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Abstract  – This paper presents the analysis of 
microstrip patch antenna using the three dimensional 
Finite Difference Time Domain (FDTD) method. The 
derivation and implementation of the three 
dimensional FDTD method is described. This is done 
along with the implementation of an artificial 
absorbing boundary medium known as the Uniaxial 
Perfectly Matched Layer (UPML). This medium 
enables to limit the computational domain required 
for simulation. This is followed by the broadband 
analysis of a microstrip line fed rectangular patch 
antenna using Gaussian pulse excitation. The 
broadband analysis is used to estimate the return loss 
of the line fed antenna. The results are compared with 
the solution obtained from Ansoft planar EM 
simulator. Furthermore, the input resistance and 
reactance of the antenna near resonance are 
estimated.  

I .INTRODUCTION 

 Microstrip patch antennas are low – profile 
antennas that are simple and inexpensive to 
manufacture. They are mechanically robust and are 
conformable to planar and nonplanar surfaces. One of 
the main features of the microstrip antenna is the 
extremely narrow frequency bandwidth. Several 
methods exist for the analysis of microstrip antennas. 
They can be classified as the Transmission Line 
Model (TLM), cavity  model and full wave models. 
Finite Element Method (FEM), FDTD, Integral 
Equation – Method of Moment (IE – MoM) are some 
of the prominent full wave models. The primary 
advantage of FDTD over other full-wave models is 
that, FDTD  being a time domain method allows 
broadband analysis of the antenna  by Gaussian pulse 
excitation. The antenna characteristics over a wide 
frequency range can be obtained by taking the 
Fourier transform of the FDTD simulation results 
obtained when a wideband Gaussian pulse is used as 
an excitation. Moreover, most of widely used 
electromagnetic simulation software's use frequency 
domain methods like FEM. The disadvantages of the 
FDTD are high memory and computational 
requirements. Since the computational power will 
continue to grow exponentially in the future, this 
drawback will become less significant.  

 FDTD has received tremendous attention in the 
literature recently. FDTD has been used to simulate 
and analyze a plethora of electromagnetic problems 
ranging from antennas, microwave  wave circuits, 
electromagnetic compatibility (EMC) issues, 
bioelectromagnetics, electromagnetic scattering  to 
novel materials and nanophotonics [2].  In this paper, 
we explore  the analysis of microstrip patch antennas 
using FDTD. The technique described in this paper 
can be used to analyze other planar microwave 
circuits such as filters, hybrids, impedance 
transformers etc. FDTD analysis of microstrip 
antennas can be found in [3] – [5]. But most of these 
papers use either Berenger’s PML or Mur Absorbing 
Boundary Conditions (ABC) for terminating the 
computational domain. In this paper, we use the 
UPML as the absorbing boundary to terminate the 
computational domain. UPML is superior in 
performance to either Berenger’s PML or Mur ABC. 

II. FINITE DIFFERENCE TIME DOMAIN (FDTD) 
METHOD 

 The Finite Difference Time Domain (FDTD) 
method is a computational electromagnetic method 
that can be used to simulate any electromagnetic 
problem. In the FDTD method, Maxwell’s curl 
equations are converted to their corresponding scalar 
Partial Differential Equations (PDE). This is followed 
by the discretization of space and time domain. 
Central difference approximations are applied to the 
scalar Partial Differential Equations (PDE) with 
respect to the discretized time and space domain. 
This will result in discrete equations for each field 
component, which can be used to evaluate these field 
components. These equations are called update 
equations or time – stepping equations. The update 
equation for a particular field component can be 
defined as the discrete equation that expresses the 
future value of the same field component using 
previous value of the same field component and the 
spatial derivatives of other field components at the 
present time. 
 
A. Three dimensional FDTD formulation 
 One of the most important considerations in FDTD 
simulation is that of Absorbing Boundary Conditions 



(ABC). In solving electromagnetic wave problems, it 
is assumed that geometries of interest are defined in 
an open region, i.e. only the geometries of interest are 
the scattering objects present. But computational 
resources are limited and hence the spatial domain 
needs to be truncated in such way that there are no 
wave reflections from the boundaries. Such boundary 
conditions are called ABCs.  The Uniaxial Perfectly 
Matched Layer (UPML) is the most efficient of the 
ABC’s available in literature [2]. The computational 
domain will be surrounded by the UPML, which will 
absorb waves of any polarization, angle of incidence 
and frequency.  
 In FDTD – UPML formulation, the entire spatial 
domain is assumed to be an anisotropic medium [2]. 
Maxwell’s curl equations in the anisotropic medium 
can be expressed as follows 
 
∇  ×  𝐻𝐻���⃗ = 𝑗𝑗𝑗𝑗𝑗𝑗𝑠̿𝑠𝐸𝐸��⃗  
∇  ×  𝐸𝐸��⃗ = −𝑗𝑗𝑗𝑗𝑗𝑗𝑠̿𝑠𝐻𝐻���⃗                                                  (1) 
 
where 𝐸𝐸��⃗ , 𝐻𝐻���⃗   are the electric and magnetic field 
intensity vectors with components in phasor form and  
𝑠̿𝑠 is the diagonal tensor given by (2).  
 

𝑠̿𝑠 =  

⎣
⎢
⎢
⎢
⎡
𝑠𝑠𝑦𝑦 𝑠𝑠𝑧𝑧
𝑠𝑠𝑥𝑥

0 0

0 𝑠𝑠𝑥𝑥𝑠𝑠𝑧𝑧
𝑠𝑠𝑦𝑦

0

0 0 𝑠𝑠𝑥𝑥𝑠𝑠𝑦𝑦
𝑠𝑠𝑧𝑧 ⎦
⎥
⎥
⎥
⎤

                                        (2)    

 
In (2), 𝑠𝑠𝑥𝑥 , 𝑠𝑠𝑦𝑦  and 𝑠𝑠𝑧𝑧  are the relative complex 
permittivities along x, y and z directions. They are 
given by (3). 
 
𝑠𝑠𝑥𝑥 =  𝜅𝜅𝑥𝑥 +  𝜎𝜎𝑥𝑥

𝑗𝑗𝑗𝑗𝑗𝑗
   

𝑠𝑠𝑦𝑦 =  𝜅𝜅𝑦𝑦 +  𝜎𝜎𝑦𝑦
𝑗𝑗𝑗𝑗𝑗𝑗

   

𝑠𝑠𝑧𝑧 =  𝜅𝜅𝑧𝑧 +  𝜎𝜎𝑧𝑧
𝑗𝑗𝑗𝑗𝑗𝑗

                                                      (3)    
 
The first equation of (1) is a vector PDE and hence it 
can be expanded into three scalar PDEs as below. 
 

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝐻𝐻𝑧𝑧����
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐻𝐻𝑦𝑦����

𝜕𝜕𝜕𝜕
𝜕𝜕𝐻𝐻𝑥𝑥����
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐻𝐻𝑧𝑧����
𝜕𝜕𝜕𝜕

𝜕𝜕𝐻𝐻𝑦𝑦����

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝐻𝐻𝑥𝑥����

𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

= 𝑗𝑗𝑗𝑗𝑗𝑗

⎣
⎢
⎢
⎢
⎡
𝑠𝑠𝑦𝑦 𝑠𝑠𝑧𝑧
𝑠𝑠𝑥𝑥

0 0

0 𝑠𝑠𝑥𝑥𝑠𝑠𝑧𝑧
𝑠𝑠𝑦𝑦

0

0 0 𝑠𝑠𝑥𝑥𝑠𝑠𝑦𝑦
𝑠𝑠𝑧𝑧 ⎦
⎥
⎥
⎥
⎤

�
𝐸𝐸𝑥𝑥���
𝐸𝐸𝑦𝑦���

𝐸𝐸𝑧𝑧���
�       (4)        

 
The electric flux density components are related to 
the electric field intensity components as shown in 
(5). 

𝐷𝐷𝑥𝑥���� = 𝜀𝜀 𝑠𝑠𝑧𝑧
𝑠𝑠𝑥𝑥
𝐸𝐸𝑥𝑥���  

𝐷𝐷𝑦𝑦���� = 𝜀𝜀 𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦
𝐸𝐸𝑦𝑦���  

𝐷𝐷𝑧𝑧��� = 𝜀𝜀 𝑠𝑠𝑦𝑦
𝑠𝑠𝑧𝑧
𝐸𝐸𝑧𝑧���                                                     (5) 

 
Substituting (5) in (4) results in (6) 
 

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝐻𝐻𝑧𝑧����
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐻𝐻𝑦𝑦����

𝜕𝜕𝜕𝜕
𝜕𝜕𝐻𝐻𝑥𝑥����
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐻𝐻𝑧𝑧����
𝜕𝜕𝜕𝜕

𝜕𝜕𝐻𝐻𝑦𝑦����

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝐻𝐻𝑥𝑥����

𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

= 𝑗𝑗𝑗𝑗 �
𝑠𝑠𝑦𝑦 0 0
0 𝑠𝑠𝑧𝑧 0
0 0 𝑠𝑠𝑥𝑥

� �
𝐷𝐷𝑥𝑥����
𝐷𝐷𝑦𝑦����

𝐷𝐷𝑧𝑧���
�               (6) 

 
The PDEs in (6) are in frequency domain. They are 
converted to time domain, by using the 
transformation, 𝑗𝑗𝑗𝑗 →  𝜕𝜕

𝜕𝜕𝜕𝜕
. This is followed by 

substituting (3) in (6). The resultant time – domain 
PDEs relating magnetic field intensity components 
and electric flux density components are as follows. 
 

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

=  𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜅𝜅𝑦𝑦 0 0
0 𝜅𝜅𝑧𝑧 0
0 0 𝜅𝜅𝑥𝑥

� �
𝐷𝐷𝑥𝑥
𝐷𝐷𝑦𝑦
𝐷𝐷𝑧𝑧
� +

 1
𝜀𝜀
�
𝜎𝜎𝑦𝑦 0 0
0 𝜎𝜎𝑧𝑧 0
0 0 𝜎𝜎𝑥𝑥

� �
𝐷𝐷𝑥𝑥
𝐷𝐷𝑦𝑦
𝐷𝐷𝑧𝑧
�                                               (7) 

 
The second equation of (1) can be treated similarly 
leading to (8). 
 

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

=  − 𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜅𝜅𝑦𝑦 0 0
0 𝜅𝜅𝑧𝑧 0
0 0 𝜅𝜅𝑥𝑥

� �
𝐵𝐵𝑥𝑥
𝐵𝐵𝑦𝑦
𝐵𝐵𝑧𝑧
� −

 1
𝜀𝜀
�
𝜎𝜎𝑦𝑦 0 0
0 𝜎𝜎𝑧𝑧 0
0 0 𝜎𝜎𝑥𝑥

� �
𝐵𝐵𝑥𝑥
𝐵𝐵𝑦𝑦
𝐵𝐵𝑧𝑧
�                                               (8) 

 
Thus (7) and (8) are time – domain PDEs relating 
magnetic field intensity to electric flux density and 
electric field intensity to magnetic flux density 
respectively. It should be noted that in (7) and (8), the 
quantities are in time – domain, and hence they are 
represented without bar. 
 Using (5), we can derive time – domain PDEs 
relating electric field intensity components to electric 
flux density components. The first equation of (5) is 
expanded as follows. 



