memory access

In CUDA, memory instructions are the instructions that read from or write to shared, con-
stant, or global memory. When accessing global memory, there are 400–600 clock cycles of
memory latency. Much of this global memory latency can be hidden by the thread scheduler
if there are sufficient independent arithmetic instructions that can be issued while waiting for
the global memory access to complete [17]. Unfortunately in FDTD updates the operations
are dominated by memory accesses rather than arithmetic instructions. Hence, the memory
access inefficiency is the main bottleneck that reduces efficiency of FDTD on GPU. Global
memory bandwidth is used most efficiently when the simultaneous memory accesses by
threads in a half-warp (during the execution of a single read or write instruction) can be
coalesced into a single memory transaction of 32, 64, or 128 bytes [17].
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If the array size, which is the FDTD domain size in number of cells, is a multiple of 16,
the coalesced memory access is ensured. In general, an FDTD domain size would be an
arbitrary number. In order to achieve coalesced memory access, the FDTD domain can be
extended by padding some cells such that the number of cells in each direction is an integer
multiple of 16 as illustrated in Fig. 5.3. Although, padding these cells increases the amount
of memory needed to store arrays, it improves the efficiency of the kernel functions tre-
mendously. Thus, the recommendation R2 is satisfied.

It should be noted that these padded cells are beyond the boundaries of the original
domain and they should be electrically isolated from the original domain. As long as the
original domain boundaries are kept as PEC, such as in the case of CPML boundaries,
the fields in the original domain will be isolated from the padded cells; thus, padded cells can
be assumed to be filled with any type of material. The easiest way is to set these padded cells
as free space.

If the original domain size is Nx � Ny, where Nx and Ny are the numbers of cells in the x-
and y-directions, respectively, then the modified domain size becomes Nxx �Nyy, where Nxx

and Nyy are the number of cells of the modified domain. The modified size of the problem
space is determined as:

% extend the domain and adjust number of cells for gpu

nxx = (floor(nx/16)+1)*16;

nyy = (floor(ny/16)+1)*16;

In this way, the actual simulation domain size is extended to Nxx �Nyy to improve the
CUDA FDTD code performance.

NX

Nyy

y

x

Ny

NXX

Figure 5.3 An extended computational domain in the x- and y-directions. Nx and Ny are the
actual size of the computational domain size. Nxx and Nyy are the modified domain
size with the padded cells.
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5.3.2 Thread to cell mapping

Arrays are allocated on the CPU memory, and then the coefficient and field data are read into
these arrays. These arrays initially reside on the host (CPU) memory and they need to be
copied to the device (GPU) global memory. The cudaMalloc() function is used to
allocate memory on the device global memory for these arrays, and the cudaMemcpy()
function is used to copy the data to the global memory. Once these arrays are ready on the
global memory, they are ready for processing on the graphics card by the kernel functions.
Next, we will use a 2-D FDTD pseudo-code for transverse magnetic (TM) mode to
demonstrate the implementation strategy.

The code segment 1 below shows a function that performs the field update procedure on
GPU. Similarly, the code segment 2 shows a function that performs the field update proce-
dure on CPU for the sake of comparison. It is observed from the code segments 1 and 2 that
the simulation procedure is the same on GPU and CPU. The essential difference is that
fdtdIterationOnGpu() and fdtdIterationOnCpu() are executed on GPU and
CPU on the host computer, respectively.

Code segment 1. FDTD iteration for the magnetic field on GPU:

bool fdtdIterationOnGpu(){

update_magnetic_fields_on_gpu();

update_impressed_magnetic_currents_on_gpu();

update_magnetic_fields_for_CPML_on_gpu();

update_electric_fields_on_gpu();

update_impressed_electric_currents_on_gpu();

update_electric_fields_for_CPML_on_gpu();

}

Code segment 2. FDTD iteration for the electric field on CPU:

bool fdtdIterationOnCpu(){

update_magnetic_fields_on_cpu();

update_impressed_magnetic_currents_on_cpu();

update_magnetic_fields_for_CPML_on_cpu();

update_electric_fields_on_cpu();

update_impressed_electric_currents_on_cpu();

update_electric_fields_for_CPML_on_cpu();

}

The code segment 3 shows the kernel function that updates the magnetic field compo-
nents, whereas the code segment 4 shows the kernel function that updates the electric field
components. In this implementation for GPU, each cell is processed by an associated thread.
The CUDA internal variables threadIdx and blockIdx are used to identify the threads
and data elements, which they will update. The variable blockIdx is used to identify the
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thread blocks as illustrated in Fig. 5.4. Similarly, the variable threadIdx is used to
identify threads within a thread block as shown in Fig. 5.5. Thus, one can identify any thread,
and also cell, in a 2-D array with indices i and j such that:

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

At this point, it should be noted that although the arrays that are being processed are 2-D,
they are stored in device (GPU) global memory as 1-D arrays and elements of these arrays

blockldx.x = 2
blockldx.y = 0

blockldx.x = 1
blockldx.y = 0

blockldx.x = 2
blockldx.y = 1

blockldx.x = 1
blockldx.y = 1

blockldx.x = 0
blockldx.y = 0

blockldx.x = 0
blockldx.y = 1

y

n_bx = 3
n_by = 2x

Figure 5.4 A grid of thread blocks that spans a 48 � 32 cell’s 2-D problem space.

threadldx.x = 15
threadldx.y = 0

threadldx.x = 0
threadldx.y = 0

threadldx.x = 0
threadldx.y = 3

threadldx.x = 3
threadldx.y = 8

threadldx.x = 3
threadldx.y = 15

y

x

Figure 5.5 Threads in a thread block.
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are accessed in kernel functions in a linear fashion. Thus, a conversion from i and j indices
to the linear index, denoted as ‘‘ci’’ in the code segment 1, is required. Index i runs faster
than index j, i.e., the data stored at (i, j) is adjacent to (i þ 1, j) on the physical memory; thus,
the conversion to linear index can be done simply as:

int ci = j * nxx + i;

Code segment 3. update_electric_fields_on_gpu:

__global__ void //declares a function as being a kernel

update_magnetic_fields_on_kernel(float* Chxh, float* Chxez, float*

Chyh, float* Chyez, float* Hx, float* Hy, float* Ez, int nxx)

{

__shared__ float sEz[TILE_SIZE][2*TILE_SIZE+1];

int tx = threadIdx.x;

int ty = threadIdx.y;

int i = blockIdx.x * blockDim.x + tx;

int j = blockIdx.y * blockDim.y + ty;

int ci = j*nxx + i;

sEz[ty][tx] = Ez[ci];

sEz[ty][tx+TILE_SIZE] = Ez[ci+TILE_SIZE];

__syncthreads();

Hx[ci] = Chxh[ci]*Hx[ci]+Chxez[ci]*(Ez[ci+nxx]-sEz[ty][tx]);

Hy[ci] = Chyh[ci]*Hy[ci]+Chyez[ci]*(sEz[ty][tx+1]-sEz[ty][tx]);

}

where Chxh and Chyh are the coefficients of electric and magnetic fields in the FDTD
magnetic field update equations. The declaration __shared__ in the CUDA kernel places a
floating type of array sEz[TILE_SIZE][2*TILE_SIZE+1] into shared memory.

Function __syncthreads() is used to make all the threads in a block to be at
the same point even if warps are being executed in parallel. The actual execution in hardware
may not be parallel because the number of cores within a stream multiprocessor (SM) can
be less than 32. This function acts as a barrier to all the threads in that particular thread
block. No thread can continue past that block until all threads have reached that location.
While this may seem to slowdown execution because threads will be idle if they reach
it before other threads, it is absolutely necessary to synchronize the threads here. By
using __syncthreads(), we can guarantee that all threads are in the same iteration of
the while loop at the same time, thus ensuring that all threads are reading the correct values
from shared memory.

Code segment 4. update_electric_fields_on_gpu:

__global__ void //declares a function as being a kernel

update_electric_fields_on_kernel(float* Cexe, float*

Cexhz, float* Ceye, float* Ceyhz, float* Ex, float* Ey, float* Hz, int nxx)
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{

__shared__ float sHz[TILE_SIZE][2*TILE_SIZE+1];

int tx = threadIdx.x;

int ty = threadIdx.y;

int i = blockIdx.x * blockDim.x + tx;

int j = blockIdx.y * blockDim.y + ty;

int ci = j*nxx + i;

sHz[ty][tx] = Hz[ci-TILE_SIZE];

sHz[ty][tx+TILE_SIZE] = Hz[ci];

__syncthreads();

Ex[ci] = Cexe[ci]*Ex[ci]+Cexhz[ci]*(Hz[ci]-Hz[ci-nxx]);

Ey[ci] = Ceye[ci]*Ey[ci]+Ceyhz[ci]*(sHz[ty][tx+TILE_SIZE]-

sHz[ty][tx+TILE_SIZE-1]);

}

where Cexe and Ceye are the coefficients of electric and magnetic fields in the FDTD
electric field update equations.

5.3.3 Use of shared memory

Because shared memory is on GPU chip, access to it is much faster than that to the local and
global memory. Parameters that reside in the shared memory space of a thread block have
the lifetime of the block, and are accessible from all the threads within the block [18].
Therefore, if a data block on the global memory has to be used frequently in a kernel, it is
better to load the data to the shared memory and reuse the data from the shared memory.
Here it should be reminded that shared memory is available only through the lifetime of a
thread; thus, the relevant field data have to be reloaded to the shared memory every time a
kernel function is called.

Shared memory is especially useful when threads need access to unaligned data. For
instance, in order to calculate Hyði; jÞ, a thread mapped to the cell ði; jÞ needs Ez at
ði; jÞ as well as Ez at ði þ 1; jÞ. In the kernel code, the index of a thread that is processing the
cell ði; jÞ is indexed as ‘‘ci’’. A cell with index ði þ 1; jÞ can be accessed by ci+1, while a
cell with index (i, j þ 1) can be accessed by ci+nxx. Access to (i, j þ 1) is coalesced, but
that to (i þ 1, j) is not. If access to a field component at a neighboring cell in the
x-direction is needed, i.e., (i þ 1, j), then shared memory can be used to load the data block
mapped by the thread block, and then the neighboring field value can be accessed from the
shared memory. At this point one needs to use the CUDA function __syncthreads() to
ensure that all threads in the block are synchronized; thus, all necessary data are loaded to the
shared memory before they are used by the neighboring threads.

As discussed above, uncoalesced memory accesses can be prevented by using shared
memory. However, a problem arises when the data of the neighboring cells are accessed
through shared memory. While loading the shared memory, each thread copies one element
from the global memory to the shared memory. If the thread on the boundary of the thread
block needs to access the data in the neighboring cell, this data will not be available since it

102 CHAPTER 5 ● GPU Acceleration Techniques



has not been loaded to the shared memory. One way to overcome this problem is to load
another set of data, which includes the data from the neighboring cell, to the shared memory.
In the presented implementation shown in the code segment 3, two square blocks of data are
copied from the global memory to the shared memory as:

sEz[ty][tx] = Ez[ci];

sEz[ty][tx+TILE_SIZE]=Ez[ci+TILE_SIZE];

Then Ez at ði þ 1; jÞ is safely accessed from the shared memory to update Hyði; jÞ as:

Hy[ci]=Chyh[ci]*Hy[ci]+Chyez[ci]*(sEz[ty][tx+1]-sEz[ty][tx]);

A similar treatment is shown in the code segment 4, where Eyði; jÞ is updated by
Hzði � 1; jÞ through an effective use of shared memory: First two blocks of data are from the
global memory to the shared memory as:

sHz[ty][tx] = Hz[ci-TILE_SIZE];

sHz[ty][tx+TILE_SIZE] = Hz[ci];

Then Eyði; jÞ is updated as:

Ey[ci]=Ceye[ci]*Ey[ci]+Ceyhz[ci]*(sHz[ty][tx+TILE_SIZE]-

sHz[ty][tx+TILE_SIZE-1]);

5.3.4 Optimization of number of threads

As pointed out in the recommendations R5 and R6, occupancy of the microprocessors and
number of threads in a block are two other important parameters that affect the performance of
a CUDA program. Number of threads and occupancy are tightly connected. It is possible to set
the number of threads as a desired value, but it may be impossible to control the occupancy,
which is a function of number of threads, number of registers used in the kernel, amount of
shared memory used by the kernel, compute capability of the device, etc. A good practice is to
optimize the number of threads while keeping the occupancy at a reasonable value. As a rule of
thumb, it is better to keep kernel functions small such that they do not use many registers.

CUDA Visual Profiler is a GUI-based profiling tool provided by NVIDIA that can be
used to measure performance and find potential opportunities for optimization in order to
achieve maximum performance of kernels in a CUDA program. It can show information
such as the total GPU and CPU times of a thread, memory read-write throughputs, global
memory load and store efficiencies, occupancy, etc. Therefore, the kernel functions can be
profiled using the Visual Profiler and, if not satisfactory, their efficiencies can be improved.

Although the block size is chosen as 16�16 ¼ 256 here, one can choose a different
configuration and test with Visual Profiler to evaluate its efficiency. It should also be noted
that the presented grid scheme, i.e., 2-D array of square thread blocks, is not the only way to
map threads to cells. It is possible to use other grid configurations, such as 1-D thread blocks,
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develop algorithms based on these configurations, and evaluate if the developed algorithms
are superior.

5.4 Engineering Applications

In this section, we use the CUDA FDTD code and the parallel FDTD code enhanced by the
VALU acceleration techniques to simulate several typical antenna problems and demonstrate
their performance based on two available GPU and CPU platforms. Since different mesh
strategies in the FDTD simulations will significantly affect the simulation performance, it is
hard to compare the performance of GPU and CPU. It may be of no meaning to directly
compare two results in this section, although they are plotted in the same figure. In this
section, we demonstrate how to employ GPU and VALU acceleration techniques to accel-
erate the parallel FDTD method.

5.4.1 Introduction to hardware platforms

The VALU acceleration platform is based on a customized 4-CPU workstation, and the
configuration is:

● Processor: AMD Opteron 6128 2.0 GHz
● Memory: 64-GB DDR3 1333 MHz
● Memory Bandwidth: 47 GB/s
● NUMA Architecture: Yes
● Operating System: Linux CentOS version 5.2

The GPU configuration is:

● NVIDIA GPU Model: GTX480
● Number of CUDA Cores: 480
● Graphics Clock: 700 MHz
● Processor Clock Tester: 1,401 MHz
● Texture Fill Rate: 42 billion/s
● Memory Clock: 1,848 MHz (3,696 data rate)
● Standard Memory Config.: 1,536 MB
● Memory Interface: GDDR5
● Memory Interface Width: 384-bit
● Memory Bandwidth: 177.4 GB/s

Configuration of the host computer for GTX480 GPU is:

● Processor: Intel(R) CoreTM 2 Quad CPU Q9550, 2.83 GHz
● Memory: 8-GB DDR3
● Operating system: 64-bit Windows 7

Next, we use the FDTD method on GPU and VALU platforms described above to
simulate typical antenna problems. The mesh distributions, boundary selection, and white
buffer space in the GPU and VALU simulations are selected based on authors’ experience
without special optimization.
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5.4.2 Loop microstrip antenna

The configuration of loop microstrip antenna [19] is described in Fig. 5.6, in which the
microstrip loop is mounted on the top surface of the dielectric slab and the ground plane is
located at the bottom surface of the dielectric slab.

In the CUDA FDTD simulation, the cell sizes are chosen to be 0.25 mm in the x-, y-, and
z-directions. The total number of cells including the PML layers in the x-, y-, and z-directions
is 241, 241, and 51, respectively. The absorbing boundary is chosen to be CPML and the
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Figure 5.6 Loop antenna configuration and feed structure: (a) dielectric slab dimensions and
parameter, (b) loop relative location and width, (c) feed structure in the VALU
simulation, (d) feed structure in the GPU simulation.
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number of CPML layers is 8 in the six directions. The white buffer space in the six directions
includes 10 uniform cells. It takes 57 s for 15,000 time steps on the NVIDIA GeFore
GTX480 GPU platform. The simulation result is S11 only, which is shown in Fig. 5.7.

For the same problem on CPU, the non-uniform cell size (the adjacent cell ratio is 1.05)
is selected to be 0.25 mm, and the number of cells is 146, 147, and 47 in the x-, y-, and
z-directions, respectively. The parallel partition is 4� 2� 1, namely, the number of sub-
domains is 4, 2, and 1 in the x-, y-, and z-directions, respectively. The absorbing boundary is
CPML and the number of CPML layers is 6 in the six directions. The white buffer space in
the six directions includes 10 uniform cells. It takes 31 s for 15,000 time steps on the VALU
platform to complete the simulation. The simulation result is also plotted in Fig. 5.7 for the
sake of comparison.

Since the problem sizes in the two simulations described above are different, it is hard to
compare their performance. We define the simulation performance as the number of million
cells processed per second (NMCPS) [18]:

NMCPS ¼ Nx � Ny � Nz � number of time steps

simulation time in seconds � 106 ð5:1Þ

where Nx, Ny, and Nz are the number of cells in the x-, y-, and z-directions, respectively.
Using the definition in (5.1), the GPU and VALU performances are 778 NMCPS and
517 NMCPS, respectively. Namely, one NVIDIA GeFore GTX480 is as fast as six AMD
Opteron 6128 CPUs (2.0 GHz) for this example, assuming that the parallel efficiency of four
CPUs is 100%.
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Figure 5.7 S11 variation of the loop antenna with frequency obtained by using the GPU and
VALU acceleration techniques.
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5.4.3 Electromagnetic band gap structure

The electromagnetic band gap (EBG) configuration is described in Fig. 5.8 in which the
artificial magnetic conductor (AMC) ground, as shown in Fig. 5.9, is inset inside the
dielectric slab. Other than the AMC ground, the loop antenna, dielectric slab, and PEC
ground remain same as the dimensions in Fig. 5.6(a).

In the CUDA FDTD simulation, the cell sizes are chosen to be 0.20833 mm in the x-, y-,
and z-directions. The total number of cells including the PML layers in the x-, y-, and
z-directions is 282, 282, and 74, respectively. The absorbing boundary is CPML and the
number of CPML layers is 8 in the six directions. The white buffer space in the six directions
includes 10 uniform cells. It takes 10 min and 30 s for 100,000 time steps on the NVIDIA
GeFore GTX480 GPU platform. The simulation result is S11 only, which is shown in
Fig. 5.10.

Artificial magnetic conductor

Figure 5.8 EBG configuration in which EBG is used to improve the return loss.

Gap for vertical feed lines
3.75 mm x 3.75 mm

7.5 mm

x7.5 mm

1.25 mm

Figure 5.9 Dimensions in the AMC structure and feed gap.
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For the same problem, the non-uniform cell size (the adjacent cell ratio is 1.2) is selected
to be 0.26 mm, 0.256 mm, and 0.23 mm, respectively, and the number of cells is 146, 157,
and 47 in the x-, y-, and z-directions, respectively. The parallel partition is 4�2�1, namely,
the number of sub-domains is 4, 2, and 1 in the x-, y- and z-directions, respectively. The
absorbing boundary is CPML and the number of CPML layers is 6 in the six directions. The
white buffer space in the six directions includes 10 uniform cells. It takes 3 min and 24 s for
100,000 time steps on the VALU platform. The simulation result is also plotted in Fig. 5.10
for the sake of comparison.

The GPU and VALU performances are 933 NMCPS and 524 NMCPS, respectively.
Namely, one NVIDIA GeFore GTX480 is as fast as 7.12 AMD Opteron 6128 CPUs
(2.0 GHz) for this example.

5.4.4 Stripfed dielectric resonator antenna

The dimensions of stripfed dielectric resonator antenna are described in Fig. 5.11(a), and the
stripfed structure is shown in Fig. 5.11(b).

In the CUDA FDTD simulation, the cell size is chosen to be 0.3575 mm, 0.5 mm, and
0.5 mm in the x-, y-, and z-directions, respectively. The total number of cells including the
PML layers in the x-, y-, and z-directions is 120, 110, and 88, respectively. The absorbing
boundary is CPML and the number of CPML layers is 8 in the six directions. The white
buffer space in the six directions includes 10 uniform cells. It takes 21 s for 10,000 time steps
on the NVIDIA GeFore GTX480 GPU platform with far-field pattern outputs at two fre-
quencies. The simulation result is S11 only, which is shown in Fig. 5.12.

For the same problem, the non-uniform cell size (the adjacent cell ratio is 1.05)
is selected to be 0.3 mm, and the number of cells is 124, 100, and 88 in the x-, y-, and
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Figure 5.10 S11 variation of the EBG loop antenna with frequency obtained by using the GPU
and VALU acceleration techniques.
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z-directions, respectively. The parallel partition is 2 � 2 � 2, namely, the number of sub-
domains is 2 in the x-, y-, and z-directions. The absorbing boundary is CPML and the number
of CPML layers is 6 in the six directions. The white buffer space in the six directions
includes 10 uniform cells. It takes 32 s for 10,000 time steps on the VALU platform. The
simulation result is also plotted in Fig. 5.12.

The GPU and VALU performances are 550 NMCPS and 320 NMCPS, respectively.
Namely, one NVIDIA GeFore GTX480 is as fast as 6.8 AMD Opteron 6128 CPUs (2.0 GHz)
for this example.

5.4.5 Square-ring patch antenna

Dimensions of square-ring patch antenna [20] are described in Fig. 5.13. Dielectric substrate
is finite and its dielectric constant and conductivity are 4.4 and 0.01, respectively.

256.1 m
m

(a) y

x

z

(b)

1 mm

9 mm

1 mm
port37 mm

25.4 mm
14

.3 
mm

12.2 mm

12.2 mm
8 m

m 6 mm

er = 9.8

Figure 5.11 Dimensions of dielectric resonator antenna and the stripfed structure:
(a) dimensions of dielectric block and ground, (b) stripfed structure.
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Figure 5.12 S11 variation of stripfed dielectric resonator antenna with frequency.
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The ring location on the top surface of the substrate is shown in Fig. 5.14. The feed
structure and dimensions are also shown in the same figure.

The square patch location on the top surface of the substrate is shown in Fig. 5.15. The
ring width is also shown in the same figure.

In the CUDA FDTD simulation, the cell size is chosen to be 0.1 mm in the x-, y-, and
z-directions. The total number of cells including the PML layers in the x-, y-, and z-directions
is 356, 356, and 106, respectively. The absorbing boundary is CPML and the number of
CPML layers is 8 in the six directions. The white buffer space in the six directions includes
10 uniform cells. It takes 242 min for 1,000,000 time steps on the NVIDIA GeFore GTX480
GPU platform. The simulation result is S11 only, which is shown in Fig. 5.16.

For the same problem, the non-uniform cell size (the adjacent cell ratio is 1.05) is
selected to be 0.2 mm, and the number of cells is 142, 149, and 53 in the x-, y-, and
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Figure 5.13 Dimensions of square-ring patch antenna.
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Figure 5.14 Square-ring location and feed structure and dimensions.
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z-directions, respectively. The parallel partition is 4�2�1, namely, the number of sub-
domains is 4, 2, and 1 in the x-, y-, and z-directions, respectively. The absorbing boundary is
CPML and the number of CPML layers is 6 in the six directions. The white buffer space in
the six directions includes 10 uniform cells. It takes 11 min and 32 s for 300,000 time steps
on the VALU platform. The simulation result is also plotted in Fig. 5.16 for the sake of
comparison.

The GPU and VALU performances are 925 NMCPS and 485 NMCPS, respectively.
Namely, one NVIDIA GeFore GTX480 is as fast as 7.6 AMD Opteron 6128 CPUs (2.0 GHz)
for this example.
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Figure 5.15 Patch dimensions and locations.
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Figure 5.16 S11 variation of square-ring patch antenna with frequency.
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CHAPTER 6

Engineering Applications

In this chapter, we apply the FDTD method advanced by the parallel processing and SSE
acceleration techniques [1–9] in solutions to a variety of practical engineering problems and
demonstrate its advantages over other electromagnetic simulation techniques. We first
introduce the hardware platform configuration and then apply the parallel FDTD code
enhanced by the SSE technique to solve the problems. The performance of VALU accel-
eration is associated not only with the hardware configuration and code structure but also
with the problem model, excitation type, and output options. The parallel FDTD code used in
this chapter has been optimized for the best performance in terms of the VALU acceleration,
mesh generation, model handling, excitation, and output processing. The examples include a
helix antenna array, dielectric lens, electromagnetic analysis of an automobile and a heli-
copter, finite-sized frequency selective surface (FSS), curved FSS, microwave filter, rever-
beration chamber, airplane wireless fidelity (WIFI) analysis, low-pass filter, microwave
divider, and waveguide slot antenna array.

6.1 Hardware Platform Description

Here, we introduce the basic configuration of hardware platforms used in examples. Hard-
ware parts of the workstation, as indicated in Fig. 6.1, are available from popular online
stores. The system is optimized by the authors to achieve the best simulation performance.

All simulations in the chapter, except when explicitly specified otherwise, are carried
out on either a 4-CPU workstation with 64-GB memory or a 4-workstation cluster with a
total of eight CPUs and 128-GB memory. The configuration in Fig. 6.1 is detailed in
Table 6.1.

We first look at an ideal case to investigate the performance of the parallel FDTD code
with and without the VALU acceleration option. We have demonstrated that the VALU
performance is almost four times faster than that of the ALU in the ideal test case [2]. When
a practical FDTD code is applied to solve engineering problems, the VALU performance
varies with the involved models and simulation options. Here, we employ a simple example
as the test case in which we can isolate the FDTD update from other options such as the PML
boundary, dispersive medium, far-field transformation, material distribution generation,
mesh generation, and output options, which enables us to investigate the VALU performance
for the FDTD update alone.
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The test structure is an empty cubical computational domain truncated by a PEC
boundary over all six sides of the cube and discretized into a uniform mesh with different
numbers of cells in each test case, namely, with 300, 400, 500, 600, 800, and 1000 million
cells, respectively. Each case is run twice, with and without the VALU acceleration option.
The performance comparison of the two options is plotted in Fig. 6.2. Again, the parallel
FDTD code used is a practical code that is fully optimized for both options. It is worth
mentioning that the Intel compiler partially uses VALU in the reference code without VALU
acceleration. In principle, if the processor is sufficiently fast and the memory bandwidth is a
bottleneck, continued improvement of the CPU performance is not relevant. The code per-
formance improvement and memory optimization techniques that result in the data dis-
continuity inside memory have a major conflict with the requirements of VALU
acceleration. Therefore, in the parallel FDTD code development, a trade-off must be made
between the code performance and memory usage.

Next, we test the parallel FDTD code on a workstation cluster including 16 work-
stations, and the configuration of each workstation is described in Table 6.1, as shown in
Fig. 6.3. The Infiniband network system is used to link 16 workstations together. The size
of test examples varies from 27 MB to 10,000 MB. In each test case, we use a different
number of nodes and the simulation performance is summarized in Fig. 6.4. It is observed
from the figure that the simulation performance on one 16-workstation cluster can reach up
to 11,500 Mcells/s.

(a) (b) 

CPU3

RAM 3

CPU4

RAM 4

CPU1

CPU2

RAM 2

I/O
RAM 1

Figure 6.1 Optimized workstation for electromagnetic simulations: (a) main setup and
(b) 4-CPU configuration with NUMA architecture. The operating system can be
either Windows or Linux.

Table 6.1 Hardware configuration of the workstation in Fig. 6.1.

Option Description

CPU AMD Opteron 6168 1.9 GHz
Memory 64 GB DDR3 1333 MHz
Motherboard SuperMicro
Operating system Linux (CentOS 5.2)
Hard drive 500GB 7200 turns/min
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6.2 Performance Investigation of VALU Acceleration
Technique

Before proceeding to practical examples, we consider a large realistic problem to investigate
the VALU performance on different hardware platforms with different operating systems.
The hardware platforms are listed as follows:

(1) 2-CPU workstation installed with Windows operating system
● 2 AMD Opteron 6128 2.0 GHz CPUs
● Total number of cores: 16

Figure 6.3 A 16-workstation cluster for the parallel FDTD benchmark.
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Figure 6.2 Performance comparison of the FDTD code with and without VALU acceleration
option on a 4-CPU AMD workstation vs. the number of cells in the mesh of an
empty cubical computational domain (ideal test case).
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● Memory: 64-GB DDR3 1,333 MHz
● Hard drive: 7,200 turns/min
● NUMA architecture
● Windows XP

(2) 2-CPU workstation installed with Linux operating system
● 2 AMD Opteron 6128 2.0 GHz CPUs
● Total number of cores: 16
● Linux CentOS version 5.2
● Memory: 64-GB DDR3 1,333 MHz
● Hard drive: 7,200 turns/min
● NUMA architecture

(3) 4-CPU workstation installed with Windows operating system
● 4 AMD Opteron 6128 2.0 GHz CPUs
● Total number of cores: 32
● Memory: 64-GB DDR3 1,333 MHz
● Hard drive: 7,200 turns/minute
● NUMA architecture
● Windows XP

(4) 4-CPU workstation installed with Linux operating system
● 4 AMD Opteron 6168 1.9 GHz CPUs
● Total number of cores: 48
● Memory: 64-GB DDR3 1,333 MHz
● Hard drive: 7,200 turns/min
● NUMA architecture
● Linux CentOS version 5.2

(5) 4-workstation cluster installed with Linux operating system
● 8 AMD Opteron 6128 2.0 GHz CPUs
● Total number of cores: 64
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Figure 6.4 Performance of the parallel FDTD code on the 16-workstation cluster in Fig. 6.3.
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● Memory: 128-GB DDR3 1,333 MHz
● Hard drive: 7,200 turns/min
● NUMA architecture
● Infiniband network system
● Linux CentOS version 5.2

Since each AMD CPU includes two physical CPUs, to achieve a better parallel perfor-
mance, we partition the domain into sub-domains, the number of which is equal to twice the
number of physical CPUs.

We present two examples, a microwave connector with S-parameter outputs only and a
scattering problem with the output of conformal surface current distributions on the electric
conductor, and investigate the performance of VALU acceleration.

In the first example, the microwave connector has eight ports, as shown in Fig. 6.5. The
connector includes two pieces that are mounted on two separate plastic parts and are used to
realize the connection between components. We use the differential Gaussian pulse to excite
one port at the time, with the remaining ports being terminated by 50-W matching loads. The
outputs are the port voltage, current, impedance, and S-parameter matrix. We use the plat-
forms listed above to simulate this connector. S11, S21, and the impedance at the excitation
port are plotted in Figs. 6.6 and 6.7, respectively.

Data continuity inside memory is a very important factor that affects the performance of
the VALU acceleration. For the microwave connector problem, the main bottleneck is
the conformal implementation, which results in the data discontinuity inside memory. If the

Figure 6.5 Configuration of the microwave connector with eight ports.
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dielectric substrate is a dispersive medium, it will further deteriorate the performance of the
VALU acceleration. The simulation performance for different cases on different platforms is
summarized in Table 6.2.

Next, we investigate the performance of VALU on the conformal technique and dis-
persive medium implementation in the parallel FDTD code. The distribution of the deformed
cells inside the computational domain varies from case to case. Usually, we use the small
size of arrays to describe the discontinuous data distributed in the computational domain,
instead of using a large array that has the same size as the computational domain. The issue
in this case is that the data in the specified array are not continuous any more. Therefore, the
parallel FDTD code may not benefit from the VALU acceleration. For a large curved PEC
body, we may not observe much advantage of the VALU acceleration over the traditional
parallel FDTD code. In addition, even for a traditional parallel FDTD code, today’s Intel
compilers partially use VALU to improve the simulation performance. The parallel FDTD
code used in this text has been fully optimized by an Intel compiler.

Fig. 6.8 shows the magnetic field distribution inside a deformed cell obtained by the
conformal FDTD method [3]. The magnetic field is located at the center of the cell, as in the
traditional FDTD method. The electric fields are located at the same sides as in the regular
FDTD method, but have non-zero values only outside the PEC conductor. The magnetic
field inside the deformed cell can be expressed as shown in Fig. 6.8.

Hnþ1=2
z ði þ 1=2; j þ 1=2; kÞ ¼ Hn�1=2

z ði þ 1=2; j þ 1=2; kÞ

þDt

mz

"
Dx0En

xði þ 1=2; j þ 1; kÞ � DxEn
xði þ 1=2; j; kÞ

Dx0Dy0

�Dy0En
yði þ 1; j þ 1=2; kÞ � DyEn

yði; j þ 1=2; kÞ
Dx0Dy0

#

ð6:1Þ
It is observed from (6.1) that the update formulation inside deformed cells is different

from the regular FDTD update. In order to accelerate the simulation, we mark and index the
deformed cells, and then carry out the regular FDTD update in the entire domain. After the
regular simulation is completed, we go back to use (6.1) to recalculate the magnetic field

Table 6.2 Performance summary for the microwave connector in Fig. 6.5 with dispersive media.

Hardware Platform OS CPU Simulation Time

2-CPU workstation (VALU) Windows XP 2 AMD 6128 2.0 GHz 221 min
2-CPU workstation (no VALU ) Windows XP 2 AMD 6128 2.0 GHz 313 min
4-CPU workstation (VALU ) Linux CentOS 4 AMD 6128 2.0 GHz 52 min
4-CPU workstation (no VALU) Linux CentOS 4 AMD 6128 2.0 GHz 71 min
4-CPU workstation (VALU) Linux CentOS 4 AMD 6168 1.9 GHz 46 min
4-CPU workstation (no VALU) Linux CentOS 4 AMD 6168 1.9 GHz 62 min
4-Node cluster (VALU) Linux CentOS 8 AMD 6128 2.0 GHz 52 min
4-Node cluster (no VALU) Linux CentOS 8 AMD 6168 2.0 GHz 68 min
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inside these cells. In this case, the magnetic and electric fields inside these cells are not
continuous in any direction. For problems that include a large number of deformed cells, the
VALU acceleration will be slower than for those without deformed cells.

6.3 Surface Current Calculation Technique

When compared to the method of moments (MoM) and finite element method (FEM)
methods, one of the major drawbacks of the parallel FDTD method is a lack of conformal
surface current information on the arbitrary shaped conductors. In this section, we describe a
way to calculate the conformal surface current distribution in the FDTD simulation [10–12].
The mesh shape in the FDTD update is rectangular and the PEC geometry may be arbitrary,
as shown in Fig. 6.9.

Incident waveIncident wave

Incident wave

PEC Object

Surface current

J n
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H

Figure 6.9 Description for the general conformal surface current problems.
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Figure 6.8 Distribution of electric and magnetic fields inside a deformed cell.
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In order to calculate the conformal surface current on the surface of an arbitrary PEC
geometry, we need the following information:

(1) Normal direction information at the surface of PEC body.
(2) Tangential magnetic field at the same point.

After generating the mesh and material distributions, we do not have the pieces of infor-
mation above in the FDTD simulation since they are not required by the FDTD update. To
this end, we need to generate a surface mesh that intersects with the FDTD mesh, and the
normal direction at each point is included in the surface mesh. The tangential component of
the magnetic field on the PEC surface will be generated by the nearby magnetic fields in the
FDTD meshes through the spatial interpolation. Using the electromagnetic field boundary
conditions on the PEC surface, the electric surface current at the point P can be expressed as:

J
* ¼ n̂ � H

* ð6:2Þ
where n̂ and H

*
are the normal unit vector on the surface and the magnetic field vector at the

observation point P, respectively. Using the triangular surface mesh to approximate the PEC
surface is a conventional choice in electromagnetic simulation techniques. The triangular
mesh information includes the three-node coordinates and the index of each triangular mesh,
which is standard in the 3-D mesh generation. The surface current located at the vertex of
each triangle can be obtained by the interpolation method. The normal unit vector at each
vertex can be expressed as follows:

n̂center ¼
XN

i¼1

ain̂center
i ð6:3Þ

where n̂i
center is the normal unit vector for the ith triangle at the considered vertex, and ai is

the ith angle related to the vertex point, as shown in Fig. 6.10. Also, n̂center and a can be
obtained by the three-node coordinates given by the triangular mesh information in the
surface modeling process:

ncenter ¼ ðx3 � x2; y3 � y2; z3 � z2Þ � ðx1 � x2; y1 � y2; z1 � z2Þ ð6:4aÞ
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Figure 6.10 Calculation of the vertex normal vector.
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a ¼ arccos
a2 þ b2 � c2

2ab

� �
ð6:4bÞ

where xu, yu, and zu (u ¼ 1, 2, and 3) are the vertex coordinates of the triangle; parameters
a, b, and c are lengths of the triangle edges. In cases of triangles with one edge being too
small compared to the other two, the formulation should be modified by removing such weak
triangles.

To calculate the magnetic field H at the chosen point, we need to first identify the
corresponding points in the FDTD mesh, as shown in Fig. 6.11.

The magnetic field H at the observation point P can be calculated by using the magnetic
field components in the x-, y-, and z-directions in the related FDTD cells. The points P1, P2,
and P3 are the projection positions of the point P on three coordinate system planes. The
magnetic field H at each point can be calculated as follows:

HR1 ¼ dz1

Dz
HxðQ11Þ þ dz2

Dz
HxðQ12Þ ð6:5aÞ

HR2 ¼ dz1

Dz
HxðQ21Þ þ dz2

Dz
HxðQ22Þ ð6:5bÞ

HxðP1Þ ¼ dy1

Dy
HR1 þ dy2

Dy
HR2 ð6:5cÞ

HxðP1Þ ¼ dy1

Dy

dz1

Dz
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Dz
HxðQ12Þ

� �
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Figure 6.11 Vertex in the surface mesh and the associated points in the FDTD mesh.
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where dy and dz are the distances between P1 and the observation location of the magnetic
field Hx in the y- and z-directions, respectively, and Dy and Dz are the corresponding cell
sizes. The interpolation formulas need to be modified for some special cases. If any H fields
in one direction are located inside the PEC body but are outside the PEC body in the stair-
casing approximation, their values at these points should be forced to be zero. If all the four
H fields are equal to zero, the interpolation formula becomes invalid and should be modified
accordingly. One improved scheme is to extend the interpolation domain that includes
27 cells (16 cells in one direction). The interpolation formula can be modified to the fol-
lowing format:

HxðPÞ ¼ 1 � duXN

u¼0
du

0
@

1
AHxðQuÞ þ � � � þ 1 � dNXN

u¼0
du

0
@

1
AHxðQN Þ ð6:6Þ

where N is the number of Hx fields that are not equal to zero and du is the distance between
the location of the uth Hx field and the point P. To get the current value at the chosen point P,
such points are placed at the vertices of the triangular mesh. Furthermore, the current at P
can be calculated using the boundary condition formula based on the H field information and
the normal vector obtained at the previous steps. The current in the frequency domain can be
given by:

J
*ðP*;w0Þ ¼ n̂ðP*Þ � H

*ðP*;w0Þ ¼
" êx êy êz

n̂xðP
*Þ n̂yðP

*Þ n̂zðP
*Þ

H
*

xðP
*
;w0Þ H

*

yðP
*
;w0Þ H

*

zðP
*
;w0Þ

#
ð6:7Þ

where eu and nu(P) (u ¼ x, y, and z) are the coordinate unit vectors and normal vector
components, respectively. As a demonstration example, we calculate the surface current on
the surface of a PEC partial sphere with the radius of 1 m illuminated by a plane wave, as
shown in Fig. 6.12.

R0 = 1 m

R1 = 0.8 m

z

x
E: Eq = 1, Ej = 0

k: q = 90°, j = 0°

y

h = 0.4 m

Figure 6.12 A PEC partial sphere illuminated by a plane wave.
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To calculate the surface current, we generate a surface triangle mesh for the PEC struc-
ture, which only exists on the surface of PEC objects inside the computational domain and is
independent from the regular rectangular FDTD mesh. The surface mesh for the surface
current is shown in Fig. 6.13. The propagation of the incident plane wave is set in the
x-direction with the z-polarization.

Figure 6.14 shows the surface current distributions at frequencies of 300 MHz and
900 MHz, respectively. The electric surface current distribution on the surface mesh is cal-
culated by using the nearby magnetic field information on the regular FDTD cells via the
interpolation technique described above.

Figure 6.13 Surface mesh distribution on the partial sphere in Fig. 6.12.
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Figure 6.14 Surface current distributions on the partial sphere in Fig. 6.12 at (a) 300 MHz and
(b) 900 MHz.
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6.4 Helix Antenna Array

The next example is an antenna array consisting of 32 helixes, which are 3 mm � 3 mm in
cross section, and are supported by dielectric cores, as shown in Figs. 6.15 and 6.16. Due to
the dielectric cores, the FEM- and MoM-based methods may not be efficient enough in
handling such a large problem. However, with the parallel FDTD method, we can simulate
this structure on the workstation in Fig. 6.1 to calculate the S-parameter matrix and far-field
patterns. The parallel FDTD method based on the traditional Yee’s grids does not provide
the surface information to calculate the conformal surface current distribution on the helix
surface. Thus, we use a new conformal technique described in Section 6.3 to calculate the
surface current distribution.

In order to validate the conformal parallel FDTD method against the results by the MoM
method, we remove the dielectric support cores from the computational domain and simulate
the helix array with the PEC plate. The directivity patterns obtained by the two methods are
plotted in Fig. 6.17 [6, 9], and we observe a good agreement of the two sets of results.
The surface current on the entire helix antenna array is plotted in Fig. 6.18. To calculate the
surface current, the surface mesh must be generated before the FDTD simulation, as shown
in Fig. 6.19. The surface current distribution on a single helix is shown in Fig. 6.20.

Figure 6.15 A single helix element with a dielectric support core.
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Simulation summary

● Hardware platform: 4-CPU workstation
● Number of time steps: 7,700
● Convergence: below �30 dB
● Total memory usage: 2.8 GB
● Number of unknowns: 67 Mcells
● Total simulation time: 16 min
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Figure 6.17 Comparison of the directivity patterns at 10 GHz of the antenna array in Fig. 6.16
with dielectric cores omitted using the parallel FDTD and MoM methods.

Figure 6.16 A helix antenna array composed of elements in Fig. 6.15, mounted on a circular
PEC plate.
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6.5 Dielectric Lens

The basic concept embedded in the design procedure for the flat lenses is to mimic the phase
characteristics of conventional lenses that are composed of homogenous dielectric materials
and have specific curved profiles. We take advantage of the symmetric nature of the geo-
metry and reduce the design problem to that of an equivalent 2-D flat lens, as shown in
Fig. 6.21. Let D be the diameter of the lens, F the focal length, and r the distance along the
radial direction measured from the center of the lens (0 � r < D/2).

For the 2-D case, our objective is to transform the cylindrical wavefront into a planar one.
The phase delay function caused by the path differences can be expressed as [13–18]:

jðqÞ ¼ 2pF

l
1 � cosq

cosq
ð6:8Þ
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Figure 6.18 Surface current distribution at 10 GHz on the antenna array in Fig. 6.16 (with
dielectric cores included).

(b)(a)

Figure 6.19 Conformal surface mesh distribution on the helix in Fig. 6.15: (a) surface mesh at
the lower part of the helix and (b) local detail of the mesh.
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The required radial phase shift function of the lens is given by:

PDrðqÞ ¼ Pr � jðqÞ ð6:9Þ
with the incident angle q, measured from the focal axis, defined as:

q ¼ tan�1ðr=FÞ ð6:10Þ
where l is the wavelength in free space. Pr denotes the reference phase and its value can be
chosen as needed to adjust the required phase shift. We observe that the required phase shift

Figure 6.20 Conformal current distribution at 10 GHz on a single helix in Fig. 6.15 based on
the conformal mesh.
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Figure 6.21 2-D schematic diagram of the flat lens.
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function complements the phase delay function. The operating frequency of 30 GHz is
selected as our target, while F is chosen to be 6l and F/D ¼ 0.5. The phase delay function is
plotted in Fig. 6.22(a) for q ranging from �45� to 45� with Pr equaling 0�. We notice that the
required phase shift has a maximum value on the order of 900�. Since such a large value is
difficult to achieve by using a planar structure, we modify the design to that of a zone plate to
cap the required phase shift function to 360� and achieve the desired phase shift in five
sections, as shown in Fig. 6.22(b). The extension of the 2-D analysis to the 3-D case is
accomplished by changing the definition of the incident angle expression, given by:

q ¼ tan�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ=F

p
Þ ð6:11Þ

to the one given below, where we assume that the flat surface of the lens is in the x-y plane,
and its center is located at the origin of the coordinate system.
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Figure 6.22 (a) Phase shift delay function vs. the incident angle q and (b) zone-plate phase shift
function vs. radius.
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The configuration and dimensions of a Jerusalem cross-frequency selective surface
(JC/FSS) are shown in Fig. 6.23. The transmission performance of the JC/FSS is plotted in
Fig. 6.24.

Next, we use the parallel FDTD method enhanced with the VALU acceleration to
simulate the dielectric lens [13] with six-layer PEC striplines that is illuminated by a rec-
tangular horn antenna. The parallel FDTD code is employed to simulate the dielectric lens
system including the feed horn and lens, as shown in Fig. 6.25. Before simulating the
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antenna system, we first simulate the feed horn alone to check its directivity, as shown in
Fig. 6.26; it turns out to be 13.9 dB.

Since the feed horn, dielectric lens, and excitation source pattern are symmetric about the
x-z and y-z planes, we do not need to simulate the entire structure, instead we only need to
simulate a quarter of the structure, as shown in Fig. 6.27. The simulation results should
be same as for the original problem. The PEC and PMC boundaries are used to truncate the
domain in the x- and y-directions, respectively, and such selection is determined by the
polarization of the excitation source. If the polarization is Ey, on the other hand, the PEC
boundary should be used in the y-direction and the PMC boundary should be used in the
x-direction.
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Figure 6.25 Rectangular feed horn excited by a TE10 mode.
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Figure 6.26 Directivity patterns of the feed horn in Fig. 6.25 at 30 GHz in (a) the x-z plane and
(b) the y-z plane.
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We choose the JC element for the FSS because of its good phase shift characteristics,
good matching (low reflection) properties, and relatively stable frequency behavior over a
wide frequency range for both the TE (transverse electric) and TM (transverse magnetic)
polarizations. The lens configuration, realized by using JC/FSS, as shown in Fig. 6.27(b),
consists of cross-shaped, conducting JC elements printed on dielectric substrates. To achieve
the desired phase shift level, that is, a maximum of 360�, as well as relatively wideband low
loss, we need a total of six equally spaced layers. The JC geometrical parameters are also
noted in Fig. 6.27. Each JC has a fixed cell size of P, and the gap between adjacent JCs is
noted as S. Only L2 varies for achieving the desired phase shift and all the remaining para-
meters are fixed as given in the footprint of Fig. 6.27. To consider a realistic model, the
substrate is chosen to be Rogers Duroid RT5880 with er ¼ 2.2 and tans ¼ 0.0009, and a
thickness of 0.508 mm. The JC patterns are assumed to be 0.02-mm copper strips with an
electric conductivity of s ¼ 5.8� 107 S/m. These parameters including the conductivity
value and the loss tangent are considered in the following simulations to thoroughly assess
the loss of the lens. The directivity of the entire dielectric antenna system is shown in
Fig. 6.28; it is 26.9 dB, that is, 13 dB higher than the feed horn alone.

To get an idea how the dielectric lens system works, we plot the phase distribution in the
x-z and y-z planes when the feed horn is excited by the TE10 mode, as shown in Fig. 6.29. We
can observe from the figure that the cylindrical wave above the dielectric lens becomes a
plane wave below the dielectric lens. For the same reason, if a plane wave illuminates the
dielectric lens, it will form a focal point on the other side of the dielectric lens.

To validate the parallel FDTD results, we measure the gain pattern and plot the measured
and simulated results together, as shown in Fig. 6.30. We observe a good agreement of the
two sets of results.
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(a) (b)

Figure 6.27 Dielectric lens antenna with the feed horn (a) and PEC stripline pattern (b).
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Simulation summary

● Platform: 4-CPU workstation
● Number of time steps: 85,900
● Convergence criterion: �30 dB
● Memory usage: 25 GB
● Number of unknowns: 554 Mcells
● Total simulation time: 5 h 26 min

6.6 Vehicle Electromagnetic Analysis

In this section, we use the parallel FDTD code to simulate a vehicle model [19–21], which is
generated originally in AutoCAD, as shown in Fig. 6.31. Although the simulation of a
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Figure 6.28 Directivity patterns of the antenna system in Fig. 6.27 at 30 GHz.
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Figure 6.29 Phase patterns at 30 GHz of the antenna system in Fig. 6.27 in (a) the x-z plane and
(b) the y-z plane.
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complete vehicle is difficult for the traditional FDTD method on a regular computer, and not
so for the parallel FDTD method, the challenging issue is how to import the vehicle model
into the parallel FDTD code. First, we need a DXF (drawing interchange format) reader that
can identify the surface mesh format of AutoCAD. The requirements for the mechanical
manufacturing and electromagnetic simulation are different, in that the electromagnetic
simulation software additionally requires a continuous surface and continuity of its deriva-
tives. If we import it into the parallel FDTD code, the material distribution may be incorrect.
Therefore, it is important for us to check if the model is correct before we simulate it using
the parallel FDTD code. One simple method is to check if its material distributions such as
the conductivity distribution is correct. Since the material distribution is generated at the
beginning of the simulation, if the material distribution is not correct, we can terminate the
FDTD simulation, fix the model, and make sure that the model is correct.

Figure 6.31 A vehicle model in the AutoCAD triangle mesh format.
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Figure 6.30 Variation of measured and simulated gain patterns of the antenna in Fig. 6.27 with
frequency.
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When the vehicle model is imported into the parallel FDTD code, its parts are separate
from each other and can be edited separately. For example, we can remove four wheels from
the computational domain since they do not affect the far-field pattern and reflection
coefficient substantially. The vehicle model with the wheels removed is shown in Fig. 6.32.
A 3-D curved loop antenna is mounted on the rear windshield. A small gap is located at the
upper center and a voltage source is employed to excite the antenna. It is worth mentioning
that this antenna is used only to demonstrate the parallel FDTD code performance.

The loop antenna configuration is shown in Fig. 6.33. The current distribution on the loop
at 2.5 GHz is shown in Fig. 6.34 when a voltage source is used to excite the antenna. The
directivity pattern at 2.5 GHz is plotted in Fig. 6.35.

Antenna

Z

X Y

Excitation

Figure 6.32 A vehicle model without wheels and with an excitation antenna.

Figure 6.33 A loop antenna model mounted on the rear glass of the car in Fig. 6.32.
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To calculate the surface current, we need the surface mesh first, then we calculate the
magnetic field on the surface of the vehicle. For the infinitely thin conductor, the surface
current can flow only in one layer. However, for a conductor of a finite thickness, the surface
current can flow on both sides of the conductor. The surface current distribution at 2.5 GHz
on the surface of the vehicle is shown in Fig. 6.36. The directivity pattern at 2.5 GHz is
shown in Fig. 6. 37.
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Figure 6.34 Surface current distribution at 2.5 GHz on the loop antenna in Fig. 6.33.
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Figure 6.35 Directivity patterns of the loop antenna in Fig. 6.33 at 2.5 GHz.
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Figure 6.36 Surface current distributions at 2.5 GHz on the body of the vehicle in Fig. 6.22:
(a) side view, (b) front view, and (c) magnified detail of the front view.
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Simulation summary

● Hardware platform: 4-CPU workstation
● Number of time steps: 15,000
● Convergence: below –30 dB
● Total memory usage: 22 GB
● Number of unknowns: 1,441 Mcells
● Total simulation time: 3 h 38 min

A BMW-850 vehicle model shown in Fig. 6.38 is downloaded from a public domain, and
it is used to demonstrate an application of the parallel FDTD method to calculate the surface
current distribution and far-field pattern.

The BMW model in Fig. 6.38 is ill-conditioned; that is, if we generate the material
distribution in the parallel FDTD code, we will find that the model is incorrect. For example,
we can see the symmetric features in the vehicle model; however, using the original model,
the surface current distribution will be totally different. To fix the ill-conditioned model, we
replace it using the correct symmetric pieces. In addition, to avoid generating another ill-
conditioned problem, we cannot unite two pieces together if they do not have a finite
thickness. The surface current distribution at 3 GHz on the vehicle body is plotted in
Fig. 6.39. The directivity pattern at 3 GHz is plotted in Fig. 6.40.

Simulation summary

● Hardware platform: 4-CPU workstation
● Number of time steps: 14,200
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Figure 6.37 Directivity pattern at 2.5 GHz of the loop antenna on the car model in Fig. 6.22.
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● Convergence: below –30 dB
● Total memory usage: 21.7 GB
● Number of unknowns: 618 Mcells
● Total simulation time: 3 h 38 min

6.7 Helicopter Electromagnetic Analysis

An infinitely thin PEC structure can support surface current distribution in only one layer.
For example, we pick one piece of surface from the helicopter model that has no thickness,
as shown in Fig. 6.41.

To calculate the surface current at one point on the surface, we need to identify its normal
direction from the surface mesh information, and then calculate the tangential direction. If
the PEC structure has no thickness, the magnetic fields on two sides may be totally different
since they may be located in the different domains. We can calculate the surface current
based on the following formulation:

J ¼ I

L
¼ 1

L

þ
H
* � dl

* ¼ 1
L
ðLH1 þ LH3Þ ¼ H1 þ H3 ð6:12Þ

In the derivation above, it is assumed that the two tangential components of magnetic fields are
zero. The magnetic fields H1 and H3 are calculated from their neighbors at their own side,
respectively. If the PEC structure has a finite thickness, one of magnetic fields H1 and H3 is zero.