 
�𝜅𝜅𝑥𝑥 +  𝜎𝜎𝑥𝑥

𝑗𝑗𝑗𝑗𝑗𝑗
�𝐷𝐷𝑥𝑥���� =  𝜀𝜀 �𝜅𝜅𝑧𝑧 +  𝜎𝜎𝑧𝑧

𝑗𝑗𝑗𝑗𝑗𝑗
� 𝐸𝐸𝑥𝑥���                  (9) 

 
Multiplying both sides of (8) by 𝑗𝑗𝑗𝑗      and 
transforming to time – domain leads to (10). A 
similar treatment of the remaining equations in (5) 
will result in (11) and (12). 
 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜅𝜅𝑥𝑥𝐷𝐷𝑥𝑥) + 𝜎𝜎𝑥𝑥
𝜀𝜀
𝐷𝐷𝑥𝑥 =  𝜀𝜀 � 𝜕𝜕

𝜕𝜕𝜕𝜕
(𝜅𝜅𝑧𝑧𝐸𝐸𝑥𝑥) +  𝜎𝜎𝑧𝑧

𝜀𝜀
𝐸𝐸𝑥𝑥�  (10)  

 
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜅𝜅𝑦𝑦𝐷𝐷𝑦𝑦�+  𝜎𝜎𝑦𝑦

𝜀𝜀
𝐷𝐷𝑦𝑦 =  𝜀𝜀 � 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜅𝜅𝑥𝑥𝐸𝐸𝑦𝑦� + 𝜎𝜎𝑥𝑥

𝜀𝜀
𝐸𝐸𝑦𝑦�(11) 

 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜅𝜅𝑧𝑧𝐷𝐷𝑧𝑧) +  𝜎𝜎𝑧𝑧
𝜀𝜀
𝐷𝐷𝑧𝑧 =  𝜀𝜀 � 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜅𝜅𝑦𝑦𝐸𝐸𝑧𝑧� + 𝜎𝜎𝑦𝑦

𝜀𝜀
𝐸𝐸𝑧𝑧�  (12) 

 
Similarly time – domain PDEs relating magnetic field 
intensities and flux densities can be derived from 
their constitutive relations. They are given by (13), 
(14) and (15). 
 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜅𝜅𝑥𝑥𝐵𝐵𝑥𝑥) + 𝜎𝜎𝑥𝑥
𝜀𝜀
𝐵𝐵𝑥𝑥 =  𝜇𝜇 � 𝜕𝜕

𝜕𝜕𝜕𝜕
(𝜅𝜅𝑧𝑧𝐻𝐻𝑥𝑥) +  𝜎𝜎𝑧𝑧

𝜀𝜀
𝐻𝐻𝑥𝑥� (13) 

 
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜅𝜅𝑦𝑦𝐵𝐵𝑦𝑦�+  𝜎𝜎𝑦𝑦

𝜀𝜀
𝐵𝐵𝑦𝑦 = 𝜇𝜇 � 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜅𝜅𝑥𝑥𝐻𝐻𝑦𝑦� + 𝜎𝜎𝑥𝑥

𝜀𝜀
𝐻𝐻𝑦𝑦�(14)  

 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜅𝜅𝑧𝑧𝐵𝐵𝑧𝑧) +  𝜎𝜎𝑧𝑧
𝜀𝜀
𝐵𝐵𝑧𝑧 =  𝜇𝜇 � 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜅𝜅𝑦𝑦𝐻𝐻𝑧𝑧� +  𝜎𝜎𝑦𝑦

𝜀𝜀
𝐻𝐻𝑧𝑧� (15)  

       
B. Discretization of space and time domain 
 Spatial discretization is done by dividing the 
computational space into cuboidal cells called Yee – 
cells. The Yee – cell is shown in figure 1.  
 

 
Figure 1. Electric and magnetic field vector 
components in a Yee – cell.  
 
From figure 1, it can be seen that electric field 
components are located at Yee – cell edge centers 
and magnetic field components are located at face 

centers.  The computation space is assumed to be 
filled with a number of Yee – cells. Each Yee – cell 
is identified by the spatial discretization 
indices (𝑖𝑖, 𝑗𝑗, 𝑘𝑘). The indices (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) are mapped to the 
physical space as per the following relation. 
 
(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) → (𝑖𝑖∆𝑥𝑥, 𝑗𝑗∆𝑦𝑦, 𝑘𝑘∆𝑧𝑧)                                     (16) 
 
where ∆𝑥𝑥,∆𝑦𝑦 and ∆𝑧𝑧 are the dimensions of the Yee – 
cell along the x, y and z  axis respectively. Temporal 
discretization is done by dividing the time axis into 
segments of duration ∆𝑡𝑡 each. The temporal 
discretization index n corresponds to the real 
time, 𝑛𝑛∆𝑡𝑡.  
 In order to apply central difference approximations 
to the differential equations, the magnetic and electric 
field vector components are assigned to the 
discrertized space and time domain, in such a way 
that they are interleaved in both space and time. 
Spatial interleaving can be seen in figure. In order to 
have temporal interleaving, electric field / electric 
flux components are evaluated at . .𝑛𝑛∆𝑡𝑡, (𝑛𝑛 +
1)∆𝑡𝑡.. and magnetic field / magnetic flux components 
are evaluated at  
. (𝑛𝑛 − 0.5)∆𝑡𝑡, (𝑛𝑛 + 0.5)∆𝑡𝑡...For convenience we will 
use a shorthand notation to represent the field 
components at a particular time. Two examples of 
this notation are given below. 
 
�𝐸𝐸𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛 → 𝐸𝐸𝑧𝑧(𝑖𝑖∆𝑥𝑥, 𝑗𝑗∆𝑦𝑦, 𝑘𝑘∆𝑧𝑧 + 0.5∆𝑧𝑧 ;𝑛𝑛∆𝑡𝑡)  
�𝐻𝐻𝑦𝑦 �𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+0.5 → 𝐻𝐻𝑦𝑦 (𝑖𝑖∆𝑥𝑥 + 0.5∆𝑥𝑥, 𝑗𝑗∆𝑦𝑦, 𝑘𝑘∆𝑧𝑧 +
0.5∆𝑧𝑧 ;𝑛𝑛∆𝑡𝑡 + 0.5∆𝑡𝑡)                                             (17)              
 
C. Derivation of FDTD update equations 
     The three dimensional FDTD is implemented 
using 12 update equations. They are for 
𝐷𝐷𝑥𝑥 ,𝐷𝐷𝑦𝑦 ,𝐷𝐷𝑧𝑧 ,𝐸𝐸𝑥𝑥 ,𝐸𝐸𝑦𝑦 ,𝐸𝐸𝑧𝑧 ,𝐵𝐵𝑥𝑥 ,𝐵𝐵𝑦𝑦 ,𝐵𝐵𝑧𝑧 ,𝐻𝐻𝑥𝑥 ,𝐻𝐻𝑦𝑦 ,𝐻𝐻𝑧𝑧 . In this 
section, the derivation of update equations for 𝐷𝐷𝑥𝑥  and 
𝐸𝐸𝑥𝑥  are shown. The rest of the equations can be 
derived in the same way. The figure 1 and the 
shorthand notation in (17), should be used to 
understand the derivation of these update equations.  
 The starting point for the derivation of update 
equations are the continuous time PDEs given by (7), 
(8), (10) – (12), (13) – (15).  The equations (7), (8) 
are used for the derivation of electric and magnetic 
flux density update equations respectively. (10) – 
(12), (13) – (15)  are used for the derivation of 
electric and magnetic field intensity update equations. 
In order to derive 𝐷𝐷𝑥𝑥  update equation, we use the first 
row of (7). The first row of (7) is given by (18). 
 
𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

−  𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

=  𝜅𝜅𝑦𝑦
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐷𝐷𝑥𝑥) + 𝜎𝜎𝑦𝑦
𝜀𝜀
𝐷𝐷𝑥𝑥                     (18)            

 



From (18), it is obvious that future value of 𝐷𝐷𝑥𝑥 , 
depends on the past value of 𝐷𝐷𝑥𝑥        and the spatial 
derivatives of 𝐻𝐻𝑦𝑦 ,𝐻𝐻𝑧𝑧  at the current time. The 𝐷𝐷𝑥𝑥  
update equation will be used to evaluate, the future 
value of 𝐷𝐷𝑥𝑥 , i.e. 𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1 . This will depend on the 
previous value of 𝐷𝐷𝑥𝑥 , i.e. 𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛   and the spatial 
derivatives of 𝐻𝐻𝑧𝑧 ,𝐻𝐻𝑦𝑦  at the current time, i.e. n + 0.5 
.The spatial derivatives of 𝐻𝐻𝑧𝑧 , 𝐻𝐻𝑦𝑦  are obtained around 
the position of 𝐷𝐷𝑥𝑥 , i.e. the same position of 𝐸𝐸𝑥𝑥  in 
figure 1. The spatial derivatives approximated in such 
a  way using central difference approximation are as 
follows. 
 
𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

=  
𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+0.5 − 𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗−0.5,𝑘𝑘
𝑛𝑛+0.5

∆𝑦𝑦
                     

𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

=  
𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+0.5 − 𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘−0.5
𝑛𝑛+0.5

∆𝑧𝑧
                  (19)     

 
In (18), the time derivative of 𝐷𝐷𝑥𝑥  is replaced with the 
central difference approximation of the derivative 
around current time n + 0.5. This is   given  by 
 
𝜕𝜕𝐷𝐷𝑥𝑥
𝜕𝜕𝜕𝜕

=  
𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1 − 𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛  

∆𝑡𝑡
                                (20)   

 
The last term on the right hand side of (18), denotes 
the value of 𝐷𝐷𝑥𝑥  at the current time, i.e. 𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+0.5 . 
Since we evaluate the values of 𝐷𝐷𝑥𝑥  at . .𝑛𝑛∆𝑡𝑡, (𝑛𝑛 +
1)∆𝑡𝑡.., 𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+0.5  is substituted by the following 
approximation. 
 

𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛+0.5 =  

𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛 +𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1  

2
                         (21)  

 
Substituting (19), (20) and (21) in (18)  will result in 
the 𝐷𝐷𝑥𝑥    update equation as shown below. 
 
𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1   =   𝐶𝐶1𝐷𝐷𝐷𝐷.𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛 +

𝐶𝐶2𝐷𝐷𝐷𝐷. �
𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+0.5 − 𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗−0.5,𝑘𝑘
𝑛𝑛+0.5

∆𝑦𝑦
−

 
𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+0.5 − 𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘−0.5
𝑛𝑛+0.5

∆𝑧𝑧
�    

𝐶𝐶1𝐷𝐷𝐷𝐷 = �2𝜀𝜀𝜅𝜅𝑦𝑦− 𝜎𝜎𝑦𝑦∆𝑡𝑡
2𝜀𝜀𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦∆𝑡𝑡

�            

            
𝐶𝐶2𝐷𝐷𝐷𝐷 =  � 2𝜀𝜀∆𝑡𝑡

2𝜀𝜀𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝑡𝑡
�                                    (22) 

 
Similar to the derivation of 𝐷𝐷𝑥𝑥  update equation, 
update equations for 𝐷𝐷𝑦𝑦 ,𝐷𝐷𝑧𝑧 ,𝐵𝐵𝑥𝑥 ,𝐵𝐵𝑦𝑦  and 𝐵𝐵𝑧𝑧  can be 
derived.  
 In order to derive 𝐸𝐸𝑥𝑥  update equation, (10) is 
used. The left hand side of (10) is substituted with 

(20) and (21). The right hand side of (10) is 
substituted with (23) and (24). 
 
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

 =  
𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1 − 𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛  

∆𝑡𝑡
                             (23) 

𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛+0.5 =  

𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛 +𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1  

2
                  (24) 

 
This will result in 𝐸𝐸𝑥𝑥  update equation as follows. 
 
𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1 = 𝐶𝐶1𝐸𝐸𝐸𝐸.𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛+1 −  𝐶𝐶2𝐸𝐸𝐸𝐸.𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛

+  𝐶𝐶3𝐸𝐸𝐸𝐸.𝐸𝐸𝑥𝑥|𝑖𝑖+0.5,𝑗𝑗,𝑘𝑘
𝑛𝑛  

𝐶𝐶1𝐸𝐸𝐸𝐸 =  � 2𝜀𝜀𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝑡𝑡
𝜀𝜀(2𝜀𝜀𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝑡𝑡)�  

 
𝐶𝐶2𝐸𝐸𝐸𝐸 =  � 2𝜀𝜀𝜅𝜅𝑥𝑥− 𝜎𝜎𝑥𝑥Δ𝑡𝑡

𝜀𝜀(2𝜀𝜀𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝑡𝑡)�  
 
𝐶𝐶2𝐸𝐸𝐸𝐸 =  �2𝜀𝜀𝜅𝜅𝑧𝑧− 𝜎𝜎𝑧𝑧Δ𝑡𝑡

2𝜀𝜀𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝑡𝑡
�                                     (25) 

 
Similar to the derivation of 𝐸𝐸𝑥𝑥  update equation, 
update equations for 𝐸𝐸𝑦𝑦 ,𝐸𝐸𝑧𝑧 ,𝐻𝐻𝑥𝑥 ,𝐻𝐻𝑦𝑦  and 𝐻𝐻𝑧𝑧  can be 
derived. All the 12 update equations were carefully 
derived and are given in appendix I for reference. 
 