A helicopter model is shown in Fig. 6.42. In its original model, the double layers look
very good. For the sake of simplicity, we delete the inner layer and keep only the outer layer
so that the surface current calculation will be efficient. Although this model is downloaded
from a public domain, it turns out to be well-conditioned.
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Figure 6.38 A simplified BMW-850 car model.
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If we generate the conductivity distribution before the parallel FDTD update, as shown in
Fig. 6.43, it is correct. It is worth mentioning that even if the material distribution is correct,
that does not necessarily mean that we can generate the correct surface current distribution
on the conductor body. For example, to generate the correct surface current distribution, the
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Figure 6.39 Surface current distributions at 3 GHz over the BMW model in Fig. 6.38 excited by
a monopole antenna: (a) side view, (b) back view, and (c) top view.
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normal direction on the surface of the conductor surface must be correct. However, it can be
corrected in most cases. The conformal surface current distribution on the helicopter body is
shown in Fig. 6.44.

Simulation summary

● Hardware platform: 4-CPU workstation
● Number of time steps: 10,100
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Figure 6.41 Calculation scheme of surface current on the infinitely thin structure.
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Figure 6.40 3-D directivity pattern at 3 GHz of a monopole antenna attached to the BMW
model in Fig. 6.38.
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● Convergence: below �30 dB
● Total memory usage: 56 GB
● Number of unknowns: 1,565 Mcells
● Total simulation time: 4 h 18 min

6.8 Finite FSS Analysis

For periodic structures, we only need to simulate one element to obtain the solution of the
original problem. Although the original problem may be extremely large, the problem
domain that we need to simulate can be relatively small. From the solution of one element
simulation, we can get the solution of the original problem through the periodic property.
Unlike the periodic structures, the finite FSS [22–27], as shown in Fig. 6.45, requires
simulating the complete problem geometry since the edge effect and coupling must be taken
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Figure 6.42 A simplified helicopter model.

Figure 6.43 Conductivity distribution of the simplified helicopter model.
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Figure 6.44 Conformal surface current distribution at 1.5 GHz on the body of the helicopter model
in Fig. 6.42: (a) 3-D view and (b) magnified detail at the front of the helicopter.

Figure 6.45 Finite FSS configuration with six-layer dielectric slabs and three-layer FSS
screens.
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into account in the simulation. A six-layer dielectric slab with three-layer FSS screens
(20� 10) and the element configuration are shown in Figs. 6.46 and 6.47, respectively.
There are two ways to calculate the transmitted power through the FSS structure: (1) using
the plane wave as the excitation source and (2) using the Gaussian beam as the excitation
source. In both cases, we need to use a PEC plate to split the domain into two separate sub-
domains: the incident sub-region and the transmitted sub-region.

The PEC plate that encloses the finite FSS structure should be large enough and should
touch the PML boundary for the plane wave excitation, as shown in Fig. 6.48. The plane
wave will be truncated by the CPML boundary, which, in turn, will introduce an error into
the transmitted power calculation. If the PEC plate is sufficiently large, the error can be
ignored. To calculate the transmitted power or transmission coefficient, we need to run
the simulation twice, one simulation for the incident power and the other for the total power.
The transmitted power can be calculated from the incident and total powers.

Figure 6.46 Three-layer 20� 10 element FSS screens.

Figure 6.47 Element configuration in the finite FSS structure.
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The transmitted power is measured at the five walls that surround the FSS structure, as
shown in Fig. 6.49. The power calculation through the five walls is based on the following
formulation:

Power ¼ 1
2

Re

 ð
S

E�* �H
* � d s

*

!
ð6:13Þ

The transmitted power through the FSS structure is plotted in Fig. 6.50. It is evident from
the figure that the finite FSS structure has a good performance in the band pass from 7 GHz
to 12 GHz. A similar conclusion can be drawn from the power density distribution shown in
Fig. 6.51.
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Figure 6.49 Power calculation configuration of finite FSS structure.
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Figure 6.48 Simulation setting for the transmission coefficient of finite FSS structure.
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We can also use the Gaussian beam [28, 29] as the excitation source to calculate the
transmitted power. The parameters of the Gaussian beam are shown in Fig. 6.52.

The definition of the Gaussian beam is expressed as follows:

Eðr; zÞ ¼ E0
w0

wðzÞ exp
�r2

w2ðzÞ
� �

exp �ikz � ik
r2

2RðzÞ þ izðzÞ
� �

ð6:14Þ
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Figure 6.50 Transmitted power through the finite FSS structure.
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Figure 6.51 Power density distributions at different frequencies.
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where r is the radial distance from the central axis of the beam, z is the axial distance from
the beam’s narrowest point, I is the imaginary unit, k ¼ 2p=l is the wave number (in radians
per meter), E0 ¼ | E(0,0) |, w(z), is the radius at which the field amplitude and power drop to
1/e and 1/e2 of their axial values, respectively, w0 ¼ w(0) is the waist size, R(z) is the radius
of curvature of the beam’s wave fronts, and z(z) is the Gouy phase shift, an extra contribution
to the phase that is seen in Gaussian beams.

In the parallel FDTD simulation, we ignore the dependence of the Gaussian beam on the
frequency and the variation along the z-direction. The Gaussian beam is simplified as
follows:

EðrÞ ¼ E0e�r2=w2 ð6:15Þ
where E0 is the amplitude of the plane wave, w is the width of the Gaussian beam, and r is
the distance from the beam axis, as shown in Fig. 6.53. The spot of Gaussian beam should be
larger than the area of the FSS structure. If the spot of the beam is smaller, we will not count
the contribution from the edge of the FSS structure.

Simulation summary

● Hardware platform: 4-CPU workstation
● Number of time steps: 33,700
● Convergence: below �30 dB
● Total memory usage: 17.3 GB
● Number of unknowns: 357 Mcells
● Total simulation time: 9 h 43 min

6.9 Curved FSS Analysis

In reality, a finite FSS is usually a curved structure, as shown in Fig. 6.54. The curved
FSS structure is obtained by transforming the structure through the formulation
z ¼ z þ 0:001ðx2 þ y2Þ. The three FSS screens in the curved FSS structure are shown in
Fig. 6.55. Most traditional FSS analysis tools are not good any more for the curved FSS
structures. For the parallel FDTD method, of course, the fine cell sizes must be adapted to
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Figure 6.52 Parameter definitions in the Gaussian beam.
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Figure 6.53 Gaussian beam excitation in the parallel FDTD simulation: (a) configuration of the
excitation setup, (b) 3-D incident field distribution on the Gaussian surface, and
(c) 2-D cut in the horizontal plane of the incident field distribution.
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describe the field variation in the curved slots, as well as coupling and edge effects. For the
planar structure, the FSS structure is enclosed by a large PEC plate that forces the plane
wave through the FSS structure. Then, we calculate the incident and transmitted power
through the FSS area. For the curved FSS structures, we need to design a specially shaped
PEC plate to enclose the FSS structure, as shown in Fig. 6.56.

The transmitted power and the power density are plotted in Figs. 6.57 and 6.58, respec-
tively, when a plane wave is incident on the curved FSS structure.

Simulation summary

● Hardware platform: 4-CPU workstation
● Number of time steps: 70,000
● Convergence: below �30 dB
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Figure 6.54 Curved FSS configuration with six-layer dielectrics and three-layer FSS screens.

Z

X

Y

Figure 6.55 Three FSS screens inside the curved FSS structure.
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Figure 6.56 Configuration for the transmitted power calculation on the curved FSS structure:
(a) front view and (b) back view.
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Figure 6.57 Transmitted power when a plane wave is incident on the curved FSS structure.
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● Total memory usage: 15.6 GB
● Number of unknowns: 282 Mcells
● Total simulation time: 8 h 36 min

6.10 Microwave Filter Analysis

In this section, we use the parallel FDTD method to simulate a low-pass filter [30, 31], as
shown in Fig. 6.59. To calculate the conformal surface current distribution, we need to mesh
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9 GHz 10 GHz 11 GHz 12 GHz

13 GHz 14 GHz 15 GHz 16 GHz

Figure 6.58 Power density distributions at different frequencies.
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Figure 6.59 Low-pass filter configuration with two ports.
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the filter structure using the conformal mesh, as shown in Fig. 6.60. The mesh size will affect
the accuracy of the surface current distribution.

The reflection and transmission coefficients of the low-pass filter are plotted in
Fig. 6.61 when one port is excited and the other port is terminated by using a 50-W
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Figure 6.61 Reflection and transmission coefficients of the low-pass filter in Fig. 6.59.
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Figure 6.60 Conformal mesh distribution for the conformal current distribution calculation on
the low-pass microwave filter in Fig. 6.59: (a) complete mesh distribution and
(b) partial mesh distribution.
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matching load. The surface current distributions at different frequencies are shown in
Fig. 6.62, where we observe that the filter passes at the low frequency band and stops at
the high frequency band.

6.11 Planar Power Divider

The planar power divider [32–34], shown in Fig. 6.63, is a popular microwave component
used to divide the power to two ports equally (in the ideal case). In this case, one port is
excited and the other three ports are terminated using 50-W matching loads. Since the power
is coupled from one strip line to another one, the simulation will take a long time to reach the
convergence, as shown in Fig. 6.64.

The S-parameters computed at different ports are plotted in Fig. 6.65. The level of trans-
mission coefficients is about –3 dB, that is, the incident power is divided into two equal parts.

In order to calculate the conformal surface current, we mesh the stripline using the sur-
face mesh, as shown in Fig. 6.66(a). The current distribution is calculated through the
magnetic fields computed in the FDTD update. The zoomed surface mesh is shown in
Fig. 6.66(b). The surface current distribution on the striplines at 15 GHz is plotted in
Fig. 6.67.
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Figure 6.62 Conformal current distributions on the filter structure in Fig. 6.59 at (a) 1 GHz,
(b) 5 GHz, and (c) 10 GHz.
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Figure 6.63 Power divider configuration.
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Simulation summary

● Hardware platform: 4-CPU workstation
● Number of time steps: 49,400
● Convergence: below �30 dB
● Memory usage: 136 MB
● Number of unknowns: 3.2 Mcells
● Total simulation time: 13 min

6.12 Reverberation Chamber

The reverberation chamber [35–40], shown in Fig. 6.68, is an important piece of test
equipment for the electromagnetic compatibility (EMC) and electromagnetic interference
(EMI) problems. It is used to generate the sufficient types of modes and check if the elec-
tronic devices work well in the complicated environment. One of the most challenging issues

(a) (b) 

Figure 6.66 Surface mesh on the strip lines of the power divider in Fig. 6.63: (a) overall mesh
distribution and (b) zoomed detail of the mesh.
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Figure 6.67 Surface current distribution on the mesh in Fig. 6.66 at 15 GHz.
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related to reverberation chamber is how to terminate the simulation to get the smooth
frequency domain result since the power inside the chamber is held forever for a lossless
system. We use the window function, for example, Hamming window, to add on the time
domain signature to force the signal convergence to zero. The width of the Hamming win-
dow will be determined by the highest frequency of interest.

Spectral leakage is the result of the assumption in the fast Fourier transform (FFT)
algorithm that the time signature in the FFT transformation is exactly repeated throughout all
time and that signals contained in the transformation are thus periodic at intervals that cor-
respond to the length of the transformation. If the time signature in the FFT transformation
has a non-integer number of cycles, this assumption is violated and spectral leakage occurs.
Spectral leakage distorts the measurement in such a way that energy from a given frequency
component spreads to adjacent frequencies. If we cannot run a high-Q system until its time
signature is convergent to zero, we need to choose a window function correctly to suppress
the spectral leakage for a certain measurement.

To choose a proper window function, we must know the highest frequency of interest in
the solution. If the signal contains the strong interfering frequency components distant from
the frequency of interest, we should choose a window function with a high side lobe. If there
is a strong interfering signal near the frequency of interest, we should choose a window
function with a low side lobe. If the frequency of interest contains two or more signals very
near to each other, then the frequency resolution is very important. It is best to choose a
window function with a very narrow main lobe. If the amplitude accuracy of a single fre-
quency component is more important than the exact location of the component in a given
frequency band, we should choose a window function with a wide main lobe. If the signal
spectrum is rather flat or broadband in the frequency content, we can use the rectangle
window.
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Figure 6.68 Configuration of the reverberation chamber and excitation antenna.
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For the reverberation chamber problems, since the computational domain is surrounded
by the perfect electric conductor, the power will be limited inside the chamber. The time
signature measured inside the chamber will not be convergent, and the frequency domain
response will not be smooth. In order to get the smooth frequency response, we usually apply
a window function, for example, Hamming window, in the time domain signature. If the
simulation time is sufficiently long, we will get an accurate and smooth frequency response.
A typical Hamming window function is expressed as follows:

wðnÞ ¼ 0:54 � 0:46cos
2pn

N � 1

� �
ð6:16Þ

where n is the time step in the FDTD simulation and N is the total number of time steps. The
time signature of the Hamming window function and its frequency response are plotted in
Figs. 6.69 and 6.70, respectively. It is observed from Fig. 6.70 that the application of the
Hamming window in the time domain signature is a filter and removes the contributions
from the noise generated by the higher frequencies.

The field variation along the observation line at 3 GHz is plotted in Fig. 6.71. The field
distribution at 3 GHz inside the chamber is shown in Fig. 6.72.

Simulation summary

● Hardware platform: 4-CPU workstation
● Number of time steps: 102,704
● Convergence: below �30 dB with window function
● Memory usage: 5.6 GB
● Number of unknowns: 174 Mcells
● Total simulation time: 6 h 21 min
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Figure 6.69 Signature of the Hamming window function with different widths.
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6.13 Airplane WIFI Analysis

In this section, we use the parallel FDTD method to simulate the WIFI application inside a
simplified airplane model, as shown in Fig. 6.73. If the thickness of the airplane body is
finite, we have to use the small cells to describe the thickness. Otherwise, for the infinitely
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Figure 6.71 Field variation along the observed line at 3 GHz.
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Figure 6.70 Frequency response of the Hamming window function with different widths.
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Figure 6.72 Field distribution at 3 GHz inside the chamber.

15,846 mm

2,200 mm

3,810 mm

Antenna

Figure 6.73 Simplified airplane model with a WIFI antenna.
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thin PEC shell, the cell size can be large since the PEC shell will not be leaking. If a human
body inside the aircraft is taken into account, a very fine mesh must be used because of high
relative dielectric constants of biological tissues. The WIFI antenna is a PEC discone
antenna, which is a dipole backed by a circular PEC plate.

We first check the characteristics of the antenna, as shown in Fig. 6.74, before we
simulate the real WIFI problem. The antenna alone is a relatively small problem. The surface
current distribution on the PEC surface is plotted in Fig. 6.75 when a voltage source is used
to excite the antenna. The reflection coefficient and far-field patterns at 3 GHz are shown in
Figs. 6.76 and 6.77, respectively.
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Figure 6.74 Surface current distribution at 3 GHz on the PEC surface of the WIFI discone
antenna.

2
–25

–20

–15

M
ag

ni
tu

de
 (d

B
)

–10

–5

0

2.5 3.5 43
Frequency (GHz)

Return loss

Figure 6.75 Reflection coefficient of the WIFI discone antenna in Fig. 6.73.
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Then we simulate the system with the WIFI antenna placed inside the aircraft. The sur-
face current distribution and field distribution inside the aircraft at 3 GHz are shown in
Figs. 6.78 and 6.79, respectively.

The field distribution at 3 GHz at a height of 500 mm in the vertical direction is plotted in
Fig. 6.80. It is observed from the figure that the strong signal is located in the area below the
antenna.

330

300

270

240

210

j = 0º

j = 90º

180

150

120

90

60

30

0

Directivity patterns

0

–10

–20

–30

–40

Figure 6.76 2-D directivity patterns of the discone antenna in Fig. 6.73 at 3 GHz.
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Figure 6.77 3-D directivity pattern of the discone antenna in Fig. 6.73 at 3 GHz.
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6.14 Waveguide Slot Antenna

In this section, we use the parallel FDTD method to simulate a waveguide slot antenna
consisting of an array of slanted slots fed by a waveguide [41–43], as shown in Figs. 6.81 and
6.82. The coupled slots are slanted and require the fine mesh to describe the power trans-
mission from the waveguide feed to the slot array. The output parameters include the
directivity pattern at the specified frequencies and reflection coefficient.
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Figure 6.78 Surface current distribution on the airplane body at 3 GHz.
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Figure 6.79 Zoomed conformal surface current distribution on the airplane body at 3 GHz.
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In this waveguide slot antenna problem, the key point is to accurately simulate the slanted
feed slots that determine the transmitted power. Next, we introduce a modified diagonal
approximation technique [1] to accurately simulate the slanted slots. It is a well-known fact
that for a slot oriented at 45� with respect to the coordinate system axis, we can use the
diagonal approximation with the uniform mesh to accurately simulate the slanted slot, as
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Figure 6.80 Field distribution in the horizontal plane (height ¼ 500 mm) inside the airplane at
3 GHz.
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Figure 6.81 Configuration of the waveguide slot antenna.
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shown in Fig. 6.83. Here, two electric fields in the deformed cell are located inside the PEC
structure and the other two electric fields are located outside the PEC structure.
In the diagonal approximation, the magnetic field update inside the deformed cell can be
expressed as:

Hnþ1=2
z i þ 1

2
; j þ 1

2
; k

� �

¼ Hn�1=2
z i þ 1

2
; j þ 1

2
; k

� �
þ Dt

mz

"
DxEn

x i þ 1
2
; j; k

� �
0:5DxDy

�
DyEn

y i; j þ 1
2
; k

� �
0:5DxDy

#
ð6:17Þ

In practical problems, the slot orientation may be arbitrary, and hence the uniform mesh
may not be a good approximation to simulate a slot problem, as illustrated in Fig. 6.84. If we

Figure 6.82 Feed array of slanted slots excited by a waveguide.
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Figure 6.83 Configuration of the diagonal approximation in the FDTD method.
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properly select the cell sizes in different directions, we can significantly improve the simu-
lation results by using the diagonal approximation.

Now, we investigate the case with a single slot on an infinitely large PEC plate, as
shown in Fig. 6.85. The slot is slanted for a small angle of 5.7� with respect to the x-axis.
The polarization of an incident plane wave is along the x-axis. As a reference, we use the
fine cell size of 0.01 mm in all three directions. We assume that the result generated by
using the fine mesh is accurate. If the frequency of interest is about 10 GHz, the cell size
of 0.01 mm corresponds to 300 cells per wavelength, which is sufficient for the accurate
result. In numerical experiments, we use the uniform mesh first, that is, the cell dimen-
sions are the same in all three directions ðDx ¼ Dy ¼ Dz ¼ 0:2 mmÞ. When we change the
mesh cell sizes, the results vary accordingly. However, when we select the cell size to be
Dx ¼ 0:1 mm; Dy ¼ 0:5 mm, the simulation result is closer to that obtained by using the
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Figure 6.84 Configuration of the improved diagonal approximation in the FDTD method.
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Figure 6.85 Single slot on an infinitely large PEC plate.
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fine mesh, as shown in Fig. 6.86. The zoomed figure is shown in Fig. 6.88. At the
beginning, we set the cell size in the x-direction to 0.2 mm, and increase the cell size
in the y-direction from 0.2 mm to 0.5 mm. We find that the large cell size makes the
result closer to that obtained by using the fine mesh. When we set the cell size in the
y-direction to 0.5 mm and decrease the cell size in the x-direction from 0.5 mm to 0.1 mm,
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Figure 6.87 Zoomed simulation results in Fig. 6.86.
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Figure 6.86 Comparison of results using different cell sizes in the x- and y-directions for the
structure in Fig. 6.85.
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we find that the small cell size makes the result closer to that obtained by using the fine
mesh.

It is evident from Fig. 6.87 that the properly selected mesh shape will significantly
improve the simulation results with less computing resources as shown in Table 6.3.

The simulation results are also summarized in Table 6.4. The advantage of the rectan-
gular mesh over the square mesh is summarized in Table 6.4.

We use the method described above to simulate the waveguide slot array antenna, and the
reflection coefficient and 2-D and 3-D directivity patterns are shown in Figs. 6.88�6.90.
Note that the simulation results are in a good agreement with the measurement data, which
are not shown here.

Table 6.3 Problem sizes and memory requirements for different mesh
types in the analysis of the structure in Fig. 6.85.

Mesh Type Problem Size Memory Requirement

Fine mesh 31.69 Mcells 2.15 GB
Regular mesh 0.15 Mcells 31.17 MB
Rectangular mesh 0.117 Mcells 26.06 MB

Table 6.4 Simulation result summary.

Mesh Type Resonant Frequency Transmitted Power

Fine mesh 10.9 GHz 0.002504 mW
Regular mesh 10.8 GHz 0.0025 mW
Rectangular mesh 10.7 GHz 0.002476 mW
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Figure 6.88 Reflection coefficient of the waveguide slot antenna array in Fig. 6.81.
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Figure 6.89 2-D directivity patterns of the waveguide slot antenna array in Fig. 6.81 at 12 GHz.
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Figure 6.90 3-D directivity pattern of the waveguide slot antenna array in Fig. 6.81 at 12 GHz.
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CHAPTER 7

Cloud Computing Techniques

Cloud computing is one type of service combination of software and hardware that does not
require the end user to have knowledge of physical locations and configurations of com-
puting systems, as illustrated in Fig. 7.1. A similar concept is used in the electricity grid
and the water supplying system, where the end users consume power and water without
needing to understand the component devices or infrastructure required to provide the ser-
vice. Cloud computing is not a new concept as it has been used for many years in various
engineering applications and scientific researches. Today, it is popular because many large
companies are involved in it with advanced technologies and huge number of computer
nodes available.

Cloud computing describes a new supplement, consumption, and delivery model for the
software and hardware services based on the Internet protocols, and it typically involves
provisioning of dynamically scalable and often virtualized resources. It is a byproduct and
consequence of the ease-of-access to remote computing sites provided by the Internet. This
may take the form of web-based tools or applications that the end users can access and use
through a web browser as if the programs were installed locally on their own computers.
Therefore, the end users may not need to install any application software on their local
computers. All the computations and data processing happen in the remote resource.

Cloud computing provides the delivery of applications via the Internet, which are
accessed from web browsers, desktop, or handheld devices, while the application software
and data are stored on servers at the remote locations. In some cases, the applications are
delivered via screen-sharing technology, while the computing resources are consolidated at
the remote data centers; in other cases, the entire applications are coded using web-based
technologies.

At the foundation of cloud computing is the broader concept of infrastructure con-
vergence and shared services. This type of data center environment allows the end users to
get their applications up and running faster, with less investment, easier manageability, and
less maintenance, and enables the end users to more rapidly adjust the computing resources
to meet fluctuating and unpredictable business demand.

Most cloud computing infrastructures consist of services delivered through shared data
centers and appearing as a single point of access for the consumer computing requirement.
Commercial offerings may be required to meet service-level agreements, which especially
allow the smaller companies to access the large computing resources in a short time at a
small cost.
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The tremendous impacts of cloud computing have prompted many governments world-
wide to consider cloud computing as their infrastructure and to increase their spending
budgets. Many countries and regions focus on cloud computing and consider it as the new
and next economic growth point.

The term ‘‘cloud’’ means that the computing resources are huge and far away from where
we can reach and are distributed in different areas [1]. We can only feel their existence
through the Internet. Since the cloud computing is closely related to the mobile commu-
nication and applications in our daily lives, we always connect the cloud computing to the
cell phone communication and bank account access; however, it is a broad concept and has
been used in many areas.

Cloud computing is a natural evolution of the widespread adoption of virtualization,
service-oriented architecture, autonomic, and utility computing. Details are abstracted from
the end users who no longer have need for expertise in, or control over, the technology
infrastructure ‘‘in the cloud’’ that supports them.

The underlying concept of cloud computing dates back to the 1960s with an idea that
‘‘computation may someday be organized as a public utility.’’ Almost all the modern-day
characteristics of cloud computing, the comparison to the electricity industry, and the use of
public, private, government, and community forms were thoroughly explored in Douglas
Parkhill’s 1966 book [2]. The cloud computing concept also goes back to the 1950s when
Herb Grosch, a computer scientist at IBM, postulated that the entire world would operate on
dumb terminals powered by about 15 large data centers.

The actual term ‘‘cloud’’ borrows from telephony in which the telecommunication
companies, which offered primarily dedicated point-to-point data circuits, began offering
virtual private network (VPN) services with comparable quality of service (QoS) but at a

Figure 7.1 Cloud computing is the delivery of computing as a service.
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much lower cost. By switching traffic to the balance utilization, they were able to utilize
their overall network bandwidth more effectively. The cloud symbol was used to denote the
demarcation point for the responsibility between the provider and the end users. Cloud
computing extends this boundary to cover servers as well as the network infrastructure.

Amazon played a key role in the development of cloud computing by modernizing their
data centers, which were using as little as 10 percent of their capacity at any one time, just to
leave room for occasional spikes. Having found that the new cloud architecture resulted in
the significant internal efficiency improvements that could add new features faster and more
easily, Amazon initiated a new product development effort to provide cloud computing to
external customers, and launched Amazon web service (AWS) [3] on a utility computing
basis in 2006.

In early 2008, Eucalyptus [4] became the first open-source, AWS API-compatible plat-
form for deploying private clouds. In the same time period, OpenNebula, enhanced in the
RESERVOIR [5] European Commission-funded project, became the first open-source soft-
ware for deploying private and hybrid clouds, and for the federation of clouds. In the same
year, efforts were focused on providing QoS guarantees to cloud-based infrastructures, in the
framework of the IRMOS [6] European Commission-funded project, resulting in a real-time
cloud environment.

7.1 Basic Terminologies in Cloud Computing

Basic characteristics of cloud computing include but are not limited to the following three:

● The storing and accessing of applications and computer data often through a web browser
rather than by running the installed software on the user personal computers or office
servers.

● Internet-based computing provided to computers and mobile devices on demand.
● Using the Internet to access web-based applications and web services as a service.

Basic terminologies in the cloud computing include:

Off-site: A basic principle of cloud computing is that the end users are accessing the
computing resources that are in a data center far away from them. That means the end
users do not buy the servers and storage, but the service providers do.

Virtual: The computing resources in the cloud can be assembled with drag-and-drop
ease. Employing virtualization, the cloud service providers let the end users assemble
software stacks of databases, web servers, operating systems, storage, and networking,
and then manage them as virtual servers.

On demand: In the cloud, the end users can add and subtract resources, including
number and type of computing processors, amount of memory, network bandwidth,
gigabytes of storage, and 32-bit or 64-bit architectures. The end users can dial up when
they need more, and dial down when they need less.

Subscription style: These tend to be month-to-month deals, often payable by credit card,
rather than annual contacts. For example, Amazon charges in intervals of 10 cents per
hour for their EC2, which stands for ‘‘Elastic Compute Cloud.’’ Amazon allows the
users to use their cloud computing in either the pay-by-the-hour or the pay-by-the-
gigabyte.

7.1 ● Basic Terminologies in Cloud Computing 177



Shared: For economies of scale, many service providers use a multitenant architecture to
squeeze workloads from multiple customers onto the same physical machines. It is
just one of the things that distinguish cloud computing from outsourcing and from
hosted data centers.

Simple: Many of the cloud services providers – whether they specialize in application
hosting, storage, or compute cycles – let the end users sign up and configure resources
in a few minutes, using an interface that the end users do not have to be a system
administrator to understand.