D. Computer implementation of FDTD  
 FDTD is implemented in software by iterating the 
12 update equations given in appendix I. In each 
iteration, the flux / field components in the entire 
computational space are updated. For instance, the 
updating of the components can be in this order, D, 
E, B, H. The computational space is divided into two 
regions, the inner problem space and the UPML 
region surrounding the problem space. The UPML is 
terminated by Perfect Electric Conductor (PEC) on 
all the six sides.  Figure 2, shows the cross – sectional 
view of the computational domain in a constant y 
plane. The problem space, UPML and PEC boundary 
can be seen.  
 In figure 2, it should be noted that the UPML 
region is divided into different regions. These are the 
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚  UPML slabs and the corner 
regions. A cross – sectional cut of the domain in a 
constant z plane will show  𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚  UPML 
regions. Corner UPML regions are the overlap of two 
or more UPML slabs. There will be 4  corner regions 
near the vertices of the computational domain, where 
x, y an z UPML slabs overlap (i.e. overlap of three 
UPML regions). 
 In FDTD, different materials are modeled by 
varying the values of 𝜅𝜅𝑥𝑥 , 𝜅𝜅𝑦𝑦 , 𝜅𝜅𝑧𝑧 ,𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦 ,𝜎𝜎𝑧𝑧 . The 
computational space will be divided into Yee – cells. 
Each Yee – cell will have its corresponding 
constitutive parameters. The variations of 𝜅𝜅 and 𝜎𝜎 in 



different regions of the computational domain are 
given below.  
Problem space : Isotropic materials in problem space 
are modeled by allowing 𝜅𝜅𝑥𝑥 =  𝜅𝜅𝑦𝑦 =  𝜅𝜅𝑧𝑧 = 1, 
𝜎𝜎𝑥𝑥 =  𝜎𝜎𝑦𝑦 =  𝜎𝜎𝑥𝑥 =  𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 , where 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚  is the 
conductivity of the material. Furthermore, 𝜀𝜀 in all the 
update equations should be multiplied by the 𝜀𝜀𝑟𝑟  of 
the corresponding Yee – cell, i.e. the 𝜀𝜀𝑟𝑟  of the 
material.  
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  UPML slabs : 𝜎𝜎𝑦𝑦 =  𝜎𝜎𝑧𝑧 = 0, 𝜅𝜅𝑦𝑦 =  𝜅𝜅𝑧𝑧 =
1. 𝜎𝜎𝑥𝑥 , 𝜅𝜅𝑥𝑥  varies. 
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚  UPML slabs : 𝜎𝜎𝑥𝑥 =  𝜎𝜎𝑧𝑧 = 0, 𝜅𝜅𝑥𝑥 =  𝜅𝜅𝑧𝑧 =
1. 𝜎𝜎𝑦𝑦 , 𝜅𝜅𝑦𝑦  varies. 
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚  UPML slabs : 𝜎𝜎𝑥𝑥 =  𝜎𝜎𝑦𝑦 = 0, 𝜅𝜅𝑥𝑥 =  𝜅𝜅𝑦𝑦 =
1. 𝜎𝜎𝑧𝑧 , 𝜅𝜅𝑧𝑧  varies. 
Corner UPML regions : Depending on which UPML 
slabs are overlapping, a combination of two or more 
of the UPML slab conditions should be used. For 
instance, when all the UPML slabs overlap in the 
corners near the computational space 
vertices, 𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦 ,𝜎𝜎𝑧𝑧 , 𝜅𝜅𝑥𝑥 , 𝜅𝜅𝑦𝑦 , 𝜅𝜅𝑧𝑧  will vary. For the 
corners in figure 2, only 𝜎𝜎𝑦𝑦 ,𝜎𝜎𝑧𝑧 , 𝜅𝜅𝑦𝑦 , 𝜅𝜅𝑧𝑧  varies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Cross sectional view of the computational 
space in a plane parallel to XZ plane.  

 In order to obtain gradual attenuation of any wave 
incident on the UPML, the parameters 𝜎𝜎 and 𝜅𝜅 are 
geometrically graded along the normal axes of the 
UPML regions. These normal axis directions of each 
UPML slab is shown as arrows in figure 2. The 
geometric grading equations are given by 
 

𝜎𝜎𝑥𝑥 ,𝑦𝑦 ,𝑧𝑧(𝑢𝑢) =  �𝑔𝑔
1
Δ�

𝑢𝑢
𝜎𝜎0                                            (26) 

 

𝜅𝜅𝑥𝑥 ,𝑦𝑦 ,𝑧𝑧(𝑢𝑢) =  �𝑔𝑔
1
Δ�

𝑢𝑢
                                                (27) 

 
where u is the normal distance between the point 
where the parameter is calculated and the UPML - 
problem space boundary. Δ is the spatial 
discretization interval, i.e. Δ𝑥𝑥 =  Δ𝑦𝑦 =  Δ𝑧𝑧 =  Δ. 
𝑔𝑔,𝜎𝜎𝑜𝑜  are constants. It should be noted that 𝜎𝜎, 𝜅𝜅 are 
calculated at the location of the field component. For 
instance, 𝜎𝜎, 𝜅𝜅 for the update equations of 𝐻𝐻𝑥𝑥 ,𝐸𝐸𝑧𝑧  of 
the same Yee – cell will be different. This is because 
the two field components are at different locations in 
the same Yee – cell. Since the exterior of the UPML 
is a PEC layer, the tangential electric field 
components on this surface will be zero. From figure 
1, it can be seen that 𝐸𝐸𝑥𝑥 ,𝐸𝐸𝑦𝑦  and 𝐸𝐸𝑧𝑧  on  the PEC 
surface will be zero. This zero electric field condition 
acts as the stopping criterion for the FDTD update 
equation loops in software. 
 
E.   Precision and stability of FDTD method  
 The precision and algorithmic stability of the 
FDTD method is governed by the value of Δ𝑥𝑥,Δ𝑦𝑦,Δ𝑧𝑧 
and Δ𝑡𝑡. In this paper, we will be using cubical Yee – 
cells, so Δ𝑥𝑥 =  Δ𝑦𝑦 =  Δ𝑧𝑧 =  Δ. In order to minimize 
dispersive effects, (28) should be satisfied [2].  
 
Δ ≤  𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

10
                                                              (28) 

 
where  𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚  is the minimum wavelength 
corresponding to the maximum frequency of 
simulation. The time discretization interval, Δ𝑡𝑡 is 
determined by the Courant condition [2], given by 
(29). 
 
Δ𝑡𝑡 ≤  ∆

𝑐𝑐𝑜𝑜√𝑛𝑛
                                                            (29)      

 
where n is the dimension of the FDTD formulation 
and 𝑐𝑐𝑜𝑜  is the velocity of light in vacuum. For 3D 
simulation, it is usual practice to use, ∆𝑡𝑡 =  ∆ 2𝑐𝑐𝑜𝑜⁄ . 
 

III. BROADBAND ANALYSIS USING FDTD 

 Three dimensional FDTD with UPML ABC was 
implemented in C++. The main objective was to 
simulate the rectangular patch antenna shown in 
figure 3. The code is given in appendix II. The code 
can be used with update equations in appendix I, to 
gain a clear understanding. The length of the antenna, 
𝐿𝐿 = 16.2 𝑚𝑚𝑚𝑚 and width, 𝑊𝑊 = 12.45 𝑚𝑚𝑚𝑚. The 
height of the substrate h = 0.795 mm and substrate 
dielectric constant is 2.2. The simulation results can 
be used to obtain 𝑆𝑆11(𝑑𝑑𝑑𝑑) vs. frequency of this 
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antenna. Port 1 is the port represented by the terminal 
plane (TP) in figure 3. 

 

 

 
 

 

 

 

 

 

 

 

 

 

  

Figure 3. Microstrip line fed rectangular patch 
antenna (not to scale) 

A.     FDTD simulation details  
 The spatial discretization interval used was ∆ =
0.265 𝑚𝑚𝑚𝑚. Using this interval all the relevant 
dimensions of the antenna in figure 3 can be 
represented by integer number of cells. By using 
(28), it can be seen that this value of ∆ will allow the 
use of high excitation frequencies without causing 
numerical dispersion. The maximum excitation 
frequency can easily be more than 50 GHz. The 
temporal discretization interval is calculated using 
the Courant condition listed in section II.E. The ∆𝑡𝑡 
used for simulation is 0.441 ps.  
 The UPML parameters 𝑔𝑔,𝜎𝜎𝑜𝑜  given in (26), (27) are 
found after performing several simulations.  They are 
chosen so that reflection from the problem space – 
UPML boundary is very low. The following values 
were found suitable: 𝑔𝑔 = 1.4,𝜎𝜎𝑜𝑜 = 0.5. The number 
of UPML layers used was 19. Few results of the 
UPML experiments are given in Appendix III.   
 The size of the problem space was 70 x 150 x 16 
cells. Since there are 19 layers of UPML adjoining 
each of the six faces of the problem space, the total 
size of the computational space is 106 x 186 x 52 
cells. From appendix I, it can be seen that there are a 
total of 30 update equation coefficients. In addition to 
this, there are 12 field / flux components. Therefore 
the code needs 42 three dimensional matrices, where 
each matrix is of size 106 x 186 x 52.  A floating 
point number requires 8 bytes of memory for storage. 
Hence the total amount of RAM required for the 

simulation was around 330 MB. The simulation 
environment was Win32 – x86. The microstrip 
antenna is modeled by modifying the constitutive 
parameters corresponding to the Yee – cells. The 
procedure was explained in section II . D. The 
conductor used as microstrip and ground plane is 
Copper (𝜎𝜎 = 5.8𝑒𝑒7). It should be noted that ground 
plane fills the entire computational XY plane and the 
substrate fills the entire problem – space XY plane. 
The ground plane is one cell thick, while the 
substrate is 3 cells thick, i.e 3 cells along the Z 
direction.  
 
B.    Estimation of  𝑆𝑆11  

In this section, the procedure used for estimating 
𝑆𝑆11  is outlined. Port 1 is associated with the terminal 
plane (TP) in figure 3. 𝑆𝑆11  can be defined as follows. 

 

𝑆𝑆11(𝑓𝑓) =  𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
(𝑓𝑓)

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 (𝑓𝑓) =  𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟
(𝑓𝑓)

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 (𝑓𝑓)                           (30) 
 
The estimation of 𝑆𝑆11  consists of two parts. The 
objective of the first part is just to sample the incident 
wave at the terminal plane. In this part, only the 
microstrip feed line is used. The feed line will extend 
from 𝑦𝑦 = 0  at one end to 𝑦𝑦 =  𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚     at the other 
end.  At both ends the strip will extend into the 
UPML regions and touch the PEC boundary. If the 
strip is not extended into UPML, the microstrip 
discontinuity will result in reflection. The incident 
wave simulation setup is shown in figure 4. In figure 
4, it should be noted that the ground plane extends 
throughout the XY plane, while the feed line is only 9 
cells wide on the XY plane.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              SP   
              TP   
Figure 4. Incident wave simulation setup  
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 Since we are interested in the broadband response 
of the patch antenna, the excitation source used 
should be a broadband pulse. A very narrow 
Gaussian pulse will approximate a time domain 
impulse function. Therefore the response we obtain 
from FDTD will approximate impulse response. The 
frequency response can be obtained by taking the 
Fourier transform of the response. The excitation 
pulse that is used for the simulation is a Gaussian 
pulse of the functional form given below. 
 

𝐸𝐸𝑧𝑧(𝑡𝑡) =  𝑒𝑒𝑒𝑒𝑒𝑒−��
𝑡𝑡−𝑡𝑡𝑜𝑜
𝑡𝑡𝑤𝑤

�
2
�
                                        (31) 

 
The Fourier  transform of a time – domain Gaussian 
function is Gaussian in functional form. The lower 
the value of 𝑡𝑡𝑤𝑤 , larger the frequency bandwidth of the 
pulse. The system is excited by adding (31) to all the 
𝐸𝐸𝑧𝑧  components under the feed line strip in the source 
plane. Source plane is denoted by SP in figures 3 and 
4. The SP is placed 4 cells away from the UPML – 
problem space boundary. The values used for the 
simulation are: 𝑡𝑡𝑜𝑜 = 120∆𝑡𝑡, 𝑡𝑡𝑤𝑤 = 30∆𝑡𝑡. The idea is 
to generate a TEM wave under the strip which has a 
Gaussian time signature.  
 For estimating 𝑆𝑆11 , the incident wave at the 
terminal plane (TP) is sampled, after excitation at the 
the source plane. TP is located at about 10 cells away 
from SP. The transverse field components, i.e. 
𝐸𝐸𝑧𝑧 ,𝐻𝐻𝑥𝑥were sampled. It was found that there is 
significant distortion in the 𝐸𝐸𝑧𝑧  field. This is because 
of the simple source condition that is used. In FDTD, 
to generate a plane wave, the Total field / Scattered 
field (TF / SF) formulation is used. By using TF / SF 
a clean Gaussian plane wave can be generated. 
However, 𝐻𝐻𝑥𝑥  sampled at the terminal plane showed 
considerably less distortion. The incident wave at TP 
is shown in figure 5.  
 

 
Figure 5. Incident wave at the terminal plane with 
only the microstrip feed line. 

From figure 5, it can be seen that there is some 
distortion after the trailing edge of the Gaussian 
pulse. It can be noticed that once pulse has through 
the terminal plane, the field is nearly zero. This is 
because of the UPML, which will absorb the pulse. 
This shows the effectiveness of the UPML.  
 In the second part, the simulation model is the 
structure shown in figure 3. From figure 3, it can be 
seen that the length of the feed line from the UPML – 
problem space boundary to the edge of the patch 
antenna is 22 cm. The other end of the feed line is 
extended into the UPML till it touched PEC 
boundary at y = 0. This will make sure that the only 
reflection is from that of the patch antenna. The 
simulation result is shown in figure 6. By comparing 
figure 6 with 5, it can be seen that after 500 time 
steps, the incident wave simulation field is nearly 
zero. That means the pulse has passed the terminal 
plane. On the other hand, from figure 6, it can be 
seen that after 500 steps, there is  a reflected wave 
due to microstrip discontinuities. The reflected wave 
will be completely absorbed by the UPML at the y = 
0 end of the feed line. After about 3500 time steps, 
the terminal plane field settled down to zero. The 
reflected wave can be obtained by subtracting the 
incident wave from the total wave. This is depicted in 
figure 7.  
 Since we know the incident and reflected waves at 
the terminal plane, 𝑆𝑆11  can be found out as follows. 
 