Web based: The computing resources can be accessed through web browsers without
requiring the end users installing any application software. For example, the end users
cannot install any electromagnetic application software on a smartphone or other
handheld devices today.

In addition, the following terminologies are also important:

Public cloud: It is the one based on the standard cloud computing model, in which
a service provider makes resources, such as applications and storage, available
to the general public over the Internet. Public cloud services may be free or
offered on a pay-per-usage model. The main benefits of using a public cloud
service are:

● Easy and inexpensive setup because hardware, application, and bandwidth costs are
covered by the provider.

● Scalability to meet needs.
● No wasted resources because the end users pay for what they use.
Private cloud: It is a proprietary network or a data center that supplies the hosted ser-

vices to a limited number of users. When a service provider uses public cloud
resources to create their private cloud, the result is called a virtual private cloud.
Regardless of private or public cloud, the goal of cloud computing is to provide easy,
scalable access to computing resources.

Private cloud is relative to the public cloud, and limits the users inside a local network or
VPN certification. For example, today the most cloud computing systems inside companies
or universities belong to the private cloud. The main benefits of a private cloud service are as
follows:

● Data security is guaranteed since all the users are behind the firewall.
● The known details of cloud resource help increase the usage efficiency.
● Software and hardware upgrade are faster and more efficient.

7.2 Electromagnetic Cloud Example

In the electromagnetic simulations [7], use of the most public clouds today on the market is
charged based on the number of the compute cores. Due to the NUMA architecture in the
popular servers and multi-CPU workstations, the job division in terms of CPUs has much
higher parallel efficiency than that based on the compute cores. Most vendors do not like to
charge based on the number of CPUs because the hardware cost of the modern servers
increases with the number of cores. Therefore, for a private cloud, the company can decide
the rental policy to achieve the best system performance.
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7.2.1 Electromagnetic cloud example

Suppose that an electromagnetic software package has been installed on a cloud and we have
an account to access the cloud resources; now we can use the web browser to login the cloud
system, as shown in Fig. 7.2. We can access the files on clouds just like on the local com-
puter, as shown in Fig. 7.3, submit jobs to the clouds without requiring installation of any
electromagnetic software packages, as shown in Fig. 7.4, monitor the simulation progress, as
shown in Fig. 7.5, and check the simulation results, as shown in Fig. 7.6.

Cloud computing includes two key techniques: (1) virtual machines and (2) web-based
applications. In the electromagnetic cloud computing, the cloud computing system will
select the machines according to the users’ requirements. Since the large amount of data has
to be exchanged from one node to another, the electromagnetic cloud computing requires
that the nodes in one cloud must be connected through a high-performance network. The
electromagnetic cloud computing has a web-based environment that allows the users to
modify (and even create) the project model, excitation and output options, mesh distribution,
and all the data post-processing on the cloud.

7.2.2 Rocks cluster management software

Electromagnetic simulation software is one of the applications on the Rocks cluster man-
agement software. Rocks cluster distribution (originally called NPACI Rocks) [8] is a widely
used cluster operating system and a Linux distribution intended for high-performance

Figure 7.2 Login interface of electromagnetic simulation application.
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computing clusters. It was started by National Partnership for Advanced Computational
Infrastructure and San Diego Supercomputer Center in 2000 and was initially funded in part
by a National Science Foundation (NSF) grant (2000–2007) but is currently funded by the
follow-up NSF grant. Rocks was initially based on the Red Hat Linux distribution. However,

Figure 7.3 Check the private files on the cloud servers.

Figure 7.4 Submit a simulation job to the cloud resources.
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the modern versions of Rocks are now based on CentOS, with a modified Anaconda installer
that simplifies mass installation onto many computers. Rocks includes many tools (such as
MPI) which are not part of CentOS but are integral components that make a group of
computers into a cluster.

Figure 7.5 Monitor the simulation status and job list on the cloud.

Figure 7.6 Monitor the simulation progress graphically.
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Installations can be customized with additional software packages at install time by using
special user-supplied ‘‘Roll CDs’’ extend the system by integrating seamlessly and auto-
matically into the management and packaging mechanisms used by base software, simpli-
fying installation and configuration of large numbers of computers. Over a dozen of rolls
have been created, including the SUN Grid Engine (SGE) roll, the Condor roll, the Lustre
roll, the Java roll, and the Ganglia roll.

7.3 Scientific Cloud Computing

Cloud computing emerges as a new computing paradigm, which aims to provide reliable,
customized, and qualified service, and guaranteed dynamic computing environments for the
end users. This section introduces the basic concepts and applications in the engineering
projects [9].

7.3.1 Introduction

The cloud computing proposed in late 2007 currently emerges as a hot topic due to its
abilities to offer flexible dynamic IT infrastructures, QoS guaranteed computing environ-
ments and configurable software services. There are still no widely accepted definitions for
the cloud computing albeit the cloud computing practice has attracted much attention. Sev-
eral reasons lead to this situation:

● Cloud computing involves researchers and engineers from various backgrounds, for
instance, grid computing, software engineering, and databases. They work on cloud
computing from different viewpoints.

● Technologies that enable the cloud computing are still evolving and progressing, for
example, Web 2.0 [10] and service oriented computing (SOC).

● Existing computing clouds still lack large-scale deployment and usage, which would
finally justify the concept of cloud computing.

The examples and concepts are based on the engineering computing, which is different
from the general cloud computing due to the following reasons:

● Electromagnetic simulation requires a large amount of data exchanging during simula-
tion. Therefore, the computing resource must be located at the same place and connected
through the high-performance network.

● To efficiently use the multi-CPU servers or workstations, the job division must be based
on the number of CPUs, instead of compute cores like in the most cloud system.

● The users require checking the simulation status and intermediate results during the
simulation, and hence the backup nodes must be available to do the data post-
processing.

● The users often need the view and modification of the simulation models, which may
require a large amount of data communication and the faster graphical functions.

● The users require that their data be secure in any cases. Most time, people compare it
to the credit card system; however, the value of data leaking cannot be easily
evaluated.
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7.3.2 Cloud computing service

Conceptually, the users acquire computing platforms from computing clouds and then run
their applications inside. Therefore, computing clouds render users with services to access
hardware, software, and data resources, thereafter an integrated computing platform as a
service, in a transparent way:

● Hardware as a service: As the result of rapid advances in hardware virtualization, the
users could buy hardware as a pay-as-you-go subscription service. A typical example
could be found at Amazon EC2.

● Software as a service: The users can get the service across the Internet. This model
eliminates the need to install and run the application on the customer’s local computers.
However, the users may need to keep the original result data, so the users need to install
the data post-processing software to generate the results later on. For example, the users
want to change the frequency range of interest or derive the new output parameters based
on the simulation results.

● Data as a service: The data usually have two types of formats, namely, the raw data and
graphical results. The users usually download the raw data to their local computer and
view the graphical result through network from regular computer or handheld devices
such as smartphones or tablets.

Amazon storage service provides a simple web services interface that can be used to store
and retrieve, declared by Amazon, any amount of data, at any time, from anywhere on the
web. Cloud computing offers the development platform, and the users can develop their own
data post-processing code on the cloud platform. And then, the users can run the code and
generate the results from anywhere and at any time through network without requiring any
local real data processing.

7.3.3 Features in cloud computing

The cloud computing is different from other computing paradigms in the following aspects:

● User-centric interfaces
The users obtain and employ computing platforms in computing clouds as easily as they
access a traditional public utility (such as electricity, water, natural gas, or telephone
network), for instance:
– The cloud interfaces do not force users to change their working habits and

environments, for example, programming language, compiler, and operating
system.

– The cloud client software installed locally is relatively simple. For example, the users
can install the result visualization software in their local computer or no software at all
on their local handheld devices.

– The cloud interfaces are location independent and can be accessed by the popular
Internet browser.

● On-demand service provisioning
The computing clouds provide resources and services for users on demand. The users can
customize and personalize their computing environments.
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● QoS guaranteed offer
The computing environments provided by computing clouds can guarantee QoS for the
users, for instance, hardware performance like CPU speed, I/O (input/output) bandwidth,
and memory amount.

● Autonomous system
The computing cloud is an autonomous system and it is managed transparently to users.
Hardware, software, and data inside clouds can be automatically reconfigured to present
a single platform image.

● Scalability and flexibility
The scalability and flexibility are the most important features that drive the emergence of
the cloud computing. Cloud services and computing platforms offered by computing
clouds could be scaled across various parameters, such as geographical locations, hard-
ware performance, and software configurations.

7.3.4 Advanced technologies in cloud computing

A number of advanced technologies in cloud computing include:

● Virtualization technology
The virtual machine techniques, such as VMware [11] for Windows and Linux systems
and Xen [12] for Linux system, offer the virtualized simulation and system configuration
results on demand. The virtual network advances support users with a customized net-
work environment to access cloud resources.

● Web service
The web service is normally exposed as the web browser services, which follow the
industry standards such as WSDL [13], SOAP [14], and UDDI [15]. A set of cloud services
furthermore could be used in an application environment, thus making them available on
various distributed platforms and could be further accessed across the Internet.

● Web 2.0
Web 2.0 is an emerging technology describing the innovative trends of using World Wide
Web technology and web design that aims to enhance creativity, information sharing, col-
laboration, and functionality. Web 2.0 applications typically include the following features:
– Rich Internet application: It defines the experience brought from desktop to browser

whether it is from a graphical point of view or usability point of view.
– Web-oriented architecture – It is a key piece in Web 2.0, which defines how Web 2.0

applications expose their functionality so that other applications can leverage and
integrate the functionality providing a set of much richer applications.

– Social web – It defines how Web 2.0 tends to interact much more with the end users
and make the end users an integral part.

The essential idea behind Web 2.0 is to improve the interconnectivity and interactivity of
web applications. The new paradigm to develop and access web applications enables users to
access the web more easily and efficiently. The cloud computing services in nature are web
applications that render desirable computing services on demand.

● Worldwide distributed storage system – A cloud storage model should foresee:
– A network storage system, which is backed by the distributed storage providers, offers

the storage capacity for the users to lease. The data storage could be migrated, merged,
and managed transparently to the end users for whatever data formats.
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– A distributed data system, which provides the data sources accessed in a semantic way.
The users could locate their data sources in a large distributed environment by the
logical name instead of the physical locations.

● Programming model
The users drive into the computing cloud with data and applications. Some cloud pro-

gramming models should be proposed for users to adapt to the cloud infrastructure. For the
simplicity and easy access of cloud services, the cloud programming model, however, should
not be too complex or too innovative for the end users. The MapReduce [16–18] is a pro-
gramming model and an associated implementation for processing and generating large data
sets across the Google worldwide infrastructures.

7.4 Cloud Computing and Grid Computing

This section is devoted to comparing the cloud computing and the grid computing [19–21] in
various aspects, such as definitions, infrastructures, middleware, and applications. It is of
interest to develop computing clouds on the existing grid infrastructures to get advantages of
grid middleware and applications.

● Definition
The grid computing, originating from high-performance distributed computing, aims to
share distributed computing resource for remote job execution and for the large-scale
problem-solving. The grid computing emphasizes the resource side by making huge
efforts to build an independent and complete distributed system. The cloud computing
provides the user-centric functionalities and services for the users to build the customized
computing environments. The cloud computing, which is oriented toward the industry
service, follows an application-driven model.

● Infrastructure
Grid infrastructure has the following features:
– Grid infrastructure in nature is a decentralized system, which spans across geo-

graphically distributed sites.
– Grid infrastructure normally contains heterogeneous resources, such as hardware/

software configurations, access interfaces, and management policies.
On the contrary, from the viewpoint of users, the computing clouds operate like a central
compute server with single access point. The cloud infrastructures could span several
computing centers, like Google and Amazon, and in general contain homogeneous
resources, operated under central control.

● Middleware
The grid community has established well-defined industry standards for grid middleware,
for example, WSRF [22]. The middleware for cloud computing, or the cloud operating
system, is still underdeveloped and lacks standards. A number of research issues remain
unsolved, for example, distributed virtual machine management, cloud service orches-
tration, and distributed storage management.

● Accessibility and application
The grid computing has an ambitious objective to offer dependable, consistent, perva-
sive, and inexpensive access to high-end computational capabilities. However, the
inexperienced users still find difficulties to adapt their applications to grid computing.
Furthermore, it is not easy to get a performance guarantee from computational grids. The
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cloud computing, on the contrary, could offer customized, scalable, and QoS guaranteed
computing environments for users with an easy and pervasive access. The grid computing
has gained numerous success stories in many application fields.
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APPENDIX

3-D Parallel FDTD Source Code

In this appendix, we present a 3-D parallel FDTD demonstration code enhanced by
the VALU acceleration, which can be used for general electromagnetic problems. The
source code includes the electric and magnetic field updates, CPML update, 3-D parallel
processing, VALU acceleration, OpenMp, and MPI. The code is programmed in the C
language. The readers can modify it for different applications by adding different sub-
routines and functions.

Appendix 1: Input Parameters

(1) Cell size: dx, dy, dz
(2) Time factor: 0.995
(3) Source position: source_position_x, source_position_y, source_position_z
(4) Number of time steps: time_steps
(5) Number of cells: nx, ny, nz
(6) Excitation pulse: exp(�0.5 * ((20.0 � n) / 6.0)^2)

Appendix 2: Output Parameters

(1) Field at point: electric field
(2) Field on surface: electric field
(3) Elapsed time: simulation time
(4) Intermediate CPML parameters: number of layers, a and b values

Appendix 3: Functions

(1) 3-D parallel FDTD code with the CPML absorbing boundary condition
(2) Gaussian pulse excitation
(3) Field outputs at point and on surface
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Appendix 4: Code Requirements

(1) Hardware:
* CPU: Intel Pentium IV, AMD Athlon 64, or newer CPUs.

(2) Compiler: Microsoft VC 2005 or higher versions, Intel C 9.0 or higher versions, GCC
4.0 or higher versions.

(3) MPI environment: MPI2: In the MPICH2 under Windows system, the default instal-
lation of MPICH2 is in C:\Program Files\MPICH2. Three sub-directories are in the
installation directory: include, bin, and lib. The include and lib directories contain the
header files and libraries necessary to compile MPI applications. The bin directory
contains the process manager, smpd.exe, and the MPI job launcher, mpiexec.exe. The
dlls that implement MPICH2 are copied to the Windows System32 directory.

The libraries in the lib directory were compiled with Microsoft Visual Studio NET
2003 and Intel Fortran 8.1. These compilers and any others that can link with the
Microsoft *.lib files can be used to create user applications. Both gcc and g77 for
Cygwin (Unix-like environment and command line interface for Microsoft Windows)
can be used with the libmpich*.a libraries.

For MS Developer Studio users: Create a project and add [1]

‘‘C:\Program Files\MPICH2\include’’

to the include path and

‘‘C:\Program Files\MPICH2\lib’’

to the library path. Add mpi.lib and cxx.lib to the link command. Add cxxd.lib to the
Debug target link instead of cxx.lib.

Appendix 5: Subroutine List in the FDTD Code

In this part, we explain the major subroutines used in the parallel FDTD code to help the
readers understand the FDTD code, PML, parallel processing, and VALU acceleration
techniques. Six micros that help in structure optimization are used in the FDTD code. These
six micros are:

#define h_update_nonmagnetic for the magnetic field update (this code is
designed for the nonmagnetic material).

#define e_update_nonelectric: for the electric field update (this code is
designed for the nonelectric material).

#define e_update_nonelectric_pml_add: for the electric field addition operation
inside the PML region.

#define e_update_nonelectric_pml_sub: for the electric field subtraction operation
inside the PML region.

#define h_update_nonmagnetic_pml_sub: for the magnetic field subtraction operation
inside the PML region.

#define h_update_nonmagnetic_pml_add: for the magnetic field addition operation
inside the PML region.
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We list the major subroutines in the parallel FDTD code and briefly explain them. Since
the ‘‘main’’ routine reflects the structure of the parallel FDTD code and the relationship of
each subroutine, we explain each line in this routine.

main: controls the main structure of the FDTD code, and its subroutines are:

MPI_Init: initialize MPI environment

MPI_Comm_size: number of sub-domains

MPI_Comm_rank: position of the current sub-domain

size: size of sub-domain in the x-direction

low_value: start position of the sub-domain in the x-direction

high_value: end position of the sub-domain in the x-direction

source_owner: excitation source inside the current sub-domain

source_left_owner: left position of the excitation source inside the current
sub-domain

source_right_owner: right position of the excitation source inside the current
sub-domain

memory_size: memory used by the current sub-domain

source_position_x_local: local position of the excitation source in the sub-domain

Index_E_Boundary[X_MIN]: initial electric field boundary position in the x-direction

Index_E_Boundary[Y_MIN]: initial electric field boundary position in the y-direction

Index_E_Boundary[Z_MIN]: initial electric field boundary position in the z-direction

Index_E_Boundary[X_MAX]: end electric field boundary position in the x-direction

Index_E_Boundary[Y_MAX]: end electric field boundary position in the y-direction

Index_E_Boundary[Z_MAX]: end electric field boundary position in the z-direction

Index_H_Boundary[X_MIN]: initial magnetic field boundary position in the x-direction

Index_H_Boundary[Y_MIN]: initial magnetic field boundary position in the y-direction

Index_H_Boundary[Z_MIN]: initial magnetic field boundary position in the z-direction

Index_H_Boundary[X_MAX]: end magnetic field boundary position in the x-direction

Index_H_Boundary[Y_MAX]: end magnetic field boundary position in the y-direction

Index_H_Boundary[Z_MAX]: end magnetic field boundary position in the z-direction

BoundaryLayerNum[X_MIN]: number of PML layers in the minimum x-direction

BoundaryLayerNum[X_MAX]: number of PML layers in the maximum x-direction

BoundaryLayerNum[Y_MIN]: number of PML layers in the minimum y-direction

BoundaryLayerNum[Y_MAX]: number of PML layers in the maximum y-direction

BoundaryLayerNum[Z_MIN]: number of PML layers in the minimum z-direction

BoundaryLayerNum[Z_MAX]: number of PML layers in the maximum z-direction

initialize_array: initialize the arrays

initialize_CPML: initialize the arrays inside the PML region
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MPI_Type_vector: define the MPI data type

MPI_Type_commit: submit the new data type

compute: field update

MPI_Finalize: finish the MPI process

memory_malloc_1D: allocate memory for 1-D array

memory_malloc_3D: convert 1-D array to 3-D array

initialize_array: initialize the arrays

initialize_CPML: initialize the PML coefficients

Compute: field update including the PML and computational
domain

MPI_Barrier: wait each other among the sub-domains

elapsed_time: start recording the simulation time

compute_MPI_PEC: use the PEC boundary to truncate the domain

compute_MPI_CPML: use the CPML boundary to truncate the domain

compute_SSE_PEC: PEC boundary accelerated by SSE

compute_SSE_CPML: CPML boundary accelerated by SSE

data_collect: collect the output data

elapsed_time: stop recording simulation time

output_Ez: output the simulation result

output_ElaspedTime: output the simulation time

output_ElaspedTime: output the simulation time

compute_MPI_PEC: PEC boundary in the six sides

compute_MPI_CPML: PML boundary in the six sides

compute_H: compute the magnetic fields for the PEC boundary inside
the computational domain

compute_H_PUSAI: compute the magnetic fields for the PML boundary inside
the computational domain

compute_H_SSE: compute the magnetic fields for the PEC boundary with
the SSE acceleration inside the computational domain

compute_H_PUSAI_SSE: compute the magnetic fields for the PML boundary with
the SSE acceleration inside the computational domain

compute_E: compute the electric fields for the PEC boundary inside
the computational domain

compute_E_PUSAI: compute the electric fields for the PML boundary inside
the computational domain

compute_E_SSE: compute the electric fields for the PEC boundary with the
SSE acceleration inside the computational domain

compute_E_PUSAI_SSE: compute the electric fields for the PML boundary with
the SSE acceleration inside the computational domain
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#pragma omp parallel private: split and assign the job to multiple cores

transfer_H: exchange the magnetic fields on the interface between the
adjacent domains

transfer_E: exchange the electric fields on the interface between the
adjacent domains

add_source: add the excitation source

source: implementation of the excitation source

data_collect: collect the simulation results

output_Ez: output the simulation results

Appendix 6: Source Code
//*******************************************************************

// 3-D Parallel FDTD code with CPML absorbing boundary conditions [2,3]

//*******************************************************************

#include<stdio.h>

#include<math.h>

#include<string.h>

#include<stdlib.h>

#include "mpi.h"

#include "MyMPI.h"

#include "omp.h"

#include "xmmintrin.h"

typedef __m128 Vec4f;

#define h_update_nonmagnetic(co0,h,co1,e1max,e1,co2,e2max,e2,xmm) do {

xmm = _mm_sub_ps(_mm_mul_ps(co0, h), _mm_sub_ps(_mm_mul_ps(co1,

_mm_sub_ps(e1max, e1)), _mm_mul_ps(co2, _mm_sub_ps(e2max, e2))));

} while (0)

#define e_update_nonelectric(co0,e,co1,h1,h1min,co2,h2,h2min,xmm) do {

xmm = _mm_add_ps(_mm_mul_ps(co0, e), _mm_sub_ps(_mm_mul_ps(co1,

_mm_sub_ps(h1, h1min)), _mm_mul_ps(co2, _mm_sub_ps(h2, h2min))));

} while (0)

#define e_update_nonelectric_pml_add(beta,pusai,co0,h1,h1min,e,cb,xmm) do {

pusai = _mm_add_ps(_mm_mul_ps(beta, pusai), _mm_mul_ps(co0,

_mm_sub_ps(h1, h1min)));

xmm = _mm_add_ps(e, _mm_mul_ps(cb, pusai));

} while (0)

#define e_update_nonelectric_pml_sub(beta,pusai,co0,h1,h1min,e,cb,xmm) do {

pusai = _mm_add_ps(_mm_mul_ps(beta, pusai), _mm_mul_ps(co0,

_mm_sub_ps(h1, h1min)));

xmm = _mm_sub_ps(e, _mm_mul_ps(cb, pusai));

} while (0)

#define h_update_nonmagnetic_pml_sub(beta,pusai,co0,e1max,e1,h,db,xmm) do {

pusai = _mm_add_ps(_mm_mul_ps(beta, pusai), _mm_mul_ps(co0,

_mm_sub_ps(e1max, e1)));\
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xmm = _mm_sub_ps(h, _mm_mul_ps(db, pusai));

} while (0)

#define h_update_nonmagnetic_pml_add(beta,pusai,co0,e1max,e1,h,db,xmm) do {\

pusai = _mm_add_ps(_mm_mul_ps(beta, pusai), _mm_mul_ps(co0,

_mm_sub_ps(e1max, e1)));

xmm = _mm_add_ps(h, _mm_mul_ps(db, pusai));

} while (0)

float PI = 3.141592653589793f;

float C0 = (float)2.99792458E+8;

float Mu0 = (float)( 4.0 * PI * 1.0E-7 );

float Eps0 = (float)( 1.0 / (Mu0 * C0 * C0) );

int i, j, k, n;

FILE* fp;

int time_steps = 100;

int save_steps = time_steps;

int nx= 119, ny = 79, nz = 79;

float ***ex, ***ey, ***ez, ***hx, ***hy, ***hz;

float *ex_tmp, *ey_tmp, *ez_tmp, *hx_tmp, *hy_tmp, *hz_tmp;

int low_tag;

float ***Ez_save;

float *Ez_save_tmp;

float ***pusai_eyz_X_MIN, *pusai_eyz_X_MIN_tmp;

float ***pusai_ezy_X_MIN, *pusai_ezy_X_MIN_tmp;

float ***pusai_hyz_X_MIN, *pusai_hyz_X_MIN_tmp;

float ***pusai_hzy_X_MIN, *pusai_hzy_X_MIN_tmp;

float ***pusai_exz_Y_MIN, *pusai_exz_Y_MIN_tmp;

float ***pusai_hxz_Y_MIN, *pusai_hxz_Y_MIN_tmp;

float ***pusai_ezx_Y_MIN, *pusai_ezx_Y_MIN_tmp;

float ***pusai_hzx_Y_MIN, *pusai_hzx_Y_MIN_tmp;

float ***pusai_exy_Z_MIN, *pusai_exy_Z_MIN_tmp;

float ***pusai_eyx_Z_MIN, *pusai_eyx_Z_MIN_tmp;

float ***pusai_hxy_Z_MIN, *pusai_hxy_Z_MIN_tmp;

float ***pusai_hyx_Z_MIN, *pusai_hyx_Z_MIN_tmp;

float ***pusai_eyz_X_MAX, *pusai_eyz_X_MAX_tmp;

float ***pusai_hyz_X_MAX, *pusai_hyz_X_MAX_tmp;

float ***pusai_ezy_X_MAX, *pusai_ezy_X_MAX_tmp;

float ***pusai_hzy_X_MAX, *pusai_hzy_X_MAX_tmp;

float ***pusai_exz_Y_MAX, *pusai_exz_Y_MAX_tmp;

float ***pusai_hxz_Y_MAX, *pusai_hxz_Y_MAX_tmp;

float ***pusai_ezx_Y_MAX, *pusai_ezx_Y_MAX_tmp;

float ***pusai_hzx_Y_MAX, *pusai_hzx_Y_MAX_tmp;

float ***pusai_exy_Z_MAX, *pusai_exy_Z_MAX_tmp;

float ***pusai_hxy_Z_MAX, *pusai_hxy_Z_MAX_tmp;

float ***pusai_eyx_Z_MAX, *pusai_eyx_Z_MAX_tmp;

float ***pusai_hyx_Z_MAX, *pusai_hyx_Z_MAX_tmp;

float *pEi_PML_Coeff, *pEj_PML_Coeff, *pEk_PML_Coeff;

float *pHi_PML_Coeff_M_Lossless, *pHj_PML_Coeff_M_Lossless,

*pHk_PML_Coeff_M_Lossless;
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float *pEi_Coeff, *pEj_Coeff, *pEk_Coeff;

float *pHi_Coeff_M_Lossless, *pHj_Coeff_M_Lossless,

*pHk_Coeff_M_Lossless;

//...................................................

// Declare enumeration types and initialize the parameters

//...................................................

enum {X_MIN, Y_MIN, Z_MIN, X_MAX, Y_MAX, Z_MAX};

int Index_E_Boundary[6], Index_H_Boundary[6];

int m_iNumOfLayers = 7;

//6-layer CPML

int BoundaryLayerNum[6];

int imin, imax, jmin, jmax, kmin, kmax;

int ishift, jshift, kshift;

float dx = 0.001f; //Input parameter

float dy = dx; //Input parameter

float dz = dx; //Input parameter

float dx_Inv = 1 / dx;

float dy_Inv = 1 / dy;

float dz_Inv = 1 / dz;

float ma = 1.0;

float m = 4;

float sigma_max = 0.75f;

float sgmax1 = (float)( sigma_max * (m + 1) / (150.0 * PI * dx) );

float sgmay1 = (float)( sigma_max * (m + 1) / (150.0 * PI * dy) );

float sgmaz1 = (float)( sigma_max * (m + 1) / (150.0 * PI * dz) );

float sgmax2 = (float)( sigma_max * (m + 1) / (150.0 * PI * dx) );

float sgmay2 = (float)( sigma_max * (m + 1) / (150.0 * PI * dy) );

float sgmaz2 = (float)( sigma_max * (m + 1) / (150.0 * PI * dz) );

float k_pml = 1.0;

float alpha_pml = 0.0;

float maxFreq_Source = 1e6;

float deltaT = (float)( 0.995 * 1.0 / (C0 * sqrt(1.0 / (dx * dx) +

1.0 (dy * dy) + 1.0 / (dz * dz))) );

float m_deltaT = deltaT;

float factor = PI * maxFreq_Source;

float alpha_pmlx1 = alpha_pml * Eps0 * factor;

float alpha_pmly1 = alpha_pml * Eps0 * factor;

float alpha_pmlz1 = alpha_pml * Eps0 * factor;

float alpha_pmlx2 = alpha_pml * Eps0 * factor;

float alpha_pmly2 = alpha_pml * Eps0 * factor;

float alpha_pmlz2 = alpha_pml * Eps0 * factor;

float k0_pmlx1 = k_pml;

float k0_pmly1 = k_pml;

float k0_pmlz1 = k_pml;

float k0_pmlx2 = k_pml;

float k0_pmly2 = k_pml;

float k0_pmlz2 = k_pml;
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//Holllow domain

float CA = 1.0;

float CB = deltaT / Eps0;

float DA = 1.0;

float DB = deltaT / Mu0;

float x, x1, x2;

float y, y_1, y2, z, z1, z2, sgma, temp, temp_ma;

float *K_PML_XGrid, *K_PML_YGrid, *K_PML_ZGrid,

*K_PML_XGrid_Inv,*K_PML_YGrid_Inv, *K_PML_ZGrid_Inv;

float *K_PML_XHalf, *K_PML_YHalf, *K_PML_ZHalf, *K_PML_XHalf_Inv,

*K_PML_YHalf_Inv, *K_PML_ZHalf_Inv;

float *Beta_PML_XGrid, *Beta_PML_YGrid, *Beta_PML_ZGrid,

*Beta_PML_XHalf, *Beta_PML_YHalf, *Beta_PML_ZHalf;

float *Alpha_PML_XGrid, *Alpha_PML_YGrid, *Alpha_PML_ZGrid,

*Alpha_PML_XHalf, *Alpha_PML_YHalf, *Alpha_PML_ZHalf;

int id, p, size, low_value, high_value;

int memory_size;

//int source_position_x = nx / 2, source_position_y = ny / 2,

source_position_z = nz / 2;

int source_position_x = (nx + 1) / 2, source_position_y = (ny + 1) / 2,

source_position_z = (nz + 1) / 2;

int source_owner, source_left_owner, source_right_owner;

int source_position_x_local;

MPI_Request req[2];

MPI_Status status[2];

MPI_Datatype new_dtype;

double elapsed_time;

float* memory_malloc_1D();

float*** memory_malloc_3D();

void initialize_array();

void initialize_CPML();

void output_Function();

void output_Parameters();

void compute_E();

void compute_E_PUSAI();

void compute_E_SSE();

void compute_E_PUSAI_SSE();

void compute_H();

void compute_H_PUSAI();

void compute_H_SSE();

void compute_H_PUSAI_SSE();

void compute();

void compute_MPI_PEC();

void compute_MPI_CPML();
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void compute_SSE_PEC();

void compute_SSE_CPML();

void transfer_H();

void transfer_E();

void source();

void add_source();

void data_collect();

void output_Ez();

void output_ElaspedTime();

int main( int argc, char* argv[] )

{

MPI_Init( &argc, &argv);

MPI_Comm_size( MPI_COMM_WORLD, &p );

MPI_Comm_rank( MPI_COMM_WORLD, &id );

size = BLOCK_SIZE( id, p, nx + 1 );

low_value = BLOCK_LOW( id, p, nx + 1 );

high_value = BLOCK_HIGH( id, p, nx + 1 );

source_owner = BLOCK_OWNER( source_position_x, p, nx + 1 );

source_left_owner = BLOCK_OWNER( source_position_x - 1, p, nx + 1 );

source_right_owner = BLOCK_OWNER( source_position_x + 1, p, nx + 1 );

source_right_owner = %d\n\n", source_left_owner, source_owner,

source_right_owner);

memory_size = size + 2;

source_position_x_local = source_position_x - low_value + 1;

Index_E_Boundary[X_MIN] = 1;

Index_E_Boundary[Y_MIN] = 1;

Index_E_Boundary[Z_MIN] = 1;

Index_E_Boundary[X_MAX] = nx - 1;

Index_E_Boundary[Y_MAX] = ny - 1;

Index_E_Boundary[Z_MAX] = nz - 1;

Index_H_Boundary[X_MIN] = 1;

Index_H_Boundary[Y_MIN] = 1;

Index_H_Boundary[Z_MIN] = 1;

Index_H_Boundary[X_MAX] = nx - 2;

Index_H_Boundary[Y_MAX] = ny - 2;

Index_H_Boundary[Z_MAX] = nz - 2;

BoundaryLayerNum[X_MIN] = 6;

BoundaryLayerNum[X_MAX] = 6;

BoundaryLayerNum[Y_MIN] = 6;

BoundaryLayerNum[Y_MAX] = 6;

BoundaryLayerNum[Z_MIN] = 6;

BoundaryLayerNum[Z_MAX] = 6;

initialize_array();

initialize_CPML();

//output_Parameters();
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MPI_Type_vector( 1, (ny + 1) * (nz + 1), (ny + 1) * (nz + 1),

MPI_FLOAT, &new_dtype );

MPI_Type_commit( &new_dtype );

compute();

MPI_Finalize();

}

float* memory_malloc_1D( float* array_name, int array_size, float

initialize_value )

{

//initialize_value

array_name = (float*)_aligned_malloc(sizeof(float)*array_size,16);

for( i = 0; i < array_size; i++)

{

array_name[i] = initialize_value;

}

return array_name;

}

float*** memory_malloc_3D( float*** array_name, float* array_name_tmp,

int array_size_x, int array_size_y, int array_size_z, float

initialize_value )

{

array_name_tmp = memory_malloc_1D( array_name_tmp, array_size_x *

array_size_y * array_size_z, initialize_value);

array_name = (float ***)_aligned_malloc(sizeof(float**)*array_size_x,16);

for( i = 0; i < array_size_x; i++)

{

array_name[i] = (float **)_aligned_malloc(sizeof(float*)*array_size_y,16);

for( j = 0; j < array_size_y; j++)

{

low_tag = i * array_size_y * array_size_z + j * array_size_z;

array_name[i][j] = &array_name_tmp[low_tag];

for( k = 0; k < array_size_z; k++)

{

array_name[i][j][k] = initialize_value;

}

}

}

return array_name;

}

void initialize_array()

{

while ((nz + 1) % 4 != 0)

{

nz ++;

}

ex = memory_malloc_3D( ex, ex_tmp, memory_size, ny+1, nz+1, 0.0);

ey = memory_malloc_3D( ey, ey_tmp, memory_size, ny+1, nz+1, 0.0);

ez = memory_malloc_3D( ez, ez_tmp, memory_size, ny+1, nz+1, 0.0);

hx = memory_malloc_3D( hx, hx_tmp, memory_size, ny+1, nz+1, 0.0);

hy = memory_malloc_3D( hy, hy_tmp, memory_size, ny+1, nz+1, 0.0);

hz = memory_malloc_3D( hz, hz_tmp, memory_size, ny+1, nz+1, 0.0);
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Ez_save=memory_malloc_3D( Ez_save,Ez_save_tmp,nx+1,ny+1,nz+1,0.0);

//^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

// pusai_MIN

//^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

//pusai_X_Direction

pusai_eyz_X_MIN = memory_malloc_3D( pusai_eyz_X_MIN,

pusai_eyz_X_MIN_tmp, m_iNumOfLayers+1, ny+1, nz+1, 0.0);

pusai_hyz_X_MIN = memory_malloc_3D( pusai_hyz_X_MIN,

pusai_hyz_X_MIN_tmp, m_iNumOfLayers+1, ny+1, nz+1, 0.0);

pusai_ezy_X_MIN = memory_malloc_3D( pusai_ezy_X_MIN,

pusai_ezy_X_MIN_tmp, m_iNumOfLayers+1, ny+1, nz+1, 0.0);

pusai_hzy_X_MIN = memory_malloc_3D( pusai_hzy_X_MIN,

pusai_hzy_X_MIN_tmp, m_iNumOfLayers+1, ny+1, nz+1, 0.0);

//pusai_Y_Direction

pusai_exz_Y_MIN = memory_malloc_3D( pusai_exz_Y_MIN,

pusai_exz_Y_MIN_tmp, memory_size, m_iNumOfLayers+1, nz+1, 0.0);

pusai_hxz_Y_MIN = memory_malloc_3D( pusai_hxz_Y_MIN,

pusai_hxz_Y_MIN_tmp, memory_size, m_iNumOfLayers+1, nz+1, 0.0);

pusai_ezx_Y_MIN = memory_malloc_3D( pusai_ezx_Y_MIN,

pusai_ezx_Y_MIN_tmp, memory_size, m_iNumOfLayers+1, nz+1, 0.0);

pusai_hzx_Y_MIN = memory_malloc_3D( pusai_hzx_Y_MIN,

pusai_hzx_Y_MIN_tmp, memory_size, m_iNumOfLayers+1, nz+1, 0.0);

//pusai_Z_Direction

pusai_exy_Z_MIN = memory_malloc_3D( pusai_exy_Z_MIN,

pusai_exy_Z_MIN_tmp, memory_size, ny+1, m_iNumOfLayers+1, 0.0);

pusai_hxy_Z_MIN = memory_malloc_3D( pusai_hxy_Z_MIN,

pusai_hxy_Z_MIN_tmp, memory_size, ny+1, m_iNumOfLayers+1, 0.0);

pusai_eyx_Z_MIN = memory_malloc_3D( pusai_eyx_Z_MIN,

pusai_eyx_Z_MIN_tmp, memory_size, ny+1, m_iNumOfLayers+1, 0.0);

pusai_hyx_Z_MIN = memory_malloc_3D( pusai_hyx_Z_MIN,

pusai_hyx_Z_MIN_tmp, memory_size, ny+1, m_iNumOfLayers+1, 0.0);

//^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

// pusai_MAX

//^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

//pusai_X_Direction

pusai_eyz_X_MAX = memory_malloc_3D( pusai_eyz_X_MAX,

pusai_eyz_X_MAX_tmp, m_iNumOfLayers+1, ny+1, nz+1, 0.0);

pusai_hyz_X_MAX = memory_malloc_3D( pusai_hyz_X_MAX,

pusai_hyz_X_MAX_tmp, m_iNumOfLayers+1, ny+1, nz+1, 0.0);

pusai_ezy_X_MAX = memory_malloc_3D( pusai_ezy_X_MAX,

pusai_ezy_X_MAX_tmp, m_iNumOfLayers+1, ny+1, nz+1, 0.0);

pusai_hzy_X_MAX = memory_malloc_3D( pusai_hzy_X_MAX,

pusai_hzy_X_MAX_tmp, m_iNumOfLayers+1, ny+1, nz+1, 0.0);

//pusai_Y_Direction

pusai_exz_Y_MAX = memory_malloc_3D( pusai_exz_Y_MAX,

pusai_exz_Y_MAX_tmp, memory_size, m_iNumOfLayers+1, nz+1, 0.0);

pusai_hxz_Y_MAX = memory_malloc_3D( pusai_hxz_Y_MAX,

pusai_hxz_Y_MAX_tmp, memory_size, m_iNumOfLayers+1, nz+1, 0.0);

pusai_ezx_Y_MAX = memory_malloc_3D( pusai_ezx_Y_MAX,

pusai_ezx_Y_MAX_tmp, memory_size, m_iNumOfLayers+1, nz+1, 0.0);

pusai_hzx_Y_MAX = memory_malloc_3D( pusai_hzx_Y_MAX,

pusai_hzx_Y_MAX_tmp, memory_size, m_iNumOfLayers+1, nz+1, 0.0);
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//pusai_Z_Direction

pusai_exy_Z_MAX = memory_malloc_3D( pusai_exy_Z_MAX,

pusai_exy_Z_MAX_tmp, memory_size, ny+1, m_iNumOfLayers+1, 0.0);

pusai_hxy_Z_MAX = memory_malloc_3D( pusai_hxy_Z_MAX,

pusai_hxy_Z_MAX_tmp, memory_size, ny+1, m_iNumOfLayers+1, 0.0);

pusai_eyx_Z_MAX = memory_malloc_3D( pusai_eyx_Z_MAX,

pusai_eyx_Z_MAX_tmp, memory_size, ny+1, m_iNumOfLayers+1, 0.0);

pusai_hyx_Z_MAX = memory_malloc_3D( pusai_hyx_Z_MAX,

pusai_hyx_Z_MAX_tmp, memory_size, ny+1, m_iNumOfLayers+1, 0.0);

//CPL coefficients

K_PML_XGrid = memory_malloc_1D( K_PML_XGrid, memory_size, 1.0);

K_PML_YGrid = memory_malloc_1D( K_PML_YGrid, ny + 1, 1.0);

K_PML_ZGrid = memory_malloc_1D( K_PML_ZGrid, nz + 1, 1.0);

K_PML_XGrid_Inv = memory_malloc_1D(K_PML_XGrid_Inv,memory_size,1.0);

K_PML_YGrid_Inv = memory_malloc_1D( K_PML_YGrid_Inv, ny + 1, 1.0);

K_PML_ZGrid_Inv = memory_malloc_1D( K_PML_ZGrid_Inv, nz + 1, 1.0);

K_PML_XHalf = memory_malloc_1D( K_PML_XHalf, memory_size, 1.0);

K_PML_YHalf = memory_malloc_1D( K_PML_YHalf, ny + 1, 1.0);

K_PML_ZHalf = memory_malloc_1D( K_PML_ZHalf, nz + 1, 1.0);

K_PML_XHalf_Inv = memory_malloc_1D(K_PML_XHalf_Inv,memory_size,1.0);

K_PML_YHalf_Inv = memory_malloc_1D( K_PML_YHalf_Inv, ny + 1, 1.0);

K_PML_ZHalf_Inv = memory_malloc_1D( K_PML_ZHalf_Inv, nz + 1, 1.0);

Beta_PML_XGrid = memory_malloc_1D( Beta_PML_XGrid, memory_size, 0.0);

Beta_PML_YGrid = memory_malloc_1D( Beta_PML_YGrid, ny + 1, 0.0);

Beta_PML_ZGrid = memory_malloc_1D( Beta_PML_ZGrid, nz + 1, 0.0);

Beta_PML_XHalf = memory_malloc_1D( Beta_PML_XHalf, memory_size, 0.0);

Beta_PML_YHalf = memory_malloc_1D( Beta_PML_YHalf, ny + 1, 0.0);

Beta_PML_ZHalf = memory_malloc_1D( Beta_PML_ZHalf, nz + 1, 0.0);

Alpha_PML_XGrid = memory_malloc_1D(Alpha_PML_XGrid,memory_size,0.0);

Alpha_PML_YGrid = memory_malloc_1D(Alpha_PML_YGrid, ny + 1, 0.0);

Alpha_PML_ZGrid = memory_malloc_1D(Alpha_PML_ZGrid, nz + 1, 0.0);

Alpha_PML_XHalf = memory_malloc_1D(Alpha_PML_XHalf,memory_size,0.0);

Alpha_PML_YHalf = memory_malloc_1D( Alpha_PML_YHalf, ny + 1, 0.0);

Alpha_PML_ZHalf = memory_malloc_1D( Alpha_PML_ZHalf, nz + 1, 0.0);

pEi_PML_Coeff = memory_malloc_1D( pEi_PML_Coeff, memory_size, 0.0);

pEj_PML_Coeff = memory_malloc_1D( pEj_PML_Coeff, ny+1, 0.0);

pEk_PML_Coeff = memory_malloc_1D( pEk_PML_Coeff, nz+1, 0.0);

pHi_PML_Coeff_M_Lossless =

memory_malloc_1D( pHi_PML_Coeff_M_Lossless, memory_size, 0.0);

pHj_PML_Coeff_M_Lossless =

memory_malloc_1D( pHj_PML_Coeff_M_Lossless, ny+1, 0.0);

pHk_PML_Coeff_M_Lossless =

memory_malloc_1D( pHk_PML_Coeff_M_Lossless, nz+1, 0.0);

pEi_Coeff = memory_malloc_1D( pEi_Coeff, memory_size, 0.0);

pEj_Coeff = memory_malloc_1D( pEj_Coeff, ny+1, 0.0);

pEk_Coeff = memory_malloc_1D( pEk_Coeff, nz+1, 0.0);

pHi_Coeff_M_Lossless = memory_malloc_1D( pHi_Coeff_M_Lossless,

memory_size, 0.0);

pHj_Coeff_M_Lossless=memory_malloc_1D(pHj_Coeff_M_Lossless,ny+1,0.0);

pHk_Coeff_M_Lossless=memory_malloc_1D(pHk_Coeff_M_Lossless,nz+1,0.0);

}
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void initialize_CPML()

{

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// E-field coefficients

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//X_MIN

if( id == 0)

{

x1 = 2;

x2 = 2 + BoundaryLayerNum[X_MIN];

for( i = 2; i < 2 + BoundaryLayerNum[X_MIN]; i++)

{

x = i;

temp = pow( fabs(x2 - x) / BoundaryLayerNum[X_MIN], m);

factor£:ËùÒÔ temp_ma == 0

temp_ma = alpha_pmlx1 * pow( fabs(x - x1) /

BoundaryLayerNum[X_MIN], ma);

K_PML_XGrid[i] = 1.0 + (k0_pmlx1 - 1.0) * temp;

sgma = sgmax1 * temp;

K_PML_XGrid_Inv[i] = 1.0 / K_PML_XGrid[i];

Beta_PML_XGrid[i] = exp(-(sgma / K_PML_XGrid[i] + temp_ma) * m_deltaT / Eps0);

Alpha_PML_XGrid[i] = (Beta_PML_XGrid[i] - 1.0) * sgma /

((sgma + K_PML_XGrid[i] * temp_ma) * K_PML_XGrid[i]);

}

}

//X_MAX

if( id == p - 1 )

{

x1 = memory_size - 3 - BoundaryLayerNum[X_MAX];

x2 = memory_size - 3;

for (i = memory_size - 3 - BoundaryLayerNum[X_MAX] + 1; i <=

memory_size - 3; i ++)

{

x = i;

temp = pow( fabs(x - x1) / BoundaryLayerNum[X_MAX], m);

temp_ma = alpha_pmlx2 * pow( fabs(x2 - x) /

BoundaryLayerNum[X_MAX], ma);

K_PML_XGrid[i] = 1.0 + (k0_pmlx2 - 1.0) * temp;

sgma = sgmax2 * temp;

K_PML_XGrid_Inv[i] = 1.0 / K_PML_XGrid[i];

Beta_PML_XGrid[i] = exp(-(sgma / K_PML_XGrid[i] + temp_ma) *

m_deltaT / Eps0);

Alpha_PML_XGrid[i] = (Beta_PML_XGrid[i] - 1.0) * sgma /

((sgma + K_PML_XGrid[i] * temp_ma) * K_PML_XGrid[i]);

}

}

//Y_MIN

y_1 = Index_E_Boundary[Y_MIN];
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y2 = Index_E_Boundary[Y_MIN] + BoundaryLayerNum[Y_MIN];

for (j = Index_E_Boundary[Y_MIN]; j < Index_E_Boundary[Y_MIN] +

BoundaryLayerNum[Y_MIN]; j ++)

{

y = j;

temp = pow( fabs(y2 - y ) / BoundaryLayerNum[Y_MIN], m);

temp_ma = alpha_pmly1 * pow( fabs(y - y_1) / BoundaryLayerNum[Y_MIN], ma);

K_PML_YGrid[j] = 1.0 + (k0_pmly1 - 1.0) * temp;

sgma = sgmay1 * temp;

K_PML_YGrid_Inv[j] = 1.0 / K_PML_YGrid[j];

Beta_PML_YGrid[j] = exp(-(sgma / K_PML_YGrid[j] + temp_ma) *

m_deltaT / Eps0);

Alpha_PML_YGrid[j] = (Beta_PML_YGrid[j] - 1.0) * sgma / ((sgma +

K_PML_YGrid[j] * temp_ma) * K_PML_YGrid[j]);

}

// Y_MAX

y_1 = Index_E_Boundary[Y_MAX] - BoundaryLayerNum[Y_MAX];

y2 = Index_E_Boundary[Y_MAX];

for (j = Index_E_Boundary[Y_MAX] - BoundaryLayerNum[Y_MAX] + 1;

j <= Index_E_Boundary[Y_MAX]; j ++)

{

y = j;

temp = pow( fabs(y - y_1) / BoundaryLayerNum[Y_MAX], m);

temp_ma = alpha_pmly2 * pow( fabs( y2 - y ) /

BoundaryLayerNum[Y_MAX], ma);

K_PML_YGrid[j] = 1.0 + (k0_pmly2 - 1.0) * temp;

sgma = sgmay2 * temp;

K_PML_YGrid_Inv[j] = 1.0 / K_PML_YGrid[j];

Beta_PML_YGrid[j] = exp(-(sgma / K_PML_YGrid[j] + temp_ma) *

m_deltaT / Eps0);

Alpha_PML_YGrid[j] = (Beta_PML_YGrid[j] - 1.0) * sgma / ((sgma +

K_PML_YGrid[j] * temp_ma) * K_PML_YGrid[j]);

}

// Z_MIN

z1 = Index_E_Boundary[Z_MIN];

z2 = Index_E_Boundary[Z_MIN] + BoundaryLayerNum[Z_MIN];

for (k = Index_E_Boundary[Z_MIN]; k < Index_E_Boundary[Z_MIN] +

BoundaryLayerNum[Z_MIN]; k ++)

{

z = k;

temp = pow( fabs(z2 - z) / BoundaryLayerNum[Z_MIN], m);

temp_ma = alpha_pmlz1*pow( fabs(z - z1)/BoundaryLayerNum[Z_MIN],ma);

K_PML_ZGrid[k] = 1.0 + (k0_pmlz1 - 1.0) * temp;

sgma = sgmaz1 * temp;

K_PML_ZGrid_Inv[k = 1.0/K_PML_ZGrid[k];

Beta_PML_ZGrid[k]=exp(-(sgma/K_PML_ZGrid[k]+temp_ma)*m_deltaT/Eps0);

Alpha_PML_ZGrid[k] = (Beta_PML_ZGrid[k] - 1.0) * sgma / ((sgma +

K_PML_ZGrid[k] * temp_ma) * K_PML_ZGrid[k]);

}

// Z_MAX

z1 = Index_E_Boundary[Z_MAX] - BoundaryLayerNum[Z_MAX];

z2 = Index_E_Boundary[Z_MAX];
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for(k = Index_E_Boundary[Z_MAX] - BoundaryLayerNum[Z_MAX] + 1; k <=

Index_E_Boundary[Z_MAX]; k ++)

{

Z = k;

temp = pow( fabs(z - z1) / BoundaryLayerNum[Z_MAX], m);

temp_ma = alpha_pmly2 * pow( fabs(z2 - z) /

BoundaryLayerNum[Z_MAX], ma);

K_PML_ZGrid[k] = 1.0 + (k0_pmlz2 - 1.0) * temp;

sgma = sgmaz2 * temp;

K_PML_ZGrid_Inv[k] = 1.0 / K_PML_ZGrid[k];

Beta_PML_ZGrid[k] = exp(-(sgma / K_PML_ZGrid[k] + temp_ma) *

m_deltaT / Eps0);

Alpha_PML_ZGrid[k] = (Beta_PML_ZGrid[k] - 1.0) * sgma / ((sgma +

K_PML_ZGrid[k] * temp_ma) * K_PML_ZGrid[k]);

}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// H-field coefficients

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// X_MIN

if( id == 0 )

{

x1 = 2;

x2 = 2 + BoundaryLayerNum[X_MIN];

for (i = 2; i < 2 + BoundaryLayerNum[X_MIN]; i ++)

{

x = i + 0.5;

temp = pow( fabs(x2 - x) / BoundaryLayerNum[X_MIN], m);

BoundaryLayerNum[X_MIN], ma);

K_PML_XHalf[i] = 1.0 + (k0_pmlx1 - 1.0) * temp;

sgma = sgmax1 * temp;

K_PML_XHalf_Inv[i] = 1.0 / K_PML_XHalf[i];

Beta_PML_XHalf[i]=exp(-sgma/K_PML_XHalf[i]+temp_ma)*m_deltaT/Eps0);

Alpha_PML_XHalf[i] = (Beta_PML_XHalf[i] - 1.0) * sgma / ((sgma +

K_PML_XHalf[i] * temp_ma) * K_PML_XHalf[i]);

}

}

// X_MAX

if( id == p - 1 )

{

x1 = memory_size - 4 - BoundaryLayerNum[X_MAX] + 1;

x2 = memory_size - 4;

for (i = memory_size - 4 - BoundaryLayerNum[X_MAX] + 1; i <=

memory_size - 4; i ++)

{

x = i + 0.5;

temp = pow(fabs(x-x1)/ BoundaryLayerNum[X_MAX],m);

temp_ma = alpha_pmlx2 * pow( fabs(x2 - x) /

BoundaryLayerNum[X_MAX], ma);

K_PML_XHalf[i] = 1.0 + (k0_pmlx2 - 1.0) * temp;

sgma = sgmax2 * temp;

K_PML_XHalf_Inv[i] = 1.0 / K_PML_XHalf[i];
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Beta_PML_XHalf[i] = exp(-(sgma / K_PML_XHalf[i] + temp_ma ) *

m_deltaT / Eps0);

Alpha_PML_XHalf[i] = (Beta_PML_XHalf[i] - 1.0) * sgma /

((sgma + K_PML_XHalf[i] * temp_ma) * K_PML_XHalf[i]);

}

}

// Y_MIN

y_1 = Index_H_Boundary[Y_MIN];

y2 = Index_H_Boundary[Y_MIN] + BoundaryLayerNum[Y_MIN];

for(j = Index_H_Boundary[Y_MIN]; j < Index_H_Boundary[Y_MIN] +

BoundaryLayerNum[Y_MIN]; j++)

{

y = j + 0.5;

temp = pow( fabs(y2 - y) / BoundaryLayerNum[Y_MIN], m);

temp_ma = alpha_pmly1 * pow( fabs(y - y_1) / BoundaryLayerNum[Y_MIN], ma);

K_PML_YHalf[j] = 1.0 + (k0_pmly1 - 1.0) * temp;

sgma = sgmay1 * temp;

K_PML_YHalf_Inv[j] = 1.0 / K_PML_YHalf[j];

Beta_PML_YHalf[j] = exp(-(sgma / K_PML_YHalf[j] + temp_ma) *

m_deltaT / Eps0);