𝑆𝑆11(𝑓𝑓) = 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟
(𝑓𝑓)

𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖 (𝑓𝑓) =  𝐹𝐹𝑇𝑇�𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟
(𝑡𝑡)�

𝐹𝐹𝑇𝑇{𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖 (𝑡𝑡)}                        (32)   
 
𝑆𝑆11 (𝑑𝑑𝑑𝑑) can be calculated using (33).  
 
𝑆𝑆11 (𝑑𝑑𝑑𝑑) = 10 log(|𝑆𝑆11|)                                       (33) 
 
 

 
Figure 6. Total wave  at the terminal plane with the 
microstrip patch antenna. 

Source distortion 



 
Figure 7. Reflected wave  at the terminal plane with 
the microstrip patch antenna. 

 MATLAB Fast Fourier Transform (FFT) was used 
to evaluate (32). Zero padding was used to increase 
the frequency resolution. MATLAB code written for 
this purpose is given in appendix IV. The estimated 
𝑆𝑆11 (𝑑𝑑𝑑𝑑) is plotted against frequency in figure 8. In 
order to validate the result obtained by FDTD 
simulation, Ansoft planar EM simulator was used to 
simulate the patch antenna of figure 3. The 𝑆𝑆11(𝑑𝑑𝑑𝑑) 
obtained by this simulation is also shown in figure 7. 
It can be seen that there is a reasonable match 
between the results, especially the frequencies at 
which resonance occurs. A better result can be 
obtained if there was no source distortion that is seen 
in figure 5. In order to remove this distortion, more 
advanced incident source models should be used. In 
figure 7, only frequencies above 5 GHz are shown. 
This is because of the erroneous results obtained 
from FDTD simulation at frequencies below 5 GHz, 
which can be attributed to source distortion. Three 
dimensional plots of the patch antenna simulation are 
given in figure 9. 
 

 
Figure 8. 𝑆𝑆11(𝑑𝑑𝑑𝑑) vs. frequency (GHz) of the 
rectangular patch antenna.  

C. Microstrip antenna resonant frequencies 
    Cavity model of microstrip antennas can be used 
to obtain approximate values of resonant frequencies. 
For a microstrip antenna with 𝐿𝐿  > 𝑊𝑊 > ℎ , the 
dominant mode is 𝑇𝑇𝑇𝑇010  and its resonant frequency 
is given by (34). 
 
(𝑓𝑓𝑟𝑟)010 =  𝑣𝑣𝑜𝑜

2𝐿𝐿√𝜀𝜀𝑟𝑟
                                                  (34) 

 
where 𝑣𝑣𝑜𝑜  is the velocity of light in free space. This 
value can be evaluated as (𝑓𝑓𝑟𝑟)010 = 6.25 GHz. This 
resonance frequency can be seen in the planar EM 
solution result of figure 8. However from figure 7, it 
can be noticed that 𝑆𝑆11(𝑑𝑑𝑑𝑑) is not low enough at this 
resonant frequency. Hence the operating resonance of 
this antenna  is the next resonance.  
 From figure 8, it can be seen that the operating 
resonance of the antenna is about 7.8 GHz. Both the 
FDTD and Ansoft planar EM simulation confirms  
this. The higher order mode after the dominant mode 
is 𝑇𝑇𝑇𝑇020 . The resonant frequency for this mode is 
given below. 
 
 (𝑓𝑓𝑟𝑟)020 =  𝑣𝑣𝑜𝑜

2𝑊𝑊√𝜀𝜀𝑟𝑟
                                                (35)                                   

 
This value is evaluated as (𝑓𝑓𝑟𝑟)020 = 8.1 GHz. This is 
slightly different from the estimated value of 7.8 
GHz. This may be because the cavity model which is 
used to derive (35) is an approximate model. The 
Ansoft simulation and FDTD simulation as full wave 
models and gives much more accurate results. 
Microstrip antennas resemble dielectric filled 
rectangular cavities and hence they exhibit higher 
order resonances. These resonant frequencies can be 
seen in figure 8 at frequencies higher than 7.8 GHz.  
 
D. Estimation of antenna input impedance around 

resonance 
In this section, the input impedance of the patch  

antenna around resonance is estimated. In the last 
section, we estimated the 𝑆𝑆11  at the terminal plane. 
Input impedance at the terminal plane is given by 
(36). 
 
𝑍𝑍𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇 =  𝑍𝑍𝑜𝑜 �

1+ 𝑆𝑆11
1− 𝑆𝑆11

�                                              (36) 
 
where 𝑍𝑍𝑜𝑜 = 50 Ω is the characteristic impedance of 
the feed line. The input impedance around the 
resonant frequency of 7.8 GHz was estimated.  The 
input resistance and reactance versus frequency  are 
shown in figure 10 and 11. From figure 10, it can be 
seen that at the resonant frequency of 7.8 GHz,     the 
 input resistance is about 46 Ω.



       
    n = 60                                                                                           n = 100 
 

             
                                 n = 200                                                                                        n = 300 
 

Figure 9 . Microstrip patch antenna simulation : Three dimensional plots of 𝐻𝐻𝑥𝑥  in the computational space at 
different times

This is close to feed line characteristic impedance of 
50 Ω resulting in low value of 𝑆𝑆11 . From figure 11, it 
can be noticed that input reactance at the resonant 
frequency is zero. This is typical for resonance.  
 Once we know the input impedance at the terminal 
plane, the input impedance of the antenna, i.e. the 
input impedance at the antenna – feed line junction 
can be found out using the transmission line 
impedance transformation equation.  The antenna 
input impedance, 𝑍𝑍𝑖𝑖𝑖𝑖  can be evaluated as follows. 
 

𝑍𝑍𝑖𝑖𝑖𝑖 =  𝑍𝑍𝑜𝑜 �
𝑍𝑍𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇 − 𝑗𝑗𝑍𝑍𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑍𝑍𝑜𝑜−𝑗𝑗𝑍𝑍𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
�                                   (37) 

 
where  𝑍𝑍𝑜𝑜  is the characteristic impedance of the 
microstrip feed line.   

 
Figure 10. Input resistance vs. frequency (GHz) for 
the line fed rectangular patch antenna 



 
Figure 11. Input reactance vs. frequency (GHz) for 
the line fed rectangular patch antenna. 
 
𝛽𝛽 (𝑟𝑟𝑎𝑎𝑎𝑎

𝑚𝑚
)  is the phase constant of the feed line and l is 

the distance of the antenna – feed line junction from 
the terminal plane, i.e. l = 18.55 mm. For a 
microstrip line of width 2.385 mm on a substrate of 
thickness h = 0.795 mm and dielectric constant 2.2, 
the characteristic impedance 𝑍𝑍𝑜𝑜 = 50.5 Ω. This was 
verified using Ansoft designer SV. In order to find  
𝛽𝛽, we need to know the phase velocity in the 
transmission feed line. To calculate the phase 
velocity, the effective dielectric constant of the feed 
line, 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is found out as follows. 
 
𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  �𝜀𝜀𝑟𝑟+ 1

2
�+  �𝜀𝜀𝑟𝑟− 1

2
� 1
�1+12ℎ/𝑊𝑊𝑓𝑓

           (38) 

 
where 𝜀𝜀𝑟𝑟 = 2.2, ℎ = 0.795 mm and 𝑊𝑊𝑓𝑓 = 2.385 mm. 
𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  was found to be 1.86.  
 The phase constant can be calculated as follows. 
 
𝛽𝛽 =  2𝜋𝜋

𝜆𝜆
=  2𝜋𝜋𝜋𝜋

𝑣𝑣𝑝𝑝
                                                (39) 

where 𝑣𝑣𝑝𝑝  is the phase velocity calculated using (40). 
 
𝑣𝑣𝑝𝑝 =  𝑐𝑐

�𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
                                                    (40) 

Once 𝛽𝛽 for varying frequency is known, it can be 
substituted in (37) to estimate antenna input 
impedance. 
 
          IV. CONCLUSIONS 
 
 In this paper, we described the three dimensional 
FDTD – UPML and used it to perform broadband 
analysis of microstrip patch antenna. The results 
obtained showed reasonable match with the Ansoft 
designer simulated results. Better results can be 

easily obtained by using TF / SF for plane wave 
generation. The work can be extended to the analysis 
of fractal patch antennas such as Minkowski fractal  
square patch antennas. Furthermore, radiation 
patterns of antennas can be evaluated by using Near 
Field – Far Field (NF – FF) transformation.    
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Appendix I : 3D FDTD – UPML update equations 
 
1. 𝑫𝑫𝒙𝒙 update equation  

  𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛+1   =   𝐶𝐶1𝐷𝐷𝐷𝐷.𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛 + 𝐶𝐶2𝐷𝐷𝐷𝐷. �
𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+0.5 − 𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗−0.5,𝑘𝑘
𝑛𝑛+0.5

∆𝑦𝑦
−  

𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛+0.5 − 𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘−0.5

𝑛𝑛+0.5

∆𝑧𝑧
�  

  𝐶𝐶1𝐷𝐷𝐷𝐷 = �2𝜀𝜀𝜅𝜅𝑦𝑦− 𝜎𝜎𝑦𝑦∆𝑡𝑡
2𝜀𝜀𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦∆𝑡𝑡

�           𝐶𝐶2𝐷𝐷𝐷𝐷 =  � 2𝜀𝜀∆𝑡𝑡
2𝜀𝜀𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝑡𝑡

� 

 
2. 𝑫𝑫𝒚𝒚 update equation  

𝐷𝐷𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+1   =   𝐶𝐶1𝐷𝐷𝐷𝐷.𝐷𝐷𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛 + 𝐶𝐶2𝐷𝐷𝐷𝐷. �
𝐻𝐻𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5

𝑛𝑛+0.5 − 𝐻𝐻𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘−0.5
𝑛𝑛+0.5

∆𝑧𝑧
−  

𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+0.5 − 𝐻𝐻𝑧𝑧 |𝑖𝑖−0.5,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+0.5

∆𝑥𝑥
�  

𝐶𝐶1𝐷𝐷𝐷𝐷 = �2𝜀𝜀𝜅𝜅𝑧𝑧− 𝜎𝜎𝑧𝑧∆𝑡𝑡
2𝜀𝜀𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧∆𝑡𝑡

�           𝐶𝐶2𝐷𝐷𝐷𝐷 =  � 2𝜀𝜀∆𝑡𝑡
2𝜀𝜀𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝑡𝑡

� 
 

3. 𝑫𝑫𝒛𝒛 update equation 
𝐷𝐷𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+1   =   𝐶𝐶1𝐷𝐷𝐷𝐷.𝐷𝐷𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛 + 𝐶𝐶2𝐷𝐷𝐷𝐷. �

𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛+0.5 − 𝐻𝐻𝑦𝑦 |𝑖𝑖−0.5,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+0.5

∆𝑥𝑥
−  

𝐻𝐻𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5
𝑛𝑛+0.5 − 𝐻𝐻𝑥𝑥 |𝑖𝑖 ,𝑗𝑗−0.5,𝑘𝑘+0.5

𝑛𝑛+0.5

∆𝑦𝑦
�  

𝐶𝐶1𝐷𝐷𝐷𝐷 = �2𝜀𝜀𝜅𝜅𝑥𝑥− 𝜎𝜎𝑥𝑥∆𝑡𝑡
2𝜀𝜀𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥∆𝑡𝑡

�           𝐶𝐶2𝐷𝐷𝐷𝐷 =  � 2𝜀𝜀∆𝑡𝑡
2𝜀𝜀𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝑡𝑡

� 
 

4. 𝑬𝑬𝒙𝒙 update equation 
𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1 = 𝐶𝐶1𝐸𝐸𝐸𝐸.𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛 +  𝐶𝐶2𝐸𝐸𝐸𝐸.𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1 −  𝐶𝐶3𝐸𝐸𝐸𝐸.𝐷𝐷𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛   

𝐶𝐶1𝐸𝐸𝐸𝐸 =  �2𝜀𝜀𝜅𝜅𝑧𝑧−𝜎𝜎𝑧𝑧Δ𝑡𝑡
2𝜀𝜀𝜅𝜅𝑧𝑧+𝜎𝜎𝑧𝑧Δ𝑡𝑡

�   𝐶𝐶2𝐸𝐸𝐸𝐸 =  � 2𝜀𝜀𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝑡𝑡
𝜀𝜀(2𝜀𝜀𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝑡𝑡)