Alpha_PML_YHalf[j] = (Beta_PML_YHalf[j] - 1.0) * sgma / ((sgma +

K_PML_YHalf[j] * temp_ma) * K_PML_YHalf[j]);

}

// Y_MAX

y_1 = Index_H_Boundary[Y_MAX] - BoundaryLayerNum[Y_MAX] + 1;

y2 = Index_H_Boundary[Y_MAX];

for (j = Index_H_Boundary[Y_MAX] - BoundaryLayerNum[Y_MAX] + 1;

j <= Index_H_Boundary[Y_MAX]; j ++)

{

y = j + 0.5;

temp = pow( fabs(y - y_1) / BoundaryLayerNum[Y_MAX], m);

temp_ma = alpha_pmly2*pow(fabs(y2-y)/BoundaryLayerNum[Y_MAX],ma);

K_PML_YHalf[j] = 1.0 + (k0_pmly2 - 1.0) * temp;

sgma = sgmay2 * temp;

K_PML_YHalf_Inv[j] = 1.0 / K_PML_YHalf[j];

Beta_PML_YHalf[j] = exp(-(sgma / K_PML_YHalf[j] + temp_ma) *

m_deltaT / Eps0);

Alpha_PML_YHalf[j] = (Beta_PML_YHalf[j] - 1.0) * sgma / ((sgma +

K_PML_YHalf[j] * temp_ma) * K_PML_YHalf[j]);

}

// Z_MIN

z1 = Index_H_Boundary[Z_MIN];

z2 = Index_H_Boundary[Z_MIN] + BoundaryLayerNum[Z_MIN];

for (k = Index_H_Boundary[Z_MIN]; k < Index_H_Boundary[Z_MIN] +

BoundaryLayerNum[Z_MIN]; k ++)

{

z = k + 0.5;

temp = pow( fabs(z2 - z) / BoundaryLayerNum[Z_MIN], m);

temp_ma = alpha_pmlz1*pow(fabs(z-z1)/BoundaryLayerNum[Z_MIN], ma);

K_PML_ZHalf[k] = 1.0 + (k0_pmlz1 - 1.0) * temp;

sgma = sgmaz1 * temp;

K_PML_ZHalf_Inv[k] = 1.0 / K_PML_ZHalf[k];

Beta_PML_ZHalf[k] = exp(-(sgma / K_PML_ZHalf[k] + temp_ma) *

m_deltaT / Eps0);
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Alpha_PML_ZHalf[k] = (Beta_PML_ZHalf[k] - 1.0) * sgma / ((sgma +

K_PML_ZHalf[k] * temp_ma) * K_PML_ZHalf[k]);

}

// Z_MAX

z1 = Index_H_Boundary[Z_MAX] - BoundaryLayerNum[Z_MAX] + 1;

z2 = Index_H_Boundary[Z_MAX];

for (k = Index_H_Boundary[Z_MAX] - BoundaryLayerNum[Z_MAX] + 1;

k <= Index_H_Boundary[Z_MAX]; k ++)

{

z = k + 0.5;

temp = pow( fabs(z - z1) / BoundaryLayerNum[Z_MAX], m);

temp_ma = alpha_pmlz2*pow( fabs(z2-z)/BoundaryLayerNum[Z_MAX], ma);

K_PML_ZHalf[k] = 1.0 + (k0_pmlz2 - 1.0) * temp;

sgma = sgmaz2 * temp;

K_PML_ZHalf_Inv[k] = 1.0 / K_PML_ZHalf[k];

Beta_PML_ZHalf[k] = exp(-(sgma / K_PML_ZHalf[k] + temp_ma )

* m_deltaT / Eps0);

Alpha_PML_ZHalf[k] = (Beta_PML_ZHalf[k] - 1.0) * sgma /

((sgma + K_PML_ZHalf[k] * temp_ma) * K_PML_ZHalf[k]);

}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//Simplified coefficients

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//pusai

for (i = 1; i <= memory_size - 2; i ++)

{

pEi_PML_Coeff[i] = Alpha_PML_XGrid[i] / dx;

}

for (j = Index_E_Boundary[Y_MIN]; j <= Index_E_Boundary[Y_MAX]; j ++)

{

pEj_PML_Coeff[j] = Alpha_PML_YGrid[j] / dy;

}

for (k = Index_E_Boundary[Z_MIN]; k <= Index_E_Boundary[Z_MAX]; k ++)

{

pEk_PML_Coeff[k] = Alpha_PML_ZGrid[k] / dz;

}

for (i = 1; i <= memory_size - 2; i ++)

{

pHi_PML_Coeff_M_Lossless[i] = Alpha_PML_XHalf[i] / dx;

}

for (j = Index_H_Boundary[Y_MIN]; j <= Index_H_Boundary[Y_MAX] + 1; j ++)

{

pHj_PML_Coeff_M_Lossless[j] = Alpha_PML_YHalf[j] / dy;

}

for (k = Index_H_Boundary[Z_MIN]; k <= Index_H_Boundary[Z_MAX] + 1; k ++)

{

pHk_PML_Coeff_M_Lossless[k] = Alpha_PML_ZHalf[k] / dz;

}
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//domain

for (i = 1; i <= memory_size - 2; i ++)

{

pEi_Coeff[i] = CB * K_PML_XGrid_Inv[i] / dx;

}

for (j = Index_E_Boundary[Y_MIN]; j <= Index_E_Boundary[Y_MAX]; j ++)

{

pEj_Coeff[j] = CB * K_PML_YGrid_Inv[j] / dy;

}

for (k = Index_E_Boundary[Z_MIN]; k <= Index_E_Boundary[Z_MAX]; k ++)

{

pEk_Coeff[k] = CB * K_PML_ZGrid_Inv[k] / dz;

}

for (i = 1; i <= memory_size - 2; i ++)

{

pHi_Coeff_M_Lossless[i] = DB * K_PML_XHalf_Inv[i] / dx;

}

for (j = Index_H_Boundary[Y_MIN]; j <= Index_H_Boundary[Y_MAX] + 1; j ++)

{

pHj_Coeff_M_Lossless[j] = DB * K_PML_YHalf_Inv[j] / dy;

}

for (k = Index_H_Boundary[Z_MIN]; k <= Index_H_Boundary[Z_MAX] + 1; k ++)

{

pHk_Coeff_M_Lossless[k] = DB * K_PML_ZHalf_Inv[k] / dz;

}

}

void compute()

{

MPI_Barrier(MPI_COMM_WORLD);

elapsed_time = - MPI_Wtime();

for( n = 1; n <= time_steps; n++)

{

//PEC boundary condition for regular FDTD update

compute_MPI_PEC();

//PML boundary condition for regular FDTD update

//compute_MPI_CPML();

// PEC boundary condition for SSE FDTD update

//compute_SSE_PEC();

//PEC boundary condition for SSE FDTD update

//compute_SSE_CPML();

}

data_collect();

elapsed_time += MPI_Wtime();

if( id == 0 )

{

output_Ez();
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output_ElaspedTime();

}

}

void output_ElaspedTime()

{

fp = fopen("output\\elapsed_time ","a");

ny + 1, nz + 1, elapsed_time );

fprintf(fp,"MPI + OpenMP + PML: %d Time steps, %d Process, %d * %d * %d,

number of grids, Time: %f\n", time_steps, p, nx + 1, ny + 1, nz + 1,

elapsed_time );

fclose(fp);

}

void compute_MPI_PEC()

{

compute_H();

transfer_H();

compute_E();

source();

transfer_E();

}

void compute_MPI_CPML()

{

compute_H_PUSAI();

transfer_H();

compute_E_PUSAI();

source();

transfer_E();

}

void compute_SSE_PEC()

{

compute_H_SSE();

transfer_H();

compute_E_SSE();

source();

transfer_E();

}

void compute_SSE_CPML()

{

compute_H_PUSAI_SSE();

transfer_H();

compute_E_PUSAI_SSE();

source();

transfer_E();

}

void compute_H()

{

int thread_num, num_threads;

#pragma omp parallel private(num_threads, thread_num)

{
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thread_num = omp_get_thread_num();

num_threads = omp_get_num_threads();

int i, j, k;

imin = 1;

imax = memory_size - 2;

jmin = Index_H_Boundary[Y_MIN];

jmax = Index_H_Boundary[Y_MAX] + 1;

kmin = Index_H_Boundary[Z_MIN];

kmax = Index_H_Boundary[Z_MAX] + 1;

float imaxf = (float)imax / (float)num_threads;

for (i = imin + (int)((float)thread_num * imaxf); i <=

(int)((float)(thread_num + 1) * imaxf); i ++)

{

for( j = jmin; j <= jmax; j++)

{

for( k = kmin; k <= kmax; k ++ )

{

hx[i][j][k] = DA * hx[i][j][k] - ( pHj_Coeff_M_Lossless[j]

* ( ez[i][j+1][k] - ez[i][j][k] ) –

pHk_Coeff_M_Lossless[k] * ( ey[i][j][k+1] -

ey[i][j][k] ) );

hy[i][j][k] = DA * hy[i][j][k] - ( pHk_Coeff_M_Lossless[k]

* ( ex[i][j][k+1] - ex[i][j][k] ) - pHi_Coeff_M_Lossless[i]

* ( ez[i+1][j][k] - ez[i][j][k] ) );

hz[i][j][k] = DA * hz[i][j][k] - ( pHi_Coeff_M_Lossless[i]

* ( ey[i+1][j][k] - ey[i][j][k] ) - pHj_Coeff_M_Lossless[j]

* ( ex[i][j+1][k] - ex[i][j][k] ) );

}

}

}

}

}

void compute_H_PUSAI()

{

int thread_num, num_threads;

#pragma omp parallel private(num_threads, thread_num)

{

thread_num = omp_get_thread_num();

num_threads = omp_get_num_threads();

int i, j, k;

imin = 1;

imax = memory_size - 2;

jmin = Index_H_Boundary[Y_MIN];

jmax = Index_H_Boundary[Y_MAX] + 1;

kmin = Index_H_Boundary[Z_MIN];

kmax = Index_H_Boundary[Z_MAX] + 1;

float imaxf = (float)imax / (float)num_threads;
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for (i = imin + (int)((float)thread_num * imaxf);

i <= (int)((float)(thread_num + 1) * imaxf); i ++)

{

for( j = jmin; j <= jmax; j++)

{

for( k = kmin; k <= kmax; k ++ )

{

hx[i][j][k] = DA * hx[i][j][k] -

( pHj_Coeff_M_Lossless[j] * ( ez[i][j+1][k] -

ez[i][j][k] ) - pHk_Coeff_M_Lossless[k] *

( ey[i][j][k+1] - ey[i][j][k] ) );

hy[i][j][k] = DA * hy[i][j][k] -

( pHk_Coeff_M_Lossless[k] * ( ex[i][j][k+1] -

ex[i][j][k] ) - pHi_Coeff_M_Lossless[i] *

( ez[i+1][j][k] - ez[i][j][k] ) );

hz[i][j][k] = DA * hz[i][j][k] -

( pHi_Coeff_M_Lossless[i] * ( ey[i+1][j][k] -

ey[i][j][k] ) - pHj_Coeff_M_Lossless[j]

* ( ex[i][j+1][k] - ex[i][j][k] ) );

//pusai_Z_MIN

if( (k >= Index_H_Boundary[Z_MIN]) && ( k <= Index_H_Boundary

[Z_MIN] + BoundaryLayerNum[Z_MIN] - 1) )

{

pusai_hxy_Z_MIN[i][j][k] = Beta_PML_ZHalf[k] *

pusai_hxy_Z_MIN[i][j][k] + pHk_PML_Coeff_M_Lossless[k]

* ( ey[i][j][k+1] - ey[i][j][k] );

hx[i][j][k] = hx[i][j][k] + DB *

pusai_hxy_Z_MIN[i][j][k];

pusai_hyx_Z_MIN[i][j][k] = Beta_PML_ZHalf[k]

* pusai_hyx_Z_MIN[i][j][k] + pHk_PML_Coeff_M_Lossless[k]

* ( ex[i][j][k+1] - ex[i][j][k] );

hy[i][j][k] = hy[i][j][k] - DB *

pusai_hyx_Z_MIN[i][j][k];

}

//pusai_Z_MAX

if( (k >= Index_H_Boundary[Z_MAX] -

BoundaryLayerNum[Z_MAX] + 1 ) &&

( k <= Index_H_Boundary[Z_MAX]) )

{

kshift = Index_H_Boundary[Z_MAX] -

BoundaryLayerNum[Z_MAX] + 1;

pusai_hxy_Z_MAX[i][j][k-kshift] = Beta_PML_ZHalf[k]

* pusai_hxy_Z_MAX[i][j][k-kshift] +

pHk_PML_Coeff_M_Lossless[k]

* ( ey[i][j][k+1] - ey[i][j][k] );
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hx[i][j][k] = hx[i][j][k] + DB *

pusai_hxy_Z_MAX[i][j][k-kshift];

pusai_hyx_Z_MAX[i][j][k-kshift] = Beta_PML_ZHalf[k]

* pusai_hyx_Z_MAX[i][j][k-kshift] +

pHk_PML_Coeff_M_Lossless[k] * ( ex[i][j][k+1]

- ex[i][j][k] );

hy[i][j][k] = hy[i][j][k] - DB *

pusai_hyx_Z_MAX[i][j][k-kshift];

}

}

//pusai_Y_MIN

if( j >= Index_H_Boundary[Y_MIN] && j <=

(Index_H_Boundary[Y_MIN]+BoundaryLayerNum[Y_MIN]-1))

{

for( k = kmin; k <= kmax; k++)

{

pusai_hxz_Y_MIN[i][j][k] = Beta_PML_YHalf[j]

* pusai_hxz_Y_MIN[i][j][k] +

pHj_PML_Coeff_M_Lossless[j] * ( ez[i][j+1][k] -

ez[i][j][k] );

hx[i][j][k] = hx[i][j][k] - DB *

pusai_hxz_Y_MIN[i][j][k];

pusai_hzx_Y_MIN[i][j][k] = Beta_PML_YHalf[j] *

pusai_hzx_Y_MIN[i][j][k] +

pHj_PML_Coeff_M_Lossless[j] * ( ex[i][j+1][k] -

ex[i][j][k] );

hz[i][j][k] = hz[i][j][k] + DB *

pusai_hzx_Y_MIN[i][j][k];

}

}

//pusai_Y_MAX

if( j >= (Index_H_Boundary[Y_MAX] -

BoundaryLayerNum[Y_MAX] + 1) && j <=

Index_H_Boundary[Y_MAX] )

{

jshift = Index_H_Boundary[Y_MAX] - BoundaryLayerNum[Y_MAX] + 1;

for( k = kmin; k <= kmax; k++)

{

pusai_hxz_Y_MAX[i][j-jshift][k] = Beta_PML_YHalf[j]

* pusai_hxz_Y_MAX[i][j-jshift][k] +

pHj_PML_Coeff_M_Lossless[j] * ( ez[i][j+1][k] -

ez[i][j][k] );

hx[i][j][k] = hx[i][j][k] - DB *

pusai_hxz_Y_MAX[i][j-jshift][k];

pusai_hzx_Y_MAX[i][j-jshift][k] = Beta_PML_YHalf[j]

* pusai_hzx_Y_MAX[i][j-jshift][k] +

pHj_PML_Coeff_M_Lossless[j] * ( ex[i][j+1][k] -

ex[i][j][k] );
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hz[i][j][k] = hz[i][j][k] + DB *

pusai_hzx_Y_MAX[i][j-jshift][k];

}

}

}

//pusai_X_MIN

if( i >= 2 && i <= ( 2 + BoundaryLayerNum[X_MIN] - 1 ) )

{

if( id == 0)

{

for( j = jmin; j <= jmax; j++)

{

for( k = kmin; k <= kmax;k++)

{

pusai_hyz_X_MIN[i][j][k] = Beta_PML_XHalf[i] *

pusai_hyz_X_MIN[i][j][k] +

pHi_PML_Coeff_M_Lossless[i] * ( ez[i+1][j][k] -

ez[i][j][k] );

hy[i][j][k] = hy[i][j][k] + DB *

pusai_hyz_X_MIN[i][j][k];

pusai_hzy_X_MIN[i][j][k] = Beta_PML_XHalf[i] *

pusai_hzy_X_MIN[i][j][k] +

pHi_PML_Coeff_M_Lossless[i] *

( ey[i+1][j][k] - ey[i][j][k] );

hz[i][j][k] = hz[i][j][k] - DB *

pusai_hzy_X_MIN[i][j][k];

}

}

}

}

//pusai_X_MAX

if( i >= ( memory_size - 4 - BoundaryLayerNum[X_MAX] + 1 )

&& i <= memory_size - 4 )

{

if( id == p - 1 )

{

ishift = memory_size - 4 - BoundaryLayerNum[X_MAX] + 1;

for( j = jmin; j <= jmax; j++)

{

for( k = kmin; k <= kmax; k++)

{

pusai_hyz_X_MAX[i-ishift][j][k] = Beta_PML_XHalf[i]

* pusai_hyz_X_MAX[i-ishift][j][k] +

pHi_PML_Coeff_M_Lossless[i] * ( ez[i+1][j][k]

- ez[i][j][k] );

hy[i][j][k] = hy[i][j][k] + DB *

pusai_hyz_X_MAX[i-ishift][j][k];

pusai_hzy_X_MAX[i-ishift][j][k] = Beta_PML_XHalf[i]

* pusai_hzy_X_MAX[i-ishift][j][k] +

pHi_PML_Coeff_M_Lossless[i] * ( ey[i+1][j][k] -

ey[i][j][k] );
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hz[i][j][k] = hz[i][j][k] - DB *

pusai_hzy_X_MAX[i-ishift][j][k];

}

}

}

}

}

}

}

void compute_H_SSE()

{

int thread_num, num_threads;

#pragma omp parallel private(num_threads, thread_num)

{

thread_num = omp_get_thread_num();

num_threads = omp_get_num_threads();

int i, j, k, vk;

imin = 1;

imax = memory_size - 2;

jmin = Index_H_Boundary[Y_MIN];

jmax = Index_H_Boundary[Y_MAX] + 1;

kmin = Index_H_Boundary[Z_MIN];

kmax = Index_H_Boundary[Z_MAX] + 1;

float imaxf = (float)imax / (float)num_threads;

int vkmax = kmax >> 2;

Vec4f xmm0, xmm1, xmm2;

//0x0: false, %doutput is 0

__declspec( align( 16 ) ) int mask1[4] = {0x0, 0x0, 0x0, 0x0},

mask2[4] = {0x0, 0x0, 0x0, 0x0};

Vec4f *pMask1 = (Vec4f *)&mask1;

Vec4f *pMask2 = (Vec4f *)&mask2;

// setup mask

int r = (kmax + 1) % 4;

if (r == 0) r = 4;

for (i = 0; i < r - 1; i ++)

{

mask1[i] = mask2[i] = 0xFFFFFFFF;

}

mask2[i] = 0xFFFFFFFF;

Vec4f *vhx, *vhy, *vhz;

Vec4f *vex, vex_max_hy, *vex_max_hz, *vey, vey_max_hx,

*vey_max_hz, *vez, *vez_max_hx, *vez_max_hy;

Vec4f vpHi_Coeff_M_Lossless, vpHj_Coeff_M_Lossless,
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vpHk_Coeff_M_Lossless;

Vec4f vDA = _mm_load1_ps( &DA );

for (i = imin + (int)((float)thread_num * imaxf); i <=

(int)((float)(thread_num + 1) * imaxf); i ++)

{

vpHi_Coeff_M_Lossless =

_mm_load1_ps( &pHi_Coeff_M_Lossless[i] );

for( j = jmin; j <= jmax; j++)

{

vpHj_Coeff_M_Lossless =

_mm_load1_ps( &pHj_Coeff_M_Lossless[j] );

vhx = ( Vec4f * )hx[i][j];

vhy = ( Vec4f * )hy[i][j];

vhz = ( Vec4f * )hz[i][j];

vex = ( Vec4f * )ex[i][j];

vex_max_hz = ( Vec4f * )ex[i][j+1];

vey = ( Vec4f * )ey[i][j];

vey_max_hz = ( Vec4f * )ey[i+1][j];

vez = ( Vec4f * )ez[i][j];

vez_max_hx = ( Vec4f * )ez[i][j+1];

vez_max_hy = ( Vec4f * )ez[i+1][j];

k = vk = 0;

vey_max_hx=_mm_loadu_ps(&ey[i][j][k+1]);

vex_max_hy=_mm_loadu_ps(&ex[i][j][k+1]);

vpHk_Coeff_M_Lossless =

_mm_load_ps(&pHk_Coeff_M_Lossless[k]);

while (vk < vkmax)

{

h_update_nonmagnetic(vDA, vhx[vk],

vpHj_Coeff_M_Lossless, vez_max_hx[vk], vez[vk],

vpHk_Coeff_M_Lossless, vey_max_hx, vey[vk], xmm0);

h_update_nonmagnetic(vDA, vhy[vk],

vpHk_Coeff_M_Lossless, vex_max_hy, vex[vk],

vpHi_Coeff_M_Lossless, vez_max_hy[vk], vez[vk],

xmm1);

h_update_nonmagnetic(vDA, vhz[vk],

vpHi_Coeff_M_Lossless, vey_max_hz[vk], vey[vk],

vpHj_Coeff_M_Lossless, vex_max_hz[vk], vex[vk],

xmm2);

vhx[vk] = xmm0;

vhy[vk] = xmm1;

vhz[vk] = xmm2;

k += 4;

vk ++;
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vey_max_hx=_mm_loadu_ps(&ey[i][j][k+1]);

vex_max_hy=_mm_loadu_ps(&ex[i][j][k+1]);

vpHk_Coeff_M_Lossless =

_mm_load_ps(&pHk_Coeff_M_Lossless[k]);

}

h_update_nonmagnetic(vDA, vhx[vk], vpHj_Coeff_M_Lossless,

vez_max_hx[vk], vez[vk], vpHk_Coeff_M_Lossless,

vey_max_hx, vey[vk], xmm0);

h_update_nonmagnetic(vDA, vhy[vk], vpHk_Coeff_M_Lossless,

vex_max_hy, vex[vk], vpHi_Coeff_M_Lossless, vez_max_hy[vk],

vez[vk], xmm1);

h_update_nonmagnetic(vDA, vhz[vk], vpHi_Coeff_M_Lossless,

vey_max_hz[vk], vey[vk], vpHj_Coeff_M_Lossless,

vex_max_hz[vk], vex[vk], xmm2);

xmm0 = _mm_and_ps(xmm0, *pMask2);

xmm1 = _mm_and_ps(xmm1, *pMask2);

xmm2 = _mm_and_ps(xmm2, *pMask2);

vhx[vk] = xmm0;

vhy[vk] = xmm1;

vhz[vk] = xmm2;

}

}

}

}

void compute_H_PUSAI_SSE()

{

int thread_num, num_threads;

#pragma omp parallel private(num_threads, thread_num)

{

thread_num = omp_get_thread_num();

num_threads = omp_get_num_threads();

int i, j, k, vk;

imin = 1;

imax = memory_size - 2;

jmin = Index_H_Boundary[Y_MIN];

jmax = Index_H_Boundary[Y_MAX] + 1;

kmin = Index_H_Boundary[Z_MIN];

kmax = Index_H_Boundary[Z_MAX] + 1;

float imaxf = (float)imax / (float)num_threads;

int vkmax = kmax >> 2;

Vec4f xmm0, xmm1, xmm2;

__declspec( align( 16 ) ) int mask1[4] = {0x0, 0x0, 0x0, 0x0},

mask2[4] = {0x0, 0x0, 0x0, 0x0};
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mask1[i]);

mask2[i]);

Vec4f *pMask1 = (Vec4f *)&mask1;

Vec4f *pMask2 = (Vec4f *)&mask2;

// setup mask

int r = (kmax + 1) % 4;

if (r == 0) r = 4;

for (i = 0; i < r - 1; i ++)

{

mask1[i] = mask2[i] = 0xFFFFFFFF;

}

mask2[i] = 0xFFFFFFFF;

Vec4f *vhx, *vhy, *vhz;

Vec4f *vex, vex_max_hy, *vex_max_hz, *vey, vey_max_hx,

*vey_max_hz, *vez, *vez_max_hx, *vez_max_hy;

Vec4f vpHi_Coeff_M_Lossless, vpHj_Coeff_M_Lossless,

vpHk_Coeff_M_Lossless;

Vec4f vDA = _mm_load1_ps( &DA );

//pusai_Y_MIN

Vec4f xmm0_Y_MIN, xmm1_Y_MIN;

Vec4f vBeta_PML_YHalf, vpHj_PML_Coeff_M_Lossless;

Vec4f vDB = _mm_load1_ps( &DB );

Vec4f *vpusai_hxz_Y_MIN, *vpusai_hzx_Y_MIN;

//pusai_Y_MAX

Vec4f xmm0_Y_MAX, xmm1_Y_MAX;

Vec4f *vpusai_hxz_Y_MAX, *vpusai_hzx_Y_MAX;

//pusai_X_MIN

Vec4f xmm0_X_MIN, xmm1_X_MIN;

Vec4f *vpusai_hyz_X_MIN, *vpusai_hzy_X_MIN;

Vec4f vBeta_PML_XHalf, vpHi_PML_Coeff_M_Lossless;

//pusai_X_MAX

Vec4f xmm0_X_MAX, xmm1_X_MAX;

Vec4f *vpusai_hyz_X_MAX, *vpusai_hzy_X_MAX;

//pusai_Z_MIN

Vec4f xmm0_Z_MIN, xmm1_Z_MIN, xmmo_0_Z_MIN, xmmo_1_Z_MIN;

int vkmax_Z_MIN = (Index_H_Boundary[Z_MIN] +

BoundaryLayerNum[Z_MIN] - 1) >> 2;

__declspec( align( 16 ) ) int mask2_Z_MIN[4] = {0x0, 0x0, 0x0,

0x0}, mask3_Z_MIN[4] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,

0xFFFFFFFF};

// setup mask

int r_Z_MIN = (Index_H_Boundary[Z_MIN] + BoundaryLayerNum[Z_MIN]

- 1 + 1) % 4;

if (r_Z_MIN == 0) r_Z_MIN = 4;

for (i = 0; i < r_Z_MIN - 1; i ++)

{
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mask2_Z_MIN[i] = 0xFFFFFFFF;

mask3_Z_MIN[i] = 0x0;

}

mask2_Z_MIN[i] = 0xFFFFFFFF;

mask3_Z_MIN[i] = 0x0;

Vec4f *pMask2_Z_MIN = (Vec4f *)&mask2_Z_MIN;

Vec4f *pMask3_Z_MIN = (Vec4f *)&mask3_Z_MIN;

Vec4f *vpusai_hxy_Z_MIN, *vpusai_hyx_Z_MIN;

Vec4f vey_max, vex_max;

Vec4f *vBeta_PML_ZHalf = (Vec4f *)Beta_PML_ZHalf;

Vec4f *vpHk_PML_Coeff_M_Lossless = (Vec4f

*)pHk_PML_Coeff_M_Lossless;