�  𝐶𝐶3𝐸𝐸𝐸𝐸 =  � 2𝜀𝜀𝜅𝜅𝑥𝑥− 𝜎𝜎𝑥𝑥Δ𝑡𝑡
𝜀𝜀(2𝜀𝜀𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝑡𝑡)

� 

5. 𝑬𝑬𝒚𝒚 update equation 

𝐸𝐸𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+1 = 𝐶𝐶1𝐸𝐸𝐸𝐸.𝐸𝐸𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛 +  𝐶𝐶2𝐸𝐸𝐸𝐸.𝐷𝐷𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+1 −  𝐶𝐶3𝐸𝐸𝐸𝐸.𝐷𝐷𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛   

𝐶𝐶1𝐸𝐸𝐸𝐸 =  �2𝜀𝜀𝜅𝜅𝑥𝑥−𝜎𝜎𝑥𝑥Δ𝑡𝑡
2𝜀𝜀𝜅𝜅𝑥𝑥+𝜎𝜎𝑥𝑥Δ𝑡𝑡

�   𝐶𝐶2𝐸𝐸𝐸𝐸 =  � 2𝜀𝜀𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝑡𝑡
𝜀𝜀(2𝜀𝜀𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝑡𝑡)

�  𝐶𝐶3𝐸𝐸𝐸𝐸 =  � 2𝜀𝜀𝜅𝜅𝑦𝑦− 𝜎𝜎𝑦𝑦Δ𝑡𝑡
𝜀𝜀(2𝜀𝜀𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝑡𝑡)

� 

6. 𝑬𝑬𝒛𝒛 update equation 
𝐸𝐸𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+1 = 𝐶𝐶1𝐸𝐸𝐸𝐸.𝐸𝐸𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛 +  𝐶𝐶2𝐸𝐸𝐸𝐸.𝐷𝐷𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+1 −  𝐶𝐶3𝐸𝐸𝐸𝐸.𝐷𝐷𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛   

𝐶𝐶1𝐸𝐸𝐸𝐸 =  �2𝜀𝜀𝜅𝜅𝑦𝑦−𝜎𝜎𝑦𝑦Δ𝑡𝑡
2𝜀𝜀𝜅𝜅𝑦𝑦+𝜎𝜎𝑦𝑦Δ𝑡𝑡

�   𝐶𝐶2𝐸𝐸𝑧𝑧 =  � 2𝜀𝜀𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝑡𝑡
𝜀𝜀�2𝜀𝜀𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝑡𝑡�

�  𝐶𝐶3𝐸𝐸𝐸𝐸 =  � 2𝜀𝜀𝜅𝜅𝑧𝑧− 𝜎𝜎𝑧𝑧Δ𝑡𝑡
𝜀𝜀�2𝜀𝜀𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝑡𝑡�

� 

7. 𝑩𝑩𝒙𝒙 update equation  
  𝐵𝐵𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5

𝑛𝑛+1.5   =   𝐶𝐶1𝐵𝐵𝐵𝐵.𝐵𝐵𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5
𝑛𝑛+0.5 − 𝐶𝐶2𝐵𝐵𝐵𝐵. �

𝐸𝐸𝑧𝑧 |𝑖𝑖 ,𝑗𝑗+1,𝑘𝑘+0.5
𝑛𝑛+1 − 𝐸𝐸𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+1

∆𝑦𝑦
−  

𝐸𝐸𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+1
𝑛𝑛+1 − 𝐸𝐸𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+1

∆𝑧𝑧
�  

  𝐶𝐶1𝐵𝐵𝐵𝐵 = �2𝜀𝜀𝜅𝜅𝑦𝑦− 𝜎𝜎𝑦𝑦∆𝑡𝑡
2𝜀𝜀𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦∆𝑡𝑡

�           𝐶𝐶2𝐵𝐵𝐵𝐵 =  � 2𝜀𝜀∆𝑡𝑡
2𝜀𝜀𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝑡𝑡

� 

 
8. 𝑩𝑩𝒚𝒚 update equation  

  𝐵𝐵𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛+1.5   =   𝐶𝐶1𝐵𝐵𝐵𝐵.𝐵𝐵𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+0.5 − 𝐶𝐶2𝐵𝐵𝐵𝐵. �
𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+1

𝑛𝑛+1 − 𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘
𝑛𝑛+1

∆𝑧𝑧
−  

𝐸𝐸𝑧𝑧 |𝑖𝑖+1,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛+1 − 𝐸𝐸𝑧𝑧 |𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+1

∆𝑥𝑥
�  

  𝐶𝐶1𝐵𝐵𝐵𝐵 = �2𝜀𝜀𝜅𝜅𝑧𝑧− 𝜎𝜎𝑧𝑧∆𝑡𝑡
2𝜀𝜀𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧∆𝑡𝑡

�           𝐶𝐶2𝐵𝐵𝐵𝐵 =  � 2𝜀𝜀∆𝑡𝑡
2𝜀𝜀𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝑡𝑡

� 
 

9. 𝑩𝑩𝒛𝒛 update equation  
  𝐵𝐵𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+1.5   =   𝐶𝐶1𝐵𝐵𝐵𝐵.𝐵𝐵𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+0.5 − 𝐶𝐶2𝐵𝐵𝐵𝐵. �

𝐸𝐸𝑦𝑦 |𝑖𝑖+1,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+1 − 𝐸𝐸𝑦𝑦 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+1

∆𝑥𝑥
−  

𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗+1,𝑘𝑘
𝑛𝑛+1 − 𝐸𝐸𝑥𝑥 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘

𝑛𝑛+1

∆𝑦𝑦
�  

  𝐶𝐶1𝐵𝐵𝐵𝐵 = �2𝜀𝜀𝜅𝜅𝑥𝑥− 𝜎𝜎𝑥𝑥∆𝑡𝑡
2𝜀𝜀𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥∆𝑡𝑡

�           𝐶𝐶2𝐵𝐵𝐵𝐵 =  � 2𝜀𝜀∆𝑡𝑡
2𝜀𝜀𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝑡𝑡

� 
 
10. 𝑯𝑯𝒙𝒙 update equation 

𝐻𝐻𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5
𝑛𝑛+1.5 = 𝐶𝐶1𝐻𝐻𝐻𝐻.𝐻𝐻𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5

𝑛𝑛+0.5 +  𝐶𝐶2𝐻𝐻𝐻𝐻.𝐵𝐵𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5
𝑛𝑛+1.5 −  𝐶𝐶3𝐻𝐻𝐻𝐻.𝐵𝐵𝑥𝑥 |𝑖𝑖 ,𝑗𝑗+0.5,𝑘𝑘+0.5

𝑛𝑛+0.5   



𝐶𝐶1𝐻𝐻𝐻𝐻 =  �2𝜀𝜀𝜅𝜅𝑧𝑧−𝜎𝜎𝑧𝑧Δ𝑡𝑡
2𝜀𝜀𝜅𝜅𝑧𝑧+𝜎𝜎𝑧𝑧Δ𝑡𝑡

�   𝐶𝐶2𝐻𝐻𝐻𝐻 =  � 2𝜀𝜀𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝑡𝑡
𝜇𝜇(2𝜀𝜀𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝑡𝑡)

�    𝐶𝐶3𝐻𝐻𝐻𝐻 =  � 2𝜀𝜀𝜅𝜅𝑥𝑥− 𝜎𝜎𝑥𝑥Δ𝑡𝑡
𝜇𝜇(2𝜀𝜀𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝑡𝑡)

� 

11. 𝑯𝑯𝒚𝒚 update equation 

𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛+1.5 = 𝐶𝐶1𝐻𝐻𝐻𝐻.𝐻𝐻𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+0.5 +  𝐶𝐶2𝐻𝐻𝐻𝐻.𝐵𝐵𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5
𝑛𝑛+1.5 −  𝐶𝐶3𝐻𝐻𝐻𝐻.𝐵𝐵𝑦𝑦 |𝑖𝑖+0.5,𝑗𝑗 ,𝑘𝑘+0.5

𝑛𝑛+0.5   

𝐶𝐶1𝐻𝐻𝐻𝐻 =  �2𝜀𝜀𝜅𝜅𝑥𝑥−𝜎𝜎𝑥𝑥Δ𝑡𝑡
2𝜀𝜀𝜅𝜅𝑥𝑥+𝜎𝜎𝑥𝑥Δ𝑡𝑡

�   𝐶𝐶2𝐻𝐻𝐻𝐻 =  � 2𝜀𝜀𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝑡𝑡
𝜇𝜇(2𝜀𝜀𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝑡𝑡)

�    𝐶𝐶3𝐻𝐻𝐻𝐻 =  � 2𝜀𝜀𝜅𝜅𝑦𝑦− 𝜎𝜎𝑦𝑦Δ𝑡𝑡
𝜇𝜇(2𝜀𝜀𝜅𝜅𝑥𝑥+ 𝜎𝜎𝑥𝑥Δ𝑡𝑡)

� 

12. 𝑯𝑯𝒛𝒛 update equation 
𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+1.5 = 𝐶𝐶1𝐻𝐻𝐻𝐻.𝐻𝐻𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+0.5 +  𝐶𝐶2𝐻𝐻𝐻𝐻.𝐵𝐵𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘

𝑛𝑛+1.5 −  𝐶𝐶3𝐻𝐻𝐻𝐻.𝐵𝐵𝑧𝑧 |𝑖𝑖+0.5,𝑗𝑗+0.5,𝑘𝑘
𝑛𝑛+0.5   

𝐶𝐶1𝐻𝐻𝐻𝐻 =  �2𝜀𝜀𝜅𝜅𝑦𝑦−𝜎𝜎𝑦𝑦 Δ𝑡𝑡
2𝜀𝜀𝜅𝜅𝑦𝑦+𝜎𝜎𝑦𝑦 Δ𝑡𝑡

�   𝐶𝐶2𝐻𝐻𝐻𝐻 =  � 2𝜀𝜀𝜅𝜅𝑧𝑧+ 𝜎𝜎𝑧𝑧Δ𝑡𝑡
𝜇𝜇�2𝜀𝜀𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝑡𝑡�

�    𝐶𝐶3𝐻𝐻𝐻𝐻 =  � 2𝜀𝜀𝜅𝜅𝑧𝑧− 𝜎𝜎𝑧𝑧Δ𝑡𝑡
𝜇𝜇�2𝜀𝜀𝜅𝜅𝑦𝑦+ 𝜎𝜎𝑦𝑦Δ𝑡𝑡�

� 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix II : C++ code for 3D FDTD -  UPML simulation of microstrip patch antenna 
 
 
/*  Fdtd3D.cpp : 3D FDTD + UPML  
    Author : Srikumar Sandeep 
 
1) E,D vectors on yee cell edge centres and H,B vectors 
 on Yee cell face centres. 
  
 Ex[i + 0.5][j][k], Ey[i][j + 0.5][k], Ez[i][j][k + 0.5] 
 Dx[i + 0.5][j][k], Dy[i][j + 0.5][k], Dz[i][j][k + 0.5] 
  

Hx[i][j + 0.5][k + 0.5], Hy[i + 0.5][j][k + 0.5], Hz[i + 0.5][j + 0.5][k] 
Bx[i][j + 0.5][k + 0.5], By[i + 0.5][j][k + 0.5], Bz[i + 0.5][j + 0.5][k] 

 
2) Constitutive parameter matrices 
 epsr [XCELLS] [YCELLS] [ZCELLS]  
 sigma[XCELLS] [YCELLS] [ZCELLS] 
*/  
 
#include "iostream.h" 
#include "math.h" 
#include "stdlib.h" 
#include "fstream.h" 
 
#define PL   19  //Number of PML layers.  
#define PSX  70  //Number of yee cells in problem space along x-direction 
#define PSY  150 //Number of yee cells in problem space along y-direction 
#define PSZ  16  //Number of yee cells in problem space along z-direction 
 
#define XCELLS  PSX + (2 * PL)  //Total number of yee cells along x-direction 
#define YCELLS  PSY + (2 * PL)  //Total number of yee cells along y-direction 
#define ZCELLS  PSZ + (2 * PL)  //Total number of yee cells along z-direction 
 
typedef double*** MatPtr;       //3D matrix  
 
const double muo     = 12.5664e-7; 
const double epso    = 8.85e-12; 
const double CuSigma = 5.8e78; 
 
//Matrices 
MatPtr epsr, sigma; 
MatPtr Dx,Dy,Dz,Bx,By,Bz,Ex,Ey,Ez,Hx,Hy,Hz; 
MatPtr C1Dx,C2Dx,C1Dy,C2Dy,C1Dz,C2Dz; 
MatPtr C1Bx,C2Bx,C1By,C2By,C1Bz,C2Bz; 
MatPtr C1Ex,C2Ex,C3Ex,C1Ey,C2Ey,C3Ey,C1Ez,C2Ez,C3Ez; 
MatPtr C1Hx,C2Hx,C3Hx,C1Hy,C2Hy,C3Hy,C1Hz,C2Hz,C3Hz; 
 
//Function prototypes 
void  CreateAllMatrices(); 
void  DeleteAllMatrices(); 
void  CreateMatrix(MatPtr&,int dimx,int dimy,int dimz); 
void  DeleteMatrix(MatPtr, int dimx,int dimy,int dimz); 
void  FillUpdateEqnConstantMatrices(double g, double sigmao,double dt); 
 
void main() 
{ 
 cout<<"--------------FDTD 3D simulator--------------------\n"; 
 
 //T     - Number of time steps 
 //i,j,k - x,y,z direction yee cell index 
 //n     - Temporal index 
 int T = 5000;  



 int i,j,k,n; 
  
 //Text files to write the simulation data  
 ofstream Ezfile,Hxfile; 
 Ezfile.open("Ezfile.txt"); 
 Hxfile.open("Hxfile.txt"); 
  
       //dx, dy, dz ,dt – Spatial and temporal discretization interval 
 double  dx,dy,dz,dt; 
  
 //UPML parameters 
 double  g      = 1.4; 
 double  sigmao = 0.5; 
 
 // Source plane at j = SP 
 // Terminal plane at j = TP 
 // GP – Ground plane location at k = PL + 1  
 int SP = 22;  
 int TP = 32; 
 int GP = PL + 1; 
  
 //Initiliazation of discretization interval 
 dx = 0.000265; 
 dy = 0.000265; 
 dz = 0.000265; 
 dt = dz/(6e8); 
 
 // Create all the 3D matrices and initialize the elements to zero 
       // matrices include field / flux components and precomputed update equation 
 // coefficients 
 CreateAllMatrices(); 
 
 //Fill the constitutive parameter matrices 
 for(i = 0;i < XCELLS;i++) 
 { 
  for(j = 0;j < YCELLS;j++) 
  { 
   for(k = 0;k < ZCELLS;k++) 
   { 
    epsr [i][j][k]  = 1.0; 
    sigma[i][j][k]  = 0.0; 
 
    //Ground plane at k = 17 
    //Ground plane extends throughout the entire XY plane 
    if(k == GP && i >= 0 && i < XCELLS && j >= 0 && j < YCELLS) 
    { 
     sigma[i][j][k] = Cusigma; 
    } 
     
    //3 layers of substrate corresponding to substrate  
    //thickness = 0.795 mm. The substrate extends in the whole 

//XY plane of the problem space. But does not extend into    
//UPML 

    if((k == GP + 1 || k == GP + 2 || k == GP + 3)  
&& i >= PL && i < XCELLS - PL && j >= PL && j < 
YCELLS - PL) 

    { 
     epsr[i][j][k] = 2.2; 
    } 
 
     
    //Feed line width is 9dx 
    //Feed line is 8dx offset from the edge of the patch 



    //i.e it starts from i = 35 
    if(k == GP + 4) 
    { 
     if(i >= 35 && i <= 43) 
     { 

//For incident wave simulation : j >=0 && j <= 
//YCELLS – 1 
//For patch antenna simulation : j >= 0 && j 
//<= 102 

      if(j >= 0 && j <= 102) 
      { 
       sigma[i][j][k] = CuSigma; 
      } 
     } 
    } 
 
    //Patch antenna 
    if(k == GP + 4) 
    { 
     //The width of patch = 12.45 mm = 47dx 
     if(i >= 27 && i <= 73) 
     { 
      //The length of patch = 16 mm = 60 dx 
      if(j >= 102 && j <= 162) 
      { 
       sigma[i][j][k] = CuSigma; 
      } 
     } 
    } 
   } 
  } 
 } 
 
 //Precomputer update equation coefficient matrices 
 FillUpdateEqnConstantMatrices(g,sigmao,dt); 
 
 //Temp variables to hold previous field values and field differential values. 
 double Dxo,Exo,Dyo,Eyo,Dzo,Ezo; 
 double dHx,dHy,dHz; 
 double Hxo,Hyo,Hzo,Bxo,Byo,Bzo; 
 double dEx,dEy,dEz; 
 
 //----------------------FDTD update loop starts here--------------------------- 
 for(n = 0;n < T;n++) 
 { 
  //to = 4T 
  double temp      = -1*(((n*dt - 120*dt)*(n*dt - 120*dt))/(30*30*dt*dt)); 
  double source    = exp(temp); 
  double Ezinc  = source; 
 
  /*Dx,Ex update 
    Dx,Ex[XCELLS][YCELLS + 1][ZCELLS + 1]  
    Dx,Ex at j = 0 or j = YCELLS or k = 0 or k = ZCELLS are on the  
    PEC surface. So they are zero and need not be calculated. 
  */ 
  for(i = 0;i < XCELLS;i++) 
  { 
   for(j = 1;j < YCELLS;j++) 
   { 
    for(k = 1;k < ZCELLS;k++) 
    { 
     Dxo = Dx[i][j][k]; 
     Exo = Ex[i][j][k]; 



                     
     //Dx update equation 
     dHz = (Hz[i][j][k] - Hz[i][j - 1][k]) / dy; 
     dHy = (Hy[i][j][k] - Hy[i][j][k - 1]) / dz; 
 
     Dx[i][j][k] = C1Dx[i][j][k] * Dxo  
      +  C2Dx[i][j][k] * (dHz - dHy); 
 
     //Ex update equation 
     Ex[i][j][k] = C2Ex[i][j][k] * Dx[i][j][k]  
        - C3Ex[i][j][k] * Dxo  
        + C1Ex[i][j][k] * Exo; 
    } 
   } 
  } 
 
  /*Dy,Ey update 
    Dy,Ey[XCELLS + 1][YCELLS][ZCELLS + 1]  
    Dy,Ey at i = 0 or i = XCELLS or k = 0 or k = ZCELLS are on the  
    PEC surface. So they are zero and need not be calculated. 
  */ 
  for(i = 1;i < XCELLS;i++) 
  { 
   for(j =  0;j < YCELLS;j++) 
   { 
    for(k = 1;k < ZCELLS;k++) 
    { 
     Dyo = Dy[i][j][k]; 
     Eyo = Ey[i][j][k]; 
 
     //Dy update equation 
     dHx = (Hx[i][j][k] - Hx[i][j][k - 1]) / dz; 
     dHz = (Hz[i][j][k] - Hz[i - 1][j][k]) / dx; 
     Dy[i][j][k] = C1Dy[i][j][k] * Dyo  
      +  C2Dy[i][j][k] * (dHx - dHz); 
 
     //Ey update equation 
     Ey[i][j][k] = C2Ey[i][j][k] * Dy[i][j][k]  
        - C3Ey[i][j][k] * Dyo  
        + C1Ey[i][j][k] * Eyo; 
    } 
   } 
  } 
 
  //Dz,Ez update 
  for(i = 1;i < XCELLS;i++) 
  { 
   for(j = 1;j < YCELLS;j++) 
   { 
    for(k = 0;k < ZCELLS;k++) 
    { 
     Dzo = Dz[i][j][k]; 
     Ezo = Ez[i][j][k]; 
 
     //Dy update equation 
     dHx = (Hx[i][j][k] - Hx[i][j - 1][k]) / dy; 
     dHy = (Hy[i][j][k] - Hy[i - 1][j][k]) / dx; 
 
     Dz[i][j][k] = C1Dz[i][j][k] * Dzo  
      +  C2Dz[i][j][k] * (dHy - dHx); 
 
     //Ez update equation 
     Ez[i][j][k] = C2Ez[i][j][k] * Dz[i][j][k]  



        - C3Ez[i][j][k] * Dzo  
        + C1Ez[i][j][k] * Ezo; 
 
  

//Excitation of the all Ez components under the feed 
//line microstrip at j = Source plane 
if(j == SP && i >= 35 && i <= 43 && k >= GP + 1 && k 

<= GP + 3) 
     { 
      Ez[i][j][k] += Ezinc; 
     } 
 
    } 
   } 
  } 
 
  //Write simulation data to text file 
  Hxfile<<Hx[39][TP][GP + 2]<<"\n"; 
  Ezfile<<Ez[35][TP][GP + 2]<<"\n"; 
 
  //Hx,Bx update 
  for(i = 0;i < XCELLS;i++) 
  { 
   for(int j = 0;j < YCELLS;j++) 
   { 
    for(int k = 0;k < ZCELLS;k++) 
    { 
                      Hxo = Hx[i][j][k]; 
     Bxo = Bx[i][j][k]; 
      
     dEz = (Ez[i][j + 1][k] - Ez[i][j][k]) / dy; 
     dEy = (Ey[i][j][k + 1] - Ey[i][j][k]) / dz; 
 
 

Bx[i][j][k] = C1Bx[i][j][k] * Bxo - C2Bx[i][j][k] * 
(dEz - dEy); 
Hx[i][j][k] = C1Hx[i][j][k] * Hxo + C2Hx[i][j][k] * 
Bx[i][j][k] - C3Hx[i][j][k] * Bxo; 

    } 
   } 
  } 
 
   
  //Hy,By update 
  for(i = 0;i < XCELLS;i++) 
  { 
   for(int j = 0;j < YCELLS;j++) 
   { 
    for(int k = 0;k < ZCELLS;k++) 
    { 
                      Hyo = Hy[i][j][k]; 
     Byo = By[i][j][k]; 
      
     dEx = (Ex[i][j][k + 1] - Ex[i][j][k]) / dz; 
     dEz = (Ez[i + 1][j][k] - Ez[i][j][k]) / dx; 
 

By[i][j][k] = C1By[i][j][k] * Byo - C2By[i][j][k] * 
(dEx - dEz); 
Hy[i][j][k] = C1Hy[i][j][k] * Hyo + C2Hy[i][j][k] * 
By[i][j][k] - C3Hy[i][j][k] * Byo; 

     
    } 
   } 



  } 
 
  //Hz,Bz update 
  for(i = 0;i < XCELLS;i++) 
  { 
   for(int j = 0;j < YCELLS;j++) 
   { 
    for(int k = 0;k < ZCELLS;k++) 
    { 
                      Hzo = Hz[i][j][k]; 
     Bzo = Bz[i][j][k]; 
      
     dEy = (Ey[i + 1][j][k] - Ey[i][j][k]) / dx; 
     dEx = (Ex[i][j + 1][k] - Ex[i][j][k]) / dy; 
 

Bz[i][j][k] = C1Bz[i][j][k] * Bzo - C2Bz[i][j][k] * 
(dEy - dEx); 
Hz[i][j][k] = C1Hz[i][j][k] * Hzo + C2Hz[i][j][k] * 
Bz[i][j][k] - C3Hz[i][j][k] * Bzo;   

    } 
   } 
  } 
 } 
 
 DeleteAllMatrices(); 
  
 Hxfile.close(); 
 Ezfile.close(); 
} 
 
//------------------------------------------------------------------------------------ 
void FillUpdateEqnConstantMatrices(double g, double sigmao, double dt) 
{ 
 double Dx_ky,Dx_sigmay,Dy_kz,Dy_sigmaz,Dz_kx,Dz_sigmax; 
 double Bx_ky,Bx_sigmay,By_kz,By_sigmaz,Bz_kx,Bz_sigmax; 
 double Ex_kx,Ex_sigmax,Ex_kz,Ex_sigmaz,Ey_ky,Ey_sigmay, 
     Ey_kx,Ey_sigmax,Ez_kz,Ez_sigmaz,Ez_ky,Ez_sigmay; 
 double Hx_kx,Hx_sigmax,Hx_kz,Hx_sigmaz,Hy_ky,Hy_sigmay, 
     Hy_kx,Hy_sigmax,Hz_kz,Hz_sigmaz,Hz_ky,Hz_sigmay; 
      
 
 //C1Dx,C2Dx,C1Ex,C2Ex,C3Ex 
 for(int i = 0;i < XCELLS; i++) 
 { 
  for(int j = 1;j < YCELLS; j++) 
  { 
   for(int k = 1;k < ZCELLS; k++) 
   { 
    Dx_ky     =  1; 
    Dx_sigmay =  sigma[i][j][k]; 
    Ex_kx     =  1; 
    Ex_sigmax =  sigma[i][j][k]; 
    Ex_kz     =  1; 
    Ex_sigmaz =  sigma[i][j][k]; 
 
    //Dx_ky,Dx_sigmay  
    if(j < PL) 
    { 
                      Dx_ky     = pow(g,PL - j); 
     Dx_sigmay = sigmao * Dx_ky; 
    } 
    else if (j >= PL + PSY) 
    { 



     Dx_ky     = pow(g,j - PL - PSY); 
     Dx_sigmay = sigmao * Dx_ky; 
    } 
 
    //Ex_kx, Ex_sigmax 
    if(i < PL) 
    { 
     Ex_kx     = pow(g,PL - i - 0.5); 
     Ex_sigmax = sigmao * Ex_kx;  
    } 
    else if(i >= PL + PSX) 
    { 
     Ex_kx     = pow(g,i - PL - PSX  + 0.5); 
     Ex_sigmax = sigmao * Ex_kx; 
    } 
     