//pusai_Z_MAX

int kshift, vkshift;

kshift = Index_H_Boundary[Z_MAX] - BoundaryLayerNum[Z_MAX] + 1;

int kmin_aligned = (Index_H_Boundary[Z_MAX] -

BoundaryLayerNum[Z_MAX] + 1) & (~3);

Vec4f xmm0_Z_MAX, xmm1_Z_MAX, xmmo_0_Z_MAX, xmmo_1_Z_MAX;

__declspec( align( 16 ) ) int mask1_Z_MAX[4] = {0x0, 0x0, 0x0,

0x0}, mask3_Z_MAX[4] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,

0xFFFFFFFF}, mask4_Z_MAX[4] = {0x0, 0x0, 0x0, 0x0};

Vec4f *pMask1_Z_MAX = (Vec4f *)&mask1_Z_MAX;

Vec4f *pMask3_Z_MAX = (Vec4f *)&mask3_Z_MAX;

Vec4f *pMask4_Z_MAX = (Vec4f *)&mask4_Z_MAX;

int vkmax_Z_MAX = Index_H_Boundary[Z_MAX] >> 2;

// setup mask

int r_Z_MAX = (Index_H_Boundary[Z_MAX] +1 ) % 4;

if (r_Z_MAX == 0) r_Z_MAX = 4;

for (i = 0; i < r_Z_MAX - 1; i ++) {

mask1_Z_MAX[i] = 0xFFFFFFFF;

}

mask1_Z_MAX[i] = 0xFFFFFFFF;

for (i = 0; i < kmin - kmin_aligned; i ++) {

mask3_Z_MAX[i] = 0x0;

mask4_Z_MAX[i] = 0xFFFFFFFF;

}

Vec4f *vpusai_hxy_Z_MAX, *vpusai_hyx_Z_MAX;

Vec4f vey_max_Z_MAX, vex_max_Z_MAX;

for (i = imin + (int)((float)thread_num * imaxf); i <=

(int)((float)(thread_num + 1) * imaxf); i ++)

{

vpHi_Coeff_M_Lossless =

_mm_load1_ps( &pHi_Coeff_M_Lossless[i] );

for( j = jmin; j <= jmax; j++)

{

vpHj_Coeff_M_Lossless =

_mm_load1_ps( &pHj_Coeff_M_Lossless[j] );
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vhx = ( Vec4f * )hx[i][j];

vhy = ( Vec4f * )hy[i][j];

vhz = ( Vec4f * )hz[i][j];

vex = ( Vec4f * )ex[i][j];

vex_max_hz = ( Vec4f * )ex[i][j+1];

vey = ( Vec4f * )ey[i][j];

vey_max_hz = ( Vec4f * )ey[i+1][j];

vez = ( Vec4f * )ez[i][j];

vez_max_hx = ( Vec4f * )ez[i][j+1];

vez_max_hy = ( Vec4f * )ez[i+1][j];

k = vk = 0;

vey_max_hx=_mm_loadu_ps(&ey[i][j][k+1]);

vex_max_hy=_mm_loadu_ps(&ex[i][j][k+1]);

vpHk_Coeff_M_Lossless =

_mm_load_ps(&pHk_Coeff_M_Lossless[k]);

while (vk < vkmax)

{

h_update_nonmagnetic(vDA, vhx[vk],

vpHj_Coeff_M_Lossless, vez_max_hx[vk], vez[vk],

vpHk_Coeff_M_Lossless, vey_max_hx, vey[vk], xmm0);

h_update_nonmagnetic(vDA, vhy[vk],

vpHk_Coeff_M_Lossless, vex_max_hy, vex[vk],

vpHi_Coeff_M_Lossless, vez_max_hy[vk], vez[vk], xmm1);

h_update_nonmagnetic(vDA, vhz[vk],

vpHi_Coeff_M_Lossless, vey_max_hz[vk], vey[vk],

vpHj_Coeff_M_Lossless, vex_max_hz[vk], vex[vk], xmm2);

vhx[vk] = xmm0;

vhy[vk] = xmm1;

vhz[vk] = xmm2;

k += 4;

vk ++;

vey_max_hx=_mm_loadu_ps(&ey[i][j][k+1]);

vex_max_hy=_mm_loadu_ps(&ex[i][j][k+1]);

vpHk_Coeff_M_Lossless =

_mm_load_ps(&pHk_Coeff_M_Lossless[k]);

}

h_update_nonmagnetic(vDA, vhx[vk], vpHj_Coeff_M_Lossless,

vez_max_hx[vk], vez[vk], vpHk_Coeff_M_Lossless,

vey_max_hx, vey[vk], xmm0);

h_update_nonmagnetic(vDA, vhy[vk], vpHk_Coeff_M_Lossless,

vex_max_hy, vex[vk], vpHi_Coeff_M_Lossless,

vez_max_hy[vk], vez[vk], xmm1);

h_update_nonmagnetic(vDA, vhz[vk], vpHi_Coeff_M_Lossless,

vey_max_hz[vk], vey[vk], vpHj_Coeff_M_Lossless,

vex_max_hz[vk], vex[vk], xmm2);
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xmm0 = _mm_and_ps(xmm0, *pMask2);

xmm1 = _mm_and_ps(xmm1, *pMask2);

xmm2 = _mm_and_ps(xmm2, *pMask2);

vhx[vk] = xmm0;

vhy[vk] = xmm1;

vhz[vk] = xmm2;

//pusai_Y_MIN

if( j >= Index_H_Boundary[Y_MIN] && j <=

(Index_H_Boundary[Y_MIN] + BoundaryLayerNum[Y_MIN]-1))

{

vBeta_PML_YHalf = _mm_load1_ps(&Beta_PML_YHalf[j]);

vpHj_PML_Coeff_M_Lossless =

_mm_load1_ps(&pHj_PML_Coeff_M_Lossless[j]);

vpusai_hxz_Y_MIN = (Vec4f *)pusai_hxz_Y_MIN[i][j];

vpusai_hzx_Y_MIN = (Vec4f *)pusai_hzx_Y_MIN[i][j];

vk = 0;

while (vk < vkmax)

{

h_update_nonmagnetic_pml_sub(vBeta_PML_YHalf,

vpusai_hxz_Y_MIN[vk], vpHj_PML_Coeff_M_Lossless,

vez_max_hx[vk], vez[vk], vhx[vk], vDB, xmm0_Y_MIN);

h_update_nonmagnetic_pml_add(vBeta_PML_YHalf,

vpusai_hzx_Y_MIN[vk], vpHj_PML_Coeff_M_Lossless,

vex_max_hz[vk], vex[vk], vhz[vk], vDB, xmm1_Y_MIN);

vhx[vk] = xmm0_Y_MIN;

vhz[vk] = xmm1_Y_MIN;

vk ++;

}

h_update_nonmagnetic_pml_sub(vBeta_PML_YHalf,

vpusai_hxz_Y_MIN[vk], vpHj_PML_Coeff_M_Lossless,

vez_max_hx[vk], vez[vk], vhx[vk], vDB, xmm0_Y_MIN);

h_update_nonmagnetic_pml_add(vBeta_PML_YHalf,

vpusai_hzx_Y_MIN[vk], vpHj_PML_Coeff_M_Lossless,

vex_max_hz[vk], vex[vk], vhz[vk], vDB, xmm1_Y_MIN);

xmm0_Y_MIN = _mm_and_ps(xmm0_Y_MIN, *pMask2);

xmm1_Y_MIN = _mm_and_ps(xmm1_Y_MIN, *pMask2);

vhx[vk] = xmm0_Y_MIN;

vhz[vk] = xmm1_Y_MIN;

}

//pusai_Y_MAX

if( j >= (Index_H_Boundary[Y_MAX] - BoundaryLayerNum[Y_MAX]

+ 1) && j <= Index_H_Boundary[Y_MAX] )

{

jshift = Index_H_Boundary[Y_MAX] -

BoundaryLayerNum[Y_MAX] + 1;

vBeta_PML_YHalf = _mm_load1_ps(&Beta_PML_YHalf[j]);

vpHj_PML_Coeff_M_Lossless =

_mm_load1_ps(&pHj_PML_Coeff_M_Lossless[j]);
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vpusai_hxz_Y_MAX = (Vec4f *)pusai_hxz_Y_MAX[i][j-

jshift];

vpusai_hzx_Y_MAX = (Vec4f *)pusai_hzx_Y_MAX[i][j-

jshift];

vk = 0;

while (vk < vkmax)

{

h_update_nonmagnetic_pml_sub(vBeta_PML_YHalf,

vpusai_hxz_Y_MAX[vk], vpHj_PML_Coeff_M_Lossless,

vez_max_hx[vk], vez[vk], vhx[vk], vDB, xmm0_Y_MAX);

h_update_nonmagnetic_pml_add(vBeta_PML_YHalf,

vpusai_hzx_Y_MAX[vk], vpHj_PML_Coeff_M_Lossless,

vex_max_hz[vk], vex[vk], vhz[vk], vDB, xmm1_Y_MAX);

vhx[vk] = xmm0_Y_MAX;

vhz[vk] = xmm1_Y_MAX;

vk ++;

}

h_update_nonmagnetic_pml_sub(vBeta_PML_YHalf,

vpusai_hxz_Y_MAX[vk], vpHj_PML_Coeff_M_Lossless,

vez_max_hx[vk], vez[vk], vhx[vk], vDB, xmm0_Y_MAX);

h_update_nonmagnetic_pml_add(vBeta_PML_YHalf,

vpusai_hzx_Y_MAX[vk], vpHj_PML_Coeff_M_Lossless,

vex_max_hz[vk], vex[vk], vhz[vk], vDB, xmm1_Y_MAX);

xmm0_Y_MAX = _mm_and_ps(xmm0_Y_MAX, *pMask2);

xmm1_Y_MAX = _mm_and_ps(xmm1_Y_MAX, *pMask2);

vhx[vk] = xmm0_Y_MAX;

vhz[vk] = xmm1_Y_MAX;

}

//pusai_X_MIN

if( i >= 2 && i <= 2 + BoundaryLayerNum[X_MIN] - 1 )

{

if( id == 0 )

{

vBeta_PML_XHalf = _mm_load1_ps(&Beta_PML_XHalf[i]);

vpHi_PML_Coeff_M_Lossless =

_mm_load1_ps(&pHi_PML_Coeff_M_Lossless[i]);

vpusai_hyz_X_MIN = (Vec4f *)pusai_hyz_X_MIN[i][j];

vpusai_hzy_X_MIN = (Vec4f *)pusai_hzy_X_MIN[i][j];

vk = 0;

while (vk < vkmax)

{

h_update_nonmagnetic_pml_add(vBeta_PML_XHalf,

vpusai_hyz_X_MIN[vk], vpHi_PML_Coeff_M_Lossless,

vez_max_hy[vk], vez[vk], vhy[vk], vDB,

xmm0_X_MIN);

h_update_nonmagnetic_pml_sub(vBeta_PML_XHalf,

vpusai_hzy_X_MIN[vk], vpHi_PML_Coeff_M_Lossless,

vey_max_hz[vk], vey[vk], vhz[vk], vDB,

xmm1_X_MIN);
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vhy[vk] = xmm0_X_MIN;

vhz[vk] = xmm1_X_MIN;

vk ++;

}

h_update_nonmagnetic_pml_add(vBeta_PML_XHalf,

vpusai_hyz_X_MIN[vk], vpHi_PML_Coeff_M_Lossless,

vez_max_hy[vk], vez[vk], vhy[vk], vDB,

xmm0_X_MIN);

h_update_nonmagnetic_pml_sub(vBeta_PML_XHalf,

vpusai_hzy_X_MIN[vk], vpHi_PML_Coeff_M_Lossless,

vey_max_hz[vk], vey[vk], vhz[vk], vDB,

xmm1_X_MIN);

xmm0_X_MIN = _mm_and_ps(xmm0_X_MIN, *pMask2);

xmm1_X_MIN = _mm_and_ps(xmm1_X_MIN, *pMask2);

vhy[vk] = xmm0_X_MIN;

vhz[vk] = xmm1_X_MIN;

}

}

//pusai_X_MAX

if( i >= (memory_size - 4 - BoundaryLayerNum[X_MAX] + 1)

&& i <= memory_size - 4 )

{

if( id == p - 1 )

{

ishift = memory_size-4-BoundaryLayerNum[X_MAX] + 1;

vBeta_PML_XHalf = _mm_load1_ps(&Beta_PML_XHalf[i]);

vpHi_PML_Coeff_M_Lossless =

_mm_load1_ps(&pHi_PML_Coeff_M_Lossless[i]);

vpusai_hyz_X_MAX = (Vec4f *)pusai_hyz_X_MAX[i-

ishift][j];

vpusai_hzy_X_MAX = (Vec4f *)pusai_hzy_X_MAX[i-

ishift][j];

vk = 0;

while (vk < vkmax)

{

h_update_nonmagnetic_pml_add(vBeta_PML_XHalf,

vpusai_hyz_X_MAX[vk], vpHi_PML_Coeff_M_Lossless,

vez_max_hy[vk], vez[vk], vhy[vk], vDB,

xmm0_X_MAX);

h_update_nonmagnetic_pml_sub(vBeta_PML_XHalf,

vpusai_hzy_X_MAX[vk], vpHi_PML_Coeff_M_Lossless,

vey_max_hz[vk], vey[vk], vhz[vk], vDB,

xmm1_X_MAX);

vhy[vk] = xmm0_X_MAX;

vhz[vk] = xmm1_X_MAX;

vk ++;

}
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h_update_nonmagnetic_pml_add(vBeta_PML_XHalf,

vpusai_hyz_X_MAX[vk], vpHi_PML_Coeff_M_Lossless,

vez_max_hy[vk], vez[vk], vhy[vk], vDB,

xmm0_X_MAX);

h_update_nonmagnetic_pml_sub(vBeta_PML_XHalf,

vpusai_hzy_X_MAX[vk], vpHi_PML_Coeff_M_Lossless,

vey_max_hz[vk], vey[vk], vhz[vk], vDB,

xmm1_X_MAX);

xmm0_X_MAX = _mm_and_ps(xmm0_X_MAX, *pMask2);

xmm1_X_MAX = _mm_and_ps(xmm1_X_MAX, *pMask2);

vhy[vk] = xmm0_X_MAX;

vhz[vk] = xmm1_X_MAX;

}

}

//pusai_Z_MIN

vpusai_hxy_Z_MIN = (Vec4f *)pusai_hxy_Z_MIN[i][j];

vpusai_hyx_Z_MIN = (Vec4f *)pusai_hyx_Z_MIN[i][j];

k = vk = 0;

vey_max = _mm_loadu_ps(&ey[i][j][k+1]);

vex_max = _mm_loadu_ps(&ex[i][j][k+1]);

while (vk < vkmax_Z_MIN)

{

h_update_nonmagnetic_pml_add(vBeta_PML_ZHalf[vk],

vpusai_hxy_Z_MIN[vk], vpHk_PML_Coeff_M_Lossless[vk],

vey_max, vey[vk], vhx[vk], vDB, xmm0_Z_MIN);

h_update_nonmagnetic_pml_sub(vBeta_PML_ZHalf[vk],

vpusai_hyx_Z_MIN[vk], vpHk_PML_Coeff_M_Lossless[vk],

vex_max, vex[vk], vhy[vk], vDB, xmm1_Z_MIN);

vhx[vk] = xmm0_Z_MIN;

vhy[vk] = xmm1_Z_MIN;

k += 4;

vk ++;

vey_max = _mm_loadu_ps(&ey[i][j][k+1]);

vex_max = _mm_loadu_ps(&ex[i][j][k+1]);

}

h_update_nonmagnetic_pml_add(vBeta_PML_ZHalf[vk],

vpusai_hxy_Z_MIN[vk], vpHk_PML_Coeff_M_Lossless[vk],

vey_max, vey[vk], vhx[vk], vDB, xmm0_Z_MIN);

h_update_nonmagnetic_pml_sub(vBeta_PML_ZHalf[vk],

vpusai_hyx_Z_MIN[vk], vpHk_PML_Coeff_M_Lossless[vk],

vex_max, vex[vk], vhy[vk], vDB, xmm1_Z_MIN);

xmm0_Z_MIN = _mm_and_ps(xmm0_Z_MIN, *pMask2_Z_MIN);

xmm1_Z_MIN = _mm_and_ps(xmm1_Z_MIN, *pMask2_Z_MIN);

xmmo_0_Z_MIN = _mm_and_ps(vhx[vk], *pMask3_Z_MIN);

xmmo_1_Z_MIN = _mm_and_ps(vhy[vk], *pMask3_Z_MIN);
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xmm0_Z_MIN = _mm_add_ps(xmm0_Z_MIN, xmmo_0_Z_MIN);

xmm1_Z_MIN = _mm_add_ps(xmm1_Z_MIN, xmmo_1_Z_MIN);

vhx[vk] = xmm0_Z_MIN;

vhy[vk] = xmm1_Z_MIN;

//pusai_Z_MAX

vpusai_hxy_Z_MAX = (Vec4f *)pusai_hxy_Z_MAX[i][j];

vpusai_hyx_Z_MAX = (Vec4f *)pusai_hyx_Z_MAX[i][j];

vhx = (Vec4f *)hx[i][j];

vhy = (Vec4f *)hy[i][j];

vex = (Vec4f *)ex[i][j];

vey = (Vec4f *)ey[i][j];

k = kmin_aligned;

vkshift = vk = k >> 2;

vey_max_Z_MAX = _mm_loadu_ps(&ey[i][j][k+1]);

vex_max_Z_MAX = _mm_loadu_ps(&ex[i][j][k+1]);

h_update_nonmagnetic_pml_add(vBeta_PML_ZHalf[vk],

vpusai_hxy_Z_MAX[vk], vpHk_PML_Coeff_M_Lossless[vk],

vey_max_Z_MAX, vey[vk], vhx[vk], vDB, xmm0_Z_MAX);

h_update_nonmagnetic_pml_sub(vBeta_PML_ZHalf[vk],

vpusai_hyx_Z_MAX[vk], vpHk_PML_Coeff_M_Lossless[vk],

vex_max_Z_MAX, vex[vk], vhy[vk], vDB, xmm1_Z_MAX);

xmm0_Z_MAX = _mm_and_ps(xmm0_Z_MAX, *pMask3_Z_MAX);

xmm1_Z_MAX = _mm_and_ps(xmm1_Z_MAX, *pMask3_Z_MAX);

xmmo_0_Z_MAX = _mm_and_ps(vhx[vk], *pMask4_Z_MAX);

xmmo_1_Z_MAX = _mm_and_ps(vhy[vk], *pMask4_Z_MAX);

xmm0_Z_MAX = _mm_add_ps(xmm0_Z_MAX, xmmo_0_Z_MAX);

xmm1_Z_MAX = _mm_add_ps(xmm1_Z_MAX, xmmo_1_Z_MAX);

while (vk < vkmax_Z_MAX)

{

vhx[vk] = xmm0_Z_MAX;

vhy[vk] = xmm1_Z_MAX;

k += 4;

vk ++;

vey_max_Z_MAX = _mm_loadu_ps(&ey[i][j][k+1]);

vex_max_Z_MAX = _mm_loadu_ps(&ex[i][j][k+1]);

h_update_nonmagnetic_pml_add(vBeta_PML_ZHalf[vk],

vpusai_hxy_Z_MAX[vk], vpHk_PML_Coeff_M_Lossless[vk],

vey_max_Z_MAX, vey[vk], vhx[vk], vDB, xmm0_Z_MAX);

h_update_nonmagnetic_pml_sub(vBeta_PML_ZHalf[vk],

vpusai_hyx_Z_MAX[vk], vpHk_PML_Coeff_M_Lossless[vk],

vex_max_Z_MAX, vex[vk], vhy[vk], vDB, xmm1_Z_MAX);

}

xmm0_Z_MAX = _mm_and_ps(xmm0_Z_MAX, *pMask1_Z_MAX);

xmm1_Z_MAX = _mm_and_ps(xmm1_Z_MAX, *pMask1_Z_MAX);

vhx[vk] = xmm0_Z_MAX;

vhy[vk] = xmm1_Z_MAX;
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}

}

}

}

void compute_E()

{

int thread_num, num_threads;

#pragma omp parallel private(num_threads, thread_num)

{

thread_num = omp_get_thread_num();

num_threads = omp_get_num_threads();

int i, j, k;

imin = 1;

imax = memory_size - 1;

jmin = Index_E_Boundary[Y_MIN];

jmax = Index_E_Boundary[Y_MAX];

kmin = Index_E_Boundary[Z_MIN];

kmax = Index_E_Boundary[Z_MAX];

float imaxf = (float)imax / (float)num_threads;

for (i = imin + (int)((float)thread_num * imaxf); i <=

(int)((float)(thread_num + 1) * imaxf); i ++)

{

for( j = jmin; j <= jmax; j++)

{

for( k = kmin; k <= kmax; k++)

{

ex[i][j][k] = CA * ex[i][j][k] + ( pEj_Coeff[j] *

( hz[i][j][k] - hz[i][j-1][k] ) - pEk_Coeff[k] *

( hy[i][j][k] - hy[i][j][k-1] ) );

ey[i][j][k] = CA * ey[i][j][k] + ( pEk_Coeff[k] *

( hx[i][j][k] - hx[i][j][k-1] ) - pEi_Coeff[i] *

( hz[i][j][k] - hz[i-1][j][k] ) );

ez[i][j][k] = CA * ez[i][j][k] + ( pEi_Coeff[i] *

( hy[i][j][k] - hy[i-1][j][k] ) - pEj_Coeff[j] *

( hx[i][j][k] - hx[i][j-1][k] ) );

}

}

}

}

}

void compute_E_PUSAI()

{

int thread_num, num_threads;

#pragma omp parallel private(num_threads, thread_num)

{

thread_num = omp_get_thread_num();

num_threads = omp_get_num_threads();

int i, j, k;

imin = 1;

imax = memory_size - 2;
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jmin = Index_E_Boundary[Y_MIN];

jmax = Index_E_Boundary[Y_MAX];

kmin = Index_E_Boundary[Z_MIN];

kmax = Index_E_Boundary[Z_MAX];

float imaxf = (float)imax / (float)num_threads;

for (i = imin + (int)((float)thread_num * imaxf); i <=

(int)((float)(thread_num + 1) * imaxf); i ++)

{

for( j = jmin; j <= jmax; j++)

{

for( k = kmin; k <= kmax; k++)

{

ex[i][j][k] = CA * ex[i][j][k] + ( pEj_Coeff[j] *

( hz[i][j][k] - hz[i][j-1][k] ) - pEk_Coeff[k]

* ( hy[i][j][k] - hy[i][j][k-1] ) );

ey[i][j][k] = CA * ey[i][j][k] + ( pEk_Coeff[k] *

( hx[i][j][k] - hx[i][j][k-1] ) - pEi_Coeff[i]

* ( hz[i][j][k] - hz[i-1][j][k] ) );

ez[i][j][k] = CA * ez[i][j][k] + ( pEi_Coeff[i] *

( hy[i][j][k] - hy[i-1][j][k] ) - pEj_Coeff[j]

* ( hx[i][j][k] - hx[i][j-1][k] ) );

//pusai_Z_MIN

if( k >= Index_E_Boundary[Z_MIN] && k <=

( Index_E_Boundary[Z_MIN] + BoundaryLayerNum[Z_MIN]

- 1 ) )

{

pusai_exy_Z_MIN[i][j][k] = Beta_PML_ZGrid[k] *

pusai_exy_Z_MIN[i][j][k] +

pEk_PML_Coeff[k] * ( hy[i][j][k] - hy[i][j][k-1] );

ex[i][j][k] = ex[i][j][k] - CB *

pusai_exy_Z_MIN[i][j][k];

pusai_eyx_Z_MIN[i][j][k] = Beta_PML_ZGrid[k] *

pusai_eyx_Z_MIN[i][j][k] +

pEk_PML_Coeff[k] * ( hx[i][j][k] - hx[i][j][k-1] );

ey[i][j][k] = ey[i][j][k] + CB *

pusai_eyx_Z_MIN[i][j][k];

}

//pusai_Z_MAX

if( k >= ( Index_E_Boundary[Z_MAX] -

BoundaryLayerNum[Z_MAX] + 1 ) && k <=

Index_E_Boundary[Z_MAX] )

{

kshift = Index_E_Boundary[Z_MAX] –

BoundaryLayerNum[Z_MAX] + 1;

pusai_exy_Z_MAX[i][j][k-kshift] = Beta_PML_ZGrid[k] *

pusai_exy_Z_MAX[i][j][k-kshift] +

pEk_PML_Coeff[k] * ( hy[i][j][k] - hy[i][j][k-1] );

ex[i][j][k] = ex[i][j][k] - CB *

pusai_exy_Z_MAX[i][j][k-kshift];

pusai_eyx_Z_MAX[i][j][k-kshift] = Beta_PML_ZGrid[k] *

pusai_eyx_Z_MAX[i][j][k-kshift] +

pEk_PML_Coeff[k] * ( hx[i][j][k]

- hx[i][j][k-1] );
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ey[i][j][k] = ey[i][j][k] + CB *

pusai_eyx_Z_MAX[i][j][k-kshift];

}

}

//pusai_Y_MIN

if( j >= Index_E_Boundary[Y_MIN] && j <=

( Index_E_Boundary[Y_MIN] + BoundaryLayerNum[Y_MIN] –

1 ) )

{

for( k = kmin;k <= kmax; k++)

{

pusai_exz_Y_MIN[i][j][k] = Beta_PML_YGrid[j] *

pusai_exz_Y_MIN[i][j][k] +

pEj_PML_Coeff[j] * ( hz[i][j][k] - hz[i][j-1][k] );

ex[i][j][k] = ex[i][j][k] + CB *

pusai_exz_Y_MIN[i][j][k];

pusai_ezx_Y_MIN[i][j][k] = Beta_PML_YGrid[j] *

pusai_ezx_Y_MIN[i][j][k] +

pEj_PML_Coeff[j] * ( hx[i][j][k] - hx[i][j-1][k] );

ez[i][j][k] = ez[i][j][k] - CB *

pusai_ezx_Y_MIN[i][j][k];

}

}

//pusai_Y_MAX

if( j >= ( Index_E_Boundary[Y_MAX] - BoundaryLayerNum[Y_MAX] +

1 ) && j <= Index_E_Boundary[Y_MAX] )

{

jshift = Index_E_Boundary[Y_MAX] - BoundaryLayerNum[Y_MAX]

+ 1;

for( k = kmin; k <= kmax; k++)

{

pusai_exz_Y_MAX[i][j-jshift][k] = Beta_PML_YGrid[j] *

pusai_exz_Y_MAX[i][j-jshift][k] +

pEj_PML_Coeff[j] * ( hz[i][j][k] - hz[i][j-1][k] );

ex[i][j][k] = ex[i][j][k] + CB * pusai_exz_Y_MAX[i][j-

jshift][k];

pusai_ezx_Y_MAX[i][j-jshift][k] = Beta_PML_YGrid[j] *

pusai_ezx_Y_MAX[i][j-jshift][k] +

pEj_PML_Coeff[j] * ( hx[i][j][k] - hx[i][j-1][k] );

ez[i][j][k] = ez[i][j][k] - CB *

pusai_ezx_Y_MAX[i][j-jshift][k];