    //Ex_kz,Ex_sigmaz 
    if(k < PL) 
    { 
     Ex_kz     = pow(g,PL - k); 
     Ex_sigmaz = sigmao * Ex_kz; 
    } 
    else if(k >= PL + PSZ) 
    { 
     Ex_kz     = pow(g,k - PL - PSZ); 
     Ex_sigmaz = sigmao * Ex_kz; 
    } 
     
    //C1Dx,C2Dx 

C1Dx[i][j][k] = (2  * epso * epsr[i][j][k] * Dx_ky - 
Dx_sigmay * dt)/(2 * epso * epsr[i][j][k] * Dx_ky + 
Dx_sigmay * dt); 
 
C2Dx[i][j][k] = (2  * epso * epsr[i][j][k] * dt) /(2 * epso 
* epsr[i][j][k] * Dx_ky + Dx_sigmay * dt); 

 
    //C1Ex,C2Ex,C3Ex,C1Ey,C2Ey,C3Ey,C1Ez,C2Ez,C3Ez 

C1Ex[i][j][k] = (2 * epso * epsr[i][j][k]    * Ex_kz - 
Ex_sigmaz * dt) /(2* epso * epsr[i][j][k]    * Ex_kz + 
Ex_sigmaz * dt); 
 
C2Ex[i][j][k] = (2   * epso * epsr[i][j][k]  * Ex_kx + 
Ex_sigmax * dt)/((2 * epso * epsr[i][j][k]  * Ex_kz + 
Ex_sigmaz * dt)* epso * epsr[i][j][k]);  
 
C3Ex[i][j][k] = (2   * epso * epsr[i][j][k]  * Ex_kx - 
Ex_sigmax * dt)/((2 * epso * epsr[i][j][k]  * Ex_kz + 
Ex_sigmaz * dt)* epso * epsr[i][j][k]); 

   } 
  } 
 } 
 
 //C1Dy,C2Dy,C1Ey,C2Ey,C3Ey 
 for(i = 1;i < XCELLS; i++) 
 { 
  for(int j = 0;j < YCELLS; j++) 
  { 
   for(int k = 1;k < ZCELLS; k++) 
   { 
 
    Dy_kz     =  1; 
    Dy_sigmaz =  sigma[i][j][k]; 
    Ey_ky     =  1; 



    Ey_sigmay =  sigma[i][j][k]; 
    Ey_kx     =  1; 
    Ey_sigmax =  sigma[i][j][k]; 
 
    //Dy_kz,Dy_sigmaz  
    if(k < PL) 
    { 
                      Dy_kz     = pow(g,PL - k); 
     Dy_sigmaz = sigmao * Dy_kz; 
    } 
    else if (k >= PL + PSZ) 
    { 
     Dy_kz     = pow(g,k - PL - PSZ); 
     Dy_sigmaz = sigmao * Dy_kz; 
    } 
 
    //Ey_ky, Ey_sigmay 
    if(j < PL) 
    { 
     Ey_ky     = pow(g,PL - j - 0.5); 
     Ey_sigmay = sigmao * Ey_ky;  
    } 
    else if(j >= PL + PSY) 
    { 
     Ey_ky     = pow(g,j - PL - PSY  + 0.5); 
     Ey_sigmay = sigmao * Ey_ky; 
    } 
  
     
    //Ey_kx,Ey_sigmax 
    if(i < PL) 
    { 
     Ey_kx     = pow(g,PL - i); 
     Ey_sigmax = sigmao * Ey_kx; 
    } 
    else if(i >= PL + PSX) 
    { 
     Ey_kx     = pow(g,i - PL - PSX); 
     Ey_sigmax = sigmao * Ey_kx; 
    } 
     
    //C1Dy,C2Dy 

C1Dy[i][j][k] = (2  * epso * epsr[i][j][k] * Dy_kz - 
Dy_sigmaz * dt)/(2 * epso * epsr[i][j][k] * Dy_kz + 
Dy_sigmaz * dt); 

     
C2Dy[i][j][k] = (2  * epso * epsr[i][j][k] * dt) /(2 * epso 
* epsr[i][j][k] * Dy_kz + Dy_sigmaz * dt);  

     
    //C1Ey,C2Ey,C3Ey 

C1Ey[i][j][k] = (2 * epso * epsr[i][j][k]    * Ey_kx - 
Ey_sigmax * dt)/(2* epso * epsr[i][j][k]    * Ey_kx + 
Ey_sigmax * dt); 

     
C2Ey[i][j][k] = (2   * epso * epsr[i][j][k]  * Ey_ky + 
Ey_sigmay * dt)/((2 * epso * epsr[i][j][k]  * Ey_kx + 
Ey_sigmax * dt)* epso * epsr[i][j][k]);  
 
C3Ey[i][j][k] = (2   * epso * epsr[i][j][k]  * Ey_ky - 
Ey_sigmay * dt)/((2 * epso * epsr[i][j][k]  * Ey_kx + 
Ey_sigmax * dt)* epso * epsr[i][j][k]); 

   } 
  } 



 } 
 
 //C1Dz,C2Dz,C1Ez,C2Ez,C3Ez 
 for(i = 1;i < XCELLS; i++) 
 { 
  for(int j = 1;j < YCELLS; j++) 
  { 
   for(int k = 0;k < ZCELLS; k++) 
   { 
    Dz_kx     =  1; 
    Dz_sigmax =  sigma[i][j][k]; 
    Ez_kz     =  1; 
    Ez_sigmaz =  sigma[i][j][k]; 
    Ez_ky     =  1; 
    Ez_sigmay =  sigma[i][j][k]; 
 
    //Dz_kx,Dz_sigmax  
    if(i < PL) 
    { 
                      Dz_kx  = pow(g,PL - i); 
     Dz_sigmax = sigmao * Dz_kx; 
    } 
    else if (i >= PL + PSX) 
    { 
     Dz_kx     = pow(g,i - PL - PSX); 
     Dz_sigmax = sigmao * Dz_kx; 
    } 
 
    //Ez_kz, Ez_sigmaz 
    if(k < PL) 
    { 
     Ez_kz     = pow(g,PL - k - 0.5); 
     Ez_sigmaz = sigmao * Ez_kz;  
    } 
    else if(k >= PL + PSZ) 
    { 
     Ez_kz     = pow(g,k - PL - PSZ + 0.5); 
     Ez_sigmaz = sigmao * Ez_kz; 
    } 
     
  
    //Ez_ky,Ez_sigmay 
    if(j < PL) 
    { 
     Ez_ky     = pow(g,PL - j); 
     Ez_sigmay = sigmao * Ez_ky; 
    } 
    else if(j >= PL + PSY) 
    { 
     Ez_ky     = pow(g,j - PL - PSY); 
     Ez_sigmay = sigmao * Ez_ky; 
    } 
   
     
    //C1Dz,C2Dz 

C1Dz[i][j][k] = (2  * epso * epsr[i][j][k] * Dz_kx - 
Dz_sigmax * dt) /(2 * epso * epsr[i][j][k] * Dz_kx + 
Dz_sigmax * dt); 
 
C2Dz[i][j][k] = (2  * epso * epsr[i][j][k] * dt) /(2 * epso 
* epsr[i][j][k] * Dz_kx + Dz_sigmax * dt); 

 
    //C1Ez,C2Ez,C3Ez 



C1Ez[i][j][k] = (2 * epso * epsr[i][j][k]    * Ez_ky - 
Ez_sigmay * dt)/(2* epso * epsr[i][j][k]    * Ez_ky + 
Ez_sigmay * dt); 

     
C2Ez[i][j][k] = (2   * epso * epsr[i][j][k]  * Ez_kz + 
Ez_sigmaz * dt)/((2 * epso * epsr[i][j][k]  * Ez_ky + 
Ez_sigmay * dt) * epso * epsr[i][j][k]);  
 
C3Ez[i][j][k] = (2   * epso * epsr[i][j][k]  * Ez_kz - 
Ez_sigmaz * dt)/((2 * epso * epsr[i][j][k]  * Ez_ky + 
Ez_sigmay * dt)* epso * epsr[i][j][k]); 

   } 
  } 
 } 
 
  
 //C1Bx,C2Bx,C1Hx,C2Hx,C3Hx 
 for(i = 0;i < XCELLS;i++) 
 { 
  for(int j = 0;j < YCELLS;j++) 
  { 
   for(int k = 0;k < ZCELLS;k++) 
   { 
    Bx_ky     = 1; 
    Bx_sigmay = sigma[i][j][k]; 
    Hx_kx     = 1; 
    Hx_sigmax = sigma[i][j][k]; 
    Hx_kz     = 1; 
    Hx_sigmaz = sigma[i][j][k]; 
 
    //Bx_ky,Bx_sigmay 
    if(j < PL) 
    { 
     Bx_ky     = pow(g,PL - j - 0.5); 
     Bx_sigmay = sigmao * Bx_ky;  
    } 
    else if(j >= PL + PSY) 
    { 
     Bx_ky     = pow(g,j - PL - PSY + 0.5); 
     Bx_sigmay = sigmao * Bx_ky; 
    } 
    //} 
     
    //Hx_kx,Hx_sigmax 
    if(i < PL) 
    { 
     Hx_kx     = pow(g,PL - i); 
     Hx_sigmax = sigmao * Hx_kx; 
    } 
    else if(i >= PL + PSX) 
    { 
     Hx_kx     = pow(g,i - PL - PSX); 
     Hx_sigmax = sigmao * Hx_kx; 
    } 
     
    //Hx_kz,Hx_sigmaz 
    if(k < PL) 
    { 
     Hx_kz     = pow(g,PL - k - 0.5); 
     Hx_sigmaz = sigmao * Hx_kz; 
    } 
    else if(k >= PL + PSZ) 
    { 



     Hx_kz     = pow(g,k - PL - PSZ + 0.5); 
     Hx_sigmaz = sigmao * Hx_kz; 
    } 
 
     
    //C1Bx,C2Bx,C1By,C2By,C1Bz,C2Bz 

C1Bx[i][j][k] = (2  * epso * epsr[i][j][k] * Bx_ky - 
Bx_sigmay * dt)/(2 * epso * epsr[i][j][k] * Bx_ky + 
Bx_sigmay * dt); 

     
C2Bx[i][j][k] = (2  * epso * epsr[i][j][k] * dt)  

    /(2 * epso * epsr[i][j][k] * Bx_ky + Bx_sigmay * dt); 
 
    //C1Hx,C2Hx,C3Hx,C1Hy,C2Hy,C3Hy,C1Hz,C2Hz,C3Hz 

C2Hx[i][j][k] = (2   * epso * epsr[i][j][k]  * Hx_kx + 
Hx_sigmax * dt)/((2 * epso * epsr[i][j][k]  * Hx_kz + 
Hx_sigmaz * dt)* muo );  

     
C3Hx[i][j][k] = (2   * epso * epsr[i][j][k]  * Hx_kx - 
Hx_sigmax * dt)/((2 * epso * epsr[i][j][k]  * Hx_kz + 
Hx_sigmaz * dt)* muo ); 
 
C1Hx[i][j][k] = (2 * epso * epsr[i][j][k]    * Hx_kz - 
Hx_sigmaz * dt) /(2* epso * epsr[i][j][k]    * Hx_kz + 
Hx_sigmaz * dt); 

   } 
  } 
 } 
  
  
 //C1By,C2By,C1Hy,C2Hy,C3Hy 
 for(i = 0;i < XCELLS;i++) 
 { 
  for(int j = 0;j < YCELLS;j++) 
  { 
   for(int k = 0;k < ZCELLS;k++) 
   { 
    By_kz     = 1; 
    By_sigmaz = sigma[i][j][k]; 
    Hy_ky     = 1; 
    Hy_sigmay = sigma[i][j][k]; 
    Hy_kx     = 1; 
    Hy_sigmax = sigma[i][j][k]; 
 
    //By_kz,By_sigmaz 
    if(k < PL) 
    { 
     By_kz     = pow(g,PL - k - 0.5); 
     By_sigmaz = sigmao * By_kz;  
    } 
    else if(k >= PL + PSZ) 
    { 
     By_kz     = pow(g,k - PL - PSZ + 0.5); 
     By_sigmaz = sigmao * By_kz; 
    } 
   
    //Hy_ky,Hy_sigmay 
    if(j < PL) 
    { 
     Hy_ky     = pow(g,PL - j); 
     Hy_sigmay = sigmao * Hy_ky; 
    } 
    else if(j >= PL + PSY) 



    { 
     Hy_ky     = pow(g,j - PL - PSY); 
     Hy_sigmay = sigmao * Hy_ky; 
    } 
    //} 
 
    //Hy_kx,Hy_sigmax 
    if(i < PL) 
    { 
     Hy_kx     = pow(g,PL - i - 0.5); 
     Hy_sigmax = sigmao * Hy_kx; 
    } 
    else if(i >= PL + PSX) 
    { 
     Hy_kx     = pow(g,i - PL - PSX + 0.5); 
     Hy_sigmax = sigmao * Hy_kx; 
    } 
 
    //C1By,C2By 

C1By[i][j][k] = (2  * epso * epsr[i][j][k] * By_kz - 
By_sigmaz * dt)/(2 * epso * epsr[i][j][k] * By_kz + 
By_sigmaz * dt); 

     
C2By[i][j][k] = (2  * epso * epsr[i][j][k] * dt) /(2 * epso 
* epsr[i][j][k] * By_kz + By_sigmaz * dt); 

 
    //C1Hy,C2Hy,C3Hy 

C2Hy[i][j][k] = (2   * epso * epsr[i][j][k]  * Hy_ky + 
Hy_sigmay * dt)/((2 * epso * epsr[i][j][k]  * Hy_kx + 
Hy_sigmax * dt)* muo );  

     
C3Hy[i][j][k] = (2   * epso * epsr[i][j][k]  * Hy_ky - 
Hy_sigmay * dt)/((2 * epso * epsr[i][j][k]  * Hy_kx + 
Hy_sigmax * dt)* muo ); 
 
C1Hy[i][j][k] = (2 * epso * epsr[i][j][k]    * Hy_kx - 
Hy_sigmax * dt)/(2* epso * epsr[i][j][k]    * Hy_kx + 
Hy_sigmax * dt); 

   } 
  } 
 } 
 
 //C1Bz,C2Bz,C1Hz,C2Hz,C3Hz 
 for(i = 0;i < XCELLS;i++) 
 { 
  for(int j = 0;j < YCELLS;j++) 
  { 
   for(int k = 0;k < ZCELLS;k++) 
   { 
    Bz_kx     = 1; 
    Bz_sigmax = sigma[i][j][k]; 
    Hz_kz     = 1; 
    Hz_sigmaz = sigma[i][j][k]; 
    Hz_ky     = 1; 
    Hz_sigmay = sigma[i][j][k]; 
 
    //Bz_kx,Bz_sigmax 
    if(i < PL) 
    { 
     Bz_kx     = pow(g,PL - i - 0.5); 
     Bz_sigmax = sigmao * Bz_kx;  
    } 
    else if(i >= PL + PSX) 



    { 
     Bz_kx     = pow(g,i - PL - PSX + 0.5); 
     Bz_sigmax = sigmao * Bz_kx; 
    } 
     
    //Hz_kz,Hz_sigmaz 
    if(k < PL) 
    { 
     Hz_kz     = pow(g,PL - k); 
     Hz_sigmaz = sigmao * Hz_kz; 
    } 
    else if(k >= PL + PSZ) 
    { 
     Hz_kz     = pow(g,k - PL - PSZ); 
     Hz_sigmaz = sigmao * Hz_kz; 
    } 
     
 
    //Hz_ky,Hz_sigmay 
    if(j < PL) 
    { 
     Hz_ky     = pow(g,PL - j - 0.5); 
     Hz_sigmay = sigmao * Hz_ky; 
    } 
    else if(j >= PL + PSY) 
    { 
     Hz_ky     = pow(g,j - PL - PSY + 0.5); 
     Hz_sigmay = sigmao * Hz_ky; 
    } 
    //} 
 
    //C1Bz,C2Bz 

C1Bz[i][j][k] = (2  * epso * epsr[i][j][k] * Bz_kx - 
Bz_sigmax * dt)/(2 * epso * epsr[i][j][k] * Bz_kx + 
Bz_sigmax * dt); 
 
C2Bz[i][j][k] = (2  * epso * epsr[i][j][k] * dt) /(2 * epso 
* epsr[i][j][k] * Bz_kx + Bz_sigmax * dt);  

 
    //C1Hz,C2Hz,C3Hz 

C2Hz[i][j][k] = (2   * epso * epsr[i][j][k]  * Hz_kz + 
Hz_sigmaz * dt)/((2 * epso * epsr[i][j][k]  * Hz_ky + 
Hz_sigmay * dt)* muo ); 
  
C3Hz[i][j][k] = (2   * epso * epsr[i][j][k]  * Hz_kz - 
Hz_sigmaz * dt)/((2 * epso * epsr[i][j][k]  * Hz_ky + 
Hz_sigmay * dt)* muo ); 
 
C1Hz[i][j][k] = (2 * epso * epsr[i][j][k]    * Hz_ky - 
Hz_sigmay * dt)/(2* epso * epsr[i][j][k]    * Hz_ky + 
Hz_sigmay * dt); 

   } 
  } 
 } 
} 
 
 
void CreateAllMatrices() 
{ 
 //Create the parameter matrices 
 CreateMatrix(epsr, XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(sigma,XCELLS,YCELLS,ZCELLS); 
 



 //Field matrices 
 CreateMatrix(Dx,XCELLS,YCELLS + 1,ZCELLS + 1); 
 CreateMatrix(Dy,XCELLS + 1,YCELLS,ZCELLS + 1); 
 CreateMatrix(Dz,XCELLS + 1,YCELLS + 1,ZCELLS); 
  
 CreateMatrix(Ex,XCELLS,YCELLS + 1,ZCELLS + 1); 
 CreateMatrix(Ey,XCELLS + 1,YCELLS,ZCELLS + 1); 
 CreateMatrix(Ez,XCELLS + 1,YCELLS + 1,ZCELLS); 
 
 CreateMatrix(Bx,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(By,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(Bz,XCELLS,YCELLS,ZCELLS); 
 
 CreateMatrix(Hx,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(Hy,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(Hz,XCELLS,YCELLS,ZCELLS); 
  
  
 //Create the update eqn constant matrices 
 CreateMatrix(C1Dx,XCELLS,YCELLS + 1,ZCELLS + 1); 
 CreateMatrix(C2Dx,XCELLS,YCELLS + 1,ZCELLS + 1); 
 CreateMatrix(C1Dy,XCELLS + 1,YCELLS,ZCELLS + 1); 
 CreateMatrix(C2Dy,XCELLS + 1,YCELLS,ZCELLS + 1); 
 CreateMatrix(C1Dz,XCELLS + 1,YCELLS + 1,ZCELLS); 
 CreateMatrix(C2Dz,XCELLS + 1,YCELLS + 1,ZCELLS); 
 
 CreateMatrix(C1Bx,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(C2Bx,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(C1By,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(C2By,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(C1Bz,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(C2Bz,XCELLS,YCELLS,ZCELLS); 
 
 CreateMatrix(C1Ex,XCELLS,YCELLS + 1,ZCELLS + 1); 
 CreateMatrix(C2Ex,XCELLS,YCELLS + 1,ZCELLS + 1); 
 CreateMatrix(C3Ex,XCELLS,YCELLS + 1,ZCELLS + 1); 
 CreateMatrix(C1Ey,XCELLS + 1,YCELLS,ZCELLS + 1); 
 CreateMatrix(C2Ey,XCELLS + 1,YCELLS,ZCELLS + 1); 
 CreateMatrix(C3Ey,XCELLS + 1,YCELLS,ZCELLS + 1); 
 CreateMatrix(C1Ez,XCELLS + 1,YCELLS + 1,ZCELLS); 
 CreateMatrix(C2Ez,XCELLS + 1,YCELLS + 1,ZCELLS); 
 CreateMatrix(C3Ez,XCELLS + 1,YCELLS + 1,ZCELLS); 
 
 CreateMatrix(C1Hx,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(C2Hx,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(C3Hx,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(C1Hy,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(C2Hy,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(C3Hy,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(C1Hz,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(C2Hz,XCELLS,YCELLS,ZCELLS); 
 CreateMatrix(C3Hz,XCELLS,YCELLS,ZCELLS); 
} 
 
void DeleteAllMatrices() 
{ 
 //Delete the constitute parameter matrices 
 DeleteMatrix(epsr ,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(sigma,XCELLS,YCELLS,ZCELLS); 
 
 //Delete the field component matrices 
 DeleteMatrix(Dx,XCELLS,YCELLS + 1,ZCELLS + 1); 
 DeleteMatrix(Dy,XCELLS + 1,YCELLS,ZCELLS + 1); 



 DeleteMatrix(Dz,XCELLS + 1,YCELLS + 1,ZCELLS); 
 
 DeleteMatrix(Ex,XCELLS,YCELLS + 1,ZCELLS + 1); 
 DeleteMatrix(Ey,XCELLS + 1,YCELLS,ZCELLS + 1); 
 DeleteMatrix(Ez,XCELLS + 1,YCELLS + 1,ZCELLS); 
 
 DeleteMatrix(Bx,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(By,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(Bz,XCELLS,YCELLS,ZCELLS); 
  
 DeleteMatrix(Hx,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(Hy,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(Hz,XCELLS,YCELLS,ZCELLS); 
  
 //Delete the update eqn constant matrices 
 DeleteMatrix(C1Dx,XCELLS,YCELLS + 1,ZCELLS + 1); 
 DeleteMatrix(C2Dx,XCELLS,YCELLS + 1,ZCELLS + 1); 
 DeleteMatrix(C1Dy,XCELLS + 1,YCELLS,ZCELLS + 1); 
 DeleteMatrix(C2Dy,XCELLS + 1,YCELLS,ZCELLS + 1); 
 DeleteMatrix(C1Dz,XCELLS + 1,YCELLS + 1,ZCELLS); 
 DeleteMatrix(C2Dz,XCELLS + 1,YCELLS + 1,ZCELLS); 
 
 DeleteMatrix(C1Bx,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(C2Bx,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(C1By,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(C2By,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(C1Bz,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(C2Bz,XCELLS,YCELLS,ZCELLS); 
 
 DeleteMatrix(C1Ex,XCELLS,YCELLS + 1,ZCELLS + 1); 
 DeleteMatrix(C2Ex,XCELLS,YCELLS + 1,ZCELLS + 1); 
 DeleteMatrix(C3Ex,XCELLS,YCELLS + 1,ZCELLS + 1); 
 DeleteMatrix(C1Ey,XCELLS + 1,YCELLS,ZCELLS + 1); 
 DeleteMatrix(C2Ey,XCELLS + 1,YCELLS,ZCELLS + 1); 
 DeleteMatrix(C3Ey,XCELLS + 1,YCELLS,ZCELLS + 1); 
 DeleteMatrix(C1Ez,XCELLS + 1,YCELLS + 1,ZCELLS); 
 DeleteMatrix(C2Ez,XCELLS + 1,YCELLS + 1,ZCELLS); 
 DeleteMatrix(C3Ez,XCELLS + 1,YCELLS + 1,ZCELLS); 
 
  
 DeleteMatrix(C1Hx,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(C2Hx,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(C3Hx,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(C1Hy,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(C2Hy,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(C3Hy,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(C1Hz,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(C2Hz,XCELLS,YCELLS,ZCELLS); 
 DeleteMatrix(C3Hz,XCELLS,YCELLS,ZCELLS); 
} 
 
//Create 3 dimensional matrix of dimx X dimy X dimz 
//All elements are set to 0.0 as default 
void CreateMatrix(MatPtr& mat,int dimx,int dimy,int dimz) 
{ 
 mat = new double**[dimx]; 
 for(int i = 0; i < dimx; i++) 
 { 
  mat[i] = new double*[dimy]; 
  for(int j = 0;j < dimy; j++) 
  { 
   mat[i][j] = new double[dimz]; 
   for(int k = 0;k < dimz;  k++) 



   { 
    mat[i][j][k] = 0.0; 
   } 
  } 
 }  
} 
 
//Delete the  3 D matrix. Free the memory 
void DeleteMatrix(MatPtr mat,int dimx,int dimy,int dimz) 
{ 
 for(int i = 0;i < dimx;i++) 
 { 
  for(int j = 0;j<dimy;j++) 
  { 
   free(mat[i][j]); 
  } 
  free(mat[i]); 
 } 
 free(mat); 
} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix III : UPML experiments 

Gaussian source at one end and Hx is sampled near the other end (near the UPML at the other 
end). The figures show the incident Gaussian and the reflection from the UPML – problem space 
boundary for varying values of UPML parameters. 
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Appendix IV : MATLAB code to evaluate 𝑺𝑺𝟏𝟏𝟏𝟏 from simulation results 
%Total  -> Simulation data from the microstrip patch simulation 
%Incident -> Simulation data from the incident wave simulation 
%Size of Total and Incident is 4000 
dt = 0.265 / 6e8; 
Ref = Total - Incident; 
  
%Zero padding to increase frequency resolution 
Incident = [Incident zeros(1,46000)]; 
Ref      = [Ref zeros(1,46000)]; 
  
reffft = fft(ref); 
incfft = fft(Incident); 
  
S11 = reffft ./ incfft; 
  
k = 0 : 450; 
plot(k/(50000*dt*1e9),10*log10(abs(S11(k + 1))) ); 
xlabel('Frequency (GHz)'); 
ylabel('S11 (dB)'); 
 

 