}

}

}

//pusai_X_MIN

if( i >= 2 && i <= ( 2 + BoundaryLayerNum[X_MIN] - 1 ) )

{

if( id == 0)

{

for( j = jmin; j <= jmax; j++)

{

for( k = kmin; k <= kmax; k++)

{
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pusai_eyz_X_MIN[i][j][k] = Beta_PML_XGrid[i] *

pusai_eyz_X_MIN[i][j][k] + pEi_PML_Coeff[i] *

( hz[i][j][k] - hz[i-1][j][k] );

ey[i][j][k] = ey[i][j][k] - CB * pusai_eyz_X_MIN[i][j][k];

pusai_ezy_X_MIN[i][j][k] = Beta_PML_XGrid[i] *

pusai_ezy_X_MIN[i][j][k] + pEi_PML_Coeff[i] *

( hy[i][j][k] - hy[i-1][j][k] );

ez[i][j][k] = ez[i][j][k] + CB * pusai_ezy_X_MIN[i][j][k];

}

}

}

}

//pusai_X_MAX

if( i >= ( memory_size - 3 - BoundaryLayerNum[X_MAX] + 1 ) && i <=

memory_size - 3 )

{

ishift = memory_size - 3 - BoundaryLayerNum[X_MAX] + 1;

if( id == p - 1)

{

for( j = jmin; j <= jmax; j++)

{

for( k = kmin; k <= kmax; k++)

{

pusai_eyz_X_MAX[i-ishift][j][k] = Beta_PML_XGrid[i]

* pusai_eyz_X_MAX[i-ishift][j][k] +

pEi_PML_Coeff[i] * ( hz[i][j][k] - hz[i-1][j][k] );

ey[i][j][k] = ey[i][j][k] - CB * pusai_eyz_X_MAX[i-

ishift][j][k];

pusai_ezy_X_MAX[i-ishift][j][k] = Beta_PML_XGrid[i]

* pusai_ezy_X_MAX[i-ishift][j][k] +

pEi_PML_Coeff[i] * ( hy[i][j][k] - hy[i-1][j][k] );

ez[i][j][k] = ez[i][j][k] + CB * pusai_ezy_X_MAX[i-

ishift][j][k];

}

}

}

}

}

}

}

void compute_E_SSE()

{

int thread_num, num_threads;

#pragma omp parallel private(num_threads, thread_num)

{

thread_num = omp_get_thread_num();

num_threads = omp_get_num_threads();

int i, j, k,vk;

imin = 1;

imax = memory_size - 2;
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jmin = Index_E_Boundary[Y_MIN];

jmax = Index_E_Boundary[Y_MAX];

kmin = Index_E_Boundary[Z_MIN];

kmax = Index_E_Boundary[Z_MAX];

int vkmax_H = kmax >> 2;

float imaxf = (float)imax / (float)num_threads;

Vec4f xmm0, xmm1, xmm2;

Vec4f *vex, *vey, *vez;

Vec4f *vhx, vhx_min_ey, *vhx_min_ez, *vhy, vhy_min_ex, *vhy_min_ez, *vhz,

*vhz_min_ex, *vhz_min_ey;

Vec4f vpEi_Coeff, vpEj_Coeff, vpEk_Coeff;

Vec4f vCA = _mm_load1_ps( &CA );

Vec4f *vpusai_exy_Z_MAX, *vpusai_eyx_Z_MAX;

Vec4f vhy_min_Z_MAX, vhx_min_Z_MAX;

for (i = imin + (int)((float)thread_num * imaxf); i <=

(int)((float)(thread_num + 1) * imaxf); i ++)

{

vpEi_Coeff = _mm_load1_ps(&pEi_Coeff[i]);

for( j = jmin; j <= jmax; j++)

{

vpEj_Coeff = _mm_load1_ps(&pEj_Coeff[j]);

vex = (Vec4f *)ex[i][j];

vey = (Vec4f *)ey[i][j];

vez = (Vec4f *)ez[i][j];

vhx = (Vec4f *)hx[i][j];

vhx_min_ez = (Vec4f *)hx[i][j-1];

vhy = (Vec4f *)hy[i][j];

vhy_min_ez = (Vec4f *)hy[i-1][j];

vhz = (Vec4f *)hz[i][j];

vhz_min_ex = (Vec4f *)hz[i][j-1];

vhz_min_ey = (Vec4f *)hz[i-1][j];

k = vk = 0;

vhy_min_ex = _mm_setr_ps( 0.0f, hy[i][j][0], hy[i][j][1],

hy[i][j][2]);

vhx_min_ey = _mm_setr_ps( 0.0f, hx[i][j][0], hx[i][j][1],

hx[i][j][2]);

vpEk_Coeff = _mm_load_ps(&pEk_Coeff[k]);

while( vk <= vkmax_H )

{

e_update_nonelectric(vCA, vex[vk], vpEj_Coeff, vhz[vk],

vhz_min_ex[vk], vpEk_Coeff, vhy[vk], vhy_min_ex, xmm0);

e_update_nonelectric(vCA, vey[vk], vpEk_Coeff, vhx[vk],

vhx_min_ey, vpEi_Coeff, vhz[vk], vhz_min_ey[vk], xmm1);

e_update_nonelectric(vCA, vez[vk], vpEi_Coeff, vhy[vk],

vhy_min_ez[vk], vpEj_Coeff, vhx[vk], vhx_min_ez[vk],

xmm2);
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vex[vk] = xmm0;

vey[vk] = xmm1;

vez[vk] = xmm2;

k += 4;

vk++;

vhy_min_ex = _mm_loadu_ps(&hy[i][j][k-1]);

vhx_min_ey = _mm_loadu_ps(&hx[i][j][k-1]);

vpEk_Coeff = _mm_load_ps(&pEk_Coeff[k]);

}

}

}

}

}

void compute_E_PUSAI_SSE()

{

int thread_num, num_threads;

#pragma omp parallel private(num_threads, thread_num)

{

thread_num = omp_get_thread_num();

num_threads = omp_get_num_threads();

int i, j, k,vk;

imin = 1;

imax = memory_size - 2;

jmin = Index_E_Boundary[Y_MIN];

jmax = Index_E_Boundary[Y_MAX];

kmin = Index_E_Boundary[Z_MIN];

kmax = Index_E_Boundary[Z_MAX];

int vkmax_H = kmax >> 2;

float imaxf = (float)imax / (float)num_threads;

Vec4f xmm0, xmm1, xmm2;

Vec4f *vex, *vey, *vez;

Vec4f *vhx, vhx_min_ey, *vhx_min_ez, *vhy, vhy_min_ex, *vhy_min_ez,

*vhz, *vhz_min_ex, *vhz_min_ey;

Vec4f vpEi_Coeff, vpEj_Coeff, vpEk_Coeff;

Vec4f vCA = _mm_load1_ps( &CA );

//pusai_Y_MIN

Vec4f *vpusai_exz_Y_MIN, *vpusai_ezx_Y_MIN;

Vec4f vBeta_PML_YGrid, vpEj_PML_Coeff;

Vec4f vCB = _mm_load1_ps( &CB );

Vec4f xmm0_Y_MIN, xmm1_Y_MIN;

//pusai_Y_MAX

Vec4f *vpusai_exz_Y_MAX, *vpusai_ezx_Y_MAX;

Vec4f xmm0_Y_MAX, xmm1_Y_MAX;

//pusai_X_MIN

Vec4f *vpusai_eyz_X_MIN, *vpusai_ezy_X_MIN;

Vec4f vBeta_PML_XGrid, vpEi_PML_Coeff;

Vec4f xmm0_X_MIN, xmm1_X_MIN;
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//pusai_X_MAX

Vec4f *vpusai_eyz_X_MAX, *vpusai_ezy_X_MAX;

Vec4f xmm0_X_MAX, xmm1_X_MAX;

//pusai_Z_MIN

Vec4f xmm0_Z_MIN, xmm1_Z_MIN, xmmo_0_Z_MIN, xmmo_1_Z_MIN;

__declspec( align( 16 ) ) int mask2_Z_MIN[4] = {0x0, 0x0, 0x0,

0x0}, mask3_Z_MIN[4] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,

0xFFFFFFFF};

Vec4f *pMask2_Z_MIN = (Vec4f *)&mask2_Z_MIN;

Vec4f *pMask3_Z_MIN = (Vec4f *)&mask3_Z_MIN;

int vkmax_Z_MIN = (Index_E_Boundary[Z_MIN] + BoundaryLayerNum[Z_MIN]

- 1) >> 2;

// setup mask

int r_Z_MIN = (Index_E_Boundary[Z_MIN] + BoundaryLayerNum[Z_MIN] - 1

+ 1) % 4;

if ( r_Z_MIN == 0 ) r_Z_MIN = 4;

for ( i = 0; i < r_Z_MIN - 1; i ++ )

{

mask2_Z_MIN[i] = 0xFFFFFFFF;

mask3_Z_MIN[i] = 0x0;

}

mask2_Z_MIN[i] = 0xFFFFFFFF;

mask3_Z_MIN[i] = 0x0;

Vec4f *vpusai_exy_Z_MIN, *vpusai_eyx_Z_MIN;

Vec4f *vBeta_PML_ZGrid = (Vec4f *)Beta_PML_ZGrid;

Vec4f *vpEk_PML_Coeff = (Vec4f *)pEk_PML_Coeff;

Vec4f vhy_min_Z_MIN, vhx_min_Z_MIN;

//pusai_Z_MAX

Vec4f xmm0_Z_MAX, xmm1_Z_MAX, xmmo_0_Z_MAX, xmmo_1_Z_MAX;

int kmin_aligned = (Index_E_Boundary[Z_MAX] - BoundaryLayerNum[Z_MAX]

+ 1) & (~3);

int vkmax_Z_MAX = Index_E_Boundary[Z_MAX] >> 2;

int vkshift_Z_MAX;

__declspec( align( 16 ) ) int mask2[4] = {0x0, 0x0, 0x0, 0x0},

mask3[4] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF},

mask4[4] = {0x0, 0x0, 0x0, 0x0};

Vec4f *pMask2 = (Vec4f *)&mask2;

Vec4f *pMask3 = (Vec4f *)&mask3;

Vec4f *pMask4 = (Vec4f *)&mask4;

int vkmax = Index_E_Boundary[Z_MAX] >> 2;

// setup mask

int r = (kmax + 1 )% 4;

if (r == 0) r = 4;

for (i = 0; i < r - 1; i ++)

{

mask2[i] = 0xFFFFFFFF;

}

mask2[i] = 0xFFFFFFFF;

for (i = 0; i < kmin - kmin_aligned; i ++)

{
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mask3[i] = 0x0;

mask4[i] = 0xFFFFFFFF;

}

Vec4f *vpusai_exy_Z_MAX, *vpusai_eyx_Z_MAX;

Vec4f vhy_min_Z_MAX, vhx_min_Z_MAX;

for (i = imin + (int)((float)thread_num * imaxf); i <=

(int)((float)(thread_num + 1) * imaxf); i ++)

{

vpEi_Coeff = _mm_load1_ps(&pEi_Coeff[i]);

for( j = jmin; j <= jmax; j++)

{

vpEj_Coeff = _mm_load1_ps(&pEj_Coeff[j]);

vex = (Vec4f *)ex[i][j];

vey = (Vec4f *)ey[i][j];

vez = (Vec4f *)ez[i][j];

vhx = (Vec4f *)hx[i][j];

vhx_min_ez = (Vec4f *)hx[i][j-1];

vhy = (Vec4f *)hy[i][j];

vhy_min_ez = (Vec4f *)hy[i-1][j];

vhz = (Vec4f *)hz[i][j];

vhz_min_ex = (Vec4f *)hz[i][j-1];

vhz_min_ey = (Vec4f *)hz[i-1][j];

k = vk = 0;

vhy_min_ex = _mm_setr_ps( 0.0f, hy[i][j][0], hy[i][j][1],

hy[i][j][2]);

vhx_min_ey = _mm_setr_ps( 0.0f, hx[i][j][0], hx[i][j][1],

hx[i][j][2]);

vpEk_Coeff = _mm_load_ps(&pEk_Coeff[k]);

while( vk <= vkmax_H )

{

e_update_nonelectric(vCA, vex[vk], vpEj_Coeff, vhz[vk],

vhz_min_ex[vk], vpEk_Coeff, vhy[vk], vhy_min_ex, xmm0);

e_update_nonelectric(vCA, vey[vk], vpEk_Coeff, vhx[vk],

vhx_min_ey, vpEi_Coeff, vhz[vk], vhz_min_ey[vk], xmm1);

e_update_nonelectric(vCA, vez[vk], vpEi_Coeff, vhy[vk],

vhy_min_ez[vk], vpEj_Coeff, vhx[vk], vhx_min_ez[vk],

xmm2);

vex[vk] = xmm0;

vey[vk] = xmm1;

vez[vk] = xmm2;

k += 4;

vk++;

vhy_min_ex = _mm_loadu_ps(&hy[i][j][k-1]);

vhx_min_ey = _mm_loadu_ps(&hx[i][j][k-1]);

vpEk_Coeff = _mm_load_ps(&pEk_Coeff[k]);

}
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//pusai_Y_MIN

if( j >= Index_E_Boundary[Y_MIN] && j <=

(Index_E_Boundary[Y_MIN] + BoundaryLayerNum[Y_MIN] - 1) )

{

vBeta_PML_YGrid = _mm_load1_ps(&Beta_PML_YGrid[j]);

vpEj_PML_Coeff = _mm_load1_ps(&pEj_PML_Coeff[j]);

vpusai_exz_Y_MIN = (Vec4f *)pusai_exz_Y_MIN[i][j];

vpusai_ezx_Y_MIN = (Vec4f *)pusai_ezx_Y_MIN[i][j];

vk = 0;

while( vk <= vkmax_H )

{

e_update_nonelectric_pml_add(vBeta_PML_YGrid,

vpusai_exz_Y_MIN[vk], vpEj_PML_Coeff, vhz[vk],

vhz_min_ex[vk], vex[vk], vCB, xmm0_Y_MIN);

e_update_nonelectric_pml_sub(vBeta_PML_YGrid,

vpusai_ezx_Y_MIN[vk], vpEj_PML_Coeff, vhx[vk],

vhx_min_ez[vk], vez[vk], vCB, xmm1_Y_MIN);

vex[vk] = xmm0_Y_MIN;

vez[vk] = xmm1_Y_MIN;

vk++;

}

}

//pusai_Y_MAX

if( j >= (Index_E_Boundary[Y_MAX] - BoundaryLayerNum[Y_MAX] + 1)

&& j <= Index_E_Boundary[Y_MAX] )

{

jshift = Index_E_Boundary[Y_MAX]-BoundaryLayerNum[Y_MAX]+1;

vBeta_PML_YGrid = _mm_load1_ps(&Beta_PML_YGrid[j]);

vpEj_PML_Coeff = _mm_load1_ps(&pEj_PML_Coeff[j]);

vpusai_exz_Y_MAX = (Vec4f *)pusai_exz_Y_MAX[i][j-jshift];

vpusai_ezx_Y_MAX = (Vec4f *)pusai_ezx_Y_MAX[i][j-jshift];

vk = 0;

while( vk <= vkmax_H )

{

e_update_nonelectric_pml_add(vBeta_PML_YGrid,

vpusai_exz_Y_MAX[vk], vpEj_PML_Coeff, vhz[vk],

vhz_min_ex[vk], vex[vk], vCB, xmm0_Y_MAX);

e_update_nonelectric_pml_sub(vBeta_PML_YGrid,

vpusai_ezx_Y_MAX[vk], vpEj_PML_Coeff, vhx[vk],

vhx_min_ez[vk], vez[vk], vCB, xmm1_Y_MAX);

vex[vk] = xmm0_Y_MAX;

vez[vk] = xmm1_Y_MAX;

vk++;

}

}

//pusai_X_MIN

if( i >= 2 && i <= (2 + BoundaryLayerNum[X_MIN] - 1) )

{
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if( id == 0 )

{

vBeta_PML_XGrid = _mm_load1_ps(&Beta_PML_XGrid[i]);

vpEi_PML_Coeff = _mm_load1_ps(&pEi_PML_Coeff[i]);

vpusai_eyz_X_MIN = (Vec4f *)pusai_eyz_X_MIN[i][j];

vpusai_ezy_X_MIN = (Vec4f *)pusai_ezy_X_MIN[i][j];

vk = 0;

while( vk <= vkmax_H )

{

e_update_nonelectric_pml_sub(vBeta_PML_XGrid,

vpusai_eyz_X_MIN[vk], vpEi_PML_Coeff, vhz[vk],

vhz_min_ey[vk], vey[vk], vCB, xmm0_X_MIN);

e_update_nonelectric_pml_add(vBeta_PML_XGrid,

vpusai_ezy_X_MIN[vk], vpEi_PML_Coeff, vhy[vk],

vhy_min_ez[vk], vez[vk], vCB, xmm1_X_MIN);

vey[vk] = xmm0_X_MIN;

vez[vk] = xmm1_X_MIN;

vk++;

}

}

}

//pusai_X_MAX

if( i >= (memory_size - 3 - BoundaryLayerNum[X_MAX] + 1) && i

<= memory_size - 3 )

{

if( id == p - 1 )

{

ishift = memory_size - 3 - BoundaryLayerNum[X_MAX] + 1;

vBeta_PML_XGrid = _mm_load1_ps(&Beta_PML_XGrid[i]);

vpEi_PML_Coeff = _mm_load1_ps(&pEi_PML_Coeff[i]);

vpusai_eyz_X_MAX = (Vec4f *)pusai_eyz_X_MAX[i-ishift][j];

vpusai_ezy_X_MAX = (Vec4f *)pusai_ezy_X_MAX[i-ishift][j];

vk = 0;

while( vk <= vkmax_H )

{

e_update_nonelectric_pml_sub(vBeta_PML_XGrid,

vpusai_eyz_X_MAX[vk], vpEi_PML_Coeff, vhz[vk],

vhz_min_ey[vk], vey[vk], vCB, xmm0_X_MAX);

e_update_nonelectric_pml_add(vBeta_PML_XGrid,

vpusai_ezy_X_MAX[vk], vpEi_PML_Coeff, vhy[vk],

vhy_min_ez[vk], vez[vk], vCB, xmm1_X_MAX);

vey[vk] = xmm0_X_MAX;

vez[vk] = xmm1_X_MAX;

vk++;

}

}

}

230 APPENDIX ● 3-D Parallel FDTD Source Code



//pusai_Z_MIN

vpusai_exy_Z_MIN = (Vec4f *)pusai_exy_Z_MIN[i][j];

vpusai_eyx_Z_MIN = (Vec4f *)pusai_eyx_Z_MIN[i][j];

k = vk = 0;

vhy_min_Z_MIN = _mm_shuffle_ps(vhy[vk], vhy[vk], _MM_SHUFFLE(2, 1,

0, 0));

vhx_min_Z_MIN = _mm_shuffle_ps(vhx[vk], vhx[vk], _MM_SHUFFLE(2, 1,

0, 0));

while (vk < vkmax_Z_MIN)

{

e_update_nonelectric_pml_sub(vBeta_PML_ZGrid[vk],

vpusai_exy_Z_MIN[vk], vpEk_PML_Coeff[vk], vhy[vk],

vhy_min_Z_MIN, vex[vk], vCB, xmm0_Z_MIN);

e_update_nonelectric_pml_add(vBeta_PML_ZGrid[vk],

vpusai_eyx_Z_MIN[vk], vpEk_PML_Coeff[vk], vhx[vk],

vhx_min_Z_MIN, vey[vk], vCB, xmm1_Z_MIN);

vex[vk] = xmm0_Z_MIN;

vey[vk] = xmm1_Z_MIN;

k += 4;

vk ++;

vhy_min_Z_MIN = _mm_loadu_ps(&hy[i][j][k-1]);

vhx_min_Z_MIN = _mm_loadu_ps(&hx[i][j][k-1]);

}

e_update_nonelectric_pml_sub(vBeta_PML_ZGrid[vk],

vpusai_exy_Z_MIN[vk], vpEk_PML_Coeff[vk], vhy[vk],

vhy_min_Z_MIN, vex[vk], vCB, xmm0_Z_MIN);

e_update_nonelectric_pml_add(vBeta_PML_ZGrid[vk],

vpusai_eyx_Z_MIN[vk], vpEk_PML_Coeff[vk], vhx[vk],

vhx_min_Z_MIN, vey[vk], vCB, xmm1_Z_MIN);

xmm0_Z_MIN = _mm_and_ps(xmm0_Z_MIN, *pMask2_Z_MIN);

xmm1_Z_MIN = _mm_and_ps(xmm1_Z_MIN, *pMask2_Z_MIN);

xmmo_0_Z_MIN = _mm_and_ps(vex[vk], *pMask3_Z_MIN);

xmmo_1_Z_MIN = _mm_and_ps(vey[vk], *pMask3_Z_MIN);

xmm0_Z_MIN = _mm_add_ps(xmm0_Z_MIN, xmmo_0_Z_MIN);

xmm1_Z_MIN = _mm_add_ps(xmm1_Z_MIN, xmmo_1_Z_MIN);

vex[vk] = xmm0_Z_MIN;

vey[vk] = xmm1_Z_MIN;

//pusai_Z_MAX

vpusai_exy_Z_MAX = (Vec4f *)pusai_exy_Z_MAX[i][j];

vpusai_eyx_Z_MAX = (Vec4f *)pusai_eyx_Z_MAX[i][j];

k = kmin_aligned;

vkshift_Z_MAX = vk = k >> 2;

vhy_min_Z_MAX = _mm_loadu_ps(&hy[i][j][k-1]);

vhx_min_Z_MAX = _mm_loadu_ps(&hx[i][j][k-1]);

e_update_nonelectric_pml_sub(vBeta_PML_ZGrid[vk],

vpusai_exy_Z_MAX[vk], vpEk_PML_Coeff[vk], vhy[vk],

vhy_min_Z_MAX, vex[vk], vCB, xmm0_Z_MAX);
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e_update_nonelectric_pml_add(vBeta_PML_ZGrid[vk],

vpusai_eyx_Z_MAX[vk], vpEk_PML_Coeff[vk], vhx[vk],

vhx_min_Z_MAX, vey[vk], vCB, xmm1_Z_MAX);

xmm0_Z_MAX = _mm_and_ps(xmm0_Z_MAX, *pMask3);

xmm1_Z_MAX = _mm_and_ps(xmm1_Z_MAX, *pMask3);

xmmo_0_Z_MAX = _mm_and_ps(vex[vk], *pMask4);

xmmo_1_Z_MAX = _mm_and_ps(vey[vk], *pMask4);

xmm0_Z_MAX = _mm_add_ps(xmm0_Z_MAX, xmmo_0_Z_MAX);

xmm1_Z_MAX = _mm_add_ps(xmm1_Z_MAX, xmmo_1_Z_MAX);

while (vk < vkmax_Z_MAX)

{

vex[vk] = xmm0_Z_MAX;

vey[vk] = xmm1_Z_MAX;

k += 4;

vk ++;

vhy_min_Z_MAX = _mm_loadu_ps(&hy[i][j][k-1]);

vhx_min_Z_MAX = _mm_loadu_ps(&hx[i][j][k-1]);

e_update_nonelectric_pml_sub(vBeta_PML_ZGrid[vk],

vpusai_exy_Z_MAX[vk], vpEk_PML_Coeff[vk], vhy[vk],

vhy_min_Z_MAX, vex[vk], vCB, xmm0_Z_MAX);

e_update_nonelectric_pml_add(vBeta_PML_ZGrid[vk],

vpusai_eyx_Z_MAX[vk], vpEk_PML_Coeff[vk], vhx[vk],

vhx_min_Z_MAX, vey[vk], vCB, xmm1_Z_MAX);

}

xmm0_Z_MAX = _mm_and_ps(xmm0_Z_MAX, *pMask2);

xmm1_Z_MAX = _mm_and_ps(xmm1_Z_MAX, *pMask2);

vex[vk] = xmm0_Z_MAX;

vey[vk] = xmm1_Z_MAX;

}

}

}

}

void transfer_H()

{

if( id != p - 1 )

{

MPI_Isend( hy[memory_size - 2][0], 1, new_dtype, id + 1, 0,

MPI_COMM_WORLD, &req[0]);

MPI_Isend( hz[memory_size - 2][0], 1, new_dtype, id + 1, 1,

MPI_COMM_WORLD, &req[1]);

}

if( id != 0 )

{

MPI_Irecv( hy[0][0], 1, new_dtype, id - 1, 0, MPI_COMM_WORLD,

&req[0]);

MPI_Irecv( hz[0][0], 1, new_dtype, id - 1, 1, MPI_COMM_WORLD,

&req[1]);
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}

MPI_Waitall( 2, req, status );

}

void transfer_E()

{

if( id != 0 )

{

MPI_Isend( ey[1][0], 1, new_dtype, id - 1, 0, MPI_COMM_WORLD,

&req[0] );

MPI_Isend( ez[1][0], 1, new_dtype, id - 1, 1, MPI_COMM_WORLD,

&req[1] );

}

if( id != p - 1 )

{

MPI_Irecv( ey[memory_size - 1][0], 1, new_dtype, id + 1, 0,

MPI_COMM_WORLD, &req[0]);

MPI_Irecv( ez[memory_size - 1][0], 1, new_dtype, id + 1, 1,

MPI_COMM_WORLD, &req[1]);

}

MPI_Waitall( 2, req, status );

}

void add_source( int source_x, int source_y, int source_z )

{

ez[ source_x ][ source_y ][ source_z ] = exp( -0.5 * pow( ( 20.0 -

n ) / 6.0, 2) );

}

void source()

{

if( id == source_owner )

{

add_source( source_position_x_local, source_position_y,

source_position_z );

}

if( source_left_owner != source_owner )

{

if( id == source_left_owner )

{

add_source( memory_size - 1, source_position_y,

source_position_z );

}

}

if( source_right_owner != source_owner )

{

if( id == source_right_owner )

{

add_source( 0, source_position_y, source_position_z );

}

}

}
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void data_collect()

{

MPI_Gather( ez[1][0], size, new_dtype, Ez_save[0][0], size,

new_dtype, 0, MPI_COMM_WORLD );

}

void output_Ez()

{

char step[10];

char fileBaseName[]= "output\\Ez_Field_";

sprintf(step, "%d", n);

strcat(fileBaseName, step);

strcat(fileBaseName, ".txt");

fp = fopen(fileBaseName,"w");

for( i = 0 ; i < nx + 1 ; i++)

{

for( j = 0 ; j < ny + 1 ; j++)

{

fprintf(fp, "%f\t", Ez_save[i][j][ source_position_z ]);

sqrt(pow(ex[i][j][source_position_z],

2)+pow(ey[i][j][source_position_z], 2) +

pow( ez[i][j][source_position_z], 2)));

}

fprintf(fp, "\n");

}

fclose(fp);

}
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